-
Notifications
You must be signed in to change notification settings - Fork 554
/
Intro to R - Ch 06.R
205 lines (170 loc) · 5.95 KB
/
Intro to R - Ch 06.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
############################################################
# R script to accompany Intro to R for Business, Chapter 06#
# Written by Troy Adair #
############################################################
## Going to be reading in a lot of data, so let's empty Environment
## and clean up Console
# Clean Up
rm(list=ls(all=TRUE))
cat("\014")
## Reading in external data
## Prior to attempting this section, download file
## "yellow-tripdata_2017-06.csv" from the link on intro-to-r.com
## and store it in working directory for this project.
getwd()
# Also, edit the .gitignore file (if necessary) to exclude
# *.csv and *.RData files from being synced by Git.
file.edit(".gitignore")
# Importing the file and measuring how long the import takes
### Run as a block of text to time #########
ptm <- proc.time()
DF <- read.csv("yellow_tripdata_2017-06.csv")
CSV_READ_TIME <- (proc.time() - ptm)
CSV_READ_TIME
############################################
# Looking at what we got
class(DF)
typeof(DF)
str(DF)
## Reading in our csv file using fread() from package data.table
# Installing data.table (if required) and loading it into memory
if (!require("data.table")) install.packages("data.table")
library("data.table")
#Checking and setting number of cpu threads
getDTthreads()
getDTthreads(verbose=TRUE)
setDTthreads(0)
getDTthreads()
# Doing a timed read of the same file with fread()
### Run as a block of text to time #########
ptm <- proc.time()
DF <- fread("yellow_tripdata_2017-06.csv", header="auto",
data.table=FALSE)
FREAD_READ_TIME <- (proc.time() - ptm)
FREAD_READ_TIME
############################################
# Examining what we got
class(DF)
typeof(DF)
str(DF)
names(DF)
# Bringing in column headers as names and using them to set names
### Run as a block of text to time #########
ptm <- proc.time()
header <- read.table("yellow_tripdata_2017-06.csv", header = TRUE,
sep=",", nrow = 1)
DF <- fread("yellow_tripdata_2017-06.csv", skip=1, sep=",",
header=FALSE, data.table=FALSE)
setnames(DF, colnames(header))
rm(header)
FREAD_READ_TIME <- (proc.time() - ptm)
FREAD_READ_TIME
############################################
# Examining what we got again
class(DF)
typeof(DF)
str(DF)
names(DF)
# Examing the effects of multithreading
for(i in 1:getDTthreads()) {
setDTthreads(i)
print(getDTthreads())
ptm <- proc.time()
header <- read.table("yellow_tripdata_2017-06.csv", header = TRUE,
sep=",", nrow = 1)
DF <- fread("yellow_tripdata_2017-06.csv", skip=1, sep=",",
header=FALSE, data.table=FALSE,
showProgress=FALSE)
setnames(DF, colnames(header))
rm(header)
print(proc.time() - ptm)
gc()
}
# But data.table is not the only game in town...
# What about package readr?
# Installing readr (if required) and loading it into memory
if (!require("readr")) install.packages("readr")
library("readr")
# A timed example of readr::read_csv()
### Run as a block of text to time #########
ptm <- proc.time()
DF <- read_csv("yellow_tripdata_2017-06.csv", col_names=TRUE)
READR_READ_TIME <- (proc.time() - ptm)
READR_READ_TIME
############################################
CSV_READ_TIME
FREAD_READ_TIME
class(DF)
typeof(DF)
str(DF)
names(DF)
# We've picked a winner: let's run with it.
rm(list=ls(all=TRUE))
cat("\014")
header <- read.table("yellow_tripdata_2017-06.csv", header = TRUE,
sep=",", nrow = 1)
Yellow_Tripdata_2017_06 <- fread("yellow_tripdata_2017-06.csv",
skip=1, sep=",",header=FALSE,
data.table=FALSE)
setnames(Yellow_Tripdata_2017_06, colnames(header))
rm(header)
# Looking at our data
View(Yellow_Tripdata_2017_06)
str(Yellow_Tripdata_2017_06)
# Using head()
head(Yellow_Tripdata_2017_06)
head(Yellow_Tripdata_2017_06, n=3)
head(Yellow_Tripdata_2017_06$trip_distance, n=10)
head(Yellow_Tripdata_2017_06[4:5])
# Using summary()
summary(Yellow_Tripdata_2017_06)
summary(Yellow_Tripdata_2017_06 $ trip_distance)
#
# Throwing out "non-fares"
Yellow_Tripdata_2017_06 <- Yellow_Tripdata_2017_06[which(
Yellow_Tripdata_2017_06$fare_amount>=0 &
Yellow_Tripdata_2017_06$fare_amount<100000),]
summary(Yellow_Tripdata_2017_06 $ fare_amount)
# Constraining passenger_count to = 1 or 2
Yellow_Tripdata_2017_06<-Yellow_Tripdata_2017_06[which(
Yellow_Tripdata_2017_06$passenger_count==1 |
Yellow_Tripdata_2017_06$passenger_count==2),]
summary(Yellow_Tripdata_2017_06 $ passenger_count)
# Using data.table:fwrite()to save our curated data as csv:
fwrite(Yellow_Tripdata_2017_06,"Yellow_Curated.csv")
# Let's re-read our "original" data set,
# create a sample subset, and save it
# for the next chapter.
# First, clear memory and the Console
rm(list=ls(all=TRUE))
cat("\014")
# Re-read the csv:
header <- read.table("yellow_tripdata_2017-06.csv", header = TRUE,
sep=",", nrow = 1)
DF <- fread("yellow_tripdata_2017-06.csv",
skip=1, sep=",",header=FALSE,
data.table=FALSE)
setnames(DF, colnames(header))
rm(header)
# Save the "bad" observations so we can clean them out
# in the next chapter
DF2<-DF[which(DF$total_amount<=0 |
DF$fare_amount >=100000 |
DF$fare_amount < 0 |
DF$trip_distance >= 100),]
# Reform DF with only the "good" observations
DF<-DF[which(DF$total_amount >0 &
DF$fare_amount <100000 &
DF$fare_amount >= 0 &
DF$trip_distance < 100),]
# Select a random subsample of 1,000,000 rows
set.seed(10)
index <- sample(1:nrow(DF), 1000000, replace=FALSE)
# Look at the index to see it's just row numbers
head(index)
# Copy the row numbers for the sample only into Yellow_Sample
Yellow_Sample <- DF[index,]
# Concatenate (or "bind") the random sample and the "bad" ones
Yellow_Sample <- rbind(DF2,Yellow_Sample)
# Save the data frame as an R data file
save(Yellow_Sample,file="Yellow_Sample.RData")