From ce6ec52fb9d55026b365441de3b225eb271615ee Mon Sep 17 00:00:00 2001 From: kurus21 <140687393+kurus21@users.noreply.github.com> Date: Thu, 5 Dec 2024 12:59:46 +0530 Subject: [PATCH 1/4] pep_sex_2024 changes made (#1110) pep_sex_2024 auto refresh changes --- scripts/us_census/pep/us_pep_sex/README.md | 17 +- scripts/us_census/pep/us_pep_sex/download.py | 48 - .../us_census/pep/us_pep_sex/input_url.json | 230 ++ .../us_census/pep/us_pep_sex/input_urls.txt | 281 --- .../us_census/pep/us_pep_sex/manifest.json | 19 + scripts/us_census/pep/us_pep_sex/process.py | 1416 +++++++----- .../us_census/pep/us_pep_sex/process_test.py | 41 +- .../datasets/CC-EST2020-AGESEX-ALL.csv | 143 +- .../datasets/SC-EST2020-AGESEX-01.csv | 15 - .../datasets/SC-EST2020-AGESEX-19.csv | 15 + .../datasets/SC-EST2020-AGESEX-20.csv | 15 + .../datasets/SC-EST2020-AGESEX-32.csv | 15 + .../datasets/cc-est2021-agesex-all.csv | 40 - .../datasets/cc-est2023-agesex-all.csv | 100 + .../test_data/datasets/co-asr-1970.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1971.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1972.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1973.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1974.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1975.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1976.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1977.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1978.xls | Bin 1326080 -> 0 bytes .../test_data/datasets/co-asr-1979.xls | Bin 1326080 -> 0 bytes .../datasets/co-est00int-agesex-5yr.csv | 900 ++++---- .../datasets/nc-est2021-agesex-res.csv | 116 - .../test_data/datasets/pe-02-1980.csv | 409 ---- .../test_data/datasets/pe-02-1981.csv | 409 ---- .../test_data/datasets/pe-02-1982.csv | 409 ---- .../test_data/datasets/pe-02-1983.csv | 409 ---- .../test_data/datasets/pe-02-1984.csv | 409 ---- .../test_data/datasets/pe-02-1985.csv | 409 ---- .../test_data/datasets/pe-02-1986.csv | 409 ---- .../test_data/datasets/pe-02-1987.csv | 409 ---- .../test_data/datasets/pe-02-1988.csv | 409 ---- .../test_data/datasets/pe-02-1989.csv | 508 +---- .../test_data/datasets/pe-11-1900.csv | 100 - .../test_data/datasets/pe-11-1902.csv | 100 - .../test_data/datasets/pe-11-1903.csv | 100 - .../test_data/datasets/pe-11-1904.csv | 100 - .../test_data/datasets/pe-11-1906.csv | 100 - .../test_data/datasets/pe-11-1907.csv | 100 - .../test_data/datasets/pe-11-1908.csv | 100 - .../test_data/datasets/pe-11-1909.csv | 100 - .../test_data/datasets/pe-11-1910.csv | 100 - .../test_data/datasets/pe-11-1911.csv | 100 - .../test_data/datasets/pe-11-1912.csv | 100 - .../test_data/datasets/pe-11-1913.csv | 100 - .../test_data/datasets/pe-11-1914.csv | 100 - .../test_data/datasets/pe-11-1915.csv | 100 - .../test_data/datasets/pe-11-1916.csv | 100 - .../test_data/datasets/pe-11-1917.csv | 100 - .../test_data/datasets/pe-11-1918.csv | 100 - .../test_data/datasets/pe-11-1919.csv | 100 - .../test_data/datasets/pe-11-1920.csv | 100 - .../test_data/datasets/pe-11-1921.csv | 100 - .../test_data/datasets/pe-11-1922.csv | 100 - .../test_data/datasets/pe-11-1923.csv | 100 - .../test_data/datasets/pe-11-1924.csv | 100 - .../test_data/datasets/pe-11-1925.csv | 100 - .../test_data/datasets/pe-11-1926.csv | 100 - .../test_data/datasets/pe-11-1927.csv | 100 - .../test_data/datasets/pe-11-1928.csv | 100 - .../test_data/datasets/pe-11-1929.csv | 100 - .../test_data/datasets/pe-11-1930.csv | 100 - .../test_data/datasets/pe-11-1931.csv | 100 - .../test_data/datasets/pe-11-1932.csv | 100 - .../test_data/datasets/pe-11-1933.csv | 100 - .../test_data/datasets/pe-11-1934.csv | 100 - .../test_data/datasets/pe-11-1935.csv | 100 - .../test_data/datasets/pe-11-1936.csv | 100 - .../test_data/datasets/pe-11-1937.csv | 100 - .../test_data/datasets/pe-11-1938.csv | 100 - .../test_data/datasets/pe-11-1939.csv | 100 - .../test_data/datasets/pe-11-1940.csv | 110 - .../test_data/datasets/pe-11-1941.csv | 110 - .../test_data/datasets/pe-11-1942.csv | 110 - .../test_data/datasets/pe-11-1943.csv | 110 - .../test_data/datasets/pe-11-1944.csv | 110 - .../test_data/datasets/pe-11-1945.csv | 110 - .../test_data/datasets/pe-11-1946.csv | 110 - .../test_data/datasets/pe-11-1947.csv | 110 - .../test_data/datasets/pe-11-1948.csv | 110 - .../test_data/datasets/pe-11-1949.csv | 110 - .../test_data/datasets/pe-11-1950.csv | 110 - .../test_data/datasets/pe-11-1951.csv | 110 - .../test_data/datasets/pe-11-1952.csv | 110 - .../test_data/datasets/pe-11-1953.csv | 110 - .../test_data/datasets/pe-11-1954.csv | 110 - .../test_data/datasets/pe-11-1955.csv | 110 - .../test_data/datasets/pe-11-1956.csv | 110 - .../test_data/datasets/pe-11-1957.csv | 110 - .../test_data/datasets/pe-11-1958.csv | 110 - .../test_data/datasets/pe-11-1959.csv | 110 - .../test_data/datasets/pe-11-1960.csv | 109 - .../test_data/datasets/pe-11-1961.csv | 109 - .../test_data/datasets/pe-11-1962.csv | 109 - .../test_data/datasets/pe-11-1963.csv | 109 - .../test_data/datasets/pe-11-1964.csv | 109 - .../test_data/datasets/pe-11-1965.csv | 109 - .../test_data/datasets/pe-11-1966.csv | 109 - .../test_data/datasets/pe-11-1967.csv | 109 - .../test_data/datasets/pe-11-1968.csv | 109 - .../test_data/datasets/pe-11-1969.csv | 109 - .../test_data/datasets/pe-11-1970.csv | 109 - .../test_data/datasets/pe-11-1971.csv | 109 - .../test_data/datasets/pe-11-1972.csv | 109 - .../test_data/datasets/pe-11-1973.csv | 109 - .../test_data/datasets/pe-11-1974.csv | 109 - .../test_data/datasets/pe-11-1975.csv | 109 - .../test_data/datasets/pe-11-1976.csv | 109 - .../test_data/datasets/pe-11-1977.csv | 109 - .../test_data/datasets/pe-11-1978.csv | 109 - .../test_data/datasets/pe-11-1979.csv | 109 - .../us_pep_sex/test_data/datasets/pe-19.csv | 266 ++- .../datasets/sc-est2021-syasex-01%20..xlsx | Bin 18015 -> 0 bytes .../datasets/sc-est2023-agesex-50.xlsx | Bin 0 -> 15645 bytes .../datasets/sc-est2023-syasex-06.xlsx | Bin 0 -> 22461 bytes .../test_data/datasets/st-est00int-02-01.csv | 119 - .../test_data/datasets/stch-icen1990.txt | 76 - .../test_data/datasets/stch-icen1991.txt | 76 - .../test_data/datasets/stch-icen1992.txt | 76 - .../test_data/datasets/stch-icen1993.txt | 76 - .../test_data/datasets/stch-icen1994.txt | 76 - .../test_data/datasets/stch-icen1995.txt | 76 - .../test_data/datasets/stch-icen1996.txt | 76 - .../test_data/datasets/stch-icen1997.txt | 76 - .../test_data/datasets/stch-icen1998.txt | 76 - .../test_data/datasets/stch-icen1999.txt | 76 - .../test_data/datasets/stiag780.txt | 115 - .../test_data/datasets/stiag781.txt | 114 - .../test_data/datasets/stiag782.txt | 115 - .../test_data/datasets/stiag783.txt | 115 - .../test_data/datasets/stiag784.txt | 115 - .../test_data/datasets/stiag785.txt | 115 - .../test_data/datasets/stiag786.txt | 115 - .../test_data/datasets/stiag787.txt | 116 - .../test_data/datasets/stiag788.txt | 86 + .../test_data/datasets/stiag789.txt | 115 - .../test_data/datasets/us-est00int-01.csv | 41 +- .../test_data/datasets/us-est90int-08.csv | 50 - .../expected_population_estimate_sex.csv | 1961 ----------------- .../population_estimate_sex.csv | 681 ++++++ ...te_sex.mcf => population_estimate_sex.mcf} | 0 ..._sex.tmcf => population_estimate_sex.tmcf} | 0 145 files changed, 2986 insertions(+), 17793 deletions(-) delete mode 100644 scripts/us_census/pep/us_pep_sex/download.py create mode 100644 scripts/us_census/pep/us_pep_sex/input_url.json delete mode 100644 scripts/us_census/pep/us_pep_sex/input_urls.txt create mode 100644 scripts/us_census/pep/us_pep_sex/manifest.json delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-01.csv create mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-19.csv create mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-20.csv create mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-32.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2021-agesex-all.csv create mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2023-agesex-all.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1970.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1971.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1972.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1973.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1974.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1975.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1976.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1977.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1978.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1979.xls delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/nc-est2021-agesex-res.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1980.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1981.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1982.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1983.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1984.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1985.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1986.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1987.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1988.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1900.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1902.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1903.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1904.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1906.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1907.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1908.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1909.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1910.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1911.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1912.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1913.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1914.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1915.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1916.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1917.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1918.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1919.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1920.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1921.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1922.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1923.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1924.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1925.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1926.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1927.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1928.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1929.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1930.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1931.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1932.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1933.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1934.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1935.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1936.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1937.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1938.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1939.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1940.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1941.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1942.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1943.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1944.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1945.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1946.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1947.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1948.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1949.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1950.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1951.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1952.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1953.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1954.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1955.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1956.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1957.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1958.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1959.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1960.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1961.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1962.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1963.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1964.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1965.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1966.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1967.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1968.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1969.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1970.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1971.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1972.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1973.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1974.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1975.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1976.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1977.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1978.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1979.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/sc-est2021-syasex-01%20..xlsx create mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/sc-est2023-agesex-50.xlsx create mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/sc-est2023-syasex-06.xlsx delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/st-est00int-02-01.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1990.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1991.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1992.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1993.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1994.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1995.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1996.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1997.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1998.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1999.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag780.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag781.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag782.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag783.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag784.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag785.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag786.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag787.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag789.txt delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est90int-08.csv delete mode 100644 scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.csv create mode 100644 scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.csv rename scripts/us_census/pep/us_pep_sex/test_data/expected_files/{expected_population_estimate_sex.mcf => population_estimate_sex.mcf} (100%) rename scripts/us_census/pep/us_pep_sex/test_data/expected_files/{expected_population_estimate_sex.tmcf => population_estimate_sex.tmcf} (100%) diff --git a/scripts/us_census/pep/us_pep_sex/README.md b/scripts/us_census/pep/us_pep_sex/README.md index bfa1a15771..2250efd19a 100644 --- a/scripts/us_census/pep/us_pep_sex/README.md +++ b/scripts/us_census/pep/us_pep_sex/README.md @@ -1,7 +1,7 @@ # US Census PEP: Population Estimate By Sex ## About the Dataset -This dataset has Population Estimates for the National, State and County geographic levels in United States from the year 1900 to 2021 on a yearly basis. +This dataset has Population Estimates for the National, State and County geographic levels in United States from the year 1900 to latest year on a yearly basis. ### Download URL The data in txt/csv/xls formats are downloadable from within https://www2.census.gov/programs-surveys/popest/tables and https://www2.census.gov/programs-surveys/popest/datasets. The actual URLs are listed in download.py. @@ -45,4 +45,17 @@ The below script will download the data. The below script will clean the data, Also generate final csv, mcf and tmcf files. -`/bin/python3 scripts/us_census/pep/us_pep_sex/process.py` \ No newline at end of file +`/bin/python3 scripts/us_census/pep/us_pep_sex/process.py` + +###Automation Refresh +The process.py has a parameter 'mode' with values 'download' and 'process' + +when the file 'process.py' is ran with the flag --mode=download, it will only download the files and put it in the input_files directory. +i.e. python3 process.py mode=download + +when the file 'process.py' is ran with the flag --mode=process, it will process the downloaded files and put it in the output directory. +i.e. python3 process.py mode=process + +when the file 'process .py' is ran without any flag, it will download and process the files and keep it in the respective directories as mentioned above. +i.e. python3 process.py + diff --git a/scripts/us_census/pep/us_pep_sex/download.py b/scripts/us_census/pep/us_pep_sex/download.py deleted file mode 100644 index ecaa06bdec..0000000000 --- a/scripts/us_census/pep/us_pep_sex/download.py +++ /dev/null @@ -1,48 +0,0 @@ -# Copyright 2022 Google LLC -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -This Python Script downloads the US PEP files, into the input_files folder to be -made available for further processing. -""" -import os -import urllib.request - -_DOWNLOAD_PATH = os.path.join(os.path.dirname((__file__)), 'input_files') - - -def download_files() -> None: - """ - This Method calls the download function from the commons directory - to download all the input files. - - Args: - None - - Returns: - None - """ - with open("scripts/us_census/pep/us_pep_sex/input_urls.txt", - "r") as url_files: - input_urls = url_files.readlines() - if not os.path.exists(_DOWNLOAD_PATH): - os.mkdir(_DOWNLOAD_PATH) - os.chdir(_DOWNLOAD_PATH) - - for file in input_urls: - file_name = file.split("/")[-1] - urllib.request.urlretrieve(file, file_name) - - -if __name__ == '__main__': - download_files() diff --git a/scripts/us_census/pep/us_pep_sex/input_url.json b/scripts/us_census/pep/us_pep_sex/input_url.json new file mode 100644 index 0000000000..070c03eeff --- /dev/null +++ b/scripts/us_census/pep/us_pep_sex/input_url.json @@ -0,0 +1,230 @@ +[ +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1900.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1901.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1902.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1903.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1904.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1905.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1906.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1907.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1908.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1909.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1910.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1911.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1912.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1913.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1914.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1915.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1916.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1917.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1918.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1919.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1920.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1921.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1922.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1923.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1924.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1925.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1926.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1927.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1928.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1929.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1930.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1931.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1932.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1933.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1934.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1935.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1936.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1937.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1938.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1939.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1940.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1941.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1942.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1943.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1944.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1945.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1946.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1947.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1948.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1949.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1950.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1951.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1952.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1953.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1954.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1955.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1956.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1957.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1958.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1959.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1960.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1961.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1962.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1963.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1964.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1965.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1966.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1967.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1968.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1969.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1970.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1971.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1972.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1973.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1974.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1975.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1976.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1977.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1978.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1979.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/national/us-est90int-08.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/national/us-est00int-01.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/national/asrh/nc-est2020-agesex-res.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-01.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-02.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-04.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-05.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-06.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-08.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-09.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-10.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-11.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-12.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-13.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-15.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-16.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-17.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-18.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-19.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-20.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-21.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-22.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-23.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-24.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-25.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-26.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-27.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-28.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-29.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-30.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-31.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-32.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-33.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-34.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-35.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-36.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-37.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-38.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-39.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-40.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-41.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-42.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-44.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-45.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-46.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-47.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-48.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-49.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-50.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-51.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-53.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-54.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-55.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-56.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-01.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-02.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-04.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-05.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-06.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-08.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-09.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-10.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-11.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-12.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-13.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-15.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-16.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-17.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-18.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-19.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-20.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-21.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-22.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-23.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-24.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-25.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-26.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-27.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-28.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-29.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-30.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-31.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-32.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-33.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-34.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-35.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-36.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-37.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-38.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-39.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-40.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-41.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-42.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-44.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-45.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-46.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-47.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-48.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-49.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-50.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-51.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-53.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-54.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-55.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-56.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/counties/asrh/CC-EST2020-AGESEX-ALL.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1980.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1981.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1982.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1983.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1984.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1985.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1986.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1987.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1988.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1989.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/datasets/2000-2010/intercensal/county/co-est00int-agesex-5yr.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1990.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1991.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1992.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1993.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1994.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1995.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1996.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1997.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1998.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1999.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/state/asrh/pe-19.csv"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1970.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1971.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1972.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1973.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1974.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1975.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1976.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1977.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1978.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1979.xls"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag780.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag781.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag782.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag783.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag784.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag785.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag786.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag787.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag788.txt"}, +{"download_path":"https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag789.txt"} +] \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/input_urls.txt b/scripts/us_census/pep/us_pep_sex/input_urls.txt deleted file mode 100644 index 4ed99b9ad0..0000000000 --- a/scripts/us_census/pep/us_pep_sex/input_urls.txt +++ /dev/null @@ -1,281 +0,0 @@ -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1900.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1901.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1902.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1903.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1904.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1905.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1906.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1907.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1908.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1909.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1910.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1911.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1912.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1913.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1914.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1915.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1916.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1917.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1918.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1919.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1920.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1921.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1922.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1923.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1924.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1925.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1926.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1927.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1928.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1929.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1930.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1931.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1932.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1933.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1934.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1935.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1936.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1937.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1938.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1939.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1940.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1941.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1942.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1943.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1944.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1945.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1946.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1947.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1948.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1949.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1950.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1951.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1952.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1953.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1954.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1955.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1956.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1957.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1958.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1959.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1960.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1961.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1962.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1963.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1964.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1965.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1966.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1967.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1968.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1969.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1970.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1971.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1972.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1973.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1974.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1975.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1976.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1977.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1978.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/national/asrh/pe-11-1979.csv -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/national/us-est90int-08.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/national/us-est00int-01.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/national/asrh/nc-est2020-agesex-res.csv -https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/national/asrh/nc-est2021-agesex-res.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-01.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-02.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-04.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-05.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-06.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-08.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-09.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-10.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-11.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-12.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-13.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-15.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-16.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-17.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-18.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-19.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-20.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-21.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-22.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-23.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-24.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-25.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-26.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-27.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-28.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-29.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-30.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-31.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-32.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-33.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-34.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-35.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-36.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-37.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-38.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-39.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-40.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-41.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-42.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-44.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-45.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-46.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-47.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-48.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-49.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-50.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-51.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-53.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-54.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-55.csv -https://www2.census.gov/programs-surveys/popest/tables/2000-2010/intercensal/state/st-est00int-02-56.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-01.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-02.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-04.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-05.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-06.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-08.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-09.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-10.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-11.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-12.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-13.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-15.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-16.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-17.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-18.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-19.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-20.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-21.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-22.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-23.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-24.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-25.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-26.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-27.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-28.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-29.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-30.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-31.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-32.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-33.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-34.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-35.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-36.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-37.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-38.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-39.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-40.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-41.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-42.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-44.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-45.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-46.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-47.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-48.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-49.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-50.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-51.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-53.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-54.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-55.csv -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/state/asrh/SC-EST2020-AGESEX-56.csv -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-01%20..xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-02.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-04.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-05.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-06.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-08.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-09.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-10.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-11.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-12.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-13.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-15.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-16.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-17.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-18.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-19.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-20.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-21.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-22.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-23.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-24.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-25.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-26.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-27.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-28.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-29.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-30.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-31.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-32.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-33.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-34.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-35.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-36.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-37.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-38.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-39.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-40.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-41.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-42.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-44.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-45.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-46.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-47.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-48.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-49.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-50.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-51.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-53.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-54.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-55.xlsx -https://www2.census.gov/programs-surveys/popest/tables/2020-2021/state/asrh/sc-est2021-syasex-56.xlsx -https://www2.census.gov/programs-surveys/popest/datasets/2010-2020/counties/asrh/CC-EST2020-AGESEX-ALL.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1980.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1981.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1982.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1983.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1984.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1985.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1986.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1987.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1988.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/counties/asrh/pe-02-1989.csv -https://www2.census.gov/programs-surveys/popest/datasets/2000-2010/intercensal/county/co-est00int-agesex-5yr.csv -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1990.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1991.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1992.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1993.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1994.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1995.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1996.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1997.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1998.txt -https://www2.census.gov/programs-surveys/popest/tables/1990-2000/intercensal/st-co/stch-icen1999.txt -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/state/asrh/pe-19.csv -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1970.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1971.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1972.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1973.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1974.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1975.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1976.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1977.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1978.xls -https://www2.census.gov/programs-surveys/popest/tables/1900-1980/counties/asrh/co-asr-1979.xls -https://www2.census.gov/programs-surveys/popest/datasets/2020-2021/counties/asrh/cc-est2021-agesex-all.csv -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag780.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag781.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag782.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag783.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag784.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag785.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag786.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag787.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag788.txt -https://www2.census.gov/programs-surveys/popest/tables/1980-1990/state/asrh/stiag789.txt diff --git a/scripts/us_census/pep/us_pep_sex/manifest.json b/scripts/us_census/pep/us_pep_sex/manifest.json new file mode 100644 index 0000000000..d295e26920 --- /dev/null +++ b/scripts/us_census/pep/us_pep_sex/manifest.json @@ -0,0 +1,19 @@ +{ + "import_specifications": [ + { + "import_name": "USCensusPEP_Sex", + "curator_emails": ["kuru@google.com"], + "provenance_url": "https://www2.census.gov/programs-surveys/popest/tables", + "provenance_description": "US Census Population Estimates Program (PEP).", + "scripts": ["process.py"], + "import_inputs": [ + { + "template_mcf": "output/population_estimate_sex.tmcf", + "cleaned_csv": "output/population_estimate_sex.csv" + } + ], + "cron_schedule": "0 03 * * 1" + } + ] +} + diff --git a/scripts/us_census/pep/us_pep_sex/process.py b/scripts/us_census/pep/us_pep_sex/process.py index 330698877d..b28b918241 100644 --- a/scripts/us_census/pep/us_pep_sex/process.py +++ b/scripts/us_census/pep/us_pep_sex/process.py @@ -21,8 +21,21 @@ import pandas as pd import numpy as np from absl import app, flags +import requests +import shutil +import time +import json +from datetime import datetime as dt +from absl import logging +from absl import flags + +_FLAGS = flags.FLAGS + +flags.DEFINE_string('mode', '', 'Options: download or process') _MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) +_INPUT_FILE_PATH = os.path.join(_MODULE_DIR, 'input_files') +_FILES_TO_DOWNLOAD = None sys.path.insert(1, os.path.join(_MODULE_DIR, '../../../../')) # pylint: disable=wrong-import-position @@ -91,62 +104,66 @@ def _national_1900_1979(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ + try: + # extracting year from file path. + year = file_path[-8:-4] + # schema is changing after 1960 + if int(year) < 1960: + # schema is changing after 1940 + if int(year) < 1940: + df = pd.read_csv(file_path, + thousands=',', + engine='python', + skiprows=7, + skipfooter=92, + header=None) + else: + df = pd.read_csv(file_path, + thousands=',', + engine='python', + skiprows=7, + skipfooter=102, + header=None) + """ + The columns order has been fixed. Two headers combines to form the column name. + Even if we want to use rename method we still have to assume rolws and col position + Incase of change in order of the columns in the future has been handled by try catch block. + The logic applies to the other methods below + """ + + df.columns = [ + 'Age', 'Total', 'Count_Person_Male', 'Count_Person_Female', + 'White Total', 'White Male', 'White Female', 'NonWhite Total', + 'NonWhite Male', 'NonWhite Female' + ] + df = df.drop(columns=df.columns.difference( + ['Count_Person_Male', 'Count_Person_Female'])) - # extracting year from file path. - year = file_path[-8:-4] - # schema is changing after 1960 - if int(year) < 1960: - # schema is changing after 1940 - if int(year) < 1940: - df = pd.read_csv(file_path, - thousands=',', - engine='python', - skiprows=7, - skipfooter=92, - header=None) else: df = pd.read_csv(file_path, thousands=',', engine='python', - skiprows=7, + skiprows=6, skipfooter=102, header=None) - df.columns = [ - 'Age', 'Total', 'Count_Person_Male', 'Count_Person_Female', - 'White Total', 'White Male', 'White Female', 'NonWhite Total', - 'NonWhite Male', 'NonWhite Female' - ] - df = df.drop(columns=[ - 'Age', 'Total', 'White Total', 'White Male', 'White Female', - 'NonWhite Total', 'NonWhite Male', 'NonWhite Female' - ]) - df['Year'] = year - df.insert(0, 'geo_ID', 'country/USA', True) - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - else: - df = pd.read_csv(file_path, - thousands=',', - engine='python', - skiprows=6, - skipfooter=102, - header=None) - df.columns = [ - 'Age', 'Total', 'Count_Person_Male', 'Count_Person_Female', - 'White Total', 'White Male', 'White Female', 'Black Total', - 'Black Male', 'Black Female', 'OtherRace Total', 'OtherRace Male', - 'OtherRace Female' - ] - # dropping unwanted columns - df = df.drop(columns=[ - 'Age', 'Total', 'White Total', 'White Male', 'White Female', - 'Black Total', 'Black Male', 'Black Female', 'OtherRace Total', - 'OtherRace Male', 'OtherRace Female' - ]) + df.columns = [ + 'Age', 'Total', 'Count_Person_Male', 'Count_Person_Female', + 'White Total', 'White Male', 'White Female', 'Black Total', + 'Black Male', 'Black Female', 'OtherRace Total', + 'OtherRace Male', 'OtherRace Female' + ] + + # dropping unwanted columns + df = df.drop(columns=df.columns.difference( + ['Count_Person_Male', 'Count_Person_Female'])) + # adding geoid, year and measurement method df['Year'] = year df.insert(0, 'geo_ID', 'country/USA', True) df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _national_1990_2000(file_path: str) -> pd.DataFrame: @@ -159,22 +176,27 @@ def _national_1990_2000(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, thousands=',', skiprows=1, header=None) - df.columns = [ - 'Year', 'Age', 'Total', 'Count_Person_Male', 'Count_Person_Female' - ] - # total age is required as we are bring age in a seperate import - df = df[(df["Age"] == "All Age") & - (df["Year"].str.startswith("July"))].reset_index(drop=True) - df["Year"] = df["Year"].str.replace("July 1, ", "") - # dropping unwanted columns - df = df.drop(columns=['Total', 'Age']) - df.insert(0, 'geo_ID', 'country/USA', True) - float_col = df.select_dtypes(include=['float64']) - for col in float_col.columns.values: - df[col] = df[col].astype('int64') - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + try: + df = pd.read_csv(file_path, thousands=',', skiprows=1, header=None) + df.columns = [ + 'Year', 'Age', 'Total', 'Count_Person_Male', 'Count_Person_Female' + ] + # total age is required as we are bring age in a seperate import + df = df[(df["Age"] == "All Age") & + (df["Year"].str.startswith("July"))].reset_index(drop=True) + df["Year"] = df["Year"].str.replace("July 1, ", "") + # dropping unwanted columns + df = df.drop(columns=df.columns.difference( + ['Year', 'Total', 'Count_Person_Male', 'Count_Person_Female'])) + + df.insert(0, 'geo_ID', 'country/USA', True) + float_col = df.select_dtypes(include=['float64']) + for col in float_col.columns.values: + df[col] = df[col].astype('int64') + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _national_2000_2010(file_path: str) -> pd.DataFrame: @@ -187,34 +209,42 @@ def _national_2000_2010(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, thousands=',', skiprows=4, header=None) - df.columns = [ - 'SEX', 'April2000', '2000', '2001', '2002', '2003', '2004', '2005', - '2006', '2007', '2008', '2009', 'April2010', '2010' - ] - df = df.query('SEX=="MALE" or SEX=="FEMALE"') - # dropping unwanted columns - df = df.drop(columns=['April2000', 'April2010', '2010']) - df = df.replace( - {'SEX': { - 'MALE': 'Count_Person_Male', - 'FEMALE': 'Count_Person_Female' - }}) - # replacing rows with columns - # making the first row as column name - # to get all dataframe in one formate - df = df.transpose().reset_index() - df.columns = df.iloc[0] - df = df[1:] - df.insert(0, 'geo_ID', 'country/USA', True) - df = df.fillna(-1) - float_col = df.select_dtypes(include=['float64']) - for col in float_col.columns.values: - df[col] = df[col].astype('int64') - df[col] = df[col].astype("str").str.replace("-1", "") - df.rename(columns={'SEX': 'Year'}, inplace=True) - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + try: + df = pd.read_csv(file_path, thousands=',', skiprows=4, header=None) + df.columns = [ + 'SEX', 'April2000', '2000', '2001', '2002', '2003', '2004', '2005', + '2006', '2007', '2008', '2009', 'April2010', '2010' + ] + df = df.query('SEX=="MALE" or SEX=="FEMALE"') + # dropping unwanted columns + df = df.drop(columns=df.columns.difference([ + 'SEX', '2000', '2001', '2002', '2003', '2004', '2005', '2006', + '2007', '2008', '2009' + ])) + + df = df.replace({ + 'SEX': { + 'MALE': 'Count_Person_Male', + 'FEMALE': 'Count_Person_Female' + } + }) + # replacing rows with columns + # making the first row as column name + # to get all dataframe in one formate + df = df.transpose().reset_index() + df.columns = df.iloc[0] + df = df[1:] + df.insert(0, 'geo_ID', 'country/USA', True) + df = df.fillna(-1) + float_col = df.select_dtypes(include=['float64']) + for col in float_col.columns.values: + df[col] = df[col].astype('int64') + df[col] = df[col].astype("str").str.replace("-1", "") + df.rename(columns={'SEX': 'Year'}, inplace=True) + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _national_2010_2020(file_path: str) -> pd.DataFrame: @@ -227,43 +257,56 @@ def _national_2010_2020(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path) - # to get total age present at age = 999 - df = df.query("AGE == 999") - # total is not required in gender - df = df.query("SEX != 0") - # dropping unwanted column - df = df.drop(columns=['CENSUS2010POP', 'ESTIMATESBASE2010', 'AGE']) - df = df.replace({'SEX': {1: 'Count_Person_Male', 2: 'Count_Person_Female'}}) - df.rename(columns={ - 'POPESTIMATE2010': '2010', - 'POPESTIMATE2011': '2011', - 'POPESTIMATE2012': '2012', - 'POPESTIMATE2013': '2013', - 'POPESTIMATE2014': '2014', - 'POPESTIMATE2015': '2015', - 'POPESTIMATE2016': '2016', - 'POPESTIMATE2017': '2017', - 'POPESTIMATE2018': '2018', - 'POPESTIMATE2019': '2019', - 'POPESTIMATE2020': '2020', - 'SEX': 'Year' - }, - inplace=True) - # replacing rows with columns - # making the first row as column name - # to get all dataframe in one formate - df = df.transpose().reset_index() - df.columns = df.iloc[0] - df = df[1:] - df.insert(0, 'geo_ID', 'country/USA', True) - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df - - -def _national_2021(file_path: str) -> pd.DataFrame: - """ - Process and cleans the file for national 2021. + try: + df = pd.read_csv(file_path) + # to get total age present at age = 999 + df = df.query("AGE == 999") + # total is not required in gender + df = df.query("SEX != 0") + # dropping unwanted column + df = df.drop(columns=df.columns.difference([ + 'SEX', 'POPESTIMATE2010', 'POPESTIMATE2011', 'POPESTIMATE2012', + 'POPESTIMATE2013', 'POPESTIMATE2014', 'POPESTIMATE2015', + 'POPESTIMATE2016', 'POPESTIMATE2017', 'POPESTIMATE2018', + 'POPESTIMATE2019', 'POPESTIMATE2020' + ])) + + df = df.replace( + {'SEX': { + 1: 'Count_Person_Male', + 2: 'Count_Person_Female' + }}) + df.rename(columns={ + 'POPESTIMATE2010': '2010', + 'POPESTIMATE2011': '2011', + 'POPESTIMATE2012': '2012', + 'POPESTIMATE2013': '2013', + 'POPESTIMATE2014': '2014', + 'POPESTIMATE2015': '2015', + 'POPESTIMATE2016': '2016', + 'POPESTIMATE2017': '2017', + 'POPESTIMATE2018': '2018', + 'POPESTIMATE2019': '2019', + 'POPESTIMATE2020': '2020', + 'SEX': 'Year' + }, + inplace=True) + # replacing rows with columns + # making the first row as column name + # to get all dataframe in one formate + df = df.transpose().reset_index() + df.columns = df.iloc[0] + df = df[1:] + df.insert(0, 'geo_ID', 'country/USA', True) + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") + + +def _national_latest(file_path: str) -> pd.DataFrame: + """ + Process and cleans the file for national 2023. Args: file_path (str) : input file path. @@ -271,23 +314,41 @@ def _national_2021(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path) - # total is not required in gender - df = df.query("SEX !=0") - # to get total age present at age = 999 - df = df.query("AGE == 999") - df = df.replace({'SEX': {1: 'Count_Person_Male', 2: 'Count_Person_Female'}}) - df.rename(columns={'POPESTIMATE2021': '2021', 'SEX': 'Year'}, inplace=True) - df = df.drop(columns=['AGE', 'ESTIMATESBASE2020', 'POPESTIMATE2020']) - # replacing rows with columns - # making the first row as column name - # to get all dataframe in one formate - df = df.transpose().reset_index() - df.columns = df.iloc[0] - df = df[1:] - df.insert(0, 'geo_ID', 'country/USA', True) - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + try: + df = pd.read_csv(file_path) + # total is not required in gender + df = df.query("SEX !=0") + # to get total age present at age = 999 + df = df.query("AGE == 999") + df = df.replace( + {'SEX': { + 1: 'Count_Person_Male', + 2: 'Count_Person_Female' + }}) + column_list = [] + for year in range(2021, 2030): + column_name = f'POPESTIMATE{year}' + if column_name in df.columns: + df.rename(columns={column_name: str(year)}, inplace=True) + column_list.append(str(year)) + + # Ensure columns are renamed correctly before dropping unnecessary ones + if 'SEX' in df.columns: + df.rename(columns={'SEX': 'Year'}, inplace=True) + + column_list.insert(0, "Year") + df = df.drop(columns=df.columns.difference(column_list)) + # replacing rows with columns + # making the first row as column name + # to get all dataframe in one formate + df = df.transpose().reset_index() + df.columns = df.iloc[0] + df = df[1:] + df.insert(0, 'geo_ID', 'country/USA', True) + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _state_1970_1980(file_path: str) -> pd.DataFrame: @@ -300,34 +361,39 @@ def _state_1970_1980(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, skiprows=5, thousands=',') - df['Total'] = df[_COLUMNS_TO_SUM].sum(axis=1) - df = df.drop(columns=_COLUMNS_TO_SUM) - df = df.replace({ - 'Race/Sex Indicator': { - 'White male': 'Count_Person_Male', - 'Black male': 'Count_Person_Male', - 'Other races male': 'Count_Person_Male', - 'White female': 'Count_Person_Female', - 'Black female': 'Count_Person_Female', - 'Other races female': 'Count_Person_Female' - } - }) - df = df.rename(columns={ - 'Year of Estimate': 'Year', - 'FIPS State Code': 'geo_ID' - }) - df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(2) - df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) - df = df.drop(columns=['Year', 'State Name']) - # replacing rows with columns - # to get all dataframe in one formate - df = df.groupby(['geo_ID','Race/Sex Indicator']).sum().transpose()\ - .stack(0).reset_index() - df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) - df = df.drop(columns=['level_0']) - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + try: + df = pd.read_csv(file_path, skiprows=5, thousands=',') + df['Total'] = df[_COLUMNS_TO_SUM].sum(axis=1) + df = df.drop(columns=_COLUMNS_TO_SUM) + df = df.replace({ + 'Race/Sex Indicator': { + 'White male': 'Count_Person_Male', + 'Black male': 'Count_Person_Male', + 'Other races male': 'Count_Person_Male', + 'White female': 'Count_Person_Female', + 'Black female': 'Count_Person_Female', + 'Other races female': 'Count_Person_Female' + } + }) + df = df.rename(columns={ + 'Year of Estimate': 'Year', + 'FIPS State Code': 'geo_ID' + }) + df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(2) + df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) + df = df.drop(columns=df.columns.difference( + ['geo_ID', 'Race/Sex Indicator', 'Total'])) + + # replacing rows with columns + # to get all dataframe in one formate + df = df.groupby(['geo_ID','Race/Sex Indicator']).sum().transpose()\ + .stack(0).reset_index() + df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) + df = df.drop(columns=['level_0']) + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _state_1980_1990(file_path: str) -> pd.DataFrame: @@ -341,34 +407,40 @@ def _state_1980_1990(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - # extracting year from file path - year = file_path[-6:-4] - year = 1900 + int(year) - column_names = [ - 'geo_ID', 'CountyCode', 'Age', 'Total', 'Count_Person_Male', - 'Count_Person_Female' - ] - if year == 1987: - df = pd.read_table(file_path, - skiprows=29, - delim_whitespace=True, - names=column_names) - else: - df = pd.read_table(file_path, - skiprows=28, - delim_whitespace=True, - names=column_names) - df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(2) - df['Year'] = year - df = df.drop(columns=['CountyCode', 'Age', 'Total']) - df = df.groupby(['Year', 'geo_ID']).sum().reset_index() - # aggregating state data to get national data - df_national = df.copy() - df_national['geo_ID'] = "country/USA" - df_national = df_national.groupby(['Year', 'geo_ID']).sum().reset_index() - df = pd.concat([df_national, df], ignore_index=True) - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + try: + # extracting year from file path + year = file_path[-6:-4] + year = 1900 + int(year) + if year == 1983: + pass + column_names = [ + 'geo_ID', 'CountyCode', 'Age', 'Total', 'Count_Person_Male', + 'Count_Person_Female' + ] + if year == 1987: + df = pd.read_table(file_path, + skiprows=29, + delim_whitespace=True, + names=column_names) + else: + df = pd.read_table(file_path, + skiprows=28, + delim_whitespace=True, + names=column_names) + df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(2) + df['Year'] = year + df = df.drop(columns=['CountyCode', 'Age', 'Total']) + df = df.groupby(['Year', 'geo_ID']).sum().reset_index() + # aggregating state data to get national data + df_national = df.copy() + df_national['geo_ID'] = "country/USA" + df_national = df_national.groupby(['Year', + 'geo_ID']).sum().reset_index() + df = pd.concat([df_national, df], ignore_index=True) + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _state_2000_2010(file_path: str) -> pd.DataFrame: @@ -381,37 +453,44 @@ def _state_2000_2010(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - # extract geoid from the file path - geoid = file_path[-6:-4] - column_name = [ - 'AgeSex', 'April2000', '2000', '2001', '2002', '2003', '2004', '2005', - '2006', '2007', '2008', '2009', 'April2010', '2010' - ] - df = pd.read_csv(file_path, skiprows=4, thousands=',') - df.columns = column_name - df = df.query('AgeSex == "MALE" or AgeSex == "FEMALE"') - df = df.replace({ - 'AgeSex': { - "MALE": 'Count_Person_Male', - "FEMALE": 'Count_Person_Female' - } - }) - df = df.drop(columns=['April2000', 'April2010', '2010']) - # replacing rows with columns - # making the first row as column name - # to get all dataframe in one formate - df = df.transpose().reset_index() - df.columns = df.iloc[0] - df = df[1:] - df = df.rename(columns={'AgeSex': 'Year'}) - df.insert(1, 'geo_ID', 'geoId/' + geoid) - df = df.fillna(-1) - float_col = df.select_dtypes(include=['float64']) - for col in float_col.columns.values: - df[col] = df[col].astype('int64') - df[col] = df[col].astype("str").str.replace("-1", "") - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + try: + # extract geoid from the file path + geoid = file_path[-6:-4] + column_name = [ + 'AgeSex', 'April2000', '2000', '2001', '2002', '2003', '2004', + '2005', '2006', '2007', '2008', '2009', 'April2010', '2010' + ] + df = pd.read_csv(file_path, skiprows=4, thousands=',') + df.columns = column_name + df = df.query('AgeSex == "MALE" or AgeSex == "FEMALE"') + df = df.replace({ + 'AgeSex': { + "MALE": 'Count_Person_Male', + "FEMALE": 'Count_Person_Female' + } + }) + df = df.drop(columns=df.columns.difference([ + 'AgeSex', '2000', '2001', '2002', '2003', '2004', '2005', '2006', + '2007', '2008', '2009' + ])) + + # replacing rows with columns + # making the first row as column name + # to get all dataframe in one formate + df = df.transpose().reset_index() + df.columns = df.iloc[0] + df = df[1:] + df = df.rename(columns={'AgeSex': 'Year'}) + df.insert(1, 'geo_ID', 'geoId/' + geoid) + df = df.fillna(-1) + float_col = df.select_dtypes(include=['float64']) + for col in float_col.columns.values: + df[col] = df[col].astype('int64') + df[col] = df[col].astype("str").str.replace("-1", "") + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _state_2010_2020(file_path: str) -> pd.DataFrame: @@ -424,65 +503,48 @@ def _state_2010_2020(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, thousands=',') - df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2) - df = df.replace({ - 'YEAR': { - 1: 'April2010Census', - 2: 'April2010Estimate', - 3: '2010', - 4: '2011', - 5: '2012', - 6: '2013', - 7: '2014', - 8: '2015', - 9: '2016', - 10: '2017', - 11: '2018', - 12: '2019', - 13: 'April2020', - 14: '2020' - } - }) - df = df.rename( - columns={ - 'POPEST_MALE': 'Count_Person_Male', - 'POPEST_FEM': 'Count_Person_Female', - 'YEAR': 'Year' + try: + df = pd.read_csv(file_path, thousands=',') + df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2) + df = df.replace({ + 'YEAR': { + 1: 'April2010Census', + 2: 'April2010Estimate', + 3: '2010', + 4: '2011', + 5: '2012', + 6: '2013', + 7: '2014', + 8: '2015', + 9: '2016', + 10: '2017', + 11: '2018', + 12: '2019', + 13: 'April2020', + 14: '2020' + } }) - df = df.drop(columns=[ - 'SUMLEV', 'STATE', 'STNAME', 'POPESTIMATE', 'UNDER5_TOT', 'UNDER5_MALE', - 'UNDER5_FEM', 'AGE513_TOT', 'AGE513_MALE', 'AGE513_FEM', 'AGE1417_TOT', - 'AGE1417_MALE', 'AGE1417_FEM', 'AGE1824_TOT', 'AGE1824_MALE', - 'AGE1824_FEM', 'AGE16PLUS_TOT', 'AGE16PLUS_MALE', 'AGE16PLUS_FEM', - 'AGE18PLUS_TOT', 'AGE18PLUS_MALE', 'AGE18PLUS_FEM', 'AGE1544_TOT', - 'AGE1544_MALE', 'AGE1544_FEM', 'AGE2544_TOT', 'AGE2544_MALE', - 'AGE2544_FEM', 'AGE4564_TOT', 'AGE4564_MALE', 'AGE4564_FEM', - 'AGE65PLUS_TOT', 'AGE65PLUS_MALE', 'AGE65PLUS_FEM', 'AGE04_TOT', - 'AGE04_MALE', 'AGE04_FEM', 'AGE59_TOT', 'AGE59_MALE', 'AGE59_FEM', - 'AGE1014_TOT', 'AGE1014_MALE', 'AGE1014_FEM', 'AGE1519_TOT', - 'AGE1519_MALE', 'AGE1519_FEM', 'AGE2024_TOT', 'AGE2024_MALE', - 'AGE2024_FEM', 'AGE2529_TOT', 'AGE2529_MALE', 'AGE2529_FEM', - 'AGE3034_TOT', 'AGE3034_MALE', 'AGE3034_FEM', 'AGE3539_TOT', - 'AGE3539_MALE', 'AGE3539_FEM', 'AGE4044_TOT', 'AGE4044_MALE', - 'AGE4044_FEM', 'AGE4549_TOT', 'AGE4549_MALE', 'AGE4549_FEM', - 'AGE5054_TOT', 'AGE5054_MALE', 'AGE5054_FEM', 'AGE5559_TOT', - 'AGE5559_MALE', 'AGE5559_FEM', 'AGE6064_TOT', 'AGE6064_MALE', - 'AGE6064_FEM', 'AGE6569_TOT', 'AGE6569_MALE', 'AGE6569_FEM', - 'AGE7074_TOT', 'AGE7074_MALE', 'AGE7074_FEM', 'AGE7579_TOT', - 'AGE7579_MALE', 'AGE7579_FEM', 'AGE8084_TOT', 'AGE8084_MALE', - 'AGE8084_FEM', 'AGE85PLUS_TOT', 'AGE85PLUS_MALE', 'AGE85PLUS_FEM', - 'MEDIAN_AGE_TOT', 'MEDIAN_AGE_MALE', 'MEDIAN_AGE_FEM' - ]) - df = df[(df['Year'] != 'April2010Census') & - (df['Year'] != 'April2010Estimate') & (df['Year'] != 'April2020')] - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df - - -def _state_2021(file_path: str) -> pd.DataFrame: - """ - Process and cleans the file for state 2021. + df = df.rename( + columns={ + 'POPEST_MALE': 'Count_Person_Male', + 'POPEST_FEM': 'Count_Person_Female', + 'YEAR': 'Year' + }) + df = df.drop(columns=df.columns.difference( + ['Year', 'Count_Person_Male', 'Count_Person_Female', 'geo_ID'])) + + df = df[(df['Year'] != 'April2010Census') & + (df['Year'] != 'April2010Estimate') & + (df['Year'] != 'April2020')] + df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") + + +def _state_latest(file_path: str) -> pd.DataFrame: + """ + Process and cleans the file for state 2023, dynamically supporting years from 2021 to 2029. Args: file_path (str) : input file path. @@ -490,26 +552,58 @@ def _state_2021(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - column_name = [ - 'Age', 'April2020Total', 'April2020Male', 'April2020Female', - 'July2020Total', 'July2020Male', 'July2020Female', '2021Total', - 'Count_Person_Male', 'Count_Person_Female' + + # Base column names that are common for all years + base_columns = [ + 'Age', + 'April2020Total', + 'April2020Male', + 'April2020Female', + 'July2020Total', + 'July2020Male', + 'July2020Female', ] + # Adding year-specific columns dynamically till current year + current_year = dt.now().year + for year in range(2021, current_year): + if current_year < 2030: + base_columns.append(f'July{year}Total') + base_columns.append(f'July{year}Male') + base_columns.append(f'July{year}Female') + + # Load the data with no column names initially df = pd.read_excel(file_path, skiprows=5, skipfooter=7, header=None) - df.columns = column_name + + # Assign dynamic column names + df.columns = base_columns + # extract geoid from file path geoid = file_path[-7:-5] if geoid == "0.": geoid = "01" df = df.query('Age == "Total"') df.insert(1, 'geo_ID', 'geoId/' + geoid) - df = df.drop(columns=[ - 'Age', 'April2020Total', 'April2020Male', 'April2020Female', - 'July2020Total', 'July2020Male', 'July2020Female', '2021Total' - ]) - df['Year'] = '2021' - df['Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' - return df + processed_dfs = [] # List to hold yearly DataFrames + + for year in range(2020, 2030): + # Generate column names dynamically + male_col = f'July{year}Male' + female_col = f'July{year}Female' + + if male_col in df.columns and female_col in df.columns: # Ensure columns exist + yearly_df = df[['Age', 'geo_ID', male_col, female_col]].copy() + yearly_df = yearly_df.rename(columns={ + male_col: 'Count_Person_Male', + female_col: 'Count_Person_Female' + }) + yearly_df['Year'] = str(year) + yearly_df[ + 'Measurement_Method'] = 'dcAggregate/CensusPEPSurvey_PartialAggregate' + processed_dfs.append(yearly_df) + + # Concatenate all the processed DataFrames + final_df = pd.concat(processed_dfs, ignore_index=True) + return final_df def _county_1970_1980(file_path: str) -> pd.DataFrame: @@ -522,39 +616,42 @@ def _county_1970_1980(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_excel(file_path, skiprows=5) - df = df.dropna() - float_col = df.select_dtypes(include=['float64']) - for col in float_col.columns.values: - df[col] = df[col].astype('int64') - # adding age groups to get total value - df['Total'] = df[_COLUMNS_TO_SUM].sum(axis=1) - df = df.drop(columns=_COLUMNS_TO_SUM) - df = df.replace({ - 'Race/Sex Indicator': { - 'White male': 'Count_Person_Male', - 'Black male': 'Count_Person_Male', - 'Other races male': 'Count_Person_Male', - 'White female': 'Count_Person_Female', - 'Black female': 'Count_Person_Female', - 'Other races female': 'Count_Person_Female' - } - }) - df = df.rename(columns={ - 'Year of Estimate': 'Year', - 'FIPS State and County Codes': 'geo_ID' - }) - df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(5) - df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) - df = df.drop(columns=['Year']) - # replacing rows with columns - # to get all dataframe in one formate - df = df.groupby(['geo_ID','Race/Sex Indicator']).sum().transpose()\ - .stack(0).reset_index() - df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) - df = df.drop(columns=['level_0']) - df['Measurement_Method'] = 'CensusPEPSurvey' - return df + try: + df = pd.read_excel(file_path, skiprows=5) + df = df.dropna() + float_col = df.select_dtypes(include=['float64']) + for col in float_col.columns.values: + df[col] = df[col].astype('int64') + # adding age groups to get total value + df['Total'] = df[_COLUMNS_TO_SUM].sum(axis=1) + df = df.drop(columns=_COLUMNS_TO_SUM) + df = df.replace({ + 'Race/Sex Indicator': { + 'White male': 'Count_Person_Male', + 'Black male': 'Count_Person_Male', + 'Other races male': 'Count_Person_Male', + 'White female': 'Count_Person_Female', + 'Black female': 'Count_Person_Female', + 'Other races female': 'Count_Person_Female' + } + }) + df = df.rename(columns={ + 'Year of Estimate': 'Year', + 'FIPS State and County Codes': 'geo_ID' + }) + df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(5) + df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) + df = df.drop(columns=['Year']) + # replacing rows with columns + # to get all dataframe in one formate + df = df.groupby(['geo_ID','Race/Sex Indicator']).sum().transpose()\ + .stack(0).reset_index() + df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) + df = df.drop(columns=['level_0']) + df['Measurement_Method'] = 'CensusPEPSurvey' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _county_1980_1990(file_path: str) -> pd.DataFrame: @@ -567,35 +664,38 @@ def _county_1980_1990(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, skiprows=5) - # adding age groups to get total value - df['Total'] = df[_COLUMNS_TO_SUM].sum(axis=1) - df = df.drop(columns=_COLUMNS_TO_SUM) - df = df.replace({ - 'Race/Sex Indicator': { - 'White male': 'Count_Person_Male', - 'Black male': 'Count_Person_Male', - 'Other races male': 'Count_Person_Male', - 'White female': 'Count_Person_Female', - 'Black female': 'Count_Person_Female', - 'Other races female': 'Count_Person_Female' - } - }) - df = df.rename(columns={ - 'Year of Estimate': 'Year', - 'FIPS State and County Codes': 'geo_ID' - }) - df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(5) - df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) - df = df.drop(columns=['Year']) - # replacing rows with columns - # to get all dataframe in one formate - df = df.groupby(['geo_ID','Race/Sex Indicator']).sum().transpose()\ - .stack(0).reset_index() - df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) - df = df.drop(columns=['level_0']) - df['Measurement_Method'] = 'CensusPEPSurvey' - return df + try: + df = pd.read_csv(file_path, skiprows=5) + # adding age groups to get total value + df['Total'] = df[_COLUMNS_TO_SUM].sum(axis=1) + df = df.drop(columns=_COLUMNS_TO_SUM) + df = df.replace({ + 'Race/Sex Indicator': { + 'White male': 'Count_Person_Male', + 'Black male': 'Count_Person_Male', + 'Other races male': 'Count_Person_Male', + 'White female': 'Count_Person_Female', + 'Black female': 'Count_Person_Female', + 'Other races female': 'Count_Person_Female' + } + }) + df = df.rename(columns={ + 'Year of Estimate': 'Year', + 'FIPS State and County Codes': 'geo_ID' + }) + df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(5) + df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) + df = df.drop(columns=['Year']) + # replacing rows with columns + # to get all dataframe in one formate + df = df.groupby(['geo_ID','Race/Sex Indicator']).sum().transpose()\ + .stack(0).reset_index() + df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) + df = df.drop(columns=['level_0']) + df['Measurement_Method'] = 'CensusPEPSurvey' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _county_1990_2000(file_path: str) -> pd.DataFrame: @@ -609,41 +709,44 @@ def _county_1990_2000(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - column_names = ['Year', 'geo_ID', 'Age', 'Race-Sex', 'Ethnic', 'Value'] - df = pd.read_table(file_path, delim_whitespace=True, header=None) - df.columns = column_names - df['Year'] = '19' + df['Year'].astype(str) - df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(5) - df = df.drop(columns=['Age', 'Ethnic']) - df = df.replace({ - 'Race-Sex': { - 1: 'Count_Person_Male', - 2: 'Count_Person_Female', - 3: 'Count_Person_Male', - 4: 'Count_Person_Female', - 5: 'Count_Person_Male', - 6: 'Count_Person_Female', - 7: 'Count_Person_Male', - 8: 'Count_Person_Female' - } - }) - df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) - df = df.drop(columns=['Year']) - # replacing rows with columns - # to get all dataframe in one formate - df = df.groupby(['geo_ID','Race-Sex']).sum().transpose()\ - .stack(0).reset_index() - df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) - df = df.drop(columns=['level_0']) - # aggregating county data to get state data - df_state = df.copy() - df_state['geo_ID'] = (df['geo_ID'].map(str)).str[:len('geoId/NN')] - df_state = df_state.groupby(['Year', 'geo_ID']).sum().reset_index() - df = pd.concat([df_state, df], ignore_index=True) - df['Measurement_Method'] = np.where( - df['geo_ID'].str.len() > 10, 'CensusPEPSurvey', - 'dcAggregate/CensusPEPSurvey_PartialAggregate') - return df + try: + column_names = ['Year', 'geo_ID', 'Age', 'Race-Sex', 'Ethnic', 'Value'] + df = pd.read_table(file_path, delim_whitespace=True, header=None) + df.columns = column_names + df['Year'] = '19' + df['Year'].astype(str) + df['geo_ID'] = 'geoId/' + (df['geo_ID'].map(str)).str.zfill(5) + df = df.drop(columns=['Age', 'Ethnic']) + df = df.replace({ + 'Race-Sex': { + 1: 'Count_Person_Male', + 2: 'Count_Person_Female', + 3: 'Count_Person_Male', + 4: 'Count_Person_Female', + 5: 'Count_Person_Male', + 6: 'Count_Person_Female', + 7: 'Count_Person_Male', + 8: 'Count_Person_Female' + } + }) + df['geo_ID'] = df['geo_ID'] + '-' + df['Year'].astype(str) + df = df.drop(columns=['Year']) + # replacing rows with columns + # to get all dataframe in one formate + df = df.groupby(['geo_ID','Race-Sex']).sum().transpose()\ + .stack(0).reset_index() + df[['geo_ID', 'Year']] = df['geo_ID'].str.split('-', expand=True) + df = df.drop(columns=['level_0']) + # aggregating county data to get state data + df_state = df.copy() + df_state['geo_ID'] = (df['geo_ID'].map(str)).str[:len('geoId/NN')] + df_state = df_state.groupby(['Year', 'geo_ID']).sum().reset_index() + df = pd.concat([df_state, df], ignore_index=True) + df['Measurement_Method'] = np.where( + df['geo_ID'].str.len() > 10, 'CensusPEPSurvey', + 'dcAggregate/CensusPEPSurvey_PartialAggregate') + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _county_2000_2010(file_path: str) -> pd.DataFrame: @@ -656,39 +759,50 @@ def _county_2000_2010(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, encoding='ISO-8859-1') - df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2) +\ - (df['COUNTY'].map(str)).str.zfill(3) - df = df.query('AGEGRP == 0') - df = df.query('SEX != 0') - df = df.replace({'SEX': {1: 'Count_Person_Male', 2: 'Count_Person_Female'}}) - df = df.drop(columns=[ - 'SUMLEV', 'STATE', 'COUNTY', 'STNAME', 'CTYNAME', 'AGEGRP', - 'ESTIMATESBASE2000', 'CENSUS2010POP', 'POPESTIMATE2010' - ]) - df.rename(columns={ - 'POPESTIMATE2000': '2000', - 'POPESTIMATE2001': '2001', - 'POPESTIMATE2002': '2002', - 'POPESTIMATE2003': '2003', - 'POPESTIMATE2004': '2004', - 'POPESTIMATE2005': '2005', - 'POPESTIMATE2006': '2006', - 'POPESTIMATE2007': '2007', - 'POPESTIMATE2008': '2008', - 'POPESTIMATE2009': '2009' - }, - inplace=True) - # replacing rows with columns - # to get all dataframe in one formate - df = df.groupby(['geo_ID', 'SEX']).sum().transpose().stack(0).reset_index() - df = df.rename(columns={'level_0': 'Year'}) - float_col = df.select_dtypes(include=['float64']) - for col in float_col.columns.values: - df[col] = df[col].astype('int64') - df[col] = df[col].astype("str").str.replace("-1", "") - df['Measurement_Method'] = 'CensusPEPSurvey' - return df + try: + df = pd.read_csv(file_path, encoding='ISO-8859-1') + df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2) +\ + (df['COUNTY'].map(str)).str.zfill(3) + df = df.query('AGEGRP == 0') + df = df.query('SEX != 0') + df = df.replace( + {'SEX': { + 1: 'Count_Person_Male', + 2: 'Count_Person_Female' + }}) + df = df.drop(columns=df.columns.difference([ + 'SEX', 'POPESTIMATE2000', 'POPESTIMATE2001', 'POPESTIMATE2002', + 'POPESTIMATE2003', 'POPESTIMATE2004', 'POPESTIMATE2005', + 'POPESTIMATE2006', 'POPESTIMATE2007', 'POPESTIMATE2008', + 'POPESTIMATE2009', 'geo_ID' + ])) + + df.rename(columns={ + 'POPESTIMATE2000': '2000', + 'POPESTIMATE2001': '2001', + 'POPESTIMATE2002': '2002', + 'POPESTIMATE2003': '2003', + 'POPESTIMATE2004': '2004', + 'POPESTIMATE2005': '2005', + 'POPESTIMATE2006': '2006', + 'POPESTIMATE2007': '2007', + 'POPESTIMATE2008': '2008', + 'POPESTIMATE2009': '2009' + }, + inplace=True) + # replacing rows with columns + # to get all dataframe in one formate + df = df.groupby(['geo_ID', + 'SEX']).sum().transpose().stack(0).reset_index() + df = df.rename(columns={'level_0': 'Year'}) + float_col = df.select_dtypes(include=['float64']) + for col in float_col.columns.values: + df[col] = df[col].astype('int64') + df[col] = df[col].astype("str").str.replace("-1", "") + df['Measurement_Method'] = 'CensusPEPSurvey' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") def _county_2010_2020(file_path: str) -> pd.DataFrame: @@ -701,66 +815,49 @@ def _county_2010_2020(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, encoding='ISO-8859-1', low_memory=False) - df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2) +\ - (df['COUNTY'].map(str)).str.zfill(3) - df = df.replace({ - 'YEAR': { - 1: 'April2010Census', - 2: 'April2010Estimate', - 3: '2010', - 4: '2011', - 5: '2012', - 6: '2013', - 7: '2014', - 8: '2015', - 9: '2016', - 10: '2017', - 11: '2018', - 12: '2019', - 13: 'April2020', - 14: '2020' - } - }) - df = df.rename( - columns={ - 'POPEST_MALE': 'Count_Person_Male', - 'POPEST_FEM': 'Count_Person_Female', - 'YEAR': 'Year' + try: + df = pd.read_csv(file_path, encoding='ISO-8859-1', low_memory=False) + df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2) +\ + (df['COUNTY'].map(str)).str.zfill(3) + df = df.replace({ + 'YEAR': { + 1: 'April2010Census', + 2: 'April2010Estimate', + 3: '2010', + 4: '2011', + 5: '2012', + 6: '2013', + 7: '2014', + 8: '2015', + 9: '2016', + 10: '2017', + 11: '2018', + 12: '2019', + 13: 'April2020', + 14: '2020' + } }) - df = df.drop(columns=[ - 'SUMLEV', 'STATE', 'COUNTY', 'STNAME', 'CTYNAME', 'POPESTIMATE', - 'UNDER5_TOT', 'UNDER5_MALE', 'UNDER5_FEM', 'AGE513_TOT', 'AGE513_MALE', - 'AGE513_FEM', 'AGE1417_TOT', 'AGE1417_MALE', 'AGE1417_FEM', - 'AGE1824_TOT', 'AGE1824_MALE', 'AGE1824_FEM', 'AGE16PLUS_TOT', - 'AGE16PLUS_MALE', 'AGE16PLUS_FEM', 'AGE18PLUS_TOT', 'AGE18PLUS_MALE', - 'AGE18PLUS_FEM', 'AGE1544_TOT', 'AGE1544_MALE', 'AGE1544_FEM', - 'AGE2544_TOT', 'AGE2544_MALE', 'AGE2544_FEM', 'AGE4564_TOT', - 'AGE4564_MALE', 'AGE4564_FEM', 'AGE65PLUS_TOT', 'AGE65PLUS_MALE', - 'AGE65PLUS_FEM', 'AGE04_TOT', 'AGE04_MALE', 'AGE04_FEM', 'AGE59_TOT', - 'AGE59_MALE', 'AGE59_FEM', 'AGE1014_TOT', 'AGE1014_MALE', 'AGE1014_FEM', - 'AGE1519_TOT', 'AGE1519_MALE', 'AGE1519_FEM', 'AGE2024_TOT', - 'AGE2024_MALE', 'AGE2024_FEM', 'AGE2529_TOT', 'AGE2529_MALE', - 'AGE2529_FEM', 'AGE3034_TOT', 'AGE3034_MALE', 'AGE3034_FEM', - 'AGE3539_TOT', 'AGE3539_MALE', 'AGE3539_FEM', 'AGE4044_TOT', - 'AGE4044_MALE', 'AGE4044_FEM', 'AGE4549_TOT', 'AGE4549_MALE', - 'AGE4549_FEM', 'AGE5054_TOT', 'AGE5054_MALE', 'AGE5054_FEM', - 'AGE5559_TOT', 'AGE5559_MALE', 'AGE5559_FEM', 'AGE6064_TOT', - 'AGE6064_MALE', 'AGE6064_FEM', 'AGE6569_TOT', 'AGE6569_MALE', - 'AGE6569_FEM', 'AGE7074_TOT', 'AGE7074_MALE', 'AGE7074_FEM', - 'AGE7579_TOT', 'AGE7579_MALE', 'AGE7579_FEM', 'AGE8084_TOT', - 'AGE8084_MALE', 'AGE8084_FEM', 'AGE85PLUS_TOT', 'AGE85PLUS_MALE', - 'AGE85PLUS_FEM', 'MEDIAN_AGE_TOT', 'MEDIAN_AGE_MALE', 'MEDIAN_AGE_FEM' - ]) - df = df[(df['Year'] != 'April2010Census') & - (df['Year'] != 'April2010Estimate') & (df['Year'] != 'April2020')] - df['Measurement_Method'] = 'CensusPEPSurvey' - return df - - -def _county_2021(file_path: str) -> pd.DataFrame: - """ - Process and cleans the file for county 2021. + df = df.rename( + columns={ + 'POPEST_MALE': 'Count_Person_Male', + 'POPEST_FEM': 'Count_Person_Female', + 'YEAR': 'Year' + }) + df = df.drop(columns=df.columns.difference( + ['Year', 'Count_Person_Male', 'Count_Person_Female', 'geo_ID'])) + + df = df[(df['Year'] != 'April2010Census') & + (df['Year'] != 'April2010Estimate') & + (df['Year'] != 'April2020')] + df['Measurement_Method'] = 'CensusPEPSurvey' + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") + + +def _county_latest(file_path: str) -> pd.DataFrame: + """ + Process and cleans the file for county 2023. Args: file_path (str) : input file path. @@ -768,48 +865,42 @@ def _county_2021(file_path: str) -> pd.DataFrame: Returns: df (pd.DataFrame) : cleaned dataframe. """ - df = pd.read_csv(file_path, encoding='ISO-8859-1', low_memory=False) - df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2)+\ - (df['COUNTY'].map(str)).str.zfill(3) - df = df.replace( - {'YEAR': { - 1: 'April2020Estimate', - 2: 'July2020', - 3: '2021' - }}) - df = df.rename( - columns={ - 'POPEST_MALE': 'Count_Person_Male', - 'POPEST_FEM': 'Count_Person_Female', - 'YEAR': 'Year' + try: + df = pd.read_csv(file_path, encoding='ISO-8859-1', low_memory=False) + df['geo_ID'] = 'geoId/' + (df['STATE'].map(str)).str.zfill(2)+\ + (df['COUNTY'].map(str)).str.zfill(3) + df = df.replace({ + 'YEAR': { + 1: 'April2020Estimate', + 2: 'July2020', + 3: '2021', + 4: '2022', + 5: '2023', + 6: '2024', + 7: '2025', + 8: '2026', + 9: '2027', + 10: '2028', + 11: '2029' + } }) - df = df.drop(columns=[ - 'SUMLEV', 'STATE', 'COUNTY', 'STNAME', 'CTYNAME', 'POPESTIMATE', - 'UNDER5_TOT', 'UNDER5_MALE', 'UNDER5_FEM', 'AGE513_TOT', 'AGE513_MALE', - 'AGE513_FEM', 'AGE1417_TOT', 'AGE1417_MALE', 'AGE1417_FEM', - 'AGE1824_TOT', 'AGE1824_MALE', 'AGE1824_FEM', 'AGE16PLUS_TOT', - 'AGE16PLUS_MALE', 'AGE16PLUS_FEM', 'AGE18PLUS_TOT', 'AGE18PLUS_MALE', - 'AGE18PLUS_FEM', 'AGE1544_TOT', 'AGE1544_MALE', 'AGE1544_FEM', - 'AGE2544_TOT', 'AGE2544_MALE', 'AGE2544_FEM', 'AGE4564_TOT', - 'AGE4564_MALE', 'AGE4564_FEM', 'AGE65PLUS_TOT', 'AGE65PLUS_MALE', - 'AGE65PLUS_FEM', 'AGE04_TOT', 'AGE04_MALE', 'AGE04_FEM', 'AGE59_TOT', - 'AGE59_MALE', 'AGE59_FEM', 'AGE1014_TOT', 'AGE1014_MALE', 'AGE1014_FEM', - 'AGE1519_TOT', 'AGE1519_MALE', 'AGE1519_FEM', 'AGE2024_TOT', - 'AGE2024_MALE', 'AGE2024_FEM', 'AGE2529_TOT', 'AGE2529_MALE', - 'AGE2529_FEM', 'AGE3034_TOT', 'AGE3034_MALE', 'AGE3034_FEM', - 'AGE3539_TOT', 'AGE3539_MALE', 'AGE3539_FEM', 'AGE4044_TOT', - 'AGE4044_MALE', 'AGE4044_FEM', 'AGE4549_TOT', 'AGE4549_MALE', - 'AGE4549_FEM', 'AGE5054_TOT', 'AGE5054_MALE', 'AGE5054_FEM', - 'AGE5559_TOT', 'AGE5559_MALE', 'AGE5559_FEM', 'AGE6064_TOT', - 'AGE6064_MALE', 'AGE6064_FEM', 'AGE6569_TOT', 'AGE6569_MALE', - 'AGE6569_FEM', 'AGE7074_TOT', 'AGE7074_MALE', 'AGE7074_FEM', - 'AGE7579_TOT', 'AGE7579_MALE', 'AGE7579_FEM', 'AGE8084_TOT', - 'AGE8084_MALE', 'AGE8084_FEM', 'AGE85PLUS_TOT', 'AGE85PLUS_MALE', - 'AGE85PLUS_FEM', 'MEDIAN_AGE_TOT', 'MEDIAN_AGE_MALE', 'MEDIAN_AGE_FEM' - ]) - df = df[(df['Year'] != 'April2020Estimate') & (df['Year'] != 'July2020')] - df['Measurement_Method'] = 'CensusPEPSurvey' - return df + + df = df.rename( + columns={ + 'POPEST_MALE': 'Count_Person_Male', + 'POPEST_FEM': 'Count_Person_Female', + 'YEAR': 'Year' + }) + df = df.drop(columns=df.columns.difference( + ['Year', 'Count_Person_Male', 'Count_Person_Female', 'geo_ID'])) + + df = df[(df['Year'] != 'April2020Estimate') & + (df['Year'] != 'July2020')] + df['Measurement_Method'] = 'CensusPEPSurvey' + + return df + except Exception as e: + logging.fatal(f"Error processing the file {file_path}: {e}") class PopulationEstimateBySex: @@ -818,9 +909,9 @@ class PopulationEstimateBySex: MCF and TMCF Files. """ - def __init__(self, input_files: list, csv_file_path: str, - mcf_file_path: str, tmcf_file_path: str) -> None: - self._input_files = input_files + def __init__(self, input_path: str, csv_file_path: str, mcf_file_path: str, + tmcf_file_path: str) -> None: + self._input_path = input_path self._cleaned_csv_file_path = csv_file_path self._mcf_file_path = mcf_file_path self._tmcf_file_path = tmcf_file_path @@ -879,74 +970,269 @@ def process(self): Returns: None """ + ip_files = os.listdir(self._input_path) + ip_files = [self._input_path + os.sep + file for file in ip_files] + # Creating Output Directory output_path = os.path.dirname(self._cleaned_csv_file_path) if not os.path.exists(output_path): os.mkdir(output_path) sv_list = [] final_df = pd.DataFrame() - for file_path in self._input_files: + processed_count = 0 + total_files_to_process = len(ip_files) + logging.info(f"No of files to be processed {len(ip_files)}") + for file_path in ip_files: + logging.info(f"Processing the file:{file_path}") + if 'pe-02-1983.csv' in file_path or 'pe-02-1982.csv' in file_path: + pass # Taking the File name out of the complete file address # Used -1 to pickup the last part which is file name # Read till -4 inorder to remove the .tsv extension + file_name = file_path.split("/")[-1][:-7] + + # Define the base mappings for fixed years (e.g., 2023) file_to_function_mapping = { "pe-11-1": _national_1900_1979, "us-est90int": _national_1990_2000, + "us-est90int-": _national_1990_2000, "us-est00int": _national_2000_2010, + "us-est00int-": _national_2000_2010, "nc-est2020-agesex-": _national_2010_2020, - "nc-est2021-agesex-": _national_2021, + "nc-est2020-agesex-r": _national_2010_2020, "pe": _state_1970_1980, "stiag": _state_1980_1990, + "st-est00int-02-": _state_2000_2010, "st-est00int-02": _state_2000_2010, "SC-EST2020-AGESEX": _state_2010_2020, - "sc-est2021-syasex-01%2": _state_2021, - "sc-est2021-syasex-": _state_2021, + "SC-EST2020-AGESEX-": _state_2010_2020, "co-asr-1": _county_1970_1980, "pe-02-1": _county_1980_1990, "stch-icen1": _county_1990_2000, "co-est00int-agesex-": _county_2000_2010, + "co-est00int-agesex-5": _county_2000_2010, "CC-EST2020-AGESEX-": _county_2010_2020, - "cc-est2021-agesex-": _county_2021 + "CC-EST2020-AGESEX-A": _county_2010_2020 } + + # Iterate from 2023 to 2029 and add mappings for years dynamically + for file_year in range(2023, 2030): + # For the 'national', 'state', and 'county' entries, use the same method for years 2023 to 2029 + if file_year < dt.now().year: + file_to_function_mapping[ + f"nc-est{file_year}-agesex-"] = _national_latest + file_to_function_mapping[ + f"nc-est{file_year}-agesex-r"] = _national_latest + + file_to_function_mapping[ + f"sc-est{file_year}-syasex-2"] = _state_latest + file_to_function_mapping[ + f"sc-est{file_year}-syasex-3"] = _state_latest + file_to_function_mapping[ + f"sc-est{file_year}-syasex-4"] = _state_latest + file_to_function_mapping[ + f"sc-est{file_year}-syasex-5"] = _state_latest + file_to_function_mapping[ + f"sc-est{file_year}-syasex-0"] = _state_latest + file_to_function_mapping[ + f"sc-est{file_year}-syasex-1"] = _state_latest + file_to_function_mapping[ + f"sc-est{file_year}-syasex-"] = _state_latest + file_to_function_mapping[ + f"sc-est{file_year}-agesex-"] = _state_latest + + file_to_function_mapping[ + f"cc-est{file_year}-agesex-"] = _county_latest + file_to_function_mapping[ + f"cc-est{file_year}-agesex-a"] = _county_latest + df = file_to_function_mapping[file_name](file_path) - final_df = pd.concat([final_df, df]) - final_df = final_df.sort_values(by=['Year', 'geo_ID']) - - final_df = _states_full_to_short_form(final_df, 'geo_ID', "geo_ID") - final_df = _add_geo_id(final_df, "geo_ID", "geo_ID") - final_df = pd.melt( - final_df, - id_vars=["Year", "geo_ID", "Measurement_Method"], - value_vars=['Count_Person_Male', 'Count_Person_Female'], - var_name="SV", - value_name="Observation") - final_df.to_csv(self._cleaned_csv_file_path, index=False) - sv_list = ['Count_Person_Female', 'Count_Person_Male'] - self._generate_mcf(sv_list) - self._generate_tmcf() + + if not df.empty: + processed_count += 1 + final_df = pd.concat([final_df, df]) + final_df = final_df.sort_values(by=['Year', 'geo_ID']) + else: + logging.fatal(f"Failed to process {file_path}") + + logging.info(f"No of files processed {processed_count}") + # Log the resulting dictionary + logging.info(f"File-to-Function mappings: {file_to_function_mapping}") + if processed_count == total_files_to_process & total_files_to_process > 0: + final_df = _states_full_to_short_form(final_df, 'geo_ID', "geo_ID") + final_df = _add_geo_id(final_df, "geo_ID", "geo_ID") + final_df = pd.melt( + final_df, + id_vars=["Year", "geo_ID", "Measurement_Method"], + value_vars=['Count_Person_Male', 'Count_Person_Female'], + var_name="SV", + value_name="Observation") + + final_df.to_csv(self._cleaned_csv_file_path, index=False) + sv_list = ['Count_Person_Female', 'Count_Person_Male'] + self._generate_mcf(sv_list) + self._generate_tmcf() + else: + logging.fatal( + "Aborting output files as no of files to process not matching processed files" + ) + + +def add_future_year_urls(): + """ + This method adds the future year urls that has to be downloaded + Args: None + Return: None + + """ + global _FILES_TO_DOWNLOAD + # Initialize the list to store files to download + _FILES_TO_DOWNLOAD = [] + with open(os.path.join(_MODULE_DIR, 'input_url.json'), 'r') as inpit_file: + _FILES_TO_DOWNLOAD = json.load(inpit_file) + + # List of URLs with placeholders for {YEAR} and {i} + urls_to_scan = [ + "https://www2.census.gov/programs-surveys/popest/datasets/2020-{YEAR}/national/asrh/nc-est{YEAR}-agesex-res.csv", # No {i} + "https://www2.census.gov/programs-surveys/popest/tables/2020-{YEAR}/state/asrh/sc-est{YEAR}-syasex-{i}.xlsx", # Contains {i} + "https://www2.census.gov/programs-surveys/popest/datasets/2020-{YEAR}/counties/asrh/cc-est{YEAR}-agesex-all.csv", # No {i} + "https://www2.census.gov/programs-surveys/popest/tables/2020-{YEAR}/state/detail/sc-est{YEAR}-agesex-{i}.xlsx" # Contains {i} + ] + + # A set to track downloaded URLs for unique {YEAR} and URLs without {i} + downloaded_year_urls = set() + + # This method will generate URLs for the years 2024 to 2029 + for future_year in range(2023, 2030): + if dt.now().year > future_year: + YEAR = future_year + # Loop through URLs + for url in urls_to_scan: + if "{i}" in url: # This URL contains the {i} variable, so we loop through i from 01 to 56 + for i in range(1, 57): # Loop i from 01 to 56 + formatted_i = f"{i:02}" # Ensure i is always 2 digits (01, 02, ..., 56) + url_to_check = url.format(YEAR=YEAR, i=formatted_i) + + try: + check_url = requests.head(url_to_check, + allow_redirects=True) + if check_url.status_code == 200: + _FILES_TO_DOWNLOAD.append( + {"download_path": url_to_check}) + + except requests.exceptions.RequestException as e: + logging.fatal( + f"URL is not accessible {url_to_check} due to {e}" + ) + + else: # This URL does not contain {i}, so we only need to process it once per year + url_to_check = url.format(YEAR=YEAR) + + # If the URL has already been processed for this year, skip it + if url_to_check in downloaded_year_urls: + continue # Skip this URL if it's already processed + + try: + check_url = requests.head(url_to_check, + allow_redirects=True) + if check_url.status_code == 200: + _FILES_TO_DOWNLOAD.append( + {"download_path": url_to_check}) + downloaded_year_urls.add( + url_to_check) # Mark this URL as processed + + else: + logging.fatal( + f"URL returned status code {check_url.status_code}: {url_to_check}" + ) + + except requests.exceptions.RequestException as e: + logging.fatal( + f"URL is not accessible {url_to_check} due to {e}") + + +def download_files(): + """ + This method download the files and if there any file/files is not downloaded throws an exception + Args : None + Return : None + + """ + global _FILES_TO_DOWNLOAD + session = requests.session() + max_retry = 5 + for file_to_dowload in _FILES_TO_DOWNLOAD: + file_name_to_save = None + url = file_to_dowload['download_path'] + if 'file_name' in file_to_dowload and len( + file_to_dowload['file_name'] > 5): + file_name_to_save = file_to_dowload['file_name'] + else: + file_name_to_save = url.split('/')[-1] + retry_number = 0 + + is_file_downloaded = False + while is_file_downloaded == False: + try: + with session.get(url, stream=True) as response: + response.raise_for_status() + if response.status_code == 200: + with open( + os.path.join(_INPUT_FILE_PATH, + file_name_to_save), 'wb') as f: + f.write(response.content) + file_to_dowload['is_downloaded'] = True + logging.info(f"Downloaded file : {url}") + is_file_downloaded = True + else: + logging.error(f"Retry file download {{url}}") + time.sleep(5) + retry_number += 1 + if retry_number > max_retry: + logging.fatal(f"Error downloading {url}") + + except Exception as e: + logging.fatal(f"Retry file download {url}") + time.sleep(5) + retry_number += 1 + if retry_number > max_retry: + logging.fatal(f"Error downloading {url}") + + return True def main(_): - input_path = _FLAGS.input_path - try: - ip_files = os.listdir(input_path) - except Exception: - print("Run the download.py script first.") - sys.exit(1) - ip_files = [input_path + os.sep + file for file in ip_files] - data_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), - "output") + """ + Main function that produces the output files and place them in the output folder + It also includes the modes to run the scripts. + Arg : None + Return : None + + """ + mode = _FLAGS.mode # Defining Output Files csv_name = "population_estimate_sex.csv" mcf_name = "population_estimate_sex.mcf" tmcf_name = "population_estimate_sex.tmcf" + data_file_path = os.path.join(_MODULE_DIR, "output") + if not (os.path.exists(data_file_path)): + os.mkdir(data_file_path) + if not (os.path.exists(_INPUT_FILE_PATH)): + os.mkdir(_INPUT_FILE_PATH) cleaned_csv_path = data_file_path + os.sep + csv_name mcf_path = data_file_path + os.sep + mcf_name tmcf_path = data_file_path + os.sep + tmcf_name - loader = PopulationEstimateBySex(ip_files, cleaned_csv_path, mcf_path, - tmcf_path) - loader.process() + + download_status = True + if mode == "" or mode == "download": + # download & process + add_future_year_urls() + download_status = download_files() + if download_status and (mode == "" or mode == "process"): + loader = PopulationEstimateBySex(_INPUT_FILE_PATH, cleaned_csv_path, + mcf_path, tmcf_path) + loader.process() if __name__ == "__main__": diff --git a/scripts/us_census/pep/us_pep_sex/process_test.py b/scripts/us_census/pep/us_pep_sex/process_test.py index 10ff4618ff..4edea39f19 100644 --- a/scripts/us_census/pep/us_pep_sex/process_test.py +++ b/scripts/us_census/pep/us_pep_sex/process_test.py @@ -1,4 +1,4 @@ -# Copyright 2022 Google LLC +# Copyright 2024 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,6 +19,8 @@ import unittest import sys import tempfile +from absl import flags + # module_dir is the path to where this test is running from. MODULE_DIR = os.path.dirname(__file__) sys.path.insert(0, MODULE_DIR) @@ -38,12 +40,6 @@ class TestProcess(unittest.TestCase): It will be generating CSV, MCF and TMCF files based on the sample input. Comparing the data with the expected files. """ - test_data_files = os.listdir(TEST_DATASET_DIR) - - ip_data = [ - os.path.join(TEST_DATASET_DIR, file_name) - for file_name in test_data_files - ] def __init__(self, methodName: str = ...) -> None: super().__init__(methodName) @@ -53,17 +49,19 @@ def __init__(self, methodName: str = ...) -> None: mcf_file_path = os.path.join(tmp_dir, "test_census.mcf") tmcf_file_path = os.path.join(tmp_dir, "test_census.tmcf") - base = PopulationEstimateBySex(self.ip_data, cleaned_csv_file_path, - mcf_file_path, tmcf_file_path) + base = PopulationEstimateBySex(TEST_DATASET_DIR, + cleaned_csv_file_path, mcf_file_path, + tmcf_file_path) base.process() - with open(mcf_file_path, encoding="UTF-8") as mcf_file: + with open(mcf_file_path, mode='r', encoding="UTF-8") as mcf_file: self.actual_mcf_data = mcf_file.read() - with open(tmcf_file_path, encoding="UTF-8") as tmcf_file: + with open(tmcf_file_path, mode='r', encoding="UTF-8") as tmcf_file: self.actual_tmcf_data = tmcf_file.read() - with open(cleaned_csv_file_path, encoding="utf-8-sig") as csv_file: + with open(cleaned_csv_file_path, mode='r', + encoding="utf-8-sig") as csv_file: self.actual_csv_data = csv_file.read() def test_mcf_tmcf_files(self): @@ -71,11 +69,11 @@ def test_mcf_tmcf_files(self): This method is required to test between output generated preprocess script and expected output files like MCF File """ - expected_mcf_file_path = os.path.join( - EXPECTED_FILES_DIR, "expected_population_estimate_sex.mcf") + expected_mcf_file_path = os.path.join(EXPECTED_FILES_DIR, + "population_estimate_sex.mcf") - expected_tmcf_file_path = os.path.join( - EXPECTED_FILES_DIR, "expected_population_estimate_sex.tmcf") + expected_tmcf_file_path = os.path.join(EXPECTED_FILES_DIR, + "population_estimate_sex.tmcf") with open(expected_mcf_file_path, encoding="UTF-8") as expected_mcf_file: @@ -95,13 +93,16 @@ def test_create_csv(self): This method is required to test between output generated preprocess script and expected output files like CSV """ - expected_csv_file_path = os.path.join( - EXPECTED_FILES_DIR, "expected_population_estimate_sex.csv") + expected_csv_file_path = os.path.join(EXPECTED_FILES_DIR, + "population_estimate_sex.csv") expected_csv_data = "" with open(expected_csv_file_path, encoding="utf-8") as expected_csv_file: expected_csv_data = expected_csv_file.read() + self.assertEqual(expected_csv_data.strip(), + self.actual_csv_data.strip()) + - self.assertEqual(expected_csv_data.strip(), - self.actual_csv_data.strip()) +if __name__ == "__main__": + unittest.main() diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/CC-EST2020-AGESEX-ALL.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/CC-EST2020-AGESEX-ALL.csv index d5e0f2d365..e7f6031391 100644 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/CC-EST2020-AGESEX-ALL.csv +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/CC-EST2020-AGESEX-ALL.csv @@ -1,43 +1,100 @@ -SUMLEV,STATE,COUNTY,STNAME,CTYNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM -50,1,1,Alabama,Autauga County,1,54571,26569,28002,3579,1866,1713,7418,3747,3671,3616,1842,1774,4617,2335,2282,41804,20046,21758,39958,19114,20844,22100,10867,11233,14730,7115,7615,14065,6843,7222,6546,2821,3725,3579,1866,1713,3991,2001,1990,4290,2171,2119,4290,2213,2077,3080,1539,1541,3157,1543,1614,3330,1594,1736,4157,2004,2153,4086,1974,2112,4332,2174,2158,3873,1866,2007,3083,1524,1559,2777,1279,1498,2277,1014,1263,1736,807,929,1251,546,705,731,295,436,551,159,392,37,35.9,37.9 -50,1,1,Alabama,Autauga County,2,54582,26576,28006,3582,1868,1714,7425,3752,3673,3617,1842,1775,4617,2335,2282,41804,20045,21759,39958,19114,20844,22103,10867,11236,14732,7115,7617,14067,6845,7222,6542,2819,3723,3582,1868,1714,3994,2004,1990,4294,2173,2121,4291,2213,2078,3080,1539,1541,3160,1545,1615,3329,1593,1736,4157,2004,2153,4086,1973,2113,4333,2176,2157,3874,1866,2008,3083,1524,1559,2777,1279,1498,2277,1014,1263,1734,806,928,1250,546,704,730,294,436,551,159,392,37,35.9,37.8 -50,1,1,Alabama,Autauga County,3,54761,26667,28094,3575,1862,1713,7400,3720,3680,3565,1819,1746,4670,2362,2308,42038,20190,21848,40221,19266,20955,22194,10939,11255,14815,7185,7630,14137,6872,7265,6599,2847,3752,3575,1862,1713,3964,1984,1980,4292,2163,2129,4228,2181,2047,3151,1573,1578,3188,1573,1615,3369,1614,1755,4142,2000,2142,4116,1998,2118,4321,2163,2158,3908,1884,2024,3119,1533,1586,2789,1292,1497,2289,1018,1271,1752,814,938,1259,552,707,743,299,444,556,164,392,37.1,36,37.9 -50,1,1,Alabama,Autauga County,4,55229,26980,28249,3552,1851,1701,7360,3683,3677,3479,1784,1695,4816,2487,2329,42608,20572,22036,40838,19662,21176,22256,11053,11203,14827,7239,7588,14334,6980,7354,6861,2956,3905,3552,1851,1701,3905,1938,1967,4321,2202,2119,4031,2072,1959,3398,1742,1656,3215,1609,1606,3443,1663,1780,4002,1937,2065,4167,2030,2137,4196,2074,2122,4035,1985,2050,3247,1582,1665,2856,1339,1517,2323,1021,1302,1843,844,999,1312,585,727,782,315,467,601,191,410,37.3,36.2,38.4 -50,1,1,Alabama,Autauga County,5,54970,26830,28140,3405,1792,1613,7267,3659,3608,3512,1801,1711,4804,2488,2316,42545,20475,22070,40786,19578,21208,21956,10865,11091,14537,7029,7508,14254,6953,7301,7191,3108,4083,3405,1792,1613,3800,1913,1887,4364,2199,2165,4050,2118,1932,3369,1718,1651,3203,1577,1626,3324,1599,1725,3823,1826,1997,4187,2027,2160,4082,2001,2081,4121,2082,2039,3273,1545,1728,2778,1325,1453,2458,1090,1368,1908,864,1044,1359,608,751,834,340,494,632,206,426,37.7,36.4,38.8 -50,1,1,Alabama,Autauga County,6,54747,26588,28159,3217,1671,1546,7117,3548,3569,3425,1759,1666,4882,2541,2341,42683,20489,22194,40988,19610,21378,21797,10746,11051,14339,6884,7455,14354,6964,7390,7413,3221,4192,3217,1671,1546,3760,1891,1869,4206,2095,2111,3990,2071,1919,3468,1791,1677,3292,1570,1722,3309,1609,1700,3622,1728,1894,4116,1977,2139,4000,1941,2059,4144,2090,2054,3441,1610,1831,2769,1323,1446,2480,1135,1345,1982,868,1114,1425,631,794,890,378,512,636,209,427,38.1,36.8,39.1 -50,1,1,Alabama,Autauga County,7,54922,26804,28118,3183,1659,1524,7019,3552,3467,3430,1764,1666,4902,2536,2366,43001,20719,22282,41290,19829,21461,21812,10840,10972,14346,6965,7381,14443,7027,7416,7599,3301,4298,3183,1659,1524,3720,1908,1812,4165,2069,2096,3912,2063,1849,3554,1812,1742,3361,1680,1681,3357,1631,1726,3502,1660,1842,4126,1994,2132,3943,1916,2027,4131,2060,2071,3528,1658,1870,2841,1393,1448,2481,1130,1351,2031,886,1145,1475,653,822,944,400,544,668,232,436,38.2,36.8,39.5 -50,1,1,Alabama,Autauga County,8,54903,26752,28151,3122,1605,1517,6883,3490,3393,3421,1712,1709,4798,2506,2292,43160,20804,22356,41477,19945,21532,21532,10677,10855,14213,6899,7314,14624,7152,7472,7842,3388,4454,3122,1605,1517,3694,1893,1801,4089,2037,2052,3816,1989,1827,3503,1789,1714,3367,1676,1691,3418,1648,1770,3410,1639,1771,4018,1936,2082,3918,1924,1994,4126,2037,2089,3656,1738,1918,2924,1453,1471,2585,1169,1416,2059,893,1166,1497,665,832,991,414,577,710,247,463,38.5,37.2,39.8 -50,1,1,Alabama,Autauga County,9,55302,26999,28303,3195,1654,1541,6705,3416,3289,3466,1726,1740,4624,2419,2205,43633,21068,22565,41936,20203,21733,21616,10753,10863,14400,7034,7366,14819,7231,7588,8093,3519,4574,3195,1654,1541,3608,1869,1739,3971,1973,1998,3850,1998,1852,3366,1721,1645,3565,1786,1779,3465,1710,1755,3557,1696,1861,3813,1842,1971,3956,1928,2028,3988,1948,2040,3774,1830,1944,3101,1525,1576,2648,1226,1422,2098,889,1209,1551,689,862,1032,442,590,764,273,491,38.7,37.2,39.9 -50,1,1,Alabama,Autauga County,10,55448,27041,28407,3286,1718,1568,6632,3394,3238,3336,1652,1684,4564,2354,2210,43900,21122,22778,42194,20277,21917,21519,10622,10897,14406,7003,7403,14854,7246,7608,8370,3674,4696,3286,1718,1568,3552,1832,1720,3867,1949,1918,3825,1936,1889,3288,1683,1605,3671,1834,1837,3497,1705,1792,3583,1719,1864,3655,1745,1910,3943,1922,2021,3910,1911,1999,3933,1950,1983,3068,1463,1605,2619,1237,1382,2232,959,1273,1630,718,912,1088,473,615,801,287,514,38.8,37.4,40 -50,1,1,Alabama,Autauga County,11,55533,27049,28484,3353,1754,1599,6490,3342,3148,3300,1643,1657,4435,2299,2136,44092,21152,22940,42390,20310,22080,21389,10544,10845,14453,7003,7450,14935,7217,7718,8567,3791,4776,3353,1754,1599,3412,1769,1643,3877,1974,1903,3753,1905,1848,3183,1636,1547,3716,1837,1879,3482,1676,1806,3632,1776,1856,3623,1714,1909,3952,1905,2047,3806,1859,1947,3927,1954,1973,3250,1499,1751,2602,1243,1359,2296,1021,1275,1696,707,989,1100,484,616,873,336,537,39.1,37.7,40.4 -50,1,1,Alabama,Autauga County,12,55769,27078,28691,3251,1700,1551,6499,3355,3144,3199,1601,1598,4469,2294,2175,44420,21231,23189,42820,20422,22398,21487,10546,10941,14635,7054,7581,14933,7202,7731,8783,3872,4911,3251,1700,1551,3461,1782,1679,3854,1976,1878,3669,1858,1811,3183,1634,1549,3814,1870,1944,3548,1740,1808,3663,1762,1901,3610,1682,1928,3889,1884,2005,3780,1863,1917,3904,1899,2005,3360,1556,1804,2722,1311,1411,2282,999,1283,1737,730,1007,1133,487,646,909,345,564,39.2,37.8,40.6 -50,1,1,Alabama,Autauga County,13,56130,27231,28899,3346,1739,1607,6566,3366,3200,3114,1553,1561,4416,2267,2149,44657,21353,23304,43104,20573,22531,21567,10606,10961,14798,7166,7632,14848,7161,7687,9042,3979,5063,3346,1739,1607,3494,1785,1709,3833,1961,1872,3622,1825,1797,3147,1615,1532,3822,1893,1929,3636,1756,1880,3743,1818,1925,3597,1699,1898,3820,1844,1976,3675,1811,1864,3912,1915,1997,3441,1591,1850,2790,1351,1439,2386,1032,1354,1796,749,1047,1142,494,648,928,353,575,39.3,37.8,40.5 -50,1,1,Alabama,Autauga County,14,56145,27226,28919,3370,1746,1624,6564,3359,3205,3083,1536,1547,4391,2252,2139,44664,21355,23309,43128,20585,22543,21584,10619,10965,14850,7201,7649,14805,7137,7668,9082,3995,5087,3370,1746,1624,3488,1777,1711,3816,1952,1864,3602,1812,1790,3132,1606,1526,3816,1897,1919,3666,1758,1908,3773,1840,1933,3595,1706,1889,3792,1827,1965,3646,1796,1850,3910,1920,1990,3457,1594,1863,2806,1360,1446,2406,1035,1371,1803,751,1052,1140,496,644,927,353,574,39.2,37.8,40.5 -50,1,3,Alabama,Baldwin County,1,182265,89196,93069,11158,5614,5544,21118,10704,10414,9622,4908,4714,13834,7019,6815,145215,70491,74724,140367,67970,72397,65558,32843,32715,44509,22120,22389,51456,24718,26738,30568,14113,16455,11158,5614,5544,11599,5832,5767,11926,6076,5850,11600,5930,5670,9449,4793,4656,10247,5183,5064,10709,5317,5392,11558,5725,5833,11995,5895,6100,13431,6622,6809,13490,6425,7065,12523,5943,6580,12012,5728,6284,10174,4895,5279,7629,3663,3966,5598,2644,2954,3934,1735,2199,3233,1176,2057,41.1,40.1,42.2 -50,1,3,Alabama,Baldwin County,2,182263,89195,93068,11158,5614,5544,21118,10704,10414,9622,4908,4714,13834,7019,6815,145213,70490,74723,140365,67969,72396,65558,32843,32715,44509,22120,22389,51455,24718,26737,30567,14112,16455,11158,5614,5544,11599,5832,5767,11926,6076,5850,11600,5930,5670,9449,4793,4656,10247,5183,5064,10709,5317,5392,11558,5725,5833,11995,5895,6100,13431,6622,6809,13490,6425,7065,12523,5943,6580,12011,5728,6283,10173,4894,5279,7629,3663,3966,5598,2644,2954,3934,1735,2199,3233,1176,2057,41.1,40.1,42.2 -50,1,3,Alabama,Baldwin County,3,183121,89623,93498,11156,5617,5539,21223,10764,10459,9668,4916,4752,13931,7077,6854,145934,70836,75098,141074,68326,72748,65848,32974,32874,44666,22195,22471,51708,24846,26862,30769,14208,16561,11156,5617,5539,11620,5851,5769,12020,6127,5893,11618,5936,5682,9564,4843,4721,10282,5198,5084,10803,5355,5448,11506,5706,5800,12075,5936,6139,13431,6619,6812,13551,6451,7100,12636,5997,6639,12090,5779,6311,10222,4909,5313,7705,3699,4006,5616,2655,2961,3970,1761,2209,3256,1184,2072,41.2,40.1,42.2 -50,1,3,Alabama,Baldwin County,4,186579,91199,95380,11243,5695,5548,21589,10953,10636,9830,4954,4876,14182,7184,6998,148829,72067,76762,143917,69597,74320,66771,33325,33446,45218,22453,22765,52712,25245,27467,31805,14715,17090,11243,5695,5548,11762,5921,5841,12286,6298,5988,11608,5908,5700,9945,4964,4981,10409,5298,5111,11138,5492,5646,11180,5516,5664,12491,6147,6344,13174,6452,6722,13803,6557,7246,13041,6192,6849,12694,6044,6650,10459,4980,5479,8076,3854,4222,5831,2785,3046,4105,1854,2251,3334,1242,2092,41.4,40.4,42.4 -50,1,3,Alabama,Baldwin County,5,190203,92728,97475,11217,5735,5482,21869,11020,10849,9937,5022,4915,14764,7508,7256,152112,73395,78717,147180,70951,76229,68082,33828,34254,45848,22569,23279,53021,25288,27733,33547,15586,17961,11217,5735,5482,11971,6016,5955,12365,6275,6090,11631,5925,5706,10603,5334,5269,10490,5250,5240,11231,5527,5704,11290,5485,5805,12837,6307,6530,13058,6361,6697,13861,6632,7229,13555,6374,7181,12547,5921,6626,11384,5426,5958,8479,4027,4452,6080,2940,3140,4120,1855,2265,3484,1338,2146,41.7,40.7,42.6 -50,1,3,Alabama,Baldwin County,6,194978,95140,99838,11206,5713,5493,22425,11303,11122,10178,5140,5038,15240,7779,7461,156232,75536,80696,151169,72984,78185,69652,34683,34969,46778,23024,23754,53990,25791,28199,35161,16390,18771,11206,5713,5493,12234,6155,6079,12735,6408,6327,11859,6015,5844,11015,5644,5371,10815,5401,5414,11387,5602,5785,11390,5565,5825,13186,6456,6730,13004,6341,6663,14221,6854,7367,14011,6584,7427,12754,6012,6742,11876,5668,6208,9127,4303,4824,6428,3113,3315,4081,1872,2209,3649,1434,2215,41.9,40.9,42.9 -50,1,3,Alabama,Baldwin County,7,199306,97216,102090,11318,5763,5555,22630,11438,11192,10426,5276,5150,15494,7897,7597,160108,77381,82727,154932,74739,80193,70730,35162,35568,47485,23352,24133,55001,26297,28704,36952,17193,19759,11318,5763,5555,12386,6276,6110,12919,6525,6394,12003,6043,5960,11242,5767,5475,11121,5477,5644,11488,5734,5754,11648,5697,5951,13228,6444,6784,12987,6370,6617,14543,7031,7512,14289,6701,7588,13182,6195,6987,12507,5949,6558,9723,4607,5116,6702,3197,3505,4263,1975,2288,3757,1465,2292,42.2,41.1,43.2 -50,1,3,Alabama,Baldwin County,8,203101,98977,104124,11592,5902,5690,22724,11472,11252,10675,5365,5310,15547,7940,7607,163352,78864,84488,158110,76238,81872,71545,35593,35952,48040,23636,24404,55971,26756,29215,38552,17906,20646,11592,5902,5690,12392,6270,6122,13049,6550,6499,12268,6218,6050,11237,5739,5498,11417,5645,5772,11544,5720,5824,12129,5928,6201,12950,6343,6607,13200,6494,6706,14447,6999,7448,14537,6797,7740,13787,6466,7321,13118,6162,6956,10182,4918,5264,6948,3254,3694,4404,2054,2350,3900,1518,2382,42.4,41.3,43.5 -50,1,3,Alabama,Baldwin County,9,207787,101069,106718,11714,5916,5798,22989,11669,11320,10786,5361,5425,15407,7839,7568,167686,80827,86859,162298,78123,84175,72414,35892,36522,48857,23988,24869,57513,27429,30084,40521,18867,21654,11714,5916,5798,12479,6338,6141,13146,6627,6519,12509,6289,6220,11048,5615,5433,11956,5864,6092,11730,5859,5871,12579,6078,6501,12592,6187,6405,13738,6724,7014,14401,6950,7451,15006,7034,7972,14368,6721,7647,13983,6600,7383,10549,5059,5490,7349,3422,3927,4608,2176,2432,4032,1610,2422,42.8,41.7,43.8 -50,1,3,Alabama,Baldwin County,10,212737,103324,109413,11901,6117,5784,23483,11937,11546,10950,5482,5468,15306,7706,7600,171999,82597,89402,166403,79788,86615,73443,36182,37261,49820,24317,25503,58737,27989,30748,42540,19776,22764,11901,6117,5784,12722,6465,6257,13394,6795,6599,12739,6355,6384,10884,5510,5374,12363,6043,6320,11817,5822,5995,12901,6242,6659,12739,6210,6529,14127,6909,7218,14285,6879,7406,15233,7178,8055,15092,7023,8069,13990,6536,7454,11790,5658,6132,7818,3665,4153,4765,2241,2524,4177,1676,2501,43.1,41.9,44.1 -50,1,3,Alabama,Baldwin County,11,218071,105782,112289,12006,6237,5769,23961,12135,11826,11080,5529,5551,15510,7816,7694,176616,84619,91997,171024,81881,89143,74645,36712,37933,50813,24792,26021,60150,28599,31551,44551,20674,23877,12006,6237,5769,12824,6511,6313,13895,7049,6846,12872,6387,6485,10960,5533,5427,12510,6173,6337,12097,5958,6139,13295,6383,6912,12911,6278,6633,14445,7024,7421,14268,6837,7431,15777,7437,8340,15660,7301,8359,14250,6575,7675,12472,5995,6477,8490,3992,4498,5077,2377,2700,4262,1735,2527,43.3,42.1,44.5 -50,1,3,Alabama,Baldwin County,12,223565,108396,115169,12068,6306,5762,24301,12371,11930,11287,5661,5626,15922,7999,7923,181453,86802,94651,175909,84058,91851,76205,37547,38658,51897,25349,26548,61216,28978,32238,46874,21732,25142,12068,6306,5762,13114,6731,6383,14088,7102,6986,13168,6598,6570,11140,5600,5540,12645,6253,6392,12565,6137,6428,13462,6588,6874,13225,6371,6854,14451,6940,7511,14330,6892,7438,16289,7739,8550,16146,7407,8739,14873,6887,7986,13168,6274,6894,9042,4262,4780,5380,2493,2887,4411,1816,2595,43.6,42.2,44.8 -50,1,3,Alabama,Baldwin County,13,227989,110420,117569,12092,6319,5773,24636,12572,12064,11536,5787,5749,16067,8055,8012,185376,88563,96813,179725,85742,93983,77312,38054,39258,52651,25693,26958,62077,29384,32693,48930,22610,26320,12092,6319,5773,13356,6874,6482,14222,7179,7043,13371,6684,6687,11290,5677,5613,12517,6254,6263,12865,6256,6609,13524,6579,6945,13745,6604,7141,14328,6941,7387,14519,6963,7556,16420,7756,8664,16810,7724,9086,15519,7146,8373,13806,6532,7274,9457,4503,4954,5607,2554,3053,4541,1875,2666,43.8,42.5,45.2 -50,1,3,Alabama,Baldwin County,14,229287,111000,118287,12092,6317,5775,24716,12625,12091,11637,5837,5800,16090,8061,8029,186529,89067,97462,180842,86221,94621,77675,38225,39450,52912,25817,27095,62355,29512,32843,49485,22831,26654,12092,6317,5775,13409,6909,6500,14271,7206,7065,13435,6714,6721,11328,5694,5634,12465,6252,6213,12962,6294,6668,13565,6590,6975,13920,6681,7239,14298,6948,7350,14610,6995,7615,16450,7758,8692,16997,7811,9186,15731,7232,8499,13973,6589,7384,9554,4560,4994,5678,2572,3106,4549,1878,2671,43.9,42.6,45.3 -50,1,5,Alabama,Barbour County,1,27457,14576,12881,1702,847,855,2902,1476,1426,1411,729,682,2453,1408,1045,22185,11904,10281,21442,11524,9918,10971,6456,4515,7446,4489,2957,7634,3933,3701,3909,1694,2215,1702,847,855,1642,826,816,1599,820,779,1731,919,812,1794,1048,746,2010,1212,798,1808,1162,646,1819,1046,773,1809,1069,740,2108,1164,944,1910,1000,910,1817,910,907,1799,859,940,1290,631,659,948,436,512,685,303,382,543,195,348,443,129,314,39,37.2,41.6 -50,1,5,Alabama,Barbour County,2,27454,14575,12879,1702,847,855,2902,1476,1426,1411,729,682,2453,1408,1045,22182,11903,10279,21439,11523,9916,10970,6455,4515,7445,4488,2957,7634,3933,3701,3907,1694,2213,1702,847,855,1642,826,816,1599,820,779,1731,919,812,1794,1048,746,2010,1212,798,1808,1162,646,1819,1046,773,1808,1068,740,2108,1164,944,1910,1000,910,1817,910,907,1799,859,940,1289,631,658,948,436,512,685,303,382,542,195,347,443,129,314,39,37.2,41.6 -50,1,5,Alabama,Barbour County,3,27325,14501,12824,1676,834,842,2905,1469,1436,1390,715,675,2444,1404,1040,22087,11856,10231,21354,11483,9871,10908,6427,4481,7402,4475,2927,7605,3910,3695,3903,1694,2209,1676,834,842,1633,816,817,1600,820,780,1711,902,809,1795,1050,745,1990,1202,788,1815,1165,650,1799,1043,756,1798,1065,733,2100,1153,947,1893,989,904,1826,915,911,1786,853,933,1303,636,667,940,434,506,687,304,383,534,191,343,439,129,310,39.1,37.3,41.6 -50,1,5,Alabama,Barbour County,4,27344,14656,12688,1663,820,843,2949,1513,1436,1313,677,636,2411,1419,992,22099,11990,10109,21419,11646,9773,10828,6497,4331,7404,4562,2842,7592,3927,3665,4012,1738,2274,1663,820,843,1644,829,815,1605,845,760,1607,844,763,1817,1091,726,1948,1213,735,1894,1226,668,1740,1041,699,1822,1082,740,2080,1143,937,1881,996,885,1833,933,900,1798,855,943,1377,660,717,947,440,507,708,315,393,519,186,333,461,137,324,39.4,37.4,42.2 -50,1,5,Alabama,Barbour County,5,27172,14542,12630,1582,755,827,2970,1512,1458,1272,680,592,2395,1417,978,22006,11946,10060,21348,11595,9753,10692,6453,4239,7333,4519,2814,7443,3859,3584,4177,1800,2377,1582,755,827,1635,834,801,1643,841,802,1557,841,716,1802,1093,709,1962,1224,738,1866,1179,687,1663,1025,638,1842,1091,751,1974,1090,884,1909,1014,895,1783,905,878,1777,850,927,1489,698,791,980,453,527,732,319,413,494,189,305,482,141,341,39.7,37.6,42.6 -50,1,5,Alabama,Barbour County,6,26946,14382,12564,1556,736,820,2928,1488,1440,1224,648,576,2387,1394,993,21856,11837,10019,21238,11510,9728,10532,6333,4199,7244,4458,2786,7305,3806,3499,4302,1852,2450,1556,736,820,1625,818,807,1626,837,789,1469,782,687,1819,1093,726,1926,1187,739,1874,1184,690,1642,1030,612,1802,1057,745,1863,1066,797,1935,999,936,1747,904,843,1760,837,923,1510,704,806,1068,494,574,758,324,434,484,193,291,482,137,345,39.8,37.7,42.7 -50,1,5,Alabama,Barbour County,7,26768,14255,12513,1532,731,801,2957,1476,1481,1190,616,574,2362,1367,995,21649,11727,9922,21089,11432,9657,10403,6232,4171,7164,4403,2761,7141,3747,3394,4422,1915,2507,1532,731,801,1676,828,848,1594,802,792,1412,755,657,1827,1074,753,1935,1201,734,1882,1166,716,1569,1003,566,1778,1033,745,1770,1034,736,1947,1007,940,1713,874,839,1711,832,879,1574,726,848,1094,507,587,779,347,432,500,201,299,475,134,341,39.9,37.8,42.6 -50,1,5,Alabama,Barbour County,8,26300,13985,12315,1462,707,755,2869,1435,1434,1263,648,615,2234,1309,925,21318,11516,9802,20706,11195,9511,10159,6056,4103,6998,4272,2726,6917,3641,3276,4557,1973,2584,1462,707,755,1622,804,818,1583,804,779,1411,739,672,1750,1045,705,1839,1150,689,1866,1134,732,1614,1018,596,1679,970,709,1707,1002,705,1856,962,894,1694,868,826,1660,809,851,1622,731,891,1171,558,613,771,333,438,517,220,297,476,131,345,40,37.9,43.1 -50,1,5,Alabama,Barbour County,9,25828,13637,12191,1400,708,692,2822,1387,1435,1281,644,637,2149,1241,908,20957,11214,9743,20325,10898,9427,9886,5849,4037,6772,4117,2655,6727,3509,3218,4677,2031,2646,1400,708,692,1592,773,819,1546,767,779,1449,752,697,1665,980,685,1827,1148,679,1798,1075,723,1576,975,601,1571,919,652,1642,939,703,1780,911,869,1648,849,799,1657,810,847,1608,729,879,1242,581,661,783,344,439,554,235,319,490,142,348,40.2,38.2,43.4 -50,1,5,Alabama,Barbour County,10,25169,13228,11941,1325,651,674,2706,1347,1359,1242,628,614,2018,1166,852,20528,10928,9600,19896,10602,9294,9486,5600,3886,6525,3959,2566,6585,3413,3172,4768,2064,2704,1325,651,674,1495,729,766,1510,771,739,1433,744,689,1528,897,631,1800,1137,663,1732,1021,711,1525,932,593,1468,869,599,1634,928,706,1676,858,818,1668,855,813,1607,772,835,1572,724,848,1334,602,732,829,367,462,547,218,329,486,153,333,40.9,38.7,44.3 -50,1,5,Alabama,Barbour County,11,24887,13157,11730,1307,676,631,2681,1343,1338,1230,637,593,1965,1143,822,20321,10832,9489,19669,10501,9168,9335,5527,3808,6413,3897,2516,6444,3365,3079,4847,2096,2751,1307,676,631,1445,718,727,1509,775,734,1458,765,693,1464,865,599,1790,1129,661,1660,989,671,1526,919,607,1437,860,577,1622,928,694,1597,844,753,1685,835,850,1540,758,782,1544,704,840,1328,599,729,903,401,502,571,236,335,501,156,345,41,38.7,44.7 -50,1,5,Alabama,Barbour County,12,24657,13030,11627,1311,674,637,2588,1279,1309,1179,606,573,1988,1156,832,20192,10782,9410,19579,10471,9108,9252,5510,3742,6380,3897,2483,6318,3295,3023,4893,2123,2770,1311,674,637,1410,689,721,1473,739,734,1398,734,664,1474,879,595,1774,1130,644,1660,1004,656,1538,905,633,1408,858,550,1575,892,683,1503,800,703,1706,841,865,1534,762,772,1515,701,814,1372,610,762,916,407,509,590,244,346,500,161,339,41,38.9,44.8 -50,1,5,Alabama,Barbour County,13,24652,13018,11634,1315,673,642,2574,1275,1299,1164,593,571,1992,1162,830,20183,10777,9406,19599,10477,9122,9300,5525,3775,6441,3917,2524,6188,3234,2954,4978,2164,2814,1315,673,642,1351,659,692,1520,763,757,1394,726,668,1465,882,583,1762,1113,649,1648,1004,644,1559,899,660,1472,901,571,1552,869,683,1467,795,672,1659,827,832,1510,743,767,1499,689,810,1406,619,787,971,439,532,587,245,342,515,172,343,40.9,38.9,44.5 -50,1,5,Alabama,Barbour County,14,24589,12987,11602,1316,674,642,2562,1268,1294,1156,589,567,1987,1162,825,20127,10753,9374,19555,10456,9099,9295,5519,3776,6449,3914,2535,6137,3211,2926,4982,2169,2813,1316,674,642,1328,648,680,1531,766,765,1386,723,663,1460,882,578,1751,1103,648,1640,998,642,1562,898,664,1496,915,581,1540,861,679,1457,795,662,1644,822,822,1496,733,763,1490,685,805,1412,620,792,982,446,536,582,244,338,516,174,342,40.9,38.9,44.4 \ No newline at end of file +SUMLEV,STATE,COUNTY,STNAME,CTYNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM +50,1,1,Alabama,Autauga County,1,54571,26569,28002,3579,1866,1713,7418,3747,3671,3616,1842,1774,4617,2335,2282,41804,20046,21758,39958,19114,20844,22100,10867,11233,14730,7115,7615,14065,6843,7222,6546,2821,3725,3579,1866,1713,3991,2001,1990,4290,2171,2119,4290,2213,2077,3080,1539,1541,3157,1543,1614,3330,1594,1736,4157,2004,2153,4086,1974,2112,4332,2174,2158,3873,1866,2007,3083,1524,1559,2777,1279,1498,2277,1014,1263,1736,807,929,1251,546,705,731,295,436,551,159,392,37,35.9,37.9 +50,1,1,Alabama,Autauga County,2,54582,26576,28006,3582,1868,1714,7425,3752,3673,3617,1842,1775,4617,2335,2282,41804,20045,21759,39958,19114,20844,22103,10867,11236,14732,7115,7617,14067,6845,7222,6542,2819,3723,3582,1868,1714,3994,2004,1990,4294,2173,2121,4291,2213,2078,3080,1539,1541,3160,1545,1615,3329,1593,1736,4157,2004,2153,4086,1973,2113,4333,2176,2157,3874,1866,2008,3083,1524,1559,2777,1279,1498,2277,1014,1263,1734,806,928,1250,546,704,730,294,436,551,159,392,37,35.9,37.8 +50,1,1,Alabama,Autauga County,3,54761,26667,28094,3575,1862,1713,7400,3720,3680,3565,1819,1746,4670,2362,2308,42038,20190,21848,40221,19266,20955,22194,10939,11255,14815,7185,7630,14137,6872,7265,6599,2847,3752,3575,1862,1713,3964,1984,1980,4292,2163,2129,4228,2181,2047,3151,1573,1578,3188,1573,1615,3369,1614,1755,4142,2000,2142,4116,1998,2118,4321,2163,2158,3908,1884,2024,3119,1533,1586,2789,1292,1497,2289,1018,1271,1752,814,938,1259,552,707,743,299,444,556,164,392,37.1,36,37.9 +50,1,1,Alabama,Autauga County,4,55229,26980,28249,3552,1851,1701,7360,3683,3677,3479,1784,1695,4816,2487,2329,42608,20572,22036,40838,19662,21176,22256,11053,11203,14827,7239,7588,14334,6980,7354,6861,2956,3905,3552,1851,1701,3905,1938,1967,4321,2202,2119,4031,2072,1959,3398,1742,1656,3215,1609,1606,3443,1663,1780,4002,1937,2065,4167,2030,2137,4196,2074,2122,4035,1985,2050,3247,1582,1665,2856,1339,1517,2323,1021,1302,1843,844,999,1312,585,727,782,315,467,601,191,410,37.3,36.2,38.4 +50,1,1,Alabama,Autauga County,5,54970,26830,28140,3405,1792,1613,7267,3659,3608,3512,1801,1711,4804,2488,2316,42545,20475,22070,40786,19578,21208,21956,10865,11091,14537,7029,7508,14254,6953,7301,7191,3108,4083,3405,1792,1613,3800,1913,1887,4364,2199,2165,4050,2118,1932,3369,1718,1651,3203,1577,1626,3324,1599,1725,3823,1826,1997,4187,2027,2160,4082,2001,2081,4121,2082,2039,3273,1545,1728,2778,1325,1453,2458,1090,1368,1908,864,1044,1359,608,751,834,340,494,632,206,426,37.7,36.4,38.8 +50,1,1,Alabama,Autauga County,6,54747,26588,28159,3217,1671,1546,7117,3548,3569,3425,1759,1666,4882,2541,2341,42683,20489,22194,40988,19610,21378,21797,10746,11051,14339,6884,7455,14354,6964,7390,7413,3221,4192,3217,1671,1546,3760,1891,1869,4206,2095,2111,3990,2071,1919,3468,1791,1677,3292,1570,1722,3309,1609,1700,3622,1728,1894,4116,1977,2139,4000,1941,2059,4144,2090,2054,3441,1610,1831,2769,1323,1446,2480,1135,1345,1982,868,1114,1425,631,794,890,378,512,636,209,427,38.1,36.8,39.1 +50,1,1,Alabama,Autauga County,7,54922,26804,28118,3183,1659,1524,7019,3552,3467,3430,1764,1666,4902,2536,2366,43001,20719,22282,41290,19829,21461,21812,10840,10972,14346,6965,7381,14443,7027,7416,7599,3301,4298,3183,1659,1524,3720,1908,1812,4165,2069,2096,3912,2063,1849,3554,1812,1742,3361,1680,1681,3357,1631,1726,3502,1660,1842,4126,1994,2132,3943,1916,2027,4131,2060,2071,3528,1658,1870,2841,1393,1448,2481,1130,1351,2031,886,1145,1475,653,822,944,400,544,668,232,436,38.2,36.8,39.5 +50,1,1,Alabama,Autauga County,8,54903,26752,28151,3122,1605,1517,6883,3490,3393,3421,1712,1709,4798,2506,2292,43160,20804,22356,41477,19945,21532,21532,10677,10855,14213,6899,7314,14624,7152,7472,7842,3388,4454,3122,1605,1517,3694,1893,1801,4089,2037,2052,3816,1989,1827,3503,1789,1714,3367,1676,1691,3418,1648,1770,3410,1639,1771,4018,1936,2082,3918,1924,1994,4126,2037,2089,3656,1738,1918,2924,1453,1471,2585,1169,1416,2059,893,1166,1497,665,832,991,414,577,710,247,463,38.5,37.2,39.8 +50,1,1,Alabama,Autauga County,9,55302,26999,28303,3195,1654,1541,6705,3416,3289,3466,1726,1740,4624,2419,2205,43633,21068,22565,41936,20203,21733,21616,10753,10863,14400,7034,7366,14819,7231,7588,8093,3519,4574,3195,1654,1541,3608,1869,1739,3971,1973,1998,3850,1998,1852,3366,1721,1645,3565,1786,1779,3465,1710,1755,3557,1696,1861,3813,1842,1971,3956,1928,2028,3988,1948,2040,3774,1830,1944,3101,1525,1576,2648,1226,1422,2098,889,1209,1551,689,862,1032,442,590,764,273,491,38.7,37.2,39.9 +50,1,1,Alabama,Autauga County,10,55448,27041,28407,3286,1718,1568,6632,3394,3238,3336,1652,1684,4564,2354,2210,43900,21122,22778,42194,20277,21917,21519,10622,10897,14406,7003,7403,14854,7246,7608,8370,3674,4696,3286,1718,1568,3552,1832,1720,3867,1949,1918,3825,1936,1889,3288,1683,1605,3671,1834,1837,3497,1705,1792,3583,1719,1864,3655,1745,1910,3943,1922,2021,3910,1911,1999,3933,1950,1983,3068,1463,1605,2619,1237,1382,2232,959,1273,1630,718,912,1088,473,615,801,287,514,38.8,37.4,40 +50,1,1,Alabama,Autauga County,11,55533,27049,28484,3353,1754,1599,6490,3342,3148,3300,1643,1657,4435,2299,2136,44092,21152,22940,42390,20310,22080,21389,10544,10845,14453,7003,7450,14935,7217,7718,8567,3791,4776,3353,1754,1599,3412,1769,1643,3877,1974,1903,3753,1905,1848,3183,1636,1547,3716,1837,1879,3482,1676,1806,3632,1776,1856,3623,1714,1909,3952,1905,2047,3806,1859,1947,3927,1954,1973,3250,1499,1751,2602,1243,1359,2296,1021,1275,1696,707,989,1100,484,616,873,336,537,39.1,37.7,40.4 +50,1,1,Alabama,Autauga County,12,55769,27078,28691,3251,1700,1551,6499,3355,3144,3199,1601,1598,4469,2294,2175,44420,21231,23189,42820,20422,22398,21487,10546,10941,14635,7054,7581,14933,7202,7731,8783,3872,4911,3251,1700,1551,3461,1782,1679,3854,1976,1878,3669,1858,1811,3183,1634,1549,3814,1870,1944,3548,1740,1808,3663,1762,1901,3610,1682,1928,3889,1884,2005,3780,1863,1917,3904,1899,2005,3360,1556,1804,2722,1311,1411,2282,999,1283,1737,730,1007,1133,487,646,909,345,564,39.2,37.8,40.6 +50,1,1,Alabama,Autauga County,13,56130,27231,28899,3346,1739,1607,6566,3366,3200,3114,1553,1561,4416,2267,2149,44657,21353,23304,43104,20573,22531,21567,10606,10961,14798,7166,7632,14848,7161,7687,9042,3979,5063,3346,1739,1607,3494,1785,1709,3833,1961,1872,3622,1825,1797,3147,1615,1532,3822,1893,1929,3636,1756,1880,3743,1818,1925,3597,1699,1898,3820,1844,1976,3675,1811,1864,3912,1915,1997,3441,1591,1850,2790,1351,1439,2386,1032,1354,1796,749,1047,1142,494,648,928,353,575,39.3,37.8,40.5 +50,1,1,Alabama,Autauga County,14,56145,27226,28919,3370,1746,1624,6564,3359,3205,3083,1536,1547,4391,2252,2139,44664,21355,23309,43128,20585,22543,21584,10619,10965,14850,7201,7649,14805,7137,7668,9082,3995,5087,3370,1746,1624,3488,1777,1711,3816,1952,1864,3602,1812,1790,3132,1606,1526,3816,1897,1919,3666,1758,1908,3773,1840,1933,3595,1706,1889,3792,1827,1965,3646,1796,1850,3910,1920,1990,3457,1594,1863,2806,1360,1446,2406,1035,1371,1803,751,1052,1140,496,644,927,353,574,39.2,37.8,40.5 +50,1,3,Alabama,Baldwin County,1,182265,89196,93069,11158,5614,5544,21118,10704,10414,9622,4908,4714,13834,7019,6815,145215,70491,74724,140367,67970,72397,65558,32843,32715,44509,22120,22389,51456,24718,26738,30568,14113,16455,11158,5614,5544,11599,5832,5767,11926,6076,5850,11600,5930,5670,9449,4793,4656,10247,5183,5064,10709,5317,5392,11558,5725,5833,11995,5895,6100,13431,6622,6809,13490,6425,7065,12523,5943,6580,12012,5728,6284,10174,4895,5279,7629,3663,3966,5598,2644,2954,3934,1735,2199,3233,1176,2057,41.1,40.1,42.2 +50,1,3,Alabama,Baldwin County,2,182263,89195,93068,11158,5614,5544,21118,10704,10414,9622,4908,4714,13834,7019,6815,145213,70490,74723,140365,67969,72396,65558,32843,32715,44509,22120,22389,51455,24718,26737,30567,14112,16455,11158,5614,5544,11599,5832,5767,11926,6076,5850,11600,5930,5670,9449,4793,4656,10247,5183,5064,10709,5317,5392,11558,5725,5833,11995,5895,6100,13431,6622,6809,13490,6425,7065,12523,5943,6580,12011,5728,6283,10173,4894,5279,7629,3663,3966,5598,2644,2954,3934,1735,2199,3233,1176,2057,41.1,40.1,42.2 +50,1,3,Alabama,Baldwin County,3,183121,89623,93498,11156,5617,5539,21223,10764,10459,9668,4916,4752,13931,7077,6854,145934,70836,75098,141074,68326,72748,65848,32974,32874,44666,22195,22471,51708,24846,26862,30769,14208,16561,11156,5617,5539,11620,5851,5769,12020,6127,5893,11618,5936,5682,9564,4843,4721,10282,5198,5084,10803,5355,5448,11506,5706,5800,12075,5936,6139,13431,6619,6812,13551,6451,7100,12636,5997,6639,12090,5779,6311,10222,4909,5313,7705,3699,4006,5616,2655,2961,3970,1761,2209,3256,1184,2072,41.2,40.1,42.2 +50,1,3,Alabama,Baldwin County,4,186579,91199,95380,11243,5695,5548,21589,10953,10636,9830,4954,4876,14182,7184,6998,148829,72067,76762,143917,69597,74320,66771,33325,33446,45218,22453,22765,52712,25245,27467,31805,14715,17090,11243,5695,5548,11762,5921,5841,12286,6298,5988,11608,5908,5700,9945,4964,4981,10409,5298,5111,11138,5492,5646,11180,5516,5664,12491,6147,6344,13174,6452,6722,13803,6557,7246,13041,6192,6849,12694,6044,6650,10459,4980,5479,8076,3854,4222,5831,2785,3046,4105,1854,2251,3334,1242,2092,41.4,40.4,42.4 +50,1,3,Alabama,Baldwin County,5,190203,92728,97475,11217,5735,5482,21869,11020,10849,9937,5022,4915,14764,7508,7256,152112,73395,78717,147180,70951,76229,68082,33828,34254,45848,22569,23279,53021,25288,27733,33547,15586,17961,11217,5735,5482,11971,6016,5955,12365,6275,6090,11631,5925,5706,10603,5334,5269,10490,5250,5240,11231,5527,5704,11290,5485,5805,12837,6307,6530,13058,6361,6697,13861,6632,7229,13555,6374,7181,12547,5921,6626,11384,5426,5958,8479,4027,4452,6080,2940,3140,4120,1855,2265,3484,1338,2146,41.7,40.7,42.6 +50,1,3,Alabama,Baldwin County,6,194978,95140,99838,11206,5713,5493,22425,11303,11122,10178,5140,5038,15240,7779,7461,156232,75536,80696,151169,72984,78185,69652,34683,34969,46778,23024,23754,53990,25791,28199,35161,16390,18771,11206,5713,5493,12234,6155,6079,12735,6408,6327,11859,6015,5844,11015,5644,5371,10815,5401,5414,11387,5602,5785,11390,5565,5825,13186,6456,6730,13004,6341,6663,14221,6854,7367,14011,6584,7427,12754,6012,6742,11876,5668,6208,9127,4303,4824,6428,3113,3315,4081,1872,2209,3649,1434,2215,41.9,40.9,42.9 +50,1,3,Alabama,Baldwin County,7,199306,97216,102090,11318,5763,5555,22630,11438,11192,10426,5276,5150,15494,7897,7597,160108,77381,82727,154932,74739,80193,70730,35162,35568,47485,23352,24133,55001,26297,28704,36952,17193,19759,11318,5763,5555,12386,6276,6110,12919,6525,6394,12003,6043,5960,11242,5767,5475,11121,5477,5644,11488,5734,5754,11648,5697,5951,13228,6444,6784,12987,6370,6617,14543,7031,7512,14289,6701,7588,13182,6195,6987,12507,5949,6558,9723,4607,5116,6702,3197,3505,4263,1975,2288,3757,1465,2292,42.2,41.1,43.2 +50,1,3,Alabama,Baldwin County,8,203101,98977,104124,11592,5902,5690,22724,11472,11252,10675,5365,5310,15547,7940,7607,163352,78864,84488,158110,76238,81872,71545,35593,35952,48040,23636,24404,55971,26756,29215,38552,17906,20646,11592,5902,5690,12392,6270,6122,13049,6550,6499,12268,6218,6050,11237,5739,5498,11417,5645,5772,11544,5720,5824,12129,5928,6201,12950,6343,6607,13200,6494,6706,14447,6999,7448,14537,6797,7740,13787,6466,7321,13118,6162,6956,10182,4918,5264,6948,3254,3694,4404,2054,2350,3900,1518,2382,42.4,41.3,43.5 +50,1,3,Alabama,Baldwin County,9,207787,101069,106718,11714,5916,5798,22989,11669,11320,10786,5361,5425,15407,7839,7568,167686,80827,86859,162298,78123,84175,72414,35892,36522,48857,23988,24869,57513,27429,30084,40521,18867,21654,11714,5916,5798,12479,6338,6141,13146,6627,6519,12509,6289,6220,11048,5615,5433,11956,5864,6092,11730,5859,5871,12579,6078,6501,12592,6187,6405,13738,6724,7014,14401,6950,7451,15006,7034,7972,14368,6721,7647,13983,6600,7383,10549,5059,5490,7349,3422,3927,4608,2176,2432,4032,1610,2422,42.8,41.7,43.8 +50,1,3,Alabama,Baldwin County,10,212737,103324,109413,11901,6117,5784,23483,11937,11546,10950,5482,5468,15306,7706,7600,171999,82597,89402,166403,79788,86615,73443,36182,37261,49820,24317,25503,58737,27989,30748,42540,19776,22764,11901,6117,5784,12722,6465,6257,13394,6795,6599,12739,6355,6384,10884,5510,5374,12363,6043,6320,11817,5822,5995,12901,6242,6659,12739,6210,6529,14127,6909,7218,14285,6879,7406,15233,7178,8055,15092,7023,8069,13990,6536,7454,11790,5658,6132,7818,3665,4153,4765,2241,2524,4177,1676,2501,43.1,41.9,44.1 +50,1,3,Alabama,Baldwin County,11,218071,105782,112289,12006,6237,5769,23961,12135,11826,11080,5529,5551,15510,7816,7694,176616,84619,91997,171024,81881,89143,74645,36712,37933,50813,24792,26021,60150,28599,31551,44551,20674,23877,12006,6237,5769,12824,6511,6313,13895,7049,6846,12872,6387,6485,10960,5533,5427,12510,6173,6337,12097,5958,6139,13295,6383,6912,12911,6278,6633,14445,7024,7421,14268,6837,7431,15777,7437,8340,15660,7301,8359,14250,6575,7675,12472,5995,6477,8490,3992,4498,5077,2377,2700,4262,1735,2527,43.3,42.1,44.5 +50,1,3,Alabama,Baldwin County,12,223565,108396,115169,12068,6306,5762,24301,12371,11930,11287,5661,5626,15922,7999,7923,181453,86802,94651,175909,84058,91851,76205,37547,38658,51897,25349,26548,61216,28978,32238,46874,21732,25142,12068,6306,5762,13114,6731,6383,14088,7102,6986,13168,6598,6570,11140,5600,5540,12645,6253,6392,12565,6137,6428,13462,6588,6874,13225,6371,6854,14451,6940,7511,14330,6892,7438,16289,7739,8550,16146,7407,8739,14873,6887,7986,13168,6274,6894,9042,4262,4780,5380,2493,2887,4411,1816,2595,43.6,42.2,44.8 +50,1,3,Alabama,Baldwin County,13,227989,110420,117569,12092,6319,5773,24636,12572,12064,11536,5787,5749,16067,8055,8012,185376,88563,96813,179725,85742,93983,77312,38054,39258,52651,25693,26958,62077,29384,32693,48930,22610,26320,12092,6319,5773,13356,6874,6482,14222,7179,7043,13371,6684,6687,11290,5677,5613,12517,6254,6263,12865,6256,6609,13524,6579,6945,13745,6604,7141,14328,6941,7387,14519,6963,7556,16420,7756,8664,16810,7724,9086,15519,7146,8373,13806,6532,7274,9457,4503,4954,5607,2554,3053,4541,1875,2666,43.8,42.5,45.2 +50,1,3,Alabama,Baldwin County,14,229287,111000,118287,12092,6317,5775,24716,12625,12091,11637,5837,5800,16090,8061,8029,186529,89067,97462,180842,86221,94621,77675,38225,39450,52912,25817,27095,62355,29512,32843,49485,22831,26654,12092,6317,5775,13409,6909,6500,14271,7206,7065,13435,6714,6721,11328,5694,5634,12465,6252,6213,12962,6294,6668,13565,6590,6975,13920,6681,7239,14298,6948,7350,14610,6995,7615,16450,7758,8692,16997,7811,9186,15731,7232,8499,13973,6589,7384,9554,4560,4994,5678,2572,3106,4549,1878,2671,43.9,42.6,45.3 +50,1,5,Alabama,Barbour County,1,27457,14576,12881,1702,847,855,2902,1476,1426,1411,729,682,2453,1408,1045,22185,11904,10281,21442,11524,9918,10971,6456,4515,7446,4489,2957,7634,3933,3701,3909,1694,2215,1702,847,855,1642,826,816,1599,820,779,1731,919,812,1794,1048,746,2010,1212,798,1808,1162,646,1819,1046,773,1809,1069,740,2108,1164,944,1910,1000,910,1817,910,907,1799,859,940,1290,631,659,948,436,512,685,303,382,543,195,348,443,129,314,39,37.2,41.6 +50,1,5,Alabama,Barbour County,2,27454,14575,12879,1702,847,855,2902,1476,1426,1411,729,682,2453,1408,1045,22182,11903,10279,21439,11523,9916,10970,6455,4515,7445,4488,2957,7634,3933,3701,3907,1694,2213,1702,847,855,1642,826,816,1599,820,779,1731,919,812,1794,1048,746,2010,1212,798,1808,1162,646,1819,1046,773,1808,1068,740,2108,1164,944,1910,1000,910,1817,910,907,1799,859,940,1289,631,658,948,436,512,685,303,382,542,195,347,443,129,314,39,37.2,41.6 +50,1,5,Alabama,Barbour County,3,27325,14501,12824,1676,834,842,2905,1469,1436,1390,715,675,2444,1404,1040,22087,11856,10231,21354,11483,9871,10908,6427,4481,7402,4475,2927,7605,3910,3695,3903,1694,2209,1676,834,842,1633,816,817,1600,820,780,1711,902,809,1795,1050,745,1990,1202,788,1815,1165,650,1799,1043,756,1798,1065,733,2100,1153,947,1893,989,904,1826,915,911,1786,853,933,1303,636,667,940,434,506,687,304,383,534,191,343,439,129,310,39.1,37.3,41.6 +50,1,5,Alabama,Barbour County,4,27344,14656,12688,1663,820,843,2949,1513,1436,1313,677,636,2411,1419,992,22099,11990,10109,21419,11646,9773,10828,6497,4331,7404,4562,2842,7592,3927,3665,4012,1738,2274,1663,820,843,1644,829,815,1605,845,760,1607,844,763,1817,1091,726,1948,1213,735,1894,1226,668,1740,1041,699,1822,1082,740,2080,1143,937,1881,996,885,1833,933,900,1798,855,943,1377,660,717,947,440,507,708,315,393,519,186,333,461,137,324,39.4,37.4,42.2 +50,1,5,Alabama,Barbour County,5,27172,14542,12630,1582,755,827,2970,1512,1458,1272,680,592,2395,1417,978,22006,11946,10060,21348,11595,9753,10692,6453,4239,7333,4519,2814,7443,3859,3584,4177,1800,2377,1582,755,827,1635,834,801,1643,841,802,1557,841,716,1802,1093,709,1962,1224,738,1866,1179,687,1663,1025,638,1842,1091,751,1974,1090,884,1909,1014,895,1783,905,878,1777,850,927,1489,698,791,980,453,527,732,319,413,494,189,305,482,141,341,39.7,37.6,42.6 +50,1,5,Alabama,Barbour County,6,26946,14382,12564,1556,736,820,2928,1488,1440,1224,648,576,2387,1394,993,21856,11837,10019,21238,11510,9728,10532,6333,4199,7244,4458,2786,7305,3806,3499,4302,1852,2450,1556,736,820,1625,818,807,1626,837,789,1469,782,687,1819,1093,726,1926,1187,739,1874,1184,690,1642,1030,612,1802,1057,745,1863,1066,797,1935,999,936,1747,904,843,1760,837,923,1510,704,806,1068,494,574,758,324,434,484,193,291,482,137,345,39.8,37.7,42.7 +50,1,5,Alabama,Barbour County,7,26768,14255,12513,1532,731,801,2957,1476,1481,1190,616,574,2362,1367,995,21649,11727,9922,21089,11432,9657,10403,6232,4171,7164,4403,2761,7141,3747,3394,4422,1915,2507,1532,731,801,1676,828,848,1594,802,792,1412,755,657,1827,1074,753,1935,1201,734,1882,1166,716,1569,1003,566,1778,1033,745,1770,1034,736,1947,1007,940,1713,874,839,1711,832,879,1574,726,848,1094,507,587,779,347,432,500,201,299,475,134,341,39.9,37.8,42.6 +50,1,5,Alabama,Barbour County,8,26300,13985,12315,1462,707,755,2869,1435,1434,1263,648,615,2234,1309,925,21318,11516,9802,20706,11195,9511,10159,6056,4103,6998,4272,2726,6917,3641,3276,4557,1973,2584,1462,707,755,1622,804,818,1583,804,779,1411,739,672,1750,1045,705,1839,1150,689,1866,1134,732,1614,1018,596,1679,970,709,1707,1002,705,1856,962,894,1694,868,826,1660,809,851,1622,731,891,1171,558,613,771,333,438,517,220,297,476,131,345,40,37.9,43.1 +50,1,5,Alabama,Barbour County,9,25828,13637,12191,1400,708,692,2822,1387,1435,1281,644,637,2149,1241,908,20957,11214,9743,20325,10898,9427,9886,5849,4037,6772,4117,2655,6727,3509,3218,4677,2031,2646,1400,708,692,1592,773,819,1546,767,779,1449,752,697,1665,980,685,1827,1148,679,1798,1075,723,1576,975,601,1571,919,652,1642,939,703,1780,911,869,1648,849,799,1657,810,847,1608,729,879,1242,581,661,783,344,439,554,235,319,490,142,348,40.2,38.2,43.4 +50,1,5,Alabama,Barbour County,10,25169,13228,11941,1325,651,674,2706,1347,1359,1242,628,614,2018,1166,852,20528,10928,9600,19896,10602,9294,9486,5600,3886,6525,3959,2566,6585,3413,3172,4768,2064,2704,1325,651,674,1495,729,766,1510,771,739,1433,744,689,1528,897,631,1800,1137,663,1732,1021,711,1525,932,593,1468,869,599,1634,928,706,1676,858,818,1668,855,813,1607,772,835,1572,724,848,1334,602,732,829,367,462,547,218,329,486,153,333,40.9,38.7,44.3 +50,1,5,Alabama,Barbour County,11,24887,13157,11730,1307,676,631,2681,1343,1338,1230,637,593,1965,1143,822,20321,10832,9489,19669,10501,9168,9335,5527,3808,6413,3897,2516,6444,3365,3079,4847,2096,2751,1307,676,631,1445,718,727,1509,775,734,1458,765,693,1464,865,599,1790,1129,661,1660,989,671,1526,919,607,1437,860,577,1622,928,694,1597,844,753,1685,835,850,1540,758,782,1544,704,840,1328,599,729,903,401,502,571,236,335,501,156,345,41,38.7,44.7 +50,1,5,Alabama,Barbour County,12,24657,13030,11627,1311,674,637,2588,1279,1309,1179,606,573,1988,1156,832,20192,10782,9410,19579,10471,9108,9252,5510,3742,6380,3897,2483,6318,3295,3023,4893,2123,2770,1311,674,637,1410,689,721,1473,739,734,1398,734,664,1474,879,595,1774,1130,644,1660,1004,656,1538,905,633,1408,858,550,1575,892,683,1503,800,703,1706,841,865,1534,762,772,1515,701,814,1372,610,762,916,407,509,590,244,346,500,161,339,41,38.9,44.8 +50,1,5,Alabama,Barbour County,13,24652,13018,11634,1315,673,642,2574,1275,1299,1164,593,571,1992,1162,830,20183,10777,9406,19599,10477,9122,9300,5525,3775,6441,3917,2524,6188,3234,2954,4978,2164,2814,1315,673,642,1351,659,692,1520,763,757,1394,726,668,1465,882,583,1762,1113,649,1648,1004,644,1559,899,660,1472,901,571,1552,869,683,1467,795,672,1659,827,832,1510,743,767,1499,689,810,1406,619,787,971,439,532,587,245,342,515,172,343,40.9,38.9,44.5 +50,1,5,Alabama,Barbour County,14,24589,12987,11602,1316,674,642,2562,1268,1294,1156,589,567,1987,1162,825,20127,10753,9374,19555,10456,9099,9295,5519,3776,6449,3914,2535,6137,3211,2926,4982,2169,2813,1316,674,642,1328,648,680,1531,766,765,1386,723,663,1460,882,578,1751,1103,648,1640,998,642,1562,898,664,1496,915,581,1540,861,679,1457,795,662,1644,822,822,1496,733,763,1490,685,805,1412,620,792,982,446,536,582,244,338,516,174,342,40.9,38.9,44.4 +50,1,7,Alabama,Bibb County,1,22915,12301,10614,1378,712,666,2571,1394,1177,1252,649,603,2056,1104,952,18372,9900,8472,17714,9546,8168,9665,5512,4153,6631,3895,2736,6121,3301,2820,2906,1246,1660,1378,712,666,1405,759,646,1440,771,669,1543,806,737,1491,811,680,1603,987,616,1646,1013,633,1747,1003,744,1635,892,743,1805,1036,769,1581,847,734,1401,734,667,1334,684,650,966,456,510,757,347,410,549,232,317,355,138,217,279,73,206,37.8,36.5,39.5 +50,1,7,Alabama,Bibb County,2,22904,12298,10606,1376,712,664,2569,1394,1175,1250,649,601,2051,1101,950,18366,9897,8469,17709,9543,8166,9658,5509,4149,6631,3895,2736,6119,3300,2819,2908,1247,1661,1376,712,664,1405,759,646,1438,771,667,1540,805,735,1487,809,678,1603,987,616,1646,1013,633,1749,1004,745,1633,891,742,1803,1035,768,1580,848,732,1400,733,667,1336,684,652,968,457,511,757,347,410,549,232,317,355,138,217,279,73,206,37.8,36.5,39.5 +50,1,7,Alabama,Bibb County,3,22858,12261,10597,1347,697,650,2558,1383,1175,1239,646,593,2031,1093,938,18367,9882,8485,17714,9535,8179,9593,5470,4123,6600,3876,2724,6143,3305,2838,2940,1261,1679,1347,697,650,1400,755,645,1435,773,662,1501,779,722,1492,815,677,1594,980,614,1651,1012,639,1734,999,735,1621,885,736,1812,1034,778,1581,853,728,1407,732,675,1343,686,657,977,460,517,766,352,414,548,228,320,368,147,221,281,74,207,38,36.6,39.7 +50,1,7,Alabama,Bibb County,4,22736,12270,10466,1288,677,611,2521,1371,1150,1167,624,543,2038,1120,918,18383,9922,8461,17760,9598,8162,9467,5439,4028,6538,3854,2684,6184,3326,2858,3000,1298,1702,1288,677,611,1362,753,609,1435,777,658,1392,731,661,1537,854,683,1599,970,629,1662,1032,630,1653,969,684,1624,883,741,1807,1023,784,1589,878,711,1433,727,706,1355,698,657,1004,482,522,790,372,418,542,213,329,389,159,230,275,72,203,38.4,36.8,40.4 +50,1,7,Alabama,Bibb County,5,22657,12212,10445,1251,637,614,2448,1341,1107,1150,631,519,2034,1123,911,18386,9899,8487,17808,9603,8205,9383,5406,3977,6490,3818,2672,6136,3296,2840,3148,1366,1782,1251,637,614,1333,743,590,1406,764,642,1376,758,618,1517,830,687,1637,977,660,1591,1004,587,1598,924,674,1664,913,751,1743,1001,742,1643,889,754,1423,721,702,1327,685,642,1097,512,585,826,396,430,560,220,340,389,164,225,276,74,202,38.8,37.2,41.1 +50,1,7,Alabama,Bibb County,6,22510,12108,10402,1195,585,610,2438,1325,1113,1144,627,517,1960,1073,887,18297,9890,8407,17733,9571,8162,9225,5358,3867,6418,3808,2610,6135,3279,2856,3220,1411,1809,1195,585,610,1323,734,589,1412,741,671,1341,743,598,1466,807,659,1618,977,641,1574,1003,571,1588,919,669,1638,909,729,1694,955,739,1648,902,746,1488,760,728,1305,662,643,1119,531,588,843,412,431,583,229,354,386,159,227,289,80,209,39.2,37.5,41.4 +50,1,7,Alabama,Bibb County,7,22541,12148,10393,1203,595,608,2347,1278,1069,1169,656,513,1942,1070,872,18400,9959,8441,17822,9619,8203,9214,5376,3838,6401,3816,2585,6125,3247,2878,3354,1486,1868,1203,595,608,1277,701,576,1368,743,625,1323,729,594,1490,831,659,1604,958,646,1618,1029,589,1530,904,626,1649,925,724,1665,920,745,1667,906,761,1505,762,743,1288,659,629,1173,573,600,860,412,448,632,256,376,358,148,210,331,97,234,39.5,37.6,41.9 +50,1,7,Alabama,Bibb County,8,22553,12112,10441,1247,618,629,2265,1213,1052,1153,636,517,1920,1081,839,18471,9959,8512,17888,9645,8243,9192,5343,3849,6395,3785,2610,6135,3252,2883,3438,1527,1911,1247,618,629,1246,663,583,1295,709,586,1334,748,586,1463,810,653,1670,981,689,1583,984,599,1527,929,598,1615,891,724,1648,905,743,1718,939,779,1476,771,705,1293,637,656,1203,582,621,859,410,449,645,274,371,383,147,236,348,114,234,39.7,37.8,42.1 +50,1,7,Alabama,Bibb County,9,22590,12074,10516,1290,644,646,2275,1206,1069,1142,621,521,1839,1061,778,18481,9927,8554,17883,9603,8280,9079,5289,3790,6370,3749,2621,6158,3239,2919,3516,1554,1962,1290,644,646,1260,651,609,1287,697,590,1307,743,564,1402,797,605,1728,1006,722,1604,990,614,1509,892,617,1529,861,668,1656,908,748,1711,932,779,1470,757,713,1321,642,679,1233,604,629,859,396,463,663,285,378,403,151,252,358,118,240,39.7,37.8,42.3 +50,1,7,Alabama,Bibb County,10,22532,12047,10485,1328,686,642,2232,1189,1043,1091,578,513,1845,1077,768,18448,9917,8531,17881,9594,8287,8999,5221,3778,6325,3686,2639,6088,3219,2869,3623,1612,2011,1328,686,642,1183,599,584,1311,710,601,1285,709,576,1389,826,563,1730,997,733,1615,986,629,1516,898,618,1464,805,659,1654,920,734,1630,898,732,1509,758,751,1295,643,652,1199,592,607,939,427,512,705,319,386,402,152,250,378,122,256,39.7,37.9,42.3 +50,1,7,Alabama,Bibb County,11,22300,11884,10416,1294,645,649,2203,1154,1049,1087,582,505,1771,1031,740,18263,9807,8456,17716,9503,8213,8848,5113,3735,6274,3661,2613,6020,3178,2842,3651,1633,2018,1294,645,649,1168,607,561,1319,708,611,1265,681,584,1309,771,538,1725,997,728,1597,957,640,1511,914,597,1441,793,648,1588,887,701,1570,832,738,1523,794,729,1339,665,674,1180,576,604,959,438,521,711,322,389,424,174,250,377,123,254,39.9,38.2,42.4 +50,1,7,Alabama,Bibb County,12,22313,11878,10435,1256,612,644,2212,1157,1055,1086,580,506,1767,1028,739,18317,9814,8503,17759,9529,8230,8854,5128,3726,6245,3658,2587,6043,3184,2859,3704,1659,2045,1256,612,644,1193,630,563,1263,665,598,1276,698,578,1333,772,561,1706,1011,695,1604,948,656,1525,909,616,1410,790,620,1622,907,715,1526,804,722,1513,793,720,1382,680,702,1158,565,593,1022,475,547,691,312,379,450,178,272,383,129,254,40,38.2,42.6 +50,1,7,Alabama,Bibb County,13,22199,11807,10392,1232,600,632,2177,1139,1038,1057,567,490,1735,1013,722,18284,9795,8489,17733,9501,8232,8753,5088,3665,6217,3642,2575,6009,3169,2840,3772,1677,2095,1232,600,632,1199,628,571,1234,645,589,1224,675,549,1312,771,541,1704,1001,703,1607,962,645,1508,888,620,1398,791,607,1605,885,720,1492,796,696,1543,805,738,1369,683,686,1162,551,611,1047,492,555,700,310,390,467,188,279,396,136,260,40.3,38.4,42.9 +50,1,7,Alabama,Bibb County,14,22136,11773,10363,1223,593,630,2157,1130,1027,1046,562,484,1727,1008,719,18258,9784,8474,17710,9488,8222,8721,5079,3642,6207,3641,2566,5996,3164,2832,3780,1675,2105,1223,593,630,1193,624,569,1223,638,585,1205,667,538,1309,771,538,1703,1001,702,1604,965,639,1507,884,623,1393,791,602,1601,879,722,1482,794,688,1551,808,743,1362,683,679,1163,546,617,1054,496,558,697,305,392,468,190,278,398,138,260,40.3,38.4,43 +50,1,9,Alabama,Blount County,1,57322,28362,28960,3616,1805,1811,7165,3634,3531,3325,1755,1570,4614,2376,2238,44902,22059,22843,43216,21168,22048,21942,11203,10739,14802,7487,7315,15361,7578,7783,8439,3727,4712,3616,1805,1811,3880,1936,1944,4084,2113,1971,4033,2139,1894,3107,1577,1530,3436,1735,1701,3441,1730,1711,3892,1989,1903,4033,2033,2000,4163,2096,2067,3922,1972,1950,3694,1810,1884,3582,1700,1882,2892,1352,1540,2187,1039,1148,1517,684,833,1035,418,617,808,234,574,39,38,40 +50,1,9,Alabama,Blount County,2,57322,28358,28964,3617,1805,1812,7165,3634,3531,3325,1754,1571,4614,2377,2237,44901,22055,22846,43215,21165,22050,21942,11203,10739,14803,7487,7316,15357,7573,7784,8441,3728,4713,3617,1805,1812,3880,1936,1944,4085,2113,1972,4032,2138,1894,3107,1578,1529,3437,1735,1702,3441,1730,1711,3895,1991,1904,4030,2031,1999,4160,2094,2066,3923,1971,1952,3692,1808,1884,3582,1700,1882,2896,1355,1541,2185,1037,1148,1517,684,833,1035,418,617,808,234,574,39,38,40 +50,1,9,Alabama,Blount County,3,57372,28381,28991,3615,1802,1813,7129,3610,3519,3343,1768,1575,4604,2359,2245,44980,22103,22877,43285,21201,22084,21894,11175,10719,14761,7469,7292,15432,7622,7810,8488,3751,4737,3615,1802,1813,3848,1917,1931,4095,2114,1981,3992,2127,1865,3141,1579,1562,3424,1731,1693,3458,1748,1710,3847,1963,1884,4032,2027,2005,4153,2094,2059,3942,1989,1953,3737,1826,1911,3600,1713,1887,2906,1365,1541,2199,1040,1159,1534,692,842,1035,417,618,814,237,577,39.1,38.1,40.1 +50,1,9,Alabama,Blount County,4,57561,28446,29115,3636,1833,1803,7075,3535,3540,3346,1782,1564,4627,2387,2240,45197,22217,22980,43504,21296,22208,21812,11121,10691,14680,7392,7288,15515,7672,7843,8682,3845,4837,3636,1833,1803,3777,1850,1927,4139,2125,2014,3855,2073,1782,3277,1656,1621,3415,1695,1720,3524,1808,1716,3697,1852,1845,4044,2037,2007,4046,2053,1993,3962,2019,1943,3817,1839,1978,3690,1761,1929,2916,1377,1539,2264,1052,1212,1602,740,862,1052,420,632,848,256,592,39.3,38.3,40.3 +50,1,9,Alabama,Blount County,5,57585,28429,29156,3636,1859,1777,7044,3495,3549,3215,1717,1498,4696,2432,2264,45308,22225,23083,43690,21358,22332,21667,11036,10631,14546,7308,7238,15400,7621,7779,9048,3997,5051,3636,1859,1777,3797,1825,1972,4037,2091,1946,3751,2012,1739,3370,1716,1654,3374,1665,1709,3441,1759,1682,3656,1795,1861,4075,2089,1986,4002,1997,2005,3965,2048,1917,3865,1887,1978,3568,1689,1879,3091,1448,1643,2336,1069,1267,1667,769,898,1075,438,637,879,273,606,39.6,38.7,40.6 +50,1,9,Alabama,Blount County,6,57630,28443,29187,3549,1777,1772,7021,3468,3553,3245,1698,1547,4686,2468,2218,45439,22355,23084,43815,21500,22315,21438,10920,10518,14340,7177,7163,15406,7676,7730,9383,4179,5204,3549,1777,1772,3830,1842,1988,4024,2049,1975,3727,2019,1708,3371,1724,1647,3318,1650,1668,3431,1737,1694,3563,1745,1818,4028,2045,1983,3991,1999,1992,4028,2082,1946,3840,1905,1935,3547,1690,1857,3204,1494,1710,2457,1140,1317,1726,800,926,1098,458,640,898,287,611,40,39.2,40.8 +50,1,9,Alabama,Blount County,7,57536,28370,29166,3465,1740,1725,6867,3367,3500,3265,1711,1554,4716,2474,2242,45536,22409,23127,43939,21552,22387,21201,10790,10411,14056,7027,7029,15425,7701,7724,9742,4350,5392,3465,1740,1725,3741,1813,1928,3962,1976,1986,3684,1974,1710,3461,1789,1672,3214,1633,1581,3416,1692,1724,3467,1717,1750,3959,1985,1974,3984,2008,1976,4054,2076,1978,3817,1883,1934,3570,1734,1836,3341,1554,1787,2518,1163,1355,1795,847,948,1135,472,663,953,314,639,40.5,39.6,41.3 +50,1,9,Alabama,Blount County,8,57535,28351,29184,3505,1775,1730,6745,3317,3428,3239,1687,1552,4658,2462,2196,45656,22414,23242,44046,21572,22474,21018,10656,10362,13936,6933,7003,15457,7700,7757,9995,4477,5518,3505,1775,1730,3689,1840,1849,3871,1903,1968,3666,1946,1720,3416,1777,1639,3278,1641,1637,3345,1659,1686,3506,1750,1756,3807,1883,1924,3969,1993,1976,4043,2055,1988,3830,1914,1916,3615,1738,1877,3425,1621,1804,2591,1183,1408,1827,863,964,1147,476,671,1005,334,671,40.7,39.6,41.7 +50,1,9,Alabama,Blount County,9,57487,28298,29189,3414,1700,1714,6775,3362,3413,3246,1668,1578,4506,2368,2138,45701,22410,23291,44052,21568,22484,20859,10543,10316,13876,6905,6971,15493,7742,7751,10177,4553,5624,3414,1700,1714,3727,1902,1825,3817,1858,1959,3694,1932,1762,3289,1706,1583,3426,1716,1710,3290,1628,1662,3523,1778,1745,3637,1783,1854,3975,2009,1966,3993,2024,1969,3846,1952,1894,3679,1757,1922,3470,1637,1833,2649,1218,1431,1813,838,975,1223,514,709,1022,346,676,40.8,39.8,41.8 +50,1,9,Alabama,Blount County,10,57801,28526,29275,3466,1782,1684,6814,3405,3409,3207,1628,1579,4481,2345,2136,45970,22566,23404,44314,21711,22603,20903,10559,10344,13985,6962,7023,15491,7762,7729,10357,4642,5715,3466,1782,1684,3725,1897,1828,3859,1884,1975,3679,1914,1765,3239,1683,1556,3572,1776,1796,3374,1672,1702,3458,1756,1702,3581,1758,1823,3957,1993,1964,3934,1964,1970,3885,2025,1860,3715,1780,1935,3315,1560,1755,2838,1293,1545,1875,850,1025,1275,565,710,1054,374,680,40.7,39.7,41.8 +50,1,9,Alabama,Blount County,11,57770,28522,29248,3463,1794,1669,6747,3377,3370,3175,1609,1566,4459,2343,2116,45998,22581,23417,44385,21742,22643,20797,10524,10273,13945,6958,6987,15393,7696,7697,10588,4745,5843,3463,1794,1669,3615,1834,1781,3914,1929,1985,3675,1893,1782,3177,1673,1504,3572,1789,1783,3372,1683,1689,3494,1764,1730,3507,1722,1785,3912,1966,1946,3882,1912,1970,3938,2037,1901,3661,1781,1880,3248,1536,1712,2946,1330,1616,1997,912,1085,1301,558,743,1096,409,687,40.9,39.7,42 +50,1,9,Alabama,Blount County,12,57840,28554,29286,3466,1792,1674,6709,3407,3302,3119,1549,1570,4462,2343,2119,46093,22603,23490,44546,21806,22740,20716,10464,10252,13924,6936,6988,15336,7638,7698,10824,4889,5935,3466,1792,1674,3624,1855,1769,3874,1916,1958,3602,1875,1727,3190,1653,1537,3594,1815,1779,3354,1673,1681,3522,1727,1795,3454,1721,1733,3874,1943,1931,3827,1889,1938,3983,2011,1972,3652,1795,1857,3320,1596,1724,3015,1369,1646,2058,920,1138,1320,597,723,1111,407,704,41,39.9,42.1 +50,1,9,Alabama,Blount County,13,57932,28636,29296,3453,1798,1655,6674,3363,3311,3118,1525,1593,4440,2347,2093,46253,22734,23519,44687,21950,22737,20732,10473,10259,13939,6972,6967,15326,7652,7674,10982,4979,6003,3453,1798,1655,3611,1827,1784,3828,1907,1921,3603,1831,1772,3190,1670,1520,3574,1822,1752,3410,1692,1718,3448,1707,1741,3507,1751,1756,3785,1897,1888,3850,1917,1933,4007,2010,1997,3684,1828,1856,3333,1609,1724,3066,1407,1659,2146,959,1187,1320,593,727,1117,411,706,41.2,40.2,42.3 +50,1,9,Alabama,Blount County,14,57879,28617,29262,3437,1792,1645,6639,3335,3304,3122,1518,1604,4422,2343,2079,46252,22751,23501,44681,21972,22709,20721,10466,10255,13938,6980,6958,15322,7654,7668,10999,4995,6004,3437,1792,1645,3590,1807,1783,3810,1903,1907,3602,1816,1786,3181,1670,1511,3561,1821,1740,3428,1698,1730,3424,1700,1724,3525,1761,1764,3747,1879,1868,3867,1930,1937,4018,2010,2008,3690,1835,1855,3340,1616,1724,3072,1416,1656,2158,964,1194,1318,590,728,1111,409,702,41.2,40.3,42.3 +50,1,11,Alabama,Bullock County,1,10914,5912,5002,742,402,340,1124,570,554,564,274,290,994,545,449,8793,4823,3970,8484,4666,3818,4354,2517,1837,2917,1760,1157,3104,1735,1369,1469,626,843,742,402,340,570,295,275,675,337,338,726,365,361,711,392,319,822,500,322,733,444,289,712,440,272,650,376,274,845,500,345,852,472,380,768,433,335,639,330,309,476,223,253,359,170,189,275,117,158,151,54,97,208,62,146,38.5,37.7,39.7 +50,1,11,Alabama,Bullock County,2,10913,5911,5002,742,402,340,1126,571,555,564,274,290,994,545,449,8790,4821,3969,8481,4664,3817,4355,2517,1838,2918,1760,1158,3102,1734,1368,1467,625,842,742,402,340,572,296,276,675,337,338,726,365,361,711,392,319,823,500,323,733,444,289,712,440,272,650,376,274,844,500,344,852,472,380,767,432,335,639,330,309,475,223,252,358,169,189,275,117,158,151,54,97,208,62,146,38.5,37.6,39.7 +50,1,11,Alabama,Bullock County,3,10876,5879,4997,747,404,343,1120,566,554,561,270,291,994,540,454,8752,4788,3964,8448,4639,3809,4335,2499,1836,2907,1754,1153,3098,1731,1367,1449,614,835,747,404,343,573,297,276,674,334,340,712,357,355,716,388,328,817,497,320,734,449,285,705,432,273,651,376,275,832,496,336,845,466,379,774,434,340,647,335,312,465,216,249,356,167,189,269,116,153,154,53,101,205,62,143,38.5,37.6,39.6 +50,1,11,Alabama,Bullock County,4,10680,5766,4914,742,404,338,1094,546,548,544,256,288,931,507,424,8573,4684,3889,8300,4560,3740,4208,2433,1775,2876,1741,1135,3045,1701,1344,1448,611,837,742,404,338,589,307,282,648,310,338,616,309,307,716,383,333,791,485,306,739,463,276,683,413,270,663,380,283,773,474,299,829,457,372,773,434,339,670,336,334,462,215,247,347,160,187,278,123,155,159,49,110,202,64,138,38.8,37.8,40.1 +50,1,11,Alabama,Bullock County,5,10610,5772,4838,655,337,318,1100,552,548,522,255,267,950,524,426,8592,4747,3845,8333,4628,3705,4240,2504,1736,2894,1789,1105,2998,1681,1317,1491,634,857,655,337,318,621,330,291,605,286,319,633,316,317,713,399,314,797,496,301,733,469,264,664,414,250,700,410,290,727,441,286,834,467,367,783,444,339,654,329,325,495,236,259,349,161,188,293,122,171,169,58,111,185,57,128,39.1,38.1,40.7 +50,1,11,Alabama,Bullock County,6,10557,5743,4814,617,323,294,1090,561,529,513,264,249,969,527,442,8601,4732,3869,8337,4595,3742,4216,2485,1731,2856,1754,1102,2984,1667,1317,1528,647,881,617,323,294,645,350,295,567,271,296,627,313,314,733,418,315,775,476,299,742,471,271,656,403,253,683,404,279,713,424,289,828,465,363,801,432,369,642,346,296,519,245,274,356,158,198,298,130,168,176,60,116,179,54,125,39.3,38.2,41.3 +50,1,11,Alabama,Bullock County,7,10668,5825,4843,623,313,310,1091,587,504,497,254,243,977,551,426,8708,4806,3902,8457,4671,3786,4297,2556,1741,2949,1811,1138,2971,1658,1313,1560,651,909,623,313,310,665,364,301,552,283,269,602,313,289,746,432,314,780,474,306,792,500,292,687,422,265,690,415,275,711,429,282,798,436,362,790,414,376,672,379,293,535,251,284,353,150,203,302,130,172,187,63,124,183,57,126,39.3,37.9,41.5 +50,1,11,Alabama,Bullock County,8,10404,5639,4765,610,308,302,1065,564,501,455,223,232,921,518,403,8499,4659,3840,8274,4544,3730,4148,2449,1699,2885,1763,1122,2875,1599,1276,1593,664,929,610,308,302,646,346,300,532,273,259,564,284,280,699,402,297,769,465,304,770,495,275,661,397,264,685,406,279,656,397,259,744,405,339,789,415,374,686,382,304,534,245,289,381,163,218,291,130,161,196,73,123,191,53,138,39.6,38.2,42 +50,1,11,Alabama,Bullock County,9,10397,5652,4745,617,296,321,1082,579,503,445,216,229,883,504,379,8473,4666,3807,8253,4561,3692,4124,2448,1676,2908,1785,1123,2836,1583,1253,1626,689,937,617,296,321,640,341,299,554,295,259,545,279,266,671,384,287,756,463,293,810,519,291,677,415,262,665,388,277,668,416,252,713,387,326,777,411,366,678,369,309,564,269,295,378,164,214,284,123,161,206,79,127,194,54,140,39.5,38.2,41.7 +50,1,11,Alabama,Bullock County,10,10181,5519,4662,609,287,322,1076,575,501,441,217,224,839,484,355,8281,4553,3728,8055,4440,3615,3996,2371,1625,2825,1723,1102,2775,1543,1232,1616,690,926,609,287,322,598,314,284,587,314,273,533,274,259,638,374,264,741,452,289,785,497,288,662,398,264,637,376,261,666,412,254,660,355,305,763,406,357,686,370,316,535,252,283,410,184,226,273,119,154,212,77,135,186,58,128,39.5,38.1,41.6 +50,1,11,Alabama,Bullock County,11,10165,5527,4638,597,282,315,1106,586,520,433,222,211,817,472,345,8252,4546,3706,8029,4437,3592,4015,2388,1627,2861,1752,1109,2705,1507,1198,1646,706,940,597,282,315,599,303,296,603,341,262,528,268,260,626,368,258,766,483,283,761,476,285,691,421,270,643,372,271,650,404,246,602,335,267,766,404,362,687,364,323,545,267,278,409,179,230,281,119,162,226,90,136,185,51,134,39.3,37.9,41.6 +50,1,11,Alabama,Bullock County,12,10144,5547,4597,566,268,298,1114,587,527,429,226,203,810,459,351,8252,4574,3678,8035,4466,3569,4024,2425,1599,2901,1801,1100,2624,1460,1164,1700,746,954,566,268,298,612,303,309,618,345,273,522,272,250,601,352,249,767,495,272,731,457,274,739,453,286,664,396,268,628,399,229,577,328,249,719,374,345,700,359,341,572,295,277,425,183,242,277,120,157,230,90,140,196,58,138,39.5,38,41.7 +50,1,11,Alabama,Bullock County,13,10050,5499,4551,570,274,296,1085,563,522,447,241,206,764,440,324,8157,4532,3625,7948,4421,3527,3942,2382,1560,2859,1772,1087,2570,1441,1129,1755,768,987,570,274,296,595,290,305,618,344,274,514,273,241,569,337,232,733,478,255,740,466,274,718,445,273,668,383,285,637,410,227,554,317,237,665,345,320,714,369,345,592,300,292,430,187,243,302,122,180,224,95,129,207,64,143,39.8,38.2,42.1 +50,1,11,Alabama,Bullock County,14,9976,5461,4515,566,275,291,1064,550,514,447,242,205,749,433,316,8103,4504,3599,7899,4394,3505,3906,2363,1543,2839,1760,1079,2548,1429,1119,1763,772,991,566,275,291,584,285,299,609,337,272,509,271,238,558,332,226,723,473,250,739,470,269,710,439,271,667,378,289,639,410,229,543,313,230,651,336,315,715,370,345,597,301,296,428,186,242,309,124,185,221,96,125,208,65,143,39.9,38.2,42.3 +50,1,13,Alabama,Butler County,1,20947,9838,11109,1372,714,658,2504,1321,1183,1180,616,564,1693,817,876,16485,7504,8981,15891,7187,8704,7465,3521,3944,4904,2243,2661,5805,2743,3062,3489,1384,2105,1372,714,658,1351,726,625,1465,750,715,1391,744,647,1170,534,636,1283,578,705,1244,574,670,1162,541,621,1215,550,665,1428,638,790,1552,763,789,1531,714,817,1294,628,666,1004,492,512,825,347,478,660,253,407,488,155,333,512,137,375,40.1,37.7,41.9 +50,1,13,Alabama,Butler County,2,20940,9834,11106,1372,714,658,2504,1321,1183,1180,616,564,1692,816,876,16478,7500,8978,15884,7183,8701,7463,3519,3944,4903,2242,2661,5801,2741,3060,3488,1384,2104,1372,714,658,1351,726,625,1465,750,715,1391,744,647,1169,533,636,1282,577,705,1244,574,670,1162,541,621,1215,550,665,1427,637,790,1550,763,787,1530,713,817,1294,628,666,1003,492,511,825,347,478,660,253,407,488,155,333,512,137,375,40.1,37.7,41.9 +50,1,13,Alabama,Butler County,3,20933,9838,11095,1381,712,669,2494,1316,1178,1174,614,560,1704,828,876,16472,7510,8962,15884,7196,8688,7475,3536,3939,4901,2247,2654,5782,2730,3052,3497,1391,2106,1381,712,669,1339,720,619,1459,749,710,1394,744,650,1180,545,635,1271,573,698,1247,575,672,1167,548,619,1216,551,665,1414,636,778,1543,755,788,1531,712,819,1294,627,667,1018,497,521,818,345,473,659,256,403,489,156,333,513,137,376,40.1,37.7,41.9 +50,1,13,Alabama,Butler County,4,20867,9810,11057,1364,708,656,2469,1313,1156,1160,607,553,1699,838,861,16465,7489,8976,15874,7182,8692,7485,3546,3939,4895,2247,2648,5773,2695,3078,3507,1402,2105,1364,708,656,1315,712,603,1423,747,676,1386,727,659,1204,572,632,1248,551,697,1273,576,697,1172,566,606,1202,554,648,1359,617,742,1525,716,809,1556,722,834,1333,640,693,1055,517,538,786,329,457,663,262,401,493,158,335,510,136,374,40.2,37.7,42.3 +50,1,13,Alabama,Butler County,5,20672,9682,10990,1297,675,622,2483,1301,1182,1115,577,538,1692,820,872,16348,7412,8936,15777,7129,8648,7431,3498,3933,4901,2250,2651,5629,2625,3004,3555,1434,2121,1297,675,622,1344,717,627,1416,733,683,1273,660,613,1257,588,669,1242,556,686,1297,596,701,1162,553,609,1200,545,655,1248,564,684,1458,675,783,1570,732,838,1353,654,699,1098,536,562,807,341,466,655,264,391,502,166,336,493,127,366,40.2,37.9,42.3 +50,1,13,Alabama,Butler County,6,20359,9480,10879,1228,630,598,2388,1261,1127,1120,575,545,1688,834,854,16190,7301,8889,15623,7014,8609,7308,3435,3873,4792,2177,2615,5518,2533,2985,3625,1470,2155,1228,630,598,1317,702,615,1363,710,653,1269,657,612,1247,601,646,1175,517,658,1265,583,682,1180,528,652,1172,549,623,1146,509,637,1447,642,805,1538,742,796,1387,640,747,1143,560,583,792,337,455,664,272,392,508,168,340,518,133,385,40.7,38.1,42.8 +50,1,13,Alabama,Butler County,7,20332,9446,10886,1228,629,599,2364,1253,1111,1111,577,534,1661,821,840,16154,7262,8892,15629,6987,8642,7289,3396,3893,4820,2156,2664,5465,2496,2969,3683,1514,2169,1228,629,599,1334,698,636,1333,713,620,1253,634,619,1216,606,610,1183,516,667,1263,569,694,1210,536,674,1164,535,629,1109,491,618,1428,623,805,1515,745,770,1413,637,776,1155,567,588,825,372,453,693,278,415,483,165,318,527,132,395,40.6,38.3,42.7 +50,1,13,Alabama,Butler County,8,20168,9402,10766,1197,621,576,2325,1238,1087,1095,551,544,1646,816,830,16095,7263,8832,15551,6992,8559,7248,3399,3849,4769,2164,2605,5394,2466,2928,3742,1546,2196,1197,621,576,1313,686,627,1274,684,590,1280,645,635,1199,590,609,1175,541,634,1207,555,652,1254,557,697,1133,511,622,1137,507,630,1343,584,759,1461,712,749,1453,663,790,1168,562,606,869,404,465,693,276,417,479,167,312,533,137,396,40.8,38.4,43 +50,1,13,Alabama,Butler County,9,20040,9328,10712,1161,591,570,2338,1264,1074,1073,549,524,1612,803,809,16031,7205,8826,15468,6924,8544,7142,3335,3807,4711,2122,2589,5321,2428,2893,3824,1571,2253,1161,591,570,1340,712,628,1252,691,561,1235,628,607,1196,585,611,1215,573,642,1162,519,643,1239,545,694,1095,485,610,1181,540,641,1265,555,710,1428,678,750,1447,655,792,1188,561,627,914,435,479,670,263,407,501,177,324,551,135,416,41,38.2,43.3 +50,1,13,Alabama,Butler County,10,19911,9302,10609,1174,605,569,2316,1231,1085,1035,556,479,1543,781,762,15927,7190,8737,15386,6910,8476,7076,3356,3720,4740,2158,2582,5204,2352,2852,3899,1619,2280,1174,605,569,1263,666,597,1295,704,591,1233,647,586,1103,551,552,1238,597,641,1158,510,648,1242,557,685,1102,494,608,1183,530,653,1178,531,647,1386,629,757,1457,662,795,1212,574,638,947,449,498,697,282,415,480,180,300,563,134,429,41.1,38.2,43.4 +50,1,13,Alabama,Butler County,11,19675,9171,10504,1121,561,560,2290,1228,1062,986,546,440,1517,772,745,15777,7105,8672,15278,6836,8442,6914,3292,3622,4660,2118,2542,5116,2323,2793,3985,1623,2362,1121,561,560,1242,669,573,1297,703,594,1172,626,546,1082,548,534,1199,596,603,1086,457,629,1240,573,667,1135,492,643,1179,541,638,1122,498,624,1372,607,765,1443,677,766,1247,562,685,975,463,512,696,275,421,495,192,303,572,131,441,41.7,38.5,44.2 +50,1,13,Alabama,Butler County,12,19501,9076,10425,1095,548,547,2219,1170,1049,978,529,449,1515,772,743,15701,7095,8606,15209,6829,8380,6833,3289,3544,4587,2114,2473,5046,2302,2744,4061,1641,2420,1095,548,547,1193,625,568,1273,671,602,1149,625,524,1097,550,547,1139,586,553,1091,473,618,1231,576,655,1126,479,647,1172,539,633,1092,482,610,1353,588,765,1429,693,736,1274,553,721,988,462,526,705,308,397,533,190,343,561,128,433,42.1,38.9,44.6 +50,1,13,Alabama,Butler County,13,19525,9091,10434,1097,547,550,2223,1172,1051,981,541,440,1511,773,738,15707,7104,8603,15224,6831,8393,6833,3308,3525,4596,2129,2467,4962,2236,2726,4155,1693,2462,1097,547,550,1194,631,563,1284,676,608,1132,627,505,1105,552,553,1128,567,561,1089,492,597,1191,555,636,1188,515,673,1130,500,630,1128,506,622,1298,555,743,1406,675,731,1296,570,726,991,457,534,742,335,407,548,194,354,578,137,441,42.2,39.1,44.8 +50,1,13,Alabama,Butler County,14,19504,9084,10420,1097,547,550,2217,1169,1048,988,547,441,1506,774,732,15685,7097,8588,15202,6821,8381,6828,3312,3516,4592,2129,2463,4933,2212,2721,4171,1706,2465,1097,547,550,1188,629,559,1287,678,609,1131,630,501,1105,553,552,1125,561,564,1084,496,588,1178,548,630,1205,524,681,1118,487,631,1139,511,628,1281,544,737,1395,670,725,1301,575,726,990,455,535,750,343,407,551,195,356,579,138,441,42.2,39.2,44.8 +50,1,15,Alabama,Calhoun County,1,118572,57176,61396,7204,3705,3499,13799,7080,6719,6123,3191,2932,12947,6363,6584,94602,44855,49747,91446,43200,48246,47043,23206,23837,29414,14389,15025,32095,15488,16607,16990,6960,10030,7204,3705,3499,7521,3881,3640,7719,3936,3783,8607,4343,4264,9022,4474,4548,7601,3711,3890,7186,3517,3669,7232,3524,3708,7395,3637,3758,8291,4086,4205,8695,4172,4523,8024,3858,4166,7085,3372,3713,5337,2470,2867,4100,1849,2251,3374,1336,2038,2375,838,1537,1804,467,1337,38.2,36.5,39.6 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-01.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-01.csv deleted file mode 100644 index bb5b4bc593..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-01.csv +++ /dev/null @@ -1,15 +0,0 @@ -SUMLEV,STATE,STNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM -040,01,Alabama,1,4779736,2320188,2459548,304957,155265,149692,564204,288212,275992,263298,135172,128126,479175,240044,239131,3781800,1810745,1971055,3647277,1741539,1905738,1907216,946596,960620,1228423,603925,624498,1281887,619064,662823,657792,278506,379286,304957,155265,149692,308229,157340,150889,319655,163417,156238,343471,175151,168320,335322,167520,167802,311034,153716,157318,297888,146424,151464,308430,151078,157352,311071,152707,158364,346369,169103,177266,347485,168725,178760,311906,149633,162273,276127,131603,144524,209637,97893,111744,160864,72143,88721,122836,51927,70909,88771,33684,55087,75684,22859,52825,37.9,36.4,39.1 -040,01,Alabama,2,4780118,2320472,2459646,304960,155267,149693,564202,288211,275991,263299,135173,128126,479198,240063,239135,3782180,1811027,1971153,3647657,1741821,1905836,1907380,946755,960625,1228563,604064,624499,1281986,619137,662849,657910,278557,379353,304960,155267,149693,308229,157341,150888,319653,163415,156238,343475,175155,168320,335342,167536,167806,311079,153759,157320,297925,146461,151464,308460,151110,157350,311099,152734,158365,346401,169130,177271,347514,168751,178763,311931,149647,162284,276140,131609,144531,209654,97906,111748,160883,72148,88735,122865,51945,70920,88793,33694,55099,75715,22864,52851,37.9,36.4,39.1 -040,01,Alabama,3,4785514,2323013,2462501,304246,154999,149247,564040,287991,276049,262153,134541,127612,479777,240431,239346,3789049,1814382,1974667,3655075,1745482,1909593,1907344,946593,960751,1228758,604021,624737,1285698,620947,664751,660842,280083,380759,304246,154999,149247,307255,156780,150475,320129,163611,156518,340824,173963,166861,337762,168609,169153,311137,153693,157444,299429,147257,152172,306600,150129,156471,311592,152942,158650,345435,168666,176769,347915,168893,179022,314046,150693,163353,278302,132695,145607,210709,98338,112371,161559,72545,89014,123132,52170,70962,89198,33920,55278,76244,23110,53134,37.9,36.5,39.2 -040,01,Alabama,4,4799642,2328518,2471124,302855,154603,148252,562726,286866,275860,258372,132329,126043,481780,241829,239951,3807102,1822015,1985087,3675689,1754720,1920969,1901950,942838,959112,1225368,601340,624028,1296493,625435,671058,672048,286116,385932,302855,154603,148252,304701,155290,149411,321595,164236,157359,329897,168659,161238,346685,172839,173846,310132,152875,157257,304308,149512,154796,296423,144680,151743,314505,154273,160232,337163,164603,172560,349056,169112,179944,320529,153782,166747,289745,137938,151807,214752,100174,114578,164588,74088,90500,124818,53320,71498,90035,34519,55516,77855,24015,53840,38.1,36.6,39.4 -040,01,Alabama,5,4816632,2336196,2480436,299329,152671,146658,561280,286118,275162,256360,131013,125347,485538,243925,241613,3827956,1831810,1996146,3699663,1766394,1933269,1903189,942950,960239,1225621,600926,624695,1290419,622219,668200,698085,299324,398761,299329,152671,146658,305763,155996,149767,319847,163036,156811,323876,165513,158363,353692,176511,177181,309973,152680,157293,306770,150791,155979,292568,142506,150062,316310,154949,161361,327846,160161,167685,347223,168210,179013,327705,157264,170441,287645,136584,151061,231438,108242,123196,169809,76718,93091,126478,54228,72250,90345,35082,55263,80015,25054,54961,38.2,36.8,39.6 -040,01,Alabama,6,4831586,2343135,2488451,294814,150204,144610,559719,285291,274428,255739,130363,125376,486928,245068,241860,3848470,1842094,2006376,3721314,1777277,1944037,1905816,944335,961481,1227430,601653,625777,1287237,620468,666769,719719,310088,409631,294814,150204,144610,307034,156583,150451,316966,161457,155509,321114,163428,157686,357272,179254,178018,311891,153777,158114,308111,151465,156646,291638,142081,149557,315790,154330,161460,319141,155988,163153,345889,167742,178147,332787,159603,173184,289420,137135,152285,240016,112335,127681,178027,80679,97348,129801,55711,74090,90320,35582,54738,81555,25781,55774,38.4,36.9,39.8 -040,01,Alabama,7,4843737,2348012,2495725,293680,149691,143989,554676,282594,272082,257861,131410,126451,480897,242303,238594,3865452,1849536,2015916,3737520,1784317,1953203,1902377,942147,960230,1229245,601860,627385,1285386,619473,665913,741992,320681,421311,293680,149691,143989,306366,156146,150220,313936,159874,154062,318455,161894,156561,354677,178393,176284,316908,156602,160306,307944,151118,156826,292715,142233,150482,311678,151907,159771,311791,152410,159381,344722,167247,177475,334944,160737,174207,293929,139079,154850,250180,116940,133240,184037,83520,100517,133191,57281,75910,91013,36239,54774,83571,26701,56870,38.6,37.1,40.0 -040,01,Alabama,8,4854803,2352806,2501997,294097,149850,144247,550118,280222,269896,258944,131919,127025,471910,238071,233839,3880252,1856270,2023982,3751644,1790815,1960829,1896739,939461,957278,1230689,602538,628151,1286744,619789,666955,762301,330417,431884,294097,149850,144247,305327,155452,149875,309595,157837,151758,319636,162441,157195,346414,174482,171932,324598,160684,163914,305572,149693,155879,296063,143982,152081,304456,148179,156277,309094,150944,158150,340084,164975,175109,337514,162110,175404,300052,141760,158292,260381,121651,138730,188757,85706,103051,135588,58428,77160,92153,36944,55209,85422,27688,57734,38.7,37.2,40.1 -040,01,Alabama,9,4866824,2357211,2509613,294616,149718,144898,549279,280165,269114,256566,130443,126123,462098,233623,228475,3896504,1863024,2033480,3766363,1796885,1969478,1888352,934897,953455,1231213,602120,629093,1289047,620320,668727,784005,340822,443183,294616,149718,144898,304157,155074,149083,306647,156380,150267,320894,162975,157919,336245,169802,166443,333206,165162,168044,303693,148282,155411,300474,146061,154413,293840,142615,151225,311855,152135,159720,332135,161099,171036,338598,162437,176161,306459,144649,161810,271317,126693,144624,192746,87545,105201,138612,60011,78601,93928,37953,55975,87402,28620,58782,38.9,37.4,40.3 -040,01,Alabama,10,4877989,2360503,2517486,294572,149934,144638,548343,279634,268709,253662,128974,124688,455547,229803,225744,3912082,1868353,2043729,3781412,1801961,1979451,1880998,929924,951074,1233167,602419,630748,1287432,618834,668598,805266,350905,454361,294572,149934,144638,301569,153598,147971,308152,157308,150844,318535,161586,156949,329296,165919,163377,338904,167987,170917,302483,147605,154878,302384,146877,155507,289396,139950,149446,313576,152553,161023,322933,156674,166259,337496,161680,175816,313427,147927,165500,268940,125119,143821,208548,94974,113574,143258,62329,80929,95215,38661,56554,89305,29822,59483,39.0,37.5,40.5 -040,01,Alabama,11,4891628,2365445,2526183,295520,150680,144840,547155,278792,268363,249924,127132,122792,453230,227865,225365,3925817,1873160,2052657,3799029,1808841,1990188,1878145,927885,950260,1236516,604385,632131,1282303,615686,666617,826980,360905,466075,295520,150680,144840,298235,152126,146109,310445,158163,152282,316229,160200,156029,325400,163300,162100,340605,169649,170956,303982,148218,155764,304008,147547,156461,287921,138971,148950,312737,151623,161114,314503,152543,161960,336687,161486,175201,318376,150034,168342,270942,125640,145302,216619,98933,117686,150538,65692,84846,98221,39988,58233,90660,30652,60008,39.2,37.7,40.6 -040,01,Alabama,12,4907965,2371832,2536133,294274,150090,144184,547155,278658,268497,247298,125888,121410,450764,226186,224578,3943001,1879945,2063056,3819238,1817196,2002042,1878574,927921,950653,1242294,607396,634898,1274660,611797,662863,851520,371817,479703,294274,150090,144184,298242,152066,146176,310695,158141,152554,313884,159089,154795,322396,161436,160960,338597,168833,169764,309922,151683,158239,304435,147448,156987,289340,139432,149908,309098,149534,159564,307754,149277,158477,336455,161482,174973,321353,151504,169849,275993,127679,148314,226442,103250,123192,155951,68256,87695,101107,41242,59865,92027,31390,60637,39.4,37.9,40.8 -040,01,Alabama,13,4920706,2376964,2543742,292574,149402,143172,547887,278824,269063,247540,126048,121492,448728,225095,223633,3956491,1885595,2070896,3832705,1822690,2010015,1879966,928543,951423,1245654,608997,636657,1267826,608376,659450,870497,380222,490275,292574,149402,143172,299463,152589,146874,310380,157832,152548,311151,157759,153392,323161,161787,161374,333849,166704,167145,316411,155016,161395,302999,146454,156545,292395,140823,151572,304054,146836,157218,305776,148290,157486,333724,160189,173535,324272,153061,171211,280564,129538,151026,234052,106592,127460,159771,69974,89797,102934,42117,60817,93176,32001,61175,39.5,38.0,40.9 -040,01,Alabama,14,4921532,2376966,2544566,291920,149103,142817,547490,278573,268917,247873,126240,121633,447642,224490,223152,3958027,1886012,2072015,3834249,1823050,2011199,1880299,928684,951615,1246908,609613,637295,1265455,607127,658328,874244,381820,492424,291920,149103,142817,299404,152530,146874,310210,157702,152508,310127,157274,152853,323264,161797,161467,331899,165836,166063,318647,156113,162534,302872,146356,156516,293490,141308,152182,302481,146015,156466,305693,148190,157503,332661,159697,172964,324620,153225,171395,281928,130086,151842,235789,107286,128503,160349,70219,90130,103319,42302,61017,92859,31927,60932,39.5,38.0,41.0 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-19.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-19.csv new file mode 100644 index 0000000000..1a9374ba93 --- /dev/null +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-19.csv @@ -0,0 +1,15 @@ +SUMLEV,STATE,STNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM +040,19,Iowa,1,3046355,1508319,1538036,202123,103401,98722,361532,185323,176209,164338,84666,79672,305867,156713,149154,2402200,1178244,1223956,2318362,1134929,1183433,1177318,600626,576692,747131,379920,367211,812476,405019,407457,452888,193277,259611,202123,103401,98722,200646,102669,97977,200904,103327,97577,216837,111239,105598,213350,109467,103883,197843,101509,96334,184740,94027,90713,177148,89574,87574,187400,94810,92590,216482,107876,108606,223244,111584,111660,204393,102309,102084,168357,83250,85107,124365,59642,64723,100291,46140,54151,83387,36112,47275,70187,28032,42155,74658,23351,51307,38.1,36.6,39.5 +040,19,Iowa,2,3046877,1508833,1538044,202123,103401,98722,361532,185323,176209,164339,84666,79673,305986,156833,149153,2402723,1178759,1223964,2318883,1135443,1183440,1177711,601015,576696,747403,380188,367215,812587,405127,407460,452907,193295,259612,202123,103401,98722,200646,102669,97977,200903,103326,97577,216859,111261,105598,213449,109566,103883,197939,101605,96334,184801,94087,90714,177203,89627,87576,187460,94869,92591,216525,107918,108607,223280,111619,111661,204414,102330,102084,168368,83260,85108,124377,59654,64723,100294,46143,54151,83390,36114,47276,70188,28033,42155,74658,23351,51307,38.1,36.6,39.5 +040,19,Iowa,3,3050819,1510958,1539861,202064,103294,98770,362117,185555,176562,164070,84582,79488,306723,157249,149474,2406200,1180705,1225495,2322568,1137527,1185041,1178638,601560,577078,747809,380402,367407,814378,406046,408332,453658,193830,259828,202064,103294,98770,200870,102781,98089,201211,103447,97764,216857,111299,105558,213972,109859,104113,197878,101564,96314,186140,94759,91381,176452,89310,87142,187339,94769,92570,215027,107204,107823,223412,111674,111738,205519,102838,102681,170420,84330,86090,124741,59873,64868,100454,46277,54177,83233,36066,47167,70090,28041,42049,75140,23573,51567,38.1,36.6,39.5 +040,19,Iowa,4,3066772,1520207,1546565,199707,102100,97607,363804,186166,177638,162858,83806,79052,312847,160782,152065,2422847,1190460,1232387,2340403,1148135,1192268,1185298,605648,579650,749785,381771,368014,821051,409478,411573,456720,196104,260616,199707,102100,97607,201942,103303,98639,202054,103574,98480,216627,111277,105350,218886,112600,106286,196882,101165,95717,192026,97857,94169,173167,87907,85260,187710,94842,92868,207039,103519,103520,224510,112081,112429,208925,104446,104479,180577,89432,91145,126312,60789,65523,101403,46869,54534,83266,36285,46981,69498,27925,41573,76241,24236,52005,38.0,36.6,39.5 +040,19,Iowa,5,3076844,1526008,1550836,197478,100839,96639,365307,187001,178306,162107,83338,78769,317105,163268,153837,2433255,1196650,1236605,2351952,1154830,1197122,1187695,606966,580729,748994,381080,367914,816358,407129,409229,469495,203353,266142,197478,100839,96639,203863,104377,99486,201955,103344,98611,213909,110128,103781,224792,115758,109034,193332,99171,94161,195882,99755,96127,173549,88043,85506,186231,94111,92120,199468,100116,99352,222990,111054,111936,211623,105587,106036,182277,90372,91905,136586,66036,70550,103333,47935,55398,83339,36690,46649,68679,27645,41034,77558,25047,52511,38.0,36.6,39.5 +040,19,Iowa,6,3093935,1535373,1558562,196162,100217,95945,368093,188272,179821,162301,83281,79020,322453,166144,156309,2448592,1205496,1243096,2367379,1163603,1203776,1196097,611410,584687,751716,382585,369131,814178,406195,407983,479032,208679,270353,196162,100217,95945,205930,105343,100587,202536,103529,99007,213823,109749,104074,230558,119076,111482,191388,98363,93025,198913,101335,97578,177750,90242,87508,183665,92645,91020,192721,96900,95821,220542,109752,110790,214390,106761,107629,186525,92782,93743,142444,68975,73469,107079,49848,57231,84105,37134,46971,67345,27225,40120,78059,25497,52562,38.0,36.6,39.4 +040,19,Iowa,7,3110643,1544749,1565894,196595,100400,96195,368516,188466,180050,163845,83893,79952,325551,168045,157506,2463493,1213976,1249517,2381687,1171990,1209697,1202939,615389,587550,755023,384678,370345,811369,404696,406673,489744,214571,275173,196595,100400,96195,206640,105683,100957,203356,104010,99346,213974,109691,104283,233942,121020,112922,191693,98607,93086,200338,102184,98154,182926,92994,89932,180066,90893,89173,187812,94587,93225,217344,108075,109269,215381,107125,108256,190832,94909,95923,149474,72556,76918,109661,51213,58448,85533,37960,47573,66147,26860,39287,78929,25982,52947,37.9,36.6,39.3 +040,19,Iowa,8,3122541,1552076,1570465,196789,100783,96006,369170,188729,180441,164191,83917,80274,325039,167771,157268,2474230,1220421,1253809,2392391,1178647,1213744,1206368,617424,588944,757880,386565,371315,809025,403450,405575,500447,220861,279586,196789,100783,96006,206666,105688,100978,203246,103870,99376,214594,109880,104714,233894,120979,112915,192186,99042,93144,200144,102187,97957,188416,95819,92597,177134,89517,87617,186019,93938,92081,210987,104923,106064,216507,107576,108931,195512,97013,98499,157769,76965,80804,111501,52342,59159,86091,38410,47681,65814,26989,38825,79272,26155,53117,37.9,36.6,39.3 +040,19,Iowa,9,3133210,1558017,1575193,198310,101396,96914,369035,188912,180123,163880,83875,80005,322681,166312,156369,2484835,1226218,1258617,2401985,1183834,1218151,1208238,618411,589827,761876,388823,373053,804851,401324,403527,512577,227375,285202,198310,101396,96914,204722,104926,99796,204512,104585,99927,214473,109666,104807,231889,119922,111967,195266,100589,94677,199105,101777,97328,194103,98676,95427,173402,87781,85621,186151,93988,92163,202814,101102,101712,217467,107907,109560,198419,98327,100092,167054,81380,85674,112951,53274,59677,87003,38929,48074,66000,27253,38747,79569,26539,53030,38.0,36.8,39.3 +040,19,Iowa,10,3143734,1563872,1579862,198635,101352,97283,369085,189048,180037,164255,84136,80119,319282,164643,154639,2494898,1231943,1262955,2411759,1189336,1222423,1212603,620873,591730,769814,392893,376921,797628,397611,400017,525035,234189,290846,198635,101352,97283,202838,103876,98962,206995,105971,101024,213902,109483,104419,228887,118497,110390,200970,103371,97599,195877,100040,95837,198974,101217,97757,173993,88265,85728,184755,93282,91473,195602,97910,97692,216194,106909,109285,201077,99510,101567,168722,82329,86393,122409,57872,64537,88786,39886,48900,65916,27494,38422,79202,26608,52594,38.0,36.9,39.3 +040,19,Iowa,11,3149900,1567300,1582600,197771,100837,96934,368452,188520,179932,163579,83838,79741,316611,163008,153603,2501703,1235909,1265794,2420098,1194105,1225993,1216406,623068,593338,777298,397347,379951,788211,392738,395473,537978,241012,296966,197771,100837,96934,200860,102914,97946,208674,106731,101943,212460,108815,103645,226648,116906,109742,204413,105444,98969,193199,98603,94596,202080,102992,99088,177606,90308,87298,182024,91950,90074,188790,94552,94238,213884,105732,108152,203513,100504,103009,172543,84353,88190,127708,60483,67225,92197,41564,50633,66725,27988,38737,78805,26624,52181,38.2,37.1,39.4 +040,19,Iowa,12,3159596,1572960,1586636,195700,99966,95734,367973,188163,179810,164332,84248,80084,315174,162041,153133,2513397,1242475,1270922,2431591,1200583,1231008,1224108,627646,596462,785928,402476,383452,778277,387786,390491,552212,248280,303932,195700,99966,95734,200405,102369,98036,208894,106913,101981,212919,109172,103747,225261,115998,109263,207081,107337,99744,192723,98360,94363,203047,103460,99587,183077,93319,89758,178327,90082,88245,184234,92514,91720,210886,104175,106711,204830,101015,103815,176802,86354,90448,134534,63841,70693,94446,42757,51689,67976,28631,39345,78454,26697,51757,38.4,37.3,39.6 +040,19,Iowa,13,3164115,1575790,1588325,193506,98748,94758,367566,188082,179484,165430,84743,80687,314491,161699,152792,2520005,1246423,1273582,2437613,1204217,1233396,1226480,628897,597583,788302,403817,384485,770983,384328,386655,563837,254373,309464,193506,98748,94758,200655,102662,97993,208654,106782,101872,212654,108977,103677,225524,116103,109421,206159,106969,99190,192933,98494,94439,202188,103022,99166,187022,95332,91690,175979,88914,87065,182523,91936,90587,206267,101882,104385,206214,101596,104618,180067,87840,92227,140625,66957,73668,96003,43599,52404,68504,29000,39504,78638,26977,51661,38.5,37.4,39.7 +040,19,Iowa,14,3163561,1575695,1587866,192582,98222,94360,367027,187871,179156,165950,84976,80974,313856,161363,152493,2520542,1246915,1273627,2438002,1204626,1233376,1227216,629294,597922,789385,404428,384957,768625,383168,385457,566136,255667,310469,192582,98222,94360,200418,102604,97814,208584,106740,101844,212414,108845,103569,225417,116021,109396,205697,106778,98919,193099,98561,94538,202157,103047,99110,188432,96042,92390,175188,88530,86658,182403,91940,90463,204652,101093,103559,206382,101605,104777,181101,88314,92787,142248,67770,74478,96126,43692,52434,68566,29061,39505,78095,26830,51265,38.6,37.4,39.7 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-20.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-20.csv new file mode 100644 index 0000000000..181cd5636f --- /dev/null +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-20.csv @@ -0,0 +1,15 @@ +SUMLEV,STATE,STNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM +040,20,Kansas,1,2853118,1415408,1437710,205492,104888,100604,361812,185385,176427,159635,82356,77279,288159,148648,139511,2206600,1084540,1122060,2126179,1042779,1083400,1132668,578084,554584,724393,367272,357121,737511,364927,372584,376116,161932,214184,205492,104888,100604,202447,103421,99026,198884,102156,96728,203821,105362,98459,204454,105450,99004,197783,101077,96706,179937,91335,88602,172388,87100,85288,174285,87760,86525,201830,100199,101631,204434,101040,103394,182512,90190,92322,148735,73498,75237,107755,51267,56488,82634,38113,44521,69466,30202,39264,56943,23029,33914,59318,19321,39997,36.0,34.7,37.4 +040,20,Kansas,2,2853120,1415412,1437708,205491,104888,100603,361812,185387,176425,159635,82355,77280,288160,148649,139511,2206602,1084542,1122060,2126182,1042782,1083400,1132669,578085,554584,724393,367272,357121,737510,364929,372581,376119,161932,214187,205491,104888,100603,202447,103422,99025,198884,102156,96728,203821,105362,98459,204455,105451,99004,197783,101078,96705,179935,91334,88601,172388,87099,85289,174287,87761,86526,201830,100199,101631,204433,101041,103392,182513,90192,92321,148734,73497,75237,107755,51267,56488,82635,38113,44522,69467,30202,39265,56943,23029,33914,59319,19321,39998,36.0,34.7,37.4 +040,20,Kansas,3,2858266,1418145,1440121,205526,104967,100559,362677,185778,176899,159324,82150,77174,288878,149129,139749,2211076,1086931,1124145,2130739,1045250,1085489,1134527,579087,555440,725614,367900,357714,739180,365723,373457,377067,162498,214569,205526,104967,100559,202625,103451,99174,199341,102419,96922,204126,105554,98572,204787,105633,99154,198152,101232,96920,181258,92045,89213,171883,86856,85027,174321,87767,86554,200323,99551,100772,204653,101055,103598,183629,90719,92910,150575,74398,76177,108288,51609,56679,82863,38180,44683,69249,30155,39094,56994,23050,33944,59673,19504,40169,36.0,34.6,37.4 +040,20,Kansas,4,2869677,1424226,1445451,204522,104496,100026,364153,186608,177545,158032,81259,76773,291204,150811,140393,2222688,1092992,1129696,2142970,1051863,1091107,1136321,579726,556595,726204,367718,358486,744287,368097,376190,381275,165237,216038,204522,104496,100026,202968,103720,99248,200304,102950,97354,203269,105162,98107,206848,106846,100002,196784,100129,96655,185726,94326,91400,169036,85375,83661,174658,87888,86770,192146,95719,96427,205647,101340,104307,187300,92485,94815,159194,78553,80641,110543,53044,57499,84472,38821,45651,68827,30243,38584,56910,23088,33822,60523,20041,40482,36.0,34.7,37.4 +040,20,Kansas,5,2886024,1434229,1451795,203313,103939,99374,365662,187273,178389,157620,80800,76820,297167,154972,142195,2238418,1102791,1135627,2159429,1062217,1097212,1144383,585453,558930,729141,369899,359242,739117,365405,373712,394004,171941,222063,203313,103939,99374,204562,104447,100115,200645,103044,97601,201011,103913,97098,214231,111641,102590,195196,99529,95667,190123,96817,93306,169306,85635,83671,174516,87918,86598,184041,91896,92145,203733,100312,103421,191263,94387,96876,160080,78810,81270,120295,57958,62337,86710,39946,46764,68743,30404,38339,56509,23050,33459,61747,20583,41164,36.0,34.7,37.4 +040,20,Kansas,6,2894306,1439885,1454421,201000,102874,98126,365916,187356,178560,157615,80806,76809,300254,157096,143158,2248001,1108831,1139170,2169775,1068849,1100926,1148293,588249,560044,730329,370926,359403,734938,363233,371705,404254,177594,226660,201000,102874,98126,204940,104753,100187,200881,103182,97699,199978,103043,96935,217986,114280,103706,192422,98592,93830,193281,98269,95012,171603,86941,84662,173023,87124,85899,176191,88302,87889,201363,99180,102183,193722,95322,98400,163662,80429,83233,125730,60838,64892,90755,42045,48710,69362,30726,38636,55876,22883,32993,62531,21102,41429,36.0,34.7,37.4 +040,20,Kansas,7,2901861,1445042,1456819,199343,102084,97259,364300,186341,177959,159073,81753,77320,301813,158219,143594,2257706,1115057,1142649,2179145,1074864,1104281,1151504,591263,560241,731318,372355,358963,731327,361155,370172,414687,183135,231552,199343,102084,97259,204201,104395,99806,200799,103010,97789,199837,103017,96820,220349,115891,104458,191347,98786,92561,194977,99073,95904,174961,88784,86177,170033,85712,84321,170409,85401,85008,198359,97881,100478,194510,95642,98868,168049,82231,85818,131514,63748,67766,94094,43622,50472,70399,31393,39006,55262,22682,32580,63418,21690,41728,36.1,34.8,37.5 +040,20,Kansas,8,2910717,1450195,1460522,197292,100791,96501,363764,186079,177685,160079,82384,77695,302411,158560,143851,2269013,1121780,1147233,2189582,1080941,1108641,1155873,594407,561466,733380,373972,359408,728819,359843,368976,424972,188566,236406,197292,100791,96501,203926,104304,99622,199835,102284,97551,200596,103688,96908,221897,116747,105150,191723,99455,92268,195073,98989,96084,179613,91205,88408,166971,84323,82648,168746,84749,83997,192457,95229,97228,195058,95517,99541,172558,84348,88210,138148,67091,71057,96817,45053,51764,71141,31755,39386,54658,22651,32007,64208,22016,42192,36.2,34.9,37.5 +040,20,Kansas,9,2912977,1451334,1461643,195267,99689,95578,362721,185290,177431,159602,82228,77374,299979,157328,142651,2275882,1125695,1150187,2195387,1084127,1111260,1154885,594038,560847,734448,374587,359861,724518,357653,366865,436442,194559,241883,195267,99689,95578,202234,103356,98878,199631,102039,97592,200930,104018,96912,219507,115433,104074,192175,99761,92414,194109,98416,95693,184016,93397,90619,164148,83013,81135,168847,84809,84038,184280,91362,92918,195414,95502,99912,175977,85980,89997,146003,70841,75162,98752,46250,52502,72351,32244,40107,54576,22777,31799,64760,22447,42313,36.4,35.2,37.6 +040,20,Kansas,10,2910892,1450416,1460476,192208,98156,94052,360646,184481,176165,159558,82089,77469,296081,154944,141137,2279016,1127321,1151695,2198480,1085690,1112790,1152216,592570,559646,736536,375937,360599,717733,354394,363339,448130,200415,247715,192208,98156,94052,200100,102378,97722,200505,102503,98002,200395,103825,96570,215285,112808,102477,194199,101066,93133,190805,96657,94148,187230,95199,92031,164302,83015,81287,168309,84545,83764,176523,87698,88825,193480,94561,98919,179421,87590,91831,146735,71032,75703,107546,50660,56886,74253,33165,41088,54430,22844,31586,65166,22714,42452,36.6,35.4,37.8 +040,20,Kansas,11,2912748,1451427,1461321,189101,96904,92197,358812,183426,175386,158680,81594,77086,295947,154641,141306,2285157,1130235,1154922,2206155,1089503,1116652,1156137,594481,561656,741271,378673,362598,708389,349624,358765,460548,206565,253983,189101,96904,92197,197854,101244,96610,200719,102609,98110,200993,104045,96948,213873,111763,102110,195824,102201,93623,188747,95931,92816,190303,96306,93997,166397,84235,82162,166792,83599,83193,168809,84299,84510,191456,93471,97985,181332,88255,93077,150089,72560,77529,112307,53067,59240,77784,34853,42931,54935,23066,31869,65433,23019,42414,36.8,35.6,38.0 +040,20,Kansas,12,2912635,1450555,1462080,186044,95296,90748,356906,182500,174406,158503,81420,77083,293235,152568,140667,2290249,1131994,1158255,2211182,1091339,1119843,1156000,593798,562202,743983,380103,363880,699048,345170,353878,474916,213498,261418,186044,95296,90748,196423,100368,96055,200204,102425,97779,200561,103834,96727,211456,109861,101595,195909,102117,93792,186973,95389,91584,191455,96703,94752,169646,85894,83752,164036,82264,81772,163821,81754,82067,188564,92206,96358,182627,88946,93681,154450,74294,80156,117824,55904,61920,81138,36331,44807,56002,23789,32213,65502,23180,42322,37.1,35.8,38.3 +040,20,Kansas,13,2915024,1452076,1462948,183952,94355,89597,355272,181420,173852,159041,81719,77322,292394,152363,140031,2296348,1135593,1160755,2216759,1094582,1122177,1157325,594736,562589,745774,381071,364703,692592,341959,350633,485999,219189,266810,183952,94355,89597,195078,99559,95519,200078,102278,97800,199911,103400,96511,211640,110265,101375,196014,102154,93860,185940,95113,90827,190905,96185,94720,172915,87619,85296,162274,81529,80745,162218,80992,81226,184693,90448,94245,183407,88990,94417,157543,75827,81716,122696,58267,64429,83386,37516,45870,56505,24062,32443,65869,23517,42352,37.2,36.0,38.5 +040,20,Kansas,14,2913805,1451540,1462265,183104,93942,89162,354291,180860,173431,159351,81873,77478,291742,152091,139651,2296777,1135970,1160807,2217059,1094865,1122194,1157608,594964,562644,746539,381488,365051,690462,340856,349606,488316,220430,267886,183104,93942,89162,194309,99133,95176,200006,102215,97791,199563,103190,96373,211506,110286,101220,195871,102088,93783,185657,95022,90635,190942,96158,94784,174069,88220,85849,161696,81291,80405,162031,80884,81147,183329,89836,93493,183406,88845,94561,158510,76309,82201,123948,58850,65098,83800,37752,46048,56571,24096,32475,65487,23423,42064,37.3,36.0,38.5 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-32.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-32.csv new file mode 100644 index 0000000000..4bc72761ce --- /dev/null +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/SC-EST2020-AGESEX-32.csv @@ -0,0 +1,15 @@ +SUMLEV,STATE,STNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM +040,32,Nevada,1,2700551,1363616,1336935,187478,95772,91706,329266,168513,160753,148264,76173,72091,248829,127980,120849,2109730,1061342,1048388,2035543,1023158,1012385,1130438,580514,549924,770329,395293,375036,692026,346898,345128,324359,152987,171372,187478,95772,91706,183077,93773,89304,183173,93672,89501,182600,94073,88527,177509,91148,86361,196644,100301,96343,190642,97802,92840,191652,97965,93687,191391,99225,92166,193790,99524,94266,182737,92136,90601,164575,80947,83628,150924,74291,76633,115501,56638,58863,82280,40470,41810,57503,27623,29880,38888,17239,21649,30187,11017,19170,36.3,35.8,36.9 +040,32,Nevada,2,2700683,1363717,1336966,187480,95772,91708,329272,168517,160755,148379,76264,72115,248832,127982,120850,2109810,1061402,1048408,2035552,1023164,1012388,1130553,580600,549953,770339,395297,375042,692025,346900,345125,324356,152985,171371,187480,95772,91708,183076,93772,89304,183193,93688,89505,182704,94155,88549,177510,91148,86362,196643,100300,96343,190648,97804,92844,191655,97966,93689,191393,99227,92166,193789,99523,94266,182736,92136,90600,164577,80951,83626,150923,74290,76633,115500,56637,58863,82278,40469,41809,57503,27623,29880,38888,17239,21649,30187,11017,19170,36.3,35.8,36.9 +040,32,Nevada,3,2702483,1364152,1338331,186558,95290,91268,328853,168275,160578,147944,75995,71949,248604,127858,120746,2113276,1062759,1050517,2039128,1024592,1014536,1129007,579511,549496,769163,394443,374720,694244,347985,346259,327117,154306,172811,186558,95290,91268,182664,93460,89204,182893,93600,89293,181360,93530,87830,178484,91538,86946,196019,99956,96063,191013,97939,93074,190298,97172,93126,191833,99376,92457,193495,99394,94101,183219,92409,90810,165472,81354,84118,152058,74828,77230,116420,57073,59347,83107,40842,42265,57833,27794,30039,39139,17397,21742,30618,11200,19418,36.4,35.9,37.0 +040,32,Nevada,4,2713114,1367927,1345187,183664,93802,89862,327831,167676,160155,146382,74893,71489,248116,127568,120548,2128924,1069342,1059582,2055237,1031556,1023681,1123925,575859,548066,765533,391789,373744,702127,351684,350443,339461,160515,178946,183664,93802,89862,181712,92758,88954,182225,93309,88916,176311,91054,85257,182081,93016,89065,194929,99556,95373,192627,98562,94065,184301,93648,90653,193676,100023,93653,191147,98199,92948,184889,93519,91370,168422,82654,85768,157669,77312,80357,120191,58861,61330,87220,42826,44394,59753,28723,31030,40060,18150,21910,32237,11955,20282,36.7,36.2,37.3 +040,32,Nevada,5,2744670,1383037,1361633,180305,92158,88147,329714,168531,161183,145625,74330,71295,250959,129000,121959,2162456,1085527,1076929,2089026,1048018,1041008,1130459,578551,551908,769868,393599,376269,707161,354114,353047,361038,171305,189733,180305,92158,88147,183815,93719,90096,181892,93190,88702,174954,90245,84709,185637,94707,90930,195882,100355,95527,195581,99978,95603,183289,93054,90235,195116,100212,94904,189996,97594,92402,186801,94814,91987,173401,85216,88185,156963,76490,80473,131546,64377,67169,92303,45340,46963,62375,29924,32451,41045,18913,22132,33769,12751,21018,37.0,36.5,37.6 +040,32,Nevada,6,2776956,1397895,1379061,178304,91326,86978,332523,169995,162528,145795,74364,71431,251353,128963,122390,2193322,1099471,1093851,2120334,1062210,1058124,1135360,580173,555187,774862,395499,379363,713620,356932,356688,380499,180816,199683,178304,91326,86978,186302,95042,91260,182871,93606,89265,174556,89842,84714,185942,94832,91110,198051,101412,96639,198502,101269,97233,183749,93311,90438,194560,99507,95053,188554,96784,91770,189142,95962,93180,177075,87148,89927,158849,77038,81811,138247,67581,70666,99425,48681,50744,65512,31549,33963,42141,19507,22634,35174,13498,21676,37.3,36.7,37.9 +040,32,Nevada,7,2818935,1417645,1401290,178738,91728,87010,334649,170843,163806,147217,75371,71846,250784,128483,122301,2231148,1116872,1114276,2158331,1079703,1078628,1144627,583711,560916,783988,399143,384845,723367,361848,361519,400192,190229,209963,178738,91728,87010,187905,95833,92072,184106,94296,89810,174669,89853,84816,185970,94715,91255,202982,103766,99216,201627,102624,99003,186235,94527,91708,193144,98226,94918,188332,96702,91630,192280,97465,94815,180233,89090,91143,162522,78591,83931,145089,70761,74328,105368,51264,54104,69304,33603,35701,43394,20089,23305,37037,14512,22525,37.5,36.9,38.1 +040,32,Nevada,8,2868531,1441092,1427439,180510,92701,87809,338422,172574,165848,149203,76523,72680,247739,126932,120807,2274295,1136990,1137305,2200396,1099294,1101102,1156576,588963,567613,797133,404813,392320,735505,368119,367386,420019,199430,220589,180510,92701,87809,190137,97093,93044,185784,94786,90998,175622,90448,85174,183821,93702,90119,210223,107196,103027,204584,103735,100849,191806,97489,94317,190520,96393,94127,191284,98068,93216,193398,98171,95227,183576,91266,92310,167247,80614,86633,152505,74091,78414,110494,53436,57058,73251,35479,37772,45055,21031,24024,38714,15393,23321,37.6,37.0,38.3 +040,32,Nevada,9,2919555,1465784,1453771,182443,93599,88844,343120,174954,168166,150325,77143,73182,246151,126516,119635,2319134,1158792,1160342,2243667,1120088,1123579,1170235,596029,574206,810748,411271,399477,748175,374326,373849,438593,207975,230618,182443,93599,88844,191738,97912,93826,188371,95943,92428,177551,91577,85974,181936,93181,88755,217101,110234,106867,208166,105948,102218,197782,100425,97357,187699,94664,93035,195885,99844,96041,193139,98237,94902,187410,93451,93959,171741,82794,88947,158948,76778,82170,115386,55839,59547,77186,37291,39895,46699,21728,24971,40374,16339,24035,37.8,37.1,38.4 +040,32,Nevada,10,2972097,1491237,1480860,184655,94464,90191,346009,176758,169251,151618,77843,73775,246394,126626,119768,2366312,1181620,1184692,2289815,1142172,1147643,1187714,605110,582604,827501,419886,407615,758855,379530,379325,457065,216130,240935,184655,94464,90191,191073,97839,93234,192735,98164,94571,179050,92479,86571,181163,92745,88418,223311,113460,109851,211897,108202,103695,203981,103449,100532,188312,94775,93537,198931,100985,97946,192477,97668,94809,190508,95370,95138,176939,85507,91432,158084,75764,82320,126465,61025,65440,81813,39433,42380,48853,22691,26162,41850,17217,24633,37.9,37.3,38.6 +040,32,Nevada,11,3030725,1520265,1510460,185542,94853,90689,350707,179185,171522,152740,78070,74670,248680,127775,120905,2417890,1207233,1210657,2341736,1168157,1173579,1209878,616639,593239,846878,430353,416525,769433,384881,384552,476745,225148,251597,185542,94853,90689,191780,98104,93676,197347,100640,96707,181004,93213,87791,181996,93073,88923,227470,115631,111839,217635,111677,105958,210354,106514,103840,191419,96531,94888,200707,101619,99088,193128,98043,95085,193786,96938,96848,181812,88281,93531,160303,76495,83808,132974,64062,68912,88379,42379,46000,51542,24185,27357,43547,18027,25520,38.1,37.5,38.8 +040,32,Nevada,12,3090771,1549505,1541266,185920,94997,90923,354254,181139,173115,154556,78769,75787,251775,129501,122274,2472615,1233717,1238898,2396041,1194600,1201441,1234938,629829,605109,867783,441412,426371,778801,389257,389544,497682,234430,263252,185920,94997,90923,193644,99190,94454,199786,101802,97984,183294,94369,88925,183861,94048,89813,230946,117823,113123,225156,115406,109750,216042,109403,106639,195639,98780,96859,200516,100990,99526,194516,98820,95696,198066,98946,99120,185703,90501,95202,164427,78175,86252,139466,66987,72479,93866,44689,49177,54864,25806,29058,45059,18773,26286,38.3,37.6,39.0 +040,32,Nevada,13,3128500,1567947,1560553,185025,94527,90498,355805,181871,173934,156455,79782,76673,252919,130050,122869,2508537,1251287,1257250,2431215,1211767,1219448,1248987,637045,611942,879454,447523,431931,783914,391853,392061,514928,242341,272587,185025,94527,90498,194986,99945,95041,200660,102236,98424,184271,94725,89546,185262,94797,90465,230295,117516,112779,230621,118182,112439,218868,110954,107914,199670,100871,98799,198832,99852,98980,196898,99998,96900,199213,99584,99629,188971,92419,96552,168441,80037,88404,145004,69498,75506,97444,46224,51220,57321,26991,30330,46718,19591,27127,38.5,37.8,39.2 +040,32,Nevada,14,3138259,1572640,1565619,184656,94318,90338,355767,181845,173922,157157,80142,77015,252880,130009,122871,2518201,1255959,1262242,2440679,1216335,1224344,1252918,639098,613820,883032,449448,433584,785451,392598,392853,519316,244280,275036,184656,94318,90338,195109,100031,95078,200809,102315,98494,184412,94743,89669,185474,94907,90567,229704,117247,112457,232406,119069,113337,219957,111583,108374,200965,101549,99416,198285,99491,98794,197934,100487,97447,199445,99742,99703,189787,92878,96909,169711,80635,89076,146401,70088,76313,98274,46543,51731,58016,27319,30697,46914,19695,27219,38.5,37.8,39.3 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2021-agesex-all.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2021-agesex-all.csv deleted file mode 100644 index f22bb68bde..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2021-agesex-all.csv +++ /dev/null @@ -1,40 +0,0 @@ -SUMLEV,STATE,COUNTY,STNAME,CTYNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM -50,1,1,Alabama,Autauga County,1,58805,28703,30102,3486,1812,1674,7013,3604,3409,3343,1668,1675,4578,2347,2231,46629,22457,24172,44963,21619,23344,22560,11103,11457,15461,7498,7963,15707,7675,8032,9217,4099,5118,3486,1812,1674,3657,1870,1787,4178,2144,2034,3862,1948,1914,3237,1657,1580,3895,1916,1979,3795,1830,1965,3962,1939,2023,3809,1813,1996,4046,1978,2068,3894,1945,1949,4150,2056,2094,3617,1696,1921,2926,1434,1492,2468,1079,1389,1811,762,1049,1137,494,643,875,330,545,39.2,38,40.2 -50,1,1,Alabama,Autauga County,2,58877,28734,30143,3480,1812,1668,7042,3606,3436,3332,1661,1671,4562,2342,2220,46691,22490,24201,45023,21655,23368,22589,11124,11465,15516,7532,7984,15672,7662,8010,9273,4119,5154,3480,1812,1668,3683,1877,1806,4180,2140,2040,3832,1933,1899,3241,1659,1582,3900,1928,1972,3831,1844,1987,3951,1934,2017,3834,1826,2008,3994,1954,2040,3884,1937,1947,4148,2052,2096,3646,1719,1927,2959,1442,1517,2476,1089,1387,1817,759,1058,1145,495,650,876,334,542,39.2,38,40.3 -50,1,1,Alabama,Autauga County,3,59095,28733,30362,3388,1755,1633,7062,3596,3466,3382,1679,1703,4488,2298,2190,46971,22543,24428,45263,21703,23560,22714,11114,11600,15691,7574,8117,15600,7603,7997,9484,4228,5256,3388,1755,1633,3739,1892,1847,4170,2141,2029,3809,1904,1905,3214,1636,1578,3786,1878,1908,3989,1845,2144,4018,1993,2025,3898,1858,2040,3825,1854,1971,3913,1922,1991,4078,2008,2070,3784,1819,1965,3056,1477,1579,2552,1148,1404,1826,761,1065,1154,490,664,896,352,544,39.3,38.3,40.3 -50,1,3,Alabama,Baldwin County,1,231767,112981,118786,12220,6390,5830,25530,13056,12474,12038,6053,5985,16190,8107,8083,187869,90430,97439,181979,87482,94497,78626,38760,39866,53483,26156,27327,63789,30596,33193,48517,22623,25894,12220,6390,5830,13564,6990,6574,15051,7622,7429,13855,6940,6915,11288,5664,5624,12401,6155,6246,13031,6331,6700,13919,6827,7092,14132,6843,7289,14747,7232,7515,14947,7259,7688,16916,8097,8819,17179,8008,9171,15805,7371,8434,13884,6630,7254,9274,4449,4825,5403,2471,2932,4151,1702,2449,43.7,42.6,44.8 -50,1,3,Alabama,Baldwin County,2,233140,113612,119528,12176,6348,5828,25601,13101,12500,12155,6120,6035,16232,8123,8109,189168,91031,98137,183208,88043,95165,79039,38964,40075,53759,26294,27465,64092,30731,33361,49125,22895,26230,12176,6348,5828,13609,7015,6594,15099,7659,7440,13915,6972,6943,11365,5698,5667,12377,6153,6224,13152,6381,6771,13956,6855,7101,14274,6905,7369,14692,7204,7488,15100,7326,7774,16947,8100,8847,17353,8101,9252,16036,7467,8569,14061,6716,7345,9380,4488,4892,5475,2503,2972,4173,1721,2452,43.8,42.6,44.9 -50,1,3,Alabama,Baldwin County,3,239294,116422,122872,12252,6341,5911,25902,13259,12643,12620,6402,6218,16740,8303,8437,194732,93560,101172,188520,90420,98100,81341,40057,41284,55189,26988,28201,65215,31215,34000,51376,23914,27462,12252,6341,5911,13858,7114,6744,15252,7781,7471,14318,7202,7116,11834,5867,5967,12497,6252,6245,13724,6624,7100,14112,6930,7182,14856,7182,7674,14503,7059,7444,15809,7674,8135,16931,8054,8877,17972,8428,9544,16849,7855,8994,14850,7039,7811,9717,4626,5091,5728,2619,3109,4232,1775,2457,44,42.8,45 -50,1,5,Alabama,Barbour County,1,25223,13400,11823,1341,687,654,2691,1335,1356,1225,625,600,2017,1174,843,20580,11069,9511,19966,10753,9213,9505,5650,3855,6576,4006,2570,6410,3391,3019,4963,2182,2781,1341,687,654,1383,673,710,1621,817,804,1456,759,697,1473,885,588,1754,1103,651,1680,1023,657,1617,940,677,1525,940,585,1610,912,698,1525,836,689,1719,867,852,1556,776,780,1536,715,821,1421,631,790,960,438,522,570,240,330,476,158,318,40.8,39,44 -50,1,5,Alabama,Barbour County,2,25180,13373,11807,1342,694,648,2675,1322,1353,1232,629,603,2016,1173,843,20540,11042,9498,19931,10728,9203,9516,5650,3866,6588,4010,2578,6367,3375,2992,4960,2170,2790,1342,694,648,1364,664,700,1631,820,811,1451,753,698,1477,887,590,1743,1096,647,1685,1029,656,1619,938,681,1541,947,594,1602,909,693,1511,827,684,1710,868,842,1544,771,773,1532,711,821,1424,634,790,967,435,532,563,236,327,474,154,320,40.8,39,43.9 -50,1,5,Alabama,Barbour County,3,24964,13305,11659,1307,674,633,2574,1250,1324,1249,633,616,1987,1168,819,20430,11051,9379,19834,10748,9086,9472,5682,3790,6577,4053,2524,6283,3346,2937,4987,2181,2806,1307,674,633,1297,634,663,1618,788,830,1419,732,687,1476,897,579,1708,1076,632,1678,1062,616,1601,931,670,1590,984,606,1527,881,646,1518,818,700,1701,874,827,1537,773,764,1512,704,808,1425,632,793,1024,457,567,549,231,318,477,157,320,41.2,39.3,44.2 -50,1,7,Alabama,Bibb County,1,22293,11931,10362,1231,600,631,2224,1166,1058,1087,585,502,1725,1006,719,18317,9883,8434,17751,9580,8171,8778,5109,3669,6231,3657,2574,6102,3255,2847,3693,1662,2031,1231,600,631,1200,629,571,1289,676,613,1250,691,559,1297,761,536,1667,974,693,1607,961,646,1535,911,624,1422,811,611,1632,910,722,1518,819,699,1568,827,741,1384,699,685,1169,561,608,1040,494,546,678,304,374,448,181,267,358,122,236,40.2,38.6,42.6 -50,1,7,Alabama,Bibb County,2,22223,11901,10322,1219,594,625,2210,1159,1051,1086,584,502,1719,1005,714,18266,9866,8400,17708,9564,8144,8747,5098,3649,6212,3650,2562,6086,3250,2836,3691,1659,2032,1219,594,625,1202,630,572,1278,670,608,1238,683,555,1297,765,532,1656,970,686,1604,963,641,1531,910,621,1421,807,614,1621,906,715,1511,817,694,1569,829,740,1385,698,687,1167,556,611,1049,502,547,673,297,376,448,185,263,354,119,235,40.3,38.6,42.7 -50,1,7,Alabama,Bibb County,3,22477,12134,10343,1180,570,610,2223,1165,1058,1119,613,506,1725,1004,721,18510,10100,8410,17955,9786,8169,8896,5261,3635,6341,3794,2547,6127,3311,2816,3762,1677,2085,1180,570,610,1245,647,598,1267,668,599,1247,691,556,1308,776,532,1650,991,659,1686,1024,662,1563,940,623,1442,839,603,1579,904,675,1548,843,705,1604,852,752,1396,712,684,1179,558,621,1069,518,551,695,293,402,460,190,270,359,118,241,40.3,38.7,42.8 -50,1,9,Alabama,Blount County,1,59134,29419,29715,3504,1824,1680,6938,3504,3434,3265,1601,1664,4489,2372,2117,47064,23312,23752,45427,22490,22937,21152,10703,10449,14204,7121,7083,15816,7996,7820,10918,5001,5917,3504,1824,1680,3678,1863,1815,4066,2032,2034,3746,1908,1838,3202,1674,1528,3556,1802,1754,3467,1719,1748,3561,1777,1784,3620,1823,1797,3911,1983,1928,3980,2006,1974,4146,2106,2040,3779,1901,1878,3408,1665,1743,3092,1432,1660,2113,952,1161,1278,578,700,1027,374,653,41.1,40.3,41.9 -50,1,9,Alabama,Blount County,2,59081,29400,29681,3474,1808,1666,6910,3480,3430,3279,1604,1675,4484,2371,2113,47064,23325,23739,45418,22508,22910,21143,10703,10440,14193,7125,7068,15814,8008,7806,10927,5004,5923,3474,1808,1666,3666,1848,1818,4057,2029,2028,3740,1894,1846,3210,1684,1526,3536,1790,1746,3491,1735,1756,3537,1766,1771,3629,1834,1795,3882,1962,1920,3993,2020,1973,4154,2108,2046,3785,1918,1867,3419,1665,1754,3089,1434,1655,2121,953,1168,1273,575,698,1025,377,648,41.1,40.4,41.9 -50,1,9,Alabama,Blount County,3,59041,29407,29634,3433,1788,1645,6889,3495,3394,3289,1595,1694,4514,2376,2138,47070,23310,23760,45430,22529,22901,21141,10697,10444,14175,7141,7034,15685,7939,7746,11056,5073,5983,3433,1788,1645,3664,1866,1798,4062,2044,2018,3720,1861,1859,3246,1695,1551,3529,1793,1736,3545,1756,1789,3451,1716,1735,3650,1876,1774,3743,1879,1864,4007,2024,1983,4109,2073,2036,3826,1963,1863,3500,1698,1802,3093,1446,1647,2145,968,1177,1270,567,703,1048,394,654,41.2,40.5,41.9 -50,1,11,Alabama,Bullock County,1,10357,5704,4653,583,280,303,1139,593,546,473,256,217,778,448,330,8383,4692,3691,8162,4575,3587,4056,2456,1600,2941,1828,1113,2677,1518,1159,1766,781,985,583,280,303,611,297,314,664,372,292,538,287,251,577,341,236,735,478,257,759,480,279,750,469,281,697,401,296,664,431,233,578,335,243,695,364,331,740,388,352,611,314,297,437,191,246,301,122,179,224,95,129,193,59,134,39.7,38.3,41.8 -50,1,11,Alabama,Bullock County,2,10309,5676,4633,577,280,297,1136,584,552,478,262,216,768,443,325,8339,4668,3671,8118,4550,3568,4027,2442,1585,2917,1815,1102,2661,1510,1151,1772,782,990,577,280,297,608,292,316,664,370,294,541,290,251,569,337,232,725,472,253,757,481,276,744,467,277,691,395,296,661,427,234,576,334,242,689,362,327,735,387,348,614,315,299,441,194,247,302,119,183,220,92,128,195,62,133,39.8,38.3,41.9 -50,1,11,Alabama,Bullock County,3,10320,5717,4603,579,297,282,1115,561,554,507,289,218,750,435,315,8357,4704,3653,8119,4570,3549,4045,2482,1563,2929,1842,1087,2624,1487,1137,1816,806,1010,579,297,282,591,282,309,665,363,302,568,315,253,548,325,223,702,456,246,784,502,282,751,485,266,692,399,293,669,429,240,596,353,243,647,336,311,712,369,343,617,318,299,471,204,267,313,129,184,215,89,126,200,66,134,39.8,38.4,42.3 -50,1,13,Alabama,Butler County,1,19051,8936,10115,1069,534,535,2217,1171,1046,983,543,440,1466,750,716,15266,6962,8304,14782,6688,8094,6676,3234,3442,4483,2077,2406,4895,2235,2660,3938,1626,2312,1069,534,535,1171,619,552,1302,688,614,1129,626,503,1064,531,533,1071,533,538,1061,477,584,1177,553,624,1174,514,660,1117,501,616,1112,505,607,1284,556,728,1382,673,709,1269,565,704,955,444,511,699,317,382,506,180,326,509,120,389,42,39.2,44.3 -50,1,13,Alabama,Butler County,2,19045,8935,10110,1066,530,536,2202,1162,1040,997,549,448,1462,753,709,15265,6968,8297,14780,6694,8086,6675,3234,3441,4479,2071,2408,4877,2229,2648,3962,1641,2321,1066,530,536,1155,606,549,1310,695,615,1133,629,504,1063,534,529,1064,525,539,1061,481,580,1165,541,624,1189,524,665,1108,497,611,1123,512,611,1272,551,721,1374,669,705,1279,573,706,956,442,514,709,323,386,504,179,325,514,124,390,42,39.4,44.3 -50,1,13,Alabama,Butler County,3,18884,8805,10079,1072,539,533,2169,1137,1032,1020,546,474,1426,749,677,15109,6853,8256,14623,6583,8040,6593,3160,3433,4432,2012,2420,4754,2170,2584,4011,1652,2359,1072,539,533,1154,583,571,1300,701,599,1125,617,508,1036,531,505,1023,493,530,1083,487,596,1114,508,606,1212,524,688,1066,484,582,1146,532,614,1191,519,672,1351,635,716,1291,579,712,979,443,536,730,338,392,491,168,323,520,124,396,42.1,39.5,44.3 -50,1,15,Alabama,Calhoun County,1,116441,56368,60073,6627,3413,3214,12741,6521,6220,5936,3096,2840,10898,5398,5500,94135,44883,49252,91137,43338,47799,44357,21884,22473,28995,14153,14842,30320,14716,15604,20924,9071,11853,6627,3413,3214,6684,3366,3318,7529,3918,3611,7852,3996,3856,7510,3735,3775,7570,3697,3873,7316,3580,3736,7042,3441,3601,7067,3435,3632,6975,3414,3561,7218,3525,3693,8046,3954,4092,8081,3823,4258,7106,3288,3818,5771,2608,3163,3756,1635,2121,2299,940,1359,1992,600,1392,40.1,38.6,41.4 -50,1,15,Alabama,Calhoun County,2,116266,56287,59979,6602,3400,3202,12724,6509,6215,5944,3102,2842,10878,5393,5485,93986,44829,49157,90996,43276,47720,44268,21848,22420,28931,14121,14810,30185,14635,15550,21002,9127,11875,6602,3400,3202,6716,3383,3333,7493,3894,3599,7820,3980,3840,7517,3747,3770,7466,3655,3811,7368,3601,3767,7023,3433,3590,7074,3432,3642,6940,3392,3548,7209,3514,3695,7969,3918,4051,8067,3811,4256,7143,3313,3830,5815,2625,3190,3759,1636,2123,2309,951,1358,1976,602,1374,40.1,38.6,41.4 -50,1,15,Alabama,Calhoun County,3,115972,56089,59883,6580,3391,3189,12514,6405,6109,6033,3148,2885,10932,5415,5517,93800,44707,49093,90845,43145,47700,44193,21804,22389,28797,14037,14760,29705,14374,15331,21411,9319,12092,6580,3391,3189,6777,3419,3358,7306,3782,3524,7761,3968,3793,7635,3799,3836,7209,3543,3666,7586,3692,3894,6923,3384,3539,7079,3418,3661,6737,3287,3450,7317,3541,3776,7729,3818,3911,7922,3728,4194,7260,3394,3866,6046,2704,3342,3787,1616,2171,2378,991,1387,1940,614,1326,40.1,38.7,41.5 -50,1,17,Alabama,Chambers County,1,34772,16712,18060,1889,967,922,3730,1901,1829,1647,835,812,2631,1354,1277,28317,13444,14873,27506,13009,14497,12123,5951,6172,8271,3958,4313,9647,4678,4969,6957,3019,3938,1889,967,922,2035,1040,995,2121,1057,1064,1925,1028,897,1927,965,962,2372,1151,1221,2046,995,1051,1888,881,1007,1965,931,1034,2205,1051,1154,2341,1162,1179,2565,1254,1311,2536,1211,1325,2245,1040,1205,1903,880,1023,1328,569,759,766,320,446,715,210,505,43,41.4,44.5 -50,1,17,Alabama,Chambers County,2,34678,16651,18027,1870,962,908,3704,1887,1817,1647,832,815,2616,1346,1270,28263,13397,14866,27457,12970,14487,12085,5919,6166,8247,3943,4304,9622,4664,4958,6972,3017,3955,1870,962,908,2017,1033,984,2112,1056,1056,1917,1015,902,1921,961,960,2355,1139,1216,2050,1003,1047,1897,877,1020,1945,924,1021,2185,1034,1151,2338,1166,1172,2558,1247,1311,2541,1217,1324,2252,1044,1208,1905,881,1024,1330,568,762,772,318,454,713,206,507,43.1,41.5,44.5 -50,1,17,Alabama,Chambers County,3,34541,16558,17983,1864,966,898,3640,1857,1783,1652,821,831,2574,1329,1245,28199,13324,14875,27385,12914,14471,12004,5864,6140,8206,3933,4273,9597,4607,4990,7008,3045,3963,1864,966,898,1986,1021,965,2082,1055,1027,1898,972,926,1900,959,941,2253,1083,1170,2121,1063,1058,1890,855,1035,1942,932,1010,2131,989,1142,2395,1179,1216,2522,1202,1320,2549,1237,1312,2265,1040,1225,1905,893,1012,1351,567,784,794,326,468,693,219,474,43.3,41.7,44.8 -50,1,19,Alabama,Cherokee County,1,24971,12449,12522,1151,564,587,2404,1261,1143,1174,567,607,1746,869,877,20828,10336,10492,20242,10057,10185,7825,3908,3917,5197,2618,2579,7419,3763,3656,5880,2807,3073,1151,564,587,1249,655,594,1447,752,695,1372,664,708,1256,626,630,1432,754,678,1256,635,621,1178,571,607,1331,658,673,1651,836,815,1732,907,825,1932,969,963,2104,1051,1053,1832,907,925,1729,877,852,1119,512,607,685,310,375,515,201,314,47.6,47.2,48 -50,1,19,Alabama,Cherokee County,2,24958,12452,12506,1148,560,588,2380,1251,1129,1177,570,607,1745,867,878,20840,10349,10491,20253,10071,10182,7822,3909,3913,5195,2621,2574,7403,3757,3646,5910,2826,3084,1148,560,588,1243,652,591,1432,748,684,1356,655,701,1271,633,638,1423,752,671,1267,642,625,1173,566,607,1332,661,671,1628,825,803,1732,907,825,1938,976,962,2105,1049,1056,1850,917,933,1734,876,858,1117,511,606,689,313,376,520,209,311,47.7,47.3,48.1 -50,1,19,Alabama,Cherokee County,3,24996,12438,12558,1158,574,584,2349,1213,1136,1206,609,597,1732,863,869,20885,10336,10549,20283,10042,10241,7828,3910,3918,5194,2602,2592,7364,3719,3645,5993,2858,3135,1158,574,584,1262,635,627,1391,742,649,1349,666,683,1285,642,643,1374,718,656,1322,671,651,1189,564,625,1309,649,660,1559,780,779,1764,918,846,1951,999,952,2090,1022,1068,1909,937,972,1748,876,872,1133,525,608,682,307,375,521,213,308,47.9,47.4,48.4 -50,1,21,Alabama,Chilton County,1,45014,22188,22826,2740,1394,1346,5564,2731,2833,2543,1268,1275,3505,1827,1678,35480,17436,18044,34167,16795,17372,16529,8276,8253,11087,5487,5600,11937,6003,5934,7638,3478,4160,2740,1394,1346,2941,1464,1477,3229,1573,1656,2921,1483,1438,2521,1306,1215,2884,1434,1450,2708,1351,1357,2674,1341,1333,2821,1361,1460,2912,1496,1416,2928,1493,1435,3115,1560,1555,2982,1454,1528,2583,1225,1358,2076,963,1113,1407,663,744,846,352,494,726,275,451,39.8,39.1,40.5 -50,1,21,Alabama,Chilton County,2,45024,22180,22844,2724,1375,1349,5553,2720,2833,2539,1266,1273,3517,1833,1684,35510,17458,18052,34208,16819,17389,16528,8270,8258,11087,5477,5610,11923,6005,5918,7681,3504,4177,2724,1375,1349,2936,1459,1477,3232,1567,1665,2907,1477,1430,2534,1316,1218,2866,1421,1445,2726,1363,1363,2672,1335,1337,2823,1358,1465,2891,1484,1407,2940,1507,1433,3103,1552,1551,2989,1462,1527,2600,1239,1361,2092,970,1122,1420,665,755,845,352,493,724,278,446,39.8,39.2,40.5 -50,1,21,Alabama,Chilton County,3,45274,22307,22967,2710,1415,1295,5476,2674,2802,2540,1275,1265,3594,1858,1736,35825,17595,18230,34548,16943,17605,16623,8284,8339,11131,5460,5671,11915,6026,5889,7908,3599,4309,2710,1415,1295,2887,1425,1462,3231,1558,1673,2923,1483,1440,2569,1341,1228,2828,1380,1448,2774,1391,1383,2671,1327,1344,2858,1362,1496,2813,1440,1373,2990,1556,1434,3068,1517,1551,3044,1513,1531,2654,1257,1397,2197,1031,1166,1459,666,793,874,362,512,724,283,441,40.1,39.4,40.8 -50,1,23,Alabama,Choctaw County,1,12665,6038,6627,656,326,330,1237,629,608,640,355,285,901,437,464,10451,4907,5544,10132,4728,5404,4044,1968,2076,2663,1263,1400,3627,1744,1883,2941,1284,1657,656,326,330,661,320,341,736,396,340,748,411,337,633,294,339,709,357,352,607,290,317,661,309,352,686,307,379,769,367,402,838,406,432,1016,501,515,1004,470,534,871,383,488,775,346,429,606,281,325,361,158,203,328,116,212,46.5,45.1,48 -50,1,23,Alabama,Choctaw County,2,12619,6030,6589,660,330,330,1232,628,604,635,351,284,890,434,456,10410,4899,5511,10092,4721,5371,4023,1961,2062,2656,1262,1394,3600,1736,1864,2946,1289,1657,660,330,330,664,322,342,726,392,334,741,406,335,626,293,333,707,358,349,609,293,316,659,309,350,681,302,379,766,367,399,826,400,426,1006,498,508,1002,471,531,867,381,486,781,349,432,607,282,325,364,161,203,327,116,211,46.5,45.1,48 -50,1,23,Alabama,Choctaw County,3,12533,5965,6568,693,345,348,1214,611,603,617,343,274,874,427,447,10329,4847,5482,10009,4666,5343,3945,1929,2016,2598,1235,1363,3561,1709,1852,2976,1295,1681,693,345,348,681,329,352,677,358,319,722,404,318,625,290,335,694,357,337,622,297,325,624,284,340,658,297,361,744,358,386,815,390,425,978,480,498,1024,481,543,876,382,494,803,362,441,593,264,329,376,169,207,328,118,210,46.8,45.3,48.3 -50,1,25,Alabama,Clarke County,1,23087,10990,12097,1288,642,646,2448,1251,1197,1246,631,615,1873,903,970,18741,8783,9958,18105,8466,9639,8072,3880,4192,5258,2509,2749,6304,2979,3325,4670,2075,2595,1288,642,646,1315,654,661,1438,760,678,1478,734,744,1336,637,699,1448,727,721,1196,556,640,1269,600,669,1345,626,719,1413,638,775,1533,737,796,1721,833,888,1637,771,866,1398,658,740,1197,579,618,927,410,517,625,269,356,523,159,364,42.9,41.4,44.1 -50,1,25,Alabama,Clarke County,2,22995,10943,12052,1291,649,642,2444,1247,1197,1234,625,609,1862,899,963,18656,8733,9923,18026,8422,9604,8032,3856,4176,5236,2492,2744,6264,2958,3306,4664,2073,2591,1291,649,642,1316,655,661,1428,752,676,1462,727,735,1334,637,697,1444,725,719,1206,556,650,1246,592,654,1340,619,721,1395,628,767,1521,731,790,1713,826,887,1635,773,862,1395,652,743,1200,584,616,922,411,511,621,263,358,526,163,363,42.8,41.4,44.1 -50,1,25,Alabama,Clarke County,3,22760,10826,11934,1328,688,640,2403,1210,1193,1186,605,581,1835,889,946,18451,8629,9822,17843,8323,9520,7976,3824,4152,5238,2477,2761,6110,2896,3214,4660,2061,2599,1328,688,640,1300,641,659,1386,716,670,1400,709,691,1338,638,700,1406,691,715,1249,572,677,1195,580,615,1388,634,754,1343,597,746,1475,728,747,1652,780,872,1640,791,849,1422,646,776,1200,590,610,904,404,500,627,261,366,507,160,347,42.7,41.3,43.9 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2023-agesex-all.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2023-agesex-all.csv new file mode 100644 index 0000000000..54f41a5cdd --- /dev/null +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/cc-est2023-agesex-all.csv @@ -0,0 +1,100 @@ +SUMLEV,STATE,COUNTY,STNAME,CTYNAME,YEAR,POPESTIMATE,POPEST_MALE,POPEST_FEM,UNDER5_TOT,UNDER5_MALE,UNDER5_FEM,AGE513_TOT,AGE513_MALE,AGE513_FEM,AGE1417_TOT,AGE1417_MALE,AGE1417_FEM,AGE1824_TOT,AGE1824_MALE,AGE1824_FEM,AGE16PLUS_TOT,AGE16PLUS_MALE,AGE16PLUS_FEM,AGE18PLUS_TOT,AGE18PLUS_MALE,AGE18PLUS_FEM,AGE1544_TOT,AGE1544_MALE,AGE1544_FEM,AGE2544_TOT,AGE2544_MALE,AGE2544_FEM,AGE4564_TOT,AGE4564_MALE,AGE4564_FEM,AGE65PLUS_TOT,AGE65PLUS_MALE,AGE65PLUS_FEM,AGE04_TOT,AGE04_MALE,AGE04_FEM,AGE59_TOT,AGE59_MALE,AGE59_FEM,AGE1014_TOT,AGE1014_MALE,AGE1014_FEM,AGE1519_TOT,AGE1519_MALE,AGE1519_FEM,AGE2024_TOT,AGE2024_MALE,AGE2024_FEM,AGE2529_TOT,AGE2529_MALE,AGE2529_FEM,AGE3034_TOT,AGE3034_MALE,AGE3034_FEM,AGE3539_TOT,AGE3539_MALE,AGE3539_FEM,AGE4044_TOT,AGE4044_MALE,AGE4044_FEM,AGE4549_TOT,AGE4549_MALE,AGE4549_FEM,AGE5054_TOT,AGE5054_MALE,AGE5054_FEM,AGE5559_TOT,AGE5559_MALE,AGE5559_FEM,AGE6064_TOT,AGE6064_MALE,AGE6064_FEM,AGE6569_TOT,AGE6569_MALE,AGE6569_FEM,AGE7074_TOT,AGE7074_MALE,AGE7074_FEM,AGE7579_TOT,AGE7579_MALE,AGE7579_FEM,AGE8084_TOT,AGE8084_MALE,AGE8084_FEM,AGE85PLUS_TOT,AGE85PLUS_MALE,AGE85PLUS_FEM,MEDIAN_AGE_TOT,MEDIAN_AGE_MALE,MEDIAN_AGE_FEM +50,1,1,Alabama,Autauga County,1,58809,28698,30111,3491,1818,1673,7024,3612,3412,3368,1688,1680,4582,2346,2236,46603,22426,24177,44926,21580,23346,22574,11113,11461,15453,7495,7958,15662,7651,8011,9229,4088,5141,3491,1818,1673,3663,1875,1788,4190,2153,2037,3881,1962,1919,3240,1656,1584,3886,1912,1974,3788,1826,1962,3970,1946,2024,3809,1811,1998,4030,1969,2061,3887,1941,1946,4138,2049,2089,3607,1692,1915,2919,1430,1489,2462,1074,1388,1811,758,1053,1144,494,650,893,332,561,39.1,37.9,40.2 +50,1,1,Alabama,Autauga County,2,58915,28760,30155,3504,1832,1672,7051,3614,3437,3359,1684,1675,4588,2353,2235,46681,22475,24206,45001,21630,23371,22632,11154,11478,15512,7533,7979,15615,7637,7978,9286,4107,5179,3504,1832,1672,3688,1881,1807,4190,2149,2041,3862,1955,1907,3258,1666,1592,3891,1923,1968,3825,1842,1983,3960,1942,2018,3836,1826,2010,3983,1947,2036,3873,1937,1936,4137,2047,2090,3622,1706,1916,2947,1434,1513,2484,1094,1390,1811,748,1063,1148,494,654,896,337,559,39.1,37.9,40.2 +50,1,1,Alabama,Autauga County,3,59203,28782,30421,3441,1802,1639,7071,3602,3469,3416,1704,1712,4534,2319,2215,47003,22530,24473,45275,21674,23601,22806,11174,11632,15707,7590,8117,15555,7577,7978,9479,4188,5291,3441,1802,1639,3739,1895,1844,4183,2146,2037,3853,1934,1919,3246,1650,1596,3780,1876,1904,3994,1854,2140,4027,2004,2023,3906,1856,2050,3819,1853,1966,3902,1925,1977,4072,2004,2068,3762,1795,1967,3052,1481,1571,2539,1139,1400,1807,736,1071,1170,478,692,911,354,557,39.2,38,40.3 +50,1,1,Alabama,Autauga County,4,59726,29030,30696,3463,1784,1679,7109,3657,3452,3457,1757,1700,4529,2297,2232,47394,22683,24711,45697,21832,23865,22850,11187,11663,15764,7605,8159,15642,7625,8017,9762,4305,5457,3463,1784,1679,3892,2027,1865,4117,2102,2015,3826,1942,1884,3260,1640,1620,3677,1822,1855,4163,1953,2210,4065,1990,2075,3859,1840,2019,3745,1814,1931,3989,1953,2036,3997,1960,2037,3911,1898,2013,3140,1487,1653,2509,1155,1354,1940,798,1142,1211,477,734,962,388,574,39.3,38.1,40.4 +50,1,1,Alabama,Autauga County,5,60342,29277,31065,3617,1891,1726,6951,3543,3408,3521,1815,1706,4552,2278,2274,47972,22914,25058,46253,22028,24225,23046,11298,11748,15862,7661,8201,15712,7645,8067,10127,4444,5683,3617,1891,1726,3850,1983,1867,3990,2016,1974,3935,2025,1910,3249,1612,1637,3593,1767,1826,4169,2005,2164,4176,2004,2172,3924,1885,2039,3730,1771,1959,4033,1965,2068,3949,1954,1995,4000,1955,2045,3239,1496,1743,2544,1196,1348,2004,841,1163,1304,484,820,1036,427,609,39.5,38.3,40.6 +50,1,3,Alabama,Baldwin County,1,231768,113253,118515,12254,6411,5843,25586,13096,12490,12154,6108,6046,16169,8155,8014,187718,90606,97112,181774,87638,94136,78897,39103,39794,53690,26413,27277,63522,30523,32999,48393,22547,25846,12254,6411,5843,13583,7001,6582,15119,7668,7451,13865,6972,6893,11342,5718,5624,12438,6207,6231,13110,6413,6697,13976,6899,7077,14166,6894,7272,14745,7257,7488,14911,7254,7657,16828,8063,8765,17038,7949,9089,15658,7305,8353,13767,6577,7190,9243,4436,4807,5435,2488,2947,4290,1741,2549,43.5,42.4,44.7 +50,1,3,Alabama,Baldwin County,2,233227,113911,119316,12241,6400,5841,25652,13138,12514,12276,6178,6098,16263,8192,8071,189073,91203,97870,183058,88195,94863,79316,39278,40038,53917,26500,27417,63825,30648,33177,49053,22855,26198,12241,6400,5841,13625,7024,6601,15167,7706,7461,13957,7017,6940,11442,5761,5681,12397,6192,6205,13214,6448,6766,14008,6911,7097,14298,6949,7349,14688,7222,7466,15057,7315,7742,16872,8073,8799,17208,8038,9170,15885,7404,8481,13956,6671,7285,9382,4502,4880,5485,2506,2979,4345,1772,2573,43.6,42.5,44.8 +50,1,3,Alabama,Baldwin County,3,239439,116725,122714,12391,6408,5983,25947,13288,12659,12738,6462,6276,16845,8406,8439,194629,93729,100900,188363,90567,97796,81714,40414,41300,55368,27199,28169,64982,31176,33806,51168,23786,27382,12391,6408,5983,13866,7119,6747,15318,7822,7496,14375,7259,7116,11971,5956,6015,12521,6292,6229,13787,6692,7095,14171,6987,7184,14889,7228,7661,14515,7088,7427,15776,7673,8103,16867,8014,8853,17824,8401,9423,16669,7766,8903,14702,6960,7742,9665,4623,5042,5728,2620,3108,4404,1817,2587,43.8,42.6,44.9 +50,1,3,Alabama,Baldwin County,4,246531,120079,126452,12641,6492,6149,26431,13526,12905,13067,6588,6479,17352,8710,8642,200854,96739,104115,194392,93473,100919,84098,41647,42451,56936,27976,28960,66685,32016,34669,53419,24771,28648,12641,6492,6149,14202,7256,6946,15486,7897,7589,14780,7501,7279,12382,6170,6212,12770,6388,6382,14327,6979,7348,14419,7113,7306,15420,7496,7924,14866,7222,7644,16455,8007,8448,16979,8089,8890,18385,8698,9687,17372,8124,9248,14588,6759,7829,10842,5195,5647,6050,2784,3266,4567,1909,2658,43.9,42.8,45.1 +50,1,3,Alabama,Baldwin County,5,253507,123497,130010,12860,6616,6244,26924,13792,13132,13326,6744,6582,17837,8997,8840,207104,99736,107368,200397,96345,104052,86370,42742,43628,58467,28671,29796,68170,32754,35416,55923,25923,30000,12860,6616,6244,14475,7424,7051,15709,8038,7671,15166,7707,7459,12737,6364,6373,13106,6498,6608,14770,7248,7522,14793,7244,7549,15798,7681,8117,15213,7417,7796,16953,8174,8779,17022,8091,8931,18982,9072,9910,18006,8445,9561,14899,6860,8039,11514,5508,6006,6657,3071,3586,4847,2039,2808,44.2,43,45.3 +50,1,5,Alabama,Barbour County,1,25229,13342,11887,1364,700,664,2743,1357,1386,1246,635,611,2014,1169,845,20500,10971,9529,19876,10650,9226,9471,5586,3885,6532,3940,2592,6400,3377,3023,4930,2164,2766,1364,700,664,1415,688,727,1649,827,822,1472,769,703,1467,877,590,1733,1078,655,1661,1000,661,1611,926,685,1527,936,591,1611,909,702,1526,835,691,1717,866,851,1546,767,779,1529,711,818,1412,626,786,951,433,518,566,238,328,472,156,316,40.7,39,43.6 +50,1,5,Alabama,Barbour County,2,24969,13086,11883,1359,697,662,2726,1346,1380,1255,640,615,1990,1143,847,20246,10721,9525,19629,10403,9226,9302,5406,3896,6387,3789,2598,6311,3307,3004,4941,2164,2777,1359,697,662,1395,680,715,1661,832,829,1465,762,703,1450,855,595,1680,1028,652,1619,961,658,1577,887,690,1511,913,598,1576,880,696,1500,814,686,1701,854,847,1534,759,775,1527,706,821,1413,626,787,968,439,529,562,238,324,471,155,316,40.8,39.1,43.5 +50,1,5,Alabama,Barbour County,3,24533,12811,11722,1317,686,631,2621,1273,1348,1275,647,628,1938,1112,826,19926,10514,9412,19320,10205,9115,9107,5283,3824,6239,3698,2541,6175,3232,2943,4968,2163,2805,1317,686,631,1323,648,675,1643,799,844,1442,744,698,1426,841,585,1608,971,637,1571,955,616,1529,854,675,1531,918,613,1478,826,652,1496,798,698,1680,847,833,1521,761,760,1498,693,805,1422,627,795,1003,446,557,553,230,323,492,167,325,41.3,39.5,43.9 +50,1,5,Alabama,Barbour County,4,24700,13093,11607,1313,686,627,2510,1234,1276,1308,661,647,1974,1139,835,20194,10832,9362,19569,10512,9057,9345,5532,3813,6396,3894,2502,6185,3303,2882,5014,2176,2838,1313,686,627,1299,662,637,1544,734,810,1465,768,697,1484,870,614,1596,996,600,1675,1073,602,1574,889,685,1551,936,615,1439,838,601,1544,843,701,1617,821,796,1585,801,784,1483,676,807,1378,619,759,1069,463,606,581,250,331,503,168,335,41.3,39.2,44.2 +50,1,5,Alabama,Barbour County,5,24585,13066,11519,1307,676,631,2479,1246,1233,1282,638,644,1983,1145,838,20177,10844,9333,19517,10506,9011,9320,5507,3813,6344,3860,2484,6130,3292,2838,5060,2209,2851,1307,676,631,1319,695,624,1449,687,762,1477,764,713,1499,883,616,1585,1000,585,1650,1057,593,1575,890,685,1534,913,621,1403,839,564,1537,841,696,1557,796,761,1633,816,817,1449,672,777,1364,613,751,1091,476,615,629,261,368,527,187,340,41.5,39.3,44.5 +50,1,7,Alabama,Bibb County,1,22301,11867,10434,1234,602,632,2222,1160,1062,1062,560,502,1717,997,720,18334,9833,8501,17783,9545,8238,8730,5058,3672,6211,3634,2577,6079,3239,2840,3776,1675,2101,1234,602,632,1202,629,573,1280,664,616,1222,665,557,1297,759,538,1662,966,696,1604,955,649,1529,907,622,1416,806,610,1626,904,722,1509,814,695,1563,823,740,1381,698,683,1172,562,610,1051,499,552,697,303,394,461,187,274,395,124,271,40.4,38.7,42.8 +50,1,7,Alabama,Bibb County,2,22188,11772,10416,1216,591,625,2212,1155,1057,1060,560,500,1709,992,717,18243,9754,8489,17700,9466,8234,8645,4990,3655,6140,3573,2567,6048,3218,2830,3803,1683,2120,1216,591,625,1207,631,576,1269,659,610,1210,658,552,1295,759,536,1637,948,689,1583,940,643,1514,893,621,1406,792,614,1602,890,712,1499,806,693,1566,823,743,1381,699,682,1174,560,614,1059,505,554,703,302,401,469,194,275,398,122,276,40.6,38.8,42.9 +50,1,7,Alabama,Bibb County,3,22359,11944,10415,1196,583,613,2225,1162,1063,1091,588,503,1714,987,727,18386,9911,8475,17847,9611,8236,8759,5114,3645,6236,3682,2554,6052,3247,2805,3845,1695,2150,1196,583,613,1248,648,600,1259,657,602,1222,666,556,1301,766,535,1620,957,663,1657,993,664,1538,915,623,1421,817,604,1550,879,671,1527,823,704,1587,838,749,1388,707,681,1188,564,624,1070,508,562,711,296,415,483,207,276,393,120,273,40.5,38.8,42.9 +50,1,7,Alabama,Bibb County,4,21986,11729,10257,1155,557,598,2168,1119,1049,1069,567,502,1674,982,692,18120,9775,8345,17594,9486,8108,8528,5002,3526,6052,3593,2459,5953,3187,2766,3915,1724,2191,1155,557,598,1237,628,609,1198,631,567,1210,662,548,1266,747,519,1532,930,602,1625,977,648,1493,878,615,1402,808,594,1486,834,652,1524,824,700,1526,814,712,1417,715,702,1169,561,608,1046,495,551,798,329,469,500,223,277,402,116,286,41,39.2,43.5 +50,1,7,Alabama,Bibb County,5,21868,11530,10338,1167,547,620,2134,1099,1035,1045,540,505,1669,951,718,18074,9638,8436,17522,9344,8178,8451,4869,3582,5976,3494,2482,5878,3135,2743,3999,1764,2235,1167,547,620,1195,600,595,1178,615,563,1203,649,554,1272,726,546,1512,906,606,1593,938,655,1472,849,623,1399,801,598,1446,806,640,1521,833,688,1481,771,710,1430,725,705,1227,586,641,1012,483,529,834,346,488,504,228,276,422,121,301,41.2,39.6,43.4 +50,1,9,Alabama,Blount County,1,59130,29389,29741,3495,1818,1677,6933,3502,3431,3280,1605,1675,4498,2381,2117,47072,23289,23783,45422,22464,22958,21170,10711,10459,14199,7117,7082,15805,7968,7837,10920,4998,5922,3495,1818,1677,3677,1862,1815,4063,2032,2031,3760,1913,1847,3211,1681,1530,3551,1800,1751,3468,1722,1746,3567,1782,1785,3613,1813,1800,3903,1972,1931,3981,2003,1978,4145,2100,2045,3776,1893,1883,3398,1661,1737,3088,1431,1657,2111,950,1161,1283,579,704,1040,377,663,41,40.2,42 +50,1,9,Alabama,Blount County,2,59107,29378,29729,3449,1791,1658,6904,3478,3426,3293,1607,1686,4514,2390,2124,47119,23320,23799,45461,22502,22959,21185,10726,10459,14192,7127,7065,15808,7975,7833,10947,5010,5937,3449,1791,1658,3663,1845,1818,4055,2031,2024,3762,1902,1860,3231,1697,1534,3533,1791,1742,3496,1739,1757,3545,1773,1772,3618,1824,1794,3879,1953,1926,3995,2012,1983,4154,2100,2054,3780,1910,1870,3410,1663,1747,3085,1434,1651,2115,951,1164,1287,580,707,1050,382,668,41.1,40.3,42 +50,1,9,Alabama,Blount County,3,59079,29375,29704,3426,1767,1659,6876,3493,3383,3301,1595,1706,4573,2410,2163,47125,23300,23825,45476,22520,22956,21209,10736,10473,14172,7146,7026,15657,7893,7764,11074,5071,6003,3426,1767,1659,3656,1865,1791,4057,2043,2014,3743,1866,1877,3294,1724,1570,3526,1794,1732,3547,1758,1789,3459,1728,1731,3640,1866,1774,3743,1874,1869,3997,2011,1986,4103,2062,2041,3814,1946,1868,3482,1684,1798,3097,1444,1653,2142,964,1178,1259,564,695,1094,415,679,41.1,40.4,41.9 +50,1,9,Alabama,Blount County,4,59516,29548,29968,3444,1756,1688,6853,3502,3351,3373,1646,1727,4599,2403,2196,47529,23447,24082,45846,22644,23202,21351,10758,10593,14231,7144,7087,15727,7944,7783,11289,5153,6136,3444,1756,1688,3694,1885,1809,4011,2052,1959,3772,1860,1912,3348,1754,1594,3529,1771,1758,3622,1806,1816,3472,1729,1743,3608,1838,1770,3717,1862,1855,4057,2054,2003,4067,2007,2060,3886,2021,1865,3557,1723,1834,2977,1378,1599,2329,1037,1292,1293,570,723,1133,445,688,41.2,40.5,42 +50,1,9,Alabama,Blount County,5,59816,29756,30060,3493,1754,1739,6837,3550,3287,3387,1688,1699,4643,2383,2260,47788,23589,24199,46099,22764,23335,21490,10861,10629,14293,7212,7081,15682,7877,7805,11481,5292,6189,3493,1754,1739,3729,1947,1782,3941,2025,1916,3812,1885,1927,3385,1764,1621,3550,1815,1735,3607,1807,1800,3563,1779,1784,3573,1811,1762,3642,1813,1829,4061,2047,2014,4011,1971,2040,3968,2046,1922,3543,1733,1810,2985,1416,1569,2389,1055,1334,1379,611,768,1185,477,708,41.2,40.3,42 +50,1,11,Alabama,Bullock County,1,10360,5674,4686,556,269,287,1111,580,531,468,251,217,788,451,337,8445,4690,3755,8225,4574,3651,4008,2419,1589,2884,1791,1093,2739,1534,1205,1814,798,1016,556,269,287,595,294,301,648,360,288,536,282,254,588,346,242,743,482,261,733,455,278,729,452,277,679,402,277,665,426,239,590,339,251,719,372,347,765,397,368,634,324,310,457,199,258,310,124,186,220,92,128,193,59,134,40.4,38.8,42.7 +50,1,11,Alabama,Bullock County,2,10229,5565,4664,546,263,283,1107,572,535,468,254,214,774,442,332,8326,4591,3735,8108,4476,3632,3931,2357,1574,2819,1736,1083,2695,1500,1195,1820,798,1022,546,263,283,592,290,302,645,357,288,538,285,253,574,336,238,722,466,256,721,445,276,709,437,272,667,388,279,655,414,241,581,331,250,701,362,339,758,393,365,638,324,314,465,203,262,308,123,185,217,90,127,192,58,134,40.5,38.9,42.8 +50,1,11,Alabama,Bullock County,3,10143,5533,4610,529,271,258,1085,551,534,502,282,220,751,432,319,8266,4560,3706,8027,4429,3598,3910,2363,1547,2797,1731,1066,2634,1455,1179,1845,811,1034,529,271,258,572,279,293,653,354,299,560,307,253,553,325,228,686,440,246,749,464,285,700,442,258,662,385,277,652,411,241,598,344,254,657,336,321,727,364,363,638,325,313,489,215,274,318,129,189,206,84,122,194,58,136,40.5,38.8,43.3 +50,1,11,Alabama,Bullock County,4,10143,5596,4547,526,279,247,1053,514,539,523,294,229,741,435,306,8282,4641,3641,8041,4509,3532,3931,2418,1513,2811,1771,1040,2612,1470,1142,1877,833,1044,526,279,247,554,264,290,643,332,311,564,317,247,556,330,226,677,438,239,763,487,276,701,453,248,670,393,277,648,412,236,603,359,244,632,326,306,729,373,356,639,322,317,482,219,263,348,150,198,209,81,128,199,61,138,40.6,38.9,43.4 +50,1,11,Alabama,Bullock County,5,9897,5460,4437,496,277,219,1010,490,520,513,294,219,737,423,314,8129,4549,3580,7878,4399,3479,3850,2377,1473,2719,1721,998,2515,1412,1103,1907,843,1064,496,277,219,532,249,283,597,302,295,590,345,245,541,311,230,647,418,229,748,488,260,685,431,254,639,384,255,652,410,242,577,352,225,590,307,283,696,343,353,630,304,326,508,245,263,343,149,194,226,84,142,200,61,139,41,39.1,44 +50,1,13,Alabama,Butler County,1,19046,8954,10092,1065,532,533,2217,1172,1045,989,547,442,1476,756,720,15262,6979,8283,14775,6703,8072,6705,3257,3448,4497,2090,2407,4900,2237,2663,3902,1620,2282,1065,532,533,1169,619,550,1305,689,616,1134,630,504,1074,537,537,1079,541,538,1066,483,583,1179,553,626,1173,513,660,1118,502,616,1113,505,608,1286,557,729,1383,673,710,1270,566,704,956,445,511,689,315,374,497,177,320,490,117,373,41.9,39.1,44.1 +50,1,13,Alabama,Butler County,2,19025,8947,10078,1069,540,529,2205,1164,1041,1001,553,448,1479,762,717,15238,6967,8271,14750,6690,8060,6707,3257,3450,4490,2081,2409,4875,2224,2651,3906,1623,2283,1069,540,529,1157,608,549,1311,695,616,1140,634,506,1077,542,535,1073,531,542,1062,484,578,1168,543,625,1187,523,664,1110,498,612,1127,513,614,1263,546,717,1375,667,708,1276,569,707,960,447,513,689,314,375,492,175,317,489,118,371,41.8,39.1,44.1 +50,1,13,Alabama,Butler County,3,18890,8848,10042,1091,552,539,2170,1137,1033,1021,548,473,1449,759,690,15096,6883,8213,14608,6611,7997,6626,3178,3448,4440,2018,2422,4755,2184,2571,3964,1650,2314,1091,552,539,1154,584,570,1300,700,600,1133,622,511,1053,538,515,1030,496,534,1088,493,595,1111,507,604,1211,522,689,1069,489,580,1154,541,613,1190,518,672,1342,636,706,1290,574,716,988,452,536,705,324,381,487,175,312,494,125,369,41.9,39.4,44 +50,1,13,Alabama,Butler County,4,18668,8772,9896,1084,567,517,2081,1086,995,1040,554,486,1457,774,683,14953,6826,8127,14463,6565,7898,6528,3137,3391,4303,1957,2346,4684,2133,2551,4019,1701,2318,1084,567,517,1121,564,557,1232,670,562,1156,633,523,1069,547,522,1003,482,521,1061,478,583,1077,483,594,1162,514,648,1084,489,595,1169,542,627,1120,505,615,1311,597,714,1297,594,703,998,450,548,742,346,396,478,177,301,504,134,370,42.3,39.7,44.4 +50,1,13,Alabama,Butler County,5,18382,8599,9783,1060,551,509,2015,1047,968,1031,540,491,1392,744,648,14792,6725,8067,14276,6461,7815,6429,3066,3363,4253,1914,2339,4565,2078,2487,4066,1725,2341,1060,551,509,1073,541,532,1189,638,551,1158,621,537,1018,531,487,1025,477,548,1047,489,558,1023,442,581,1158,506,652,1104,494,610,1149,551,598,1050,477,573,1262,556,706,1296,613,683,1026,447,579,759,349,410,469,174,295,516,142,374,42.6,40.1,44.5 +50,1,15,Alabama,Calhoun County,1,116441,56476,59965,6490,3341,3149,12516,6409,6107,5879,3079,2800,12377,6125,6252,94529,45186,49343,91556,43647,47909,45584,22626,22958,28782,14179,14603,29711,14439,15272,20686,8904,11782,6490,3341,3149,6559,3305,3254,7411,3861,3550,8613,4340,4273,8189,4107,4082,7566,3730,3836,7268,3591,3677,6977,3444,3533,6971,3414,3557,6859,3365,3494,7083,3469,3614,7861,3866,3995,7908,3739,4169,6963,3223,3740,5659,2554,3105,3727,1608,2119,2277,922,1355,2060,597,1463,39.4,37.9,40.9 +50,1,15,Alabama,Calhoun County,2,116243,56397,59846,6464,3344,3120,12500,6398,6102,5884,3084,2800,12320,6100,6220,94358,45116,49242,91395,43571,47824,45470,22586,22884,28733,14164,14569,29573,14361,15212,20769,8946,11823,6464,3344,3120,6592,3323,3269,7375,3837,3538,8547,4309,4238,8190,4113,4077,7469,3693,3776,7314,3608,3706,6967,3445,3522,6983,3418,3565,6821,3345,3476,7080,3464,3616,7794,3836,3958,7878,3716,4162,7005,3256,3749,5699,2567,3132,3722,1591,2131,2288,930,1358,2055,602,1453,39.4,37.9,40.9 +50,1,15,Alabama,Calhoun County,3,115678,56096,59582,6399,3315,3084,12286,6287,5999,5968,3127,2841,12271,6082,6189,93956,44923,49033,91025,43367,47658,45344,22541,22803,28649,14117,14532,29069,14096,14973,21036,9072,11964,6399,3315,3084,6647,3356,3291,7183,3716,3467,8437,4277,4160,8258,4147,4111,7236,3599,3637,7530,3700,3830,6875,3405,3470,7008,3413,3595,6629,3255,3374,7169,3479,3690,7529,3717,3812,7742,3645,4097,7090,3324,3766,5898,2627,3271,3745,1588,2157,2309,949,1360,1994,584,1410,39.5,37.9,41 +50,1,15,Alabama,Calhoun County,4,115780,56176,59604,6464,3359,3105,12196,6221,5975,6060,3173,2887,12538,6257,6281,93996,44969,49027,91060,43423,47637,45679,22686,22993,28620,14066,14554,28531,13887,14644,21371,9213,12158,6464,3359,3105,6746,3427,3319,6989,3604,3385,8643,4369,4274,8416,4251,4165,7094,3522,3572,7633,3801,3832,6832,3329,3503,7061,3414,3647,6591,3267,3324,7076,3434,3642,7214,3559,3655,7650,3627,4023,7119,3316,3803,5864,2617,3247,4031,1725,2306,2367,975,1392,1990,580,1410,39.3,37.6,40.9 +50,1,15,Alabama,Calhoun County,5,116429,56419,60010,6523,3367,3156,12220,6177,6043,6131,3213,2918,12716,6338,6378,94646,45266,49380,91555,43662,47893,46124,22887,23237,28750,14118,14632,28264,13781,14483,21825,9425,12400,6523,3367,3156,6828,3466,3362,6865,3493,3372,8873,4498,4375,8501,4271,4230,7154,3586,3568,7657,3779,3878,6830,3328,3502,7109,3425,3684,6692,3290,3402,6960,3428,3532,7015,3431,3584,7597,3632,3965,7177,3357,3820,5889,2598,3291,4297,1861,2436,2453,1010,1443,2009,599,1410,39.2,37.5,40.8 +50,1,17,Alabama,Chambers County,1,34772,16682,18090,1888,969,919,3726,1899,1827,1633,830,803,2914,1474,1440,28328,13416,14912,27525,12984,14541,12299,6016,6283,8175,3908,4267,9520,4613,4907,6916,2989,3927,1888,969,919,2038,1037,1001,2111,1058,1053,2073,1088,985,2051,1020,1031,2338,1131,1207,2021,985,1036,1874,874,1000,1942,918,1024,2181,1035,1146,2309,1146,1163,2532,1238,1294,2498,1194,1304,2224,1028,1196,1874,867,1007,1325,566,759,767,319,448,726,209,517,42.6,41,44.1 +50,1,17,Alabama,Chambers County,2,34651,16617,18034,1875,965,910,3698,1881,1817,1632,826,806,2904,1466,1438,28245,13369,14876,27446,12945,14501,12276,5992,6284,8160,3900,4260,9498,4602,4896,6884,2977,3907,1875,965,910,2017,1028,989,2101,1053,1048,2070,1078,992,2046,1014,1032,2325,1123,1202,2026,994,1032,1882,869,1013,1927,914,1013,2163,1019,1144,2304,1148,1156,2523,1231,1292,2508,1204,1304,2227,1027,1200,1868,865,1003,1319,558,761,761,319,442,709,208,501,42.6,41,44 +50,1,17,Alabama,Chambers County,3,34488,16485,18003,1903,971,932,3637,1855,1782,1637,816,821,2860,1449,1411,28119,13252,14867,27311,12843,14468,12175,5935,6240,8103,3888,4215,9439,4525,4914,6909,2981,3928,1903,971,932,1984,1018,966,2078,1055,1023,2043,1031,1012,2029,1016,1013,2226,1069,1157,2077,1046,1031,1872,852,1020,1928,921,1007,2116,975,1141,2355,1161,1194,2470,1177,1293,2498,1212,1286,2240,1019,1221,1885,878,1007,1318,548,770,782,317,465,684,219,465,42.7,41.1,44.3 +50,1,17,Alabama,Chambers County,4,34164,16225,17939,1850,929,921,3616,1826,1790,1676,836,840,2795,1419,1376,27841,13030,14811,27022,12634,14388,12031,5849,6182,7990,3817,4173,9197,4372,4825,7040,3026,4014,1850,929,921,2013,1013,1000,2033,1036,997,2048,1013,1035,1993,1019,974,2097,1003,1094,2158,1063,1095,1839,845,994,1896,906,990,2027,935,1092,2318,1113,1205,2406,1147,1259,2446,1177,1269,2294,1043,1251,1836,851,985,1431,601,830,793,305,488,686,226,460,42.8,41.1,44.4 +50,1,17,Alabama,Chambers County,5,34079,16092,17987,1844,944,900,3604,1790,1814,1661,831,830,2721,1397,1324,27787,12919,14868,26970,12527,14443,11892,5729,6163,7931,3721,4210,9113,4333,4780,7205,3076,4129,1844,944,900,2003,997,1006,2022,1013,1009,2033,1003,1030,1928,1005,923,2005,931,1074,2235,1080,1155,1766,804,962,1925,906,1019,2000,920,1080,2279,1089,1190,2372,1124,1248,2462,1200,1262,2312,1055,1257,1879,865,1014,1467,600,867,838,322,516,709,234,475,43.2,41.5,44.6 +50,1,19,Alabama,Cherokee County,1,24973,12483,12490,1145,561,584,2397,1257,1140,1175,570,605,1759,880,879,20843,10376,10467,20256,10095,10161,7857,3941,3916,5215,2637,2578,7438,3782,3656,5844,2796,3048,1145,561,584,1245,654,591,1444,749,695,1377,671,706,1265,633,632,1442,766,676,1261,639,622,1181,573,608,1331,659,672,1656,842,814,1741,915,826,1937,973,964,2104,1052,1052,1835,908,927,1724,874,850,1111,509,602,675,308,367,499,197,302,47.5,47.1,48 +50,1,19,Alabama,Cherokee County,2,24969,12499,12470,1151,570,581,2374,1248,1126,1177,572,605,1765,882,883,20857,10390,10467,20267,10109,10158,7864,3947,3917,5214,2640,2574,7415,3768,3647,5873,2819,3054,1151,570,581,1239,651,588,1427,744,683,1366,665,701,1284,642,642,1432,763,669,1273,647,626,1174,567,607,1335,663,672,1632,828,804,1738,915,823,1946,980,966,2099,1045,1054,1853,916,937,1735,883,852,1113,512,601,673,307,366,499,201,298,47.6,47.1,48.1 +50,1,19,Alabama,Cherokee County,3,25074,12545,12529,1173,607,566,2334,1206,1128,1206,610,596,1761,883,878,20965,10419,10546,20361,10122,10239,7892,3964,3928,5230,2635,2595,7395,3743,3652,5975,2861,3114,1173,607,566,1253,630,623,1386,740,646,1355,672,683,1307,657,650,1391,735,656,1330,680,650,1191,564,627,1318,656,662,1571,789,782,1767,922,845,1960,1004,956,2097,1028,1069,1903,928,975,1760,890,870,1125,517,608,669,308,361,518,218,300,47.8,47.2,48.4 +50,1,19,Alabama,Cherokee County,4,25353,12718,12635,1186,637,549,2347,1204,1143,1219,639,580,1739,865,874,21214,10550,10664,20601,10238,10363,7960,4016,3944,5300,2674,2626,7335,3718,3617,6227,2981,3246,1186,637,549,1270,639,631,1375,727,648,1373,700,673,1287,642,645,1367,724,643,1385,721,664,1209,550,659,1339,679,660,1505,771,734,1793,916,877,1947,1011,936,2090,1020,1070,2017,991,1026,1693,836,857,1276,605,671,701,324,377,540,225,315,48.1,47.4,48.9 +50,1,19,Alabama,Cherokee County,5,25666,12833,12833,1208,645,563,2366,1212,1154,1215,643,572,1754,866,888,21505,10657,10848,20877,10333,10544,8095,4082,4013,5409,2725,2684,7254,3675,3579,6460,3067,3393,1208,645,563,1309,657,652,1340,707,633,1415,732,683,1271,625,646,1409,740,669,1448,754,694,1227,565,662,1325,666,659,1485,766,719,1796,893,903,1926,998,928,2047,1018,1029,2135,1037,1098,1658,815,843,1333,632,701,748,335,413,586,248,338,48.1,47.4,48.9 +50,1,21,Alabama,Chilton County,1,45011,22252,22759,2784,1416,1368,5660,2776,2884,2571,1285,1286,3546,1857,1689,35323,17422,17901,33996,16775,17221,16607,8347,8260,11103,5517,5586,11844,5973,5871,7503,3428,4075,2784,1416,1368,2985,1484,1501,3288,1604,1684,2954,1503,1451,2550,1327,1223,2881,1437,1444,2706,1359,1347,2681,1347,1334,2835,1374,1461,2903,1493,1410,2923,1501,1422,3082,1546,1536,2936,1433,1503,2545,1208,1337,2046,952,1094,1378,652,726,826,345,481,708,271,437,39.4,38.8,40.1 +50,1,21,Alabama,Chilton County,2,45057,22271,22786,2789,1417,1372,5644,2762,2882,2574,1287,1287,3570,1866,1704,35370,17453,17917,34050,16805,17245,16628,8354,8274,11106,5512,5594,11830,5976,5854,7544,3451,4093,2789,1417,1372,2972,1475,1497,3294,1598,1696,2952,1503,1449,2570,1339,1231,2866,1426,1440,2728,1373,1355,2680,1344,1336,2832,1369,1463,2883,1483,1400,2934,1515,1419,3074,1540,1534,2939,1438,1501,2553,1211,1342,2059,960,1099,1389,656,733,837,350,487,706,274,432,39.4,38.8,40.1 +50,1,21,Alabama,Chilton County,3,45259,22327,22932,2745,1446,1299,5584,2720,2864,2576,1297,1279,3668,1901,1767,35652,17529,18123,34354,16864,17490,16754,8373,8381,11162,5489,5673,11808,5983,5825,7716,3491,4225,2745,1446,1299,2938,1445,1493,3298,1589,1709,2973,1513,1460,2619,1371,1248,2823,1381,1442,2781,1398,1383,2683,1340,1343,2875,1370,1505,2809,1439,1370,2976,1562,1414,3039,1503,1536,2984,1479,1505,2602,1226,1376,2145,998,1147,1415,652,763,878,357,521,676,258,418,39.6,38.8,40.3 +50,1,21,Alabama,Chilton County,4,45848,22553,23295,2806,1468,1338,5581,2709,2872,2622,1315,1307,3756,1935,1821,36107,17709,18398,34839,17061,17778,16985,8487,8498,11304,5580,5724,11856,5992,5864,7923,3554,4369,2806,1468,1338,2953,1456,1497,3325,1596,1729,2945,1497,1448,2736,1410,1326,2852,1399,1453,2889,1444,1445,2745,1366,1379,2818,1371,1447,2835,1410,1425,3030,1611,1419,3001,1492,1509,2990,1479,1511,2630,1229,1401,2154,1000,1154,1541,687,854,914,369,545,684,269,415,39.4,38.7,40.1 +50,1,21,Alabama,Chilton County,5,46431,22819,23612,2846,1490,1356,5609,2731,2878,2707,1325,1382,3859,1994,1865,36567,17909,18658,35269,17273,17996,17327,8687,8640,11466,5710,5756,11792,5925,5867,8152,3644,4508,2846,1490,1356,3051,1504,1547,3263,1569,1694,3014,1525,1489,2847,1452,1395,2828,1398,1430,3017,1510,1507,2778,1398,1380,2843,1404,1439,2857,1388,1469,2998,1582,1416,2967,1484,1483,2970,1471,1499,2688,1238,1450,2206,1023,1183,1572,698,874,968,411,557,718,274,444,39.2,38.4,40 +50,1,23,Alabama,Choctaw County,1,12669,6036,6633,664,329,335,1239,631,608,646,360,286,902,437,465,10441,4897,5544,10120,4716,5404,4038,1962,2076,2652,1253,1399,3642,1746,1896,2924,1280,1644,664,329,335,663,322,341,738,397,341,753,415,338,633,294,339,710,359,351,601,283,318,656,304,352,685,307,378,772,367,405,841,407,434,1020,501,519,1009,471,538,875,386,489,775,346,429,605,279,326,355,157,198,314,112,202,46.5,45.1,48 +50,1,23,Alabama,Choctaw County,2,12626,6017,6609,664,328,336,1236,632,604,640,357,283,895,435,460,10406,4881,5525,10086,4700,5386,4015,1952,2063,2638,1247,1391,3623,1737,1886,2930,1281,1649,664,328,336,666,325,341,728,394,334,748,412,336,629,293,336,706,358,348,603,286,317,652,302,350,677,301,376,770,368,402,831,402,429,1012,498,514,1010,469,541,872,382,490,783,351,432,609,281,328,357,157,200,309,110,199,46.6,45.1,48 +50,1,23,Alabama,Choctaw County,3,12548,5975,6573,680,344,336,1218,613,605,619,346,273,885,431,454,10353,4855,5498,10031,4672,5359,3943,1924,2019,2583,1223,1360,3583,1720,1863,2980,1298,1682,680,344,336,683,330,353,679,359,320,730,411,319,630,290,340,694,357,337,616,293,323,619,279,340,654,294,360,747,359,388,820,393,427,982,481,501,1034,487,547,880,385,495,804,357,447,599,269,330,374,174,200,323,113,210,46.9,45.4,48.4 +50,1,23,Alabama,Choctaw County,4,12431,5914,6517,679,349,330,1216,607,609,599,330,269,870,450,420,10251,4804,5447,9937,4628,5309,3912,1913,1999,2582,1208,1374,3476,1676,1800,3009,1294,1715,679,349,330,701,345,356,654,337,317,701,399,302,629,306,323,669,335,334,657,306,351,597,270,327,659,297,362,704,335,369,818,381,437,924,459,465,1030,501,529,886,391,495,792,338,454,618,270,348,390,181,209,323,114,209,47,45.3,48.5 +50,1,23,Alabama,Choctaw County,5,12252,5835,6417,644,349,295,1190,590,600,579,319,260,875,450,425,10135,4742,5393,9839,4577,5262,3877,1910,1967,2563,1215,1348,3361,1615,1746,3040,1297,1743,644,349,295,676,340,336,654,324,330,681,383,298,633,312,321,631,322,309,684,320,364,588,270,318,660,303,357,679,317,362,790,371,419,872,428,444,1020,499,521,897,402,495,786,332,454,615,263,352,398,178,220,344,122,222,47.2,44.9,49 +50,1,25,Alabama,Clarke County,1,23091,10987,12104,1281,637,644,2436,1242,1194,1247,632,615,1873,910,963,18766,8795,9971,18127,8476,9651,8043,3871,4172,5227,2492,2735,6302,2990,3312,4725,2084,2641,1281,637,644,1307,648,659,1433,757,676,1478,738,740,1338,641,697,1438,719,719,1193,554,639,1262,595,667,1334,624,710,1413,643,770,1534,743,791,1723,834,889,1632,770,862,1401,659,742,1202,582,620,933,409,524,633,268,365,556,166,390,43,41.6,44.3 +50,1,25,Alabama,Clarke County,2,22987,10945,12042,1262,633,629,2428,1237,1191,1237,627,610,1867,910,957,18696,8763,9933,18060,8448,9612,8013,3855,4158,5207,2477,2730,6261,2976,3285,4725,2085,2640,1262,633,629,1305,649,656,1421,747,674,1470,736,734,1336,642,694,1435,717,718,1203,555,648,1236,586,650,1333,619,714,1398,638,760,1522,739,783,1721,835,886,1620,764,856,1408,658,750,1198,582,616,925,405,520,638,268,370,556,172,384,43.1,41.6,44.3 +50,1,25,Alabama,Clarke County,3,22740,10793,11947,1313,669,644,2390,1203,1187,1187,603,584,1852,904,948,18461,8624,9837,17850,8318,9532,7958,3814,4144,5201,2452,2749,6106,2920,3186,4691,2042,2649,1313,669,644,1292,637,655,1380,711,669,1407,713,694,1350,649,701,1397,684,713,1246,567,679,1183,571,612,1375,630,745,1336,603,733,1483,740,743,1663,794,869,1624,783,841,1420,649,771,1191,575,616,907,394,513,632,251,381,541,173,368,42.8,41.5,44 +50,1,25,Alabama,Clarke County,4,22574,10707,11867,1357,682,675,2377,1201,1176,1191,620,571,1819,891,928,18251,8518,9733,17649,8204,9445,7883,3794,4089,5177,2435,2742,5975,2856,3119,4678,2022,2656,1357,682,675,1333,668,665,1348,685,663,1386,715,671,1320,644,676,1361,660,701,1300,593,707,1146,545,601,1370,637,733,1285,580,705,1454,725,729,1611,756,855,1625,795,830,1435,638,797,1119,537,582,942,411,531,646,252,394,536,184,352,42.7,41.2,43.9 +50,1,25,Alabama,Clarke County,5,22337,10581,11756,1356,678,678,2371,1182,1189,1166,609,557,1783,893,890,18031,8425,9606,17444,8112,9332,7794,3751,4043,5115,2390,2725,5863,2794,3069,4683,2035,2648,1356,678,678,1353,664,689,1288,659,629,1381,724,657,1298,637,661,1319,632,687,1347,604,743,1141,530,611,1308,624,684,1280,581,699,1424,701,723,1541,728,813,1618,784,834,1423,636,787,1094,521,573,950,419,531,643,256,387,573,203,370,42.7,41.4,43.9 +50,1,27,Alabama,Clay County,1,14237,6994,7243,772,399,373,1494,773,721,671,375,296,1108,571,537,11641,5635,6006,11300,5447,5853,4775,2351,2424,3177,1509,1668,4072,2025,2047,2943,1342,1601,772,399,373,784,400,384,891,477,414,780,428,352,818,414,404,794,375,419,772,345,427,817,399,418,794,390,404,930,452,478,1002,510,492,1112,554,558,1028,509,519,885,427,458,770,376,394,584,257,327,412,174,238,292,108,184,44.3,43.1,45.3 +50,1,27,Alabama,Clay County,2,14212,6987,7225,764,390,374,1477,769,708,674,374,300,1110,573,537,11630,5637,5993,11297,5454,5843,4772,2356,2416,3171,1510,1661,4050,2013,2037,2966,1358,1608,764,390,374,775,395,380,885,475,410,778,431,347,823,415,408,800,383,417,772,344,428,804,391,413,795,392,403,918,444,474,991,508,483,1108,549,559,1033,512,521,889,428,461,789,388,401,576,257,319,412,173,239,300,112,188,44.4,43.2,45.4 +50,1,27,Alabama,Clay County,3,14170,6959,7211,739,359,380,1480,785,695,696,374,322,1095,579,516,11578,5624,5954,11255,5441,5814,4759,2363,2396,3150,1501,1649,4035,2012,2023,2975,1349,1626,739,359,380,783,403,380,879,473,406,779,437,342,830,425,405,774,374,400,763,342,421,794,383,411,819,402,417,885,422,463,994,509,485,1102,541,561,1054,540,514,897,429,468,830,403,427,545,247,298,387,148,239,316,122,194,44.5,43.5,45.5 +50,1,27,Alabama,Clay County,4,14183,6929,7254,772,370,402,1467,767,700,734,398,336,1020,535,485,11575,5599,5976,11210,5394,5816,4767,2362,2405,3198,1529,1669,3970,1974,1996,3022,1356,1666,772,370,402,771,394,377,881,473,408,794,440,354,775,393,382,823,394,429,760,344,416,798,378,420,817,413,404,840,394,446,976,492,484,1087,538,549,1067,550,517,919,439,480,789,371,418,586,273,313,384,141,243,344,132,212,44.4,43.4,45.4 +50,1,27,Alabama,Clay County,5,14111,6875,7236,780,377,403,1449,738,711,725,384,341,974,521,453,11526,5566,5960,11157,5376,5781,4731,2347,2384,3207,1542,1665,3892,1934,1958,3084,1379,1705,780,377,403,795,395,400,829,443,386,792,421,371,732,384,348,831,398,433,797,382,415,772,351,421,807,411,396,815,388,427,945,474,471,1061,525,536,1071,547,524,958,463,495,777,359,418,573,269,304,411,153,258,365,135,230,44.5,43.4,45.5 +50,1,29,Alabama,Cleburne County,1,15057,7455,7602,908,459,449,1741,877,864,803,426,377,1048,563,485,12004,5914,6090,11605,5693,5912,5056,2582,2474,3407,1700,1707,4155,2081,2074,2995,1349,1646,908,459,449,942,475,467,1001,509,492,907,501,406,742,381,361,876,430,446,833,427,406,884,432,452,814,411,403,1046,530,516,1040,546,494,1111,562,549,958,443,515,934,454,480,832,388,444,585,262,323,323,144,179,321,101,220,42.7,41.4,44.1 +50,1,29,Alabama,Cleburne County,2,15064,7459,7605,899,452,447,1749,880,869,806,425,381,1047,567,480,12011,5920,6091,11610,5702,5908,5062,2588,2474,3410,1702,1708,4153,2079,2074,3000,1354,1646,899,452,447,944,474,470,1006,512,494,905,500,405,747,386,361,867,423,444,841,432,409,882,429,453,820,418,402,1030,522,508,1042,547,495,1106,556,550,975,454,521,939,455,484,831,391,440,584,259,325,329,148,181,317,101,216,42.7,41.4,44.1 +50,1,29,Alabama,Cleburne County,3,15156,7479,7677,931,478,453,1751,877,874,818,411,407,1078,587,491,12065,5915,6150,11656,5713,5943,5140,2610,2530,3448,1716,1732,4144,2071,2073,2986,1339,1647,931,478,453,948,468,480,1007,513,494,897,474,423,795,420,375,847,406,441,874,454,420,892,417,475,835,439,396,984,490,494,1049,553,496,1078,534,544,1033,494,539,932,439,493,834,398,436,576,243,333,330,158,172,314,101,213,42.3,41.2,43.6 +50,1,29,Alabama,Cleburne County,4,15372,7614,7758,931,477,454,1777,902,875,840,418,422,1063,569,494,12229,6016,6213,11824,5817,6007,5251,2669,2582,3565,1789,1776,4184,2107,2077,3012,1352,1660,931,477,454,971,479,492,1023,530,493,908,468,440,778,412,366,867,441,426,936,478,458,886,410,476,876,460,416,960,487,473,1073,554,519,1066,527,539,1085,539,546,924,432,492,812,386,426,626,267,359,346,167,179,304,100,204,42,41.1,43.2 +50,1,29,Alabama,Cleburne County,5,15639,7753,7886,925,456,469,1819,929,890,879,454,425,1075,576,499,12452,6141,6311,12016,5914,6102,5417,2782,2635,3672,1860,1812,4216,2120,2096,3053,1358,1695,925,456,469,1018,522,496,1010,515,495,962,494,468,783,428,355,870,456,414,1014,520,494,878,415,463,910,469,441,934,466,468,1076,547,529,1104,548,556,1102,559,543,899,407,492,814,388,426,657,280,377,377,174,203,306,109,197,41.9,40.8,43.1 +50,1,31,Alabama,Coffee County,1,53459,26607,26852,3213,1665,1548,6550,3344,3206,2985,1529,1456,4254,2254,2000,42184,20813,21371,40711,20069,20642,20128,10329,9799,13671,6962,6709,13743,6839,6904,9043,4014,5029,3213,1665,1548,3505,1815,1690,3827,1945,1882,3351,1721,1630,3106,1646,1460,3302,1677,1625,3442,1768,1674,3545,1789,1756,3382,1728,1654,3684,1829,1855,3394,1704,1690,3382,1750,1632,3283,1556,1727,2852,1323,1529,2558,1232,1326,1632,712,920,1083,427,656,918,320,598,39.2,37.9,40.4 +50,1,31,Alabama,Coffee County,2,53549,26619,26930,3218,1656,1562,6558,3351,3207,2995,1537,1458,4261,2245,2016,42251,20821,21430,40778,20075,20703,20162,10328,9834,13686,6958,6728,13762,6839,6923,9069,4033,5036,3218,1656,1562,3523,1820,1703,3815,1943,1872,3361,1728,1633,3115,1642,1473,3325,1694,1631,3440,1760,1680,3541,1787,1754,3380,1717,1663,3665,1812,1853,3408,1713,1695,3394,1749,1645,3295,1565,1730,2867,1334,1533,2570,1231,1339,1635,716,919,1073,424,649,924,328,596,39.2,37.9,40.4 +50,1,31,Alabama,Coffee County,3,54199,26866,27333,3347,1704,1643,6628,3344,3284,3117,1610,1507,4315,2250,2065,42633,20981,21652,41107,20208,20899,20472,10475,9997,13827,7024,6803,13776,6852,6924,9189,4082,5107,3347,1704,1643,3578,1843,1735,3837,1910,1927,3507,1805,1702,3138,1646,1492,3326,1699,1627,3510,1801,1709,3547,1793,1754,3444,1731,1713,3617,1788,1829,3511,1773,1738,3326,1692,1634,3322,1599,1723,2895,1340,1555,2624,1239,1385,1687,738,949,1038,416,622,945,349,596,39,37.8,40.2 +50,1,31,Alabama,Coffee County,4,54840,27235,27605,3335,1692,1643,6664,3418,3246,3214,1652,1562,4378,2309,2069,43204,21283,21921,41627,20473,21154,20810,10668,10142,14022,7113,6909,13793,6868,6925,9434,4183,5251,3335,1692,1643,3619,1881,1738,3849,1943,1906,3598,1851,1747,3190,1704,1486,3326,1684,1642,3514,1785,1729,3539,1829,1710,3643,1815,1828,3552,1765,1787,3598,1803,1795,3318,1676,1642,3325,1624,1701,2992,1385,1607,2519,1171,1348,1917,851,1066,1039,413,626,967,363,604,39.2,38,40.5 +50,1,31,Alabama,Coffee County,5,55643,27581,28062,3385,1689,1696,6665,3470,3195,3358,1697,1661,4365,2267,2098,43925,21604,22321,42235,20725,21510,21157,10771,10386,14247,7211,7036,13859,6929,6930,9764,4318,5446,3385,1689,1696,3595,1915,1680,3883,1959,1924,3729,1892,1837,3181,1668,1513,3346,1704,1642,3547,1792,1755,3592,1832,1760,3762,1883,1879,3551,1799,1752,3708,1849,1859,3314,1667,1647,3286,1614,1672,3106,1427,1679,2520,1163,1357,2052,925,1127,1080,421,659,1006,382,624,39.4,38.3,40.6 +50,1,33,Alabama,Colbert County,1,57232,27572,29660,3265,1661,1604,6187,3122,3065,2719,1379,1340,4220,2106,2114,46411,22106,24305,45061,21410,23651,20235,10013,10222,13991,6874,7117,15446,7446,8000,11404,4984,6420,3265,1661,1604,3290,1657,1633,3592,1811,1781,3098,1591,1507,3146,1548,1598,3752,1868,1884,3606,1794,1812,3348,1634,1714,3285,1578,1707,3529,1685,1844,3817,1872,1945,4119,2015,2104,3981,1874,2107,3595,1695,1900,3042,1371,1671,2152,909,1243,1383,540,843,1232,469,763,42.3,40.7,43.7 +50,1,33,Alabama,Colbert County,2,57304,27642,29662,3269,1665,1604,6170,3118,3052,2745,1400,1345,4225,2102,2123,46471,22158,24313,45120,21459,23661,20259,10033,10226,14001,6889,7112,15426,7430,7996,11468,5038,6430,3269,1665,1604,3284,1661,1623,3598,1815,1783,3102,1595,1507,3156,1549,1607,3709,1850,1859,3646,1814,1832,3355,1645,1710,3291,1580,1711,3496,1669,1827,3822,1874,1948,4130,2019,2111,3978,1868,2110,3612,1709,1903,3087,1395,1692,2139,902,1237,1381,551,830,1249,481,768,42.3,40.7,43.8 +50,1,33,Alabama,Colbert County,3,57644,27765,29879,3285,1675,1610,6187,3129,3058,2826,1423,1403,4286,2153,2133,46722,22229,24493,45346,21538,23808,20410,10071,10339,14036,6875,7161,15372,7390,7982,11652,5120,6532,3285,1675,1610,3358,1706,1652,3567,1803,1764,3147,1599,1548,3227,1597,1630,3544,1753,1791,3775,1866,1909,3370,1658,1712,3347,1598,1749,3405,1633,1772,3884,1906,1978,4086,1998,2088,3997,1853,2144,3659,1741,1918,3228,1439,1789,2088,886,1202,1395,556,839,1282,498,784,42.3,40.7,43.8 +50,1,33,Alabama,Colbert County,4,57993,27892,30101,3285,1707,1578,6143,3096,3047,2928,1452,1476,4227,2121,2106,47053,22327,24726,45637,21637,24000,20642,10162,10480,14248,6972,7276,15206,7288,7918,11956,5256,6700,3285,1707,1578,3369,1711,1658,3535,1768,1767,3197,1616,1581,3197,1574,1623,3529,1741,1788,3875,1913,1962,3442,1684,1758,3402,1634,1768,3325,1594,1731,3898,1879,2019,4011,1954,2057,3972,1861,2111,3781,1784,1997,3185,1412,1773,2240,971,1269,1469,591,878,1281,498,783,42.3,40.7,43.7 +50,1,33,Alabama,Colbert County,5,58361,27995,30366,3317,1707,1610,6163,3077,3086,2991,1482,1509,4220,2118,2102,47373,22462,24911,45890,21729,24161,20935,10286,10649,14474,7058,7416,14958,7166,7792,12238,5387,6851,3317,1707,1610,3405,1698,1707,3508,1751,1757,3274,1636,1638,3187,1592,1595,3567,1771,1796,3859,1891,1968,3578,1716,1862,3470,1680,1790,3300,1558,1742,3780,1820,1960,3895,1906,1989,3983,1882,2101,3873,1820,2053,3197,1415,1782,2320,1012,1308,1540,622,918,1308,518,790,42.1,40.6,43.5 +50,1,35,Alabama,Conecuh County,1,11597,5571,6026,591,283,308,1248,621,627,559,285,274,856,433,423,9489,4534,4955,9199,4382,4817,3714,1836,1878,2443,1186,1257,3167,1507,1660,2733,1256,1477,591,283,308,694,339,355,698,350,348,659,337,322,612,313,299,647,320,327,585,300,285,590,276,314,621,290,331,665,293,372,733,351,382,872,420,452,897,443,454,797,375,422,752,365,387,532,251,281,353,147,206,299,118,181,45.8,44.6,46.7 +50,1,35,Alabama,Conecuh County,2,11554,5549,6005,585,278,307,1235,611,624,558,284,274,863,435,428,9460,4525,4935,9176,4376,4800,3700,1833,1867,2426,1184,1242,3149,1497,1652,2738,1260,1478,585,278,307,690,335,355,692,346,346,655,335,320,619,314,305,637,319,318,592,300,292,574,273,301,623,292,331,665,293,372,727,349,378,867,416,451,890,439,451,807,382,425,745,364,381,534,249,285,351,149,202,301,116,185,45.9,44.7,46.8 +50,1,35,Alabama,Conecuh County,3,11320,5456,5864,584,303,281,1130,565,565,538,274,264,850,418,432,9319,4446,4873,9068,4314,4754,3621,1782,1839,2379,1165,1214,3072,1458,1614,2767,1273,1494,584,303,281,628,309,319,648,331,317,624,313,311,618,304,314,618,313,305,601,300,301,555,272,283,605,280,325,639,281,358,716,354,362,826,387,439,891,436,455,826,385,441,724,361,363,563,266,297,352,151,201,302,110,192,46.5,45.1,47.6 +50,1,35,Alabama,Conecuh County,4,11224,5397,5827,611,314,297,1114,557,557,553,280,273,803,397,406,9214,4380,4834,8946,4246,4700,3574,1752,1822,2355,1147,1208,2982,1410,1572,2806,1292,1514,611,314,297,620,300,320,631,329,302,620,317,303,599,288,311,606,304,302,615,302,313,542,254,288,592,287,305,616,278,338,709,342,367,781,365,416,876,425,451,860,404,456,672,331,341,606,285,321,362,155,207,306,117,189,46.6,45.1,47.8 +50,1,35,Alabama,Conecuh County,5,11174,5405,5769,633,330,303,1114,561,553,533,267,266,788,393,395,9184,4388,4796,8894,4247,4647,3574,1765,1809,2363,1162,1201,2924,1382,1542,2819,1310,1509,633,330,303,604,300,304,620,318,302,617,316,301,594,287,307,599,301,298,643,321,322,544,256,288,577,284,293,606,285,321,696,320,376,767,365,402,855,412,443,862,421,441,660,311,349,606,289,317,368,163,205,323,126,197,46.3,44.8,47.7 +50,1,37,Alabama,Coosa County,1,10378,5261,5117,439,222,217,837,448,389,419,211,208,661,352,309,8885,4488,4397,8683,4380,4303,3142,1646,1496,2171,1133,1038,3356,1681,1675,2495,1214,1281,439,222,217,458,244,214,488,254,234,485,255,230,486,258,228,575,328,247,515,262,253,534,272,262,547,271,276,735,344,391,769,397,372,898,446,452,954,494,460,822,428,394,673,322,351,489,257,232,270,117,153,241,90,151,49.6,49.1,50.1 +50,1,37,Alabama,Coosa County,2,10335,5211,5124,450,226,224,835,448,387,410,206,204,652,347,305,8838,4435,4403,8640,4331,4309,3093,1599,1494,2135,1095,1040,3327,1659,1668,2526,1230,1296,450,226,224,457,245,212,482,252,230,478,250,228,480,254,226,562,314,248,511,257,254,526,266,260,536,258,278,710,330,380,766,389,377,896,449,447,955,491,464,838,437,401,675,324,351,490,254,236,273,121,152,250,94,156,49.9,49.4,50.3 +50,1,37,Alabama,Coosa County,3,10314,5194,5120,452,229,223,834,440,394,403,198,205,643,343,300,8826,4429,4397,8625,4327,4298,3060,1575,1485,2117,1083,1034,3289,1626,1663,2576,1275,1301,452,229,223,462,246,216,475,243,232,461,243,218,482,249,233,569,305,264,505,267,238,522,260,262,521,251,270,660,314,346,788,388,400,886,458,428,955,466,489,860,457,403,704,347,357,473,235,238,271,128,143,268,108,160,50.3,49.9,50.7 +50,1,37,Alabama,Coosa County,4,10307,5234,5073,465,245,220,813,435,378,409,191,218,615,339,276,8834,4464,4370,8620,4363,4257,3075,1606,1469,2152,1125,1027,3195,1579,1616,2658,1320,1338,465,245,220,459,243,216,455,241,214,458,228,230,465,253,212,572,303,269,526,291,235,519,265,254,535,266,269,628,320,308,782,373,409,843,440,403,942,446,496,885,475,410,707,352,355,497,235,262,308,151,157,261,107,154,50.5,49.5,51.3 +50,1,37,Alabama,Coosa County,5,10268,5192,5076,445,238,207,818,427,391,402,200,202,606,327,279,8802,4425,4377,8603,4327,4276,3064,1600,1464,2153,1127,1026,3103,1527,1576,2741,1346,1395,445,238,207,478,246,232,437,235,202,462,226,236,449,247,202,553,296,257,544,294,250,527,267,260,529,270,259,590,291,299,782,374,408,793,402,391,938,460,478,913,472,441,715,367,348,514,222,292,327,171,156,272,114,158,50.8,49.8,51.7 +50,1,39,Alabama,Covington County,1,37563,18215,19348,2144,1089,1055,4182,2159,2023,1970,1015,955,2618,1316,1302,30256,14471,15785,29267,13952,15315,12513,6201,6312,8404,4112,4292,10137,4992,5145,8108,3532,4576,2144,1089,1055,2300,1183,1117,2361,1218,1143,2229,1157,1072,1880,932,948,2139,1083,1056,2116,1051,1065,2116,975,1141,2033,1003,1030,2265,1124,1141,2344,1151,1193,2726,1322,1404,2802,1395,1407,2410,1145,1265,2126,993,1133,1532,690,842,1021,374,647,1019,330,689,43.6,42,45.2 +50,1,39,Alabama,Covington County,2,37506,18187,19319,2111,1072,1039,4177,2157,2020,1973,1015,958,2630,1315,1315,30239,14463,15776,29245,13943,15302,12508,6193,6315,8385,4105,4280,10081,4960,5121,8149,3563,4586,2111,1072,1039,2297,1182,1115,2360,1217,1143,2235,1160,1075,1888,928,960,2100,1061,1039,2133,1068,1065,2108,967,1141,2044,1009,1035,2245,1108,1137,2348,1158,1190,2701,1310,1391,2787,1384,1403,2437,1156,1281,2136,1001,1135,1529,694,835,1015,372,643,1032,340,692,43.7,42.1,45.2 +50,1,39,Alabama,Covington County,3,37570,18208,19362,2137,1092,1045,4176,2176,2000,1969,999,970,2738,1367,1371,30283,14455,15828,29288,13941,15347,12686,6253,6433,8469,4131,4338,9812,4802,5010,8269,3641,4628,2137,1092,1045,2326,1205,1121,2340,1215,1125,2274,1167,1107,1943,955,988,2044,1031,1013,2208,1097,1111,2086,951,1135,2131,1052,1079,2119,1018,1101,2360,1182,1178,2601,1261,1340,2732,1341,1391,2510,1190,1320,2168,1031,1137,1535,706,829,999,361,638,1057,353,704,43.2,41.8,44.8 +50,1,39,Alabama,Covington County,4,37603,18240,19363,2137,1108,1029,4203,2196,2007,1981,1002,979,2713,1377,1336,30280,14435,15845,29282,13934,15348,12761,6280,6481,8549,4152,4397,9627,4679,4948,8393,3726,4667,2137,1108,1029,2371,1235,1136,2314,1212,1102,2288,1171,1117,1924,957,967,2022,1006,1016,2239,1112,1127,2117,983,1134,2171,1051,1120,2063,995,1068,2370,1188,1182,2513,1215,1298,2681,1281,1400,2610,1262,1348,2089,991,1098,1653,768,885,988,362,626,1053,343,710,43.1,41.6,44.7 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1970.xls b/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1970.xls deleted file mode 100644 index 1e86cc5e34c3801a1063f245858dad1353a5f20d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1326080 zcmeFZcX(9g8@2nS_fC)^5IQKmi^c>H=~5I6ique~DI^pnf=U$BAfjNQSSf-CqEtme z1VupsK?OxAVneJT`V-7~*9;-aW)atSoqYeC>x3&q=FXkH_w0Grns;UbJ3mf1_}r`I z4w>iUN(-`o^CB#?5KnerUmSTB#GCtmULLOH{~hMO7w$eI+-IcwjB=mR?lZ=H#=6fq z_Zja#6WnK_`%H45rQBz-`z-A~FLIw{+-F($SS3&1gK z3@}S|Uq#wnM-!~9@5mB;mr1_M54i(S1w`320@bZK(CL;r4&`yT7_)$(!^hZf@ZD`+e5o z2=g7)dEdRnhPb0`mj7Lg325Ux-l5jtckC(F+1-M{HpDXBZK!B<0s@?Uc25@Ov0()N zr}3pb+TyqIt2^R^bH~K?0;AM_8dvv74=jW!OOLUCaj3EX*pLzkzyg-^K0S z|9$^4bZ|GUO7WX0{zwXMY^YsgjVz$gxm$dRrJQ#@ihdVor{Ij?m@aqcE&q(+=c`y< z_vt^E_)fa->x#kkoLk$hPpwN*s@ADmwLzcSm*eYOYWc3+;=fjCaPwin%WS(R#4 z@^9xYweqjr;%-)DTj0j1@b_=-kuk7$QK^b8bfa=k^6$Ms@$I}~a7|m}&b7z#Z0)St z+!nk0+T9*^D249<-_^o*f)5nAAJXh4cRv*QQUCFr-PqZm_U*{sr}-NwI41{PL*nCP zUW)H;|HZ}>a6Cl$_=)^)70>a|!u$(yY?b-{U*-WWh6Nw~^I66L-+6fb?015n@tyzk z`SJ_!X&2y6Ux3fK0AF$e{_+L*g^p+T1^lHK;1}Bdh5T19u$}+g$Ft72U)La>`|GU> z@KqP!Yc9ZFy8!p!-t+hCKc49Gj%S%~J8s?WKhDP!5}t^9BFcjO_e`F@JoWEUU5e~x>4EH>XicYgfylaSB%SYP*Lx%}<8XDI&dpF2+fe3r`R za}yFuN0oNx*`K?(eD1dIKhOU2kChxd&tdt#=Q!OB%)edz%&t6l9+L98$9LF$R5qL8 z|0@6Z{nt|5sVT}sd{>?SWKnK-l*Pi}^(s};Q_@rNx8r}te!lPLPMgZMbLn~8G4~39 zne(R<_!GlR*+ks&=RU5s%f>z*lpS8zvWxJ`oe}7sHJ0*i1zYkxrn`r_Sht1@$PRDi z`2pORpbP#$VEEZB1v||>RJvtORks1}M%?4{e{Uo&t@w>JRyNY8anX%K8<}gNd?R`96}OS*MK^N81&$=| z*xW)#@~G$TZ0a@==DRy_)M;sBFK{H=pE|dZu(LOD(xgdw`Kx2x?brYqR>xR!MigRL ze&Qpt5c2_dksa%AZD@{qqhg|8B{f9B}SToqxJ7Id{vDe|*r9Ua(-nxsBw{K*^nM zZ!lBcVfcfITjuVUqBD>kKHf9QEu0o&`T5Js+kWl`@(*_9%9VL`_EzMd86P`)EAj{S z9CJgHKd|SR8=CW5w0@C;#ob-x3}%P-^c?IJ?gxU;wP=95R^$h8#JDfcc9-v9agonl z?0g4%emzxjKUGlA?n==OxsmOi zi{FTQ8u{NFIoI(QxH(meY{XsR=L8Sn7d|Ig&iv=i$rx1pMzHq$&y8&FT>M7dv*!Qa zNTbHZZ=_n0jkqiPoM16>;d6o|@PFQ%j6ub3#4RxYdn4OB7r&8;%0?PBE`B4`i)_SQ z;pYSk%nP3rEGLC?Qv62BDjV6}x%iE^74Cl@Nu$QaZ=^<%jkqiPoM26P;d6qey>L#7 z--vqx@!uQS-nsaVq$nF{)VTPK)GV?QcZHu5Ji)r~IlXyN54p)S!Aw-IP`X24sxPY&bK#i_OHTJNpq3Trn@ky(ZVds=MbW zb=_wx8{qzA*ht@d9N2AuMO#>K#-M$Ne$NZR*LbvX5BAmFV|gHUli=M=qw{xDrI_9L zpKADa6Ou9L^f#aK-6VQ<)A;<|)F@^*{wE{8-GpWgI)3~(-%XNtH%-pp%_YU`22WSc zp0u!xL3zJ#=esH8-A&W;cT=yJ-QZcl+1-R^3_5V^6yHs-%X=pcH>{Y`c7Iz z#-PK$?B}~FjomaUe$pzr-82yWWbCGv9WYVe@vzx+`w!QOTA1>p&DdXJ@ znY5b4?56OfZSVZW7hmw*l=be0OxmTz?56OfZSS1-?NfX=<-EHglUBc&-4vd*?VUG# z_A}p2dGBt>q%|&PH-#r{d*`hOU+25I7`tg!{G_G0-82&>tx@CYFJ0iiso>oWnY3!f z?56OfHEMif#T0&PDtdQACaqR6yD2)hjJE6?L* zg}kr}K31AtHTqruM)5%DKF&T?M!WYd&u!FAly{?*JsT}NMP|pd8}f}-E7+);AMZx1 zdp25lX3Y0w+xMvMJ<{q08+Fs--DqvkMhj1fyU81kA8Cz(jk?+JZnUmvqlM?e?B+Rp z`9^CNY}8GHccTqG8!deAo87*w9ouNQd(+rG32)tR;LPyLir(`9<@189wR=@@;JHWO z5WM!`UI@f_#MgMW@a#Pv?_O1NFZ;LYH+(?W@P3&?M~$2reoxU22A0l?GXF1{46rQs z>oNV@(rc)Va!WA0oQ20;Y!t6r5#Z#)*TRcjizssKvA{U@ zzPo$Bpv{ns0mD+-WDFlZGklWgxGu_zbjLNsEd~eJFt;>p{`?OXc}unFgWqTb{%_Y?Iz zKM|G}ecn$L-B+^JcPnsfJO1|J{YLi795s4E%5@pzGiQdkE4rz`rg`z!*2cSE4a0pu z(s%!latAWOo%8G5;f#0lfLGe`?|t0aXU8kT-8T2~OuJE|+@M}wbh`oN@`A0MJ87dl zqly>4^S9-8mcOl7_b!Ng2GKsF-@u_G2dB8_3Z4TEig#zWy*nVx{!n+IgWUo8-)!)W zfD6o3*WKpd97ZwB9htuf9}A3iPcjN^+;yLK;|XNr{{Fkb#`DsiUwg>i5Ny10;f=cv z^lm(nY~0_27udLeX%Oh!c$2~#cU|ZygrFp{arB}89t$gcS{@6Gw5INkv<@S0&vK)X zRrD?kEah%b2X|&~ce98)y&(R1?&babI}Psv{J)HUyjvi-Ug|t_U}|s;U(| zgpd$--n+TmJo?=8eE-RcbiYRBCiA+XnZw=LYFPBAg5uo0ah)56Om}i|zRn-+01WpP zzDDHb&}$-iGdaQixz25*zwg#w>kfH>@2f8E zwxj#9+?X|TXK|>F^-WNLQTR7Rn_1rgyfu>Jj`~i#pWueE;bqMmJRM%fo-VY<0DQ}R zxZ7qgxZfgvq0slhA9g<%;2y_b3Bcb0!56t-z{~%cGFILN(*p3j1!q~9d&f8c_k(*+ zW>Y}8`!wr2G{8<&r2Bl;U$w=uo>h`m16p%KfvPNbO zb>AI2()Zn-BZp?Xs<<}O_apr$q_i5GQ77fvjPZ3+`i&fz(xcyijFu@W9kYf{NNHFn z1vj%6YA!Ql^vI0NlpYzwGy09mNEzsU+G$+}WRB{eF*>DDqdF;#8Z>BfwVS(s{fB3y zj2oIcBxUrdaVbOG!%)U(-`)p|8lE*`n0~_x-?oC=eW4qHgRko@E^`mxH)Zr2jnk3;Q||S=t2=bN)_)%S2ZR$f!JV&x z8DkR7a3bov(~{C*}<^@IzpV8v1;oh}rarVUcPUonx8Kd38^oAjB+)_sL z8=m2=v>x8itx|Etojd=PK^eH}?x3!2bVsL*c4vKz&v17^VdVE*7#cKe(4ZmO!?$5S z&T~)l!fja{fAnhCbHCByva;O$9qV%2+`VTw+xHH}^Dwv*)kzPZgP7m1OXeXg5ud&ZdF^~R4F{_>+A zUbDGDeA`p)Pv3X6ZpXPR)5EL(aPNE5-+O-I#`mA9R(jj#D;M?r=Tzt2*R@`pQhIou zeT`4ezx>GP4VA)HZGLj@qK?adZ+&UCW98fRUhsAEuKSi)(2_ zR`UlYcbN8cj|F#qd;8$dD^sV>7+q<`i@X2VBJjheV{1%4GdXrgR`)N<9GmuNizD0G ze0DTw^@<8Nrv7~N?`3_Ti92V^iOrbnmvD7Z+6zzj^%a_rGx07pwZb z*=^SgSL|q5enI=y4Q3_AP2Jb^%^t6`9=K~;{O*ozzi86G+N4E~-qGi?N>9!&d$3vO zPfnKZ@mce}uROANTi$D%8*HE7bsGN3Pv4V{yikJr#GZ zTKo5>XWUIW|Ar2mFuU}9?gl>SKJgZ+o8l1}^$T5gaZefsXN<;#L~rjBxj7|1{ZRIE z<7Vt@KH!a7ZTqkM@Rc|Iv^I0gwR-Q_-OqgS+0i5SHUH@AQhVogin*!I+_0DjGj`OQ zy5`r3brzLhyuba$Tj~ry^j`9}Ka4N4?e*NGuRFXyrh9hPy)$x_tvZnM>8eZjR{o{V zfm_#AyDjyhb~k+g$*J0h+a9~LMr2?Me(=}q9i#^sRgbZmm(IMlen{ktZR>~J zdF;7b<(>^FcVc&?0V%EK{5v&v-R^p|yZ;t+^`oU%TboYVjZe2|e0k%`@A~fN*QVZC z^U0`p4zKU?X3t+!FOJ(c_1#tnCVlzK#IawTnsU`|;oVCgS)aD~owwiklhX>$Y!d z{Iu-)S0^k^z4(!B@pok}*!}fQwMJdL_TdHHqS}0LSI4HSt2G(hr1m9Ko}5vRj{^=ht+lsLuTA4xc3JU!&S%e->T~O+C(5t7`om9`x2pZt%6pfW z9((hGB@6o8*Sh23ZISD{y)wM%MT>T%47mE#++TaG+w;=Mk7j*WYwG=V*6%4jp!A1X zuaDMwbl^>ilb!I@#uda+}9sXwUmd+bT_j_$;?ctjyovi)C zsQoVtDPOfsuipY|^v~$<+i&mAc(4UT@5_t(j$;v`KgVu=A}CcWs<76=ag)1lXjkXnpq76f33z+%RcTkfJ2SoV z_hT22{BUPr#qIG~hsu54>`+qdOq~UcoEP8iX%Hbv*o{4@r{ezr8+XvtM)VlC{m)89v^O^B6SNC2t z@=#Lwh&3V4$Nrw(xo+dH+FU!W$`c=4`QYNAzh+l!bJ4c19**mB%gyb7&755OkNs8a zOzHIPjLj2b7Nt#zJ~H;MCqAlDep~gY)@J@(b!+E=4|RFE@`H&Nt!{UC=eu8Bloa0m zn+gqoxOd!B*$*rp_G{3CpRNBVV$-u&0iQW zrT0yPo@jUd*aJu3En6XXXy2SauiRQ{-t!4tzdG_yY-r5v8=HOHAuYV}(x3X>&^I-G z?8{4zm5Cbi*mZqgd%DW0X)9WxYa_vo3DF;o-Q{tzGIje&*#{y4HVeP5qtw77uOL^60L{ z&kQ;K{@~8Fj&Ccw<)7AFvxBeL^>E7-i@!OsHfeCxjn$?sU$T8uXz6+f+kZHI?zWGo zMc-AqW8Ws%otQNedD^45j{Wia@hx-L4}bicmJhXUy0`PCOVbjT0c+R`C@4G7N)x{6LICy>ECSeiTD~I*# zK4!(*Wqa!1vg)0{#TmEW({5y3#XZOFUKd;?C3tg-As@HqZvOiCn1ic6?DqSK``_+3sKeSBb*sIz=U~epUfh>bC2`CnGZ+87^vGbhfsZOb zee)ejiSM-Q^h)T^qXVjjU9)E1!|x5a;_-!Fr zjJ|sJ_F)TW^}KFx=HQ0I9%x(k#+66+KKSOQ+xqo?f9Rl`uGgL#{lT)jqYw0WW=7A5 z2IB{%wcEQPy;Xz7N9WwMr__}d_Q{FwgyD>4jad8B^z zp8QIS7aqC(n<_6XZ1w&dJKLYi%6|5@IRO*5RNK%${;s`Nc6PU?^IkjCqTIB>^(&R` z{crbHWA^2Q)OvpF_JdXDEa@El!OiQ}zx(yMn;sBY*Zp4Fg;uprEA&CuxZOGx-GFzQ zSMbvf-1#iD==1)dciB|%gJs=%vhbbYJ^kJ-dDk!nTl$o3$+x2MZo@kS1>4x?UhFJ< zG{uZWw@x8$DTP;{LaevD^?TeC9_b$~gAo?5tX*u#!JT!_Jg?Eja?@kRdSaa3S? zcL@HE1s%-(bWgFz^)Nfr%e@{k!2L_|;bybkONmYf`5Ci$ApurBHo%sZ4zQ+`0&GLg z0Bh^+#2qaHtY@nLJJ2D(GI|8q@m>LzH6Xyw3=6QF%m9nY4zO7{0ajspfGwCEV0E7f zuvLo!EOkYIZCM*&UEHe{d$$Ex@7)1*bbo-2I1*qdj|Euv3HQ>5Tb1U91X{9tmNu_+ zpjEFFXv=B_TGIxBwxLC!wQUt>J30hf&mMtxpjV(}3<$L2!vZZUGtkaV478ja_iL-u z18tUjc30tZEp=0%ZP^xRU3LfB-u;2r`$(W2Jr-yqP6XP?(}9*9 z;$HfU4YJ(QL6%%8$mZ1yvg!?jY*~vSYuYNvHgpKGwmpJuN3S63IUvXm3=6W1%pf~H zG03uVg6vFgkmbyFzgF~2kj+{YWEEBf*@Cq}R(Dg7t=bl3sk?)0%l;tiawN$19t*PG zCxYzg=^z^s5^N`9f-SqWd)cf~u;tbaw&VuEHm^mnRc{q+%Q^&G(;mULp;xfA9T03g zh6P*C%wRh(G1xM4g6(*2uw~5-wlnjCEoYJY#nu(UHfwFLRoE143$_JY-QB^qYJae$ z9tpNB$AYcPiD27%I@o%LgxJxT5F1fC#7>`*%}Kh!c7h1&7up_a8a)Xr=S zwVZ9C7PC9lX6+BP3P(b1!Ld-Qdm_|Uoes6skTBa46J}jXhuPkWVb;55m>sPjW+PgJ z*~#=U%kB_nAw9w@w^x`Y4+yh)!@{h3W|%FT7-mg#!fZosn6;f9W;^DGS)Yg?F|*%f9v``vG;9|^Nr$K1cgJrQOLPKR0DkZ@ZS6K<)c!);5&aO+Yt z-1gQFx85zn?Pz+qjpz_=C%cDRcCT;?aj!|qfWk{MyS6C*4+C&K3C zMp*UP5w>i8gf(3hVH=i5SlhJ`wqs+2_1qR=2X;kR#{LL9emKIijz!p+KO!vWbcDr( zMA|I(-&s^}|6Rp`ijh{gW~8mEA8DyAB5g~0q;=^KX?wdzTJK(wcC>$_jTjbbC&xru z_QXgF$%(Yw+(=8F9clCCM_Tnok+y8PduL^Bq;1$3X>GSf+Kye3)^mTP9XK3m8OI{+ z_#cs$bvn|{1V>p;Oq9jAf4(%UVw6>=8D$IVM_Jt#QMM{Q%2GQ-*_Q56)}>dJ?d>0B zy@y5F(J@grVq%n?oDyZ(xltA}JIZqBM_KZsD4VxD%Bru8vSk~itm(EW+psIj+U}3C z9fzZ==dma|@JEzooQ|^N!O@l#6K!Xbqb;Xmw8hknwpsO~twM`vTaX@Ybvs1cs_xO2 z+AG?&^pCbK!=i1kd#SMZ#ArJ@CE7;hM%&3*(Uv{my&b$L+H#jiTk_gyo3}CAs&9+7 zWxJxS>HcWja5&o99*edee?(i))6sSyIL0z!V(fTwjAd1fu`@MdET?{q#k7dAS?MuW zp+k%<=pJKrd&StQ{xOz1EXKBsiLovdV{Gq~80(!IV@GGj*ogTtc5-2iWiOAhkhL+E zyD`R+x5e1JT`^XDe~c|V9Aiz7#n^^FVyx}y7~2sXYdvFP?Lcy@WmJr{<27O}tA4DV zX&!4i>9H2mA=YMfkF^TDVr@bHSgSiM)>e&)wbY5Rwq;7Jb;*sjy|ZGi_xxBpx-iy8 zERVI5Yho>XqkE5gTdd{oinZkZu{Q5;tW`f2Ys>zKwWgQ0QaRa4?DH8;+-%!;!v z^W$vq!Z_=_JkE};iL((KGC@s^PuZ^zrmTUPgYJ9AUK<@9&InK>-pW{rur3KQdP!IXHb zn;UPdX2o0T{CL~4Fy6W>kGH*R;;r|_csu%jyp7luZzuP~TlV323po~Vxqrl4^67Y+ z7o1?#V-jpxa)LFjm|z=fBv{+}3AUqog7r*KumkNAETemZ9lt5Tvic|3ncEU9XN>!m z&4~#%Yf6Gu$W5>Xvl6WC`~+LI(7nU5Ji)fCNw6*(6KwDM3D$d8f*swLU?UDE*vTIg zEc=fH3pt%&xxtB+9Fu7Ck`t|Z#Y9_HBhi}HPqYoq6RmA}qU~s(Xg#|p+JT!AEu(*; z9ltHnvfS(AXYNY0oGI>iIdc9L9ai1FC+FS+3b@C8XOnx8*sY-4Hr(3--P|jEDK)y`eTEv> z+~@nbDZXvgIQP>#(`pv_y4Ja`zfY@u?(1LEy14&yBq#;Ph7b2Oh2kG8AaUWRT;#9gH2y|}<_`b%!HZb?!-L&yB-0);e$6szIaXyAyo$T(6!Yqg| z+|*<%lkcTqA9!yq*~|5}h;Wtc7hwP1G*Q{}%F;;vzy{MSO=HB6HKT9~_r8S-BXch@jI{%aBL8s^4- zEz(`X#Q3j8xoeme|Fvj$4Vm&^i*eWRudMvnV%;_OZrj;waqb%4;qrek-d#h%`L89o zYsjbnTB5s#cMbg4lH4`?qbvWlQtlf5xzXM3cL{K-uQYpqemcH~Uxi6?_2xIj-1$v& z|9zF&2KP>Xm^;sH-7oV!nC>ozKZ?tXXW+8MR9tSHgv)OC;WB&*E@$|@ZgCI3PVs$r z#sqx5Vk|B<-hs>Xp}2guFD~6fsk@wfweRb+^isa#!~IZje0WQ~;P}FQ$5-j>@rC=3 z@5Tr4^G`m4%U^w$={_>VcQixp2k(}H%g=pe@??Dd?47vmJ06z@$Ki5vCN3NJj&kx~ zAGsBm8*lJ^-R|u1VKNGiFQUltMfi>n|6m8_FT#I(-F)XD{cdcfuW#SC`}RHAcP2LW z@$KVAT&DZ>clNTkZ?8Aw()?$upYLlQne01r*3m~&eU~-P9v^14;P{ZAg7b&`q`6;h z@E>2K|M(92&cU-2v6at#$2Zw`J~j>md3FFU`}!`^`{V0_8NN&3F>Um5zvKVz#)0^5 z`t`V++zpr3$#JH3FWs zf8R+BLNO1}5_Y7=$|VV4qChp@VY)g!Dv zVGRgtNLVAn8WYxpu%?7HBdj@LEeN}eu$F{fPS_QMr4oi!u=jpT^DsPKVE(k3hmFb9 zZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox-BkQ`27SL_q*%4gxx^cjfCAqSTDkEChQi%dJ}dlVSPLdD+|n@HubPE znYxXc)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK= zG>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8 z>yW-~uikY?Kf?MGHh{2!gk=ymh_Jzg4IykOVYd-BjIiN^jUa3!VWSAUov=Fy8%@|4 z!ZHcVB5W*S;|Lp1*aX7vBUjgHi9w5M*PS9KeWtJ~;e-9}4mc1f;7CcC|Q*CF>1b}wP~ z5jKUe9K!A=>;b~25;l#n2MK$Ku!jlDC2Trjj}SJ4uty1-N!VkAJx%P5cVQr3kX|C*doFf z6ZR5eO9)#^*vo`1BkUEzmJ_yuuvZCNN!V+Iy-wIF!d4TuhOo7Sts`tbVQ&!jCSe;0 zdyBBQJq#-g%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P8 z8;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7 zRozD8>NdJqx6#s?U6SjNjc%{rb;u^d-XUx=Veb;Qg|MxJy+_#lgl!}21HwKeY&&5) z2>Xbzj|tmJ*e=3$6ZQ#VdkEW0*r$YjM%d?s?IUbIVP6pTC1D2$`--ryJq#-g%%3*( zurZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU z&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s? zU6SjNgKn?hb;u#Y4ik2Sux|)EO4zrAeMi{$g#AF+kAxi~>?gvG6ZSJ6D>~F&UN7z4vohIxIVgC}A=V4e`VE(kJhmFb9ZOp80W14jv zbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox-BkQ`27SL_fZ6k*APl_u;W!paa< zmauY!l_%_C!YU9}k+4c0hLr{8Pn&w!m`vTq%<49#S+_Cgx{U|__ z+Js#~*rkNkA*?Q8^$4p^SOdZu64r>Y#)LH?tSMp52y0GQ3&JiVtR-QW6Ltk*sf1lg zSel1nWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XH zx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OA zXk6V!7wa}!TC+=X9g^<$>RpGlBCIuGZ3w%Hu(pI=wd$6Lu?MeLM^+3(TK3^{_FS zx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+ zhi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD1j6nl>@LD45|&Na-Goi@Fsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~ zw~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbea zrQ7H(-A1eFHu_Gt(S*8k=FJbo) zHifVp!tN*R0m7ydHjS_c344gJhY8CiY&v0&5H^FbM+uur*kgn}PS`BMW)t=VVNVkF z6k$&jHixjegv}#tK4H&z7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%) zrrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tS zXhPjaN9s1(Q@7Epx{b!wZFI42qop;wB-bI&y1jbWAo_99^m2wO>=nY66Sjh|R|#85*lUEnPS`5KRui^{u(gD(BWyikZxHq-VH*g0 zi?Fvn3@Z!FpEmWdF`2rJnbmDfvuw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP z-A3c;Ho921(bAe-lIxI-Zm-^T$R@(xA#5{Y?-I6!u&so>N7(y>Z6oXh!agKyJ7GHr z`-rfQ3EN57F2Z&b_6cEo2-{28r-Xe**yn`pBWyomUl8^sVFw8Nimw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe- zlIxIzZm-^T$RWZG6Ly5KZwNa|*tdjzN7(m-{Xp1{gdHR7C&G>s_A_C>5cVr!zY+F3 zVSf;Ig0Pc>{Ylsnspm< zuG>g}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%| z59u}NXlzx6#GAjh5Ezl3a&a;Q8y20Kx(Z z3nDC-un@vR2@4}EoUjPOA_NciXw=w6sjRfd6vZ32Zjcy}Px{aji zHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04* zP`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOlbx4ZatM~Pg%7j%RtSVvE2&+z54Z>;?R*SIO zgk3_|rG(WXtS({o2&+$61Hu{-)`+migf$_oDPheBYfe}T!Y(7MC1IBnb_HRngk4Ek znulR!f%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mU zjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2 zT-`<&>o!_ivrBRvlJ55EU5B(HtTkb62)l}~wuD_xSUbYn6V`#Sj)Zk0tTSO<2)l-` zu7q_XtUF;n2)mZB>j>*f*!6_nK-i6h-9%U~!fqz)7Q%WHb}M0hJPa!f%%3*(urZms zjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ zZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6SjN zzHYDHbx1$L`V%&Quz`eS5H^Ug!GsMVY$##35jKpl;e?GKY$Rc$2)muII|v(1*ciex z3CkjEEMema8&B8-!tNyOF2W`fmQC2*giZ1=tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXq zkqzBOYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w& z+vqOcMyu&I`cAjegu0E6)NQn zg|HmL?kDU4!ln{7jj#s^dx)@y3CksHI$@6xHiNK737bjSV}w0U*et?k6ZQmQPZIVN zVNVk_hp@SX%_D3+Vb6FNRu-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4 z+sL49Bb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-K zLfuA3>NeU_x6!M*jmFh&bg^!ur8T=G*CEfky?WOn&k^=KVJ{H&B4G;%TS(XDWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p z)@@{6x6uN+jegK=G>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@ zM&s%>x>&c-(wbe8>yV9ZuikaYCc@q!Y%^i+61Ih~t%SWt*!zTSBkTjhJ|t{AVLJ%> zh_H_d+ez3i!gdq(31NE(+e_G|gndTX=Y;JeY(HUN5cVZu2MGI$u&+G~D+|n@HubPE znYxXc)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK= zG>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8 z>yU$PuikaYA;Jz5c7(8R2s=vHw}gF1*!P6}K-iCj9V6@~!j2R6Ghx3F_A6n(5%xP_ ze-L(pu#<%SN!TgE{vzye!v06tKZKno>_33VGCsoQ8z-A1qKHX2vA(Z#xrme%Z&T!&cD`RkAX!U72k zA}pA&5W+$U3nMI?un58;35y~uny?tcVhM{QES|6g!V(EfBCHf)$%K_A>>|R-5LTA3 za)gy9>|(+y5LS_}N*;!l1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A}ZX-{+jil)| zGN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=THQh$v={A~B zx6zThjrP=S^r~*7adjJAtlMa5%`VAxNQ&F5_w|s%A!fFy$i?G^+ zT|(HUgw-LeE@AZut4~-1!Wt6Rh_J?lH6g4iVa*6@PFM@VE+ecZVV4tj1!1X#T}fD) zhhb%b`O~HzHYQWIF|)djY1VDbxo#r?x{Yk;Hd3S8$dhg(X}XOJ>Ne7;+sLhMBhk8z ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH> z-9{JdHd>SD`9;+3@Z!FpEmWdF`2rJ znbmDfvuw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe-lIxJZ zZm-^TNI$~*6E=XbfrMocHi)pngbg8VC}Fn|HjJ?0gpD9NaLpw=vDSjXBqCBtW;3 z4c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~ z=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%jrV=)dum=fyh_HtV%Oz|&VUG|tgRn;ln@QMXggs8!EW&0J_5@*16802f zPZKtWu(^cIBWyll&v+PC7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@x{W;PHj<{> z$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U)pQ$ur`u>k z-9|_1Hri9S(W|GO4!SUEhFp|!j==Zg0NQ!TS?e!guPDKD#BJ1wuZ2^gsmfNJz;MU_9kH)2z!gL zw>=Ci3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ zZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD z;u9+By2ljI|%!T zu#XAbN!TvJb`$mqVS5PMOW3D`eMZ>lgzY12KVe@G_9bBl2>Xh#uRRPa3(TK3^{_FS zx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+ zhi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcDt^n-4rIdmJHqT6U2-9``T zHX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6fm8hgk6W>yQA#0tpKu zESRtm!a@lPBP^V-2*M%>iy|zVuo%K(35z2vp0EVM5(!HptQ29%gq0@jBErfLR+g}G zgq0`kV!|pAR*|qu9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRWBTu@Gr0F&? zsM|=VZX>t4jYR7!MFrQ2vV-A3Q(Hkwek z(UH21_S9|ks&1okbsJr*+h}RcF3ELBircIA^^nShRUxb@Vbut$PFM}XY7$n9u-b%O zLfEB*)gi1dVf6^BPgn!O8WPrsu*QTnA*?B3%?N8wSPQ}~BdjH1mlJjcVX1^&Nm!bP zVP%2&)21FaCR4XDv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS z>o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`q*%4gxx^cjfCAqSTDkEChQi%dJ}dlVSPLdD+|n@HubPEnYxXc z)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}Z zQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8>yW-~ zuikY?Kf?MGHh{2!gk=ymh_Jzg4IykOVYd-BjIiN^jUa3!VWSAUov=Fy8%@|4!ZHcV zB5W*S;|Lp1*aX7vBUjgHi9w5M*PS9KeWtJ~;e-9}4mc1f;7CcC|Q*CF>1b}wP~5jKUe z9K!A=>;b~25;l#n2MK$Ku!jlDC2Trjj}SJ4uty1-N!VkAJx%P5cVQr3kX|C*doFf6ZR5e zO9)#^*vo`1BkUEzmJ_yuuvZCNN!V+Iy-wIF!d4TuhOo7Sts`tbVQ&!jCSe;0dyBBQ zJq#-g%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC! zWL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8 z>NdJqx6#s?U6SjNjc%{rb;u^d-XUx=Veb;Qg|MxJy+_#lgl!}21HwKeY&&5)2>Xbz zj|tmJ*e=3$6ZQ#VdkEW0*r$YjM%d?s?IUbIVP6pTC1D2$`--ryJq#-g%%3*(urZms zjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ zZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6SjN zgKn?hb;u#Y4ik2Sux|)EO4zrAeMi{$g#AF+kAxi~>?gvG6ZSJ6D>~F&UN7z4vohIxIVgC}A=V4e`VE(kJhmFb9ZOp80W14jvbFSM+ zfNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox-BkQ`27SL_fZ6k*APl_u;W!paa|__+Js#~ z*rkNkA*?Q8^$4p^SOdZu64r>Y#)LH?tSMp52y0GQ3&JiVtR-QW6Ltk*sf1lgSel1n zWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*s zHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V! z7wa}!TC+=X9g^<$>RpGlBCIuGZ3w%Hu(pI=wd$6Lu?MeLM^+3(TK3^{_FSx{aCD zZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=& zbQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD1j6nl>@LD45|&Na-Goi@Fsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-Cq zMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H( z-A1eFHu_Gt(S*8k=FJbo)HifVp z!tN*R0m7ydHjS_c344gJhY8CiY&v0&5H^FbM+uur*kgn}PS`BMW)t=VVNVkF6k$&j zHixjegv}#tK4H&z7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%)rrXG% zZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tSXhPja zN9s1(Q@7Epx{b!wZFI42qop;wB-bI&y1jbWAo_99^m2wO>=nY66Sjh|R|#85*lUEnPS`5KRui^{u(gD(BWyikZxHq-VH*g0i?Fvn z3@Z!FpEmWdF`2rJnbmDfvuw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c; zHo921(bAe-lIxI-Zm-^T$R@(xA#5{Y?-I6!u&so>N7(y>Z6oXh!agKyJ7GHr`-rfQ z3EN57F2Z&b_6cEo2-{28r-Xe**yn`pBWyomUl8^sVFw8Nimw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe-lIxIz zZm-^T$RWZG6Ly5KZwNa|*tdjzN7(m-{Xp1{gdHR7C&G>s_A_C>5cVr!zY+F3VSf;I zg0Pc>{Ylsnspmg} zZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}< zO1IHnx{X%TZSNXlzx6#GAjh5Ezl3a&a==tlA0Kx(Z3nDC- zun@vR2@4}EoUjPOA_NciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK& zNT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;M zx{dbKZS<;cqj7Z`U98(^Y0WOlbx4ZatM~Pg%7j%RtSVvE2&+z54Z>;?R*SIOgk3_| zrG(WXtS({o2&+$61Hu{-)`+migf$_oDPheBYfe}T!Y(7MC1IBnb_HRngk4EknulR! zf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7 zT0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<& z>o!_ivrBRvlJ55EU5B(HtTkb62)l}~wuD_xSUbYn6V`#Sj)Zk0tTSO<2)l-`u7q_X ztUF;n2)mZB>j>*f*!6_nK-i6h-9%U~!fqz)7Q%WHb}M0hJPa!f%%3*(urZmsjhWSL zOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl z8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6SjNzHYDH zbx1$L`V%&Quz`eS5H^Ug!GsMVY$##35jKpl;e?GKY$Rc$2)muII|v(1*ciex3CkjE zEMema8&B8-!tNyOF2W`fmQC2*giZ1=tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBO zYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOc zMyu&I`cAjegu0E6)NQng|HmL z?kDU4!ln{7jj#s^dx)@y3CksHI$@6xHiNK737bjSV}w0U*et?k6ZQmQPZIVNVNVk_ zhp@SX%_D3+Vb6FNRu-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49 zBb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3 z>NeU_x6!M*jmFh&bg^!ur8T=G*CEfky?WOn&k^=KVJ{H&B4G;%TS(XDWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6 zx6uN+jegK=G>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%> zx>&c-(wbe8>yV9ZuikaYCc@q!Y%^i+61Ih~t%SWt*!zTSBkTjhJ|t{AVLJ%>h_H_d z+ez3i!gdq(31NE(+e_G|gndTX=Y;JeY(HUN5cVZu2MGI$u&+G~D+|n@HubPEnYxXc z)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}Z zQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8>yU$P zuikaYA;Jz5c7(8R2s=vHw}gF1*!P6}K-iCj9V6@~!j2R6Ghx3F_A6n(5%xP_e-L(p zu#<%SN!TgE{vzye!v06tKZKno>_33VGCsoQ8z-A1qKHX2vA(Z#xrme%Z&T!&cL`RkAX!U72kA}pA& z5W+$U3nMI?un58;35y~uny?tcVhM{QES|6g!V(EfBCHf)$%K_A>>|R-5LTA3a)gy9 z>|(+y5LS_}N*;!l1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A}ZX-{+jil)|GN{`~ zr*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zTh zjrP=S^r~*7adjJAtlMa5%`VAxNQ&F5_w|s%A!fFy$i?G^+T|(HU zgw-LeE@AZut4~-1!Wt6Rh_J?lH6g4iVa*6@PFM@VE+ecZVV4tj1!1X#T}fD)hhb%b z`O~HzHYQWIF|)djY1VDbxo#r?x{Yk;Hd3S8$dhg(X}XOJ>Ne7;+sLhMBhk8ztm`&f zK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{Jd zHd>SD`9;+3@Z!FpEmWdF`2rJnbmDf zvuw~Mn zZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe-lIxJZZm-^T zNI$~*6E=XbfrMocHi)pngbg8VC}Fn|HjJ?0gpD9NaLpw=vDSjXBqCBtW;34c$g+ zbQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wx ztLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%jrV=)dum=fyh_HtV%Oz|&VUG|tgRn;ln@QMXggs8!EW&0J_5@*16802fPZKtW zu(^cIBWyll&v+PC7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@x{W;PHj<{>$e?Z` zow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U)pQ$ur`u>k-9|_1 zHri9S(W|G zO4!SUEhFp|!j==Zg0NQ!TS?e!guPDKD#BJ1wuZ2^gsmfNJz;MU_9kH)2z!gLw>=Ci z3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y z(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD;u9+By2ljI|%!Tu#XAb zN!TvJb`$mqVS5PMOW3D`eMZ>lgzY12KVe@G_9bBl2>Xh#uRRPa3(TK3^{_FSx{aCD zZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=& zbQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD5xikt$3eQgySux)ySux)8x)jKQVA23PJ`}HLP;eI zP%uF0R8R^3dwto%9^UKD&ODdzXXiJMuup}3ChT)zUkor_7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wARalZTx8CBS5!bTT1hOjY( zjU{YsVdDrJSJ-&M#uqk$unC1tBy3_~lL(ts*kr;c7dC~kDTPfXY-(ZC2%A>ebi$?= zHiNJkh0P>v<^jgbg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e22_3^3}orA+rjbP1x+h<`6cgu(^cIEo>fP^9q|!*!;p45VoMOg@i3E zY!P9L3R_Ir;=+~?wxqD7ge@&>8DYx`TTa;W!d4KrqOg^OtvtYZS#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0LuQZDH#OTUXe6!qykIfv^pQZ6s`CVVelsRM=+1HW#*quq}mcC2VV9+X&lM z*mlCU7q)}29fj>AZ07;S%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!>yzW3p+&Ep~4OmcDS%3gdHjDC}BqnJ4V>C!j2Pmys#65oha-iVJ8nTUKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbl##CvzC*qu z?5n~~6?U4iuL=9Qu+xQ|A?!?HX9@d;ux|=GTi7|m&J}i^u=9moAnaShzAfxRVHXLz zSlA`Pz9a0r!oDZ$`@()8?1#cG9bmjHxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgSTUUmbjh{7Bf3g{Z!b`g#BFD&BAUGcB`=4gxxOe4qt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L{r5mE$ne&PY8Qb*i*uu7WRy=-w6AyuxEum zC+vA)F9`dcu-^;&gRnmedr{a+!u}-e&%$0FV7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SWgX9ejuUMc7}3{Y}{4g}o~5HDUh{ z_D^B23wuM@o5J1__O`HhguN^5Jz?()`#{)-!afrAFJb={_OY-}g#Aa@e}(-|*r&oi z6ZW~VF9sMd3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BpqExLe+3&+HH#4ZCc!ID&6d1zC&gi`Rd^RkXePzCTweEhlVw zVJiq*QP@htRvuuyEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG$rY&&7w3)?~1j>2{lw(|hvWx@TmtHMu#*QEFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ( zZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0 z)75TM+-}q2Zd2)I5Az*z%E(s--yvTS_Ell03Oh~M*Mxmt*y+N~5O$`pvxI#^*f)ip zE$kd&=L$Pd*!jXP5cVx$-xhYEu#1FUEbJ0t-x2m*Vc!$>ePKTk_CsNp4lrI8++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MeOhq_Inx=p*fP1U+h@48J1 zyG?vVS3wuV`Z-o6;*t5c(6ZX8Y7li#z*zbk?LD(OKy(sJ@VSf_#XJIc7 zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zZ zVIK+mm#}{e`&if~!u})dzry|}>{DT%3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@Onyf42)Min-iu+fE$A#6-xV+k8u z*f_$*6*iu*@r6wwY(ilZ37c5hB*G>YHkq)=g-s!BN?}t8n_Ad3!lo5Aov`VJ%^++> zVKWJvd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yyS%e0A`D$gIL<6E?fBIfTtAY%XDQ3!6vSyu#)aHove1ge@p+Az=#(TSVBR z!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wASk*^NELsk{Gny}S{ts!hp zVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3*e1d@6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U z!VVF3sIbF?9WLw$VMhu(O4!lDjuCdOu;YXsFYE+iCki`B*vSKomj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUW#p@a?~tzu`>L>0 zg`FnsYr?)R>~vvg2s=~QS;D>{?3=>Q7Iu!XbA_EJ?0jJt2>X_>ZwtFn*hRuF7IulS z?+E*@uZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9dg;oR|nrAKN9w1VV4WLLfDnUt`c^&uxo@}E9^R9*9*Hr z*p0$&67~~eKNa>fVLumkv#?u)-74%hVYdsrL)e|d?hrVtKFu!-KNFerqazG<~!tpk*^NE zLmm|Nkg#6}`=zjlg*_tdQDKh>`<1X?3wvDH6T+Sp_LQ)vg*_weH^P1^>{(&Y3431H z3&MUU?DxX{AncFAUKI9{us;d=v#^&37%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^2*3p2j3xo5%yPMe-rk1VXq2%P1rw#{ZrWM z!rl<}rm(k!y)En=VebliPuTmyJ`nbyu#bfOOW41KeJtz~VgC{KUt#|f_NlPXgncgT zivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze20uO{+Hh&qY4{M*yzH>5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf` z!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuu zh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{T-XxAmK3&>u%(49BWzh=%L!Xv*b2f{ z6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd z3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LH zxx&s9cD}F+gndicw}o9O>>^@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!LaPtAp>59|`-h zu*-#AA?!+FR|&gX*fqkg6?UDl>xJDQ>_%ZX3Hyn#p9=e#u%8RNS=cSYZWVT$u-k>* zA?!|JcL}>&*geAT6?UJn`v({=3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BwZQ$X5s7ArA_BNZ2og{ZiP&!X6R!sIbR`{Yu!cg*`6p z31LqPdrH{T!k!WK8)3f{_N=hyggr0p1!2Dv_IqJ}5cWr5FA94}*q?;`S=h@1jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(d1d6Q zgYS^P2>YwBzX|)huvdk>ChQ-={weHrVQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U*hj+t zCG6kAJ{IT1Audx3K`&8Ix!af)F#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt;LGojQH6~rY;<8`2pdz_Si;5@Hjc1y zg^ed{d|?v^n^4$9!X_3riLgn9O(tw|VN(d3QrJ|&rWQ7huxW)&Cv19QGYFee*i6D^ z9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){77@0nu*HNe zE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%h zQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtHf>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghg>%D)xmejkA(eL*yX~m5O$@otAt%G>>6R$3cF6&^}=otcB8PH zg#AR=Plf$V*w2OCEbJCxw+g#W*zLmZ5O$}qyM)~>>>gqF3cF9({R51b1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`wtVUGxVRM=y}ekJVJ!X6j)gs>-tJtgdEVb2Krjj-Pedsf(U!k!oQg0SBS z`@OI~2>YY37lpkf>`%h}EbQe0#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO?2|S683Ll9}D|L*nfomSJ?lAeJboTVV?{8Vu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$+ z_~m!VsKQ1QHoCAegpDa|EMa2{8%NlAAuwt}z~g{>rP zrVtKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5?ICPWVS5SN zTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`&cAT)|g`FVm zL}4chJ9&Wdvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA4kjC^(Q9r6`nUln$$u+xNnP1x6koi6MQVP^_EOV~GreN))k!p;$PuCVij zoiFSHVc!z=ZDAJ*yGYo@!Y&c^9bw-U_B~ z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%N5XzA>~djO z2)k0)Rl=?oc8#!Wgw>~>*y2)k3* zUBd1bc8{=oh21CY{sG3zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAg zth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@k zwc8Z8+qAgbRJz&2e1|+R^3}n2$b-Tj67~yWzZCYcut$VFD(o>~zY_LqVUG)YLfDhS zo)Y%7uxEt*M%ZtKJuB=vVb2SDLD=tv{a)A~g#A(2i^5(K_9tO~7WVQ0<7L79wX4VG zGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_ z(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`UK#o7;5+0m z!u~4kZ^HgA>{Vf}3Hyhze+qkD*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oE3H!IO zkA;0A>_5W(E9`&5J{9(vu+N2kF~E3PaDVOUvAN7{bF zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+v zR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|i zlERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oO zU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L z;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0L^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA(xGOb?_bXBVj)lcDb-Cgk34@Dq&X(yGGcx!mbl`y|5dE-6-rPVLuV} zQ(-?7_H$u33%fe+3&+HH#4ZCc!ID&6d1zC#`u`Rd?1+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeuZ(cgQFcfB79U zs<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+ z`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb< z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4v ze0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7 zTMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~VJ8SXQP@es zP99*qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG@;Ct6ZUmsrwcnn*qOr467~&Y-xPMXuycf+E9^XB=L@?) z*tdjzTiAudE)sUJuuFt}N7#3TeNWi;h5bO-4~1Piz<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-kNZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-ysi-e0A_0@}RJXg#AL;FNHlU>=9v)3VTf0uY~=|Ld5%ybQ&kB1^*z>|(5cWG^zZdogVSg0%qOg~Q{YluLg}pq$cv*0N?dq|)%x-hD z-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#S4O@%_zwAtu)hlX zo3OtNdsWzL!u}!bpTb@j_J*)Gg}o*0ZDH>Sdso~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNE zvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O z))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pc zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH z9VzT6VMhx)M%b~!juUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j=iO!j-DVrz zW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$ zcipCh-KLSrVtKFu!-KNFerqazG<~!t+k*^NEL%t&HtHMqdcABuS3H!RR(}kTO z>`Y;23HyeyZwfnG*g3+^6?UGm^Mzd?>|4UVE$l*J7YVyq*d@ZgBka4vz9;Pa!hRs^ zhr%u$V7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$Ymp69ejuUNZ5~sT`uejVOI*fO4!xHt`T;vu30c~ICx!hRv_m%<(v z_K2`Yg*_(hSHgZR>~UdF2zyf4Q^KAW_KdLK2>Y$DXN5f{?0I1?2>YF|-wXSLus;fW zQP@ku{v_Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu(KUw(&-Dr_`i zqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~ zO)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp; zTTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjh ztSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6Y zwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R z+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z;6n2uZlLr_t z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=^ z$X5s7Azu;pRbi(JJ5AWvgneDu>B7zscBZhigndKUH-()o>>Od|3Oi5O`NA#`_AO!G z7IvYqi-cV)>=I$$5%yhS-xKzIVLuS|Lt&Q=FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E?gv0D(q*%elF~0VYdjoRoHF9ZWnfkusem_CG2it_XxXJ z*nPt8A7H#JxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgO=HUmbjhJSglTVZRXeOJNTSdqmiy!X6X$D`CGD_PDSoggq(jDPd0wdq&uA zg#A|7v%;Pe_Pnqcg#Av~?}hzA*dK+xDC{L+e-id*VJ{CbUKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbm65LwzC->Z?61Q9ChYIR zUKRG5uzv{qr?A(By&>#PVQ&e0Ti83o-WB$qu=j<1AnZe79|`-Huzw5tSlB1R{v+(a z!u}`hQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4jE;#FTX=Z6*ii%(S?m6Y)oNe2^(A3IKsviHlDEYg-sxALSYjL zn^@Q+!X_0qnXt))O(ASbVN(g4TG%wgrWH1wu<3=(AZ$iqGYOk{fbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom! zHoLGngv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@ z*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3^Z{2>Y(E?+N?9upbEfp|DE_ z7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn za@ojN2j3w-682+ZmkYZ>*p^foB3%fzsjlymc_7h=074|b>KNohh zuv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=l4=`R9++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6m9Sq6dtBHP!k!fNl(46TJtOQl!hS34Sz*r!dtTTJ!hR?0_rm@l?2p1;6!wy^ zKMDJ@u$KoIFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7 z=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2 zZd2)I5Az-J%E(s--ywey_E%wl6ZUsuuL^rj*gu5*Q`qam-VpYtu(yQ0E$kg(?+SZQ z*!#jh5cZ+4kA(e8*uRB+EbJ3u{}J|IVgD2Msj$z4eJ<>a0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11$m){|y3L8z>=)%Sj zHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT z*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&JyUm?5)6tZc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69 z*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmY zVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5 zumgo1B}X-f2s>8Tal(!lc7m`Ig`Fhqi_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xoqUCgYS?Z3H!0I%Y|Jb>`Gx*3A6h20?RMqxJz`-!lh3j3L`p9{NL*e$|t6?U7j+lAdB>`q~K3AZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9rD1)R|nrA4+?uo*e`_rQrN@79ufAau*Zb`O4zT3Jud7CVNVKsO4!rFo)PvNVZRmj ztgz>VJumD9VZRghdtrYN_D5ka3VTV|pM?Ec*vkWqmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9W#p@a?~uO;`>U|O3H!USSB1SM z>>tAZDeQG&ZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5cLk?BBvZ7WRp-{|Ni9u>T4B zRM=<2J{R`I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*X zVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ zge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj> z!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+G zVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f# zgdHpFIAO;NJ3-iq!cG!)@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5 zZ8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a z>e+3&+HH#4ZCc!ID&6d1zC%tK`Rd?1<7YrDD2V!#>;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO=t3S z3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4tZeYtAp>52ZcQ(>=(j*DePfkj|h8I*ki(e zCG6M29vAk6uqTB*CG2To&j|aCu-^)MR@igGo)`9lu-^&$y|6zB`=hWIg}o%~Ps08z z?BxN*%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!@8t$3wuY{yTaZR_P($W zgncONBVqp%_HSVy3;RUae}w&4*#CrmD(o|1p9}k9fbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)`$B<#))a!bTG|y09^XjVWv_ zVPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJ zgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G z2wPOxV!{>|wuG=Hg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2 zgsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv9 z6Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6MM>_A}$ z2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2VooUr4CognN)VJ8VYd4Tb<;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx@re0A_0@)coU z6?Uqy(}aCZ*w=-fF6<0pX9_z@*f)fIQ`p(U&JlL5u=9kSFYE$g-xBt1VHXO!NZ7@~ zE)n(}Vc!+@Jz?J$_5)!*6n5zV<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{ zmey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0 z*=_3CZMxcRirZ~k+-)k|>|wq`E*tsk;5+0;!hS65a$#2pyHeOy!mbu}jj(HlT_@~% zVK)f7QP@qwej@Cr!hR;~=fZ9lc8joEh219Xc42o2yHnU*!tNG!kFa}%-6!n+0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdeOy z)xmejgTfvX_6uRZ6!x&NM}$2p>@i`#6839hj|+Q3*ptGZ685yPXN3Jm*l&eBE9^O8 z&kK7&*zbh>Uf3Um{ZZJ9!d?>gCt-gU_VNJZWx@TmtHg}o!}U19GDdtcZG!afxCk+6RW`?s)>O75161 z&xL(4z<613f9>kAxy){Jv)$&JyUm?QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V z5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3! zLD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapzu#JUn zB5YG(n+e-o*cQUJ6tZc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi z5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzP zPT29nP7rpYu#<$HJivHaaDVOUvAN7{bF30`HHZw3OiNUX~MoH?CZi#7j}lQGliWc>>I+qDeP=v z=LkDj*m=Uv7j}WLZwdRhunUD+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWemyLXN@E!6a zVLujjxv(pQT`BA;VOI;gM%cB&t`l~>up5NkDC{O-KN0p*VLuc0b740NyG7Wo!fq3G zyRbWi-6`xYVRs9=N7%i>?h|(Z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk%%L17OG`-QMy3VT@CBf=gP_L#6=3H!CM z$Avv1>`7ry342=DGs1o&?6<<6751F4=Y_o>?03R`FYFJ({wVB4VJ`{$ldwMvdwGEI zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4s zjC^(Q9r71pe--vOVSg9)s<79D{X^J4g}pB94PkEzdrR2c!rl?~uCVuny)WzoVIKq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S6~P`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_ zn6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0VQUIo zOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw*j#3}|Idn9 z1aDZ^aS%lW6pQXIB}AnZ0Vx4N#iT*Ppi59xy1To(ySux)ySuym@AYL5dw8!qJM&z= zpPk=4+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc661KCjU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka| zJ3!ch!VVI4u&_gf9V+ZFVTTJlVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yuhie0A_0a+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7 zog(a1VW$Z@UDz4I&J=c*u(O4oBkWvZ=LtJs*agBa6n2rYi-lbx>{4Nu3Amw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{q z=t3S3cF3%?ZWO5cBinrgxxLd9%1(i zyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h z@48J1yGBVQeShdd?hX<^R@dsf(U!k!oQg0L5b zy(H{qVXp{#RoH97UKjR;us4OhCG2fs?+ANW*n7g>7xsa$4~2as>|VpnXTm-g z_Qe3>Wx@TmtH|wq`rX2a|;Qx@RgiS4M8e!84n@-sD z!e$UQqpZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9kS)fR|nrATM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&d zwwtish3z41Phoor+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOU zvAN7{bF30 zIZD{k!j2Jktgz#R9WU$zVJ8YZN!ZE4P7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu* z>;hpI3cErVtKFu!-KNFerqazG<~!uc zk*^NEL!J`$w6JG{JuB=vVb2SDLD-AJUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw z>^))c3;RIWhr&J*_OY-}gncUPGhv?#`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4gO!Vb<$XA4YRoJM)z9wumVP6+Ey09^X zjVbIK!oDeNEMeag_HAL`5%yhS-xD^ruyKTqD{MSr;|rTW*o49+5;n20NrX)*Y%*b! z3!7qq@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWeQ;vLf@PEiu!lo8Bjj(BjO($%6VKWGuQP}r|{Xp1E!e$mWi?CUR{ZQC!!hR&| z$HIOhY<6LD2%A&bT*BrS_ETX$6E=^qp9`B;*nGm~A7H#JxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQbBzB>30SwPr=!WI&?u&_mh z{ZiPX!WI*@xUgRdTSC~9!hS96H^P1^Y$;*C6ZU&ye-QRZVSf_#XJJbVTSnNj!j==Z zys#C7ttf0IVJi4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_BmbFC$+ae21(eY*k^a30qy*Uxocm*x!ZyL)aR^))cmuu(gG)BWzt^ z>j_(5*apHj6t@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkY zY#U+Q3foTD_QG}$wxh6}gzYSB7h$^!+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*r zu!DphEbI_rhYCAP*x|yC7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgT?=Umbjh93|{%VaEtNR@iaEju&=}+A@2s>BUdBV;Yc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1 z?h|&u zum^-aDC{9&4-0!l*rUQ86ZW{UCk7ZV3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(R zr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ!$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D z*ek+b75192*M+?y>`h^B342@EJHp--_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjz zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LY(E?+F`Q*f_$* z6*iu*@r6wwY(ilZ37c5hB*G>YHkq)=g-tQQcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kj zbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#DM!9K_&;PSVN(m6M%c8%rV}>3uo;BS zDD3;fejscnVKWPxMcAyuekg1C*>37bdQ&xOq^ zY(8Q04=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`JLDH5UmbjhEFf$_VG9XcSlA-Mekp8GVT%b{T-dLKEg@`4VZRpk8)3f{wv@2n z3H!aUKM4Dyus;d=v#_OwEhB7MVao|yUf2r4Rus09u$2cGFAMIkT|G9J*==sN+gx+E zx$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hut zsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-JmyxdyzC%_KwyLnzgsm>@ zufqN&?C-+T7CpRmn@Z7yt!0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghip0W)xmejR>HOxwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@ zVS5PMQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX63@~06++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{gqoT`KG{VV4WLVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yv6ye0A_0a+R>FgN>``Hl342`F69bHw1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q= z!afl8p|FpHeJtz~VV?^7OxWkbz8GMMeOhq_Inx=p*fP1U+h@48J1 zyG(+Qhi*bKsE6!v{#KM*#Pu$hI;B5YP+KNL2bupbHgv9O;A zn_bu(!sZkZc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rBBjuMWOL77(_eu!V#zENl^BzZABp zu*HNeF6>vrmJqh2uwM)Njj-PeTT0mPg#BLFAB6o;*q?;`S=iFTmJznBu;qj;FKh*2 zD+*gl*vbQpmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrcq%g9#;-yy3ATUFR_IF|b5VnS}HHEDuY;9rd2wPX!dcxKh zwt=t>g>5A4pTag4wu!KR3H!IOO@;kO*nfrnPuOO{HW#+V0OMuB{k5yd<}$m@&32n> z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MD`8s;+eX;7 z!nPB(y|5jG?I>&~VLJ=kMcA&wb`!R{uswwBDQqucdkfn~*uKK{6Slvw1B4wY>>yzW z3p+&Ep~4OmcDS%31{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk& z&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9dhKzR|nrAM+rMx*fGM66?UAk_lNF2|HQXDZ)+_cABu$ zg`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2VHXLzSlA`PE){l}u*-#AF~E3PaDVOUvAN7{ zbF30xk}j8 z!mbf^t+4BaT`%kgVK)l9N!ZQ8ZV`5?u-k;)F6<6rcM7{p*xkbJ5q7Vz`-I&u>;Yj9 z3VTS{!@?dB_NcJOggq|oi2=sTg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A z+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ< z)U(@kwc8Z8+qAgbRJz&2e1|+a^3}n2$Wy|e7WRy=XN5f{?0I1?2zyc3OTu0j_KL7q zg}o;1bzyG^dsEn3!rm74j<9!yy(jE_VIK(lP}oPpJ{IrVtKFu!-KNFerqazG<~wARNx%FK z`HHZw3L90}*MyBG?CZit7dD2lF@=3Y*f)iZCG14K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bk_%8{=Q{tuZ-*wn(N5jL%`>4Z%$YzAR73j4mW z9|)UC*v!Ia5jLx^9}1gI*pGz$SlCa5%`R*XVRH(bOW54Pek$x|!sZe7b7Auen@`yM z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4*A8%R|nrA3kX|K*h0b<7Pg46UkY1P*kZyK7xpV*O9)$1*sq2CM%ZtKEhX%C!hSF8 z55oQ^>`%h}ENp3E%LrRm*mA;_7q)`16@{%NY~=yQ%YyrBSC7qQcAJ~+HrL#3?!4P9 zpxbPt+pMPB?5W!^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WAzO}ob?_asm9VXaZ6j=3VcQAYUf2%8b`-Xgu$_hNB5YS-y9wJ}*dD_6 z6t@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4mon5ql6tT>=!p;zOrm(Ywoh|GfVdn}vPuTgwE)aI1u#1FU zEbJ0tmkPT~*yX~m7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8 zI=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba; zyG?PsO^drtrJFs>cgU3^UmbjhTqW#kVb=(|R@imIt`~NLup5QlB~3NA2)kFe+3&+HH#4ZCc!ID&6d1zC)fI`Rd?19*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BpqEWM6)Vd_~w-g^eogYr;ko_H|*S3mZe&n8Lmx?3=>I z680@&-xl^AVc!+@Jz--D8%Nl0)75TM+-}q2Zd2)I5Az)|<;YhD z|A$N^Y-(ZC2%A>ebi$?=HiNJkg?(Sx4}{GmY-VAz2%A;d4~5Mp>_@_WEbJ%3W*0Vx zusMazC2VeCKNa>fVe<(4xv+VK%_nUB0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx}sXtAp>51%xdqY$0I_3tL3kFNG~CY%yVr z3;UI@C4?<0?AOA6BkZ@rmJ;?mVZRsl2Vs8{_9tO~7PhpoWrQs&Y&l`e3tK_hio#YB zw(kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-k4I||!L*v`Us5w@$a-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3 zsIbF?9WLyM0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~gha5Tb)xmejQNoTEc8suNg&imCcwr|9J5kt4!cG=;im+3KohIybVP^~djO3@~06++VwTY%a6g+-$eG z=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^5Py3%f(uox<)CcDJy5gxxFbK4JF@dqCKO!X6U# zu&_sjJu2)mVUG)YVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yu(qe0A_0@|3Wrg*_weSz*r!dtTTJ!d?{ilCYPBy&~*YVXp~$ zUDzAK-W2whu(yT1BkWya?+JTf*ayNs6!wv@kA;0A>{DT%3Hw~w7Xyr!1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@On@-M$bz9Q_a z!bTPLHDRL(`?|2vg^eL>Okv*;_Dx}93Hz3?Zwvd5u^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrbfa^$On|3jt{Hnp&6giR}KI$_fbn?cx&!oDx;2f}6& zHnXr?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%Ty)wve!eg)JiNm%ww$o#g{>fLMPVxmTX}%-vf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA468TsnqJ7g7Ms|s69*y_UmD(r8<{x0kv z!qyPBrm(eytu1UFVe1N8PuTjxHW0R(M73ENEA z=EAlZV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$d)5t9ejsuC2VV9+X&lM*mlCU7q)}29fj>AY-eG+2-{WIZo+mKwui7ih3zG5 zZ(;ig+gI3r!uA(-fUpCF9VF~vVTTAiRM=s{4i|RB0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%C}BqnJ4V>C!j2Pm zys#65oha-iVJ8baMcAprP7`*zurq|6DeNp^XA3(=*tx>a6L!9^3xr)L>>^Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9dhN!R|nrAR|&gX*fqkg6?UDl>xJDQ>_%ZX3A30c}m#R!k!WK ztgz>VJumD9VJ`}MN!ZK6UJ>@Hu-AmWF6<3qZwh-$*xSP15%#XI_k_JK>;qvR3j0Xd z$HG1l_NlPXgncgTivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAg zth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@k zwc8Z8+qAgbRJz&2e20uO#h2e9UlI0IVWSHBny}G?eO=h-!p0Cbrm$}a`=+q5gndic zw}pL2*ms3}PuSSP#t}BIuENK%YyrBSC7qQ zcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!Vc!?_17R}>n_1W_!e$lrLt(QC`;o983;T(%*@ev^Y))Zw z37cEkPlf$V*gV31E^J<5^9h@Ofbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WA-@>;>fk$M0bvUYTS(Z#!WI$sOJR!&TTIyE!hR)e z31LeL`?av&2>Y$DrG))X*zbk?LD(OK{YluLg)J>?8DYx`TTa;W!d4KrqOg^OtvtYZ zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0Lxn{a4ukgl#5lb75NyFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWXqAS4!%RS61KIlZG>$rY&&7w3)?~1 zj>2{lwzIHZgzYM9H(|RA+e6r%!uArjx3GPL?JI0QVfza^K-hu84ia{-utS6$D(o;} zhYLGmfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WAxDmUb?_Z>l(3_P9V6^mVaEwOUf2o3P84>Mu#<(IBJ5OQrwKb<*crmk6n2)d zvxS`_>|9~z2|Hid1;Q>Ac9F1)g@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!LsVtAp>5tAt%G>>6R$3cF6& z^}=otcB8PHgxxIc7GbvvyG_{b!tM}ur?9((-7V}MVfPBVPuTs!9uW4Ru!n>_EbI|s zj|zKC*yF;U7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jto zyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?Ps zO^drtrJFs>cgT|?UmbjhJSFUDVb2JAR@igGo)`9luos2BB}_H12zyu9d&1rq_JObug?%LKV_}~N`&8Ix!af)F#Q@`F!Tq(X$L2D-&CPb3 zYwk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x z)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt^2_g#uL%39uu+A5 zP1tC{zAkKZVPgmzQ`k3zeN)(2!oDT!+rqvh?7PCgCv0qC;|Lp9*m%Om7dC;g35880 zY+_-P2%A*cWWpvFHpKwrWx@TmtH?84>{Hm9(;gv~ANr^0?FY#w1h7dEf3`Gn0sz<613f9>kA zxy){Jv)$&JyUm?%r{aV;>g#A|7Qo?>G?DxX{AncFA{v_eEhlVwVJiq*QP@htRvuuyEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyGQK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn zvgOEE2j3xE3ENuOHo~?QwwFM{AnZV42MIe^*df9W6?T}g!-X9&z<613f9>kAxy){Jv)$&JyUm?lyGYo@!Y&bZsj$n0 zT`ug30mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghg>=G)xmejRl=?oc8#!Wg~UdF3@~06++VwTY%a6g+-$eG=5BN6 z-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6@{Jp3wuM@o5J1__O`HhguN^5Jz?()`#{)-!afrAv9M2s zeJboTVV?{8Vu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yx$+_2qZSSA>04*r>w3CTuieUl%sIurY*D(3!6aLgu*5gHnFftgiR`JGGUVon___Rvf%#O)njv+-R5Sy z%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3lj(m0Sf5=qArWQ7h zuxW)&Cv19QGYFee*!P9~K-f&eW)?P!uvvxuP}pq3ekAP2!hRxbc42b}n^V|a!sZtC zQ(-?7Hjl8M3!7Kie8T1*V7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S+2|I`|G*K-hx97816wutkLZQrM!x78AC(uwMyVLfDeR zel6@b!hS1kDPg}8_IqJ}5cWr5e-id*VM_~JM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOE zdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95 z-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!ssBVQeS zhpZxORbi_MTV2>+h5b#~--Z1{*c!st6tVVeotT-X)^jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(*>dEogYS^7gl#Qs8)4fD+fLZ_!gdh0qp+QX z?JR5;VY>?3P1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp> zV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$dMyo9ejrzCG2Qn#|S%C*m1&+7j}ZM6NQ~5>||l52s>5SX~Iqyc80Jsg`FkrY+>gJ zJ6G6w!p;|Vfv^jOT_o&cVV4NIRM=(0E*Eyi0OMuB{k5yd<}$m@&32n>?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%Dq&X(yGGcx!mbl`y|5dE z-6-rPVK)oAMcA#vZWDI9usej^DeNv`cMH2m*uBE;6L!C_2ZTK+>>*(f3wuP^qrx5& z_PDSo1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9rEPJR|nrAPYHWk*fYYO751F4=Y_o>>_uTO342-CE5cqC_L{KQg}ou{O<`{d zdt2B$!rm43p0M|YeIV>ZVIK+mSlB1RJ{9(vu+N2kF~E3PaDVOUvAN7{bFQ# zuL~Pp*cigb6!r~a-xM~Mux|wF>2^(A3IKsviHlDEYg-sxALSYjLn^@Q+ z!X_0qnXt))O)t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EYY3KMDJ@u%(49 zBWzh=%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BwY+k*^NELsk*Cs<73BtuE}Z!u}@g@525eYz<*+3R_Fq z+QQZmwyv=Cgsm@Z17RBq+ep|yg>5Ws6Jh@n_HSXE3j2?+{|ft`u+4;RE^Lbd#>;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jONLBb9ec8IV;g&ijBaA8LbFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^Nb^3p+vBiNa12 zcCxTjgq^8gYHjC~yTkkd% z=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(W zAym9VRYT_fyTVb=+}Uf2!7ZWMNtu$zV5BJ5USw+Xvl*d4;|6n2-eyM^5& z>|SB_3AiLg*_tdQDKh>dtBHP1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9 z*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4ta9qtAp>5r-VH%>=|Lt3VTl2^TJ*b z_M)(tguN{66=AOmdrjEu!rl<}rm(k!y)En=VebliPuTmyJ`nbyu#bd&EbJ3up9=d- z*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgQHyeEA*n6=7c$Hmb0%2^&q=*M*HPYz$#z3j2nzZwebr*tdjzTiADmeOK7` zgpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrWjznEV#dR_1Iiyx4GGFbIsl6 z&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_In zx=p*fP1U+h@48J1yGQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)Jfn@{5tL4!%Pc5VoMOg@i3EY!P9<6t<|a#e^*`>{r5;5VoYSUkm$< zu-^(>O4#p&{a)A~g#A(2pM?Ec*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40KZ$X5s7A*%>m zRoH66Ru}eHVSf|$cVYh!wuZ1Zg{>uQZDH#OTUXe6!qykIfv^pQZ6xfU!ZsGRiLieO z`?s)7h5bj^e}(-|*k-~u7q-O!<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{ zmey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0 z*=_3CZMxcRirZ~k+-)k|>|wq`wjBBD;5%e1VOtB^M%cE(wiC9!upNZ$C~PNTI}6)I z*sj8M6SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeGz7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^%QY z2j3w_2|HTYF~W`&cAT)|g`FVmL}4chJ6YH%!cG--ny}M_ogwT@VP^?DTi7|m&J}i^ zu=9moAnZb67YVyq*d@X)6?U1h%Y|Jrz<613f9>kAxy){Jv)$&JyUm?<(df3cE|#-NNn>cCWDegxxRf0bvgcdq~*B!X6R!sIbR`Jud8t z0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhdep*)xmejQ^KAW_KdJ+g*_+id0{UIdr{a+!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+b zuy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6%vAC zHiob|4UVE$lnOzANl|!p0Uhj<9isjVEk;VG{_OP}oGmCKfh{ut|kY zCTwzHQw%U(7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~wA{k*^N^51C5X)WW6_Hm$JfgiSAO24OP_`@XOr2%AaR%)(|7Hmk573Y$&X zkA(eL*iVGbE^H2Aa|)YF*xbT?D(q*%<`MRDVe<-`PuTnejF$!X*RCF$%j`Bc+ikA7 z+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`Nhar2j3wJ2wPCtLc$gn zwurD_3R_gzV!{>|_A6ma2wPIvuZ8_a*l&d`CG2;?elP3~!u}}iPs08zY-wT32wPUz za>AAuwt}z~g{>rP+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1 zu&sq{BWzn?+X>rV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL z!VVO6kg$V=9U|;dVTTDjT-Xri_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(IdbHygYS@|gdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52 zzjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dw~s z9ejseCG2Wp*9f~-*mc6L7j}cN8-?8@>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK z!tNLLfUpOJJtXX5VUGxVRM=y}9vAk+0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@ zVJ{1NMcAvtUK94Zus4LgDeNs_Zwq@z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx z1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9Wu&vUw(&tMc7w`jVkPG!bTJJbz!3m8$;Nb!oDHwo5IEt_AO!G7WN%s-xc;fVPgv$ zN7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9DFzrX3+}I7JvNuwZEm*PTywX%^KP?% zZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Bpqf$X5sdhfF1GYGKm|n^xF#!loBC zgRmKeeP7rQgv}&uW?{1kn^o8kh0P}HN5XzA>?guz7dD5mIfcz7Y;Ivc74|b>^9cL7 zuz7{eCv5%!#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOe+3&+HH#4ZCc!ID&6d1zC->p^3}n2$ST5C6}FnN z)rI|4*x!WxUD!W_ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wvZTu#JUnBJ5wn{w-`% zVgC{KUt#|fwwbWag>5mwcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#El0jO_zu}h*w(_f5w@+c?SySFYzJXG3foE8&cb#PwyUt+ zgzYYD4`F)>+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6@W_#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOa$#2tFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^foB3%fzsjlymccC)Zs zgxxCaHet65yF=KW!tN4wx3GJJ-7D-qVfPDrK-h!A9uoGjut$VFD(o>~j|+QZfbp{6 z{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bc zb?_bXl(46TJtOQ{Vb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+ z3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE+BJ8WeMiuroVWSEAy0FoOjUjAI zVc!t;O<`jR`mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3{+KV3!6jOoWkZ3Hn*^!3j3L`d4&C3*u28#6E^<<<7L79wX4VGGP}*qcAIPNHh11_ z7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e z)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`elhaZ!FR|4!WI;^kg$b?Eh6lf z!WI>_n6Sl#{Yuyp!j=^FYhk|;_FG{~3HzO}-wXSLus;g>ldwMvTUyvM!j=`boUrAE ztsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-ywe)`Rd?1WEEkn3R_Ls>caji>~F&UF6cO>k3;> z*!sdY5VoPPjfDME*v7&(5%w=({}#5Xu>T1Audx3K+f3Nz!nPP-yezoCcJ|wq`jvV>w;5+0fVMhx)M%b~!juUpguoHxxDC{I*Cks18*r~!! z6Lz|=GlZQf>?~nt3p+>Hxx&s9cD}F+gk31?B4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Ph zm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%a zlx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA z3A6h20?RMqxJzyII&R!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQ zAnZY54+(o%*dxLo75130$AvvHz<613f9>kAxy){Jv)$&JyUm?a0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+br$>te8dchIJhW>F)0C?(XjH?(Xg| zXbiejNd*OiRJu_*4MIT)6HE~Qdwto%9^UKD&ODdzXXiIhx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3@On?k~SXMin-iu+fE$A#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ37c5hB*G>YHkq)= zg-s!BN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL<6E?fBIfTtAY%XDQ z3!6vSyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zTuoZ-@ zC~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3*e1d@ z6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEfY!6|3 z3foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu(O4!lDjuCdOu;YXs zFYE+iCki`B*vSKomj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxraUW#p@a?~qf4eMQ(;g?&xf*M*%X>~vvg2s=~QS;Ed1c8;)fg?&TV zH-&vm*tdn9C+vJ-7YMsh*hRuF7IulSONCt~>~djO2)k0)Rl=?wV7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$TcHh9ejseE9^R9 z*9-fOu)PD(rj0zAx-HVYdtWfv_J6yF=KW!hR&|$HIOh?5D!+ z5_Y$+dxYI9>^@=l3;UU{pARrz7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~!tpk*^NELmm|Nkg$h^JtFK;VUG!WT-X!Bo)q?!u&0GR zBkWmWzYz9IVb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!t4&zZUizVZR+>Xk63j3X~-wS(B*!#l%AncFAJ`nbyu#bd&EbLFh{w(Y-!u~4kZ^HgA>=R+1 z3j2q!e+v7Tuzw5tkFfs=`%Kv9!u}`hivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauT ztft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_e zuG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO&zIjJqY4{M*yzH>5H_Z;v4o8+Y#d?Z z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF- zJivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{ zT-XxAmK3&>u%(49BWzh=%L!Xv*b2f{6t9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD( zEo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0 zqp+QX?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L%vYGcDk@Lgq&?AyZ56L!9^3xr)L>>^)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1ExF$s*ms59AnZnAHwn90*e$|t74|)0-xqe9 zu-k?GK-dq3-68BwVLuY~V_`oL_ETYZ3A9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZQ$X5s7ArA_B zNZ7-|9ufAau*ZZwF6;?mPYQcV*wezE5%#RGUkLl9u;+w5FYE4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bmbt&y(|zC+#?_KvW3h5b(0?}fc5?0sQ>5cWr59|-$U z*hj)X7WOA$e-`!^VSg3&H(`Gl_KC1hh5bX=KZX5E*uRDSN7#RbeJ1R4VgD2M#Q@`F z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt z_sj2)QH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9!X_3riLgn9O(tw|VN(d3 zQrJ|&rWQ7huxW)&Cv19QGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEt zYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZ zx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){77@0nu*HNeE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o z$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3_lS5Em zb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5 zy3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*f zP1U+h@48J1yG^Nb^3p+vB ziNa12cJct@Wx@TmtH z_HAM32|Hid1;Q>Ac9F1)gQK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna?QwB2j3yr3cF6&^}@a* z?7PBl5O$-mn}ppg>=t3S3j3b0?+d$4*zLl8Anb?2?htmTupbHgv9O;A`>C+IgxxLd z9%1(iyHD8t!hR;~=L3wF1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3`wt}g@o2zyr8 zFNFP4*mJ_37xsd%7lpkf>}6rE2zyo7Yr0)75TM+-}q2Zd2)I5Az-J*2q@}-yv@c zdq>#2!hR?0_rl&2_P($`2>YY34}^Uv>?2_x3;UC>KMVVdu)hlXo3OtN`$X8M!u}!b zpThnn?BBxvBkaGzJ`?u2u>T4BVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yx&S_vLrUsKQ1QHoCAegpDa|EMa2{8%NlAAuwt}z~g{>rPrVtKFu!-KNFerqazG z<~wAUk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g z!-X9o>_}lp2|HTYF~W`&cAT)|g`FVmL}4chJ9&Wdvf%#O)njv+-R5Sy%{6zMJMT6N z=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4kjC^(Q9dfF$uL%39u&)XGy0FuP zoi6MQVP^_EOW4`M&JlL5ux|+arm$}b`?j$2gq<(!0$~>lyGYo@!Y&bZsj$n0T`uej zVOI*fO4!u{jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(xn|_6gYS@Qg~>*4 z5cWf1cL=*v*pGz$SlCa5{Z!ap!tNG!kFa}%-6!mRVLuc0^8v=og8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+R^3}n2$b-Tj685mL zM}$2p>@i`F3wuJ?lfs@7_O!5Pggq^Wi23wuG>i^5(K_Oh^7guN>4HDRv{ zdqdcp!hR*}*TQ}y?6(7qmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrb9Yvikg?~u2Jy(8>hVZRghdtvVhdtcZeg#A(22f{uS_K~oU zh5bp`pN0KJ*k6VHP1xUseIo2rVgC^JPhtNO_HSYT5%ynUp9%Y1*#CrmF~E3PaDVOU zvAN7{bFZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z; z)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt z^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S z`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-E zwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ z`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOg;M zojkyJS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L04*w=)8UD#>DP8W8Durr07CG2cr=LkDj*f)fIQ`onJeOuUh z!p;|Vfv^jOT_o&cVV4NIRM=(0E*Ex%uq%aKCG6?}#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jOwDX zgxx6YCSf-VyG7Wo!oDZ$`@(J$cDt}22>YS1JA~aS>_@_WEbJ%3ek$xPVRs9=N7%i> z?h|&uu%8M0`2gc(!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC#`u`Rd?1#PVZRdgYhk|;_S*r*%YyrBSC7qQcAJ~+ zHrL#3?!4P9pxbPt+pMPB?5W!Y+F&xCz0?0>?(7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgQFUeEA(Rs<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-r zX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbT zW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~ zTUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVol ztuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62> z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7- zNLBb9ec8IV;g&ijBaA8LX zJ5tzD!j2YpjId*c9VhH~VJ8SXQP@esP99*qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa z&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h z@48J1yG}$flF6=a6rwcnn z*qOr45_Yz*bA+8M>>I+qDePOqzAfxLVdo3GK-h)CE)sUJuuFtpD(o_0mkYZ>*p|wq`t{M62;5+16Vb=+}Uf6epeOK5G!fq6HldzkG-6HH(Vc!$>ePOo=yIt51g#A$1 z9m4Ju_9J0G7WNZiKNWVDu)BrbBkW#b_X)dS*w2Lhe1P$?;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ysi-e0A_0@}RJXggq?m5n+!C zdra8l!k!TJq_C%iJuU1RVb2Qtg|J@=drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYt zuwM!LwXoj^`|SYZWx@TmtHUf6rW-WT=f>+bp2lY@^$(rrYeP+bpfy zY_Qv`v)k;p+bp`& zv)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c30 zSyk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3* zY-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXns zw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9VzT6VMhx)M%b~!juUpguoHxxDC{I*Cl4@Q z7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj z58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t+ zk*^NELrxX;6=7c$_BCN&7j~Mk(}kTO>`Y;22|HWZIl|5r_6=d*6!tA)-xhYBu=9mo zAnZb67YVyq*d@X)6?U1h%Y|Jb>`Gx*3A=iL@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe*Nl91@Evlku}SG$KEQZcaDVOUvAN7{bF30c~ICx!X6g(h_FY6JtpjNVNVEqQrJ_%o)-3uuxEw+Lf9{bJtypW zVJ`@KQP@kuUKaL>uvdk>ChT=#ZwPx+*sp~BTG(%d{dR!yvf%#O)njv+-R5Sy%{6zM zJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3>jeK?R9rCuYcZ9tw?03R` zFYG;G?+g2bus;g>K-h=EJ`(n^us;d=v#`Gi`>U|O3H!USPlSCc>>tAZDePau{w?f3 z!u~7lGhv?#`=78c1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk& z&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9Wu&7Uw(&-Dr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5g zHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@ z&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9e zY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^* zuw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ z*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1 zWLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3 zu%m??BkWjV#|b-L*a^Z;6n2uZlLr_t3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(R zr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=^$X5s7A*TxaimB7zscBZhi zgq=I#@3cF0$<-)EIcBQbZgk3$r zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zYev30_zt;N*mc6L7xo=t-xYR)up5QlBPleqj>~3NA2)kFcgO=HUmbjhJSglTVGj#?MA)Ok9uxMs zuqT8)DeNg>PYZiS*t5cZA?%mJo)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>{r5m zE$lbKemlT;S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EP zHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_Ehuau zVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK* z!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq!uAoiudw}u?Jw*A zVFwC3NZ7%`4iR>!u)~BMF6;;z#a3Oh;I$peg+1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^Z{a$#2pyHeOy!mb`*yezoCcJ^foB3;T|+?+Uv?*p0$&5_Yq& zTZG*z?0dq#FYGp9w+s7$upbJ$L)e|dekAP2!hRy`r^4{(&I5cW%9&k1{8*bBm5 z6!wy^mxa9|>{Vf}342}G8^Ycc_A6n(7WNxqza3z_EV#dR_1Iiyx4GGFbIsl6&b!S5 zy3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*f zP1U+h@48J1yG`%h}EbK4B{wnNm!u~Go6JehU`-iZ93j3F^e+&DMu>T7C zOxWkb{wM5<0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghm5kwm){|y3L8z>=)%SjHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@ zVUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&J zyUm?5)6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_% zgl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{ zbF30*;UwX z!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B}X-f z2s>8Tal(!lc7m`Ig`Fhq4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbnvt&# zzC*4RcAc>6g?&fZcZJ;`>_%ZX3AA?!|JKN9w1 zVLuV}Q(<=ryIa^j!tNDzpRoId{Y==;2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=E znr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rD1)R|nrA4+?uo*u%me5%#FC$AmpD>Ye5=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEz`<1X?3;T_* z-wrTd7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0E zrUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG z<~!uAk*^NEL*5qlj<9!y{Z82Lg}o>2ePMqP_D5kK2>VdjN5Vc9_9tO~7WNlme--vO zVSg9)iLg(F{X^J4h5bv|zlHrr*nfq6ChT)z{}cAb0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWSO>w(T zi@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV z5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F4 z2wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8H zCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8 zI=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba; zyG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h z5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f#gdHpFIAO;NJ3-iq!cG!)@&Myy!Tq(X$L2D- z&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?; zYSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%tK`Rd?10)75TM+-}q2Zd2)I5Az*z&B#{=-yzouyH42k!oDNyyTWb|cB8PHgxxIc7Gbvv z`<}4x3%gC&?ZSQ_?1#ec5O$}q9|`-hu%8I~sj$0*-7V}MVfPBVPuTs!ekSba1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4tZeY ztAp>52ZcQ(>|tS#2zyl6W5OO6_Jpt}g*_$gX<^R@dsf&lg#A+3bHbh%_JXh%g}o%~ zWnr%fdsWzL!d@5lhOjq<{Yu!ch5bg@ZwDAJ3+}I7JvNuwZEm*PTywX%^KP?%ZnKSU zvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZm$X5s7A#V$NN7%c^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA)_qz<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH z6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMaz zC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F1d zg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qE zMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG z=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2Vo zoUr4CognN)VJ8VYd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yx@re0A_0a;mVe2>YtAuL=9Qu+xN{F6<0pX9_z@*xAC)5q7Sy zZwULQux|mI*wq7!mj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbf>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdeOy)xmejgTfvX_OP%=ggq+kF=3AjdqUWg!k!ZL zw6JG{JuB=N!hR|2IbqKWdqLQX!d?>gvanZ#y(;WAVXq5&L)e?bekJVJ!hR#{w*!oq z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w& zkAxy){Jv)$&JyUm?QK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v; zF=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3!LD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybF zmaw&jts`t*Ve1K7U)To1HWapzu#JUnB5YG(n+e-o*cQUJ6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG z5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzPPT29nP7rpYu#<$HJivHaaDVOUvAN7{bF30IaSzKgnd=m z*Mxmt*lEH}7j}lQGliWc>}+A@2s>BUH-vpt*tdjzTiAKR&KGupunUDu?gv0D(o&{cMH2m*uBE;6L!C_p9%Z<0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%% zL17OGdsx^b!X6d&n6Sr%Jt6E#VNVHrTG%tfo)z{BVZRjioUrGGy&&vGVJ``LS=cMW zUKRG5u-ApXA?!_IzY_LqVZRaf+X2SQg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e22U>^3}n2$lJo+5%#XI-wFG@u=j+$FYFJ({wVAN zVIKR`>(LigncgTf5N^P zV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$S6yE`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N z3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEk zJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fp zD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA*+mhb?_ass<73BtuAa0VQUIoOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY z&4g_(Yztvq3foH9*21@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7( zCkQ)H*h#`p9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jto zyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?Ps zO^drtrJFs>cgQItUmbjhoGR=q!oDi(Yr?)R>@;Dg3p+#DnZnKzcDAr{gq|4UVE$lpD=L@?)*oDF_5_Yk$ON3o2>@s1O3%f$tmBOwPcJ%<`Wx@TmtH|SB_3A^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WArFjvb?_bXpse+3&+HH#4ZCc!ID&6d1zC+#``Rd?1 z7xo8Xe-!qCun&cOB_IF{Q2>Vpn zKZN~L*uRARTiAbu{a4s$!af)FKVe@CFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWRxYp{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO{Hm9(;gv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi z?IdjH0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghwL)))xmejuEKT`w!5%BgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii z4ik2`up@*WDeNd=M+-Yf*s;Qn6L!3?6NH^8>?C0)4=`R9++VwTY%a6g+-$eG=5BN6 z-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6_TA|3ACBiNhcA2ot zgoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA59jC^(Q9dfO(>x5k|>^s7~E9?egHwwE+*v-Oj5q7Jv?+N?9u-k;) zF6;-wekkk?VRs7qk+2^N`-!lh3cE|#-NNn>cCWDegxxRfXTp9yz<613f9>kAxy){J zv)$&JyUm?^4*h|7*7WRs;SB1SM z>~&#p2zyi5uY~NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yv^}e0A_0^0u&dguN^5cfx)z>^))c3;TnxKMMOm*oVSC z685pMKMDJ@u)hfVtFXTb`@67DgncUPAHx1A>|etEE$lzS{wwS=VV?{8pRg|m7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRjh4 zeus=IY&2n`3mZe&n8L;qHny;FgpDg~JYnMtn?Trv!X^?nv9L*mO)6|MVUr7+LfDkT zrV=)_uxW%%D{MMp(+itH*o?wv5;pSy<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`K zZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*j zO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@# z%_nSrVG9UbP}oAk78bUMutkL}CTwwGO9)$1*iyol7PgGAWrZy#Yq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$SNaW9ejtZDr_}js|#C0*qXxD61KLmb%d=eY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x z+d|lu!nP8&wXki3Z7Xa$VcQGaLD-JMb`rMp0OMuB{k5yd<}$m@&32n>?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MS7Eye+g;cm!uAxlm$1Es z?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP2|Hfc3Bpbk zc9O7@2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>ZvUSZvk2a>uHzsIq6h*iDxidbq9~wrcPpg=l8QTyw{zbc`o12&Tk&d(QTU2ZEDkPI@E0n)ot30)75TM+-}q2Zd2)I5Az*z_TA|3ACBiNhcA2otg}@# zrFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$L zcAI*3o33`7;&z)BcbiH#dzkN#D@VRM_zt;B*wwx5k|>;_>s3cE?z&BAUG zcB`=4gxxOe4qNZ7-|9ufAau*ZZwF6@Z`#>;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOuvdk>ChT=#ZwPx+*jvKh7WR&?cZIzt z?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR#h|{0{kwu&)XmRoH04z9wvRVP6;a4Pj#l z`=+olg^eZbTf)W`Hjc1yg?(GtcZ7Xc*m%OeC+z#eejsdoVG{_OP}mQJ{YcnE!X_3r z$pGVJ!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC$J*`Rd^RkRJ=1OxWbYrV#cMVLuf%rLdm~`?;{Gg#AL;FNIAlY#L$H3j39?UkjT~ z*!03?5H_Q*nS{+OY!+d&3Y$&X?84>{Hm9(;gv~v`cv*0N?dq|)%x-hD-R7FR&7F6f z1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#c}BiE_zsy@*nGm~7q)<~1%)jn zY++%G2wPOxV#0nS?6<-e7q*13C50^|Y-wS?6ZU&ye-O5euw{iUC+v^HmKU~yuoZ=^ zBy442s|fqk0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%1#v?61Q9CTulfs|#C0*qXxD61KLmzYF_^uyus3E9{@b z))ThAuzv~LK-h-DHWIe6uzw5tkFfs=`=78)gl#HpGhv$x+hTz6vf%#O)njv+-R5Sy z%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3tj(m0S9kP|Mt%YqP zY+GU53EN)S4#IX6wv(`(h3z72S7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8f zu!DsiBJ5CMhY34e*bxJamj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxraUa^$On?~tQ}9WCq_VaEzPPT29nP7rpYu#<$HEbJ6vrwThw z*y+N~5O$`pvxJ>3>>Od|3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S!mb!#yezoCcJ}p}x2)kC;b;7O}c7w1Rh213VW?{DoyH(h2!fqFKhp;<^-6ia9VfP5TSJ-{R?icoe zum^=bB|wq`o*en=;5+0gVNVNtM%c5$o)h-Guor~ADC{L+FAIA` z*sH=`6ZX2WH-x<@>@8t$3wuY{yTaZR_P($WgncONBViv4`$X8M!afuBxv(z=7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRiDp zeusQT*jI&(Dr_`iUlTUEu&)dIhOjY&eN)(&!p0KzEn#B|8%NlD# z6ZU;!KM*#)unB}sDC~#Aek5!nVG|3RWPtIq;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yxHZe0A`D$d83hCTwzHQwaNsu%8N>QrORg z{an~o!hRv_m%^qNHjS`ph5bs{uZ2w~Y~8ge@v;F=4+E_FG|#3tK|ilERh}wzRO{ z3H!aUKL}e!*s{Ww6ZS`8%L`jU*owkd61K9iRfPR%fbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA%7nE>fk$MRbhV-_E%wl6SkVL z)rGAgY)xTn30qs(--Z1{*gC@274}bI>j_(5*uR8rAZ$Zn8wuN3*uRDSN7#Rb{ZH5? z!ZsDQnXt`;Z85-jS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LFMXFYEwe2MRk#*ulaM5q7As!-O3!?1%xz%YyrBSC7qQcAJ~+ zHrL#3?!4P9pxbPt+pMPB?5W!~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg z!Y&qeiLgtBT_)^uVOI<=UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bmb%8{=QzC*4OcD1l;gk3A_I$_rfyFu8E!fq0Fv#?u)-74%h zVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxo znce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWePmX+b@E!7$ zu&0GRBkWmW&k1{8*bBm56!wy^mxa9|>{Vf}342}G8^Ycc_Li`>g}o!}U19GDdtcZG z!afxCk+6@2eIo2rVV?>6T-X-_jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D-WlzeBzv?5n~?6*ii%uL&Dn*w=-9L)aL?zA0=> zVPgsVmawsfjU#MaVc!<^9bw-UHlDEW3H!dV9|#*?*aX5R6!t@5KN2>Pu!)6DGQfCQ zaDVOUvAN7{bF3n4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_o{_H(zC-2}HlMKhg)Ja#L17CCTUgj4 z!WI>_n6Tdn`>n9Wg)Jd$NnuL~TUyxfg#BLFAA~IkAxy){Jv)$&JyUm?U|O30qCr>cZ9#wx+PPgsm;?@525eY#m|i3j3$9^@Oc2 z>|eq*5VoPPjf8D1?BBxvBkaGz{wHh`VVeruOxWhawisZ%EV#dR_1Iiyx4GGFbIsl6 z&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_In zx=p*fP1U+h@48J1yG+1RoHIAb{DpXuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs z2s>2RVZsg?C0)3p+*FslrYZcDk@L zgq0)75TM+-}q2Zd2)I5Az*z<;YhD-yv5CyIR;a z!mbr|ov`bL-5~5nVK)i8S=cSYZWVT$u-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4< z342)BBf=gP_L#88g*`FAcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#Cr7?I_zrnW*wezE5%#RG=Y%~k>;+*j3VTV|%fem}_NuVg zguO284PkEzdrR2c!rl?~uCVuny)WzoVIK;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO*MyBO?CZk5A#4m`-xM~cu(5=FOW4@L#t}BIux|_djcgUn8Umg4(@?&9>37cHl6vBQY?5Dz}6!tS=KNmKY zuwMxKrLd`mO(SetVZRdgYhlv~n_k!q!e$gUldzeE%_3}8VY3OFUDzDL<`g!Uu(<~q zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)| z&&XE?-y!n~n@`yM!WIy=psq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$e%~PI`|G*RoGvI{Z-iCgsmoQbzy4= zTT|Ft!qyh{cVYh!wvMoMh5b|5dcxKh_Ag-@2-{HDM#450_HSYT5%ynU{}Z-}uuX++ zCTw$ITMRH>7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~wA|k*^NEL$(sOwXki3Z7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n z61KOneT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zM zJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3Zj(m0S9deYgqlFzK>{wyP z2|Hfc3Bpbkc9O7@g`FboRAHwHJ6+fr!p;^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrb>>gqF3cF9({lXp)_Motbggq?m5n+!Cdra8l!k!plyezoCcJ}g@o z2zyr8bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5lhOjqP-WT?Pun&cO zB|wq`Mw$J~?~tzu`>L=}g^eccYr;ks_H|+35H^OeZwebz*jU28 zC2VYA;|Lp9*tdm!N7#3TjVJ7T!oDx;2g1e|Hi57Sh5b<2kAzJmY+_-P3@~06++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrbfXXLAc?~r+g%_nSrVG9UbP}oAk78bUMutkL} zChRxDek*KoVM_>GQrJ?$mKOFqVZRsl2Vu(yTUOX|!u}|1d0{IETT$3b!d4cxim*Qo zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zY+F{|Vbf*rviZ6SldqEe04b3+}I7JvNuwZEm*PTywX%^KP?% zZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuC~$X5s7AzKOCTG%$iwiULWut>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LHUuxo`~ zC+vD*Hwe2?*iFK27IurUTZP>w>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g( zh_FY6JtpjNVNVP&UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bmb$&s%PzC)f8_O!5PggqgvanZ#y(;WAVXq5& zL)e?b-V*k@#7X3;SY#@v`9l+SOxonce1Q zyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqs;N;cgRZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9Wv?2R|o%x{8-pz!X_6sg|MFp`>C)gh5by}&xK7T>=(j* zDQs$C(+HbZ*sp~BTG({LrWZDYuo;ETBy473vk042*lfaP7dD5mIfcz7Z0-TZ%YyrB zSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^5>DS4!%QH74{cle--vOVXFySUDz7J))cmu zu(gH#UD!W_ts`t*VgD4ip0M?W{Y%&e!ZsAPk+6-0{ae_7g#B08|AcKKY*S&I3EN!Q z76Xiz1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3~7~WM+X~xG*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVC zA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSVju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5 zy3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*f zP1U+h@48J1yG|$Y;2)k6+ zWx_5OcEteWWx@TmtH1R|~sF*tNp06L!6@8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+E zx$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hut zsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J_cH63Hw;s zC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#QRe*eJLD_EzA9`~VWSEAny}G@eO=f$gpDEWo5IEvHkPn&2^(A3 zIKsvi_HAL`5%yhS;|cqoun^@Q+1B{mi_t&l-o6GDr zH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w-c1tAqbTek^P< zVUr7+LfB7){Z!bL!hR;~=fb8E_6uRZ6gIW6X@pHH>{r5mEo?er(+itH*o?wv5;n82 zS%l3hY&K!D3!6jOoWkZ3HunJIWx@TmtH5)6ti_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(`SZwE z2j3y93j2$&zY6=Cu+@aEE^G~9YYJOS*xJJWF6rVtKFu!-KNFerqazG z<~!ubk*^NELyi)5w6J4@9V_fOVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz* zbA+8M>^x!T3%fwrg~BcpcCoNagk37^GGUhsyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N z=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FN zj|qER*b@Vcmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrb9a^$On?~td2JuU1RVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09 zw}ibd>>Xk63VTo3`@%jD_MxzkgncaR6JehU`%Kv9!oC<_yezoCcJY(E@q~R(*!P9~K-l=gCJ;8E zupbKhk+6w`O)PAZ0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghfF&1)xrNEKNdEbu*ro@A?zo@ekyEAVLuc0b74~n`-QMy3Y%Kk zG{UA8_A6n(7B-!*>4nW8Y(`--37c8iEW&0LHk+{7h0P&sPGNHin|pxqvf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA5bjC^(Q9Wt-5 z`Gn0cYyn{l3R_6n!on62wy3bhg#AX?Z-p%`YzbjY3R_Cp(!zcx?DxX{AZ!_7%L-dg z*dK*0FKh*2D+*gl*vi6I5%#A6#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jOj+y{*gu7>Cv1IT{}Q%=unmQ6By3}0{}%QiVgD8OKVh2)+f>+Q!ZsJS#Q@`F z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*Sg z`Rd?1WGi7?3)@E6w!*d(w!N?&gzYG7Ct*7a+eO%}!gdq3yRbck?I~<8VS5YPN7%l? z_7k?humgl0DC{6%2Maqy*rCD>6Lz?;BL)~R3+}I7JvNuwZEm*PTywX%^KP?%ZnKSU zvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>J$X5s7Ax8;2TG%ndjum#Cu;YcDAnZh8 zCkZ=Q*eSwJ6?U4i(}kTO>`Y;22|HWZIl|5rcAl{Fgt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L^4*h|7*7WRs;SB1SM>~&#p2zyi5Tf*KJ_KvW3g}o>2ePJI6`%u_N!af%EiLg(F zeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bk_l)1nB4*80(uL>Jg*l5DOCTw(JUl;ZbVPgpUrm!)EjV0_`!p0Uhj<9is zeOuUfgnd`oc*4FX?EAugAZ&bL69}77*bjyMNZ3TeCKfiy0OMuB{k5yd<}$m@&32n> z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry79}AmI*yO^d z5cU&cKNU8mu%8M0xv;5({X*C;g-tDN8e!84`<1X?3!6^Z^ulHkHlwhagv~5$7Gbjr zn@!m4!sZY*r?9z%%{{<)S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0La6j<7L79wX4VG zGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_ z(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`{yg&4!FR~2 z!u}%cufqN&Y&Bu43tL0jn!?r+wzjap3;Tz#b%d=e?4QEc6Slsve+k<_*oMM361K6h ze+&DMu>T7CpRi4YZ7OUtVVeuvVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yvI$e0A_0vX!u{g>55jTVdM?+g{iX!gdt4ldzqI z?ILVfVY><2UDzJN_7t|4u)T%tBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5d(~u z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^a9 z=a?A3Oh~M>B7zscBZhigqMeOhq_Inx=p*fP1U+h z@48J1yGD>YGKz1yH?nB!mbx~gRmQg z-6ZU0VYdjoRoHF9ZWnfkusem_CG2it_XxXJ*nPt87xsX#2ZcQ(>|tS#2zyl6W5OO6 z_QU|=Wx@TmtH?L6@3wuS_tHNFr_PVe)guN;3En#m9 zdq>#2!rl}1zOWC3eJJcBVIK?oMA)aoJ`?u2urCG}FAMIkT|G9J*==sN+gx+Ex$|zb zfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7) zZd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|$~<3whkQlYSA~r#Y&2nC6E?cA zuM7KzurY*vQ`nfo#uD}|VPgv$N7%T+zAfxK!oDkPJYnAx_I+VL5H`NB34~23?1#dB zBy1vK6APPUfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA(M`Lb?|@4kA+PpY;s{!2>Xe!p9-5&*w2LhT-a2?ej)6a!lo8Bjj(Bj z{Yu!cg-s`HdSNpNn^D+I!e$mWi?CUR%_eMiVRHzZQ`lU><{n_YEV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yG+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWee;)bj;5%ehVSf?!S7Cn>wwkcjg{>iMO<`*ZTU*%Qh5bX= zI>Oc!_D^B!30q&-zl3cdY(rri3ENoMzlHrr*nfrnPuM2HHWjv+u+4>SF~E3PaDVOU zvAN7{bF30 z*-F^f!nP5%t+4HcZ7*yGVLJ-jN!ZT9b`iF#u-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt!gdHyIhyljSg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e1{x4^3}n2$Wg+M7IuuVV}%_j?08`(2s=^ONy1JR zc8ai5g`FnsbYW)*J5$(M!p;_Uj<9ouohR&kVHXIyP}oJnE*5r)uuFwqChT%yR}3&- z7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj z58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!ud zk*^NEL#`5bwXkc1T`TN5Vb=@0LD-GLZW4C0uv>)PD(p64w+p*N*qy@e5_Y$+dxYI9 z>^@=l3wuD=gTfvX_OP%=ggq+kF=3Ajdt!j`vf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3hj(m0S9rBd0r-eNu>{(&Y3431H3&LI$ z_L8udg}ox|Rbj6QdtKNY!rm12maw;ly(8>hVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1 z*cStgmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxrZ}W!^8pL%t&HtHMSVHkz=n2^(G5*M)sU*cigTDQrw(V+s3~u(5@WBWzq@-xl^A zVc!)tp0Mu;`@XOr2peD61i~g1_CsMm5;l>riG@uvz<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-k>}SG$E^I1czYz9IVN(m6M%c8%ekJVJ!ln~8y|5XC%_wXpVKWPxMcAyuW)n8M zusMXyDQqrba}O|H7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~wAbk*^NEL*^AWpRoCbEg)<`VG9XcSlA-M78SObu-^##t+2&~Eg@`4 zVM_^HTG;P|{a)A~ge@a%Sz*fw`=hYsg{>fLMPVxmTUppD!u~YCcv*0N?dq|)%x-hD z-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#KaYHM@Ex+Mu)hfV ztFXTbTTR&N!qyPBrm(eytu5^D!u}y_9bxMV`=_w=gsm^^U&1yJwxO_%gl#PB-@^VQ z?7zbPCu|d8n+n@Z*yh5v7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgU6_UmbjhY$a@KVcQ7XR@ipJwimX8upNc%By4A4y9nD= z*lxmh7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0g&id9U}1*{J5<e+3&+HH#4ZCc!ID&6d1zC(^2`Rd?1 z9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>K$X5s7Ay)~zTG%zht`&Bju`q~K3At>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LK!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$ zu=j+$FYE(h9}4?O*vG;?5%#ID&xCz0?27@$%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!%zVv zYz$%F6gH-?v4nj~*x16x5jL){Zwvd5uq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$fP4*9sD2iV_}mCn_Sow!hRy`r^2Qb_A_BW7dDl!UkLl9u&ISjBWzk>zY_Lq zVbcklUf2x6W)wD)u$hI;B5YP+vk9AB*c`&<6gHQzxd#|83+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqJ$X5s7A@d5GPuTpz77(_e zu!V#zENl^Biwavz*l&dWR@magmJqh2u%(18E$nx~elP3~!j=)Xtgz*T{ZZKR!d4Kr zqOg^Ott@O6VSgH6yezoCcJ!ZsH6Z(;ut_FrND6Sj%4O@(bHY;$2-3@~06++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc661KCjU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch z!VVI4u&_gf9V+ZFVTTJlVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yuhie0A_0a+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1 zVW$Z@UDz4I&J=c*u(O4oBkWvZ=LtJs*agBa6n2rYi-lbx>{4Nu3Amw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t z!X6OzpsMeOhq_Inx=p*fP1U+h@48J1 zyGBVQeShdd?hX<^R@dsf(U!k!oQg0L5by(H{q zVXp{#RoH97UKjR;us4OhCG2fs?+ANW*n7g>7xsa$4~2as>|VpnXTm-g_Qe3> zWx@TmtH)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWYUqZ4*n1Mv9QU6O)hK-VLuV}Q(;pI z`_ z3Y$yV+yji41^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3{+9m8Cv1LU3kX|K*h0b<7Pg46MTIRU>^H)GD{OILO9)$1*iyol z7WO+~zZdogVao_xR@idF{wQpDVJiq*QP@htRu;C3us;njUKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb&m&(Qe21(m>@ULpD(r8< zRui_mur-9ODQqoaYYY3kuzv_!N7%Z;{wZudVe1R~m#__lZ76IbVH*qkx3K>R`>(M7 z3EM>2rouK8wz;q^1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk& z&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9kS)fR|nrATM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtis zh3z41Phoor+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{ zbF30IZD{k z!j2Jktgz#R9WU$zVJ8YZN!ZE4P7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI z3cErVtKFu!-KNFerqazG<~!uck*^NE zL!J`$w6JG{JuB=vVb2SDLD-AJUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c z3;RIWhr&J*_OY-}gncUPGhv?#`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA4gEb!%b$XA4YRoJM)MicfmVWSKCy0C8u8$;MP zg^ej}EMeagHny;FgpDig+rqvh?7PCo6ZSn}-xu}+VdD#%K-h%Bekklm!X^?nv9L)7 z7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn zGU>=y2mgosSlDF3CKon^u%8I~sjw-9{Y==;g-s>w7s7riY-(ZC2%A>euY~0)75TM+-}q2 zZd2)I5Az-J=aH`tzC%_O_7`D)74|n_s|j0O*c!st6tD4+g#Wd1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q z3foTD_QG}$wxh6}gzYSB7h$^!+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!Dph zEbI_rhYCAP*x|yC7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8 zI=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba; zyG?PsO^drtrJFs>cgT?=Umbjh93|{%VaEtNR@iaEju&=}+A@2s>BUdBV;Yc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-a zDC{9&4-0!l*rUQ86ZW{UCk7ZV3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BwZ!$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b z75192*M+?y>`h^B342@EJHp--_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L3jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nRMie+3&+HH#4ZCc!ID&6d1 zzC-32`Rd?1WL{zO37cQo0>Ty)wve!eg)Jg%QDKV-`;D;Q3R_&*62g`gwv@1?h5b(0 z?}hzA*fPSF6}FtPKMGr3*b2f{6t`w!Xmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq^T<~R-yy3C`-`x@3j3R|)r74s zYz<*+3R_Fq+QR-W>>t9`5w@8w%S<*v7*CE$lzS{wwT%!Zs1M zsj$t2Z7yt!0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghip0W)xmejR>HOxwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PM zQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG z=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{gqoT`KG{VV4WLVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yv6ye0A_0a+R>FgN>``Hl342`F69bHw1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8 zp|FpHeJtz~VV?^7OxWkbz8GMMeOhq_Inx=p*fP1U+h@BZJ;eE?Zm z=Gz)?a+E9x2sS7|lH@EoNY0>=Lz9!xAW?z@B}WM&Sw&IIVn!6Rm=Q213>Z+1sK9*| zGj;ErJ^y=Z-CKRC&Z%mrezvn%x^d6@uK6~0>9@6nep?&qx3!*rTf6GFwYYv;TkN;B z(q20)pF@&b{rhuBh9JurWSN32bC6{TvaCUtEy%J5S&ksf8DzPFEO(Hd7i4*YEN_tI z3$pw{Rv^d<23esXJ3q(@2U(FIyCBGl23fHnD;{JQ23d(9D;Z=LC1iTC(E0ODz1ljN zep_eOZ|gMsZJl$!tsCICbvOLBZjIm8ee&D7X?|OG&~NK@`fc4?zpWeXw{_S3wpPGz zYajf!mcwsrQ~b8p#&2tf{I(X#Z)>~!wpPt=Yw!HFme6l&BmK74({F26{k9g@Z)=PF zwpQ9}r{!}mj9rtaOlF9AuXSS(zX!8)W5ztbCAN8e|oMtYVN=3bM*URwc+T z3$m&~RxQY?2U(3Es~Kdqf~IYeaAZr+8mj_v+AZwhE>B&Op&pY*M z>tyVWNm`1ZIHDKvi3pNA;>xg zS*IZD9AsUBtZR^U3$pG()+5Mz23fBlyE4eG3bLz%tap(039`OH)-TBVCuDlE(E0OD zz1ljNep_eOZ|gMsZJl$!tsCICbvOLBZjIm8ee&D7X?|OG&~NK@`fc4?zpWeXw{_S3 zwpPGzYajf!mcwsrQ~b8p#&2tf{I(X#Z)>~!wpPt=Yw!HFme6l&BmK74({F26{k9g@ zZ)=PFwpQ9}r{#0V0A4lmIb>jv4GOZsK{h1FQi5z~kPQp6;XyVc$VLX)s3031WMhJC zY>K8f24#Y;urY8)Q?0Y-*5A3$p1!HY3Pp2HAB%HY*|1lZDQo zck0#F$@JSgvwmBr*>CHd`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>K zxPDt(?6zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|ch zx3#!_TU+e6wbEWYEuTZS@~Vl?A=`p%dywr2vYkP8YmnU*WVZ*|t{}T3$nFfX-9dI& zklh_*dxGqqAiFon?hCT}gY1DIdoaiz3bKcTY;TY~5@e4C*<(TWc#u62WKRa!Q$e;b zA=8tE&YySc)z-=M+d8v;Tc_D?>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6> zep|chx3#!_TU+e6wbEWYEuTZ4=2a7)L-q&RGeP!jkR1rJ=Ys6{AbTOmUJSCAg6!oW zdnL$T4YGql_F9m=9%OF>*_%Q3R*=0NWbXvop&)xV$PNeDksv!7WbXyp`$6_WkbM|r z9|hUR37MWObpE_kueMI6-`1J++d9pDTj$(w>jwC3-3`C3TjRHNpZvCNn%~wP^xL|f zep~m}Z|g?;ZQXUhtrhUw+6TX_~!wpPt=Yw!HF zme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{!}Yfn5@Z(yS3f-`1`1+qzGFTQ|*b z>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;YZEcF**4p@O?U3KrLiufNm*3W^`EBi; z-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG*4oT)!6MsFVRFIVpvWtW4k{~M+WMzY_ zT#%IyvP*-kLXcGqvPwZ#ImoI6*=0diHOQ(3S@j^R5o9%ktX7cK4zfByRyWA%1zG(d zYY=1&gY5DkYZPRS6EZzn==^!7UTvLBzpXRtw{@ERw$8cV)(!C6x*L95x5jVlKKX6k zG{3Do=(lw{{kHC{-`0)x+q&z1TPxtVwGVz<%i*`RDSlgP9@73ep`#{x3$H7TPy9g)ABi_39p*?9MUw%ngv<&AZrn1ErYC8 zkhKo7D}t;|khKl6c0txY$T|dB#~|wzWSxVoOOSO9vTi}vJ;-_lS3f-`1`1+qzGF zTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;YZEcF**4p@O?U3KrLiufNm*3W^ z`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG*4jI6!CO(G@46;E%HaN(J1X)Uu z4GpqkK{hoogqopZmf8{oHfH~hA4jo;RN z^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R-{I=G{Z)=DAwie27YrFim zR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)<#WhvUN!MKWKNLH4YKQlY+jJf z53&V8wlK(U2(lZ4Y*COc4zeXdwlv6=1=;c-TM=X{gKSlhtq!s^LAEx?ZVIw>LAE}~ zHU!zmAiFupHU-%&LAE)_wj^YFve5bSPQBVXnSNVm)^F=H`)!?bzpWeKw{CHd`)%C- zzpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6{O8b8DxJ2+228SI>^oh+1Z3lPZm0V-l3f-`1`1+qzGFTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;YZEcF* z*4p@O?U3KrLiufNm*3W^`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG*4oSM= z-=9M=1X;!)%M@gpgDgvsWeu`yL6$wpas*kzw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWYEuTY@ zdDX;U4=EL7rGxC^AiE^U$^=>2AS)MS<%8_fAgd5$6@#o&kW~({DnWKxkW~$`YC%># z$Z7;x%^<54WVM5=PLS0NvU)*QKgb#cS;HW^JjfaaS>uFEPZm0V-l3f-`1`1+qzGFTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;Y zZEcF**4p@O?U3KrLiufNm*3W^`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG* z4r#)xCO(HW4YFoI);!2s1X;@Qy@RYzko66+enHkhA=8tE&YySc)z-=M+d8v; zTc_D?>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWY zEuTXM@T!T=Ap?VKP>>A{vLQj15@bVzY*>&D53&(KHZsUY1=;8z8xv$>gKS)ojSsSG zf^0&NO$@TsAe$6qlY{KqAe$0oQ-f?;kWCM=89_EP$gT^rSqYh*EOh?7Q?Is8rr*|? z_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp_1oHFzpa(_ z+G+V5GMiUTd=8ltWOIY;`XHMZWb=b;L69vBvKxZz#vof1WQ&7rNsuiKvSmTGJjhlA z*~%bW6=bV}Y)z1@4YHepY+aD853&tGwlTqh%+-F3gM74X~I z2fwZ5@Y~uHzpb_L+u9+&t%dU2+AhDXRrA~0JHM?Z^xN7qh%+-F3gM z74X~I2fwZ5@Y~uHzpb_L+u9+&t%dU2+AhDXRrA~0JHM?Z^xN7_Ct`7i7-|*$YATVvxNQWG@HVD?#>ZkR1%N z*MjWzAbTUo-VCz0g6!=ednd>a1=+hnb~wn61liFbdoRe|53&z}?86}YD9Aoe$n<2P z^XHv3(-`4H)+q$=YTQ}No z>#qB4t$^RwKKN}dhu_ww_-(C?-_{QKZ7r1F)^_=At(xD~-uZ1Uq2Ja<`faVJ-`1}B zZ7r_f))xD1t+dxp%jb|!c-6$`kWYi`vmpCC$i4`&V?p+1kbMht?3W<>HOPJovfqR3k03i0WPb+PUqSYFkev>)GeLGX zA=8tE&YySc)z-=M+d8v;Tc_D?>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6> zep|chx3#!_TU+e6wbEWYEuTY@+Wh--NQNNG7-X4(EOU@$39_s~mMzG#2U(6F%Nb<3 zf-HBCofl+zf-G;4K~^Bh3Is*wr;fF)?N48S^>YUeel~_4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz z^xIlbzpY*M+ge<|tu6N3T4}GHmd_zgc-6$`kfuS_EXbM%S&JZR8Dy=3taXrG5oB$G ztZk6B3$pe>)*;9`23e;d>l|cVf~;$hbqliYLDnP4dInjqAiFZit_rfNgRFOu^$D`R zLDnzG`X^+1ve5bSPQBVXnSNVm)^F=H`)!?bzpWeKw{3s-_}j@+q#2( zTes71>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3x3xBYTRY^pwNQRr+vT^lYJOXL=eMh zklh$$i-K%%kSz(ar9rkV$d(7$iXdAVWUGQ~b&#zIvb8~WQ;@9-vh_i>A;>lc+08+= zDadXKvduxZB_Y$3h0dRM>ebfC^xHbKep{#6Z|j`bJGHep_4Yx3$tw(_cp&mr4_Yw*Fqc_Ti*FNo_MEC3Q}!^3VS?%2*)j;jBsg)#SMpVVe!g-^NhSF@1T80~juw8z*HsVPH}yQQA{QwB{< zZaOTbQgXMHDV353jvbQRb>QHX`pL;{Cykz(T&+@awR&~*_n_CRgdSD8RY`81GIrvm ziOJ0-O-LCyDY^2$zFvzFlSfSCg{hwVbMo=E+rY6SMh#5vJYnF(f%^ICuXQ0hj2Jv& z+{AH1QbQx+lUq(1oHCjpYl5V8E%%S#dmw}Ucy|Be#dmG`#~&x{Tzu!g zwMQ~!QYZbl^micr9Y}u%(%*sfcOd;8NPh>?-+}aZApIRke+Savf%JFazvvzK&p!WW zJaq8TrYgnrtzO6H|4OI!=(Dpv)Bo$|fBmYAKK~cN4CwRzJm|CX66kaO8WhGR==1+h z=+^@d;$J`i>vQzE&*Uvq#t)p3Iwoao>OVg7j~SCPVQ@;)KRzSpJNFt?|F2(5^5XjI zX2H3S{Dt^~a{8lkr8-aG!+HPiBT`4FOiap6F*84=5Aphm_Zl~0)WqQ_DXA0By%v9~ z=YB{(=Z*u%@aqg+2aX-apQoRQelY#F^micr9Y}u%(%*sfcOd;8NPh>?-+}aZApIRk ze+Savf%JFaf5&_B!9XMKGOg+3nZGrK+u=Yc-=>ob0S z=%4lLbG|-ipAUW3*RKa$fTAdd;?U>&641x(i;#>`D2_?CdA^0*ZI%es;( zq7o{j3NAxcR6}*tKuy#_ZRoo~>Y^U%qX8P?ax_9?G(l4|Lvyr%z6qrjTH^||L0hy# zdvriYbV6rzL05D`cl1C{^n!j}b92cSlO5!3UqZCTxVqAhUD2s9^k4sSj6;TP5Q3aQwDypG6 zYCzv-R139H2X#>o_0a$gaXA{HF`A$$nxQ#bpe0(NHLgG#=o{DCLEpF30Ugl^ozVqd z(GA_v13l3T`u?V?a5Z|P5Bj1X`eOhFVh{#n2vRTH~fx2 za0-9oFZ_+uID@m$|M6!)Mr1-}WI|l*Yxl1Z7Yb+S5-Ot#E<;sRLv_?ZP1Hhd)InX;Lwz(r zLtKtVXpAOkie_kz7HEl9XpJk-25r#}?a=`p(FvW=1zph%-O&R*(F<4NDqM};=!3rK zhyECVff$6r7=jcG#V`!V2#mxijK&y@#W;+|HJE^jNW~;f#l)#GdAHCY{nLB#Wrlm z4(!COxDB^s7w*8F*p0hzH}>Ej+>85gKOVq?cnA+;FCM|8cnpu@2|S6Xun$jTKc2y} zIDqHyJYK+ycnL4#6}*arcnz=P4ZMlB@HXDTA-s#jID(^i5AWjxe29~<5E;WMN~p%RKaDaifX8i8mNg{sEs zzZW}+?{H6Qi*{&_4(NzZ=!`Dtif-tR9_Wc)xDr?4YV<}Q^hH1P#{dk(APmM3q+lq9 zVK_!$Bt~I0#$YVQVLYzE1WZIKCSfwJ#S~1%G)%_~%*1t=h1r;cxwszlFdqxB5I5jP zEW%OR7MqC zhN`HB>ZpO5sD;|7gSx1P`e=ZLxEzhp7){U=&Cnbz&=RfC8dsnV+M*rWqXRmk6FQ>{ zx}qDpqX&AT7p}xrxEj6D2Yt~G{V@OoF$jY(1SuGbVHl1P7>Q9BjWHODaTt$lFaZ;h zib8+YMu?7=;_7x&?QJb(xB5FW-} zJc38@7#_zHcoI)xAD+g3JcDO(0MFrhynq++5?;nDcohfn8eYd6coT2oZM=g+co&Cp z1V`~6-p2>{5Fg=Ve1cE$89v7sIEF9r6~4wdIF4`e9lpm8IDsGW6Hel1{DNQc8-B+h zIE6p)7yia+oWWTnW#RrKBQhZ~vLGw6AvYy&_p*|X* zAudNFG)5CNMKd%<3$#Qlw8j-^gSKdg_UM3)=!DMbg0AR>?&yJ@=!GkB6|P2a^g&=dVjRZf8ce`Mq+${#<62C?R7}Hk%)m@shgq17 zIhc#x01I&gZp0!i#u6;WGAzdmti&p;#u}`}O<0HZ*no|=8JlnmHe(C6VjH$& z2X^9C+=kn+3wPj7?8aTV8+&jM?!|q$9}nO`JcNg_7mwgkJch^d1fIlG*oUXFAJ5=f z9KdsU9xvcUyo8tW3SPxQyoT5D2HwP5cpLBF5Z=XM9Klh%hxhRTKEy}(7@y!%e1^~Q z1&-lMe1)&^4UXeme24Gx15V&a{DhPE8Nc9H{D$B02TtKn{Dr@98fS18Nm;r7$cRkH zj4a5CY{-rr$cbFYjq{KPd65tKQ2+%|2>EXo$r+Fc5<<7(cPMN&5IKQbZ{G9wGJA{(+J2XZ18a^pPYL0;rT zeiT4K6vFu^j3T%IMNtgJaUn{eBrZZSN})6^#w93&vM7i0xD*vo5tUFGRd5-qq8h5B z25O=fYNHP7q8{p_0UF|RG(uxEK~pqCbF@H9v_flKfi`H1c4&_d=!j0}j4tSkZs?94 z=!ssq5?A4B^hO`_ML+b%01U(+48{ha<7<=&u9>rsL z98cg$JcWID8vF4Kp2Yz?hv)GEUc^gy8L!|~9K>sQ9dF=GyoI;%4i4d69L5nG#d~-k zAK*iLgpctFKE-GF9ADrVzQkAf8sFeJzQuR=9zWm&e#B2WiJ$Qce#LM29e>~y{={GS z8>evwXQ6+37L@vS&PU@dOKI;_VAY{bpjgj=u~Td)<|upK+F6Sv|v z+>Twi19xIK?!w*JgL`lr^cn62@E)L@ej^aJMj}P!6KElWN1fSwFe2y=03}50a ze2s5#9N*$Qe2*V+0zcv>oW#%g1;64q{Ek0x3V-4+{EgE%gR{^#_hdjuWI|?SK~`i# zcH}@#KbSQT#er7gTCm8{uqFP7=*zXf)otJFbu~CjKnC6#u$vn zIE=?Nn1G2$#UxC|wU~mbn1<9Zm2oGZ~9>Jq{43FapJc*~U4^Lx1p24#?famZ$UcifZ2`}Rnyo!T(4X@)3yotB) zHr~M@yo!3wKEbE>44>l*9K)CR3SZ+J9LKl#4&UPkoWPIx2`BM0 ze!;K!4QKe*AN|4CQ}`2q;cuMA8R5tEjeQxA5t)z~S&$X_@zehW^w&-Q?Z3}E(3S5b z9LIMKCMUJz`wCO}Uc#yTAA|o};iN3*{#9H0JJLT=PR_31bGOd@KB?6|zWm4EpF4a1 zjC%3v6Zr1NLFaxRqyA&j_-_T0GXC$^*U!QDQ_fY6eOK_@*DQSJ<|MwWa!k^|bARt` zco&AA`#C8|O&Y-;kNr>nqUCvgeJhRrahm)3zjOc2ee*0|vLv)AO8QEecz2NVeFKBPiY1T*_9S0>sYcCGnSZ0rl>|zv{+g#kw{rfktjtW zDoR<>Cat7C(fr=mImXP~F4OgW{O0@5@9`UtIp#d)Irn{^`@F8}yw5qqu8$KAJ@;yv z!{+(8+Jfxg+z1OTz?0qAmqwlg@#emtn~Q6Ce}}p6g}cuP_ZjIvqugh-`;2j)vFucEo+&W_MbQ+4X%#3>n%trR%7^qx%j>`M>-(7lK2qPx*!#}Uoix+!5g#D|Ep3zyvA#CU{_lSGS9dJAlitM5b)Vk-KI?FV z`Ht#>?_Oqu-O)BV|J|5?*1qE%V*Px_o?;!{Ef{2jEyLZ0@>VM#z}b0w3iH@7g8$R_ z(j9Hl+xXQTal-jyVtav6;y;b6{?oYnKa2oNE%Mgl%s2WE!<>(uicu><)Botm0|*q7RiZn~^el}dTH z^R^m!S8j7RtD-G*V^r|_w{}k-(5tXi$ria$IWPJ5p0D_JUOu?GEq3SHV|liAPHk#S z+_L93F3jL`6c+PF?+)w*<h-nWY8u2iUhF^;XW?f-w72e=sKfB4U5DF=M#;q`Oh34X?R{x9S! zF2bi@gg<=|KKCMg=|%X<7vUE>o;ersmtBNkZ2K4UU%kk7{%;@8df$FsgLv+*w=Tk0 zUxcr{2!HJ&+<$v7+^_$5qAxg}<-YB>b+`XGA5TblBI=1K3-;eHiRbyifp1rMyMhJ# zk0-$Os&5Yea)R$8FYh%k!e6=wUqU&a-Lbq!DQ1&heEj}-?&-1EJpcUp@y|~}9^Y$y+?QqYw&R|m__u%lIQ{ckB9G5Y zNGKUq(w%32?&9*e+rIxi`_DgCa_l^Z<@uiDbT=^XcJ(#8`uurF%Htm2VfRtdY^MLK zyyN#@OL3>BFc0xvb^eoux#3Y33xn4yRZ2@qOUc`g{~7y*zMng78r#n07i`DeD*$HB zpPKJa3@>35amSzkxYn*1^L$WNcx}rn#IJNlpnKL>!nYM{$@iG<9_nJ<8Zsa&yrt&{ zaASfl`U8RC=e88=H1|;HmN}K(2D}?_kJJCXk=)dxH_}kqNP~ujH{!khjod~qe)|J2 zJoI|!_lgH(_Y5w#;0X&1cDEnj*!Iguxfj3vH41HHo`v#_j&ZkR17KJkW62p&fMNNG zkH`Yd2i!$gxc8v0aJ1k-rSgON{rBH5IH=Ur)C&#@%zIE^-h%?W_(9AvjzEkpkCK}UMw!iDEIk~agzce=g7 zY~c>WA57dbcfS;#fvoUxo=I-zv=Gb7UvBP>^FNSxu&Y+B%C&R1BJa%j*tuJgH?ZfK z8=AafL|K7;?j=#vwsa$9y?g~FAcmTinIl*$~KW|R@z@j&Twda3sWJkxMH{zZ(|Mx~3 zG%R`}RSIpyUE${hi;;_;6D)!M^X8-vEP5kuf%)GX+0n7+jg(h5(x73{8>w1oBkl@6 zCs<%!{G4DpDV&p{H&R;J$c~OhZ^W%||NBT9G%R`})e3FIUE${hYs!nC6D;k8b5it1 z+!KiZ-pG!QMQLNPeK0s zNE$ROxRJ*K6D{67d|88fRa0uGwCvwMeMCn6S>c^*7Eax{kAUFvxiRiFxq4RBJwK`K zK3iIU_b1&(_}=5dZUZdZ!h+KW?mzr{ZV0}{qm6s8uj(Gl1F@R~?`|4gxSL8v?8g68 z!?&A|^nqu-`IPS_(Yu?57w)E75xem}8S(8VG=1QS6DRm?lDxZVbm49;D`Gczx^nKM zg{2S7{e1`DO$qOA8eh1ZIz{XT&kD}%COm!M!Q-d-Zj!ybX>#Fi8Wgb`|LWCu(jw9a z9{J?}-%UyErcu$8R>AG2kuYgHI=;T`JHDGsyt^TjR=J4X6r8jj9sl}pIp0kw?{3JX zRWD*U1t)Ds$1lG4g72oZcQ<6xE-zv?1t)Ds$J}q9;=3v1-3^(vx<%}!;H2&7xbd@} z`EJU3cS9zvVG+A2IB7dNZaefk-_51iO_QQ0EyeAoi7;sm8qRp>BKJ)>?{3JXRViXO z1t+aR!;>qg@>^5hyBjiTHHz3x!AWb-aQpV{d^Z)myCIWStBBncoU{fFbN3JAyGilx zhD=($B6d@7(i$|J`_8v~Hx<3RA(Pgqh}{&Nv<3}d+BJjiCfdD3;?`Z~A2(Zi9yiP7 zhF$cr((Ia1@A@~22TJ#G?y)l3y>EGbqi&+S8?ETsXu&BmJCRkNZ?sDOM&0~)H(J%R z(SkE$z9-whM|JO!R?Xk2n-=dzYkD?Xa6;To-emkptL1Oh&4zcQwLKdxI1gsG&fUj1 zT0MWGZW6p3t?$`r!F%8A&gE^{M#J5k#_maYtG)wfgFbtWLu{m5g5l*XJoaLvc-1Oz2Y409w}Vh~uK~Mn;`NLGCl|aHUg%mxp=*x?#<}<1 z-TMWt2dDQRn$kLb*sxjQlRU?DNp7S&uEB0G*x!b_rD1FL)iC#`;8EeVnhVA!@2K#i zP3ZZf@?Xn4D*v^-qw-&S%)K^y`Q)J7S>Y*#4<#hX?WDCkCBxmHzU~0b;MSTP>f9P0 zH`M*EUA~)Qx4K7yUgv+N_T*sqGu1pl6Pz3FekRlXmd_~P+PA-rKmQYTCWpD7sN?yG zu-xbiexmTclC7>=fm@q#cMj`2qHo5?QR7o?NFSFmE4*#tO$9d2jkh*7&i!f_?)wqG z`+uZ6kn!%E-{1~soSO%{(w2AcrLxtC|!jvVO*^~%EA4JeZvY;E018|fKU zyzrg3Ew{70ZN<8GLEJNlcIkZw3>h&f#XVQ>9B5FyJG1TF0b%xsxC0&J4$%K*gKq>} zV6M604*%vbiec`^{6+X!V61zRQDEb)`@9=ZARG7h-$gc_oBI5^!|sM);|&XL+;yOL zL8Si#fsSYV_zc6X$;A8}`<8->im zcUfQwcYE5qGkd3-McnE6@y~TH@8{iVcn{$JW&Gpa0?GAK#~~wzrVlum{|=smDdly{)DdvDnT`_ld8^$di zr?lhNZ#$8=iWFuH}GzxCYy_6rNYPRe&a9HZ49YFL10s;hzM(jcyu0_ zkv=QDU*R7KjCAq9k7T%G!0Xa^MT^&^^BN4VDd+d9|5{#y`LE?QnE%>ifl+pax!16| zWM=s8;IW>aCc8~{@!jML@8W_Dk3uYT7X#!UiT_&Ok@&CW9f|)M`my=s5O=Do6h4HI z5O?0Yy4yVJ{PTSO$%=HpM&%~+h9Mcl+}WyM_@{#6+`Vyw8-@&ba&f*c9PR)N_f@`4 zjLg6t?s=&psI+erIN|<#DA+ecg$#7M1eTMHx`i)O%IVinW%Ju2vYNhlYF(9RT-~Q>%Q&O(W95z0seytST z%o?b(lb)Jrw>c-J32jOfct5ub?KimvS0eBlm-oIr8KBluhF$`?)vr{mYy

7#sm?>}-_=I{}tQ(F0U)Y^CHX9X?%P?I_x+%H#;%pB!A7T?a@ z%U+}V4l8)u@^AOWZiGAddbQof74G5tmh`@(a60mS%DtXuqp{CuoNqMt8IALe zCO)G{zR|>IG|4xb`i!ReMpK{BG~a0EGn$<<+`Bf-&Yc+F=^QyGeUw|6-Za>aTgvdh z!_wWAR>S(bRVuEybLYP@FdbLj9n{5*?x>Ve?yQgY8SXA9i2R-lL%sU->eWYk_%`gv zx$a3`xGk^ck6z6>?l(GIR#v#bV_j~Wy7vs{xWD^{mvo;lH0M4_p8Gq{=7irAJ*U8T zVjd2(t{sAcOSp#s;EMLcS8;EjPJ%zejdUpH@6T6onTro1=fz2_%xdjF{^CAWXRYH^Q$PIugML#rhzC5P48 z-|+N;E02!aSRrinmM7;ezHY_utuC)}ylmTE3%_pKW&iRUr{7zq)Kz^K#yxp*!&`6G zX!^k9_S2v4zHq{~cMj^fs>O_%qbkgNanJvn1%B9gOtr~pC&%v0?Dl1;#Lut^Wx>x zpWAuMJ2(7Ydgb@Gr#If+c*$2OzehcsxMgMZ^xhv2N-16Y+qbV=F#V@5KD}kwn+IpC znlZ7-?K?Ve&MndBROm+wZa@|v@!slz@r;ESaMoqwy6y{EcDTl*!IjE>QTF&3UET|gd?S47 zi@%(Hsl~sqJoNYB$G=M{`SjAzEk|0XemMB>m=KuB?eu>7y_q(K|XtZb^wxJDm00 z*qQsA_J5;Bn|`Z4eC3Tlt@XSzE#G@~&of_qcI@bVO+Wg&#J;&5Vs5E5FD&N4^qqC4 zt^IXkt;J=R9B6mx)>^|3znA>&593O0e?2GZ>-O)D?v_<~-^}dgs}H7py87~c6@RI9 z@b>jp?r8B)+nc`sp?%ls>*M4uE+CPtK*?mmL<+HA@8xr|qo4O%) zAAhb!nP&saoZM5Pe@e@_|4xftzo$;kZodUx`)J8E*1AJh!!ykqUfJ-<3E%zv+O)f? zKN7TP=j}KC_@VmPU2CH6 zn%ZLKBU_s+{pY#IxBt2A{!;HWNL+jKl>UDW-!X1#mD_&r)BoMwHNVgKe%rw3y6&GA zKRv7NwFygFT>8lN_z77H_k4Xzjgi-{dw5~jsMa4$xUTVn$#MepJrO6+hcOY4rN_n+C6X>GU_7 zQ@(iphRdF~?2V`HiFtNZ@@KECx%|X+i@F5ux--0br}dvVUp9B=o=b;L-m@b1;PN|$ zE*pF}=IpJP&l~&UkNpofuCcFo&&^|-cUt*;_GizQ=zaUykC2+-}};tk7j>YW7_?-Hta3gzvPFR zua^@cDn2-O+N^-;UtJy1D*VmhtsOUw>igQRn!`3vI#u(B zkq2HFT()xSp1%cF>zCgCx8L5K`Pem|o(+3;U(=M4U%z?9gn$3{)88Wp)xCXQi`?|L z*4~)D{ls(4>K*$k_pei5e?95&*;B{ke(8PBV`d`Y!`4}RSHt$)rw68F*rN#89R z_s@xCV^{Rvc=qRIsgv&hVb@z9?%p)@bo;5^kwC#oo}1awA-*N*0t!AvN7?A4+c)F{dC(BTN6W?ZQFDG+pk7! zoAF7Ds_(8E`b6{S3Plp~GWKNJ0O+6UQxwhO-JsrBJgmeu|u&6r&Cj{}u! zP3`dQ%q`<%7N<^)K00Q?6CYJ7yS?gD>oR_>yshJahdMo7@xjDP*0epc>)o#|Neb`w zO}Y9%Od0!B)&on1{u=b)XB+;B*gWTrkGljvQgQv$kN?`6(--ua5o`8yYj`<|ZGvPYtiQ?5Dmr^=Xkd z=H;cwOGOQS?1tX2JzeSa^p&mFJP@?z{w`zJJU(t=wU9$eYLvLNRX7Fu?-U==~ zaY*TQKP}o3HvE&edk>_$2tOjl&kc++j`gpuQk z=9AsGm+1Anb#+m47UzxVh(>w_z$1aE0J_~W)8ba`pnC136P=*`YuRy16c z9I&fj-AXB^GdkVXYr<8T8yfAcb7;szQxirsi5On`;Gya9<)?nP`=uM}wmQ1%tyhlK zS^a&@>%Tvn^7^PU`@X2q@2(!b@B4Dph-Y7Ys^;LI=6`zjgBwe?8aQp%hSd9~*Pob^ zIIY}s3pT{Z99sQh*WXXx|MqnQ+pn8hyUIIz4>kYc#r-Lj5=TEWYst^cjt+7g_^9I3 zx89YM_)gmnuY?Xc*1vLC=e6@6ey{&kk1zTnCprCxlZg!`K7IMTx9|9E*?qIC%$@Sa zgu~zOExW7cq^T+Iez5QP28X7FkGrdD$K_X4`n6iE4g3+x$@Ky3Z0i zwQ97Y#=r($4mY1YDC1<0fk8*_xMyI!C4Fa&uXt(j(oIiayL#!68yk0z9lGr2zgvAU z>e@X!hAx`jKo~e-&tR- z*6lC-?oQa=clM0iebXHsj^Fg{x3>;&((L|kc2B7@_PT|;UYWYTPTO7ar!u@l$X(aJXz`H(kK*SRF`XjcsaIm^=_zBwM~?ht zL;R!F4o=&(d~eXyZyLumNv+cDrxP)+)C#ZjK;O5X8uG>y^S3AUZ}3(9!Ar}8H~(Sw zT~BWwzV4?PY28b9p1%Le0W14VnK82IiR3|#cBs**T9xiK>ePR7RBZL@9-Fu8!5jXb z{7SPI9=Y+GN-r#G`TiTb+MUkKdiJ-u0TZ`Y+1M|B!agfKr|Z+XubpjHX8NGI6-xH{ zw_D56`?Eu8Jil$np~`cYb`1XD)(sop{rdb(4+yO7elP7}t6HZO_#kWCt{n<*z`M-L z|LJ<}d=^;rd4JHmY|8(^(r!Ij@J{fae(#pNYnc2keag1vThVy8;T?kfZR~e1b{0IE zB1WQXhY+`v!YfcA*2~@cz3vH**45*zD{8D>oy+7S0K<+Rp^o z>cs)pVr77BT^C@T+^ZJ*wg*_RJpp#?K!6QD8epf62Uylg_tJ)2mF9#5TC#hVHos(` zRjm+c%c}=k<9dO%v00$CX&Goc+Xq^Y?tyl&XP~9`5400Q11&Qn(9TW_wCrs6YpXK? zZMJ)MSMHfWTevvTYOf5m)$0PS#pXcUx;@Z3?FqDf2Li3v(Lg(PJkW-p475{c0xc`V zz4RFyWH}{+EV)9E&95G0RqF-W@@7HSxMh%SY#(H8x(C_LoR%bw$Yt>~E`o4q*5%B>8th3kT>_U0g4y*g6-hMU`x*qwi7wQmN_Tb&MpYH?8WXETUQ3#>~+CbZga3L+#YPT_XOMO1Hsnf zXs~TP9&DXX2HUj%Rr`n9@}Z&DI3v_HP7Jj+*`c;GC)9e(3AKX@LM?r9sGV35YMJXo?d+yd z%ibPpF?&L7_JL3n<3m~G4nvo>?WZ0CY7>#;b@4z38Z z^mSo&VpEu9ZV$7wyTdH|fcq`=qhU7txcj%bC&O&vnJ}vz5^k$w!mUNgaNAlw+&Wbc zw|#ZPtyi;fJC+u1!`p}3sczwx)ic~e+^Z2eL&GgOBi!b@e?(F>+r5a96K;*&YY`h4 zgj<`%;kI){xb;{UZU;AoTl)5JJFz?5G7p5?*(2eWeLUP^PKMj;GvQV)B*GTPL|E;T z5w^N~gte$1VO#4)Sf^$Ywl6KhdbN+RW8ETbcu)6ldHO|I*3bwG$%wF=i4m5Z9bxlx zBCP712wT1&!Wu7*u#GDstj)Rz+qo&idTfudgS#Uv{Xm4BI1*u*$0O|Q9}$*)Cc|E^+T`ADl>JGPg+RojP*5g2=9Xt|g>Bl4O z#2=BCc_z}%21i+TOq9jAf4(%ke3X@|9%T#bMp^Ax?dwsCiqwK))F zJC8(JkK<8x@Q)}M_YFJXp5;HZL{k}Te)V@wlFQ)YPXNJ)!m}4 zMbBv4+ArEV4UM*a?xn(B6Qk|e)My)?6K$tvM_bkc_jd5&Xv?+c!JbdM${xV~b*K z_=;FNwKmqWHo5n>x5rw}?pRAc5Nq>~#9Gzkv9|n=SZjPH);0#mS(}(R+nF3^J<7+~ z!D?}qUN_E8G>x;&v^YE4F3z&M#aT?xIGf!s&dLpqvxTGMtoFn>TRk<-TI9sp*4c5^ zX+fOrTNG!#R>aw{wQ)9lQ=FZ8KhCmt$63gMILkQ_XUWIoY`$9`Ry`AE%Y);saZJ2z zOm=VPmXEic)#9y3-FQ3LG~UwF;_XDcc+2b-Z)b0bx9ooIH#3LE+w9TtR&HXvEu0!} zwR7Ta_3U_Su^`^IE{eBKE8=b6+IZ`=Dc+8~A8*5V$J?p>@s@QY-a?MYTh1TxmV74O z<_9NO)tCfZo}6Hf%O}{zY6;e+Zi4M>nqWQB66|2R1WWIhU?*-#u*`l5cJ_`0%O351 zWpiSJ&7PWI<#G~i;p_yfy&%C>FLLj&tVpn}YZI)~rUcvfeuDMdonXiIC)n^K33lqo z1k3s(!9va?SWa-FCC4P%{NzNdT0YU1S4*_UbrWr4(?n~NmS{WMC0dVeiFWXoL`(0N zXeaJSv`qK<_}K}GmOa(|E@w`n&7PfTCfe{n67AGKiIx?dWFaw0mXn-h$>o!5ezhd4S~tm-H%+p}X-T%RU6Qrw zmSj6`NwOaOlI-9eNtQl3$xcj2vdpPTcJ|>U%bx9i$#X%H&0dsb`t<+`;)BGktEyqW0DQ}3BM4E|KB9qT@J7~-`5H5()|xS?nT}+Fa5TsQ@^gM zy?y*LAHUppImJgN`(6n4ufwXk_vGArKmqrvV>hqSUJL6h%UGt z6+G;$@2Qu2JIXiUxP}o)bD!=>mb-@e!hikczlOiB_8Isd=BFioGr?!#R}WhHnE!i$ z?i!vE`mY7qHHO*pUki5EFjf9*A?_OH$$u@>UBe{#uZ6j5m?8hQaCZ&UKc z*CO3DOpO0pl)Hvm@n4H}*N`dywHS8||H{gLE!JIg@3x)07U!+!vR2lke+md|#)gmGB)O?uY#2!&~zC#~1E9z6$4#FWi58?WW=9-=BfY z7iZ$KhVS?WXZ!g5xLoJ^da~~*C*KP)b0RJ$kH=-bakz8~8FzWeca(MqzE1HSW!lZY z?{+wMe3*><apgRdvw;@d|r z-(_## zT36rCcJ`69bH|7Db7X++g8D^&3ybKm*>m^-}RFV zdER#X^M^d=A0HlY^Uog^E2;S3dwjZbkiarMacl}3#M?l@iW20{4QB$|^ zc&giYq}6Ra2J1E+opl?J+q#WMblt{dy>4R_pxam<=r&dkx{Wo3Zez8f*`K);$VpeF zH@nra|BqR)Yngk471 z<%HEDtTthF2&+q2J;Le})_|~vgf$|pF=0&zYf4x%!mc2!Ibl~4b`@bQ2*WDad%vZ6 z7#=S$f7;B$#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwT zb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8ntMV#EbzbA8bujchorf^dLJ)Z64r{a)`VR{SR2BwC9ExB?Feg6 z*mZ<;Agm){oe1kpSQo;&64s5d?u1=W*bRjBAnZoMZX)bv!fqj~Ct62)muI z-X4aP1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A}ZX-{+jil)|GN{`~r*0#+x{XBZ zHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zThjrP=S^r~*7 zadjJAtlMa5%`VP$NFTRX?>eL}Vf_f}PuKv$(g_<#*dW3N6E=jfI|v&}*f7F|6E=dd zk%Zkz*jw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe-oa>Ou zZm-^T$i0M3A?!ZFrV^G-*!_e(K-e_GrW5ucVGj}ZFkv}_%^>U%!e$coC}Fb*dyKHh z37bvW9KxO;>`B6&BJ63x<`OoKu=#{7AnX|r!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Y zx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay=Q`wBw^#2vo!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFy zCe&?oq;8`+1P1qj7J|S!`VfzUCl(5eT`<$@-gdHI43&Or6>>y!Z z5%#r*VP%2&)21FaCR4XDv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8 z(YlSS>o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`YI}9|-%Au;YaNMA!+! zekSY}!hR*}H^P1=><_|D5_XEPKM6Zc*k6SGP1yek`-iYIgqw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe- zoa+z^xNsd3Kv*DQL4*Yp7D8AkVPS-Y6Ba>OBw8xtvcUXlQx6-HsoR)Y-NrQQHs)NnkpSIB zHgp@Q(QV{Ow~;j6Mh0~o>C|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_ zqq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|S0(}VE(kJhmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaV zgSw4$>Naw#+eox-BkQ`27SL_I^-){(GIgmosY3t?Re>qc02!mcOm2Euv}b|Yao5q2|Sw-DBouv-bcjj&#X-A-6< z55vj=^QTQcY)qzZV`g<5)2!Q=bKOP)bQ{^wZKOuGktf|o(sUac)NQ0ww~<@jMxu2a zS=Vi}fNrB7bQ{f~+vpVCM%(B%dPuj?P`Zuo(rvVwZlmvX8%?O&=t$j0d+IiNRkzW& zx{WT@ZM3vz7w0;pkK3zv9nzPueuVWWYye^DgbgHY5MhG}8$#F}gbgKZ7-7Q+8$sAe z!tNyOF2Y6;Hkz;u!ZHaPL)cit#t}B2u)7JHK-fgWvIx6}ut^?NciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnI zDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOqb;xA5 zSMNIHUc#mjb{}C=3Ckwze!?CgY#L$H344&RhX{L^upGi>5cUXRGYNZ?uvvsXM%d$o z%_eLPVNVeDBwBjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1= zMtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TCC|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT z>NYx3x6z)ujb7DlG_G!=i**|RpFyChQ%;wh;C%VOt5?M%a6Vy-(P7 z!agAEL&A0twv(`r2>Y0@U4-o>Y!6|d5Vn`FeT02V*k^=&PS}3J4iNSQVP6tvcUXlQx6-HsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oHR=1I8 z-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7Dl zG_G!=i**|RpE%ChQ1dM+y6euw#UMOW1dWeNWgAg#Ad^al(Eg>;z#y z6ZQ*XzY_KvVZRgh2Vo}(J4M)^gqNciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_ znnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOq zb%+ICxDE**ERe7u!h#74AuN=zFv7wKiy$nLuqeW!35y{tmasU&;t5M2ERnDz!b%X9 zOjt?6E+MQGVWkNxLs(hDE+woSVdV*{;9*!Naw#+eox-BkQ`27SL_Fsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj z-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8< zj?`_mr*5NHbsLSV+vsB5MoVjUajrws++Mxwkd}nCBCIuG*AUi*uxklxOISO?+7osi zVI2tTNLVMrIuq7~u&#u4Bdj}N*AsRFVLb@Dk+7QxyP2?C2o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`-GogbY$9P@-A1By8(G(Fw194-A9Nedq1)&b z-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W*6r=WU||< zcO7ysVN(dZkFcqPWfOKkVGj^Cjj-v2JxJI?ggs1H4q-D0dxWr=ggr{wEW#cm>~X?o z6E=siCkT6zu%`%nny|Tq%_D3+VG9U*#>23(!2D@b4;z!I+n8D1#x(0T=3KXt0NqA5 zbQ`JBZRAO}ku=>#26Y?h)NSNew~=VwM%Hy3Euh=z2i-<<=r%e~+Fc6Sju1wS=uBY&~Hc z2z!IDHwoKF*jt3X?O|A1VE(kJhmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaV zgSw4$>Naw#+eox-BkQ`27SL_^;KXCu}=m z9}xB-VLJ%hN!Uk(eN5Oc!gdq3hpXJtF9|zH*jI#o z?O|A1VE(kJhmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox- zBkQ`27SL_^s7~C+r8pekANTVLuUeg0P@-A1By8(G(Fw194-A9Ned zq1)&b-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W*6r= z#DXqdhXfE7NLUbI!Gwhn7D`wcVc~>D5Ee;T6k*YX#Sj)tSR7&Tge4G`NLUhKB?wC< ztR!KV5LSw?(u9>EtSn)d5>}3|@`P3JFsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-Cq zMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H( z-A1eFHu_Gt(S*8tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49 zBb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3 z>NeU_x6!M*jmFh&bg^!ur8T=a*CAK4 z4uo|itP^3K3F|^wSHijx)}65H3A=%?9)#UU*iD4pOxP`i^(5?8!fqq17h$&(*4x9d zvcUXlQx6-HsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oHR=1I8-A2}R z8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!= zi**|RpHQC9EG|{RtaDSUOB1QG|^qEQ7F2!p0CbmauVzjVJ7G!X^+lk+3Yn?jdZFhhb%b`O~HzHYQWIF|)dj zY1VDbxo#r?x{Yk;Hd3S8$dhg(X}XOJ>Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGum zqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHd-L2MC)+*mS}kBnspmg}ZX+AI zjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ez;#`M3>-Oqhhdf8v^Mt)X*o%ZM zBy163iwRpo*h_>hC2SdCFB7($uvZ9MLD)*dUL|Z5VXqPPI$^5`TSM4d!qySCp0Evs zy+PQUgl#13EyCXRFsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj z-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8< zj?`_mr*5NHbsLSV+vsB5MoVjUajru)xxISVA)5(%hp;V#y-V0u!nP6i9%1hjwwXz*9fa*9>?6WHCTtgBy9wJv*e8VTC2SvIpAz;NVV@JWpRfajeL>ilgdHU8E5g3^ zFsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwT zb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0 zZFGumqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHdtJ|1n-Nu~jHWHxQ$cAns zHM)&F={Az4+sL49Bb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAz zqt$d9eW%-KLfuA3>NeU_x6!M*jmFh&bg^!ur8T=a*C8oxuin=~DiT(Su*!s0A*?E4 z)d;IjSPjBz5_TD3mlIZtu-b&xA*?Q8^$4p^SOdZu64r>Y#)LH?tSMp52)lx?=7e2I z*j0qJAna+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc0 z8||sv=vCcDeL=wd$5_T(Lw-MHhu-ggi?O|A1 zVE(kJhmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox-BkQ`2 z7SL_47o z>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKql6%R<|+Dx{W#4Z6rXqkqzBO zYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOc zMyu&I`cAjegu0E6)NQnj+y<*apJh zAnZ-THWKz0VQ+gFRu-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49 zBb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3 z>NeU_x6!M*jmFh&bg^!ur8T=a*CCtSUcKv(&4j%}*cQUxC2T8U+X#D)u=feuPS^*8 zeMs02!gdn&5n&$_wu`XcgzX{h6TtJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(Gt=q`D zZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M*jmFh& zbg^!ur8T=a*CB`8UcKv(!-O3n>?mR15O$2PZwdR3u{r5mBkXs={vhlmVW$ZDld#i-{YBW{g#C}Oe+WB6*jd847o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKql#S#`rSUh0~ge4M|L|6&Jk_jtG z*d>IOBCIrFWe6)v*rkM(Bdk1O6+8?p3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{ z-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=Xjw zYPyZS(`_`NZlfc08||sv=vCcDt4jYR7!MFrQ2vV-A3Q(Hkwek(UH21 z_S9|ks&1okbsJr*+h}RcF3xpGn%k>)9nzApR)n=C>>9$_5OytLZ3$~fSbM^*Bdh~q z9SQ41SZBhz5Z0BjZiICw?0Uj(Agl*rHxhOeVK)G8yOprp2&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_ z=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8`ub& zB5V|4qY29(ER(P?gpDO^9AV=LyPL2HgiRzYi?DkLo8)0wSz!LOsfUfp)NRbHZeyBt z8*{GPNPuo58@i3u=r;1C+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2 z-9``THX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6iY3hfH>R^{zwi zC2R^|_YpRgux!HaC+q>jrV%!sum=fyh_HtV%OPwAVUG|tldwk#n?=}Tggs8!Y{KRc z_5@*16802fPZKtmuz7^dCu{*>&v+PC7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@ zx{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U z)pQ$ur`u>k-9|_1Hri9S(W|=Ci3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$} zPTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc0 z8||sv=vCcD;u9+ zBy0y^I|=)Uu#XAbMc8h__7L_7VS5SNN7$!?eMZ>lgzYEn0AXJc_9bBl3Hyq$uRRPa z3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y z(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcDIgndWY_k{gG*pGxAC+sJ}P7wApVZRXe zD`CG8_B&yJ5O$KVQ-u9V*lEK4BJ6L%{zuq9gqt^n-4rIdmJH zqT6U2-9``THX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6iY3hgj%^ z>yQA#0tpKuESRtm!a@lPBP^V-2*M%>iy|zVuo%K(35z2vp0EVM5(!HptOQ}ngq0-h z62eLmR+_Lfgq0=iQo_m+R-Uj59)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRW zBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV z-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3xpGircIA^^l5$RU)i1VO0pLN?0|* zsuNa&u$qKjM%d+q)gr7mVRZJ!$0u!e*+BCIiCO$cjBSTn+|AgnoIR}yv= zVJ!%|ny^$4!^#5lr%gRAeZKPAT zkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z z>Na{+x6!z|jV{)0w6tay=Q`o)`75& zgmogUGhtl_>q=NR!nzZ7Jz+Nx)`PGc3A>4~n+dyxu%3k7O4x0L^&;$c!g_lcRu-5) zZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(Gt=q`DZleWs z8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M*jmFh&bg^!u zr8T=a*CBn}UcKv(zJ&E7tUqA`2umkyAYp?D8%)>`!tNk!C}G108&22=!bTEyCt-IH zHj1#(gk=zxN!S>|#u7G;uUjgHi9w5M*PS9KeWtJ~;e-9}4mc5$vlCcC|Q*CF>3 zHifYJ2%Ab+HevS@_5fki2%ApWgM>Xq*u#Y75H^FbM+loq*rSBaBJ4539w%%zVRHz3 zg0LqEdy25937bpUJi_J^wt%o_JPa!f%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p% zMxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ# zx{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U7YKXXWd@C>yYONd!Dct2z!yRg@i34 zY%yU=2z!aJrGzab>}A516ZQ&WD+pUj*sFxCBJ4H7UMFldVQUCmOV~QX))TgYur~;M zldz41y+zpD9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRWBTu@Gr0F&?sM|=V zZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21 z_S9|ks&1okbsJr*+h}RcF3xqxCbw7bI%G3p?+~_yuy+aDO4v5S-XrXN!nPCk0bw5! zwu7*pgndNV$As-7Y&T(h2>XPvy@c%}>{G%%BkXg+_7ir1urCPvlCXn>eMQ*U9)^_# z=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRWBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1okbsJr* z+h}RcF3xqxA-7lWI^-~6M+iGg*f)e7BkWtkz9Z~=!hRs^N5YO1_7hY3^UkLk^ zu-^##ov=R$J4x6n!u}-eG+}=c_BUbwBkUi-&JcE%uzv~5^)Rd~Fn`+A!^ULlHfC10 zG0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJ zZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc5$vlEbPK{ zNC07hgar{6OjrnEp@fAI7EV|MVUdJI5f)8Y3}LZ^#Ss=ySOQ^*ge4JHg0N)5N)mPn zVWkKwO;{Pi$`W=dVdV%bPgn&H!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$h zqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay=Q~g|t5muY9I)v3FtR7+Y32Q)DL&6#n)|jv+gf%6s8DUot)|{{_3A>80 z7KB|*SgMC%Wr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80X zt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ z8@;OAXk6V!7wa}!TCRpGlB&-!-tqHq^ur`EUOITaN+7Z^CuLLD-Fi-9*^Ugxx||Pr_~`>^8!B5q3Lay*&&o3(TK3 z^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@S ze$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD5gYz$#z2^&Y)c*5=`Yyx2u3Ckkv9>OMh7*-aTKW*w^V={FcGppN}X5Ge| z>oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0 zL%NNI(rt8?Zll$78-1tSXhPjaN9s1(Q@7Epx{b!wZFI42qop;wIM*SQ-Cn)xkb4Q6 zLfCzTO(iUwu=@#nfUs$VO(*O@!X6^*VZw3T$IfOky z*pq}kMcC7X%_VFeVe<)FK-e=LhLr{8Pn&w!m`vTq%<49#S+_Cgx{U zn6M>;y+qhj!j=*CGGWUJdxfwSgsmj(Rl-&g_8MWY6SkVLHH57tY#m|i3EM!}8-%?{ z*ha$MBJ6Ds!^#5lr%gRAeZKPAT zkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z z>Na{+x6!z|jV{)0w6tay=Q?DQ+pBjSvYD`V2-`x~yM%2eY#U+k5%xY|+X?%Cun!5_ zLD){hJ|gU6!gdk1o3K5EeL~n?!uApNDPf-x_Bmnu2|Ga87leID*g?X+BJ67q!^#5l zr%gRAeZKPATkz3tHqIDZt*KM?b zZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0 zw6tay=Q`w&+pBjSa+t6qgdHX98^Vqe_AO!G5%xV{KM?jKVaEykiLeud{Y=;|g#Aj` zZ-o6$*dK(QBXe@vk2a>uHzux-QC^Y-QC^Y-3>}NN@I|=prCXr9VTIt z2C0OCH2(McvWGpq*PWetF5l12Z=Mf@eI)E-VV?;5RM=<2J{R`I0OMuB{k5yd<}$m@ z&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fipu=#||FKhu} z3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi_t&l- zo6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-r zX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0X7tAp>5 zRfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3) zwidRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu z`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f#gdHpFIAO;NJ3-iq!cG!)@&Myy z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%tK z`Rd?1|9~z2|Hid1;Q>Ac9F2J3H!RRi-lbx z>{4Nu3AYh6ZwdRhu&W0cFAMIkT|G9J*==sN+gx+Ex$|zbfNrym zZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x z)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z&B#{=-yzouyH42k!fp`u9bw-U_B~@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4tZeYtAp>5UkLl9um^=bB{r5mE$lbKek<&E z!hSF8X<^R@dsf(U!u}xakHY>W?9amfBJ8iio)`9luonjyFAMIkT|G9J*==sN+gx+E zx$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hut zsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J(#Tf_-ytsxdqvpag#BIE zKZN~L*sH=`6ZX2WH-x<@>@8vc683LlZwq@z*t^2s6ZRir{}uMWun&a&PuPdTJ`(n^ zuup`2D(o|1p9}k9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg z>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EP zHpT5WE$%jzZuT(WA)}1@<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNaunB}sC~P8O z6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy4*n0BRoHC8 zW*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F< zTUOX|!j>1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfy zY_Qv`v)k;p+bp`& zv)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs!qyYEzOW61 zZ76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm4=`R9++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_ zJ6hN=!j2VooUr4CognN)VJ8VYd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yx@re0A_0@)coU6?Uqy(}bNa>lyGYpAgneDu#lkKTcB!z-gk3J|3Sn0YyGqzMgnd)kw}gFL*wq7! zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb< zX5_1b?~rSST_@~%VK)f-jf>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdeOy)xmejFNFP4*n`3z685mLM}$2p z>@i`F3wuJ?lfs@7_A6n(7WNxqzZLd7VZRslw6JG{JuB=vVSfw_Ge*#5%yPM z&kK7&*oy;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrb9Y2>Se?~s>;y&~*y!u~GoAHx1A>{Vf}342}G8^Ycc_Li`J3H!IOw}rhU z>|J5+3Hy(*{|b9w*ayP?C+tIE9|`+d*eAk175161&xL(4z<613f9>kAxy){Jv)$&J zyUm?QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V5;nK6d4$a?Y(8Q03tK?gg2EOO zwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3!LD-7IRuZ=I0OMuB{k5yd<}$m@ z&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MRbi_M zTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapzu#JUnB5YG(n+e-o*cQUJ6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCr zcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzPPT29nP7rpYu#<$HJivHaaDVOU zvAN7{bF30 z`HHZw3OiNUX~Iqyc80Jsg`FkrY+>gJJ6G6w!p;|Vfv^jOT_o&l!oDu-VqupEyHwa^ z!Y&tfg|I7yT_x-r!oDf&Tf)9A?CJr=%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB z?5W!up5MZN7#3TeNWi;h5bO- z4~6|m*pG$XDC{O-KN0p*VK)oAMcB`T{ao0s!fq3GyRbWi-6`xYVRs9=N7%i>?h|(Z z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%7s7ri>_K4<342)BBf=gP_L#88g*_qcNnuY3`<1X?3;T_*-wOMku-^-N zTG%tfo)z|-us;aYwB=Y_o>?8O1b%YyrBSC7qQcAJ~+HrL#3?!4P9 zpxbPt+pMPB?5W!>;VSg9)4`Kfl z_NuVgguO284PkEzdrR2Ag#BCC+rr)v_O7t^g#Aa@e}%m->;qx{6ZWC7kA!_J>=R+1 z3j0jh=fb`iV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(T zi@Qywn?1~T$SC7~`5iKpYyx2u3Y$pS#KI;K zHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj6*il&*@ev^ zY))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~ zu;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg z>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EP zHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0VQUIoOW4}N))BU@u=RwkFKh#08w%S< z*v7&(5w@wY&4g_(Yztvq3foH9*21@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%ubotAp>5U4`u? zYVMho%QrJ<#juv)| zuw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgQItUmbjhd_~w-g`FzwG-0O;J44u+!p;(Qwy<-Aoh$4- zVdo3GK-h)CE)w=NVP6+^v9L>oT`KG{VV4WLLfDnUt`hbQVc!(?En(jlcJ%<`Wx@Tm ztH^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WArFjvb?_bX3t_($_Motbggq?m5n+!Cdra8l z!k!TJq_C%i{Yu!ch5bg@Z-xC%*zbisE$kU#&kB1^*dK)bQP`h^{aM&wg#A_6^TJ*b z_Tm8JWx@TmtHMNdsWzL!d@5lhOjqSdso)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWRwZM{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO{Hm9(;gv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w5VoSQm4vN4z<613f9>kAxy){Jv)$&J zyUm?j+y{*m}a&7q)@04TWtaY-3@Y2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i z!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%BgzYJ8FJXHN+eg^G!uAukzpw*@9VqM| zVFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn6L!3?6NH^8>?C0)4=`R9++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA59jC^(Q9dfO(>x5k|>;_@q5%yhS-xKzIVLuS|Lt#G> z_G4i;3cE?zPlWwc*v-Oj5%x1-KNohZu-k;)F6<6rcM7{p*xkbJ5q7Vz`-I&;z<613 zf9>kAxy){Jv)$&JyUm?<_~JDC|$d{w(Y-!u~4kd0{UIdvSpAvf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3BjeK?R9rCiUSA_jd*x!ZyL)brsy(;WA zVXq5&L)e?b-V*jNVgDBPwy<}Ey({cJVgC{KUt#YH`#{+LgncONBViv4`$X8M!afuB zxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)JfnGRlNseus=IY&2n`3mZe&n8L;qHny;FgpDg~JYnMtn?Trv!X^?nv9L*mO)6|M zVUr7+LfDkTrV=)_uxW%%D{MMp(+itH*o?wv5;pSy<7L79wX4VGGP}*qcAIPNHh11_ z7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e z)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a z!sZq>kFa@#%_nSrVG9UbP}oAk78bUMutkL}CTwwGO9)$1*iyol7PgGAWrZy#Yq-R91_%>ug3HoDDfy3L-t&CWSO>w(T zi@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD61KLmb%d=eY&~J?3)?{0hQc-ywz05H zgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGaLD-JMb`rMp0OMuB{k5yd<}$m@&32n> z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MS7Eye+g;cm z!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP z2|Hfc3Bpbkc9O7@2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk& z&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9dgRZR|nrAUlI0IVW$c^P1xze&JcE{u(O1nE$kd&=L$Pd*!jXP z5O$%ki-dhm*w=+!EbJ0tmkPT~*yX~m5O$@otAu?+*f)iJOW3!CT|K~fS#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0LY(E?+N?9upbEfp|Bqb`?0Vah213VC&GRz>}FxN2>Y3^p9{NH*logY z7j}oRJB8gP>~3NA2)kFq-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$O9u^9ejuULf9{bJt*uUVGj#?MA)Ok9uxMsuqT8) zDeNg>zY_LqVZRafTVcNw_IqJZ3wuV`v%;Pe_6K2q6!s@!e-`!^VSg3&ys#I9y*R*l zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LT1A zudw%peIV?A!afxCk+6@2eIo2rVV?>6T-X-_jF$!X*RCF$%j`Bc+ikA7+uV7#SwOeh zMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D*j`ze7e9Hkz=}g^eL>OkraQ8(Y{o z!p0Rgp0M$SO(1MSVG{|PSlA@OCKWcBu*ro@A#6%vQwf_|*fheX6*ir)>4nW8Y(`-- z37dI<@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWevy6Oo@PEjx!e$dTyRbQg%_(dyVRH+cN7%f=<`Xu*umyxIC~P5N3kzFB*rLJ~ z6SlapC4?<0Y$;(&3tL9mvci@Vw!E+vgsmuSC1EQMFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR;Px4!%QH6}FnN)rGAgY)xTn z30qs(I>Oc!ww|!{g>4{gLtz^U+gR8p!ZsDQnXt`;Z6Rz+VOt5?TG%$iwiULWu^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA-jxxb?_astFYaK?JjH&VS5VOOW5AR_7S$Pu>FMXFYEwe2MRk#*ulaM z5q7As!-O3!>J(ZY@qcC4`DgdH#J1Ysu%J4x8d1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4moAytAp>5uL%39uv3Md zChT-!X9zn}*jd8P7Iu!XbA_EJ?0jJt2)j_&MZ&%&?CZiV7IulSONCt~>~djO2)k0) zRl>d@?3=>ACG6Y6t{z~#EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGV{I$_rfyFu7@gnd`o_k?|4*bjvLP}q-z{aDzI z!fq1w6Jb9UcC)Zsg#Ap|&xPG8>^5Py3%f(uox<)CcDJy5gxxFbK4JF{FkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1EUf2u5UL0V&EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyG;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Sw_A(_&;P;VY3OFUDzDL<`g!Uu(^fJ zBWzw_^9h?@*aE^96tQK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)JfnvdYL;2j3y93R_Ls>cZ9#wx+PPgsm-X9bxMVTTj^f!Zr}Lp|FjFZ7ggPVVeru zOxWhawh*?Zu&sn`Eo>WM+X~xG*!IG95VoVRorLW?z<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-k|kMs2s>2RVZsgf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghnzC<)xmejSA>04*r~!!6Lz|=GlZQf>?~nt3p+>Hxx&s9cD}F+gk31? zB4J+>_H|(w3%f+vrNS-~cDb-Cgk34@Dq-Ic_Dx~m683FjR}U~=7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t?k*^NEL#`Eeov`bL z-5~5c!oDl)d&0gi><7YrDC|eVek|-pVK)i;iLjpvyII&R!hR;~=fZ9kcAK!QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)Jfn^1#Sf2j3yT5cW%94+?uo*u%me5%#FC$AmpD>V{Xy6th5bp`pN0KJ*k6S`FYErVtKFu!-KNFerqazG<~!u2k*^NE zLtYm4im<;4`@67z2>Yk7SB1SM>~&#p2zyi5Tf+V&?BBxP7WR&?cZIzt>_5W(E9`w? z9|-%Oun&cOB|wq`Mw#Tx?~qZ2jV5e#VPgmzQ`lI-#uhe?uyKWr zCv1FS69}77*hIo67B-2nNrg=&Y;s{!2%A#aRKlhfHjS`pg-s`HdSNpNn^D+I!e$;| zyezoCcJi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(S!Lv_gYS@4g{>xRbzy4=TT|Ft!qyhH zj<9uwttV`KVH*hBP}oMoHWs#tuuX++CTw$ITL{}y*jB=}7PgJBZG~+oYq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$Sxya9ejuEDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?FcCfHRgdHmE zFky!aJ3`oz!j2Mlw6J4@9V_fOVaE$QLD-4HP7-$V0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%E5g1i>{MZ=2|Hcb z8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+81``?|1;g9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^Br={$X5s7A=e7KPT2LrZV>hzVc!+@Jz?J$_5)!*6!s%wKNfbQu$zSa zMA%P--7M@DVLuc0b78j%yG_{b!tM}ur?9((-7V}MVfPBVPuTqfjF$!X*RCF$%j`Bc z+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d0^zLgYS@E2>Ye5 z2ZcQ(>|tS#2zyl6W5OO6_Jpt}g*_$gSHgZR>^H)GE9`f|elP54Vb2JAR@igG{vhm+ z!u}-e&%*v9?61O}7xsd%7Y7(G3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BwZi$X5s7AukJiMcChj{ax5Ug#A<4tHNFr_PVe)guN;3 zEn)u>_HSWt3wuY{yTaZR_8(#Y752Wc4}|?s*oVSC685pMPlSCc>@#7X3;SY#@v`9l z+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e z<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqfGkc zcgU#1MiVx=urY*Ho34VgiR@I zDq&L#n?~5Q!ln~8y|5XC%_wXpVKWafUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bk_mXWUx{tuZ|*lfaP7dD5mIfcz7Y;Ixm2%A^f ze8T1zwt%n&g)Jm(VPT61TU6L$!WI{{gs>%rEhTJeVao_xR@idFmKU~yuoZ=^By8mY z#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWS5bz4!%Qn6}FqO-G%KTY)@f(3ENxP zKEn1Dwx6*5g&iR5Kw$?7J6PBu!VVR7n6Sfz9U<&UVMhr&TG%ndjum#Cu;YcDAnZh8 zCkZ=wfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA*YOdb?_bX6=7c$cB-(`gq<$z3}I&qJ4@Kv!p;$PuCVijoiFSHVHXO!NZ8ke zeO=ha!Y&bZsj$n0T`uejVOI*fO4v7qeN))Cgne7s)dP%|1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{e-6rgIVRs0-Q`lX? z?iO~BuzQ8wC+z+K#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOivx_81^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w$_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@# zrFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$L zcAI*3o33`7;&z)BcbiH#dzkN#Q6~HHJ7iR0qX`>b*cigb6gHNyv4xEzY+PaE2^(M7 z1i~g1Hj%K2g-s%CQel$`n_Sow!lo29m9VLWO(SetVbcklUf2x6W)wD)u$c!KFAMIk zT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+T zj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|%g9#; z|A)*fY&K!D3!6jOoWkZ3Hn*^Ogv~2#K4J3|wq`RvG!~;5%ehVXFySUDz7J))cmuu(gG)BWzt^ z>j_(5*apHj6t55jTVdM?+g{iX!gdt4ldzo! z7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn zvdhR<2j3yP3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSV zju3XFu%m<>E$kR!#|k@6*zv+n5O$)llZ2f-z<613f9>kAxy){Jv)$&JyUm?H)^fg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e1}{!^3}n2$hE?*6L!6@8-#sF*ms3}PuTZ`{Xp0ch5bm_kA>YR>?UD95%yDI zHw(K(*w2LhT-dF`ZWDI9usej^DeNv`cMH2m*uBE;6L$Xq<7L79wX4VGGP}*qcAIPN zHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F# z3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`9vJ!R;5+0O!hR|2L17OG zdsx^b!X6d&n6Sr%Jt6E#VNVJBm9Sq6`;D;Q3j3X~-wS(M*fYYO751F4KM4Dyus;d= zv#`Gi`>U|$g}or`#R104g8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAg zth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@k zwc8Z8+qAgbRJz&2e22U=^3}n2$jicB5%xD>e;4)-VgD5Ns<79Dy)NtxVQ&h1OW41J z{ae`E!rl?~uCVun{YTh;g}pEA17ZIY_MxzkgncaR6JehU`%Kv9!oC<_yezoCcJ^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrbfW#p@a|3hXKHk+{7h0P&sPGNHin_JjC!sZn=pRoCb zEg)<`VG9XcSlA-M78SObu*HQfA#6!uO9@+A*fPSF6}FtP<%O*vY(-%!30rx9@v`9l z+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e z<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWetBibg z@Ex+Mu+@aEE^G~9YYJOS*xJI@5w@i_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(*=6LbgYS@Ch3zJ6cVT-7+f&$H!uA%nkFb4( z?I&!1VFw61P}o7j4iq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$SEUV9ejs;Mc7w`ohs}!VW$f_L)e+Z&JuREuycf+E9^XB=L@?)*oDF_681G=Ul(?< zuuFtpD(o_0mkYZ>*pe+3&+HH#4ZCc!ID&6d1zC*4V`Rd?1Yq9n}yvX>}SG$F6>rew+Xvl*d4;|6n2-eyM^5& z>|SB_3A=xQ@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWe4~%?u@E!6CVZRjips=|Lt3VTl2AB6o;*q?;`S=e8M{Z-iW!d?*e;sE1i!Tq(X$L2D-&CPb3 zYwk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x z)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC&Ib`Rd?1Y9` zzYF_^uzw1BRoH97UKjR;us4OhCG20q{w?fnVebfgSJ->P{v+(a!rmA5fw2Dx`%u_N z!af%EiLg(FeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bk_lqtUa4jEP0Xu?JpHiobUF8&}wP!p0Xifv^dM zO(bk$VUq}(RM=#~CKon^uqlO2C2VS8(+HbZ*mT0C7dC^i8HLRxY~}&R%YyrBSC7qQ zcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!}@# zrFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$L zcAI*3o33`7;&z)BcbiH#dzkN#RYtx#_zqcB*lNO77q*75HHEDuY;9rd2wPX!dcxKh zwt=t>g>58kV_};J+f>+Q!ZsJSg|ID!Z6$1LVcQ7XR@ipJwimX8upNc%By8sa#>;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO@xDz z!FR~6!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD>6Lz?;BZM6( z>?mPJ3p+;GvBHiMcD%3?gq)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E_TA|3HzF`uM4|a*d@X)6?U1h%Y|Jb>`Gx*3HyeyZwmXCux|^y zdVuk=;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yzqGe0A_0a;>oIgk3M}24UY3_FZA$6ZU;!KM?jqVLuY~V_`Q6yGhtjg#A?5&BAUG z_A_BW7j~<#+l1XN><(df3cE|#-NNn>cCWDegxx>Dcv*0N?dq|)%x-hD-R7FR&7F6f z1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#2S&a+_zwAnuwM#$P}oDl9v1e9 zut$YGChT!xPY8Qb*i*uOCG6M2ek1I+!hR?0_rjhQ_KdJ+g*_+i55oQ^>`%h}EbK4B z{wnNwVJ`@Kae(o%;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-ytuJe0A_0^0Kg3g#As}--Z1{*gu86D(p33uM2xa*qg%M680}){}%SP zuy=&LE9^aC{}J|IVebq3K-m9;eJJcBVIK?oMA)aoJ`?u2urCG}FAMIkT|G9J*==sN z+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X z)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|%9LMzhm0z0G-0C) z8$;Nb!p0Idwy<%8jVo+CVdD#%K-h%BCK5KWut|hXDr_=glM9<`y=Ouz7{eCv1LU3kX|K z*h0b<7Pg46MTIRUY;j>r2wPIvQo@!Nwv4c4g)Jv+d0{IETT$3b!d4z&yezoCcJ61MXI<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{ zmey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0 z*=_3CZMxcRirZ~k+-)k|>|wq`b{YBV;5%ejVY><2UDzJN_7t|4u)T%tBWzz``w81$ z*a5;06n2oXgM}R;>`-Bc2|HZa5yFlXc9gKAg&ia8SYgKrJ6_lc!cG)+lCYBp7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna>~e8 z2j3xI5%yJKrwThw*y+N~5O$`pvxJ>3>>Od|3Oi5O`NA#`cA>C~gndoe*M(gy>=I#@ z3cF0$<-)EIcBQbZgndKUH-&vm*tdmUJ-~QbaDVOUvAN7{bF30xmMV9!mbx~gRt)i`>wF>3H!dV z9|-%QupbHgv9KG3-6ZTM!hS03W?{Do`?vWt6839hzY+FZVZRgh zdtpxtdq&u^!k!cM2Vs8{_9tO~7WNlme--w;uor~AIKX&WaDVOUvAN7{bF9zB>30d0E&i!u}@g@525e z?4QD375192*M+?y>`h^B3Hz6@e+zqC*gL}B751L6{|Ni9u=j<1Anbp_J{0zmu#bg( zBJ5LPp9%Y1*cStgmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrZ}WvVZ~Lq-)gny}G@jUjAIVPgp!Ti7_l#uYZ6uoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4wjC^(Qf5@!DW)n8M zusMXyDQqrba|@eC*u28#6E?rF1%xdqY$0I_3tL3kqQVvvwz#k*ge@s-DPc4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bk_m65LwzC%_Owwkcjg{>iMO<`*ZTU*#V!qyeGp0M?WZ6Itz zVH*kCSlA}QHWjv+u+4>SA#6)wTM64**fzqp6}FwQ?S<_iY)4@`3EO#q@v`9l+SOxo znce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeyNrBw@Ex+N zu-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt!gdHyI2w_JGJ4)Em z!j2Jktgz#R9WU$zVJ8YZN!ZB)jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(Ic4OlgYS^92>YtAQ-z%->~vvg2s=~QS;Ed1c8;)f zg`Fqtd|?*|yHMCg!oDW#>%uM;c8Rb{ga$#2pyHeOy!oDHwo5H>&?AyYw9$>sI zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQs( zUmbjhTr2E4Vb=@0LD+YMeOK7`gneJw4}|?t*pGz$SlEriZW8trVLugiv#?u){Y==; zh21LbHet65yF=KW!tN4wx3GJJ-7D-qVfPO(UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB z-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_BmbfswBczC(T??3cnG6!ws?hlM>N>``Hl z342`F6T+Sp_LQ(+3H!CM-w6Ayu-^&$y|AZ+JtOQ{Vb2NsgRnme`;)Lg3;T<(zY2R^ z*bBm59ALaGxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgRa4Umbjhye#Y$VSf|$cVYh!_D^B23VTi1>%!g;_NK76g#Am{zlFUm>>Xk6 z3VTo3e}w&4*!#jh5cWS|9}4?O*vG;?5%#ID&xCz0?27@$%YyrBSC7qQcAJ~+HrL#3 z?!4P9pxbPt+pMPB?5W!ZN;|d#3*!aRG5H_K(iG)ooY!YFU3Y$#Wt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LTy)wve!e zg)Jg%QDKV-TU^)@!j=@al(40REhB7MVao|yUf2r4Rus09u$2cGFAMIkT|G9J*==sN z+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X z)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%E(s--yy3CTTR&N z!qyPBrm(eytu1UFVe1N8PuTjxHW0R}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#T}Hk-_zu}s*lxmh7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0 zg&id9U}1*{J5<xp9VP5&VaEtNR@iaEju&=vtky(8`gCk zL=geSqPt58Q7J`0N|wq` zwjBBD;5%e1VOtB^M%cE(wiC9!upNZ$C~PNTI}6)I*sj8M6SljsJ%sHkY%gJZ3)@H7 zzQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeGz7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^%QY2j3w_2|HTYF~W`&cAT)|g`FVm zL}4chJ6YH%!cG--ny}M_ogwT@VP^?DTi7|m&J}i^u=9moAnZb67YVyq*d@X)6?U1h z%Y|Jrz<613f9>kAxy){Jv)$&JyUm?<(df3cE|# z-NNn>cCWDegxxRf0bvgcdq~*B!X6R!sIbR`Jud8t0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdep*)xmejQ^KAW_KdJ+g*_+i zd0{UIdr{a+!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U*hj)X7WRp- zPlbIZ>~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6%vACHiob|4UVE$lnO zzANl|!p0Uhj<9isjVEk;VG{_OP}oGmCKfh{ut|kYCTwzHQw%U(7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA{k*^N^51C5X)WW6_ zHm$JfgiSAO24OP_`@XOr2%AaR%)(|7Hmk573Y$&XkA(eL*iVGbE^H2Aa|)YF*xbT? zD(q*%<`MRDVe<-`PuTnejF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q* zV7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`Nhar2j3wJ2wPCtLc$gnwurD_3R_gzV!{>|_A6ma2wPIv zuZ8_a*l&d`CG2;?elP3~!u}}iPs08zY-wT32wPUza>AAuwt}z~g{>rP+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1u&sq{BWzn?+X>rV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xr< zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( zIdbHygYS@|gdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dw~s9ejseCG2Wp*9f~-*mc6L7j}cN z8-?8@>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLLfUpOJJtXX5VUGxVRM=y} z9vAk+0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Zus4LgDeNs_ zZwq@z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzk zZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu&9Uw(&tMc7w`jVkPG!bTJJ zbz!3m8$;Nb!oDHwo5IEt_AO!G7WN%s-xc;fVPgv$N7%T+#uGNaunB}sC~P8O6APO} z*rdWH6E?Z9DFzrX3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^Bpqf$X5sdhfF1GYGKm|n^xF#!loBCgRmKeeP7rQgv}&uW?{1kn^o8k zh0P}HN5XzA>?guz7dD5mIfcz7Y;Ivc74|b>^9cL7uz7{eCv5%!#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h| z+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOe+3&+HH#4ZCc!ID&6d1zC->p^3}n2$ST5C6}FnN)rI|4*x!WxUD!W_ts!hpVQUFn zTi80n))ls%u=Ry)AZ$Zn8wvZTu#JUnBJ5wn{w-`%VgC{KUt#|fwwbWag>5mwcv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#El0jO z_zu}h*w(_f5w@+c?SySFYzJXG3foE8&cb#PwyUt+gzYYD4`F)>+e_Hq!uAoiudw}u z?Jw*AVFwC3NZ7%`4iR>!u)~BMF6@W_#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jOa$#2t zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E z^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW!tN4wx3GJJ z-7D-qVfPDrK-h!A9uoGjut$VFD(o>~j|+QZfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bcb?_bXl(46TJtOQ{Vb2MBUf2u5 zUKI9{u$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8 z`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4jE+BJ8WeMiuroVWSEAy0FoOjUjAIVc!t;O<`jR`m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+KV3!6jOoWkZ3Hn*^!3j3L` zd4&C3*u28#6E^<<<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI? zZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcR zirZ~k+-)k|>|wq`elhaZ!FR|4!WI;^kg$b?Eh6lf!WI>_n6Sl#{Yuyp!j=^FYhk|; z_FG{~3HzO}-wXSLus;g>ldwMvTUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ywe)`Rd?1WEEkn z3R_Ls>caji>~F&UF6cO>k3;>*!sdY5VoPPjfDME*v7&(5%w=( z{}#5Xu>T1Audx3K+f3Nz!nPP-yezoCcJ|wq`jvV>w z;5+0fVMhx)M%b~!juUpguoHxxDC{I*Cks18*r~!!6Lz|=GlZQf>?~nt3p+>Hxx&s9 zcD}F+gk31?B4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA3A6h20?RMqxJz zyII&R!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY54+(o%*dxLo75130$AvvH zz<613f9>kAxy){Jv)$&JyUm?a0mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11Gm){{@5%yJKqYC?)u+fBlUD)Wt z#t=59ux|+arm(SueM{K4g?&fZcZGdV*x16x5jL){@q~>pYyx2u3Y$pS#KI;KHmR`5 zgiS7NiUG#Ug8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e1}Xq^3}orAyWyPTG%wgrWH1wu<3=(AZ$iq-xu}+VKWJvS=cPXW)=2BVY3PQ zk+2^N`-!mGh0P&sPGNHin_JjVh5by}Ji>l1Y+hmW37da_@v`9l+SOxonce1QyUjIs zn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6V zh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWezZm)I;5%diVG9adNZ7){ z77_MKVT%e|OxWVWekE)PVM_}8wXoj^`>n90g#Av~?}hzA*dK-cN!Xu-EiG&rVap0z zPT2CoRuHzLu$6?ZJivHaaDVOUvAN7{bFxRbzy%M_BUaF7xoWfYY1CY*jmEY7PgMC zb%m`bY<*!H2-{HDM#BCnY-3@Y2>X|?e+%1G*nfomSJ?lAZ6<7UVOtC^UKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_%aN}RzC*SW zwzaTrgl#KqJ7L=k+d_4L)f0e_7b+YuziH>D{Mbu`wKfj z*nz?h5_Yh#LxdeF>@Z=63p-+f@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWeM~-}T@EvlLu%m??BkWjV#|b-L*a^Z;6n2uZlZBlk z>{MZ=2|Hcb8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+6$}T_WsKVV4QJT-X%@jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(xpL&I zgYS^5gk3G{8e!K8yH42k!fp_Dqp+KV-7M@DVYdpqP1x=9v)3VTf0q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$de;q9ejs8CG2To&j@=~*mJ_37xsd%7lpkf z>}6rE2zyo7YrSdso?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%YtAQH6a?*l5DOE^KsRV+b2l*f)fIQ`lI-z9sD2!oDNyyTZOFY;0lU z2pd<}c*4dPHi57Sg-s-EVqudAn^f3j!X_6s#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4p zZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9js zs@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC)%Q`Rd^Rkg0@CEo>TL(+ZnT*!03? z5H_Q*?+g2Zu$hF-ENm8GvkLp6u-SzDNZ5~s{Y2R8!sZY*r?9z%%`NPw!hR-f9$`Nh zHm|Vxgv~#|cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#UyOWp@Ex*%umy!JBy3?}iwOIrutkL}CTwwGzY?~DuqB24TG(%d{Z`mg z!hR?0_rm@l?2p3!B<#<^mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgSBxzB>30Sw+~Y!d4Tu zy0E_r`_5W(E9`&5HWRkFuq_4{FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ( zZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0 z)75TM+-}q2Zd2)I5Az+e<;YhD-yvHG+gjK*!nPH*ov`hN?I3JNVLJ)iS=cVZb``dp zu-%32A#6`!dkNcH*gnGc6}F$S{e>MM>_A}$2|HNWA;Jz7c9^ikg&i@#cv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#BS*eE_zpQr z*wMm{5q7Mw;z#a3Oh;I$-+(%cB-(`gq<$z3}I&qJ4@Kv!p;$PuCVijoiFSH zVHXO!NZ7@~E)jOAu*-y9F6@c{#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO-QChT@$cL=*v*j>Wz7Iu%YdxhO6?0#Vn2zyZ2L&6>w_K2`Yg*_(habZskFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!rl`0wy<}Ey({cJ zVebq3K-h=EJ`(n^uup`2D(o|1p9}k9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{ z={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)`$8<#)(egnd=msKUM`Y&2nC7dE=EF@%jN z>>I+qDQqlZ-xBt1Vc!wNZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yu_ue0A`D$W+3n7B-ErX@yNEY<`(u-VLuZ#kFcK$n^)L;!sZ`fyezoCcJ*n+|q61K3gMTGrQ z*rLJ~6SlapUkO`6*pkA2E$lbKek*J#VZRghdtrYN_D5lV682|dOAA{@*s{Ww6Slmt z6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6oOU1949 zTVL1)!ZsAPk+6RX+gR8p!u}=f-@-N(_8(#Y74|=2n+e-o*cJnfmj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcKa^$On?~tv8Z7pmY zVcQDZPT2Osb`Z9su$_eMENmBHy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6> zgdHsG5MhT3J51Q&!j2eVyezoCcJ}X-f2s>8Tal(!lc7m`Ig`FhqWMQWWJ5|_e z!cG@|wq`t{nO5;5+0h zVOI;gM%cB&t`l~>up5NkDC{O-Hw(K(*sa2D6L!0>JA~aS>@Hz<3%f_yy~6GjcE7L( zggq$iAz=>-dqmiy!X6X$xUeS%7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLu zv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^5n=@2j3x2342=DGs2z~_MEWig}or`MPV-qds)~k z!d?~jny}Y}y&>#PVQ&e0Ti83o-WB$qu=j<1AnZe79|`+d*eAk175161&xL(4z<613 zf9>kAxy){Jv)$&JyUm?3nWGZ1(3!6sRw8EwnHodSJgv}`I z`@()8Y$jnd3!6pQtipaMY&Ky(682+ZKM^*&usMXyDQqrba|`>au%8K=N7&DW%`0p^ zVe=0#UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bmb7b9OCe1|L`Y(ZfQ30qj$BEo(tY*As030qv)uY@fjY)N6i7WNxqzZJHWu-^&$ zy|6zB`=hWw3H!6KrG+gcY*}H;30q#+3c^+twvw=w2N*94?yp@vHka9LZnoQ8bGNzk zZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rBlvuMWOLRuQ(Uu+@aEF6^(u z{wD12!u}y_4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ3DxZ7ggPVgC~LZ(*AX`;V~y z3j3e1&4g_(Y>NTL%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!VMh!wUKZS6yLxOcv)kNk zx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$dRuOzC(@@cC@f# zgdHpFIAO;NJ3-iq!cG!)vanNxohs}!VW$f_L)e+Z&JuREuycf+E9^XB=L@?)*oDF_ z5_Yk$ON3o2>@s1O3%g=~@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeSB`vj@EvlMu&ae#BkWpX*9p5`*bTyN6n2xan}yvX>{em7 z3AjF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d2-~dgYS^1 zggq_n8DY-~drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtu(yQ0E$kg(?+SZQ*!#jh z5cZ+4kA!_J>=R+13j0jh=fb`iV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$S6~M`5p2VVP6$Cs<5vK8%@~Pg^ez33}Ism`-ZS@ z3L8tcgU0@ zUmg4(GL^8Yg-s)DT4B=(n_k!q!e$iqePKTkHj}WKh0P*tR$)IBHk+^?3H!0Ip9q^> z*c`&<6gHQzxrO~y*w2K`BkbqG<`p)du=xiVFAMIkT|G9J*==sN+gx+Ex$|zbfNrym zZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x z)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-Ji;=GmzC#uewxFUf3Um{ZZJTg#B6A(!!Pzwydz_ge@;@1z{@+ zTS?f;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4*AQ-R|nrAs|Z_F*lNO77xq_Se-rk1VgC@ehOjk-ttD)2Ve1H6SJ-;O))%&c zunmQ6B0)75TM z+-}q2Zd2)I5Az*z_TA|3ACBiNhcA2otg}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#D@VRM_zt;B*wwx5k|>;_>s3cE?z&BAUGcB`=4gxxOe4q zNZ7-|9ufAau*ZZwF6@Z`#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jOuvdk> zChT=#ZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$FkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1EWRxkt{0{kw zu&)XmRoK^rjVA2t!bTT1hOjY(eM8tcg^eZbTf)9A>^s7~E9`s1#uhe?uyKWrCv1FS z69}77*hIo67B-2nNrg=&Y;s{!3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc6_3Y$yV+`@h;>}SH}5%zOo^9q|!*!%;G zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq z#mH9&-ysVKTTs|S!WI^`h_GJ@TU6L$!WI|yD`86rTT1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx}#atAp>5RfMf7Y&Bu43;V0EzX|)h zuzv_!L)ekHdJ*oMM3682AF8w=Y+*uRARTiB+;{v+(a!u}_0 zGhv$x+hTz6vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA3tj(m0S9kP|Mt%YqPY+GU53EN)S4#IX6wv(`(h3z72S7Eye+g;cm!uAxl zm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*bxJamj(CNt{$7q>^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUa^$On?~tQ}9WCq_VaEzP zPT29nP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3>>Od|3Oi5O`NA#`cA>C~gk3D` z5@DALyG+>S!mb!#yezoCcJ}p}x2)kC;b;7O}c7w1Rh213VW?{DoyH(h2!fqFK zhp;<^-6ia9VfP5TSJ-{R?icoeum^=bB|wq`o*en=;5+0gVNVNt zM%c5$o)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>@8t$3wuY{yTaZR_P($WgncON zBViv4`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr z!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)JfnGRjn6eusQT*jI&(D(q{*MicgRVWSHhL)e(Yz9HHo34V1{g03?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wv#}R|o%x zOeJh;VbchkR@ijHrWZDYuo;DYU)T?X%_MAQVY3LERoD-O%_i(e!hS65C&FeIHixh| zh0P^wZec$a_A_Dg2>ZFPd4?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%|etEEo@U^{}J|IVgD1hnXt`;Z85-jS#W>t>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0LFMXFYEwe2MRk#*ulaM5q7As z!-O3!?1%xz%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!~vvg2s=~Q zS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI<=UKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb%8{=QzC*4OcD1l;gk3A_ zI$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWePmX+b@E!7$u&0GRBkWmW&k1{8*bBm56!wy^mxa9|>{Vf}342}G z8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6T-X-_jF$!X*RCF$%j`Bc z+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D;7(zeBzv?5n~? z74|h@qY3-Eu+fE$A#6-x-w^gqVPgsVmauON`;M^h3j3b0v4xEzY+PaE2^(M71i~g1 zHj%K2g-s%CQel$`n_Sow1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4w-V~tAqbTrV=)_uxW%%D{MMp(+itH*o?xyFYE`xW)e2D zuvvu7D(r{CW)t=!VLul36JfIpn?u-~!sZe-x3HfI`H zcgO<578JISu!V&!BJ7vK78SObu*HS_O4t&@mK64DVZRafTVYEH`<<}g3;TnxKMMPk zus;i1TG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{ z={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA%7Y9>fk$M6=ACiTTR&N!u~4kZ^HgA>>t9` z5VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%g#A<4#=T3$OxWha zwisZ%EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+1RoHIAb{DpXuswzCC2VhD z`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@Lgq0)75TM+-}q2 zZd2)I5Az*z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5nVK)i8S=cSYZWVT$u-k>*A?!|J zcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*`FAcv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Cr7?I_zrnW*wezE5%#RG z=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~uCVuny)WzoVIK;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO5H_Z;ZwULQu(5=FOW3!C zeMi`Lg?&%h*uusUHmf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfF#0)xrNEQwf_| z*fheX6*ir)>4nW8Y(`<<7xn{TGYOkn*et?k74}16vkCi=upbNiiLlv)%^_?~VRH$a zTi8#9{Y=oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA4+82RepJ7fW23kq9E*uugV5%x=Aiwavz*y6%|C2R>{ zOA7n7u-^##t+1tp{Z82Lh5bR;ABFu%*q?QK%L-dg*z&?w5VoSQm4vN4z<613 zf9>kAxy){Jv)$&JyUm?!SePJ62+fdj>!u~02 zV_};J`7TjOEdTcJU+uUrox#n(j=iO!j-DVrz zW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$ zcipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NEL$(sOwXki3Z7Xa$VcQGaLD-JM zb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!a zJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@g`FboRAHwHJ6+fr!p;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb>>gqF3cF9({lXp)_Motbggq?m5n+!C zdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5lhOjq< zy(R2zVebfgSJ->P-WT?Pun&cOB|wq`Mw#}@?~tzu`>L=}g?&xf zXu`fOY;<8`2pdz_H-vpt*jU28CG6Y6z9a0r!oDYLY+>UF8&}wP!p0Xifv^dMO(bk$ zVUq}(RM=#~CKoov0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fry7sf0}}Y#L$H3Y$*Y^ulHkHlwib3;ThvnS{+OY!+d& z3j3k3*@XQ_*pG$%MA+=Y<`6cgu(^cIE$pYlekN=lVLul(udw-q%|F0+S#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0LYe5MTIRUY;j?~61Ie}C58Q3*l&dWR@hR)ekbhr!u}xakHY>W?9alM z7PgGAWrZy#Yq-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$X`ajI`|G*McAssRui_mu)hlXo3OtN`-iYKgsmxT zEn#a5TSwTs!qyYEzOW61Z76IbVgD4iv9L{q{Y%)tg>5SAKf?Yi?0>>G6SldqEe04b z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuC~ z$X5s7AzKOCTG%$iwiULWut>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK27IurUTZP>w>~>*y2)k3*UBd1b zc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP&UKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$&s%PzC)f8_O!5PggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWeqfGbZcgR^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAybZgb?|@4RKlhfHjS`p zg-s`HdSNpNn^D;Jh5bO-Ou}XsHjA)Xh5b<2Y{Gsd?8m}>B5ZbHa|oML*j&Qq7WPwN zKNB{Ou%8Q?SJ-^Q<{x0ZEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG~8g#A+3qQVvvwz#lg30p$glEQv1 z>^H)GD{LuYzZ3R*VSfw_Ge*B3tL9mvci@Vw!E+vgsmuSC1EQMFkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1Emw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM+X~xG*!IG95VoVRorLWy zY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSVju>FP zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1R|~sF*tNp06L!6@8-(2` z>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1 zZc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I z5Az-J_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR&7F6f z1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#QKtX$JLD_EzA9`~VP6wAny{}6 z8(r8K!p0Q#4PoCDHkPn&3H!FN?+E*@uQTi7_l#uYZ6ukAxy){Jv)$&JyUm?rVtKFu!-KNFerqazG<~!sUBVQeShb$m$L17CC zTUgj4!hR`iQDKV-TU^+$ge@U#NnyVh_8Vcp6}FVH-wFG@us;aQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)Jfn@|TgX4!%QH5w@zZ)r74s?61Q9ChYIR{vm7)VQUIoOW4}N z))BU@u=RwkFKh#08w%S<*gu7BENl~D{}T3ZVVes3kFfs=`=7AQgl#Ttivh;Vg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1~i~^3}n2 z$X3F(7PgJBZG~+oYrVtKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@9V_fOVaE$QLD-4HP7-#q zuv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNagk37^GGUhsyJCRx zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3p zj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F!tNAym$18q-6QN? zVfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2JuU1RVb2PCPT2FpUJ&-8 zu$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD_MxzkgncaR6JehU`%Kv9 z!oC<_yezoCcJQK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL; z*qp-V5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s} zVap3!LD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapz zu#JUnB5YG(n+e-o*cQUJ6tZc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P) z*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_ zVaEzPPT29nP7rpYu#<$HJivHaaDVOUvAN7{bF30IaSzKgnd=m*Mxmt*lEH}7j}lQGliWc>}+A@ z2s>BUH-vpt*tdjzTiAKR&KGupunUDu?gv0D(o&{cMH2m*uBE;6L!C_p9%Z<0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%L17OGdsx^b!X6d&n6Sr%Jt6E# zVNVHrTG%tfo)z{BVZRjioUrGGy&&vGVJ``LS=cMWUKRG5u-ApXA?!_IzY_LqVZRaf z+X2SQg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze22U>^3}n2$lJo+5%#XI-wFG@u=j+$FYFJ({wVANVIKR`>(LigncgTf5N^PV7x52zjpQ5TxPeq*=}>q-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SCuC`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4 z!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQb zcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0 zVQUIoOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQItUmbjhoGR=q z!oDi(Yr?)R>@;Dg3p+#DnZnKzcDAr{gq|4UVE$lpD=L@?)*oDF_5_Yk$ zON3o2>@s1O3%f$tmBOwPcJ%<`Wx@TmtH|SB_3A^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WArFjv zb?_bXpse+3&+HH#4ZCc!ID&6d1zC+#``Rd?17xo8X ze-!qCun&cOB_IF{Q2>VpnKZN~L*uRARTiAbu{a4s$!af)F zKVe@CFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWR!Wo{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO{Hm9(; zgv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w z5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y z2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%B zgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn z6L!3?6NH^8>?C0)4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6_TA|3ACBiNhcA2otgoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA59jC^(Q9dfO( z>x5k|>^s7~E9?egHwwE+*v-Oj5q7Jv?+N?9u-k;)F6;-wekkk?VRs7qk+2^N`-!lh z3cE|#-NNn>cCWDegxxRfXTp9yz<613f9>kAxy){Jv)$&JyUm?^4*h|7*7WRs;SB1SM>~&#p2zyi5uY~NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv^} ze0A_0^0u&dguN^5cfx)z>^))c3;TnxKMMOm*oVSC685pMKMDJ@u)hfVtFXTb`@67D zgncUPAHx1A>|etEE$lzS{wwS=VV?{8pRg|m7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRk~keus=IY&2n`3mZe&n8L;qHny;F zgpDg~JYnMtn?Trv!X^?nv9L*mO)6|MVUr7+LfDkTrV=)_uxW%%D{MMp(+itH*o?wv z5;pSy<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O z-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k| z>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@#%_nSrVG9UbP}oAk78bUMutkL} zCTwwGO9)$1*iyol7PgGAWrZy#Yq-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD z61KLmb%d=eY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGa zLD-JMb`rMp0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk$MS7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!Dsi zBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP2|Hfc3Bpbkc9O7@2N*94?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgRZR|nrArwaRuu&)aH zny{}6J5AW>!p;zOrm(Ywoh|GfVdo0_hOlo6`C~gk3D`5@DAL zyG+>S!mbc@rLe1nT|K~fS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L}FxN2)k9-_k?|4 z*logY7xn{TKNNO{usenQNZ5~s{Y2PLh216WZejNbyI0tK!tNLLGhsg;V7x52zjpQ5 zTxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$O9u^9ejs8 zDC{9&4-0!l*rUQ86ZW{UCxksI>?vVS3wuV`v%-EM?3cox6ZX8Y7lgei>?L6@3wuS_ ztHNFr_PVe)guN;3SHgZR>^H)GJHU8ZaDVOUvAN7{bF30d0W^!!rm43J7K>U_MWi!h5bR;ABBA& z>_cH63Hw;spM?Ec*k6SGRoLHz{ax56!af!D4`Kfl_Ag=o7WN-u{}uL`u+N44PuLd& zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( z8D;)2ze7e9Hkz=}g^eL>OkraQ8(Y{o!p0Rgp0M$SO(1MSVG{|PSlA@OCKWcBu*ro@ zA#6%vQwf_|*fheX6*ir)>4nW8Y(`--37dI<@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWevy6Oo@PEjx!e$dTyRbQg%_(dyVRH+c zN7%f=<`Xu*umyxIC~P5N3kzFB*rLJ~6SlapC4?<0Y$;(&3tL9mvci@Vw!E+vgsmuS zC1EQMFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWR;Px4!%QH6}FnN)rGAgY)xTn30qs(I>Oc!ww|!{g>4{gLtz^U+gR8p!ZsDQ znXt`;Z6Rz+VOt5?TG%$iwiULWu^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA-jxxb?_astFYaK?JjH&VS5VO zOW5AR_7S$Pu>FMXFYEwe2MRk#*ulaM5q7As!-O3!>J(ZY@qcC4`DgdH#J z1Ysu%J4x8d1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4moAytAp>5Q-ys+*jI&pP1x6kohIybVP^MeO zhq_Inx=p*fP1U+h@48J1yGV{I$_rf z`;M^h3cEqrjlymccC)ZsgxxCad&0gi>^5Py3;Thv9}2re*qy?DB<#n+ej@Cr!tN4w zx3GJJ-7D-qVfPFBnXsP^FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1EN>``Hl342`F6T+Sp_LQ)vg*_we zSz*5r_Df;U3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12D`CGD_8Vcp9bmjHxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgR~KUmbjh zye;e_MxzkgncaRPs08z>@ULpD(r8<{x0kjVV?^7 zhp>MN`#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zSw_A(_&;P;VY3OFUDzDL<`g!Uu(^fJBWzw_^9h?@*aE^96tQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdYL;2j3y93R_Ls>cZ9#wx+PPgsm-X z9bxMVTTj^f!Zr}Lp|FjFZ7ggPVVeruOxWhawh*?Zu&sn`Eo>WM+X~xG*!IG95VoVR zorLW?z<613f9>kAxy){Jv)$&JyUm?|kMs2s>2R zVZsgf> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghnzC<)xmejslvV@?5o1QChY6N zP7`*zurq|6DeNp^XA3(=*tx>KA?%yNz9sD2!p;+RzOV~~T`24#VHXR#MA)UmE)#aS zuq%XJDeNj?R}U~=7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~!t?k*^NEL#`Eeov`bLeMi`Lh20?RMqxJzyII&R!fqAzJz?J$cAK!< zh5bO-4~5+!>`q}n682+ZKN0p*VRs3;Ti89q?iF^Qu=|DmOxVu{7%vO%uU$Phm)UJ@ zw%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^1#Sf2j3wN3VTS{ z!@?dB_NcJOggq|o31LqPdrH{T!k!WKtgv4Q`=zkwggr0p1z|4=dr8>K!d?;fs<79D zy)NtxVQ&iim9Sq6`;D;Q4lrI8++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6~mrN6ZXXb<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`Mp^L7 z?~qZ2jV5e#VPgmzQ`lI-#uhe?uyKWrCv1FS69}77*hIo67B-2nNrg=&Y;s{!2%A#a zRKlhfHjS`pg-s`HdSNpNn^D+I!e$;|yezoCcJi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( zS!Lv_gYS@4g{>xRbzy4=TT|Ft!qyhHj<9uwttV`KVH*hBP}oMoHWs#tuuX++CTw$I zTL{}y*jB=}7PgJBZG~+oYq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$Sxya9ejuEDr`4ly9?Vx*q*}n61KOn zeT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!aJ3`oz!j2Mlw6J4@9V_fOVaE$QLD-4H zP7-$V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk%%RAFBc_ElkD6ZUmsrwKb<*crmk6n2)dvxS`_>|9~r5cW-B-xBt1 zVdn`uU)Tl0E);f=u#1IVBJ5IOmkGOE*cHOA6n2%cs|Oe_3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br={$X5s7A=e7KPT2Lrz9a0r z!fp_Dqp+KV-7M@DVYdqVp0Mu=yG_{b!hRs^hr;di_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d0^zLgYS?Bg*_zfVPTI5dsNtC!X6j)gs>-tJtgdEVb2JAR@g6u z{ZiO-!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4PMO4zT3{YKbt2N*94?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rD)5R|nrAZwq@z z*t^1hC+zpa-V^q|us;a+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWeqb&60cgU#1MiVx=urY*Ho34VgiR@IDq&L#n?~5Q!ln~8y|5XC%_wXpVKWafUKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_mXWUx z{tuZ|*lfaP7dD5mIfcz7Y;Ixm2%A^fe8T1zwt%n&g)Jm(VPT61TU6L$!WI{{gs>%r zEhTJeVao_xR@idFmKU~yuoZ=^By8mY#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWS5bz4!%Qn6}FqO-G%KTY)@f(3ENxPKEn1Dwx6*5g&iR5Kw$?7J6PBu!VVR7n6Sfz z9U<&UVMhr&TG%ndjum#Cu;YcDAnZh8CkZ=wfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*YOdb?_Z>s<5vJ`>L?73H!RR(}bNa z>Yh6ZwdRhu=9kSFYE$g7Ye&b*u}yw5q7Dt%Ymw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3|{e+FPuTZ`-6rgIVLuS| zLt%FayHnVYg#B39PlWwc*j>Wz7Iu%YdxhO6?0#WC6ZZ1~#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jO@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4tZ5w}rhU>|J5M6ZU&y?+JTf*dK)bQP>B{DU?5cW@D{}T3ZVgC{KUtymK`&`)ngnco}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Q5OF4J7iR0 zqX`>b*cigb6gHNyv4xEzY+PaE2^(M71i~g1Hj%K2g-s%CQel$`n_Sow!lo29m9VLW zO(SetVbcklUf2x6W)wD)u$c!KFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`ye zv~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;Z zZd1>0)75TM+-}q2Zd2)I5Az)|%g9#;|A)*fY&K!D3!6jOoWkZ3Hn*^Ogv~2#K4J3< zTR_-?!WI&?u&_mhEh=m=VT%h}LfDeRmJ+tKuw{fTD{MJo%L`jU*owkd61MUH<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`RvG!~ z;5%ehVXFySUDz7J))cmuu(gG)BWzt^>j_(5*apHj6t55jTVdM?+g{iX!gdt4ldzo!7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdhR<2j3yP3foQC?!xvEwx_VYgzYVCA7T3n z+fUg3!VVC2ps<649W3k+VTTGkOxWSVju3XFu%m<>E$kR!#|k@6*zv+n5O$)llZ2f- zz<613f9>kAxy){Jv)$&JyUm?gJJ6G5@gnd)kw}gFL*m=Uv z7j}WL3x!=I>|$Y;2)k6+Wx_5Oc7?DjgH)^fg8OS%kIiLvo15)6*W7LHyxT0G z+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3O zRIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1}{!^3}n2$hE?*6L!6@?+E*@up5Nk zDC{O-Hw(K(*sa38C+z#eZWDI9upbEfp|CrI-6`xx!hS65C&GRz>@Hz<3%f_yy~6Gj zcE7Nn3H$i~<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj z7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k z+-)k|>|wq`9vJ!R;5+0&VGjv=SlA=N9u@YOu*ZcxA?!(EPYHWk*fYYO74{2ZzZCYI zu;+!nAnZk9F9~~D*ek+b75192*M+?y>`h_66839hzY+G^0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghrBiN)xmej+rr)v_O7ts z3H!aU_k_JK><_~JDC`4a9}4?O*vG>DB<#<^{vzzJ!u}@g@4`M2_NlOc2>Yk7e+m1y zu>T1AudvUAeJ<>O!oC<_yezoCcJ^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfW#p@a|3hXK zHk+{7h0P&sPGNHin_JjC!sZn=pRoCbEg)<`VG9XcSlA-M78SObu*HQfA#6!uO9@+A z*fPSF6}FtP<%O*vY(-%!30rx9@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWetBibg@Ex+Mu+@aEE^G~9YYJOS*xJI@5w@i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(*=6Lb zgYS@Ch3zJ6cVT-7+f&$H!uA%nkFb4(?I&!1VFw61P}o7j4iq-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$SEUV9ejtJD(ox5zAEf%!oDu-G-0O;J44u+ z!p;(Qwy<-Aoh$4c!oDf&Tf)9A>^x!T3%fwrg~BcpcCoNagk37^GGUhsyF%EN!mbi_ z^#J2#!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC*4V`Rd?1{eml6ZU;!w+Xvl*bjvLP}m*9 z?iBVTVLul36Jb9Uc9*cbh210UUSanMyI+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe4~%?u@E!7?u!n>_EbI|sj|zKC z*yF;U5cZ_7r-VH%>=|Lt3j2kyUkZCp*z>|(5cZ<5mxR46>=j|J3VTi1>%!g;_NK63 z3H!CM-w6Bd0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk%%ZDH>Sdso=+g#BLFd&1rq_6K2q6!w9z4~2as>|4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_ltsV%4jEP0Xu?Jp zHiobUF8&}wP!p0Xifv^dMO(bk$VUq}(RM=#~CKon^uqlO2C2VS8(+HbZ z*mT0C7dC^i8HLRxY~}&R%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#RYtx#_zqcB z*lNO77q*75HHEDuY;9rd2wPX!dcxKhwt=t>g>58kV_};J+f>+Q!ZsJSg|ID!Z6$1L zVcQ7XR@ipJwimX8upNc%By8sa#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO@xDz!FR~6!gdq3yRbck?I~<8VS5YPN7%l?_7k?h zumgl0DC{6%2Maqy*rCD>6Lz?;BZM6(>?mPJ3p+;GvBHiMcD%3?gq)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1EVP6+^ny}M_ogwT@VP^?DTi7|m&K33zVc!(?En(jlcAl{FgNZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yzqGe0A_0a;>oIgk3M}JHoyz>;_>s3cE?z z&BAUGcB`=O3H!dV+l1XN><7YrDC`blcMAKFupbNiiLjpvyGz*J!tN1vudw@s-7oBC z!hSx$cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#2S&a+_zrnc*h9h|7WRm+M}<8m>~UdF2zyf4Q^KAW_KdJ+h5bU^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA#aU*b?_bXwy<}Ey({c@!hSF8 zJz?()`-8AQ3j09Vhr&J*_OY-(3H!6KzX_5W( zE9^62p9}k+urCG}FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az)|%3@!Bhm0z0G-0C)8$;Nb!p0Idwy<%8jVo+CVdD#%K-h%BCK5KW zut|hXDr_=glM9<`y=Ouz7{eCv1LU3kX|K*h0b<7Pg46MTIRUY;j>r2wPIvQo@!Nwv4c4 zg)Jv+d0{IETT$3b!d4z&yezoCcJ61MXI<7L79wX4VG zGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_ z(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`b{YBV;5%ej zVY><2UDzJN_7t|4u)T%tBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5yFlXc9gKA zg&ia8SYgKrJ6_lc!cG)+lCYBp7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLu zv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfna>~e82j3y53j2z%uL}E`u&)a{P1xze&JcE{u(O1n zE$kd&=L-9Vux|?cmauONJ5Sj8!Y&YYp|FdDT`cSpVV4TKOxWeZt`K&mu&ab!J-~Qb zaDVOUvAN7{bF30xmMV9!mbzg9bw-Uc7w1Rh213VW?{DoyH(itgneJwZNhFB_5)!*6n2NOJB9s7 z*pG$%MA%P--6ia9VfP5TSJ-{R?icnmVLu;WyezoCcJ>*(f3wuP^qrx5&_PDSo zggq(jDPd0wdq&u^!hRv_m%^SC_PnqcguN*2C1EcMdqvo*!d?^hy0ABdy(#Qh!hS96 zH^P29z<613f9>kAxy){Jv)$&JyUm?^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}W$`b+Lq-)gny}G@jUjAI zVPgp!Ti7_l#uYZ6uoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4wjC^(Qf5@!DW)n8MusMXyDQqrba|@eC*u28#6E?rF1%xdqY$0I_ z3tL3kqQVvvwz#k*ge@s-DPc4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_m65LwzC%_Owwkcj zg{>iMO<`*ZTU*#V!qyeGp0M?WZ6ItzVH*kCSlA}QHWjv+u+4>SA#6)wTM64**fzqp z6}FwQ?S<_iY)4@`3EO#q@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeyNrBw@Ex+Nu-%01E^H5BdkWi2*xthS5w@?e{e;Pd0 z3Oh*H!NLv^cBrt!gdHyI2w_JGJ4)Em!j2Jktgz#R9WU$zVJ8YZN!ZB)jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(Ic4OlgYS@2 zg?&ZXSA~5|*w=-fChT-!X9zn}*jd8P7Iu!XbA^3F*f)iJOW3!CohR&kVHXIyP}oJn zE*5r)uuFwqChT%yR|vaO*j2)=9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgQs(UmbjhTr2E4Vb=@$jBJ8Ka?h4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb zfswBczC#`q_K>iLg*_tdQDKh>dtBHP!k!fNl(46TJtOQ{VZRXeOJUCmdtTTJ!d?{i zlCYPBy&~*YVXp~$UDzAK-W2vLVZRpk8)3g4V7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$Xg>{9ejtpE$kg(?+W{!u-^-NPuTmy z{vhm+!afl8p|FpHeJt!x!u~AmFT(yR>~F&UF6ZN;|d#3*!aRG5H_K(iG)ooY!YFU z3Y$#Wt>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LTy)wve!eg)Jg%QDKV-TU^)@!j=@al(40REhB7MVao|y zUf2r4Rus09u$2cGFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az+e%E(s--yy3CTTR&N!qyPBrm(eytu1UFVe1N8PuTjxHW0R}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#T}Hk-_zu}s*lxmh z7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0g&id9U}1*{J5<xp9VP5&VaEtN zR@iaEju&=;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO?~nt3p+>H zxx&67?3=>ACG6Y6&J%XNunUA;DC{C(7Yn;Y*rmcQ6Lz_?&bb4=`R9++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6ao3Pu3{Xp0ch20_SPGLV1_G4i` z5%yDIcL}>&*geAT6?UJn`-S~X*v|(TFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-Jz{pnz-yshQdq~*B!X6R!sIbR`Jud7CVNVKs zO4!rFo)Pw}uwMxKrLgCOJumD9VJ`}MN!ZK6UJ>@Hu-AmWF6<3qZwmXBuwM)Njj-Pi zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWx@TmtHln^M?R!lo8Bjj(BjO($%6VKWGu zQP@nvW*%U?EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG_3Y$yV+`{G&Hm|Vxgv~E(0bvUYTS(Z#!WI#> zsIbL^EiP;cVM_{IO4!oEmJznBu;qj;FKh*2D+*gl*vbQpmj(CNt{$7q>^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxra!W#p@a?~ql6ttM=BVQUCm zQ`lO<))uyouyuv4Cv1IT8wlG_*ha!O7Pg77O@(bHY;$2-2-{NFR>HOxwvDiDg>5Hn zdto~W+fmp~!gd~DyezoCcJ|wq`P8s>?;5+10VP6sU zRbgKf_H|*W2|Hcb8N$vKc9yWSg`FepTw&i3_Dx~m683Fj=LtJs*agBa6n2rYi-lbx z>{4Nu3AZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9dgacR|nrA*9yB%*!9A`Bka4vZV+~(u$zS4EbJCxw+j27 zuYq9yM)~>>>gqF3cF9({lb1G?B@fFmj(CN zt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9VC1WV z?~n(DJtXX5VUGxVRM=y}9vAk6uqTB*CG2To&j@=~*e`_rQrL6Co)`9luos2BBQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^47>#2j3xY3wuY{yTX1a?DxXn6ZXEaKM4Dy zun&ZNDC{F)9}D}Fus;j?i?F{6`8U z`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA4gEcNAg$f&|b6E?cAF@%jNY%F183mZq+xWdL0HomY4giR=HB4HB?n?%^8!X^_o zxv(jOO(|?DVN(m6M%c8%rV}>3uo;BSC~PKSGY>Fc7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wATk*^N^51CciY{F(2Hixh|h0P^w zZejBXn^)L;!sZvYfUpIHEhKDVVT%Y`RM=v|78kaJuqA~pC2VP7%LrRm*mA;_7q)`1 z6@{%NY~=yQ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!&~VLJ~nUKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_myxdyzC(5uwwtish3z41 zPhoor+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENA?!$DM+rMx*fGM66?UAk z_lNF2|Ia!@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi~c_=W)Zw$UB^KbL=gm3R6q#m&X6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=y zrjgyIp53Oa-KMzRrp4W+(#;;`J7mj|uMWOLwi33rux*5GD{MPq+Y8%4*p9+>61KCj zU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZFVTTJlVu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yuhi ze0A_0a+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c*u(O4oBkWvZ z=LtJs*agBa6n2rYi-lbx>{4Nu3Amw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h@48J1yGBVQeShdd?hX<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4OhCG2fs z?+ANW*n7g>7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtH)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWYUqZ4*n1Mv9QU6O)hK-VLuV}Q(;pI`_3Y$yV+yji41^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+9m8Cv1LU z3kX|K*h0b<7Pg46MTIRU>^H)GD{OILO9)$1*iyol7WO+~zZdogVao_xR@idF{wQpD zVJiq*QP@htRu;C3us;njUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bmb&m&(Qe21(m>@ULpD(r8R`>(M73EM>2rouK8wz;q^1{g03?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kS)fR|nrA zTM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^!uA!mpRoOf z9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$zVJ8YZN!ZE4 zP7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=vVb2SDLD-AJ zUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUPGhv?# z`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA4g%<|=T$XA4YRoJM)MicfmVWSKCy0C8u8$;MPg^ej}EMeagHny;FgpDig+rqvh z?7PCo6ZSn}-xu}+VdD#%K-h%Bekklm!X^?nv9L)77%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGU>=y2mgosSlDF3CKon^u%8I~ zsjw-9{Y==;g-s>w7s7riY-(ZC2%A>euY~0)75TM+-}q2Zd2)I5Az-J=aH`tzC%_O_7`D) z74|n_s|j0O*c!st6tD4+g#Wd1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6}gzYSB7h$^! z+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC7+}0CxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT?=Umbjh z93|{%VaEtNR@iaEju&=}+A@2s>BUdBV;Y zc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ86ZW{UCk7ZV z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ! z$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B342@EJHp-- z_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0L3jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(nRMie+3&+HH#4ZCc!ID&6d1zC-32`Rd?1WL{zO37cQo0>Ty) zwve!eg)Jg%QDKV-`;D;Q3R_&*62g`gwv@1?h5b(0?}hzA*fPSF6}FtPKMGr3*b2f{ z6t`w!Xmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrcq^T<~R-yy3C`-`x@3j3R|)r74sYz<*+3R_Fq+QR-W>>t9`5w@8w%S<*v7*CE$lzS{wwT%!Zs1Msj$t2Z7yt!0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W)xmejR>HOx zwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y* z*g?V$7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{gqoT`KG{VV4WLVu10o;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv6ye0A_0 za+R>FgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46 z>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GM< zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGwy^IA`>wF@ zgndug_l5mH*!aRG5H_K(9}4@Cu!)3CENqei#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO?gv0Dr`z& zKNI$IVN(hFg|J@=n_Ad3!lo7WD`CGDHl48Ph0P#rMqx7vn_1W_!e$jVo3Po1%^_?~ zVRH$adw}t>;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-y!pie0A_0GOw`tgv~E(0bvUYTS(Z#!WI#>sIbL^{YKbtg)J^@31LeLTT0l{ z!hR?0_rm@lY#Cw83R_OtAB8P1Yz1K}3R_9o%EDF=_NM{H%YyrBSC7qQcAJ~+HrL#3 z?!4P9pxbPt+pMPB?5W!uQZDD^G_77p}2wPX!KZUI)Y<*$>61IV`4TWtaY-3^n7WN-u{}uK> zVVelsRM=+1HW#+V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~VLJ=kMcA&wb`!R{ zuswwBDQqucdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%31{g03?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhKzR|nrAM+rMx z*fGM66?UAk_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2 zVHXLzSlA`PE){l}u*-#AF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kgVK)l9N!ZQ8ZV`5? zu-k;)F6<6rcM7{p*xkbJ5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJOggq|oi2=sTg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+a^3}n2 z$Wy|e7WRy=XN5f{?0I1?2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3!rm74j<9!yy(jE_ zVIK(lP}oPpJ{IrVtKFu!-KNFerqazG<~wAR*}wb_`HHZw3L90}Xu`fGY;<8?7xoQdV+i}E zurY;=CG1|wq` zCLQ_e;Qx>x3!6;X30nOE3+!sZvYfUpIHEhKDV zVT%Y`RM=v|ek1I+!WI{{gs>%rEhTJeVZRghdtrYNwv4c4g)JxSkHVH0wt}z~g{>rP zWnrrb`_lm9Wx@TmtH~HDRj@TSM5I!qyVDwy?ho`-iY~gsm&=pTgD? zw!W}`3EM!}hQc-ywz05(3;U0-{|ft`uuX(*Dr_@hn+w}wfbp{6{@T@JbD7=dX1mQb zcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO}ob?_asm9VXaZ6j=3 zVcQAYUf2%8b`-Xgu$_hNB5YS-y9wJ}*dD_66t@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4mon5ql6tT>= z!p;zOrm(Ywoh|GfVdn}vPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m7+}0CxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU3^UmbjhTqW#k zVb=(|R@imIt`~NLup5QlB~3NA2)kFe+3&+HH#4ZCc!ID&6d1zC)fI`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqE9AAEi zd_~w-g^em~G+|#8HoCB{3;Tw!F@$|n*qFk`680@&V+$Kc*to*JE$lnOzAJ1zVc!$> zePKTkHomY4giR>yhr)g&Y$9P33!7ws@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWela73K@PEjUg-s@Ga$!>l`-!lh3Y${c&xHM4 z*i^!PA?%mJrWQ7huxW+;O4zT3O($%6VKWGuQP@nvW)?P!uvvx8CTwsIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQ>=Umbjh%qwg@Ve<=HK-hx97816wutkI|Dr_-fzY+FZVT%h}LfDeRmJ+tKu-^&$ zy|6zBTSnNj!j=>EM`6ngTS3^0!d4QtvanTz{b_*lvf%#O)njv+-R5Sy%{6zMJMT6N z=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA469{K9vJ7iU1e-ZXqVSf|0ny}S{ zts!hpVQUFnTiD-){X^I~!qye`Phsl`TVL3}gl!;fLtz^U+gRAYh5bj^e}(-|*e1d@ z6}FkM&4q0-z<613f9>kAxy){Jv)$&JyUm?4I||!L*v`Us5w@$a-GuEfY!6|3 z3foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLyM0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5Tb)xmejQNoTEc8suN zg&imCcwr|9J5kt4!cG=;im+3KohIybVP^~djO3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6^5Py z3%f(uox<)CcDJy5gxxFbK4JF@dqCKO!X6U#u&_sjJu2)mVUG)YVu10o;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(qe0A_0@|3Wr zg*_weSz*r!dtTTJ!d?{ilCYPBy&~*YVXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs z6!wv@kA;0A>{DT%3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3@On&M&`1z9Q_a!bTM~ny{}48(rAfg?&TV7{b0OY)oNe z3Hz3?v4xEzY+PaA7WN%s-xW5VuHj%K2g-tTRcv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Nk_gq z_&?;w!X^_oxv(jO{Y2PLg-t2!XTp9iY${>D5cW%9Qwy6$*tEiaCG6M2rV}>3uo;BS zC~PKSGYgwV*sQ{46E?fBIfTtAY%XDQ4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc6Uf3UmEhB7MVao~oqp;t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L9T9kQyhzXq-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$d)5t9ejsuC2VV9+X&lM*mlCU z7q)}29fj>AY-eG+2-{WIZo+mKwui7ih3zG5Z(;ig+gI3r!uA(-fUpCF9VF~vVTTAi zRM=s{4i|RB0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk%%C}BqnJ4V>C!j2Pmys#65oha-iVJ8baMcAprP7`*zurq|6 zDeNp^XA3(=*tx>a6L!9^3xr)L>>^Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhN!R|nrAR|&gX*fqkg z6?UDl>xJDQ>_%ZX3A30c}m#R!k!WKtgz>VJumD9VJ`}MN!ZK6UJ>@Hu-AmW zF6<3qZwh-$*xSP15%#XI_k_JK>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLv zo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y z)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO*O%WRUlI0I zVWSEgP1x6jjV|o#!oDGF3}N3CHm0z#gndic*uusUHmYe5sfA4=Y+7Nz6839h(+Qhi*bKsE6gHEvnT5?FY*t~j37cKm9Kz-lHkYuu2N*94 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu|z zR|nrA^9q|!*!;p45VoMOg@i3EY!P9L3R_IrZ-o6;*y6&L5VoYSrGzal?03R`FYFJ( zmJznBu;qmPQP}drRuHzLu$6?ZENm5Fe;Q!CEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa z&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h z@48J1yG5Em zb75NyFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWXqAS4!%RS61KIlZG>$rY&&7w3)?~1j>2{lwzIHZgzYM9H(|RA+e6r%!uArj zx3GPL?JI0QVfza^K-hu84ia{-utS6$D(o;}hYLGmfbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAxDmUb?_Z>l(3_P9V6^mVaEwO zUf2o3P84>Mu#<(IBJ5OQrwKb<*crmk6n2)dvxS`_>|9~z2|Hid1;Q>Ac9F1)g@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4!LsVtAp>5tAt%G>>6R$3cF6&^}=otcB8PHgxxIc7GbvvyG_{b!tM}u zr?9((-7V}MVfPBVPuTs!9uW4Ru!n>_EbI|sj|zKC*yF;U7+}0CxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT|?UmbjhJSFUDVb2JA zR@igGo)`9luos2BB}_H12zyu9d&1rq_JObug?%LK zV_}~N`&8Ix!af)F#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC%Wt`^)c;uL%39uu+ALChTj%Mi=&VVc!rohOlo68&lX=!oDSJ zY+>UF8&}x3g?&fZcZH27?0dq#FYE`x#uqk$unC3zP}q-zO(bk$VUr9nUKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_(vhzY{tx-F zu*rl?E^G>6KN0p*VN(kGnXsP=n@ZR(g#A+3)WW6_Hm$H<3H!CM>4Z%$YzAR73Y$sT z%)(|7Hmk7Ngv~B&4q@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4w+}5d4r2wPIvQo@!N_B&y}7xo8X%LrRm*mA=DC~SFQD+pUr*h<1y7PgA8KMgQm z7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj z58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!ui zBVQeShpZ~>FT(yR>~F$W6SlgrHH57xY%O7H3;VmUe+XMg*t)|0DQrDq>kIprunmN5 zC~PBP8w>llu>T1Audx3K+eFx=!Zs7Oxv(t;7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvgOEE2j3xE3ENuOHo~?QwwFM{AnZV42MIe^*df9W6?T}g z!-X9&z<613f9>kAxy){Jv)$&JyUm?lyGYo@!Y&bZsj$n0T`ug30mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghg>=G)xmejRl=?oc8#!Wg~UdF3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6@{Jp3wuM@ zo5J1__O`HhguN^5Jz?()`#{)-!afrAv9M2seJboTVV?{8Vu10o;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx&S^W}HQSA>04*r>ur z6ZSP>qYL}Gux|((L)bTkjVWv_Vc!xqwy<%8jVtWi!oDNyyTZm3_B~0 z)75TM+-}q2Zd2)I5Az)|>Bv_H|A+io*kr;c7dC~kp9uS@uqlQ8OxVwbO(pCX!hR`i zYGKm|n^xGbg#B9Bbi$?=HiNJkh0P>vW?{1kn^o9s!e$pXhp;(?%_VH^0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-nb)xmej zyu#)aHove1ge@p+Az=#(TSVBR!WI+u8)3f{wz#k*ge@s-DPc9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ%k*^NELsk{`7h!)D_BUax30qy*8p75TwwAE9 zh5cRFKZLC#Y+Ygh6ti_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( z*>dEogYS^7gl#Qs8)4fD+fLZ_!gdh0qp+QX?JR5;VY>?3P1x?j_7JwGu)T!sEo>iQ z`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp>V7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dMyo9ejrzCG2Qn#|S%C*m1&+7j}ZM z6NQ~5>||l52s>5SX~Iqyc80Jsg`FkrY+>gJJ6G6w!p;|Vfv^jOT_o&cVV4NIRM=(0 zE*Eyi0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk%%Dq&X(yGGcx!mbl`y|5dE-6-rPVK)oAMcA#vZWDI9usej^DeNv` zcMH2m*uBE;6L!C_2ZTK+>>*(f3wuP^qrx5&_PDSo1{g03?yp@vHka9LZnoQ8bGNzk zZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rEPJR|nrAPYHWk*fYYO751F4 z=Y_o>>_uTO342-CE5cqC_L{KQg}ou{O<`{ddt2B$!rm43p0M|YeIV>ZVIK+mSlB1R zJ{9(vu+N2kF~E3PaDVOUvAN7{bF^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfbmXgp|3iK(Y%*b! z3!6gNPlWwc*p$M4ChX_JrV{oGVZRhMwXkV~O)KnI!hS7mI$_fbn?cx&!e$aSv#?o& z%_?j*VY3UHL)e_c<`Opd0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk$MUSabIn_t)h!WI;^kg$b?Eh21DVT%d-jj-Pe zTU^)@!j=@al(40R{Z82Lh5bR;GQyS>ww$m(3R_;-3c^+twvw=wg{>m&PXmmX1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40K>$X5s7 zA*%}ei?F{6`_5W(E9`&5HW9X|u+4;RE^Lbd#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jONLBb9ec8IV;g&ijBaA8Lb zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E z^Nb^3p+vBiNa12cCxTjgq^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAym9VRYT_fyTVb=+}Uf2!7 zZWMNtu$zV5BJ5USw+Xvl*d4;|6n2-eyM^5&>|SB_3AiLg*_tdQDKh> zdtBHP1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4ta9qtAp>5r-VH%>=|Lt3VTl2^TJ*b_M)(tguN{66=AOmdrjEu!rl<}rm(k! zy)En=VebliPuTmyJ`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQI7efb^o6=7c$Hmb1Egndoe z=)%4(>>I+y5cW-BV+tEf*tdj@Eo>ZN;|lw>uVKWJvS=cPXW)(J@u-S#pA#6@za|xS!fbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA@huUb?_ZBudw-q z%`a>LVG9adNZ7){77@0nu*HP^M%ZtKEiP;cVM_{IO4!oEekbhr!u}v^8DYx`TTa*? zg)J{^1z{@+TS?f;!d4OXrvb*xg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A z+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ< z)U(@kwc8Z8+qAgbRJz&2e24sb!SePRC+wt=t>g>58kV`2Xm_8(#Y74|=2n+V%f*k-~u7q-O!<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`wjBBD z;5%e1VOtB^M%cE(wiC9!upNZ$C~PNTI}6)I*sj8M6SljsJ%sHkY%gJZ3)@H7zQXns zw!g3ggdHgCAYlg!J4D!_!VVL5xUeGz7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^%QY2j3w_2|HTYF~W`&cAT)|g`FVmL}4ch zJ6YH%!cG--ny}M_ogwT@VP^?DTi7|m&J}i^u=9moAnZb67YVyq*d@X)6?U1h%Y|Jr zz<613f9>kAxy){Jv)$&JyUm?<(df3cE|#-NNn> zcCWDegxxRf0bvgcdq~*B!X6R!sIbR`Jud8t0mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdep*)xmejQ^KAW_KdJ+g*_+id0{UI zdr{a+!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ z>~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`J7kpkzx)pQimYh6F@=pK>|4Ud7B-HsafN+b z*ms0|SJ-&Mz9;Pa!hRrZd|?v^n^4#fh5bm_M8YN(Hpu|vWx@TmtHTL(+c~QuwM(CPT2IqW)L=`u$hF-ENm8GvkIF{ z*zCgQ5H_ckAxy){Jv)$&JyUm?eEhp@c!j>1dg0K~Ztt4z^VXFxH(*WaT!Tq(X$L2D- z&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?; zYSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC->z^3}n2$g0Br zBJ8ii{w8cSVXF&UL)e+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1u&sq{BWzn?+X>rV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xri_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(IdbHy zgYS@|gdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$dw~s9ejseCG2Wp*9f~-*mc6L7j}cN8-?8@ z>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLLfUpOJJtXX5VUGxVRM=y}9vAk+ z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Zus4LgDeNs_Zwq@z z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=H zvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu%SUw(&tMc7w`jVf$3VP6wAy0EVc z`-ZSFgnd)kn8L;q_AOy!3mZq+xWc|I>^s7~D{MSr-xKzIVLuQyzOV^|O(^V#!hR%d zB4HB?n`D6Tvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA4Qj(m0Sf5?x8O(tw|VN(eEiLjpvn^M@%g#BFDRKk8C?3co(7B-ErX@&ht z*sq06Cv19QGYFee*i6D^7B-8pS%u9eY<6LD2%A&bT*BraV7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$UGxo9ejt(D{MYt^9x%* z*n+|q61K3gMT9LXY%yWK5%ybQiwj#q*pkAQ61KFk-wFG@us;Y}M%c2#mJ{|zVap3! zLD-7IRuZNZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-ywe<`Rd?1WL05*5%yPMe-pNvu+@dFA#6=yYYAIh*x!ZyL)bdP z))n?oVe1K7U)aBdZ6ItzVH*kCSlGXX{YTh;h5b+1Cc-uqwwbWag>5mwcv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#El0jO_zu}h z*w(_f5w@+c?SySFYzJXG3foE8&cb#PwyUt+gzYYD4`F)>+e_Hq!uAoiudw}u?Jw*A zVFwC3NZ7%`4iR>!u)~BMF6@W_#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jOa$#2tFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW!tN4wx3GJJ-7D-q zVfPDrK-h!A9uoGjut$VFD(o>~j|+QZfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{ z={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bcb?_bXl(46TJtOQ{Vb2MBUf2u5UKI9{ zu$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%; z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4jE;^FTX>+BJ8WeMin-iu&)UlUD(%!eM8t7!oDeNOkraQ`t>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0L4CKEQfuqlN7MA%P- zO)2bW!hSAnDq+76_Df+?3!6sRw8DNR?AOAk6E?lD8HCL!Y$jnd3!6pQtiom!HoLGn zgv}{zE@5*IFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWS)_)4!%R?6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQr2>Y$D#f2>)Y)N5D z30qp&?}Ytc*dK%~BWzh=%L)6Vu;qoVAZ$fpD+ya!*eb&QG{AUSaDVOUvAN7{bFYwB zzX@AS*y_U85VoeUwS=uL?C-+k9j)u=RwkFYI5!HW0R|wq`jvV>w;5+0f zVMhx)M%b~!juUpguoHxxDC{I*Cks18*r~!!6Lz|=GlZQf>?~nt3p+>Hxx&s9cD}F+ zgk31?B4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLu zv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA3A6h20?RMqxJzyII&R z!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY54+(o%*dxLo75130$AvvHz<613 zf9>kAxy){Jv)$&JyUm?a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`@0xF8*Jz>qwzkV}Yt{U=_Reo>3H`P<(r;@${kC@1 zZ)!$f_-9f*t+v&G;Z~eAz zwBOcU_uE{qT)(X?_S;%%ubrOHA<4XI;;)C44ze;qRyN4W1=&SGRzAoo1X;x(s}y9FgRDxB zRSmLgK~_D;Y6Mx$AgdK*7YAAGAgdE(mjv0RK~^`&>IGT-AZrk04TG#vkTnjnCPCIT zA=8tE&YySc)z-=M+d8v;Tc_D?>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6> zep|chx3#!_TU+e6wbEWYJ)c9G@v4c>A_1tS=%6M7i8^&tV57> z46@6DtW%J64zeym)-}kw1zGnX>k(ulbAGgY2px z8<3Fc$wKGPJN0VoWcqELS--8*?6-B!{kCp^-`3sm+qyM=TldLt>!$f_-9f*t+v&G; zZ~eAzwBOcU_uE{qT)(X?_S;%%ubrOHAp?2U#OIKdAR829gM(~HkfjFM&>$NYWW$4OM37w_ zWFv!YRFI7hvN1t6Hps>W*)>5nKFB5nSz3@y46;c3s-_}j@+q#2(Tes71 z>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3x3xBYTRY^pwNQRr+vT^lYJOXL=eMx*)qg$W{c|4MDat$Zia>RYA5o$kqhe+8|pOWb1=$Ly&C@vQ0s@ImosI z+14Q2mXPVmLg&vr^=j*6`fZ(Azpc~kw{_0_wr+sm*4^;ix;1`V_sMVTrul8%LBFlr z>9=)n{kCqj-_~9C+gbs?t$py@S`NRhP4U}W8^5g`^4nS{zpd@^+gdfht-bTxT0+0A zjr7}EPrt2Q_1jupzpX9y+gfR_ou1DjH}R^8&mr4`?B*cb5o9}q?3N(AHOOuYvRy%T zdyw4`WOoMHT|sttklhnx_XgR0L3V$TJrHEOgY3Z|dnm~E1lhwu_DGOD8f1?J+2cX> zM36lhWKRXz(+QcLEOh?7Q?Is8rr*|?_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7 zttIr^+DN~x_4M1?Rllvp_1oHFzpa(_+UfZm@(iz<_#Cn~$es_Cvc5oB)$*;_&Oc96XjWCw%n-5@&@WbXyp`$6_W zkbM|r9|hURLH0?IeVUNz$wKGPJN0VoWcqELS--8*?6-B!{kCp^-`3sm+qyM=TldLt z>!$f_-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubrOHA%}U@#OILDg6#7k`y$A`46?6+ z?CT)=Cdj@GvhRZINRWLWWJiPShameg$c_csPeJx`kR1=QUxMt{Ap0%Ieh;!gg6u?) zoeZ)+gY2&$`#Z=^1=;B!JCl&<$wKGPJN0VoWcqELS--8*?6-B!{kCp^-`3sm+qyM= zTldLt>!$f_-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubrOHAxUlj{W;{EAj=eFnS(4# zkYx?BY(bVi$Z`Z(&LBHC$j%G0TtSvQ$npeP-XO~tWch=vK#&y-vh#!Nf*>mtWQBvQ zNRV9^WJQClSdbMDvJyd7GRR6LWO}mD`SVV_+B%tjTW8j9>oogqopZmf8{oHfH~hA4 zjo;RN^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R-{I=G{Z)=DAwie27 zYrFimR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)=W|FhubTMlA*F+?Opuig zvT{LoQIM4nvI;>~F~}+fS>+(B5@c0_tXhy&53(9TRx`+I1=+DU;&VvzAZrn1 zErYC8khKo7HbK@l$l3*2`ylHOWF3R-vLNdeWSxVoOOSO9vTi}vJ;-_lSoogqopZmf8{oHf zH~hA4jo;RN^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R-{I=G{Z)=DA zwie27YrFimR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)=X1zFUN!MKBqhiO z1=-*r8xmxxK{hnVh6UO1AR7^6R|nb1AR85Aql0Wrkc|zpaY1%Xkc|(r2|<j{kG1m-_~jN+dAidTQ|UO z>u&gM-5S5G`{cKE)BLvXpx@T*^xL|(ep@%%Z|ko6ZLNUc);{=cEr;LMruc2Gjo;P| z`E4zf-_~~dZLON$*53JTEur7mM*3~7r{C7D`fV+)-_{oUZLPG|PS59%IlOA(bI9Bv zn-^sBgKR;NEex_nLAE%^mIT?-AiFlmmIc}JAiFNet`D*mL3TrstqigogKSlhtq!s^ zLAEx?)&<%6AlndR8-r|9kZlgKEkU+5$hIY9da}^@^G?0mI+=c3XV!1)H2ZCxbHA+{ z;J0-*{I+h5-`0Kd+q!9fTX)cJ>vsBW-CMt{8|}As*ZsCuz;A0G{I-_EZ);Qhw${dP zYlr-{7RqmHyZp9R&2MY({I-_RZ)+p{w${^cYghfY7T0fUi~Y7%+H0rhbI47+YT|Rq z_8_}C$aVzT&LF!b$Zid?+k$LYklh|+cLdp;L3US=-5q521lheoc3+U)A7l>%+3p~F zFvuPXvOPieaF9I`WRC{fV?p+KkUbG(PX^gjLH2Y)rY8%XKkwA5t&{1ub!PpxPP5_-)-Mzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5 zZ)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4~K8HNR zt0q2&>oogqopZmf8{oHfH~hA4jo;RN^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK z!*6R-{I=G{Z)=DAwie27YrFimR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T) z=X1zmUN!MKLH1LS z{TyV+gY1_e`!&dZ3$ovX?2jNj5o9NW?9U+kE6Dy1vQt5JI>^o>WO}mD`SVV_+B%tj zTW8j9>oogqopZmf8{oHfH~hA4jo;RN^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s- zAN;nK!*6R-{I=G{Z)=DAwie27YrFimR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1 zR@!T)=W|F>yMKQUIVZ?61zF}G%MxT+gDhK+We>6(L6$Sf&JD8jf-F~%y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp_1oHF zzpa(_+UfZmlFX|n{(4C1AS)AOWrM6-kX;mH<%6t3kW~z_NqsU5@byiGCf)7{CTHd zZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB`EA`azpXpyw{<)Hw(hOp){XYty6b*h zE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK&tLC@0cYa$-=(n|zep~D5x3#N&TZ`+r zwZ(p0EA6$@^Esp$ubTKA(mcpo1X;@q0STF&EOh?7 zQ?Is8rr*|?_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp z_1oHFzpa(_+UfZmGLTnId=5zovOz&MILL+sS!$3C4YFZDHay5i1liR=HZsUY1=;8z z8xv$>gKS)oT@z&EgKR>Or3Klwa4+;J398ep}1ox3wvLTWjODwL^Ye3+1=9U4C1u=C`$Xep^fEx3!UeTkGk!wX1$x zi|ejwC3-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?; zZQXUhtrhUw+6TX_G>RT6R(>19I`#gZVs{?LAEo9=)n z{kCqj-_~9C+gbs?t$py@S`NRhP4U}W8^5g`^4nS{zpd@^+gdfht-bTxT0+0Ajr7}E zPrt2Q_1jupzpX9y+gfR_ou1Dj&+w{=&mnt*?AaiDF39!;+4Dj6LXf=}WG@BT%R%-^ zki8mYuLaruAbUN?4g}d7LH1^ly%l6{2iZG8b}-1^4YET)_Fj;^A7mc{*@r>)QILHc zWS<1trwN&!EOh?7Q?Is8rr*|?_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^ z+DN~x_4M1?Rllvp_1oHFzpa(_+UfZma+p_5d=B|6$UYCUFM{mLAp0uFz7Dc)g6!KM z`!2|i1ljjNb~MO-2(ll8>{yWf6l6aK+3_IzCCGjavfqO2_aOTt$W8>=$sqeP$o>kl zzk}>lkev>)GYOfVEOh?7Q?Is8rr*|?_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7 zttIr^+DN~x_4M1?Rllvp_1oHFzpa(_+UfZmlGOg+pF_?GvP?miImogES=J!S7G&9j zEJu*#46<{B?7Se$6=b=CEKiW-4YGVemOsb}1X;l#J3q)S2(m&!RyfFt1lff_Ry4?p z1zGVRD-mQRgRE3SrY8%XKkwA5t&{1ub!PpxPP5_-)-Mzpb0* zw{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5Z)>h z&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4~K8Gaps)@fIQaZ@W1X$i2I{kHD9-_{EFZS8~K)^hl5ZHnL4+W2klkl)rq`E6~N-`1-6 zZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o-_}Zd?eu&OX~wH2K8G|9vKB$sGRRs5S?eHc z6J%|JtX+_`53&wH)-lK~3$ji@);Y+!1XlS3)gRDo8^$fCJL3VkN^$xN=LDo0O zt_ZR#gREbW^$)VEf^0xSrY8%XKkwA5t&{1ub!PpxPP5_-)-M zzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5Z)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4~K8FnCRTG~>Qi5zykPQy9AwiZJ zWJ7~&Sda}5vJpXcb&!n=vQa@cI>^QZ+1MZ(7i8B2+4vxv5M*gVHZjO11=-{vn-XMG zgKS!mO%JjeK{hkUW(C>ogiKEsI)C1&S6e63Z|ltZZJlPnt#j_Tbp!mi?uOsit?}Es zPkviB&2Q@t`fc4#zpZ=gw{@faw(h#$)(ZG-?StRea`cAfhs+JKc|kTm$QA_I z!XR4|WQ&7rNsuiKvTK8ES&%Icvg?BE`XE~oWH$ua${@Qj$W{f}>L6PaWNU+LU68F0 zvJFADF~~Lr+2$bI5@cJ0Y+FL6CkvfF@6@ZUlj*m0X8pEKv)|S^_uIMwep`3LZ|m0h zZQUoot()ezbqD>nZl~YYz4hC=(SBQZ-EV6J{I>SNZ)-XHwl>9YYi<0tcF1pQq5QVC z%WrGd{I>SaZ)*wtwl>mlYd!t8cGYidas9To*l%m4y>@y&hup-gCO(I353-wsY)6po zOvv=V9(oP$?@VpIy5H8%%Wvyv?6>vz;BZzh!QflyvU@Ni+WF-`|1LXOfa~W#OMp!f#3rFWh$gWS8Oj?p&E8sY-?2@7E+7 z$PeV?tA4yI^iQP^vS1(d58(s~ARndk_*#drx%k?Quetep8D9(XwGUtQ=jW@ClvI+h zL(qCc+KAC9X{i&E#|}+S8=jinb?mr_qf*jFj2)w-<=Ba1(nj#3BgUNl(OzRlq@@l? z?vZx(PZ=~dx%sfvs>wZ4r&LW&88algd&=O{2Fb}CCXSk#T&rqwt@?Fq@fv!qs_0d{ zNA={EsbeNgoRHjN;`r2*iOJRe_4Qhfm^5MnFHH69pOcTTJyOPu7@3mXb$rT%6#abl z*D8)qBL8#`fma_cFBQ%CV*&5*RN_1k3-JZHd>V!Jl~ zEQl@o2wVgw`v`q|Er$7N1y-onf_lt|K}ys=l{Z(0e#+I0DV?o4t>sF zjY8NAeg5AG{d&ND{Ojj`eU3i+nY>l%xRmi}qf^JE{o^zL=+UX;2d5_e<1=!;v#&w* z|N6BgFRs6CR-FCFe?EUuL4Q=Cbl35GI3Lh+MB1p-2}!vqX5q*5AznZ6-ebp)oG?5! zHEqJ#*Wz#W><{VZ+&N`5zs}G-Wy~=CJpDxUgBibNyaO5UK*l?e@eX9X0~zl?#ygPl z4rIIo8Sg;GJCN}XWV{3aL*4;>jMZmleWcY#VSQ%ScU5GE{$0L4>+4%6^zm4q+4WgC z5A?ZTpYiiU|E^!3^Yt-{)V9+Ngs|a4Ga%A@xun4bTvc&=^h76wS~aEzlCJpl?EH zgSKdg_UM3)xD1`p8C}p7-OwF9&=b9IIeJ6CF47lQ;7asEe_VwD7>E=M!e9(RDu!Yh zhGPV-#z>69Xy_Xf#$p_v<>C2qtjti~Fw#X79V25iJ8Y{nLB#Wvi8?YJ2`uoJi7R@{bNxE*)k zPTYmNaS!greYhVFU^gDbL)e3d@dzHpV|W}-;7L4%r|}H-;#oY0eRv)(;6=QIm+=Z- z#cSA)*Kq)E;7z=RxA6`R;$0lVdw3ro;6r?bkMRjU#bJDg&+!Gm#8>zl-{4z(ha>nN zNAUxG#4-GYpK%<&;8*;H-|+`d;3WRUU-%oRa2jWzU&A^FnUER!HlVD?hV00JoH!Tf zAs2EZ5As647MLFeP!Q+i0u(}F6v2fkiee~^5-5pMNJeRtL0Oc;MJSI7sEA6aj4G&# zYN(DHsEJy*7`37AGr9zqqAu#8J{q7Q8lf?opedT6Ia;74TA?-Cpe@>=J@k!h9ii`A z>V(edg0AR>?&yJ@=!MJC8~XmHzPJKcq96L>Dh$9tq+k#RV+c|)6vHqaBXBiFViZPW z48~#{uEBUrKpG}u5+-8`reYeVV+Lko7G`4(=3*Y^V*wUo5f)#+hi zU?pzEDy+sDti?L4#|CV~CTzwQY{fR*gzdN)JFpYC;8xs*UAP^0;7;6yyKxWh#eKLR z4`4SQ#6#GFhw%s=#bbCJPvA*Bg{Sch_TpJQhkbY+FW^PIgqQIOUd3zJkJoVkZ{SV5 zg}3nz4&q%L!h3ihAK*iLgpctFKE+{thR^W@zQkAf8sFese1{|W9!K#5e#9~Sgr9L7 zzu;H=hTriAPT(Z|#9#Our*Il)p#R}N2bqu=S&$XkkR3UY6X)VQSt$60Oi0ZO|6&&>kJo5tpG8I-?7^q8qxS2YR9xE=OfE71@AaTNw&AW|?0gE0iD7>Z#SjuE&TBQXl2F$QBX4%c8jCLj$HF$t3~1yeB% z(=h`xF$=RX2XiqG^RWO6u?UN?1WR!(mSH)r!}VB!8?X{LVii_n4c1~E)?))UViPuF z3$|h#Zo+olj2+mCTW~9G!!F#8J8&oN!rizB_u@X>j|Z?D58@&0!NYh2kK!>rjwkRW zp2E|327B==p2I#oj~DPFUc$?G1+U^Y?8oakfH&|a-oo2>2M6&k4&gn#j}P!6KElWN z1fSwCKEvnu0$<`Qe2s7LExyAMe2=5}0YBmxe!|Z=HB?6p)I=>@jM}J!OK>Ubq8{p_0UDwa8lwrCq8XZ_ z1zMsNTB8lxg8yIaB)-EvsRKIVGIT;`bU{~iLwEE*PxQj&=#4(;iz{#?`k_Cr!T=0J z3I<^?h9DI~F$}{o0#{=sMqxC@U@XSr8jQyTq+uc^VKSy*DyCsNW?&{}VK(MqF6LoA z7GNP3VKJ6qDXzsbEXQ@Y9xHGIR^mpi!fLF+TCBr*Y`{ir!e(s2R&2vf*p8dA13PgG zZpCfbh1+ol?!;ZV8~5N|+=u(|0CwX+JcK=X7?0plJch^d1fIlGcpA@OFP_D7*oWuw z0$#*Rcp0zYRlJ7%cpV4u2HwP5cpLBFAl}6xyodMk0Y1b>_!ytyQyj);_#9v0OMHc| z@eRJkcQ}IYaTGt`M;yaX_!-CX3x36K_#J=X1Ww{l{Dr@93a4=fNm;o6$b`(uf~?4f z?8t$fI2Y$37jh#H@**GdqW}uxd|ZG+D2yVw5Jgc8#Zdw!Q3}Z@jWQ^Ua<~ZPQ2`ZE z36)U=RZ$JqQ3Ewm3m2m{>fjPwin^$W`e=ZLXoSXSf~IJO=4gSIXoc2jgSKdg_UM3) zxD1`p8C}p7-OwF9&=b9IIeMcH`r-;)iGJvht1tiqk%B=Oj3G$HPz=LxjKI|xiBTAh zF&K++xCY}f0cn_sNtlc&n2Kqbjv1JVS(uGEn2ULsj|EtWMOcg_Sc+@049jsHuEz@8 zfR(rrtFRhtuommE9viR`o3I&Muoc^I6Sm`K?7&Xkf?IJLcHws1fje;*?#4a17x&?Q zJb>MJ5D#Gw9>ybh6p!I?Jb@?i6rRR2*o$ZJ9QNUPynq++5?;nDconZkb<{vj)WXH6jXJml zm!dA}p*|X*AsV4EnxH9~p*dQhC0e01+Mq4kp*=dFBQ8THbVe6+MK^Ru5A;MYT#nx8 zgTA-|SE3*K<0=fmK%`(024e_PF%-iv93yZwMq(63V+_V(9InB5Oh6hYViG1}3Z`Nj zreg+XVism&4(4JW=3@aCVi6W&36|noEW>hKhwHHdH((`h#44=D8mz@Stj7jy#3pRU z7Hq{f+=T7889T5Ox8PRXhF!QFci>Lkg}ZSN?!|q$9}i$R9>hb~gNN}59>rsL98cg$ zJcXz64EEw#JcoUF9xvcUyo8tW3SPx)*pJt70B_(;yoI;%4i4g79Kw5eA0OaDe1wnj z2|mSPe1^~Q1-`^r_!{5fTYQHj_#Q{`1AfFY{Dhxz9KYaK{D$B02TtH5{={GS8>es@ zXONVQ`;Sb>j4a5CY{-rr$cb}t9&#Z!@*pqrAwLSBAkN1HD1^c&f(ua;#ZVk2P!gq( zjM6BBvM7g(P#zUf5tUFGRZtbxP#rZ;6SZ(LYNHM=!KJ8+dZ>>EXoyB=j3#J`W@wHU zXo*&6jW%eDc4&_d=!nbE37ydeUC|BQ(E~lv3zwre`k*haz?JBS{8>x9uts;iI{}Rn1ZR8hUu7rnV5yyn1i{Phxu55g;<2e zSc0Xv7R#_4*Wr4szztZ58?g$ju?B0g4(qW28?gzSu?1VP4L4ysZpIGm#4WfLw_z7< z#~rv6cj0c_gL`ow?#BbzjR)}%_TXVWf=BTf9>)`S5>Mf2JcGS>7SCZHp2rJ#5ij9o zyn{5Fg=Ve1cDL7@y&De1R|V6~4wd_!i&c z2)@Tr{D2>E3_sy#9LF#C6~Ezk{DBiVi9hid{>CYs#u+4K=l&xTG9wGJA{(+J2Xf+E zoQGV= zHB?6p)I=>@jM}J!OK>Ubq8{p_0UDwa8lwrCq8XZ_1zMsNTB8lxq8-|!13Ka|bV6rz zL05D`cl1C{^up!njXvm$D{v+Hp+By|01QM524OIUAQeL~48t)3S7RhbVKl~IEXLs) zjK>6|VIn4BGNxcEreQi}U?yf^Hs)Y1=3zb-U?CP^F_vH{uEjDe$91?KD{uo=;zq2( zYOKLptiyV2z(#DsW^BP$Y{O01j+?OqJ8=tc#ckMy+i?f(#9g=>_uyXKhx_pWcH==j zggtl|kKj=}hR5*)p2Sml8qZ)ap2c(6hv)GEUc^gy8L!|~yoUXF9S86R-o#sY8}HyC z-o+ujhxhRTKEy}(7@y!%9L8t(9ADr|e1)&^4Zg*9ID+qS6hGic9K%oe8OQMpe#LM2 z9e>~iPU27eg}-qMr*Q`Q7yRcS6EY(UvLYL@BL{NgT%3no$c;S6i+sqB0w{>{aRCaU zFpA(p6h$!OR7Mq4MKx4M4b(&}T#VYNgG+EJ>Y^U% zqX8PC5gMZjnxYw+qXk-`6_!ytyQyj); z_#9v0OMHc|@eRJkcQ}IYaTGt`M;yaX_!-CX3x36K_#J=X1Ww{l{Dr@93a4=f`sSW< zkO`TQ1zC{|*^vV|aW2k7F62fYPU@g{RJvLw?HeoZiU@NxaCTz#e*nyq61-Ifh?85E119##s z+>Lv1FYd$rcmTWcARfXVJd8*1C?3P(cmhx2DLjp5uoutbIqbvpcmXfsCA^GR@G4%z ze!PwYcmr?ZExe6)a1ig}5Z=T4_y8Z`BYccc@F@=CGklIO@Fl*&*Z2nC;yWC{_c)3l z@FR}lC;W`#_yxb>H~fy%{NEp);Oj~JiNEkSPT{oh)AO8QEecz2NVeFK#Z>h;3A-mF|WF1SkVn&pSWQuAeMT@1?5{ZB8{v`MK*eWLljuXBtUx65>WAHVtj^LzZpV~#n`dCq;`=RU9NI`4DNu;Y`2124Q@ z=Ad~#uC^fiH!s3M3-M(4^`((#LA<%|=jGvA{@-Eld*SXg!hJ@%&nWj9?LK4NXRP~- zbD#0p~kGo^Z8~-+LuKV=v_j!jS z%y(25eD^XNLx5G8~MfXxZxPgVZqX?*EYf>s%Wvk^r zD_dRbWi{g|cghE+xrdQUFZN@%S~ttE{?@aI4K%kfD|g`rYP)?GwRivb z{m0PG-LOhUZ=&cUDZH`4cA3?;fL`Zr@nx2B!TC7AtVa2iJCPO|xD#E=#Fgt8(SKy=q>GuWzg2yLOxZTBX!VKAzsIX8GW;?w)CO z@xv>8+Ri_O^AED%7V|@G?vi!k;WoC*UC$I8Ztc3BBX*$Rpqn=@IP6R9Wj9?`sY<2% z+j(1!{42M)n^n=~xiKpI{ad?b^zV7TRLSPMQ8_31_gZ!uNphYT-M<2hO`6n%gVxemL(({l{~5V`qQbwl(y!f4y@N zzTzT$)kXLl7vcWfd*Ocl#}j?Q@htIe$E~~l$N6MJ!c$RCMOm=_en~vX2Ml<(!n+kL z*nd0$u2+3?_?HuWANhH&c@h4~MfgI>@$8P}Ju07{n}7ctx+e;Lf46mUUsiDIbl>fY zIG>ly=kCc|zMoqoe}7sHJ0#g1zYkxrn`r_Sht1@$PRDe z`2pORpo{)MVEEZB1v||>RJvtOWw!zEM%?4{e{UqOdC?nbplqamgY!4yz5NZ{MlOE) z11~)Ey65(a2W0mQF0b$j3k-I*AK%#W>&JN)zx_4N+sJGS96x@1UjFJBcRMx!hSf2aoDqc> zmY?{DEW~`kU1W!Q59$g>3m;T-eo(*v{`&<7)x3H03l0j*dr)BBg95wwLE#1z9Mu1^ zFLJusK^5Pb@&>7~J1Bn|arQ4bsQkMnZ$iMiGj-wVzUg zy1l_nbBEy%CT^L#U(TO_?C>$3Np9-25X;YBUf#BIKahX0%a0_}%I9swUE${h58xL+Cs@w>=gr9&Q1nKy_WaL{Z0k_;M%=UJ z|K3Rb21ReA%6S`cSNJ)>V&vlI1WVxmyg3;Iir$D@VE*?;wsk0aBjuHi)NfGqMyj5- z5qE{36D%+f|9vF&8x*~fYUgdlUE${hYs!nC6D;k8 zb5it1+!KiZ-pIBNMQERu1I!@i$kAUFvc`@!axw=-> zJwHixpDnDP`;%eAeeZE#w*eMyVZj*#_8$B_F9cuX(Z)U4S9Oo&f!IxgcQ^Gf+)bq- zcH@7l;oD6}#(>k`e#Uo`=-o|&3wKkkh~4;~jQDmFnla$mv15EUN#5Nwyl^*{6|oyU zT{(Nw!ZHTr{l1Owri6DljV|0x?IL!AX9Z_>6P__(|It%?H_6`JG`?^*^^4ezfA#7+ zX%QI%4*j~1@1`Vn)3E4CtKfFiP?)rB9p2pXJ>ShG-rbN%t6aox3QyX$4u5^Lgzu)5 zcQ<6xsu!`F!jrbG!4W_X@GH*0=L5>-1zAh?s$&0h zkH8^#?Zdqgi1UcA@oM4OdpzE~s^(tyZ`EgLzpSBsG6#@B&Aix(4o`A$9s$0+)($sb_H&V-Rd3*dY=24)Cs}vXR3LACO9wL{Y;koEuWFTwQoNgd+sM{PY82A zQQPwqVR_LP{KWbDO13&~1#Yd!+&Q$*@IIL%MvhInA!AJD^zb(4Zz`}+Uc9xoG45Bx zaNiI2-Tx!pfsA$M{04V8W86I8mA3qQA9wcI@rrP_&AmL+X2b|Ls8^o9-GDNA!Pdr| zv=N?B#S7p0+j2Y0-&U-97sNe-Xq(Ze|KQ;RQ`~a}&w&QTyEEI?9S~-JushI!?g0I7 zHuy%s1?HL??(lC8qZsCn%wL301jf228HG0Py3f1u1hR2||6OF`dCgy3ebC(yY`j6? zjk^x?Zak4}+~0#2*|>jc5a`=@!@?VPUFa!92d`v@x)T>|P2BNYr;M!3k$qgfc#1jTQdi8K z+=g*WN4l9pvG||S`1;hnCz5}AXS+8}&JMgAsR`!dSn2#@b-(c!>NbYdpdhd*R78X| zMLar<$jq1?-uL_;35;~{z>j3QW5Dau`9+J@rSlsMuPGPws{dMkgZZ!JH<B-o@SKk>{T0`%hM+`!y;znKum19O}+iz4L!6D9+s*H@IQQbSD?*>%!p< zz;IvX+r)@W+~J;=8iGpuHh~lFzlVZ-Gj!g|2{`Zhwc)?D`PVQ}36|y_4DF^qBZs4* z{B7F&`~wY)a>aa;+rvmVxA`T-S`?4jzB4>E{AQb4=rs|%nVjJM+~79S*LQ2LcZWRI z_fo<1;7i;u;N|~JDJ$!OX#x1%g0n2ly<;4J z`@y{@vmqedeVX+i9AKv{HmItjPIouWT93*cJgiS<#;BAL15z>vWu$Z&ap&1J3P`IF zS;I32yYCJj?)z@{;e#_>Ra~Fx`;oq5Q(6qnsFiYk#+X_ueTMf>>DH%TMzfTZ>#~N9 zO{rHa1vj$>YA!Ql+G(BpWsc~ZF*2oo{aPvY>(*^}t(&_( zeTQbG+&wsRP|C;=cc%<;4?`IveS7aWVrbT|;iFPo`gYXHcj;$^E&Nd9+U?yhSC7aV z={pwR&fUviqxuXjeA^0c_r-36JNUY(?&1pf@O?{0pOH8n`9I}e&%3r=m+SrK!GAzF zQDfct>Yp(x(F`Y|jyo+W?S}Us+z*fY?g?x6;qJzyG)fukwl>P$&5cqrN2FZgzv_NF zqh4KHuh*~u_=I`|Mtz@Azrd*PGwK%@4SYs}0;7S?Xi#7@^cf8cjD|j=VS&-eXEZ7> z8u^Sy1x90^(YU~9>@yk{7)^XelLDiO&uCI$H1!!x&l>Jso2F+^jPG=g7@aZFElh73 z_&HF%1C$CNBInQ7ZgT*&xN6Gy}EVl zp*?&X_TxPFBrn{S)bdBKW^MNy9WE5LjZ6^`|<0zcU{xirEWV(?(bV$jc}0|p4sb$v3F*S>REft zu%WL${!yomb>mx~YJ2*DBdOQTUY;Ia^~Z_tPksNzaqB;Lrb@}JUo2nH{hw1EcHPi& zVM@uNwe~hRHTTNHBiB_3Te0!!*$b{)`g_aEs~j!crsuqGnsnZ~b2_q#g>c37S^b=t@Z(_Y^7zovm7H5y%Q!kG!N+q1fURqE)J z$D1DB+UoNoK`WP)yE*NbBY!_#<DB96g+K7d`surWUikO5TT8aA{o$JG zCu_fa`IHy7-}2rKf0thN!|fT3b~al0b;|Eik0x$h7CoicCj(PTr+)YDm2;>3{N-o2 z41Ih5)a6shHNJgYrww@}dY^3mL(-?)#@{;Losm5ERO-M)sj<5sP-(qJ zW(*xwr#3DpJ@&~R8|y|t^lQ$#2X0%>rEEJ`WBi~>Wxp(Y^vllg zheo~?KI!FOPrZ`%?`x0zeelWeQ%XL&D0JhYR?R;ebZ~UqyW=Nr&3So2)$m)#-1*>3 z_kOve*V|oozI4_0dS&OeU0HWVV%+4to!{>ETFd@Bx5n?fuJxA<`&Jph;PJb9eO}?| zxup*@?(pf!lHERU()+c?7H-XZV`JTIb31PszqHno*1^M@JlSFJw|!q&Sm*Hd>!vNt zShTzRjuor_{_KpqDHq<*A!BEje8AnnhutUMLUmI-ETc}L%Z~0z!@!J@n2_jg9V0iU z#HSz3e&OzEdz@qFhe}30Xg{-(s9S?yzPsWm$+ z=HZO(wI{DSKCae+vJ3aMy>xS}p$Fej{_e*yrMAAAoAgb)4@Py(uDoYj&XN`TQ$Aa9 z`JRfu*4lsjnksjsJ<{f;A3i-*^HA%fmsg7nY|0P5)2?AVKXI#^Wfj~%H)0204~PBp zE$v5?Z4&>^B|nV6`R8@7_dl9Y`thKn$<<#UTDe=dZ`-!pT|4!ckuAE7&b)m3^>sob zUv6C|W>-@?0=JiNB~#`oTR>yIC+ z-@RjH^j(wEraiW~@uGiTcyjBXTOKU+Uj4*XH&5*M*RXA4CRMrZ_ulSqc)Malyb6?E!Ba=UWZRO?1uAAREXvdx5)jO{FqS@kE+jm_$WWuhc zvHO?YF=X+egE41ry?plFAN|ztV51s)diB_Fce9SmUd;LY`4YWu-|$q~71w_B+0qs@ z-&sC!Y01&I&RaCE*8?rDJG3=&ZI{=EHo9cN_LP3to|=8U$C}-*4F7n>_cbOzSZnR> zlKo14l=XVa7y50v(z>KSTxCky7446gimCYUtjW^@s(*cTM9c8EgEx0rKeEpoJ8BNy zF#crCA4lwaX;9h9t$O?xSgmhHyWf7>H0_CNK06ck{GKK$Bffe2ihKY4-_L)K7+B}_ z*=czh@2t8pW9zXOn$|t?b>3emzxihT!80e1#{Jssz9)vSd-RfO|L*^!*E|25c`WXg zhmyXZKjxofi|=0AYu%Y&7B?S%&yPFa`Do|*NvGOP%DH<&=XGsrO$=)G*WrM7XJ6C& znoZNwEB-Kg;qZ@k1eV_xpLMXz7mW`l#on?dj#Ua>l@W6HY3r#>7oIrZ5#B{nC9G~Kf6 z`gdQC*fRCgw5pqy4|yv3ilm{n)-BjHB;`=UcF#q>n*L$VpKXKhduC1e#Koy!W9KcSKJ{^>vRkV@vpVya%3C`0f28BH6(3H#WM!K}J2riN zNm6*%Z_CyDapK+2WIwcU$nl_uKVSP##Db8)1s2InjP8lXUAD@1(d10 z_?szh#|{7Ejop7fnKx(U`*$_Dt@FmiHx8ZmYWtPVj&}R->uwLc5qqk_&>=krm8sBY zVU@*K9G$;-&5w7S&da{(jbCnm=f{lCvMz11?$NlkEgkDLc<$BPI@ft(Rh=Ds7Y=UI z?8wdr&kZ{E!N3kRj%_Wy`Ja}ZvxBeN`Dn9c3%@F_ec_`o4_w>3VOT`= z@*#b?j#{>Q$?iJ0t#~hRVaDzEw;3K+e)rM))&y5d3EtRr&?jv^?EK2&OTOOo@!Op` zFKsYCIbcWMI+apRWp=!)=e<{Dt!=ow_JP5VOiCEuIAU1o{RgJRm!I_g&R1@%)AI20 zcV0VEd&Lhmum9mp%9|t0?D?`n-@Cf^df=;(!=HcsnVN%sp7Yt64{t2pa=_&2Ynwkf zrQW#Q#L4Aen7cMU=D>=Ny8M3P!FR74&~Ej#)GF`oKG5vPm-nVrN*wjr^o74HK0MHE z;NyzV-g;M3;(Kk{zZN?9NWaQqomS0x^!n_a6LVci9~^$4^Sx^x>Wt>mQgLKIX129hO{C>3FqT?fZ{Cotivp@IF!MzB0YQiFxNkt+g?*-vt$1nhqV>;SyJFGc8yj_t9kTeB zzgvDd^4eY7hRmPQ{f0f61M3ZWsCDU^mmk^l@Y@^i=+pOu!2@zSUw>-khf7jN?(g>8 zwC)jg#|&uRX3x6x7IhaMnRUzV5{LIRe0AiXRTC& z-dj_y*6pwS?oQb5_jZlhdD9*3kKXj%cef5}-1Nb3cTTK*_jU7jyf$fX?KV5&PiA(W zJ})M9?H~B<<_jOcV|Gq^Zl(K9S@-CU-!>@p$X&<3Xz`IkkK$(+F&!h{t6O5ysfl-o zj~Mak+W5z-?Vr43$?l*@-!_VA+`LNHpO3}7Rx7;rLw(+PX7F22&DomNum0Ed1}!QR z-t5O2cRjmd*y^9BrgtmZY0BO!`!DM~aq5UB$C3v=-o8f1YE`<`s9o>rk+IdUdt&yE zhi~|M!fQ=mdhEt;E4?(o#RqTgXnQIv`}yBy1&rHVWnJI+d-quBnO&aEd*e*gGE)ZD zsZg@#zg=65+M5$n6>#mJs>dE{a)I|R<%wm^g-6RUD}_& z0q-)e;HT@l^I2%o=lwzNvZ>$)OS|=C;XA>5`n_B7u3-wc^cmZdZ$;zXhIa@Gwz1c} z*je~!iWrG5?L*vB3a>zgSWkEBce^J%X0zPu0J91`wQ%3CM;&{#5Q7KV|1Xc@&-<6h zQGspUA^1P$wKMzEJ;lDeo7tHj?)8X%?q8A*HJjmHVl0>K-UG@pOPy-AVy64o!Oxj( zUSQU7nc1GzW<58U9ocF&Y?u4p{C)0Mfe*VQ{n;${g!|X#XUyh=1X$JB09#Trz#3Hu zuyxe~thKunw>J&2?kxgrf4cz7=oVnddIVTjzW_TkB*1bq11u&xz-HtGSh=YIHg9Ht zr9Ky6D;5M;+Oh!KygI--x>qgsYz?rUy8`UUz5p9`IKWOG4Y2GJ?xhX4D$NZEv}E@z zZBEHRt6Cw@mQ)Y4Ms)*iUDH5o-6GJow+poH-2!cYk3h@l7iheSy~VaG)JI8fe2#1lq~d zftDTOUiyp;vfPqEmRupo=2Q=|s&#{GNz))})FQ~%wF|P=-GXd;k09&bFUa-}39^jL zAUifL$g*;R>`ZQu<;--yR`gtu%~%j*<(386ywyRLx*^C`Yz?xsT|u^aUyyY?9AtZr z23gM&L3ZSHkPQn7wv#czmR-`lY*r!Ia;pbha@}B?(=^zswg|Q*?SidQw_sb>BiLH^ z3%2b;f~|XIu#|^*u{zkwZ3wn`TZ1iiSFo+v z7i?*VgKhKCVC#4y*!G+bww@s&b|famhLsGlljTD!ySkgxx*?X^G{llygxH*RAy&0p zh%M<6VvYKR*t#Jh);cr9wvP+3?l~d0KR3iOW`@|YxgnOdAjHlr4Y8cnAr`YC#Aa*_ zv2wdYY~H>QOFbN7D~^U(+KCX`d^*HBx=`$i3ALUjL+wcUP#ab~)K1n3wd|&$7SbZr za@&Pka<@>M(<9WX_6xNoLqe@lW~i+j7iz6@LT!6)sCAziYWwGgTE>DzQG;eQua_Ul3;d zmxfu!>M%RDKFqSVhS`~&VV1Mc{g(RSFq?7I{af4}o6Cn= z$Lis>r%t%_Y#MGy(!*_7yKp<%HQcg$gjuaGP;D+{%SS*u0ns zOD!2;E6PV$TJ;FqTqnXhHjS`7=@HhmU4$L!8ezkFxPQyjH^Q=qL|8~>gyoKlu;iQw zo0A)1RcA)nlDQGqXhDRnTN+`lS4Y_P^%2&6YlQ9J8DSawBJ9|q2+KMeVQ2n`u$stY1*$x`>u%IZj4w?5KZZ;iC=J0q?8zDV1DDAF>H zM%uAIA}#B5q@4+lvYePGi*f&aX-4@dD_1?r=GBR^)TU9kB0b8|+C|ysu2I&pN0ja9 z8)ZF*MA?y1Q8sK`l%1RuW!bq=7BVx+a_2@_@`5Ovvoy-8u8y)L>!YmE)+k%IGs;@; zi?Z#9qOAMTDBJ%>lx3WbvSY!~mK76iXOg2Wr+l=TgM^Mw#U6x*mGR89hnqu!*ZkTZ7ZLN<++x9=At^4U{+aDZb88I<-EIG!q%E#E5YB82mC&pr$#@LMX z7%SH<#^!a6vD6+hwxVy0r45O(&7)$ho_;g_RNp7o=fBG$f`ISwm!~Ieh_EbJL4>5U!3J0inHXSaW==T538Pzvn9dt)+i?4 z)+M_)bIZru_GG5`~ZMtD58`du&UibyH{P-j#aqbHc+34G-jYwp z+nnG8s~VGFOOg|;QTYU0S1rL>*GaJLO%kkodV=k5n_wAT6YSV636|A2!Oq-~U^%1Q zuWXJ>uo;sQtXyt_&6|;6sdE!-#eDY;%hCkfyeh#uu1~N%A0$}Moe6eiZ-Nawlwc=+ zO0eud5-j9&g5?G$T5?RH%}GwQs^t@HNwq|4R438aHA%GA>4~7uJt=!y1n>RnvQkN#$idBi0wm#7|e~@S$cP84N zy@}TIP@*0ADba@gk!UCXNwn;ebE+j-)jCPGq)C!BN>8$NZIi5Z z*CgA1OOkc(n`Ha%NV1GkNp|esB+HtVWM>{tvYZ+2mptbt*^K!~R&HsM&0CdZsq2$$ z#Ro~2wlm2#?@h9fhmvg1Pf0fLXZ%7a{(qBbciG?Kd|xNHOZPwUxEFa(zw+Czj(xi{ z@8#o{`S|6&%ZWZR!S_P2e;roUy(j110}8m`eP@Gvk=U)E+&0|X16|xJeJRzt;C+T_ zogVQ0+$7&Ns-64k9nGs3`ntxsuYYJ>^W4|Rn|E~o=SWZrjtw8~%@FthwfH}=e#GYs z?j`R4_Z{~>lJEM>fiUoKpn3k^0XEzHhQw^oO4I*c|0QmR|D(G*PS?u5_pZzqgZu9 z7|x6LXYn-F%i`S|?p~HaSR!FbgyCNW(r3ouTSXsg@C9E7_E<_jH zjtU-j#`o0Ay&dHna9qQPq`Ob|B+FgHeBrSNjZn5A)LkznS1O@v8?de9Zs7 zKz9w#2>sWB>>9&t`L6}LYnUqkwGej=^W?u4>aJmu{MW+VHO!FzTDZH0>G5BSaMv(5 z{%eu$8YaenEy`WPtoW}*yKBgl|5}W@hJR({zZUDRxp&*nUW;?r@D7*%d-3iX3eJBm z!CgZ>{nrxRHN0!!zn0{#;U8W3ua$7u@Xw9zbH7V~TYa_Jj=Aah9)1<3xvMw78RpJ! zbNAm@nXPm0^oP0g+}iB;qv`JQ=ErgQ!*pCu@R7-r@b%<}aG9Qi%cp&p6CS|V;S+H= zEgP40$KY~8CN6D+@9Vy}Tz|9g>y|#=JiUbP_;5cI93S42FF3w%-|nHfm#30}CE%P1mggbrv=#R_ZzB7^HyIk)h>Ari=e}+-O`0RLdcLWyh+lu)v{a^dJ8NTcP z`aX6+=BCm#Y%Jh?>)Zbi#~gN{-cTa9a#zAW#QxSAF=j|7i^ zx{b$1-NvJ)ZsYM(xA91;+jtDtZ9F>bHXgTi8;|I^jmLW3#wtL!u|CjktQ>S3YYN@Q zYD2R>cPo$+u1arqt6~2ivuXj)Tfv{&_TPW7s!ehG^se425>|<@%7j%RtSVvE2&+yQ zekI>~d^HKXjIhfIt3_BUVYLaXLs(tH>Je6-um*%RB&-o(jR|W)SX08TAgmc-R}yv= zVQGY673{s=ntK=?FED@F%)`cH>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)? zI&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1 zZM3IuqgQnsjjP+}V%qJ;*!nzRFm9TDvT~F8zgmowEM#63)>}JAlA*=^s zw-R<6VLb`Eov>aWhLr{8Pn&w!m`vTq%<49#S+_Cgx{UejrTCD zEHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+- zMhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+} zV%blL?zb*u#W9LfE5(v=R6E63(TK3^{_FSx{aCD zZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=& zbQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD3kiFLutkI|ChS$hmJs$DVM_^HM%e3wEhp>^!rmlo z1z{@*TSeGv!qyPBmaw-7dz-LzguO%9yB>y>1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%h zq1#A}ZX-{+jil)|GN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g z-KE=THQh$v={A~Bx6zThjrP=S^r~*7adjJAtlMa5%`VP$$a=R|?>b}yVeb*Pk+4mK zZ6<6BVeb?60byGS`;f4Y2-`;3cEUa;>=VLv5Vn)BU4(r~*lxo15cU~ipA+^4VS5SN zN7$EyeMQ)Q!oDW#8xO@-A1By8(G(Fw194-A9Nedq1)&b-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m z+vrH$MtkZudR4d4xVnul)@`)3W*6r=17SZB z_7h=83HzC_V}$)e*sp{gC+s)Eekbe?!cGu&lCVDsJ4M)Eg#As}{|Nhsu+xN{A?#nm z@;nSH3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ zZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD z!?3cz{Ap7U8!K48R+F&H2)mrHT7;z%R-3Rogw-Xi9%1zfYd}~-!Wt3Q zn6M^6%R<|+Dx{W#4Z6rXqkqzBO zYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOc zMyu&I`cAjegu0E6)NQnp|G9 zgxyA1Pr_~|te1yjWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G z(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6 zZlgVQ8@;OAXk6V!7wa}!TCSqLs(zJ`VrQjunfWm5H^soL4*w^><+?) z5H^&sVT27QYy@F<5_T71BMBQtSSDdvgpDTbZow> z0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJq zx6#s?U7YKX32v|6b;$jMO(g6A!X^=xL)e3aJw(`K!ln@RFkz1n_9$VwgiR&vF~X)1 z_BdhF344ODCkdND*i6EnBJ63xo+0d6!e$XRo3J^A%_ZzP55vj=^QTQcY)qzZV`g<5 z)2!Q=bKOP)bQ{^wZKOuGktf|o(sUac)NQ0ww~<@jMxu2aS=Vi}fNrB7bQ{f~+vpVC zM%(B%dPuj?P`Zuo(rvVwZlmvX8%?O&=t$j0d+IiNRkzW&x{WT@ZM3vz7w0Z zI^+eyUL@=#!d@n99%1tdTR_-C!d@Y45n+o7dzG*yguO=CQo@!I_Bvt9344REHwjxo z*h<1y5w@DJHH57t>@C9HCTtyH?-2H`hhb%b`O~HzHYQWIF|)djY1VDbxo#r?x{Yk; zHd3S8$dhg(X}XOJ>Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP z={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHdfi?Idg$VV@GVo3K5EeMZ>lgndESUc&Yf z_9bCo5w@SOuL=9c!?3cz{Ap7U8!K4`%f@5%w2he-rjU!u}!bG+}25`~_S;e6%R<|+D zx{W#4Z6rXqkqzBOYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_& zjc%idbQ=w&+vqOcMyu&I`cAjegu0E6)NQne&3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{ z-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=Xjw zYPyZS(`_`NZlfc08||sv=vCcDeLfVJ!)3Mc6fjwI=LZ z!rBnlmauk&T}N1Z!a5Mvk+4pLbtbF}VO=wd$5OynJ zw-MHpu-ggiNaw#+eox-BkQ`27SL_~gRmil z4JB+CVZ#Xv-VcCS;N7#4|!^#5l zr%gRAeZKPATkz3tHqIDZt*KM?b zZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0 zw6tay=Q?D9+pBjSaz9}c344IBNrdGP_8?&o5jL5yDTF;t*dv5JN?0yoQwe*FuxW%n zPS|w9o*?W=!e$UQldz`WS%l3dYz|>_346}Nu(H7XX;Tjyld0R7S>47o z>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKql{uMxJCuw{h3PS|q7-XQEv!d4Kr zlCV{TttM;@VQUF{i?Fu|TSwSCguUxwSXp5Hw5f-U$<%GktZrkPbsKZ8+em_33VGCsoQ8z-A1qKHX2vA(Z#xrme%azT!*Z8d-bkEHW2n6VH*kCMA&A+ zwh;C{VIL5-m9P&9`-re@gl#A6W5PZmYzJXG3EM^3r-bb$Y!6|d5%xJ@Ul6vJuziGm zN!V9}?I-MO!oKk^tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBOYIGZU(rqM7w~;~J zMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I`cAjegu0E6 z)NQn47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZK zql#S#`rSUh0~ zge4M|L|6&Jk_jtG*d>IOBCIrFWe6)v*rkM(Bdk1O6+8?p3(TK3^{_FSx{aCDZA`On zW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=&bQ^7> z+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcDz3A>iC zHiWe$tQ}$35!Rlt4uo|itP^3K3F|^wSHijxc0FM?5Z0Zr8wtCKu$u|Hg|Hrk-AdSP zg!LrscEWmj7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z# zjoj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tSXhPjaN9s1( zQ@7Epx{b!wZFI42qop;wIM*S)-Cn)xkUoUc2^&P%V8ZSoYzSdP z2^&V(aKc6qb|+zX5jK*rQG{g@mPOcT!tN$)3}IslyN9rQ2^&XPHevS>Hr~UqvcUXl zQx6-HsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oHR=1I8-A2}R8!e#Q z=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|< zt=Yx74w>Ng>RpH2PuN7l9w2NIVL607NZ3P!O(tv#VGk4b2w{&BmP^=F!X6`R8exwU zHl4612z!#S8HCLw>?y*YChQr)o+WG+VY3OFL)cuxp7SuQEHHoC)WgPP>NaLpw=vDS zjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMi zZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%n6Os~TSC}tge@g(8DXyzww$mx2z!&T6@;xM zY!zXv30p(hTEgBU>}|r<5%vyY?|K+k7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@ zx{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U z)pQ$ur`u>k-9|_1Hri9S(W|_fsnB5WIB+X?%auullvLD){hb`ka|VY><2L)d48eNNaHgzY74A7Nh- z_7!3K3HzF`Z#)bu3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$} zPTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc0 z8||sv=vCcDr`<<{q2s=U8Ny7dl>=a>t5%xD>|0C=l!cG%*hOmDL%kwa- zEHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+- zMhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+} zV%47o>o(?Gw~+wdMmBUCsnKoZ zNw<+S-9`p=8|l<- z=sVp;6Y4fPQn%5bx{Y4dZ8WZKqlNciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Ti zx4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbK zZS<;cqj7Z`U98(^Y0WOqbx3cwSMNHc4`F=?>ql6B!ZHXOK-fUS1`#%xusaAFLfBBk zh7mTLun~maN!VS4jU;RoVVQ(w5jL8zy9paZ*jU2uA?#kl#u1iH*nNbJ_b{w1Fn`+A z!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+Oib zLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4m zc5$vlCb+$N*CF>4Hj%Ig2%AJ$4q*=x_7Gu{37bOL!-PFT*rSBy5;m2v#|WE7*yDsv zC+rEro+NArVKWJPim;~%dxo%Q37bXOY{KRcHkYvHJPa!f%%3*(urZmsjhWSLOtWrd z&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8 z=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U7YKX=iOet>yQ@+ zdy%l02z!~Zd4$a;Yyn{l344XGMT9LT>{Y^+5cV2jO9@*>*z1HXC+rQv-Xv@VVJit+ zMc8V>))2Oqu(t?%o3M3+y+hc$9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRW zBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV z-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3xqxdbd~aI%ET3?-908u_8DQH6ZQpRdkNb|*q4NT zMc97Az9#G&55vj=^QTQcY)qzZV`g<5)2!Q=bKOP)bQ{^wZKOuGktf|o(sUac)NQ0w zw~<@jMxu2aS=Vi}fNrB7bQ{f~+vpVCM%(B%dPuj?P`Zuo(rvVwZlmvX8%?O&=t$j0 zd+IiNRkzW&x{WT@ZM3vz7w0|4T)5cVBm-xKx&VLuY~6JbXQ z`^H)GC+rWxP7rpIus;bqMc7}2{Y}{a2>XYy(}bNN>|et2JPa!f z%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w> z0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJq zx6#s?U7YI>3%PI|5vV>hqSUJMV6IQ{)u(H7XX;Tjyld0R7S>47o>o(?G zw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKqlNaLpw=vDSjXBqCBtW;34c$g+bQ^in zZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlS zPPfs7x{Z$1ZM3IuqgQnsjjP+}V%T7n+Us^uv-Z0LD;Q?-9}hX z!fq$5mxp0xf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ zZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#S zy{g-2T-`<&>o!_ivx{>b(%bFTyAJ6?SYN{W5!Rou48jHwHjuDEgbgO_4#I{IHk7bo zgbgQb1Yvg)b{AnI2^&RNCSh5GjVA1F!p0CbmauyWyO*$Wgk=+UA7SG?3@Z!FpEmWd zF`2rJnbmDfvuw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe- zoa>MYZm-^T$o+&(B}kTDA?#VgW)U`AeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlW zNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay=Q`whw^#2vo!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$ z(RaFyCe&?oq;8`D3c>?6Xq5w@MMj|uyPupNZ$By1O9pAxp4uswu*M%d?seL>h>!uApNC1GC? zwx6)C3H!#wu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<- z=sVp;6Y4fPQn%5b zx{Y4dZ8WZKqlYm#{n!!^#5l zr%gRAeZKPATkz3tHqIDZt*KM?b zZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0 zw6tay=Q_kfFISQug9ghdb*NmvwN(S*ei7E4$hVey0|5SB<- z5@96>OD3!&VV4kAim=jzl_9JwVV4qCjNaLpw=vDSjXBqC zBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E z8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%@vbGC#)7>sf5)gtPWvy39Cm~eZm?L){wA9gf%9t31LkM zyMnN0gk4G4RfMGxb~RzmJq#-g%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyV zNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcm zZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U7YKXbhlUUI-~_*EeUHy*foT;ChS_m+7Q;3 zuy%x9M_7BpIuO>8uug<^Caeo#T?y+(*!6_nKv;LeZY1m`!fqz)7Q%WEb}M1G5!REi z+X?ICVOUvU{nspmg}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ez;#`OHc6;@%L;4Wbm#}_>^(QQYumOY(By132g9*EXupxvEC2SaB z!wDNf*qwykMc7EfMiG`tSQcTU3A>xHF@%jJ>>k4IC2SmF*@WFk*mw`a$^!GJO+9Q( zrfy?qbsN*H+n96RMgnvj+0bpIMz@hC-A2-M8yVDXq*J$%Tir&YbsJgNZM1-HqaSn| z&7s@q6x~MK=r(#tx6x3#jqcKIw3=?C?{phYsN3jB-9~%rHhNXJ(YU&eF4k?dv}PCQ zI%I;|t9Ko8KVcIIdw{S>gyj(SAYl&?Hkq&~ggs2yBZNIlST12x344sNX@osa*mT04 zAnZxPW)L=$u%`%nny_aGdzP?Sgv};w4qC|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&v zZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|RPfv^_| zdx@}@37bdQe8LtGwvez_2wOzhV!~b}Yzbkn5w?`DWrV#>*mA<&AnZ-TRuHz5uvLVu zCTtC1YYBUcu(t_YN7y@rz3X9ESz!LOsfUfp)NRbHZeyBt8*{GPNPuo58@i3u=r;1C z+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``THX2H|(OtTYR?}_t zoo=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6iY3hpcyd^{zuU5cVEn8wuM)*k;1E5cWP{ z9}u>cun!6Qh_G#hZ71ww!agBv2Vpx2+eO%?gzYA54`H7X_Bml+5Vn`FeT02U*jI$@ zC+us&zVR@uEHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl z)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3Iu zqgQnsjjP+}V%C|oHR=1I8-A2}R8!e#Q z=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|< zt=Yx74zaKc*C7Ff1rioSSTJEBgoP3oMp!su5rjn&7DZSzVKIco5*9~TJYflhB@&iI zSP8w>0=kWU&}}q_ZlhCl8*QW8=po%k zL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U7YKX6t`FJ>md~ht3+63 z!m1Efm9T1rRVSJe6-um*%RB&-o(jR|W)SX08T zAgmc-R}yv=VQGY2O;~de!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZ zO{m-GNZm$z>Na{+x6!z|jV{)0w6tay=Qq1yp!nzT5Jz+Nx)}62$3A>4~n+dyxupWfnO4x0L^(5?e z!g_faRu-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(G zt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M* zjmFh&bg^!ur8T=a*CD;#UcKv(K7{optRG?h3CkdC0AT|O8${S(!tNk!2w_7B8%Ef0 z!bT8wCt-IHHj=PWgk=(zMc8PAI8%J0+VfPU>-ovo6!2D@b4;z!I z+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=>#26Y?h)NSNew~=VwM%Hy3Euh=z2i-<< z=r%e>0wIC2SU9vk99+*j&P%^DwL|Fn`+A!^ULlHfC10G0nP-IoE9@ zK(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G z4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc5$vlo_Blou0viR>_x&} zBJ5?t<`FiZumyxIB)l?x>yQnEy+_za!Zs1MnXoN{y-(N& zgl#44L&82HY#U+Q3Hz9^PYByV*iOQB5%wuzy9wJv*k^=&PS_WO?Immw>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7 zRozD8>NdJqx6#s?U7YKX18%S0b;v=&4iR>kux|-FLfChNeNWgAg#Ad^PlO#M>}SG` z5%vpVzY=zwu-^##ov=R$J3-hMeOhq_Inx=p*fP1U+h@48J1yG6 zQwp0(*wn(N5jL%`>4Z%$YzAR73Y$sT%ma*<1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+7)Y)N5D30qp&GQyS>ww$o#g{>fLMPVxm zTX}%-vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA4ojC^(Q9kQyh)r74sYz<*+3R_Fq+QQZmwyv=Cgsm@Z17RBq+ep~P!Zs1Msj$t2 zZ7ysJVOt8@O4!!Iwh^|iu4I||!L*v^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcKW#p@a?~q-E?Ivt@VS5PMQ`la@ z_7=8}uziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX62s={PQNoTEc8suNg&imCcwr|9 zJ5kt4!cHDwyezoCcJ@;Dg3;T+&uL?Uu*qOq@s1O3%f$tmBOwPcD1l;gk3A_8^XRhz<613f9>kAxy){Jv)$&J zyUm?|S9%682+Z zKN0p*VLuc0b78*__R9gr%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!$yHD8t!hR#{x56F}_Motbggq?mcfx)z>=9v) z3VTf0W?9akp5cZ<5zX<#50OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%% zWnq64_IF{g2zyo7YrSdso;$g#A<4zl8l;*n7g>7xo`v{}uK> zVIK(lP}oPpJ{IrVtKFu!-KNFerqazG<~wARaliZy8CBS5!bTT1hOjY(jU{YsVdDrJSJ-&M z#uqk$unC1tBy3_~lL(ts*kr;c7dC~kDTPfXY-(ZC2%A>ebi$?=HiNJkh0P>v<^jgb zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e22_3 z^3}orA+rjbP1x+h<`6cgu(^cIEo>fP^9q|!*!;p45VoMOg@i3EY!P9L3R_Ir;=+~? zwxqD7ge@&>8DYx`TTa;W!d4KrqOg^OtvtYZS#W>t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0LuQZDH#O zTUXe6!qykIfv^pQZ6s`CVVelsRM=+1HW#*quq}mcC2VV9+X&lM*mlCU7q)}29fj>A zZ07;S%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!>yzW3p+&Ep~4Om zcDS%3gdHjDC}BqnJ4V>C!j2Pmys#65oha-iVJ8nTUKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbl##CvzC%tGcABu$g?&ZXSB0G+ z>`Y-_6ZUmsX9+u7*g3+^6?UGm^Mzd?>_TA|3ACBiNhcA2otgq-R91_%>ug3HoDDfy3L-t&CWSO>w(T zi@Qywn?1~T$aN!M9ejseFYH^wzAfwqVK)l9N!ZQ8ZV`5?u-k;)F6<6rcM7{p*xkau zBka4vz9;Pa!hRs^hr;d=cCWA>3H!0Ip9uS@u%8M0xv*ad`{e-RWx@TmtHU_K2`Yg*_(habZsgds5g_!k!lPjId{gJtypWVSfw_Ge))2zyc3UxfX2fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WAuo-5b?_bXvar7i`@67LguN>4HDRv{dqdcp!rl`0wy<}E zy({b=!u~1jU&8(^>^))c3;U0-{|ft`un&ZNDC{F)9}D|L*r&oi6ZW~VF9sMd3+}I7 zJvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4j zZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqEcwc^p zj4Et2VWSHhL)e(Y#u7HRuyKTqD{MSr;|rTW*o49+5;n20NrX)*Y%*b!3!6gNl)|PG zHnp&6giR}KI$_fbn?cx&!e$aS^8n*z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC&gi`Rd^RkXePzCTweEhlVwVJiq*QP@htRvuuy zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG$rY&&7w3)?~1j>2{lw(|hvWx@TmtHM zu#*QEFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1 zZc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I z5Az*z%E(s--yx?8J5AW>!oDKxtHRC@cBZhe3H!RRvxJ>3>>Od|3Oi5O`NA#`cA>C~ zgk3D`5@DALyG+>S!mbc@rLe1nT`lYyVb==#hOloAFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E~3M-5%yhS-xKzIVLuS|Lt*y_yI0tcg#B39PlWwc z*w2LhT-Yy!{c?cuvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4+8u{wrJLK2G?h|&uu-^##t*{4#Jt*uUVGj%Yov_~vdqmiy!X6X$ zxUeULJt^!dVNVNtM%c5$o)h-Gus;akAxy){J zv)$&JyUm?#PVQ&e0Ti83o-WB!_VgD5NFJb={_MWi!h5bj^e}(-|*ayNs z6!wv@kA;0A>{DT%3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3@On{4c*lMin-iu+fE$A#6-xV+k8u*f_$*6*iu*@r6ww zY(ilZ37c5hB*G>YHkq)=g-s!BN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D z$gIL<6E?fBIfTtAY%XDQ3!6vSyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g% zVM_~JM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYr zPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh z-KLSrVtKFu!-KNFerqazG<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls% zu=Ry)AZ$Zn8wuN3*e1d@6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4& zjC^(Q9kQ#i-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$ zVMhu(O4!lDjuCdOu;YXsFYE+iCki`B*vSKomj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUW#p@a?~qf4ohIybVP6sURbgicJ5$)# zgneDuS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI#dQrK0(t`>HUuxo{V zL)bS57%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)Jfna^1*R2j3yr3;UL^ZwtFY*p0$&5_Yq&TZG*z>^5Py3%f(uox<)CcDJza2>Y(E z?+N?9upbEfp|E>|-7D-z!hS65C&GRz>}SG$F6t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0Lq-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$V($%9ejtpEbMQ>{x0klVXq2%P1x(g-VpYtu(yQ0E$kg(?+W{e zuzw2sm#}{edr#Q=!u})dzry|}>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLv zo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y z)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO!I$45qY4{M z*yzH>5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1 zVbcnmPT2IqW)L=`u$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h z!WI;^kg$b?Eh21DVT%b{T-XxAmK3&>u%(49BWzh=%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7 zA*%{oP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJG zgl#Qs8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0Li_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xo+gEgYS^*g?&rdw}ssx>_%ZX3AMeOhq_Inx=p*fP1U+h@48J1yG^H)GE9?Pb4+?uo*u%npC+zpa9ufAau*ZZwF6;?m zPYQcV*wezE5%#RG=Y%~k><_~JDC|$d{w(YTVJ`~%i?F{AFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EChT=#ZwPx+*jvKh7WR&?cZK~!*gu8+OW41Ky(jE_VgC{KUt#|f_JObug?%LK zV_}~N`&8Ix!af)F#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC%Wt@XPOzQH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9 z!X_3riLgn9O(tw|VN(d3QrJ|&rWQ7huxW)&Cv19QGYFee*i6D^9$>sIxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQRwUmg4(GOMuJ zgv~B&4qLVG9adNZ7){77@0nu*HNeE^G;5OA1>`*wVt5 z5w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@txb{=57EV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtH{?;p5cbUh z#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO<7YrDC{0#_X_)wupbNiiLjpv`rVtKFu!-KNFerqazG<~!t9BVQeShx}UDeZuY+_8Vcp750Fz z2ZcQ(>|tTQ6ZU&yj|h8I*ki&T7xsj(CxtyF>}g@o2zyr8bHbh%_6K2q6!s@!e-`$F zuos2>Mc7{l7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8N zv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)Jfn^3upx2j3wt3;Ua}zYBXs*sH=`6ZX2WH-x<@>@8t$3wuY{yTbkT1Audx3K`#{)-!afrAv9M2seJboTVV?{8Vu10o;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$+^yPQRsKQ1QHoCAe zgpDa|EMa2{8%NlAAuwt}z~g{>rPrVtKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{ zAnZV42MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`&cAT)|g`FVmL}4chJ9&Wdvf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4kjC^(Q z9dfF$(}bNa>?^{)D(nnlXA1k8u&)a{OW4`M&JlL5u=9kSFYE$g7Ye&b*u}yw5q7Dt z%Ya#$<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`K zZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*j zO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`t{eI4;5+1cVc!z=ZDBVEyHVIp!fqCJi?CaT z-6rgIVRs0-Q`lX??iThPVc!+@Jz?J$_5)!*6n2lWdxiZ-*pG$%MA%P-{Y==;h5bU< zF9#Se3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BwZ5k*^NELw+snK4JF@`;D;Q3VT4@i`F3wuJ?lfs@7 z_O!5Pggqi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d1>UUgYS@+h5b#~--W#*>{Vf} z342}G8^Ycc_Li`>g}o!}U19$a_D^B|683Ll?+JTf*nfomSJ?lAeIV>ZVIK+mSlB1R zJ{9(vu+N2kF~E3PaDVOUvAN7{bFZc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UH zL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@y< zIbq8STS3^0!d4Qt@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAP zk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9O zP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH z7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3BNM!q`u4mnlWX~Iqy_7!1Y6?TTOGlhLk*w=-fCG2cr z=LkDj*m=Uv7j}WL3x!=I>|$Y;2)k6+Wx_5Oc7?Djg@v`9l z+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e z<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe*NuF2 z@Evl!ux|BJ8KaekSba!hRv_mjjHK1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40Kj$X5s7A-@)OpRoId{YKbtg*_nbL17OG zdsx`-g#BLFBf=gP_L#88g*_qcNnuY3ds^5t!k!iOoUrGG{Xy6th5bp`pM||3>_uUJ z5%$*s#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO_5W(E9`&5J`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQG{eEA(Rs<6?7jV^2qVPgs# zOW4@L#t}BIu@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$ zBEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y z4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c z?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3~7-N zLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~VJ8SXQP@esP99*qEV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yG^x!T3%fwrg~BcpcCoNagk37^GGUhs zyF%EN!mbi_wXkc1T`TMx!oE4ccv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@# zrFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$L zcAI*3o33`7;&z)BcbiH#dzkN#>qfph_zt;V*tdjzTi6Z4ZWMNtu$zV5BJ5USw+Xvl z*d4;|6n2-eyM=v6*ms3}PuTZ`{Xp0ch210UUSU5H_G4i`5%yDIKNI$IVZRXe%K^sA zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e24sM za^*<7L79wX4VGGP}*qcAIPNHh11_7SL_B z(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQ zZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`UK;u8;5+1HVSf|$cVVvxdsWzL!d@5l zhOjq~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`J7knezx)mvRoH04Mi(}QurY;=C2VYA;|Lp9*m%Om7dC;g35880Y+_-P2%A*c zWWpvFHifV$g-s=FYGKm|n^xF#!loBCgRmKe%_MB*0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c< zxrEIvY#w3r3Y$;Z{K6IxwxF30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0 zn+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66Sljs zJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9VzT6VMhx)M%b~! zjuUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ` zW}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrV ztKFu!-KNFerqazG<~!t+k*^NELrxWTny}M_eMQ(;g`FYnOkrOW_H|)r2|HWZIl|5r zcAl{Fg|4UVE$jwiHwwE+*v-Oj5q7Jv+l1XN><(df3cE|#-NL>j?7PCgC+z#eejx0J!tN1v zudp8p`?0W}2>Yq9p9%Z9uwMxKe+3&+HH#4ZCc!ID&6d1zC(UB^3}n2$ghRnC+vP+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe zFO7V4@E!89u)hiWyRcV;y(;WAVXq5&L)e?b-V*k?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=H zvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu&fUw(&-Dr_`iqYE2D*qFk`5;nH5 zafFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DK zW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4 zEhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k z+de+3&+HH#4 zZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V= z9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z;6n2uZlLr_t3+}I7JvNuwZEm*P zTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wn zp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=^$X5s7A*TvEP1xze zz9Q_a!p;zOrm(LG`?|2Rgq4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bmbx{}FxN2)k9-ZNhFBc89P# zh216WZeiaM_FZA$6ZU;!KM?jqVfP5TSJ;n){aDyfg#A?5&xHM4*e`_ra)9x&;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy#m`Rd?1 zPYZiS*t5c( z6ZX8YKM4Dyus;d=v#=M0y(sK2!u~qIcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5 zn>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#mqxxi_zrnl*x!WxUDzwaUKRG5u-ApXA?!_I zZwY%_*gL}B74{Ed{}lEwVgDBPp0M|Y{YTh;h5b+12f{uS_K~oUg?%FIQ(>P8`&`%; z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4jE^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*E zn@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQ zY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`J7krSuMWOLRu#6Iu+@dFA#6=yYYAIh*gC@26}FzR^@VL9Y(rri3ENoMCc-uq zwwbWag>4~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq z+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ| zZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3^Z{0)75TM+-}q2Zd2)I5Az*z-N;u5-yzov`wF>3H!dV9|-%QuzQ5vE9^(Y zek|-K!hS03XTp9i>=(j*Ily>XaDVOUvAN7{bF{(&Y3431HAB6o;*q?;`S=bB0UKI8hVSgQ9yezoC zcJ~F&UF6>Xk63j2q!e+v7Tuzw4CPuTmy{v+(a z!u}`h17RNu`$*Ww!afo9sj$z4eJ<>a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11Cm){|y3L8z>=)%SjHm0z#gpDn19AV=M z8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+e zz<613f9>kAxy){Jv)$&JyUm?5)6tZc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uL zY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9s zu$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B}X-f2s>8Tal(!lc7m`Ig`Fhq?&bb z3%f?xwZgt3?3)9Omj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrbcgU|szB>30`L(e7 zgxxRfH^P1^>;Yj93VTS{!@_`%h}EbIkgFADpMu)hv4UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_BmbrID`=zC&IX_BUaF7xs#~&#p2zyi5Tf*KJ z_KvW3h5bX=KZX5E*uRCnC+vM;{}J|IVgD2Mfv^vSeI)E-VV?;5RM=<2J{R`I0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fip zu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f; z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7U zVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+Y zuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f#gdHpFIAO;NJ3-iq z!cG!)@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!z zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!I zD&6d1zC%tK`Rd?104*crmk6!tY?Ul(?ku(O4oBkWvZ=LtJs*agBa z6n2rYi-lbx>{4Nu3A>gqF3j2|;9}D}5 zu%8P1nXsP=`-QMy4lrI8++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc60)75TM+-}q2Zd2)I5Az-J(#Tf_-ytsx z`#2!u}!bpThnn?BBxP6ZXEa{|Ni9u>T4B zK-h=EJ`(n^uup`2D(o|1p9}k9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WA)`$7<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNa zunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy z4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=H zg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs z!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm z4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ik zg&iU6NMT0_J6hN=!j2VooUr4CognN)VJ8VYd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx@re0A_0a;mV?gq<$zE5g1i>;hpI3cE-QChT@$cL=*v*j>Wz7WN%s z-xc;fVc!?_17SZDc8{=oh5bm_kA?k2*iVK1OxVwb{X*C;2N*94?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rCM@uMWOLel6@iVfPFB zjj-PedqCKO!X6U#u(00=`@OJ7ggq+kF=3AjdqUWg!k!ZLw6JG{JuB=vVb2TugRnme z`;)Lg3wuG>i^BdQ?5_iimj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrb9Y2>Se?~s>;{Y}{4g}ox|Rbj6QdtKNY!rm12maw;ly(8>h zVgC^JPhtNO_HSYD3434Ie}w&4*#CrmAnZe79|`+d*eAk175161&xL(4z<613f9>kA zxy){Jv)$&JyUm?QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V5;nK6d4$a?Y(8Q0 z3tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3!LD-7IRuZ=I0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapzu#JUnB5YG(n+e-o*cQUJ z6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi5VohVy@c&8Y#(9! z3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzPPT29nP7rpYu#^7J zidh72Sl4k-Liln@02Y(l!bySux)ySux)8~pF}WecgU6_UmbjhY$a@KVcQ7XR@ipJwimX8upNc%By4A4y9nD=*lxmh7q*A6 zJ%#NhY;R%v2-{cKe!}(_c7U)0g&id9U}1*{J5<e+3&+HH#4ZCc!ID&6d1zC(^2`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^Br>K$X5s7Ay)~zTG%zht`&Bju`q~K3At>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0LK!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h z9}4?O*vG;?5%#ID&xCz0?27@$%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!< zt=nv{+pM$O?6%u1y4!5M+f<<2^r737quVs4+tjApbg0`Ds@t@y+f=RF^sd{Ku-i1U z+tjn$bhXACG6Y6 z#t=59u;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOTy)_7h`*wVt5 z5w@(b<%BISYz1K}3R_9oPlf$V*w2NnENm5Fs|s69*e`_rQrPOk))4k9VQUKewXoj^ z`|SYZWx@TmtH61KCjU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf z9V+ZFVTTJlVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yuhie0A_0a+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I z&J=c*u(O4oBkWvZ=LtJs*agBa6n2rYi-lbx>{4Nu3Amw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h@48J1yGBVQeShdd?hX<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97 zUKjR;us4OhCG2fs?+ANW*n7g>7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtH|wq`rX2a|;Qx@RgiS4M8e!84n@-sD!oDwT24OP_n@QNr z!e$XRtFYOG%`R*XVRH(bOW54P<`Fipu=#}jK-dq3{YcpS!hS4l0bvUY`-!lH1{g03 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kTGq zR|nrAiwIj(*kZyK7q*13C50^|Y-wT32wPUza>AAuwt}z~g{>s)r^0?F?B~K(7PgA8 zRfVl4>=(j*DQtCNYY6+5ur-DKTG(%d{dR!yvf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3-jeK?R9r8P2zZbT)uyus3D{MVse-O65 zus;g>lduhhZ7A%|!u}%cufqN&Y$IVC3;VmUe+c`huzv~rx3K>R`>(J~gl#HpGhv$x z`=78a1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9kS)fR|nrATM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor z+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R z9WU$zVJ8YZN!ZE4P7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{ zJuB=vVb2SDLD-AJUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J* z_OY-}gncUPGhv?#`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3xnfS}^kWqwvRoJM)z9#JJ!oDGFG-0C)`=+pO3H!FNF@%jN z>^s875;nH5afFR4Y&>D#74|)0;|rTW*o49+5;n20NrX)*Y%*b!3!7qq@v`9l+SOxo znce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeQ;vLf@PEiu z!lo8Bjj(BjO($%6Vc!=vgRmKe%_MAQVY3LERoHC8W*0VxusMazC2VeC^9Y+)*nGl% zAnb?2ek5#uVLukOfUpIH{Y2P81B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)o zw^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4q15QtAp>5MT9LXY%yVr3tK|ilERh}wzRNige@y< zIbq8STS3^0!d4RYQ(-?7_H$t?3tL6ls=`(i_6uRZ6t=psHH7_2*qXwAE$lbKemlT; zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0Lwvn)nh5cRF zKZN~L*uRARTiAbu{a4r~!ZsDQnXt`;{ZH5y1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9 z*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$ zwxh6}gzYSB7h$^!+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP z*x|yC7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgT?=Umbjh93|{%VaEtNR@iaEju&=}+A@2s>BUdBV;Yc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l z*rUQ86ZW{UCk7ZV3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BwZ!$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y z>`h^B342@EJHp--_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0LYHkq)=g-tQQcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#DM!9K_&;PSVN(m6M%c8%rV}>3u5cWf1KN2>-upbLsK-hx9ej;q40mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghb%nu)xmej zBEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJivysj#03`?;`{g{>lNRbi_M z`-QMy3R_*+8p3`hY)xUm7WNxqza3z_EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyG|etEE$lzS{wr(~VVeruOxWha{wHjU z0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhip0W)xmejR>HOxwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8} zuziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{gqoT`KG{ zVV4WLVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yv6ye0A_0a+R>FgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~ zVV?^7OxWkbz8GMMeOhq_Inx=p*fP1U+h@48J1yG(+Qhi*!P9aAZ$iqGYOkn*et?k6*il&*@ev^Y))Zw37cEkJi_J`HlMH`2>YS1 z9|@aZ*pG!RAZ$TlKM}Uj0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk$M5n+o8TTIyE!j=%Wq_CxgEiG&rVap0zPT2Co zRuHzLu$6@URM^ji{ao0}!d4Nss<73B{X*C;g{>}Z4Pn0$wx+OO3;T_*-wrTd7TjOE zdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95 z-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wAqk*^NE zLw+ah_rlf|wvMoMg{>#-55m?L_D5lV61IV`4Tb$#*k6SGRoLHzZ6s`CVSg9)4`Kfl z_Ag=o7WN-u{}r~0uuX++CTw$I{}Z;w0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~ zVLJ=kMcA&wb`!R{uswwBDQqucdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%3 z1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9dhKzR|nrAM+rMx*fGM66?UAk_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT} z!p;?Tp0M+UT_Eg2VHXLzSlA`PE){l}u*-#AF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kg zVK)l9N!ZQ8ZV`5?u-k;)F6<6rcM7{p*xkbJ5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJO zggq|oi2=sTg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e1|+a^3}n2$Wy|e7WRy=XN5f{?0I1?2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3 z!rm74j<9!yy(jE_VIK(lP}oPpJ{IrVtKFu!-KNFerqazG<~!solYRLeGK#RT3L90}*Mxmt z*f)fYCTw(J-xT&OVc!-uhOjY(eMi_>!p0Uhj<9isjVJ88!oDYLd|?v^n^4$9!X_3r ziLgn9O(tw|VN(n+UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bk_%8{=Q{tuZ-*wn(N5jL%`>4Z%$?EAuI5H_Q*nS{+OY!+d&3Y$&X z?84>{Hm9(;gv~8%9%1ten@`veg#A$1kA%%H?8m|u5VoMOp9ouMfbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAq$Uub?_ash_FS4 zEhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<2FD(q*%elBcfVXFvRRoH66ej)6a z!d4fyhOl1=TT|Gth5bg@ZwDAJ3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BuC*$X5s7A-@y$dtqw}TSwTs!qyY^2Vv_A`=hWw3EM!} zhQj_V>@ULpD(r8MN`^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO}o zb?_asm9VXaZ6j=3VcQAYUf2%8b`-Xgu$_hNB5YS-y9wJ}*dD_66t@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4mon5ql6tT>=!p;zOrm(Ywoh|GfVdn}vPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m z7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgU3^UmbjhTqW#kVb=(|R@imIt`~NLup5QlB~3NA z2)kFe+3&+HH#4ZCc!ID&6d1zC)fI`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BwY)$-n##8AaGvg^eogYr?)R>>I*H6E?cAZwmXCux|?+L)e(Yz9VcbVPgv$ zN7%T+#uN5kVc!!rzOV^|O(<+4VG|3RMA)RlCKEQfuqg%@FAMIkT|G9J*==sN+gx+E zx$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hut zsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|<;YhD|A$N^Y-(ZC2%A>e zbi$?=_I+V92%AyZOu}XsHjA)Xh0P{xc42b}n^V|a!sZq>kFa@#%_r;!!hR_1N5bY8 z_G4iS2wPCtPlPQrz<613f9>kAxy){Jv)$&JyUm?KNq&LuvLVuDr_}jzYz9IVXF&UL)fo`ttsr+!hR#{w*!oq1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lYkAxy){Jv)$&JyUm?4I||!L*v`Us z5w@$a-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLyM0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5Tb z)xmejQNoTEc8suNg&imCcwr|9J5kt4!cG=;im+3KohIybVP^~djO3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc6^5Py3%f(uox<)CcDJy5gxxFbK4JF@dqCKO!X6U#u&_sjJu2)mVUG)Y zVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yu(qe0A_0@|3Wrg*_weSz*r!dtTTJ!d?{ilCYPBy&~*YVXp~$UDzAK-W2whu(yT1 zBkWya?+JTf*ayNs6!wv@kA;0A>{DT%3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40KY6kmRaj3Vr-!bTPLHDO;D_6=d9 z2^(G5H-&vm*tdm^A#6-x-w`&Ju(5@WBWzq@;|cq&uQU)Th~CKNW2u!)6DB5YD& zlL?z#*c1bdmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrbfa^$On|3jt{Hnp&6giR}KI$_fb`@XOlgv}^yCSfxRn?=~H!e$dTyRbQg z%_(dyVRH+cN7%f=<`ebq z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$igFE9ejr@B5YA%iwRp? z*b>5)6t4j{wVBE!Zr}Lp|C#- z`-`x@3j3R|jf8D1?C-+VwyChqgl#VDf5NsHV7x52zjpQ5 zTxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$d)5t9ejsu zC2VV9+X&lM*mlCU7q)}29fj>AY-eG+2-{WIZo+mKwui7ih3zG5Z(;ig+gI3r!uA(- zfUpCF9VF~vVTTAiRM=s{4i|RB0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk%%C}BqnJ4V>C!j2Pmys#65oha-iVJ8ba zMcAprP7`*zurq|6DeNp^XA3(=*tx>a6L!9^3xr)L>>^ zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhN! zR|nrAR|&gX*fqkg6?UDl>xJDQ>_%ZX3A30c}m#R!k!WKtgz>VJumD9VJ`}M zN!ZK6UJ>@Hu-AmWF6<3qZwh-$*xSP15%#XI_k_JK>;qvR3j0Xd$HG1l_NlPXgncgT zivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze208x$}hh|MiKT^VWSHBny{}6`-ZU5gpDrjo5H>&?AyY|5H_Z;?+6=9*x16x5jL){ z@q~R>*!P5uFKhx~6AGJ1*u=sn5jLr?$%IWVY>ENK%YyrBSC7qQcAJ~+HrL#3?!4P9 zpxbPt+pMPB?5W!)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWZ{vo4!%Pc5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?eY zh5by}&xNflY!zXv3R_LsFNFP4*y_U85cVr!YYO|du-^##?EvFt!Tq(X$L2D-&CPb3 zYwk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x z)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC+d;`Rd?1j+y{*m}bLAZ&eMe-!p7VH*hBP}rY^{YBVch5b#~M#450_IF|b5cW@D{}T3ZVgC{K zUtyaF+f>+Q!ZsK7KVe%8FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1EWXqAS4!%RS61KIlZG>$rY&&7w3)?~1j>2{lwzIHZgzYM9 zH(|RA+e6r%!uArjx3GPL?JI0QVfza^K-hu84ia{-utS6$D(o;}hYLGmfbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAxDmUb?_Z> zl(3_P9V6^mVaEwOUf2o3P84>Mu#<(IBJ5OQrwKb<*crmk6n2)dvxS`_>|9~z2|Hid z1;Q>Ac9F1)g@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4!LsVtAp>5tAt%G>>6R$3cF6&^}=otcB8PHgxxIc z7GbvvyG_{b!tM}ur?9((-7V}MVfPBVPuTs!9uW4Ru!n>_EbI|sj|zKC*yF;U7+}0C zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT|? zUmbjhJSFUDVb2JAR@igGo)`9luos2BB}_H12zyu9 zd&1rq_JObug?%LKV_}~N`&8Ix!af)F#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*q;)tBEPqX_$|uu+A5P1x6keM8u2!bTVN zO<~^>_HAKf2pdz_cZ7{4Y;0lU2pd<}c*4Fb?0dq-7dC;g35880Y+_-P2%A*cWWpvF zHpKwrWx@TmtHQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfnvhc`P2j3x!2wPOxV!{>|wuG=H zg)Jp)X<^F1dg0K~Ztt9NH!hR;~=fYMNwu-P-g{>y+7s7riY;|F42>X?= zHHH0J*l&dWc7XA+;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yv&_e0A_0@;hO_7q+&rb%d=eY&~Ir5VpRsKMMPkunmN5DD2O|{vzzJ z!u}>~BVij0`@67z2>Yk7e+m1yu>T1Audq#oZ7OUtVVev4pRg?k7%vO%uU$Phm)UJ@ zw%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvgOEE2j3xE3ENuO zHo~?QwwFM{AnZV4 z2MIe^*df9W6?T}g!-X9&z<613f9>kAxy){Jv)$&JyUm?lyGYo@!Y&bZsj$n0T`ug30mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghg>=G)xmej zRl=?oc8#!Wg~UdF3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc6@{Jp3wuM@o5J1__O`HhguN^5Jz?()`#{)-!afrAv9M2seJboTVV?{8Vu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yvU_ z`pfT-QG|U}*r>w3ChY6Nz9DQhVWSKCrm$}b`?jz#gpDceJHo~iHny;FgpDg~JYnAz z_B~oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3lj(m0Sf5=qArWQ7huxW)&Cv19Q-xoH6 zuo;ETBy473vk042*lfaP7dD5mIfcz7Y;Ixm2%A^fe8PSp?1#dBBy4_RKNhxtumy$v zMA$+DjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(S$O2DgYS?^H)GJHU8ZaDVOUvAN7{bF30`JJ%e3tL;*I>Oc! zww|y*2wPv+ABFu%*apHj6!vFfe-ZXqVSf|0k+6-0{ax5Ug#A<4zl8l;*nfomSJ)=P zHWjv+u+4@2PuLa%jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(*>dEogYS^7gl#Qs8)4fD+fLZ_!gdh0qp+QX?JR5;VY>?3P1x?j z_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp>V7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dMyo9ejrzCG2Qn z#|S%C*m1&+7j}ZM6NQ~5>||l52s>5SX~Iqyc80Jsg`FkrY+>gJJ6G6w!p;|Vfv^jO zT_o&cVV4NIRM=(0E*Eyi0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk%%Dq&X(yGGcx!mbl`y|5dE-6-rPVK)oAMcA#v zZWDI9usej^DeNv`cMH2m*uBE;6L!C_2ZTK+>>*(f3wuP^qrx5&_PDSo1{g03?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rEPJR|nrA zPYHWk*fYYO751F4=Y_o>>_uTO342-CE5cqC_L{KQg}ou{O<`{ddt2B$!rm43p0M|Y zeIV>ZVIK+mSlB1RJ{9(vu+N2kF~E3PaDVOUvAN7{bFt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO_n6Sl#Eg@`4VM_^H zTG%qemKC;~u;qoVAZ$fpD+&9lu%8M0xv-Umts-nyVXF!Ig|J@=TV2>1!hR)eO<}(l z_8Vcp9bmjHxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgR{JUmbjh{7%^Kg{>`Y9bxMVTTj>@gsm^^kHY>WYy)8%3j4FLzX_5W(D{K>Cn+n@Z*yh6iCv1xW#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jONLBb9e zc8IV;g&ijBaA8LbFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1E^Nb^3p+vBiNa12cCxTjgq^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAym9VRY zT_fyTVb=+}Uf2!7ZWMNtu$zV5BJ5USw+Xvl*d4;|6n2-eyM^5&>|SB_3AiLg*_tdQDKh>dtBHP1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4ta9qtAp>5r-VH%>=|Lt3VTl2^TJ*b_M)(tguN{66=AOm zdrjEu!rl<}rm(k!y)En=VebliPuTmyJ`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgRbeNWi< z!X^+lp|FXBO)P8@VUr4*OxWbYrWjznEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyG|wq` z79RQP;5%dyVT%e|OxWVWmJqh2u%(18Eo>QK%L-dg*z&?w5VoSQm4y9N*w2LhT-eIO zRuQ(Uu+@b9Lf9{btuAa0VZRc#rm$ZN`;D;Q4lrI8++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6wwt=t>h5cFBUxfWt*x!V0By3}0e;4)-VgD5NFJb={_8(#Y6}E}6O@(bH zY;$4%6Sl|wq`wjBBD;5%e1VOtB^M%cE(wiC9!upNZ$C~PNTI}6)I*sj8M6SljsJ%sHk zY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeGz7%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^%QY2j3w_2|HTYF~W`& zcAT)|g`FVmL}4chJ6YH%!cG--ny}M_ogwT@VP^?DTi7|m&J}i^u=9moAnZb67YVyq z*d@X)6?U1h%Y|Jrz<613f9>kAxy){Jv)$&JyUm?<(df3cE|#-NNn>cCWDegxxRf0bvgcdq~*B!X6R!sIbR`Jud8t0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdep*)xmejQ^KAW z_KdJ+g*_+id0{UIdr{a+!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U z*hj)X7WRp-PlbIZ>~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6rVtKFu!-KNFerqazG<~wA{k*^N^ z51C5X)WW6_Hm$JfgiSB(`@&`rHlwhagv~5$7Gbjrn@!m4!sZY*r?9z%%`I#mVe<-` zPuLHH{ZQDCgv~GP$HEp6wxF<|2wP}?@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe3y*wt@Ex*}SG$E^K9Cs|Z_F*lNOlA?%mJRu{I0uwMyVQ`oPC{YKbt z2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9kSNQR|nrAzZ3R*VQULpN7%Z;))V#zVe1R~qp&{-+d$Zc!u~AmFT(yR>~F$061K6h zzYF_^uzw2sm#}{e`;V~y3fn~3rouK8wz;tX3EN_T@v`9l+SOxonce1QyUjIsn>+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1u&sq{BWzn?+X>rV z*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;d zVTTDjT-Xri_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(IdbHygYS@|gdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dw~s9ejseCG2Wp*9f~- z*mc6L7j}cN8-?8@>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLLfUpOJJtXX5 zVUGxVRM=y}9vAk+0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Z zus4LgDeNs_Zwq@z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rBgwzx)mvMc7w` zjVkPG!oDu-8^T5tHoCBH3j3C@Zwnhk*qFk;BWx^TV+$Kc*to*R6ZTzU-xD^zunB}s zC~P8O6APO}*rdWH6E?Z9DFzrX3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^Bpqf$X5sdhfF1GYGKm|n^xF#!loDYePJ^Qn^D+I!e$mW zi?CUR%_eMiVRHzZQ`lU><`y=Ouz7{eC+r8pekklm!sZwDV_^#jTTs|fge^3{cv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#g-5@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0pDtAp>5-wFG@u(gG)BWzt^>k0dVu=R!g zQP`h^Z6ItzVSg6(7h!)D_BUZ03ENoM--Z1{*gu8+OW41K{YTh;g>52iQ(>D4+g#ZH zgl#dvcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#El0jO_zu}h*w(_f5w@+c?SySFYzJXG3foE8&cb#PwyUt+gzYYD4`F)>+e_Hq z!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6@W_#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jOa$#2tFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1E^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW z!tN4wx3GJJ-7D-qVfPDrK-h!A9uoGjut$VFD(o>~j|+QZfbp{6{@T@JbD7=dX1mQb zcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bcb?_bXl(46TJtOQ{ zVb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oU zg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@%xBt(ISp;ub*Kv^U?(XjH?(XjH z?hb>-pgWaRP%ucP8>Q1A6qGQ*1o6Mump$y^z3%MHbNPODe)F(^ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BpqE++Ti&j4Et2VWSHhL)e(Y#u7HRuyKTqD{MSr;|rTW z*o49+5;n20NrX)*Y%*b!3!6gNl)|PGHnp&6giR}KI$_fbn?cx&!e$aS^8n*z!Tq(X z$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`m zZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC&gi`Rd^R zkXePzCTweEhlVwVJiq*QP@htRvuuyEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyG$rY&&7w3)?~1j>2{lw(|hv zWx@TmtHMu#*QEFAMIkT|G9J*==sN+gx+Ex$|zbfNrym zZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x z)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z%E(s--yx?8`--ry3j3O{uM0a(*y+N~ z5O$`pvxJ>3>>Od|3j2nzZwmXCux|@HPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m5O$@o ztAt%Wz<613f9>kAxy){Jv)$&JyUm?MeOhq_In zx=p*fP1U+h@48J1yG-dqmiy z!X6X$xUeULJt^!dVNVNtM%c5$ej)6a!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Zus4Lg zDePCmel6@b!hSozcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#w?@7?_zrnn*gL}B74|z}zZdqNu=j=iLD(OKeIV>ZVIK+mSlFM0 z{aM&wg#A_6--P{L*eAk174{Ed{}lEwVgDBPA7TF$_L;EHh5b+17Xyr!1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@Ono-e;cMin-i zu+fE$A#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ37c5hB*G>YHkq)=g-s!BN?}t8n_Ad3 z!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL<6E?fBIfTtAY%XDQ3!6vSyu#)aHove1 zge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOE zdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95 z-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wASk*^NE zLsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3*e1d@6}FkM&4q0tY)fHV z3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEfY!6|33foKA-oo|~wy&`L zgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu(O4!lDjuCdOu;YXsFYE+iCki`B*vSKo zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraU zW#p@a?~qf4eMQ(;g?&xf*M*%X>~vvg2s=~QS;Ed1c8;)fg?&TVH-&vm*tdn9C+vJ- z7YMsh*hRuF7IulSONCt~>~djO2)k0)Rl=?wV7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$TcHh9ejseE9^R9*9-fOu)PD(rj0zAx-HVYdtWfv_J6yF=KW!hR&|$HIOh?5D!+5_Y$+dxYI9>^@=l z3;UU{pARrz7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~!tpk*^NELmm|Nkg$h^JtFK;VUG!WT-X!Bo)q?!u&0GRBkWmWzYz9IVb2MB zUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!t4&zZUizVZR+>Xk63j3X~ z-wS(B*!#l%AncFAJ`nbyu#bd&EbLFh{w(Y-!u~4kZ^HgA>=R+13j2q!e+v7Tuzw5t zkFfs=`%Kv9!u}`hivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAg zth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@k zwc8Z8+qAgbRJz&2e20uO@0Z^pqY4{M*yzH>5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVI zgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF-JivHaaDVOUvAN7{ zbF3nWL9Cb z37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{T-XxAmK3&>u%(49 zBWzh=%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY z5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L%vYGcDk@Lgq&?AyZ56L!9^3xr)L>>^)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zxF$s*ms59AnZnAHwn90*e$|t74|)0-xqe9u-k?GK-dq3-68Bw zVLuY~V_`oL_ETYZ3A9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZQ$X5s7ArA_BNZ7-|9ufAau*ZZw zF6;?mPYQcV*wezE5%#RGUkLl9u;+w5FYE4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bmbt&y(|zC+#?_KvW3h5b(0?}fc5?0sQ>5cWr59|-$U*hj)X7WOA$e-`!^ zVSg3&H(`Gl_KC1hh5bX=KZX5E*uRDSN7#RbeJ1R4VgD2M#Q@`F!Tq(X$L2D-&CPb3 zYwk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x z)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt@5}FyQH6~rY;<8` z2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9!X_3riLgn9O(tw|VN(d3QrJ|&rWQ7huxW)& zCv19QGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8 zI=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba; zyG?PsO^drtrJFs>cgQRwUmg4(GOMuJgv~B&4qLVG9ad zNZ7){77@0nu*HNeE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+ zjj(NnZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@Tm ztH_HAM32|Hid1;Q>A zc9F1)gQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna?QwB2j3yr3cF6&^}@a*?7PBl5O$-mn}ppg z>=t3S3j3b0?+d$4*zLl8Anb?2?htmTupbHgv9O;A`>C+IgxxLd9%1(iyHD8t!hR;~ z=L3wF1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3`wt}g@o2zyr8FNFP4*mJ_37xsd% z7lpkf>}6rE2zyo7Yr0)75TM+-}q2Zd2)I5Az-J*2q@}-yv@cdq>#2!hR?0_rl&2 z_P($`2>YY34}^Uv>?2_x3;UC>KMVVdu)hlXo3OtN`$X8M!u}!bpThnn?BBxvBkaGz zJ`?u2u>T4BVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yx&S|K)ecsKQ1QHoCAegpDa|EMa2{8%NlAAuwt}z~g{>rPrVtKFu!-KNFerqazG<~wAUk*^NELv|Im zo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g!-X9o>_}lp2|HTY zF~W`&cAT)|g`FVmL}4chJ9&Wdvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA4kjC^(Q9dfF$uL%39u&)XGy0FuPoi6MQVP^_EOW4`M z&JlL5ux|+arm$}b`?j$2gq<(!0$~>lyGYo@!Y&bZsj$n0T`uejVOI*fO4!u{jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(xn|_6 zgYS@Qg~>*45cWf1cL=*v*pGz$ zSlCa5{Z!ap!tNG!kFa}%-6!mRVLuc0^8v=og8OS%kIiLvo15)6*W7LHyxT0G+iauT ztft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_e zuG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+R^3}n2$b-Tj685mLM}$2p>@i`F3wuJ? zlfs@7_O!5Pggq^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!hR*}*TQ}y z?6(7qmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxrb9Yvikg?~u2Jy(8>hVZRghdtvVhdtcZeg#A(22f{uS_K~oUh5bp`pN0KJ*k6VH zP1xUseIo2rVgC^JPhtNO_HSYT5%ynUp9%Y1*#CrmF~E3PaDVOUvAN7{bFZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3g zMT9LXY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy* z8p75TwwAE9g{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn? z+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!j zgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L04*w=)8UD#>DP8W8Durr07CG2cr=LkDj*f)fIQ`onJeOuUh!p;|Vfv^jOT_o&c zVV4NIRM=(0E*Ex%uq%aKCG6?}#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jOwDXgxx6YCSf-VyG7Wo z!oDZ$`@(J$cDt}22>YS1JA~aS>_@_WEbJ%3ek$xPVRs9=N7%i>?h|&uu%8M0`2gc( z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`u z`Rd?1#PVZRdgYhk|;_S*r*%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!Y+F&xCz0 z?0>?(7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgQFUe)%0Ts<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@z za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAE ztsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0 zHW9X|u+4;RE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c z9VhH~VJ8SXQP@esP99*qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwcnn*qOr45_Yz*bA+8M z>>I+qDePOqzAfxLVdo3GK-h)CE)sUJuuFtpD(o_0mkYZ>*p|wq`t{M62;5+16 zVb=+}Uf6epeOK5G!fq6HldzkG-6HH(Vc!$>ePOo=yIt51g#A$19m4Ju_9J0G7WNZi zKNWVDu)BrbBkW#b_X)dS*w2Lhe1P$?;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-ysi-e0A_0@}RJXggq?m5n+!Cdra8l!k!TJq_C%i zJuU1RVb2Qtg|J@=drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtuwM!LwXoj^`|SYZ zWx@TmtHUf6rW-WT=f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghs-ka)xrNEvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk- zttD)2Ve1H6SJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7 zwu7)8h3zD4=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg! zJ4D!_!VVL5xUeIH9VzT6VMhx)M%b~!juUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t+k*^NELrxX;6=7c$ z_BCN&7j~Mk(}kTO>`Y;22|HWZIl|5r_6=d*6!tA)-xhYBu=9moAnZb67YVyq*d@X) z6?U1h%Y|Jb>`Gx*3A=iL@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWe*Nl91@Evlku}SG$KEQZcaDVOU zvAN7{bF30 zc~ICx!X6g(h_FY6JtpjNVNVEqQrJ_%o)-3uuxEw+Lf9{bJtypWVJ`@KQP@kuUKaL> zuvdk>ChT=#ZwPx+*sp~BTG(%d{dR!yvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA3>jeK?R9rCuYcZ9tw?03R`FYG;G?+g2bus;g> zK-h=EJ`(n^us;d=v#`Gi`>U|O3H!USPlSCc>>tAZDePau{w?f3!u~7lGhv?#`=78c z1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9Wu(oUw(&-Dr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVo zn?l%>!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrS zHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr z*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVK zY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq% zwwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L z*a^Z;6n2uZlLr_t3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^Br=^$X5s7A*TxaimB7zscBZhigq=I#@3cF0$<-)EIcBQbZgk3$rcv*0N?dq|)%x-hD z-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Yev30_zt;N*mc6L z7xo=t-xYR)up5QlBPleqj z>~3NA2)kFcgO=HUmbjhJSglTVGj#?MA)Ok9uxMsuqT8)DeNg>PYZiS z*t5cZA?%mJo)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>{r5mE$lbKemlT;S#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE;UFTX=Z6*ii%(S?m6Y)oNe2^(A3IKsvi zHlDEYg-sxALSYjLn^@Q+!X_0qnXt))O(ASbVN(g4TG%wgrWH1wu<3=(AZ$iqGYOk{ zfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd% z=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(W zA+wBpb?|@4tiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC( zuqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JN zVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yyq+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>! zu)~BMF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^Z{ za$#2pyHeOy!mb`*yezoCcJ^foB3;T|+?+Uv?*p0$&5_Yq&TZG*z?0dq#FYGp9 zw+s7$upbJ$L)e|dekAP2!hRy`r^4{(&I5cW%9&k1{8*bBm56!wy^mxa9|>{Vf} z342}G8^Ycc_A6n(7WNxqza3z_EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG`%h}EbK4B{wnNm!u~Go6JehU`-iZ93j3F^e+&DMu>T7COxWkb{wM5<0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm5l5 zm){|y3L8z>=)%SjHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuz zu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&JyUm?5)6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9kR;ER|nrAs|s69*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz z!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn) zVfzT%SJ-~S_7`@5umgo1B}X-f2s>8Tal(!lc7m`I zg`Fhq4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbnvt&#zC*4RcAc>6g?&fZ zcZJ;`>_%ZX3AA?!|JKN9w1VLuV}Q(<=ryIa^j z!tNDzpRoId{Y==;2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk& z&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9rD1)R|nrA4+?uo*u%me5%#FC$AmpD>Ye5=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEz`<1X?3;T_*-wrTd7TjOEdTcJU z+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHts zrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!uAk*^NEL*5ql zj<9!y{Z82Lg}o>2ePMqP_D5kK2>VdjN5Vc9_9tO~7WNlme--vOVSg9)iLg(F{X^J4 zh5bv|zlHrr*nfq6ChT)z{}cAb0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY z9sD0MtFYOG%`R*XVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY z3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoM zg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB z9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQXyUmbjh>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=6 z3p+yCk;0A=cC@f#gdHpFIAO;NJ3-iq!cG!)@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4p zZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9js zs@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%tK`Rd?10)75TM+-}q2 zZd2)I5Az*z&B#{=-yzouyH42k!oDNyyTWb|cB8PHgxxIc7Gbvv`<}4x3%gC&?ZSQ_ z?1#ec5O$}q9|`-hu%8I~sj$0*-7V}MVfPBVPuTs!ekSba1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4tZeYtAp>52ZcQ(>|tS# z2zyl6W5OO6_Jpt}g*_$gX<^R@dsf&lg#A+3bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5l zhOjq<{Yu!ch5bg@ZwDAJ3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BwZm$X5s7A#V$NN7%c^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)_q*<#))a z!bTG|y09^XjVWv_VPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<> z3!6sRw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~ z7q)<~1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F1dg0K~Ztt4#a0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4 z)xmejs=`(iwz{x2gsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jb zDQqiYTMOGp*tWv96Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2VooUr4CognN)VJ8VY zd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yx@re0A_0a;mVe2>YtAuL=9Qu+xN{F6<0pX9_z@*xAC)5q7SyZwULQux|mI*wq7!mj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghdeOy)xmejgTfvX_OP%=ggq+kF=3AjdqUWg!k!ZLw6JG{JuB=N!hR|2 zIbqKWdqLQX!d?>gvanZ#y(;WAVXq5&L)e?bekJVJ!hR#{w*!oq1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w&kAxy){Jv)$&JyUm?QK^=?yvZqtWuQ;u%a zlx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6 zDr`1kvkRL;*qp-V5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Y zw6JA_Eh}s}Vap3!LD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7 zU)To1HWapzu#JUnB5YG(n+e-o*cQUJ6t zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>F zR|nrAy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gj zq_Cre9WCq_VaEzPPT29nP7rpYu#<$HJivHaaDVOUvAN7{bF30IaSzKgnd=m*Mxmt*lEH}7j}lQ zGliWc>}+A@2s>BUH-vpt*tdjzTiAKR&KGupunUDu?gv0D(o&{cMH2m*uBE;6L!C_p9%Z<0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%L17OGdsx^b!X6d& zn6Sr%Jt6E#VNVHrTG%tfo)z{BVZRjioUrGGy&&vGVJ``LS=cMWUKRG5u-ApXA?!_I zzY_LqVZRaf+X2SQg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e22U>^3}n2$lJo+5%#XI-wFG@u=j+$FYFJ({wVANVIKR`>(LigncgTf5N^PV7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S6yG`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q* zV7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja# zL17CCTUgj4!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_as zs<73BtuAa0VQUIoOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9 z*21@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7(CkQ)H*h#`p9$>sI zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQIt zUmbjhoGR=q!oDi(Yr?)R>@;Dg3p+#DnZnKzcDAr{gq|4UVE$lpD=L@?) z*oDF_5_Yk$ON3o2>@s1O3%f$tmBOwPcJ%<`Wx@TmtH|SB_3A^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WArFjvb?_bXpse+3&+HH#4ZCc!ID&6d1zC+#``Rd?17xo8Xe-!qCun&cOB_IF{Q2>VpnKZN~L*uRARTiAbu z{a4s$!af)FKVe@CFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWR#`8{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h| z+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO{Hm9(;gv~8%9%1ten@`yM!WIy=psQK z%L-dg*z&?w5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@0 z4TWtaY-3@Y2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmej zuEKT`w!5%BgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd= zM+-Yf*s;Qn6L!3?6NH^8>?C0)4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)|7XQ4f;X(|IEaEMf`Ez&C?TLI3Mk#(N~wUPqLK=Ngh6+AcXxMp zcXxMpxBtDq>|qb@b!TUu%lEVMo2T0>y4!5M+f<<2^r737quVs4+tjApbg0`Ds@t@y z+f=RF^sd{Ku-i1U+tjn$bhXVMh!wUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bmb$dRuOzC(@@cC@f#gdHpFIAO;NJ3-iq!cG!)vanNxohs}!VW$f_L)e+Z z&JuREuycf+E9^XB=L@?)*oDF_5_Yk$ON3o2>@s1O3%g=~@v`9l+SOxonce1QyUjIs zn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6V zh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeSB`vj@EvlMu&ae#BkWpX z*9p5`*bTyN6n2xan}yvX>{em73AjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d2-~dgYS^1ggq_n8DY-~drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g z-VpYtu(yQ0E$kg(?+SZQ*!#jh5cZ+4kA!_J>=R+13j0jh=fb`iV7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S5;^`5p2VVP6$C zs<6?7eNEWt!oDu-8^XpA_Dx}93L8t@v`9l z+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e z<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe^Nf6T z@EtO*u=#||FKhu}3kq9E*uugV5w@tX#f1Gv*l&d`E^G;5OA1>`*wVs&C+zpa{vd1_ zVap0zPS_uXEiY^ZVJiw-N!ZH5RuT560mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx~cutAp>5RfYXU*k6VHP1tI}Ru{I0ur-CP zC2VbBe;4)-Ve1H6SJ*#=ttV`KVgC}gfv^pQZ6s`CVgDBPA7TF$_CH~p2-{THX2LcX zw#5MBWx@TmtH0)75TM+-}q2Zd2)I5Az*z_TA|3ACBiNh zcA2otg}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#D@VRM_zt;B*wwx5k|>;_>s3cE?z&BAUGcB`=4gxxOe4qNZ7-|9ufAau*ZZwF6@Z`#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jOuvdk>ChT=#ZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9 z_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWRzLH{0{kwu&)XmRoH04z9wvRVP6;a4Pj#l`=+olg^eZbTf)W` zHjc1yg?(GtcZ7Xc*m%OeC+z#eejsdoVG{_OP}mQJ{YcnE!X_3r$pGVJ!Tq(X$L2D- z&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?; zYSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC$J*`Rd^RkRJ=1 zOxWbYrV#cMVLuf%rLdm~`?;{Gg#AL;FNIAlY#L$H3j39?UkjT~*!03?5H_Q*nS{+O zY!+d&3Y$&X?84>{Hm9(;gv~v`cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@# zrFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$L zcAI*3o33`7;&z)BcbiH#dzkN#c}BiE_zsy@*nGm~7q)<~1%)jnY++%G2wPOxV#0nS z?6<-e7q*13C50^|Y-wS?6ZU&ye-O5euw{iUC+v^HmKU~yuoZ=^By442s|fqk0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%1#v?61Q9CTulfs|#C0*qXxD61KLmzYF_^uyus3E9{@b))ThAuzv~LK-h-D zHWIe6uzw5tkFfs=`=78)gl#HpGhv$x+hTz6vf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3tj(m0S9kP|Mt%YqPY+GU53EN)S4#IX6 zwv(`(h3z72S7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e z*bxJamj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxraUa^$On?~tQ}9WCq_VaEzPPT29nP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3 z>>Od|3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S!mb!#yezoCcJ}p}x2)kC;b;7O} zc7w1Rh213VW?{DoyH(h2!fqFKhp;<^-6ia9VfP5TSJ-{R?icoeum^=bB|wq`o*en=;5+0gVNVNtM%c5$o)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@ z>@8t$3wuY{yTaZR_P($WgncONBViv4`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRmx9eusQT*jI&(Dr_`i zUlTUEu&)dIhOjY&eN)(&!p0KzEn#B|8%NlD#6ZU;!KM*#)unB}s zDC~#Aek5!nVG|3RWPtIq;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yxHZe0A`D$d83hCTwzHQwaNsu%8N>QrORg{an~o!hRv_m%^qN zHjS`ph5bs{uZ2w~Y~8ge@v;F=4+E_FG|#3tK|ilERh}wzRO{3H!aUKL}e!*s{Ww z6ZS`8%L`jU*owkd61K9iRfPR%fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WA%7nE>fk$MRbhV-_E%wl6SkVL)rGAgY)xTn30qs( z--Z1{*gC@274}bI>j_(5*uR8rAZ$Zn8wuN3*uRDSN7#Rb{ZH5?!ZsDQnXt`;Z85-j zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LFMXFYEwe2MRk#*ulaM5q7As!-O3!?1%xz%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^u zVOI<=UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bmb%8{=QzC*4OcD1l;gk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxonce1QyUjIsn>+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWePmX+b@E!7$u&0GRBkWmW&k1{8 z*bBm56!wy^mxa9|>{Vf}342}G8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2r zVV?>6T-X-_jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(8D+LFzeBzv?5n~?6*ii%uL&Dn*w=-9L)aL?zA0=>VPgsVmawsfjU#Ma zVc!<^9bw-UHlDEW3H!dV9|#*?*aX5R6!t@5KN2>Pu!)6DGQfCQaDVOUvAN7{bF3n4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bk_o{_H(zC-2}HlMKhg)Ja#L17CCTUgj4!WI>_n6Tdn`>n9W zg)Jd$NnuL~TUyxfg#BLFAA~IkA zxy){Jv)$&JyUm?U|O30qCr>cZ9#wx+PPgsm;?@525eY#m|i3j3$9^@Oc2>|eq*5VoPPjf8D1 z?BBxvBkaGz{wHh`VVeruOxWhawisZ%EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyG+1RoHIAb{DpXuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@Lgq0)75TM+-}q2Zd2)I5Az*z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5n zVK)i8S=cSYZWVT$u-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88 zg*`FAcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#Cr7?I_zrnW*wezE5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c z!rl?~uCVuny)WzoVIK;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO*MyBO z?CZk5A#4m`-xM~cu(5=FOW4@L#t}BIux|_djcgUn8Umg4(@?&9>37cHl6vBQY?5Dz}6!tS=KNmKYuwMxKrLd`mO(Set zVZRdgYhlv~n_k!q!e$gUldzeE%_3}8VY3OFUDzDL<`g!Uu(<~qFAMIkT|G9J*==sN z+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X z)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|&&XE?-y!n~n@`yM z!WIy=psq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$e%~PI`|G*RoGvI{Z-iCgsmoQbzy4=TT|Ft!qyh{cVYh! zwvMoMh5b|5dcxKh_Ag-@2-{HDM#450_HSYT5%ynU{}Z-}uuX++CTw$ITMRH>7TjOE zdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95 z-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NE zL$(sOwXki3Z7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW9 z3p+sAfx-?FcCfHRgdHmEFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@ zg`FboRAHwHJ6+fr!p;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb< za^$On?~tp6T`lYyVb=<~PT2LrZV+~(u$zS4EbJCxw+g#W*zLmZ5O$}qyM)~>>>gqF z3cF9({lXp)_Motbggq?m5n+!Cdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh% zg}o%~Wnr%fdsWzL!d@5lhOjqP-WT?Pun&cOB|wq`Mw#Qw?~tzu`>L=}g^eccYr;ks_H|+35H^OeZwebz*jU28C2VYA;|Lp9*tdm! zN7#3TjVJ7T!oDx;2g1e|Hi57Sh5b<2kAzJmY+_-P3@~06++VwTY%a6g+-$eG=5BN6 z-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrbfXXLAc?~r+g%_nSrVG9UbP}oAk78bUMutkL}ChRxDek*KoVM_>G zQrJ?$mKOFqVZRsl2Vu(yTUOX|!u}|1d0{IETT$3b!d4cxim*QoFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EY+F{|Vbf*rviZ6SldqEe04b3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BuC~$X5s7AzKOCTG%$iwiULWut z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK2 z7IurUTZP>w>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP& zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb z$&s%PzC)f8_O!5PggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqs;l`cgRZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9Wv?2R|o%x{8-pz!X_6sg|MFp`>C)gh5by}&xK7T>=(j*DQs$C(+HbZ*sp~B zTG({LrWZDYuo;ETBy473vk042*lfaP7dD5mIfcz7Z0-TZ%YyrBSC7qQcAJ~+HrL#3 z?!4P9pxbPt+pMPB?5W!QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)Jfn^5>DS4!%QH74{cle--vOVXFySUDz7J))cmuu(gH#UD!W_ts`t* zVgD4ip0M?W{Y%&e!ZsAPk+6-0{ae_7g#B08|AcKKY*S&I3EN!Q76Xiz1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM+X~xG*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2 zps<649W3k+VTTGkOxWSVju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@Tm ztH1R|~sF*tNp06L!6@8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x= zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zQRe#cJLD_EzA9`~VWSEAny}G@eO=f$gpDEWo5IEvHkPn&2^(A3IKsvi_HAL`5%yhS z;|cqoun^@Q+1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9 z*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w-c1tAqbTek^P{r5mEo?er(+itH*o?wv5;n82S%l3hY&K!D3!6jO zoWkZ3HunJIWx@TmtH5)6ti_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`SZwE2j3y93j2$&zY6=C zu+@aEE^G~9YYJOS*xJJWF6rVtKFu!-KNFerqazG<~!ubk*^NELyi)5 zw6J4@9V_fOVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwr zg~BcpcCoNagk37^GGUhsyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|T zR$;dZyIt5F!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CN zt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On z?~td2JuU1RVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3 z`@%jD_MxzkgncaR6JehU`%Kv9!oC<_yezoCcJY(E@q~R(*!P9~K-l=gCJ;8EupbKhk+6w`O)PAZ z0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhfF&1)xrNEKNdEbu*ro@A?zo@ekyEAVLuc0b74~n`-QMy3Y%KkG{UA8_A6n(7B-!* z>4nW8Y(`--37c8iEW&0LHk+{7h0P&sPGNHin|pxqvf%#O)njv+-R5Sy%{6zMJMT6N z=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA5bjC^(Q9Wt-5`Gn0cYyn{l3R_6n z!on62wy3bhg#AX?Z-p%`YzbjY3R_Cp(!zcx?DxX{AZ!_7%L-dg*dK*0FKh*2D+*gl z*vi6I5%#A6#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOj+y{*gu7> zCv1IT{}Q%=unmQ6By3}0{}%QiVgD8OKVh2)+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3 zYwk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x z)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6 zw!*d(w!N?&gzYG7Ct*7a+eO%}!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6% z2Maqy*rCD>6Lz?;BL)~R3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^Br>J$X5s7Ax8;2TG%ndjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i z(}kTO>`Y;22|HWZIl|5rcAl{Fgt>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L^4*h|7*7WRs; zSB1SM>~&#p2zyi5Tf*KJ_KvW3g}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_lzG1V z4*80(uL>Jg*l5DOCTw(JUl;ZbVPgpUrm!)EjV0_`!p0Uhj<9iseOuUfgnd`oc*4FX z?EAugAZ&bL69}77*bjyMNZ3TeCKfiy0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry79}AmI*yO^d5cU&cKNU8mu%8M0 zxv;5({X*C;g-tDN8e!84`<1X?3!6^Z^ulHkHlwhagv~5$7Gbjrn@!m4!sZY*r?9z% z%{{<)S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0La6j<7L79wX4VGGP}*qcAIPNHh11_ z7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e z)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`{yg&4!FR~2!u}%cufqN&Y&Bu4 z3tL0jn!?r+wzjap3;Tz#b%d=e?4QEc6Slsve+k<_*oMM361K6he+&DMu>T7CpRi4Y zZ7OUtVVeuvVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yvI$e0A_0vX!u{g>55jTVdM?+g{iX!gdt4ldzqI?ILVfVY><2UDzJN z_7t|4u)T%tBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5d(~u1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^a9=a?A3Oh~M>B7zscBZhigqMeOhq_Inx=p*fP1U+h@48J1yGD>YGKz1yH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9 zZWnfkusem_CG2it_XxXJ*nPt87xsX#2ZcQ(>|tS#2zyl6W5OO6_QU|=Wx@TmtH?L6@3wuS_tHNFr_PVe)guN;3En#m9dq>#2!rl}1zOWC3 zeJJcBVIK?oMA)aoJ`?u2urCG}FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`ye zv~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;Z zZd1>0)75TM+-}q2Zd2)I5Az)|%Di8GhkQlYSA~r#Y&2nC6E?cAuM7KzurY*vQ`nfo z#uD}|VPgv$N7%T+zAfxK!oDkPJYnAx_I+VL5H`NB34~23?1#dBBy1vK6APPUfbp{6 z{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA(M`L zb?|@4kA+PpY;s{!2>Xe!p9-5&*w2LhT-a2?ej)6a!lo8Bjj(Bj{Yu!cg-s`HdSNpN zn^D+I!e$mWi?CUR%_eMiVRHzZQ`lU><{n_YEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa z&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h z@48J1yG+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWee;)bj;5%ehVSf?!S7Cn>wwkcjg{>iMO<`*ZTU*%Qh5bX=I>Oc!_D^B!30q&- zzl3cdY(rri3ENoMzlHrr*nfrnPuM2HHWjv+u+4>SF~E3PaDVOUvAN7{bF30*-F^f!nP5%t+4Hc zZ7*yGVLJ-jN!ZT9b`iF#u-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^ zcBrt!gdHyIhyljSg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e1{x4^3}n2$Wg+M7IuuVV}%_j?08`(2s=^ONy1JRc8ai5g`FnsbYW)* zJ5$(M!p;_Uj<9ouohR&kVHXIyP}oJnE*5r)uuFwqChT%yR}3&-7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!udk*^NEL#`5bwXkc1 zT`TN5Vb=@0LD-GLZW4C0uv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=l3wuD=gTfvX z_OP%=ggq+kF=3Ajdt!j`vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3hj(m0S9rBd0r-eNu>{(&Y3431H3&LI$_L8udg}ox|Rbj6Q zdtKNY!rm12maw;ly(8>hVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1*cStgmj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}Wxg-JL%t&H ztHMSVHkz=n2^(G5*M)sU*cigTDQrw(V+s3~u(5@WBWzq@-xl^AVc!)tp0Mu;`@XOr z2peD61i~g1_CsMm5;l>riG@uvz<613f9>kAxy){Jv)$&JyUm?>}SG$E^I1c zzYz9IVN(m6M%c8%ekJVJ!ln~8y|5XC%_wXpVKWPxMcAyuW)n8MusMXyDQqrba}O|H z7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj z58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wAb zk*^NEL*^AWpRoCbEg)<`VG9XcSlA-M78SObu-^##t+2&~Eg@`4VM_^HTG;P|{a)A~ zge@a%Sz*fw`=hYsg{>fLMPVxmTUppD!u~YCcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kj zbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#KaYHM@Ex+Mu)hfVtFXTbTTR&N!qyPB zrm(eytu5^D!u}y_9bxMV`=_w=gsm^^U&1yJwxO_%gl#PB-@^VQ?7zbPCu|d8n+n@Z z*yh5v7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgU6_UmbjhY$a@KVcQ7XR@ipJwimX8upNc%By4A4y9nD=*lxmh7q*A6J%#Nh zY;R%v2-{cKe!}(_c7U)0g&id9U}1*{J5<e+3&+HH#4ZCc!ID&6d1zC(^2`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^Br>K$X5s7Ay)~zTG%zht`&Bju`q~K3At>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0LK!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h9}4?O z*vG;?5%#ID&xCz0?27@$%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!%zVvYz$%F6gH-?v4nj~ z*x16x5jL){Zwvd5uq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$fP4*9sD2i zV_}mCn_Sow!hRy`r^2Qb_A_BW7dDl!UkLl9u&ISjBWzk>zY_LqVbcklUf2x6W)wD) zu$hI;B5YP+vk9AB*c`&<6gHQzxd#|83+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(R zr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqJ$X5s7A@d5GPuTpz77(_eu!V#zENl^Biwavz z*l&dWR@magmJqh2u%(18E$nx~elP3~!j=)Xtgz*T{ZZKR!d4KrqOg^Ott@O6VSgH6 zyezoCcJ!ZsH6Z(;ut_FrND6Sj%4O@(bHY;$2-3@~06++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc661KCjU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZF zVTTJlVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yuhie0A_0a+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c* zu(O4oBkWvZ=LtJs*agBa6n2rYi-lbx>{4Nu3Am zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h@48J1yGBVQeShdd?hX<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR; zus4OhCG2fs?+ANW*n7g>7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtHVg>kgo{)s<2Uo zjVA1C!bTVNbz$ESHioco3L8_{Si-&~Y;0lU2pd<}w}pL2*ms4EC+vH|zAx+t!p0Xi zfv^dM{ZQDCgiR!DVqudEFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1EWYUqZ4*n1Mv9QU6O)hK-VLuV}Q(;pI`_3Y$yV+yji41^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+9m8Cv1LU3kX|K*h0b<7Pg46MTIRU>^H)GD{OILO9)$1*iyol7WO+~zZdogVao_x zR@idF{wQpDVJiq*QP@htRu;C3us;njUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bmb&m&(Qe21(m>@ULpD(r8R`>(M73EM>2rouK8wz;q^ z1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9kS)fR|nrATM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^ z!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$z zVJ8YZN!ZE4P7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=v zVb2SDLD-AJUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-} zgncUPGhv?#`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4gEcoSj$XA4YRoJM)MicfmVWSKCy0C8u8$;MPg^ej}EMeagHny;F zgpDig+rqvh?7PCo6ZSn}-xu}+VdD#%K-h%Bekklm!X^?nv9L)77%vO%uU$Phm)UJ@ zw%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGU>=y2mgosSlDF3 zCKon^u%8I~sjw-9{Y==;g-s>w7s7riY-(ZC2%A>euY~0)75TM+-}q2Zd2)I5Az-J=aH`t zzC%_O_7`D)74|n_s|j0O*c!st6tD4+g#Wd1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6} zgzYSB7h$^!+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC z7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgT?=Umbjh93|{%VaEtNR@iaEju&=}+A@ z2s>BUdBV;Yc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ8 z6ZW{UCk7ZV3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BwZ!$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B z342@EJHp--_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0L;l$y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^ z+DN~x_4M1?Rllvp_1oHFzpa(_+G+V5lFX|n{(4BMAS)eYWrD11kd+Iv@qh%+-F3gM74X~I2fwZ5@Y~uHzpb_L+u9+&t%dU2+AhDXRrA~0JHM?Z z^xN7 zAZs6F9fGW5kaY^O&Oz2C$hrnuw;;PB$hrqvk09$AWW9o{caZf7vc5sqFUa}_*?=Is zGROu7*`OdBoRI0sLg&vr^=j*6`fZ(Azpc~kw{_0_wr+sm*4^;ix;1`V_sMVTrul8% zLBFlr>9=)n{kCqj-_~9C+gbs?t$py@S`NRhP4U}W8^5g`^4nS{zpd@^+gdfht-bTx zT0+0Ajr7}EPrt2Q_1jupzpX9y+gfR_otDobLwME1=a8X6HY~`72ib@qO9`@(K{hJL zMhDrLAiFBa#s=BAAR8ZK6M}4FkWC7*$w4+H$fgEaYLHC}vgtu~b&$;nvYA14O^{t1 zWV3>7c92~cWOEWSJz41dd8b}&olL*2GwZi?n*FxUx!=|e@Y}i@ep|Q3Z|gq!ZQV4# ztvl$qbvymG?ycX}jrQBR>wa4+;J398ep}1ox3wvLTWjODwL^Ye3+1=9U4C1u=C`$X zep^fEx3!UeTkGk!wX1$xi|eBSH3P zkUbV;j|bTkLH1;jJr!gJ5;8qm==^!7UTvLBzpXRtw{@ERw$8cV)(!C6x*L95x5jVl zKKX6kG{3Do=(lw{{kHC{-`0)x+q&z1TPxtVwGVz<%i*`RDSlgP9@73ep`#{x3$H7TPy9g)ABjwXp}KLki8jXZw1-gLH16N9SO2`gY3N^ zdq2oN2(k}@?4uz2ILJN;vQLBTvxH1f7CL|4saIPk({Jm{`fZ(NzpZobw{-*jw(f@C z)~)f|x=(&vH_dPB4*G4~PQR^t>$i2I{kHD9-_{EFZS8~K)^hl5ZHnL4+W2klkl)rq z`E6~N-`1-6ZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o-_}Zd?X-LjIm)XhK8JiBWM2f? zmqGSbkR1!MuY>HHAp17Rz6-MBLH2!+od~iYg6zj2`zgqN4zgc@>|~Jr8f3o(+3!L2 zN09v)WT%4cbddcOWPb$i2I{kHD9-_{EFZS8~K)^hl5ZHnL4+W2kl zkl)rq`E6~N-`1-6ZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o-_}Zd?X-LjNoxD=&mkFt zEMt&m3bM>WmLB&Op&pY*M>tyOoc`$Z7^ztstu% zWOah9ZjjXrvid>RAjld9S)(AkJjfacS(6}Znvm(qLg&vr^=j*6`fZ(Azpc~kw{_0_ zwr+sm*4^;ix;1`V_sMVTrul8%LBFlr>9=)n{kCqj-_~9C+gbs?t$py@S`NRhP4U}W z8^5g`^4nS{zpd@^+gdfht-bTxT0+0Ajr7}EPrt2Q_1jupzpX9y+gfR_otDob&3M(s z=aA+>)*{GS23e~hYaL{5f~;+jwF|QLLDnJ2ItE#%AnP1tU4pD@kaY{PD}t2XPNv`1nf2Q`&3;?w z+;8g!_-)+{zpY#2w{@TVwr-l=)*bZQx}APo_ttOgM*D5ub-%3@@Y~u4zpdr)+u9Vr zt+nyn+9AKKh4S0lF2Ai+^V`}xzpW+o+uBIKt@ZTV+Eu@;#r50TV!y4G_S$Lr95RGg zO?(a+8f3$QY=-vWLF2-j3ApCWY+}QwLvy3$YuxGbwM^KA=8tE&YySc)z-=M+d8v;Tc_D? z>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWYEuTZ? z@~Vl?A@hQ4evmB)vV}pmD99EE*^(ez8f43YYCHd`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6hs?B^i+CCE+&*{?zNTaf)8WPb$NpFwsi$W8~@UqSYFko^;6XM*f(key4&^kkv) z=bd`Bbu#_7&aB_oY4+PX=YCr^z;Ekr_-)-9zpeY^w{_F}w(g+c*6sA$y0?B?H`;IO zuKR7RfZx_W_-!qR-`1x1ZLN*p)(-h?EtKEZcKL0sn%~ym`E4zs-_}O@ZLO!@)~@<( zEw10z7W-|jwAW6{=a8g!|Nb13A;>ZYS*9S%9AsI7ENhTu3$pA%mLte62(k-jwC3-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?; zZQXUhtrhUw+6TX_VURTnvde?4aga3$vZe`{ zo-B0!yi>2XPNv`1nf2Q`&3;?w+;8g!_-)+{zpY#2w{@TVwr-l=)*bZQx}APo_ttOg zM*D5ub-%3@@Y~u4zpdr)+u9Vrt+nyn+9AKKh4S0lF2Ai+^V`}xzpW+o+uBIKt@ZTV z+Eu@;#r50TV!y4G_S$Lr9MX(eO?(b%9%L23flxYae7Cf~;eZ zbqcc1LDnV6x&~RdAiE;Sx(8X0AnO@qy@ITFko5_&zCqS6$odD_fFQdv$OZ=4pdcHZ zkm<=n=g&L!YU^bBZJk-at<&tcbs* zwr;fF)?N48S^>YUeel~_4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz^xIlb zzpY*M+ge<|tu6N3T4}GHmd_zWc-6$`kfA{~EXalj*@z%Z39^wvHY&(Q2ice)yDG@W z2HChE8y{p7f^1@tO$xHfK{h4GrUqGRkWCA+=|OgNkj)6PnL&0$i29{kG1z-_{NA+qxTmTerq<>puBy-88?gJLtD{JN>rq zt>4y-_S?Gaep@Txx3v#`Tg&0MwJCmEYvZ@ILw;Ke<+rt6ep{>Nx3zbETTAG-wUK^X z>*=?(tA1OH>$kPVep@T;wbSxBWG=6o_#84X$mR#xf*@NMWQ&4qagZ$uvZX<`EXbAz z*@_@r8D!T7*$qLqD#%s`*_t3*8)WN(Y<-Yz2(pbqwkgOq2icY&+Ztpy2HCbCyD7-F z2icB&*IXoo2tSbMCiw1N^q`hTqn$@!Psjep@%qZ|e^FZQV}4 zt$XXYb))^Z?z-RB3ixg9gWuM2_-$>9-`3jrZS9cX)kF3$o)u_I;3@2(ll7?8hMcDad{fvR{JiWRU$DWWNR3??LuQko_5Cr-JNs zko^^8e+St=L3Sp{&IZ}JgiKEsI)C1&S6e63Z|ltZZJlPnt#j_Tbp!mi?uOsit?}Es zPkviB&2Q@t`fc4#zpZ=gw{@faw(h#$)(ZG-?StRea`FvxNS*+oH?E68#OS)L%v8)W%{EPs#{2(p4fRw&2{2ie6z zc1e&G39_O=RxHSh2U&?AE18h#$wKGPJN0VoWcqELS--8*?6-B!{kCp^-`3sm+qyM= zTldLt>!$f_-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubr09A<4XI;;)C43bN8cRwl^G z23ffvD<5PPf~;bYRSL38gRF9pRSB}HK~^ouE(@~iK~^KkY6e-YAgdi@b%LyJkkt#a z`a#wp$QlM&qaeFH$QlP(lOSuFkm<=n=g&L!YU^bBZJk-at<&tcbs*wr;fF)?N48S^>YUeel~_4!^BU@!MJ(zpWke+gd2U zt?lyLS~b6|z4O~zLcgtz^xIlbzpY*M+ge<|tu6N3T4}GHmd_#0c-6$`kmf zS*svx9b|2StZk6B3$pe>)*;9`23e;d>l|cVf~;$hbqlg9f~y6B+7!R7wej29A-}DK z^4r=jzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp_1oHFzpa(_+G+V5GK5!6d=42JWW$1N zc#w?3s-_}j@+q#2(Tes71>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3x3xBYTRY^p zwNQRr+vT^lYJOXL=eMj{kG1m-_~jN+dAidTQ|UO z>u&gM-5S5G`{cKE)BLvXpx@T*^xL|(ep@%%Z|ko6ZLNUc);{=cEr;LMruc2Gjo;P| z`E4zf-_~~dZLON$*53JTEur7mM*3~7r{C7D`fV+)-_{oUZLPG|PRr+zn|am5=a5^1 zY-f<|3bNe^nf~8Hui^cjsjXM{+xmI=ZT*b>w*Fqc_IpXWk~(BaO6rzW?O*?Ck}+S> zzN|_7)=aXC zRJp=~A5SC@7o79yq_VHI_bZqzXR#-K>9n7{tl$S1L^NT`a6*R4y3;W>F+@L zJCObkq`w3Im)?Q@)#v|=M-Cs^R;_5Bb({G7U*+^Y`uwlY^#A$ue{M2;{x6JK(C7Vy z&}Ze9(C7U1D1>d$=l|W%uLm5)fByWh&(Y^UlebElG;~Vp_>>8$|M8iB{P>h9!&8#} z<1=!e^RGemfBLlqFRs6?e#PkgNB#o*K?VI$g;L$7@Zo%L&oQavQl=*5q?nl>(}#Hd z#QRK~GIr|dl$6w|=U23pL3U?F+@LJCObkq`w2{??C!H@c+p>ppUWotgMf;`Y5c=%=)g1Y|uZ;*Jpiw z3xz%&>odDP3+IA9_vvO(7W*3A$>+9D8F2*G&f}+sp`{K~Y?UG1FDU?PT zltnp|2j3EqR1uZHzpN{%GOC~|s^KzJM-Awo>DNMS)InY7yF%)t0UDwaE=OZDK~pqC zbF@H9v_fmNL0hy#dvriYbV6rzL05Fc73hv0=!stFjXuz?i}XW(48WBbh(Q>PAsC8b z7>*H0!AOk4XpF&C7>jWj4}C+zL`=eDOu3H*Q`@e_W=FF1)`@f&`}ANUiea2kK%Z~TKZIE!=8uVH0CMr4A%4JZq; zA{(+J2QI*c$cc-P3%Q|R3(Sjr$d3Xjh(aigi*X5xpeTx=I7*--l2Hn!Q3hpE4&_k+ z6;TP7qB5$WDyrc!R7VZeL@nt1jOw5+>Y+XwpdlLJax_L0G(|HsM+>w>E3`%%v_(6# zhrV&GBlLYsozVqd(G6FiJ9?ledZ9P^K;Pfg5B)I!S7IOrVK9bZD28D;Mj!!|7)!7e%di|P zuoBnf2CTwrtif8W!+LDMMr^`nY{6FCh;6tD+pz;T;}-11F6_pwxDB`C4%~^mum^i_ zH}1i`xDWT^0X&F@@G$maKOVuOcnpu@2|S6XZ~#x^AfCaqIE3f$JYK+ycnL4#6}*bW zcnz=P4ZMlB@HXDT5xk4{@IF4khxiB|;}d*}&u|o<;|qL=uW$@s;~RX7?{FO7;{<-d zkN62c;}@L7ulNnW;}86aQ#g&k@HhU!8JxvA=>PaLAR{s%GqNBnvLQQi-~wEToVW8KuIK{6iTBE%Ay>~qXH_T5-vq$R6$i#!)2(B z8mNg{sEs7@fnWdb9{j>@fD8YYkY%m@g0uidz`=z_z^$hXZ(Vb_!Yn5cl?1raSEsL z7yiaSID@k|2R-!b8&5ML6EY(UvLYL@BL^ZpO5sD;|7gSx1P`e=ZLXoSnr z7){U=&Cnbz&=RfC8g0-P{ClyJ_zw4^4(NzZ=!`Dtif*_9-O&R*(F?uN2Yt~G{V@Pn zVju=#Fos|#hG95HAO#~a3ZpRwS79v1VLT>aA|_!nreG>kF%8pkHD+KYuEDjKh1s|c zb1)b4FdqxB5R0%FORyBnupBF}64&Dftio!n!CI`tdThW(Y{F)2!B*UeZMX^Bu>&{b z7VN|>?8dFQ4Y%VC+=;ue2YYch?!mpd5BK8%Jcx(zF!o_T9>Jq{43FapJc*}p08ir} zp24#?gy--)UcifZ2`}Rnyo$qk4X@)3yotB)Hr~Mzyo>knK0d&Q_y`~46MTx#a1@{8 z3w(*Ma13AL8+?oJa2(&`1b)De_z6Gb7o5be_zl0~5B!N!IE}yXH~zsHoW(gLW#;}P zBQhZ~vLGw6Av<#50$hlkxCptB8+niy`H&w4P!NSs7#HIb6hToGLvfTqNhG5bN}~+Q zq8!Sj0xF^sE=6TjK~+@4WvGrCsEJyrjXJ1{dZ>>EXoyC*9F5TgP0xOvEHi#uQ9NDyCsNuEq?^#5K4UvoIUiVGibE9_C{K7Ge<=V+odG8J1%O zR^ocxfK^zHHCT&vSdR_Zh)vjxE!c`1u?;t2J9gk^+=89hh26Lnx8Zi&fje;*_FymW z#yz+f_u+m#fCupq9>zZG$0K+YkKu7VfhX}44&Z4V#4~snhwvPp#|wB7FX3gpf>&`E zui{5Fg=Ve1cE$8IIy}e1R|V6^`L+e1mWC9ggFBoWKwG z5kKK){DPDC6~Ezk{DD7l3a9ZG{>DEzgR?k?q%7QjWJD%pMiyj6He^Q*T!0Ia6Bi*D zaw8A&A|LXj01BcI3gcp2f+8r2VknLhD2Zg0LTQviS(HP0R6s>k!lkH;DyWKTxD3@% z12s_#wNVFkQ4jUe01eRym!mP7pedT6Ia;74TA?-Cpe@>=JvyKxI-xVVpewrJ3Uo&g z^h7W8Mj!M=KlH}{T#11gguxhsp%{kY7=aXw#3+o$7+i(17>DtgfQgud$(VwvNX0Zv z$JLmDnYaemVisoOI?Tab%)@*vz(Op-Vl2T@EW>iFz)DKEqLbjxX>fzQQqljc@QRzQb{Rj}!O-KjJ6+j9+jPzv4Iijz91xPT@5E z!r%A@XK)thkd&4CkBrEK%*cYQ$cF65feUaUa^fQ7LT=@+p*HHEF6yB^8lWK>;c_%a z6EsCLG)D`xL@TsL8?;3`v_}VYL??7c7j#88T!HTBfu87v-spqA=!gCofGaT&gD@CF zFciZu93zl|kr;*17=x=Y7UM7;6EG2zFd0)Y6{(np>9`s*Fca6{TFk<1T!%TBi+Pxj z1z3nhSd1lDie*@i6MZw7yZy518^k)9hGPU$FcPCM8e?!3#$p`C zV*(~(5+-8`rXm&7FdbK824>cFP2#c`vb`J#N4% zti~Fw#X79V25iJ8Y{nLB#f{j8o3I@_a5HYfPVB;N+=|<9JMO@pxC?u*7kA?x+>85g zKOVq?cnA+;ANJ!BJc`HgIG(_hcnSybG!Eh!Jc~nk4$tESyoi_ZGG4)}IE>fuI^MvW zcnfdi9UQ^Ccn|O61AK^&@G(BYr}zv<@j1T0m-q_D@HM`{xA+dn@jXu92mFYi@H2kF zN&Jf6@H_s%pE!ln_zQpIADqEioP+)We+FbkCS*nyWJNY)M-E(o3y~8SAs2EZ5Aq@( z@}mF>q7Vw>VqAhED2iezjuI$|WRyZ_ltEdPLwQs{MO4D2sEjJ8ifXtF)lmaAQ46(E z2X#>o_0a$g(Fm8LF`A$$nxQ#bpe0(NHQJyp+Mzul*g37fG6TX7?{ z;U;Xy4&01euoJtm8@J*%+>SeNC+@-??8V)<2lwJW+>ZzFARfZQ*oXai1drk|JdP*u zB%Zr^cn3%DF5biY_y8Z`BYccc z@F_mSQGAXs@Fl*&F?@}0@GZW>aeR*x_yIrSC;W_Ga1y`bH~fx2@Fz~;H2%Wh_y=cj z7U!UE?#Y0R$b`(uf~?4f?8t!&a3ONyBIH7Dt^T#QRl1VvE{#Zdw! zk&IF(jWQ^Uawv}qsEA6q6qQj0RZ$I>p*m`yCTgKJ>Yy&_p*|X*AsXRwG)5CNMKd%< z3$#Qlv_>1WMLV=d2XsUybVe6+MK@f5?&yJ@=!M?sgTCm8{uqEOF%W|=7(*}=!!R5p zkb;pIh0z#;t1uShFdh>y5tA?(Q!o{&n1<=N8Z$5x*Wg;r!fafJIhc!in2!Zmh(%b8 zC0L4OSdJA~iR*C#R$(>PU@g{RJvLw?HeoZiU@LCKHr#~m*nyjI3wB}`cH>suhTCxm z?!;Z#gT1&L_uyXKhx_pW9>ha<82hjvkKj=}hR5*)p2Sl)fTwW~&)``c!gF{YFW^PI zgqQIOUd3U&hS%{1-o#sY8}Hx<-o<-(A0OaDe1wnj2|mSVIEv5l1-`^rIEJtB4Zg*9 zIF9de0zcqK{DhzJ3r^x!{D$B02hQ@ZKRU(N)A$R2;~$*CS>ea^jeQxA5t)z~S&$X_ z@iYGy=&zgp+y6W7KzF{Aa3bG1n4Hv_?<-8@dkJUqe+>R_g_5$I|5t74?@0ehIXSz2 z&)quz`=mDi@#Vk%{`}edSJa1BpTc)H4m_qsx8`kJH@O|C9T7{+nm{ gk|n7XuQ2@l&mraf{{sJeKcD*l2Y>(P{?qIKH(hL$`~Uy| diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1973.xls b/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1973.xls deleted file mode 100644 index dcb1471289dd42d446372d3bf90e11d33ea5c8d5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1326080 zcmeFZd7O>)AO8QEecz2NVeFK#4^opsLQIy@q9n^$vK2F^OjM?*MpCp`S}l=CSxb>9 zMIq`#DNEX}XSDl_ai6j7 zGtPa+yUzsondm-~+-Dj0ne0Bxy3Y&TXF2y--hEbZpB3Gw+r|I?@qh6QM1;FLGBm_` zcG()X*#a#z+-$%5dui}`cWHLOeco)hTa4K?eTEMn(kG?s$UdX`^iTP}{L#jD41EG{ z4C?~S(%n~)Hp|fjEAKn9MBinS?{bOHd&_s3Zi!Yf9)BiW-@^U0S%BRTnBnvCeV5gI zm$B|Lz*hQxW{;0FvI_Qr^9#mLb$i4|NI+{FX@jkg4YmKf-#zM%rC|J9xVi4ryWi&= zjxgU*o%7v`Y>+$JW@o+|6VTRoyo0T;@7PnUv%3WYZIETV+fdo+1q3*|a8F?#8%FSd z8eh7jEqNP9-4Q38IVQFj7-jy`xa>cT%m2d&uvR7BTAcZ&|6!Oj3eP^jEdlQSDe0Wz z)<%}Fjk6~2ocp-49d%=IK?y$(Bf!G{^B9Vzh~Ey^;OE^-<=`e3;*KJqnypT$X4S2p z`>bvat+&;+OI=OWG4FS7cHgNSobDb*EsL0UDDqD z-}fIwM|Z=jmAr|PkEHm<2HQo}*aCW=xy2V*$~oub?C;|26rC{~)1~gb6`nEtd^JmT zpZ;@+?_~JCt{hz7xpmEY*SRRAdcEq^8}_byDZakBj_=yd{%h4ztND0F@4A(P?{xP} z%kv*z@zZwpA)I}XMYotAYActla}T$fUF>?M=y2;d^c=ARMF-ugRncKzXfL_xvT8M| z72eL9>l9wO+1;$FHrI_&@$cW%J*$7Ov!!Y_&yC6%$-nm^#kcdy!L@C^JJ%k|v$fM| zb6eoL#2|jSv{m{x@cK5?sKk7f8(;GYe)4m8;VaL>Uq27`-`;cg>p!08bB<@RZ#!Z5)z(_dNRs_{r5}a89rdZJ5}DP zV!{6732?pYo5Mey;QJ`dd)@Q!m(Rl&P>yGJEbmc;{LK9O=g>V-@cTQhtNXHwTc`VO zSH#)8Y$10~<_i53vk5Lfe*X;j^jK`6f9Cx7=O>|%@3dRpmlX=PvGQoo9dU;tILjzW+S?&p%dj>^z4R`kv!-H?Z(_^)b8r%y~#ECyo`;*9e?KIO1otA3qiTzsg`>dztkCl?pb3Q-&U|C-($LasEc)L$bj7N z)}9~0jR`vM4+Msv-cqpB+(V^X=2UkZ@NUFCPXG5t3R;!CktWJU8aFw6Bi`HJ)NSPa zw?FXQLvMIyuXsRq&)^D*pRmAScl+^;O}~6xaQ@q0=d6v)vQWN}g7-_>Nb|Eda{YOZ zq~P$ZVn_0r=k82%8wvB>ojB@Ntwx{cNVYtEW+P#zZ{qmz;|mH`$GF?E0WhqNvE+;> z#<2XvM`SVP1MVU>+?tVFY26Ds4dM3Gr(?YB;e+30w&ip{(!7f|2tiVp+io!GFW2bLL z;lQ3@ZfFVz_6&1Fb8d?^IO||>cb|0zbHjUh4)!wl1HornG{9Xu>j!YexGzq3m+xS4 zQOI2Ed_^1nB7rsL0ZbE==U5qE{36Fh*Q|D0es^Pe{-Ye2~x!P@gbH?pO3$s2Lc zn*VzvjhmFbks4=h#9iU%1dEaLpA#&B|MTW#4JdgdZh`sV8`;vivXL#FOWufE;r{oLG;UJzMrxh45qE{36RauEe@?Kp z7tTq^8*xt{{(B=^I+whW6lEigo0Pnf+GlOVUE${hPq5B^PVh8NI431{bGn$o&ozpUZeji!ZX+BBTH(;orBl?!6rYjO>( zrh9&p>ONarKldlghWp;*z-|L9+QNdf2JGJdTR{lE#-ojUu&?PJ%LB2S1n+JdpSzoC zCG5ukRKvHMkgNeGzxj;sCegc_Cg<*^RtdZDKN<1uCNyinkt0X=Zj!vaX?pH%E-GO+ zc)D`>q=jV-DEMs)-%T0sZqm-(P5lyfgJ%V&cN3m9VDI4*d^gG7-84IQH;qf!jeqs( zJ82PF0}lMMhwr8=cGI-vNvq;^(^QzWEuG)k^c~;L1>W6|NvmGMZi-LZmd<~Ew3zRv zoOd^5(rTBmo8ptUrSlhGe8G29-n$zzX&0BUo8ptUrE|fzPxIYW@a~38T7wdHQ+(34 zbYA=U&wMu(y}Kck)}(~p6rZ#$oj2`!gYV`-?50`Cla}Ik(@dDO#!aTYe4hKJl6N;` z(rT2jo8pt!xXH1l6Zx&F?A;BSv^pj1rud{aZnAmvX1<#$-rbN%t5?EqicebOCI!0( z@ZF?%cS9zvVF|k_K531c%zXD-zMHDv-H=IZTEcFMPg>(9FK?T|b`$MhB5~`kGmo3C zJ&&7}3c}9&SZQ{}$oKpk#RH}LIQ>`|?cTRMvr#uu-i=oEY_#|knH|Y(#5Y=_Xrpd^ zyc@0Q*=X^ZG2fGI-=n(sNNW~t)J=Sn{c(Nxbyi_e4E zO*41#jn*#OsG9`uMjLrHTKwKOyM1wcw$X6+rm=ex-lk9gY2lZgea{C}EC{kT?p4M9 zXC8q=@Y;uaArR*gU*pxn)AxA1dsWT7?BBM}(0(~X`(zIuF??G1y=QMQuxvq;`G3)* zpXIn;kLlxv>lYyZ%9hptf51vg^%|f*98TU?zjfI#b7@h;+BSO-B&~1pW;V_*J{og zpTeWUi#DNWj>>d)~-Mb*}8AOMyKK%y|ADH5vD|ikxDBhjf4(@<3`-9zq4s-|T zf3v|i0xmFDTzi{;a~Q=icVzw|d^|ALJ;^Axao2s`jVF+e`}^-a8!u?}!m9o5hG64O zif`O?pm*bmWaIuGJkQ4cOM^h)#+w%3xa&esAp|9njiV3!_gGl*)AD#=q@}q#(mD>m zJ;#kg&e?ZaU>SFNI=VA^yPHMa=|%A`a4+u{-f4Ib;QwX(cvyc0T;Sr zzS?aVw{)bNDHMzU8I7+`-FqU1w|AC%Jiyl)580n{Ud>qE*|)iY<3a+7)O;OwF9Y&AOjr-I_#y>YD@hHQ6oalXzS z?f?w;Wxh>}$i^M+d8r|&yl)dY;r@Fl*f&FGy_|saURWFcTU&Sy6O~};?!nNm?=x~Z z8p_|Mt8R7)O|y2RvIh_AlbtmxWyFA#>_J&6T}Rx0dW{0o zc0|tb?7{B4gNOUR+hh3PY*!W6Wcz-k@0}^F2WHhvxh89Dy_7z~`=@m8(=V%KO3GC^ zL+?y!R4)ZLvkq!5J8R_dtn8HTSwpk>jLJ&s?|#~8UHWB@=$kb%rE%kWDUBO8Y;%ls3K{we?;4S#b+L)U19d_si8I zaz^@&#kX_!ve&3SLyOd`7b(qnXcWR%A5y8O@7~=02l&k^X;TU^f{y}I??Z*;hpop*PJfg={db_v z2){mhMzQb2JQ8SKI|T)oaSs8&Rqcnb;@)vhV;8#ZB)PwDYCFP3Vt97%Ywx^0YgDiL zV}}iW<*|>h-q0|<-H8q-??04!)vRS1;WdA_@BJz7zc6my2T#{1yZL|1=J)vLMCTpX zwpox;c4)obO-{_Y^x(*~Rl=5Ucxu-CtCsxM=HeQME4J@7_v_|eb}zne^1T(xUDjuA z+*8Nay!}?4<_}KjIQg0GbMOB4_JN(3rB9hUvdYw#cKqEU@T0WRwI-aJ5W6*}+n41I zPkyY$!Od+yKNPfLX{8&|e?IirQ#B4uePd0lW>>#*Ron3UUtc$E=T8g%x^i>bHuXPT zUHf?bmoA?C{MH-az4ov2OTWJ*D{Xt)g0E73i+Ut+!_w%F zyK(4Sd#5a$GOpPzTdrPTQ0CU-t-eqCbj$dg#=A38;GRmIeZJ;?HvhYI?mRVf_X8@e z_sFcFqZ-u5<-|unxotzk=m&qvTYLZZ+-^HIl&d+q!Q82B8@!ln`|FG!RITC{6%T*W z<^9meH^V2s^vj8t)Bk<-;lK7j@m)&UXBLKTIMBA$M}zi{PJd_oeVg-MnqM>grm?p_ z@Z#NHEbskR*X=J}wzW~kxgAzCoSqmrX?K^my1&|{|Mt!CJFaT?Mbo}D#?OE3j^3YF zd1_Aiea$+5dc17+&zs-+>Z1!b7refq;g&gF){kFO?@+to;mx1uJouZw&o5|j@S3$# z7i2BmS$W&?ReybU%H5Q6Z|IOaXOz9)-N1+3C*DGJQ#>rIL9xqB_oQK9)<{f9^p?!X z4Jq*%`*WWkGj(_Kes9)k*LT@RufF+*wVhR=_5085c=n6W4;{R}`NvmotT%N3`^n$_Ft*(0H}aFd?)br|Zn@QWP0d@pd~eEU z%P-zl^_O~kZ&_XAw)BVFU;q85C+Z$(clhF3k%2Av!C$>&*!EA{DradG_s@;k!8gKT z|8!%g5fz)qzkR{?<8SzB?Q8uHCzO9I=x}oF*M?T_-u;^n9e37G{dr{T?xV9Wo_0-x zkjR(XH3+%u@bh&lJQq;m*p4dwQd-aacT()?9rf#W`!(pw$I7m-ww-dDoNUqL(k7SQ z{oT*6Pr9r2Q&I08SkwEh9!JwJjN3iwz1DljfBDO}(O;aHc*U>b-O3(Z(`v)J@4Wf@ z54Fc^TM>Q7#Pq3;Zfv&jpXZ<0{KuvT%Dvk-apev7_4{+!ma!9S-2B_E{odPN_xt?s zHw}2c>+VVMlXDwfnXn-J!bdm9-<>;m$JaO38F9_3N9J~oYWv~cSEa3}(R6gvx))7+ zYI3bZUq!r-Q{|8HuYG#?J+*QltyXpagKK(k8~^X7k7vick$%AoBlBOW`uXd>?c=5I~ucjbv$M|-Z``SS3Or+-&x(gXF@ z>@3@_>_<7Tm3_Y7rc14B#zQqGr(e?PXt|iG56zr3Eui*Smq)Y-e=B%n=XE3dyuPjO z(Dmbw*ZpC{o)-sItlqZguYtAtW_A4a*Y~DAe#K{}!k*jJJY~e!Z(VZtzkmPq*NA}) zZkd%{koES;>#{Z!%LthpAdHn0I$L~LN{BYbaz3+K^_}WJ30>BH zR#&_?Eu-r9qZbVSXj@?AE%7<~EBvq7{-oF&H-)^_JblHgKiXVA{k_+I-_UT`gkGBl z-G9gYfXWNkMn|2Pf5*PBW_8K@viiiUZ@#;Ex1pD;O3zGLoA~61116w?^9wHh=XD#Fr?u?n=YGU-k(RV-jakYw@Yd*ay`{(MLI`@A#^O>p-C0?+i{ef-o zeRV-nc(-pVHTvPcF;C|{xM0Z9poczR^H0S38E<~lCHT>*tDkw|H|zFJ=hYjYJkjv= z11p=q*l%L58wWhu{<_h754~5uQvTpu^ZvMeQ<>Q>By9TX;6JgUF*9yx_DRQ9;Z+y? z)aUwJ(=$fDvhZ-Zs6mfk+xzurs-2j;w9SeKgH}AyWz32v#tx`6CBFCkzwE8yd)|ua z@$u7F#r<%5-@v%=H^#>|xcbElBe(SlKGAb=`>M-sdvZBxtbTvr+n22v zbo0KqgUgQ_T)x9k^R|Qy`?USeJt=WdU4CEahUvpwzc+Gx{TF^*SaxR1L!17{ocU%z zh3bpGp4?&F@ZVqG`NtClvsb)-NAsJzY&dw`(7CU4TG8@w_Yc47e*f#SC#nn`(sNLS zDt#8zSaiwZd5c#6aNEg(-0NTe`IfhT$oeej!scrqiA&#<*`Ud@uiV_F!Q(3%Y}>tH zaQl{rwl{fp(2)-YcCK?|bNP+`wCR!?eA)I#S}tAi&9PNU1FNsAF>%SlE$c(e*5B9R zqp`C#e=<4x?y6Va+Vt9E)2C%@=@IsBr>7=Ne(aXfKVCPsW&WC>Ph8#d;dW`eI$yjf zqjB#BPrRPxUzZy~@l509(7^YA^ZgR7+kZ)h>-llC8Wd3n(VU+wz% zt*g5%X)-T4U|Zh?)lyDmXWr54?#pu4G~HQ$-{6NQCJb*DF|7RFeUsxWPyBBC%hxq% zb8y+)uO6zu{QJ7se19tCjgb|0eNm?WTJ68?pxN2%@jdyqMYx%=VyHlzqj(T+3f}a;1 z9OyRian)yTx+5v^-S(Yc4IO-_U-hu7SI&Oq{eG7{G4G4~Ayl+zY*gLv*UVKTlqqXXF>VN0S)Z}@0?n&$2 z?uT+$eV&lnrs|;F!1RcEXo&gOP^qF>N)eD0cu6yRn_(rPu~v)56J6s&54m8E>0b} zxBIhGdqgxGJD^qjU28L1H(YRN=8Zec9Ng9Pm63mp+x2RthlA#{JyNaRyC3{LJ#SCV zH?z{-U0tc(EieD(PT03r-&cRkRdct!I&pXX_S@o* zXLp%4Hzsw>@A&QJb05EBwoiR_h5JrL_vnt_HYoPU-N3(S@sVPW;-?oenUU`{EHm-M zePhB$jQDg-{A0EDPTID3XVAoN(qfvms?qJIBQdYm3$OoRpSPbL{N|IhHz)OL{8ght z3oC@T{9*bX&#WJ|>Zd6g-OFA*dH1FLm)?5clo8F3BoBP7Q=QCOHM-ZS-{`54v9+&y zeAc#yuKjDmt1Vu9^tx}Vy*RJ+2XAica3Ux7xnE}njN4daZQuC2cUk!vU7sm<{Zxwz zlLt1aQnuH>-CB>@oflH)g-u)bRiC-AbMS{Zty%Nl*Jo~eKwzr-y|nYKYMoZ>gRF78 zb~<|l-eq3VPd9Yuv)H1~`-9$PQ_&BWck9XGcY^oyd$;6W!xU}lGqxq)ipIMQ?+_Gi zW4C*;v-r`JFcMumg}9{@UV#d+UhdZKbWeE9X1dn_W)^#D;l5#yIQB>}1`o3TUmnMw z^)HX30z0@v@PEwhX!eJDian;g*{PoH^@x7%Uy=_so9

td#5C1IjZ?onp3phWppS z&zfzVZj2x^F~G9A2iTFG0hZG*z)lSbu)OR5i^&bJ>3IQGX-a_2 zoe^NE&j#4?`2m)`G{82l3b0J~s>QC&0oH3rfF0TsV8adu*zv;wmV3;-wBc5z`5}Rp z?4G5~E*oeys|4EO+JTnVFwoYv2()&s18r-^KPVvTUz&ETiY|( z+Vu;ztwVyXM|QC79T#j_dBJuhKiG0+1ly@O!In4Q{bK9VV4J=w*eb0Lwz->wEp4hS>4SA(mU)&1u6B%Wn~4$*n_dcE=E_ z**(M-_YASLej&DYNQkw|4zaD{Laaw#i0#b}v8)*(c4SV7<;)MUQ%gcDZ&irJtPip2 zn?tP9ju4x>C&W?@hS>7MA(nnD#5SG`u}l|=T`{57t8AzpsvK&=YKPkK2BDVQBGf`! zhgyEeP)qI}YO{NWTFri;ws=UWrDccO+Hs-QE-%!!=7(C38KJg!PN-$g549spLM>-i zsGV9DYI&POEoMikP2Ur0l@5m5+{2-kdMwnIpA5D1kTBaA6K0uZ!)#aOFzZ!2%nmgO zvtcd5?080)<#r6SknUlY-!sgT`-R!;Az@ZCJIof33$wJmFk71+X6)?OXlVO$`5^l?5!Y#dQxNWQ) zZke^iZC8VE>(wIM4rPSfu#Vw&yj!^C_6)ZW_i9A`kZ?=R4!7CvACc6|b1!1#hg+I^ zEn@AQaBDX|+_o+Ww;rp)ZST5p%i0`nN4AGs&Yo~Pbs*gG4u@OJv2dGyGTbVKMA+Pz z2um#+VaqE=SbFUU+t?t&GFwF0u8aul)iJ^jb&IfJJ>9?M=^J6WLn16BJHqnEMOboP zgw4*6u$nU>Z1J23OPe2IYnMb=yHydkbzOw@*c@Sdw?|mko(MZ~Ai{DEN7$*~BP{P^ zgvEqJ+I08dSyXcWUB%qWk(OFJ(v~-fwDcB{wlO2pGCM}vu5OXmt7oJg>KkdphD6%& zQIVEAF498sA}v2Z(voLH+Uz-zR&#!&Enec@Sy>fnYu80uyUmfdb$g`s*b`}c4@6ql z;Yd63d!*%@jI>k1QI;1IWijrbFHNr;WtD12+1v(Emf9l9mS;p+ddDc+*e%L3dq&x= zzERd|NR%BK6=lQ5McMI*QI?w@Wg#=7EPqavCC`tt*-N6V=Bg-Lye`VpHb>do?NQcl zPn2yv5M@0MN7>%rqb%!WlpP6k7;VeD zMO%8$XxrE~+A@bk+b;J~VXtw~c4%U>4a<+Vm`+JPFI~ikJgJZ2nOswrqjg+M#)| zHf%|(9bXx1x$E3}+?!)9e|xMY?}@e92V$+};aFSzd#t6MjJ37Fan>#-&bB7US&zzb zwzpQCWi^PiBhBM1CnL^Ib%?XPZgCdVGtQ>>jk8Ka;%x4yI7=NDXUiwXS$ck)ZJZuw znRDW7*St9EwIt3Ct&Fo_>*DPA2XU6WJbpXS3bb+1l!vo!Lqs~*pV9(ET?aRow_Z-@AQ%0x?FmuMS5NVLrDiMDHZ zqV+nEXor4Gv|+y|+VOu9EjKvHLSm9EKRL;gD<|3PT1i&3L6R+Qo@8kmNw&5_lC|rW zWLs}cvL1btZ0~JJmNhELj@+GOITMrY)FVljH{Jb`=bR*)J}=2CElIMuE0ZjBU6L*T zAj#6VC)vi`NtSsa$#(siWCMS~FNEU%H;Hza{VmS-b%MKe{{xSEk@w`wzwXHF+qG41 zAHT@QFZNyD=OYt*F9iG7VKv=*a_&8#fP39{*1H#p-3rQW!@WJw)xFY}QmZT8XQ*}c z{l1@@=-WoEGe5npRqbM5*E#d`_pR!l`TA(9O!t3|1f}5E@ZsJJasOY7{}by+d_M19 z@(ys{aqlDfuHO&{10VZZ75*Jyv)pe;%<`->{onOp;&%8ydbs0st?Ya6%4}iy<-X&_ zb!>lOc&jtl1Kn2({_8LQHT-?K&%pOEKdteb2|g3QdeGX({ND?7 z*YJ$ce=W$aFwB z?!T`xTkGEG4|C_ao!R&K8Sb+4W4OHR30$t5g3Cz{;IhMHTt4Uf`l#=6=|qr0_v3Qv zcw8PGi_3jExU@TPd22shuIq`*2^l_qc}5xE@!@_bIzGH5UvzxozT>NM`uM{A$G7Ss z{QL*LW12b*Ur+LV{nR9U{haT+-}}Dq`XIb?XZ|hyhVJi)Ndp+v=I^K6Cp6d&q zakFnvzRQe0zOQe><%C{EmwtY$|GU0pnvjX_n*aROJAHhZ)uQ7=eu~Z?^3%%wYJ>my zBK^mg;X6M6QTmVXcHi+W_1{xjz9aD8U;azqS=r}1ZvWAz_=x|~1{WQ%b-~x`y7@?( z)5nMO6dhmGS;rUUJ3hQ|hw~TZKR$N@aVz6}m&Lz6+6vtL%7y#%e|_$y|GVcp#d+b^ z{`o_mi;fQuxJBm=ijT}!%0aiWrqFGyHZ=Qlw*ools`Li8 z8utG&s}=B^75%Ai|NRH6+7!1>@9M28Vbut$PFM}XY7$n9u-b&-SMt5bSC_Dh2)mfD zdW5ACR-dp2gf%3r5n+u9YeHC4!qNz9Mp$#gS`c;#VJ!)}l(5SPOD7DgVDJ6b%ERz@ zf%(&B9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7 zT0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<& z>o!_ivp;vw+cVq~;-P{6z1Aqnz&a$u?bZ8u(VDO}gtaB?3c}hEb|qo$3F|;uN5ZZm ztP^3K3CkqxYQnk@)|IesgmowE8p5t6tOsG&5q3RcHxPCsVLb`EiLjdq>qXctg!T3? ztSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBOYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP z-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I`cAjegu0E6)NQnH3A%qPjY#3p~2^&G! z?S$Py*hs=g5tdC@4q>AS8$;Mw!tNyOF2e36Y#d>^gxy2fcn`zM0`sR$J#0*-ZewP3 z8`G@Ym~-7m0(2YM&~2nfw~;5^M$&W}8Psj0Q@4>@-A1By8(G(Fw194-A9Nedq1)&b z-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W|!tVWP;nP zcO7ysVfPVsKVcII%OmUo!X6}S5@C}Gdx)@y344UFe8Q#>_9$Uf344sNX@osa*b{_J zCu{~`PZIVNVNVnG3}G_~n?=}c!sZb6tcPJ`f%(&>9yTUZw=uK2jcL|x%(-qO0lJNB z=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixA zcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivrBUw@|@eNcOCLPVJ{H&B4IBP zHkYt@gv}>x0bwr_wvezzguO!8V!~b}YzbjY344vOWrV#>*c*f`Cu{{_D+yag*lNPo z5cVcvZxObZu(t_&$HTC)!2D@b4;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=># z26Y?h)NSNew~=VwM%Hy3Euh=z2i-<<=r%eJ-S?BiZU5BhE>|Me(5cVEn8wuM)*!zTiK-gx& zJ|yfT!nP2$m9UQq`-HG9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mU zjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2 zT-`<&>o!_ivrBUwvd`_+yAIh;*a5;067~&YhY0(Yu=(k0680-$zY+F3VaEtNPS_uWognN_!u}%cZ^Hf|>?C2Q2>X|?0uRH=0`sR$J#0*- zZewP38`G@Ym~-7m0(2YM&~2nfw~;5^M$&W}8Psj0Q@4>@-A1By8(G(Fw194-A9Ned zq1)&b-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W|!tV z!~)J;hXfE7NLUbI!Gwhn7D`wcVc~>D5Ee;T6k*YX#Sj)tSR7&Tge4G`NLUhKWe7_q ztSn&{5LS+`@`P0&tRi6-5>|<@%7j(%Fsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-Cq zMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H( z-A1eFHu_Gt(S*8NciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK& zNT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;M zx{dbKZS<;cqj7Z`U98(^Y0WOpbx4NWt9KpJny@y6wI%Ed!rBpbC1LFe>p)mX!mc8$ z6JebR%Ovb-!nzRFm9TDvbtmi^!mcH(2VvI{c0FM?5OyPBJqf#su$u|%Mc6Hb_4Y8V zEHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+- zMhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+} zV%Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP z={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHd!K4;UBWgH_8wsy3EM>2`-FW!*k-~$ zBlg#C}O-GuES>Ne7;+sLhMBhk8z ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH> z-9{JdHdX_>?+E*zupbEfk+8#r{Y2Oi!hR;~ z7s8Gb_A6n(5%xP_#|S%4*dK(QAnZ@V{vzye!u}!bBw?or`~_S;e6%R<|+Dx{W#4Z6rXqkqzBO zYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOc zMyu&I`cAjegu0E6)NQn@vdA3A>!IRvw0x1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A}ZX-{+jil)|GN{`~ zr*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zTh zjrP=S^r~*7adjJAtlMa5%`VM#NQT?1cOBB2ur`FXCF}~q+7WgoVeJX)Kv+k@t|F`x zVVw!fB9MJz+Nxb|Yau3A>4~n+fYh*e!(h_Asn0 zFn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh z3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e z-9}4mc4@9dZgqS0u0#3|)|aq;g!LyZi?9KN4J2$3VS@>~jj$nv4JB+CVZ#XB*jU2uBAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X z+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tcI<~n48+pBjS zaxY=`5q3Xe6A8;B>;b|aBy194lL>o>u!jkIgs^o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rm zHd;-$(RaFyCe&?oq;8`FB7(qutkKuLfB%$UL|Y^VM_^njj&~ey-wI0ge@m*1z{@*TSeGv!qyP> zCSh+8wwAEB346!Gu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p= z8|l<-=sVp;6Y4fP zQn%5bx{Y4dZ8WZKql?6Xq5Vn=Dj|uyPux*5GCu|2{pAxo{uw8_GM%d?s{g1HSgzX{h3&Or6Y%gJ75%#r* zVP%2&)21FaCR4XDv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS z>o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`YI}9|-%Au)~D?MA#9+ekSY} z!j2O5D`CG8_B&z62s=*LAB3GC>`%h}BJ6L%{vqrnVW$ZDm#_j4!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H z=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tcI<~qcJ z&RvHD5Ee*S5MjZDg%B1>SQug9ghdb*NmvwN(S*ei7E4$hVey0|5SB<-5@BTsOD3!= zVHXfqjNaLpw=vDSjXBqCBtW;34c$g+ zbQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wx ztLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%>|Q0CafM|sf5)htN~#S32Q`HW5Svc)|9X`!kQ7*oUj&zT|!t(!Y(E3 zGQ!dcyPU9A9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRWBTu@Gr0F&?sM|=V zZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21 z_S9|ks&1okbsJr*+h}RcF3ojFhTE%m9nzYxHiWe$>}tZg5Z0BjZiICw>>9$ZC9DTw*AaF-VK)$VBVj!WyNR%y3F}4JErj*&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_ z=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8^(QQgumOY(By132g9*EhupxvEC2SaB!wDNf*zJVf zLD)#bMiG`xSPo&M2^&M$Si@LFYCTtvGxrE(A*mw`a$^!GJO+9Q(rfy?qbsN*H z+n96RMgnvj+0bpIMz@hC-A2-M8yVDXq*J$%Tir&YbsJgNZM1-HqaSn|&7s@q6x~MK z=r(#tx6x3#jqcKIw3=?C?{phYsN3jB-9~%rHhNXJ(YU&eF4k?dv}Tv)I%I;|t9Ko8 zFJbo)c0XYg3Cknw0m2?6Y!YFU344gJhY5RxuzbR%5cVixQwe*FuxW%nPS_KKO($#y zVNVkF6k$&j_6%V&37bXOY{KRc_N<3tWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&p zqua=nZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8p zT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TC+=Y9rB#pt9KppJYg>o_99^~5jK~w zd4$a;Yyn{}6Sk1BMTEUV*kZz7C2R>{O9^|8uw{h3PS_iSEhlURVJit+Mc8V>))4k4 zVQ&$(maw-8d&k4DvcUXlQx6-HsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o z>C|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3 zx6z)ujb7DlG_G!=i**|RpGdC+uCqHW2n6VH*kCMA-X;eL&b|!agMI zBf_>2ww17t3HyYwZG>$nYzJYV61J1DU4(r`*yn`(kFec@?IG+7!oDPIFJWI1_O*v$ zWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*s zHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V! z7wa}!TC+=Y9kS2u)w>SaPuKy%4ifeaVTTC&may*#`<}2L2>X$+!-V}r*b%~hChQl& zjuQ4OVZRafJ7LENJ5Jaigq~F&UA?ze!rwIF(umTUm$^!GJO+9Q(rfy?q zbsN*H+n96RMgnvj+0bpIMz@hC-A2-M8yVDXq*J$%Tir&YbsJgNZM1-HqaSn|&7s@q z6x~MK=r(#tx6x3#jqcKIw3=?C?{phYsN3jB-9~%rHhNXJ(YU&eF4k?dv}Tv)I>ds{ zU55k^7D!kSVZnrj5Ee>U7-8XrMGzKASQKH=gvAgROIRFX@q{H1mPl9UjgHi9w5M*PS9KeWtJ~;e-9}4mc4@9dQrup>uZL76tQuj}39CU^O~Pss zR-3Rogw-YNBEl{vtR7*hgw-dk0bvaZYeZOM!kQ4)l(00yni1BVuoi?}LRd?}E+ynI+pBjS(weX~gtaB?3c}hEb|qo$3F|;uN5ZZmtP^3K z3CkqxYQnk@)|IesgmowE8p5t6tOsG&5q3RcHxPCsVLb`EiLjdq>qXctg!T3?tSm5p z+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBOYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)O zHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I`cAjegu0E6)NQnH3A%qPjY#3p~2^&G!?S$Py z*hs=g5tdC@4q>AS8$;Mw!tNyOF2e36Y#d>^gxy2fcn`zM0`sR$J#0*-ZewP38`G@Y zm~-7m0(2YM&~2nfw~;5^M$&W}8Psj0Q@4>@-A1By8(G(Fw194-A9Nedq1)&b-A3E! zHhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W|!tVWP;nPcO7ys zVfPVsKVcII%OmUo!X6}S5@C}Gdx)@y344UFe8Q#>_9$Uf344sNX@osa*b{_JCu{~` zPZIVNVNVnG3}G_~n?=}c!sZb6tcPJ`f%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL z+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1- zO}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivrBUw@|@eNcOCLPVJ{H&B4IBPHkYt@ zgv}>x0bwr_wvezzguO!8V!~b}YzbjY344vOWrV#>*c*f`Cu{{_D+yag*lNPo5cVcv zZxObZu(t_&$HTC)!2D@b4;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=>#26Y?h z)NSNew~=VwM%Hy3Euh=z2i-<<=r%eJ-S?BiZU5BhE>|Me(5cVEn8wuM)*!zTiK-gx&J|yfT z!nP2$m9UQq`-HG9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7 zT0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<& z>o!_ivrBUwvd`_+yAIh;*a5;067~&YhY0(Yu=(k0 z680-$zY+F3VaEtNPS_uWognN_!u}%cZ^Hf|>?C2Q2>X|?0uRH=0`sR$J#0*-ZewP3 z8`G@Ym~-7m0(2YM&~2nfw~;5^M$&W}8Psj0Q@4>@-A1By8(G(Fw194-A9Nedq1)&b z-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W|!tV#6r$p zhXfE7NLUbI!Gwhn7D`wcVc~>D5Ee;T6k*YX#Sj)tSR7&Tge4G`NLUhKWe7_qtSn&{ z5LS+`@`P0&tRi6-5>|<@%7j(%Fsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$ zdD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eF zHu_Gt(S*8NciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Ti zx4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbK zZS<;cqj7Z`U98(^Y0WOpbx4NWt9KpJny@y6wI%Ed!rBpbC1LFe>p)mX!mc8$6JebR z%Ovb-!nzRFm9TDvbtmi^!mcH(2VvI{c0FM?5OyPBJqf#su$u|%Mc6Hb_4Y8VEHHoC z)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR z`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP={8zT zx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHd!K4;UBWgH_8wsy3EM>2`-FW!*k-~$Blg#C}O-GuES>Ne7;+sLhMBhk8ztm`&f zK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{Jd zHdX_>?+E*zupbEfk+8#r{Y2Oi!hR;~7s8Gb z_A6n(5%xP_#|S%4*dK(QAnZ@V{vzye!u}!bBw?or`~_S;e6%R<|+Dx{W#4Z6rXqkqzBOYIGZU z(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I z`cAjegu0E6)NQn@vdA z3A>!IRvw0x1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A}ZX-{+jil)|GN{`~r*0#+ zx{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zThjrP=S z^r~*7adjJAtlMa5%`VM#NQT?1cOBB2ur`FXCF}~q+7WgoVeJX)Kv+k@t|F`xVVw!f zB9MJz+Nxb|Yau3A>4~n+fYh*e!(h_Asn0Fn`+A z!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+Oib zLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4m zc4@9dZgqS0u0#3|)|aq;g!LyZi?9KN4J2$3VS@>~jj$nv4JB+CVZ#XB*jU2uBAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlW zNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tcI<~n48+pBjSaxY=` z5q3Xe6A8;B>;b|aBy194lL>o>u!jkIgs^o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$ z(RaFyCe&?oq;8`FB7(qutkKuLfB%$UL|Y^VM_^njj&~ey-wI0ge@m*1z{@*TSeGv!qyP>CSh+8 zwwAEB346!Gu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<- z=sVp;6Y4fPQn%5b zx{Y4dZ8WZKql?6Xq z5Vn=Dj|uyPux*5GCu|2{pAxo{uw8_GM%d?s{g1HSgzX{h3&Or6Y%gJ75%#r*VP%2& z)21FaCR4XDv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS>o!_I zx6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`YI}9|-%Au)~D?MA#9+ekSY}!j2O5 zD`CG8_B&z62s=*LAB3GC>`%h}BJ6L%{vqrnVW$ZDm#_j4!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X z+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tcI<~qc}&RvHD z5Ee*S5MjZDg%B1>SQug9ghdb*NmvwN(S*ei7E4$hVey0|5SB<-5@BTsOD3!=VHXfq zjNaLpw=vDSjXBqCBtW;34c$g+bQ^in zZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlS zPPfs7x{Z$1ZM3IuqgQnsjjP+}V%>|Q0CafM|sf5)htN~#S32Q`HW5Svc)|9X`!kQ7*oUj&zT|!t(!Y(E3GQ!dc zyPU9A9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRWBTu@Gr0F&?sM|=VZX>t4 zjYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|k zs&1okbsJr*+h}RcF3ojFhTE%m9nzYxHiWe$>}tZg5Z0BjZiICw>>9$ZC9DTw*AaF-VK)$VBVj!WyNR%y3F}4JErj*&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6 zx6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8^(QQgumOY(By132g9*EhupxvEC2SaB!wDNf*zJVfLD)#b zMiG`xSPo&M2^&M$Si@LFYCTtvGxrE(A*mw`a$^!GJO+9Q(rfy?qbsN*H+n96R zMgnvj+0bpIMz@hC-A2-M8yVDXq*J$%Tir&YbsJgNZM1-HqaSn|&7s@q6x~MK=r(#t zx6x3#jqcKIw3=?C?{phYsN3jB-9~%rHhNXJ(YU&eF4k?dv}Tv)I%I;|t9Ko8FJbo) zc0XYg3Cknw0m2?6Y!YFU344gJhY5RxuzbR%5cVixQwe*FuxW%nPS_KKO($#yVNVkF z6k$&j_6%V&37bXOY{KRc_N<3tWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=n zZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gn zce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TC+=Y9rB#pt9KppJYg>o_99^~5jK~wd4$a; zYyn{}6Sk1BMTEUV*kZz7C2R>{O9^|8uw{h3PS_iSEhlURVJit+Mc8V>))4k4VQ&$( zmaw-8d&k4DvcUXlQx6-HsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oH zR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)u zjb7DlG_G!=i**|RpGdC+uCqHW2n6VH*kCMA-X;eL&b|!agMIBf_>2 zww17t3HyYwZG>$nYzJYV61J1DU4(r`*yn`(kFec@?IG+7!oDPIFJWI1_O*v$Wr6wA zrXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp z(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}! zTC+=Y9kS2u)w>SaPuKy%4ifeaVTTC&may*#`<}2L2>X$+!-V}r*b%~hChQl&juQ4O zVZRafJ7LENJ5Jaigq~F&UA?)P;!-`o1Z&=rHknZm8?(XjH?(Xgm0~C~Q zlu)`+FbE|LFu9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqEIA4B;j4Et2 zVWSHhL)e(Y#u7HRuyKTqD{MSr;|rTW*o49+5;n20NrX)*Y%*b!3!6gNl)|PGHnp&6 zgiR}KI$_fbn?cx&!e$aS^8n*z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5 zZ8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a z>e+3&+HH#4ZCc!ID&6d1zC&gi`Rd^RkXePzCTweEhlVwVJiq*QP@htRvuuyEV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG$rY&&7w3)?~1j>2{lw(|hvWx@TmtHMu#*QE zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z z%E(s--yx?8`--ry3j3O{uM0a(*y+N)A?%yN&JcE{ux|?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%YGL0K_I+X32)kC;b;7O} zc7w1Rh213VW?{DoyH(h2!fqFKhp;<^{Xp0ch216WZec$X_G4i`5%yDI_XxXJ*nPt8 z7xpt@KObPcEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG-dqmiy!hRv_m%@G}?AO8`6ZW{U-w6Ayu-^&$y|5>Q zJt^!D!u}}iPs08z>?vVS3wuV`v%;Pe_PnqcguN*2C1EcQFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E z*k6UcA?!_IZwY%_*gL}B74|n_e;4)-VgD5Np0M|YeIV>ZVIK+mSlGXW{ae^4!af!D zA7TF$_CH~t3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3@On+%LaFMin-iu+fE$A#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ z37c5hB*G>YHkq)=g-s!BN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL< z6E?fBIfTtAY%XDQ3!6vSyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~J zM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry) zAZ$Zn8wuN3*e1d@6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q z9kQ#i-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu( zO4!lDjuCdOu;YXsFYE+iCki`B*vSKomj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxraUW#p@a?~qf4eMQ(;g?&xf*M*%X>~vw@5cW-B zX9zn}*tdjzTi98`&K7o#uyci-C+vJ-7YMsh*hRuF7IulSONCt~>~dk>5%yhSR|vau zfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd% z=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(W zAywXp9A`@XPigk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|dejx0J z!tN4wx3C`x`?0W}2>Yq9dxYI9>^@=l3;UU{pARrz7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!tpk*^NELmm|Nkg$h^JtFK;VZRXe zOJTnf_G@8}342`FZ-o6;*zbh>Uf2`Do)q>6VSg0%Ct-gU_LQ)vg*_weSz*r!dtTTJ z!d?{ilCYNt7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8N zv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)Jfn^2*3p2j3yD3VTi1>%#sb?61P!5ca09w}ibd>>Xk63j3R|zYF_^uzw1B zPuTmyJ`nbyu#bd&EbL#x{w?eiVV?^7kFfs=`=7ASgncgTivh;Vg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO-k0AYqY4{M*yzH> z5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1Vbcnm zPT2IqW)L=`u$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^ zkg$b?Eh21DVT%b{T-XxAmK3&>u%(49BWzh=%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{o zP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs z8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3BXM!q`u4%t=MZo+mKwui7ih3zG5Z(;ig+gI3r!uA(- zfUpCF9VF~vVTTAiRM=s{4i|QWup@;XCG2Qn#|S%C*m1&+7j}ZM6NQ~5?BoH)%YyrB zSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!%vYGcDk@{2>Yh6GlZQf>|4UVE$l2|XA3(=*tx>a6L!9^3xr)L z>>^Y(ED}-G+z<613f9>kAxy){Jv)$&JyUm?*A?!|JKM?jqVRs3;TiB0;{aDyfg#A?5J;Lr4cAv2Oh5by} z&j%PU3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BwZQ$X5s7ArA_BNZ7-|9ufAauwMxKrLbQK`?avgggq|oH^P1^?03R`FYF0nPYU~k zus;g>ldwMvdrH{T!k!WKtgz>VJumD9VJ`}MN!ZH+jF$!X*RCF$%j`Bc+ikA7+uV7# zSwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d1d6QgYS@6g}o;1bzy%I_E%wV z2zyi5Tf*KJ_KvW3h5b#~--Z1{*gu86C+vM;9|-$U*hj)X7WOY;{}%R%uup~kN7#Rb z{ZH6u!af)F#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC%VC|I6=?QH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9!X_3r ziLgn9O(tw|VN(d3QrJ|&rWQ7huxW)&Cv19QGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQRwUmg4(GOMuJgv~B& z4qLVG9adNZ7){77@0nu*HNeE^G;5OA1>`*wVt55w@(b z<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtH|9~z2|Hid1;Q>Ac9F1)gq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$W z9ejseE$n;3zAx+=Vb=<~PT2LrZV+~(u$zS4EbJCxw+g#W*zLmZ5O$}q9|-%Qu)Boa zE$m0aek|-K!hS039%1(iyHD8t!hR;~=L3wF1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`wt;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOU`wguN;3En#m9dq>#2!u}@g@525e?4QEk6ZXEa z4}^Uv>?2_x3;UO_e+&CW*r&q&BkaGz{wM4+VV?{8Vu10o;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$+@a1>NsKQ1QHoCAegpDa| zEMa2{8%NlAAuwt}z~g{>rPrV ztKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV4 z2MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`&cAT)|g`FVmL}4chJ9&Wdvf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4kjC^(Q9dfF$ zuL%39u&)XGy0FuPoi6Mf!oDf&3}I&q`lyGYo@ z!Y&bZsj$n0T`uf9!oDl)3Sn0cFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1Ew>~>*y2)k3*4}|?t*j>Wz7WN}yKNj{AVLugikFa}%-6!mRVLuc0^8v=o zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+R z^3}n2$b-Tj685mLM}$2p>=(j*DePCmel6@VVUG*@jj-Pe`<<}g3wuJ?lfwQW?2p3! zB<#<^o)Y%7uxErlE9^O8&kK7&*o(qm687={<7L79wX4VGGP}*qcAIPNHh11_7SL_B z(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQ zZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`UK#o7;5+11VXp~$UD#iQ{Z-f-!rm12 zmaw;ly(8>hVSf|$cVYh!_D^B&3434I2f{uS_K~oUh5bv|zlD7w>{DU?5%ynU{}c9^ zu+N2kF~E3PaDVOUvAN7{bFZc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c z<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4 zZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAPk+6-0 zZ6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j z_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH7-7c> zJ5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L04*w=)8UD#>DP8aqKVc!&XhOje*eM{K4 zg`FkrY+>gJJ6G6w!p;|Vfv^jOT_o&cVV4NIRM=(0E*JJ4Vc!*Yg|I6J7%vO%uU$Ph zm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%a zlx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna@ELJ2j3xA z3;Uk1?+d#|*tNp06L!6@8-(2`>?UD13%f@Hz<3;U6< z9}D}5u%8OMN7%i>?h|&uu%8M0`2gc(!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`u`Rd?1>_uTO343{f z@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe zuZ(Y+F{|Wm{*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQFcefb?Ss<6?7jV^2qVPgs#OW4@L z#t}BIu@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9G zwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2v zTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c?SySF zYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ| zZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3~7-NLBb9e zc8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~VJ8SXQP@esP99*qEV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwjXrux|=GL)e+Zz9sD2!p;(Qwy<-Aoh$4-Vdo3GK-h)CE)sUJuuFtp zD(o_0mkaxjui_x7ky-Sz5Q* zV7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xoYIAgYS^5g?&%h_k~>}>{?;h3A~|c9XE1h20|T zR$;dZyIt5F!tNCI17SZDc9*cbh5bm_kA?k2*iVJsBkW#b_X)dS*w2Lhe1P$?;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ysi-e0A_0 z@}RJXggq?m5n+!C`-QMy3j39?UkiIo*yF-}BkZ@rekbhr!k!TJq_95-`=hWw3H!6K zr-VH%>=|Lt3VTl2^TJ*b_M)(tguOh#cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5 zn>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#S4O@%_zrnh*lWUG7xoune--wIus4OhCG2fs z?+ANW*x!WxUD!W_{ZrU`!rmA5fv^vSeI)E-VgC~LZ(*MZ`&8I}g#B08|Ac)e>~mpX z3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0n+V%f z*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6*W7LH zyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2( z+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66SljsJ%sHk zY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9VzT6VMhx)M%b~!juUpg zuoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~!t+k*^NELrxX;6=7c$_BCN&7j~Mk(}jIQ*f)ipA?!?H-xBt1VP^?D zTi7|m&J}i^u=9moAnZb67YVyq*d@X)6?U1h%Y}VM*ms3pA?(Tl#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h| z+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO}SG$KEQZcaDVOUvAN7{bF30c~ICx!X6g(h_FY6{X*C;h5bs{uZ2A(>~Ueg z5%ybQzZ3R*VNVEqQrI7a{ZZJTg#B6AQ^KAW_KdJ+g*_+id0{UIdr{a+!d@O=yezoC zcJ@{Jp3;T<(zY2Rp*qg%M685&RcZ9tw>~F&UF6Zc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu%!Uw(&-Dr_`iqYE2D*qFk`5;nH5afFR4 zY&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@ z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4EhcPn zVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!I zD&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;d zVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z;6n2uZlLr_t3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=^$X5s7A*TxaimB7Dt?3=>Q5O$`pZwdRhu(O1nE$kd&=L$Pd*!jXP5O$%ki-cV)>=I#@3cF0$ z<-)!r?7PCQ5O(DN<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI? zZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcR zirZ~k+-)k|>|wq`t{VC3;5+1MVc!$>ePP!KyH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9 zZWnfkusenQK-dq3-6ia9VLuY~V_`oL_ETZ^2)kFcgO=HUmbjhJSglT zVGj#?MA)Okej)6a!hR*}*TNnX_PDU$2>Y$D-wFG@uqT8)DeMoz{wVBE!u~AmDPd0w zdq&u^!k!cMys#I9y(sJ@VJ{CbUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bmbm65LwzC&IW_L{KQh5bd?UxmFP>`h^B342@EJHp-- z_BUaF7xoWf{}lF~u=j<1AnZe79|`+d*uRARTi7SUJ{9&KVgD8OKVhE<`&`%;1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*En@8BZ z!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU z4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq z!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;;z#a z3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3^Z{a$(;Q_FZ9D2)lBC@v`9l+SOxonce1QyUjIs zn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6V zh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeSB-pi@Evlsu)PD(p64w+p*N*qy?DAnb?2?hC*d zgxxFbK4JF@`0)75TM+-}q2Zd2)I5Az-J%E(s--yyFG zdrjEu!u}%cufpCC_NK76guN~79bxYZ`|etE zE$kCvp9=eru>T7CpRmt_eJ<>a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11Wm){|y3L8z>=)%SjHm0z#gpDn19AV=M8&BBy z!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+ez<613 zf9>kAxy){Jv)$&JyUm?5) z6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uLY#m|i z3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9su$_eM zJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B}X-f2s>8Tal(!lc7m`Ig`Fhq?~nt3p+>Hxx&s9cD}F+gk31?B4HN`yF}Qf!Y&hbxv=jD z`>wDngk3qncv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#t46*$_zt;R*!P5eU)VLmt`&Bju`q}n5cWf1cL}>&*pGz$SlCa5{Z!aJ!tNDzpRoId{Y==;2N*94?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rD1)R|nrA4+?uo*u%me z5%#FCUkLl9uwM!LwXny8Jud7w!hS34cfx)z>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrb9W#p@a?~qr8y(a8+VSf?!S7C1mdsEn3!rm74j<9!y{Y}{4 zh5bX=KZU&~?0sP$2>VdjN5Vc9_Ag=o7WRp-Plf$Q*nfrnPuOR|J{R`I0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fipu=#|| zFKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0X7 ztAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2> zQrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEt zYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZ zx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+YuziH> zD{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f#gdHpFIAO;NJ3-iq!cG!) z@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC%tK`Rd?1=t3S3cF3%?ZWO5cBil(2>YS1yM)~>>_@_WEbJ%3ek$x9VfPBV zPuTs!ekSba1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4tZeYtAp>52ZcQ(>|tS#2zyl6FNFP4*sp~BTG(U49vAi-VZRmjJ7K>U z_Jpt}h5bR;ABFu%*q?^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA)`$3<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNaunB}s zC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1EWR{Vy4*n0B zRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp) zX<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs!qyYE zzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm4=`R9 z++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikg&iU6 zNMT0_J6hN=!j2VooUr4CognN)VJ8VYd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx@re0A_0a;mVe2>YtAuL=9Qu+xN{F64K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bmbs*$e_zC*4S_B~f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdeOy)xmejgTfvX_OP%=ggq+k z7s7ri>{r5mE$lI2j|=;au-^*%ov_~vdqUWg!u}xakHY>W?9alU685yPXM{Z~>^Wi2 z3wuG>i^5(K_VNJZWx@TmtHkAxy){J zv)$&JyUm?QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V5;nK6d4$a?Y(8Q03tK?g zg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3!LD-7IRuZ=I0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$M zRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapzu#JUnB5YG(n+e-o*cQUJ6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z; z)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi5VohVy@c&8Y#(9!3foWE z{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzPPT29nP7rpYu#<$HJivHa zaDVOUvAN7{bF30IaSzKgnd=m*Mxmt*lEH}7xoQd-xPL+urq~yOW3!Coh9sSVdn@tSJ-*N&KGup zunUD0)75TM+-}q2Zd2)I5Az*z)yP)|-yv5E`<}4x3%f?xwZg6wcD=A0 zgxx6YCSf-VyG7Wo!fq3GyRbWi-6`w`!hR_1E@5{I`;o983;T(%p9;H2*uBE;6L!C_ zp9%Z<0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk%%L17OGdsx^b!X6d&3t_($_A6n(7WSC1$A$ey*l&gXPT22-Jt6E# zVSfw_Ge*F342=DGs2z~_MEWig}or`MPV-qdwGEIvf%#O)njv+-R5Sy%{6zM zJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4sjC^(Q9rCKM*Mz+;>@ULp zD(nqmZwh-$*xSP15%#XIzX|)huzv{qr?B^gy)WzoVIK(M73Hwag=fb`iV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$S6~N`5iKpYyx2u3Y$pS z#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj6*il& z*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_n6Sl#Eg@`4VM_^HTG%qe zmKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0VQUIoOW4}N))BU@u=RwkFKh#0 z8w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z*XSdmHw^?+z*?PCBK)2~bw<$-r zX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%ubotAp>5 zU4`u?YVMho%QrJ<# zjuv)|uw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgQItUmbjhoGR=q!oDi(Yr?)R>@;Dg3;Tw!Zwfm@ z*qOq@s1O3;T|+?+Uv@*p&l} zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb< zYUHbf?~tp7eNWi;gPleqh>|SB_3A^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WArFjvb?_bXpst>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L}_H12zyu9--P{L*gu5*Q`mdL z-WT?Pun&cOBxn{a4ukgncILb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR$7D{0;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO{Hm9(;gv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w5VoSQm4vN4z<613f9>kAxy){J zv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y2-{THX2LcXwuP`Qg>5BlYhl|6 z+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfy zY_Qv`v)k;p+bp`& zv)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%BgzYJ8FJXHN+eg^G!uAukzpw*@ z9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn6L!3?6NH^8>?C0)4=`R9++VwT zY%a6g+-$f1&x%lMbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9kS)fR|nrATM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^ z!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$z zVJ8YZN!ZE4P7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=v zVb2SDLD-AJUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-} zgncUPGhv?#`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4gO!(z@$XA4YRoJM)z9wumVP6+Ey09^XjVbIK!oDeNEMeag_HAL` z5%yhS-xD^ruyKTqD{MSr;|rTW*o49+5;n20NrX)*Y%*b!3!7qq@v`9l+SOxonce1Q zyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeQ;vLf@PEiu!lo8B zjj(BjO($%6VKWGuQP}r|{Xp1E!e$mWi?CUR{ZQC!!hR&|$HIOhY<6LD2%A&bT*BrS z_ETX$6E=^qp9`B;*nGm~A7H#JxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgQbBzB>30SwPr=!WI&?u&_mh{ZiPX!WI*@xUgRdTSC~9 z!hS96H^P1^Y$;*C6ZU&ye-QRZVSf_#XJJbVTSnNj!j==Zys#C7ttf0IVJi4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_BmbFC$+a ze21(eY*k^a30qy*Uxocm*x!ZyL)aR^))cmuu(gG)BWzt^>j_(5*apHj6t@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6} zgzYSB7h$^!+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC z7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgT?=Umbjh93|{%VaEtNR@iaEju&=}+A@ z2s>BUdBV;Yc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ8 z6ZW{UCk7ZV3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BwZ!$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B z342@EJHp--_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LY(E?+F`Q*f_$*6*iu*@r6wwY(ilZ37c5h zB*G>YHkq)=g-tQQcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#DM!9K_&;PSVN(m6M%c8%rV}>3uo;BSDD3;fejscnVKWPxMcAyu zekg1C*>37bdQ&xOq^Y(8Q04=`R9++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc60)75TM+-}q2Zd2)I5Az-JmyxdyzC%_KwyLnzgsm>@ufqN&?C-+T7CpRmn@Z7yt!0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W z)xmejR>HOxwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK? zCv1OV2M9Y**g?V$7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{gqoT`KG{VV4WL zVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yv6ye0A_0a+R>FgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w<|( z5cZ<5mxR46>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7 zOxWkbz8GMMeOhq_Inx=p*fP1U+h@48J1yG z(+Qhi*bKsE6!v{#KM*#Pu$hI;B5YP+KNL2bupbHgv9O;An_bu(!sZkZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9rBBjuMWOL77(_eu!V#zENl^BzZABpu*HNeF6>vrmJqh2uwM)N zjj-PeTT0mPg#BLFAB6o;*q?;`S=iFTmJznBu;qj;FKh*2D+*gl*vbQpmj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq%g9#;-yy3A zTUFR_IF|b5VnS}HHEDuY;9rd2wPX!dcxKhwt=t>g>5A4pTag4wu!KR z3H!IOO@;kO*nfrnPuOO{HW#+V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~VLJ=k zMcA&wb`!R{uswwBDQqucdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%31{g03 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhKz zR|nrAM+rMx*fGM66?UAk_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?T zp0M+UT_Eg2VHXLzSlA`PE){l}u*-#AF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kgVK)l9 zN!ZQ8ZV`5?u-k;)F6<6rcM7{p*xkbJ5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJOggq|o zi2=sTg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze1|+a^3}n2$Wy|e7WRy=XN5f{?0I1?2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3!rm74 zj<9!yy(jE_VIK(lP}oPpJ{IrVtKFu!-KNFerqazG<~wARNxu9J`HHZw3L90}*MyBG?CZit z7dD2lF@=3Y*f)iZCG14K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bk_%8{=Q{tuZ-*wn(N5jL%`>4Z%$YzAR73j4mW9|)UC*v!Ia5jLx^9}1gI z*pGz$SlCa5%`R*XVRH(bOW54Pek$x|!sZe7b7Auen@`yM1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4*A8%R|nrA3kX|K*h0b< z7Pg46UkY1P*kZyK7xpV*O9)$1*sq2CM%ZtKEhX%C!hSF855oQ^>`%h}ENp3E%LrRm z*mA;_7q)`16@{%NY~=yQ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO}ob?_as zm9VXaZ6j=3VcQAYUf2%8b`-Xgu$_hNB5YS-y9wJ}*dD_66t@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4mon5ql6tT>=!p;zOrm(Ywoh|GfVdn}vPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m7+}0C zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU3^ zUmbjhTqW#kVb=(|R@imIt`~NLup5QlB~3NA2)kF< zeZuY+_JFVlg*_zfVPTI5dsNtC!X6j)!~o-E!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC)fI`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BpqEq+foAd_~w-g^eogYr;ko_H|*S3mZe&n8Lmx?3=>I680@&-xl^AVc!+@Jz--D z8%Nl0)75TM+-}q2Zd2)I5Az)|<;YhD|A$N^Y-(ZC2%A>ebi$?= zHiNJkg?(Sx4}{GmY-VAz2%A;d4~5Mp>_@_WEbJ%3W*0VxusMazC2VeCKNa>fVe<(4 zxv+VK%_nUB0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghx}sXtAp>51%xdqY$0I_3tL3kFNG~CY%yVr3;UI@C4?<0?AOA6BkZ@r zmJ;?mVZRsl2Vs8{_9tO~7PhpoWrQs&Y&l`e3tK_hio#YBw(kAxy){Jv)$&JyUm?4I||!L*v`Us5w@$a z-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLyM0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5Tb)xmej zQNoTEc8suNg&imCcwr|9J5kt4!cG=;im+3KohIybVP^~djO3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc6^5Py3%f(uox<)CcDJy5gxxFbK4JF@dqCKO!X6U#u&_sjJu2)mVUG)YVu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(q ze0A_0@|3Wrg*_weSz*r!dtTTJ!d?{ilCYPBy&~*YVXp~$UDzAK-W2whu(yT1BkWya z?+JTf*ayNs6!wv@kA;0A>{DT%3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@OnvM;|wz9Q_a!bTPLHDRL(`?|2vg^eL> zOkv*;_Dx}93Hz3?Zwvd5u^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxrbfa^$On|3jt{Hnp&6giR}KI$_fbn?cx&!oDx;2f}6&HnXr?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%Ty)wve!eg)JiN zm%ww$o# zg{>fLMPVxmTX}%-vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA468TsnqJ7g7Ms|s69*y_UmD(r8<{x0kv!qyPBrm(eytu1UFVe1N8 zPuTjxHW0R(M73ENEA=EAlZV7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$d)5t9ejsuC2VV9 z+X&lM*mlCU7q)}29fj>AY-eG+2-{WIZo+mKwui7ih3zG5Z(;ig+gI3r!uA(-fUpCF z9VF~vVTTAiRM=s{4i|RB0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk%%C}BqnJ4V>C!j2Pmys#65oha-iVJ8baMcApr zP7`*zurq|6DeNp^XA3(=*tx>a6L!9^3xr)L>>^Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhN!R|nrA zR|&gX*fqkg6?UDl>xJDQ>_%ZX3A30c}m#R!k!WKtgz>VJumD9VJ`}MN!ZK6 zUJ>@Hu-AmWF6<3qZwh-$*xSP15%#XI_k_JK>;qvR3j0Xd$HG1l_NlPXgncgTivh;V zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO z`Ip}zUlI0IVWSHBny}G?eO=h-!p0Cbrm$}a`=+q5gndicw}pL2*ms3}PuSSP#t}BI zuENK%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W! zVc!?_17R}>n_1W_!e$lrLt(QC`;o983;T(%*@ev^Y))Zw37cEkPlf$V*gV31E^J<5 z^9h@Ofbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA-@>;>fk$M0bvUYTS(Z#!WI$sOJR!&TTIyE!hR)e31LeL`?av&2>Y$DrG))X z*zbk?LD(OK{YluLg)J>?8DYx`TTa;W!d4KrqOg^OtvtYZS#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0Lxn z{a4ukgl#5lb75NyFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWXqAS4!%RS61KIlZG>$rY&&7w3)?~1j>2{lwzIHZgzYM9H(|RA z+e6r%!uArjx3GPL?JI0QVfza^K-hu84ia{-utS6$D(o;}hYLGmfbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAxDmUb?_Z>l(3_P z9V6^mVaEwOUf2o3P84>Mu#<(IBJ5OQrwKb<*crmk6n2)dvxS`_>|9~z2|Hid1;Q>A zc9F1)g@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4!LsVtAp>5tAt%G>>6R$3cF6&^}=otcB8PHgxxIc7Gbvv zyG_{b!tM}ur?9((-7V}MVfPBVPuTs!9uW4Ru!n>_EbI|sj|zKC*yF;U7+}0CxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT|?Umbjh zJSFUDVb2JAR@igGo)`9luos2BB}_H12zyu9d&1rq z_JObug?%LKV_}~N`&8Ix!af)F#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt;>+)luL%39uu+A5P1tC{zAkKZVPgmzQ`k3z zeN)(2!oDT!+rqvh?7PCgCv0qC;|Lp9*m%Om7dC;g35880Y+_-P2%A*cWWpvFHpKwr zWx@TmtH z?84>{Hm9(;gv~ANr^0?FY#w1h7dEf3`Gn0sz<613f9>kAxy){Jv)$&JyUm?%r{aV;>g#A|7Qo?>G?DxX{AncFA{v_eEhlVwVJiq* zQP@htRvuuyEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGQK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvgOEE2j3xE3ENuOHo~?Q zwwFM{AnZV42MIe^ z*df9W6?T}g!-X9&z<613f9>kAxy){Jv)$&JyUm?lyGYo@!Y&bZsj$n0T`ug30mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghg>=G)xmejRl=?o zc8#!Wg~UdF3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6@{Jp3wuM@o5J1__O`HhguN^5Jz?()`#{)-!afrAv9M2seJboTVV?{8Vu10o;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$+`Q>-W zSA>04*r>w3CTuieUl%sIurY*D( z3!6aLgu*5gHnFftgiR`JGGUVon___Rvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA3lj(m0Sf5=qArWQ7huxW)&Cv19QGYFee*!P9~ zK-f&eW)?P!uvvxuP}pq3ekAP2!hRxbc42b}n^V|a!sZtCQ(-?7Hjl8M3!7Kie8T1* zV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$S+2|I`|G*K-hx97816wutkLZQrM!x78AC(uwMyVLfDeRel6@b!hS1kDPg}8_IqJ} z5cWr5e-id*VM_~JM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!ssBVQeShpZxORbi_MTV2>+h5b#~ z--Z1{*c!st6t zVVeotT-X)^jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(*>dEogYS^7gl#Qs8)4fD+fLZ_!gdh0qp+QX?JR5;VY>?3P1x?j_7JwG zu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp>V7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dMyo9ejrzCG2Qn#|S%C z*m1&+7j}ZM6NQ~5>||l52s>5SX~Iqyc80Jsg`FkrY+>gJJ6G6w!p;|Vfv^jOT_o&c zVV4NIRM=(0E*Eyi0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk%%Dq&X(yGGcx!mbl`y|5dE-6-rPVK)oAMcA#vZWDI9 zusej^DeNv`cMH2m*uBE;6L!C_2ZTK+>>*(f3wuP^qrx5&_PDSo1{g03?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rEPJR|nrAPYHWk z*fYYO751F4=Y_o>>_uTO342-CE5cqC_L{KQg}ou{O<`{ddt2B$!rm43p0M|YeIV>Z zVIK+mSlB1RJ{9(vu+N2kF~E3PaDVOUvAN7{bFQ#uL~Pp*cigb6!r~a-xM~M zux|wF>2^(A3IKsviHlDEYg-sxALSYjLn^@Q+!X_0qnXt))O)t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EYY3KMDJ@u%(49BWzh=%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BwY+k*^NELsk*Cs<73BtuE}Z!u}@g@525eYz<*+3R_Fq+QQZmwyv=Cgsm@Z17RBq z+ep|yg>5Ws6Jh@n_HSXE3j2?+{|ft`u+4;RE^Lbd#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jONLBb9ec8IV; zg&ijBaA8LbFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1E^Nb^3p+vBiNa12cCxTjgq^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAym9VRYT_fyT zVb=+}Uf2!7ZWMNtu$zV5BJ5USw+Xvl*d4;|6n2-eyM^5&>|SB_3AiL zg*_tdQDKh>dtBHP1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4ta9qtAp>5r-VH%>=|Lt3VTl2^TJ*b_M)(tguN{66=AOmdrjEu z!rl<}rm(k!y)En=VebliPuTmyJ`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQGHfB7Bq6=7c$ zHmb0%2^&q=*M*HPYz$#z3j2nzZwebr*tdjzTiADmeOK7`gpDn19AV=M8&BBy!X^+l zp|FXBO)P8@VUr4*OxWbYrWjznEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGQK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn@{5tL z4!%Pc5VoMOg@i3EY!P9<6t<|a#e^*`>{r5;5VoYSUkm$O4#p&{a)A~g#A(2 zpM?Ec*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40KZ$X5s7A*%>mRoH66Ru}eHVSf|$cVYh! zwuZ1Zg{>uQZDH#OTUXe6!qykIfv^pQZ6xfU!ZsGRiLieO`?s)7h5bj^e}(-|*k-~u z7q-O!<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O z-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k| z>|wq`wjBBD;5%e1VOtB^M%cE(wiC9!upNZ$C~PNTI}6)I*sj8M6SljsJ%sHkY%gJZ z3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeGz7%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^%QY2j3w_2|HTYF~W`&cAT)| zg`FVmL}4chJ6YH%!cG--ny}M_ogwT@VP^?DTi7|m&J}i^u=9moAnZb67YVyq*d@X) z6?U1h%Y|Jrz<613f9>kAxy){Jv)$&JyUm?<(df z3cE|#-NNn>cCWDegxxRf0bvgcdq~*B!X6R!sIbR`Jud8t0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdep*)xmejQ^KAW_KdJ+ zg*_+id0{UIdr{a+!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U*hj)X z7WRp-PlbIZ>~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6%vACHiob|4UV zE$lnOzANl|!p0Uhj<9isjVEk;VG{_OP}oGmCKfh{ut|kYCTwzHQw%U(7TjOEdTcJU z+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHts zrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA{k*^N^51C5X z)WW6_Hm$JfgiSAO24OP_`@XOr2%AaR%)(|7Hmk573Y$&XkA(eL*iVGbE^H2Aa|)YF z*xbT?D(q*%<`MRDVe<-`PuTnejF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`Nhar2j3wJ2wPCtLc$gnwurD_3R_gzV!{>|_A6ma z2wPIvuZ8_a*l&d`CG2;?elP3~!u}}iPs08zY-wT32wPUza>AAuwt}z~g{>rP+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1u&sq{BWzn?+X>rV*bc&W z6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDj zT-Xri_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(IdbHygYS@|gdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52zjpQ5TxPeq*=}>q-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dw~s9ejseCG2Wp*9f~-*mc6L z7j}cN8-?8@>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLLfUpOJJtXX5VUGxV zRM=y}9vAk+0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Zus4Lg zDeNs_Zwq@z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu(aUw(&tMc7w`jVkPG z!bTJJbz!3m8$;Nb!oDHwo5IEt_AO!G7WN%s-xc;fVPgv$N7%T+#uGNaunB}sC~P8O z6APO}*rdWH6E?Z9DFzrX3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^Bpqf$X5sdhfF1GYGKm|n^xF#!loBCgRmKeeP7rQgv}&uW?{1k zn^o8kh0P}HN5XzA>?guz7dD5mIfcz7Y;Ivc74|b>^9cL7uz7{eCv5%!#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOe+3&+HH#4ZCc!ID&6d1zC->p^3}n2$ST5C6}FnN)rI|4*x!WxUD!W_ts!hp zVQUFnTi80n))ls%u=Ry)AZ$Zn8wvZTu#JUnBJ5wn{w-`%VgC{KUt#|fwwbWag>5mw zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zEl0jO_zu}h*w(_f5w@+c?SySFYzJXG3foE8&cb#PwyUt+gzYYD4`F)>+e_Hq!uAoi zudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6@W_#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO za$#2tFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1E^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW!tN4w zx3GJJ-7D-qVfPDrK-h!A9uoGjut$VFD(o>~j|+QZfbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bcb?_bXl(46TJtOQ{Vb2MB zUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FI zQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4jE;-FTX>+BJ8WeMiuroVWSEAy0FoOjUjAIVc!t;O<`jR`mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+KV3!6jOoWkZ3Hn*^! z3j3L`d4&C3*u28#6E^<<<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H z*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3C zZMxcRirZ~k+-)k|>|wq`elhaZ!FR|4!WI;^kg$b?Eh6lf!WI>_n6Sl#{Yuyp!j=^F zYhk|;_FG{~3HzO}-wXSLus;g>ldwMvTUyvM!j=`boUrAEtsrbgVJit+d4Tb<;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ywe)`Rd?1 zWEEkn3R_Ls>caji>~F&UF6cO>k3;>*!sdY5VoPPjfDME*v7&( z5%w=({}#5Xu>T1Audx3K+f3Nz!nPP-yezoCcJ|wq` zjvV>w;5+0fVMhx)M%b~!juUpguoHxxDC{I*Cks18*r~!!6Lz|=GlZQf>?~nt3p+>H zxx&s9cD}F+gk31?B4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA3A6h20?R zMqxJzyII&R!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY54+(o%*dxLo75130 z$AvvHz<613f9>kAxy){Jv)$&JyUm?a0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11)m){{@5%yJKqYC?)u+fBl zUD)Wt#t=59ux|+arm(SueM{K4g?&fZcZGdV*x16x5jL){@q~>pYyx2u3Y$pS#KI;K zHmR`5giS7NiUG#Ug8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e1}Xq^3}orAyWyPTG%wgrWH1wu<3=(AZ$iq-xu}+VKWJvS=cPXW)=2B zVY3PQk+2^N`-!mGh0P&sPGNHin_JjVh5by}Ji>l1Y+hmW37da_@v`9l+SOxonce1Q zyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWezZm)I;5%diVG9ad zNZ7){77_MKVT%e|OxWVWekE)PVM_}8wXoj^`>n90g#Av~?}hzA*dK-cN!Xu-EiG&r zVap0zPT2CoRuHzLu$6?ZJivHaaDVOUvAN7{bFxRbzy%M_BUaF7xoWfYY1CY*jmEY z7PgMCb%m`bY<*!H2-{HDM#BCnY-3@Y2>X|?e+%1G*nfomSJ?lAZ6<7UVOtC^UKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_%aN}R zzC*SWwzaTrgl#KqJ7L=k+d_4L)f0e_7b+YuziH>D{Mbu z`wKfj*nz?h5_Yh#LxdeF>@Z=63p-+f@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeM~-}T@EvlLu%m??BkWjV#|b-L*a^Z;6n2uZ zlZBlk>{MZ=2|Hcb8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+6$}T_WsKVV4QJT-X%@ zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( zxpL&IgYS^5gk3G{8e!K8yH42k!fp_Dqp+KV-7M@DVYdpqP1x=9v)3VTf0q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$de;q9ejs8CG2To&j@=~*mJ_37xsd% z7lpkf>}6rE2zyo7YrSdso?lyPcZ5GgNw$W`?({1+DZI;$;Hu!&5%p!Qhx{iZ% zcXxMpcXxMpcXt>x2HmNof`UOR-6)*~p`e5bCW!yNzU*NS?{#Nqp3C>M^P8vJth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e20uO_m|%xqY4{M*yzH>5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVIgiS1L z5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm z9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{T-XxAmK3&>u%(49BWzh= z%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY5VoPP zjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L%vYGcDk@Lgq&?AyZ56L!9^3xr)L>>^)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1ExF$s*ms59AnZnAHwn90*e$|t74|)0-xqe9u-k?GK-dq3-68BwVLuY~ zV_`oL_ETYZ3A9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZQ$X5s7ArA_BNZ7-|9ufAau*ZZwF6;?m zPYQcV*wezE5%#RGUkLl9u;+w5FYE4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bmbt&y(|zC+#?_KvW3h5b(0?}fc5?0sQ>5cWr59|-$U*hj)X7WOA$e-`!^VSg3& zH(`Gl_KC1hh5bX=KZX5E*uRDSN7#RbeJ1R4VgD2M#Q@`F!Tq(X$L2D-&CPb3Ywk98 z-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmY zZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt=gaSqQH6~rY;<8`2pdz_ zSi;5@Hjc1yg^ed{d|?v^n^4$9!X_3riLgn9O(tw|VN(d3QrJ|&rWQ7huxW)&Cv19Q zGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jto zyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?Ps zO^drtrJFs>cgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){ z77@0nu*HNeE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(Nn zZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtH_HAM32|Hid1;Q>Ac9F1) zgQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfna?QwB2j3yr3cF6&^}@a*?7PBl5O$-mn}ppg>=t3S z3j3b0?+d$4*zLl8Anb?2?htmTupbHgv9O;A`>C+IgxxLd9%1(iyHD8t!hR;~=L3wF z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`wt z}g@o2zyr8FNFP4*mJ_37xsd%7lpkf z>}6rE2zyo7Yr0)75TM+-}q2Zd2)I5Az-J*2q@}-yv@cdq>#2!hR?0_rl&2_P($` z2>YY34}^Uv>?2_x3;UC>KMVVdu)hlXo3OtN`$X8M!u}!bpThnn?BBxvBkaGzJ`?u2 zu>T4BVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yx&S`{j4YsKQ1QHoCAegpDa|EMa2{8%NlAAu zwt}z~g{>rPrVtKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5 z?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`& zcAT)|g`FVmL}4chJ9&Wdvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA4kjC^(Q9dfF$uL%39u&)XGy0FuPoi6MQVP^_EOW4`M&JlL5 zux|+arm$}b`?j$2gq<(!0$~>lyGYo@!Y&bZsj$n0T`uejVOI*fO4!u{jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xn|_6gYS@Q zg~>*45cWf1cL=*v*pGz$SlCa5 z{Z!ap!tNG!kFa}%-6!mRVLuc0^8v=og8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+R^3}n2$b-Tj685mLM}$2p>@i`F3wuJ?lfs@7 z_O!5Pggq^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!hR*}*TQ}y?6(7q zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9 zYvikg?~u2Jy(8>hVZRghdtvVhdtcZeg#A(22f{uS_K~oUh5bp`pN0KJ*k6VHP1xUs zeIo2rVgC^JPhtNO_HSYT5%ynUp9%Y1*#CrmF~E3PaDVOUvAN7{bF+vRAHkD8(r8K!p0Ofmawsf zjU#MaVdDuKU)Th~CKNW2u!)6DB5YD&lL?z#*c8I16gHKxsfA4=Y+7N{37cNn48mp< zHj}WK2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LX zY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75T zwwAE9g{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV z*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{ z>=0px3Oh{L;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L04 z*w=)8UD#>DP8W8Durr07CG2cr=LkDj*f)fIQ`onJeOuUh!p;|Vfv^jOT_o&cVV4NI zRM=(0E*Ex%uq%aKCG6?}#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jOwDXgxx6YCSf-VyG7Wo!oDZ$ z`@(J$cDt}22>YS1JA~aS>_@_WEbJ%3ek$xPVRs9=N7%i>?h|&uu%8M0`2gc(!Tq(X z$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`m zZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`u`Rd?1 z#PVZRdgYhk|;_S*r*%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB z?5W!Y+F&xCz0?0>?( z7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQI7fB79Us<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU z*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbg zVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X| zu+4;RE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~ zVJ8SXQP@esP99*qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwcnn*qOr45_Yz*bA+8M>>I+q zDePOqzAfxLVdo3GK-h)CE)sUJuuFtpD(o_0mkYZ>*p|wq`t{M62;5+16Vb=+} zUf6epeOK5G!fq6HldzkG-6HH(Vc!$>ePOo=yIt51g#A$19m4Ju_9J0G7WNZiKNWVD zu)BrbBkW#b_X)dS*w2Lhe1P$?;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-ysi-e0A_0@}RJXggq?m5n+!Cdra8l!k!TJq_C%iJuU1R zVb2Qtg|J@=drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtuwM!LwXoj^`|SYZWx@Tm ztHUf6rW-WT=f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhs-ka)xrNEvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2 zVe1H6SJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8 zh3zD4=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_ z!VVL5xUeIH9VzT6VMhx)M%b~!juUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t+k*^NELrxX;6=7c$_BCN& z7j~Mk(}kTO>`Y;22|HWZIl|5r_6=d*6!tA)-xhYBu=9moAnZb67YVyq*d@X)6?U1h z%Y|Jb>`Gx*3A=iL@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWe*Nl91@Evlku}SG$KEQZcaDVOUvAN7{ zbF30c~ICx z!X6g(h_FY6JtpjNVNVEqQrJ_%o)-3uuxEw+Lf9{bJtypWVJ`@KQP@kuUKaL>uvdk> zChT=#ZwPx+*sp~BTG(%d{dR!yvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA3>jeK?R9rCuYcZ9tw?03R`FYG;G?+g2bus;g>K-h=E zJ`(n^us;d=v#`Gi`>U|O3H!USPlSCc>>tAZDePau{w?f3!u~7lGhv?#`=78c1{g03 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu&- zUw(&-Dr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%> z!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7* zh0P~yeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y z9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h- z3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKI zh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z; z6n2uZlLr_t3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^Br=^$X5s7A*TxaimB7zscBZhigq=I#@3cF0$<-)EIcBQbZgk3$rcv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Yev30_zt;N*mc6L7xo=t z-xYR)up5QlBPleqj>~3NA z2)kFcgO=HUmbjhJSglTVGj#?MA)Ok9uxMsuqT8)DeNg>PYZiS*t5cZ zA?%mJo)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>{r5mE$lbKemlT;S#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4jE;kFTX=Z6*ii%(S?m6Y)oNe2^(A3IKsviHlDEY zg-sxALSYjLn^@Q+!X_0qnXt))O(ASbVN(g4TG%wgrWH1wu<3=(AZ$iqGYOk{fbp{6 z{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBp zb?|@4tiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{o zDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)i zd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yyq+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BM zF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^Z{a$#2p zyHeOy!mb`*yezoCcJ^foB3;T|+?+Uv?*p0$&5_Yq&TZG*z?0dq#FYGp9w+s7$ zupbJ$L)e|dekAP2!hRy`r^4{(&I5cW%9&k1{8*bBm56!wy^mxa9|>{Vf}342}G z8^Ycc_A6n(7WNxqza3z_EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG`%h}EbK4B{wnNm!u~Go6JehU`-iZ93j3F^e+&DMu>T7COxWkb{wM5<0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm5lDm){|y z3L8z>=)%SjHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPi zEo>TL(+ZnT*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&JyUm?5)6t zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;E zR|nrAs|s69*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$ zrLe7pZ7pmYVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT% zSJ-~S_7`@5umgo1B}X-f2s>8Tal(!lc7m`Ig`Fhq z4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbnvt&#zC*4RcAc>6g?&fZcZJ;` z>_%ZX3AA?!|JKN9w1VLuV}Q(<=ryIa^j!tNDz zpRoId{Y==;2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~Y zZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9rD1)R|nrA4+?uo*u%me5%#FC$AmpD>Ye5 z=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEz`<1X?3;T_*-wrTd7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!uAk*^NEL*5qlj<9!y z{Z82Lg}o>2ePMqP_D5kK2>VdjN5Vc9_9tO~7WNlme--vOVSg9)iLg(F{X^J4h5bv| zzlHrr*nfq6ChT)z{}cAb0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0M ztFYOG%`R*XVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp z(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)o zw^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!S zePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sI zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXy zUmbjh>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yC zk;0A=cC@f#gdHpFIAO;NJ3-iq!cG!)@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%tK`Rd?10)75TM+-}q2Zd2)I z5Az*z&B#{=-yzouyH42k!oDNyyTWb|cB8PHgxxIc7Gbvv`<}4x3%gC&?ZSQ_?1#ec z5O$}q9|`-hu%8I~sj$0*-7V}MVfPBVPuTs!ekSba1B{mi_t&l-o6GDrH`{Hlx!c@% zw^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4tZeYtAp>52ZcQ(>|tS#2zyl6 zW5OO6_Jpt}g*_$gX<^R@dsf&lg#A+3bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5lhOjq< z{Yu!ch5bg@ZwDAJ3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BwZm$X5s7A#V$NN7%c^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)_q%<#))a!bTG| zy09^XjVWv_VPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sR zw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~ z1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmej zs=`(iwz{x2gsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiY zTMOGp*tWv96Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2VooUr4CognN)VJ8VYd4Tb< z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx@r ze0A_0a;mVe2>YtAuL=9Qu+xN{F6<0pX9_z@*xAC)5q7SyZwULQux|mI*wq7!mj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghdeOy)xmejgTfvX_OP%=ggq+kF=3AjdqUWg!k!ZLw6JG{JuB=N!hR|2IbqKW zdqLQX!d?>gvanZ#y(;WAVXq5&L)e?bekJVJ!hR#{w*!oq1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w&kAxy){Jv)$&JyUm?QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1k zvkRL;*qp-V5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_ zEh}s}Vap3!LD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1 zHWapzu#JUnB5YG(n+e-o*cQUJ6tZc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrA zy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre z9WCq_VaEzPPT29nP7rpYu#<$HJivHaaDVOUvAN7{bF30IaSzKgnd=m*Mxmt*lEH}7j}lQGliWc z>}+A@2s>BUH-vpt*tdjzTiAKR&KGupunUDu?gv0D(o&{cMH2m*uBE;6L!C_p9%Z<0OMuB{k5yd<}$m@&32n>?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%L17OGdsx^b!X6d&n6Sr% zJt6E#VNVHrTG%tfo)z{BVZRjioUrGGy&&vGVJ``LS=cMWUKRG5u-ApXA?!_IzY_Lq zVZRaf+X2SQg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e22U>^3}n2$lJo+5%#XI-wFG@u=j+$FYFJ({wVANVIKR`>(LigncgTf5N^PV7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S8|{`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CC zTUgj4!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73B ztuAa0VQUIoOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQItUmbjh zoGR=q!oDi(Yr?)R>@;Dg3p+#DnZnKzcDAr{gq|4UVE$lpD=L@?)*oDF_ z5_Yk$ON3o2>@s1O3%f$tmBOwPcJ%<`Wx@TmtH|SB_3A^8gYHjC~yTkkd% z=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(W zArFjvb?_bXpse+3&+HH#4ZCc!ID&6d1zC+#``Rd?1 z7xo8Xe-!qCun&cOB_IF{Q2>VpnKZN~L*uRARTiAbu{a4s$ z!af)FKVe@CFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWRxYo{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jO{ zHm9(;gv~8%9%1ten@`yM!WIy=psQK%L-dg z*z&?w5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWta zY-3@Y2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT` zw!5%BgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf z*s;Qn6L!3?6NH^8>?C0)4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6_TA|3ACBiNhcA2otgoyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA59jC^(Q z9dfO(>x5k|>^s7~E9?egHwwE+*v-Oj5q7Jv?+N?9u-k;)F6;-wekkk?VRs7qk+2^N z`-!lh3cE|#-NNn>cCWDegxxRfXTp9yz<613f9>kAxy){Jv)$&JyUm?^4*h|7*7WRs;SB1SM>~&#p2zyi5uY~NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yv^}e0A_0^0u&dguN^5cfx)z>^))c3;TnxKMMOm*oVSC685pMKMDJ@u)hfVtFXTb z`@67DgncUPAHx1A>|etEE$lzS{wwS=VV?{8pRg|m7%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRl%)eus=IY&2n`3mZe&n8L;q zHny;FgpDg~JYnMtn?Trv!X^?nv9L*mO)6|MVUr7+LfDkTrV=)_uxW%%D{MMp(+itH z*o?wv5;pSy<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj z7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k z+-)k|>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@#%_nSrVG9UbP}oAk78bUM zutkL}CTwwGO9)$1*iyol7PgGAWrZy#Yq z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0 z*qXxD61KLmb%d=eY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$ zVcQGaLD-JMb`rMp0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk$MS7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8f zu!DsiBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP2|Hfc3Bpbkc9O7@2N*94?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgRZR|nrArwaRu zu&)aHny{}6J5AW>!p;zOrm(Ywoh|GfVdo0_hOlo6`C~gk3D` z5@DALyG+>S!mbc@rLe1nT|K~fS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3BlM!q`u4!Ks?b;7O}_8np06?TKL8-?8@>}FxN2)k9- z_k?|4*logY7xn{TKNNO{usenQNZ5~s{Y2PLh216WZejNbyI0tK!tNLLGhsg;V7x52 zzjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$O9u^ z9ejs8DC{9&4-0!l*rUQ86ZW{UCxksI>?vVS3wuV`v%-EM?3cox6ZX8Y7lgei>?L6@ z3wuS_tHNFr_PVe)guN;3SHgZR>^H)GJHU8ZaDVOUvAN7{bF30d0W^!!rm43J7K>U_MWi!h5bR; zABBA&>_cH63Hw;spM?Ec*k6SGRoLHz{ax56!af!D4`Kfl_Ag=o7WN-u{}uL`u+N44 zPuLd&jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(8D*(2ze7e9Hkz=}g^eL>OkraQ8(Y{o!p0Rgp0M$SO(1MSVG{|PSlA@OCKWcB zu*ro@A#6%vQwf_|*fheX6*ir)>4nW8Y(`--37dI<@v`9l+SOxonce1QyUjIsn>+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWevy6Oo@PEjx!e$dTyRbQg%_(dy zVRH+cN7%f=<`Xu*umyxIC~P5N3kzFB*rLJ~6SlapC4?<0Y$;(&3tL9mvci@Vw!E+v zgsmuSC1EQMFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWR;Px4!%QH6}FnN)rGAgY)xTn30qs(I>Oc!ww|!{g>4{gLtz^U+gR8p z!ZsDQnXt`;Z6Rz+VOt5?TG%$iwiULWu^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA-jxxb?_astFYaK?JjH& zVS5VOOW5AR_7S$Pu>FMXFYEwe2MRk#*ulaM5q7As!-O3!>J(ZY@qcC4`D zgdH#J1Ysu%J4x8d1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-r|Idn91aDZ^aS#Pj1OXKlP(naa6i~Xml~MsoMI{vk z34`wL?(XjH?(XjHZvT6I*~1>*>(0(Rm+xoiHxEteHnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA3tj(m0S9kP|Mt%YqPY+GU53EN)S4#IX6wv(`( zh3z72S7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*bxJa zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraU za^$On?~tQ}9WCq_VaEzPPT29nP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3>>Od| z3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S!mb!#yezoCcJ}p}x2)kC;b;7O}c7w1R zh213VW?{DoyH(h2!fqFKhp;<^-6ia9VfP5TSJ-{R?icoeum^=bB|wq`o*en=;5+0gVNVNtM%c5$o)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>@8t$ z3wuY{yTaZR_P($WgncONBViv4`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRn+feusQT*jI&(Dr_`iUlTUE zu&)dIhOjY&eN)(&!p0KzEn#B|8%NlD#6ZU;!KM*#)unB}sDC~#A zek5!nVG|3RWPtIq;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yxHZe0A`D$d83hCTwzHQwaNsu%8N>QrORg{an~o!hRv_m%^qNHjS`p zh5bs{uZ2w~Y~8ge@v;F=4+E_FG|#3tK|ilERh}wzRO{3H!aUKL}e!*s{Ww6ZS`8 z%L`jU*owkd61K9iRfPR%fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA%7nE>fk$MRbhV-_E%wl6SkVL)rGAgY)xTn30qs(--Z1{ z*gC@274}bI>j_(5*uR8rAZ$Zn8wuN3*uRDSN7#Rb{ZH5?!ZsDQnXt`;Z85-jS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LFMX zFYEwe2MRk#*ulaM5q7As!-O3!?1%xz%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB z?5W!~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI<= zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb z%8{=QzC*4OcD1l;gk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWePmX+b@E!7$u&0GRBkWmW&k1{8*bBm5 z6!wy^mxa9|>{Vf}342}G8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6 zT-X-_jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(8D*9)zeBzv?5n~?6*ii%uL&Dn*w=-9L)aL?zA0=>VPgsVmawsfjU#MaVc!<^ z9bw-UHlDEW3H!dV9|#*?*aX5R6!t@5KN2>Pu!)6DGQfCQaDVOUvAN7{bF3n4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bk_o{_H(zC-2}HlMKhg)Ja#L17CCTUgj4!WI>_n6Tdn`>n9Wg)Jd$ zNnuL~TUyxfg#BLFAA~IkAxy){J zv)$&JyUm?U|O30qCr>cZ9#wx+PPgsm;?@525eY#m|i3j3$9^@Oc2>|eq*5VoPPjf8D1?BBxv zBkaGz{wHh`VVeruOxWhawisZ%EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+1 zRoHIAb{DpXuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@Lgq0)75TM+-}q2Zd2)I5Az*z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5nVK)i8 zS=cSYZWVT$u-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*`FA zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zCr7?I_zrnW*wezE5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~ zuCVuny)WzoVIK;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO*MyBO?CZk5 zA#4m`-xM~cu(5=FOW4@L#t}BIux|_djcgUn8Umg4(@?&9>37cHl6vBQY?5Dz}6!tS=KNmKYuwMxKrLd`mO(SetVZRdg zYhlv~n_k!q!e$gUldzeE%_3}8VY3OFUDzDL<`g!Uu(<~qFAMIkT|G9J*==sN+gx+E zx$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hut zsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|&&XE?-y!n~n@`yM!WIy= zpsq-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$e%~PI`|G*RoGvI{Z-iCgsmoQbzy4=TT|Ft!qyh{cVYh!wvMoM zh5b|5dcxKh_Ag-@2-{HDM#450_HSYT5%ynU{}Z-}uuX++CTw$ITMRH>7TjOEdTcJU z+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHts zrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NEL$(sO zwXki3Z7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sA zfx-?FcCfHRgdHmEFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@g`Fbo zRAHwHJ6+fr!p;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb>>gqF3cF9( z{lXp)_Motbggq?m5n+!Cdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh%g}o%~ zWnr%fdsWzL!d@5lhOjqP-WT?Pun&cOB|wq` zMw#u)?~tzu`>L=}g^eccYr;ks_H|+35H^OeZwebz*jU28C2VYA;|Lp9*tdm!N7#3T zjVJ7T!oDx;2g1e|Hi57Sh5b<2kAzJmY+_-P3@~06++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrbfXXLAc?~r+g%_nSrVG9UbP}oAk78bUMutkL}ChRxDek*KoVM_>GQrJ?$ zmKOFqVZRsl2Vu(yTUOX|!u}|1d0{IETT$3b!d4cxim*QoFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EY+F z{|Vbf*rviZ6SldqEe04b3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BuC~$X5s7AzKOCTG%$iwiULWut>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK27IurU zTZP>w>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP&UKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$&s%P zzC)f8_O!5PggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqs;#0cgRZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9Wv?2R|o%x{8-pz!X_6sg|MFp`>C)gh5by}&xK7T>=(j*DQs$C(+HbZ*sp~BTG({L zrWZDYuo;ETBy473vk042*lfaP7dD5mIfcz7Z0-TZ%YyrBSC7qQcAJ~+HrL#3?!4P9 zpxbPt+pMPB?5W!QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)Jfn^5>DS4!%QH74{cle--vOVXFySUDz7J))cmuu(gH#UD!W_ts`t*VgD4i zp0M?W{Y%&e!ZsAPk+6-0{ae_7g#B08|AcKKY*S&I3EN!Q76Xiz1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM z+X~xG*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<64 z9W3k+VTTGkOxWSVju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1 zR|~sF*tNp06L!6@8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`ye zv~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;Z zZd1>0)75TM+-}q2Zd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x=cv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#QReva zJLD_EzA9`~VWSEAny}G@eO=f$gpDEWo5IEvHkPn&2^(A3IKsvi_HAL`5%yhS;|cqo zun^@Q+1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4w-c1tAqbTek^P{r5mEo?er(+itH*o?wv5;n82S%l3hY&K!D3!6jOoWkZ3 zHunJIWx@TmtH5)6ti_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`SZwE2j3y93j2$&zY6=Cu+@aE zE^G~9YYJOS*xJJWF6rVtKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@ z9V_fOVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~Bcp zcCoNagk37^GGUhsyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZ zyIt5F!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2 zJuU1RVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD z_MxzkgncaR6JehU`%Kv9!oC<_yezoCcJY(E@q~R(*!P9~K-l=gCJ;8EupbKhk+6w`O)PAZ0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfF&1 z)xrNEKNdEbu*ro@A?zo@ekyEAVLuc0b74~n`-QMy3Y%KkG{UA8_A6n(7B-!*>4nW8 zY(`--37c8iEW&0LHk+{7h0P&sPGNHin|pxqvf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA5bjC^(Q9Wt-5`Gn0cYyn{l3R_6n!on62 zwy3bhg#AX?Z-p%`YzbjY3R_Cp(!zcx?DxX{AZ!_7%L-dg*dK*0FKh*2D+*gl*vi6I z5%#A6#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOj+y{*gu7>Cv1IT z{}Q%=unmQ6By3}0{}%QiVgD8OKVh2)+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3Ywk98 z-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmY zZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6w!*d( zw!N?&gzYG7Ct*7a+eO%}!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy z*rCD>6Lz?;BL)~R3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^Br>J$X5s7Ax8;2TG%ndjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i(}kTO z>`Y;22|HWZIl|5rcAl{Fgt>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L^4*h|7*7WRs;SB1SM z>~&#p2zyi5Tf*KJ_KvW3g}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_l)1kA4*80( zuL>Jg*l5DOCTw(JUl;ZbVPgpUrm!)EjV0_`!p0Uhj<9iseOuUfgnd`oc*4FX?EAug zAZ&bL69}77*bjyMNZ3TeCKfiy0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fry79}AmI*yO^d5cU&cKNU8mu%8M0xv;5( z{X*C;g-tDN8e!84`<1X?3!6^Z^ulHkHlwhagv~5$7Gbjrn@!m4!sZY*r?9z%%{{<) zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0La6j<7L79wX4VGGP}*qcAIPNHh11_7SL_B z(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQ zZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`{yg&4!FR~2!u}%cufqN&Y&Bu43tL0j zn!?r+wzjap3;Tz#b%d=e?4QEc6Slsve+k<_*oMM361K6he+&DMu>T7CpRi4YZ7OUt zVVeuvVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yvI$e0A_0vX!u{g>55jTVdM?+g{iX!gdt4ldzqI?ILVfVY><2UDzJN_7t|4 zu)T%tBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5d(~u1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^a9=a?A3Oh~M>B7zscBZhigqMeOhq_Inx=p*fP1U+h@48J1yGD>YGKz1yH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9ZWnfk zusem_CG2it_XxXJ*nPt87xsX#2ZcQ(>|tS#2zyl6W5OO6_QU|=Wx@TmtH?L6@3wuS_tHNFr_PVe)guN;3En#m9dq>#2!rl}1zOWC3eJJcB zVIK?oMA)aoJ`?u2urCG}FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ( zZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0 z)75TM+-}q2Zd2)I5Az)|%G_UmhkQlYSA~r#Y&2nC6E?cAuM7KzurY*vQ`nfo#uD}| zVPgv$N7%T+zAfxK!oDkPJYnAx_I+VL5H`NB34~23?1#dBBy1vK6APPUfbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA(M`Lb?|@4 zkA+PpY;s{!2>Xe!p9-5&*w2LhT-a2?ej)6a!lo8Bjj(Bj{Yu!cg-s`HdSNpNn^D+I z!e$mWi?CUR%_eMiVRHzZQ`lU><{n_YEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyG+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe ze;)bj;5%ehVSf?!S7Cn>wwkcjg{>iMO<`*ZTU*%Qh5bX=I>Oc!_D^B!30q&-zl3cd zY(rri3ENoMzlHrr*nfrnPuM2HHWjv+u+4>SF~E3PaDVOUvAN7{bF30*-F^f!nP5%t+4HcZ7*yG zVLJ-jN!ZT9b`iF#u-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt! zgdHyIhyljSg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e1{x4^3}n2$Wg+M7IuuVV}%_j?08`(2s=^ONy1JRc8ai5g`FnsbYW)*J5$(M z!p;_Uj<9ouohR&kVHXIyP}oJnE*5r)uuFwqChT%yR}3&-7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!udk*^NEL#`5bwXkc1T`TN5 zVb=@0LD-GLZW4C0uv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=l3wuD=gTfvX_OP%= zggq+kF=3Ajdt!j`vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA3hj(m0S9rBd0r-eNu>{(&Y3431H3&LI$_L8udg}ox|Rbj6QdtKNY z!rm12maw;ly(8>hVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1*cStgmj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}Wu7m;L%t&HtHMSV zHkz=n2^(G5*M)sU*cigTDQrw(V+s3~u(5@WBWzq@-xl^AVc!)tp0Mu;`@XOr2peD6 z1i~g1_CsMm5;l>riG@uvz<613f9>kAxy){Jv)$&JyUm?>}SG$E^I1czYz9I zVN(m6M%c8%ekJVJ!ln~8y|5XC%_wXpVKWPxMcAyuW)n8MusMXyDQqrba}O|H7TjOE zdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95 z-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wAbk*^NE zL*^AWpRoCbEg)<`VG9XcSlA-M78SObu-^##t+2&~Eg@`4VM_^HTG;P|{a)A~ge@a% zSz*fw`=hYsg{>fLMPVxmTUppD!u~YCcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5 zn>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#KaYHM@Ex+Mu)hfVtFXTbTTR&N!qyPBrm(ey ztu5^D!u}y_9bxMV`=_w=gsm^^U&1yJwxO_%gl#PB-@^VQ?7zbPCu|d8n+n@Z*yh5v z7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgU6_UmbjhY$a@KVcQ7XR@ipJwimX8upNc%By4A4y9nD=*lxmh7q*A6J%#NhY;R%v z2-{cKe!}(_c7U)0g&id9U}1*{J5<e+3&+HH#4ZCc!ID&6d1zC(^2`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^Br>K$X5s7Ay)~zTG%zht`&Bju`q~K z3At>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LK!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h9}4?O*vG;? z5%#ID&xCz0?27@$%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!%zVvYz$%F6gH-?v4nj~*x16x z5jL){Zwvd5uq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$fP4*9sD2iV_}mC zn_Sow!hRy`r^2Qb_A_BW7dDl!UkLl9u&ISjBWzk>zY_LqVbcklUf2x6W)wD)u$hI; zB5YP+vk9AB*c`&<6gHQzxd#|83+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BpqJ$X5s7A@d5GPuTpz77(_eu!V#zENl^Biwavz*l&dW zR@magmJqh2u%(18E$nx~elP3~!j=)Xtgz*T{ZZKR!d4KrqOg^Ott@O6VSgH6yezoC zcJ z!ZsH6Z(;ut_FrND6Sj%4O@(bHY;$2-3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc6 z61KCjU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZFVTTJl zVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yuhie0A_0a+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c*u(O4o zBkWvZ=LtJs*agBa6n2rYi-lbx>{4Nu3Amw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h@48J1yGBVQeShdd?hX<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4Oh zCG2fs?+ANW*n7g>7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtH)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWYUqZ4*n1Mv9QU6O)hK-VLuV}Q(;pI`_3Y$yV+yji41^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+9m8 zCv1LU3kX|K*h0b<7Pg46MTIRU>^H)GD{OILO9)$1*iyol7WO+~zZdogVao_xR@idF z{wQpDVJiq*QP@htRu;C3us;njUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bmb&m&(Qe21(m>@ULpD(r8R`>(M73EM>2rouK8wz;q^1{g03 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kS)f zR|nrATM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^!uA!m zpRoOf9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$zVJ8YZ zN!ZE4P7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=vVb2SD zLD-AJUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUP zGhv?#`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA4g%>U(g$XA4YRoJM)MicfmVWSKCy0C8u8$;MPg^ej}EMeagHny;FgpDig z+rqvh?7PCo6ZSn}-xu}+VdD#%K-h%Bekklm!X^?nv9L)77%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGU>=y2mgosSlDF3CKon^ zu%8I~sjw-9{Y==;g-s>w7s7riY-(ZC2%A>euY~0)75TM+-}q2Zd2)I5Az-J=aH`tzC%_O z_7`D)74|n_s|j0O*c!st6tD4+g#Wd1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)o zw^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6}gzYSB z7h$^!+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC7+}0C zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT?= zUmbjh93|{%VaEtNR@iaEju&=}+A@2s>BU zdBV;Yc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ86ZW{U zCk7ZV3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BwZ!$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B342@E zJHp--_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0L3jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(nRMie+3&+HH#4ZCc!ID&6d1zC-32`Rd?1WL{zO37cQo z0>Ty)wve!eg)Jg%QDKV-`;D;Q3R_&*62g`gwv@1?h5b(0?}hzA*fPSF6}FtPKMGr3 z*b2f{6t`w!Xmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrcq^T<~R-yy3C`-`x@3j3R|)r74sYz<*+3R_Fq+QR-W>>t9` z5w@8w%S<*v7*CE$lzS{wwT%!Zs1Msj$t2Z7yt!0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W)xmej zR>HOxwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV z2M9Y**g?V$7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{gqoT`KG{VV4WLVu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv6y ze0A_0a+R>FgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5 zmxR46>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkb zz8GMMeOhq_Inx=p*fP1U+h@48J1yG@)coU6*j7{(S&_X*yzH(F6wy^IA z`>wF@gndug_l5mH*!aRG5H_K(9}4@Cu!)3CENqei#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO?gv0 zDr`z&KNI$IVN(hFg|J@=n_Ad3!lo7WD`CGDHl48Ph0P#rMqx7vn_1W_!e$jVo3Po1 z%^_?~VRH$adw}t>;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-y!pie0A_0GOw`tgv~E(0bvUYTS(Z#!WI#>sIbL^{YKbtg)J^@31LeL zTT0l{!hR?0_rm@lY#Cw83R_OtAB8P1Yz1K}3R_9o%EDF=_NM{H%YyrBSC7qQcAJ~+ zHrL#3?!4P9pxbPt+pMPB?5W!uQZDD^G_77p}2wPX!KZUI)Y<*$>61IV`4TWtaY-3^n7WN-u z{}uK>VVelsRM=+1HW#+V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~VLJ=kMcA&w zb`!R{uswwBDQqucdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%31{g03?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhKzR|nrA zM+rMx*fGM66?UAk_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+U zT_Eg2VHXLzSlA`PE){l}u*-#AF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kgVK)l9N!ZQ8 zZV`5?u-k;)F6<6rcM7{p*xkbJ5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJOggq|oi2=sT zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+a z^3}n2$Wy|e7WRy=XN5f{?0I1?2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3!rm74j<9!y zy(jE_VIK(lP}oPpJ{IT*&s=BPLiYK41#26f@ElrC?HA689@XER7{w`j3{O? zBVfdU5ydR1zmlYd!t8cGYid zas9To*l%m4y>?nYha|QB_verdL6$MdG6h-YAj=YDS%WNFkYx|D96^>d$Sw%7TtRkW zkmU}tJVBN>$Sw-9d_k5!$O;5m!5}LXWQBw5;vl;u$chA6(I6`pWW|H5M37yYkm<=n z=g&L!YU^bBZJk-at<&tcbs*wr;fF z)?N48S^>YUeel~_4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz^xIlbzpY*M z+ge<|tu6N3T4}GHmd_!{ylUdFhm;JmQbBfEkd+RyGC@{0$jSv-`5?PI$SMR`#UQH` zWR-)gN|03zvT8wAJ;-VVSC4YGPcRzJuZ1lbiq)-cE#1zF=DYm$)Z z$wKGPJN0VoWcqELS--8*?6-B!{kCp^-`3sm+qyM=TldLt>!$f_-9f*t+v&G;Z~eAz zwBOcU_uE{qT)(X?_S;%%ubr09Ax(MJ#OIJ^LDoFTS_E0kAZrz5t%IyhkX;#MZG)^`khKr8 z4nfv2$T|gC=OF76WL<--Taa}RvK~R!Gst=cS??gbD#-c-S>GVLI>`D3S^pp#5M%=r zGCf)7{CTHdZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB`EA`azpXpyw{<)Hw(hOp z){XYty6b*hE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK&tLC@0cYa$-=(n|zep~D5 zx3#N&TZ`+rwZ(p0EA6$@@;PJ>ubTKAGC0VF1liCa8x~|KK{h9=)n z{kCqj-_~9C+gbs?t$py@S`NRhP4U}W8^5g`^4nS{zpd@^+gdfht-bTxT0+0Ajr7}E zPrt2Q_1jupzpX9y+gfR_otDobb9vRo=a6|pc72e|53&V8wlK&R1=->tyCKMK46-Fb zwlv6=1=;c-TM=X{gKSlhtq!s^LAEx?)&<%6AlndR8-whoAlnpVn}h7;AlnjTw*=YN zAlsIZ>B&Op&pY*M>ty@@AiE>T?hLYBL3US= z-5q521lheoc3+U~4zl}$?13PAFvuPXvWJ80ksy0C$o2%;-XMD{$Q}=}CxYzBAbTpv zo({5Sf^1(xrY8%XKkwA5t&{1ub!PpxPP5_-)-Mzpb0*w{-{o zwr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5Z)>h&Tnf8 z{kAsJZ)-jMwszHTYjORyw%BiLrM-4qK8HNZt0q2&><_Z%g6#PqI}l_q1lfy0_EM0& z9AvKq*{ebJT9CaSWCw%njUan7$leOFw}b4RAbU5+-V3rrLH2%-9S*W1L3T9AJ_xc8 zgY2Uq`#8ux39?TUGCf)7{CTHdZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB`EA`a zzpXpyw{<)Hw(hOp){XYty6b*hE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK&tLC@0 zcYa$-=(n|zep~D5x3#N&TZ`+rwZ(p0EA6$@@;T%fubTKA@>!659%Nqx*_T0fJjlKZ zvaf^en;`o($i54*?}O|_ko^#3KL**!Ap0rEeh#uoogqopZmf8{oHfH~hA4jo;RN z^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R-{I=G{Z)=DAwie27YrFim zR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)<#R|y6B+7!R7wej29A-}DK^4r=j zzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp_1oHFzpa(_+G+V5lFX|n{(4BsAS)GQmjzkr zAS)AOWrM6-kd+Uz%Y&>!kW~z_Nqh%+-F3gM74X~I2fwZ5@Y~uHzpb_L+u9+&t%dU2 z+AhDXRrA~0JHM?Z^xN7kaZ5SEebfC^xHbKep{#6Z|j`bJGHep_4Yx3$t2Jxzi&mn_@Y)Fs| z4YFZDmJ(#cgKR{QjSR9;L3T}$jSjLgK{htX#s%52XPNv`1nf2Q`&3;?w+;8g!_-)+{ zzpY#2w{@TVwr-l=)*bZQx}APo_ttOgM*D5ub-%3@@Y~u4zpdr)+u9Vrt+nyn+9AKK zh4S0lF2Ai+^V`}xzpW+o+uBIKt@ZTV+Eu@;#r50TV!y4G_S$Lr95RjwC3 z-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?;ZQXUhtrhUw+6TX_kvIm3gp&)xW$Q}u@ zM}urnknIh!$AawfAbTRno(!_5g6!!adnU;CC1iTC(E0ODz1ljNep_eOZ|gMsZJl$! ztsCICbvOLBZjIm8ee&D7X?|OG&~NK@`fc4?zpWeXw{_S3wpPGzYajf!mcwsrQ~b8p z#&2tf{I(X#Z)>~!wpPt=Yw!HFme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{#0Vv%G5J zbIAT6doIYH53&P6_Ck=o7-TO6*~>xpN|3!8WUmF;>p^xf$leIDH-qf0AbUH=-U+gI zgY3N^I}~K^2if5uI}&6^gY1JK`!L8p3bK!b?2{n-G$GTIh0dRM>ebfC^xHbKep{#6 zZ|j`bJGHep_4Yx3$t zj`6CA&mo@$+2=v_MUZ_NWXFT-t04P2$i4}(Z-eZ+Ap1VZP6XKxLH1*ioeZ*{g6!uY z`z6SJ4YJ>Y?Dru1Bgp;?vQt5JI>`PCvcH4upCCIEWM_lyTtcQN3!Ojj)T^zN>9=)e z{kBfC-_|+z+qwaMTX(~6>(=;f-6y}To94H52mQ8gr{C7S_1n79ep`3lZ)*kow)Vkq zYdQS3HpOpiZTz-&$Zu<*{I<5sZ)?^3w)W0%YYF|fHqvivJ^i+J)o*KY{kFE)Z)>H! zc3M7%BwhLM&mkFtEMt&m3bM>WmL3s-_}j@+q#2(Tes71>)!fp-Dtn9yY9EO0)AWj z;J39Lep{R3x3xBYTRY^pwNQRr+vT^lYJOXL=eMgkktsXnn6}8$Z7{!ogk|lWc7lqevmZ?vMYkDVURTnvc^HyBq7t2h0dRM>ebfC z^xHbKep{#6Z|j`bJGHep_4Y zx3$tn)0fN&mql%ta*^N2(p$z)+)$a2U(jSyE4ey23flxYae7Cf~;eZbqcc1 zLDnV6x&~RdAnP7vJ%X%fko5|(-a&R%ko5_&zCm_%ko60){y{b%$Oa~4da}^@^G?0m zI+=c3XV!1)H2ZCxbHA+{;J0-*{I+h5-`0Kd+q!9fTX)cJ>vsBW-CMt{8|}As*ZsCu zz;A0G{I-_EZ);Qhw${dPYlr-{7RqmHyZp9R&2MY({I-_RZ)+p{w${^cYghfY7T0fU zi~Y7%+H0rfbI2fGHSsxQaF7iNvY|mXEXY!VYzw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_ zTU+e6wbEWYEuTZ?@~Vl?A@hRl`XHMhWDA09VUR5fvc*AmLy+AVWJ`iCHd`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>K zxPDt(?63f-`1`1+qzGFTQ|*b>kj&D-A=!)d+WD# zqy4t-y5H6c_-*Zj-_~;YZEcF**4p@O?U3KrLiufNm*3W^`EBi;-_{cPZEd9A)_VGF z?W*6_;`(iEvESB8d+oG*4tbVWO?(d7A7sx3+4DhmAjn<_vKNEwr67Ab$X*GuSA*=e zAbUN?4hGp9LH1^ly%l6{2iZG8_HK~97i5Qm?EN4+9Arm=>}ZgE5M&<)*+)V4agcoy zWS=Hvda}^@^G?0mI+=c3XV!1)H2ZCxbHA+{;J0-*{I+h5-`0Kd+q!9fTX)cJ>vsBW z-CMt{8|}As*ZsCuz;A0G{I-_EZ);Qhw${dPYlr-{7RqmHyZp9R&2MY({I-_RZ)+p{ zw${^cYghfY7T0fUi~Y7%+H0rfbI37XHSsy*vmpCC$i4`&FN5rOkbM6!_EV7k9Av))*{?zNTaf)8WPb$NpFwsi$W8~@UqSYFko^;6 zXM*f(key4&^kkv)=bd`Bbu#_7&aB_oY4+PX=YCr^z;Ekr_-)-9zpeY^w{_F}w(g+c z*6sA$y0?B?H`;IOuKR7RfZx_W_-!qR-`1x1ZLN*p)(-h?EtKEZcKL0sn%~ym`E4zs z-_}O@ZLO!@)~@<(Ew10z7W-|jwAW6{=a8hf|Nb13A;>ZYS*9S%9AsI7ENhTu3$pA% zmLte=2H6EcmMh3E46@uomM6&a2H8bHmM_Ti2U&q2D;Q*jf~;_mT^wYW1X+9@73ep`#{x3$H7TPy9g)ABhanO9Bx^^lT5Rw~FY3$oHdRwl^G23ffv zD<5Q+2U&$6s~BXJf~<0oRSB}HK~^ouss~w(AgdWWK9w>Jz41dd8b}&olL*2GwZi?n*FxUx!=|e@Y}i@ep|Q3Z|gq!ZQV4# ztvl$qbvymG?ycX}jrQBR>wa4+;J398ep}1ox3wvLTWjODwL^Ye3+1=9U4C1u=C`$X zep^fEx3!UeTkGk!wX1$xi|ejEXbM%S&JZR8Dy=3taXsJ z39>7LtZk6B3$pe>)*;9`23e;d>l|cVf~;$hbqliYLDnP4dInjqAnP4uR|Q$0AnO}s zR|i?YAnPAw1A=T|LZ&ARoj>o?tF4piw{>RywobF();agvx&eM$cf)V%*7$ARC%>(m z=C^eR{kCqW-`2hL+q%(yTX)@WYX$ta_Q7v!IsCRZ#cykE{I+(;Z)>6awzkV}Yt{U= z_Reo>3H`P<(r;@${kC@1Z)$i29{kG1z-_{NA+qxTmTerq<>puBy z-88?gJLtD{JN>rqt>4y-_S?Gaep@Txx3v#`Tg&0MwJCmEYvZ@ILw;Ke<+rt6ep{>N zx3zbETTAG-wUK^X>*=?(tA1OH>$kPVep@T;wbSxBWG=6o_#84X$gU5v`9ZcI$QB0K zq99uwWH$uajX|~~$d(4#vLIU?WGjMfWst23veiMhCdk$X*}5QGA7mSXY-5n!6l9x% zY;%y^9AsO9?3N(g8f4oNGCf)7{CTHdZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB z`EA`azpXpyw{<)Hw(hOp){XYty6b*hE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK& ztLC@0cYa$-=(n|zep~D5x3#N&TZ`+rwZ(p0EA6$@@;T&IUN!MKqcz(%|XeqMfCKV!eGzZS23I4O5hy9`N5U6QK&>pzV%=1ba>HHqJv>UaFs z3QM!+#rgmGuirIKDxQ=lDO0|rj072y^6{UH88`9YD&#nsq(8qdMr1FHfBhMJ$(WSk z9KU61nUs|Cf28Su^zZM$*>g!rxia&2CgC?F#};n;<#gwfdGA@BJ*i^3hmTex8^jOf z;H!ST3-ov8DrCk1=x@R)HC3hP9n7{tl$S1L^NT`a6*R4*Xww z2mV)||1%yscxX$NqIuVDIEerJ`Cp%-&wnOwnKEJUq|~t~<5K_QGymAJDU*h#B>l%{F)5Ria#768kLg3ae&W5yPZ~XWWJ*fv zM)2q9C!!xr|1JF;NPh>?-+}aZApIRke+Savf%JDE z{T)bu2h!hx^micr9r*v`9ni;EeOA^-T74AOXJ&m@MK`kM)^dpM`Tn zpZoP0|03w0_3LxKK4uq$KI`k(11`oTD1xHU=lkN&$L&jzjFKpY%TO9+P!@bkKvH>J z4*q3bNfl8El~Dy%Q4Q5m1N!IswNM*%pzjK)hx%xME6@;)&=^h76wS~aEzlDBCY07_ zgDcS%?a&?_&=H-`8C}p7-OwF9&=bAT8~SyTKIn_9(GUGG00S`ygE0g{F$^gfju9A% zQMd-9F$QCyZ%7!A37CjUn2c0R!Bkv}X_$@~n2A}Kjq5N6b1@IsV?GvOAr@gVZorLL zf~8o74KZoyV;!>zat+pz;XaXaq7o!EuDa5wJ3 zy|@p%aX%iwgLnuJ;}JZHJ=lxK@Hn2plXwbG;~DJ3v)GU4@H`IS1-yut@G@S(t9T8s z;~?I^n|KRv;~l(<_izaB<1mikC_cc4_y`~46MTwe_za)p3w(*=_zGX+8+?oJ@I6l8 z2mFYW_z6Gb7yOFf@H_s%pE!ln_zQpIADqEioP&N1D+4kj6ZCCBS&$XkkR3UY6Bi&C zE<|qRfqpIUBIHAU6hJ`~LSbBtOHc$wQ4GaV0+%8gB~c2Op)|^%EXtugE=L7aL?u*4 z6;wqvR7VZeguc(HHtL`*>Y+Xw;0iQEBQ!=6G(|HsM+>w>E3`%%T#2^OH?FmZzHg}` zI-xVVpewqeJ9?ledZ9P;{Y`z)7gwVn`eOhFVh{#n2!>)9QZO7NFcPD14Mt-O#$p`C zV*(~(5+)-RQ!o|RVj8An24-RwX5%`{!CcJ4^_Y(ZScpYfj2mzxmS8ECVL4V{C01cI z)?h8xVLdirBW}VbY{t#lf?Kc^+i)vx!*=YzPTY<=a3^-*F5HcKa4+t|ZrqOt@E{(- z!*~RbVh{G>F+7eZ@FbqX(|88^@GSP@IXsU8cmXfsCA^GR@G4%z>o|xv@Fw2E+js}> z;yoO~`#6jvIEoMOAwI&#_ynKg7(T=2_yS+zIKINy_y*tNJA985_yIrSB!0rr_yxb> zH~fx2@Fz~;H2%Wh_y=cj7U!V<t^T#QRl1VvE{#Zdy6A{ix73YVcY%AhRDp*$`}1yn>OR7Mq4MKx4M4b(&})J7fD zMLpC<16+ZIXoSXSf~IJO=4gSIXoc2jgDcS%?a&?_&=H-`8C}p7-OwF9&=bAT8&{zZ z`r>NzLw^jwKn%iQ48c$gLkfmt1V&;MuEA)G!B~vLcuc@VOu}TOVhX0>T1>-q%)m^{ z!fafJIhc!ixE}Md01L4Qi*W;P#1bsUGAzdmti&p;#u}`}I;_VAY{X62gw41aTW|}u zVjFJ7ZP<<-*ooV52kyi!+=aVw5AMZ%*p2(~03O6cco>i1QS8B9Jch^d1fIlGcpA@O zAD+d2Jcs9T059N0yo8tW3SPx)cpV4v2HwP5cpLBFUA%`wcpryx1V`}!KEy}(7@y!% z9K&b$9ADr|9LHDq8sFese24FG0zcqKoWxJ~8Nc9H{D$B02mZtkb<{vj)Ix34L0!~CeKf!oXoyB=j3#J`W@wHU zXo*&6jW*!li=D)GxF@wkdvriYbV6rzL05D`cl1C{^g?f3g+AzutI-erF#rQG2!k;M zLoo~~7>*GbiBY%)qcH|!F%IJ~0TVF^laY!kn2KvL4bw3LGcgOZaUJGhF6QBS%*O&O z#3C%l4Y(0YuoTO%94oLAtFRhtuommE9viR`H(?Vt<7RBZE!c`}xD~fyJ9c0vZpR(C z6T5I1?#4a17x!T|?#Bao5D(#DJc38D2Yc}t9>)`S5>Mf2JcE6B7W?rWp2q>afEV!+ zUdAhU6|doS9K;)V6K~;dyn}b~9uDDs9L5nG#RvEhAK_zsf=_V_pW$HEXH9x zCSW2aVKP!N1ygY?reQi}U?yf^Hm<`Q%*8xhkNH@Dg;<2exB)j}36^3RmSY80Vii_n z4c1~E)?))U;wEguX55S|xCL9W4Y%SpY{w4l#O=5PcVZXr!rizB_u@Y6#{GBz58@#_ zj7RV&_Fyj_!{c}YPvR*&jc2eA&tgBG!}Bb93^lml2H<+a2ZOY49cP$%HwiWKt)tSWmG{`R6}*tKuy#_ZPYoFe-un>!|7&qWXEWuJN!*Z;^O02?atif8W!+LDMM%;u=*o>R81-D=; zw&7OXhV9saowyx$;7;tqUAPwY5ax1@ej`6EY2Y* zEB7B6kqMcR1zC{|*^vV|aRGASLgYpsQ2`ZE36)U= zRZ$JqQ3Ewm3$;-Pbx{xX(EwMVAsV4EnxH9~p*dQhC0e01+TcpGMLV=d2XsUybVe6+ zMK^Ru5A;MY^u|@_gTA;L{m>r+Fc5<<7(*}=!;pgE7=e)(g=;VxV=xxuFdh>y5tA?( zshEPPxE9ke9WyW!voIUiVGibE9HeoYv#unUyt=NWJaT~T{2X^9i+<`l>3wPme+=F{@A9mw@Jb(xB5FW-OcociE z7mwj_Jb@?i6rRR2*oSAaAJ5@=9KZ{B5ij9oynDEzgR?jX{R93C$cRkHj4a5CY{-rr$cYP(3l}0c@*poRLO$e20Te_b6voB4 z1VvC3#ZVk2a4C{e5~Xk%N}~+Qq8!TOa#TP?R6=D`K~+>kb<{vj)Ix34L0!~CeKf!o zXoyB=j3#J`W@wHUXo*&6jW)OvZP5xOvEHiMk=OYDz3#eOvenOClb(n*> zn1|~z9}BP$i?A3s;6^OLQY^!AtiVdF!fLF+TCBr*Y`{j`giY9to3RDAU@NxaR@{c| z*nyq69e3bP?805R8~5N|+=tz`9}nO`JcNhw2p+{A?8Rev98cg$JcXz64EEt!?8kF> z9tZFOUc^gy8L!|~yoT3t5O3g3yoI;%4&KFkIE43c7)NjvAK*iLgpctFKE*M7hR^W@ zzQl2Sg|G1qzQuR=9w+bve#A-qgrD&Xe#LM29e?0YoWg1Rg}?C+&fqN0LEqey0U41A znUMuqkqz0A137U4a^XVcMjqtFMaYNzD1d?}gu=KOm!JrWq8N&!1TIA~N}?1lLur&j zS(HP0T#gE;h)Sr8DyWKTsE!(_iCU6(G1Pe0xi)BtY z(HMiV7>DtgfQgud$w zjulvmRalKRSc`R7j}6#}o3II+aWl5y7Hq{f+=|<<9XqfSx8n}niCwr0cjF%1i~Fz} z_u~OPh==en9>Js7gS~hRkK+kEiKp;1p20pmi~V>G&*K1Iz>9bZFXI)wir4Tu4&n{G ziMQ}J-od+g4~OtR4&w-p;sbn$kMJ=*!KXNe&+s|Ez?V3Vukba#!MFGh-{S;+z>heI zpYSt&!LRrYzvB;_-_JNTK~tF z|N8s$XYXH8Z(e;8-`zOm{Lf?be=QpSjei^1e}8@b9E?BZeC7Cw{O7-B;X5~{@LiQ- zlLnvvYj4ZDF#P<_Nl9wbDE@fd|KfkNJg={BrO`i5b6@{Y?%(-up5;rHq?WwG(DOfs Wl=FWF{`Y=9_5Kh3`p^BR*Z*&6g`HRc diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1974.xls b/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1974.xls deleted file mode 100644 index d6875c0e3b1c3bd282262373bb7ba26b7cbee972..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1326080 zcmeFZd7O>)AO8QEecz4j#!eagmYNI_LYC5^B+FQ`6*HDHQJJC|NsSgut0fXCYbg?? zC`3gmOWLGVq(0I7-q$(CjN4_pzK`F0|M@+B<1xpa=RD`W?{lBmb)EM)XW0Hp!v5!9 zD|f&=A6HnA{hJ?Qp+$JI`?^Bp84z#o`}z5}R`7S2`(C*FjBuZk?la1LM!U}#_ZjOx zAoRUHtza{}<0dM7X;nLqn`r z*KJ{2EYL#3%?`M~mj!Qdmu3gu=Ph=J#h6{&cf^pPeN(!P>N~pcfRz8sA8mZc&^G|b zus*;n&3zSVvmH&avc4lr^j#+TE|>bew|tjrmT37C@n_NvE!C?W);uhKs~qb;`Z+U zzW*3Hx*Jxt_)QdlBtQ<}PpiiC4@bxXVeb;XBU#ps0)yLEO)TtCa-rX}T zFMN1KPusbNaPC1C-eP{Jtz5FsKip<^iR+od!>!lAbHol59(1c#g@;|iUUJiARjXGm zxShAuF1T`wyIECio*Sd0-@my>#(>`EN>y#X8p_RSt?uT=J)PFo@Hg@KxeLHgZX~6~x&&ht*koY)} zpW^%5f3ZFV91l@Ge!SpY#dB9G)V~nNR@wIdzsv(%3=2Q}=d+9hzVqpTDF z^Q9NyQ!l`uxd5Ma0lw%0{FMvv3mwnQ3;2sKz%R7@3;C~IU_1Y}k7tckz31=Oe>~CW9nTWqcHFw#f1FPwBs>}QWRwN_@0Y~0eBi)$D!)_N zg8j!6;Cj_JhkrT2_fe4dIv3zCUw|*99MA4p-lGcm+4=X+p?jj>_jg%0_hn_bPWRoe zh;w=A0`8v775FJ;lU#iK{#ownvDgCt?D_G}PeK9TWw*I6%N1ztG|9SSGf2`!#c@8V^J;&*8V8QL`Yj(xi^N>`)J-);4ql(#d z|5pXa@4uGfPR+SI#CO&CPo2vRkFr=8yiv7kdP;gq!FK%5*w6R<+-XzTb}l(@JLX;i zFmwLoLVrSdDVu;h{_Mw9cIlWGg0jO?E&CjPnKJ_2v&K@stzb*O$8`5l7wguL0omcL zJwJdO6Li5J2n;{7rC_JIhf251spdA|-H3af{_l-kjg^fwYJBcSytluJ+sK7) zf8hCt-r($B@qp}}!Q~e{VS&N!_Tw9yfBiWB!neQnIUAX6p?o9x?-#d`=I3tYh6@}? z{*l>5j^r`V-PzP_B+Per;;37-8gqdo+4}U^jf9=Ki4!MI%r96S<8H?Wz_2>Tk~5+R z!}1d!kwusfxQpy???GMaXwide#SiND-+w>vpjx$Rb>2aNc@GNAdr)8(J}BIP!h`x> z_61HiJE)R7Q{Esoa|h*5BhLPL2UT#l zPPaFhY3?xm!Ne_d_sh96kR3kGGs!KS7GeeY%g^6>_6G_McKPz<`F7@36r33!J98@v z2KFp-LsKxYXPFzC^INq3IR}fo`A9l z+1k1Ijku?g|Gkm39e;tFQ|+9MxGVge-~s%?=LE}{|GYUF1B>4X)}H^lk*%GJ--vtG z{NEdC)VTPKR6l1U?g~FASd3iwoL~w3pEoCCVDTGq3(WuC$kxuqZ={m4kw%S+-$;#f zHsY@EbAkoth0h6=lfpSEej{a-jcn~){6^dg_rH&%QRCt_QuCaRxGVgeU`=`9bAqM4 za88Qfhv?ixcH6KI%gy93O^@!f_33@f~Rr9IVpZ4<&}+W?Ogmu z+*6SMK9WX_i*Drcz(k984`0@(L5-Bul-B+GXN<^fI3v7^&A_QU^AQkSDL=-&CfC4f zxaTLS?z6S^cYiW$gzr5L>^8unEi5==;GP4&=ZD~HJlePi`x@@CJP^A{@b0G3`MarF z%x?ToHGI1X$ryO*+t2uJ61}@=eEx1~7PA}wlM&x;LNf*)J$jVyCds>-Cg<YpT3E)w{NK0o-IVg~rs?^+saMQy@T}m>Zo)GL?mKdl?nh2A&weuUBzvsKT$h#XdY1N9^P0>l)+WD`Kmhjz_ z@$QC9TCHMsQ*_d{cK-6qFZpiDdUr!6?UG`4Q*_d{cFzCqX}+6s-rbN%t6$7+icZ?r z&g(w^h3}@kcQ<6x8W*#hqLa3@^XC0;@ZD6vZkiQ8X(?_u&4fv7)Ogy<7r1XKdUr!6 zt$H!LDLQG58XsRanctd9-rbN%t6j`)icVUi##^>*;k&8q-3^(vy2b3K=%h7joWExv z-%W~lH)PTp6tkP6lh&y5tarcTyQ$*c4Vkni#q6f&q%~^%^7d(LH_`4T61VO;`?%TK z^SD_tKkR~!m1b9tde6U6JW#riGmn+g?tRO%8+8-q-DnlhMvG37+0pEVe52J1H|plc zyU`k+jTW65^F7)2J*s<;v_|1Z-L!Z&TF0}|q7&k7@_OS(TC;GYZZ^CdP4#TF=scL+ zJZm@KXsyDHx=HYEw4rCCMelvHJC?L(8x41F8oMXqZTb$F5q{~p_k2M4{2*)NUR4}$ z_7OM)uYI@|0&yPkHC`<|bC1WnSJm9h{%!jX>z_5OZ|0DZBW8r(d+r7UOXo+K{})aA zTbBFvn7(f5HN-}`B^X}L!ecKsidU@)c7Rurd^-p=_ZqPKCSK17aB|UW;pbe7IOp2q zfpPAAclUll+rb(Aho-d67&dH1_(acfU6dc`j%%=64EDF7ZfV%oeKpMeDSA|Rt>(P( zDL5*;XcKz&sQlLoj>>1^s?}E5z5FIl54j3|GP>Or5;5pEscz0$yxC6rM4{--N$Q_{n z%?95HxWHU_-R=I(VHCsMk@<`8@xWO3B%{d2UH5r6o0vq=)4FY`|Z&GyQt_wYd5R^nVjz09?V_`*4%j1EO*3{jR)^Wrg zS#A`v&b`Y5OS#+A(Vf{l+$`cwFN}Y_dwIX$PQ!Zu|1aYo?-od|mpTs_F*IYqnf!P1 z984M4OZbJi5ib4swW6X85Oj7L&vsEk`{0%APr!sNjnE z8nD{?}-%L-r4SrlQRSFMrx9|I95IPSlw^@g}RL)H7E#d3KbDy zEf9}uMrLNr2=909j|4`#c;H7e-7(;G>4Kug>(T`chS!t}d)0rfpuzmt3L4CR?eV}U zyVTrkSY5L+eRuF!&rXxwrn~xX^7(gh(S}DMo^uxi6dsBHTEUU{uN54L{~G$S<)jdI zs;ZxR2q7WvymxcAdDPkG`Tmm?>3)sMP3Cn&GKaad)$rV(3W{_0#&vEOGTq6=`8t2N z12Ei|`!+E$6L+}hrG}ugzD?kS`|qJ(-wd7eastkKL2dYNZNW86RDz|s2SdA|@2C-I zD1V!_I`=>Wqg*lH;Px=e&22$Ru@=Q+w(ks23%}8(6?shrZzdZO)XfwMl0B?=txTC%c?&DxF595TFbX2$50kpojQ2WO;o8+pf>H3~@E zky#@$hq&(!8R7eG&k;j1T~%D0>HCp><5OA>%BY)iZN|8|DSbx_Na@kHe@4rcl&iCb zjZbMLSsIXGq1$gwGd-NR7EDBs@uj~tdYe8lLKHohIT^XdGH?) zPSkjJz6NBBPBg=bsP9foO2-ichV;kdzI(#jbA-DwDNR$xyRD6OcXQK}%#kUV`meg* z&S=;G*Bdq|1U{i*q0z`^G%7S2`HV(|Mq{7RxX@_qGa45fO?*a^LZgY#Xi{i2^%+eI zjix@MX`#`~XEZA`n)!@og+_Cq(Y(-T?lYPf8ZCTAi!+9M*QUjp6XQFbBgbTnatqTN z2D@=f8QynThP%>cSYNkF#T9q%{8t8M;HtZWy1LOFl`_hm_0c}V-33LF-*aJT(6B*+ zhG-AphW$9-J;@8VC3XGLt5eVYMu*GFQulYP%WZS_p5aXQcmMFx?$d?l%tz@ne+Syk z@Ef9M7Wq!hBZ1bfQ&4az_YeSF#eV!c?j6@OR>5s2$^CtE+mS93BQpD3H~x-{(Y@=9 z8$Rrn$3D7dV}tm1Cp(oo|ADq;2>N7p&-TmDigE}uyn>Kw^<>@c&{9lW}kD89DIqCGI*lk(ezbbQN z>SHYqZE5@Y;h>evD&Cm(%i+JDs(x_#8*5uNyXKXv+lJr&`uZ8WeqQ+ZRa;88srTWU zS|{qgbjj4`x83yab$^##_QS0iO?Nb1_;t$fQI8~UToygG&nJUY%BFtz&Si6_{`}=< zHw}Ah-?Zh^CN#Ts>optlOWk&&)elLZZk>4ZM0ZB=-BYP^&)2-q7JR?nou_8*en6%5 z8I>_?bp3j`oc!n~w{L6^{ot=T>+au?-F@fAGBw83pEtd2{TH+CK<$ZxtCs(={E;ua zz8@O-X87cnem(he+P|+p{P%$;zE3Ir%%aeZ2ivy#Xz+nCY41$DZ%fWg3u=VlJnoJM zUcCFu6@A|7w&TUiw>2z3ufxg)d5LjT_H=!#$E$4y?AQ{&^XhhAHtAP=;)2KS?DKi$ zr{mbeCrbDDy!mafKDuyA{_7hXY@OS6!^EX^54Q^*(foez(33(7Ct+o8gyy2B23cn-_p`!Zl1SjUZ4BhTzzm$F4`zzRbF%KU95c+NGV2m5HhH(5xvl0&0DIMMRtMw}LlyUO%eu>)Y!L z+c5D&ogYW;eQ|L4YHfS{7Fe@iM#tZNdvE&VSAKRn?77{|Q$~LC)}?p<`@f(69yzG~ zt+UheGu~cxea4of&$noB`0M^K9Etn2&pnTiSog?9HUHiBNuRg>IsItd z%MT`fKY!dmM;DJ>+GpMAUlzBTc-N2H-~MRF`pG9dPRdNNQ%8_bI4oG(^jtjv&|KG@4fcN#s z$HiRLd%=hUN#!F}g}e~^dv@p4#$UI+c52lpKfL0hg+q>IS8sdKmaiX)>vGG@9gbyA zs`JO*YIP@f`fmEh@i7ZpO^!Y^=I$pyu3COeji*;<{!(po=K&9Qd8W!ki5IPGe{lPI zUtg3I-u>H(4S&3E?937fw@^iOPP%*-2`ebTX2c$LLJ z_r2k^wDd8rEILvqYVhON^?Ci7swbx|YqRpfpp_4F9lP?0aRX~li|@1GZ+mOR-nU|U ze*E;+aX;SCFEB3rjfwH~uX(XTAv)&9S zS8ee(Q#(u;@yF}C{(K^T&dT@iY<^4EjfbuuHt&^AD_b7v@!{7!?teY@WaVK)dkrpE zx$na2i!VJgfAN|hZ$FiveZ%X&-1_#98J}fUXuj@|xU|h(>NkG&m0P;je|%N_?Rypu zY2Whjj>gXpKKj9+&b5zjDZA;PHeIuWFW>P<%Vi6{J-#|=P_^~dCof&JbwganF%@0Y*(^v%xe2A2P!&XM~j%~%&5(ZBJm_h#OIW!7s8A9-oe+S{6h zMPx4@+PC}YWviF$s(;IhcLNt@+)ju} zbxqf$jpru^Z0}dUYRbvXE_e36`|_-{O?K7WKjh)b2_u?C3@^KH|J3+OlfU2b^7ZxG z99sVNtB32Y_@U0VKb%f^V^q1_UsmpSXU{(Oe>G~vbFV#JXYkK+K0E#4^<~=(oHAo= zs|ThwoRFJ1rQ-8**T%=}U-415-;Y1=&ea1uuAZJ+{oP&rTmJaco|LMIqaU5I@R!Ah z2DuGObsIpfFUiH#;abII&?ZvSoZ z{dv`A-S_6*2Y%R9etVsXlT+UNaQ6$1_D=~PcW1ZGOD?T?tY+O#1IC|9O`bn~Z__^Q zek^nK=LucfG+A1EV56=FTILPPJl=C)(4pJ!8Q5T9-x=epR0v+Q{+X**EE;ls(;l%y z7yt5in-51_wR7vx`FTCB+nqV6;m`-$mA!HK;oT3twc+-@{XQ5nFsJLaCr5p_Bz4rj z9?wqi8PQLAeff8H!gjs8bKH&_ZtryDhVQ<+d3duH4}81hzItP?p11wg$$RRx-yVM= zv+Im`F{x|+z;8F7|M(rVWBRiz-FM2nM|b?TL6Jx9`u;_Wj}&?7w5PB;LYtFPG)64_uH(137e{~>lc6bZYw*p+cWvEpKeiZ z>Y)0SOZWb_d+X7AazbjquzBnLYO@w~4*u}wwQJw|=Il)m2uyXqmv*65t<#EpkTq_% zPUmjGyUZ*6=?3n67FqOpf6%*ZD*VB+ZarD_PVk<7@0Pr4n8Gc6#~Sx47Co9`MxtA%5Vw@VD^MZU+uizI?g@|CEcZIVtRhb>+&AnI#~vxd;6e8P%j5WS z{^fC0Uy{*QSb&Hi*xvB&l>JKf8@9?{?ZOY&i6dF~~~irMZxpd7Q*X=W>Cx_=$~ ztl6doW?hzwXpZkUP?!&2o>se{Fu+Y)(jk)rbwSC8Yzb zY2^T0S1Z8UxjS)Niva7{I>7dI46uwI0d}-kfMxX$u+u{WEGIL-VzL7)FDJk%P7APk zGXpI3*#KLyAi&a=1=yz50oKL6YO#Aufc4%PV2Aex*ziLEcH&5YWgmAhZMaowZb+ad zyJu;0N(Wkv%7M0|R-iR)5NPXK1X{b+fwrwvAZ_ zb{`3{-p7ON@Tnjh9ujOPVuCHZw0qgCaZm?y|47SsAgDq!)`^DB}!Irl=*eY%aws~8EEp=zG zt=JoEX@`Ps(~)57ay-~}p9;3#At81+Cd7u94zUxJLM*$Mo6`m%mfIr4l3Rz^oQ@$@ zqeqA>=@nv4`-j-Np&`~TGsLz{2(g|yA+|3!#4=`v*wMKmmbDW5l(i%<(` z9csB9LoK;SsLkmWYBlhVxpaVpf(Lc(lQOqg{k9cH^Lg<0=fVRpEF zm~+7TekjcHj<|n|dpykMoeHzmkZ@ZO6K-jx!);Tg zaO+Yl+;-Owx85zn?QnXy4euCkC%T7QcCT;?aj!T9=NIw!3?z_3jmEhxQeR9gMP`N1|-sA5oTZD$0%qM_X1*w4F|lwwy}Q7E>$Q^6E!h#TL;vFFo2)J4V}z z?$MUkE7~^oi?%L9qiwf)sj&BiXgfSP+J@&w+ljnr%bx4r4qgy#xl5xhd3ChSSs!gR zwnW>K9nscwZ?vsD7;Wv2MBBDMqOIqtXxkSYV;M0qb~HK0vMR;c>6$T?Q$NOHTEtjh zdW==<7-RFg$5?8w7+cXV#?pqy*rw4j)@4GB?VcQCy>nyia9)fJpBrN*=Eqp}(ijU_ z9b>ucV=Q?~jLq2*V>R~1*ph=W*7Qh>t@|U!+MSBAZNahDGbYydCC6GurC2*!GuE=| z$J*)Uv6hn_YcU;TEw6j5RqPdO^ZLbF>d;tQF*?@LCdAsN$+6ZYH`aFN#ai#Vv37WV ztPNipYbRF4TK0PP9`}}5%iR%c$$MjM&cRr#aU|B3{1IzSPsQ50;5cg+6KC6!i(K`1&|I@j;wr?})RIy>XU%FwT;X#MvCTKCE#n&XxqnTho|$ zTbJzK%&in}+iJ#J&-(GUuX(&>q{rLQ4)K=NJ>E{=6mL2G+;3(Mjkmnf@m6s{yv>^& zZ>hQQwjwXy(&on7rup&KWof+aUKMY>*T>u858`e3j(9tf8idG2gwzvNXXqtxB*i>l1AE2MN}DM}i&RlVHOSCfJFe z5-j_V1PeKpV7bAGmK>94bCMISMx{hsQZvz-)=#u`%@eI%dZKOXkZ3)-C)&Q75-p=& zq8+_G(X!m@l1C$2Z`2YN22ZC zlW4sUCfebj5^eY&iFV?jM9U6NvXGc0%S}$Q#!Q`JvsLtP{6(JI~&}K#BK%Uw&C6$=;mJOOR3on?=#fA z=6>JLP4;c0=GmX#-l|rSuWO(E`iE9^&VGHYRTuYvjs&IP*zn=r3~~Qoi~kerM|?i- zUh)ob-*N9F`L5p>2m>GcTNV5rV6)wCNX+)EH2vT8U*dN7KYF_3bgk@r@5*dZ_!Yk6 z#&v9eQFyDf*8|;Gi{cBf2e~H{i^2-8C%Xf@IKqDr)7?ww?*GpScfXb4d-EryO~Dtf z3%+RU-h*^+owyGyZ*eN!4+Oe51bkoPUmKYF?{3=q7;bp7rQ( zUyF3tFfsmXQSKUM#eXf@T|=h)*J9i?{3|Q}wODt}z1w!?TAaIvcewoDi+9&haQMP8?n46C8;a6c=xq9=PVeb64 za{qmm**f=5f0#SZ?OcscOLvzQ9>eA3dAO`T9hVKJ;PTi*zONs|Wf>otl7p`YPsZiA zNw`cOkIQ3YaM^7XF5QDSE^o%=q}IN#)6+}&jt}=k;ql=u`NHE1_Z?s5GshS1KfW># zzB0ZeTkres{;9q_`HpY8@A#g(7vzq6aCzHZxZFM#m*%@%b_c$G z&VQ7>@OApNXO0h(QFwe2=Nw;z@A&W!c5wb8{KvP}rcEhFl&tKg$$A?)hJU-;7@cbb^t=z9R z_>V8re|+XUzWu)YDBX8_&-spTy6>J!8Hjz{<~z#$MJ`i(U$6HaQ_29JQLYMxZ za=(z_9RFoevnVh4+CP8DbK&vf0k`n{VX@K*|9g+`_@d7opZ{q5mlb?R=HIt}fBxh4 ze>cVVUBBZe{@dd>iymdcF%=#?{xh<--LIF%`1ab)-LB&Q`0d#LBRlT@$j0Mb@yFo* zuK!5z2&mh5Y}9Q$YU(x~PjwrQw7QMQVBN-}vu@*YTetCuuG@I5*KMo@SGL?sb~NF2dml?w@>fttqNgP39Cj}b;4>8 zR+F$=gyC26y~kIFu!{-1gs{4Vr4m+;u=<2GAgm!_jR{7y7 z5_TD3mlKvo7*@gF`>mCS;qe0Vr_DTUOr~yQW_26WtlOA#-9`d*8`;opq(--qC*4NU zbQ>AeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZ zO{m-GNZm$z>Na{+x6!z|jV{)0w6tb_?w+@&yC=lM0{?rhQJjHwNV?mr_wk}NVQmO& zOW2i!wIl2*!rBwofv}E*T}@ag!a5Vyg|KS~>q=NR!nzaIgRpA}yNBJ5_uZXv8UVYd?2$HTC)!2D@b4;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO} zku=>#26Y?h)NSNew~=VwM%Hy3Euh=z2i-<<=r%eyAJ6~SUqrhLr{8Pn&w!m`vTq%<49#S+_Cgx{U{CKHxJ*aL(;NZ1s@rV{oLVGk4b2w}N| zO(X14!lo1U7-2IAdz`Q*2+JdECSgw!_7q`H6ZQ;Yvk03_*c`&<685ZzVP%2&)21Fa zCR4XDv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS>o!_Ix6u!} zjpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`47o>o(?G zw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKql?6Xq61I)7j|uyPuhB!uAsOC1GC?wvVu{3H!#wu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZ zNw<+S-9`p=8|l<- z=sVp;6Y4fPQn%5bx{Y4dZ8WZKqlAeZKPAT zkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z z>Na{+x6!z|jV{)0w6tcITF5Ee*S5MjZDg%B1>SQug9ghdb*NmvwN(S*ei z7E4$hVey0|5SB<-5@DqXOD3!|VHXirhOn}Pl_RV?VHF6gNLVGpDtj1K7MMS6>S1Ft zbsICQ+n8qE#+>Um5}@12hHfJ@x{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u z4&6ql=r-C$x6wnojfT=~beC?U)pQ$ur`u>k-9|_1Hri9S(W|5LTD4RKn^JR-dp2gf%3r5n+u9 zYeHC4!kQ7*oUj&zT}oI>!Y(81a>CLGyMnM*9)^_#=1-e?*qBV+#?0zArdhW!=emsq z=r*#U+enRWBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3ELBy4$OF9nzYxHiWe$ z>`KDg5q1?}?Fs8ZSVzLHCae=-oeAqg*foT8C9E4^-3jYK*tLXRM_5n7t|#mU!fqt& zCc=6Vb~9nO5Z0TpTM6sqVOUvU{nspmg}ZX+AIjnwEi@}%2H znr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ezl3a(}=Jx7chx8?^A7T9o8$ehFVFL*pMA%@$ zh7fi;VM7TUM%Zw|Mi4fVusaC5ldw^QjV3IUuq?vH5H^;uafFR0>@LFYCTs#>*@WFg z*hCM*$^!GJO+9Q(rfy?qbsN*H+n96RMgnvj+0bpIMz@hC-A2-M8yVDXq*J$%Tir&Y zbsJgNZM1-HqaSn|&7s@q6x~MK=r(#tx6x3#jqcKIw3=?C?{phYsN3jB-9~%rHhNXJ z(YU&eF4k?dv}Tv&I%JaDt9Ko8FJbo)c0Xa03Ckhu0m2?6Yzkph344gJhY5Rxuw25X z5%wry(+PWwuo;9sPS_KKC|oHR=1I8-A2}R8!e#Q=m*_K zbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|RPp0F1Pdy%l02%AUPe8LtGwve!w30p+iV!~b_Yzbkn61J4EWrV#(*mA;N zC+rQvRuHz5uvLVuCTtC1YYBUku(t?XN7&nhz2jk6Sz!LOsfUfp)NRbHZeyBt8*{GP zNPuo58@i3u=r;1C+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``T zHX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6fm8hpcyd^{zuU5cV!% z8wq=luuX(*ChUE}J|JuhVILCq5n)>i+eX;OgndHTcEWZLwv(_=3EM^3Zo)nz>~q4t zAZ!m|dkOoJu&)T)N7&bdedA$RSz!LOsfUfp)NRbHZeyBt8*{GPNPuo58@i3u=r;1C z+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``THX2H|(OtTYR?}_t zoo=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6fm8hwOKI^{zt>5O$ETLxg=x*kQuHBkX&^ zejw~e!hRy`2w^`Hc9gJR2>X?=V}$)i*zbh>LD+G^P7wAdVJ8Xui?F{5`yXNd5O#{N z(}ev?SiXm0Wr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80X zt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ z8@;OAXk6V!7wa}!TC+=X9b$p!uR{U|3nVOvuwcSM2n!`FjIeORA_$8lEQ+vb!eR)E zB`l7xc)}70OC&6buu_C26IPnAiwG-2SXsi#5muhC3WQZ8tP)|BJq#-g%%3*(urZms zjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ zZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6SjN z6t`FJ>mgMLt4dfk!m1NigRq)})gr7mVRZ<*n6OI-t4mlaVf6^BPgn!O8WPrsu*QTn zA*?B3%?N8wSPQ}~C9EZ3ml1Y3VQGY2L0Bsf!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Y zx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tcIrL3Lg!S<-tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBOYIGZU(rqM7 zw~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I`cAje zgu0E6)NQnOP%AS{EhfrJerY%pO% z2)muIp@a=1Y&c;f2pdV*9faLU*eJqA6P8I>7GYxu8%x+Y!p0MJ7h!i3Hi58g!tNn# zqK9E+f%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mU zjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2 zT-`<&>o!_ivrBRvGRf`LyAHXRu=@zRpRmb<tR?~VE(kJhmFb9 zZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox-BkQ`27SL_c6U57kR*b9WcNZ3n+%_D3+VG9UbNZ8ASEh20&VXqLjgs@i$TT0k6!d@e6Ibp98 z_6A`q2wO?mD#BJ1wuZ2^guO}FTZFA6>}|r{@i43`Fn`+A!^ULlHfC10G0nP-IoE9@ zK(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G z4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc1f;7*1NrW*C87SdzY|{ zguO@DCc-uo_C8@B5VnP|4+;B-u&sn`BkW_sJ|S#7VLJ%hN!X`^?ILV9VV@E9IbmNA zwui92gndcaSA^{&>}$fl@i43`Fn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=g zBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXK zx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc1f;7_Pf1$*C7W8J4o0e!oDT!Fk#;j_B~-g z5cVTsKM{6>u%8J#O4u)i{Yuy|!hR#{cf$T4>^Na32>X+;lZ5?6*x!WxkFb9TJ4M)O z!u};J-@~x7!2D@b4;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=>#26Y?h)NSNe zw~=VwM%Hy3Euh=z2i-<<=r%eQFkvBtg%TDJ3B`lS&dW6*{tN~#S32Q`HW5Svc z)|9Yjgf%Cu1!0#G){?Nx2)mrHG{UYRtd)mhWr6wArXDsXQ@1g*x{YbpZOplDBLTXN zZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1= zMtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TC+=X9g^<$>RpGlCaeu%Z3(-Q zuy%x9MOb^nIuO>8u&W8{L|A9Sx)62^VOkdJuLkVb>AXld$UvyMeG93A>4~ zUWDCD*e!(hChS(i`gj;t7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@x{W;PHj<{> z$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U)pQ$ur`u>k z-9|_1Hri9S(W|q0!iEtxoUjpujU?<2!tNw&6k($Y%Oos|urY*!K4&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHB zjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*81;Sn=>?OkH5jLN&1%xdm>}A3h5w@7HR|s1|*sFvsC2SdCuMxJKu-6HD zgRm8Ztt4y}VXFySL)cov-X!cT!qyS?Hev607*-aTKW*w^V={FcGppN}X5Ge|>oyXg z+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI z(rt8?Zll$78-1tSXhPjaN9s1(Q@7Epx{b!wZFI42qop;wB-bJ9-Cn)xkPU>rOV~!j z-Xm-iVVenipRf-I+d|lfgndNVR>HOs_Az0f5VoDL9fa*9>{G&a5w@GK&j|aRurCPP zL)c!zz9j4`!uApNHDTX)7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%) zrrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tS zXhPjaN9s1(Q@7Epx{b!wZFI42qop;wB-bJP-Cn)xkOPDrB=(j*CF~eszY+F3VSf;IoUjvw{YltK!u}%cZ^HgZ*gu4wBJ4C_ z{}Pt(VOUvU{nspmg}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ezl3a&a@cHYI0Kx(Z3nDC-un@vR2@4}EoUjPOA_#26Y?h)NSNew~=VwM%Hy3Euh=z2i-<<=r%ej>*f*!6_nK-i6h-9%U~ z!fqz)7Q%WHb}M0hJPa!f%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j) zP`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7 zqa$@2?Wx=7RozD8>NdJqx6#s?U6SjN+uUBg>yW;L^&_l5VFL)uAZ#FEg9sZ;*bu^Q zCu}HT!w4Hr*a*T#5_Sh+cM>*=u+fBN5|%~S7{bO9Hjc3Igxy8h-GogbESs=<2%G3( zSXp5Hw5f-U$<%GktZrkPbsKZ8+em_33VGCsoQ8z-A1qKHX2vA z(Z#xrme%Z&T!&0@d-bkE?j`I#!tN(*GGRG{JwVulgiRrADq#;1_Ap_O5SB~WG{PPw zY&v0&5jKOc#|e9ausp(M680ovPZ9PsVb2gYi?G>*%^_?qVb6LPRu-5)ZR%lTGIbj> ztJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(Gt=q`DZleWs8~vc$Xb#;* zr|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M*jmFh&bg^!ur8T=G*CEfj zy?WOn&lC0nVJ{N)5@GWQn@`vR!WI(tGGU7dTTIw1ge@WLRl=4Mwv4dX2wP6r>x8{Q z*b2f{61Ix4)r74fY%O7L6808h>j-D zWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}ZQ*;|`qub~q-9|&{ zHo8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8>yY(suikaY2EyJYY$IXs z5w?l2&4j&A*aw7dA?!oKJ|b)@VcQ7%n6OU>+fLXH!gdn&DPg+^+fCSKgndrf7liF0 zY%gJ76805g`w07*ux~sJD+|n@HubPEnYxXc)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2 zZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_q zp>CribsO!e+vru@M&s%>x>&c-(wbe8>yZ6!uikaY0m2Rvc8IWV2|G;KcZ7XU*bjvL zNZ3z=9U<&z!j2O53t_(!c8sv!2>YF|KL|Tc*a^b^B6%R<|+Dx{W#4Z6rXqkqzBOYIGZU(rqM7w~;~JMmlvHxz%kX zTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I`cAjegu0E6)NQn9yTUZw=uK2 zjcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>z zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivrBRvlH&I2 zeLbWKVO0sMMp$*iY7kbFuv&!GCaex&7ZY{~VRZ>hC9ED{^$BZ0SVO`Z5!RTnCWJL5 ztQld=32Q;vrG&L4>@vbGCoGMyD+p`lVOUvU{nspmg}ZX+AI zjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ezl3a(RyS;kXA*~5(Ls(nFt|Y7- zVOJ5>p0EytbtLR+!a5PwnXoQ|T|-z`!nzUGov_)iH%OY$HVPgp!N7#76?jr1N!X^-wP1rqzP4qCV zEHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+- zMhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+} zV%vXFUun3(TK3^{_FSx{aCD zZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=& zbQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD3kiFfutkI|ChQf$mJs$TVM_^HM%ZhFEhp@C!rmZk z1z{@*TSeGv!qyPBmasPodyBAjguPAJJ06CW1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%h zq1#A}ZX-{+jil)|GN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g z-KE=THQh$v={A~Bx6zThjrP=S^r~*7adjJAtlMa5%`VAx$a=R|?>b}yVeb;Qk+Am& z+eFxA!rmwB1H!ft_90;(5w?}EZG?SH*e8T-Cu|2{I|=)guw8`hChRl9J}2x8!uAlh zm#{Ah`--rAgndoeHy(zS1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A}ZX-{+jil)| zGN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=THQh$v={A~B zx6zThjrP=S^r~*7adjJAtlMa5%`VAx$bPq1?>giFVFw92MA)~49VYBM!oDZ$2f}_N z>?gvG5cV@+M+y6duwMx~M%ZtJ{Z7~)gdHdB1Yv&?c9O8a2>Y9`{}J{NVW$W?P1wJL z<$D-b7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@x{W;PHj<{>$e?Z`ow|+O>NXOs z+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U)pQ$ur`u>k-9|_1Hri9S(W|DiK!M!?3cz{Ap7U8!K46%R<|+Dx{W#4Z6rXqkqzBO zYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOc zMyu&I`cAjegu0E6)NQny75_UCVoe1kpSQo;sA*?H5-3aSWSP#OkCG0xFdJ=X$VK)$VBVjiY){C&4 z3A=@`-h|ysSRW6=$^!GJO+9Q(rfy?qbsN*H+n96RMgnvj+0bpIMz@hC-A2-M8yVDX zq*J$%Tir&YbsJgNZM1-HqaSn|&7s@q6x~MK=r(#tx6x3#jqcKIw3=?C?{phYsN3jB z-9~%rHhNXJ(YU&eF4k?dv}Tv&I^;IDSMNHcFJb)%>rdDK!ZHXONZ2641`{@fu-ge6 zO4u;Mh7&e|u#tq_LD-#yjUsF`VVQ(w5jKXfv4o8yY&>Ci5q39W69~&D>>k1yUd1yN|H@37bq<4q*=v_8?(X2%AdSLxep{*dv7H5;l#nM+uuw z*kgpvAnb9%o**obu$hECN!U|_Jx$m%gv}ysHequJn@iZU9)^_#=1-e?*qBV+#?0zA zrdhW!=emsq=r*#U+enRWBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3EMsb8fHR zb;$FCy+GKDguO)AJi_J^wt%pOguP7IBEl9E_6lK32z!;VrGzab>@~uc6ZSe`ZxFVE zu$6?ZB5XBbYY1CQ*qemCMc6vR-X`oF55vj=^QTQcY)qzZV`g<5)2!Q=bKOP)bQ{^w zZKOuGktf|o(sUac)NQ0ww~<@jMxu2aS=Vi}fNrB7bQ{f~+vpVCM%(B%dPuj?P`Zuo z(rvVwZlmvX8%?O&=t$j0d+IiNRkzW&x{WT@ZM3vzm*hHRz1ypI9kPM2cM01_*n5O+ zB5X5Z?-TX`VOt3Mkg$&k+e+9r!agSK6T-F=wu7*pgndfbF2Z&b_8DQH6ZQpRdkEW0 z*q4NTMc6*Vz9#G&55vj=^QTQcY)qzZV`g<5)2!Q=bKOP)bQ{^wZKOuGktf|o(sUac z)NQ0ww~<@jMxu2aS=Vi}fNrB7bQ{f~+vpVCM%(B%dPuj?P`Zuo(rvVwZlmvX8%?O& z=t$j0d+IiNRkzW&x{WT@ZM3vzm*hHRzuT*K9ddxMgM=L->|4SP6ZRcp-xKx&VLuY~ z6JbXP`^H)GC+rWxjuUo*us;bqN!VY6{Y}{a2>XYyQ-qx+>|et2 zJq#-g%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC! zWL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8 z>NdJqx6#s?U6Sh%3p;-u5}3|@`P0&tRi8R2&?R2SXp5Hw5f-U$<%GktZrkP zbsKZ8+em_33VGCsoQ8z-A1qKHX2vA(Z#xrme%Z&T!*B%y?S2{ zsX|y)!m1Hgov<2&)g-JIVYLaXL)gWHT|!u0!cqyVM_7Hr8W7fyuttP6CaeizO$lp8 zSaZT!5OyhHEeX4fu*(TcBkT&oT6q{&7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@ zx{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U z)pQ$ur`u>k-9|_1Hri9S(W|)K8wk6Ru$u_$McB=R z-9lJz!fqw3kB4Dpf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0 zsoTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn= zqdj#Sy{g-2T-`<&>o!_ivrBRva+}+$cOBA~uzrN~Cu{&=8H5caY!G3C2^&J#?Su^_ zY#3p~2^&G!NW$(Q>`uZ)5jL8zOv17V8$;Mw!p0Fcp0K+JyPL2Hgk=+U4`CBM3@Z!F zpEmWdF`2rJnbmDfvuw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921 z(bAe-lIxI3Zm-^T$i0N!N7(&@O(radum=cxkgzF)O(pCh!X75<5yEl_n?~59giR;x zF~VjL_Bdfr5SB;SOv0Wd>?y*YChQr)W)U`AeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X z+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tcIo!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rm zHd;-$(RaFyCe&?oq;8`o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?o zq;8`=R+13j0jh z=fb`iV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$SC7{`5iKpYyx2u3Y$pS#KI;KHmR`5 zgiS7N3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj6*il&*@ev^Y))Zw z37cEkJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~u;qoV zAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA*+mhb?_ass<73BtuAa0VQUIoOW4}N))BU@u=RwkFKh#08w%S<*v7&( z5w@wY&4g_(Yztvq3foH9*21@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WC zC+v7(CkQ)H*jI#|G{AUSaDVOUvAN7{bF30IYrp1!cG%*y09~Zohj@rVP^|FN7z?|eNEW8!p;+R zzOV~~T`24#VHXR#MA+AbeM8u#!Y&hbxv(pQT`BA;VOI;gM%cB&t{Y&yEV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yG&?AyY=BkV?DHwpW$u?gu*6?U7jp9=e#u-k>* zA?!|JcL}>&*ge92F6@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4*B)SR|nrAzY+FZVZRghdtrYNcCWDegxxRf0bvgc zdq~(Hh5bp`!@?dB_NcJOg#B6AUxYm_>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA46 z9r^0uJLGS|{x0kv!d@2kim-nQ`~&#p2zyi5Tf*KJ_KvXs3j3e1 zcZIzt?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR!8g{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO{Hm9(;gv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-kj+y{*m}a&7q)@04TWtaY-3@Y2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN- zgRmWi?IdjH0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghwL)))xmejuEKT`w!5%BgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4 zMA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn6L!3?6NH^8>?^`f8eqIExW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgV>jUmbjhoFeR0VW$Z@ zUDz4I&J=c*u(O4oBkZffz9#HkVdn`uU)Tl0E);f=u#1IVBJAtJz9H;VVV4QJT-X)D zt`v5au&ae#BkWpX*9|aU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ` zW}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrV ztKFu!-KNFerqazG<~!v2k*^NELv9fEO<~^>_HAL`5q6`nn}mH=*!P5eU)T?X-7M@D zVLuf1BVj)l_7h>Z3cF3%Plf$V*zLmZ5O$}qyM)~>>>go17xoKbzZCYX0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx~fvtAp>5 z-w6Ayu-^&$y|6zByI0tK!tNLLfUpOJJtXXp!u}-eVPTI5dsNtC!u~AmFTx%d_Jpt} zg*_$gX<^R@dsf(U!k!oQg0L5by)?jhS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0L!Rh5b+1yTaZR_P($WgncONBViv4`$X8M!afuBxv(z= z7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn zGRk;geus=IY&2n`3mZe&n8L;qHny;FgpDg~JYnMtn?Trv!X^?nv9L*mO)6|MVUr7+ zLfDkTrV=)_uxW%%D{MMp(+itH*o?wv5;pSy<7L79wX4VGGP}*qcAIPNHh11_7SL_B z(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQ zZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a!sZq> zkFa@#%_nSrVG9UbP}oAk78bUMutkL}CTwwGO9)$1*iyol7PgGAWrZy#Yq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$SNaW9ejtZDr_}js|#C0*qXxD61KLmb%d=eY&~J?3)?{0hQc-ywz05Hgl#Hp zGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGaLD-JMb`rMp0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MS7Eye+g;cm!uAxl zm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP2|Hfc z3Bpbk_7!0#4KQ97++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6mI*wwjoGv3+}I7JvNuwZEm*P zTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wn zp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>i$X5s7AvXy7rm$}b z`?j#}2)j|(O~Sq_?0dq#FYE`xZWeZnupbKhk+2^N`-!kyh219Xr^0?F>~>*y2)k3* zUBd1bc8{>13;TtzUkdxx0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%Uf3Um-7D-qVfPDrK-h!A9uoFP zVSf_#u&_sjJu2)mVSg6(7h#VJdqUWg!k!ZLw6JG{JuB=vVb2SDLD-AJUK(J$EV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG6T-X-_jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D;!0ze7e9Hkz=}g^eL>OkraQ8(Y{o!p0Rg zp0M$SO(1MSVG{|PSlA@OCKWcBu*ro@A#6%vQwf_|*fheX6*ir)>4nW8Y(`--37dI< z@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe zvy6Oo@PEjx!e$dTyRbQg%_(dyVRH+cN7%f=<`Xu*umyxIC~P5N3kzFB*rLJ~6Slap zC4?<0Y$;(&3tL9mvci@Vw!E+vgsmuSC1EQMFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR;Px4!%QH6}FnN)rGAgY)xTn30qs( zI>Oc!ww|!{g>4{gLtz^U+gR8p!ZsDQnXt`;Z6Rz+VOt5?TG%$iwiULWu^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA-jxxb?_astFYaK?JjH&VS5VOOW5AR_7S$Pu>FMXFYEwe2MRk#*ulaM5q7As z!-O3!>J(ZY@qcC4`DgdH#J1Ysu%`--rW1{g03?yp@vHka9LZnoQ8bGNzk zZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dh!>R|nrArwBV$*lEH}7j}lQ zGliWc>}+A@2>YtAuL(O>*m=Uv7j}WL3x!=I>|$Y;2>ZIQZwR|o*k!^l7j}iPD}`Mp z>}p}x2)kC;bpwo-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ| zZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3|{$^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA-^8^>fk%%H^P1^ z?03R`FYFJ(?iF^Qu=|BQAnZY54+;CDus;cVSlA=N9u@YOus;j?i?GLqJt6E#VNVHr zTG%tfo)z|-u;+!nAnZk9FAXqW7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~!uCBVQeShx|?0--Z1{*vrCR5%y1E{}T3ZVgC{Ks<79D zy)NtxVQ&h1OW51O-Vyd+VgD2MuCVuny)WzoVIK;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Sw_A(_&;P;VY3OFUDzDL<`g!Uu(^fJBWzw_ z^9h?@*aE^96tQK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn zvdYL;2j3y93R_Ls>cZ9#wx+PPgsm-X9bxMVTTj^f!Zr}Lp|FjFZ7ggPVVeruOxWha zwh*?Zu&sn`Eo>WM+X~xG*!IG95VoVRorLW?z<613f9>kAxy){Jv)$&JyUm?|kMs2s>2RVZsg@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4mo+`tAp>5Q-qx=>@;Dg3p+#DnZnKzcDAr{gnd=m*Myxb>^x!T3%fwrg~Bcp zcCoNagneDuH-ud(>@s1O3%f$tmBOwPcD1l;gk3A_x&g+^g8OS%kIiLvo15)6*W7LH zyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2( z+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1}{=^3}n2$PL22DePOqzAfxK z!fq6Hld$g!`<}4x3;Thvn}yvX?1#dBB<#n+ej@BvVYdnUsj#03yIt5F!tNAym$18q z-6QPh!hRv_m%@HEz<613f9>kAxy){Jv)$&JyUm?{McCuQo)Gq=u&0DQE$kU#&kB1^*z>|(5cZ<5mj)Ow3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZnk*^NEL;fc0 z@525e>}6rE2>Yk7e+m1yu>S~qRoH97UKjR;us4OhCG2fs?+E*^u>T2rSJ->P-WT?P zun&cOB|wq`Mw#%-?~qZ2jV5e#VPgmzQ`lI-#uhe?uyKWrCv1FS z69}77*hIo67B-2nNrg=&Y;s{!2%A#aRKlhfHjS`pg-s`HdSNpNn^D+I!e$;|yezoC zcJi_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(S!Lv_gYS@4g{>xRbzy4=TT|Ft!qyhHj<9uw zttV`KVH*hBP}oMoHWs#tuuX++CTw$ITL{}y*jB=}7PgJBZG~+oYq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$Sxya9ejuEDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!a zJ3`oz!j2Mlw6J4@9V_fOVaE$QLD-4Hz9Q_T0mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghnzg})xmejDZ)+_cABu$g`FYnOkrmU zJ6qT}!oDi(Yr@VIcAl{Fge+3&+HH#4ZCc!I zD&6d1zC*4b`Rd?1q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$gfAfI`|Ixjj-Pe`<<}g z3;TnxdxhO6?0#Vn2zyZ2L&E+j>`%fT7WRm+M}<8m?9amfBJ6QtPY8Qb*i*uu7WRy= zXN5f{?0I1?2zyc3O9PCT1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`40K($X5s7A%7G0cVYh!_Oh^7g#A<4zl8l;*nfn*D(p33uM2xa z*qg%M685&RcZB^{*#CsRE9^aC?+g1t*oVSC685pMPlSCc>@#7X3;SY#@v`9l+SOxo znce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqfGSWcgU#1 zMiVx=urY*Ho34VgiR@IDq&L# zn?~5Q!ln~8y|5XC%_wXpVKWafUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bk_mXWUx{tuZ|*lfaP7dD5mIfcz7Y;Ixm2%A^fe8T1z zwt%n&g)Jm(VPT61TU6L$!WI{{gs>%rEhTJeVao_xR@idFmKU~yuoZ=^By8mY#>;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWS5bz4!%Qn6}FqO-G%KTY)@f(3ENxPKEn1D zwx6*5g&iR5Kw$?7J6PBu!VVR7n6Sfz9U<&UVMhr&TG%ndjum#Cu;YcDAnZh8UlDfF z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%6k(?dJ5AW>!p;zOrm(Ywoh|GfVP6&YHDTupJ5Sj8!Y&YYp|FdDT`cSp zVP6;a4PloGyG+>S!mbc@rLe1nT`lYyVb=<~Zh-N!;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yzqJe0A_0a)YpM3j3C@Zwvd5up5Ql zB<#Dwz9;Pa!hRs^W?{Do`=PKO3H!0Ip9s5E*logoD(q*%ZWnfkusem_CG2it_XzvB zuwMxKrLbQOFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1E?vVS3wuV`v%;Pe_PnqcguN*2r2)pvg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e24sX_5U@75192*M+?y>`h^B342@EJHq}e?0>@E751L6_l12R>_cH6 z3Hw;sC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#Q6~QKJ7iR0qX`>b*cigb6gHNyv4xEzY+PaE2^(M71i~g1 zHj%K2g-s%CQel$`n_Sow!lo29m9VLWO(SetVbcklUf2x6W)wD)u$c!KFAMIkT|G9J z*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SG zZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|%g9#;|A)*f zY&K!D3!6jOoWkZ3Hn*^Ogv~2#K4J3|wq`RvG!~;5%ehVXFySUDz7J))cmuu(gG)BWzt^>j_(5 z*apHj6t55jTVdM?+g{iX!gdt4ldzo!7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdhR< z2j3yP3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSVju3XF zu%m<>E$kR!#|k@6*zv+n5O$)luLwJ7fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{ z={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAt#S~b?_Z>im+3KohIybVP^HUuxo`~ zH^6vVaDVOUvAN7{bF30xk1=Bg?&rdw}pL2*p0$&682qT-xKzIVLuRdv#?u){ZQDCg#B39PlVkn z>^5OP74|b>w+p*N*qy@e5_Y$+dxZU5*e`_rQrNEs7%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^6QbW4!%QvBkZ@rekbhr!u}xa zUSanMyI`?IjW2zy-E6T+Sp_LQ)vg*_weSz*r! zdtTTJ!d?{i(g5RS!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC->x^3}n2$lrwhUD!W_y)5h%VgD5NFJb={_8(!d3VTi1>%!g;_NK76 zguN~79bx|!_CI0o3VTo3`@%jD_MxzkgncaR6JehU`%Kv9!oC<_yezoCcJ^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrbfW#p@a|3hXKHk+{7h0P&sPGNHin_JjC!sZn=pRoCbEg)<` zVG9XcSlA-M78SObu*HQfA#6!uO9@+A*fPSF6}FtP<%O*vY(-%!30rx9@v`9l+SOxo znce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWetBibg@Ex+M zu+@aEE^G~9YYJOS*xJI@5w@i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(*=6LbgYS@Ch3zJ6cVT-7+f&$H!uA%nkFb4(?I&!1 zVFw61P}o7j4ikAxy){Jv)$&JyUm?cgXc4Umbjh+#u|m!oDT!+rqvh>_%ZX3Hz?F z?+N?9upbD!S=cSYekklm!hS65C&F$OcAK!D3j3L`+lAdB>`q~K3A=(j* zDePARjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(`Sr+G2j3yT5%ybQzZ3R*VSf;Iudw@s-7o9`VGjy>NZ22R{Yluv!X6R!sIbR` z{aM&wggq|o31LqPdrH{T!k!WKtgz>VJumD9VJ`}MX@K#v;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ywe;`Rd?1 zuzw2sm#}{e`;V|!g}o;1bzyG^dsEn3!rm74j2ePJI6`%u_N!af%E ziLg(FeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bk_lu5t*4jEP0Xu?JpHiobUF8&}wP!p0Xifv^dMO(bk$ zVUq}(RM=#~CKon^uqlO2C2VS8(+HbZ*mT0C7dC^i8HLRxY~}&R%YyrBSC7qQcAJ~+ zHrL#3?!4P9pxbPt+pMPB?5W!}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#RYtx#_zqcB*lNO77q*75HHEDuY;9rd2wPX!dcxKhwt=t> zg>58kV_};J+f>+Q!ZsJSg|ID!Z6$1LVcQ7XR@ipJwimX8upNc%By8sa#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO@xDz!FR~6 z!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD>6Lz?;BZM6(>?mPJ z3p+;GvBHiMcD%3?gqq-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$jKvL9ejtJBJ5OQrwKb<*crmk6n2)dvxS`_?5o1Q zChS~c=LtJs*agBa6n2rYi-lbx?CZk5A?#9NmkGOE*cHOA6n2%ctA$-7>{?;h4KQ97 z++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6iOVc!z=ZDHRLcB8PHgnd`o_k?|4*bju=EbJCxKNR*OVLul36JfUsyG__n zh5by}?ZWO5cBinrgxxLd9$`Nh_6uRZ6!xnD#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jOY$D-wFG@us;a9SJ-{R z?icoeum^=bB-tJtgdEVb2JAR@igGo)`9l zuos2BG{AUSaDVOUvAN7{bF0)75TM+-}q2Zd2)I5Az)|%4A=Dhm0z0G-0C)8$;Nb z!p0Idwy<%8jVo+CVdD#%K-h%BCK5KWut|hXDr_=glM9<`y=Ouz7{eCv1LU3kX|K*h0b< z7Pg46MTIRUY;j>r2wPIvQo@!Nwv4c4g)Jv+d0{IETT$3b!d4z&yezoCcJ61MXI<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H z*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3C zZMxcRirZ~k+-)k|>|wq`b{YBV;5%ejVY><2UDzJN_7t|4u)T%tBWzz``w81$*a5;0 z6n2oXgM}R;>`-Bc2|HZa5yFlXc9gKAg&ia8SYgKrJ6_lc!cG+S6=5e0FkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1E;hpI3cEZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z; z)5va9&u-JzZd2TD)8cMZ>1Ge}9diB1R|nrAHwgQtux|<7Yb7IurU9}4@CupbNiiLhIR-6rg(!hR;~c42o2yHnU*!tNG!kFcK$`-QMy3j5Un z<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$- zZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq` zem(Nl!FR}Sg#A|7?}Ytc*dK)5E9^dD_X~SK*n`3z681-7e-ievut$VFD(o>~e-`!^ zVUG)YLfDhSo)Y%7uxErlE9^O8&kK7&*o(qm8eqIExW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgSByzB>30`J1r63;Tz#mxa9|?4QE^ zCG6kA{v+&FVXp~$UDzAK-W2whu(yT1BkaGz{wM5RVebihU)Tr2J{0zmu#bg(BJ5LP zp9%Y1*cStgmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrZ}W%4h-Lq-)gny}G@jUjAIVPgp!Ti7_l#uYZ6uoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4wjC^(Qf5@!DW)n8MusMXy zDQqrba|@eC*u28#6E?rF1%xdqY$0I_3tL3kqQVvvwz#k*ge@s-DPc4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bk_m65LwzC%_Owwkcjg{>iMO<`*ZTU*#V!qyeGp0M?WZ6ItzVH*kC zSlA}QHWjv+u+4>SA#6)wTM64**fzqp6}FwQ?S<_iY)4@`3EO#q@v`9l+SOxonce1Q zyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeyNrBw@Ex+Nu-%01 zE^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt!gdHyI2w_JGJ4)Em!j2Jk ztgz#R9WU$zVJ8avim;Og7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr z!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)Jfna`MPm2j3y52s>5SX~Iqyc80Jsg`FkrY+>gJ`>L?72|HKV zdBV;Yc7d=9g@Z*XSdmHw^?+z*?PCBK)2~bw<$-r zX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!M5htAp>5 z8-#sR*tdjzTiADm-6-rPVc!+@Jz?J$_5)!z3%f+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWezaIJO;5+0u!hS34cfx)z><_~36?UJn`-MFq z>_K4<3Hzh4KM8wS*dxLo75130KMVVdu*ZcxA?!(EPYHWk*fYYO751F4=Y_o>>_uTO z4KQ97++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6ZN;|d#3*!aRG5H_K(iG)ooY!YFU3Y$#Wt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LTy)wve!eg)Jg% zQDKV-TU^)@!j=@al(40REhB7MVao|yUf2r4Rus09u$2cGFAMIkT|G9J*==sN+gx+E zx$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hut zsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%E(s--yy3CTTR&N!qyPB zrm(eytu1UFVe1N8PuTjxHW0R}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#T}Hk-_zu}s*lxmh7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0g&id9 zU}1*{J5<xp9VP5&VaEtNR@iaEju&=i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(IeFx(gYS@2gqoeO=f$gk37^GGUhs zyF%EN!mbi_wXkc1T`TOm0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfy zY_Qv`v)k;p+bp`& zv)gpF+Z4Ckw7A<;y4k~ghg?7M)xmej4Z^-D>|4UVE$lnOZWMNtuBJ5USw+Z{Hu%8LLUDzGM?i6;Hu)BrbBkbqGej)6a!hSWtcv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Uypos z@E!6SVZRmjJ7K>U_6K423cF9({lXp)_Motbg#A(2pM*Uu>=9v)3VTf0pN0KJ*yF;U z5cZ_7r-VH%>=|Lt3VTl2^TJ*b_M)(t1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=E znr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rD+auMWOL{wD12!u}!bWnr%f`=_vf3H!IO z{|I|k*lWUG7xsp*H-)_=>}_H12>Y+F{|S3n*n7g>7xsa$4~2as>|VpnXTm-g z_Qe3>Wx@TmtHln^M?R!lo8Bjj(BjO($%6VKWGuQP@nvW*%U?EV#dR_1Iiyx4GGFbIsl6&b!S5 zy3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*f zP1U+h@48J1yG_3Y$yV z+`{G&Hm|Vxgv~E(0bvUYTS(Z#!WI#>sIbL^EiP;cVM_{IO4!oEmJznBu;qj;FKh*2 zD+*gl*vbQpmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxra!W#p@a?~ql6ttM=BVQUCmQ`lO<))uyouyuv4Cv1IT8wlG_*ha!O7Pg77 zO@(bHY;$2-2-{NFR>HOxwvDiDg>5Hndto~W+fmp~!gd~DyezoCcJ;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%24UY6 z_AO!G7WN%sHwwE+*ms3}PuTZ`{Xp2w!fp}vLt#G>_G4i`5q7Jv+l2j8*w2LBF6<6r zcM7{p*xkbJ5%zOozYz9IVZRz+yezoCcJ~UdF2zyf4Q^KAW_KdJ+g*_+id0{UIdr{a+1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4*BcI zR|nrAe-rk1VgC^JvanZ#{ZrV#g#BCCe}ug%>@{Jp3wuM@o5J1__O`Hhg#B08|Af6O z>^))c3;RIWhr&J*_OY-}gncUPGhv?#`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4gO!eh=$f&|b6E?cAF@%jNY%F183mZq+ zxWdL0HomY4giR=HB4HB?n?%^8!X^_oxv(jOO(|?DVN(m6M%c8%rV}>3uo;BSC~PKS zGY>Fc7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0E zrUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG z<~wATk*^N^51CciY{F(2Hixh|h0P^wZejBXn^)L;!sZvYfUpIHEhKDVVT%Y`RM=v| z78kaJuqA~pC2VP7%LrRm*mA;_7q)`16@{%NY~=yQ%YyrBSC7qQcAJ~+HrL#3?!4P9 zpxbPt+pMPB?5W!&~VLJ~nUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bk_myxdyzC(5uwwtish3z41Phoor+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L z4i$Eou)~ENA?!$DM+rMx*fGM66?UAk_lN-5q8o5<7L79wX4VGGP}*qcAIPN zHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F# z3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`P9FK{;5+0LVW$c^P1xze z&JcE{u(O1nE$kd&UlsN>Vdn}vPuTgwE)aI1u#1FUEbJ0tUl;ZbVV4TKOxWeZt`K&m zu&ab!E$kX$*9yCCfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg z>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EP zHpT5WE$%jzZuT(WA=i(5b?_Z>gRpN3`}SGm7j}oRJB8gP>~3NA2>ZFPUkLl9uwM-@UKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb*CSsYe24r- z*l&gXPT22-{Xy8h!tN7xzpw{{Jt*uUVSg0%Ct(i@dqmiy!X6X$XJLO4_PDSoggq(j zDPd0wdq&u^!k!cMys#I9y(sLZ0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx~QqtAp>5zX|)huzv`9S=cMW{weHV!u~DnKf+!W z_L{KQg}ou{O<`{ddt2B$!u~7lf5P4s_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjz zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L(+Qhi*bKsE6gHEvnFkmz3+}I7JvNuwZEm*PTywX%^KP?%ZnKSU zvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqF$X5sdhs-K$Hes_1n?u-~!sZe-x3GDH z%`0p^Ve<=HK-hx97816wutkI|Dr_-fiwj#q*pkAQ61KFkWrQs&Y&l`e3tK_hio#YB zw(52iQ(>D4 z+g#Wd!nPE)m9VXaZ6j=3VcQAYUf2%8b`-Xgu$>1OFAMIkT|G9J*==sN+gx+Ex$|zb zfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7) zZd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%g9#;-yypS+fCT+!uAlhr?9<* z?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC5O$=nql6tT>=pBjCAOb3(fOIz~pdg|kqS7ECrC@-Rgo=O#(%s$N-QC^Y-QC^cf3L55 z*u#6>*_r3^{p|ea5w?Y}Ee9Ac3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BuC)$X5s7AzKUEM%cE(wiC9!upNZ$C~PNTI}6)I*sj8M z6SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9XY^wS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L<(df3cE|#-NNn>cCWDegxxRf0bvgcdq~*B!X6R!sIbR`Jud7CVNVV) zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb zsgbV^zC)fC_KdJ+g*_+id0{UIdr{a+!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+buy=*M zC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX2>Wt?@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqfGq&?~qZ2eMQ)4!bTVNRbgWY`kAxy){Jv)$&JyUm?rVtKFu!-KNFerqazG<~!tPBVQeShb$!Q=fZv=?3cn8 z7Pg46MTIRUY;j>r2wPIvQo@!N_A6n_2wPUza>AAu_G@7)2wPFuO2Sqawu-Rd2>Y$D zRfVl4?03R`FYFHkjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`Qyk}2j3y93tL0jpMwz;tX3fn^1mII8J1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7?rV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6 zkg$V=9U|;dVTTDjT-Xu9jvQdTEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGJ5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EIcI5!$Wx@Tm ztH}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLL zfUpOJJtXX5VUGxVRM=y}9vAk6uqOu?FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J)W}x{-yu&6dq&u^!k!cMys#I9y(sJ@VJ{1N zMcAvtUK94Zus4LgDeNs_Zwq@z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYxgnc={ zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zQ6~BScgU#1z9MWiVWSKCs<1JHeNEVy!p0Idwy>`Y`-ZS@3L8h*xWdL0HomZL3H!FN z34~23Y$9Rb5jL@~NrX)*Y%*b!3!6gNl)|POV7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$kZcW9sD0Mjj(BjO($%6VKWGuQP@nv zW)?P!uvvx8CTwzAx+t!sZq>kFXyKn^)M6gv}@H$HIOhY<^)2 z2>Yq91qT=}3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BwZDk*^NELlzSDb78*__Df+43tL3kqQVvvwz#k*ge@s-DPc;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jOj%Pr}v| zwwAE9g{>oOU15I~ww|!{g>4{gLt%dr_E%wl6Sk4CzYE(~*e1d@74{Ed{}lEwVgDBP zA7Psb+g#Xxg>4~h%K^sAg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAg zth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@k zwc8Z8+qAgbRJz&2e1~i`^3}n2$kxKP5w@+c?SySFYzJXG3foE8&cb#PwyUt+gzYYD z4`F)>+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;rVtKFu!-KNFerqazG<~!u5k*^NELyi`9 zjId*c9VhH~VJ8SXQP@esP8N2Guv3MdChT-!X9zn}*jd8P7Iu!XbA_EJ?0jJt2)j_& zMZzu?c8Rb{ga$#2pyK;c>vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA3pjeK?R9dfm>YlK}Z>^foB3%fzsjlymccC)ZsgxxCa zHet65yF=KW!tN4wx3GJJ-7D-qVfPDrK-h!A9uoGjut$VFD(o>~j|+Q3*pmZ{mj(CN zt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9YUHbf z?~td3JtOQ{Vb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I z2f{uS_K~oUg?%FIQ(>P8`&`%;!oD0}yezoCcJYHkq)=g-s!BN?}tC zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWa^Qx4*n0BM%c8%rV}>3uo;BSC~PKSGYgwV*sQ{46E?fB?+W{#usMXyDQqrb-xu}+ zVRH+cN7xUA%`5Cj!sZk9V_`oLHove1g#A?5f&+|~1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40Kn$X5s7Aqxrnxv*ad`=zjjg)Jg% zQDKV-TU^)@!j=@al(40R{Yuy}!j=`boUrAE{aV-x!d4WvlCYJ9ts?9|wq`{y6g0!FR~&!qyP>Ct+&}TT9s5!qySCuCPA~TTj^f!Zr}Lp|HOQ`>U|O z3EN26--T@~Y!hLd3j2q!e+v7Tuzw5tkFd>zZ7%G;!nP2$e+3&+HH#4ZCc!ID&6d1zC*Se`Rd?1WNTsD2-{ZJ zcEYw7wu7)8h3zD4XJNYt+f~?Z!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^Br>3$X5s7Ax8^4M%b~!juUpguoHxxDC{I*Cks18*r~!!6Lz|= zGlZQf>?~nt3p+>Hxx&s9cD}F+gk31?B4HN`yF}Qf!Y&hbxv(pQT{*ybS#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L6h20?RMqxJzyII&R!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY5 z4+(o%*dxLo75130$Avv1?8yPf%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!< zt=nv{+pM$O?6%u1y4!5M+f<<2^r737quVs4+tjApbg0`Ds@t@y+f=RF^sd{Ku-i1U z+tjn$bhX4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_l*#`8 z9Wtu0uLv7W*yzH(Dr^j4UlTT_u(5=VE$r*Uz9H5rLd_67%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGWEz;2mgmmBWzk>(+Qhi*bKsE6gHEvnT5?F zY*t~j37cKmcZGdV*c`&<6gHQz?+g2Zu(^fJBkYI5<`woMVe<+5v9O;An_t)h!hR}j z!2!n0g8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze24sOsIbL^EiP;cVM_{IO4!oEekE)fVap0zPT2Co zel2VTVJiw-N!ZH5RuT3aVZRl&s<73B{Z82Lh5ccG@v`9l+SOxonce1QyUjIsn>+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWee;oPh;5%e>VQUEcldv^~ttD)2 zVe1H6SJa)9x&;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yvI#e0A_0vbC^ngl#KqJ7L=k+d_4L)f0e z_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCkpqmE1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^a1{MZ=2|Hcb8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+6$} zT_WsKVV4QJT-X)Dt{h;zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGb}8e!K8yH42k!fp_Dqp+KV-7M@DVYdpqP1x=9v)3VTf0}6rE2zyo7YrSdso0)75TM+-}q2Zd2)I5Az)|%H;q54jEP0SA>lwY;<8?6*h*juL&Dd*jU2G7WQ>v z-w^gqVdDrJSJ-&M#uxT2Vc!-ufv^dMO(g6)!X_3riLgn9O(tw|VN(d3QrJ`jjF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(nR?`_ zga1RO5jL%`>4Z%$YzAR73Y$sT%)(|7Hmk7Ngv~DOyTZOFYz|>_3Y$yV_l5mH*xbVA z5%xo2^9uWsu=#}jSlCa5%`a>LVLuhN-~i)g!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC(UC^3}n2$U?$?F6RoH66ekbhr z!u~M8cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#KaPBL@Ex+cur-AJN!Xgg))Kb1uyus3E9}q0))ThAunmN5DC{r7{wnNm!Zs52 zcVQa~+eFx=!u}!bpThnn?BBxvBWyEan+yA|uq}jbIly>XaDVOUvAN7{bF30*;?2(!nPH*ov`hN z?I3JNVLJ)iS=cVZb``dpu-%32A#6`!dkNcH*gnGc6}F$S{e>MM>_A}$2|HNWA;Jz7 zc9^ikg&iU6$N|R7g8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e1{x0^3}n2$kD=%5q7Mw;z#a3Oh;I$-+(%cB-(`gq<$z3}I&q zJ4@Kv!p;$PuCVijoiFSHVHXO!NZ7@~E)jOAu*-y9F6;_nR}L^<7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!u7k*^NEL#`Hfjj(Hl zT_@~%VK)f7QP@qwZWeZnuv>-QChT@$cL=*v*j>Wz7Iu%YdxhO6?0#Vn2zyZ2L&6>w z_K2`Yg*_(habZsgdvbvBvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3hjeK?R9rCoWXM{Z~>^Wi23wuG>i^5(K_Oh^7guN>4HDRv{ zdqdcp!rl`0wy<}Ey({cJVebq3K-h=EJ`(n^uup`2D(o|1p9}j!*p~y0mj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}Ws3iQhm0!h zE5b$-HoCB{3L8V%*MyBJY%F183;VjTZwULQuyKTqD{MSr;|u$iux|^SK-h%BCKC1? zVG|3RMA)RlCKEQfuqlL1DQv0%#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jOebi$?=HiNJkh0P>vW?{1kn^o9s z!e$rtU18r7Hixh|h0P`G`@()8Y;Ixm2>YS1d4>H**nGl%EbJ%3<`=eru%8NBaDef$ z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yuI6 z`Rd?1WFcWc7xoKbzZABxutkI|Dr_-fiwj#q*pkAQ61KFkUkO`A*s{Ww6SlmtUkh77 z*owkd61K9iRfPRU*l&fcDr_}jzZ3R*VSgB4yezoCcJj_(5*apHj6!sTke--vOVH*kiyReOgZ6a(_VgC^JPhtNO_HSYT5w@AI&4v9} z*cQUJ9ALaGxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgR*FUmbjhY%OdXVcQDZPT2Osb`Z9su$_eMENmBHy9(P)*zUsi5VohVy@c&8 zY#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gje+3&+HH#4ZCc!ID&6d1zC(^0`Rd?18Tal(!l zc7m`Ig`FhqWMQWWJ5|_e!cG@9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^Br>4$X5s7Ay*5#M%cB&t`l~>up5NkDC{O-Hw(K(*sa2D6L!0>JA~aS z>@Hz<3%f_yy~6GjcE7L(ggq$iAz=>-dqmiy!X6X$xUeULJvqR5S#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L#PVQ&e0Ti83o-WB$qu=j<1AnZe79|`+d z*eAk175161&xL&|wq`rXKm~;Qx?m zgiR}KI$_fbn?cx&!e$aSv#?o&%_?j*VY3VSuCVV3n?u-~!sZh8ePKTkHn*^Og#A$1 zyuyAYY(8N>7WNZi^9x%**iVHmIKX&WaDVOUvAN7{bF) zY)N5D30qp&uY@flY*}H;30q#+uZ683Y(-%!30qm%D#Csv?6<;J6}FnN-wFG@us;ki zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb zk0W0le21(qYz<+561JwWwS=uLY#m|i3j4FL^@Oc2Yy)8%3j2$&zY6=Cu#JTMUD(FL zHW9X|uzv{qr?7ts`?s+F2-{59=ED9fYztvq4lrI8++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6 zVMho%a)9x&;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yuhhe0A_0a@s1O3%f$tl>>~I1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{i{em73AMeOhq_Inx=p*fP1U+h@48J1yG=R+13j0jh=fb`a_T>QMWx@TmtH+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeQ;&Rg@PEiO!lo5Aov`VJ%^++>VKWJvS=cPXW)(J@u-S!u zSJ?N2%^_?~VRH%lzOWw%n_JjC!hR@hUSU5HHlMH`3;T(%`GqYY?5DyO9ALaGxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgW91zB>30 zSxDH=h5bU0)75TM+-}q2Zd2)I5Az-J$C0lNzC%_QwuZ1j30qUxTEf;AwvMoMh5cFB zdcxKhwt=t>h5bd?Uxocm*ha$sE^K3An+V%f*gu5*Q`oZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9kSKPR|nrATMOGp*tWv96Slpu9fa*DY$stm3)@B5uEKT`w!5%BgzYJ8FJXHN+eg^G z!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WIly>XaDVOUvAN7{bF30Ia=5;!j2VooUr4CognN) zVJ8VYS=cGUP8D{Vu+xQ|A?!?HX9+u7*g3+^6?UGm^Mzd?>_TA|3ACBiNhcA2ot zgx5k|>;_>s3cE?z&BAUGcB`=4gxxOe4qNZ7-|9ufAau*ZZwF6;?mPYy6%7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!u6k*^NEL!K7)jId{gJtypW zVJ`@KQP@kuUKaL>uvdk>ChT=#ZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9_KC1h zg?%RMb75Zy`*MKsvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4gO#T1wkWqzwMc8P}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#sYkv#_&;PCVbcnm zPT2IqW)L=`u$hF-ENm8GvkIF{*zCf-E9`s1<`6cgu(^bNU)T?X%`I#mVLuc$udp8p zn@`w}h5ba>{K6Ix_ETXC4lrI8++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc62IYhf!0TT$3b!d4cxim=}Z`>n85g{>y+cfx)z><^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq>tAZDePau{w?f3!Zs7Oxv>8V+d|lu1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4%uqttAp>5t%YqPY+GU53EN)S4#IX6wv(`( zh3z72S7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*b%~x z9ALaGxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgRsAUmbjh94+h^VaEzPPT29nP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3>>Od| z3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S!mbc@e+3&+HH#4ZCc!ID&6d1zC*4W`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BwZk$X5s7Ax{f?M%c5$o)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>@8t$ z3wuY{yTaZR_P($WgncONBViv4`$X8M!afuBxv(#UeL28*S#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0L!loKvyezoCcJC)62N*94?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rCl0uMWOL783Sz zVZRXeOJNHOTSVBR!WI*@xUeOJEh%g%VM`19m9S-mEh}s}Vap5qwXhY0ttf0IVJiz; zMc8kI{Z`nj!d4UZJ7K>U_J;w+%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!< zt=nv{+pM$O?6%u1y4!5M+f<<2^r737quVs4+tjApbg0`Ds@t@y+f=RF^sd{Ku-i1U z+tjn$bhXwvn*E3)@)OCc-uq_77qI6!tG+{}%QiVVeotT-bkwZ6R#S0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghioFMX zFYEwe2MRk#*ulaM5q7As!-O3!>~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI#d za)9x&;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yv6xe0A_0a<#B)gk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wuJ?lLL&G1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w%{Vf}342}G8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6 zT-X=Fz8qk@EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG~a5jL8z(S?0g*cigTCTvV$V+k8u*w=-9L)bTkjU#MaVdDuK zU)Z;VeOuTB!X^|pk+AOwn^@Q+!X_0qnXt))O(ASbVN(q-UKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_>XEMw{tuZ(*tEi?6E?lD z8HCL!Y$jnd3!6pQtiom!HoLIz3j3b0IfTtAY%XEn7xn{Ta|@eC*bjxxE9^(Y<`ec~ zVLuTzzpw>_{Z!b31B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4*A*0R|nrA3kmzVuwMxKrLcvCEh21DVT%b{T-XxAmK3&>u%(6l zO4u^OmKC;~u;qpQTG$H0Rus09u$6_aBJ4N9ek*KMVXF!Iov_~v`@;a^Wx@TmtH5Ws6JeVQ`-iZ9 z3j3F^e+&DMu+4;RF6_U;wh*@E0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk$MYhl|6+g8|i!nPN-gRmWi?IdhxVY>+1 zRoHIAb{DpXuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgvj zR|nrAM+-Yf*s;Qn6L!3?6NH^8>?C0)3p+*FslrYZcDk@LgqXaDVOUvAN7{bF30xmwsY!mbr|ov`bL-5~5nVK)i8 zS=cSYZWVT$u-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*_qc z$pOa8g8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze1|+W^3}n2$kW1}5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~ zuCVuny)WzoVIKrVtKFu!-KNFerqazG<~wAR>Hhy6GODnz2pdh<=)%4#Yz$#v z6E>!>v4o8+?CZk5A?%yN#t}BIu0)75TM+-}q2 zZd2)I5Az)|^~hHT|A$N?Y+7N{37cNn48mpf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx}~htAp>5g@pZF*e`_r zQrN=677@0nu*HNeE^G;5OA1>`*wVs&C2SdC%L-dg*z&@DEo=p0D+*gl*vi6I5%wEl zzZJHsu+@b9PT22-{b7Ldvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA469Qo?tJ7jfXYY6+3ur-CPC2VbB>j+y{*q?>1Cv1IT8wlG_ z*k6SGRoLHzZ6xgP!ZsGRiLgzD{X^J4h5bv|zlHrr*k-~u7xrIaTL{~7fbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO`nb?_as zwXki3Z7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sA zfx-?FcCfHRgdHmEFky!aJ3`oz1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)o zw^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4moP%tAp>5qlFzK>{wyP2|Hfc3Bpbkc9O7@g`Fbo zRAHwHJ6+fr!p;cgR&E zUmbjhTrKPxVb=<~PT2LrZV+~(u$zS4EbJCxw+g#W*zLmZ5O$}qyM)~>>>gqF3cF9( z{lXp)_Motbggq?m5n+!Cdra8l!k!TJe+3&+HH#4ZCc!ID&6d1zC)fG`Rd?1P-WT?Pun&cOB9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BpqE^#A`38CBR^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfdgQBv|3jt`Hm$JfgiSAO24OP_ zn@QNr!e$XRtFYOG%`WV_!oDYL4q?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%=(j*DQsb3iwIj(*kZyK7q*13C50^|Y-wS?61I%6 zWrZy#YXq&-wIn**lNOlC+zpa{xHCJS#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L@ULpD(r8kAxy){Jv)$&JyUm?f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5HX)xmej z(ZY@qcC4`DgdH#J1Ysu%J4x8d!cGx(s<6|9oi6MQVP^_EOW4`M&JlL5u=9kSFYE$g z7Ye&b*u}yw5q7Dt%YHUuxo`~C+vD*Hwe2?*iFK27IurU zTZP>w>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVEqa)9x& z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(p ze0A_0^0csLggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;ROYmjjHK1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@OnhW~$uj4JFa!bTG|y0EVb8$;OFgpDa| zEMa2{`?|1i2>Yh6afFR4Y&>D(3;UL^Zws41*o49+680To6APO}*rdWH6E?Z9DTGZa zY^njq%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!?gwJ7q)<~p9))Wfbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAwL`W>fk$MAz?ok_6uRZ6t=Li zMT9LXY%yVr3tK|ilERh}wzRNc30p?kvci@Vw!E-k3tK_hio#YBwz9BQg#AX?Z-uQY zY&BuO6ZU&ye;8oAEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGOc!_Ge-130q&-2EsNJ_7`D) z74|n_8wvZnu#JUnB5YG({}A?1VgC~LZ(;utwwbWah5c997Q(h1V7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$W|j?9ejsuEo>WM z+X~xG*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<64 z9W3k+VTTGkOxWSVju3X_0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk%%Xko_)J670n!j2bqg0K^Xoh0mJVW$W?RoH35 zP8W8Durr07CG2cr=LkDj*m=Uv7j}WL3x!=I>|$Y;2)k6+Wx_5Oc7?Dj2N*94?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgykR|nrA zR|~sF*tNp06L!6@8-(2`>?UD13%fXaDVOUvAN7{bF30d0N;r!k!iOoUrGGy&&vGVJ``LS=cMW zUKRG5u-ApXA?!_IZwY%_*gL}B751L6_l12R>_cH63Hw;sC&E4z_L;EHg?%CH%K^sA zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO zkAxy){Jv)$&JyUm?fLMPVxmTUppD!hR#{x58Exwwkct3H!aUKMXKl7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t%BVQeShpaAa4Pk#0wx+PP zgsm-X9bxMV`?Ik1gsm@Z17RBq`-`x@3j3R|jfDMO*v7&(5w@wYe+c`huzv~rx3K>R z+f3Nz!u~643t?LhFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWUG;{4!%RS7PgJBZG~+oY^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAxDjTb?_Z>w6J4@ z9V_fOVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~Bcp zcCoNagk37^GGUhsyF%EN1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4!LUNtAp>5tA$-7>{?;h3A~|c9XE1h20|TR$;dZ zyIt5F!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b~B@9ALaGxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgRyCUmbjh zJT2@QVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD z_MxzkgncaR6JehU`%Kv9!oCpp4eL4%(%s$N z-QC^Y-QC?`&=_>5k_rk2sdS@s8iaxpCYT`p_xiGjJ-pYQop~ZN z;|d#3*!aRG5H_K(iG)ooY!YFU3Y$#Wt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LTy)wve!eg)Jg%QDKV- zTU^)@!j=@al(40REhB7MVao|yUf2r4Rus09u$2cGFAMIkT|G9J*==sN+gx+Ex$|zb zfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7) zZd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%E(s--yy3CTTR&N!qyPBrm(ey ztu1UFVe1N8PuTjxHW0R}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#T}Hk-_zu}s*lxmh7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0g&id9U}1*{ zJ5<xp9VP5&VaEtNR@iaEju&=;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jO?~nt3p+>Hxx&67?3=>ACG6Y6&J%XNunUA;DC{C(7Yn;Y*rmcQ z6Lz_?&bb4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6a zo3Pu3{Xp0ch20_SPGLV1_G4i`5%yDIcL}>&*geAT6?UJn`-S~X*v|(TFAMIkT|G9J z*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SG zZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-Jz{pnz-yshQ zdq~*B!X6R!sIbR`Jud7CVNVKsO4!rFo)Pw}uwMxKrLgCOJumD9VJ`}MN!ZK6UJ>@H zu-AmWF6<3qZwmXBuwM)Njj-PiFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWx@TmtHl zn^M?R!lo8Bjj(BjO($%6VKWGuQP@nvW*%U?EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa z&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h z@48J1yG_3Y$yV+`{G& zHm|Vxgv~E(0bvUYTS(Z#!WI#>sIbL^EiP;cVM_{IO4!oEmJznBu;qj;FKh*2D+*gl z*vbQpmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxra!W#p@a?~ql6ttM=BVQUCmQ`lO<))uyouyuv4Cv1IT8wlG_*ha!O7Pg77O@(bH zY;$2-2-{NFR>HOxwvDiDg>5Hndto~W+fmp~!gd~DyezoCcJ|wq`P8s>?;5+10VP6sURbgKf_H|*W2|Hcb8N$vKc9yWSg`FepTw&i3_Dx~m z683Fj=LtJs*agBa6n2rYi-lbx>{4Nu3AZc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgacR|nrA*9yB%*!9A` zBka4vZV+~(u$zS4EbJCxw+j27uYq9yM)~> z>>gqF3cF9({lb1G?B@fFmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrb9VC1WV?~n(DJtXX5VUGxVRM=y}9vAk6uqTB*CG2To&j@=~ z*e`_rQrL6Co)`9luos2BBQK^=?yvZqtWuQ;u%a zlx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^47>#2j3xY z3wuY{yTX1a?DxXn6ZXEaKM4Dyun&ZNDC{F)9}D}Fus;j?i?F{6`8U`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA4g%=_hc$f&|b6E?cAF@%jNY%F183mZq+xWdL0 zHomY4giR=HB4HB?n?%^8!X^_oxv(jOO(|?DVN(m6M%c8%rV}>3uo;BSC~PKSGY>Fc z7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj z58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wAT zk*^N^51CciY{F(2Hixh|h0P^wZejBXn^)L;!sZvYfUpIHEhKDVVT%Y`RM=v|78kaJ zuqA~pC2VP7%LrRm*mA;_7q)`16@{%NY~=yQ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!&~ zVLJ~nUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bk_myxdyzC(5uwwtish3z41Phoor+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eo zu)~ENA?!$DM+rMx*fGM66?UAk_lNF2|Ia!@v`9l+SOxonce1QyUjIsn>+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWer;L1c@Evlhu&)UFs<5vK`?|2x zgq<$z3}I&qJ4@Kv!p;$PuCQ+i`=+pO3H!FN^Msu*>;hpI3cE@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4!LIJtAp>5YlU4W?0R9}5%yhSHwe2?*iFK27IurUTZMg3*!P9qChT@$ zKM?jqVRs0-Q`nD${aDyfg#A?5UBd1bc8{=oh21CYeqlco_VWS8%YyrBSC7qQcAJ~+ zHrL#3?!4P9pxbPt+pMPB?5W!~j|+Q3*ptGZ685yPXM{Z~>=(j*DeO66&kK7&*o(qm685sNSA@MP>@{Jp z3wuM@o5Fr2?AOA6BkZ>WjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q* zV7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d28gWgYS^Hg}o!}U17fy_IqLP3434IAB6o;*ayNs6!wv@ zkA?k7*q?>{Mc7}3{Y}{4g?%FIQ(^xQ_D^B|683Ll{}J|IVV?>6T-g7FeKEjzS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L(+Qhi*bKsE6gHEvnFkmz3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(R zr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqF$X5sdhs-K$Hes_1n?u-~!sZe-x3GDH%`0p^ zVe<=HK-hx97816wutkI|Dr_-fiwj#q*pkAQ61KFkWrQs&Y&l`e3tK_hio#YBw(52iQ(>D4+g#Wd z!nPE)m9VXaZ6j=3VcQAYUf2%8b`-Xgu$>1OFAMIkT|G9J*==sN+gx+Ex$|zbfNrym zZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x z)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%g9#;-yypS+fCT+!uAlhr?9<*?JaB{ zVfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC5O$=nql6tT>=}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#Q%1fz_zpQ$*jI#oRoK^reO=gT!cG@f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghg>uA)xmejwZg6wcD=Cg2>Y(E z8-(2`>?UD13%f9|-%Qusej^DeOnWek|-K!hS03E@5{IyGPi) z!tN7xzp$SP`}qLlWx@TmtH`7ry342=DGs2z~_6uRZ z6!x63=Y_o>>_uTO342-CE5cqC_L{KQg}ou{O<}(h_G@9k5%${w#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h| z+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO;qvR3j0Xd$HM+3?9amfBJ8ii{wD12!afo9sjzMeOhq_Inx=p*fP1U+h@48J1yG6Qwp0(*wn(N5jL%`>4Z%$YzAR73Y$sT%ma*<1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+7)Y)N5D z30qp&GQyS>ww$o#g{>fLMPVxmTX}%-vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA4ojC^(Q9kQyh)r74sYz<*+3R_Fq+QQZmwyv=C zgsm@Z17RBq+ep~P!Zs1Msj$t2Z7ysJVOt8@O4!!Iwh^|iu4I||!L*v^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcK zW#p@a?~q-E?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX6 z2s={PQNoTEc8suNg&imCcwr|9J5kt4!cHDwyezoCcJ?^{)D(q{*zAo%EVW$f_ zL)e+Z&JuREuycf+E9@J>zA5Zm!oDr+JYnYxyFl25!Y&eav9L>oT`KG{VV4WLLfDnU zt`c_j0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk%%T4C1-yI$CLgnd`o4Z>~|c9XE1h20|TR$<>0_I+Wu3AoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA2$jC^(Q9rB>ChlD*W>=9v) z3VTf0a~-<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI? zZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcR zirZ~k+-)k|>|wq`-WvJp;5+1PVebfgSJ>}_{a)C6!rmA52Vs8{_JObug?%LKV_|<1 z_Ge*#5%yPMe-rk1VV?;5RMrVtKFu!-KNFerqazG<~wAR1-|?a8CBS5 z!bTT1hOjY(jU{YsVdDrJSJ-&M#uqk$unC1tBy3_~lL(ts*kr;c7dC~kDTPfXY-(ZC z2%A>ebi$?=HiNJkh0P>v<^jgbg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A z+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ< z)U(@kwc8Z8+qAgbRJz&2e22_3^3}orA+rjbP1x+h<`6cgu(^cIEo>fP^9q|!*!;p4 z5VoMOg@i3EY!P9L3R_Ir;=+~?wxqD7ge@&>8DYx`TTa;W!d4KrqOg^OtvtYZS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LuQZDH#OTUXe6!qykIfv^pQZ6s`CVVelsRM=+1HW#*quq}mc zC2VV9+X&lM*mlCU7q)}29fj>AZ07;S%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB z?5W!>yzW3p+&Ep~4OmcDS%3gdHjDC}BqnJ4V>C!j2Pmys#65oha-iVJ8nT zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb zl##CvzC%tG_7!1Y74|h@Ul(?ou+xQ|A?!?HX9+u7*g3+^74{8b-xT&OVc!;Zp0M+U zT_Eg2VHXLzSlA`PE){l}u*-#AA?!+FR|&g%fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA=iw2b?_Z>t+4BaT`%lA!oDl)24Ob} zyGhv1!fp|EtFZ40`@XQ-gxxOe2f}_R><(df3j2|;9}D}5u%8OMOW57Q?h$scu=|AF zFYIT+em=l>S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0Lw_K2`Yg*_(habZsgds5g_!k!lPjId{g{X*C;g*_+i zd0{UIdr{a+!d@2kim+FOy(a8+VQ&a~Q`oPB{aV;>g#C7a@v`9l+SOxonce1QyUjIs zn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6V zh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeZ;gC)@E!8Duy=&LE9`f| zelP4jVebq3gRnme`#{)-!afrAv9Lc0`?IjW2>YwBzX|)huup`2D(oM^{weHV!u~Dn zKf?Yi>@#7X3;Un2F9sMd3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BpqEf?s}zj4Et2VWSHhL)e(Y#u7HRuyKTqD{MSr;|rTW*o49+ z5;n20NrX)*Y%*b!3!6gNl)|PGHnp&6giR}KI$_fbn?cx&!e$aS^8n*z!Tq(X$L2D- z&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?; zYSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC&gi`Rd^RkXePz zCTweEhlVwVJiq*QP@htRvuuyEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG$rY&&7w3)?~1j>2{lw(|hvWx@Tm ztHMu#*QEFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z%E(s--yx?8`--ry3j3O{uM0a(*y+N~5O$`p zvxJ>3>>Od|3j2nzZwmXCux|@HPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m5O$@otAt%W zz<613f9>kAxy){Jv)$&JyUm?MeOhq_Inx=p*f zP1U+h@48J1yG-dqmiy!X6X$ zxUeULJt^!dVNVNtM%c5$ej)6a!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Zus4LgDePCm zel6@b!hSozcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#w?@7?_zrnn*gL}B74|z}zZdqNu=j=iLD(OKeIV>ZVIK+mSlFM0{aM&w zg#A_6--P{L*eAk174{Ed{}lEwVgDBPA7TF$_L;EHh5b+17Xyr!1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@Onp)bEfMin-iu+fE$ zA#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ37c5hB*G>YHkq)=g-s!BN?}t8n_Ad3!lo5A zov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yyS%e0A`D$gIL<6E?fBIfTtAY%XDQ3!6vSyu#)aHove1ge@p+ zAz=#(TSVBR!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOEdTcJU z+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHts zrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wASk*^NELsk{G zny}S{ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3*e1d@6}FkM&4q0tY)fHV3ENuO zHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEfY!6|33foKA-oo|~wy&`LgzYcv z0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu(O4!lDjuCdOu;YXsFYE+iCki`B*vSKomj(CN zt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUW#p@a z?~qf4eMQ(;g?&xf*M*%X>~vvg2s=~QS;Ed1c8;)fg?&TVH-&vm*tdn9C+vJ-7YMsh z*hRuF7IulSONCt~>~djO2)k0)Rl=?wV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$TcHh9ejseE9^R9*9-fOu)PD(rj0zAx-HVYdtWfv_J6yF=KW!hR&|$HIOh?5D!+5_Y$+dxYI9>^@=l3;UU{ zpARrz7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0E zrUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG z<~!tpk*^NELmm|Nkg$h^JtFK;VUG!WT-X!Bo)q?!u&0GRBkWmWzYz9IVb2MBUf2u5 zUKI9{u$P6sBJ5RRuL*ly*c-y$6!t4&zZUizVZR+>Xk63j3X~-wS(B z*!#l%AncFAJ`nbyu#bd&EbLFh{w(Y-!u~4kZ^HgA>=R+13j2q!e+v7Tuzw5tkFfs= z`%Kv9!u}`hivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e20v(@R#2qqY4{M*yzH>5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVIgiS1L z5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm z9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{T-XxAmK3&>u%(49BWzh= z%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY5VoPP zjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L%vYGcDk@Lgq&?AyZ56L!9^3xr)L>>^)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1ExF$s*ms59AnZnAHwn90*e$|t74|)0-xqe9u-k?GK-dq3-68BwVLuY~ zV_`oL_ETYZ3A9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZQ$X5s7ArA_BNZ7-|9ufAau*ZZwF6;?m zPYQcV*wezE5%#RGUkLl9u;+w5FYE4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bmbt&y(|zC+#?_KvW3h5b(0?}fc5?0sQ>5cWr59|-$U*hj)X7WOA$e-`!^VSg3& zH(`Gl_KC1hh5bX=KZX5E*uRDSN7#RbeJ1R4VgD2M#Q@`F!Tq(X$L2D-&CPb3Ywk98 z-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmY zZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%V?sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jto zyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?Ps zO^drtrJFs>cgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){ z77@0nu*HNeE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(Nn zZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtH_HAM32|Hid1;Q>Ac9F1) zgQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfna?QwB2j3yr3cF6&^}@a*?7PBl5O$-mn}ppg>=t3S z3j3b0?+d$4*zLl8Anb?2?htmTupbHgv9O;A`>C+IgxxLd9%1(iyHD8t!hR;~=L3wF z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`wt z}g@o2zyr8FNFP4*mJ_37xsd%7lpkf z>}6rE2zyo7Yr0)75TM+-}q2Zd2)I5Az-J*2q@}-yv@cdq>#2!hR?0_rl&2_P($` z2>YY34}^Uv>?2_x3;UC>KMVVdu)hlXo3OtN`$X8M!u}!bpThnn?BBxvBkaGzJ`?u2 zu>T4BVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yx$c`sH`XsKQ1QHoCAegpDa|EMa2{8%NlAAu zwt}z~g{>rPrVtKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5 z?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`& zcAT)|g`FVmL}4chJ9&Wdvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA4kjC^(Q9dfF$uL%39u&)XGy0FuPoi6MQVP^_EOW4`M&JlL5 zux|+arm$}b`?j$2gq<(!0$~>lyGYo@!Y&bZsj$n0T`uejVOI*fO4!u{jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xn|_6gYS@Q zg~>*45cWf1cL=*v*pGz$SlCa5 z{Z!ap!tNG!kFa}%-6!mRVLuc0^8v=og8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+R^3}n2$b-Tj685mLM}$2p>@i`F3wuJ?lfs@7 z_O!5Pggq^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!hR*}*TQ}y?6(7q zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9 zYvikg?~u2Jy(8>hVZRghdtvVhdtcZeg#A(22f{uS_K~oUh5bp`pN0KJ*k6VHP1xUs zeIo2rVgC^JPhtNO_HSYT5%ynUp9%Y1*#CrmF~E3PaDVOUvAN7{bF+vRAHkD8(r8K!p0Ofmawsf zjU#MaVdDuKU)Th~CKNW2u!)6DB5YD&lL?z#*c8I16gHKxsfA4=Y+7N{37cNn48mp< zHj}WK2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LX zY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75T zwwAE9g{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV z*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{ z>=0px3Oh{L;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L04 z*w=)8UD#>DP8W8Durr07CG2cr=LkDj*f)fIQ`onJeOuUh!p;|Vfv^jOT_o&cVV4NI zRM=(0E*Ex%uq%aKCG6?}#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jOwDXgxx6YCSf-VyG7Wo!oDZ$ z`@(J$cDt}22>YS1JA~aS>_@_WEbJ%3ek$xPVRs9=N7%i>?h|&uu%8M0`2gc(!Tq(X z$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`m zZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`u`Rd?1 z#PVZRdgYhk|;_S*r*%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB z?5W!Y+F&xCz0?0>?( z7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQG@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU z*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbg zVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X| zu+4;RE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~ zVJ8SXQP@esP99*qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwcnn*qOr45_Yz*bA+8M>>I+q zDePOqzAfxLVdo3GK-h)CE)sUJuuFtpD(o_0mkYZ>*p|wq`t{M62;5+16Vb=+} zUf6epeOK5G!fq6HldzkG-6HH(Vc!$>ePOo=yIt51g#A$19m4Ju_9J0G7WNZiKNWVD zu)BrbBkW#b_X)dS*w2Lhe1P$?;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-ysi-e0A_0@}RJXggq?m5n+!Cdra8l!k!TJq_C%iJuU1R zVb2Qtg|J@=drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtuwM!LwXoj^`|SYZWx@Tm ztHUf6rW-WT=f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhs-ka)xrNEvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2 zVe1H6SJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8 zh3zD4=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_ z!VVL5xUeIH9VzT6VMhx)M%b~!juUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t+k*^NELrxX;6=7c$_BCN& z7j~Mk(}kTO>`Y;22|HWZIl|5r_6=d*6!tA)-xhYBu=9moAnZb67YVyq*d@X)6?U1h z%Y|Jb>`Gx*3A=iL@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWe*Nl91@Evlku}SG$KEQZcaDVOUvAN7{ zbF30c~ICx z!X6g(h_FY6JtpjNVNVEqQrJ_%o)-3uuxEw+Lf9{bJtypWVJ`@KQP@kuUKaL>uvdk> zChT=#ZwPx+*sp~BTG(%d{dR!yvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA3>jeK?R9rCuYcZ9tw?03R`FYG;G?+g2bus;g>K-h=E zJ`(n^us;d=v#`Gi`>U|O3H!USPlSCc>>tAZDePau{w?f3!u~7lGhv?#`=78c1{g03 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu(2 zUw(&-Dr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%> z!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7* zh0P~yeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y z9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h- z3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKI zh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z; z6n2uZlLr_t3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^Br=^$X5s7A*TxaimB7zscBZhigq=I#@3cF0$<-)EIcBQbZgk3$rcv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Yev30_zt;N*mc6L7xo=t z-xYR)up5QlBPleqj>~3NA z2)kFcgO=HUmbjhJSglTVGj#?MA)Ok9uxMsuqT8)DeNg>PYZiS*t5cZ zA?%mJo)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>{r5mE$lbKemlT;S#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4jE;sFTX=Z6*ii%(S?m6Y)oNe2^(A3IKsviHlDEY zg-sxALSYjLn^@Q+!X_0qnXt))O(ASbVN(g4TG%wgrWH1wu<3=(AZ$iqGYOk{fbp{6 z{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBp zb?|@4tiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{o zDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)i zd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yyq+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BM zF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S?B**F^k|0>pBjiAc`QMq5?_?D2f6~cehe1AgQRNf*@hg z-QC^Y-QC^Y-QDefuP=Mp!+YJ?ndkET?EL2GHoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1u&sq{ zBWzn?+X>rV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6 zkg$V=9U|;dVTTDjT-Xri_x7ky-Sz5Q* zV7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(IdbHygYS@|gdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52zjpQ5 zTxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dw~s9ejse zCG2Wp*9f~-*mc6L7j}cN8-?8@>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLL zfUpOJJtXX5VUGxVRM=y}9vAk+0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@VJ{1N zMcAvtUK94Zus4LgDeNs_Zwq@z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx1{g03 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu(y zUw(&tMc7w`jVf$3VP6wAy0EVc`-ZSFgnd)kn8L;q_AOy!3mZq+xWc|I>^s7~D{MSr z-xKzIVLuQyzOV^|O(^V#!hR%dB4HB?n`D6Tvf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4Qj(m0Sf5?x8O(tw|VN(eEiLjpvn^M@% zg#BFDRKk8C?3co(7B-ErX@&ht*sq06Cv19QGYFee*i6D^7B-8pS%u9eY<6LD2%A&b zT*BraV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$UGxo9ejt(D{MYt^9x%**n+|q61K3gMT9LXY%yWK5%ybQiwj#q*pkAQ61KFk z-wFG@us;Y}M%c2#mJ{|zVap3!LD-7IRuZNZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ywe<`Rd?1WL05*5%yPMe-pNv zu+@dFA#6=yYYAIh*x!ZyL)bdP))n?oVe1K7U)aBdZ6ItzVH*kCSlGXX{YTh;h5b+1 zCc-uqwwbWag>5mwcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#El0jO_zu}h*w(_f5w@+c?SySFYzJXG3foE8&cb#PwyUt+gzYYD z4`F)>+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6@W_#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h| z+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOa$#2tFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1E^foB3%fzsjlymccC)ZsgxxCa zHet65yF=KW!tN4wx3GJJ-7D-qVfPDrK-h!A9uoGjut$VFD(o>~j|+QZfbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bcb?_bX zl(46TJtOQ{Vb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I z2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)o zw^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4jE;ZFTX>+BJ8WeMin-iu&)UlUD(%!eM8t7!oDeN zOkraQ`t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L4CKEQfuqlN7MA%P-O)2bW!hSAnDq+76_Df+?3!6sRw8DNR?AOAk6E?lD z8HCL!Y$jnd3!6pQtiom!HoLGngv}{zE@5*IFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWS)_)4!%R?6*ix+`GqYYY(ZfQ30qj$ zBEl9GwwSQr2>Y$D#f2>)Y)N5D30qp&?}Ytc*dK%~BWzh=%L)6Vu;qoVAZ$fpD+ya! z*eb&QG{AUSaDVOUvAN7{bFYwBzX@AS*y_U85VoeUwS=uL?C-+k9j)u=Rwk zFYI5!HW0R|wq`jvV>w;5+0fVMhx)M%b~!juUpguoHxxDC{I*Cks18*r~!!6Lz|= zGlZQf>?~nt3p+>Hxx&s9cD}F+gk31?B4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Phm)UJ@ zw%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA3A6h20?RMqxJzyII&R!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY5 z4+(o%*dxLo75130$AvvHz<613f9>kAxy){Jv)$&JyUm?a0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11om){{@ z5%yJKqY4{M*w=)OF6`^Vz9DQ3Vc!%srm(SueM{Kb!p0FcuCQ+l`;M^h3L8(@_k?|4 z*bjt_FKhx~6AJsGupbGVNZ7=}CK+J7EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyGQK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn zGSA3Y2j3y{3Y$;Z{K6IxwxF<_}05w@(b<%IoF*z&?w5VoSQm4vMcgUYdzB>30Syk9yg#A_6--N9uY;|F4 z2wPLwTEf;A_IF|b5Vnr6b%p&?*m}a&7xph<8wlG_*ha!O7WQvp{}J|IVgD1hiLgzD zZ6<7UVOtC^UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bk_%aN}RzC*SWwzaTrgl#KqJ7L=k+d_4L)f0e z_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p-+f@v`9l+SOxonce1QyUjIs zn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6V zh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeM~-}T@EvlLu%m??BkWjV z#|b-L*a^Z;6n2uZlZBlk>{MZ=2|Hcb8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+6$} zT_WsKVV4QJT-X%@jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xpL&IgYS^5gk3G{8e!K8yH42k!fp_Dqp+KV-7M@DVYdpqP1x=9v)3VTf0q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$de;q9ejs8CG2To z&j@=~*mJ_37xsd%7lpkf>}6rE2zyo7YrSdso?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%YtAQH6~r>}$eC7xr~w-w-y2ux|<*Q`lI- zz9npIVdDrJSJ=0OeMi`Lg^efdd&0gi><7Ze7dC;g35ESo*pGxwBy3_~lMFCk7TjOE zdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95 z-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wB4k*^N^ z5BagM$%IWVYzkpN5%yDIQwsZ;u%8Q?O4u)i{ZiP}!ln^6t*~DS`?av?giSAO24OP_ zn@QNr!e$XRtFYOG%`R*XVRH(bOW524jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nP=pygYS@eh0P~yeqjp;TTs|S!WI^`h_FS4 zEhg+Y!hS1kabZgcTT<9k!j=~HJ7K>U_6K3h2wPUza>D*7YT3$MA)XnHWRkFuq_4{FAMIkT|G9J*==sN+gx+Ex$|zb zfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7) zZd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e<;YhD-yvHG+gjK*!nPH*ov`hN z?I3JNVLJ)iS=cVZb``dpu-%32A#6`!dkNcH*gnGc6}F$S{e>MM>_A}$2|HNWA;Jz7 zc9^ikg&i@#cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#BS*eE_zpQr*wMm{5q7Mw;z#a3Oh;I$-+(%cB-(`gq<$z3}I&q zJ4@Kv!p;$PuCVijoiFSHVHXO!NZ7@~E)jOAu*-y9F6@c{#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jO-QChT@$cL=*v*j>Wz7Iu%YdxhO6?0#Vn2zyZ2L&6>w z_K2`Yg*_(habZskFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1E^Wi23wuG>i^5(K_Oh^7guN>4HDRv{ zdqdcp!rl`0wy<}Ey({cJVebq3K-h=EJ`(n^uup`2D(o|1p9}k9fbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*0Ox<#)(egnd=m zsKQ1Q_BCOn3;VjTZwMPh*f)iZDQqlZ-x4;quyKTqE9~3Cz9a0r!p0N!Jz?J$_5)$# z3!6aLgu;F(>_@^T5;n20Nd_1%3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;f zZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^Bpqj$X5sdhx}OBWWpvFHifXC2>Yq9DTVz^*w2McCF~c% zekp8fVbchkR@kqE{aV;`!loBCgRmKe%_MAQVY3LERoHC8W*0VxusMazC2Z~i#>;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO_EhuauVG9deMA)Lj78CXxVZRl&xUeOJEh%g%VM`19ov_~v`-8A$ zge@yZc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rEXquMWOLRu%RaVSg3&H({#@TV2>1!qybF zmaw&j{ax5UgsmfNU19$eww|!{h5bv|2EsNJwvn)nh5cLDe}w&4*#CrWB5YG(n+e-o z*cJnfmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxrcKa^$On?~tv8Z7pmYVcQDZPT2Osb`Z9su$_eMENmBHy9(P)*zUsi5VohVy@c&8 zY#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2eVyezoCcJ}X-f2s>8Tal(!l zc7m`Ig`FhqWMQWWJ5|_e!cG@|wq`t{nO5;5+0hVOI;gM%cB&t`l~>up5NkDC{O-Hw(K(*sa2D6L!0>JA~aS z>@Hz<3%f_yy~6GjcE7L(ggq$iAz=>-dqmiy!X6X$xUeS%7%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^5n=@2j3x2342=DGs2z~ z_MEWig}or`MPV-qds)~k!d?~jny}Y}y&>#PVQ&e0Ti83o-WB$qu=j<1AnZe79|`+d z*eAk175161&xL(4z<613f9>kAxy){Jv)$&JyUm?I6gHNyZwVV) z*f_$*74~gm-x2m*VdDw=p0Mu=`+>0Wg-sxALSa7?_9I~v37c5hBm<0>1^3sk9-GVT zHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZ zsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+M|wq`<{A0w;5%eqVe<)_U)Tb|78JISu!V&!B5YA%iwXOU zu-^(>T-XxAmK3&>u%(6lPT22-{Xy6=!j=`boUlI%TVB`-!d4WvlCYJ9ts?AC1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4*B!Q zR|nrAs|x#zu)hlXo3Pb{tuAa0VQUIoOW4}N{x0kv!qySCuCRX!TTj^f!u};}17RBq z+ep~P!u~DnKf?Yi?0>>G5w@wY&4g_(Y>NTL%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W! zVMh!wUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bmb$dRuOzC(@@cC@f#gdHpFIAO;NJ3-iq!cG!)vanNxohs}!VW$f_L)e+Z&JuRE zuycf+E9^XB=L@?)*oDF_5_Yk$ON3o2>@s1O3%g=~@v`9l+SOxonce1QyUjIsn>+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeSB`vj@EvlMu&ae#BkWpX*9p5` z*bTyN6n2xan}yvX>{em73AjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(d2-~dgYS^1ggq_n8DY-~drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYt zu(yQ0E$kg(?+SZQ*!#jh5cZ+4kA!_J>=R+13j0jh=fb`iV7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S8Au`5p2VVP6$Cs<6?7 zeNEWt!oDu-8^XpA_Dx}93L8t@v`9l+SOxo znce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe^Nf6T@EtO* zu=#||FKhu}3kq9E*uugV5w@tX#f1Gv*l&d`E^G;5OA1>`*wVs&C+zpa{vd1_Vap0z zPS_uXEiY^ZVJiw-N!ZH5RuT560mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx~cutAp>5RfYXU*k6VHP1tI}Ru{I0ur-CPC2VbB ze;4)-Ve1H6SJ*#=ttV`KVgC}gfv^pQZ6s`CVgDBPA7TF$_CH~p2-{THX2LcXw#5MB zWx@TmtH0)75TM+-}q2Zd2)I5Az*z_TA|3ACBiNhcA2ot zg}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#D@VRM_zt;B*wwx5k|>;_>s3cE?z&BAUGcB`=4gxxOe4qNZ7-|9ufAau*ZZwF6@Z`#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jOuvdk>ChT=#ZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9_KC1h zg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWR$tS{0{kwu&)XmRoH04z9wvRVP6;a4Pj#l`=+olg^eZbTf)W`Hjc1y zg?(GtcZ7Xc*m%OeC+z#eejsdoVG{_OP}mQJ{YcnE!X_3r$pGVJ!Tq(X$L2D-&CPb3 zYwk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x z)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC$J*`Rd^RkRJ=1OxWbY zrV#cMVLuf%rLdm~`?;{Gg#AL;FNIAlY#L$H3j39?UkjT~*!03?5H_Q*nS{+OY!+d& z3Y$&X?84>{Hm9(;gv~v`cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#c}BiE_zsy@*nGm~7q)<~1%)jnY++%G2wPOxV#0nS?6<-e z7q*13C50^|Y-wS?6ZU&ye-O5euw{iUC+v^HmKU~yuoZ=^By442s|fqk0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%1#v?61Q9CTulfs|#C0*qXxD61KLmzYF_^uyus3E9{@b))ThAuzv~LK-h-DHWIe6 zuzw5tkFfs=`=78)gl#HpGhv$x+hTz6vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA3tj(m0S9kP|Mt%YqPY+GU53EN)S4#IX6wv(`( zh3z72S7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*bxJa zmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraU za^$On?~tQ}9WCq_VaEzPPT29nP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3>>Od| z3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S!mb!#yezoCcJ}p}x2)kC;b;7O}c7w1R zh213VW?{DoyH(h2!fqFKhp;<^-6ia9VfP5TSJ-{R?icoeum^=bB|wq`o*en=;5+0gVNVNtM%c5$o)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>@8t$ z3wuY{yTaZR_P($WgncONBViv4`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRoXveusQT*jI&(Dr_`iUlTUE zu&)dIhOjY&eN)(&!p0KzEn#B|8%NlD#6ZU;!KM*#)unB}sDC~#A zek5!nVG|3RWPtIq;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yxHZe0A`D$d83hCTwzHQwaNsu%8N>QrORg{an~o!hRv_m%^qNHjS`p zh5bs{uZ2w~Y~8ge@v;F=4+E_FG|#3tK|ilERh}wzRO{3H!aUKL}e!*s{Ww6ZS`8 z%L`jU*owkd61K9iRfPR%fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA%7nE>fk$MRbhV-_E%wl6SkVL)rGAgY)xTn30qs(--Z1{ z*gC@274}bI>j_(5*uR8rAZ$Zn8wuN3*uRDSN7#Rb{ZH5?!ZsDQnXt`;Z85-jS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LFMX zFYEwe2MRk#*ulaM5q7As!-O3!?1%xz%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB z?5W!~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI<= zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb z%8{=QzC*4OcD1l;gk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWePmX+b@E!7$u&0GRBkWmW&k1{8*bBm5 z6!wy^mxa9|>{Vf}342}G8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6 zT-X-_jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(8D*X?zeBzv?5n~?6*ii%uL&Dn*w=-9L)aL?zA0=>VPgsVmawsfjU#MaVc!<^ z9bw-UHlDEW3H!dV9|#*?*aX5R6!t@5KN2>Pu!)6DGQfCQaDVOUvAN7{bF3n4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bk_o{_H(zC-2}HlMKhg)Ja#L17CCTUgj4!WI>_n6Tdn`>n9Wg)Jd$ zNnuL~TUyxfg#BLFAA~IkAxy){J zv)$&JyUm?U|O30qCr>cZ9#wx+PPgsm;?@525eY#m|i3j3$9^@Oc2>|eq*5VoPPjf8D1?BBxv zBkaGz{wHh`VVeruOxWhawisZ%EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+1 zRoHIAb{DpXuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@Lgq0)75TM+-}q2Zd2)I5Az*z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5nVK)i8 zS=cSYZWVT$u-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*`FA zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zCr7?I_zrnW*wezE5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~ zuCVuny)WzoVIK;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO*MyBO?CZk5 zA#4m`-xM~cu(5=FOW4@L#t}BIux|_djcgUn8Umg4(@?&9>37cHl6vBQY?5Dz}6!tS=KNmKYuwMxKrLd`mO(SetVZRdg zYhlv~n_k!q!e$gUldzeE%_3}8VY3OFUDzDL<`g!Uu(<~qFAMIkT|G9J*==sN+gx+E zx$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hut zsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|&&XE?-y!n~n@`yM!WIy= zpsq-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$e%~PI`|G*RoGvI{Z-iCgsmoQbzy4=TT|Ft!qyh{cVYh!wvMoM zh5b|5dcxKh_Ag-@2-{HDM#450_HSYT5%ynU{}Z-}uuX++CTw$ITMRH>7TjOEdTcJU z+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHts zrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NEL$(sO zwXki3Z7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sA zfx-?FcCfHRgdHmEFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@g`Fbo zRAHwHJ6+fr!p;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb>>gqF3cF9( z{lXp)_Motbggq?m5n+!Cdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh%g}o%~ zWnr%fdsWzL!d@5lhOjqP-WT?Pun&cOB|wq` zMw#!+?~tzu`>L=}g^eccYr;ks_H|+35H^OeZwebz*jU28C2VYA;|Lp9*tdm!N7#3T zjVJ7T!oDx;2g1e|Hi57Sh5b<2kAzJmY+_-P3@~06++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrbfXXLAc?~r+g%_nSrVG9UbP}oAk78bUMutkL}ChRxDek*KoVM_>GQrJ?$ zmKOFqVZRsl2Vu(yTUOX|!u}|1d0{IETT$3b!d4cxim*QoFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EY+F z{|Vbf*rviZ6SldqEe04b3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BuC~$X5s7AzKOCTG%$iwiULWut>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK27IurU zTZP>w>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP&UKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$&s%P zzC)f8_O!5PggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqs;&1cgRZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9Wv?2R|o%x{8-pz!X_6sg|MFp`>C)gh5by}&xK7T>=(j*DQs$C(+HbZ*sp~BTG({L zrWZDYuo;ETBy473vk042*lfaP7dD5mIfcz7Z0-TZ%YyrBSC7qQcAJ~+HrL#3?!4P9 zpxbPt+pMPB?5W!QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)Jfn^5>DS4!%QH74{cle--vOVXFySUDz7J))cmuu(gH#UD!W_ts`t*VgD4i zp0M?W{Y%&e!ZsAPk+6-0{ae_7g#B08|AcKKY*S&I3EN!Q76Xiz1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM z+X~xG*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<64 z9W3k+VTTGkOxWSVju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1 zR|~sF*tNp06L!6@8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`ye zv~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;Z zZd1>0)75TM+-}q2Zd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x=cv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Q5N{} zJLD_EzA9`~VWSEAny}G@eO=f$gpDEWo5IEvHkPn&2^(A3IKsvi_HAL`5%yhS;|cqo zun^@Q+1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4w-c1tAqbTek^P{r5mEo?er(+itH*o?wv5;n82S%l3hY&K!D3!6jOoWkZ3 zHunJIWx@TmtH5)6ti_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`SZwE2j3y93j2$&zY6=Cu+@aE zE^G~9YYJOS*xJJWF6rVtKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@ z9V_fOVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~Bcp zcCoNagk37^GGUhsyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZ zyIt5F!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2 zJuU1RVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD z_MxzkgncaR6JehU`%Kv9!oC<_yezoCcJY(E@q~R(*!P9~K-l=gCJ;8EupbKhk+6w`O)PAZ0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfF&1 z)xrNEKNdEbu*ro@A?zo@ekyEAVLuc0b74~n`-QMy3Y%KkG{UA8_A6n(7B-!*>4nW8 zY(`--37c8iEW&0LHk+{7h0P&sPGNHin|pxqvf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA5bjC^(Q9Wt-5`Gn0cYyn{l3R_6n!on62 zwy3bhg#AX?Z-p%`YzbjY3R_Cp(!zcx?DxX{AZ!_7%L-dg*dK*0FKh*2D+*gl*vi6I z5%#A6#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOj+y{*gu7>Cv1IT z{}Q%=unmQ6By3}0{}%QiVgD8OKVh2)+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3Ywk98 z-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmY zZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6w!*d( zw!N?&gzYG7Ct*7a+eO%}!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy z*rCD>6Lz?;BL)~R3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^Br>J$X5s7Ax8;2TG%ndjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i(}kTO z>`Y;22|HWZIl|5rcAl{Fgt>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L^4*h|7*7WRs;SB1SM z>~&#p2zyi5Tf*KJ_KvW3g}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-Tr?&_W@*enRj`-CFdMOf(?RXBqssMIR}xT&_I(jO$I^9K{65*2`VPcU=|d!m=SZv zte6EA*ze(;+I`~!wpPt= zYw!HFme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{{A>Qrmxj4mmH#G6h-YAj=YDS%WNF zkYx|D96^>d$Z`c)?jXw(WO;)uUy$VwvI0R?Fvto8S>Yfn5@bb#tXPm053=)vtVEDq z5M(8TtW=Pd4ze;qc40!MCkvfF@6@ZUlj*m0X8pEKv)|S^_uIMwep`3LZ|m0hZQUoo zt()ezbqD>nZl~YYz4hC=(SBQZ-EV6J{I>SNZ)-XHwl>9YYi<0tcF1pQq5QVC%WrGd z{I>SaZ)*wtwl>mlYd!t8cGYidas9To*l%m4y>@y&ha~f=iN79FHpt2a*+oHCKFBHr z*~LLtF~}+fS>+(B5@c0_tXhy&53(9Tc1e)c46<55Ry)Y*1XjwC3-3`C3TjRHN zpZvCNn%~wP^xL|fep~m}Z|g?;ZQXUhtrhUw+6TX_G>SeoL5bJ4rvi&ErYC8khKo7 zHbK@l$l3*2`ylHOWF3R7Q;>BIvMxc^HORUJS@$685oA4stXGir4zfN$c6pHX4YDhO ztY47z53&J4HZaJp46>_&Y*0d`CkvfF@6@ZUlj*m0X8pEKv)|S^_uIMwep`3LZ|m0h zZQUoot()ezbqD>nZl~YYz4hC=(SBQZ-EV6J{I>SNZ)-XHwl>9YYi<0tcF1pQq5QVC z%WrGd{I>SaZ)*wtwl>mlYd!t8cGYidas9To*l%m4y>@y&hYaRb6Q4s;f^0~T4Gpqk zL6#b1!-H%@kc|woQ9(93$i@WO*dQAhWaEQuLXb@ivPnTUImo62Sz3@y4YFxLHa*B@ z1li0Wn-yfUgKSQa%?+}vgKS z_-)-Mzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5Z)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4~K8MWbRTG~>t_iYhgKR;N zEex_nLAE%^mIT?-AX^q>%Y$r1kgW`|>w;`mkgX1~H9@vE$kqkf`XJj7WE+F*`XJjB zWSfI*OOS01vTZ@OJ;-hdvKxbJM?$723!Ojj)T^zN>9=)e{kBfC-_|+z+qwaMTX(~6 z>(=;f-6y}To94H52mQ8gr{C7S_1n79ep`3lZ)*kow)VkqYdQS3HpOpiZTz-&$Zu<* z{I<5sZ)?^3w)W0%YYF|fHqvivJ^i+J)o*KY{kFE)Z)>H!c6vUC+{CLUK8NfKvRy&8 zJIM9~+08+AOOV|fWP5|`wjjGb$nFTTJA>@5AlnyYcL&)$L3VGD-4|r{2iXHb_F$0h z53&P6_E3;L9Au9K*`q=BSdcv)WKRUylL?ugEOh?7Q?Is8rr*|?_1iklep~0y6B+7!R7wej29 zA-}DK^4r=jzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp_1oHFzpa(_+UfZma*$U|d=5Dj zWKRXz(?NDP$eszZXM^myAbUQ@UI?-mgY2asdpXFC1lcP=_G*y57G$pn*&9LjW{|xV zWJiPS?I1fAWbXvoyFvC|ki8#d9|YNlLH1FQeVmZ#$wKGPJN0VoWcqELS--8*?6-B! z{kCp^-`3sm+qyM=TldLt>!$f_-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubrOHA)oN7 ziO(UQ2H9sp_IZ$f5oE`M?8_kgD#*SLvTuUy+aUWc$i5G{O8b6=Z)0**`&cI>^oh+1Z3lPZm0V-l3f-`1`1+qzGFTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;Y zZEcF**4p@O?U3KrLiufNm*3W^`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+qdm z4oPbF@6RFU1zDyb%N%4`f-Gy0Wec+GL6#%Pat2whAj=(Od4eo&kmU=q{6SVA$O;Bo zp&%<9WJQ9kXpj{Pvf@E@evp+2vI~N&WRR5#veH3TCde*K$n<2P^XHv3(-`4H)+q$=YTQ}No>#qB4t$^RwKKN}d zhu_ww_-(C?-_{QKZ7r1F)^_=At(xD~-uZ1Uq2Ja<`faVJ-`1}BZ7r_f))xD1t+dxp z&*zY2UN!O8L&^qOxgfhJ$jS#CHd`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6AZs6F9fGW5kaY^O&Oz2C$hrnuw;<~t zWIckcXOQ&@vfe?~C&(@jvc5rfMUeFivi?CfAjk#=*_A3(-`4H)+q$=YTQ}No>#qB4t$^Rw zKKN}dhu_ww_-(C?-_{QKZ7r1F)^_=At(xD~-uZ1Uq2Ja<`faVJ-`1}BZ7r_f))xD1 zt+dxp&*zZAylUceNJ@|m39_L-lK{hJLMhDrLAR8NGj z{kG1m-_~jN+dAidTQ|UO>u&gM-5S5G`{cKE)BLvXpx@T*^xL|(ep@%%Z|ko6ZLNUc z);{=cEr;LMruc2Gjo;P|`E4zf-_~~dZLON$*53JTEur7mM*3~7r{C7D`fV+)-_{oU zZLPG|PS59%`Mhf4bI3J8c5RR?2(pDiwkXIJ2icM!TN-4`f^2z^tq8J}L3Uk`tqQW$ zLAEBy)&|+SAX^_~8-i?OkX;{Sn}Td}kZlRFtwFXe$hHUB4MBEeknKpw^kkv)=bd`B zbu#_7&aB_oY4+PX=YCr^z;Ekr_-)-9zpeY^w{_F}w(g+c*6sA$y0?B?H`;IOuKR7R zfZx_W_-!qR-`1x1ZLN*p)(-h?EtKEZcKL0sn%~ym`E4zs-_}O@ZLO!@)~@<(Ew10z z7W-|jwAW70=a8Ft)x_tJok6xM$aV+Wo*=t9$ZiR;TZ3$Gklhw!w+GoBL3U@5-4$f} zg6!@fyC=x*4YK=!?EWBoAjlpJvi(7JAjlpHvWJ80ksy0C$Q}!_$Aj#NAbT<))02hH zpLgoj*2(nSI3s-_}j@+q#2(Tes71>)!fp-Dtn9 zyY9EO0)AWj;J39Lep{R3x3xBYTRY^pwNQRr+vT^lYJOXL=eM>AbUE<4hPvYLH2BrJr`up2iXfj_F|B|6l5<4 z*^wZ7CCFY4ve$y_^&opA$leUHw}R|wki8vb$AavgAbU5+-V3t#gY1JK`!L8p3bKzA zGCf)7{CTHdZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB`EA`azpXpyw{<)Hw(hOp z){XYty6b*hE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK&tLC@0cYa$-=(n|zep~D5 zx3#N&TZ`+rwZ(p0EA6$@^Eu=bUN!MKs*wr;fF)?N48S^>YUeel~_4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz z^xIlbzpY*M+ge<|tu6N3T4}GHp3fmk?f?Bby6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^ z+DN~x_4M1?Rllvp_1oHFzpa(_+UfZmlFX|n{(4B+AS)MS7X?}QAgd5$7YA9zAgdH) zm4mEGkW~$`YC%>#$Z7=HB|%m*$Z7>y?I5cYWOakAUXaxfvIarcFvuDOS>qtPG{~9+ zS<@hE7G#$tWO}mD`SVV_+B%tjTW8j9>oogqopZmf8{oHfH~hA4jo;RN^4q#;ep`3Y zZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R-{I=G{Z)=DAwie27YrFimR?Tl~@BFrw z&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)=W|GNUN!MKq(zXm46;^1);h@A1XqK?#|jEOh?7Q?Is8rr*|?_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7 zttIr^+DN~x_4M1?Rllvp_1oHFzpa(_+UfZmGMHCQd=5zovLQh>G{}YpS!$3C53&(K zHZsUY1=;8z8xv$>gKS)ojSsR3K{heSCI#8#Ae$0oX+btM$fgC^^dOrNWHW2XPNv`1nf2Q`&3;?w+;8g!_-)+{zpY#2w{@TVwr-l= z)*bZQx}APo_ttOgM*D5ub-%3@@Y~u4zpdr)+u9Vrt+nyn+9AKKh4S0lF2Ai+^V`}x zzpW+o+uBIKt@ZTV+Eu@;#r50TV!y4G_S)(B95SC*O?(cyCdjT0vIRl5Fvu1K+2SBu z5@bt*Y*~;k53&_Owlc`B3$j%~wmQhx1ligkTNh;OgKR^PZ49#OgKSffZ4R<6LAEu> zwguVtAiE*RZVa*=37MWObpE_kueMI6-`1J++d9pDTj$(w>jwC3-3`C3TjRHNpZvCN zn%~wP^xL|fep~m}Z|g?;ZQXUhtrhUw+6TX_G>RT6R(>19I`XWb_Ln)AlnmUHwW1* zL3V49?G3Wqg6#GnyCcZ%46?g|Y+sPw9c1?e*}Xw_Uy$7&WDf+{gF&`G$PNVALqYa% zkUbJ)j|SOeLH2l%JrQJ2CS-cD(E0ODz1ljNep_eOZ|gMsZJl$!tsCICbvOLBZjIm8 zee&D7X?|OG&~NK@`fc4?zpWeXw{_S3wpPGzYajf!mcwsrQ~b8p#&2tf{I(X#Z)>~! zwpPt=Yw!HFme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{{CXL0&cSIpk1~Jr!h62if5u zdnU-94YKEg?D-&jA;?|~vX_GF9=)e{kBfC-_|+z+qwaMTX(~6 z>(=;f-6y}To94H52mQ8gr{C7S_1n79ep`3lZ)*kow)VkqYdQS3HpOpiZTz-&$Zu<* z{I<5sZ)?^3w)W0%YYF|fHqvivJ^i+J)o*KY{kFE)Z)>H!c6vUCe8Q_HK8Ji7WS<4u z=Rx*GkR1=QFN5r>Ap1JVz6r8#gY3H?`##8i2(ll8>_m|L6l6aK*)Ku%YmogGWWNX5 zA3^qKkev*&Q$hAuko_HG{{-3TAUhLeXA?3#S?K(Er(SKHOuwx&>$i29{kG1z-_{NA z+qxTmTerq<>puBy-88?gJLtD{JN>rqt>4y-_S?Gaep@Txx3v#`Tg&0MwJCmEYvZ@I zLw;Ke<+rt6ep{>Nx3zbETTAG-wUK^X>*=?(tA1OH>$kPVep@T;wbS!CB&ox{KZl$b zWSN32bC6{TvaCUtEy%J5S&ksf8DzPFEO(IQ39`IFmM_Ti2U&q2D;Q*jf~;_m6$!GU zK~^ltiU-;GK~^HjE(o%cK~^frN(Wh)AiFRj)02hHpLgoj*2(nSI3s-_}j@+q#2(Tes71>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3x3xBY zTRY^pwNQRr+vT^lYJOXL=eMWS0h6lOSsvWX*!?vV=@e7CL|4saIPk({Jm{`fZ(NzpZob zw{-*jw(f@C)~)f|x=(&vH_dPB4*G4~PQR^t>$i2I{kHD9-_{EFZS8~K)^hl5ZHnL4 z+W2klkl)rq`E6~N-`1-6ZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o-_}Zd?eu&OY0j%A zK8LgjvX(*CD#%&~S(_kh8)WT*tbLGm2(per)+xw32U(XO>l$R;f~3s-_}j@+q#2(Tes71>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3 zx3xBYTRY^pwNQRr+vT^lYJOXL=eM8dA=8tE&YySc)z-=M+d8v;Tc_D? z>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWYJ)cA7 z^Qwu@A=d=iwL!KZ$QB0Kq99uwWJ`iyp-D#%s`*_t3*8)WN( zY<-Yz2(pbqc72d-3bM^Xwk6262HCbC+a6>$1lf&2wj&|alZDQock0#F$@JSgvwmBr z*>CHd`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6x^4t0u`)&Qbc+4{UCX4>N%@m9=RNmd&r8aiw5LN-ku6D? zlB(o9k)%Jr0Y>B~j(`0be94q_-dTRj+&U>K*Z)W}{^;M|fiq{5lJaEXpG?AUN74LtyCfQ(qASYk-w{1Q_@C_OG!(el00E}a@xq$iDdKPoMCSaPqlbAQT^naM3iq*hDrl{%wZa?1E&$vsnsrZ!Ga?l^Vq z%;Z|tl4~_;P?y)xYgI#^8og>Hw@Mv9W$KjVmQyFErc6z){-0m3^{8p1rtrd4&;2b&-DNK^M8Ia zef}?wInd|*h0tf^mC)z>4Jd}~(C7a>(60v^!GHezug}rvK9jdjotQE?ZCvX3wEy_b zKW<#=RMa0;EZcoDAI=B$9+fsWbxKkm zidpzEeTdgjyzhj`W2THuO--9}?zQ+^J@-TUId@GN$FDQ=Oc_6dKTkgq{b0s#8Sg;G zJCN}XWV{0z??A>okns*=yaO5UK*l?e@eX9X0~znY|0nN&KE~>^vOd!4qp&_R>$@tl zL;o&cpY`=E6#96q&+PgvoDcfkug~}ep?}w}&-wb8T@?DPuU`*1A0==BN~cn9y|J-m+(@F70J$M^)F z;xl}XFK`@R;wyZOZ}2U?!}s_BKjH*_!q4~xzv4Iijz91xPT~~)!r%A@r*Q^npva@jK>5_#3W3{6r^D)reQi}U?yf^Hs)Y1uEspf$2GVX3$PH2 zuoz3Q6w9z2E3gvRVHH+m4c1~E)?))U;(BbtW^BP$Y{PckfE%#`H(@7sVK?^RX54~X zu@|@DcHDtGaToUCZrp==aUbr-19%YoaR3kDVLXCI@faS*6L=B_aR^W0X&lBgcoxs$ zdAxuZ@e*Ff5xjy|@fu#o8+a3M;V9n5F}#C!@gCmC2lx;l;bVM)Pw^Q(#}_z`FYy(= z#y9vD-{E`wfFE%JKjCNmf?x3)e#am96DM&Bf8lTZgVQ*Jv(W$WpNCAyj4a5CY{-rr z$cbFYjXcPUe8`UiD2PHRj3OwCVknODQ34mBBub$)%HTpIqb$ndB9uo3T#SmSgvzLb zs;GwQsDVpR6SYtqbx;@eP#+D@5RK3nm!b)pq8TnjbF@H9v_fmNL0hy#dvriYbV6rz zL05D`cl1C{^g?g+!R6?SE6@-9F#rQ`C9c9C3`PouU?_$m6~i$CBQXl2F$QBX4&yNa z6EO*sF$HOuifNdR8JLM#n2kA@i>omY^KlKX#R4qEA}q!dEX6V`#|o^(by$VfScA1# zhxOQijkq40uo+vh72B{KH{eF>z)jeRUD%C1xEZ(LR_w)XxE*)kPTYlkxEuH2UfhTK z@ci1Q9Opn@dTd4K^($Ucp8WC44%bvcpfj{MZAQUaRjg6RlJ7R@dn<+ zTR4ihaSZR^UA%|)@c}->NB9_@;8T2t&+!G0<4b&nukj7O#dr7~Kj254z)$!Yzu;H= zhTriA{=`X~!e96s|KK#v;4JjeuWvlfgv`i-tjLD!$bp>5h1|%4yvT?AD1d?}gu*C- zq9}&qI3Fc&0ZO72N}~)eL^8^v94r+Fc4SbDh$G4q+ke!Vi-~}93wCiqc9p{Fc#x59uqJTlQ0=mkcO$4hUu7r znV5yyn1i{v8uKt8*Wg+#z(Op-Vl2T@EW>iFz)D<)RalKRSc`R7j}6#}>#+%&u?1VP z4cl=8Zp04Ugq_%h-PnVhaSLw6UfhP;aR=_iUD$`aaS!greYhVF;6d!i0X&3<@dzHp zV|W}-;7J_BAv}eraTw3wSv-g5@d94NOL!Sa@CshVYj_=R;7z=Rqj(#~@DAR^dw3ro z;6r?bkMRjU#b@{&U*I^t#8>zl-{4z(hwt$Ne#8mog}?C+ zPU8&DA}I^^ADNIDS&$XkkR3UY6SRMH4hdGhBw| zXn~e!h1O_;wrGd;=zxysgwE)KuIPsD=z*T-h2H3c%h4BCpdb2U00!bpT!ldxj1&yP zPz*yVhGPUqViZPW48~#{#$y5|ViG1}3eqqY(=Z(~FcY&d8*?xhS7RRL;~HFx1z3nh zSd1lDie*@i6#+eFaXmI+GqzwWwqZMNz>U~}o3InRup4`DGj74H z*o)h6JMO@pxC{GmH}1i`xDWT^0X&HPIDm)nFdo69cnpu@2|S5|IE1J0G!Ek#Jd5Y> zJYK+ycnL4#2wuUfcnz=P4ZMlBa1?Lj7~a9Vcn|O61AK^&@G(BYr}zw?;|mheApYSt&!LRrYzvB=5iIX^mzwkHy!D*bqStMoU{v#7IBMY)38?qw@ zav~RUBM$k7>eV3l)wcjiBc$yGPn@QD2sBq2<1@$7o#F7p)#tV zDypG6YTy#oL@m@t9n?iV)JFp}L?blDrD%etXokzs94*iitZ#?#c+(kNQ}a0jKNrp!+1=< zL`=eDOhFo^Vj8An24-RwW@8TK;%dypd|ZQTu>cFP2#c`vb`9adpA)?h8x zVLdirBd*6LY{nLB#Wrlm4Y(0Ia1(Z77j|P0ZpJOR6?<_TZpR(C6L(=B?#4a17x&?Q zJb(wW9|!Od9>ybh6p!I?Jb@>15Qp#-p2lH3gJGj}o{5B~c2cQ3e+x8D&up7oj{V;9^unB~(TgR7EvZM-5zpny7`^sDrwwhx%xM zhG>MwxD-v$6wPoMnxh3;q7_=B4cej|+M@$Hq7yo!3%a5kx}yhrq8ECj4=zVvT!DV* zj{z8nD{&PDVK7oK1Vb?lsThtC7>Q9BjWHODaTt#Yn21T3j44RNR7}Hk%)m^{!fedJ zTwINLn2&34Ef!!Q7GW`#U@4YiIaXjLuEQ#<#u}`}I;_VAY{d20gw5E3t=NX`xB)j} z2X4Yn?80vB!Oge@w_-1D!|k{Ocj7MW!`-+C_u@X>j|cD|_TvB^!ozq3kK!>rjwkRW z4&o4=!qYg6XYeeZ!}E9nFXAPH~fx2@Fz~<6#l~B_y?zP24|6! zo%@eW$c!w=ifqV^9LR}W$c;S6i+sqB0w{<=D2yT~iee~^^HBm9pd?D6G|J#YB%>_K z;Ubhr1ze1ZsD#R>f~u&7>ZpNBP!qLK8+A|@^-v!T&=8H#7?+|6nxYvlLvyr1OSD33 zv_V_6Lwj^UM|47GbU{~iLwEE*PxL}>^ugumi!0C%{V@OoaV4(8APhzdhF~a$Ar-?h z0wXaBqcH|!F%IJ~0TVF^lQ9Kpn2Kqbjv1JVS(uGEn2W115A$&iuEhc@#3C%l5-i0s zEXNA0#C2GO)mVeIScmo4fQ`5wo3I&Muoc^|9XH@c?7&UfiCx%@J-8XS;8yI#ZMYqG z;7;6yeYhL<;9lH^`|$uC#C{yWLwFdE;88q=$MFQ7#6cXwQ+OJO@eH2Db9f#v;6=QI zmvIEI;8nba*YO74#9KIuw{Z;b;9b0j_wfNf#7FoTpWst`hR^W@j^j&wg|G1qzQuR= z9zWnmoWM``8Nc9H{D$B02mZuKoWfuD8~@-m&fqNcFZjArwXt6h$!<$N4CM3s4fJP#R@$A(BxR?8GkY#va^^TW~A(;x^olJ8&oN!am%MdvGuA!~J*w4`M$K z;2}JWNAM^f!{c}YPvRgB;VC?g!*~YI;yFBz7w{rp!pk^KEvnu0>|+szQWh|2H)a4e2*XSBTnEa{ET1lD}KZ8_yd39 zBu?Qk{EdHb8fS18`sSYVkO`TQ1zC{|*^vV|kqfzz2YHbX`B4A`Q3!=m1VvE{#c@7L z-~yCHDU?PTT!>_pMLArA@~D7|Q4y6;8C6gf)leNZa0zOn7HXpo>Y^U%qX8PC5gOxC zG(l4|!)0iW7HEl9XpJ^#i*{&_4(NzZ=!`Dtif-tR9_Wc)=#4(O9DQ*G`k_AtU?8r< zRTzZ9NWl;c#W18|I7VP3MqxC@U@XRAJSJcwCSfwBAPrM74bw3LGcgOZF$Z&THRfSH zuEDiffQ49u#aM!+Scc_Tft9!ptFRhtuommE9viR`*JBelV+*!o8@A&H+=v~x2|KY1 zyRip1;}+bCy|@jx;||=3yRZ*;;~w0L`*1%Vz=PP219%7z;}JZH$M86wz>_$LLwE{L z<1n7Vvv>~A;|08km+&%<;1#@z*YG;tz?*mrNAWg};T^n-_wYVGz=!w3y2|wc({EFZ3JO02K{_l@Y^7Rz{!r%A@r*TI3aeZUo zdB}v!$bziM2L1Ty{|ofj&G_yAop+!o-$^)u?;K1{YQy&xrt!UmGx;9||F>dES_wyL@UyH_nE0mP!zrVhI z4#uByu5$eQ!sotb)AO8QEecz2NVeFKhL25Ec2w6&tk}PA%R?Jw+L^4G+k{T_RR!byO)>0%& zQHY9Cmb6K!NPVLDy{~hO8Mn)HeILL1{_}hM#$%2-&w0*$-{(HB>pJgq&anNHg#FLI zR_=g#KCZMN`!_$rLW}TZ_w~h*XF$BU@8{>^TEX98?t9_xGs1mFy3Z*08SOq}+-I!& zjB}sy?lZxCCc4ig_gTt)CcDql?(-t|S;l>qb)V(jXLt(<+}{QL>i-5&7~641&<+FDlkb1hnxT?_lfeJN6Xo??*$J|(4RLsxA2(a+~Jchz4;WSXHaz zKC4;->ut5|a#s_z%=?{N-FGSmr@4obi!bzJw^(<}u>RJom<_bFFspF>2I{$e7q@r+ z_x;Dv!QHSb#c!hcBPqJE!FGu?vVh)aZ}BCTa^Cqk_q#Ydg=Y-Mbh$fk1!oLDU&ZRW zPye~ZchY@dR}8M_+}dWnYh993wNBNl4SLtU9ADpB%XjTo|FtT0tN3_&@7fiE$GLl^ z#f1;A=xICm5Y9cw!duJ_wWUke`G?!oE_FRqc)0Z%c#hbC!h>$vvhc7kwwK&=S(R#4 z3U24EwF<7>>TXtLo9D);==X2wp3%S8xl$FI??&aUS9IzNj~_4iR`J}G3iU62Iz4it8%NO7aDaW%rmiMRves=!-bLgHZ`2Ahh)qPpXt`>1R- z-Tzg=@%yi(xKnd35Aj`f{!{02!=o$~25(fUlAe;DQm`HWGxqa+KX=*`ww+7Q+m5+c z0L+{}xzHaUUdqPfjz9ZxwOuy)g`n*4x|V$ozuXyt?pb3g-&U|C-($LasEc)L$bjtd zR-PZgjS0Ho4+Msv*;266+(V^X=2UeX@NUFCPXG5t@>>?ak;ckK8Z|z5Bi`HJ#BJol zw?FXwLvL_)uXsRq&*1Wlp0L1Rcl+^;&A)z}f8pC->zs|uwoty2{P&C7NV9V{a^nS# zB>%|lB1iI==k82(8wvB>ojB^2Ek|GANVYzGb|YbDZsLRq6Y>jI$GF?E0WhqNvE+;> z!m#|rM`RJ^1MVU_+6fTJnSX{rBI`JE)c|Tb_4NVBUiQ^Bxq~g%1ihpzxsn zmwkcL%?_&M&XhMuP2EBH(}=Tw-a!@IE%_4z&Yr3BPxmEfZyEBB4?5EG=FL01k%Ad0 zxzp_pW|}(;e=u>&-2HOy3}lCo^-OYer-fKS{_^v;p8bJ>gI&ISdA^;w6$NL;$Ije} zf`L8D+|U#Z>{;f9=KL0|f6l?;?mp)XW{3Ci9PAbD2ZGPGXn?zR&JW;-abKM2F5ki8 zqJX*B`40B{daB}ns<58jm2)?Y(^Ie!S5LkTpT7|-c?vgj-qHCtk};s@(Vf2$Jl_82 zMz(e;ek1N_2o?u=0oZxAka88QfNO@%=TRRoM z5%(12zmKF*o%sj|u9zR=UXyEJ z)!p-xy6&@;^>cqRY`E_|4(v9-qAe^qW5AvRzvqYGYdqSx2m9*ou{;pFN$~Eb(fPZn zQp|4rPc?kI3CS36>f6uwZW6t_X?*@}Y80~@|C15lZbCB#96frJ?eBTpR`JDH%){|+uG@k&ENCgT;$yinY60K?560XZSC~eM@#r_ z%6NA}Caq>MyD2(pTRVOE<(GUnWxcy0lXht_yD2(pTRY`{_cY&4Iqz=Bq}4BGH$^9H zYo~Re|H5}u-n$zzX^o57P0>l)+G+FtH~4NY#%`JxKWQm$H%)~}Yt(q!%NMwBDtLE8 zCaqdAyD2(pjT#?cHksd=ir(FjNvl=NZi-G?qsCjdY~j19M%}b{H(J}X(V`RLZt{BLM_QwBqi#058?EcvXwi8v zyJgmHzR{Y68+DW5-DpG4MvLD2W_K=W$2J=7-ZXYk!dv(0KO_9IbMN_p^7%p5+P$jS z|Lh}h2wwYeF9hN|;%mHGc;+6Dcdx3sm;KxH8QL#vXrIi%BZkiizwg`)2A0l`GXF1{ z^s_AY>oI-Y(rd7da7!?}oQ20;Y!t6r73=`7BKdX@YVI{)_f5Q>5#Z#a*TT=a7IDtC z#{=Ws`|j@jf;NLP`VC2GlQDGYjPMDbG>{0oz6&#iSTES8IuRZQwo4s^mQ2vbYlyeUyB*^WgjXNd7+@C(~0L8UrCgseHgiUJyK^@cn3^ANZEdXk z)iB)m!+rPv2zMak+&RDA9nM%c4|t`m;NHibeP+BO+--9&&$Jsc!VT)>=WaKkTz;^% zb0=+tXH@aRcfq#Y&I+~_>)r)%&mh`o^yxo%_`nqRT)}goLGkX)ws!}F*&pliRqUo5LuExg+xz;p2g^?ny?Gjl1siZajf(+~0o}*m!=+7gir|Hv}7R zTy*2E1HBthBpdhl-~~4BUm67ZHr}M@#$6YB3Lz+oY#e>)zsJIgo|eZ0BQ4e4k=9}O zomp-avd+EB0!z8u)4`qDJKZeePA`mqzI%DU;7-GP0RJ!JAMX}Ou9rFu9zG`-^&qOF-be!Dg!D|2KYS1+Do4!GDA z^R;fnxTPcAOrco(&uDyo>fRG6xV^L88z*N5-i_2mb8)P4?y(T{9i`S(K8Vs)~7xt?ET0w*PuN5?y|Jvh$ zQFfWR*RZ-|W%};mF`k_!yG?iT-Q@G{;-U?YLOka#1}Hod|Fwc6@n0)A68|;yV~dF) z?o?Gf_Ygut+Y>RA?0a4bi4{djQ@V$#F-0H{MTh!`Se$W~tAFm$7Gx z>@fh}av$!t*^BPCh+i!7J@7}|&jq;0u~!4|cR=t(?icV1ex{6-cfqs({BFS+7UteD z4#553-jmr75bi$BZXX|`w#Ai$9?yNwa0LGV^UI6#<{JHa(8oTO6G`^%luc} zZ)Y@Yfa?vL6at^nu+V7aGa3~djeJIjAn&KGoR6{&}i;6nx8S;yEe_woEYEf95Fg$q+6KY zILM7#%CJ5|Gu)NdL;JW@Dz3P5=f5%_16SQ0)WwbN$dr-ptdH^;?k*^b{GJO#gN6+n zG(>y&Htfgw?nz#_Eve&=UhR7BH#%Hamb$-VU2dDX_Y7yczx#!kcAqXZXFf`w`8&{N zhTj-Hv&eU19tpIr9fN{PxrYGY%J$>eaqqaMv5VbylHA|7v>D+dF+8*P_2cf$7}cxZ z*kMCodF-QWH#UfGd$Rqh`w!Q>X7=**@ajKKdVkvcFN|OR!PC`BZ~0>Rf*${z?6mXx z)(cZg53RGO@yWTD9~!x?QrL=(Pt9I%&C=gnUs~-*`F6eLebcPVo+UR-y{}xEEBeff zd+PYwx8JJO?7@j0rases-aX&lIk406v}w~vR+|3O&i^$J{3vyFjftlx#%{~%_Eni9 zQy*)7XiJ;V4+pJWR^g_!Uk?BMRJDWC-&otS>9wz1(*VoV3_4C5NuijF+b-fSQ z)I3q|rAwzizwPFCum8L3vL9~CNZpaT@avS{qaI1zxGZ{V?@tD%l&$;SJD1O$`tz5c z-8}TIebbgt8{hP{t=DeIFLnEgmOmtYx^==W6WkfecTc6xJzw)aTk!pQcb=NM`vH~K zdt}DYQT6NLa`K~}+_AAi^n<_Vth;|lcDJ1y%Tym-f8O*q^_(w3Z;7E}+vW$c{~ zym-%-D|)}xb;pZWY-?D4Ui*~|@)F~w?CJ7W_g7o@-?1fr=QVA=Y|^*dgawb?)%){G zPt7g6ziFpWPn7Qdd9&MJeRScL{MR=&*gCh%h6zjS9Bvytyx9|-27lZ4`GxflUAJ!f z!i+_`DsEq~`tQ$9yPI17>Nmq-r6~G zV@iDbf$ZnUOyAS2-I^;be)4xejxDq0johSfI(#syTXxmm({q-r*q8Fz zic5D_{xbNZF+k7H>U$L*Q&UaNf*zWR0i=r2!BzUsH|Zlw>cZMpH?ci#Nt z$C_iduZ+HHa@zDqH#J@K&+|`g`E&CFW!`O+xay`!{r(!Zb?oG7xBh;6zxQ_3{vr2= z%>$nAx@SuK)a?3KCoD|6_|Yx#_hir8`OVF>MqIc0k$GLC+I)D=HK{ABH5uKc_9c^_ znp)%V*AXvdRr<5+YoA_uZ;k9nt5iPl;M(5XC;Yql<2f;Jq+RsF$lO;df4*bFs5NWW z4_f~6$!|BLeEG)pmppmNn@`^x^W4bf&tF}6>CtQEcL~~lXL!xdYrbf)c-FR^7Y~`Z zb7}0pC3g&2Jm^5o>02(HJ?5jI`W;BEwYzuE4P#n#UiL!H=g*buecOg7%dfclqtBMM zs{QuzNlQzQzGdE`dA;v%ea*owk!!oYIyCj71=~{kU43%)v7T#oy*&KmyzgsGd7#eP zU8Vb#{wV9U($DwXe7SW^f2i8jw97gkD-%=sp;=RA1l0Wc%81tCZv}7aw0>lt*SFUm zx?#eJ+CPri`{JPTRonFZEwD!4j1Is3_TKczulnqC*mJv^rHuIIt;_ED_kTbCJz`+} z+h(WbXS}`YhKwyopKspa@Ynf&o%rUP2?tJ}I1=}3?|UB~zV4BWYW%zJliqLtbNbP^ zmmf^}e*V~hjxHXvwD-ExzbtM!;qD)|zx~mU^^;F_n4B|aVwZL8>P!l1@z6>%r`&j68vc8HP1ZpyLEe~)0&M>o^0^? z!Bx#(>^HgB%>$lncf;s?hu<{iH+7@XCvS z?sMbqY3ZY1S#+dK)S$<&@BR8SRZdP_)_UcGK`S5VGG^ryV+Yil7TG?z z`1t8-;(oldZ(v;b8x!K|U;E<4k=y$OpX|A$UFGF>Jh`^?FJtH2_0fcj*1W&}?JHIe zx^@5C!DYt}F5CX+`CG$=ecEo<-jukfuACIQF>iRQ_eM^r_rgz$O3!L>c=Ml~XT2Fv zuIl1%rnVnH{Eydn{rN=xoR#n2)$G+Ns< z(b(BrKA9SQPvvWFZ*u+dycy|RdxX8)@u`VZAG>YzPdAKhk-K*26W6wQxNYk0PM0oD zZ`8Z~6R&4I)qP8;UN3+5>6@L_4JiLZ?IV*W&R7>6(Xa8W_h#OIRn}_@A9-ou+S{9i zMPx4@(x=;~WviF$s(cLNt@+;(5P;c*pr9l3W+aFvwcjm-yr((c19FE766>)ju} zb#0fWjpru^Z0}pYO3KO1&Uf{?=ZdVgO?K7WKltIv3B#L43@f{D|J3-3lfU2b@(uM{ zA6owQtB32Y_@VZ7Kb%f^V`RDAUsmdSSC8KJe>HOWbFV#Jd(h8wK0E#44P{#om@;E+ z%Lk@59G{ywrNZ-b*T%=}U-41b-;Y1=&NTx%te#%C+Pk~kFx6B~_x=F-{k-0|Du z`}3;Jn)K#92Y%R9etYc+lT+UNaQ6$1_D=~Pdso*^OD?N&tVW%V{l}fEn>>Hq-qhZ0 ze=Kv&=Lwx#H(6S1K%*`PTI3DPJl{WDjuSTy*C)b6oE z7XR{h>kmg>y>si3`FTCA-<>(I;gAR0mc42D;oT3twc(CFeLomHAg9Z9Cr5s`r0&Rl z-JhM_Bcj3B0WI6@UYFjg!NS9{Zr)Yu(C#L$jQn%_?pG^395lDh(JF1<{osFjIeV+W znUVVLnhJGpd-->F!gjs8bL@^A@922s#_ztnWmwbZ4}800QoS+P%-jCz68wQfHjjd`_Bc)bVvy#4gxH=mrdC8=MduNw|p zR4%;5k9l`JvtiikpQojFFMaLQJ(u@icKf7hBbpse9{5t3r~!>2~Z*1YEN z+1nqw{_lyeHh=Na8@{db;`~-0yt%#o$*k<>ew!6Aep9t|edF)hZDnV6eJ20))6L6G z9az6o>0bYKYc*<5PDrg6HgDZub=IOz!5`kTcI|uLoW1D*fpy*QrCn%M>$D;tWR2Uk z@nTVPWN=LNAz?5l6cS{lF|W| zS}DNR)eNwkyvX8r$Hr%Q-Hzd%K z-Ltegr30;cr9fL!Gtg2S1lqdhf!4NFpl$0AXg#_I+P%L7HBJ02U^;OK-;t>&^qr7wB36Ht=FMIJA5S2h8+*I z6Q=?#JH);885?A|rGqTFQjpE58D!NP1lf}2L6+Jo$kufTvbNoWY+KJD>(MXB_6-TL zjLaZAIzGsgY>?$G2(k*xf^6REAgj9}$X09#vb3E+wrOvWbv_hi zyN?7}uj4^>_*9S$3kkLpF~OEy+P!R6DcEvr23vB2V4KrC*s8Y*wj~{cEwy{Ft?LOOU(?mb>l;=ZBD3d%MG<2Ged3P+)&F{5Nb!4hFaF@ zP&>Uo)N;0jTFlN+%i9}j6%K{kyd$Aj_jstSI2CGXAz`*DCd@jQ4zt}A!>m`$Fgsj7 z%!V}&vlHoImfa!DLb``pZqG1F?iXfrhJ;!5%rILrKFm^c!fah`n6;f5X4~e5S&s!_ zwr^>eWvmXfqwB*gYfG4&-VtUwd);rT9}2U)Bkteg9uKp5r^2jmNVu(t3AeP;;kKz_ zxOJ`>ZoBJ;Td(Hfb~ruUhII(H6WzisyJxtCxK|@`hlE>lX1L99|A?e|j(ZU!H{4R) zYZ2?_hFjYO;kIpQxb;{aZu{1UTgH}fJGvv>vi64C>4V{xb0pkij)z;`sc@?h5@GXV zBCKxd2wPDx!qRF+*rxgs*136v?M{!dUL7LraJL8>*3?2WLa2O})&NQ9mKBf@e{ zMOaKoq~*E)&Z2_*?<(e1jI_EnBW*?fNK0!TX`9j`t#gM++ubeFdi9L7!+j%d*pNs& zF)Grs$46R7PNe1LMq2XBNSiY^(yA|rv?WX3J1eUrZQc4vYr7@Vw(W?t9(yBg-@!=B zI1*_`|A@4#Q;~K$ILdNjqAbS!^QF9sQC6X5l+CLjWp$fJ*^2ZiOY0D2o4Q3==bllv zyKj{B8WLrPM@8AN@lkeSa+GD~Mp?+rD9fE2WyuSoY|hdstG+tQmaLDm)GblAZby{0 z-5X`w4n|pzBT=^Rk0{GH6=g?*qb(~Y+D<1&TTaDji>VoHdG({MLi1>wmmY0(J4D-x zZqb(3Guk%wjkeB1qHVW(sj%1hXgfSP+J@yu+ljnr%bx4r4qgy#xl5xhd3ChSSs!iH zw?x~L9nqG$H`>-6jJCE%qHWtB(bnTswCxLyv5c4)JDMD0SrudKbd4CxsUKr8&0{Pt zJ;o|@h_QLyVyte@7+cXd#?pqw*rri2)_Hu4?VcQCy>esha9)fJn;T;%=Eqp}(ijU_ z9b>ucV=Q?~jLq2*W7YS@*ph=WmU<+{*8LGd*G$+6ZsH`aFN#ageqv37WV ztPNWlYbRF4TK0PP9`}}5%iR%c$$MjM&cRr#ek9hG{1I!Zr($hgaGbS`iL-6Van_?^ zob9U-XBqY5>}az%%Sw;4)9vFdr(2xG^o+B-zHwGzNSw_Z6=!wF$JvU>ah8@FXPffk ztn=JB+dV(ddM%B!!>i(K*!nm-@j;wr?})RIy>XU%FwT;X#MvCTKCFH!&XxqnTWU*2ml758`duj(9tnGT@W(n3KJ;C<1Pq2(`33l}61k381V5jd$u$)ou zS2o8dSl;9WtB{*u^YRj`?%V`hG2gwzvNXXqtxB-Y>l1AE2MN||M}i&RlVHORCfJFe z5-j_V1PeKpV7bAGmK>94bCMISdc{OrQX|n)>nGZ}W{K7|J<+zcPqZH05^dkjiI&kf z(T?7cXj$&{@zeJtTFzwmyPUa+mY0`k73L<|y!nY%cWI)nSe0mL>l1C$2Z`2sN22ZC zlW4sTCfebj5^dNYiFV?jM9U6NvXGc0%S}$Qa|v@|>GwdGnL3!qOz0w<^i%u1~TR zA0%1YjwIW(C&@Y=OtRfSCE38A@e85&|4pLZWq*tFeVyPg-T%PjUgSOX@^3pk_wCxU zw~t@qokRcV)IH{7T<( z<2ts#D7@v_>w)g8Me&8#gWMB}MPY^4lidMc65&6H>F%X-_y1>vyWh(2z4?>Uy5Nge z1z)sr??Jk^PTU8Uw>XvV2Ljz20=}>DuMN!ocQpvydJT=VR`z?(?>XGw9t1R^?uXMZA~c)o(9zZ(p3p-1wZw za9+GWi>I+(7VqA0_p$`S5(!Hp4F7V;yS-$>N)vVwVPyy_OISI=$`f`mVHF5-Av*7N zRPwOXzNcR9?I_=X;~GXJ-F>( zUyF3tFfsmXQSKUM#eXf@T|=h)*J9i?{3|Q}wODt}z1w!?TAaIvcewoDi+9&haQMPB@nwyUA;a6c=x_a}QVeb64 zbpL&o**f=5f0#SZZOv*;OLv!lO~>UMdAOYI`+CY$eBIy?Ty}jBmtRc5W&8uUOv%CJ z_KCRcIu4iX$KZ0=C|o`_0GDcf?(N$Jc%m$o_kAdFS1@Oc{&I?Y^Ttb{D>$ zSmY?(!@mFcFd2o%7je$n|6m8_FT#I(xBIs4zr548zm#ljec4D{KG)y3r(U@9 zpO5GI;Oq4_`^c@nuY39~Z}*XYxJuhy)(y$SuH$1bPL zUx&+yU3{1A&Kw`oQ+Rw)=Nw;@@A&Y>9nN2r|M=W?+*YiV?=swXS;lwi=f_&&yG6e~ zpSWMkfaAM7^W7q(;Jg0&7kMr`K0M$Soxng24ycVzyf^zX^f z{YPBI_uY$qmwr;z^!pb&zGE#*+1u{dOJjU{ZR?J|_&}0{>V(xG ztR`Xjm3;5<)h6r`!Y(DO4q0x-h!2D@54;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=># z26Y?h)NSNew~=VwM%Hy3Euh=z2i-<<=r%e%a~_Ue7SXhm3S!rBma z6=7`&yPB|egtaHE17X(?){(GIgmotDTEe;z)|IesgmowEI>N3etOsE?5OyPBHxYI- zVLb`Eg|J%*>qXdYg!T3?tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBOYIGZU(rqM7 zw~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I`cAje zgu0E6)NQnHlDC-!tNz( zf`?&cf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mU zjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2 zT-`<&>o!_ivrBRvGSThTyAHXJut|j7PuOI_atM2Xum=g7LfBNo9wO{v!X6}kTDA#4_5vk99+*j&P%^)Rd~Fn`+A!^ULl zHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKy zx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc1f;7 zo^yNku0x(D>;=MJBEhTIjVXqOkoUqpk zdxNkQgsmiO6=AChTSM4d!rmn8EyC6j_BLVfco)l?x>yQnEy-V0e z!rmin6JeVPd!Mim2-`x~hlG7Z*jB=}5%w`*pAfd4upNZ$B_BCPOco>yQJ49VF}!Vc!yVn6U2%`<}2L z2>X$+p9nib*w2I=CF~c%ekJS}VZRafJ7IqicAT&ig#Ag_Ny7dj>~F&UN7z4vog(Zs zVgC}A?_pS3VE(kJhmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw# z+eox-BkQ`27SL_fZ6k*APl_u;W!paa|__+Js#~*rkNkA*?Q8^$4p^SOdZu64r>Y#)LH? zES0dPgf%0qIboL()`GCh3A=)@G{UYVtfhxxWr6wArXDsXQ@1g*x{YbpZOplDBLTXN zZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1= zMtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TC+=X9g^<$>RpGlBCIuGZ3w%H zu(pIGZgRmP2yOFS)2)miE zo`l^(*sX;1BJ4K8dV3gF7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@x{W;PHj<{> z$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U)pQ$ur`u>k z-9|_1Hri9S(W|!K4{XY${<75%w@)j}Vqi*fhc( zC2Trjj}bP5u*V5|g0MWoW)k)!VNVhEG-1yWHjA*?gv}vrE@97l7*-aTKW*w^V={Fc zGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8m zMyKdD+D5n0L%NNI(rt8?Zll$78-1tSXhPjaN9s1(Q@7Epx{b!wZFI42qop;wB-bI& zxxISVATy&_A+6M2wP0pD}*f}>{Y^+61I%6*9coq*z1J7 zLD&kyRuZ;~u+@aEA#5#SZxZ$vVe1Hco3M903@Z!FpEmWdF`2rJnbmDfvuw~MnZKK=hA>Bqp z={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe-lIxK5Zm-^T$OgjRC2S*M z?-90%u+4w~MnZKK=hA>Bqp={CAcx6x|4jlR=u zG@)*zBXt|?soUsP-A3c;Ho921(bAe-lIxKDZm-^T$N|C*5_X8NZwWh0*ms0|PuLHH z{YcnPgdHL5XTpvW_6uRZ5_XKR-w6Aius;YpPS^>;{v_-qVSf?!H(~!H>>t8T5q6re ze+kR?Fsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhO zBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8#26Y?h)NSNew~=VwM%Hy3Euh=z2i-<<=r%eiCE`)U@tQ%q73A>K4>j~>Y*bRi;NZ3t;-Aq_d z!fqk#R>FD_b{k>6Jq#-g%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j) zP`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7 zqa$@2?Wx=7RozD8>NdJqx6#s?U6SjN+udHh>ySQ#^(CwyVf_iqAZ!3(0|^^M*kHo$ zAZ!R>LkSy3*l@x|5OybFcM&#{uu+6%5|%~SXu`%2HkPn)gxyWpJ%o)XESs=<37g_33VGCsoQ8z-A1qKHX2vA z(Z#xrme%Z&T!&0_d-bkE?jvjxVfPa@nXnwf9w6*N!ln>5m9U2hdzi3C2+JjG8exwT zHl47?2%ACJDWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}Z zQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8>yYQ% zUcKv(=Lvg(uonq?iLiNu%_nRDVG9X+nXpBKEhg+0!j=&BDq%|rTSnMxge@oRb;8~t zYz1K}30pNciXw=w6sjRfd6 zvZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e z8{MVbXf@qN-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOlb;x?RSMNGx17YtHwvn*+ z2-`&1X2RYl>;uBK5cVNq9}%{dux*5WOxP!cZ6|C8VLJ)?l(1cd?I!Fq!agVL3&Qpg zwwJIk3Hyq$eT02Y*f$=Al?CQcn|j!oOx?!J>NciXw=w6sjRfd6vZ32Zjcy}Px{aji zHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04* zP`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOlb;y3VSMNIH0AU9SJ4D#GgdHaAJHoyv><7Yr zB;z$d5_XcXzXTSE4`HVWJ5AWX zgynk}Ru-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(G zt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M* zjmFh&bg^!ur8T=G*C7^k{yHRput36s2n!}Ggs@P;!Uzi|EP}8|!lDR^CM<@qSi<56 zizh6ButdU=2rETcGGV0&yNIwdgq0<%9AV`NyO^*FgjFQ0l80esf%(&>9yTUZw=uK2 zjcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>z zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivrBRvlH&I2 zeLbWyVO0pLN?0|*suNa&u$qL`BCIxHmk@R-VRZJ!$0u!e*+BCIiCO$bXR ztSMp52y0H*WrVdL>~g}cAS{irD+z1qVOUvU{nspmg}ZX+AI zjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ezl3a(RyS;kXA*~2&O;{Vkt|F{0 zVOJB@j?Xo)Cafo6 zw-9zKVZ8{ujj-MxhLr{8Pn&w!m`vTq%<49#S+_Cgx{UZm-^TNFT!b64sBf{)A-^Hh{2!gbgBWFkyEP zHiWRDgbgEXIAJ3QyOXfH2pdV*D8e!c%OY$vVPgmzOV~KV?k4OW!p0MpP1wDJP4FNaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+- zMhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+} zV%V?!k!>3kFc49JxSP8ggs5zGlb0|Y&KzY2%AgTvmS<(1?Eqidf1pu-Nwx7 zHl|s(G3UCC1n4%hq1#A}ZX-{+jil)|GN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c> zx{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zThjrP=S^r~*7adjJAtlMa5%`VAx$a8M5 z-gU_HguOu6i-f&I*gV4K6Sjb`g@nCK*doFf6ZQ&WO9*?Fu%(18BkVQ8mJ{|mVQ&z& zg0Pi@ts-nSVQUCmOW2!)y+znM!rmtA9S_6G0`sR$J#0*-ZewP38`G@Ym~-7m0(2YM z&~2nfw~;5^M$&W}8Psj0Q@4>@-A1By8(G(Fw194-A9Nedq1)&b-A3E!HhM_6(NMaL z?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W|!nTWWC#~cO9~Uuy+aDNZ5OX zZ6a(lVeb?60byGR`;f4Y2-`~7Ho`t8>=VMa6Sjk}orHZ#*e=3$6ZRQlpA+^4VS5PM zOW2o$eMQ(l!oDW#8xO@-A1By8(G(Fw194-A9Nedq1)&b-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m z+vrH$MtkZudR4d4xVnul)@`)3W|!nTWWU?1cO7zou!DphBJ5kj4iokrVc!$>17SZB z_7h=82>Y3^qlEoJ*sp{gBkVWAekbe?!j2Pmg0MdcJ4x7Ig#As}{|Nhsuv3JcChT9r z@;wYI3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ zZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD z!K4gthcAtSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBO zYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOc zMyu&I`cAjegu0E6)NQnql6B!ZHXOK-fUS1`#%xusaAF zLfBBkh7mTLun~maN!VS4jU;RoVVQ(w5jL8zF@%jJY#d>C6Lt?_;|a?q>|VkqcoyY~hn?%_CgiR(ahp-0-dyudxgiR&vA;KOe>=D9p37baPql8T- z>@mV-5cW7>PY{+z*i6EnB`lVnB5WODZxi;8hhb%b`O~HzHYQWIF|)djY1VDbxo#r?x{Yk; zHd3S8$dhg(X}XOJ>Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP z={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHd^;IZ z5w@AI_X+!euq}jrNZ3b&Z6$0QVILFr31Qm_+d`TJFB5WUFUlaC?hhb%b`O~HzHYQWIF|)djY1VDbxo#r?x{Yk;Hd3S8$dhg(X}XOJ z>Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP={8zTx6yaHjV9D> zbfj*hJ#`zss@rH>-9{JdHdXupbHg ziLfJt{Y=t4jYR7< zvaZ``0o_JF=r)=|x6vuOjkeKk^pI|&p>!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1ok zbsJr*+h}RcF3EL>g`B?*2_P(xupq*M2@4@Cl&~BYERwJ&!lDU_AuN`#IKtuy zOCT(fuq47t5td9?X~HfdtPEjg2`fifdBQFxtO8*b39IB`SXp5Hw5f-U$<%GktZrkP zbsKZ8+em_33VGCsoQ8z-A1qKHX2vA(Z#xrme%Z&T!*B%y?S2{ zsZ3ZE!m1Khjj-y3)gY`UVYLXWP1q%bT}oIT!s-%MkFffLH6W}ZVT}lDOjr}bQVDBH zSTn+!6LuM4EeN}uuqy~lBkW4TT6!2(7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@ zx{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U z)pQ$ur`u>k-9|_1Hri9S(W|f)`hUHgmojVJ7L!mc0FM|2)lu>8wtCKu$u|%N!Trf z-AY(5!fqq1w})Y6f%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0 zsoTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn= zqdj#Sy{g-2T-`<&>o!_ivrBRva=Y8BcOBA)u)c)#BdkAR8H5cWY#?ES2pde;9fS=b zY$##F2pdk=2*U0p>@LDa5;lskOv17V8%@|4!p0Idjw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921 z(bAe-lIxI(Zm-^T$bE!OBJ6&`CKHxJ*aL(;NZ1s@rV{oLVGk4b2w}N|O(X14!lo1U z7-2IAdz`Q*2+JdECSgw!_7q`H6ZQ;Yvk03_*c`&<685ZzVP%2&)21FaCR4XDv$~CG z)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS>o!_Ix6u!}jpop8bc$}H zZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`47o>o(?Gw~+wdMmBUC zsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKql?6Xq61I)7j|uyPuhB!uAsO zC1GC?wvVu{3H!#wu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p= z8|l<-=sVp;6Y4fP zQn%5bx{Y4dZ8WZKqlAeZKPATkz3tHqIDZt z*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z| zjV{)0w6tcISQug9ghdb*NmvwN(S*ei7E4$hVey0| z5SB<-5@DqXOD3!|VHXirhOn}Pl_RV?VHXotfv}2%Rq`;bEHHoC)WgPP>NaLpw=vDS zjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMi zZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%=ME*C9Do%bqT9SSbf485Y~{eMuasctO;SMgf%6s z8DY%{yNs|Fgk4V96@;Y`b|qmgJq#-g%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p% zMxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ# zx{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6SjNbhlUUI;0h0tqE&G*j0qJCG2X# z+7Z^CunvS>Ls&<`IuX{HuxknHLReSAx)Ii$u=wdq zC9D@=w-MIc!?3cz{Ap7U8!K4NciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZ zMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^ zY0WOlb;v}wSMNIHKEfsuc0Xa03Ckhu0m2?6Yzkph344gJhY5Rxuw25X5%wry(+PWw zuo;9sPS_KKC|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5 zx{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|RP zp0F1Pdy%l02%AUPe8LtGwve!w30p+iV!~b_Yzbkn61J4EWrV#(*mA;NC+rQvRuHz5 zuvLVuCTtC1YYBUku(t?XN7&nhz2jk6Sz!LOsfUfp)NRbHZeyBt8*{GPNPuo58@i3u z=r;1C+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``THX2H|(OtTY zR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6fm8hpcyd^{zuU5cV!%8wq=luuX(* zChUE}J|JuhVILCq5n)>i+eX;OgndHTcEWZLwv(_=3EM^3Zo)nz>~q4tAZ!m|dkOoJ zu&)T)N7&bdedA$RSz!LOsfUfp)NRbHZeyBt8*{GPNPuo58@i3u=r;1C+en&jBZIn) zbm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``THX2H|(OtTYR?}_too=HEbsHV2 z+h|YSMz88N8dtZ`#k!4_*6fm8hwOKI^{zt>5O$ETLxg=x*kQuHBkX&^ejw~e!hRy` z2w^`Hc9gJR2>X?=V}$)i*zbh>LD+G^P7wAdVJ8Xui?F{5`yXNd5O#{N(}ev?SiXm0 zWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*s zHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V! z7wa}!TC+=X9b#eUuR{U|3nVOvuwcSM2n!`FjIeORA_$8lEQ+vb!eR)EB`l7xc)}70 zOC&6buu_C26IPnAiwG-2SXsi#5muhCiwUbhSVh7rc^Fm}m_KdmVPi6N8#Alhm}cF^ zoa;6cpxelXZX-3ijXdc#lBV0ppl&0bx{ciGHWIDd$hvN$1#}zzpxbB;-A1SAHrhtF z(L=h8hSF_xmu{ogbQ^uA+h{`FMn~#4+EcgDtGbQG)opaKZlk3&yCl~kDQ>Uc*F!23 zR)w&tgjFM~I$<>kt4UZb!fF$C31OEKR)?^;R3t_hs z){C&)2_33VGCsoQ8z z-A1qKHX2vA(Z#xrme%Z&T!-B5_Uc`S^dYP-Vf_f}Pgn+F0|*;P*dW3N6Ltq-LkJs6 z*f7F|6E=ddI|;jsu#tp~A}o`zEW$<;HiodVgpDKYZo=*%Y&>DvgxyQn1P{Z?0`sR$ zJ#0*-ZewP38`G@Ym~-7m0(2YM&~2nfw~;5^M$&W}8Psj0Q@4>@-A1By8(G(Fw194- zA9Nedq1)&b-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3 zW|!nTWTM-vcO7ycVUq~EpRmb<tR?~VE(kJhmFb9ZOp80W14jv zbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox-BkQ`27SL_c6U57kR z*b9WcNZ3n+%_D3+VG9UbNZ8ASEh20&VXqLjgs@i$TT0k6!d@e6Ibp98_6A`q2wO?m zD#BJ1wuZ2^guO}FTZFA6>}|r{@i43`Fn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D3 z8+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0} z={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc1f;7*1NrW*C87SdzY|{guO@DCc-uo z_C8@B5VnP|4+;B-u&sn`BkW_sJ|S#7VLJ%hN!X`^?ILV9VV@E9IbmNAwui92gndca zSA^{&>}$fl@i43`Fn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0= zbsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9 zw5M*PS9KeWtJ~;e-9}4mc1f;7_Pf1$*C7W8J4o0e!oDT!Fk#;j_B~-g5cVTsKM{6> zu%8J#O4u)i{Yuy|!hR#{cf$T4>^Ncn4=ZL7ykT9(LAtxUySux)ySuwnx|BxgG{67@ zl(d6XLg_TXpiw&g@AYL5dw8!qJM&z=pPk=4?+JTf*ayNs6!wv@kA;0A>{DT%3Hw~w z7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3@OnoG-saMin-iu+fE$A#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ37c5hB*G>YHkq)= zg-s!BN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL<6E?fBIfTtAY%XDQ z3!6vSyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zTuoZ-@ zC~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3*e1d@ z6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEfY!6|3 z3foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu(O4!lDjuCdOu;YXs zFYE+iCkp$Du#*NDFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az*z^2k>Q-yx?6J5|_e!cG@i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xqjrUgYS?Vgnd)k zw}gFL*ms28DC{O--xc;fVc!?_17SA{yG7U!h5bm_kA?k2*sa2D6ZTVKKNEJlusej^ zDeNv`cMH2m*w2OiLf9{b{c3>mvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA4+9{K9vJLEUQek<&E!hSF855n#hcAv2Og*_nbL17OG z`=hWw342)BBf=gP_L#6g3;T<($Avv1>`7ry342=DGs2z~_MEWig}or`MPV-uFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1E;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauT ztft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_e zuG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO?w8*oqY4{M*yzH>5H_Z;v4o8+Y#d?Z z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF- zJivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{ zT-XxAmK3&>u%(49BWzh=%L!Xv*b2f{6t9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD( zEo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0 zqp+QX?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUdE~2u?~qf3ohs}!VW$f_ zL)e+Z&JuREuycfcRoK^roh$4-Vdo3GK-h)CE)sUJuuFt}UD!8-T`KG{VV4WLLfDnU zt`c^&uxo@}E9|-f#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO^s746n2xa?+W{#u{em73HzzAp9#BN*d4;|6n2-eyM^5&?B~LMA?%mJel@^&S#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L9T9r7Dt zzZLd7VZRsl2VwULyHD8t!X6OzpsQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^4F2C4!%SFChYIR{vqsTVXp}Lr?7ts`?s+F2zyo7 zYrS`>(M7342%Ad&1rq_JObug?%LKV_}~N`&8Ix!af)F#Q@`F z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%VC z@5}FyQH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9!X_3riLgn9O(tw|VN(d3 zQrJ|&rWQ7huxW)&Cv19QGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEt zYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZ zx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){77@0nu*HNeE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o z$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3_lS5Em zb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5 zy3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*f zP1U+h@48J1yG^Nb^3p+vB ziNd}j?4$w4%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!|wq`t{?g8;5+07Vc!(?En(jl z_8nn23cE?zcZGdV*!P9~K-kT~ZV~oFVLuY~V_`oLcB`=4g#A?5&xGAB><(df3cE|# z-NNn>_H$vs5cW%9zZzh?EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`RmA62j3xo z6ZUsu{}A@FuvdirQ`o4HDRv{dqdcp!rl`0wy<}E{a4ukguN^5Jz?() z`#{)-!afrAv9M2seJboTVV?{8Vu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yx%n|K)ecsKQ1QHoCAegpDa|EMa2{8%NlAAuwt}z~g{>rPrVtKFu!-KNFerqazG z<~wAUk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g z!-X9o>_}lp2|HTYF~W`&cAT)|g`FVmL}6bMcG3XjWx@TmtH3>>OcV74|h@=L$Pd*!jXP5O$%ki-cV)>=I#L7xoQdmkPT~*yX~m5O$@otAt%G z>>6R$3cGHA@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWe*N=R4@Evl4ux|?cmauON`;M?1h213VyTZOF?EAugAnaygw+Q>8upbHg zv9O;AyH(h2!hS03XTok5c89P#h216WZejNb`?;`R2>Ye5Ukxx`7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!uqBVQeShx|s^Z-xC% z*zbk?LD;>*?h|&uum^-aDC{9&e-!p7VGj#?MA)Ok9uxLwVSf?!xUeULJt^!dVNVNt zM%c5$o)h-Guor~ADD0&H#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO#PVQ&e0Ti83o{wwT%!rm43p0M|YeIV>ZVIK+mSlB1RJ{9(vu+N2kF~E3PaDVOU zvAN7{bFZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z; z)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt z^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S z`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-E zwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ z`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOh+B zJ86LNvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA33k9>9T9de4WQ-z%->~vvg2s=~QS;Ed1c8;*G3j3O{bA_EJ?0jJt2)j_&MZzu? zc8RdB3;Tw!ONCt~>~djO2)k0)Rl=?oc8#!Wg}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#>qovi_zt;2*f)iJOW3!CeMi`h z!fq1wU18r7_I+VL5O%Y$TZH{k*pGz$SlCa5-74%hVLui2Ghw$2yF=KW!tN4wx3GJJ z{an~Dg#A+3uLc+|3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BwZ*k*^NELw+Odx59oW?DxX{AnaaY_X)dS*aN~I6!ws?KMMPku!n^` zBJ5FNj|uy;u)hd|wq`{yOs2!FR~tg#BIE zKZLz3>=j}E6!tG+{}%QiVXq2%P1x(g-VpYtu(yQ0E$kg({}uK>VebliPuTmyJ`nby zu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgQFce)%0Ts<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-r zX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbT zW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~ zTUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVol ztuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62> z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7- zNLBb9ec8IV;g&ijBaA8LX zJ5tzD!j2YpjId*c9VhH~VJ8SXQP@|6oixCBS#W>t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0LACG6Y6z9Z~LVK)i;uCVV3`@XOr2)kL>Ey8{%>_@_WEbJ%3 zZWVT$u%8P1nXuc1-68BwVRs3;Ti89qelF}6!hR|2R|AZf1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40K@$X5s7A-@s!TVcNw_IqJ} z5O%My`-I&u>;Yj93VTS{ABFu%*u%me5%#FC$AtY^*k6P_F6;?mPYQcV*wezE5%#RG z=Y%~k>;+*j3VUgQ@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWee;xVi;5+1R!u~GoAHrT1_KL873j3F^e+&DMuvdk>ChT=#ZwPx+ z*jvKh7WR&?{|ft`uy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX3@~06++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6f>+bp2lY@^$(rrYeP+bpfy zY_Qv`v)k;p+bp`& zv)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c30 zSyk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3* zY-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXns zw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9VzT6VMhx)M%b~!juUpguoHxxDC{f3P8wjm zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb`jM{=zC&&h_Dx~m683Fj-w}4Bu$zQ^ zSJ?N2eP7rQgxxIc7GXaW_9J0G7WNZiw+g#W*iVK1OxW$h?htmTu)BoaE$kj)KNt23 zVZRjis{zK#g8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e24scW>|tS#2zyl6 zW5WI{>@UI|7xsj(CxtyF>}g@o2zyr8bHbh%_JXh%g}pSucv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#zm9x$@E!6uVSg9)4`DA0 zdqvnkh5bv|zlHrr*sH=`6ZX2WH-x<@>@8t$3wuY{e}(-|*t^2s6ZXEa4}^Uv>?2_x z3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk& z&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9Wu(qUw(&-Dr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5g zHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@ z&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9e zY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^* zuw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ z*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1 zWLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3 zu%m??BkWjV#|b-L*a^Z;6!sNiCk-%O7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYr zPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh z-KLSrVtKFu!-KNFerqazG<~!u%k*^NELrxKPs<6|9oi6MQVP^_EOW4`M&Jp%i zVP6w=uCVijoiFSHVHXO!NZ7@~E)n*1Vc!sTsj$n0T`uejVOI*fO4!xHt`T;vu0)75TM+-}q2Zd2)I5Az*z z{m54b-yt^$`=+pO3H!FN?+Ck5*iFK|E9`s1zAx+t!fqCJi?AOG`;o983;T(%TZP>w z?5DzhChT@$cL=*v*j>Wz7Iu%Yp9}kiuwM%M)d1sV!Tq(X$L2D-&CPb3Ywk98-fb4p zZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9js zs@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC(UJ^3}n2$Zv%GR@m=^{a)A~gxxFb zK4JF@dqCKO!X6U#M`3>w_OP%=ggq+kF=2le_7`D~3wuJ?lfs@7_O!5Pggq{Vf}342}G8^Ycc_Li`> zg}o!}zry|}>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE;VFTX=Z6*ii%(S?m6 zY)oNe2^(A3IKsviHlDEYg-sxALSYjLn^@Q+!X_0qnXt))O(ASbVN(g4TG%wgrWH1w zu<3=(AZ$iqGYOk{fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg z>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EP zHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_Ehuau zVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK* z!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq!uAoiudw}u?Jw*A zVFwC3NZ7%`4iR>!u)~BMF6;;z#a3j2z%lLi9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>X$X5s7 zA*TpCRoH35P8W8Durr07CG2cr=Lq|%u&)U_SJ-*N&KGupunUD^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrb?UE~74|)0 z-xu}+VK)oAMc5C8{Yco4h5ba>t-@{-_ETX$6L!0>JA~aS>@Hz<3%f_y&xQR$*e`|s zYJl;w;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yy#q`Rd?14K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_BmbuOnX_e24r^*x!ZyL)gp0UJ>?B zVgC~LZ(;ut_NuVgguO284PkEzdrR2c!rl?~Ut#|f_O7t^guO5917RNu`$*Ww!afo9 zsj$z4eJ<>a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghm11mm){|y3L8z>=)%SjHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@ zVUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&J zyUm?5)6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_% zgl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{ zbF30*;UwX z!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B}X-f z2s>8Tal(!lc7m`Ig?&ZXNdt_R1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3^aG*pC*> z3A0)75TM+-}q2Zd2)I z5Az-J*O9LdzC->d?C-+RdsWzL!d@5lhOjq?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWSO>w(T zi@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV z5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F4 z2wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8H zCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8 zI=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba; zyG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h z5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f#gdHpFIAO;NJ3-iq!oDKxqyfgug8OS%kIiLv zo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y z)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e21Jo^3}n2$SJ~3 z6?U4i(}kTO>`Y;22|HWZIl{gw>}$f#6?UGm^Mzd?>_TA|3ACBnWg>>I)^6?U1h z%Y|Jb>`Gx*3ALyGhu0g?&%h_l5mH z*v-Oj5%xo2KN9w1VLuUetFYUI{Z!b`gxxOe4qcgU|t zzB>30`HisO3j3X~-wXSLuzQ8wC+vP<4+wiu*h9kpDC|$d9v1e9ut$YGChX6`{vzyg zVNVEqQrJ_%o)-3uuxEumC+vA)F9>^4*h>S9mj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq>&RCJ-ywe!_IF|b5caaLSA_jj*uRAR zTiAbuy(;WAVXq5&L)e?b-V*k^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA)`$G<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH z6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMaz zC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F1d zg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qE zMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG z=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2Vo zoUr4CognN)VP6q;(g5RS!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC%tP`Rd?1

423Oh~M>B7zscBZhigqC~gk3D`5@BB#_6=c|3cF0$<-)EIcBQbZgk3G{8e!K8yKaE-vf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA59k9>9T9dd)P zZwmXCux|_dj<6er-6ZV0!oDZ$`@()8>}FxN2>YS19|`-hu%8IKRoHF9ek$x|!fqFK zhp;<^-6ia9VfP68xv*ad`=zj74KQ97++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc6>*))6!s@!4-0!l*rUQ86ZU6ee-ZY$uqT8)DeNg>PYZiS*t5c(6ZX8Y7lgei?4<$5 z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!ypq?~uO<`@67z2zy!BE5iOM>|etEE$lzSUKRG5u-ApXA?!_IZwY%_*gL}hE9`&5 z-WB$qu=j<1AnZe79|`+d*eAk175161&xL(4z<613f9>kAxy){Jv)$&JyUm?QK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v; zF=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3!LD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybF zmaw&jts`t*Ve1K7U)To1HWapzu#JUnB5YG(n+e-o*cQUJ6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG z5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzPPT29nP7rpYu&)R^X@K#v;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ytWDe0A_0a*D81g`Fns zbYW)*J5$(M!p;_Uja$#2p zyHeOy!mbu}jj(HlT{pmZS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LePKTkcC)Zs zg#A$1kA(eL*iVGrD(p64KNa>fVYdsrL)e|d?hZc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rEjuuMWOL zek1I+!hR?0_rm@l>|SB_3AhY3j33=hlM>N>``Hl3H!6KzX*F=*b~B@ z6!w&`r-eNu>{(&Y3431H3&LI$_R;|3Wx@TmtH>XkM74|=2?+SZQ*!#jh5cZ+4kA!_J>=R+13j0jh=fb`i zV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$S6~O`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N z3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEk zJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fp zD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA*+mhb?_ass<73BtuAa0VQUIoOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY z&4g_(Yztvq3foH9*21@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7( zCkQ)H*jI#|G{AUSaDVOUvAN7{bF30IYrp1!cG%*y09~Zohj@rVP^|FN7z?|eNEW8!p;+RzOV~~ zT`24#VHXR#MA+AbeM8u#!Y&hbxv(pQT`BA;VOI;gM%cB&t{Y&yEV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yG& z?AyY=BkV?DHwpW$u?gu*6?U7jp9=e#u-k>*A?!|J zcL}>&*ge92F6@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4*B)SR|nrAzY+FZVZRghdtrYNcCWDegxxRf0bvgcdq~(H zh5bp`!@?dB_NcJOg#B6AUxYm_>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA469r^0u zJLGS|{x0kv!d@2kim-nQ`~&#p2zyi5Tf*KJ_KvXs3j3e1cZIzt z?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR$7C{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO{Hm9(;gv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi z?IdjH0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghwL)))xmejuEKT`w!5%BgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii z4ik2`up@*WDeNd=M+-Yf*s;Qn6L!3?6NH^8>?^`f8eqIExW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgV>jUmbjhoFeR0VW$Z@UDz4I z&J=c*u(O4oBkZffz9#HkVdn`uU)Tl0E);f=u#1IVBJAtJz9H;VVV4QJT-X)Dt`v5a zu&ae#BkWpX*9|aU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~!v2k*^NELv9fEO<~^>_HAL`5q6`nn}mH=*!P5eU)T?X-7M@DVLuf1 zBVj)l_7h>Z3cF3%Plf$V*zLmZ5O$}qyM)~>>>go17xoKbzZCYX0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx~fvtAp>5-w6Ay zu-^&$y|6zByI0tK!tNLLfUpOJJtXXp!u}-eVPTI5dsNtC!u~AmFTx%d_Jpt}g*_$g zX<^R@dsf(U!k!oQg0L5by)?jhS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3Ckj(m0S9r8C}e;4)-VJ{1NMc6-u{Y%)th5bj^tHNFr z_PVe)guN;3En#m9dq>!Rh5b+1yTaZR_P($WgncONBViv4`$X8M!afuBxv(z=7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRo9n zeus=IY&2n`3mZe&n8L;qHny;FgpDg~JYnMtn?Trv!X^?nv9L*mO)6|MVUr7+LfDkT zrV=)_uxW%%D{MMp(+itH*o?wv5;pSy<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`K zZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*j zO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@# z%_nSrVG9UbP}oAk78bUMutkL}CTwwGO9)$1*iyol7PgGAWrZy#Yq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$SNaW9ejtZDr_}js|#C0*qXxD61KLmb%d=eY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x z+d|lu!nP8&wXki3Z7Xa$VcQGaLD-JMb`rMp0OMuB{k5yd<}$m@&32n>?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MS7Eye+g;cm!uAxlm$1Es z?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP2|Hfc3IAus zEP^+z>o^Dkl1d}pr6>wWsFYGlD;S81G%8A&DBa!N-QC^Y-QC??{`dN_hdsR4ot=3u z-_Oo(9$}ja+g#Wd1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6}gzYSB7h$^!+fCT+ z!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC7+}0CxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT?=Umbjh93|{% zVaEtNR@iaEju&=}+A@2s>BUdBV;Yc7d=9 zge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ86ZW{UCk7ZV3+}I7 zJvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4j zZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ!$X5s7 zAx{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B342@EJHp--_MWi! zg?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0L~a5jL8z(S?m6?5o1Y6gHNyv4xEz zY+PaE3HzF`uL~Pr*aX5R6gH8tiG@ufY*Jy93Hyey$%RcJY)WBM37cBjG{UA8Hr)W@ zWx@TmtH^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA&ZWDb?_bXV_`oLwwSQRg)Jd$NnuL~ z`>C*>30qp&GQyS>ww$o#g{>fLMPWY|_6uPv30qm%FNOU|*sq2CM%XICek*KMVZRgh zdtrYNw%P#WWx@TmtHcO>k3;>*q?;`S=e8MtuO4a!u}>~17RBq z+ep~P!Zs21cVYh!_D^B|683Ll{}HySu>T7CpRmn@Z7yt!0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W)xmejR>HOxwvDiD zg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$ z7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6@;Dg z3p+#DnZnKzcDAr{gqoT`KG{VV4WLVu10o;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv6ye0A_0a+R>F zgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46>=j|J z3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GMMeOhq_Inx=p*fP1U+h@48J1yGoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA55k9>9Tf5;5NW)wD)u$hI;B5YP+vk9AB*f)iJ zOV}L3zAfxK!sZnAU18r7HkYuuh0P=E`@-fGHlMKhg)JcL2f}_R>_@^D6tkAxy){Jv)$&JyUm?8DYx`TTa;W!d4KrqOhL}`-QNT zgsm*>m%@G}?AOA6BWx96zZJHsu-^&$y|6zBTWx^xvf%#O)njv+-R5Sy%{6zMJMT6N z=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA469Qo?tJ7jfXYY1CY*jmEY7PgMC zb%m`b>`%h}EbK4B)))3yVSf|0fv^pQZ6s`CVVem1yRd%<`=_vf3H!IO{|MVu*nfrn zPuOO{HW#+V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~VLJ=kMcA&wb`!R{uswwB zDQqucdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%31{g03?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhKzR|nrAM+rMx*fGM6 z6?UAk_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2VHXLz zSlA`PE){l}u*-#AF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kgVK)l9N!ZQ8ZV`5?u-k;) zF6<6rcM7{p*xkbJ5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJOggq|oi2=sTg8OS%kIiLv zo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y z)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+a^3}n2$Wy|e z7WRy=XN5f{?0I1?2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3!rm74j<9!yy(jE_VIK(l zP}oPpJ{IrVtKFu!-KNFerqazG<~wARDZl&<8CBRL=pg^eX_Y+>UF8&}wP z!oDW#>%zttHi57Sg-s-EVqudAn^f3j!oDGFa$!>ln^M?R!lo8Bjj(BjO*g=JS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LAC2S61-xl^AVRH)muCVV3n@iZ-!sZe7ePQzo zn@`yM!WIzr17SZD_9I~n3R_6n!on6AV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$f6@(9ejuUSlCa5EhcPnVM_>GQrJ?$ek$x| z!j=}cjId>eEhlVwVJiq*QP|Ig{X*DE!d4dcOJTnf_G@9k5w?o3-wIn**zbh>Uf3Um ztv0}TS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LkIp^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO}ob?_asm9VXaZ6j=3VcQAY zUf2%8b`-Xgu$_hNB5YS-y9wJ}*dD_66t@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4mon5ql6tT>=!p;zO zrm(Ywoh|GfVdn}vPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m7+}0CxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU3^UmbjhTqW#kVb=(| zR@imIt`~NLup5QlB~3NA2)kFe+3& z+HH#4ZCc!ID&6d1zC)fI`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqER9}9Fj4JFa z!bTG|y09^XeO1_)!p0Idwy<%8jVo+CVP6yWbz$QRn?Trv!X^?nv9L*mO)6|MVc!ro zxv(jOO(|?DVN(m6M%c8%rW;_qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWYLkY z4!%QvEbJ%378AC(uqA{oDQqcWKNa>fVM_~JM%c2#mJ_zTuoZ-@DD3CLej#inVJi#! zrLbQK`?av&2wO$iZ-uQY?03R`FYFJ(RvTcvEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa z&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h z@48J1yGoOU1949 z`;)Lg3;T<(^@aUa*x!V0AZ$Zn8wuN3*e1gMF6kAxy){Jv)$&JyUm?4I||!L*v`Us5w@$a-GuEfY!6|33foKA z-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLyM0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5Tb)xmejQNoTEc8suNg&imC zcwr|9J5kt4!cG=;im+3KohIybVP^~djO3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6^5Py3%f(u zox<)CcDJy5gxxFbK4JF@dqCKO!X6U#u&_sjJu2)mVUG)YVu10o;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(qe0A_0@|3Wrg*_we zSz*r!dtTTJ!d?{ilCYPBy&~*YVXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs6!wv@ zkA;0A>{DT%3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3@On>My@TMiurIVWSBfUDz1HzA9`?VPgp!Ti7_l#uYZ6u&)XG zy0GzuO(1MSVG{|PSlA@OCKWcBux|*PT-X%CrW7`nu&ISjBWzk>(+x0Q7TjOEdTcJU z+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHts zrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wBik*^N^51B#O zjKXFTHnXrQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)JfnvgpWH2j3w-7WNZiiwRp?*b>5)6tgsmd%x58Ex_B&y}7xo8Xs|_$- z7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj z58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t% zBVQeShpaAa4Pk2vTT9s5!qySCuCVol{YluLh5bd?`ojJy>~F$05VoPPjf8D1Y!hLB z7xoWf{}lEwVgDBPA7Psc`>(M73ENEA=EAlZV7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$d)5t9ejsuC2VV9+X&lM*mlCU7q)}2 z9fj>AY-eG+2-{WIZo+mKwui7ih3zG5Z(;ig+gI3r!uA(-fUpCF9VF~vVTTAiRM=s{ z4i|RB0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk%%C}BqnJ4V>C!j2Pmys#65oha-iVJ8baMcAprP7`*zurq|6DeNp^ zXA3(=*tx>a6L!9^3xr)L>>^Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhN!R|nrAR|&gX*fqkg6?UDl z>xJDQ>_%ZX3A30c}m#R!k!WKtgz>VJumD9VJ`}MN!ZK6UJ>@Hu-AmWF6<3q zZwh-$*xSP15%#XI_k_JK>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO&6nRHqYC?qu+fB# zE^G{8Ullf{u(5=VEo>ZN;|d#3*w=)8UD)`-CJ;8Eu!)3CENl{ClM0(m*f)etE^G>6 zQwp0(*wn(N5jL%`=>`}t3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^Bpq%$X5sdhs+>sMqx7vn_1W_!e$jVo3Po1eN))Cgv}xB+rqvh zY))a{74|)0a|xSU*gV3%FKk|6^9h?@*aE_SAnb?2ek5!`VG9XcSlA*1jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(S#;#9gYS?Z z3;T(%#e^*`YzbjY3R_CpPlf$V*wVt55w@(b<%BISYz1K}3j4XRUkF=C*vi6wDePCm zel6@b!d4OXTVbmT`<<}g3;Tnx)dm9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZXk*^NELsl2IhOjk-ttD)2Ve1H6SJ-;O{v_)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWXqAS4!%RS61KIlZG>$rY&&7w3)?~1j>2{lwzIHZgzYM9H(|RA+e6r%!uArjx3GPL z?JI0QVfza^K-hu84ia{-utS6$D(o;}hYLGmfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAxDmUb?_Z>l(3_P9V6^mVaEwOUf2o3 zP84>Mu#<(IBJ5OQrwKb<*crmk6n2)dvxS`_>|9~z2|Hid1;Q>Ac9F1)g@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4!LsVtAp>5tAt%G>>6R$3cF6&^}=otcB8PHgxxIc7GbvvyG_{b!tM}ur?9(( z-7V}MVfPBVPuTs!9uW4Ru!n>_EbI|sj|zKC*yF;U7+}0CxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT|?UmbjhJSFUDVb2JAR@igG zo)`9luos2BB}_H12zyu9d&1rq_JObug?%LKV_}~N z`&8Ix!af)F#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC%Wt_RH^(QH6a)*l5B=7dD2luL>Je*jU2G7B-HsafOX1>}$flE^K^Z z69}77*hIo67B-2nNrg=&>>I)+7dC~kDTPfXY-(ZC2%A>ebOVf+1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+W*qp+ET z%`9vdVY3RGP1x+hzA5Zm!sZb6ZDHRLHm9)f3j3b0xrEIvY#w3X7dEf3`Gn0cYyn|E z5cWf1KN7Z}u!V#zENqbh#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jOV!{>|wuG=Hg)JrQr^0?FY-wT32wPUz za>AAuwt}z~h5cOEFNCcmY-M4;6!t4&zZUizVXFxHt*}*v{Z82Lh5bR;Y6Fay1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40Kx$X5s7 zA*%~pL)e}zOcUv`QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvgOEE2j3xE3ENuOHo~?QwwFM{AnZV42MIe^*df9W6?T}g!-X9& zz<613f9>kAxy){Jv)$&JyUm?lyGYo@!Y&bZsj$n0T`ug30mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghg>=G)xmejRl=?oc8#!Wg~UdF3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`JLJicuMWOLo)Y%7uxErlE9^O8&kK7&*o(qm685sNSA@MP>@{Jp3wuM@o5J1_ z_O`HhguN^5Jz?()`#{)-!afrAv9M2seJboTVV?{8Vu10o;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$+_vLrUsKUM?Y&2n`3mZe& zSA~r!Y%F183mZq+xWdL0_BCN&7dF1I34~23Y$9P33!6mPq{1c>_6=c^3!6gNl)|PG zHnp&6giR}Kx&g+^g8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e1}Xw^3}orAu|Y@QP@nvW)?P!uvvx8CTwYS19|>Df*h0b<7PiO$<7L79wX4VGGP}*q zcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$f zZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`79IKO;5+2U!hRxb zF=2}fTSC~9!j=;DQ(-?7wzRNige@yVVeotT-X)^jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(*>dEo zgYS^7gl#Qs8)4fD+fLZ_!gdh0qp+QX?JR5;VY>?3P1x?j_7JwGu)T!sEo>iQ`wH7n z*#5!}5O$!jgM=L{>=0px3Oh{L;lhp>V7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$dMyo9ejrzCG2Qn#|S%C*m1&+7j}ZM6NQ~5 z>||l52s>5SX~Iqyc80Jsg`FkrY+>gJJ6G6w!p;|Vfv^jOT_o&cVV4NIRM=(0E*Eyi z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%Dq&X(yGGcx!mbl`y|5dE-6-rPVK)oAMcA#vZWDI9usej^DeNv`cMH2m z*uBE;6L!C_2ZTK+>>*(f3wuP^qrx5&_PDSo1{g03?yp@vHka9LZnoQ8bGNzkZnJ=H zvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rEPJR|nrAPYHWk*fYYO751F4=Y_o> z>_uTO342-CE5cqC_L{KQg}ou{O<`{ddt2B$!rm43p0M|YeIV>ZVIK+mSlB1RJ{9(v zu+N2kF~E3PaDVOUvAN7{bFe+3&+HH#4ZCc!ID&6d1zC)%T`Rd^RkQs!{C~PKSGYgwV z*sQ{46E?fBZwmXCusMW%TiADm%_;1=!oDYLE@5*En@8C9h0QB$K4J3@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWei;jGC@E!7FVLuVJn6Sl#Eg@`4VM_`7sj#03TUyvM!j=`boUrAE ztsrbgVLuo43t=k>TUppIh5bs{uZ8_a*eb$)D{NI^zZ3R*VSf;|+5qEa!Tq(X$L2D- z&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?; zYSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC->v^3}n2$m+t@ z5VoeUwS=uLY#m|i3R_RupM?Ec*k6RLFYK?v{w8b#VH*nDNZ7{0HWBuBVgC^JPhtNO z_HSYT5w@wY{|ft`u+4;RE^Lbd#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jONLBb9ec8IV;g&ijBaA8LbFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^Nb^3p+vBiNa12cCxTjgq^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAym9VRYT_fyTVb=+}Uf2!7ZWMNt zu$zV5BJ5USw+Xvl*d4;|6n2-eyM^5&>|SB_3AiLg*_tdQDKh>dtBHP z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4ta9qtAp>5r-VH%>=|Lt3VTl2^TJ*b_M)(tguN{66=AOmdrjEu!rl<}rm(k!y)En= zVebliPuTmyJ`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQF+eEA(Rs<5vJ8%@~g!p0ExRbgWa z8%x;O!p0FcuCVcheNEWcg^e$40$~#hn@HHi!X^5rLd`lO)YF1 zVbcnmZh-N!;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yzeFe0A`D$PB_}6gHEvnT5?FY*t~j37cKmH-&vm*c`&XE$lnO<`ni_Vc!!r zm$12o%_Hpl!sZn=pRoCbEg}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#MMu6m_zwB8u%8H9OxWVW zmJqh2u%(3kRM^jiEiG&rVap0zPT2CoRuHzLu%8S2g|L-`tt{-9!hR*}*TQ}yY!zX@ z6}GCd-wFG@us;Y}ZGiEz;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-ywe-`Rd?1WOZR{2wPLwTEf;AwvMoMg{>#-Ps08z>@ULB7xq_S ze-pNWunmQ6By3}0n+W^6uzv{qr?7ts`?s+F2-{THe}(-|*k-~u7q-O!<7L79wX4VG zGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_ z(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`wjBBD;5%e1 zVOtB^M%cE(wiC9!upNZ$C~PNTI}6)I*sj8M6SljsJ%sHkY%gJZ3)@H7zQXnsw!g3g zgdHgCAYlg!J4D!_!VVL5xUeGz7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLu zv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^%QY2j3w_2|HTYF~W`&cAT)|g`FVmL}4chJ6YH% z!cG--ny}M_ogwT@VP^?DTi7|m&J}i^u=9moAnZb67YVyq*d@X)6?U1h%Y|Jrz<613 zf9>kAxy){Jv)$&JyUm?<(df3cE|#-NNn>cCWDe zgxxRf0bvgcdq~*B!X6R!sIbR`Jud8t0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdep*)xmejQ^KAW_KdJ+g*_+id0{UIdr{a+ z!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX z3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc63nWCmd~3Y$sT%)(|7Hmk7N zgv~DOo5H>&Yz|@H7WN%sa|-*eu+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1u&sq{BWzn?+X>rV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xri_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(IdbHygYS@| zgdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$dw~s9ejseCG2Wp*9f~-*mc6L7j}cN8-?8@>}FxN z2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLLfUpOJJtXX5VUGxVRM=y}9vAk+0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Zus4LgDeNs_Zwq@z*t^2s z6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=E znr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu&HUw(&-D(ox5MiVx=urY*vRoIxq#u7HR zuyKTqD{MSrUlaCqVdD#%K-h%BCK5KWut|hXDr_=g-w-yruqlL1DQqfXQwy6$*tEi? z8(_RFxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgXZ3Umg4(GJ~)gh0P>vW?{1kn^o9s!e$rtO<~^>Hixip3;T|+IfZ>!*!P6ZC2VeC z^9cLCuz7{eCv1LU3kdsxupbKhk+21YEhKDVVT%kfUKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_(UGqXzC(U2>?gt&6SlapC4?<0 zY$;(s74|b>OAA{@*s{Ww6Slmt6@;xQ?B~LMA#5dKD+~LjuwM!LwXoj^TSeG!g{>;= zcfx)z><_|L8(_RFxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jto zyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?Ps zO^drtrJFs>cgP<{zB>30SzXu~!qybFmaw&jts`t*Ve1L|ldwMv`-`ykh5c37--K-- zY(rri3ENoMCc^$M>>tAZDePau{w?f3!ZsE5Ut#|fwwbWag>5mwcv*0N?dq|)%x-hD z-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#El0jO_zu}h*w(_f z5w@+c?SySFYzJXG3foE8&cb#PwyUt+gzYYD4`F)>+e_Hq!uAoiudw}u?Jw*AVFwC3 zNZ7%`4iR>!u)~BMF6@W_#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jOa$#2tFkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1E^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW!tN4wx3GJJ-7D-qVfPDr zK-h!A9uoGjut$VFD(o>~j|+QZfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bcb?_bXl(46TJtOQ{Vb2MBUf2u5UKI9{u$P6s zBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jEb*cigTDr`()V+k8u*f_$*6*iu*uL=9Qu0)75TM+-}q2Zd2)I z5Az+e=*U+G-yuI1_7h=?30qv)62g`gwv@1+3j3L`rG+gcY*}H;30q#+3c^+t_H$vs z5Vn%Am4*FM*sp~BTG(%dts?BV!d4abJ7K>U_6K3B4KQ97++VwTY%a6g+-$eG=5BN6 z-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6|wq`jvV>w;5+0fVMhx) zM%b~!juUpguoHxxDC{I*Cks18*r~!!6Lz|=GlZQf>?~nt3p+>Hxx&s9cD}F+gk31? zB4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr z!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA3A6h20?RMqxJzyII&R!fq9I zo3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY54+(o%*dxLo75130$AvvHz<613f9>kA zxy){Jv)$&JyUm?a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11Im){|y3j2z%(S(gIYz$#v6*i`@v4o8+Y#d?Z z3L8(@*Mxmt*!aRG5H_K(iG)ooY!YFU3Y$#WH-t?tYzkph3Y$vU)WW6_Hm$Jf1{g03 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9WwpM zR|o%x%phz=VKWJvS=cPXW)(J@u-S!uQ`onJ%^~dD!oDMHPGR2__B~;937cEkJi@*& zY+hmW37cQo0>XYE?1#dBBy2%p3kh3T*dharmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxra!bmXgp?~or0`-!l{ge@*?31LeLTT0kZ zh5by}(!!Pzwydz_ge@;@1z{@+`?;`R2wO?m%EEpr>{r5mE$lbKRuT4FVXF%Jov_~v z`-8C61{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9rDMKuMWOLRu{I0ur-CPC2VbB>j+y{*m}bLB<#<^{vvFBVSg3&H(?tH+fdj> z!ZsGRiLk#5`-iZ93j3F^e+&DMuuX;iSJ?lAZ6<7UVOtC^UKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_%aN}RzC*SWwzaTrgl#Kq zJ7L=k+d_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh# zLxdeF>@Z=63p-+f@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWeM~-}T@EvlLu%m??BkWjV#|b-L*a^Z;6n2uZlZBlk>{MZ=2|Hcb z8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+6$}T_WsKVV4QJT-X%@jF$!X*RCF$%j`Bc z+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xpL&IgYS^5gk3G{ z8e!K8yH42k!fp_Dqp+KV-7M@DVYdpqP1x=9v)3VTf0q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$de;q9ejs8CG2To&j@=~*mJ_37xsd%7lpkf>}6rE2zyo7 zYrSdso?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4w-)BtAqbTW)L=`u$hF-ENm8GvkIF{*zCf-DePOq z<`DL6Vc!upr?Bq|`<}45gv~8%9%0`XHm|Vxgv~E(0bxH7_CsMm61JeQg@i3EY>@%R z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!%rEhX%y!hR-fX<^F1dg0K~Z{an~DgsmiO zWnsS*_A6n(7WNxqs|fq8uvLZqPT22-{Xy7j1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9 z*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4*BEAR|nrAs|#C0*qXxD61KLmb%d=e zY&~Ir682|de-XC6u)hlXo3IUpZ76IbVH*qEMA+Yj{X^J4h5bv|zlHrr*rvk%E9`&5 zHWRkFuq_4{FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7 z=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2 zZd2)I5Az+e<;YhD-yvHG+gjK*!nPH*ov`hN?I3JNVLJ)iS=cVZb``dpu-%32A#6`! zdkNcH*gnGc6}F$S{e>MM>_A}$2|HNWA;Jz7c9^ikg&i@#cv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#BS*eE_zpQr*wMm{5q7Mw z;z#a3Oh;I$-+(%cB-(`gq<$z3}I&qJ4@Kv!p;$PuCVijoiFSHVHXO!NZ7@~ zE)jOAu*-y9F6@c{#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO-QChT@$ zcL=*v*j>Wz7Iu%YdxhO6?0#Vn2zyZ2L&6>w_K2`Yg*_(habZskFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!rl`0wy<}Ey({cJVebq3K-h=E zJ`(n^uup`2D(o|1p9}k9fbp{6{@T@JbD7=dX1o1=R?H%J!@7=xba!`mcXxMpcXxLf zGzQ(Nq=JG$D%~iZ2BDyY2_}gDy}s;W5AStnXP(RVv-6vWYwk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt`^)c;QH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{ zd|?v^n^4$9!X_3riLgn9O(tw|VN(d3QrJ|&rWQ7huxW)&Cv19QGYFee*i6D^9$>sI zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQRw zUmg4(GOMuJgv~B&4qLVG9adNZ7){77@0nu*HNeE^G;5 zOA1>`*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@tx zb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtH_HAM32|Hid1;Q>Ac9F1)gQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)Jfna?QwB2j3yr3cF6&^}@a*?7PBl5O$-mn}ppg>=t3S3j3b0?+d$4*zLl8 zAnb?2?htmTupbHgv9O;A`>C+IgxxLd9%1(iyHD8t!hR;~=L3wF1^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`wt}g@o2zyr8FNFP4*mJ_37xsd%7lpkf>}6rE2zyo7Yr0 z)75TM+-}q2Zd2)I5Az-J*2q@}-yv@cdq>#2!hR?0_rl&2_P($`2>YY34}^Uv>?2_x z3;UC>KMVVdu)hlXo3OtN`$X8M!u}!bpThnn?BBxvBkaGzJ`?u2u>T4BVu10o;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx&S^W}HQ zsKQ1QHoCAegpDa|EMa2{8%NlAAuwt}z~g{>rPrVtKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr z_7%3Du>FM{AnZV42MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`&cAT)|g`FVmL}4ch zJ9&Wdvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA4kjC^(Q9dfF$uL%39u&)XGy0FuPoi6MQVP^_EOW4`M&JlL5ux|+arm$}b`?j$2 zgq<(!0$~>lyGYo@!Y&bZsj$n0T`uejVOI*fO4!u{jF$!X*RCF$%j`Bc+ikA7+uV7# zSwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xn|_6gYS@Qg~>*45cWf1cL=*v*pGz$SlCa5{Z!ap!tNG!kFa}% z-6!mRVLuc0^8v=og8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wf zw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8 z+qAgbRJz&2e1|+R^3}n2$b-Tj685mLM}$2p>@i`F3wuJ?lfs@7_O!5Pggq^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!hR*}*TQ}y?6(7qmj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9Yvikg?~u2Jy(8>h zVZRghdtvVhdtcZeg#A(22f{uS_K~oUh5bp`pN0KJ*k6VHP1xUseIo2rVgC^JPhtNO z_HSYT5%ynUp9%Y1*#CrmF~E3PaDVOUvAN7{bFZc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x z%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh} zwzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949 zTVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw z$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp( zcBHVQgdHvH7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0L04*w=)8UD#>DP8W8D zurr07CG2cr=LkDj*f)fIQ`onJeOuUh!p;|Vfv^jOT_o&cVV4NIRM=(0E*Ex%uq%aK zCG6?}#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOwDXgxx6YCSf-VyG7Wo!oDZ$`@(J$cDt}22>YS1 zJA~aS>_@_WEbJ%3ek$xPVRs9=N7%i>?h|&uu%8M0`2gc(!Tq(X$L2D-&CPb3Ywk98 z-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmY zZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`u`Rd?1#P zVZRdgYhk|;_S*r*%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!Y+F&xCz0?0>?(7+}0CxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQI7efb?Ss<6?7 zjV^2qVPgs#OW4@L#t}BIu@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYY zY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb<;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0 zvZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs z*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~VJ8SXQP@esP99*q zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwcnn*qOr45_Yz*bA+8M>>I+qDePOqzAfxLVdo3G zK-h)CE)sUJuuFtpD(o_0mkYZ>*p|wq`t{M62;5+16Vb=+}Uf6epeOK5G!fq6H zldzkG-6HH(Vc!$>ePOo=yIt51g#A$19m4Ju_9J0G7WNZiKNWVDu)BrbBkW#b_X)dS z*w2Lhe1P$?;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-ysi-e0A_0@}RJXggq?m5n+!Cdra8l!k!TJq_C%iJuU1RVb2Qtg|J@=drsK% z!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtuwM!LwXoj^`|SYZWx@TmtH zUf6rW-WT=f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{ z*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&c zunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2 z$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9VzT6 zVMhx)M%b~!juUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYr zPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh z-KLSrVtKFu!-KNFerqazG<~!t+k*^NELrxX;6=7c$_BCN&7j~Mk(}kTO>`Y;2 z2|HWZIl|5r_6=d*6!tA)-xhYBu=9moAnZb67YVyq*d@X)6?U1h%Y|Jb>`Gx*3A=iL z@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe z*Nl91@Evlku}SG$KEQZcaDVOUvAN7{bF30c~ICx!X6g(h_FY6JtpjN zVNVEqQrJ_%o)-3uuxEw+Lf9{bJtypWVJ`@KQP@kuUKaL>uvdk>ChT=#ZwPx+*sp~B zTG(%d{dR!yvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA3>jeK?R9rCuYcZ9tw?03R`FYG;G?+g2bus;g>K-h=EJ`(n^us;d=v#`Gi z`>U|O3H!USPlSCc>>tAZDePau{w?f3!u~7lGhv?#`=78c1{g03?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu%SUw(&-Dr_`iqYE2D z*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3V zVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S z!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3Z zVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTr zgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL z!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z;6n2uZlLr_t3+}I7 zJvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4j zZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=^$X5s7 zA*TxaimB7zscBZhigq=I#@3cF0$<-)EIcBQbZgk3$rcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5 zn>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Yev30_zt;N*mc6L7xo=t-xYR)up5QlBPleqj>~3NA2)kF zcgO=HUmbjhJSglTVGj#?MA)Ok9uxMsuqT8)DeNg>PYZiS*t5cZA?%mJo)h-Guor~A zDC{L+FAIA`*sH=`6ZX2WH-x<@>{r5mE$lbKemlT;S#W>t>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0L@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4jE;^FTX=Z6*ii%(S?m6Y)oNe2^(A3IKsviHlDEYg-sxALSYjLn^@Q+ z!X_0qnXt))O(ASbVN(g4TG%wgrWH1wu<3=(AZ$iqGYOk{fbp{6{@T@JbD7=dX1mQb zcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGn zgv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww z6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3^Z{a$#2pyHeOy!mb`*yezoC zcJ^foB3;T|+?+Uv?*p0$&5_Yq&TZG*z?0dq#FYGp9w+s7$upbJ$L)e|dekAP2 z!hRy`r^4{(&I5cW%9&k1{8*bBm56!wy^mxa9|>{Vf}342}G8^Ycc_A6n(7WNxq zza3z_EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG`%h}EbK4B{wnNm z!u~Go6JehU`-iZ93j3F^e+&DMu>T7COxWkb{wM5<0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm5k&m){|y3L8z>=)%SjHm0z# zgpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03? z5H_Q*nS{+ez<613f9>kAxy){Jv)$&JyUm?5)6tZc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U8 z5VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZ zPT2Osb`Z9su$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1 zB}X-f2s>8Tal(!lc7m`Ig`Fhq4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bmbnvt&#zC*4RcAc>6g?&fZcZJ;`>_%ZX3AA?!|JKN9w1VLuV}Q(<=ryIa^j!tNDzpRoId{Y==;2N*94 z?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`> zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rD1) zR|nrA4+?uo*u%me5%#FC$AmpD>Ye5=Y%~k>;+*j3VTV| z%fem}_NuVgguO284PkEz`<1X?3;T_*-wrTd7TjOEdTcJU+uUrox#n(j=iO!j-DVrz zW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$ zcipCh-KLSrVtKFu!-KNFerqazG<~!uAk*^NEL*5qlj<9!y{Z82Lg}o>2ePMqP z_D5kK2>VdjN5Vc9_9tO~7WNlme--vOVSg9)iLg(F{X^J4h5bv|zlHrr*nfq6ChT)z z{}cAb0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%q-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(b zOW54P<`Fipu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@ z1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGR ziLgzDZ6<7UVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4 zL)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f#gdHpF zIAO;NJ3-iq!cG!)@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC%tK`Rd?10)75TM+-}q2Zd2)I5Az*z&B#{=-yzou zyH42k!oDNyyTWb|cB8PHgxxIc7Gbvv`<}4x3%gC&?ZSQ_?1#ec5O$}q9|`-hu%8I~ zsj$0*-7V}MVfPBVPuTs!ekSba1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)o zw^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4tZeYtAp>52ZcQ(>|tS#2zyl6W5OO6_Jpt}g*_$g zX<^R@dsf&lg#A+3bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5lhOjq<{Yu!ch5bg@ZwDAJ z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZm z$X5s7A#V$NN7%c^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)_qv<#))a!bTG|y09^XjVWv_VPgv$ zN7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^y zCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWR{Vy4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOx zV!{>|wuG=Hg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxT zEn#a5TSwTs!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu z9fa*DY$stm4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6MM>_A}$2|HNW zA;Jz7c9^ikg&iU6NMT0_J6hN=!j2VooUr4CognN)VJ8VYd4Tb<;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx@re0A_0a;mVe2>YtA zuL=9Qu+xN{F6<0pX9_z@*xAC)5q7SyZwULQux|mI*wq7!mj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrbf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdeOy)xmej zgTfvX_OP%=ggq+kF=3AjdqUWg!k!ZLw6JG{JuB=N!hR|2IbqKWdqLQX!d?>gvanZ# zy(;WAVXq5&L)e?bekJVJ!hR#{w*!oq1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3`w&kAxy){Jv)$&JyUm?@;hWyVWSBfUDz1H#uPS|u(5@WBWzq@;|UvI*aX5R6gH8tiG@ufY*Jy937cHl z6vCzyHkGicg-s)DT4B=(n_k!q!e$gUldzcw7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V5;nK6 zd4$a?Y(8Q03tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3!LD-7I zRuZ=I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapzu#JUnB5YG( zn+e-o*cQUJ6tZc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi5VohV zy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzPPT29n zP7rpYu#<$HJivHaaDVOUvAN7{bF30IaSzKgnd=m*Mxmt*lEH}7j}lQGliWc>}+A@2s>BUH-vpt z*tdjzTiAKR&KGupunUD zu?gv0D(o&{ zcMH2m*uBE;6L!C_p9%Z<0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk%%L17OGdsx^b!X6d&n6Sr%Jt6E#VNVHrTG%tf zo)z{BVZRjioUrGGy&&vGVJ``LS=cMWUKRG5u-ApXA?!_IzY_LqVZRaf+X2SQg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e22U>^3}n2 z$lJo+5%#XI-wFG@u=j+$FYFJ({wVANVIKR`>(LigncgTf5N^PV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$S8|_`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( znPudwga1Qj6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_n6Sl# zEg@`4VM_^HTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0VQUIoOW4}N z))BU@u=RwkFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQItUmbjhoGR=q!oDi(Yr?)R z>@;Dg3p+#DnZnKzcDAr{gq|4UVE$lpD=L@?)*oDF_5_Yk$ON3o2>@s1O z3%f$tmBOwPcJ%<`Wx@TmtH|SB_3A^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WArFjvb?_bXpse+3&+HH#4ZCc!ID&6d1zC+#``Rd?17xo8Xe-!qCun&cO zB_IF{Q2>VpnKZN~L*uRARTiAbu{a4s$!af)FKVe@CFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR%6f z{0;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO{Hm9(;gv~8%9%1te zn@`yM!WIy=psQK%L-dg*z&?w5VoSQm4vN4 zz<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y2-{THX2LcX zwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%BgzYJ8FJXHN z+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn6L!3?6NH^8 z>?C0)4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`JLHs+uMWOLP8IeQVP6&YHDO;DcABu$g`FYnOkrmUJ6qT}!p;@;4PoCD_AO!G z7IvPn^Mzd?>_TA|3ACBiNhcA2otgoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA59jC^(Q9dfO(>x5k|>^s7~ zE9?egHwwE+*v-Oj5q7Jv?+N?9u-k;)F6;-wekkk?VRs7qk+2^N`-!lh3cE|#-NNn> zcCWDegxxRfXTp9yz<613f9>kAxy){Jv)$&JyUm?^4*h|7*7WRs;SB1SM>~&#p2zyi5uY~NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv^}e0A_0^0u&d zguN^5cfx)z>^))c3;TnxKMMOm*oVSC685pMKMDJ@u)hfVtFXTb`@67DgncUPAHx1A z>|etEE$lzS{wwS=VV?{8pRg|m7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLu zv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRhKPeus=IY&2n`3mZe&n8L;qHny;FgpDg~JYnMt zn?Trv!X^?nv9L*mO)6|MVUr7+LfDkTrV=)_uxW%%D{MMp(+itH*o?wv5;pSy<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`W*PbF z;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@#%_nSrVG9UbP}oAk78bUMutkL}CTwwGO9)$1 z*iyol7PgGAWrZy#Yq-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD61KLmb%d=e zY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGaLD-JMb`rMp z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MS7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e z*b%~x6n2!bqlFzK>{wyP2|Hfc3Bpbkc9O7@2N*94?yp@vHka9LZnoQ8bGNzkZnJ=H zvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgRZR|nrArwaRuu&)aHny{}6J5AW> z!p;zOrm(Ywoh|GfVdo0_hOlo6`C~gk3D`5@DALyG+>S!mbc@ zrLe1nT|K~fS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L}FxN2)k9-_k?|4*logY7xn{T zKNNO{usenQNZ5~s{Y2PLh216WZejNbyI0tK!tNLLGhsg;V7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$O9u^9ejs8DC{9&4-0!l z*rUQ86ZW{UCxksI>?vVS3wuV`v%-EM?3cox6ZX8Y7lgei>?L6@3wuS_tHNFr_PVe) zguN;3SHgZR>^H)GJHU8ZaDVOUvAN7{bF30d0W^!!rm43J7K>U_MWi!h5bR;ABBA&>_cH63Hw;s zpM?Ec*k6SGRoLHz{ax56!af!D4`Kfl_Ag=o7WN-u{}uL`u+N44PuLd&jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D+^Yze7e9 zHkz=}g^eL>OkraQ8(Y{o!p0Rgp0M$SO(1MSVG{|PSlA@OCKWcBu*ro@A#6%vQwf_| z*fheX6*ir)>4nW8Y(`--37dI<@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWevy6Oo@PEjx!e$dTyRbQg%_(dyVRH+cN7%f=<`Xu* zumyxIC~P5N3kzFB*rLJ~6SlapC4?<0Y$;(&3tL9mvci@Vw!E+vgsmuSC1EQMFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR;Px z4!%QH6}FnN)rGAgY)xTn30qs(I>Oc!ww|!{g>4{gLtz^U+gR8p!ZsDQnXt`;Z6Rz+ zVOt5?TG%$iwiULWu^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA-jxxb?_astFYaK?JjH&VS5VOOW5AR_7S$P zu>FMXFYEwe2MRk#*ulaM5q7As!-O3!>J(ZY@qcC4`DgdH#J1Ysu%J4x8d z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4moAytAp>5Q-ys+*jI&pP1x6kohIybVP^MeOhq_Inx=p*f zP1U+h@48J1yGV{I$_rf`;M^h3cEqr zjlymccC)ZsgxxCad&0gi>^5Py3;Thv9}2re*qy?DB<#n+ej@Cr!tN4wx3GJJ-7D-q zVfPFBnXsP^FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EN>``Hl342`F6T+Sp_LQ)vg*_weSz*5r_Df;U z3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12D`CGD_8Vcp9bmjHxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgR~KUmbjhye;e_MxzkgncaRPs08z>@ULpD(r8<{x0kjVV?^7hp>MN`#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Sw_A(_&;P; zVY3OFUDzDL<`g!Uu(^fJBWzw_^9h?@*aE^96tQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdYL;2j3y93R_Ls>cZ9#wx+PPgsm-X9bxMVTTj^f z!Zr}Lp|FjFZ7ggPVVeruOxWhawh*?Zu&sn`Eo>WM+X~xG*!IG95VoVRorLW?z<613 zf9>kAxy){Jv)$&JyUm?|kMs2s>2RVZsgf>+bp2lY@^$( zrrYeP+bpfyZ1DfAm__i0bsYy$5JeDBQ2`|c6h#50yIUz0kW^GsL69)$?(XjH?(XjH z?(X)#*Oxu);l1wc%yapEc7F48n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MC zb(?l|o2qr2-gTQ2cAG|an|gMeu6CQ^cAFM=n@Tr(nD3A+N4`4v4%tfB*21FMXFYEwe2MRk#*ulaM z5q7As!-O3!?1%xz%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!~vvg z2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI<=UKZS6yLxOcv)kNk zx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb%8{=QzC*4OcD1l; zgk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWePmX+b@E!7$u&0GRBkWmW&k1{8*bBm56!wy^mxa9|>{Vf} z342}G8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6T-X-_jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D-`#zeBzv z?5n~?6*ii%uL&Dn*w=-9L)aL?zA0=>VPgsVmawsfjU#MaVc!<^9bw-UHlDEW3H!dV z9|#*?*aX5R6!t@5KN2>Pu!)6DGQfCQaDVOUvAN7{bF3n4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_ zo{_H(zC-2}HlMKhg)Ja#L17CCTUgj4!WI>_n6Tdn`>n9Wg)Jd$NnuL~TUyxfg#BLF zAA~IkAxy){Jv)$&JyUm?U|O30qCr>cZ9# zwx+PPgsm;?@525eY#m|i3j3$9^@Oc2>|eq*5VoPPjf8D1?BBxvBkaGz{wHh`VVeru zOxWhawisZ%EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+1RoHIAb{DpXuswzC zC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@Lgq0)75TM z+-}q2Zd2)I5Az*z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5nVK)i8S=cSYZWVT$u-k>* zA?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*`FAcv*0N?dq|)%x-hD z-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Cr7?I_zrnW*wezE z5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~uCVuny)WzoVIK;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO*MyBO?CZk5A#4m`-xM~cu(5=F zOW4@L#t}BIux|_djcgUn8Umg4( z@?&9>37cHl6vBQY?5Dz}6!tS=KNmKYuwMxKrLd`mO(SetVZRdgYhlv~n_k!q!e$gU zldzeE%_3}8VY3OFUDzDL<`g!Uu(<~qFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|&&XE?-y!n~n@`yM!WIy=psq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$e%~PI`|G*RoGvI{Z-iCgsmoQbzy4=TT|Ft!qyh{cVYh!wvMoMh5b|5dcxKh_Ag-@ z2-{HDM#450_HSYT5%ynU{}Z-}uuX++CTw$ITMRH>7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NEL$(sOwXki3Z7Xa$VcQGa zLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?FcCfHRgdHmE zFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@g`FboRAHwHJ6+fr!p;^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb>>gqF3cF9({lXp)_Motbggq?m z5n+!Cdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5l zhOjqP-WT?Pun&cOB|wq`Mw#`??~tzu`>L=} zg^eccYr;ks_H|+35H^OeZwebz*jU28C2VYA;|Lp9*tdm!N7#3TjVJ7T!oDx;2g1e| zHi57Sh5b<2kAzJmY+_-P3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfXXLAc z?~r+g%_nSrVG9UbP}oAk78bUMutkL}ChRxDek*KoVM_>GQrJ?$mKOFqVZRsl2Vu(y zTUOX|!u}|1d0{IETT$3b!d4cxim*QoFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EY+F{|Vbf*rviZ6Sldq zEe04b3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BuC~$X5s7AzKOCTG%$iwiULWut>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK27IurUTZP>w>~>*y2)k3* zUBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP&UKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$&s%PzC)f8_O!5PggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWeqs;c@cgRZc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wv?2R|o%x{8-pz z!X_6sg|MFp`>C)gh5by}&xK7T>=(j*DQs$C(+HbZ*sp~BTG({LrWZDYuo;ETBy473 zvk042*lfaP7dD5mIfcz7Z0-TZ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!< zt=nv{+pM$O?6%u1y4!5M+f<<2^r737quVs4+tjApbg0`Ds@t@y+f=RF^sd{Ku-i1U z+tjn$bhXQK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^5>DS z4!%QH74{cle--vOVXFySUDz7J))cmuu(gH#UD!W_ts`t*VgD4ip0M?W{Y%&e!ZsAP zk+6-0{ae_7g#B08|AcKKY*S&I3EN!Q76Xiz1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM+X~xG*!IG95VoVR zorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSV zju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1R|~sF*tNp06L!6@ z8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7 z=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2 zZd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#QD*=0JLD_EzA9`~VWSEA zny}G@eO=f$gpDEWo5IEvHkPn&2^(A3IKsvi_HAL`5%yhS;|cqoun^@Q+1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4w-c1tAqbTek^P{r5mEo?er(+itH*o?wv5;n82S%l3hY&K!D3!6jOoWkZ3HunJIWx@TmtH5)6ti_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`SZwE2j3y93j2$&zY6=Cu+@aEE^G~9YYJOS*xJJW zF6rVtKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@9V_fOVaE$QLD-4H zP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNagk37^GGUhs zyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F!tNAym$18q z-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2JuU1RVb2PCPT2Fp zUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD_MxzkgncaR6JehU z`%Kv9!oC<_yezoCcJY(E@q~R(*!P9~K-l=gCJ;8EupbKhk+6w`O)PAZ0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfF&1)xrNEKNdEbu*ro@ zA?zo@ekyEAVLuc0b74~n`-QMy3Y%KkG{UA8_A6n(7B-!*>4nW8Y(`--37c8iEW&0L zHk+{7h0P&sPGNHin|pxqvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA5bjC^(Q9Wt-5`Gn0cYyn{l3R_6n!on62wy3bhg#AX?Z-p%` zYzbjY3R_Cp(!zcx?DxX{AZ!_7%L-dg*dK*0FKh*2D+*gl*vi6I5%#A6#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOj+y{*gu7>Cv1IT{}Q%=unmQ6By3}0 z{}%QiVgD8OKVh2)+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6w!*d(w!N?&gzYG7Ct*7a z+eO%}!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD>6Lz?;BL)~R z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>J z$X5s7Ax8;2TG%ndjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i(}kTO>`Y;22|HWZIl|5r zcAl{Fgt>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0L^4*h|7*7WRs;SB1SM>~&#p2zyi5Tf*KJ z_KvW3g}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_lsUir4*80(uL>Jg*l5DOCTw(J zUl;ZbVPgpUrm!)EjV0_`!p0Uhj<9iseOuUfgnd`oc*4FX?EAugAZ&bL69}77*bjyM zNZ3TeCKfiy0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fry79}AmI*yO^d5cU&cKNU8mu%8M0xv;5({X*C;g-tDN8e!84 z`<1X?3!6^Z^ulHkHlwhagv~5$7Gbjrn@!m4!sZY*r?9z%%{{<)S#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0La6j<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H z*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3C zZMxcRirZ~k+-)k|>|wq`{yg&4!FR~2!u}%cufqN&Y&Bu43tL0jn!?r+wzjap3;Tz# zb%d=e?4QEc6Slsve+k<_*oMM361K6he+&DMu>T7CpRi4YZ7OUtVVeuvVu10o;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yvI$e0A_0 zvX!u{g>55jTVdM?+g{iX!gdt4ldzqI?ILVfVY><2UDzJN_7t|4u)T%tBWzz``w81$ z*a5;06n2oXgM}R;>`-Bc2|HZa5d(~u1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3^a9=a?A3Oh~M>B7zscBZhigqMeOhq_Inx=p*fP1U+h@48J1yGD>YGKz1yH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9ZWnfkusem_CG2it_XxXJ z*nPt87xsX#2ZcQ(>|tS#2zyl6W5OO6_QU|=Wx@TmtH?L6@3wuS_tHNFr_PVe)guN;3En#m9dq>#2!rl}1zOWC3eJJcBVIK?oMA)aoJ`?u2 zurCG}FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1 zZc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I z5Az)|%3NQ5hkQlYSA~r#Y&2nC6E?cAuM7KzurY*vQ`nfo#uD}|VPgv$N7%T+zAfxK z!oDkPJYnAx_I+VL5H`NB34~23?1#dBBy1vK6APPUfbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA(M`Lb?|@4kA+PpY;s{!2>Xe! zp9-5&*w2LhT-a2?ej)6a!lo8Bjj(Bj{Yu!cg-s`HdSNpNn^D+I!e$mWi?CUR%_eMi zVRHzZQ`lU><{n_YEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWee;)bj;5%ehVSf?! zS7Cn>wwkcjg{>iMO<`*ZTU*%Qh5bX=I>Oc!_D^B!30q&-zl3cdY(rri3ENoMzlHrr z*nfrnPuM2HHWjv+u+4>SF~E3PaDVOUvAN7{bF30*-F^f!nP5%t+4HcZ7*yGVLJ-jN!ZT9b`iF# zu-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt!gdHyIhyljSg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1{x4^3}n2 z$Wg+M7IuuVV}%_j?08`(2s=^ONy1JRc8ai5g`FnsbYW)*J5$(M!p;_Uj<9ouohR&k zVHXIyP}oJnE*5r)uuFwqChT%yR}3&-7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYr zPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh z-KLSrVtKFu!-KNFerqazG<~!udk*^NEL#`5bwXkc1T`TN5Vb=@0LD-GLZW4C0 zuv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=l3wuD=gTfvX_OP%=ggq+kF=3Ajdt!j` zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3h zj(m0S9rBd0r-eNu>{(&Y3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12maw;ly(8>h zVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1*cStgmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}W$rJ(L%t&HtHMSVHkz=n2^(G5*M)sU z*cigTDQrw(V+s3~u(5@WBWzq@-xl^AVc!)tp0Mu;`@XOr2peD61i~g1_CsMm5;l>r ziG@uvz<613f9>kAxy){Jv)$&JyUm?>}SG$E^I1czYz9IVN(m6M%c8%ekJVJ z!ln~8y|5XC%_wXpVKWPxMcAyuW)n8MusMXyDQqrba}O|H7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wAbk*^NEL*^AWpRoCbEg)<` zVG9XcSlA-M78SObu-^##t+2&~Eg@`4VM_^HTG;P|{a)A~ge@a%Sz*fw`=hYsg{>fL zMPVxmTUppD!u~YCcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#KaYHM@Ex+Mu)hfVtFXTbTTR&N!qyPBrm(eytu5^D!u}y_9bxMV z`=_w=gsm^^U&1yJwxO_%gl#PB-@^VQ?7zbPCu|d8n+n@Z*yh5v7+}0CxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU6_UmbjhY$a@K zVcQ7XR@ipJwimX8upNc%By4A4y9nD=*lxmh7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0 zg&id9U}1*{J5<e+3&+HH#4ZCc!ID&6d1zC(^2`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>K$X5s7 zAy)~zTG%zht`&Bju`q~K3At>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0LK z!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h9}4?O*vG;?5%#ID&xCz0?27@$ z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!%zVvYz$%F6gH-?v4nj~*x16x5jL){Zwvd5uq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$fP4*9sD2iV_}mCn_Sow!hRy`r^2Qb z_A_BW7dDl!UkLl9u&ISjBWzk>zY_LqVbcklUf2x6W)wD)u$hI;B5YP+vk9AB*c`&< z6gHQzxd#|83+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BpqJ$X5s7A@d5GPuTpz77(_eu!V#zENl^Biwavz*l&dWR@magmJqh2u%(18 zE$nx~elP3~!j=)Xtgz*T{ZZKR!d4KrqOg^Ott@O6VSgH6yezoCcJ!ZsH6Z(;ut_FrND z6Sj%4O@(bHY;$2-3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc661KCjU4-o_Y&T)M z3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZFVTTJlVu10o;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yuhie0A_0a+I*6 zg&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c*u(O4oBkWvZ=LtJs*agBa z6n2rYi-lbx>{4Nu3Amw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3|{q=t3S z3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h@48J1yGBVQeS zhdd?hX<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4OhCG2fs?+ANW*n7g> z7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtH)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWYUqZ4*n1Mv9QU6O)hK-VLuV}Q(;pI`_3Y$yV+yji41^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+9m8Cv1LU3kX|K*h0b< z7Pg46MTIRU>^H)GD{OILO9)$1*iyol7WO+~zZdogVao_xR@idF{wQpDVJiq*QP@ht zRu;C3us;njUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bmb&m&(Qe21(m>@ULpD(r8R`>(M73EM>2rouK8wz;q^1{g03?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kS)fR|nrATM64**fzqp z6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^!uA!mpRoOf9U$yLVFw92 zSlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$zVJ8YZN!ZE4P7!vhu+xN{ zF6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=vVb2SDLD-AJUJ~}Quvdh= zD(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUPGhv?#`(l9cvf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4g%=hJY z$XA4YRoJM)MicfmVWSKCy0C8u8$;MPg^ej}EMeagHny;FgpDig+rqvh?7PCo6ZSn} z-xu}+VdD#%K-h%Bekklm!X^?nv9L)77%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGU>=y2mgosSlDF3CKon^u%8I~sjw-9{Y==; zg-s>w7s7riY-(ZC2%A>euY~0)75TM+-}q2Zd2)I5Az-J=aH`tzC%_O_7`D)74|n_s|j0O z*c!st6tD4+g#Wd1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6}gzYSB7h$^!+fCT+!uAlh zr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC7+}0CxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT?=Umbjh93|{%VaEtN zR@iaEju&=}+A@2s>BUdBV;Yc7d=9ge+3& z+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ86ZW{UCk7ZV3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ!$X5s7Ax{Z= zTG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B342@EJHp--_MWi!g?%9G zLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3BL=Ku0L3jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(nRMi< zga1Q*ENn7ilM9e+3&+HH#4ZCc!ID&6d1zC-32`Rd?1WL{zO37cQo0>Ty)wve!eg)Jg% zQDKV-`;D;Q3R_&*62g`gwv@1?h5b(0?}hzA*fPSF6}FtPKMGr3*b2f{6t`w!Xmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxrcq^T<~R-yy3C`-`x@3j3R|)r74sYz<*+3R_Fq+QR-W>>t9`5w@8w%S<*v7*CE$lzS{wwT%!Zs1Msj$t2Z7yt!0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W)xmejR>HOxwvDiDg>5Hn zdto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$7IuiR zLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6@;Dg3p+#D znZnKzcDAr{gqoT`KG{VV4WLVu10o;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv6ye0A_0a+R>FgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46>=j|J3VTi1 z>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GMMeOhq_Inx=p*fP1U+h@48J1yGwy^IA`>wF@gndug_l5mH z*!aRG5H_K(9}4@Cu!)3CENqei#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO?gv0Dr`z&KNI$IVN(hF zg|J@=n_Ad3!lo7WD`CGDHl48Ph0P#rMqx7vn_1W_!e$jVo3Po1%^_?~VRH$adw}t> z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-y!pi ze0A_0GOw`tgv~E(0bvUYTS(Z#!WI#>sIbL^{YKbtg)J^@31LeLTT0l{!hR?0_rm@l zY#Cw83R_OtAB8P1Yz1K}3R_9o%EDF=_NM{H%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!uQZDD^G_77p}2wPX!KZUI)Y<*$>61IV`4TWtaY-3^n7WN-u{}uK>VVelsRM=+1 zHW#+V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~VLJ=kMcA&wb`!R{uswwBDQquc zdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%31{g03?yp@vHka9LZnoQ8bGNzk zZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhKzR|nrAM+rMx*fGM66?UAk z_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2VHXLzSlA`P zE){l}u*-#AF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kgVK)l9N!ZQ8ZV`5?u-k;)F6<6r zcM7{p*xkbJ5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJOggq|oi2=sTg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+a^3}n2$Wy|e7WRy= zXN5f{?0I1?2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3!rm74j<9!yy(jE_VIK(lP}oPp zJ{IrV ztKFu!-KNFerqazG<~wAR1;6|b`HHZw3L90}Xu`fGY;<8?7xoQdV+i}EurY;=CG1|wq`CLQ_e;Qx>x z3!6;X30nOE3+!sZvYfUpIHEhKDVVT%Y`RM=v| zek1I+!WI{{gs>%rEhTJeVZRghdtrYNwv4c4g)JxSkHVH0wt}z~g{>rPWnrrb`_lm9 zWx@TmtH~HDRj@TSM5I!qyVDwy?ho`-iY~gsm&=pTgD?w!W}`3EM!} zhQc-ywz05(3;U0-{|ft`uuX(*Dr_@hn+w}wfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO}ob?_asm9VXaZ6j=3VcQAYUf2%8 zb`-Xgu$_hNB5YS-y9wJ}*dD_66t@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4mon5ql6tT>=!p;zOrm(Yw zoh|GfVdn}vPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m7+}0CxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU3^UmbjhTqW#kVb=(|R@imI zt`~NLup5QlB~3NA2)kFe+3&+HH#4 zZCc!ID&6d1zC)fI`Rd?1WmL;EWRR5# zvh#whbdZ$^va$)8o-B0!yi>2XPNv`1nf2Q`&3;?w+;8g!_-)+{zpY#2w{@TVwr-l= z)*bZQx}APo_ttOgM*D5ub-%3@@Y~u4zpdr)+u9Vrt+nyn+9AKKh4S0lF2Ai+^V`}x zzpW+o+uBIKt@ZTV+Eu@;#r50TV!y4G_S$Lr9FokdCjNRzxga|~$jS#$Sw-9i-W9kkW~q?szFvQ$f^ffjUcNTWVM2RAjld9 zS)(AkG{_nUS(6}Znvm(qLg&vr^=j*6`fZ(Azpc~kw{_0_wr+sm*4^;ix;1`V_sMVT zrul8%LBFlr>9=)n{kCqj-_~9C+gbs?t$py@S`NRhP4U}W8^5g`^4nS{zpd@^+gdfh zt-bTxT0+0Ajr7}EPrt2Q_1jupzpX9y+gfR_otDob&3M(s=aA+>)*{GS23e~hYaL{5 zf~;+jwF|QLLDnJ2E(@}bLDnhAItN*oAnO`r-GZ!pko5?%o3f-`1`1+qzGF zTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;YZEcF**4p@O?U3KrLiufNm*3W^ z`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG*4jIa;CO(G@3$o!sHX_JI23bmw zjS8~SK{h7H#s=BAAR8ZK6M}4FkWC7*$w4+H$fgF_v>=-vWT`oogqopZmf8{oHfH~hA4jo;RN z^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R-{I=G{Z)=DAwie27YrFim zR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)<#WgaUN!MK;6V*`gp@ z9Ary^Y-x~P6J*y0*|H#89%L(m?7ASkKFDqevKxbJWsuzzWUGQ~b&#zIvb90BF34^U zvh_i>A;@kCvW-EuDabYl*_MP%PZm0V-l3f-`1`1 z+qzGFTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;YZEcF**4p@O?U3KrLiufN zm*3W^`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG*4!M&B zWX}iLz94%c$X*PxmxAo&AbTaqUJbI>g6#Dm+aF|a1lgNG_EwO+9c1qW*}FmZUXUFK zviF1RgCIK?WQT(6!yx-8$UY9TPlD{zAp0yK)02hHpLgoj*2(nSI3s-_}j@+q#2(Tes71>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3x3xBY zTRY^pwNQRr+vT^lYJOXL=eMkeHCO!g6!)c`zFY~4YKco>}ZgEA7saZ?1v!xG02Vw*-t_CbC8_~vR{Ji z*C6{X$bJv9KZ5LJkev#$KZESAAp1MWP6yeUAUm6o>B&Op&pY*M>tyzw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWYEuTY@ zdDX;U4=ER9=LcE&Agd5$7X;abK~^!yDh1g^L3VMFRSvQ$K~^=$ss&l~Agd8%HG`~H zkkt;dOMwa4+;J398ep}1o zx3wvLTWjODwL^Ye3+1=9U4C1u=C`$Xep^fEx3!UeTkGk!wX1$xi|ejJjhxES<4`66=bc0tWA)$4YGDY);`EO1leUl)-lLB1zG1H>k?#LgREPS zbq}&0LDns*wr;fF)?N48S^>YUeel~_ z4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz^xIlbzpY*M+ge<|tu6N3T4}GH zmd_zWdDX<{kYPbKJjg}_*~lPE39?Z^Haf`01liai8y95bgKR>OO$@S0K{h$arUcp4 zAe$Cs(}OHE$YuoD%pkiw$YurE>>#@$$mRsu+#s75WLE~+{De$T7CL|4saIPk({Jm{ z`fZ(NzpZobw{-*jw(f@C)~)f|x=(&vH_dPB4*G4~PQR^t>$i2I{kHD9-_{EFZS8~K z)^hl5ZHnL4+W2klkl)rq`E6~N-`1-6ZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o-_}Zd z?X-LjS-`6%K8IWtWLF2-!XR4|WQ&7rNsuiKvTK6u+8|pNWXpqWMUY(=WY-7T4MBEe zkgW`|n}TdrkgX1~H9@vE$kqkf%|W(4$TkGoEkU+1$TkJp<{;aWkm<=n=g&L!YU^bB zZJk-at<&tcbs*wr;fF)?N48S^>YU zeel~_4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz^xIlbzpY*M+ge<|tu6N3 zT4}GHmd_!#@~Vl?AzOoNTaaxJvK>KoTaeuzWOoGFok4b2klh_*JA>?=AiFon?hCT} zgY1DIdoaiz3bI{6_Hd9r5@e4C*<(TWc#u62WKRa!Q$hB0kUbM*&j#6Z37MWObpE_k zueMI6-`1J++d9pDTj$(w>jwC3-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?;ZQXUh ztrhUw+6TX_~!wpPt=Yw!HFme6l&BmK74({F26 z{k9g@Z)=PFwpQ9}r{#0VVO}-yIpp&o`y$A`46?6+>`0J(9c14G*|$OVU636OvhRcJ zSdje?WIqPk@gVyt$bJs86G8S%ko_8DzXjRvLH0+GoeZ*5LH1{m{S{DQ z6EZzn==^!7UTvLBzpXRtw{@ERw$8cV)(!C6x*L95x5jVlKKX6kG{3Do=(lw{{kHC{ z-`0)x+q&z1TPxtVwGVz<%i*`RDSlgP9@73ep`#{x3$H7TPy9g)ABhasolRnhhzw{j6s$u$TA06mLSU-WZ8l&dywS_vYbJd zE68#OS)L%v8)W%{EPs#{2(p4fRw&2{2U(FID;i|Qf~IYeaAZr+8je_jbAZr|C zO@gdxLZ&ARoj>o?tF4piw{>RywobF();agvx&eM$cf)V%*7$ARC%>(m=C^eR{kCqW z-`2hL+q%(yTX)@WYX$ta_Q7v!IsCRZ#cykE{I+(;Z)>6awzkV}Yt{U=_Reo>3H`P< z(r;@${kC@1Z)m6i$f~;?l^$W88K{g=B1_s%n zAR8QHLlQDQS?K(Er(SKHOuwx&>$i29{kG1z-_{NA+qxTmTerq<>puBy-88?gJLtD{ zJN>rqt>4y-_S?Gaep@Txx3v#`Tg&0MwJCmEYvZ@ILw;Ke<+rt6ep{>Nx3zbETTAG- zwUK^X>*=?(tA1OH>$kPVep@T;wbSxBWGJti_#84U$c6{mh#(soWGO*5D#%6$*_a?3 z8)V~xYB&Op&pY*M>tyw@h1AiE*RZVa-OL3UG+tqQW$LAEBy)&|+SAiFup)(6>!AiE{V zHU`dTM{xoS?K(Er(SKHOuwx&>$i29{kG1z-_{NA+qxTmTerq<>puBy-88?g zJLtD{JN>rqt>4y-_S?Gaep@Txx3v#`Tg&0MwJCmEYvZ@ILw;Ke<+rt6ep{>Nx3zbE zTTAG-wUK^X>*=?(tA1OH>$kPVep@T;wbSxBCHd`)%C-zpcCBw{>g$w(gVP z)=l%uP<~t6<+rtJ zep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6f^2V)Js)KIg6xGL zdojpf3bL1j?3EyUHOO8Ive$!be~`TqWN!x9TS4}Aki8RR?*`d>L3SX>-Vd@5g6v?B z9SX7!gY2Uq`#8ux39?Uv?6ZVSPZm0V-l3f-`1`1 z+qzGFTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;YZEcF**4p@O?U3KrLiufN zm*3W^`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG*4mr%LCO(IJ9%Nqx*_T1~ zRgfJCvaf^en;`o($i54*qe1q4kR1!MAA;=1AUhspKLy#(L3Sd@ehIQ)gY35;`#s41 z2(ptwb}GpJ46?t1?C&5u9b{*M>}*1&CkvfF@6@ZUlj*m0X8pEKv)|S^_uIMwep`3L zZ|m0hZQUoot()ezbqD>nZl~YYz4hC=(SBQZ-EV6J{I>SNZ)-XHwl>9YYi<0tcF1pQ zq5QVC%WrGd{I>SaZ)*wtwl>mlYd!t8cGYidas9To*l%m4y>?nYha|QC_verdL6$Md zG6h-YAj=YDS%WNFkYx|D96^>d$Z`c)?jXw(WO;)uUy$VwvI0R?Fvto8S>Yfn5@bb# ztXPm053&+LRx-#+1=)E)RyxSa1X&*IXoo2tSbMCiw1N^q` zhTqn$@!Psjep@%qZ|e^FZQV}4t$XXYb))^Z?z-RB3ixg9gWuM2_-$>9-`3jrZS9cX z)pt zRyWA%1zG(dYY=1&gRD`IT^eMKgRDuAHBHF$WTErtoqDx(GX1vBtl!pY_S-t=ep@%d zZ|iROZQUBbt^4G+b<_N|?x5e+?eyEaw|-kU+HdQw`)#d&-_}0(Z7ql2)~5Jvt&QK- z4*6{@l;75N`E9M5-`3vwZ7reS)<*hmt*77CuKH~)uHV)c`)#eX*G|jlkY>DU;&Vvz zAZrn1ErYC8khKo7HbK@l$l3*2`ylHOWS0e5#~|wzWSxVoOOSO9vTi}vJ;-_lS_-)-Mzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5Z)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4qK8FnDRTG~> zh6UO1AR7^6BZDj@$VLU(=pY*tWMhMDT#$_qvI#*pF~}wb+2kOb5@b_@Y+8^_539@73ep`#{x3$H7TPy9g)ABiF0k4|) z9CB5VT^(c#gKSZdEe^6JLAEr=t_iYhgKSxlEf2C4L3Uk`T_0pO1lf&2wlc_W3bIu} zwmQhx1ligkTNh+E2if`{+Yn^81lh(Q+Z1G*gKSGerY8%XKkwA5t&{1ub!PpxPP5_-)-Mzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5 zZ)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4qK8M`O zt0q2&Yz?w)LAE`}b|hr_Uk|;8_jjhYUfpl&=jFHcGxpp1d-2*IB;`%&kRd6lYf`m; z{-;UCf=Q2NP2#s^`W?Tu#`5g>aqhqV^LH(hN+;z@%9Q8af6b7TCuv9fq{8cyGA3P| z<9L$({CXIjy%_%aXYeIsQiikqmZ?=zQqKRArvK5uzXNB^CMD(0%s-ig-;^9)yye8H zE@SfVT$w$oa>ZSTYLE@(2XgRLKi(A?(HEJq5Bi625(SZ;QZBw;!q?nB*BvC8v%_N$xs%%8UuaQpZl7q@?BK8Iw}S z@}pxXo%_*Vlg6f|j7;v4dhSmdK0CSj=#(nSJyK>>Ngg(7WODamBT^bBCwG`JVRmxO zD#( zY|_~A!;-sB8#aBIe!lu^org|iM@*YMee$T(9n7{tl$S1L^NT`aAGn^bY)IpZ_x+*nePSwNm+4t>g25l~ecW^S?gR|Lf=fd}R9k zUkr1h&-;s@&&n&H&-trS6dR$>|2v>x57>`?{rs=b(dRysw@R5ZY+CBXlu4=o_{=|X zV#>4;DM|nMjGX`6Yf$~ael5d`>#v&y=RWcm<_{|Bk1CeyI*kwKLwb%)oscp;DL2K; z{Fpw(>nGl4^0e{O$E2jBPCxfr{H>n*A^n^?51YuZGjty|X*7SHej@t8^xx9of%JDE z{T)bu2h!hx^micr9Y}u%(%*sfcOd;8NPh>?-+})j?|?qW>a(&w((0qIJ~QjPDzZWU zE?=MZ^(_?oc&yLt`YfCm`rNP2_ywSU*RRj{`j}k=`mC>C4=9cjD2YhRQB~?ZhR7EvZM-9|OE!4&((7)fW3w>8eeKbHrG{U85 zj3#J`W@wHUXo*(PH=(paTeL%abiifkh)(E?F6fGG=#C!fiC*Z9KG3g=^h19Pz(5Sb zU<|=f48w4Yz(}NE6h>nV#$p`CV*(~Z-;gjFQ!o|NFdeCwftk1*voIT1U=HSD9rSWBQ{|(w%}H5 z#Wrlm4%~*@aR=_iUAP-NaS!greYhVF;6XfuU3eIe;88q=$MFQ7#8Y@0&)``+huzqN zy?7q`@B&`MOL!Tt;8nba*RdaO;7z=RxA6|%#d|n__wfM^;t)Q>NB9_@;8T2t!}uIu z;7fdkBlsHM;9Go$qxc@j@B@Ctar}gzaRR^KSNw+G@dr-g6#m3t_#3Bj24|sP!^(h+ z$OL^GP!?oGHe^Q*WmG{`R6}*tKuy#_ZRq=q>Yy&_p*|X*AsXRQG)5CNMKd%<3$#Ql zv_>1WMLV>IzH#j`==+vBp)t^6hToGLvfTqNtD8QD2*~Gi)56;`6!PHxBwTTA}Zk`T#U-7 zf~u&7>ZpO5sD;|N1a(js^-v!T&=8GqDH@{*nxYw+qXk-`6^g&=dVjRX}0w!V-CSwYw zVj89+6*Djsmtz)Y;|k2dT+G9jn2!ax3Rhzx7GW`#U@5M_wOEGbSb^(sJ#N5_Sc#jk z3ahaOYq1VDV?8$D7Hq^OY{nMcimlj&?bw0aa69h6owy5kV<+yxy|@qe;{iN~hp-C| z;}JZH$M86wz>|0iPvaRpi|4Q#d$1SJV;^3?i+Bky;}yJ$*YG;_;|;utx9~RJ!Mk`5 z2k<^Vz(E|shxiB|;}d*}&u|!@;|qL=uW$rk;~RX7?{E~~;~0Lxk2sE>@H0-}7yOFf z@H_s%Nu0u;_zQpIG|u2G^w6(wJk5wq$c!w=ifqV^9LR}W$c;S6i+sqB0w{<=D2yT~ ziee~^5-5pMI1i;!24#_qayTF5Q2`g=LR3U0T!f2J8C6gf)leNZP!qLK8<(IC>Y^U% zqX8PC5iUhzG(l4|Lvyr1OSD33v_V_&|BIc(cep2Yz-8!&PUws-=!$OWjvnZVUg(WJ z=!<^nj{z8nK^Tl77>Z#Sju9A%6pX@XjKNrp!+1==N%))G3 zfjO9qdAJhuu>e=$YAnPeEXEQn#WlDV%di|Pa2>A44Y(02aT8WyHP&D)*5PKX#|GSj zjo5_E*n(TJ72B{KJ8&Cr#~rv6cj0dA#67qd_u+m#fCupqcHv<>f=BTf9>)`S5>Mf2 zJcDQP9Cl+5_TqW$!wYy3FX3gpf>-exUdMjCfj99M-o`t47w_Q!-p2io$MF+>#tHm_U-27$#~(O}Q}`2q;cuMA z8JtB@X6`>SA`>zr3$h{`vLgp_A{TNa5Aq@(@}mF>q7VwB2#TT@ilYQdq7=?UX_P@( zB%>V8M|o7h1-K9uQ3)5}VpK*IR7EvZM-9|OE!4&(sDrwwhx%xMhG>LK(HKq86wS~a zEzlCJ&>C&f7VXd;9dH>sq7yo!3%a5kx}yhrq8ECj5Bj1X`eOhFVh{#n2!>)9hGPUq zA_b!`8e=dP<1ii*FcFh58B;J7(=Z*Wn1PwN9J4SRS6~k2Vjixje>#+g1U?VnRGq&JXY{fQg#}3?v+i?f( z#9g=>J8=*0#eKLR58y#Ogk5+TkKj=}hR5*)p2Sml8qeTaJcr%bgS~hj`|tu@#7lS? zui#a@hS#wlZ{SV5g}3nz-o<-3fcNnM4&o3##7FoTpWst`hQs(AU*Jo8g(LVH-{4z( zhokr&$M6Gw#BuzDpK$`e;8*;H-|+`d;uQYGU-%oRaRz6Rl!g0`jL3w{$bziMhV00J zoXCaT$b-Ddhx{mjf+&Q-D1xFWhT4qP#R@W7Re}w^HClZZ~-nvMO4B?xEPgD z1yxZE)lmaAQ46(k3F@FO>Y+XwpdlLJQZz;rG(|HsM+>w>E3`%%v_(6#M+aPnj_8EW z=z^~3hVJNrp6G?%=!3rKhyECVff$6r7=ob~hT#~2kx0QPjK&y@#W;+|1Wd#vOvV&U z#WYMuDrR6NF2^j)#ub=@xtND5F&_(X6|TlYEW%#lOdfb2;u@X07 z6;@*n)?yuQ#(HePE!c=n*o-Z>688#!lRWdvPD`#{+l}4`CM` z#v^zXkKu7VfhX}4p2jnH7SCZf_Fylb$3DD(7x5Ba#w&OguiGrFKFx}iIIpeK5vH~OG2`k_At zU?2uzFos|#hG95HU?fs73ZpRwV=)fnF#!`X36n7eQ!x$Gk%}3ZiOVqyvvCFHU@qq2 zO3cRsT!pK#5R0%FORyBz;94xha;(60xE?p)My$k5ScTPCgSA+Po3S1na0@nK6EY^U%qX8PC5iUhzG(l4|Lvyr1OSD33 zv_V_6Lwj_j0T_ru7>pqpieVUz5g3USjKXM) z!B~vLcuc@VOu}SL!BkAcbfjViX5wxDhLH6INk0)?h8x;byGI2Hb*;*o4j4f?Kf_+prxwa2syN9k>&B;co22 zJ-8S5;eI@T2k{Vg;bA<2NAVaQ#}jxGPvL1igJArwXt6h$!o_0a$g(Fm8KF`A$$nxQ#bpe0(NHQJyp+Mzu<;4*YXCv-*^bVWCG zM-TKwFZ4zq^hH1P#{dk(APmM348<@E#|Vr>3Pxcx#$YVQVLT>aA|_!nreG?jVLDPV z12b_sW??q2z#PoQJY0$SSb(c=H5OtK7GnvP;u>6wWmt|CxDMCj2Hc31xCyJU8f&l? z>u@vHV*_r%Mr^`nY{9MAif!1A9k>m*;||=3yKpyl;vU?K`*1%Vz=L=QyYMg`!J~K# zkK+kEiKp;1p24$t4!f}jd+|K>;RU>im+&%P!K-);uVX*nz?*mrZ{r=ji}!E<@8bg; z#36i$kMJ=*!Ke5Phw(YSz?b+6NANYi!MFGhNAW$5;RpPP-$rkqMcR1zC{|*^vV|kqfzz2YHbX`B4A`Q3!=m1VvE{#Zdw! zQ3~gwG|HeXl2H!lqdY3$0$hlSsDz7fF)E`9s-haIqXufC7HZ=X)InX;Lwz(rLo~vr zXpAOkie_kz7HEl9XpJ^#i*{&_4!8^*(FvW=1zph%-O&R*(F?uN2Yt~G{V@OoF$jY( z1Vb?l!!ZIQk%CbejWHODaTt#Yn21T3j47CkX_$^w%)m@sj#-$ED=-IhF%MT_J{I6A zT#bcTgvD5brML#yVi}fW1+K&OxB)j}C2qnhti~Fw#X8)K_1J)0uo0WE8C!5GwqhH$ zV+U@-?YIMX;x62cowx`0;y&Du2k;;s!Y(|FNAM^f!{c}YPvR*&jc4#Ip2KeJ!CpL% zeRu&c;w8L{SMVxc!|T|OH}EFj!rOQU@8Ufi!29?B2XP1=;v;;FPw*)|!(n`mFYqP4 z!V!FpZ}2U?!%=*XWB36-;y8Z7&p3f!@GE}9?>NK%{n1Ijp2DB_3xDG@&ImuQZ|uu} zjL3w{$bziUkDvZ8pucYVZ~uMXf$n@K;bgvZFgd9;-&dH*_Y%(Le;EAViY8?__kXpe zza#xC<>c)8J$LKe?~~g6sx8`uhZPu o|AYH??we=%k|n7XuQ1}=&mra9KY{)AO8QEecz2NVeFK#4^o;zLda5Dl&oXPR?JvpqB50gBsE$rt(Hintffel zq7W6OENPQck@`gQdtc`mGj11M-^Xvh|NI`m@t9-IbDneG_qosOy3YHYGi>`LVc+ww zmD_Kgk1H+6{w;{G&|*BAoRUHtza{}<0dM7X;nLqn`b z=dEFzEzm;4&Gx&$mj@%uQ|CImBAFX`H&?f-L zur9!?h5IVfW;vQ*Wqn7M=(|kvT`uu?Z}~1;SfUk7#GgqwHgi917GO68X8623-(?lw zWvsglu$8`_+2bP(tekz|{DO(o+#c}}6425{+FcZm#?E?)N!| zBg}VH=Y01P8|03*$(irQ1hn=Y?_lfeJN6Xo=x)J48)RATHdM4a0Rhe~+*6pxh7tUq z##ioWFT9PT?uZl49246Mj8gw;T=AdAmH%M`So#HTEzW%7|1iuMg=e4NmH>DETyi~tM&&toW>B7QqugP(UV6@wdDh&zgaDz-YMidD5b z?z5`Zw_aA;E_XFi%e>#Y)qSU8a0~Y^a`E|o>=x^0nbzNWUSI?17G@RB-9TNp?+fkS z|9$^4w0AeG%7r&^;Ug)&vB7qUHMD?UXKwK&mU7PdIQzReJ4I&<$8@uPX-Eb#865UbQYssamIM)%v|^UyiSDt>wFRtN&V+)G9un(W`dF;BoGr zX@360D}LI}K7_Lmvgj7`Lrr(dI`?p!*rl##iVnAKea{g)P;}7g=|zWqvAyJ`%c@kX zQg}OWtyOsCR(G>1+gvwB#lL?`x6J-M&z7p#JU1$5B>&!v6yMG(2G_Lt?p%8;&(=<> zO>Kd@uifo&hf@3=@Ler_C-}fw_d~k9?CyuNe$;62wKXV>F^E`avdH5^m;paP^8RzjAorj-q`{(mtJI{9hZy(QU-+o<#c9Whp#*jfBih%e|yi}um5d7bz_TMjwXZU~t?^JrH zk_G#ZC&2ZpZw~)*g72d+@3qgvUp^0CKslb>vAjnW@-y@ApF{UV!SC<1F7C@pZk_JC zT@h#V(uLeTnJe^D%qF?``2927(_^uP{+aXRpPz(6zSDZUFUu8f$2~*wZ~x43`scG$ zA)l3yP&%r#JJ0^y#T9b5egAp(pMR|6*m({s^gYMvZeZc<>SK20ne&iT$UVNp?xV8V zH2+tH$M3(E;!e%kJj8d^`A?nA4Ue)|7`#!XN=8aXO5t|=&)CoP{oH8}vh7@Y&UVbb z0$}F+$wmHz@KQDbcl?=;tL?JUF9hX;r&`Wg{Bmamx@V20d|Sbme2?kwp)S^~Ap>&4 zTY7!~Hzw%3KM)vxdP~7ha}SknnN!tmz`GImIQ`!nDM-KYMj9y_Y1ruOjd*W=W4Dp> z-~PaJ554}Gz2X7cJ%cMKe!>ES-R;LWHvRf>!TE20t+O^V%R>1^3f{laMw*_zksHr* zBn5|O6+4p0Ja=cB+en!2?!-~2r;k3*k!*ST%tpda-^7U%Cl(a0j&ZkR17KJkW62p& zjA8kSkH})o2i!$Yxc8tgbF}zDrSpUO{rBI`IjHpX^m7gh%zIE^-h%==|3Tpf6dlz6 za?W$Q*+G@uneqmyi90BN8gcf|IjF+BrC?IPnKO0n>AvL5EkpkCK}UM-+_`5qQaA%8 zce=g7Y~c>WA57dbcfXuH13BSiJ(JwbX(3jazk-4-XMUjYV3#dhR$!-ZMd6w8vD3Gr zaA40cH#CI_^1nB7rsL0ZbE=-T5qE{36Fh*Q|D0es^Pe{-bHIf+g0<&=Ze&Zx3va|d zYyR(zG;DO?jZ`~pBkl@6Cs>S}|D0e6{GT@`bHIf+;ue_yy^$>)FT9b8%0?PCy6{G- zpS2Npg`X2FFwcKZu$&am$%QvkR@umwju+mDTjBoqku+>{;f>TdYa{LoKPOmIp8uR+ zX)m0U3va|df%xx@Z0UI6jie|WY1rt(8>xBLM%)#CPVfZl{O1Hu%KI@XP^w51-(>N%roh$+^2}c!Ayc zSFgU47LhsNz^{AwZc1Y}jW0ZDmE3L`3zN2`;~Sg4=exPcyBjiTRWGoc;*++e<6j>w z=DR85-3^(vnitqj@k!g#@yjp2B-3^(vOE0jS;*++eW5IV%^WBv5?uJZSy$kH7 z_@r&=xc2j3_-@L3cS9zv(FJx>eA2db+_divzMG4&nmOY&7-d^V~NT zyt^TjR_y}2DL!cp8y#CZnctd<-rbN%t960h6rZ$)jW%!I%y(1CyBjiTbuO@*;*-{} zQNiv3d^aiH-H=JEe}UZ;pR|UJX1@C!-%VxjZpfrHzQAsZPg=u9FK?U5b`$MhB5~`k zGmo1sJ&&6e3c}9&SZQ|E$oKpk#RH}LIQ>`|?cTRMvr#uu-i=oFY_#|knH|Y#z&Bd0 zXrpd^yc@0V*=X^ZG2fGI-=n(sNUIlZ)J=Sn{c(Nxby zi_e4EEi-rVjn*vMsG9`uMjLoGTKwKOyJK-%w$X6+rm=ex-l|Xk>EV~1ea{D!F9@<$ z?p4M9XC8q=@Y;uaArR*gU*pxn)AxA1dsWT7?BBZ2(0v>ue%Z%9h(%%MZ4hfnkz*F^=9?zjfI#b7@h;+BT3-B&~1pW;V_ z*J{ogpTeWUi#DNWj>>G6tix6Qpg({{uNH>j7Nz1@Iv z1;N(VowO02QN;`2h1+sFE8JGBdl$q#gJ_r8r~lyL15?~{12>u>jO4xy?z+#r@dUDQfB&6l;|1w2tlIBx z2sYlR_{LoadN-a(Htz4i^K9I|Gzj!ord=S{$IvF-Yt+^FLfL|d`M>h z)A{efPEHTJ8>va=;#lSEV|Bmr7wR^K)Sw`+ zDO5y+HA6hE9g&qeJ-qMPKN1+};(;H@a>szzr3;G|uS*v;7+zB@>Q(=>!UpqSD{L_T zwZ{Xa>@st&VRg>V^4-B>JUdNxo9^tp$>-k1#Ty=lc-CDEP;?~zYlTPRzgBo8{%h#R z=95C)sj7DNA%uju^WMeX=8?%quawsH@Af)#aa}P*}gM8HT))21ly0bXgM*AkH$SD3BqD`!K0NxtObw_;{-cNAD*x<6JO`Zua zW6u=ZV*tM8KHP1y7u|0WzgX;h;E%YU3viEPuLj`nfZ&VVFW?paOc^Whf@uNx-Gb9B z%)MhAfcwF{C$l~v+&DxC08a%8|R_3Ub5d%`P24$vn8F9zy zH3~@U5!u7D2D|SL9`5^Y_u+%HTvc3`<@=Go<5F4<%&e1gUFO(2DSd|bPwCdDUuN@^ zlxwnwj!S7!Cj~dN7HTdlbL8;MtdwqjM2VZ%Bp4eQr$ ze6^dqK7EH~ri>Y!H7I4|h%qUH+`~}jNZ;Q3jTo9eZ1|{@R=ypz_Fei}aSK1xq;3cI z%he;YNBWM%w{!Qh*Qh>2i{G}Q+kL(p;SRojs=K(%J$&Ds*=Hn9N8wMo*YmD!-{m_0 zdGH?)PSiMezWQg5N;JcXsOL^gO8epc2lvC{zI(#jeYm?ZDQPL=+}1|9yE!c-YedRr z{;Te{GaA&#^#+ZLfKO;pWHj^{4U3G1KBHlg(a2{sDl!`Rj7CL9W1rEu$Y|^{8W$O9 zJ|nHjNb?zKMMe{!(WJ;|;xn2Q8BKjg(;}m(&uCg?H1iqFP8;rBn`Wm^jPG=g7@axN zElh75_&HF%1C$CNBInQ7ZgW+&xN6W zgZlLwpgnvW_TvKgBrn_+*YQWMc3t-y9WE^m`!1X`C4LBXZmLjZ7P`|<0zcU;rh#cn%E?(bV#k8qI~p4IF6ad%{n z>RET}u%WL!_R+N)>c_V^(eC7Zhf=SZwJamN`j7X%KlS|=CanA5>1w4nf3a+S_kT`w z+;M%Y1u3P6*4f?Y#GK0yj$B(QZ25+#X3f85$?vT$t#-J4+n#g3Y1(=B;v1&iQ?ASv zedfkJb!^SsZ`Er0z@+w5p6NDs{C9T@?6|DO)M+CtO?zp_|C$AUls3A?q*Ie(w`Otc8a8rw44*mU9wFA@MSd-r5+E=b=9e&^I>!$DgdBNXTZ!X=c z?uV;u9PCf+j9osk0fRO;;WHTSdm->-A$sfoKE zP-(qJW)2-yuP!bpKl;h-8|p_t@N4ec`?lwF-Laue_0jd_PHSE7#T?sTYvQ0P<-aU{ z_{+}kheo~`KKZ3zPrTgX-&Y_0d;b&Pr<8tXVd#bfty+ZGwk4eWK&wZ~H#Kpx(jj z)=pcHxo~I2ZOd2v{n;sZQ_j7iL&nW0eV@C554lggh3ckwSZ2Lqmz~^`hJl$QF(J`g zIz?_siO<-d^Zb};yPNiVvsRnF%RYMb%|EU6ta2^ie{RRKUw(e*;C)R${-)HfnH^$o zt}`nv=Aq23bst=LbV8l^1FZyBPO+T-Ft^eVKvX2EFPOkad(5l_KecP`6&bq0;jBMF$bk?QQ zud5dl`BIyDA$J{qzE-*C0?HlRQK?@_%bEW^7`u8$-P&D$3%dHT(krZWhnz+yn>D(; z(dFa6|K;@u@2dG!)Vl}P^m?oN(H0lS?SAmRmU}0D_3MPuU!ItJ)o z-u&aonq#)Dh`w`ji)oK;Y_jm5=bza8=cfD1yxTBw=EKE3kp8aaKe|5#BN3NOIIcVD*;Waz0{-XJ!nOk>U zJY>?2C9!)K-#%o~p#3qYZn<>Un2&zyw?D1cu3kOXk7?d%=?l4^KUb>PZR?*bzx?Wt zK3meV_S?(uT~d1VEpr#n?R8(PYYuFVT+`*%p=lS*-Jzh$_E^31<>4Rae_!jt z`|GUPS-M~8kFsAY{d~Voms^*NhpJ6!aao6>WnwBnH1omf0X4tAGNM)ZTfrMUt{d6s z^=-9>uAg|k_Kzd>yf~ml>$36x{_p3% zM+~fY+pHD^nQyPWA#?MQ=bP0(^mV~s$G`bz;{H>|56Au5>+Z*guYKgA8vpM7q}SX3 zoO(3w9zLMFN@MA-u2_Qw?EpxZt{utlXJ&R>b$mXoqL0t|8+3n zomp3_eGQaNwGI?3VEw(ixsQ>Y;|S+d$0Ymq5iT- zJvR-y@6P!F6&J3Jjyf^_&V66c>fGt8s*|t1b$rvVLoZv^qEpJ+#3w%-@L=jQZA)!T z3~9D$$93<#7O`pSr!A_#w`|Ch(U&C+t+RIidqYwVG;aTF^eY)3=Kk3(`0l4yhu^y> z^~~RBL_F=C2=#>vZca z?T%(ms{O~Fs&yuJ_-@*UaWV7LCr2L~J^sm$tCZhd{pnR%zf|4SvH!!Jo~is$;zcXk z9@zHY*B2#)cm1|PgCFl5^K{Mw3x*sGdg${t|3s{x@#ZI;gCDKD`k5zwx32GWT)pAR z6ZKy|u(Iik{U-OkdBBrxZy3Gz(0gSoE-Pui!4 zS6=jUpBsC($Qb>~!oy{v20ea#uh*Zca$?HTRx2I|T5*5pF)N-JJD}Fo_+In>wzr1w zc`K&-$4_4q_v0OX1LMNqm>6I0+7~a5+}0=fM32R7D=)kK$u*^a89V#Vk0xHU`u%-x zU$J7)t^3{%E<0gx*>*qA+Y&bH)3!VJq{KaS<-MUB@`ty4Z{)ZKsxJCwO1lZe|9E}ppHCFbUh)2&O>gbI;ouEJ=f2WmMf1bmKK#1deXqx!s5Ep) zk3r=s^;uAD(Pf9{En5BK?I#OzZhZZh+ur^$^Rw)Wo34E%uEnNK^%_0<%B`L2J-)Ku zw%rQ`w{3oCd!uIu9r<8j$67}=m)-bJtIj#WS8RWz`O*d79$S?(ueEGXi-|V<{K=~hPAHH|e^tI6u{Tj`DZ^nIBWxuxIk(UOp z>D@RiB4^oPXg27RwjXwWdC^5* z@A~+yYdbG#G%q<|Ti<$BQch%by0ho_E3(%#-dT6w;D;wC3~v%KtnA)>Q{pR5{(k$* zH`Hr&aM|0h9;&z%MS*h=x-Fw~l)yUz`z4mnNK|jy_?9_)hlx;QO z!Rc$#@1N3OLSEv76`r57CO&50@{hXwe(e5tt{KpN)wI-V@9x~!{KuDer&LKC_2~2k zzbra9&~4!3%Fo<#XHw$3Z9BXgI`~k(s$tizoc+lA{jPXo-j{jFnLi#&Y&hYWOJ}`v z`)`Zx%da-`-Z#hZ|6ynOZM7#(PI>RcT`x4;_h9(gJG*pTd|8#FHR^QeKkj5|^1N|- z(t5S|vCK7}CvY=MrjM(9aqz-*&s@EH;ouw6 zy2TDz^vmC^J{)=Vjx9sx<#)e+SJuD=Lmp^T_NHZrc0Kgg`rG^T{b2Bb+|JjX82RDi z)RB9;Jv*&?ME$V?(%bG@o6)lVf4+c zP_&KR?#0gHM{|LZ=+Ys?Ev4`ZREYI-w|=L4!echmy$&$5*i#Gl4SU3~M~X3ckp2Ji zIR31Ec^nnk&K-jPV{Uu1KiyO8G2P5g^>D98^mG4`e5hHzdx^0^j(ZO%*DQ6a+433g zUk5*HwsF2$r=@1QR+;r&Z+2+2*{~h%ck}nSUj;tsj`U}SWs6kuy>23Q++CvI&PVBK2=*xvR5mf0=9j`Rqy?0x}uYDj?PW(8PGPJrd-23Uou z0XBC=fTcbgV9VzRSc|0rwsBQ}b#kv-?Ajb)J$D4yp*;aM>|lT$KOA5=$J|RBZdIBW z5@^ZpS=#K=$T9h6Gx6R-m1l z5NNr%?$=hQ23o#*c30uqK$|;1&{CHM+VWL_)?$62ZQLAaopuD;u04U)^I)JIIvi-j zjs@EBlYy2K;$HfU4YIt_L6%%8$Y$3Jvg-ANY;m(7OKTZqYug7|n{Gk2wMUS3?-yiy zhXh$>R*)T;5MBiGRTI71l#eLV9P1(UN)-~YNJa1Y2fqupP+@w(J?fc4|(r<<57%*t#^>@>d00h4sNUcXP0% z?g+N!dxEXS!C>2XIM_NJ3$|S+gRN&sh#iUvv07GjHggjia?5L-JW#M)$q*wzUl);%}G_U46H=8O38B^|H`KP~g7PXR~lSlo4*j+K1cmuHlx`BiusVs}Xra!Yw%~+-AFfL{dH1y@-() zZfWkdh_!RVtf2mRdT(mRF3h7BwSmW4#FL)GWewWkgud_7QfdYlIE!;r=a8-w4YY5@8`(5tcV0 z!jf|%Y<6CRRi6=Ii|0gG+WZJxyClNetctL$>mscC<_O!nJ;E~gMA(r75te;8!cP4W zVYw$GEG8t<^4))DQNjIp6>}>_T58QmTV5~HS~QEajTw>FsePpF>KbW1dqmoyzL7R; zNTeMf6=^vWA}u60((>{mEqO+y&7Ko!)#pdr;wA2#l~s|pc3q^k*&JzGw?|s{J(0He zK%`|Jj!#)Qqw#&U#*mFX(9hw|%!}6l-cz(3y%yDlA&yTjeCDE3=D%xhR zi?-^Uqiyl_XiM7@ZEFuiTbsktw)Kx_>wYrY_6EmTW=xD7Nsh7XiZOPoMvUdwi?Nty zF_xbZV-?!R*xar$mf9o6miLXZ7DHleU&~r@qrjiI~-$c|A?_RCu3}DaIAHYiM74Sv6fje){fMO zwd{JacB*Nt>Ir zJ2WrWhAoM;<11q=XPtYGdvmPiZI89&J+U_XK&(|i9BYgJh_$qnv9>li&f3Jp+1BJZ z>s~R=_ST5A%zANlq-mUGXT;g5c5#;5HO^vs#94mdIIA!u&gPDav(yQ3wtRA&waAOJ zjrnobX-=H&nipq1m&Dnjm2oy~U7Q{NAkK2O$63gpILkW_XUT`-Y_?k;RzDeMi-Y4W zEhgU9Cc8ItE5_T_8u8Y>UcBvX8gH2y@phzLyk&Qdw^KLATW(+Xo0&u6Eq_$JRhSTO zb0^1JYF@l8&yTkjbK-5|ym;%hB;IzdjJKZa;_c7}@iuIGydB>iZ#f6zE#z>#<^2(F z$tUA&c5s4Kk4dn_$qANLF~Qc>NU%2b5^QVJ1nZuWV0+soSZ3D*J92Y^W%o_6Q@1Br z?kM*wn-dZ&e{zCV$V;%f`3aUfC&8A_bMLS$NwAG86Rgv^1l#pNg7w^GcVEd^AoMYoJ5;DFVRw$B--+oiPmCWqHX*j(K>BU zv|YOst>=M6JM>ec4f`X}j{lQrIl)O55|d+j?`7b?=*Gdv8y&%uz{pWPFlkPfoH^k0e=czWXK5IZ2j3FUcw_NwT>slPq;z zk}dxr$y#hrvW>fwtkZ!c+x1hD4g49u5Q_ibB-&l}w>aO|3GUMU4?ONg-jgr?wxd(u zF6q5|{1P9()OUHWk4*Bt5bR%vRd?^nx%Yqq?s4B)?_MN!D=4=O_x3;+_ex(%jV^ef zp~kiM`F?J)ZyPnv{Pec;n#I1Zb>{0I(rcgj`e=G5_kWHArQq1`;ob~!|6hy$6YEEO zKJQ-g4shRb?<4uH-xLS~AN$e^{|>NO?l&Z6c~+YK@A@xsJNzHr-Eq2B_PuvywlMrk z-*MwQw!bhu{mk`1_tnDqqU%BK3B|&&qU*`-056H~AH+2G(z*NpGs4|(W%%CwNoiI1 zMa#l3TD$ik-CHN_1It^SO7{bS?hOIo*Z9{4=Ki~z);@+Co@^QT%k3o2$8f8Y-JMaK z1rdgunrvkXy%g*N@2w?UIp0~x2#E7B_g42g+rt_3?gOiGFT*0<%kb*Am$|nu&S7qR z&S5w&-k-(OSTBorZ@7C|0%3`SB@u>yx#ZnmGGV0&yNIwdgq0<%9AV`NyO^*Fgt-u% zb2}<|*eTyrFZXtoZ@_U4Ba-1h-IFYL4fBQn`pbU}e_!b{@IA~=OZ;Yn&&01DwDd9m z_X6EDJR|g93$m*Wv*o`Q?5<&|{MSO&y4(FO0dDn`u9xOy;CuL0m~>ZfelyIS z-*oriSDCGK@AQYc^W4V8KQF^wHhv73)$(yU&G+@#hw$~-M{s$^1GvnXg3G1%1;|up4U!~K>7w$j4 zRldCrnu@JVn2yUQe8*SDcVsEPqrb^_tnvO!-?7%e4`!`NxSTc~m+O4T_uLqK-DM;$ zdlx%O_pt9jK1@c@@kN||49Benz_V8%xcl`AwNau5BW)VzuMqG zzDWP^t@GXD_;J|E(FwSG&Ubv4g|B-L@?G}B5?8u;1Mm;U<~c`iCWJm40cKP*<#@xS-@jxYN3@%fLel<#O#e3$;C z^dF7?yZ*~6#T@@_i1(3mkFxNXijMDSdMSI`{d#GPZ?A3azyA2`*#9Ft?*GWf}0{ z>V(xGtR`Xjm3;5<)h6r`!Y(DO4q>T;)g`PRVf6`XKv+Y<8WGl*ur$J&5Z08iW`tcv zSaZTIC+rHsS`da+u=jpT_b@zOVE(k3hmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~ zNSbaVgSw4$>Naw#+eox-BkQ`27SL_%a-_Ue7SXh~Qr z!deq{6=7`%yPB}Jgta5AJz>`n)`75&gmoh9TEaRL)`hUHgmokAI>N3etUF;h5OyPB zHxYI-VLb@Dg|J%*>q*#cg!S?;tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBOYIGZU z(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I z`cAjegu0E6)NQnNaw# z+eox-BkQ`27SL_|Vm|BWyBZxrE(M*aL(;NZ1s@9wO{v!X6}kTDA#5gLvk03_*c`&1^)Rd~Fn`+A z!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+Oib zLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4m zc1f;7o^yNku0x(D>;=MJB)c+w>yY(? zy-U~z!rminBVn5ed!Mim2-{59hlG7Z*cQUJ6814+pAfcyZ6~9U$x=Vc!yVh_LSn z`<}2L2>X$+p9nil*w2I=A?z2zekJTEVZRafJ7Iqic8sv&g#Ag_3Bvv&>~F&UN7z4v zoh0lOVgC|V;9*!Naw#+eox-BkQ`27SL_fZ6k*APl_u;W!paa|__+Js#~*rkNkAuN@!x`fputUh542x~}K zBf=UJmPS|;!kQA+jIhfHYfjkZgk3>c3&O4>EZxJfvcUXlQx6-HsoR)Y-NrQQHs)Nn zkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&v zZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|{h~h5_TJ5y*vyn3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t z8%fh`WKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS z(`_`NZlfc08||sv=vCcDu-gQVH!uk@{kFfrPWfC@kuz`dP zB5W{Ww-Yvmu%UzvBWyTfBM7^LusaDGN!TdDvIxs2Y&2nG2pdb-IKu8CY&>BT2+JYt zZo(#d7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s z60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tSXhPjaN9s1(Q@7Ep zx{b!wZFI42qop;wB-bI6++Mxwkb4Nbm$3T?n@m_PVfPdE0AUXjHifW<2z!{YM+nO! zY${=o5;l#n#|WEF*yDsfL0CRvGYETw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe- zlIxJ?++Mxwkmm_|fv^_|dx@~Qgv}#tK4A+8dzr9>ge@ZM6~Y!1_9|gZ2wO_nYlJN$ z>~+H4AZ$5dD+pUj*eb$S6Sju1Hwk--u(gD}P1rjghLr{8Pn&w!m`vTq%<49#S+_Cg zx{UC+q{lHWT(CVIL8;g|MxJeN5OVgl!{iJ7GHr`;@SqgzX~iGr~S6 z>^s7~ zC+r8pekANC!VVMmGhs&v`-QMy2|G&IZ-o6$*dK%)BkVX~e-d_ru)hfVo3Q^8_77nv z2|GpDzl0Td7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z# zjoj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tSXhPjaN9s1( zQ@7Epx{b!wZFI42qop;wB-bGpc1}GK7^StQ=wG3A>oE3WQZ8tdfUeWr6wArXDsX zQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f z=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TC+=X z9g^bq>U}+=GGSE+t4dfk!m1NigRq)})gr7mVV4kgDPeU8OC_u>Vf6^BPgn!O8WPrs zu*QU?5!QsTri3*k>@vcd6LvXaR}j{Muqz2m_b{w1Fn`+A!^ULlHfC10G0nP-IoE9@ zK(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G z4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc1f;7GTdIh>yVa&wIZxF zVOJ5>hOny%YfD%=!rBvd4PhM!>quB9!mcH(Ghtl_>q=NR!mcCidcwLBb^~EI5_S_| zHxt%_uv-Ybm9UNciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml) z>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbKZS<;c zqj7Z`U98(^Y0WOlb;u;QSMNIH9>VS=>^{OK6P8QZ{e(S0*n@;kA?zW-9wzJ&!tw~4 zO4y@>O(X0v!lo1UIAKo^mQUCW!k#4TDZ-v6>>0vl5;lvl*@Vp@>{$=P$^!GJO+9Q( zrfy?qbsN*H+n96RMgnvj+0bpIMz@hC-A2-M8yVDXq*J$%Tir&YbsJgNZM1-HqaSn| z&7s@q6x~MK=r(#tx6x3#jqcKIw3=?C?{phYsN3jB-9~%rHhNXJ(YU&eF4k?dv}Tv& zI^;RGSMNIHdBR>G>_x&}B5W>U^9Y+y*aE^{CTt;LiwJv#u*HPEO4t&@mJ;?FVao`6 zov=3uTTa*t!d4Qtim=s$ts(49!rmfmEn#mH_Kt^PWr6wArXDsXQ@1g*x{YbpZOplD zBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS z+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TC+=X9kR~t)w>Q^PuRPJ zZ6NGD!Zs4NiLmzx`+%^`gndZZM}%!5Y%5_O6ZQ#V+X&lE*bc%zC2S{Qy9oP?u+Itm zg0S6$?IG+-!oDJGFJWI3_Kk;OWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=n zZX;>BjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gn zce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TC+=X9kS2u)w>SaPuKy%4ife)VTTC&jNciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Ti zx4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbK zZS<;cqj7Z`U98(^Y0WOlb%+I>yABB;ERe7u!h#74AuN=zFv7wKiy$nLuqeW!35y{t zmasU&;t5M2ERnDz!b%aAOjv2cE+VW9VPy#`M_75nE+(u3VHF9hNaw#+eox-BkQ`27SL_}0{>V(xGtR`W#2&+xlC4^l{SRKMr39Cz3J;Le})_|~vgf$|p zF=1(hH6g4iVa*7;jIic}T~62)gtZ{-O2X1T3@Z!FpEmWdF`2rJnbmDfvuw~MnZKK=hA>Bqp z={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe-lIxHRw^#2vq$Odk2y0E) zRfM%6>}tZ=64s8e_JmzSSO>y764r^ZYYFR2SQo;&64s5d>j=A^u47o>o(?Gw~+wdMmBUCsnKoZNw<+S z-9`p=8|l<-=sVp; z6Y4fPQn%5bx{Y4dZ8WZKql=_Uc`S^dYP-Vf_f}Pgo{l0|*;P*dW3N z6LvdcLkJs6*f7F|6E=ddI|#dzu#tp~A}ourY{EtpHiodVgpDKYF2cqWHi57l!tN$) zqK9E+f%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mU zjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2 zT-`<&>o!_ivrBRvGRf`LyAHXBuzLx+kFd#v4ZH_*b{{16E=geCkcCsu%`)ohOn80%_3|zVRHz3*2A!}!2D@b4;z!I z+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=>#26Y?h)NSNew~=VwM%Hy3Euh=z2i-<< z=r%ek+7Etn@iX{!sZjUfUuVdTS(XyguO=CGQwUb z>Naw#+eox-BkQ`27SL_O4!GQeL~na!nPB(gRoBt+ez3i!agJHbHctL zY&T(h2>X(-uL#>q*w=)8<6&4?VE(kJhmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~ zNSbaVgSw4$>Naw#+eox-BkQ`27SL_~nkdu0!?{c7U*hgndicA;P{R?0dp~ zAnZrNej@BJVLuaggs@)-`<1Yxg#AX??}Yt9*fGM66ZR)zCkXqCu)hiWA7TFxc9O7D zg#Alcfrnvbf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ zZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#S zy{g-2T-`<&>o!_ivrBRvV!`LGLjnj3BrJ%qV8TKO3neU!uyDd62#X{vim+(HVhD>R zERL{v!V(BeBrJ)rQiLTFR+_Mj2rENaS;EQ@R-Ukn39CR@MZzk17*-aTKW*w^V={Fc zGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8m zMyKdD+D5n0L%NNI(rt8?Zll$78-1tSXhPjaN9s1(Q@7Epx{b!wZFI42qop;wB-bG+ zZm-_gLn;$ig|MoGRU@oAVKoS=NmwnyY7=$|VV4qChp<$_>JnCuu=<2GAgm!_jRR9NmwhwS`&5^ zVQmPzny|KnwIi%OVb>7Wfv}E*bt3Fq!a5Vyg|M!KbtCLL!mcN*J7G5vb|Yao5q2|S zJqWvnuv-c1N!V?K_3|*REHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;% zkwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7 zx{Z$1ZM3IuqgQnsjjP+}V%pL!iEwyjIiN^jUem}!tNw&Bw?cn%OWhBu+fB#A#5yR;|RNpunspmg}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlz zx6#GAjh5Ezl3a&Oa(nfzL+&B$Uc&ApY%*cFgxycr1B5+D*c8GZBJ5$p9w97`u&IPS zO4u~Q9wTfzVUH8`1Y!Av%^>Va!k!}RX~Lc%Y$jo|2%AmV9KxRUFsv*vf7;Z;#$@U? zW>&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHB zjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*81;Sn=>?OkH5;l*p`GhSX>}A3h61Ir2R|s27*sFvsA#5pOuMxJ4u-6HD zgRtdoyXg z+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI z(rt8?Zll$78-1tSXhPjaN9s1(Q@7Epx{b!wZFI42qop;wB-bJ9++MxwkoAPUOV|d& z-Xm-yVVekhpRf-I+f3MpgndNV7Q(g?_Az0f5Vno5?S${G&a61I!5&j|aRurCPP zP1qj7z9j4`!uAsOHDTX)7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5>Jn1%) zrrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tS zXhPjaN9s1(Q@7Epx{b!wZFI42qop;wB-bJP++Mxwko|-mAnYJv-x79+u=(j*CG03+zY+F3VSf;IjIiT`{Ylsf!u}%cZ^HgZ*gu4wBnspmg}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ezl3a&a$hqr~0Kx(Z3nDC-un@vR2@4}EoUjPOA_NciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnI zDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOlbx4Za ztM~Pg%7j%RtSVvE2&+z54Z>;?R*SIOgk3_|rG(WXES0djgw-RgK4A?AYe-ll!Wt8n zMpzTVniAHGu*(Q*PT1vyT|rn2!mcDN-NUf5!2D@b4;z!I+n8D1#x(0T=3KXt0NqA5 zbQ`JBZRAO}ku=>#26Y?h)NSNew~=VwM%Hy3Euh=z2i-<<=r%ef2y0K+HH38_tRrEa2)mZB&V+R#tSe#N2)mB3>j~>l*bRi;NZ3t;-Aq^y z!fqk#R>FD`b{k>6JPa!f%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j) zP`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7 zqa$@2?Wx=7RozD8>NdJqx6#s?U6SjN-fpknbx0q=`V!WUu>OQ)5;lOafrJerY%pQB z6E=jfp@a=1Y&c;f2)l!@I|&;}*eJrX2+JmHG+|>18%x+Y!tNq$JYf?E%OUJ;!X|nc zRu-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(Gt=q`D zZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M*jmFh& zbg^!ur8T=G*CCVKUcKv(dkDLiu=@y`Ojs^q_Y?L2VGj~Eg|LSRdzi3C2+JdEDq)Wj zHjS{y2%ApWDWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}Z zQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8>yYQ% zUcKv(=Lvg(uonq?iLkkZ%_D3+VG9U*nXrX~Eh6j{!WI+uDq%|qTT0k#ge@cNb;8~t zY&l^o2wO?mD#BJ1wuZ1b344pMwS>J**gGDEl?CQcn|j!oOx?!J>NciXw=w6sjRfd6 zvZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e z8{MVbXf@qN-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOlb;vrmSMNGxJz?(>wt=ws z2-`^5Cc@q)>;u9!6ZRot9}%{Nu&soBOxP!cZ6jl(3zI?IP?m!agVL3&M62 zwui7U3Hyq$y@Y*D*f$=Al?CQcn|j!oOx?!J>NciXw=w6sjRfd6vZ32Zjcy}Px{aji zHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04* zP`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOlb;v%qSMNGxKVb(5J4o2KgdHO6JHoyv><7Yr zBVMhr2g|J@^Nb65_W>HzXTSE4`C+>J4M*P zgcW!gRu-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(G zt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M* zjmFh&bg^!ur8T=G*C7^q?m8rZut36s2n!}Ggs@P;!Uzi|EP}8|!lDR^CM<@qSi<56 zizh6ButdU=2rETcGGV0&yNIwdgq0<%9AV`NyO^*FgjFQ0l80esf%(&>9yTUZw=uK2 zjcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>z zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivrBRvlH&I2 zeLbWyVO0pLN?0|*suNa&u$qL`BCIxHmk@R-VRZ;gC9E!C^$4p^SOdZu64r>Y#)PF2 z)`YO8gf%1VGQye@b~#~J5Y~dQD+x>YFsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-Cq zMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H( z-A1eFHu_Gt(S*8Ae zZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-G zNZm$z>Na{+x6!z|jV{)0w6tcIx{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zThjrP=S^r~*7adjJA ztlMa5%`VAx$RxK{?>gij!tN#PKEfswmP^?EggrpmgM>{X>>@-A1By8(G(Fw194-A9Nedq1)&b z-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W|!nTgjp!d@WkMZ#VpY%XE*2%AsX0>WM5)680Kl%Lsd&ur~-> zPS^^9yTUZw=uK2jcL|x%(-qO0lJNB z=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixA zcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivrBRvvd-<*yAD}T*t>*nAnZND zHWIdpu=ff3fUwPkeMs0xgl!>gD`6iK_6cFz2-{BB4#GYqY$sv62>Xn%&k6g2u-%01 zA?!=Sz9MWdVP6yWjfY`nf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g z4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5( zZFHn=qdj#Sy{g-2T-`<&>o!_ivrBRvvd`_+yAIh;*a5;0680@&hY0(Qu{r5$680NmzZ3QcVaEtNPS~G>ognNl!u}@ge}w%**h#`p5%w=( z1s;Z#1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A}ZX-{+jil)|GN{`~r*0#+x{XBZ zHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zThjrP=S^r~*7 zadjJAtlMa5%`VAxh=rZI4hbMEkgy=af(Z*DER?V?!omrQAS{xwD8ix%iyX>k+3AfN)eV!SZTs8BCHHyWeF=sSb4%OCaeNs6$z{4VOUvU{ znspmg}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!t zXdB%|59u}NXlzx6#GAjh5Ezl3a(RxV?H` z52;L86~d|#R*kUggw-IdCSkP*t4-J?gk4Hl9l}xxt4mlt!s-*&fUt&yH6pArVQGXl zA*?B3%?P`Uu;zqaPS_QMwIJ+D!qPnqD+|n@HubPEnYxXc)oo0(Zez}M8wt>DWJ9-+ z8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}ZQ*;|`qub~q-9|&{Ho8l< z(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c-(wbe8>yQk$SMNHcC1I@yYfacygtZ~; zYQowQ){e0Dgk3{e2f{iM)`_rd3F}N)7s9#{){U_12)mxJ?u6Yy*o}nUMA*%Q^&spP z!fqw3CtC|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3 zx6z)ujb7DlG_G!=i**|RpHQA*?T9{Rrz%SSDcu2pdS)Ai@R{b~|B1 z2pdY+Fv5ltHiED_2)mQ8k%WyREQ_#g!bTG|hOn`OjU((X!p0Lefv_CH?j~%ahhb%b z`O~HzHYQWIF|)djY1VDbxo#r?x{Yk;Hd3S8$dhg(X}XOJ>Ne7;+sLhMBhk8ztm`&f zK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{Jd zHd!K4nspmg}ZX+AI zjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ezl3a(Zb9?o!L)H`aE@2x8dylY< zgl!`1eZoEnspmg}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ezl3a)Eb9?o!L-rGPfUtvveM{IO!oDNyd%}Jo>_@_W zBJ40>KNEI@uwMxKm9V3P{YKdDg#GdVuwo9u8{T&ujBVStZQHhOCruio4U4b{%AkzR zHYk%aX=Ai88ngeszS+Yb-s{fJJeTih=QoeAcZIzt?0sP$2>VdjN5Vc9_KC1hg?%RM zb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWR!8f{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO{Hm9(; zgv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w z5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y z2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%B zgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn z6ZREh#|t|_*jI&}IKX&WaDVOUvAN7{bF30Ia$~#!cG--ny}M_ogwT@VP^^Zny{}6J6qT}!p;?T zp0M+UT_Efm!oDf&Tf)9A>_TA|3ACBiNhcA2p62>Y(E?+N?9u*(M+FAMIkT|G9J z*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SG zZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z#mH9&-yv5D zyGqy(g#A$1kA(eL*iVH0RM^$Rt`T;vu;_>s3cE?z z&BAUGcB`=4gxxOe4q@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4!LLKtAp>5dxhO6?0#Vn2>Xq&-wJzB*h9h|7WRm+ z-wFG@us;a~F&UF6^Wi23wuG>i^5(K_8(#Y751{QSA@MP>@{Jp3wuM@o5J1__O`Hhg#Az0 zyTaZR_P($WgncONBViv4`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRnALeus=IY&2n`3mZe&n8L;qHny;F zgpDg~JYnMtn?Trv!X^?nv9L*mO)6|MVUr7+LfDkTrV=)_uxW%%D{MMp(+itH*o?wv z5;pSy<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O z-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k| z>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@#%_nSrVG9UbP}oAk78bUMutkL} zCTwwGO9)$1*iyol7PgGAWrZy#Yq-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD z61KLmb%d=eY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGa zLD-JMb`rMp0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk$MS7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!Dsi zBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP3Hyq$cgRU2UmbjhoGk1VVW$c^ zP1xze&JcE{u(O1HP1x6koh|GfVdn}vPuTgwE)ez&Vc!(?En(jlcA>C~gk3D`5@DAL zyG+=3gnd`o_k?|4*yRI^mj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrb?gv0D(q@u*9f~-*mc5w zChX_Jej)6a!hR*}*TSwBc7w1Rh213VW?{DoyH(h2!fqFKhp;<^-6ibq0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghukyr)xmej zy~6GjcE7L(g#AX?Z-qT5>>*(f3wuP^?}Ytc*dK)bQP`h^{aM(f!X6X$7h!)D_BUaF z7xoWf{}lGPuqTB5OW41KJt^!dVNVY*UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_BmbnUSv!zC)fB_MEWig}or`MPV-q`;V~y3VT`D zE5cqC_L{KQg}ou{O<`{ddt2B$!u}`hU19GDdtcZG!afxCk+6@2eIo2rVV?>6T-X-_ zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( z8D+dLze7e9Hkz=}g^eL>OkraQ8(Y{o!p0Rgp0M$SO(1MSVG{|PSlA@OCKWcBu*ro@ zA#6%vQwf_|*fheX6*ir)>4nW8Y(`--37dI<@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWevy6Oo@PEjx!e$dTyRbQg%_(dyVRH+c zN7%f=<`Xu*umyxIC~P5N3kzFB*rLJ~6SlapC4?<0Y$;(&3tL9mvci@Vw!E+vgsmuS zC1EQMFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWR;Px4!%QH6}FnN)rGAgY)xTn30qs(I>Oc!ww|!{g>4{gLtz^U+gR8p!ZsDQ znXt`;Z6Rz+VOt5?TG%$iwiULWu^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA-jxxb?_astFYaK?JjH&VS5VO zOW5AR_7S$Pu>FMXFYEwe2MRk#*ulaM5q7As!-O3!>J(ZY@qcC4`DgndQW z@xo3J_Eljg4lrI8++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6HcgU5(t`hbG zVLuf1BVj)l_7h=06?V0-YlK}Z>^fmT6ZUgqzYz9IVZRdgYhl+5yFu8E!fq0Fv#?u) z-74%hVYdsrL)e|d?h?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk%%USanMyIiLg*_tdcfx)z z><_~JDC|$d{w(ZKVUG#>i?F{6`0)75TM+-}q2Zd2)I5Az-J%*a;< z-yzQmdrsK%!d?*eqOg~Q{YTh;g}p576=AOmdrjEu!rl<}rm(k!y)En=VgD2MuCVun zy)WzoVIK;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zSw_A(_&;P;VY3OFUDzDL<`g!Uu(^fJBWzw_^9h?@*aE^96tQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdYL;2j3y93R_Ls>cZ9#wx+PPgsm-X z9bxMVTTj^f!Zr}Lp|FjFZ7ggPVVeruOxWhawh*?Zu&sn`Eo>WM+X~xG*!IG95VoVR zorLW?z<613f9>kAxy){Jv)$&JyUm?|kMs2s>2R zVZsgL=L2N*94?yp@vHka9LZnoQ8bGNzk zZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgphR|nrACks18*r~!!6Lz|= zGlZQf>?~nl6ZUmsXA3(=*tx>a6L!9^3xs_`*f)iJOW3!CT`24#VHXR#MA)UmE)(`0 zVc!+@Jz?J$cKHC~Wx@TmtH*A?!|JcL}?Dfbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA@_`Yb?_Z>udw@s z-7o9`VZRafTVW3hdq~*B!X6R!J7K>U_6K2q6!s@!e-`$ru*Zb`Mc7}3{Y}{4h5bX= zKZQLm>^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrb9X5_1b?~rGOJtypWVJ`@KQP@ku{v+(a!d@2kim+FO zy(a8+VQ&a~Q`lR=-WK+bu>T2rSJ->P-WT?Pun&cOB|wq`Mw#Ht z?~qZ2jV5e#VPgmzQ`lI-#uhe?uyKWrCv1FS69}77*hIo67B-2nNrg=&Y;s{!2%A#a zRKlhfHjS`pg-s`HdSNpNn^D+I!e$;|yezoCcJi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( zS!Lv_gYS@4g{>xRbzy4=TT|Ft!qyhHj<9uwttV`KVH*hBP}oMoHWs#tuuX++CTw$I zTL{}y*jB=}7PgJBZG~+oYq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$Sxya9ejuEDr`4ly9?Vx*q*}n61KOn zeT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!aJ3`oz!j2Mlw6J4@9V_fOVP6q;ys#65 zeO1_r1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4moM$tAp>5lZBlk>{MZ=2|Hcb8N$vKc9yWO3H!RRvxS`_>|9~z2|Hid1;V}| z?3=>ACG6Y6E);f=u#1IVBJ5IOmkIlhuoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3pjC^(Q9df0xtAzbP*bjyM zNZ5~s{Y2PLgkAxy){Jv)$&JyUm?@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWeqfGeacgU#1MiVx=urY*Ho34VgiR@IDq&L#n?~5Q!ln~8y|5XC%_wXpVKWafUKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_mXWUx z{tuZ|*lfaP7dD5mIfcz7Y;Ixm2%A^fe8T1zwt%n&g)Jm(VPT61TU6L$!WI{{gs>%r zEhTJeVao_xR@idFmKU~yuoZ=^By8mY#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWS5bz4!%Qn6}FqO-G%KTY)@f(3ENxPKEn1Dwx6*5g&iR5Kw$?7J6PBu!VVR7n6Sfz z9U<&UVMhr&TG%ndjum#Cu&)R^Uf2o3zAEg*0mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghnzI>)xmej$-+(%cB-(`gq<$z3}I&q zJ4@KtgneDu*}~2dcCN7Vgq<(!0%6|}_Dx~m683Fj7Ye&b*u}yw5q7Dt%Y=PL*ms3} zPuTZ`T|U5gS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L{r5mE$n(>Hwe2?*iFK27IurUTZP>w>~>*y2)k3*UBd1jV7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$UP%p9ejt}E9^dD_X~SK z*l&dWR@j5W9uoGjut$XbPT22-{Xy6th5bp`pM^at>@i_~5%yPMe-rk1VgC^JPhpP> zdqUX1g#BCClfs@7_VfVbWx@TmtH@E751L6_l12R>_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Q6~EGJ7iR0 zqX`>b*cigb6gHNyv4xEzY+PaE2^(M71i~g1Hj%K2g-s%CQel$`n_Sow!lo29m9VLW zO(SetVbcklUf2x6W)wD)u$c!KFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`ye zv~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;Z zZd1>0)75TM+-}q2Zd2)I5Az)|%g9#;|A)*fY&K!D3!6jOoWkZ3Hn*^Ogv~2#K4J3< zTR_-?!WI&?u&_mhEh=m=VT%h}LfDeRmJ+tKuw{fTD{MJo%L`jU*owkd61MUH<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`RvG!~ z;5%ehVXFySUDz7J))cmuu(gG)BWzt^>j_(5*apHj6t55jTVdM?+g{iX!gdt4ldzo!7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdhR<2j3yP3foQC?!xvEwx_VYgzYVCA7T3n z+fUg3!VVC2ps<649W3k+VTTGkOxWSVju3XFu%m<>E$kR!#|k@6*jI!dFYE+iUln%Z z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%WMQWWJ5|_e!cG@gJJ6G6w!p;|Vfv|4~`=+pO z3H!FN3x!=I>|$Y;2)k6+Wx~EA?7PCgC+z#eE+1gLEV#dR_1Iiyx4GGFbIsl6&b!S5 zy3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*f zP1U+h@48J1yGP_Dq%km_CsMm682+Z zKN0p*VOI;gM%cB&t`qh%VLuo43t_($_A6n(7IwX`8-(2`>?UD13%f)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1E^H)GE9^mG4+(o%*dxMzC+zpa{vhm+!u}-e z&%z!R_L#802>YwBzX|)huzv{qr?AI`Jt6F0!u~DnNnuY3dwPKJvf%#O)njv+-R5Sy z%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA51jC^(Q9rCQO=Y%~k z>;+*j3VTV|e}w&4*vrCR5%#LE*Mz+;>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfW#p@a|3hXK zHk+{7h0P&sPGNHin_JjC!sZn=pRoCbEg)<`VG9XcSlA-M78SObu*HQfA#6!uO9@+A z*fPSF6}FtP<%O*vY(-%!30rx9@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWetBibg@Ex+Mu+@aEE^G~9YYJOS*xJI@5w@i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(*=6Lb zgYS@Ch3zJ6cVT-7+f&$H!uA%nkFb4(?I&!1VFw61P}o7j4i?^{K7j}ZMuL?VHfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{ z={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAt#M|b?_Z>vanNxohs}!VW$f_L)e+Z&Jy-D zVP6+^wy<-Aoh$4-Vdo3GK-f2geN))Cgne7sg~BcpcCoNagk37^GGX5l_FZA$6ZU;! zmk%&r7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0E zrUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG z<~!tyk*^NEL#`Bdm9QTO`=PKO3H!0Ip9uS@u&ae#BkWpX*9rTXu%8S2g|J@=`<1X? z3%g#}4Z>~|c9XE1h20|TR$;dZyIt5F!tNAym$17B7%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna?i+D2j3z03cF9({lXp)_8Vcp z751R8hlD*W>=9wV6ZU&ye-QRZVSf_#XJL;Ddra70g#A_6--P{L*gu5*Q`qCeo)Gpg zVgDBPq_C%iJw3p9S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L}6rE2zyo7YrS`=79Pg}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOcv)kNk zx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_lu5q)4jEP0Xu?Jp zHiobUF8&}wP!p0Xifv^dMO(bk$VUq}(RM=#~CKon^uqlO2C2VS8(+HbZ z*mT0C7dC^i8HLRxY~}&R%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#RYtx#_zqcB z*lNO77q*75HHEDuY;9rd2wPX!dcxKhwt=t>g>58kV_};J+f>+Q!ZsJSg|ID!Z6$1L zVcQ7XR@ipJwimX8upNc%By8sa#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO@xDz!FR~6!gdq3yRbck?I~<8VS5YPN7%l?_7k?h zumgl0DC{6%2Maqy*rCD>6Lz?;BZM6(>?mPJ3p+;GvBHiM_7!2r3p+vBSB0H8z<613 zf9>kAxy){Jv)$&JyUm?wF>3H!dV%Lf=Q3+}I7JvNuwZEm*PTywX%^KP?%ZnKSU zvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=<$X5s7Ay*2!O4tvC{ZQDCg#B39PlWwc z*wwxBJG*w2OiLf9{b{Yu!cgi_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(xo707gYS@gh21CYeqj#?`;D;Q3VTr4L&6>w_K2|G3H!aUKM4Dyus;d=v#>{n zJtpig!u~4kZ^HgA>>tAZDeQ4!PYC;$uzw4CQrJ_%o*rPlEV#dR_1Iiyx4GGFbIsl6 z&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_In zx=p*fP1U+h@48J1yGgA7TF$_Oh^7guN>4HDRv{dqdcp!rl`0wy<}E{ZH7t!rl}1zOWC3eJJcBVIK?o zMA)aoJ`?u2urCG}FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az)|%A{X@hm0z0G-0C)8$;Nb!p0Idwy<%8jVo+CVdD#%K-h%BCK5KW zut|hXDr_=glM9<`y=Ouz7{eCv1LU3kX|K*h0b<7Pg46MTIRUY;j>r2wPIvQo@!Nwv4c4 zg)Jv+d0{IETT$3b!d4z&yezoCcJ61MXI<7L79wX4VG zGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_ z(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`b{YBV;5%ej zVY><2UDzJN_7t|4u)T%tBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5yFlXc9gKA zg&ia8SYgKr`--sRg`FVmtHMqkV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$Vnq#9ejtJEbJ6vrwThw*y+N~5O$`pvxI$3*w=-f zE$kd&=L$Pd*!jXP5cUmW-xT&OVc!;Zp|FdDT`cSpVV4TKOxSmXeOK7`gneJwmw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{a znekklm!hS65C&GRz>}p}x2)kC;b;5oo?B~LMA?%mJekJVJ!mbx~ zgRmQg-6ZU0VYdjoRoHF9ZWnfkusem_CG742#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO-dqmjpg#BLFAB6o;*q?;`S=gh(9uxK#VSg3&H(`Gl_77qI6!y5VCxrb=*uRB6 zDeNg>PY*C&7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~!t>k*^NEL!K4(oUrGGy&&vGVJ`{$kFfs=ds)~k!d?~jny}Y}y&>#PVQ&e0 zTi83o{wM5RVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1*cStgmj(CNt{$7q>^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}WwI~7Lq-)gny}G@jUjAI zVPgp!Ti7_l#uYZ6uoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4wjC^(Qf5@!DW)n8MusMXyDQqrba|@eC*u28#6E?rF1%xdqY$0I_ z3tL3kqQVvvwz#k*ge@s-DPc4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_m65LwzC%_Owwkcj zg{>iMO<`*ZTU*#V!qyeGp0M?WZ6ItzVH*kCSlA}QHWjv+u+4>SA#6)wTM64**fzqp z6}FwQ?S<_iY)4@`3EO#q@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeyNrBw@Ex+Nu-%01E^H5BdkWi2*xthS5w@?e{e;Pd0 z3Oh*H!NLv^cBrt!gdHyI2w_JGJ4)Em!j2Jktgz#ReMQ*u!cGwORbeL%FkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1E~vvg2s=~QS;D?1?CZkL7Iu!XbA_EJ?0jJt2>XVxZwmXCux|^yP}oJn zE*5r)uuFwqChR-HzANl|!oDx;@&U%ng8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e1}{y^3}n2$d$sb67~aOKNR*OVLul36Jb9UcD1l; zgk3A_I$=K(_H$vs5cW%9zY_LqVb=@0LD-GLZW4C0uv>)PD(p64w+p*N*qy@e5_b0h z<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$- zZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq` z?iu;&;5+1AVfP8UU)Te}ek1I+!X6a%kg$h^JtFLP!hSF855oQ^>`%h}EbLKXj|uyW zu)hlXo3OtN`-iZ93VU4G6T3+}I7JvNuwZEm*PTywX%^KP?% zZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZc$X5s7AZN;|d#3*!aRG5H_K(iG)ooY!YFU z3Y$#Wt>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LTy)wve!eg)Jg%QDKV-TU^)@!j=@al(40REhB7MVao|y zUf2r4Rus09u$2cGFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az+e%E(s--yy3CTTR&N!qyPBrm(eytu1UFVe1N8PuTjxHW0R}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#T}Hk-_zu}s*lxmh z7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0g&id9U}1*{J5<xp9VP5&VaEtN zR@iaEz9Q^+VJ8Uts<0CW7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr z!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)Jfna?;3G2j3wl3p+*FslrYZcDk@LgqH zxx&s9cD}F+gndKUH-&vm*tdmUDC{C(7Yn;Y*rmcQ6ZRcp-xc;fVc!>a`2gc(!Tq(X z$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`m zZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*4U`Rd?1 zYe5UkUrQu`q~K3A=lM@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe_l$gX@Evlmu=|AFFYEzfzY+FZVGjy>NZ7-| z9uf9CVZRsl2Vs8{_9tO~7WSyH$AtYw*k6VHP1xUs{X^J4g*`6p31R;d_HSWN3VTY} z(*ul`1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3`wz^4*h|9xBkaGzUKaL>uvdk>ChT=#ZwPx+*jvKh7WR&? z{|S3n*n7g>7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtHln^M?R!lo8Bjj(BjO($%6VKWGu zQP@nvW*%U?EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG_3Y$yV+`{G&Hm|Vxgv~E(0bvUYTS(Z#!WI#> zsIbL^EiP;cVM_{IO4!oEmJznBu;qj;FKh*2D+*gl*vbQpmj(CNt{$7q>^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxra!W#p@a?~ql6ttM=BVQUCm zQ`lO<))uyouyuv4Cv1IT8wlG_*ha!O7Pg77O@(bHY;$2-2-{NFR>HOxwvDiDg>5Hn zdto~W+fmp~!gd~DyezoCcJi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(IcempgYS@&g`Fbo zRAHwHJ6+fr!p;&?AyXF6n2rYi-lbx z>{4Nu3Hy$)?+W{#uNZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yv6we0A_0a;31Vg#AF+4~6|m*pG$%MA%P-T`lYyVb=<~ zPT0?c{an~Dg#A+3uY~=t3S3cF3%?ZWO5cBinrgxx*Bcv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#dq%!G z_zt;O*nPt87xsX#-w6Ayum^=bBf*eg8OS%kIiLvo15)6*W7LHyxT0G+iauT ztft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_e zuG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+U^3}n2$g{$p6ZX8Y7lgei>?L9U5%ynU zFAIA`*sH=`6ZX2WH-x<@>@8t$3wuY{|Af6O>^))c3;RIWhr&J*_OY-}gncUPGhv?# z`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA4gO!?(^$f&|b6E?cAF@%jNY%F183mZq+xWdL0HomY4giR=HB4HB?n?%^8!X^_o zxv(jOO(|?DVN(m6M%c8%rV}>3uo;BSC~PKSGY>Fc7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wATk*^N^51CciY{F(2Hixh|h0P^w zZejBXn^)L;!sZvYfUpIHEhKDVVT%Y`RM=v|78kaJuqA~pC2VP7%LrRm*mA;_7q)`1 z6@{%NY~=yQ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!&~VLJ~nUKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_myxdyzC(5uwwtish3z41 zPhoor+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENA?!$DM+rMx*fGM66?UAk zuLwI{*a^bED(u7o#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO_HAJo3cE30xl-6w z!hRs^hr)g&?8m}>BJ8Kat`>HUuxo`~C+ug!elF}6!hR|2SHgZR?0R802)j|(O~P&# zc8joEh219Xc42o2yHnU*!tNemyezoCcJ^@=l3wuD=Z-o6;*n`3z685mLM}+-O z*zbk?LD(OK{YluLg*__lF=2lZ_E%wl6ZUsu{}A?1VUG)YLfF5A{ae_R!k!ZL^Z?^! z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC)fF z`Rd?1Y+Fmxa9|>{Vf}342}G8^Ycc_Li`>g}o!}f5P4s z_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0L(+Qhi*bKsE6gHEv znFkmz3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BpqF$X5sdhs-K$Hes_1n?u-~!sZe-x3GDH%`0p^Ve<=HK-hx97816wutkI|Dr_-f ziwj#q*pkAQ61KFkWrQs&Y&l`e3tK_hio#YBw(52iQ(>D4+g#Wd!nPE)m9VXaZ6j=3VcQAYUf2%8 zb`-Xgu$>1OFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7 z=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2 zZd2)I5Az+e%g9#;-yypS+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_r zhYCAP*x|yC5O$=nql6tT>=;z$76?WnP<7L79wX4VGGP}*qcAIPN zHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F# z3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`P8#{@;5+1GVW$W?RoH35 zP8W8Durr07CG2a$zAo%+Vdn@tSJ-*N&KGupux|+arm$}b`?jzPgcgPhZUmbjhTq*1-VLuS|Lt#G>_G4i`5%yDIR|~sF*tNp06ZSJ< zKNt23VZRjiD`CGDcD=A0gxx6YCSf-VyG7Wo!fq3GyRbWi-6`xYVRsKOUKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbo{_H(zC-R6 zcAv2Og*_nbH^P1^>_K4<342)BBf@?s?DxX{AncFA{v_U|O3H!US ze+c`hu*ZcxA?#nm{w?fDVNVHrdVuk=;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yzS8e0A_0@~p7uggr0p1z|4=dr8=Tg#B08%fem} z_NuVgguO284PkEzdrR2c!rl?~KVk0*dr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GM< zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG6 zQwp0(*wn(N5jL%`>4Z%$YzAR73Y$sT%ma*<1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+7)Y)N5D30qp&GQyS>ww$o#g{>fLMPVxm zTX}%-vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA4ojC^(Q9kQyh)r74sYz<*+3R_Fq+QQZmwyv=Cgsm@Z17RBq+ep~P!Zs1Msj$t2 zZ7ysJVOt8@O4!!Iwh^|iu4I||!L*v^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcKW#p@a?~q-E?Ivt@VS5PMQ`la@ z_7=8}uziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX62s={PQNoTEc8suNg&imC|E!or z@P>6A2f+eFrIqedPy|6hQ3*xB00pHa6_8MAknZm8?(XjH?(Xhx{O|R34|{m8J3I4S zzMq}nJevyJOxWhawh*@E0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fk$MYhl|6+g8|i!nPN-gRmWi?IdhxVY>+1RoHIA zb{DpXuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsgZc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgvjR|nrA zM+-Yf*s;Qn6L!3?6NH^8>?C0)3p+*FslrYZcDk@LgqXaDVOUvAN7{bF30xmwsY!mbr|ov`bL-5~5nVK)i8S=cSY zZWVT$u-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*_qc$pOa8 zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+W z^3}n2$kW1}5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~uCVun zy)WzoVIKrVtKFu!-KNFerqazG<~wAR3IG2cGODnz2>YtAuL=9Qux|((P1xwd z#t`;RVPgvWmauON`;M@&gpDn19AV=M8&BBy!X^;*U18r7HleVIgiS1L5@C}Hn@rf` z!loEtyezoCcJ(+Qhi*bKsE6!v{#KM*#Pu$hJZP}q-z%_8i_!e$jV zo3Nhk30nNQgK!WIzrYhk|; zwxF=z3R_6n!on62_B&y}7xo8Xe-yT;u*HP^N!Xu-EiP;cVSf?!S7A#ETT0l{!j=)X ztgyccTTa;W!d4hyyezoCcJ^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO`nb?_aswXki3 zZ7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?F zcCfHRgdHmEFky!aJ3`oz1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4moP%tAp>5qlFzK>{wyP2|Hfc3Bpbkc9O7@g`FboRAHwH zJ6+fr!p;cgR&EUmbjh zTrKPxVb=<~PT2LrZV+~(u$zS4EbJCxw+g#W*zLmZ5O$}qyM)~>>>gqF3cF9({lXp) z_Motbggq?m5n+!Cdra8l!k!TJe+3&+HH#4ZCc!ID&6d1zC)fG`Rd?1P-WT?Pun&cOB9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqE zMF0N|8CBR!p0Uhj<9isjVEk; zVG{`ZuCVV3n^4$9!X_3riLgn9O(tw|VN(n+UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB z-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_%8{=Q{tuZ-*wn(N5jL%`>4Z%$YzAR7 z3j4mW9|)UC*v!IyDC|eVW)b#dVY3RGP1sL_%`R*XVLuf%r?9z%%`NO_!hSAn9$~)_ z_Df;E8eqIExW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgVaWUmbjh%qMJqVG9WRwXoj^TTs|4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_#gVTLzC%_Lwz9Cl3;Tz# zRfMf7Y&Bv36t=psHH57xY%O8`683Ll{}Hyfuyus3D{MVs>kHdJ*oMM361K6h{|ehg z*rviZ6SldqEre}3z<613f9>kAxy){Jv)$&JyUm?f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5HX)xmej(ZY@q zcC4`DgdH#J1Ysu%J4x8d!cGx(s<6|9oi6MQVP^_EOW4`M&JlL5u=9kSFYE$g7Ye&b z*u}yw5q7Dt%YHUuxo`~C+vD*Hwe2?*iFK27IurUTZP>w z>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVEqa)9x&;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(pe0A_0 z^0csLggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;ROYmjjHK1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3@On;{Sh#j4JFa!oDi(Yr?)R>>I*H6E?cAF@$|n z*qFk;CG6Y6z9VcbVPgv$N7%T+#uGNaunB~HSJ?N2O(<+4VG|3RMA)RlCKEQfuqg%@ zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)| z<;YhD|A$N^Y-(ZC2%A>ebi$?=HiNJkg?(Sx4}{GmY-V9U6!s%wvk3dKuvvx8ChRA| zW*0Vxu%8N>Q`lU><`(udVLul(kFZ||`=zj74KQ97++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc60)75TM+-}q2 zZd2)I5Az+e;>cGA-ytgrTUprOh5bX=D#BJ3wwkbi3R_*+8p75TwwADe3H!IO{|H-K z*gC@26}FzR^@VL9Y(rri3ENoMe}!!#Y*S&I3EN!Q7Q(h1V7x52zjpQ5TxPeq*=}>q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$W|j?9ejsuEo>WM+X~xG z*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+ zVTTGkOxWSVju3X_0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk%%Xko_)J670n!j2bqg0K^Xoh0mJVW$W?RoH35P8W8D zurr07CG2cr=LkDj*m=Uv7j}WL3x!=I>|$Y;2)k6+Wx_5Oc7?Dj2N*94?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgykR|nrAR|~sF z*tNp06L!6@8-(2`>?UD13%fXaDVOUvAN7{bF30d0N;r!k!iOoUrGGy&&vGVJ``LS=cMWUKRG5 zu-ApXA?!_IZwY%_*gL}B751L6_l12R>_cH63Hw;sC&E4z_L;EHg?%CH%K^sAg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO$^XAY zMiurIVP6&YHDO;D_6=d92^(G57{b0OY)oO_683Fj-w`&Ju(5@WBWzq@;|UvI*aX79 zE9`s1CKNW2u!)6DB5YD&lL?z#*c1bdmj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrbfa^$On|3jt{Hnp&6giR}KI$_fbn?cx&!oDx; z2f}6&HnXrF3j2|;S%m#q*sQ{46ZR8fvkRL;*iVJcDQqrba|`>Ku%8Q?N7yff{ZiPk z1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9Ww98R|nrA^9h?@*aE_SE$lbK78LedVG9XcSlA-Mekbhr!u}xakHQuewwSO#3H!6K z#f2>)>@ULpDr`w%O9@+A*fPSF74|n_%L!Xv*a`!Tmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxra!apbFm?~s**tt{;C!u}y_6=ACi zTTR$Mg{>}Z4Pk2vTT9r#g#BCCe}t_qY#m|i3R_Ru`ocC4wxO_%gl#PBzrr>VwyChq zgl#Tt3t?LhFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWUG;{4!%RS7PgJBZG~+oY^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAxDjTb?_Z>w6J4@9V_fO zVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNa zgk37^GGUhsyF%EN1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4!LUNtAp>5tA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F z!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b~B@9ALaGxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgRyCUmbjhJT2@Q zVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD_Mxzk zgncaR6JehU`%Kv9!oCppe+3&+HH#4ZCc!ID&6d1zC%Wt^#9)>qYC?qu&)aHny{}6`-ZU5gpDq23}N3CHm0y| z3H!FN?+6=9*x16x5jL){@q~>pYyx5574|)06AGJ1*u=sn5jLr?$%IWVY>ENK%YyrB zSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!Vc!?_17R}>n_1Woh5bm_EW&;)Y*t~j3Hyn#*@ev^ z?5D!!6gHQzxrO~q*w2N{BkUK#ektr%1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4w-l4tAp>5`Gn0cYyn}v7WNxq3kv(Ku!V#z zENl^BzZ3R*VSf!SePJ62+fdj>!ZsH6UtyaF+f>+Q!ZsJSg|ICL7%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfnven2}2j3xE3)@E6w!*d(w!N?& zgzYG7Ct*7a+eO%}!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD> z6Lz?;BZM6}z<613f9>kAxy){Jv)$&JyUm?`Y;2 z2|HWZIl|5rcAl{Fgf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghg>!C)xmej)xxe3cCE1M zgk3M}24Ob}yGhv1!fp|EtFYUI-7f47VRs6^4*h|7*7WRs;SB1SM>~&#p z2zyi5Tf*KJ_KvW3g}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6RQa)9x&;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$+_W$pYQH6a) z*jI&pP1x6keM8u2!bTT1hOlo68&lY~gne7scZ7{4Y;0lU2pd<}c*4dPHi5A33j3b0 z35880Y+_-P2%A*cWWpvFHpKwrWx@TmtH{_ETYV3Y$yV+`@h)?B~Mf5%vpVzZCYX0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-@q*h0b<7Pg46-wFG@us;aAAuw!#48Wx@TmtHi_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(*=ppggYS^7g>55jTVdM?+g{iX!gdt4ldzqI?ILVfVY><2UDzJN_7t|4u)T%t zBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5yFlfV7x52zjpQ5TxPeq*=}>q-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$WbF-9ejrzE$kR!#|k@6*zv+n z5O$)llZ2ft>=a?A3Oh~M>B7zscBZhigq?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk%%YGKz1yH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9ZWnfkusem_ zCG2it_XxXJ*nPt87xsX#2ZcQ(>|tS#2zyl6W5OO6_Jpt}2N*94?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rD!3R|nrAPYZiS*t5c( z6ZX8Y7lgei>?L6@3wuS_tHNFr_PVe)guN;3En#m9dq>#2!rl}1zOWC3eJJcBVIK?o zMA)aoJ`?u2urGvtIly>XaDVOUvAN7{bFoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3lj(m0Sf5=qA zrWQ7huxW)&Cv19QGYFee*!P9~K-f&eW)}8CVLuW!i?AOHn^o9s!hRxbc42b}`>C)w zh0P^wZec$Y_H$wL2>XSwUkdxx0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk$MK4J3~Ibq8STVa6l zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA37 zj(m0S9kPSA#BS5#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO;Pd03Oh*H!NLv^cBrt!gdHyI z2w_JKFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1E^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAywXkc1T`TN5Vb=@0 zLD-GLZW4C0uv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=l3wuD=gTfvX_OP%=ggq+k zF=3AjdqUWg1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4tZ+itAp>5r-eNu>{(&Y3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12 zmaw;ly(8>hVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1*cZaS9ALaGxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQGH{Qo;-RAFBc_ElkD z6ZUms-w-yMu+fE$A?%yN#uWA~Vc!<^9bsb$8(Y{o!p0Rgp0M$SO(5*M!oDYLLSYjL zn^@Q+!X_0qnXt))O)t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA@h!Wb?_ZB zpRoCbEg<_~JC~Q$-iwXOaus;i1T-XxA{vzzJ z!j=@al(40REhB7MVSf|0oUrAEtuVlNS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0L>t8b5w@zZ)r9?1*y_U8 z5VoeUwS@gk*uRDSN7&lJ))BU@u=RwkFKh#08w%S<*v7*CD{K>Cn+n@Z*yh5v5Vqw2 z<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$- zZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq` zwi@~B;5%e%VcQ7XR@ipJwimX8upNc%By4A4y9nD=*lxmh7q*A6J%#NhY;R%v2-{cK ze!}(_c7U)0g&id9U}1*{J5<wA7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna@5FI2j3w_3p+;GvBHiMcD%3?gqkAxy){Jv)$&JyUm?`q~K3Af> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghded%)xmej)54w+_N=hyggr0p z1z|4=dr8>K!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h9}4?O*vG;?5%#ID z&xCz0>L?73H!RRZwMPr*yzH>5cW-BV+#A0ux|_djrVc!!rp|FXBO)P8@VUr4*OxWbYrWjznEV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yGkAxy){Jv)$&JyUm?U z_6K2q6t<|a#f1Gy*q?MeOhq_Inx=p*fP1U+h@48J1yGj+y{*m}a&7q)@0 z4TWtaY-3^n6}E}6O@(bHY;$2-2-|Xi@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeTaA2m@Ex+Xux*5GD{MPq+Y8%4*p9+>61KCj zU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZFVTTJlLfDZ5 zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( zIcnsqgYS@|g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c*u(O4oBkWvZ z=LtJs*agBa6n2rYi-lbx>{4Nu3Aq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$W9ejseE$kX$*9yB%*!9A05O$-m zn}ppg>=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6Ozps?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%>fk%%X<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4OhCG2fs z?+ANW*n7g>7xsa$4~2as>|VpnXTm-g_Jy!72N*94?yp@vHka9LZnoQ8bGNzk zZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu&P|NjmdRoGXAeO1`kgneDu zH-wEQY;<8`2>Yh6F@=3g*tdm!N7z`x#uhe?uyKWrCv1FS6A1gRurVtKFu! z-KNFerqazG<~wA{k*^N^51C5X)WW6_Hm$JfgiSAO24OP_`@XOr2%AaR%))*s>_@_8 z5%yzYvkIF{*iVGbE^H2AKNU8ou(^cIE$nB)elBbtVZRXeOJTnnV7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$h;$89ejt(Cv1LU z3kdtQu-^zrVtKFu!-KNFerqazG<~wA?k*^NELsk;Dvar7k`-iYqgsm!UHDUi0wz{x2gsmxT zEn)u>_HSYT5w^Clb%d=eY&~J?3)?{0hQc-ywz07P3fn~3rouK8wz;q^gl##%cv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#twz2& z_zu}x*fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^!uA!mpRoOf z9U$yLVFw92SlA)L4i$Eou)~ENA?(Nj#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO;hpI3cE)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E z^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy18bb?_bXw6JG{JuB=vVb2SDLD-AJ zUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUPGhv?# z`$E{41B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4jE9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Bpqf$X5sdhfF1GYGKm|n^xF# z!loBCgRmKeeP7rQgv}&uW??@R_9J1l2>Y?HS%u9e>?guz7dD5mp9-5(*j&Qq7WOk? zKNmKSuwMxKrLbQOFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWZsdl4!%R?6E?rF1%&-t*l&a_DD1bw7816wutkLZPT22-{Xy6t zg)J&3tK|iUxfWt*pkAQ61KFkWrQs&>~F%B6Slmt6$ThD3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuC{$X5s7Au9=6 zS=ir&{X^I)!d4Zwny`NgTV2>1!qybFmau;b`?s+F2wPj&I>Oc!ww|!{g>4{gLtz^U z+gR9tg>52iQ(>D4+g#Wd!nPb>yezoCcJe1~i;Y#U+Q3foTD_QG}$wxh6}gzYSB7h$^! z+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC5O(AM<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`jvD#u z;5+1KVaEtNR@iaEju&=}+A@2s>BUdBV;Y zc7d=9gQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna@ELJ2j3xA3%f?xwZg6wcD=A0gxx6YCSf-V zyG7Wo!fq3GyRbWi-6`xYVRs9=N7%i>?h|&uum^-aDC{9&4-0!l*rUQ86ZW{UCxksY zz<613f9>kAxy){Jv)$&JyUm?`h^B342@EJHp-- z_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eIe}20mjRM`)gN^&1H6*o9#B&+->f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11K|Gz^<74{WjUlsN>VP6;a4Pm1R z8(r8K!oDeNOkv*=_HAL`5jK{vv4xEzY+PaE2^(M71j4>6?0do{6gH8tiG@ufY*Jy9 z37cHl6a$Qx1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3{+KV3!6jOPle4XY%XDQ3;UU{p9`Bu*e`_rQrNEs7%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGVjP&2j3y{37cQo0>XYR z>^H&|6!u$T3kh3T*doGyC+zpa{vhm+!WI>_n6N(y`?Ijcg)JfMFT(yRY)N5D30qp& zGQyS>_BUb630q#+3ImLn1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3_le4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_tC6n`zC*Sa zwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y* z*g?V$7IuiRLxmkC>~LX62s?6s@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWeM~!@S@Evlruw#TBE9^L7#|t|_*oneU5_Yn%Q-qx= z>@;Dg3p+#DnZnKzcDAr{gqoT`KG{VV4WLLfDl9jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(xoYIA zgYS^5gN>``Hl342`F6T+SxV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$WtR<9ejs8E$kU#&kB1^*z>|(5cZ<5mxR46 z>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz7Y21 z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%!hS4lR$;RV`-!mGh0P)Cr^4nGHkYuuh5by}&xOq+ z>=(j*DePARjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(nRn!?gYS^}gv~E(0b#!u_8Vaf3j3|Fg@i3EY!P9<6ZU&ye-QRZVT%e| zOxT}<{aM)J!j=&B7h!)DwxqD7ge@&>8DYx``0 z)75TM+-}q2Zd2)I5Az+e)yP)|-yvHI+eX;7!nPB(y|5jG?I>&~VLJ=kMcA&wb`!R{ zuswwBDQqucdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%3gdI7+cv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#qei|u_zpQ* z*fGM66?UAk_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2 zVHXLzSlA`PE){l}u*-#AA?(Tl#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO;Yj93VTS{!@?dB_NcJOggq|o31LqTFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)`$9|L>4dg?&ZXSA~5|*w=-9L)d7-Mi(}Q zux|<*Q`onJeOuUfgpDO^Y+>UF8&}wP!p0Xifw1oi`<}1~g-s-EVqudAn^f3j!X_6s z#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC)%Q`Rd^Rkg0@CEo>TL(+ZnT*!03?5H_Q*?+g2Zu$hF-EbNEEek5!bVLui&tFYOG z{Y2R8!sZb6Q(;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO9VM_@6i?F{6TT<9k!j=}cjId>e z{Y}_%!j>1d!T{rC!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC%_V`Rd?1WF=uM3;VmUe+XMe*s8)-6ZTJGs|#C0*qXxD680}){}%Qi zVQULpN7%Z;))ThAunmN5C~PBP8w>lduuX(*Dr_@hn+w}Q*p>r~mj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcKYUHbf?~tv9Z6j=3 zVcQAYUf2%8b`-Xgu$_hNB5YS-y9wJ}*dD_66t= z!p;zOrm(Ywoh|GfVdn}vPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m5O(DN<7L79wX4VG zGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_ z(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`t{VC3;5+1M zVb=(|R@imIt`~NLup5QlB~3NA2)kF+E7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLu zv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^3=#z2j3x23wuV`v%;Pe_PnqcguN*2C1EcMdqvo* z!d?^hy0ABdy(#Q1VQ&k2N7%c<-V^q|un&ZNDC{F)9}D|L*r&oi6ZW~VFNA$Lz<613 zf9>kAxy){Jv)$&JyUm?NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu_ue0A`D$W+3n7B-ErX@yNEYJupbMXRoHC8ej;pkVRH!ksjxYP%_VGZVLuc0b7Auc`-QMy z3j5Un<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O z-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k| z>|wq`<{kO!;5%eKVe<=HK-jN^{YKb=!hS1kAz=#(TSVCJg#BLFAB6o;*rLJ~6ZR)z ze-^g5uqA~3Mc7}3Eh%g%VM_~JM%c2#{w8cWVap3!VSw?n;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ytiGe0A_0vXZcsh5cRFKZLC! zY*k^a3Hzt8)rGAgY)xTn3Hz6@e+&DMu(gG)BWzt^>j_(5*apHj6t4I||!L*v`Us5w@$a-GuEfY!6|3 z3foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMh)yUKZS6yLxOcv)kNk zx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_BmbsFAM@zC(@{c8suN zg&imCcwr|9J5kt4!cG=;im+3KohIybVP^~djO2)lBC@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeSB-pi@Evlsuxo@}E9^R9*9*Hr*p0$&5_Yq&TZG*z>^5Py z3%f(uox<)CcDJy5gxxFbK4JF@dqCKO!X6U#u&_sjJu2)mVUG)YLfDf7jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d1~aVgYS^1 zg*_weSz*r!dtTTJ!d?{ilCYPBy&~*YVXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs z6!wv@kA;0A>{DT%3Hw~w7s9?AV7x52zjpQ5T;~5+F^k|0>pBk7-QC^Y-QC^Y-Q8i( z7<8wS3JM0Pbfa_{gn|+#m>~Z5`m%>Tyw{zbc`o12&TpP>bFZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr z3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9 zg{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W z6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px z3Oh{L;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0L04*w=)8 zUD#>DP8W8Durr07CG2cr=LkDj*f)fIQ`onJeOuUh!p;|Vfv^jOT_o&cVV4NIRM=(0 zE*Ex%uq%aKCG6?}#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOwDXgxx6YCSf-VyG7Wo!oDZ$`@(J$ zcDt}22>YS1JA~aS>_@_WEbJ%3ek$xPVRs9=N7%i>?h|&uu%8M0`2gc(!Tq(X$L2D- z&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?; zYSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`u`Rd?1#PVZRdgYhk|;_S*r*%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!< zt=nv{+pM$O?6%u1y4!5M+f<<2^r737quVs4+tjApbg0`Ds@t@y+f=RF^sd{Ku-i1U z+tjn$bhXY+F&xCz0?0>?(7+}0C zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQI7 zeEA(Rs<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K z6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+ zd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;R zE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~VJ8SX zQP@esP99*qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwcnn*qOr45_Yz*bA+8M>>I+qDePOq zzAfxLVdo3GK-h)CE)sUJuuFtpD(o_0mkYZ>*p|wq`t{M62;5+16Vb=+}Uf6ep zeOK5G!fq6HldzkG-6HH(Vc!$>ePOo=yIt51g#A$19m4Ju_9J0G7WNZiKNWVDu)Brb zBkW#b_X)dS*w2Lhe1P$?;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-ysi-e0A_0@}RJXggq?m5n+!Cdra8l!k!TJq_C%iJuU1RVb2Qt zg|J@=drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtuwM!LwXoj^`|SYZWx@TmtHUf6rW-WT=f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka z)xrNEvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2Ve1H6 zSJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4 z=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5 zxUeIH9VzT6VMhx)M%b~!juUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t+k*^NELrxX;6=7c$_BCN&7j~Mk z(}kTO>`Y;22|HWZIl|5r_6=d*6!tA)-xhYBu=9moAnZb67YVyq*d@X)6?U1h%Y|Jb z>`Gx*3A=iL@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWe*Nl91@Evlku}SG$KEQZcaDVOUvAN7{bF30c~ICx!X6g( zh_FY6JtpjNVNVEqQrJ_%o)-3uuxEw+Lf9{bJtypWVJ`@KQP@kuUKaL>uvdk>ChT=# zZwPx+*sp~BTG(%d{dR!yvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3>jeK?R9rCuYcZ9tw?03R`FYG;G?+g2bus;g>K-h=EJ`(n^ zus;d=v#`Gi`>U|O3H!USPlSCc>>tAZDePau{w?f3!u~7lGhv?#`=78c1{g03?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu&%Uw(&- zDr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7 zwXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~y zeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sI zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLu zUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22 zmcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3 zUt#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z;6n2uZ zlLr_t3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^Br=^$X5s7A*TxaimB7zscBZhigq=I#@3cF0$<-)EIcBQbZgk3$rcv*0N?dq|)%x-hD-R7FR&7F6f z1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Yev30_zt;N*mc6L7xo=t-xYR) zup5QlBPleqj>~3NA2)kF< zeZuY+_A_BWA7H#JxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jto zyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?Ps zO^drtrJFs>cgO=HUmbjhJSglTVGj#?MA)Ok9uxMsuqT8)DeNg>PYZiS*t5cZA?%mJ zo)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>{r5mE$lbKemlT;S#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4jE^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4 ztiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcW zOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb< z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq< ze0A_0va7J&gzYYD4`F)>+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^Z{a$#2pyHeOy z!mb`*yezoCcJ^foB3;T|+?+Uv?*p0$&5_Yq&TZG*z?0dq#FYGp9w+s7$upbJ$ zL)e|dekAP2!hRy`r^4{(&I5cW%9&k1{8*bBm56!wy^mxa9|>{Vf}342}G8^Ycc z_A6n(7WNxqza3z_EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG`%h} zEbK4B{wnNm!u~Go6JehU`-iZ93j3F^e+&DMu>T7COxWkb{wM5<0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm5kom){|y3L8z> z=)%SjHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL z(+ZnT*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&JyUm?5)6tZc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrA zs|s69*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7p zZ7pmYVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S z_7`@5umgo1B}X-f2s>8Tal(!lc7m`Ig`Fhq4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbnvt&#zC*4RcAc>6g?&fZcZJ;`>_%ZX z3AA?!|JKN9w1VLuV}Q(<=ryIa^j!tNDzpRoId z{Y==;2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9rD1)R|nrA4+?uo*u%me5%#FC$AmpD>Ye5=Y%~k z>;+*j3VTV|%fem}_NuVgguO284PkEz`<1X?3;T_*-wrTd7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!uAk*^NEL*5qlj<9!y{Z82L zg}o>2ePMqP_D5kK2>VdjN5Vc9_9tO~7WNlme--vOVSg9)iLg(F{X^J4h5bv|zlHrr z*nfq6ChT)z{}cAb0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG z%`R*XVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pz zwydz_ge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62 z+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh z>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A= zcC@f#gdHpFIAO;NJ3-iq!cG!)@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%tK`Rd?10)75TM+-}q2Zd2)I5Az*z z&B#{=-yzouyH42k!oDNyyTWb|cB8PHgxxIc7Gbvv`<}4x3%gC&?ZSQ_?1#ec5O$}q z9|`-hu%8I~sj$0*-7V}MVfPBVPuTs!ekSba1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9 z*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4tZeYtAp>52ZcQ(>|tS#2zyl6W5OO6 z_Jpt}g*_$gX<^R@dsf&lg#A+3bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5lhOjq<{Yu!c zh5bg@ZwDAJ3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BwZm$X5s7A#V$NN7%c^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)_qx<#))a!bTG|y09^X zjVWv_VPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8Ewn zHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jn zY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(i zwz{x2gsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp z*tWv96Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6MM z>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2VooUr4CognN)VJ8VYd4Tb<;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx@re0A_0 za;mVe2>YtAuL=9Qu+xN{F6<0pX9_z@*xAC)5q7SyZwULQux|mI*wq7!mj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrbf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhdeOy)xmejgTfvX_OP%=ggq+kF=3AjdqUWg!k!ZLw6JG{JuB=N!hR|2IbqKWdqLQX z!d?>gvanZ#y(;WAVXq5&L)e?bekJVJ!hR#{w*!oq1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w&kAxy){Jv)$&JyUm?QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL; z*qp-V5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s} zVap3!LD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapz zu#JUnB5YG(n+e-o*cQUJ6tZc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P) z*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_ zVaEzPPT29nP7rpYu#<$HJivHaaDVOUvAN7{bF30IaSzKgnd=m*Mxmt*lEH}7j}lQGliWc>}+A@ z2s>BUH-vpt*tdjzTiAKR&KGupunUDu?gv0D(o&{cMH2m*uBE;6L!C_p9%Z<0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%L17OGdsx^b!X6d&n6Sr%Jt6E# zVNVHrTG%tfo)z{BVZRjioUrGGy&&vGVJ``LS=cMWUKRG5u-ApXA?!_IzY_LqVZRaf z+X2SQg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze22U>^3}n2$lJo+5%#XI-wFG@u=j+$FYFJ({wVANVIKR`>(LigncgTf5N^PV7x52zjpQ5TxPeq*=}>q-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S8|^`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4 z!WI>_n6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQb zcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0 zVQUIoOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQItUmbjhoGR=q z!oDi(Yr?)R>@;Dg3p+#DnZnKzcDAr{gq|4UVE$lpD=L@?)*oDF_5_Yk$ zON3o2>@s1O3%f$tmBOwPcJ%<`Wx@TmtH|SB_3A^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WArFjv zb?_bXpse+3&+HH#4ZCc!ID&6d1zC+#``Rd?17xo8X ze-!qCun&cOB_IF{Q2>VpnKZN~L*uRARTiAbu{a4s$!af)F zKVe@CFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWRyj}{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO{Hm9(; zgv~8%9%1ten@`yM!WIy=psQK%L-dg*z&?w z5VoSQm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y z2-{THX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%B zgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn z6L!3?6NH^8>?C0)4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6_TA|3ACBiNhcA2otgoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA59jC^(Q9dfO( z>x5k|>^s7~E9?egHwwE+*v-Oj5q7Jv?+N?9u-k;)F6;-wekkk?VRs7qk+2^N`-!lh z3cE|#-NNn>cCWDegxxRfXTp9yz<613f9>kAxy){Jv)$&JyUm?^4*h|7*7WRs;SB1SM>~&#p2zyi5uY~NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv^} ze0A_0^0u&dguN^5cfx)z>^))c3;TnxKMMOm*oVSC685pMKMDJ@u)hfVtFXTb`@67D zgncUPAHx1A>|etEE$lzS{wwS=VV?{8pRg|m7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRk6Keus=IY&2n`3mZe&n8L;qHny;F zgpDg~JYnMtn?Trv!X^?nv9L*mO)6|MVUr7+LfDkTrV=)_uxW%%D{MMp(+itH*o?wv z5;pSy<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O z-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k| z>|wq`W*PbF;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@#%_nSrVG9UbP}oAk78bUMutkL} zCTwwGO9)$1*iyol7PgGAWrZy#Yq-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD z61KLmb%d=eY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGa zLD-JMb`rMp0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk$MS7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!Dsi zBJ5CMhY34e*b%~x6n2!bqlFzK>{wyP2|Hfc3Bpbkc9O7@2N*94?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dgRZR|nrArwaRuu&)aH zny{}6J5AW>!p;zOrm(Ywoh|GfVdo0_hOlo6`C~gk3D`5@DAL zyG+>S!mbc@rLe1nT|K~fS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L}FxN2)k9-_k?|4 z*logY7xn{TKNNO{usenQNZ5~s{Y2PLh216WZejNbyI0tK!tNLLGhsg;V7x52zjpQ5 zTxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$O9u^9ejs8 zDC{9&4-0!l*rUQ86ZW{UCxksI>?vVS3wuV`v%-EM?3cox6ZX8Y7lgei>?L6@3wuS_ ztHNFr_PVe)guN;3SHgZR>^H)GJHU8ZaDVOUvAN7{bF30d0W^!!rm43J7K>U_MWi!h5bR;ABBA& z>_cH63Hw;spM?Ec*k6SGRoLHz{ax56!af!D4`Kfl_Ag=o7WN-u{}uL`u+N44PuLd& zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( z8D;S=ze7e9Hkz=}g^eL>OkraQ8(Y{o!p0Rgp0M$SO(1MSVG{|PSlA@OCKWcBu*ro@ zA#6%vQwf_|*fheX6*ir)>4nW8Y(`--37dI<@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWevy6Oo@PEjx!e$dTyRbQg%_(dyVRH+c zN7%f=<`Xu*umyxIC~P5N3kzFB*rLJ~6SlapC4?<0Y$;(&3tL9mvci@Vw!E+vgsmuS zC1EQMFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWR;Px4!%QH6}FnN)rGAgY)xTn30qs(I>Oc!ww|!{g>4{gLtz^U+gR8p!ZsDQ znXt`;Z6Rz+VOt5?TG%$iwiULWu^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA-jxxb?_astFYaK?JjH&VS5VO zOW5AR_7S$Pu>FMXFYEwe2MRk#*ulaM5q7As!-O3!>J(ZY@qcC4`DgdH#J z1Ysu%J4x8d1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4moAytAp>5Q-ys+*jI&pP1x6kohIybVP^MeO zhq_Inx=p*fP1U+h@48J1yGV{I$_rf z`;M^h3cEqrjlymccC)ZsgxxCad&0gi>^5Py3;Thv9}2re*qy?DB<#n+ej@Cr!tN4w zx3GJJ-7D-qVfPFBnXsP^FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1EN>``Hl342`F6T+Sp_LQ)vg*_we zSz*5r_Df;U3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12D`CGD_8Vcp9bmjHxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgR~KUmbjh zye;e_MxzkgncaRPs08z>@ULpD(r8<{x0kjVV?^7 zhp>MN`#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zSw_A(_&;P;VY3OFUDzDL<`g!Uu(^fJBWzw_^9h?@*aE^96tQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdYL;2j3y93R_Ls>cZ9#wx+PPgsm-X z9bxMVTTj^f!Zr}Lp|FjFZ7ggPVVeruOxWhawh*?Zu&sn`Eo>WM+X~xG*!IG95VoVR zorLW?z<613f9>kAxy){Jv)$&JyUm?|kMs2s>2R zVZsgf> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghnzC<)xmejslvV@?5o1QChY6N zP7`*zurq|6DeNp^XA3(=*tx>KA?%yNz9sD2!p;+RzOV~~T`24#VHXR#MA)UmE)#aS zuq%XJDeNj?R}U~=7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~!t?k*^NEL#`Eeov`bLeMi`Lh20?RMqxJzyII&R!fqAzJz?J$cAK!< zh5bO-4~5+!>`q}n682+ZKN0p*VRs3;Ti89q?iF^Qu=|DmOxVu{7%vO%uU$Phm)UJ@ zw%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^1#Sf2j3wN3VTS{ z!@?dB_NcJOggq|o31LqPdrH{T!k!WKtgv4Q`=zkwggr0p1z|4=dr8>K!d?;fs<79D zy)NtxVQ&iim9Sq6`;D;Q4lrI8++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6~mrN6ZXXb<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`Mp^R9 z?~qZ2jV5e#VPgmzQ`lI-#uhe?uyKWrCv1FS69}77*hIo67B-2nNrg=&Y;s{!2%A#a zRKlhfHjS`pg-s`HdSNpNn^D+I!e$;|yezoCcJi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( zS!Lv_gYS@4g{>xRbzy4=TT|Ft!qyhHj<9uwttV`KVH*hBP}oMoHWs#tuuX++CTw$I zTL{}y*jB=}7PgJBZG~+oYq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$Sxya9ejuEDr`4ly9?Vx*q*}n61KOn zeT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!aJ3`oz!j2Mlw6J4@9V_fOVaE$QLD-4H zP7-$V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk%%RAFBc_ElkD6ZUmsrwKb<*crmk6n2)dvxS`_>|9~r5cW-B-xBt1 zVdn`uU)Tl0E);f=u#1IVBJ5IOmkGOE*cHOA6n2%cs|Oe_3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br={$X5s7A=e7KPT2Lrz9a0r z!fp_Dqp+KV-7M@DVYdqVp0Mu=yG_{b!hRs^hr;di_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d0^zLgYS?Bg*_zfVPTI5dsNtC!X6j)gs>-tJtgdEVb2JAR@g6u z{ZiO-!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4PMO4zT3{YKbt2N*94?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rD)5R|nrAZwq@z z*t^1hC+zpa-V^q|us;a+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWeqb&91cgU#1MiVx=urY*Ho34VgiR@IDq&L#n?~5Q!ln~8y|5XC%_wXpVKWafUKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_mXWUx z{tuZ|*lfaP7dD5mIfcz7Y;Ixm2%A^fe8T1zwt%n&g)Jm(VPT61TU6L$!WI{{gs>%r zEhTJeVao_xR@idFmKU~yuoZ=^By8mY#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWS5bz4!%Qn6}FqO-G%KTY)@f(3ENxPKEn1Dwx6*5g&iR5Kw$?7J6PBu!VVR7n6Sfz z9U<&UVMhr&TG%ndjum#Cu;YcDAnZh8CkZ=wfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@n_WxNii{K6GIu4>BiXfn(0!j!diULY^w^Aw~si>raAYstm-QC^Y-QC^Y z-R*y`FMHU-d)?WY=kopR{N`b4-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NEL$(sOwXki3 zZ7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?F zcCfHRgdHmEFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@g`FboRAHwH zJ6+fr!p;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb>>gqF3cF9({lXp) z_Motbggq?m5n+!Cdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh%g}o%~Wnr%f zdsWzL!d@5lhOjqP-WT?Pun&cOB|wq`Mw$7` z?~tzu`>L=}g^eccYr;ks_H|+35H^OeZwebz*jU28C2VYA;|Lp9*tdm!N7#3TjVJ7T z!oDx;2g1e|Hi57Sh5b<2kAzJmY+_-P3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc6^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxrbfXXLAc?~r+g%_nSrVG9UbP}oAk78bUMutkL}ChRxDek*KoVM_>GQrJ?$mKOFq zVZRsl2Vu(yTUOX|!u}|1d0{IETT$3b!d4cxim*QoFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EY+F{|Vbf z*rviZ6SldqEe04b3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BuC~$X5s7AzKOCTG%$iwiULWut>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK27IurUTZP>w z>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP&UKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$&s%PzC)f8 z_O!5PggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWeqs;Q zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wv?2 zR|o%x{8-pz!X_6sg|MFp`>C)gh5by}&xK7T>=(j*DQs$C(+HbZ*sp~BTG({LrWZDY zuo;ETBy473vk042*lfaP7dD5mIfcz7Z0-TZ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!QK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)Jfn^5>DS4!%QH74{cle--vOVXFySUDz7J))cmuu(gH#UD!W_ts`t*VgD4ip0M?W z{Y%&e!ZsAPk+6-0{ae_7g#B08|AcKKY*S&I3EN!Q76Xiz1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM+X~xG z*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+ zVTTGkOxWSVju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1R|~sF z*tNp06L!6@8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ( zZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0 z)75TM+-}q2Zd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#QD*(}JLD_E zzA9`~VWSEAny}G@eO=f$gpDEWo5IEvHkPn&2^(A3IKsvi_HAL`5%yhS;|cqoun^@Q+1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)o zw^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4w-c1tAqbTek^P{r5mEo?er(+itH*o?wv5;n82S%l3hY&K!D3!6jOoWkZ3HunJI zWx@TmtH5)6ti_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`SZwE2j3y93j2$&zY6=Cu+@aEE^G~9 zYYJOS*xJJWF6rVtKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@9V_fO zVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNa zgk37^GGUhsyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F z!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2JuU1R zVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD_Mxzk zgncaR6JehU`%Kv9!oC<_yezoCcJY(E@q~R(*!P9~K-l=gCJ;8EupbKhk+6w`O)PAZ0mjRM`)gN^ z&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfF&1)xrNE zKNdEbu*ro@A?zo@ekyEAVLuc0b74~n`-QMy3Y%KkG{UA8_A6n(7B-!*>4nW8Y(`-- z37c8iEW&0LHk+{7h0P&sPGNHin|pxqvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA5bjC^(Q9Wt-5`Gn0cYyn{l3R_6n!on62wy3bh zg#AX?Z-p%`YzbjY3R_Cp(!zcx?DxX{AZ!_7%L-dg*dK*0FKh*2D+*gl*vi6I5%#A6 z#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOj+y{*gu7>Cv1IT{}Q%= zunmQ6By3}0{}%QiVgD8OKVh2)+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4p zZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9js zs@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6w!*d(w!N?& zgzYG7Ct*7a+eO%}!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD> z6Lz?;BL)~R3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^Br>J$X5s7Ax8;2TG%ndjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i(}kTO>`Y;2 z2|HWZIl|5rcAl{Fgt>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0L^4*h|7*7WRs;SB1SM>~&#p z2zyi5Tf*KJ_KvW3g}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOcv)kNk zx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_l-a-h4*80(uL>Jg z*l5DOCTw(JUl;ZbVPgpUrm!)EjV0_`!p0Uhj<9iseOuUfgnd`oc*4FX?EAugAZ&bL z69}77*bjyMNZ3TeCKfiy0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fry79}AmI*yO^d5cU&cKNU8mu%8M0xv;5({X*C; zg-tDN8e!84`<1X?3!6^Z^ulHkHlwhagv~5$7Gbjrn@!m4!sZY*r?9z%%{{<)S#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0La6j<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`K zZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*j zO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`{yg&4!FR~2!u}%cufqN&Y&Bu43tL0jn!?r+ zwzjap3;Tz#b%d=e?4QEc6Slsve+k<_*oMM361K6he+&DMu>T7CpRi4YZ7OUtVVeuv zVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yvI$e0A_0vX!u{g>55jTVdM?+g{iX!gdt4ldzqI?ILVfVY><2UDzJN_7t|4u)T%t zBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5d(~u1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^a9=a?A3Oh~M>B7zscBZhigqMeOhq_Inx=p*fP1U+h@48J1yGD>YGKz1yH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9ZWnfkusem_ zCG2it_XxXJ*nPt87xsX#2ZcQ(>|tS#2zyl6W5OO6_QU|=Wx@TmtH?L6@3wuS_tHNFr_PVe)guN;3En#m9dq>#2!rl}1zOWC3eJJcBVIK?o zMA)aoJ`?u2urCG}FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az)|${b&QhkQlYSA~r#Y&2nC6E?cAuM7KzurY*vQ`nfo#uD}|VPgv$ zN7%T+zAfxK!oDkPJYnAx_I+VL5H`NB34~23?1#dBBy1vK6APPUfbp{6{@T@JbD7=d zX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA(M`Lb?|@4kA+Pp zY;s{!2>Xe!p9-5&*w2LhT-a2?ej)6a!lo8Bjj(Bj{Yu!cg-s`HdSNpNn^D+I!e$mW zi?CUR%_eMiVRHzZQ`lU><{n_YEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e z<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWee;)bj z;5%ehVSf?!S7Cn>wwkcjg{>iMO<`*ZTU*%Qh5bX=I>Oc!_D^B!30q&-zl3cdY(rri z3ENoMzlHrr*nfrnPuM2HHWjv+u+4>SF~E3PaDVOUvAN7{bF30*-F^f!nP5%t+4HcZ7*yGVLJ-j zN!ZT9b`iF#u-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt!gdHyI zhyljSg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze1{x4^3}n2$Wg+M7IuuVV}%_j?08`(2s=^ONy1JRc8ai5g`FnsbYW)*J5$(M!p;_U zj<9ouohR&kVHXIyP}oJnE*5r)uuFwqChT%yR}3&-7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!udk*^NEL#`5bwXkc1T`TN5Vb=@0 zLD-GLZW4C0uv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=l3wuD=gTfvX_OP%=ggq+k zF=3Ajdt!j`vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA3hj(m0S9rBd0r-eNu>{(&Y3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12 zmaw;ly(8>hVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1*cStgmj(CNt{$7q>^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}WzH|ZL%t&HtHMSVHkz=n z2^(G5*M)sU*cigTDQrw(V+s3~u(5@WBWzq@-xl^AVc!)tp0Mu;`@XOr2peD61i~g1 z_CsMm5;l>riG@uvz<613f9>kAxy){Jv)$&JyUm?>}SG$E^I1czYz9IVN(m6 zM%c8%ekJVJ!ln~8y|5XC%_wXpVKWPxMcAyuW)n8MusMXyDQqrba}O|H7TjOEdTcJU z+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHts zrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wAbk*^NEL*^AW zpRoCbEg)<`VG9XcSlA-M78SObu-^##t+2&~Eg@`4VM_^HTG;P|{a)A~ge@a%Sz*fw z`=hYsg{>fLMPVxmTUppD!u~YCcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@# zrFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$L zcAI*3o33`7;&z)BcbiH#dzkN#KaYHM@Ex+Mu)hfVtFXTbTTR&N!qyPBrm(eytu5^D z!u}y_9bxMV`=_w=gsm^^U&1yJwxO_%gl#PB-@^VQ?7zbPCu|d8n+n@Z*yh5v7+}0C zxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZi zx=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU6_ zUmbjhY$a@KVcQ7XR@ipJwimX8upNc%By4A4y9nD=*lxmh7q*A6J%#NhY;R%v2-{cK ze!}(_c7U)0g&id9U}1*{J5<e+3&+HH#4ZCc!ID&6d1zC(^2`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^Br>K$X5s7Ay)~zTG%zht`&Bju`q~K3At>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0LK!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h9}4?O*vG;?5%#ID z&xCz0?27@$%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!iAzu;pRbitF8%@~PgpDrj>%zVvYz$%F6gH-?v4nj~*x16x5jL){ zZwvd5uq z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$fP4*9sD2iV_}mCn_Sow z!hRy`r^2Qb_A_BW7dDl!UkLl9u&ISjBWzk>zY_LqVbcklUf2x6W)wD)u$hI;B5YP+ zvk9AB*c`&<6gHQzxd#|83+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME| zv(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG z)oxSVZqwp!Q|V?8^BpqJ$X5s7A@d5GPuTpz77(_eu!V#zENl^Biwavz*l&dWR@mag zmJqh2u%(18E$nx~elP3~!j=)Xtgz*T{ZZKR!d4KrqOg^Ott@O6VSgH6yezoCcJ!ZsH6 zZ(;ut_FrND6Sj%4O@(bHY;$2-3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc661KCj zU4-o_Y&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZFVTTJlVu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yuhi ze0A_0a+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c*u(O4oBkWvZ z=LtJs*agBa6n2rYi-lbx>{4Nu3Amw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h@48J1yGBVQeShdd?hX<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4OhCG2fs z?+ANW*n7g>7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtH)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWYUqZ4*n1Mv9QU6O)hK-VLuV}Q(;pI`_3Y$yV+yji41^3sk9-GVTHaFXC zuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=( zP`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+9m8Cv1LU z3kX|K*h0b<7Pg46MTIRU>^H)GD{OILO9)$1*iyol7WO+~zZdogVao_xR@idF{wQpD zVJiq*QP@htRu;C3us;njUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bmb&m&(Qe21(m>@ULpD(r8R`>(M73EM>2rouK8wz;q^1{g03?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kS)fR|nrA zTM64**fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^!uA!mpRoOf z9U$yLVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$zVJ8YZN!ZE4 zP7!vhu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=vVb2SDLD-AJ zUJ~}Quvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUPGhv?# z`(l9cvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA4g%=6`U$XA4YRoJM)MicfmVWSKCy0C8u8$;MPg^ej}EMeagHny;FgpDig+rqvh z?7PCo6ZSn}-xu}+VdD#%K-h%Bekklm!X^?nv9L)77%vO%uU$Phm)UJ@w%c5Dx4H9f zvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGU>=y2mgosSlDF3CKon^u%8I~ zsjw-9{Y==;g-s>w7s7riY-(ZC2%A>euY~0)75TM+-}q2Zd2)I5Az-J=aH`tzC%_O_7`D) z74|n_s|j0O*c!st6tD4+g#Wd1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6}gzYSB7h$^! z+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC7+}0CxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT?=Umbjh z93|{%VaEtNR@iaEju&=}+A@2s>BUdBV;Y zc7d=9ge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ86ZW{UCk7ZV z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ! z$X5s7Ax{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B342@EJHp-- z_MWi!g?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0L3jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(nRMie+3&+HH#4ZCc!ID&6d1zC-32`Rd?1WL{zO37cQo0>Ty) zwve!eg)Jg%QDKV-`;D;Q3R_&*62g`gwv@1?h5b(0?}hzA*fPSF6}FtPKMGr3*b2f{ z6t`w!Xmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrcq^T<~R-yy3C`-`x@3j3R|)r74sYz<*+3R_Fq+QR-W>>t9`5w@8w%S<*v7*CE$lzS{wwT%!Zs1Msj$t2Z7yt!0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W)xmejR>HOx zwvDiDg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y* z*g?V$7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{gqoT`KG{VV4WLVu10o;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv6ye0A_0 za+R>FgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46 z>=j|J3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GM< zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGwy^IA`>wF@ zgndug_l5mH*!aRG5H_K(9}4@Cu!)3CENqei#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO?gv0Dr`z& zKNI$IVN(hFg|J@=n_Ad3!lo7WD`CGDHl48Ph0P#rMqx7vn_1W_!e$jVo3Po1%^_?~ zVRH$adw}t>;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-y!pie0A_0GOw`tgv~E(0bvUYTS(Z#!WI#>sIbL^{YKbtg)J^@31LeLTT0l{ z!hR?0_rm@lY#Cw83R_OtAB8P1Yz1K}3R_9o%EDF=_NM{H%YyrBSC7qQcAJ~+HrL#3 z?!4P9pxbPt+pMPB?5W!uQZDD^G_77p}2wPX!KZUI)Y<*$>61IV`4TWtaY-3^n7WN-u{}uK> zVVelsRM=+1HW#+V0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~VLJ=kMcA&wb`!R{ zuswwBDQqucdkfn~*uKK{6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%31{g03?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhKzR|nrAM+rMx z*fGM66?UAk_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2 zVHXLzSlA`PE){l}u*-#AF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kgVK)l9N!ZQ8ZV`5? zu-k;)F6<6rcM7{p*xkbJ5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJOggq|oi2=sTg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+a^3}n2 z$Wy|e7WRy=XN5f{?0I1?2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3!rm74j<9!yy(jE_ zVIK(lP}oPpJ{IrVtKFu!-KNFerqazG<~wAR`M>-Q`HHZw3L90}Xu`fGY;<8?7xoQdV+i}E zurY;=CG1|wq` zCLQ_e;Qx>x3!6;X30nOE3+!sZvYfUpIHEhKDV zVT%Y`RM=v|ek1I+!WI{{gs>%rEhTJeVZRghdtrYNwv4c4g)JxSkHVH0wt}z~g{>rP zWnrrb`_lm9Wx@TmtH~HDRj@TSM5I!qyVDwy?ho`-iY~gsm&=pTgD? zw!W}`3EM!}hQc-ywz05(3;U0-{|ft`uuX(*Dr_@hn+w}wfbp{6{@T@JbD7=dX1mQb zcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAzO}ob?_asm9VXaZ6j=3 zVcQAYUf2%8b`-Xgu$_hNB5YS-y9wJ}*dD_66t@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4mon5ql6tT>= z!p;zOrm(Ywoh|GfVdn}vPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m7+}0CxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU3^UmbjhTqW#k zVb=(|R@imIt`~NLup5QlB~3NA2)kFe+3&+HH#4ZCc!ID&6d1zC)fI`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqE0$+ZI zd_~w-g^em~G+|#8HoCB{3;Tw!F@$|n*qFk`680@&V+$Kc*to*JE$lnOzAJ1zVc!$> zePKTkHomY4giR>yhr)g&Y$9P33!7ws@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWela73K@PEjUg-s@Ga$!>l`-!lh3Y${c&xHM4 z*i^!PA?%mJrWQ7huxW+;O4zT3O($%6VKWGuQP@nvW)?P!uvvx8CTwsIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQ>=Umbjh%qwg@Ve<=HK-hx97816wutkI|Dr_-fzY+FZVT%h}LfDeRmJ+tKu-^&$ zy|6zBTSnNj!j=>EM`6ngTS3^0!d4QtvanTz{b_*lvf%#O)njv+-R5Sy%{6zMJMT6N z=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA469{K9vJ7iU1e-ZXqVSf|0ny}S{ zts!hpVQUFnTiD-){X^I~!qye`Phsl`TVL3}gl!;fLtz^U+gRAYh5bj^e}(-|*e1d@ z6}FkM&4q0-z<613f9>kAxy){Jv)$&JyUm?4I||!L*v`Us5w@$a-GuEfY!6|3 z3foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLyM0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5Tb)xmejQNoTEc8suN zg&imCcwr|9J5kt4!cG=;im+3KohIybVP^~djO3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6^5Py z3%f(uox<)CcDJy5gxxFbK4JF@dqCKO!X6U#u&_sjJu2)mVUG)YVu10o;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(qe0A_0@|3Wr zg*_weSz*r!dtTTJ!d?{ilCYPBy&~*YVXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs z6!wv@kA;0A>{DT%3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3@On!7slHj%K2g-tTRcv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Nk_gq z_&?;w!X^_oxv(jO{Y2PLg-t2!XTp9iY${>D5cW%9Qwy6$*tEiaCG6M2rV}>3uo;BS zC~PKSGYgwV*sQ{46E?fBIfTtAY%XDQ4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmR zHQi=U-DYXsW`o^ko!w@)-Dc6Uf3UmEhB7MVao~oqp;t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L9T9kQyhzXq-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$d)5t9ejsuC2VV9+X&lM*mlCU z7q)}29fj>AY-eG+2-{WIZo+mKwui7ih3zG5Z(;ig+gI3r!uA(-fUpCF9VF~vVTTAi zRM=s{4i|RB0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk%%C}BqnJ4V>C!j2Pmys#65oha-iVJ8baMcAprP7`*zurq|6 zDeNp^XA3(=*tx>a6L!9^3xr)L>>^Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhN!R|nrAR|&gX*fqkg z6?UDl>xJDQ>_%ZX3A30c}m#R!k!WKtgz>VJumD9VJ`}MN!ZK6UJ>@Hu-AmW zF6<3qZwh-$*xSP15%#XI_k_JK>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLv zo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R;s5R22awfe z-sSO@43Z>Dv;oOMkc{LgIfDpFY;vZ_C?GjVkeoqLQ53V71;s381dJFkD`vp}`#ro< zyYGAFw_9hodaHJ;+NqE29FAVRKF^u|#jf$&S`NRhP4U}W8^5g`^4nS{zpd@^+gdfh zt-bTxT0+0Ajr7}EPrt2Q_1jupzpX9y+gfR_otDobNv;3=Ipl&M%MfH4gDg{!We&0| zL6$YhvISZ8Aj=VC7Y13*Aj=hGxq~cEkmU`si-Ig)kmV1u0zp$chA6 z(I6`pWW|H5M39vXvP%*&Jz41dd8b}&olL*2GwZi?n*FxUx!=|e@Y}i@ep|Q3Z|gq! zZQV4#tvl$qbvymG?ycX}jrQBR>wa4+;J398ep}1ox3wvLTWjODwL^Ye3+1=9U4C1u z=C`$Xep^fEx3!UeTkGk!wX1$xi|ezhWEF#~Qjk>+vMNDVHOQ(3*=0diJ;-VV+2ui2GstQMS?wUJ6J&LRtX`1S z53&Y9c14gi46;T+);P$TBxHKB(E0ODz1ljNep_eOZ|gMsZJl$!tsCICbvOLBZjIm8 zee&D7X?|OG&~NK@`fc4?zpWeXw{_S3wpPGzYajf!mcwsrQ~b8p#&2tf{I(X#Z)>~! zwpPt=Yw!HFme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{!}wa4+;J398ep}1ox3wvLTWjODwL^Ye3+1=9 zU4C1u=C`$Xep^fEx3!UeTkGk!wX1$xi|e z5@absHZ;hF1=;W*8xdq9gKSigjSjLgK{htX#s%5yp7eUQyg$n<2P^XHv3(-`4H)+q$=YTQ}No>#qB4t$^RwKKN}dhu_ww_-(C?-_{QKZ7r1F z)^_=At(xD~-uZ1Uq2Ja<`faVJ-`1}BZ7r_f))xD1t+dxp%jb|eylUce$lM^iA;{(h z+58||5M&F3Y*COc4zeXdwlv6=1=;c-yD`XC1lh_UTNPxhgY2dtTN7k!gKS-ptq-yd zLAEi-HU-({AlnjTTZ3#{kZljL9SND9EOh?7Q?Is8rr*|?_1iklep~0y6B+7!R7wej29A-}DK z^4r=jzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp_1oHFzpa(_+G+V5vXfU$d=A+aWH$%d zEkU+B$Zid?+k))&AlnmUcLdp;LAE!@?h3NIgKS@r-4kT@2HAZAbUT^J_xc8gY2Uq`#2%flZDQock0#F$@JSgvwmBr*>CHd z`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6>`ajT8DxJ2+229-PmrArvU3TUo-B0!yi>2XPNv`1nf2Q` z&3;?w+;8g!_-)+{zpY#2w{@TVwr-l=)*bZQx}APo_ttOgM*D5ub-%3@@Y~u4zpdr) z+u9Vrt+nyn+9AKKh4S0lF2Ai+^V`}xzpW+o+uBIKt@ZTV+Eu@;#r50TV!y4G_S$Lr z9Fo-L-=9M+2(k=8mNCdO1zF}G%MxT+gDhK+We>6(L3Uw~zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWY zEuTY@dDX;U4=EL7rGunZl~YYz4hC=(SBQZ-EV6J{I>SN zZ)-XHwl>9YYi<0tcF1pQq5QVC%WrGd{I>SaZ)*wtwl>mlYd!t8cGYidas9To*l%m4 zy>?nYhcx9?6Q4tx1zGbTYY}8EgRE7MwGOg2L3U-3wGFa%LDoLVIs{qAAnO!lorA1P zkaZ2RZb8;P$a(}>&mij+WW9szsvzqVWLF1S-yrK3WY+}QwL#WDA=8tE&YySc)z-=M z+d8v;Tc_D?>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6 zwbEWYEuTXM@T!T=Ap?VKP>>A{vLQj15@bVzY*>&D53&(KHZsUY1=;8z8xv$>gKS)o zjSsR3K{heSCIwk)kWCJ$i2I{kHD9-_{EF zZS8~K)^hl5ZHnL4+W2klkl)rq`E6~N-`1-6ZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o z-_}Zd?X-LjnZv6lK8MT=vKxYIUXaZXvIRl5Fvu1K+2SBu5@bt*Y*~;k53(DBY(0wmQge3bHjpwl>Jt1=;!_+Yn?MgKSffZ4R<6LAEu>wguVtAls3U>B&Op&pY*M z>ty&*IXoo2tSbMCiw1N^q`hTqn$@!Psjep@%qZ|e^FZQV}4t$XXYb))^Z z?z-RB3ixg9gWuM2_-$>9-`3jrZS9cX)xpN|3!8 zWQT+7wIF*v$leIDH-qf0AbUH=-U+fJLH2Ht9SyQ$L3TXI-V3t#gY1JK`!L8p3bKzA zGCf)7{CTHdZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB`EA`azpXpyw{<)Hw(hOp z){XYty6b*hE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK&tLC@0cYa$-=(n|zep~D5 zx3#N&TZ`+rwZ(p0EA6$@@;T%LubTKA@=1_=8f2dZ+2=uaGRVFNvM+<|t04P2$i4}( zZ-eZ+Ap1VZeh9KtLH1*i{S;(B2iY${_G^&+7G%E%*&ji6I>^oh*`Go7SCIW3Wd8)& z*&sWYkm<=n=g&L!YU^bBZJk-at<&tcbs*wr;fF)?N48S^>YUeel~_4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz z^xIlbzpY*M+ge<|tu6N3T4}GHmd_zcSN{8R$OS=`A;>ZYS*9S%9AsI7ENhTu3$pA% zmLte646>X-mMh3|2U(sV%Nt}D1zElz%O7L~f~;VW6$-M#L3VMF6$!GUK~^ltiU(PV zAS)SUmn39*ve5bSPQBVXnSNVm)^F=H`)!?bzpWeKw{3( z-`4H)+q$=YTQ}No>#qB4t$^RwKKN}dhu_ww_-(C?-_{QKZ7r1F)^_=At(xD~-uZ1U zq2Ja<`faVJ-`1}BZ7r_f))xD1t+dxp%jb}$ylUceNV6bo9%LlkF6f~<3pbqTVrLDntEx(8X0AnO@qy@ITFkX;pIeS+-jAnO}s z{etY8AiFlm`X^+1ve5bSPQBVXnSNVm)^F=H`)!?bzpWeKw{w@h1Ae)_#>B&Op&pY*M>ty)5;8qm==^!7UTvLBzpXRtw{@ERw$8cV)(!C6x*L95x5jVlKKX6k zG{3Do=(lw{{kHC{-`0)x+q&z1TPxtVwGVz<%i*`RDSlgP9@73ep`#{x3$H7TPy9g)ABiFC$F0L9I`9OZVs|rf^2t?-5O-K z1=;OEwkOE$2(mkaY;Ta=6=Zh@*}fpVC&=y%vipMU{vdlG$Q}%`hl1?kAln~gj|ADH zLH1aXJsxCF1lf~8_EeBPosj9tLg&vr^=j*6`fZ(Azpc~kw{_0_wr+sm*4^;ix;1`V z_sMVTrul8%LBFlr>9=)n{kCqj-_~9C+gbs?t$py@S`NRhP4U}W8^5g`^4nS{zpd@^ z+gdfht-bTxT0+0Ajr7}EPrt2Q_1jupzpX9y+gfR_otDob2YA)Q=a7Rz_DqmH8)S!q z?71L&KFD4OvKNEwr67Ab$X*GuSA*9=)e{kBfC-_|+z+qwaMTX(~6 z>(=;f-6y}To94H52mQ8gr{C7S_1n79ep`3lZ)*kow)VkqYdQS3HpOpiZTz-&$Zu<* z{I<5sZ)?^3w)W0%YYF|fHqvivJ^i+J)o*KY{kFE)Z)>H!c3M7%oZwXxpF=(gvQLBT zvmpCC$W8{?7eV%AkbMhs?B^i+CCGjavfqO2 z_aOTt$W8~@nIQW!$o>klzk}?bAUhjm=MpkKS?K(Er(SKHOuwx&>$i29{kG1z-_{NA z+qxTmTerq<>puBy-88?gJLtD{JN>rqt>4y-_S?Gaep@Txx3v#`Tg&0MwJCmEYvZ@I zLw;Ke<+rt6ep{>Nx3zbETTAG-wUK^X>*=?(tA1OH>$kPVep@T;wbSxBB&qGcKZjfp zWEp}iV~}MEvdlr2CCIV{S+*d{9%MO!?7|?+8DzPFEO(IQ39`IFc2SV!3$pw{Rv^d< z23esXD;#7O2U(FID;i|Qf~_-)-Mzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5Z)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4qK8Gaps)@fI zQYy$w2U(dQyEMqk23ffvD<5PPf~;bYRSL4oK~^Qmss>rLAiFHcss~w(AiF%sY6e-Y zAgdi@b%LyJkkt#a`a#wp$gT*ohC$XS$QlP(lY~r97CL|4saIPk({Jm{`fZ(NzpZob zw{-*jw(f@C)~)f|x=(&vH_dPB4*G4~PQR^t>$i2I{kHD9-_{EFZS8~K)^hl5ZHnL4 z+W2klkl)rq`E6~N-`1-6ZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o-_}Zd?X-LjY09f6 zK8G|5vgSe7BFI_>S*svx9b|2S?8+c(8)WT*tbLGm2(per)+xw32U(XO>l$R;f~_-)-Mzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5!Eb9h{I)j5 zZ)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiLrM-4qK8Fn8 zRTG~>1_s%nAR8QHLxLAWFvxXWRQ&tve7{{CdkGH*|;DZA7m4PY+{g2 z3bNE7n;c|Qf^2G#O$)N=K{g}EW(L`;AiFNet`D-=37MWObpE_kueMI6-`1J++d9pD zTj$(w>jwC3-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?;ZQXUhtrhUw+6TX_A;>lc*`^@d9AsO9Y-^Bh3$pD&wj&|alZDQock0#F$@JSgvwmBr z*>CHd`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6cc!*p-EZsX<+t@S_S^b<@!Cg|awoOBAStO! zQni2mr*VdSNe^d9;SZB;`rUnCtw1y&x%9((blN1vVvR zNUD_mRFeMux)_$NF#h#t@Fhdi1?TuJW6PwZ9RDLt|D%6@2hN^LO3Imue=-TbDLJuV z$IoXv56`=Ib+)9+z(UC7s3e9g(%rhL^u z#}0hW&)2K?sy{z(`J|+hd>w*TlTt^F8JLWFb;m9!W) zd2H$kessjx^FP{i?1iIt> zFJHS496Msvz~n9y2TmHOpRfK}#nExZ;ECfVjT@Sp+;QOG5o1%wO&XruYTDqG(fn9b zByDJQaQyy57wC`Y^#7*Vo~{4-<6RX>9awklf{f~<|Cas^q`w2{??C!Hkp2#&zXR#- zK>9n7{tl$S1L^NT`a6*R4*Xww2mV)||1%spd}M32VtLnW;PZc#GyC-UU!Up!^XLCO zWcvJH7_*?y`}3jC%FCh8`D;-KTcOYYyP;nXIE?@N`Cp%-&wnOwnKFLh#MChl%{F3;O;23_Lq1(W*!}#;`6VVT*|Cas^ zq`w2{??C!Hkp2#&zXR#-K>9n7{tl$S1L^NT`a6*R4*Y-e4(Ma7J}c`Ztv(9tGqb*{ zA}jRo^7UC?-$J2}$NJ2!&%(K(&;9z0e-ZTW`t>K`!T(uTQe{*@RaC=esE!)A95qo3wV{8#!ahuo0WE8C$Rw+prxw zuoJs*Gj73d+=|<9JNDoX+=;!o3wL85?!mpd5BK8%Jcx(zF!tjSJc`HgIG(_hcnVMB z01o0AJc~nk4$tESyoi_ZGG4)}IE>fuI^MvWcnfdi9UQ^CIErI9j`#3BKEQ|g2p{7F zKEbE>44>m9zQC9G3SZ+Je2ee!J$}F`{D`0MGk(FZ_zl0~51hss{E5HtH~zs{oP&N1 z>jGpzM(EpsG9wGJA{(+J2QEZTY+Xw;0iQEBQ!=6G(|Hs zM+>w>E3`%%T#2^OH?FmZzHg}`I-xVVpewqeJ9?ledZ9P;{Y`yvHTt3-uEDkFj{z8n zK^Tl7NWoAH!*GniNQ}a0jKNrp!+1=cFP2#c`C01cIZo(R@#X79V25iJ8Y{nLB#Wrlm4(!A(+>BeW8@J*% z+>SlC19xIC?!w*JhkI}@?!*0f01x6JJdFK#1drk|JdP*uB%Z?4IDmtA2G8OUp2PEa z0Wabuyo^`yDh}f{ypA{UCf>r^cn3%DE{@_Dj^jPNj}P!6KElU1flu%$KEvlYi7)Ua zzQWh|2H)a4e2*V+3P0i}{ET1lD}KZ8_yebL27lr&{EdHb7U!V<;lBVGkP(@X8Cj4O z*^nJMa3OLc7jh#H^5P=oLw*!MK@>t^T#Op*m{da@0gE)J7fDMLpC<16+ZIXoSXSf~IJO=4gSIXoc2jgDcS%?a&?_ z&=H-`8C}p7-OwF9&=bAT8&{zZu0~(Q9BjWHOD zaTt#Yn21S8#bivuR7}Hk%)m^{!gaVFvoQyAaRcUIJ{Djh7GW`#U@4YiIc~%Xti&p; z#!Xm*wOEJs*no}Lgw5E3t=NX`*nyqcg`05;cH>suhTE|Rci>L!#a*}?`*08L#eKLR z58y#Ogom*okKj=}hR5*)p2Sml8V7I?&)``c!gF{YFW^PIgqQIOUd3U&hS%{1-o#sY z8}Hx<-o;TI!*RTa_wfNf#7FoTC-4bA#b@{&C-DWo#8>zl-{4z(hwt$NPT@!VgrD&X ze#LM29e?07&frh{g}?C+&f*;O(64Vi&47%^gv`i-tjLD!$bk!y6ScVb4bd>{YM65L?&cL7Gy;>WJeBMh@8lU+{lBxxCr@>9|celg-{q5qX>$k7>c6= zO5zeEqZCS`3@$}kltXz`Kt)tSWmG{`RKsPcjvBZeHBk$-Q3rKV5B1RiSD+ypp)s1E zDVm`LL@)HlRp^7O(HH%24X#Ch48TAP z!e9(R3Wj1BhGPUqViZPW48~#{#$y5|ViHm@8B;J7(=Z(~FcY(I9j?c0%)wmTfO(jY z1z3nhSd1lDie*@i8?gc_u?nkk6V_lY)?qz1U?VnRGqzwWwqZMVU?+CrX550^xD~hI zcI?3&xD$JE7w*PB+=F{@AMVEkcn}ZaVeH2vcodJ}aXf)1@f4oM0UX3Lcov879G=Gu zco8q*WxRq{aTu@Rb-aN$@fP03J2--OaTLdJ9PiCqGD@K|%HUFzMLCp51yn>O zR7Mq4MKxT8>ZpOsQ4_UL8+A|@^-v!Ta0MEo5gMZjnxYw+qXk-`6T!lWk8hz0Z*Wg<8#{dk(APmM3q+lq9VK_!$Bt~I0#$YVQ zVLT>aA|@dflQ9KTF%8o(12ZuT*Wr51#vIJW4VZ`dSb&9CgvD5brC5gLxDhL`605Kp zH(?FdVjb3F12$q4He(C6VjH$&2X#t=f=BTf9>)`S5>Mf29Kb<5gJ*FF&*6EzfEV!+UdAhU6^HQ}UdJ1F6K~;d zyn`cn7e{dn$MGKC#|QWjAK_!1z$f?=pW$X{>DEzi*rcI!u>}EWJD%pMiyj6He^Q*T!@^=h1|%4ytoMYkRJt5 z5QR_}7o!M@q8N&!1WMu(B%>5cqYN%ZS(HP0R6s>kLSA4Y|O!2+<jvKK8E3pczaTC^HE!JT@Hee$*VKcU1E4E=f zc3>xV;bz=|-MAIE;dbo79k>&FaTo5!KHP(QaUbr-19%V*;bH8@BX|^#;c+~HC-D@X z#sM6}Gk6w<@Eo4U3wRMP;bpvnS8*7x;dQ)$H}MwU#ydEIcX1TQa2)U9eSClq@ew}8 z34DT2@fkkHNqm7X@fE(tH~1Fc;d}gmQ}_`-;b;7UU-27$#~(P2Gx!sK;cxtdvp9#O ztlWQOKt^OjW@JHDWJ7l3z=g<(T*!?)$cu}R5BX651yKlvaWRUZD2kytN}wbzK{86A zG|J#oltnp|M+H z7kA-q?87~{7x&?QJb(xB5FW;UJc38@7#_zHcoI+HX&k^oJcDO(2+!epynq++5?;nD zcom278eYd6coT2oZM=gcco#=;49D>v-p2>{5Fg=VoWLje6rbU9oWvLS5?|qKe1mWC z9lpm8IE5ea6Mn`o_!Yn5cl?3VID6lGBkMwXo99_hURF2mS~06XoD-!7VXd;9ncY-&>3CO z72VJsJL5w53WXE^usl{7X2{*12G7LF$5_XieVUz5g3V47>zL)i*Xo_37CjU zNX2AK!BkAcbj-j^%))iJ9{x}qDpqX&AT7kc9=^ug8Wi+;EU z*P=fLU?2uzFoqxnLop1)F#;no3ZpRwV=)fnF#!`X38|QjDVU0Bn2s5kiCMS~*JC#3 zU@mUJJj}-eEW{!##u6;WGAzf9Sb>#Th1IwTYp@pUupS$*5u30XTd)<|upK+F6T5IT zZozKcira8I_TUcOiM_ZBcVi#!!M(T-_u~OPh==en_Tv#eipTIcp1_lM3Qywz4&oU+ zi$i!0&*KHWh?np(Ucsw4jMwlw-oTr93vc5c9KpLdieosA_wYVGz=!wV{*`iaHvOKvb^iBBt^ec8fBpUWv-hv4H?KaC?`|A){^v33zZQ-EmM?O_uiIwVd(jvlakb=5&ZGk|HWUl0)AO8QEecz2NVeG`%x71{i5VAyz$U2s6#f+s)RHmp#QnXlFEs;oBOOYr= zAu38)(k88>KGFQ%*EzRy#;XWhXXO#PlcAqisGuC~^ zxzBj_nczMX-Di^fEa5(r-DgSnd5QZhTgfl>f^gt$fGOF964| zF~BU%eHCeQ9Zj&(z9UQYT_*W1m;1aoeV1vLXp;j^1e~rFT&0=2wON4O6qxSwa($PT ze3!BAGQigOZnNJ<>RTCm-}!lyX1G1#BP5`ujkclI&xYIo-S7VDjwNr>o4C8~)4Shi z9gZ;HQC;xe%WQ}{+9v0|8xzplcf3Qbzwg*ntfRXJgKdaqy8BSxY6k>3JAY4M9vepR ze;Qx9qb+(Hzq%t%ICo5JFEC2{r*Y+f8dv>?5nwHfytg>>jsC+hXXKxKeqRFI<5Sc* z#l4LzVjJg8-UW|wdHdCk#U(}D9!7wL|K~9jOcB2yuE8(5m-4|4EyNu~KqXt3QpqY? zZTDH(>RBJFX;-+KsA1mk^m5-RADrf%MlQYB&2F)7mSF>}cM%(CVPRJ8!VT1M`z~tl z{_p#bp}o6fm5Sa((MM8vV?*sSYhVF=&fVk7EaigpasGF4b_&iIj_C?_-tx~FZePh# z-KYOt;ydZSugeG5ac)hsJ~b{&sa(5q<$8T;UV*QB)$m>G<-b-bwUUpg_o-Pvc!GOm znqU0z3ZJ&~58?cSEV#$~P+PcUU3j=ntd{GUg2Sy-&vV2M6dZJm76pfWslDi?%PLi= zlz%^a)yTin%iXPtw!n>1;qTwlEn{Hs^QB6*(2dGD$-nmk#kceF!PRY%JJ%k|v$eBo zQ(NpFYj=O#p%i`ud{+xU2tIJ$$ zB7D_F_?nCG*Dk{S_xHm6`j032g5z1{+m2gz`;YVSgoG!eo`|ww|KpN)jt?62c7?Yq zSg`+i0$i{9=I}2k_&)OUUh^XSrHk;zl;fv6miMT9es2E#bLf6h@cVnLi~F*ITc`W( zSH$_eWIlI4%;ozjW|Lif{Qf!a>9N>+|J?cU&rd==-(!8SuPEeuXmv-A|1rd|Sbme9!6bsV>&7Ap^3* zTY7GQI}>!#8w7@*-BPgA+*74n=2UhY@NUFCPyhEu@>&$Vk%r1f8Z1DlBia7cxs8OKy^E73P0Gt(9phog2Eed7#*#Cl z5X15lACZNa54el$aPL7~?r7nIYQYcc_uqfN;GkNxXmP!Pb1F$1qYS?u;fh+ICrKlJl&U_yJyHhKIljC}!+qWv%ntA2IoK=R4T8_LXn?zR-VJcXcr4C#m+xS4 zk!P@gbH?qBB(Hn6; zHUIZU8Z<0=BUR4Zh`Yki2^J$4KPOlM|L5Jw7*zB|+ye8zH?qBB(HkkRY@|WMqBm0Y zyp6ak{G4EcdGT|C<)m;?aC?A=Y13wP6?h~4;C zufCHOkum7-FZ=m!N@6#Sik`FzZa0mDN!#A>^{wCW-CW|`4VkpcMeL^Vq;2o`*N4ma zZc2G~Lnf_y5xXfoY1=z~@x>Q>H>JJ1A(K|Ch}{&PwCx@9zI}@Cri^ztWYX#uv75q^ zw!Pzq&wl2+DeK)0nY4yQ?56OfZST1C;Ol%hmtr?fik`F-x0@!yq%~+b{iTaMHs!p# zA(K|6h}{&Pv<3}NteC>@O?mHb$fVUMVmE~+twF-}2p5^zMdCTB9O%Q+U!EG<<32bhevl_Y#R)cb$9Q zZ0UL4ESDE{(dSCDt4F`<-zc6a-N)JI%4qk#<++WziSll=qGzLpr^xJhc749lDg_&L z^W)uURnJBX&y4wg*!DfEdylkg!A9M*csE+pv(ds6;_mWB<40PpV54p}ycvjyB2ZY zwZ{VE-23kC{esp*G6oDwX`L~A_{{K0p5wYCFVY>?5Vsf{V8h(fu(kVYxcgK1sPJ0N z1>=){RCv)Q^xRSTujL<=|62Z0`L8|ZUYo5oIVf*tc*^;Q5)$Ng(%PMp5$;bvcK~K^ zYflb!ZVitc>VDU*z)i7R+%rM%bGJ#I9PDmW&2yXJyl{7$EcaVJqkU`N0XE^>E$U1T zbGNADxkXrB^aZy#e_zQ~*R8;<&G_4g_Z!(SbJXYwDcv*1XU+_7d;X>Z8|TGa8yoL_ zH4KmaNZ;c>${olAch0-J!x``90k5>>Kl*sE&yH7wyKnC0nYN=wxk0_+{Otym$qTl& z?xc<@JZI@lec z|IG&92)Mvp-TgNI<}iw3?#TQ__*h`9`yr#y#$ES$H=aN??(e^gY&@^U^J@>eJA#cj zEWB~of!>WLl8yU&@FE-cFAV~H8*fy2`-^&qOGYre!DIsD|2)|S1+Do4!G16 z^L1{+xTmAtOrco(KhgO5)V(K?e}Ct?H%`tDyc?;>=HgiC{9|>$@fYeghSZ=SuqjkT zgf&Avt{at^F*CgX`8NrSbn(DVGTkxYb?N+~#p}}f4Tjg03wqUmEx*D1*YX?8f9 zcdDwKe+VHV?!0$#_j&ZWpY#1EE7JWMm7C1&Lo*IalS4b z?f?w;mA*}k%ESZid8r|&v~LqQ;r>S`*f&Gxy_|sao?jdOdz*g^6O~|T?#a+@>^FKO z8p_|MEzUpCz$jPDH@ZEHc5|CwQmjSsob5Zq)5CAF>4jbs!JEkm?oW5Ok^a7Wd%Zj4 z3BIp7x%-ap%W`AZz@5dRHr6*m1xDfD5N%?81Mt>Jjyvi*@qU6E#`>2xZTfV0DSNum z9s}?#_u=lFz2JU}_=Q5>1Ao}vF2FsHy%K=G1A;Gczkrv2n^IQR1=9lXy9H-in0v=K z0FQ%vPi9j)9`?lJxpYMk5{MAc!7ni%I)|)f>jZPUg=-jQ`Yi-xG?{a<0 z^_gxH{sS77H8OKTO6ySrGsYyEVHN&7!7?!!vdqB&uCa+H1ZjZ3XDcR zqfvp;*k?2@FdF-e#sx+bpV6eiXyP-P6c|l?M$-bLsn2LyU^Md?&CVL`9hGKhPmJ$$ zjvAXW+ASJy95U3M-x2+WXSge^hWB$TNL+E}&VOZ42CljXsB`8JcWOtwvp&XWxQC!H z@_TMj>(#GUuYNzbRyz0ayGPaCw(w{;(i)HEP`52Nc=&FQk?uGK`XBC#Pt3Jh!zZNF zubqPAp*?&D@85Nv`ynsfmeux0Z%?XOLzk6ab_=|Xe%qvYAY z18sKrjnT6UeJAGOK z-gU;082<93A6~b)UVNKV?M~l!H1*oKE7QZP{&4Sm)8Bi3;>P!%s#0>>=PMWW_~%r| z-Q8O)PANIO_P&Ov=3jAS^o9yyt2RG5chR-We{WT*%CWL-doTF9Y3F^*ZkTpYnNnBw zTM+l;iS=*2S)=I#liN>wy4!-gzP){L$CYW*XN;~e&w0cFko6>$h`uCGn4$pXfeTyd7y?kx!@cUldICIZWi~qi6Tgg^+ zK3G@%WStjlO?z&~&F^&oyY!0hZ_Q}DtMTHmQhtwmIC1le=xKdE9-LA-_1m|vm_O~O zFFw6__?ri&ube)y$*tS3+mu(L@5vV5Cw;Pg(k+wR8Od`$N}Yec7JRzsyN&KVHF4)3 zmDXo;#_%z9>)>+ABOl+kxnA@GzvOJVZ&!BL-J45Q9b0$7jMjBu$hJc@CJm`n_KUK| zzUcg3XyhB=Q(pY#)JtjqzVguDhaUefrR38~LN_07-QvR`hsLJ8J?Y+UIWI1%8h*?8 z+wXtjt}j;gd9%x|7p~kmIp& z!;HllOZJrCxoYj-pPq4d<-$8UY{Kl4_qjXxp!>vIsBWG|WYjHm*~$ITFgRm0CM0@$ zr^wAI@#%-MpBp!0U(*3^)M(Rx<%h4l@u#((Tc+iE&+dNai_eZ8xv%L*UzgZBr$fxm zwdaP#JeaYg&eS!(POQDC?Bf0HF5Oal_@Vcbzx`o+sco<4CVk!h{V`p$EAO3=vuxFY zluuXH+FS9L+6Qi3SLL>}huYrw{U@ht9&U52R<+2$X8ho<+dX2}$8MFgqJsP9M(p70 zZJZWx@EVqnYCtK zUpFN3#WrPbN-zgyKZ-#nq7Yjy5`Z6tF3j1?1rbCHN2wX z6?c92^J`P@to~%wJBQczd9%l_X_v;0wPX^^<)rh5ncHDdetDOGy?-gm&eyJ~)) z`~B8I&vn^1HGW!l-D?sSr(OEUw)nfU7wrD}<{G1}U;FTaE>W#Nxa-=+tE)5`+o_;k9JoLc&K07DoyKq`O>LxHl=*=diTqoxa^Im?v8nObn<7ftgdzZ+J&8icHSOdz0>jce@f({t0f=ABkNpYz$XCHmaD>4~zduKDoO zfV9A0$_qDqA@V3bHU0xa9_>x6CQU+XeYVNN+*X?;}n2Hb1nL0C|`d3#)vR-P<%})Yorbe%HVM`|0md zgX`WpH!UyYtu;4fY&-s3vwBCr%KPi&*I!RMbmru-xL^9*{n*G24_{L4-vb}_dF!7u zkHo$7K+<;$$NzJD>A2;6Hk|o+X^TmB{;>0{4|i>xa;p85oN<#oZ)jWl-k|1x9SL}Q z?$s@>es^Yi#qY;19{J(U!1CMUvksN{yvd=Y*qgV8yxBBu_1ZsMT{Y|7SO3^tZ{_6P zTZi0t$D)ApOEyGDomzCq!LR0a?(}8lDcAM7t7+Ham#gRqN}gReIuss~%iD^w;bvtuNX3)x&X}dfn3Q z*UZT^|JYx-_LL6a&e%L5W>JeN(MQJK^~6V&%5JOr)Y{CSD{t*M@S#pmS9~z>lGSYw z?|k>GOOnF7ep9ag5BH9HD*J)O!+s5V@U!**L~NS<#>bt5AE~(R>BoP!u5Wi-xA}=v z^sLqqi4BdJeN&T<+qVd> zxb&xfH}*|SAN%r>W2K^oJl4I>Yfo1?HEl(!)ei)%zQ6Oh)sK%KRAYL4pGAM$n>3r;r9N4apA8|im!X!3ztUj>=%5h=d!jHSKju-`jS77pLfTHlP+2J-odx7 zTs@@M!MB1-PaImh-A@a*hmH88?VkN9aZg@#Z|LS(BU`>ZdQzR|e_T>>PV=K%|Lip9 zjes(hmwr91-Ncc9yte1h$Mfc`e(#Q^y*h6`a>MWiFLzko{8+aSzUp@0Yq6&)3?J5W zNSO-#7FSt%`LTsd*ZpwY>AdV4U;Fviw|>a@H0#o)8y=2J+uEsa!)IRZ)w%9tYwGUY zw|HpV=0|rmd}he;_Xl^ZaeQ0pE&sIYoE?1Su7{hiSp3b2wMm03Z>%z9`I7CMLQB>; z*zUvebGLmwE&8sC*Y<7H{lu)9>DzmRz0={z$B|>zEa5m+h(BYt=h}i!*M$r|rnN@_UZmy)L*?O7P}pLq2Z%LFbp2Uh>u6 zkKVkl^YVrZlLL14uUjeQRA#3;df#Kq*U(3FIcO(I5=K5%eaeEBKg?Rx2k zx~-0^eCw5?byj^}^ZM`4q`W@5%-%05^uMD=pZmTXJ@VOCpQ<_Jr+J^A`QV1qtp-h< zxxU5y)9O#mO`KZpx%unkV-BwRu*>f!?tlB*LG9PhNUieDo`cPQcyV7!rNl9h%v}8Q z(j$Z220p6z^euNJCBDQO6Q8a%_wCz$ zTYBHDDs%3Ap=Ad}2~=HU9n9%xhgrje(U3v+Pw4r|7PXv zulhzt<9F7Tt9|QBzq=E*=bhc-cinhfhhsN>`|T|wnl!urn_c(T8F%f1ov%#USEudH z_>-BPXD*0IUH=DuyZOTB@0eXPo>}d_Q`SAZFM1{UN>#u6$4lFy?6SkrpJ>9KiZ*2r)pKY)u>bd$5O zS(#~r>sBb)``@lD$Lz}qsqy^Q?FTE*S<*51gIm_GfA{NicRe65)%{-D#a6XWEA&Cu zxLrD&zX9(uui)18-1#iD==0vtyKE}BVQIIXEc_sNPrr9d-Zf0YmOf=$@~vpR+wcxS z!8Z1}7ds0dO%Wr}r9+5YO5qi#5bN#k{T}y2mDwEkI>4MlKU%nN*u#!JT!_Jg?Eja? z@#p=^3)nK*UjuqPxpGn0QWD+hnvlEFEN(OcJBe@n59lPTQ%GL z>)>b1wk$I1w8CufTC?7p%#Lm|8?oE{ZvKAvtH4Lxk^W?sd&2!|^D}1iLISL6Y=A8* z8DNbo1lWe^0oKMnh&!4ESdW$gcA$NLWpoR$<2?f`Ye0aV85UqUnE@7)9bmI^0<7Hh z09!CSz*3(HuvLo!ENw-AZCM*&o!qMyd$$Ex@7)1*bbo-2I1*qdj|Euv3HQ>5Tb1U9 z1X^-zpv@~8XjLl&+Oq0_*0^4vZD%ut3Yo474*7 z11%@V{o3mEK$|r?(8@g%XbTnvTIz~GTeUXO(l!O!mTiI7X?LLQ-5+SZj|AG$V}Ul} zM4+8K9cbAh?xoMzAj>ToWXTnRY+m&st6DF}mNg5q#w~+vL;E0W(=Et$^bE2d1A^?p zuprCG46@@BgDfj2$j;;jSyfMDA(EZBNv2HSy&!IqH|Y{zqhEo*kLotYnOIg8vcwyp@aS!;u>+@@e#ur1h9 zcL&?5{lS)YB-pkb3${)tf^F~VVCx+cVn<^_Y(&WrJ6S%&va7o}truds%|a}>Wr)pd zA7WLzh1jy5A=Y?6h;0}aVr?=*Y{$e9>yZ;;2XaF!V|IugpC4jbi$d(o@({~e8)7k= zLTuKy5G%Jk#1`xivD70Ww(3}jrJV?|EvG}QlMBV(m{99oGSrTi54921L+xbUP|I!> zY9TE{Ew_EBC3g$8c|Aj|>VQyNHZ0T{XNKB_iJ{geC)9T2hFXu=p>|+?sAVh)wd2b} zEo*J4o!J;_Iom=lW_PH~+8=7=j)dBRW1*IMBGgu$4z;w9FxwInW}Qlg+1~PD*1LL` z9jzN?BbtTT$@DPGZXaeL-NG!lXP6}q2(x*^!mMg$m@S(aW{q>gY(s9CwV54eJLZR3 zk40g2V0oBjtPQi{8^bJXTbP~M6=pg6-EXNM3A0(p+`q*=5oQZchgoV!xUGr_x3rSs zwxxWyb*dh2d+UZFEyZO8I(>#;W64r~m!jBVj|d{?+-?GLvzhr=!BSh&TU2)9|M!>wFM zge{1Pu+)+fwyJ!DrB#oxEp;QTQ?m%$n;v1k+eg^Zt`Rn(r~9`&{Ua=UScHXSMp*8| z2use1uz9%=R&{oSEt?-7-=Cnk(QeqY00xAZQlGytGX!CmMwShtgMZ+4I3k^&9+F}u`AMg?2ohq zha)ZHSfm~QBhs=?N7|X-D9ee7vKaTzmu8iZvU1g9OKlcqtJ0$^t$mbj=^AC7 zdPdpa{!!L@Sd<+d6J;YNM%l?JQI?$>Wg)YpEO&mCB`=DydCQ}$>e?t_?rO!a7+RX5toHH)?d>Cu+j zKH64wjkdI&(YB?3v~?O5ZF}9zk-aBI+tDe}HX=9LPR@$9?D_8P;6>4vyFA*G*GAjC zjnP(hTeL0P6>W|8N85(O(bnczwC(sK+IpOhwgbU2mJt(U$CG0$t9*=|sTN~7bz>~1 zS&Yp}kFj#?V{Ad!7)$LLW2^edSlX}{+cGA`I!%nRy;EYWcW#UwofTsv=EvB{g)x@B zJjO!S##rvg7)#z3WAk>!Sk?V8w(M|>H9i(&8~%u~Hm753M{un5h>5iW$+4DEKGu#` zi?yt}v390utmUM~T1@*`o7FYe%Jq!31^r_!by%#e8WU@26Ju@5lvwMO8*6)K#ai$A zv37J}tc_S6YbV#lTJ}cw9{09b%iR@g$@^n%-r-oQdMwtK{Sj-8PsiGZ;5cg&6K6Y; z%BbAj;@Kb5gX&|ai?`fA z;w|}fyv++vu&OZ$wk$cp8kbM74b>8?P2B|B(KNw&q$k*cb_tfzHNlSGoM2h~6YR`w z36?X){mSOV1e-M_!OG<(*n(LJmO4MdRxNbzuq;ooEo&02)5Zkb`+kD;-j!fS_a)ef z!wGis#{|p%Bf&yWCs=N9q9w;9+PvgMt6DzMmQ_o%#&r{IL(@cSlb&ch+9g_#u8DTw z=0wZrpJ>N#OSCNa8vL2N5-n$n`(4i5M4L4$(aOzFv;_+jEp>UKty+_4X&V!5%lnDe zX;-4{-Ir*+4=38u9}{iFABlGIpG3;{P{^c9#P!&i8eKyLA5pk9(2#^h>|( z?$p0ai#|SnnUB}>lYK7)``2Mr-FtHGJ)nSl+;=v)7m3{p%5B5F1<}R5(w9=L z3*O79cHMox+fDIpquRM!?`%=M(APE2ef@oln&-a$wM8fQe~tvD;Mnlt-f(gMUyJ_} z>qmS(=U(y-aNlw7Bl)i16bJ(!2V3O-9bj|aZ%EAbtTg@K^TUBvX#pBQm_xax0Y;Wd}kp&AkN3!Tiq9I4`iw3=H9-z zfVuIxfZ@D&Z;Kyey)53n;qGM#ge4M|L>T_%l6QN_gq0-h62eLmR+_Lfgq0=iQo_m+ z=0bGA{ixt!XM8_;xwpK0F~T*BNV*H4`ytC+!+iO}fNPkntK6smdzhb=K8Ek%R}Wg^ z_Y{1$bH7yYuEFqsFUYQTKX>O}3wGBqY5wnpxNDd(|Fuwe4b$bn7Ur&DuKd@+-8D>< z|5}8*hFS7oi*(m8MgD71?i%LDe=XWw!{qp{#kgxonEzU=yM}*r<-Zo^uDSR3&R&am z*YJLq|9c7U8tTq}Ezw;=TK(6O+%>$1;J;SFUBf@Yy4(FO0q&d^)yr!grMIe8*SAciinB2Jhm(^c`!dsUYc7aJh3bE-f3E&rZPQWZzNV zJ{n(d9P0aSPanVj?D1h13XU)0yyJ`T9UuM?6V6|R|M+H%!|hkxiOYj``L^iW-%j5? z`ufg9dSCGLTYQf1>y5s1v(ZP)cj5JH9C2@!=o$;QU4TkI%w=x4+bP>Hj*#_qF*he{F%S z`@b$s{HFiAXB~rC_-l7mxb4|X|M4Ng1;>Xc+=BCm#Yzj`8;dx;=(ERH%6A<8%Syhl z<9(O@qwycN|FVjY`<;|R=7mR@e@q3(_iKw1_Llqg(iq=f+t`2o@!PTgM|Rx*k&WlM z|2hhM-+v@{2GnglH|jQ?HFX=$r@D=2THVHTux{hoS-0`Lt=o7;*KIu4>o!&ax{dXL zZe!)3+gMZRHdY&&{h3>VoN!folUoh@|Cm(^c-9L3)Up5mgH>&c+oyN+R*|qugjFW2 z3Sm_Vt43IL!tg8k-s7uD*ky#(BCIxHsf5)btS({o2&+$61Hu{-)`+migf$_oDPheB zyPUA*gk3?{m4u}chW`N9`?$66Fg#yi{nspmg}ZX+AIjnwEi z@}%2Hnr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ez&)m=L>Fx*O;er3X)+oxrIwalg)%$#b zS4+IC6=AIjyPB{zgk3{eTf*8A)}F9y3F|;uN5VQ0b{%1z3F|^wSHijxc0FO;3F|@F z4TRlD*iD4pOju9CZXv7}VZ8~vm9Rb@hLr{8Pn&w!m`vTq%<49#S+_Cgx{UpYgpDR_3}KmsWf3-(uyKTqCu{;?cM^6N zVG{|S1FtbsICQ+n8qE#+>Um5}@12hHfJ@x{W;PHj<{>$e?Z` zow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U)pQ$ur`u>k-9|_1 zHri9S(W|+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD zx{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zThjrP=S^r~*7adjJAtlMa5%`VP$$VRtU z?>b}?Veb&OnXq>W+d|k@!rmk7eZsa8_5ooZ61JVN9fW;E*vEwJBy1O9y9xV*uswwB zCG1neJ|paN!uAoipRg|o`;xE&gndQW*B*wI1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%h zq1#A}ZX-{+jil)|GN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g z-KE=THQh$v={A~Bx6zThjrP=S^r~*7adjJAtlMa5%`VP$$U(PP?>giVVTTDjLfAKi z9VP5r!oDNyd%}Jo>_@_m5%v>d#|itHuwMxKm9XCk`<<{q2s=U8Ny7dl>=a>t5%xD> z|0C=l!cG%*hOmDL%kwa-EHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;% zkwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7 zx{Z$1ZM3IuqgQnsjjP+}V%_33VGCsoQ8z-A1qKHX2vA(Z#xrme%azT!*B)y?WOn zEeUHySZl(rCaeu%*AUj0uy%yCC+u3nIuO>8uugBjST8G(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8p zT1~gnce;%x)NOR6ZlgVQ8@;OAXk6V!7wa}!TCSqM_7Nt1`sxounfWm z5jL2xA%qPj>^8!N5jLE#5rmB-Y!qR)6Ltq-qX`>BSSDdvgpDO^9AV=Ln?Tr|gxy8h zM8dKOyPL2{9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRWBTu@Gr0F&?sM|=V zZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21 z_S9|ks&1okbsJr*+h}RcF3xqxWVcuEI^-V0?j`I#!ln?GL)iU7;+ z_9|g3344vO*9lui*lNPo5Vn@Eb%d=a>Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGum zqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHd|MgP5Vn=D_XvBRux*5WK-hYC{eT3~N>Ne7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGumqiu8>J*3-cDBVVP z={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHd^H)GC+rWxP7rpIus;bqMc7}2{Y}{a z2>XYy(}bNN>|et2JPa!f%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j) zP`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7 zqa$@2?Wx=7RozD8>NdJqx6#s?U7YI>3%qb05vV>hqSUJMV6IQ{)u(H7X zX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKqlJe6- zum*%RB&-o(jR|W)SX0895q3FY%?Z1Luqz2mBkU@|T6h>%7MMS6>S1FtbsICQ+n8qE z#+>Um5}@12hHfJ@x{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$ zx6wnojfT=~beC?U)pQ$ur`u>k-9|_1Hri9S(W|Naw#+eox-BkQ`27SL_|VM7VKjj&;a4JT{_VIv6}McD0x-9gxB!p0DmNmv$PV+k8a*m%Mw5OybFcM&#` zux!HaCTx<2VP%2&)21FaCR4XDv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov z$gOT8(YlSS>o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`< zbsN2^+h|N5DTL(^c0XYc5H^*tX@osU*h7Rp zOjs^q(+PWouo;9sO4v-o9wY2=!e$XRo3JMcdy=rH2z#2aIfTt6Y#w3r346xFu(H7X zX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKql344LC7YSQH*h0b<5w@7Hmk3)z*iyn?CTtmDuMoDJuoZ;8 zO4v%mUL)*v!d4Nsny@v5ttD(7Ve1KdgRnOV+d$Y`guU%ySXp5Hw5f-U$<%GktZrkP zbsKZ8+em_33VGCsoQ8z-A1qKHX2vA(Z#xrme%azT!(CQd-bkE zHWBs?VVenim#{5_Z6)kI!rmur8(|+1_90>03EM%~M}&P$*iOQB5w@GKPYByX*j~au zCG0c8J|}D+VfzXDg0L?MJ3!c1gnjK{SXp5Hw5f-U$<%GktZrkPbsKZ8+em_33VGCsoQ8z-A1qKHX2vA(Z#xrme%azT!$QVd-bkE4iR>kup@+hL)cNm zz9sBC!oDZ$2f}_N>=Ym#{n!!^#5lr%gRAe zZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-G zNZm$z>Na{+x6!z|jV{)0w6tay=Q_lKE?kEM5Ee*S5MjZDg%B1>SQug9ghdb*NmvwN z(S*ei7E4$hVey0|5SB<-5@96>OD3!&VV4kAim=jzl_9JwVV4qCjNaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR z`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%@vb?5muY9RKn^IR+q4Pgw-dk z0bvaZYeZOM!kQ4)l(1%mT~1hY!mc3fO2X0zyNa+D9)^_#=1-e?*qBV+#?0zArdhW! z=emsq=r*#U+enRWBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3xpGy4$OF9nzAp zR)n=C>}tZ=5Oxh=Z3$~fSbM^*C9DHs9SQ41*mZ<;Caeo#T?y+(*!6^UC#(lyHxPCs zVK)(WGhsamyM?e`g!LxuR>Jyt7*-aTKW*w^V={FcGppN}X5Ge|>oyXg+sKA)BQ?5> zJn1%)rrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$7 z8-1tSXhPjaN9s1(Q@7Epx{b!wZFI42qop;wIM*S4-Cn)xkbZ>qCu{&=0}0C@Y!G3C z2^&J#P{M8_Y#3p~2^&G!NWw-Db~|Br5H^~yF@$9jmPOcD!p0Fcp0Ejo-AUM8giRzY zo3OhHo8)0wSz!LOsfUfp)NRbHZeyBt8*{GPNPuo58@i3u=r;1C+en&jBZIn)bm}&8 ztJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``THX2H|(OtTYR?}_too=HEbsHV2+h|YS zMz88N8dtZ`#k!4_*6iY3hfH>R^{zwiA?#kl?jvjpVL61|PuK&5O(kp^VGk1a5Md7! zmP^=l!X6=P24Rm9Hj}W&2z#8cS%l3d>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR z`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%d2z#BdRfMf3Yz<*+30p_ldcxiy>`lTp5cU>fZ+jS47MMS6>S1FtbsICQ+n8qE z#+>Um5}@12hHfJ@x{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$ zx6wnojfT=~beC?U)pQ$ur`u>k-9|_1Hri9S(W| z`;4&93EM~5e!{*W>`TH95cU;eUwar<7MMS6>S1FtbsICQ+n8qE#+>Um5}@12hHfJ@ zx{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql=r-C$x6wnojfT=~beC?U z)pQ$ur`u>k-9|_1Hri9S(W|XupbFKM%Yh;9VhH(!hRv_SHgZH?03TcAnXKTCkgwLuv3KnMcChj{g1GJ z2s=&K8N&W0EYHKRvcUXlQx6-HsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o z>C|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3 zx6z)ujb7DlG_G!=i**|w>0=kWU z&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s? zU7YKX6t`FJ>md~ht3+63!m1Efm9T1rRVSo!_Ix6u!}jpop8bc$}HZFCzw zq}ymH-9~rmHd;-$(RaFyCe&?oq;8`p)mX!a5Ol9bugb>q1yp!nzT5Jz?Dm>p|EJgxyHk zO@!S{SWm)kA*>f+y$QROus$A!l?CQcn|j!oOx?!J>NciXw=w6sjRfd6vZ32Zjcy}P zx{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN z-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOqbx2>gSMNHcA7T9o8$j4V!ZHXOMA%@$ zh7dNCu-gb5M%Zw|Mi4fVuu+8FPS_oUjV5diVVQ(w5jK{vafFR0Yyx3-5_T716A8;E z>~6v)c^Fm}m_KdmVPi6N8#Alhm}cF^oa;6cpxelXZX-3ijXdc#lBV0ppl&0bx{ciG zHWIDd$hvN$1#}zzpxbB;-A1SAHrhtF(L=h8hSF_xmu{ogbQ^uA+h{`FMn~#4+EcgD ztGbQG)opaKZlk3&yExY&ligmu>yUd0yO*&02%AD!4q^8b_5fj137baPgM>Xq*u#Y7 z5;mQ%M+loi*rSBaBw>0=kWU z&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s? zU7YKXXWd@C>yYONd!Dct2z!yR1%xdmY!P9L344jKC4?;{>}A515%vmU%L!XS*sFxC zBt4jYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3xqxMz>e*I%E@J z?+~_`uy+aDLfBTq-XrXN!nP6i0bw5!ww3HyYwJ%sHg>{G%% zBkXg+_7S$9urCPvlCT4WeMQ*U9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRW zBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV z-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3xqxLAO`$I^+;xhY34E*f)e7CG1p3HzC_UkLk^u-^##ov=R$J3-hUjgHi9 zw5M*PS9KeWtJ~;e-9}4mc5$vlEabvAeZKPATkz3tHqIDZt*KM?bZlfP` z8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay z=Qoc4qt^n-4rIdmJHqT6U2-9``T zHX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6iY3horl`de32Q}I zYr?K3tPNq;5Z0Ekc7(Mj>{`M)5Y~~fPJ~@YSZBhz5Z0BjZiHP=Sa-sD5OxD$HxhOe zVK)=jldxL|>qS^^!fqw3kB4Dpf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{ zBWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^ zx{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivx{>b(%0?PyAJ6`SbxF>5H^so48jHxHkhy> zgbgL^Ho}GxHk_~#gpDL@6k)d$b_Zdj2^&LLCSh5GjU{XxVdDv#K-isx-9^|$!m`B6&BJ63x<`6cQuz7^dC+ryy!^#5lr%gR< zOr~yQW_26WtlOA#-9`d*8`;opq(--qC*4NUbQ>AeZKPATkz3tHqIDZt*KM?bZlfP` z8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay z=Q`wBw^#2vVM_^nnXqMqy+YV>!d4LWDq$-L zdyTNy30po!_Ix6u!}jpop8bc$}HZFCzw zq}ymH-9~rmHd;-$(RaFyCe&?oq;8`;Pe35%#r*VP%2&)21FaCR4XDv$~CG)@{tWZX*G@jcn*PQls0* zlWrqvx{VC#Hqxov$gOT8(YlSS>o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$ z(RaFyCe&?oq;8`YI}9|-%Auw#V%MA&h{ekSY}!hR*}H^P1=><_|D5O$KVKM6ZU*k6SGP1yek`-ia8 zgqw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|? zsoUsP-A3c;Ho921(bAe-oa+z^y>J~8Kv*DQL4*Yp7D8AkVPS-Y6Ba>OBw8xtvcUXlQx6-H zsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oHR=1I8-A2}R8!e#Q=m*_K zbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|?*=qco29yybx2FXS`pTo zu&W7cL)bNhwI!?_VeJXKmaqAXnXoQ|btSADVb>GZov=wd$5!RcqTM6sqVOUvU{nspmg}ZX+AIjnwEi@}%2H znr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5Ez;#`OHb$j)$L;4ZcpRfUh4J0gsut9_kCTs{{ zLkYW$uwjG^Cu{^^BMBQt*zJVfLD*=*#t@cCSQcSp2^&Y)c)}(Sb|+zX5jK&qY{Kp) zY?6mzWr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G(y80Xt!^XH zx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6ZlgVQ8@;OA zXk6V!7wa}!TCS4hp>AIyN|Fbgyj%+KVc6LHkGhxggr>uLxep{ST14H z344UF8H7Db*i6D6BkXa)W)U`C|oHR=1I8-A2}R8!e#Q=m*_K zbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|RPj#)Y#Cv%5VoAK6@j`^t^n-4rIdmJHqT6U2-9``T zHX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6iY3hir6v^{zuU5%vyY zn+bcDuq}jbCG0)I-Y0AuVIL6oAz|AI+dl>@&hX zCu|>K`w9DkurCQaK-gD=eeGdbSz!LOsfUfp)NRbHZeyBt8*{GPNPuo58@i3u=r;1C z+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``THX2H|(OtTYR?}_t zoo=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6iY3ha7Z!^{zt>5q6lcBZPfJ*ipj1CG0!G zz9;Ml!hR&|7-2sVcAT)E3HybxUkUq-u-^&$gRm2Xoh0l}!cGzP7h!)B_CLb@A?!3^ zX9)Y3usjdL$^!GJO+9Q(rfy?qbsN*H+n96RMgnvj+0bpIMz@hC-A2-M8yVDXq*J$% zTir&YbsJgNZM1-HqaSn|&7s@q6x~MK=r(#tx6x3#jqcKIw3=?C?{phYsN3jB-9~%r zHhNXJ(YU&eF4k?dv}PCQI>f>*T!#b@7D!kSVZnrj5Ee>U7-8XrMGzKASQKH=gvAgR zOIRFX@q{H1mPl9GlCaff3mk?Hpu+oH;A*?K6ml9Tvu=0de@Gz__Fn`+A!^ULl zHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKy zx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc5$vl zQrup>uZL75tP)|B39CX_Rl=$fR-LdKgw-VMGQw&RR-3R?!s-xKm#}(-)hDb0VGRju zL|9|Onh@5Mux5l^PFQoot|076!qN!4im(k3F}1Ib%b>$tP5dX3F}7K^@MdNtOsE?5OyPBHxYI- zVLb`Eg|J?P^(O3A!uog^Ru-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F={Az4 z+sL49Bb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9eW%-K zLfuA3>NeU_x6!M*jmFh&bg^!ur8T=a*CBn~UcKv(euVWWYye>c3CkdC5MhG}8$#Gn z!fqpM7-7Q+8$sAe!bTBxJ7ISaHkz<8gk=(zMc7!v#t}B2unC0SN!VS4O(ZOvu)7JH zNaw#+eox- zBkQ`27SL_|Vm|BWwy`IfUI$*aL)3C2SgD4-)neVGk3QOW1V6 z9wBT7VUH3vld#7Kdz`RYgv}=G3BsNv>?y*YCTtF2a|xSA*nGmC@i43`Fn`+A!^ULl zHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKy zx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc5$vl zo^^Zmu0x(9?0LdoAnZlL77(_OutkI|ChR4`mJqg-u$Kv2M%XKaEhlURVXqRllCakZ zd!4XVgsmoQ4Pk2uTSwS>!rmb4O~N)1_7-7pdl*(0m_KdmVPi6N8#Alhm}cF^oa;6c zpxelXZX-3ijXdc#lBV0ppl&0bx{ciGHWIDd$hvN$1#}zzpxbB;-A1SAHrhtF(L=h8 zhSF_xmu{ogbQ^uA+h{`FMn~#4+EcgDtGbQG)opaKZlk3&yExY&8{J;L>yS-^y+hb$ z!rmop3t?Lcdyla93EM{42ZVh{*mlBp5cUya9}~8duw8`hChQZ!_7Jw0uulp5jIhrM z+eg@b!oDEvOTrEi_7!1Ydl*(0m_KdmVPi6N8#Alhm}cF^oa;6cpxelXZX-3ijXdc# zlBV0ppl&0bx{ciGHWIDd$hvN$1#}zzpxbB;-A1SAHrhtF(L=h8hSF_xmu{ogbQ^uA z+h{`FMn~#4+EcgDtGbQG)opaKZlk3&yExY&2i;!1>ySf)9VYAuVc!sTl(26J`;M^h z3HyPt9|=1~*iVEVC+ug!ej)7tVZ|(hH>~S8NOyO4cXxMpcXu}y3QBi(D%b%EN-CkG zNp~n1pmc}-y}s;W5AStnXP(RVv-6whO<`{ddt2B$!rm43p0M|YeIV>ZVIK+mSlB1R zJ{9(vu+N2kF~E3PaDVOUvAN7{bFZc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UH zL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@y< zIbq8STS3^0!d4Qt@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAP zk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9O zP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH z7-7c>`--ry3j3O{uM7Kzu;T_8FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`ye zv~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;Z zZd1>0)75TM+-}q2Zd2)I5Az-J&5^GTzC*qx?08`(2>Z6M?+80l*h#`p7IuoTQ-z%- z>~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI#dQrJ}kjF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(xq9TQ zgYS@Qgk3A_I$_@x_B~)vTG(%d-74%hVYdsrL)e|d?iygcEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa z&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h z@48J1yG|SB_3H!aUKM1>D z*aN~I6!ws?hlM>N?2p3!B<#<^{vzzJ!u}@gQDKh>dtBHP!k!fNl(46TJtOQ{Vb2MB zUf2r*jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(d2!^cgYS@+guN{66=8oD_77pN3VTi1KZX5E*uRDSN7(Da-VpX*VgD2Mrm(k! zy)En=VebliPuTmyJ`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQH?e)%0Ts<6?7jV^2qVPgs# zOW4@L#t}BIu@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$ zBEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y z4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c z?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3~7-N zLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*ceMQ(;g?&xf*M)sU*l`1lmj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq=EzqE-yz=; zcD%3?gne7scZ8iN>?C0)3p+*FslrYZcDk@Lgq;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO_%ZX3Hzn6UkSTe*e$|-E$lbKZWVT$u-k>*A?!|JcMULJ z7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj z58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!uK zBVQeShx|_1-NNn>cCWDeg#BLFAB5d6>;Yj93VTS{!@?dB_D5lV682|de-ZXqVSf|$ zsIbR`Jud7CVNVKsO4!rFo)Pw}u;+w5FYJW@#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jOT2rQ`lR=-WK+buy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ z>~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`J7kpczWfduRoH04Mi(}QurY;=C2VYA;|Lp9*m%Om7dC;g35880Y+_-P2%A*c zWWpvFHifV$g-s=FYGKm|n^xF#!loBCgRmKe%_MB*0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c< zxrEIvY#w3r3Y$;Z{K6IxwxF30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0 zn+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66Sljs zJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9VzT6VMhx)M%b~! zz9Q_a!oDW#>%zVv?6?8O%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!|wq`t{(a7;5+0R zVb=<~PS|&aeNWi+!fp`uePKTk_CsMm682+ZKN0p*VLuc0b78*_cB8PHg#A+3uY}z! z>=t3a7WNxqw+g#W*zLmZ5O$}qy9O993+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(R zr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZrk*^NELw+ahZejNbyI0tK!hSF855n#j_JFVl zg*_zfVPTI5`=hWw3H!6KzX|wq` zUL5)A;5+0cVJ{1NMcChk{X^KR!d?^hPhtNO_HSYT5%#*UH-!CH*#CsRDeNs_Zwq@z z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=H zvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu)JUw(&-Dr_`iqYE2D*qFk`5;nH5 zafFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DK zW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4 zEhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kC zyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?F zO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k z+de+3&+HH#4 zZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V= z9U|;dVTTDjT-Xu9judv3u%m??BkWjVUlI0IVP6yWbz$EScH98tWx@TmtH+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeSC4#k@EvlEuxo`~C+xezz9;N@VK)f-zOWw%`=PKO3H!0I zp9uS@u%8M0xv*adyHVIp!hR|2SHf-w>~>*y2)k3*T?34l1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40K*$X5s7 zA-@xLx3GJJ-7D-qVZRsl2VwUMdqCKO!X6U#u&_sj{ZZJTg#B6AUxfWt*x!UbD(o>~ zj|+Q3*ptGZ685yPXM{Z~>^Wi23wvRJ@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hA zHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaM zCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeFOGb5@E!7!u$P6sBJA(N{vqsDVXq1Mr?7ts z`?s+F2zy=F8^Zo8?0>@E6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%; z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4jE;FFTX=Z6*ii%(S?m6Y)oNe2^(A3IKsviHlDEYg-sxALSYjLn^@Q+!X_0qnXt)) zO(ASbVN(g4TG%wgrWH1wu<3=(AZ$iqGYOk{fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*E zn@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQ zY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`J7krSuMWOLRu#6Iu+@dFA#6=yYYAIh*gC@26}FzR^@VL9Y(rri3ENoMCc-uq zwwbWag>4~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq z+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA5H9Qo?tJLFr!ju&=|$Y;2)k6+Wx_5Oc7?Djg}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#t4F>%_zt;7*tNp0 z6ZTzU-xGGdup5MZU)T?X{ZQDCg#B39PlWwc*w2LhT-Yy!-6-rPVZRjiD`7VayG7Wq zh5bg@t-@{-cDt}Ugxx9Zt^vl&g8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A z+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ< z)U(@kwc8Z8+qAgbRJz&2e24sY~F#z75130$Avv1>`7ry342=DGs2z~_MEWig}pGqcv*0N z?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#7e~H2 z_zrnV*vrCR5%zas{}A@7u-AnBQ`oa0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11em){|y3L8z>=)%SjHm0z#gpDn19AV=M z8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+e zz<613f9>kAxy){Jv)$&JyUm?5)6tZc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uL zY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9s zu$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B}X-f2s>8TSA>04*w=)8UD!8-9XG&uS#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0L^x!T3%fwrg~BcpcCoNagk37^ zGGUhsyF%EN!mb)%yezoCcJ{?;h3Hz?F?+LqJ*bTzIFYE`xekklm!hS65C&GRz z>}SG$F6e+3&+HH#4ZCc!ID&6d1zC(UH^3}n2$nS*R zE$kj)_X@jD*zbk?LD>Dm9uW4Ru!n>_EbI|se-!p7VSg6(7h!)D_BUaV3VTf0}6rE2>ZLRe+YY3*lWW6DePau{w?f3 z!d@5lhOqw%`=78kg}o*0ZDH>Sdso?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fip zu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f; z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7U zVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+Y zuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f#gdHpFE5g1i>}$fl zF6MeOhq_Inx=p*fP1U+h@48J1yG`Y;22|HWZ zIl|5rcAl{FgUKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb>XEMwzC*4NcCE1Mgnd`o z_k>+9>;_@q7xn{TKNR*OVLul36Jb9U_A_BW7xoKbHwwE+*e`|sO4!Z9ZV~otVZRY} ztFYUI-7f47VRs6NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yy#p`Rd?14K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb#gVTLzC&IT z_Oh^7g#BIEKZLz1>@{Kk6!tG+{}%QiVXq5&L)d?X{ZH7N!rl`0wy<}Ey({cJVebq3 zK-h=EJ`(n^uup`2D(o|1p9}k9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WA)`$E<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNa zunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy z4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=H zg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs z!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm z4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ik zg&iU6NMT0_J6hN=!j2X86=7c$_BCN&7xoQd#|rVtKFu!-KNFerqazG<~!t@BVQeShkQ%e@xo3J_HAL`5q6@m zlZ2ft>=a?A3Oh~M>B7zscBZhigq0)75TM+-}q2 zZd2)I5Az*z^~hHT-yzosyH?nB!oDl)d%~_4c7w3*3;Thv9}4@CupbNiiLjpv`Su-^!~RoHF9ZWnfkusem_HNbdTaDVOUvAN7{bF>*(f3wuP^ABFu%*q?>{Mc7}3{Y}`T!X6X$xUeULJt^!d zVNVNtM%c5$o)h-GuongxFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ( zZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0 z)75TM+-}q2Zd2)I5Az-J;>cGA-ytsvds)~k!u~GoAHrT0_L{JN3j3F^e+&DMu-ApX zA?&}x{wM5BVQ&e0Ti83o-WB$qu=j<1AnZe79|`+d*eAk175161&xL(4z<613f9>kA zxy){Jv)$&JyUm?QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V5;nK6d4$a?Y(8Q0 z3tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3!LD-7IRuZ=I0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapzu#JUnB5YG(n+e-o*cQUJ z6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi5VohVy@c&8Y#(9! z3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_VaE#lim9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BwZdk*^NEL%t>Kcwr|9`?j#}2s=^ONy1JRc8ai5g`FnsbYW)*J5$(M!p;_Uj<9ou zohR&kVHXIyP}oJnE*5r)uuFwqChT%yR|vaO*i{3Jmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb`i zyFu9Zh5bO-4~6|m*pG$%MA%P-{Y==;h5bUcgSx?zB>30`JJ%4h210UUSanM`@OI~2)kd{1Hv8@_K>iLg*_tdkHY>W z?9amfBJ8ii{wC~EVUG!WT-X!Bo)q?!u&0GRBkWmW&k1{8*b4)Umj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9apbFm?~s>-y)5h% zVSg9)4`HtgdrjCsh5bv|zlHrr*z3aH5cXeT{}cA6u(yQ0E$kg(?+SZQ*!#jh5cZ+4 zkA!_J>=R+13j0jh=fb`iV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S9M3`5iKpYyx2u z3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nPudwga1Qj z6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_n6Sl#Eg@`4VM_^H zTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0VQUIoOW4}N))BU@u=Rwk zFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%ubo ztAp>5U4`u?YVMho% zQrJ<#juv)|uw#XNMc7w`eNEWcg?&TVaRZE(1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40K!$X5s7A>R^qys#65eOuUfgqBJ8KaekSba!hRv_ zMqxJz`=zj73A^H)06?U7j+lAdB>`q~K4KQ97++VwTY%a6g+-$eG=5BN6 z-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6w_Ge*#5%yPMe-rkou*ZZwF6;?mPYQcV*wezE z5%#RG=Y%~k?1cfw%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!u)hoYhp<~&#p2>Y+F z{|S3j*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR%Ii{0;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO{Hm9(;gv~8%9%1ten@`yM!WIy= zpsQK%L-dg*z&?w5VoSQm4vN4z<613f9>kA zxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y2-{THX2LcXwuP`Qg>5Bl zYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%BgzYJ8FJXHN+eg^G!uAuk zzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;RCBJ8Wez9#JJ!oDHwxB{4Nu3Ai; zVLuS|Lt#G>_G4i`5%yDIKNI$IVZRV|qp+KV{ZiPkgxxIc7Gb{@_8Vch3cF3%?ZWO5 zcBinr1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9rD|euMWOLekbg1VfP5TSJ-{RelP3~!tNLLfUpOJJtXX5VUGy=qp&{-`?IjW z2>YwBzX^L(*ki&T7xsj(CxtyF>}g@o2zyr8bHbh%_QC+;Wx@TmtH@8t$3wuY{yTaZR_P($WgncONBViv4 z`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8 zZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)JfnGRov%eus=IY&2n`3mZe&n8L;qHny;FgpDg~JYnMtn?Trv!X^?n zv9L*mO)6|MVUr7+LfDkTrV=)_uxW%%D{MMp(+itH*o?wv5;pSy<7L79wX4VGGP}*q zcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$f zZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`W*PbF;Qx?Wh0P{x zc42b}n^V|a!sZq>kFa@#%_nSrVG9UbP}oAk78bUMutkL}CTwwGO9)$1*iyol7PgGA zWrZy#Yq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD61KLmb%d=eY&~J?3)?{0 zhQc-ywz05Hgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGaLD-JMb`rMp0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$M zS7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*b%~x6n2!b zqlFzK>{wx65%yJKUlaCqVc!sT+yLWc!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*q_^3}n2$hU+YFYE+i-xl^AVJ8YZN!ZE4P7!vh zu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cE( zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3p zk9>9T9deDZYlU4W?7PCgC+vD*HwgQ_upbEfp|Bqb`?0W}2>Yq9p9%Z9uwMwfQP@qw zektr%!fqCJi?Ck{`;D+$h219Xc42o2yHnU*1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9 z*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4*BiKR|nrAzY})1uzQ5vE9^dDzZdog zVfPDrK-h!A9uoGjut$XbQP`h^{aM&wg#A_6--JCX>@i`F3wuJ?lfs@7_O!5PggqoyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA3Bj(m0S9rBW}mxa9|?C-+RdtKNY!u~7lf5P4r z_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6T-X-_jF$!X*RCF$%j`Bc+ikA7 z+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D)wuze7e9Hkz=}g^eL> zOkraQ8(Y{o!p0Rgp0M$SO(1MSVG{|PSlA@OCKWcBu*ro@A#6%vQwf_|*fheX6*ir) z>4nW8Y(`--37dI<@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWevy6Oo@PEjx!e$dTyRbQg%_(dyVRH+cN7%f=<`Xu*umyxIC~P5N z3kzFB*rLJ~6SlapC4?<0Y$;(&3tL9mvci@Vw!E+vgsmuSC1EQMFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR;Px4!%QH6}FnN z)rGAgY)xTn30qs(I>Oc!ww|!{g>4{gLtz^U+gR8p!ZsDQnXt`;Z6Rz+VOt5?TG%$i zwiULWu^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA-jxxb?_astFYaK?JjH&VS5VOOW5AR_7S$Pu>FMXFYEwe z2MRk#*ulaM5q7As!-O3!>J(ZY@qcC4_k2>YtAuL=9Qux|)EZh-N!;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yz=|`Rd?1 z}+A@2s>BUdBV;Yc7d=9 zgt>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0LVK)oAMcA)}{YKcW!fq3GyRbWi-6`y@ z0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhx~TrtAp>5-wC^0*geAT6?UJn-wXSLu=|BQAnZY54+(o%*dxOJDC|$d{w(Y-!u~4k zZ^9lG_L#88g*_qcNnuY3ds^5t!k!iOoUrGGy)eLdS#W>t>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0L;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Sw_A(_&;P;VY3OFUDzDL z<`g!Uu(^fJBWzw_^9h?@*aE^96tQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)JfnvdYL;2j3y93R_Ls>cZ9#wx+PPgsm-X9bxMVTTj^f!Zr}Lp|FjF zZ7ggPVVeruOxWhawh*?Zu&sn`Eo>WM+X~xG*!IG95VoVRorLW?z<613f9>kAxy){J zv)$&JyUm?|kMs2s>2RVZsg@;Dg z3p+#DnZnKzcDAr{gqoT`KG{VV4WLLfDnUt{PyxEV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG7wF>3A<7YrDC|eVek|-K!hS03XTp9i>=(jr6n2xaUkdw` zu$zV5BJ9_~ek1HwVYdmpUDzGM?i6;{0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%>gqF3cF9(?}hzA*!{vD z5cZ(3hlD*W>=9vq6!s@!e-`!^VSg3&H(`$odra8l!k!TJq_C%iJuU1RVb2PCPT2Fp zUKn7!EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|etEE$lzSUKjR;u>T7CpRhNDy(R2z zVebfgSJ->P-WT?Pun&cOB|wq`Mw#l%?~qZ2jV5e#VPgmzQ`lI- z#uhe?uyKWrCv1FS69}77*hIo67B-2nNrg=&Y;s{!2%A#aRKlhfHjS`pg-s`HdSNpN zn^D+I!e$;|yezoCcJi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(S!Lv_gYS@4g{>xRbzy4= zTT|Ft!qyhHj<9uwttV`KVH*hBP}oMoHWs#tuuX++CTw$ITL{}y*jB=}7PgJBZG~+o zYq-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$Sxya9ejuEDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?F zcCfHRgdHmEFky!aJ3`oz!j2Mlw6J4@9V_fB!oDi(Yr?)R>>I+48(_RFxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQzKzB>30`IfNb zg`FVm+rqvh>_lNF2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2VHXLz zSlA`PE){l}u*-#AA?!+FR}C;;7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~!u-k*^NEL#`2at+4BaeOK7`gk3M}24UY9_5)!*6!s%w zKNj{AVLui2Ghsg$_6uP*3cE?zFNOU|*v-Oj5%z0gzY%t;u-k;)F6<6rcM7{}fbp{6 z{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA-^5@ z>fk%%cf#%#c8{=oh21CY_rm@l?0#Vn2zyZ2L&6>w_K2`Q3j33=KMVVdu)hlXo3KZP zJtpjNVNVEqQrJ_%o)-3uuxEumC+vA)FAOkV7TjOEdTcJU+uUrox#n(j=iO!j-DVrz zW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$ zcipCh-KLSrVtKFu!-KNFerqazG<~!uYk*^NELtYa0vanZ#{ax5UguN>4HDUi0 z_Ag=o7WN-uuM2xa*nfrnPuQEn-V*k@#7X z3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWeqfGtfcgU#1MiVx=urY* zHo34VgiR@IDq&L#n?~5Q!ln~8y|5XC%_wXpVKWafUKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_mXWUx{tuZ|*lfaP7dD5mIfcz7 zY;Ixm2%A^fe8T1zwt%n&g)Jm(VPT61TU6L$!WI{{gs>%rEhTJeVao_xR@idFmKU~y zuoZ=^By8mY#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWS5bz4!%Qn6}FqO-G%KT zY)@f(3ENxPKEn1Dwx6*5g&iR5Kw$?7J6PBu!VVR7n6Sfz9U<&UVMhr&`v0t$Mev4o z9S1>C5JXgz?h*q*LX|wq`wjBBD;5%e1VOtB^M%cE(wiC9!upNZ$C~PNTI}6)I z*sj8M6SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeGz7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^%QY z2j3w_2|HTYF~W`&cAT)|g`FVmL}4chJ6YH%!cG--ny}M_ogwT@VP^?DTi7|m&J}i^ zu=9moAnZb67YVyq*d@X)6?U1h%Y|Jrz<613f9>kAxy){Jv)$&JyUm?<(df3cE|#-NNn>cCWDegxxRf0bvgcdq~*B!X6R!sIbR`Jud8t z0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhdep*)xmejQ^KAW_KdJ+g*_+id0{UIdr{a+!d@2kim+FOy(a8+VQ&a~Q`lR=-WK+b zuy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX3@~06++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6%vAC zHioco2pdz_Si-(3Y;0lQ5;l&oZwvd5uMeOhq_Inx=p*fP1U+h@48J1yG)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWWJHF4!%R?7q)<~1%)jn z>{r5mE$lbKek<&E!hSF855oQ^>`%h}EbK4B{wnNm!WI^`h_Js4TU6L$!u}!bpTZUw zwuG=Hg)Jp)X<`2ow#)$IWx@TmtH_5WR61KLmb%gy_*t){j6ZSu0>kHdJ*oMM361K6hO@wVKY%^h-3)^CV@v`9l+SOxo znce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeTaJ8n@Ex+1 zu&sq{BWzn?+X>rV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL z!VVO6kg$V=9U|;dVTTDjT-Xri_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(IdbHygYS@|gdHvH7-7c>J5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52 zzjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dw~s z9ejseCG2Wp*9f~-*mc6L7j}cN8-?8@>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK z!tNLLfUpOJJtXX5VUGxVRM=y}9vAk+0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%DPd0wdq&u^!k!cMys#I9y(sJ@ zVJ{1NMcAvtUK94Zus4LgDeNs_Zwq@z*t^2s6ZXEa4}^Uv>?2_x3;RUar@}rH_PMYx z1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9Wu&rVtKFu!-KNFerqazG<~wAHk*^N^51CTfRKlhfHjS`pg-s{y z2g0To_CsMm682+ZKM^*Au%8N>QP@nvekN>YVY3LERoHC8elBcwVZRXeOJQ>en^V|a z!sZq>kFa?M7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8N zv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)JfnGT+Eo2j3y{3tK?gg2EOO_A6n(7WNxqzZLd7VZRsl2Vs8{_9tO~7WNlm ze--vOVG9deMA+YjEh=m=VgC^JPhpD-TSC~9!j=-Yw6K2(TV{aqvf%#O)njv+-R5Sy z%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4|j(m0S9kQIT<%O*v z?BBvx6tP=dY+YgN3HzV0^@VL9Y(rri z3ENoMCc-uqwwbWag>5mwcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#El0jO_zu}h*w(_f5w@+c?SySFYzJXG3foE8&cb#PwyUt+ zgzYYD4`F)>+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6@W_#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOa$#2tFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^foB3%fzsjlymccC)Zs zgxxCaHet65yF=KW!tN4wx3GJJ-7D-qVfPDrK-h!A9uoGjut$VFD(o>~j|+QZfbp{6 z{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bc zb?_bXl(46TJtOQ{Vb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+ z3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE;lFTX=Z74{WjUllf*u&)XGy0FoOjUntC z!p0OfmauOM8(Y}7gpDKY+rqvh?7PCo74|)0-xoHXu9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^Bpq9$X5sdhfFDKDq&L#n?~5Q!lo1U17Xt(`=PKO3H!0Ip9q^l*iVJcC~PKSKNB{y zuvvu7Dr`1kKNmK;uwMxKrLZ}K%_(dyVRH+cN7%drjF$!X*RCF$%j`Bc+ikA7+uV7# zSwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nQ!E)gYS^}g)Ja#L17CC`<1X? z3;T_*-wOMku-^;&gRnme`;)Lg3;T<(zY6=Cu!V&!BJA(N78SObuzv{qr?AC^Eg@`4 zVM_^HTG+pYEi=G)S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L|wq`jvV>w;5+0fVMhx)M%b~!juUpguoHxxDC{I*Cks18*r~!! z6Lz|=GlZQf>?~nt3p+>Hxx&s9cD}F+gk31?B4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Ph zm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%a zlx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA z3A6h20?RMqxJzyII&R!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQ zAnZY54+(o%*dxLo75130$AvvHz<613f9>kAxy){Jv)$&JyUm?a0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11u zm){|y3j2z%uL>JY*w=)8UD)Wt#t`-mVPgs#OV~GsjVmw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+4;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOMeOhq_In zx=p*fP1U+h@48J1yGrPWnrrbTUFR!ZsGR ziLgzDZ6<7UVOtC^UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bk_%aN}RzC*SWwzaTrgl#KqJ7L=k+d_4 zL)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p-+f@v`9l+SOxonce1Q zyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeM~-}T@EvlLu%m?? zBkWjV#|b-L*a^Z;6n2uZlZBlk>{MZ=2|Hcb8N$vKc9yWSg`FepTw&)4J73rZ!Y&kc zk+6$}T_WsKVV4QJT-X%@jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q* zV7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xpL&IgYS^5gk3G{8e!K8yH42k!fp_Dqp+KV-7M@DVYdpq zP1x=9v)3VTf0q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$de;q9ejs8 zCG2To&j@=~*mJ_37xsd%7lpkf>}6rE2zyo7YrSdso?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%}$flE^KsRV+i|(urY;= zCG4BR#uoN1VdDtwEYg?&%h_l1ooY=(j*DQpg5a|)YF*xbVA5jO7t<7L79wX4VGGP}*qcAIPNHh11_7SL_B z(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQ zZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`<{SCy;5%e~VG9UbP}oAkekJVJ!hR#{ zx59oW?DxX{AncFA{v_ZLRMTIRU>>tAZDQt0JO9)$1*iyol z7WOY;%M37H7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~wBBk*^NELzWY^ys#C7{ae_I!d4QtvanTzttxCaVXF&UL)e0)75TM+-}q2Zd2)I5Az+e<;YhD-yvHG+gjK*!nPH* zov`hN?I3JNVLJ)iS=cVZb``dpu-%32A#6`!dkNcH*gnGc6}F$S{e>MM>_A}$2|HNW zA;Jz7c9^ikg&i@#cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#BS*eE_zpQr*wMm{5q7Mw;z#a3Oh;I$-+(%cB-(`gq<$z z3}I&qJ4@Kv!p;$PuCVijoiFSHVHXO!NZ7@~E)jOAu*-y9F6@c{#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h| z+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO-QChT@$cL=*v*j>Wz7Iu%YdxhO6?0#Vn2zyZ2 zL&6>w_K2`Yg*_(habZskFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1E^Wi23wuG>i^5(K_Oh^7guN>4 zHDRv{dqdcp!rl`0wy<}Ey({cJVebq3K-h=EJ`(n^uup`2D(o|1p9}k9fbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)`$C<#))a z!oDKxtHMST_BCN&7dE=EF@$|X*qFk`6824DV+;G1uyKTaTiADmeOK7H!oDZ$`@+T( zHomY4giR=HB4HB?n?%^8!X^_o`2gc(!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC)%M`Rd^RkST>tC2VS8(+HbZ*mS~vAZ&VJKNR*O zVLul36Jaw5`>C)Qh0P@FXToL{HjA)Xh0P}H=fY+e_6uRZ6gG#jIfcz7Y;Ixm2%C3+ z@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe z^NoCU@EtP0umyxIC~P5NzY_LqVZRafTVcNw_IqJ}5cWr5e-id*VSf?!S7Cn>wy>~8 zg#BIEqQVvv_77qI6t=jqC4?<0Y$;(&3;UO_Wd;~83+}I7JvNuwZEm*PTywX%^KP?% zZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuD6$X5s7AT2LU)To1HWapzu#JUnB5YG( zn+e-o*cJnfmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrcKa^$On?~tv8Z7pmYVcQDZPT2Osb`Z9su$_eMENmBHy9(P)*zUsi5VohV zy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2eVyezoCcJ}X-f2s>8T zal(!lc7m`Ig`FhqWMQWWJ5|_e!cG@|wq`t{nO5;5+0hVOI;gM%cB&t`l~>up5NkDC{O-Hw(K(*sa2D6L!0> zJA~aS>@Hz<3%f_yy~6GjcE7L(ggq$iAz=>-dqmiy!X6X$xUeS%7%vO%uU$Phm)UJ@ zw%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^5n=@2j3x2342=D zGs2z~_MEWig}or`MPV-qds)~k!d?~jny}Y}y&>#PVQ&e0Ti83o-WB$qu=j<1AnZe7 z9|`+d*eAk175161&xL(4z<613f9>kAxy){Jv)$&JyUm?ePQDX8(-K2!X^|pk+6w{O(JYkVUr1)e1P$?;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu_se0A`D z$dtmS5;nE4X@pHHY&u~-5H`KA9}4@CupbNiiLe=j{Z!bD!e$coGhs6en?=~H!e$fp zb78X!`-QMy3Y$aNoWkZ3Hn*^Ogv~p^cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5 zn>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#`9{7v_zsz0*aE^96tYY3KMDJ@u)hfVtFXTbTUgj4!u~F7QDKV-`-iZ93R_&*62g`gwv@1?h5bv| zG6Rg41^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3_ljk3;>*#CsBFKh#08w%S<*v7&(5w@wY&4g_(Y>NTL%YyrBSC7qQcAJ~+HrL#3?!4P9 zpxbPt+pMPB?5W!VMh!wUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_Bmb$dRuOzC(@@cC@f#gdHpFIAO;NJ3-iq!cG!)vanNxohs}!VW$f_L)e+Z z&JuREuycf+E9^XB=L@?)*oDF_5_Yk$ON3o2>@s1O3%g=~@v`9l+SOxonce1QyUjIs zn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6V zh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeSB`vj@EvlMu&ae#BkWpX z*9p5`*bTyN6n2xan}yvX>{em73AjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d2-~dgYS^1ggq_n8DY-~drsK%!d?*eqOg~Qy)5h%VXq2%P1x(g z-VpYtu(yQ0E$kg(?+SZQ*!#jh5cZ+4kA!_J>=R+13j0jh=fb`iV7x52zjpQ5TxPeq z*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S9M4`5iK3nWJ+OE37cBjG{UA8Hl45^2%BEm4~6|m*pG$% zMA!_%ekyE6VKWK)nXs9K%_3}8VY3PQxv<%V{X*C;h0P&sPGNHin_JjC!sZ=dyezoC zcJY+Fb%m`b?0>@67q)@04TWtaY-3@Y2-{THX2LcX zw#5MBWx@TmtH0)75TM+-}q2Zd2)I5Az*z_TA|3ACBiNh zcA2otg}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#D@VRM_zt;B*wwx5k|>;_>s3cE?z&BAUGcB`=4gxxOe4qNZ7-|9ufAau*ZZwF6@Z`#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jOuvdk>ChT=#ZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9 z_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWRxks{0IL zHjc1w3;T|+?+P1N*!P5eU)XrU#uqk$unC1tBy3_~lL(ts*kr;cA7H#JxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgPeYUmg4(GNrJo zgiS4M8e!84n@-pdgiSB(hr)g&?8m}>B5Vd>KNU8ku$hGYOxVoAW)U{4u-SzDT-fZw zej)6a!sZY*r?9z%%`I#mVe<|!UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bk_zLBpEzC-30wt%n&g)JoPSHgZR>^H)GE9`f|elP3~ z!u}}iPs08z>@ULpD(r8<78bUMu)hmiRM=v|{vqt2!WI{{gs>%rEhTJeVgC}g%mCwM z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC)HB z`Rd?1WI18W3tK_hzlE(RY$ahU3tL6ls=`(iwz{x2gsmy;Kf=}$wzjZ!g#B08y292I z_CI0k3)?{0hQc-ywz05Hgl#HpGhv$x+hTz6vf%#O)njv+-R5Sy%{6zMJMT6N=r-Hv zHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63 zz3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3tj(m0S9kP|Mt%YqPY+GU53EN)S4#IX6 zwv(`(h3z72S7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e z*bxJamj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxraUa^$On?~tQ}9WCq_VaEzPPT29nP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3 z>>Od|3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S!mb!#yezoCcJ}p}x2)kC;b;7O} zc7w1Rh213VW?{DoyH(h2!fqFKhp;<^-6ia9VfP5TSJ-{R?icoeum^=bB|wq`o*en=;5+0gVNVNtM%c5$o)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@ z>@8t$3wuY{yTaZR_P($WgncONBViv4`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRl-+eus=I>?^{)Dr_`i zUlaCqVWSHhL)bTjjVWv_Vc!%swy_G4i`5jKOc zp9-5%*i6EHCTwP5vk042*lfanE^KyTzYz9IVRHzZQ`lU><`y=Ouz3d0)75TM+-}q2Zd2)I5Az)|-^f=7-y!o0 zTR_-?!WI(tD`CGD_8Vcp74|z}zZdogVSg0%Ct-gU_7`D)74|n_3kzFB*x!XMDr_-f z{}A?1VT%h}LfDeRmJ+tKuzv|#W`Oas;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yzG6e0A_0vYfExg{>g$-@;ZDwvw=wg{>lNRbi_M zTV2>1!qyb_A7N_=TU*#V!u~64U1949`=7A&g>4{gLtz^U+gR8p!ZsDQnXt`;Z85-j zS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LFMXFYEwe2MRk#*ulaM5q7As!-O3!?1%xz%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^u zVOI<=UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bmb%8{=QzC*4OcD1l;gk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxonce1QyUjIsn>+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWePmX+b@E!7$u&0GRBkWmW&k1{8 z*bBm56!wy^mxa9|>{Vf}342}G8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2r zVV?>6T-X-_jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(8D*+3ze7e9_7!1Y6*ii%uL=9Qu+fE$A?zE%#uPS|ux|<*TiCaRjU(*a z!oDNyyTZm5_B~YHkq)=2N*94?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9WuqpR|o%xOet(CVN(m6 zM%c8%rW5u9Vbcryp|Bqb`?0W}2%ACJPle4WY$jnp6E?H3S%l3hY&Ky(7dE@FUkLl9 zusMXyDQqrba|@eC*t`Rbmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxrbfZ{(|k?~wV0Eg)<`VG9ZSm9Sq6`;D;Q3j3X~-wXSLus;g> zldwMv`-`x@3j3R|g@r95?C-)B6}FhLe+c`hu*HQfA#6!uO9@+A*uR7=Gr)LRaDVOU zvAN7{bF30 zSx(sU!d4LWZ(%D6TS?f;!d4Nss<73BtuAa0VQUKekFd3btu1UFVgD7juCVol{ZH8X z!Zr}Lp|FjFZ7ggPVVeruOxWhawisZ%EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;M zp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1 zyG+1RoHIAb{DpXuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@Lgq0)75TM+-}q2Zd2)I5Az*z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5n zVK)i8S=cSYZWVT$u-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88 zg*`FAcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#Cr7?I_zrnW*wezE5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c z!rl?~uCVuny)WzoVIK;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO*Mxmt z*yzH>5cUmWV+tEf*f)iZE$myu#u4^yVc!w@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4w+))tAqbTrW7`nu&ISjBWzk>(+T^5u<3>UP}q-z{aDyfgv}uAr^03w zHj}WQ37c8iEW&0LHk+`Y3!7coFNFP4*c`&<6gHQzxrNOmY~BIJ%YyrBSC7qQcAJ~+ zHrL#3?!4P9pxbPt+pMPB?5W!|er`8DP9DxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgV6MUmbjhEGKMvVJisxx3Cq3tt4z^VXFvRRoH66Ru{I0 zur-DKN7!1z))uyou>T5MSJ-;O{wHjGVH*hBP}oMoHWs#tuuX++CTw$ITMRH>7TjOE zdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95 z-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NE zL$(sOwXki3Z7Xa$VcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW9 z3p+sAfx-?FcCfHRgdHmEFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72 zd+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@ zg`FboRAHwHJ6+fr!p;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb< za^$On?~tp6T`lYyVb=<~PT2LrZV+~(u$zS4EbJCxw+g#W*zLmZ5O$}qyM)~>>>gqF z3cF9({lXp)_Motbggq?m5n+!Cdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh% zg}o%~Wnr%fdsWzL!d@5lhOjqP-WT?Pun&cOB|wq`Mw#Zz?~qZ2eMQ(;g^eccYr?)RY;<8`2>XVxF@=pK?3=>I7WOS+;|Tkf> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfFc@)xrNEQwp0(*wn(N5jL%` z>4g12*!04FDC|eVek|-K!e$WmQ(-d-n@QNugv~5$7Gbjrn@!lyh0QMP7s7riYz|>_ z3Y$yV+`{G&HtzuAWx@TmtH~VPT61`@673g)JuRAHx1AY;j>r2wPIvQo@!N_Ag<}3@~06++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc69*CZqu%AQ?+i>yKYm$Zqvwa zQ_pVG)oxSVZqwp!Q|V?8^BuC~$X5s7AzKOCTG%$iwiULWut z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK2 z7IurUTZP>w>~>*y2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP& zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb z$&s%PzC)f8_O!5PggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqfGndcgU#1z9Q_a!bTJJHDO;DHoCAe zgndKUn8L;q_Dx}93;UL^afE$a*ms0|SJ=41z9;Pa!p0LezOV^|O(<+4VG|3RMA)Rl zCKERK0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fry7DTPfXY-(ZC2%A>ebi#fhYoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA5bjeK?R9WuYL1%xdqY$0L4 z6839hzY+FZVZRghdtrYN_D5lV682|de-ZXqVSf|0u&_mh{ax6i!WI+u4`Kflwz#k* zge@s-DPcZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9kT4mR|nrA%L!Xv*b2h_Eo?<$D+ya!*eb$S6}FnN)rGAgY)xVR z5w@1FwS}!C?7za+6}FzR{|Q@P*apHj6tmw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM+X~xG*!IG95VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2 zps<649W3k+VTTGkOxWSVju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_ zy3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@Tm ztH1R|~sF*tNp06L!6@8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x= zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zQKtLyJ7iR0UlI0IVWSEAny{}68(r8K!oDGFOkraQ`=+q5g?&rdIKsXy>^s7~D{Ne0 z-xKzIVdDuKU)Th~CKNW2u!)6DB5YD&lL?!Afbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAybTeb?|@4l)|PGHnp&6giR}KI$=K$ zHodSP3j2|;9}D}5uo;B?RM?EdW)k)@VKWPxMcAyuW)t>vVY3VSg|J@=n?u-~!sZe- zx3GDH%{#z&S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LTy)wve!23H!CM-w6Ayu-^&$y|6zB`=hWw3H!6KzXMNTU^)@!j=@al(40R{Y%&~1B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0~OtAp>5<%BISYz1Ne z7Pg|Wm4vMcZ9#wx+QE2wO|o+QQZm_FrM^3R_Ru|AehCYy)8%3foB7 z#=rVtKFu!-KNFerqazG<~!ubk*^NELyi)5 zw6J4@9V_fOVaE$QLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwr zg~BcpcCoNagk37^GGUhsyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|T zR$;dZyIt5F!tNAym$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CN zt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On z?~td2JuU1RVb2PCPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3 z`@%jD_MxzkgncaR6JehU`%Kv9!v4>SSp;ub*Kv^U?(XjH?(XjH?nXhuBn%pZR8qkJ zrBOn`Ae3&DRJsxWdwto%9^UKD&ODdzXXiK17Xyr!1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@On?k~SXMin-iu+fE$A#6-xV+k8u z*f_$*6*iu*@r6wwY(ilZ37c5hB*G>YHkq)=g-s!BN?}t8n_Ad3!lo5Aov`VJ%^++> zVKWJvd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?< zHe2sD73em7=r-l(Hcja^wdpn;>NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATp zm2UPh-yyS%e0A`D$gIL<6E?fBIfTtAY%XDQ3!6vSyu#)aHove1ge@p+Az=#(TSVBR z!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wASk*^NELsk{Gny}S{ts!hp zVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3*e1d@6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U z!VVF3sIbF?9WLw$VMhu(O4!lDjuCdOu;YXsFYE+iCki`B*vSKomj(CNt{$7q>^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq%E(s--yvTWc8ai5 zg?&xf*M*%X>~vw@5cW-B-xBt1Vc!wsIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgRmhzB>30`Kho=gk37^GGUhsyF%EN!hR;~=fbWMcD1l; zgk3A_I$_rf`-QMy3cEqrjlzB4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbj*+hp zzC-R5c9*cbh5bR;ABEi`>|SB_3Af>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdej()xmej^TJ*b_M)(tguN{6U&8(^>=j|J z3VTi1>%!g;_NK7^2>Y+Fw}ibd>>Xk63VTo3`@%jD_MxzkgncaR6JehU`%Kv9!u}`h zivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze20uO&zIjJqY4{M*yzH>5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf` z!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuu zh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{T-XxAmK3&>u%(49BWzh=%L!Xv*b2f{ z6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd z3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0L%vYGcDk@{2>Yh6ZwdRhuUf30)75TM+-}q2Zd2)I5Az*z$H-R)-ywGjyGz*J!u}xakHYQ|cCWDegxxRfPs08z z>;Yj93j2$&zY6=Cu)hm?NZ7-|9ufAauzv{qr?AI_Jud7CVNVKsO4!rFo)Px!0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%d0{UIdr{a+!d@2kFJb={_KL7qg}o;1bzyG^dsEndg#B08Tf*KJ_KvW3g}o>2 zePJI6`%u_N!af%EiLg(FeJ1R4VgD2M#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt_sj2)QH6~rY;<8`2pdz_Si;5@Hjc1y zg^ed{d|?v^n^4$9!X_3riLgn9O(tw|VN(d3QrJ|&rWQ7huxW)&Cv19QGYFee*i6D^ z9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh3 z1-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs> zcgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){77@0nu*HNe zE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%h zQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtHZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9rBZruMWOLek$w|VV4TKOxWeZt`K&mu%8M0xv;B*T`lYyVb=<~ zPT2Lrej)6a!fp_Dqp)8I`?av&2>Y$Dn}ppg?03R`FYFd!w+g#W*zE(1mj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbVfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WA#2!rl}1zOWC3eJJcBVIK?oMA)aoJ`?u2u>T4BVu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx&S z_vLrUsKQ1QHoCAegpDa|EMa2{8%NlAAuwt}z~g{>rP zrVtKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5?ICPWVS5SN zTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`&cAT)|g`FVm zL}4chJ9&Wdvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA3x8TsnqJLIdvP7!vhu&)XGy0FuPoi6Mf!oDf&Tf)9A>^s7~E9?wmX9_z@ z*xACqC+z#eejx0J!p;$PuCVijoiFSHVHXO!NZ7@~ekAP21B{mi_t&l-o6GDrH`{Hl zx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4*AK*R|nrAKNWU~uuFwq zChT%yR|vaO*w2LhT-a5@t`>HUuxo`~C+vD*zYz9IVK)f7QP{79{aV;>g#A|7O~P&# z_B&y}7j}!VTZP>w?Dhf1%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!HcgUT>?h>tAZDeN&}j|+Q3*ptGZ685yPXM{aFz<613f9>kA zxy){Jv)$&JyUm?hVebihU)Tr2 zJ{0zmu#bg(BJ5LPp9%Y1*#CrmF~E3PaDVOUvAN7{bF zZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+v zR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|i zlERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oO zU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L z;lhp(cBHVQgdHvH7-7c>J5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0LD zP8aqKVc!(?En(jl_8np06?TTOGliWc>}+A*6ZU;!KM?jqVdn@tSJ-*N&KGupunUD< zBf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghx}yZtAp>5p9;G~*rmcQ6Lz_}SG$F6=5{R|~sF*tNp06L!6@ zUkLl9up5NkDC}3lel6@b!hS34CSf-V`<<}g3%f& z*dK)bQP@4g?iF^Qu=|DmN!Xu-Js|8sVSf?!S7Cn>_IF_q342)BBf=gP_77qI6!w^~ z$Avv1>`7ry342=DGs2!7V7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$a5oK9ejs8FYE@Hu-AmWF6<3q zZwmX5u>T5sOW51O-Vye$u=j+$FYE(h9}4?O*vG;?5%#ID&xCz0?0>?(7+}0CxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQFUeEA(R zs<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_ zX=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+ z`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb< z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4v ze0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7 zTMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~VJ8SXQP@es zP99*qEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwjXrux|?cmauON`;M^h3OhsCnZnKzcDAtZ z3H!dV9|-%Quycf+E9^XB=L@?)*oDF_5_Yk$9|`;M0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%{4Nu3A{?;h3AoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA3}jC^(Q9df6zyM)~>><_~JDC{0#_X@jD*!{x(B<#<^9uW4Ru)hfV ztFXTb`@67*ggq?m5n+!C`-iZ93VTf0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E}6s9683LluLyfp*lWUG7xsp*H--I2*nfq+CG2fs?+ANW*n7g>7xsa$4~2as z>|VpnXTm-g_CH}?3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc6f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNE zvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O z))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pc zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH z9VzT6VMhx)M%b~!juUpguoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j=iO!j-DVrz zW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$ zcipCh-KLSrVtKFu!-KNFerqazG<~!soBVQeShkRAoDZ)+__BCN&7j~Mk(}jIQ z*f)iJOW3!CeMi`Lg`FYnOkrmUJ6qWIgneJw4}|?t*g3+^6?UGm^Mzd?>_TA|3A zkA(erfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WAwL=U>fk%%r@}4~cB!z-gk3J|3Sn0Y`;_>s3j39?Ukm$t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)Jfn^4!Q*2j3yj3wuG>i^5(K_Oh^l3H!IOSA@MP>@{Jp3wuM@o5KDh z?7za^685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUPGhv?#`=78c1{g03?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu&7Uw(&-Dr_`i zqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~ zO)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$; zHrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp; zTTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjh ztSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6Y zwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R z+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z;6n2uZlLr_t z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwY) zk*^NEL%u5P6k(?d`B7Dt?3=>ACG6Y6z9a0r!p;zOrm(Ywoh|Hp!oDx; z2f}_R>>Od|3Oi5O`NA#`cA>C~gk3D`N5XzQz<613f9>kAxy){Jv)$&JyUm?0~yHwa^!Y&tfg|I7y z{Y==;gMeOhq_Inx=p*fP1U+h@48J1yG@ULpD(r8< z{x0kxVGj#?MA)Ok{vqt2!X6X$xUeULJt^!dVNVNtM%c3hjF$!X*RCF$%j`Bc+ikA7 z+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d2ZyZgYS^%g}or`MPV-q zds*1Og#BCCE5cqC_L{KQg}ou{O=15L_FrLd342@EJHp--_MWi!g?%9GLt!5Y`&if~ z!af!DnXu1={ZH5z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4jE^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ z={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom! zHoLGngv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@ z*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;;z#a3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`40KY$X5s7Azu}Cim+3KeNEWcg`FnsbYb5R_Dx~m z683Fj-x2m*VP^q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$WKPTI`|Ixsjy3gT`KG{VV4WLLfDnUekSba!mbi_wXkc1T`TN5Vb=@$g|J@=yFu8E z!hR*}*TQ}y?6<;h5_Yq&-wFG@uv>)PD(p64w+}F07TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!t$k*^NEL+%uIm$18q{Xy6th210U zUSanMyI;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO!d?*eqOg~Qy)5is!u~Dn6=AOmdrjEu!rl<}rm+7A`>(LK zguN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkb{wM5<0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm5kwm){|y3L8z>=)%Sj zHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT z*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&JyUm?5)6tZc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69 z*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmY zVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5 zumgo1B}X-f2s>8Tal(!lc7m`Ig`Fhq)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EFv9ejuURM;iLE){l}u*-#AA?!+FKNI$I zVOI&eTG%zht`&Bju9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^Br=>$X5s7A$JP9OW57Q{vhm+!tN1vudw@s-7oA|wq`o*Vh<;5+1bVJ`@KQP@kuUKaK* zVgDBPim+FOy(a8+VQ&a~Q`mom{a4sq!rm74j<9!yy(jE_VIK(lP}oPpJ{I?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%q z-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*X zVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ zge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj> z!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+G zVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=63p+yCk;0A=cC@f# zgdHpFIAO;NJ3-iq!cG!)@&Myy!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5 zZ8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a z>e+3&+HH#4ZCc!ID&6d1zC*q;^3}n2$XA7(BJ5OQUlaCqVW$Z@UD!8-eN))Cgne7s zcZ7Xc*crmk6n2)dvxR+6*!P9~K-dq3og?gAVdn`uU)Tl0E);f=u#1KLNZ5}D7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn@{^IT z4!%QvD(n(rmkPT~*yX~m5O$@op9%Z9u&ab!E$kX$*9yB%*!9AGA?%mJZV+~(uwM!L zwXoj^`>n8>gxxIccfx)z>=t3S3cF3%?E{RL1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{b|tS#2zyl6KZN~L*ki&T7xsj(CxtyF>}g@o z2zz#b@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWe&y9R_@E!8Juor~ADC{L+FAMvZuzw4CMcAvtUK94Zus4LgDeOPO{wwS)VQ&k2 zN7%c<-V^q|un&ZNDC{F)9}D|L*r&oi6ZW~V{|WnIfbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA)_qz<#))a!bTG|y09^XjVWv_ zVPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJ zgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv z#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G z2wPOxV!{>|wuG=Hg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2 zgsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv9 z6Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6MM>_A}$ z2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2VooUr4CognN)VJ8VYd4Tb<;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yvTa`Rd?1i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`N_yv2j3w-6?TcRONCt~>~djO2)k0)&xHM4*j2)= z7IuxWYlU4W?0R9p5cW%9Hwe2?*sp~BTG(%d{Z`mb!fqD!J7K>Uc8joEh219X_5sGr zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e23gI z^3}n2$eqIO5_Y$+KM4DyuzQ5vE9^dD_Y3=zus;iXK-h!A{vzzJ!u}@g@4_Au_OP%= zggq+kAHx1A>@i`F3wuJ?lfs@7_O!5PggraJcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kj zbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#=SIFd_zrnq*bBm56!wy^mxcXH*uRCn zBJ5RRuL*ly*c-y$6!srs{}uL@u(yT1BkWya?+JTf*ayNs6!wv@kA;0A>{DT%3Hw~w z|Ac)pz<613f9>kAxy){Jv)$&JyUm?QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp! zu5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRw$U2mgo6Dr`1kvkRL;*qp-V z5;nK6d4$a?Y(8Q03tK?gg2EOOwy>~8ge@v;F=2}fTSC~9!j=-Yw6JA_Eh}s}Vap3! zLD-7IRuZ=I0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk$MRbi_MTV2>1!qybFmaw&jts`t*Ve1K7U)To1HWapzu#JUn zB5YG(n+e-o*cQUJ6tZc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR>FR|nrAy9(P)*zUsi z5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2Gjq_Cre9WCq_VaEzP zPT29nP7rpYu#<$HJivHaaDVOUvAN7{bFOA{2s>5S*Mxmt*lEH}7xoQd-xT&OVc!<^9bw-U zc80Jsg`FkrY+>IM_I+VL5cWf1=LkDj*m=Uv7j}WL3x!=I>|$X*687T(#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO-gYS@^ z3cEzurNS-~cDb-Cgk34@XTp9i>?&bb3%f?xwZg6wcD=A)2>Ye58-(2`>{r5mE$lbK zek<%IVK)o=ov_~vyG7Wo!fq3G`vBu*!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC-R9`Rd?1;+*j3VTV|%fkL8?BBv(5%#LE*Mz+;>;qvR3j0Xd$HG1l_NlPXgncgTf5N^PV7x52zjpQ5TxPeq*=}>q-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$S6yE`5iKpYyx2u3Y$pS#KI;KHmR`5giS7N3Smi_x7ky-Sz5Q*V7FOkx7lsCS#-DA zdbg=Sx9LN-DMzrEakr^- zvxoT(nPudwga1Qj6*il&*@ev^Y))Zw37cEkJi_J`HlMKhg)Ja#L17CCTUgj4!WI>_ zn6Sl#Eg@`4VM_^HTG%qemKC;~u;qoVAZ$fpD+yb9fbp{6{@T@JbD7=dX1mQbcbhx! zHVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0VQUIo zOW4}N))BU@u=RwkFKh#08w%S<*v7&(5w@wY&4g_(Yztvq3foH9*21@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4%ubotAp>5U4`u?YVMho%QrJ<#juv)|uw#WCC+v7(CkQ)H*h#`p9$>sIxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgR;pzB>30`Kqu}gq@;Dg3;Tw!ZwmXCux|_djYS1bA+8M>^x!T z3%fwrg~BcpcCoM@3H$K?<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H z*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3C zZMxcRirZ~k+-)k|>|wq`elqga!FR|{g~|_A6n(7WNxqzZG_qu$zVbPT22--6HH(VYdmpeSq<@;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ywI5e0A_0 za;LDngxxLd55oQ^>>gqF3cF9({lfkv?9aj;5cZ(3zXMNdra8l!k!TJq_C%iJuU1RVb2aQUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bmbxsk69zC)fD_JXh%g}o%~Wnupk_HSXY2zyo7 zYr}_H12zyu9d&1rq_JObug?%LKV_}~N`&8Ix!af)FKVe@C zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWRxYp{0;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq z+w`v6l(5@0vfI?N+jO{Hm9(;gv~8% z9%1ten@`yM!WIy=psQK%L-dg*z&?w5VoSQ zm4vN4z<613f9>kAxy){Jv)$&JyUm?j+y{*m}a&7q)@04TWtaY-3@Y2-{TH zX2LcXwuP`Qg>5BlYhl|6+g8|i!nPN-gRmWi?IdjH0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghwL)))xmejuEKT`w!5%BgzYJ8 zFJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii4ik2`up@*WDeNd=M+-Yf*s;Qn6L!3? z6NH^8>?C0)4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@) z-Dc6+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeKN30xl`C(!tNIK2Vs8{c8{=oh21CYeqnzS_Ge)a z2zyZ2UxfWt*x!WxUD!jy9v1e9ut$acL)brsJtpjNVNVEqQrJ_%o)-3uuxAGtFAMIk zT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+T zj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J+{jl4 z-yzQndqLQX!d?>gvao*%`?s)HguN>4HDRv{dqdcp!u})dzrx-U_O`HhguN^5Jz?() z`#{)-!afrAv9M2seJboTVV?{8pRg|m7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRjh4eus=IY&2n`3mZe&n8L;qHny;FgpDg~ zJYnMtn?Trv!X^?nv9L*mO)6|MVUr7+LfDkTrV=)_uxW%%D{MMp(+itH*o?wv5;pSy z<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$- zZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq` zW*PbF;Qx?Wh0P{xc42b}n^V|a!sZq>kFa@#%_nSrVG9UbP}oAk78bUMutkL}CTwwG zO9)$1*iyol7PgGAWrZy#Yq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD61KLm zb%d=eY&~J?3)?{0hQc-ywz05Hgl#HpGhv$x+d|lu!nP8&wXki3Z7Xa$VcQGaLD-JM zb`rMp0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk$MS7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CM zhY34e*b%~x6n2!bqlFzK>{wyP2|Hfc3Bpbkc9O7@2N*94?yp@vHka9LZnoQ8bGNzk zZnJ>@vtky(8`gCkL_rimKt%0)75TM+-}q2Zd2)I5Az*z_TA|3ACBiNhcA2otg}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`# za&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#D@VRM z_zt;B*wwx5k|>;_>s3cE?z&BAUGcB`=4gxxOe4qNZ7-|9ufAau*ZZwF6@Z`#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jOuvdk>ChT=#ZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$ zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWR#h|{0{kwu&)XmRoH04z9wvRVP6;a4Pj#l`=+olg^eZbTf)W`Hjc1yg?(GtcZ7Xc z*m%OeC+z#eejsdoVG{_OP}mQJ{YcnE!X_3r$pGVJ!Tq(X$L2D-&CPb3Ywk98-fb4p zZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9js zs@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC$J*`Rd^RkRJ=1OxWbYrV#cMVLuf% zrLdm~`?;{Gg#AL;FNIAlY#L$H3j39?UkjT~*!03?5H_Q*nS{+OY!+d&3Y$&X?84>{ zHm9(;gv~v`cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85Ms zMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)B zcbiH#dzkN#c}BiE_zsy@*nGm~7q)<~1%)jnY++%G2wPOxV#0nS?6<-e7q*13C50^| zY-wS?6ZU&ye-O5euw{iUC+v^HmKU~yuoZ=^By442s|fqk0OMuB{k5yd<}$m@&32n> z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%1#v?61Q9 zCTulfs|#C0*qXxD61KLmzYF_^uyus3E9{@b))ThAuzv~LK-h-DHWIe6uzw5tkFfs= z`=78)gl#HpGhv$x+hTz6vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA3tj(m0S9kP|Mt%YqPY+GU53EN)S4#IX6wv(`(h3z72S7Eye z+g;cm!uAxlm$1Es?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*bxJamj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUa^$On?~tQ} z9WCq_VaEzPPT29nP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3>>Od|3Oi5O`NA#` zcA>C~gk3D`5@DALyG+>S!mb!#yezoCcJ}p}x2)kC;b;7O}c7w1Rh213VW?{Do zyH(h2!fqFKhp;<^-6ia9VfP5TSJ-{R?icoeum^=bB|wq`o*en= z;5+0gVNVNtM%c5$o)h-Guor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>@8t$3wuY{yTaZR z_P($WgncONBViv4`$X8M!afuBxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7= zZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGRiDpeusQT*jI&(Dr_`iUlTUEu&)dIhOjY& zeN)(&!p0KzEn#B|8%NlD#6ZU;!KM*#)unB}sDC~#Aek5!nVG|3R zWPtIq;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-yxHZe0A`D$d83hCTwzHQwaNsu%8N>QrORg{an~o!hRv_m%^qNHjS`ph5bs{uZ2w~ zY~8ge@v;F=4+E_FG|#3tK|ilERh}wzRO{3H!aUKL}e!*s{Ww6ZS`8%L`jU*owkd z61K9iRfPR%fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA%7nE>fk$MRbhV-_E%wl6SkVL)rGAgY)xTn30qs(--Z1{*gC@274}bI z>j_(5*uR8rAZ$Zn8wuN3*uRDSN7#Rb{ZH5?!ZsDQnXt`;Z85-jS#W>t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0LFMXFYEwe2MRk# z*ulaM5q7As!-O3!?1%xz%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!~vvg2s=~QS;Ed1c8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI<=UKZS6yLxOc zv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV z-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb%8{=QzC*4O zcD1l;gk3A_I$_rfyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wvUK@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWePmX+b@E!7$u&0GRBkWmW&k1{8*bBm56!wy^mxa9| z>{Vf}342}G8^Ycc_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6T-X-_jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(8D-Wl zzeBzv?5n~?6*ii%uL&Dn*w=-9L)aL?zA0=>VPgsVmawsfjU#MaVc!<^9bw-UHlDEW z3H!dV9|#*?*aX5R6!t@5KN2>Pu!)6DGQfCQaDVOUvAN7{bF3n4K_Y29Xn-DaKLX1CpD(cNb2 z-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb z9_Bk_o{_H(zC-2}HlMKhg)Ja#L17CCTUgj4!WI>_n6Tdn`>n9Wg)Jd$NnuL~TUyxf zg#BLFAA~IkAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-kU|O30qCr z>cZ9#wx+PPgsm;?@525eY#m|i3j3$9^@Oc2>|eq*5VoPPjf8D1?BBxvBkaGz{wHh` zVVeruOxWhawisZ%EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+1RoHIAb{DpX zuswzCC2VhD`v}`t*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@Lgq0 z)75TM+-}q2Zd2)I5Az*z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5nVK)i8S=cSYZWVT$ zu-k>*A?!|JcL}>&*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*`FAcv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Cr7?I_zrnW z*wezE5%#RG=Y%~k>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~uCVuny)Wzo zVIK;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO*MyBO?CZk5A#4m`-xM~c zu(5=FOW4@L#t}BIux|_djcgUn8 zUmg4(@?&9>37cHl6vBQY?5Dz}6!tS=KNmKYuwMxKrLd`mO(SetVZRdgYhlv~n_k!q z!e$gUldzeE%_3}8VY3OFUDzDL<`g!Uu(<~qFAMIkT|G9J*==sN+gx+Ex$|zbfNrym zZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x z)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|&&XE?-y!n~n@`yM!WIy=psq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$e%~PI`|G*RoGvI{Z-iCgsmoQbzy4=TT|Ft!qyh{cVYh!wvMoMh5b|5dcxKh z_Ag-@2-{HDM#450_HSYT5%ynU{}Z-}uuX++CTw$ITMRH>7TjOEdTcJU+uUrox#n(j z=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO z-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wA|k*^NEL$(sOwXki3Z7Xa$ zVcQGaLD-JMb`rL;uw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?FcCfHR zgdHmEFky!aJ7R$Gvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA3Zj(m0S9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@g`FboRAHwHJ6+fr z!p;^3*s zZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H z=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb>>gqF3cF9({lXp)_Motb zggq?m5n+!Cdra8l!k!plyezoCcJ}g@o2zyr8bHbh%_JXh%g}o%~Wnr%fdsWzL z!d@5lhOjqP-WT?Pun&cOB|wq`Mw$J~?~tzu z`>L=}g^eccYr;ks_H|+35H^OeZwebz*jU28C2VYA;|Lp9*tdm!N7#3TjVJ7T!oDx; z2g1e|Hi57Sh5b<2kAzJmY+_-P3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U z-DYXsW`o^ko!w@)-Dc6^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4 z=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbf zXXLAc?~r+g%_nSrVG9UbP}oAk78bUMutkL}ChRxDek*KoVM_>GQrJ?$mKOFqVZRsl z2Vu(yTUOX|!u}|1d0{IETT$3b!d4cxim*QoFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EY+F{|Vbf*rviZ z6SldqEe04b3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BuC~$X5s7AzKOCTG%$iwiULWut>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LHUuxo`~C+vD*Hwe2?*iFK27IurUTZP>w>~>*y z2)k3*UBd1bc8{=oh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP&UKZS6yLxOcv)kNk zx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$&s%PzC)f8_O!5P zggqgvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeqs;N;cgRZc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wv?2R|o%x z{8-pz!X_6sg|MFp`>C)gh5by}&xK7T>=(j*DQs$C(+HbZ*sp~BTG({LrWZDYuo;ET zBy473vk042*lfaP7dD5mIfcz7Z0-TZ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB z?5W!QK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn z^5>DS4!%QH74{cle--vOVXFySUDz7J))cmuu(gH#UD!W_ts`t*VgD4ip0M?W{Y%&e z!ZsAPk+6-0{ae_7g#B08|AcKKY*S&I3EN!Q76Xiz1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7~WM+X~xG*!IG9 z5VoVRorLWyY!_j>3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGk zOxWSVju>FPEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1R|~sF*tNp0 z6L!6@8-(2`>?UD13%fFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD z-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#QRe*eJLD_EzA9`~ zVWSEAny}G@eO=f$gpDEWo5IEvHkPn&2^(A3IKsvi_HAL`5%yhS;|cqoun^@Q+1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4w-c1tAqbTek^P{r5mEo?er(+itH*o?wv5;n82S%l3hY&K!D3!6jOoWkZ3HunJIWx@Tm ztH5)6ti_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`SZwE2j3y93j2$&zY6=Cu+@aEE^G~9YYJOS z*xJJWF6rVtKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@9V_fOVaE$Q zLD-4HP7-#quv3JcD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNagk37^ zGGUhsyJCRxvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM z?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$ zHkEGnFyA3pj(m0S9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F!tNAy zm$18q-6QN?VfP8UU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q>^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2JuU1RVb2PC zPT2FpUJ&-8u$P3rEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD_MxzkgncaR z6JehU`%Kv9!oC<_yezoCcJY(E@q~R(*!P9~K-l=gCJ;8EupbKhk+6w`O)PAZ0mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfF&1)xrNEKNdEb zu*ro@A?zo@ekyEAVLuc0b74~n`-QMy3Y%KkG{UA8_A6n(7B-!*>4nW8Y(`--37c8i zEW&0LHk+{7h0P&sPGNHin|pxqvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz z>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<; zHudZ_UF|l-?KUm$HkEGnFyA5bjC^(Q9Wt-5`Gn0cYyn{l3R_6n!on62wy3bhg#AX? zZ-p%`YzbjY3R_Cp(!zcx?DxX{AZ!_7%L-dg*dK*0FKh*2D+*gl*vi6I5%#A6#>;~H zYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^ zl%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOj+y{*gu7>Cv1IT{}Q%=unmQ6 zBy3}0{}%QiVgD8OKVh2)+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6w!*d(w!N?&gzYG7 zCt*7a+eO%}!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD>6Lz?; zBL)~R3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^Br>J$X5s7Ax8;2TG%ndjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i(}kTO>`Y;22|HWZ zIl|5rcAl{Fgt>an@ZZgaEU=9;_Bop+lB zbenB-o7HriJ$0L^4*h|7*7WRs;SB1SM>~&#p2zyi5 zTf*KJ_KvW3g}o>2ePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_l)1nB4*80(uL>Jg*l5DO zCTw(JUl;ZbVPgpUrm!)EjV0_`!p0Uhj<9iseOuUfgnd`oc*4FX?EAugAZ&bL69}77 z*bjyMNZ3TeCKfiy0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fry79}AmI*yO^d5cU&cKNU8mu%8M0xv;5({X*C;g-tDN z8e!84`<1X?3!6^Z^ulHkHlwhagv~5$7Gbjrn@!m4!sZY*r?9z%%{{<)S#W>t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0La6j<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{ zmey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0 z*=_3CZMxcRirZ~k+-)k|>|wq`{yg&4!FR~2!u}%cufqN&Y&Bu43tL0jn!?r+wzjap z3;Tz#b%d=e?4QEc6Slsve+k<_*oMM361K6he+&DMu>T7CpRi4YZ7OUtVVeuvVu10o z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yvI$ ze0A_0vX!u{g>55jTVdM?+g{iX!gdt4ldzqI?ILVfVY><2UDzJN_7t|4u)T%tBWzz` z`w81$*a5;06n2oXgM}R;>`-Bc2|HZa5d(~u1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3^a9=a?A3Oh~M>B7zscBZhigqMeOhq_Inx=p*fP1U+h@48J1yGD>YGKz1yH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9ZWnfkusem_CG2it z_XxXJ*nPt87xsX#2ZcQ(>|tS#2zyl6W5OO6_QU|=Wx@TmtH?L6@3wuS_tHNFr_PVe)guN;3En#m9dq>#2!rl}1zOWC3eJJcBVIK?oMA)ao zJ`?u2urCG}FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7 z=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2 zZd2)I5Az)|$~<3whkQlYSA~r#Y&2nC6E?cAuM7KzurY*vQ`nfo#uD}|VPgv$N7%T+ zzAfxK!oDkPJYnAx_I+VL5H`NB34~23?1#dBBy1vK6APPUfbp{6{@T@JbD7=dX1mQb zcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA(M`Lb?|@4kA+PpY;s{! z2>Xe!p9-5&*w2LhT-a2?ej)6a!lo8Bjj(Bj{Yu!cg-s`HdSNpNn^D+I!e$mWi?CUR z%_eMiVRHzZQ`lU><{n_YEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p| z={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWee;)bj;5%eh zVSf?!S7Cn>wwkcjg{>iMO<`*ZTU*%Qh5bX=I>Oc!_D^B!30q&-zl3cdY(rri3ENoM zzlHrr*nfrnPuM2HHWjv+u+4>SF~E3PaDVOUvAN7{bF30*-F^f!nP5%t+4HcZ7*yGVLJ-jN!ZT9 zb`iF#u-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt!gdHyIhyljS zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1{x4 z^3}n2$Wg+M7IuuVV}%_j?08`(2s=^ONy1JRc8ai5g`FnsbYW)*J5$(M!p;_Uj<9ou zohR&kVHXIyP}oJnE*5r)uuFwqChT%yR}3&-7TjOEdTcJU+uUrox#n(j=iO!j-DVrz zW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$ zcipCh-KLSrVtKFu!-KNFerqazG<~!udk*^NEL#`5bwXkc1T`TN5Vb=@0LD-GL zZW4C0uv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=l3wuD=gTfvX_OP%=ggq+kF=3Aj zdt!j`vf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA3hj(m0S9rBd0r-eNu>{(&Y3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12maw;l zy(8>hVebihU)Tr2J{0zmu#bg(BJ5LPp9%Y1*cStgmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}W!^8pL%t&HtHMSVHkz=n2^(G5 z*M)sU*cigTDQrw(V+s3~u(5@WBWzq@-xl^AVc!)tp0Mu;`@XOr2peD61i~g1_CsMm z5;l>riG@uvz<613f9>kAxy){Jv)$&JyUm?>}SG$E^I1czYz9IVN(m6M%c8% zekJVJ!ln~8y|5XC%_wXpVKWPxMcAyuW)n8MusMXyDQqrba}O|H7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~wAbk*^NEL*^AWpRoCb zEg)<`VG9XcSlA-M78SObu-^##t+2&~Eg@`4VM_^HTG;P|{a)A~ge@a%Sz*fw`=hYs zg{>fLMPVxmTUppD!u~YCcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMP zcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3 zo33`7;&z)BcbiH#dzkN#KaYHM@Ex+Mu)hfVtFXTbTTR&N!qyPBrm(eytu5^D!u}y_ z9bxMV`=_w=gsm^^U&1yJwxO_%gl#PB-@^VQ?7zbPCu|d8n+n@Z*yh5v7+}0CxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU6_Umbjh zY$a@KVcQ7XR@ipJwimX8upNc%By4A4y9nD=*lxmh7q*A6J%#NhY;R%v2-{cKe!}(_ zc7U)0g&id9U}1*{J5<e+3&+HH#4ZCc!ID&6d1zC(^2`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>K z$X5s7Ay)~zTG%zht`&Bju`q~K3At>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0LK!d?;fs<79Dy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h9}4?O*vG;?5%#ID&xCz0 z?27@$%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!%zVvYz$%F6gH-?v4nj~*x16x5jL){Zwvd5 zuq-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$fP4*9sD2iV_}mCn_Sow!hRy` zr^2Qb_A_BW7dDl!UkLl9u&ISjBWzk>zY_LqVbcklUf2x6W)wD)u$hI;B5YP+vk9AB z*c`&<6gHQzxd#|83+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_ z+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BpqJ$X5s7A@d5GPuTpz77(_eu!V#zENl^Biwavz*l&dWR@magmJqh2 zu%(18E$nx~elP3~!j=)Xtgz*T{ZZKR!d4KrqOg^Ott@O6VSgH6yezoCcJ!ZsH6Z(;ut z_FrND6Sj%4O@(bHY;$2-3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXs zW`o^ko!w@)-Dc661KCjU4-o_ zY&T)M3)@53p2GGLwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZFVTTJlVu10o;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yuhie0A_0 za+I*6g&ia8SYgKrJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c*u(O4oBkWvZ=LtJs z*agBa6n2rYi-lbx>{4Nu3Amw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5cBinrgxxLd9%1(iyHD8t!X6OzpsMeOhq_Inx=p*fP1U+h@48J1yG zBVQeShdd?hX<^R@dsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4OhCG2fs?+ANW z*n7g>7xsa$4~2as>|VpnXTm-g_Qe3>Wx@TmtH)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWYUqZ4*n1Mv9QU6O)hK-VLuV}Q(;pI`_3Y$yV+yji41^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3{+9m8Cv1LU3kX|K z*h0b<7Pg46MTIRU>^H)GD{OILO9)$1*iyol7WO+~zZdogVao_xR@idF{wQpDVJiq* zQP@htRu;C3us;njUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKL zX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNki zxZS43-KNsb9_Bmb&m&(Qe21(m>@ULpD(r8R`>(M73EM>2rouK8wz;q^1{g03?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kS)fR|nrATM64* z*fzqp6}FwQ?S<_iY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^!uA!mpRoOf9U$yL zVFw92SlA)L4i$Eou)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$zVJ8YZN!ZE4P7!vh zu+xN{F6<0pX9_z@*xAC)5q7Sy^Msu*>;hpI3cErVtKFu!-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=vVb2SDLD-AJUJ~}Q zuvdh=D(p33uM2xa*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUPGhv?#`(l9c zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4g zEb!%b$XA4YRoJM)MicfmVWSKCy0C8u8$;MPg^ej}EMeagHny;FgpDig+rqvh?7PCo z6ZSn}-xu}+VdD#%K-h%Bekklm!X^?nv9L)77%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1 zjc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGU>=y2mgosSlDF3CKon^u%8I~sjw-9 z{Y==;g-s>w7s7riY-(ZC2%A>euY~0)75TM+-}q2Zd2)I5Az-J=aH`tzC%_O_7`D)74|n_ zs|j0O*c!st6tD4+g#Wd1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6}gzYSB7h$^!+fCT+ z!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC7+}0CxW9Jw*j#3} zx!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr} zZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT?=Umbjh93|{% zVaEtNR@iaEju&=}+A@2s>BUdBV;Yc7d=9 zge+3&+HH#4ZCc!ID&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ86ZW{UCk7ZV3+}I7 zJvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4j zZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ!$X5s7 zAx{Z=TG%tfo)z|-u;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B342@EJHp--_MWi! zg?%9GLt!5Y`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0L3 zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( znRMie+3&+HH#4ZCc!ID&6d1zC-32`Rd?1WL{zO37cQo0>Ty)wve!e zg)Jg%QDKV-`;D;Q3R_&*62g`gwv@1?h5b(0?}hzA*fPSF6}FtPKMGr3*b2f{6t`w!Xmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3 zbhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1 zx2bfqhxrcq^T<~R-yy3C`-`x@3j3R|)r74sYz<*+3R_Fq+QR-W>>t9`5w@8w%S<*v7*CE$lzS{wwT%!Zs1Msj$t2Z7yt!0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W)xmejR>HOxwvDiD zg>5Hndto~W+fmp~!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$ z7IuiRLxmkC>~LX63@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6@;Dg z3p+#DnZnKzcDAr{gqoT`KG{VV4WLVu10o;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv6ye0A_0a+R>F zgN>``Hl342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3`w<|(5cZ<5mxR46>=j|J z3VTi1>%!g;_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GMecJ2b&>w53<_@O~M zq~n03bV!4AcVm%mUDqzx)3Fc%G{p?YDK;{kB%XZ)+d?wwA+hYg7ET*2ZsZhy1n{%5Q7C z{I*ujZ)@-TwwBOuYa{)(*3)lmSN*mY*Kcc!{kB%xYp3ONNK(6he-6nIWEq1jQ;=m2 zvMfQCHOR6BS@s~y5o8wxSiG23g@CD-vWy zgREGP6%Vo!K~^%zN(EWzAS;uQ>B&Op&pY*M>ty+G{~9-S@R&fG$GTIh0dRM>ebfC^xHbKep{#6Z|j`bJGHep_4Yx3$tTJWlg&mk>?tW}V; z4ze~u);7r61zGzb>kwoegRE1Kbq=yFLDn_Mx&>MHAnOriJ%g-Qko69-K0($u$od6Y z{~#L>WCMfjvLL%W$gT*oD}(H+ARCmB>B&Op&pY*M>tyk@E}VGvJpWxGRQ^++2|k}6J%q9Y+R6y53&hCHZjO11=-{vn-XMGgDf@3rUlvb zAiFxqW(3*HAiE~WW(C>oAe$3p*9O_#giKEsI)C1&S6e63Z|ltZZJlPnt#j_Tbp!mi z?uOsit?}EsPkviB&2Q@t`fc4#zpZ=gw{@faw(h#$)(ZG-?StRea`CHd`)%C- zzpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6p$Q}r?2ZQXPAbU8-9tpBXgY2;&dpsf2lZDQock0#F$@JSgvwmBr*>CHd z`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?RTN~-OwVr-kyXv>KxPDt(?6(!?CBso5@gQ=*|S0RT#!8B&Op&pY*M>tykeHCP12iZ44b~4Dm4YE@~_Fa&DA7rP4?1v!x zG01)jvY&(OmmvE!$bJj5--GOrAUhLee+JoKLH2i${S#zogX~;FrY8%XKkwA5t&{1u zb!PpxPP5_-)-Mzpb0*w{-{owr;22*1h%Hy3u}HcinGm1^l-5 z!Eb9h{I)j5Z)>h&Tnf8{kAsJZ)-jMwszHTYjORyw%BiL zrM-4qK8GZ=|M%yR3_+GL$T9_4<{--wWLbkOTaaZBvK&EnL6GGPvRpxyJIL|`S>7Pa z7i9T^tU!jwC3-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?;ZQXUhtrhUw z+6TX_zckkt>e20_*^$QlJ%;~;AiWKDytS&%gkvP%;(Jz41dd8b}& zolL*2GwZi?n*FxUx!=|e@Y}i@ep|Q3Z|gq!ZQV4#tvl$qbvymG?ycX}jrQBR>wa4+ z;J398ep}1ox3wvLTWjODwL^Ye3+1=9U4C1u=C`$Xep^fEx3!UeTkGk!wX1$xi|ejGRRs5S?eHc6J%|JtX+_`53&wH)-lLB1zG1H>k?#LgREPS zbq}&0LDnjwC3-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?;ZQXUh ztrhUw+6TX_W+4vxv z5M&dBY*LU-4zejhHZ{mngKS!mO%JlGgKS2S%?z?@f^1fh%?`3TL3VAB%}vPkWTErt zoqDx(GX1vBtl!pY_S-t=ep@%dZ|iROZQUBbt^4G+b<_N|?x5e+?eyEaw|-kU+HdQw z`)#d&-_}0(Z7ql2)~5Jvt&QK-4*6{@l;75N`E9M5-`3vwZ7reS)<*hmt*77CuKH~) zuHV)c`)#eX*G|jlka@gn;&aG#K{h|g76jSCAX^kx1luAX^q>%Y$r1 zkgW`|RYA5o$kqhe+8|pOWb1=$Ly+AVWE+EQQ;=;AvMoWjHORIF+4dmY5o9|PGCf)7 z{CTHdZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB`EA`azpXpyw{<)Hw(hOp){XYt zy6b*hE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK&tLC@0cYa$-=(n|zep~D5x3#N& zTZ`+rwZ(p0EA6$@@;PJ|ubTKAvOCE31liso+ZSXv1=-C(c1w`$53*Z>?6x2~5M;Lp z*&RW4XOP_$WOoPIJwbMFkR1%N`-1HLAUhOfhlA{aAbT*#9tyIDgY1zYdo;)%3$n)( zGCf)7{CTHdZJkWNtuyPlb(;OQ&bi;#4e;B#8-822#&7FB`EA`azpXpyw{<)Hw(hOp z){XYty6b*hE8w@a4}M$A;kUIZep_qfx3xolTMOm4wOxK&tLC@0cYa$-=(n|zep~D5 zx3#N&TZ`+rwZ(p0EA6$@@;T%QUN!MK7G!S+**ih@ZjikfWbX&r2SN5>kbM+n z9|zed37MWObpE_kueMI6-`1J++d9pDTj$(w>jwC3-3`C3TjRHNpZvCNn%~wP^xL|f zep~m}Z|g?;ZQXUhtrhUw+6TX_>$qvLA!&ry%<|$bJd3UxVzoAp1SY{s^)&LH1{m{S{~!wpPt=Yw!HF zme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{!}Yfn5@bb#tXPm053&+L zRx-#+1zG7JE0d7v$wKGPJN0VoWcqELS--8*?6-B!{kCp^-`3sm+qyM=TldLt>!$f_ z-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubr09A<4XI;;)C44YG1Uc2SU(53&kDRx!vb z1zF`Fs}f`v2U*o1s}^L{gRDl7)eN#)K~_7+>I7NcAgdQ-mjqe;AZrk04TG#vkTnjn zCPCIT$eION^B}u4A=8tE&YySc)z-=M+d8v;Tc_D?>zw;--2lI>yWzKWYy7tEli$`& z^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWYEuTYL@T!T=AuWTfRgkp~vNl21Hptoq zS^FUC5M&*LtW%J64zeym)-}kw1zGnX>k(u51B2|c zAiF%st_ZR#gY2px8!$f_-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubr09A%l6<#OIJ9K{hnVh6UO1AWI3d z5kWRG$VLU(=pY*tWMhMDT#$_qvI#*pF~}wb+2kOb5@b_@EH%ic1=;i&*IXoo2tSbMCiw1N^q`hTqn$@!Psj zep@%qZ|e^FZQV}4t$XXYb))^Z?z-RB3ixg9gWuM2_-$>9-`3jrZS9cX)LTGa=KHh0dRM>ebfC^xHbKep{#6Z|j`bJGHep_4Yx3$tcJZo-&mp^mY)_Ew4YGYf zc2khu9Aviy+5RBAHOOuYvI9YOdyw4`WOoMHT|sttklhnx_XgR)AiFQf?hmpebfC^xHbKep{#6Z|j`bJGHep_4Yx3$tp5RpzpF^GuvZsRV z=^#52WX}ZIvqAP;kUbw{F9g|(LH1IRy&PmmgY1j3$oXP?2RCMGsxZwvSUH^ zc96XjWbX#qdqMVokbMwj9|qY+LH2QweUgyr$wKGPJN0VoWcqELS--8*?6-B!{kCp^ z-`3sm+qyM=TldLt>!$f_-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubr09A;)>u#OIJt zgY2^)`#i|L2(lAF_GOTL6=Yur**8IUGRVFSvQt6!U66erWT%7dhameg$bJg4pM&g| zAp14QehaeSgY1tWI}>Do2H9Uh_IHr|6J%$D>|8>oCkvfF@6@ZUlj*m0X8pEKv)|S^ z_uIMwep`3LZ|m0hZQUoot()ezbqD>nZl~YYz4hC=(SBQZ-EV6J{I>SNZ)-XHwl>9Y zYi<0tcF1pQq5QVC%WrGd{I>SaZ)*wtwl>mlYd!t8cGYidas9To*l%m4y>?nYha`3U z_verdL6$MdG6h-YAj=YDS%WNFkYx|D96@$LkmU@rTtSvQ$npeP-XO~tWch=vK#&y- zvO+<2VUQILvLZoNG{}ktS@9q%5o9HUtW=Pd4ze-{nVu|k{=8GKwoazs)|vI&I?aAt z=iG1W2Ka5=4Zp2hqh%+-F3gM74X~I2fwZ5@Y~uH zzpb_L+u9+&t%dU2+AhDXRrA~0JHM?Z^xN7NZBAO7i1R&S@|HV5M&jDtWuCw4zemic5#qZ4YF!MRz1jS1X;}>s}*FmgRD-F z)eW+GL3T-y)eo`;LDn$H8U$i29 z{kG1z-_{NA+qxTmTerq<>puBy-88?gJLtD{JN>rqt>4y-_S?Gaep@Txx3v#`Tg&0M zwJCmEYvZ@ILw;Ke<+rt6ep{>Nx3zbETTAG-wUK^X>*=?(tA1OH>$kPVep@T;wbSxB zqy?{<_#DzQ$XW$i>mX|rWNm}2U68d8vJOGkF~~XvS?3_@5@cP2tXq(E53(LX)-%X@ z1zGPP>l0*sgREbW^$)TEK{hbRE(@~DgY1eRyE4eG3bH{7nVu|k{=8GKwoazs)|vI& zI?aAt=iG1W2Ka5=4Zp2hqh%+-F3gM74X~I2fwZ5 z@Y~uHzpb_L+u9+&t%dU2+AhDXRrA~0JHM?Z^xN7j{kG1m z-_~jN+dAidTQ|UO>u&gM-5S5G`{cKE)BLvXpx@T*^xL|(ep@%%Z|ko6ZLNUc);{=c zEr;LMruc2Gjo;P|`E4zf-_~~dZLON$*53JTEur7mM*3~7r{C7D`fV+)-_{oUZLPG| zPRr+zdAw@kbI5f;Hb2M~1lhtMTNGrAgKSBVEe*2kgY1SNTNY%?gKR~RtqihNLAE-` z)&$wwAX^t?>w|1Vklh$$8-r|9kZlgKEkU+5$hHO9_8{94WIGcwJz41dd8b}&olL*2 zGwZi?n*FxUx!=|e@Y}i@ep|Q3Z|gq!ZQV4#tvl$qbvymG?ycX}jrQBR>wa4+;J398 zep}1ox3wvLTWjODwL^Ye3+1=9U4C1u=C`$Xep^fEx3!UeTkGk!wX1$xi|eDJIM9~+1?=AmyqedJ@gvh-&i}`M{jOC~sieF~nR1{1j~SA3C++K) zRA_Tj#-xjLoKDi8-T))B7s0>&48CMc%5aX~GPOxcy5N7L>3{U^@4(q}NlCdf^G_z> zHzmgx?fmIX_fh!{tjV5KwbH@&YLN}*2XgRLKi&fwF#wry1p0^Y2MQn`rJQ`N$JbnZ zZNXRlbL_&`f_xpoSN-|?-+}aZApIRke+Savf&WYI!2jy=f5u}+k8P__BHy}=eEzR?=1zV7*Jt|w z{P{mGnLhs)!EEUB{zB-p@^a{N{(2O~Ht6&JKIqp2j^aOm{@3T|^PkDvq)ZwzC3Sqt zgw+4|%s+m7%9LR#N&oQ~Ip6u$p!z@kTACNvUpEWRf8;O3A5_vGRVv$K3Lnk~^%FPrU!cDPyOON=Zqbdj7TeTRs0n`Z;$SGM-;&=rv@*Nd7$iMD&B{ zzoowe>F+@LJCObkq`w2{??C!Hkp2#&zXR#-K>9n7{tl$S1OK1A1Ns=N&&v8ptB=C^ z%&hOK$Oiqpe0|o}w@~Qgu|Biwvv3~hbH6_0=ZF4Xzdq;dWA=s6XMO#8Kv5J!ag=~Q z-FNtICr{Eu}dRYf&aM-9|OE!0LG)I~j9g8Iva@jEBAo6Y+un>!|7)!7e*W(5(!*Z;^O02?atif8W!+LDMjo64y*o-aMif!1A z9oUIo*o{5di+#8WH{%xU$E~;x2XH&?z@4}YcjF%1i-Wii_u~)_;{iN~hwv~S!J~K# zkK+kEiKp;1j^G(Qi|6n>UcifZ2`}R)Ucsw)4X@)3yotAP3~%Edyo>knK0d&Q_y`~4 z6CB5<_za)p3!K20_zGX+8=S9`s*Fca5c7G`4(uEku;!*!UC z1z3nhSd1lDitBL$mSH(oU?o;zHP&D))?qz1;6`l3CTzwQY{fQg#}4eoF6_o0?8QFZ zgqv{-_TyIEh6A`Aci>Lkg}ZSN?!`gehx>5|hw%Ux%(kKj=}hR5*)p2Sml8b|O9 zp2c%`9xvcUyo8r=6tCb_yoT5D2HwP5IEJ_J4&KFkcpo3&Lwtmf@d=LOQ+$Tc@dZxc zOMHc|@eNMmTb#mo_#UV61AfF$_!+<8SNw+G@dwV}PyB_y@ej`89Q0rO8ITc~kQrH! z71@v-IdB1TA{TNa5Aq@(@}mF>q7W`bVH8186hm>8KuMHBX_P@S%Ay=DLU~j`MN~p% zRKdllifX8i8mNg{sEsO_0a$g(Fl#v1WnNl&2cGOpe0(NHQJyp+MzunV#$p`C zV*(~(5+-8`rXm&7FdbK824>cFP2#c`S+gLnuJ;}JZH$M86wz>|0iPvZ!l!LxV{&*KHWh?np(j^Y)(ir4Tu z-oTr93&-#_-od+g5AWjxe29_K;Ubhr1yn>OR7MqCjH;-H>ZpO5sD;|7gSx1P zOHdyT&=8H#7){U=&Cnc|q6J!_6o6Y+un>!|7)!7e*W(5(!*Z;^O02?atif8W!+LDMjo64y z*o-aMif!1A9oUIo*o{5di+#8WH{%xU$E~;x2XH&?z@4}YcjF%1i-Wii_u~)_;{iN~ zhwv~S!J~K#kK+kEiKp;1j^G(Qi|6n>UcifZ2`}R)Ucsw)4X@)3yotAP3~%Edyo>kn zK0d&Q_y`~46CB5<_za)p3!K20_zGX+8=SAzX;UD1xFWhT4JD1&5_MLArA@~D7{sD#R>f{RfV)leNZP!qLK8+A|@^>7L5qX8PC5gMZjnxYw+ z<5ILhOSD33v_V_6Lwj^UM|47GbU{~iLwEE*PxL}>^g&u>(7?3%jugd$A8U z;bz=|{kRpk;Q(&O9k>&B;cnc6dvOr=;eH&#VLX5b@em%yBX|^#;c+~HC-D@X#t}S& zXYm}K#|wB7FX3ez#VdFfui{5Fg=Ve1hZn6rbU9e1Q}A z5?|qKe1ntt7N_tXzQ<|&fFJP_e#S5O6~Ezk{DCw06Mx}v{DZSNhomgre`G`^WJVTb zMK)wd4qSko$c5aLVoIj+E!xC(Q`>@GPFg^LPO-;w8L{qj&|c;x)XE zH}EFj!ZEy!cknLW!~6IEAL1i?j8AYJpW-uojxTTmU*ao#jc;%g-{KU$!}mCiAMhi7 z!q4~xzv4Iijz4e)f8sCvjel?!=a7_@`;Uysgv`hS{eNXYy&_ z;S$tG12jY?&yJ@=!M?sgTCm8 z{uqFPxD1!$3S5b+FbIP&1Vb?l!;yj!7>Q9BjWHODaTt#Yn21T3j47CkR7}HkT#Xr+ ziEA(mvoQzPVlL+4I?TrcEW{!##u6;W^|%4cupBF}605KpYp@pUupS$5BQ|0aHe(C6 zVjH$&2X68e#7th1849j{=(n* z2WN2(N!hsn$cRkHj4a5CY{-rrxBxkk3%QX8d65tKQ2+%|2p6I-il8Wpp*TvQBub$) z${-nKQ4SZOJSw0fDxor};9^uoHB?6p)I=@RMjg~eJzRqNXn=-jgvMxsrf7!dxD+kW z60Oi0ZO|6&&>kJo5uMN(UCcO{6TQ$Ieb5*E&>sUZ5SQU{T!AZb6$W82hF~a$ zVK`DS0wXaBqcH|!F%IJ~0TVF^lQ9KTk&0=Uj;k>PGjR=OVK(OATFk{fT!;BsfQ49u z#aM!+xE?oP8J1%OR$>)aV-40~9oAz5Zp21x!e(s2R&2v|?7&X!!fx!rUhKn7xEZ%# zKW@csIDp%62kyjOxEuH2UL3@IxF3gb7!Tkzl z-{2&^#VLG;?{OMG;79y~pYaQR#c%i>f8Y%M#9#Ou|KKdnLH~k312Q5LG9wGJA{(+J z2QENPLZ*dCW;d`9M5BL#3;b;7U zU-27$#~(O@Kk*m-#y>cVbI>>UWI#q_LS|$^R%AnV@+p*HHEF6!YD)JFp} zL?bjt6EsCLG{>cAftF~6)@XyaXovRbfR5;d&gg=!=!Wj-fu87v-spqA=!gCofPuIS zm*WatiK{ROgE0g{F$}|zf)N;rQ5cOe7>jWjj|rHFNtlc&n2J0n4x)E3gu)uo`Qy7VEGc8*n2wViPuF3$|h#wqpl& zVi$H}5B6doZoiGjyrHC?!w);2lwJ2?!)~!gu{3M58@#_j7RV&9>e2! z0#D*8JdGoG2G8O-JdYRfB3{DFIEq*BDqh3ucmr?ZEgZw!cn9y|J-m+(@F70J$M^)t z@hLvT=lB9A@Fl*&*Z2k}@hwi_JA9AR_yIrSC;W_G@GE}9S^npb{^08w{E5HtH~zs{ z;m7rjeHoAunUEP-kQMszfBrAfUpM`?|99SjUVJCvM80z{IjJq*SD4E863*nm82sM~ zCuKSRKeeU5BmFDo7<{PIF)XckbW$Z=U5#mZUbk!m#r{hm`aG1pfDaJ`Mj5{{GMXr`P{)@~oAQ diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1978.xls b/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1978.xls deleted file mode 100644 index 36a7a57064d3d00d09bd1bd09965f8364c17e549..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1326080 zcmeFZd7O>)AO8QEecz2NVeG`%x71{i>{+5kB+FQ`6*HntBvVu)DOxP8mPn+mrN~l> zLR6Hpq)kdi>J!cHeVt>>xLtI8AHVtj^LzZpV~#n`d7k^e&wXCkb>4H%u;Y`2124Q@ z>Y#Z(uCXBdH!s3M3-M(4_2rRgLA<%|=jGvA{@-Eld*SXg!hJ@%&nWj9?LK4NXRP~- zbD#0pQYSqY4_=N@&AAPUpxa5;qHM94Y3}b zwuf!CKno2wJLvvi7QDe-njLbVJ?&15F}tD9@WDg+q;wwHXH=j5DgT#0TKJBkPXLZ# zeSle-`zq3AJDOl6eMgq)yG-(3F7#)4Sj2 z9gZ;HQC;xeD{PQE+D7NT8xzpdcf5nGukYAXtb@A;18tCHy8BSpY6b*2JAY4M9vepR ze;Qx8qrLPtj=LjHICo5JFEEPzr*ZXv8rS@X5n#yiFZ)+2AzyG;;aHZg#76wG8WTy)LnVW)@~;F5EyZx9>~s z-T!_6F|>7etiq)?ap@x|ys^P{h1Iiw-skS|6_#?r`8fZ(I6DPr499epJ8$`C47aaf zsqWK%F7cgo-`8b>YdN>NS?_9Bq*Sa~v0|Ox)vvkXpgV(|cDh8$8xM zGEFajc!f{f`G;`+K^EL&eyGh{vMxN_Mpnc1Ou^ySs^d9g2MP|lS+jz}zT94R(`6MZ zRmi`eJ*(wk>FMrPd7J0PsPOl1?V8cQ*ZEQfo9{;DoaEnof#TbF+2E?Sz@2N4<=NU< zwXrR9kF~o$?obLp0=}z-9|Rvb?{R2mueitIyqo%u=j_JL-rBb#_n78ypx~Swa1Du% zlX)q=zx@~MQ^4^Q<>M#vzjbNuN`?9tB7Dk4__G(`vo69HU4*}S5q`1bnRyX^@kRK>wtq4I^^0uh|Mu~$@$J_&i0AQo z=OTQ?Mfj?V@HZ~P{rC66{rZn5`hw$G;@gf}cl(d?$%KTbqMnMfVE^Nic#aPk@NT(x z%UQ7hcmiCn`sVO2C-^?{^IrWT{FRIFg_Pr`JC^sTe12~J{d4GkQ1JV^t+V^GoLi^+ z?pMV5ym&r$Kg{L(DP|K~eEj}7?&-1EeE;0}@y|~}KHqJ(yDv-SZ^!+F;@|$c_7il$+7bsmhXFx)7`=R`_;$nnsetNDW7|Mhuuec zvuXaX@{iwtEybOh^LdExs`H;dpBtWKu`qbELWT5{^pyPV_v_S{Ec|;e*?FX zi{Jmi3lF`{xxL~E+5H5USNMbl2D|%@Z*2MX-K^Q@iyXPkloA5=4bP{05F`vnKptXZ=Q4hqbBP+;DJ0=xJ@;SLlW z)c>+Ca=O_;72TQg2C0!dD1RDp_AfZ7{D&oPLcqB*b>Zp0;@mw${_#OadfvQw=Qff* z14Vbby}?X#hv5$ zi;H~bV&^;93+t(ZyH!CwyDR5!7^f$HBd(r&8@_NOSn?EXA0z*JBj-B)B6p|ac^h$8_&LE7_{Gl&mNWl(cQOWCdLvkS{^v%vb-46K z+)vH_y^(tLFTIgU=WWDY;pYU4k&B-bEP?;??qm$O^hVqQ^S?K;t;3}^QdZeWz518l zNagc3;;!&>f(7Qq&k2^3!a2G0MoKCh+1BCG8*wY#|2~p>^)J1VD(7v)UE${hYs!nC z6D;k8b8_j8xE~QqiiO=;e*U&ipvy3@lu+H{<{vmXJ$W%FX( zYjSn0vitcY)qOU%e(q0(4fnmrf!zjJw1ov{4A^_{_q-5%jb|J8WMA1mmj_}u3Eth* zyKpxZF0mW`j~c$+gk%gj{q1LbH;LZe)W2{yRW7j`{|_U+-GpWgICkt9-%XNtHw`Y_ z%@vo}4SrlXd(y%(2IT#|jqj$IcQ*|$+)b@Z>;^v-oZU@$#(@1tPx0L(dw0|5!rj!n z#BThnSKmpC$QW?w*L{39#j%?Pm!7n8ZZ{2tN!!-p%`M;a-CX9~4Vkoxm)K3=N!!-p zuaB1S-IVa|hD=)3OYElbq;2c)<(FUb-IVn1hD=(GOYElbq;2bv_uVsmH>JG0A(K}7 z61yopY1=xi`}`Nao6_FhkV&h5iQN>Qv~3->9C(xO=5p+&(WNIX#qFk%FlqJbPkrSg zk4+ixZpfrny2Ne@Pg=eDCzeg(_ol3OH)PVPU1B$dC#_!nty{P9-IVk0hD=(`OYElb zq}8jRw|4;FO^SCnWYX$fVmE~+tzP|E?|sL2Q{KB9GHDGiv75q^RL$v&(ej>+7M>!rW7&22 zMk^I;)Xk4~qm?}yEj%;k`(fMntnNM1$^{#B)8gG|by002m4c1B+3;>O z)w9vU^I&%CtUY|ARSP!iCc(SWx}J>|e)P@mT+*6tG~B&u?0yJu(Wn3P@GH-M(4o`A$9sES8oA4*7&+eu4zN`|>V zecS<Zm9cRy8<`GZgtNDz0TbxbwaSaO%=~=g7d=NZL-{N`Hb|fef!zi zbGN89AdC?c#;{1IjTWz-jw^n2B9NK4ipUe>>$EI}47?U|Yy!H8;3T&7c zZ>?;M`_(W!_QQRT{|I*=W8FFL<_>3!n+LqomjCGE!9F`)5$?XZmuFg!7~ux>s`IxS zP%1CjTDy}r!ZWIP;X8j@ZfE)1igoXTxSt@}Wc2Ajc=*5+_p^fMK!f7lnQh|^2(v%f z9q2%Jfc`fdd?Vljb8WXf{F}olhPfm27vU3uvF?YALK}D8=iPV$*|@*|F0%2wW-qQj z=r?lhNdEnu?cO*!JMeC#CYXz3h4YWq{l;IY+Za-V zg21Lw5fRn|@wk3OX2$gJzUSX0Fw(^XH_3FzfY+t-ix#g-=QkK$Q!eOL|F!%E^Iywv zF#okD0;B9obFX1_%F6UTz;}Cgn(Q{+$#<78e25D-JPPr=hZvyXNc`9GkHmj1|497T z(2q?ggt${x>HI?o332DWv%AkD&;6Y5KUtCP*QnfNb{m{I)Sa!m=ie$Q&OI94+%ROi zlZ*3p;cy3FxUcqYVnik$aL-E(K_z{gzzO$1LczWnI`8EKocH|N@Za0~YnZ46OLI?# zc2l2`!_iRwHf?tPfd)poV!p}kVWgYe{E}iVisx+K8J-$`vrR4Znh4%ZPH=y^xsCMo z-P;@7A&>Qa)zRH|bYGSmvwH3<4z|(02`VrO|AuHIyFCDJjpVqaz6b9oxM8e&W#cB# zhL^Bs3+*ug-*O-BzS&Few}@XV^gZxL-R%P0^Vn+v_&Xr@GWQF3`L`)yrCl&B0KZ#s zmW8=@j05mExc6i>1cbX!v)cy;*lCLms_dxK-SWm&P-e!+;Tf4JT{DJe^cj_r(!Wn; zM$?p(PW>`R^vxKVQmK1`ki^ zH)3eku;HUpTBP(D?s~*`>1Ty4+^A8l_U;#-M`Vrchn@I#?p~4_)n{l*=Mi_FT^pse z8kISCm^+M7DSgMLG#{8zGv$ViF*SW#?b^q8LwEk_q`HeM-Bar=8GS~kj2Lk4R_?X7 z>)Lj{A?1clw+a6NjmR3FIX0!`i2fO)63wuU+HQ+(_x%U=!*jCxVY2&hcV|)>ri^u4 z8|5B?hAEjNQm*u0b-y`Lw+^n?ZBPJwLfrzRp3kUPVAS&&^$LvoKBIntQQv3OFEAST zj0Ocp1E0~Lz-Z_*8WtE0eMZ9qqmj>ORA4mn8I1~z#y+EQfzjA!G%hfj_>3lJ4fl>p zld~trcRELm&KT(yjW-P%?9T77K0`Cyl@>$$xD_O>xO3;fG9Uw2-2>DqbC5f=Bi&ga zh>$)~Qpsk6SC9d-&a>>TX+jG#qJ(M{}^-mK!{LxBGB+9R2+d_r)is zUDnXCDRpb6AbDsH-@*HLo#%eY3%4aT{n6W~yT7k<`Rx~8+Ew+{*~=AHt8%iE7%$Gz*C#x8f;NpgSR+H!=8-SEub z-NxRTF{)RsF~f$w`uIoJZ>$sF>QtN44;)EtH+y+{c;z1_zCZQ-7ssvt;F(Irw|=pF zLHB=7b=cLd#ln>0Lu>A>e`@Ykhexg}7q(*K)3X<}Tl#y88kLTgZry9%H;p^(U2@}; z`%9I$y3f40r%$YX=k02ZADYm1%ClYP-TU3013N5Fn>uY|xoI!&`d^d4j~b4yGU3dG z*zH+ezAABa%HvHAZ*BSck)V~!%G{jx%aOmIu5@VHn`@gjy8hL6EyEvpWBv5qKQH|I zx~;`q)cSBu)swYet}*3>?YF$w?eCJyez+~8;m(E&zfSo*>e0lF%c7_B{$yZE$<*)O zy=v~1pTGRdiC z=c$o9|ERRyBQu7Ms$C10lOFrzj*WGqANn}c&a!gu zpBu4*uZzR}`Ih!0N;i&w=dvHh-~98s*ZUt$DEWBM(d4SH53Sg>>$h#%?yi;k%gE+k zM`zZUenah$$d_By4!P&(3)MXns(0^L8GYBJv}uoRZnWs17oObu=avUcyjL%A)y)(8{WWacm`Rm-{(gJE zO*^aqko&`y0WWmkJ2`$zcJ1pD7N%YP*w*-av*+#l=9X$BZdm>3yv|WAKfJeH!$F${&1aZSNi9|K0NOoR~M$E_-og?yKcL z-#LENnl8Zb zZQphIkO{k%#_nHo$B@N?4#u3hwZ`nbKl-WP!G_iL^zO0Y?xr1=y_oa)^Tm4Kw&AJL zE3W(Kv!%_ezq5Se(&D3UowsOS?+046JG3=&ZRgj9HoR=X_LP3totk~T$C}-*4F7n> z_thppSaa>};{A$$l=XV?7y50v$~vb%Txm+$mF3emzxihT!80e1#{Js+z9)vSd-Sp@|L*^! z_dEZbc`WXghmyXZKjxofi|=0Ad)=8|7B?Gz&yPFa`Do|*NvGOQ%DH<&r**AsP7G@L z*WrM7XJ6aw+D+5b%l|NX;qZ@k1eV7oIrZ7r z#Wp8~G}*H2hIe0&*fRCgw91>74|yv3%A}z+*DcsIB;`8+KYS)KVy#VsBBKhp8p@((9o zwzBo19h<(sEGfLpw`J=7IPvahvL9MF11Fl`NAx`1YJXuh~*;&Wj0KzCQdGrhr(XTE#S|V!D6Ww~h@oa@tQ_}bUMba~{CKEbDYENNYS`5jNKE&j`xId^?D{<1ai zA9&~Lm4kX7cqh2zxWOgc{5*eK*sxDq@7|XZ_w+RrLpRPC-h9)@@wHz3X;JZ6O^OUK&vpL?}ur`k`f zs=Z_H!ojVZ9@$y{xk1N17}%lOv8^RH|I?yVcJS3ZA8op9;kPGNCk?E)zS5+ni?(eD zEne$Dn~%oK-ulUu=zGhzyS+iT6Emi#Z|ffRUi+sfOnLma(LdcdrfKflp-*1l^pRE# z_jIVSIK5u)+E2cb^>o**#d^K+-KTGLST~^b57m!OoG^V|bVR@Uvo_6q;M%O$7e4y( zz_qtG2#d&GKBP~VQOi~@*)~-_cOSiPO>l*j;EhcNebV~FPOmJ! z?CU)rzkPkDrS<102khuuyF$vT%#L^Uy7%g=wGDRHIxzT=NeROnMGPys|G<>^vXj2w z`O1y8TO3~g&TB_%t@xq(4L_Vod2?i`JztjVdsp|~4}3Lp`17wnQ+?3Sb3Qxs;f*C* z446E9ZL6QzSp|_YoUXW^s5+l{i->SzTfZaC+B~eo1F3EiNt#2o~<$a z-8+6;{J@M#vnIZE@4+8-m)=o*{G^mkAMSav-hs*CWA5tQVab&hj#sJKzW>@$6A`OAYBt$+5q6^jPn z*syEtkj20J-QvTM*X`OiWd4lq-S%V-tUKhPRwZvN%U zE=e7^zw2|;x<}L*GoV@PJ?qk&*I9UE)-Ah>9p2O6)scUW+w)qPM}p?IJXWFAdmsF7 zM$W#bZ;J2Qdvo)z- zy|3#IT2v~$>5nt+dUnIG)jv;7?^^u&DSNN#zwGvjQ%5vDmOSwB_SHI8snoSvt-4Q- zjIG-4iP<|I?)LYD*P6Wa*p1&-cxis~58m3*=2TYp^S{js7`M67y1w!E?y-_HJ3pKE z#+fFirVOlIu6VD1yEGrQHz%api(9rGs5om;hu{xyUAuPEH|OqpKwzr-y|jz1YMoZ- zgRF5ow?BUa-eq3Ft?Rh+S!mJcy`gv6RB*$RZarD}LGYe_@0Pr4n1U^R#w>~$}87CxFwj6~=5A#N#!SD-?ym%I17-49h}v)tRF#R_;OE-Xy@fHxID=Z38T$Yk(c=5nx&U0_@C?0L#e?u$b%sn~@V> zWu^w$yqN)(`dommSP)=o%K~ik>HzELUbWb>HNbl93a}&l0&Ljf06Td!z_L%cmp0t0 zG&dyBl4ApHPVqpiTrSX-R1LI-bpmZ&lR#_LJkYkc4YclE18skgK+EVCXvc;GT2^MD zof#KsIXUjvR;LEqjG2K}=D9$dw;<3`mj&92)q$3_A<#B&4YZEC0&UN}Kr*IzhIiNsu*c9%Sp<23f1FLAJd|kah1D zWc!B%Sw?1%9UB*9Svf&=CO61(X1ZT1dM?OjEC{kP%Ytm)>L5$q5M(R123gv!Altkz z$T}VlvOPzGtk;PkJ90Y6hJ^&%$(UfvF7947D;I3JRf8?LPO!~s5^R;52iuai!Pc;A zu&wJ6Y_0kQ+x8*B);%-W_Kyp;jGSOQmK$tYGlT8S++fRD;C``nS+LDm9c*Pb1lzo= z!Iru!*jDTdwzR{+w)tqVbvzMldrk*iuaFQs5))#>iigK0E%rM(N zH_W;(2($f5!z^QUm>pXmW?5Uq?99$E%h~6COZ{+|%{c1*E$)dhn|C_QQbWRRMNGJ* z6%V(~Wy7sw)o|NWJKTCT3AZEZ;Wn&oxSi}0ZrMG;EyTSVkvk;Zk~70?j{8R>m2=#S z7`frr(7hJ1Zf>}>S`cpAmxf#S)#0{(eYj<84Yy-E!!2uHxScr^ZaGK8E#^eH%{U!y zWkMosUQC3g7LTwMWg{%DYJ_dB9bp}tMA)A62EF?3+ za>qqja!!QJ$&IkeGb3!t+z4y9Ai~xyjj&d$BW(Nn2CZA8D<&M%wnBk=A`* zr0qWxX&FZ&?bsiYmUTMP&ICtUPE3@=xPQJhqimFwsTyVTYDZaWlPFt}9%X55qil1R zDC^iG%J%e)vR*@??8vAn8#XS=PELxl?A#~|nHgodbE7PIL6pr|8fBGNN7<6~QPyy4 zl&#wtWv%u_+4e(G*8OOd?f)anGEPU?vEXRSiix%}$+A432wk12Gt>M0CTX!hhS{;qH?SDjD_tVj~KRCuRVq)xAa*Sn_jj=OTVl1b2 zjKwsGu^H(xR;F!?&Fd0lsXbzBMc)`p8xmuiN5xpjaWS@MQjGP=jj=s)-uY* z+OaCJmQ_2}&NPm-ob*_WX&Y-Zy2M(U9*&biM17@Vl8c4tZkkYYaMfAZO@EY z>oqslj?9m>VM}A}T9Uhm%H-WqGUJ7X<*U#!hJ6l;}_#@doUVy)rnSX&nyXRTu5 zYVuRM(sE|);P|x(&Ow*n>fqq5@#_z;%r9WI4d(G&gPAZv(#~MwqjD8 zrRB!i<{5F;ac-RLnIC7pmd4qURdF_KeVm>AAkMOP##zX|ILkd0XURw7Y>rzWRz4kP zOM>IAVNATOOLlMOmW{XVRpPCC?ReYYINmbSJI?bscOmgQc9KXY%QwL_6|Rq7C~a(N6x8XxYI@77~+WxyebETsFz(R7tYRwUcZ~<0NaC zo@DFVBw4F2Nw)o#Bzl5F75_=QmX|0dDyvcJXozD{tL?tkEMFY=y# z<+oiO`*v>D+sCi)@fyC%i9RyH_d>9L9ah=BC+FS+3b@~WXM=l@*sY-4Hr!hfo!u*a zDOEb-y^Jc?Kj6FFB;PiwoV)doW>pJ)UG3c0KQya;?(5^tI=cUJBq#;Ph7b3Ki~Ijt z{GV7q;`0Ufl6Qdnj(Z=;cm3u-82C8QEdTESo9%u>Vzy_c>Hn_(68FRZ(cK-VYh~Yi zS7wXCukjr>u4DU)!keAD9_YSW6kl*X$o)XED6HUmvOB;lBK!w2&AoK){{M_{_gfjh zH<(gda95M9M821Tec-*dWGm%63+VxIKIY!)zF>PegWi2$Rqkb2#CsWD{q{2V z_QeIvjn4%P=f!(l{21$H@$L_IANC&R)VmSgq0$!G+~z$ zR)#Paq6_XvIS)JI`_aq2<>iYJu3<#dT>#w=S?(I<%O3_@!(?6KKKX*~;JcmsrFwS_hW~p(cCGulJO5g+yM{^ge=o#c!;JZ_g}Q5)F8{SKcMWspzZUMU zVWRxkBHT61lK)zyyM`(9UyE|rFhBll(e4^1$A2xxT|>hB*J9l@{F^KPwK#Xpy}x(% zTD-f4_q+VxOK{gvcm8XM?i$kSzn0{#;XMTZwPNlX{t4E7?so}rKixU|VQxCUhhK$h zhX0SmXNI}6)XeY?lh(O+`orA0Y~^Y+H{D%!cpR72p2TI%Cvf@nqquzjVO$=cg3D=- z;BvxbT$b=%j+yA=*|_XH*7tQ5E)NXCrS-t&gm%8K)6N z+2afMA78p}-+xWTRyzBRa?^BtecX54<~zy{e3#XHB*o`9$$@j{{kTlO&v)BIJx`Yv~j19{%J zj{}48bxI#xT2EZwemgGHedlKVt@wI^@6vqS|6RMm=Xdp8rui=GoIO5FXTk9yKLzIx z`Dup#k-&F+$dB9l4*w%E23tAqJH8a(@g4W^3BGfXl7a8u-Vc{4eQ}xY`}%p`*9Ux; z6Z(Tc?=!6zzFvPLF0BnNCtP>-_>h-^CUh$@jJYDE-Hg;v@b`|930+i2t&f?`yw#@gwsecQJd%{d#GPZ?CQFzyA2`*#9Ft z?*GWf^W1+O1-|b;5|<@%7j%RtSVvnm3;5NaLpw=vDSjXBqCBtW;3 z4c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~ z=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%1M$$n|6Xfc%D_4# z-R;%;e1TU>ysQObEeX4puvUa!M_6mZ+7Q;3uy%yCC#(Zu9SOUhuug<^Caeo#T?xB^ zux^BPC+tSTZX)bv!fqj~2Vu7o)|0SagxyA1Zx6%D0`sR$J#0*-ZewP38`G@Ym~-7m z0(2YM&~2nfw~;5^M$&W}8Psj0Q@4>@-A1By8(G(Fw194-A9Nedq1)&b-A3E!HhM_6 z(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W*6l;*igcT5jLE#5ro}I*j|Vmg5tdEZeT0qoFsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$dD3kp zO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt z(S*8tDk+25{n?zU+VGk1a5Mh%E zn?l&bggrvoqlD!WHkGi)2%AROw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP z-A3c;Ho921(bAe-lx0bvUXdxfw?ge@lQRl=4K z_8MVJ30p?k>x3;Q>hLr{8Pn&w! zm`vTq%<49#S+_Cgx{Uk3EM~5mxO&q*nYykChQvz!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlW zNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay<_|D5O$KVKM6ZU z*k6SGP1yek`-ia8gqw~MnZKK=hA>Bqp={CAcx6x|4 zjlR=uG@)*zBXt|?soUsP-A3c;Ho921(bAe-lOBwC|oHR=1I8 z-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7Dl zG_G!=i**|80s|iaZ>>9$Fc^Fm}m_KdmVPi6N z8#Alhm}cF^oa;6cpxelXZX-3ijXdc#lBV0ppl&0bx{ciGHWIDd$hvN$1#}zzpxbB; z-A1SAHrhtF(L=h8hSF_xmu{ogbQ^uA+h{`FMn~#4+EcgDtGbQG)opaKZlk3&yC~No z>29yybx3o8uL zMp$>kZY1m`!fqz)7Q%WEb}L~$3F}4JZG`pqFsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~ zw~-CqMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbea zrQ7H(-A1eFHu_Gt(S*8 z^(QQYumOY(By132g9*EXupxvEC2SaB!wDNf*qwykMc7EfMiG`tSQcTU3A>xHF@%jJ z>>k4IC2SmF*@WFk*mw`a$^!GJO+9Q(rfy?qbsN*H+n96RMgnvj+0bpIMz@hC-A2-M z8yVDXq*J$%Tir&YbsJgNZM1-HqaSn|&7s@q6x~MK=r(#tx6x3#jqcKIw3=?C?{phY zsN3jB-9~%rHhNXJ(YU&eF4k?dv}PCOI%I;|t9Ko8KVcIIdw{S>gyj(SAYl&?Hkq&~ zggs2yBZNIlST12x344sNX@osa*mT04AnZxPW)L=$u%`%nny_aGdzP?Sgv};w4qC|oHR=1I8 z-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7Dl zG_G!=i**|RPfv^_|dx@}@37bdQe8LtGwvez_2wOzhV!~b}Yzbkn z5w?`DWrV#>*mA<&AnZ-TRuHz5uvLVuCTtC1YYBUcu(t_YN7y@rz3X9ESz!LOsfUfp z)NRbHZeyBt8*{GPNPuo58@i3u=r;1C+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4r zIdmJHqT6U2-9``THX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6gBO zhpcyd^{zuU5cVEn8wuM)*k;1E5cWP{9}u>cun!6Qh_G#hZ71ww!agBv2Vpx2+eO%? zgzYA54`H7X_Bml+5Vn`FeT02U*jI$@C+us&zVR@uEHHoC)WgPP>NaLpw=vDSjXBqC zBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E z8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%C|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=P zJKaVT>NYx3x6z)ujb7DlG_G!=i**|w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8 z>NdJqx6#s?U6kvP6t`FJ>mlU{t3X&q!YUC~nXoE^RVAz%Vbuw{g0LEd)g&yHuv&!G zCaex&bqT9SSbf485Y~{eMuasctO;RP64sQks|dTAur$K1A*`8)VP%2&)21FaCR4XD zv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS>o!_Ix6u!}jpop8 zbc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`ql6B z!ZHXOK-fUS1`#%xusaAFLfBBkh7mTLun~maN!VS4jU;RoVVQ(w5jL8zy9paZ*jU2u zA?#kl#u1iH*nNbJ_b{w1Fn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%G zLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>U zjgHi9w5M*PS9KeWtJ~;e-9}4mc2TZFCb+$N*CF>4Hj%Ig2%AJ$4q*=x_7Gu{37bOL z!-PFT*rSBy5;m2v#|WE7*yDsvC+rEro+NArVKWJPim;~%dxo%Q37bXOY{KRcHkYvH zJPa!f%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC! zWL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8 z>NdJqx6#s?U6kvP=iOet>yQ@+dy%l02z!~Zd4$a;Yyn{l344XGMT9LT>{Y^+5cV2j zO9@*>*z1HXC+rQv-Xv@VVJit+Mc8V>))2Oqu(t?%o3M3+y+hc$9)^_#=1-e?*qBV+ z#?0zArdhW!=emsq=r*#U+enRWBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3NSt zdbd~aI%ET3?-908u_8DQH6ZQpRdkNb|*q4NTMc97Az9#G&55vj=^QTQcY)qzZV`g<5)2!Q=bKOP) zbQ{^wZKOuGktf|o(sUac)NQ0ww~<@jMxu2aS=Vi}fNrB7bQ{f~+vpVCM%(B%dPuj? zP`Zuo(rvVwZlmvX8%?O&=t$j0d+IiNRkzW&x{WT@ZM3vz7v(zSfZMBg9deMcLxdeB z>|4T)5cVBm-xKx&VLuY~6JbXQ`^H)GC+rWxP7rpIus;bqMc7}2 z{Y}{a2>XYy(}bNN>|et2JPa!f%%3*(urZmsjhWSLOtWrd&UG6J&~0Qxw~-p%MxJyV zNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ#x{bcm zZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6kt(3%YO}5|?^(u7@3SQ)~~5?0Q` zu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZK zqlJV0!uzG~mC#(Ts4GC*RSYyJP5OyVDO$ob-u&W76BkUT&nt2#j7MMS6>S1FtbsICQ z+n8qE#+>Um5}@12hHfJ@x{W;PHj<{>$e?Z`ow|+O>NXOs+sL|ZqXl#u{h-@u4&6ql z=r-C$x6wnojfT=~beC?U)pQ$ur`u>k-9|_1Hri9S(W|~gtaED4Pk8wYe!gn!a5Mvk+ACt>qJ;*!nzRFm9QHK>qc02 z!fqt&Cc=wd$5OynJJqhbY*lmRM_Asn0Fn`+A!^ULlHfC10G0nP-IoE9@K(~<% z-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G4W--Y zF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc2TZFZg+e2u0#3|)|aq;g!LyZ zgRlXF4J2$3VS@>~gRmil4JB+CVZ#Xv-VcCS;N7#4|!^#5lr%gRAe zZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-G zNZm$z>Na{+x6!z|jV{)0w6tayWS%l3dYz|>_346}N zu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZK zql{uMxJC zuw{h3PS|q7-XQEv!d4KrlCV{TttM;@VQUF{i?Fu|TSwSCguUxwSXp5Hw5f-U$<%Gk ztZrkPbsKZ8+em_33VGCsoQ8z-A1qKHX2vA(Z#xrme%Z|T!*Z8 zd-bkEHW2n6VH*kCMA&A+wh;C{VIL5-m9P&9`-re@gl#A6W5PZmYzJXG3EM^3r-bb$ zY!6|d5%xJ@Ul6vJuziGmN!V9}?I-MO!oKk^tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXq zkqzBOYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w& z+vqOcMyu&I`cAjegu0E6)NQn47o>o(?Gw~+wdMmBUCsnKoZNw<+S z-9`p=8|l<-=sVp; z6Y4fPQn%5bx{Y4dZ8WZKql#S#`rSUh0~ge4M|L|8Gxk_jtL*ky#3Agm-|r3foc*yV(kA*?K6+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcDNe7;+sLhMBhk8ztm`&fK)2Bkx{c=0ZFGum zqiu8>J*3-cDBVVP={8zTx6yaHjV9D>bfj*hJ#`zss@rH>-9{JdHd}JAlA*=^sw-VNquwI1SMp$nT!^#5lr%gRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDA zZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tayejrTCDEHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+bQ^inZ6r;%kwM)? zI&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlSPPfs7x{Z$1 zZM3IuqgQnsjjP+}V%blL?zb*u#W9 zLfE5(v=R6E6 z3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh`WKg$}PTfXsbsLG+ZDd`y z(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`NZlfc08||sv=vCcD3kiFLutkI|ChS$hmJs$DVM_^H zM%e3wEhp>^!rmlo1z{@*TSeGv!qyPBmaw-7dz-LzguO%9yB>y>1?Eqidf1pu-Nwx7 zHl|s(G3UCC1n4%hq1#A}ZX-{+jil)|GN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c> zx{bEcZS;_CqoH&g-KE=THQh$v={A~Bx6zThjrP=S^r~*7adjJAtlMa5%`VDy$a=R| z?>b}yVeb*Pk+4mKZ6<6BVeb?60byGS`;f4Y2-`;3cEUa;>=VLv5Vn)BU4(r~*lxo1 z5cU~ipA+^4VS5SNN7$EyeMQ)Q!oDW#8xO@-A1By8(G(Fw194-A9Nedq1)&b-A3E!HhM_6(NMaL z?$T|vnr@@-bQ?{m+vrH$MtkZudR4d4xVnul)@`)3W*6l;17SZB_7h=83HzC_V}$)e*sp{gC+s)Eekbe?!cGu&lCVDsJ4M)Eg#As} z{|Nhsu+xN{A?#nm@;nSH3(TK3^{_FSx{aCDZA`OnW6pIO3D9k1L${F{-A0~t8%fh` zWKg$}PTfXsbsLG+ZDd`y(E_@Se$Z_+hi;=&bQ^7>+vp+PMnmZ~x=XjwYPyZS(`_`N zZlfc08||sv=vCcD!K4tJ|1n z-Nu~jHWHxQ$cAnsHM)&F={Az4+sL49Bb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34? zMz_&Jx{Zd?ZFHAzqt$d9eW%-KLfuA3>NeU_x6!M*jmFh&bg^!ur8T=K*CFX{uikY? zbHZ8>){?Mm32Q~zb%eDhtPNpp32R4Kd%`*p){(I53F|~yXTrJ=)|Idu2?Xo)ChQi%dJuLiVLb`!Mc8eG_4Y8VEHHoC)WgPP>NaLpw=vDSjXBqCBtW;34c$g+ zbQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wx ztLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%!K4 znspmg}ZX+AIjnwEi@}%2Hnr$;5=&~5aCZlgJL8=a!t zXdB%|59u}NXlzx6#GAjh5EzqFjfpcYF1& zLpBih9$^~^+eFxA!nP3hK4Bjaww16C3Hyk!ZG>$n>|??{A#4X>I|&W`&AN>_*KH&~w~-Cq zMrw2$dD3kpO}CLj-9|cf8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H( z-A1eFHu_Gt(S*8--P{- zuzv_UP1qU2{v|BW!?3cz{Ap7U8!K4z34|pQmPA-F!jcIqPS|CHl_0DnVWkKwP1xmxl_9JwVdXpwD+|n@ zHubPEnYxXc)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+ zjegK=G>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c- z(wbeA>yQ+;SMTc~9yTUZw=uK2jcL|x z%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5< z8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn=qdj#Sy{g-2T-`<&>o!_ivx{;alJ55EU57L$ ztOa2$3A>iCR)k$gSZl)C5Z0Ekc7(MjtOH>k3A>)KPK0$PtP5dX3A=%?ZiICw>_)6%R<|+Dx{W#4Z6rXqkqzBOYIGZU(rqM7w~;~JMmlvH zxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I`cAjegu0E6)NQn< zZlhOq8;z^m=wjVQOKWyfu0tlcy?WOn_Y*deum=d6L|6`C4-)neVUr1)LfFHEJwn){ zgyj-8m9WPMn?~5DWJ9-+8r?>obQ?+2ZDdflkxt!4Zgm@p)@@{6x6uN+ zjegK=G>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>CribsO!e+vru@M&s%>x>&c- z(wbeA>yYQ&UcKv(7YKWiu$KsXnXq|;%_nRDVG9X+g|J10Ehg+$!j=&B8evNbTSnOH zge@oR4Z_|eYz1K}30pNciX zw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Tix4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie z(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbKZS<;cqj7Z`U98(^Y0WOmb;x?RSMNGx z17YtGwvn(+gl#5l3t{gQ_5opA3Hy++j|kgF*mlA`ChQZ!b`Z9cuw8_GO4x3~_7L_N zVV@KB1z~#$+eg@!gndQWe!{*c>>Cfm$^!GJO+9Q(rfy?qbsN*H+n96RMgnvj+0bpI zMz@hC-A2-M8yVDXq*J$%Tir&YbsJgNZM1-HqaSn|&7s@q6x~MK=r(#tx6x3#jqcKI zw3=?C?{phYsN3jB-9~%rHhNXJ(YU&eF4k?dv}PCOI^=-ct9Ko8kg!999VYBs!j2I3 z9bw-S_5)!*67~~eM+y6xuw#V%LfEf_9VhHJ!hR?055i6mc9O6^2|GpDUxfWl*#8Lo zhp^LxogwUB!ty)}D+|n@HubPEnYxXc)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2ZDdfl zkxt!4Zgm@p)@@{6x6uN+jegK=G>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_qp>Cri zbsO!e+vru@M&s%>x>&c-(wbeA>ktdOa2*mrSRi3Rgas28LRctaVT6Sf7C~4fVNrxd z6Ba{QEMakk#S@l5SR!FbgcTz!nXux7T}D_5!b%cWim=jzT~1gT!pag>&cm>>!2D@b z4;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=>#26Y?h)NSNew~=VwM%Hy3Euh=z z2i-<<=r%ejF8p4`+7*-aTKW*w^V={FcGppN}X5Ge| z>oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0 zL%NNI(rt8?Zll$78-1tSXhPjaN9s1(Q@7Epx{b!wZFI42qop;wDAytBZm-^TNOQtk z5Z02gYYA&b*mZ=pCaeu%Z3$~fSbM@c5Y~~f>j~>bSZBhz5Z0Bj8wl%0Sa-s1B&PD`7ne>qXdYg!T3?tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBOYIGZU z(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOcMyu&I z`cAjegu0E6)NQnVS=Y#d?P zgxyEjcn`zM0`sR$J#0*-ZewP38`G@Ym~-7m0(2YM&~2nfw~;5^M$&W}8Psj0Q@4>@ z-A1By8(G(Fw194-A9Nedq1)&b-A3E!HhM_6(NMaL?$T|vnr@@-bQ?{m+vrH$MtkZu zdR4d4xVnul)@`)3W*6l;WP;nPcO7y+VG{{^fUrq~>`B6A5H^#rrwDtRuxAK+matib%_eLPVRH$4&cm>>!2D@b z4;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=>#26Y?h)NSNew~=VwM%Hy3Euh=z z2i-<<=r%eTSVAm!d@k831P1hwv@1CguPDK za>Cvq>`lT}5Vn%ARfMf3Yz<*+344pMw+UNE*gJ&1>tR?~VE(kJhmFb9ZOp80W14jv zbFSM+fNmojx{cK6Hu9v~NSbaVgSw4$>Naw#+eox-BkQ`27SL_2X2P}*_C8@B5Vn=D4+;B-ux*5GC+uUwJ|S!eVLJ)iMcAi=?IvswVV@E9 zIbmNAwwJJdgndcaSA^{+>}$fl@i43`Fn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D3 z8+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0} z={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e-9}4mc2TZF4!FH~*C7W9J4D!F!oDT!2w~q5 z_B~-g5cVTsKM{76u%G`QR?H%J!@7=xba!`mcXxMpcQ*(INMq1pkhY|fN~55JL8D;M zC?(zPf3Gil*u#6>*_r3^{p|ea5%!v}*M+?y>`h^B342@EJHp--_MWi!g?%9GLt!5Y z`&if~!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L(+Qhi*bKsE6gHEvnFkmz3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqF$X5sdhs-K$ zHes_1n?u-~!sZe-x3GDH%`0p^Ve<=HK-hx97816wutkI|Dr_-fiwj#q*pkAQ61KFk zWrQs&Y&l`e3tK_hio#YBw(52iQ(>D4+g#Wd!nPE)m9VXaZ6j=3VcQAYUf2%8b`-Xgu$>1OFAMIk zT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+T zj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%g9#; z-yypS+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC5cU;e zM+!Si*jI&pP1x6keM8vM!j2L4O<~6lFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E||l52>X_>Zwvd5 zue+3&+HH#4ZCc!ID&6d1 zzC(UI^3}n2$WMg*RM^ji{an~Dg#A+3rNS-~cDb-Cgk34@Dq+78_G@8R3%f?xwZg6w zcD=A0g#AX?Z-w0`>?UD13%f+6| z3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo# z>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWezaRPP;5+0_VRs4pgRnmeyIa^j z!tNDzpRhj(`?IjW2>YwB`-MFq>_K4<342)BBf=gP_L#803H!US$Avv1>>tAZDePau z{w?fDVNVHrdVuk=;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW z?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{j zHZATpm2UPh-yzS8e0A_0@~p7uggr0p1!4aY_FrKy3VTV|%fem}_NuV|342Z0>%!g; z_NK76guN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GMMeO zhq_Inx=p*fP1U+h@48J1yG6Qwp0(*wn(N5jL%` z>4Z%$YzAR73Y$sT%ma*<1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3{+7)Y)N5D30qp&GQyS>ww$o#g{>fLMPVxmTX}%-vf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4ojC^(Q9kQyh z)r74sYz<*+3R_Fq+QQZmwyv=Cgsm@Z17RBq+ep~P!Zs1Msj$t2Z7ysJVOt8@O4!!I zwh^|iu4I||!L*v^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrcKW#p@a?~q-E?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV z2M9Y**g?V$7IuiRLxmkC>~LX62>Xh#BZVC$?5o1QChY6Nz9H;rVaEvjrm$lN7%vO% zuU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna@@#Q z2j3yb3p+vBiNa12cCxTjgndicw}pL2*ms4UD(p02rwcnn*qOr45_Yz*bA+8M>^x!L z6ZU;!KM?jqVdo3GK-h)CE)sUJuuFvfXn^su;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yuI9`Rd?1}@#rFEMPcAIr}o85MsMR%L6 zcbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH# zdzkN#-;aEC@Evleu)Bo)LD(OK-7V}MVfPBVPuQP?{aM&wg#A_6{lXp)_Motbggq?m z5n+!Cdra8hg#BIE30c~;nS!k!oQg0TMx z`>(JUg}o%~Wnr%fdsW!~guN#0bzyG^dsEn3!rm74j<9!yy(jE_VIK(lP}oPpJ{IrVtKFu! z-KNFerqazG<~wAR@xJ^H8CBS5!bTT1hOjY(jU{YsVdDrJSJ-&M#uqk$unC1tBy3_~ zlL(ts*kr;c7dC~kDTPfXY-(ZC2%A>ebi$?=HiNJkh0P>v<^jgbg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e22_3^3}orA+rjbP1x+h z<`6cgu(^cIEo>fP^9q|!*!;p45VoMOg@i3EY!P9L3R_Ir;=+~?wxqD7ge@&>8DYx` zTTa;W!d4KrqOg^OtvtYZS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LuQZDH#OTUXe6!qykIfv^pQ zZ6s`CVVelsRM=+1HW#*quq}mcC2VV9+X&lM*mlCU7q)}29fj>AZ07;S%YyrBSC7qQ zcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!>yzW3p+&Ep~4OmcDS%3gndQWk;0A= z_ElkD6ZUms-w<}Ruw#UMQ`oTsjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(Id0^ugYS^zg`FVmL}4chJ6YH%!oDT!+rqvh?7PBF z6?U4i(}kTO>`Y;22|HWZIl|5rcAl{B3H!dV9|-%Qu=9moAnZb67YVyq*d@Y#G{AUS zaDVOUvAN7{bFKNt23VZRi1sj$n0T`uejVOI*fO4zT2{aV=7!mbf^t+4BaT`%kg zVZRafTVXc}yGhv1!fp|EtFYUI-7f47VZR$-yezoCcJW@AncFA?iO~BuzQ8w zC+ttc{w(Y-!u~4keqj#?dr;Uz!X6g(h_FY6JtpjL!u~GoabZsg`-iZ93j3F^e+zq3 z*i*uu9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgQm%UmbjhJS*%uVb2SDLD+wU{a4tF!d?>gvanZ#y(;W~!d?^hy0ABdy(#Q1 zVQ&k2N7%c<-V^q|un&ZNDC{F)9}D|L*r&oi6ZW~VF9sMd3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqE_+Ng9j4Et2VWSHhL)e(Y z#u7HRuyKTqD{MSr;|rTW*o49+5;n20NrX)*Y%*b!3!6gNl)|PGHnp&6giR}KI$_fb zn?cx&!e$aS^8n*z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC&gi`Rd^RkXePzCTweEhlVwVJiq*QP@htRvuuyEV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yG$r zY&&7w3)?~1j>2{lw(|hvWx@TmtHL?73H!RRZwNbD*fGMsDeTw*#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOB7zscBZhigq=I!=8eqIExW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgT-NzB>30`H8Tf3j3L`p9}kiuwM$hRM=(0E*Ex% zuq%aKCG1ziel6^3Vb=(|R@imIt`~NLu-^##t*{$~-6ZU0VYdjoRoHF9ZWnfku-^?Z zUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb z_ak2&e23gA>@Hz{5cWr5cMH2m*uBE;6ZR)ze-`!^VSg2Nzpw{{Jt*uUVGj#?MA)Ok z9uxLAVSg9)xUeUL{X^J4h5bv|zlA+1>?vVS4=`R9++VwTY%a6g+-$eG=5BN6-DUyZ zW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6uMWOLo)z|-u;+!nAnZTF{wwT7 zVJ``LS=cMWUKRE~VXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs6!wv@kA;0A>{DT% z3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3@Onf-k>AMin-iu+fE$A#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ37c5hB*G>Y zHkq)=g-s!BN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL<6E?fBIfTtA zY%XDQ3!6vSyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zT zuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3 z*e1d@6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEf zY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VP6q;q_CreeO1`k zgneDuH-sH6>=|wq`jvM*v;5+1aVJ8SXQP@esP8N2Gux|wE4g`Fns zbYW)*J5$(M!p;_Uj<9ouohR&j!oDx;2f}_R?0jJt2)j_&MZzu?c8Rbb4KQ97++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6*p)PD(p64w+p*N*zX1yFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J`;o5>zC-R5c9*a}2>YY3yM^5&>|SB_3Hy_< zKMVVdu)hksU)Te}9u)SFu!n^`BJ5FNj|uymu)hm?T-X!B{vqt2!u}=f-@=|0_LQ)v z2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIM zfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9rDb`R|nrA&kB1^*z>|(5cVHo{}uM4u$P3rEbJ9wuL}F0u-AmWF6<3qZwh-$*xSP1 z5%#XI_k_JK>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLvo15)6*W7LHyxT0G z+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3O zRIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO;g{bbqY4{M*yzH>5H_Z;v4o8+ zY#d?Z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=` zu$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21D zVT%b{T-XxAmK3&>u%(49BWzh=%L!Xv*b2f{6t9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O) zu(gD(Eo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_ z!gdh0qp+QX?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe$Ble-@EvlzuoHxx zDC{I*Cks18*tdjzTiADmeOK72!cG%*y09~Zohj@rVP^|FN7%W-&J*@MVc!?_17SZD zcD}F+gk31?B4HN`yF}QJ1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy* zv%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9rELmuMWOLej@Cr!hR;~=fZv=?3cnW6?U1h%Y|Jb>`Gx* z3Hz0>Ukkfh*fqkg6?UDl>xJDQ>^H)GE9^#LHwn90*e$|t6?U7j+lAdB>~{l^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcq{m54b z-ywGjyGz&~g#A(2-NNn>cCWDeg#Ag_pN0KJ*k6U+FYEzf4+?uo*u%me5%#FC$AtY& z*x!XcF6;?m{}A?1VgC~LZ(&agdrH{T1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4tZwetAp>5XN5f{?0I1?2>Xw){|b9i*h|7* z7WRs;SB3pg*lWUG7xsp*H-)_=>}_H12zyu9d&1rq_JObug?%LKV_}~N`&8Ix!af)F z#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC%Wt=*#brQH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9!X_3riLgn9O(tw| zVN(d3QrJ|&rWQ7huxW)&Cv19QGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){77@0nu*HNeE^G;5OA1>`*wVt55w@(b<%BISYz1K} z3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiyx4GGFbIsl6 z&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_In zx=p*fP1U+h@48J1yGVP6;a z4Pi$MJ4V}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#<3_$Z_zpQ<*a^Z;6n2uZlZBlk>|4UVE$lnOzANlhVW$Z@UDz4I z&J=c*u(O4oBkWvZ=L!3su@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4*BuOR|nrAKN0p* zVLuc0b78*__Df-x3cF0$<-)EIcBQbZg#Aj`uZ3ML>>6R$3cF6&^}=ot_8Vcp6?UVr zn}ppg>=t3S3cF3%?ZWO5_PYVb%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!< zt=nv{+pM$O?6%u1y4!5M+f<<2^r737quVs4+tjApbg0`Ds@t@y+f=RF^sd{Ku-i1U z+tjn$bhX|tS#2zyl6W5WI>?C-)J7xsj(e+c`huzv~rx3DLLJtgev0mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghdeX# z)xmejv%;Pe_Pnqcg#Aa@e}%m$>?L6@3wuS_tHS;#>@{Jp3wuM@o5J1__O`HhguN^5 zJz?()`#{)-!afrAv9M2seJboTVV?{8Vu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$+{N;DZsKQ1QHoCAegpDa|EMa2{8%Nl< z!p0LezOV^|O(<+4VG|3RMA)RlCKEQfuqlL1DQqfXQwy6$*tEi?6E?lD8HCL!Y$jnd z4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6AAuwt}z~g{>rPrVtKFu!-KNFe zrqazG<~wAUk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV42MIe^*df9W z6?T}g!-X9o>?^{K6n2!buL}E`u&)dIhOncB9V6_U!j2tayezoCcJ;z#a3Oh;I z$-+(%_AO!G7WN%s-xYSMu+xN{F6<0pX9_z@*xAC)5q7Sy^Mrj**!P9~K-dq3oiFSH zVHXO!NZ7@~E)n*l0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghx~ZttAp>5p9uS@u%8M0xv*ad`=zi;ga$#2pyHeOy!hR*} z*TSwAc8#!Wg z?h^I~VSf~Mx3GJJ-7D-qVSf_#XJLO4_E%x|3wuD=gTfvX_OP%=ggq+kF=2lb_IF{A z3wuJ?KZN~L*uRARTiBDro)Y%-0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%fk%%Sz*r!dtTTJ!u})dzrtP=_L8udg}ox| zRbl@V_L{KQg}ou{O<`{ddt2B$!rm43p0M|YeIV>ZVIK+mSlB1RJ{9(vu+N2kF~E3P zaDVOUvAN7{bFZc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^d zD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1 zzC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeot zT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!s zEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(_7!1A3Oh>JSA~5|*w=-9L)g*6 zjuG}vVaE4K_Y29Xn-DaKLX1CpD z(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43 z-KNsb9_BmbxRI|8zC(@|c7m`Ig`FhqWMQWW`}+A@2s>BUdBVOY?EAugAnb?2&KGupunUD z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA4+ANlIwJLFDbcM1E0us;gBTi89q?iF^Qus;d=v#`Gi`>U|~ zg*_nbL17OGdsx^b!X6d&n6SSI`@68mg*_qcAHx1A>|etEE$m5QPYHW^fbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAVJumD9VgC{KUtuo_dr8>K!d?;fs<8hFdrjEu!rl<}rm(k!y)En=VebliPuTmy zJ`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgQG{e)%0Ts<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@- ztAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$ zNnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySC zuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8 z&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3~7-NLBb9ec8IV;g&ijB zaA8LX`--q5g&igAtHQn}?CZk5A?#>j#|ZnTuww@pFAMIkT|G9J*==sN+gx+Ex$|zb zfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7) zZd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z+{jl4-yz2fJ3-iq!cG!)vanNx zeM{K4g?&fZcZHoQ>@;Dg3p+#DnZnKzcDAr{gq^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WAwM4Z>fk%%C&GRz>}SG$F6t>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L9T9df6zyM+Bg z*dK-6E$kj)_X@jD*q?;`S=e8M{Z-ig!X6OzpskAxy){Jv)$&JyUm?T1Audo+|y(H{qVXp{#RoMT8 zy(a8+VQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX3@~06++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44 zEro3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauT ztft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_e zuG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7 zzQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIHeMQ)j!j2O5RbgKf_H|+35O%b%V}yNE z*s%kQmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`h zx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfq zhxraUZseYS1^Mzd?>_TA|3ACBl9*z<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-kmI*sp~BTG-XXt`T;vuMeOhq_Inx=p*fP1U+h@48J1yG`%h}EbK4B{wnN#VGjs< zP}oDl9v1e9ut$YGChTv*{x0lsVNVGAhp>MN`q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$TK5f9ejs8E9^O8 z&kK7&*nfomSJ;cfUJ~}Quvdh=D(rv4UK94Zus4LgDeNs_Zwq@z*t^2s6ZXEa4}^Uv z>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy* zv%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9Wu(~Uw(&-Dr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aL zgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7 zS%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$ zmKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y z`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9 zz9Q^MVMhu3s<5vK`?|1i2s>KXF~Ytn?AQUu%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt z+pMPB?5W!!p;zOrm(Ywoh|GfVdn}vPuTZ_eP7rQg#A$1`NA#`cA>C~gk3D` z5@A0YV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$d5<9I`|IxiLjpv`{r5mE$nJx*9f~- z*mc6L7j}cN-w6Ayup5QlBrVtKFu!-KNFerqazG<~!u~BVQeShukUbE@6KV_D5lN z3%f_yy~6Gj_9tO~7WNlme-(DWum^-aDC{9&4-0!l*rUQ86ZSV@e;4++uqTB5L)brs z{Y%)tg*_?kDPd0!FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1E>_5W(E9^yKF9~~D*ek+b74|=2uL*ly z*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDr zH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE;NFTX=Z6*ii% z(S?m6Y)oNe2^(A3IKsviHlDEYg-sxALSYjLn^@Q+!X_0qnXt))O(ASbVN(g4TG%wg zrWH1wu<3=(AZ$iqGYOk{fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_ zEhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H z+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj- z>NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6q zHjV5y_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq!uAoiudw}u z?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;1RoK^reO=f$gdHvH7-8QOcI*J- zWx@TmtH)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E@s1O3%f$tmBOwP_A6n(7Iw9;YlK}Z>^foB3%fzsZ-o6;*p0$&5_Yq&TZG*z>^5Py z3%f(u?*9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^Bwa0k*^NEL+%uIm#{ww`=hYCh210UUSanM`;)Lg3;T<(zY4ow*aN~I6!ws? zhlM>N>``Hl3HzI{zYBX@*b~D3A?%;R{w3_+!k!fNl(44<7%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^32Fr2j3yj3VTl2^TJ*b z_8(#Y751XAmxR46>=j|J3j3e1*Mz+;>a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghm11im){|y3L8z>=)%SjHm0z#gpDn19AV=M8&BBy!X^+lp|FXB zO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+ez<613f9>kAxy){J zv)$&JyUm?5)6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4 zwxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9su$_eMJivHaaDVOU zvAN7{bF30 z*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1BoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5 z>^6<;HudZ_UF|l-?KUm$HkEGnFyA4^jeK?R9df*|6NH^8>?C0)3p+*Fw}gFL*ms0| zSJa6ZSn}-xu}+VLudhzOV~~T`24#VHXR#MA(l8 z7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn z^5c=O4!%QvBJ8KaekSba!hRv_m%=U;cA2otg6 zh20?RH^P1^>_%ZX3Amw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40L0$X5s7A$JP9OV}TT{ZZK6!tN1v zudw@s{YluLh5bd?UxnQ->;Yj93VTS{!@?dB_NcJOg#As}--SIc>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(d1mCRgYS@Mg*_+id0{UI`;V~y3VTu5OTu0j_KL7qh5b+1YrSdso z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fipu=#||FKhu}3kq9E z*uugV5w@tX#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi_t&l-o6GDr zH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4 zY;|F42wPLwTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)widRH zux*8HCv1CRI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj z*nz?h5_Yh#LxdeF>@Z=63p+yCSA-oY>?mPh74|h@Ul;ZbVMhx)M%Xun9Xr5yS#W>t z>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L^s7~E9_KZrwKb<*crmk6n2)dvxS`_>|9~z3HzR~ z?+g2ZupbILU)Tl0E);f=u#1IVBJ4*4jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(`SHkC2j3w-5%yDIKNI$IVZRXeOJSD^yG+>S z!mbc@rLe1n{Yu!cgYk7e+m1yuqTB*CG6<|#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jO^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA)`$F<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNaunB}sC~P8O6APO} z*rdWH6E?Z9DTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy4*n0BRoHC8W*0Vx zusMazC2VeC^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F1dg0K~Ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs!qyYEzOW61Z76Ib zVH*qEMA)XnHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm4=`R9++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikh5eruvk2a>uHzu6 zgd!kd(A|OvqLdrV*bc&W6tVq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3 zu%ibUFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1 zZc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I z5Az*z%*a;<-yz2eJ5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EIcBQbZgk3$rcv*0N?dq|)%x-hD-R7FR&7F6f z1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Yev30_zt;N*mc6L7j}cN8-?8@ z>}FxN2)k9-ZNhFBc89P#h216WZejNbyI0tK!tNLLfUpOJJtXX5VUGxVRM=y}9vAk6 zuqTB*CG6<|#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO?2_x3;RUar@}rH_PMbC2>Y+FFNA$Lz<613f9>kAxy){Jv)$&J zyUm?>I+y6824DV+$Kc*to*JC2Txl;|rTW*tdm!N7#3TeNWhg!X^?n zv9L*mO)6|MVUr7+Vu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yu_ue0A`D$W+3n7B-ErX@yNEYwVLu;WyezoCcJ4~hOJQ3H+j@ZU zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA5D zjC^(Q9kQ*k?SySFYzJXG3foE8&cb#PwyUt+gzYYD4`F)>+e_Hq!uAoiudw}u?Jw*A zVFwC3NZ7%`4iR>!u)~BMF6;^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUX5_1b?~r4K9VhH~VJ8SXQP@esP8N2G zuv3MdChT-!X9zn}*jd8P7Iu!XbA_EJ?0jJt2)j_&MZzu?c8Rb{ga$#2pyHeOy z!mb`*yezoCcJ^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW!tN4wx3GJJ-7D-q zVfPDrK-h!A9uoGjut$VFD(o>~j|+Q3*ptGZ687`}<7L79wX4VGGP}*qcAIPNHh11_ z7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e z)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`o*DV-;5+15Vb2MBUf2u5UKI9{ zu$P6sBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`(6 zg#B087s9?AV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(T zi@Qywn?1~T$S4#2|2t$OkrOa_6=cU3Hzq7v4xEzY+PaA z5;mT&@r6ww?AyY=Bka4vz9(!#VG{|PSlA@OCKWcBu*ro@F~E3PaDVOUvAN7{bF3nWGZ1(3!6sR zw8EwnHodSJgv}^yCSfxR`@XPQgv~1K2f}6(_CsN_3!6jOkA%%B?8m}>B5W>Ua|@eC z*u28#6ZTVKKNB{;u%8bwUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bk_fswBczC#uiwve!eh5bU zT-XxAmK3&>u%(49BWzh=%L!Xv*b2gaC+zpa{vd2cVSg01lCVDs`?Ii>2N*94?yp@v zHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrA zs|s69*y_U85VoeUwS=uL>@ULpD(r8<))Dr1VgC^JPhsl{TTj@(g#BCC`ocC4wxO_% zgl#Nr6JeVQ+f3Nz!nP2$rLe7pZ9TwvS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0L?~nt3p+>Hxx&s9cD}F+ zgk31?B4HN`yF}Qf!Y&hbxv(pQT`BA;VOI|@UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB z-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbnvt&#zC*4RcAc>6h20?RMqxJzyII&R z!fq9Io3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY54+(o%*dxLo75130$Avv1>`7ry z343~g@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWe&y0L^@E!83u;+w5FYE)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR!{j{~a=_u&)UFs<5vK8%@~g z!p0Cbrm(LI`-ZTwgnd)k*uusUHmcgU0@Umg4(GL^8Yg-s)DT4B=(n_k!q!e$gUldzeEeP7rt!e$lr17WiX z`=PMeh0P)CN5bY5_G4i`5jK~wxrNOmY+hmW3HzzAp9z~^*v|(TFAMIkT|G9J*==sN z+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X z)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+ez{pnz-ysVMTS(Z# z!hRv_m%@G}?AO8;5w@tX#f1Gv*l&d`E^G;5OA1>`*wVt55w@(b<%BISYz1Mz6ZU&y ze-O5!us;f0N!Xu+{aM(`1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLwTEf;A_7`D)74|n_>j?Y1 zuzv{qr?7Q}ttaeX!u~C6ePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)wjN--EV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h z5_Yh#LxdeF>@Z=63p+yCk;0A=cJu(_Wx@TmtH{MZ= z2|Hcb8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+6$}T_WsKVV4QJT-X)Dt`v5au&W0c zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z z&B#{=-yzouyH42k!fp_Dqp+KV-7M@DVYdpqP1x=9v)3VTf0}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#XGXp{_zrni*mJ_37xsd%7lpkf>}6rE z2zyo7YrSdsoQK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)JfnGRh?X{|*^d*jI#oRoK^rjV5e#VPgmzQ`pyqeM8t-!oDeNY+>UF8&}x3gpDU` zd|?v^`?j#}2>Y(E?+Kew*hIo67B-2nNrg=&Y;s{!3@~06++VwTY%a6g+-$eG=5BN6 z-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxra!VC1WV?~nzBEhKDVVZRXeOJTnf_G@8_2wPOxV#0nS?6<-e7q*13 zC50^|Y-wT32wPUza>AAuwt}$V3H!aUKL}e<*dK+hBf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghpaO4)xmejs=`(i zwz{x2gsmxTEn#a5`-`x@3j3R|b%gz0*gu5*Q`ow~))V$GVgDAkzOW61Z76IbVH*qE zMA)XnHWRkFuq}jbDQqiYTMsZ^7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~wAYk*^NEL$(#Rov`hN?I3JNVLJ)iS=cVZb``dpu-%32 zA#6`!dkNcH*gnGc6}F$S{e>MM>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_J9>cevf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4^jC^(Q z9dfL&;z#a3Oh;I$-+(%cB-(`gq<$z3}I&qJ4@Kv!p;$PuCVijoiFSHVHXO! zNZ7@~E)jOAu*-y9F6;_nR|>mI*wq7!mj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrb-Q zChT@$cL=*v*j>Wz7Iu%YdxhO6?0#Vn2zyZ2L&6>w_K2`Yg*_(habZsgds5g_!k!*r zyezoCcJ^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!rl`0wy<}Ey({cJVebq3 zK-h=EJ`(n^uup`2D(o|1p9}ksu>T7CLfDrBjF$!X*RCF$%j`Bc+ikA7+uV7#SwOeh zMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D-M{e}{}J>?^{)D(q{*MiVx=urY*< zDeUXQz9DQZVc!%swy<%8jVtV1!p0LezOV^|eOuUfgnd`o_k>L-Y$9P33!6mPq{1c> zHo34V1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNla zv-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ z>1Ge}9Wv#}R|o%xOeJh;VbchkR@ijHrWZDYuo;ETBy473-xoHEuvvxuK-g@;ekg2q zVRH!kk+3<1{aDyfgv}*vZejBXn^)L;!hS03XTs(e_VWS8%YyrBSC7qQcAJ~+HrL#3 z?!4P9pxbPt+pMPB?5W!?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%fk$MRbi_MTV2>1!qybFmaw&j{YBVch5b#~I>P=g>>tAZ zDQsO~>k0dpuzw3%U)To1HWapzu#JUnB5YG(n+e-o*cQUJ6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCy$X5s7A=?Vu zPT2Osb`Z9su$_eMENmBHy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG z5MhT3J51Q&!j2Gjq_Cre9X-H!S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3BdM!q`u4mnoXal(!lc7m`Ig`FhqWMQWWJ5|_e!cG@< zhOje*oh9sSVdn@tSJ-*N&KGupunUDup5NkDC{O-Hw(K(*sa2D6L!0>JA~aS>@Hz<3%f_yy~6GjcE7L(ggq$i zAz=>-dqmiy!X6X$xUeULJt^!dVNVY*UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_BmbnUSv!zC)fB_MEWig}or`MPV-qds)~k!d?~j zny}Y}y&>#PVQ&e0Ti83o-WB$qu=j<1AnZe79|`+d*eAk175161&xQR**nfq6A?(Wm z#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOb*cigb6!vvt-w-yIux|<*Ti7_l#ufH0VdDuKU)Th~ zzAfxK!oDl)d%`9ZHj%K2g-s%CQel$`n_Sow1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9 z*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(Y zTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w-V~tAqbTrV=)_uxW%%D{MMp(+itH z*o?wv5;n82?+cqn*sQ{SAZ#{aKNL2*usMYNNZ6dhek|-K!sZe-x3GDH%`0p^VLui2 zGhy=!`}qLlWx@TmtH_n6Tdn`>n9Wg)Jd$NnuL~ zTUyvM!j=`boUrAEtsv}o!hSF855iUy_D5kW3Hy_^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6ne zHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA*+mhb?_ass<73BtuAa0 zVQUIoOW4}N{vzzJ!u}>~9btbL_77qI6t=Fg^@ROP*uRCXFKh#08w%S<*v7&(5w@wY z&4g_(Yztvq3foH9)&q=}1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3~7;VMho%QrJ<#jvipVEV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yG@s1O3%f$tmBOwPcJ%<`Wx@TmtH{em73A0)75TM+-}q2Zd2)I5Az-J%*a;< z-yzQmdrsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtu(yQ0E$kg(?+SZQ*!#jh5cZ+4 zkA!_J>=R+13j0jh=feIY?7zak5ccH&<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`K zZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*j zO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`Mw$Ho-yx$4`--ry3j3O{(S(gIYz$#z3j4aS zZwMPp*f)iZEo>ZN;|lwhuf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~g zhfF#0)xrNEQwf_|*fheX6*ir)>4nW8Y(`--37c8i_l3oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA2yjC^(Q9kQUXg@i3E>=(j*DePCm zel2VfVT%e|OxSOP{Z`oG!j=%Wq_CxgEiG&rVap0zPT2CoRuJ|(VZRsl2VpA;`=hXx zg#Ag_pM|YFz<613f9>kAxy){Jv)$&JyUm?5Bl>jB2gg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1~i^^3}n2$hN|^6Slpu z9fa*DY$stm3)@B5uEKT`w!5%BgzYJ8FJXHN+eg^G!uAukzpw*@9VqM|VFwF4MA)Ii z4ik2`up@*WDeNd=M-MPw7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ` zW}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrV ztKFu!-KNFerqazG<~!t=k*^NELyi@8oUr4CognN)VJ8VYS=cGUP8D{Vu+xQ|A?!?H zX9+u7*g3+^6?UGm^Mzd?>_TA|3ACBiNhcA2otgoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA59jC^(Q9dfO( z>x5k|>;_>s3cE?z&BAUGcB`=4gxxOe4qNZ7-| z9ufAau*ZZwF6;?mPYQcV*wX`ymj(CNt{$7q>^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrb9X5_1b?~rGOJtypWVJ`@KQP@kuUKaL>uvdk>ChT=# zZwPx+*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9_KC1hg?%RMb7B7x_FrLN2>Wt?@v`9l z+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e z<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeqfGJt z?~qZ2eMQ(;g?&xfXu?JpHiobI7B-HsafN+L*m%Om7dC;gZwvd5 zu?lyPcZ5GgNw$W`? z({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7sf0}}Y#L$H3Y$*Y^ulHkHlwha zgv~7M`@&`sHmk572%AmV4~5MxYz|>R5;mu>9}D}5u(^cIEo>fP^9q|!*iVK1OxXOw zem=l>S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LGQrJ?$mKL^* zuw{iUCv16PD+v3Yu-^;&gRm8a{ZZIT!u}-e&%#z7V7x52zjpQ5TxPeq*=}>q-R91_ z%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$SNaW9ejtZDr_}js|#C0*qXxD z61KLmzX=WJz@V6_HSY93)?{0hQc-ywz05Hgl#HpGhv$x z+d|lu!nP8&^#J2#!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC*Sd`Rd?1WLsg|3EN)S4#IX6wv(`(h3z72S7Eye+g;cm!uAxlm$1Es z?IUboVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*b%~x6n2!bqX!r-3+}I7JvNuwZEm*P zTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wn zp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=`$X5s7A;$_kPT29n zP7rpYu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3>>Od|3Oi5O`NA#`cA>C~gk3D`5@DAL zyG+>S!mbc@rLe1nT|K~fS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L@8t$3wuY{yTaZR_P($WgncONBViv4 z`$X8M!afuBxv>8T`>(Jsgnc={cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@# zrFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$L zcAI*3o33`7;&z)BcbiH#dzkN#QKtO=cgU#1z9Q_a!oDVKG-0C)8$;Nb!oDu-8^XpC z_Dx}93mZq+xWc|AY&>D(3!6aLw}pL2*ms3}PuPUQCK5KWut|hXDr_=glM9<-fbp{6 z{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=m zHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAybZg zb?|@4RKlhfHjS`pg-s`HdSNpNn^D+I!e$osePOc*n^o8kgv}=Ghr(tTHixhu37b>c zkA?k2*j&Qq7B-Ktd4MeOhq_Inx=p*fP1U+h z@48J1yGjx*zbk?LD-7I{wQoEVSf_# zXJIQ3FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWR;Px4!%QH6}FnN)rGAgY)xTn30qs(UxfWt*x!V$Bkb?O{vqt2!qyeGp0Ixj z`?s+5g>4{gLtz^U+gR8p!ZsDQnXt`;Z6Rz+VOt5?dVuk=;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yz$Ke0A_0vaPV~gl#Wu2Vpx3 z+ez5Y!gdk1tFYaK?JjH&VS5VOOW5AR_7S$Pu>FMXFYEwe2MRk#*ulaM5q7As!-O3! z>J(F2T^1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ| zZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3^Z|~vvg2s=~QS;Ed1 zc8;)fg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI#dQrK0(t{z~#EV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yGV{I$_rf zyFu8E!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F3wuJ?lfs@7_VfVbWx@TmtH{Vf}342}G8^Ycc z_Li`>g}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6T-bkv{a4r*!oD0}yezoCcJkAxy){Jv)$&JyUm?rVtKFu!-KNFerqazG<~wA8 zk*^NELlzXakg$b?{X*C;h5bs{uZ1llY*As03Hyz(-wIn?*b>5)6tQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnvdYL;2j3y93R_Ls>cZ9#wx+PPgsm;? zFT(yR>~F%>5%zas{}A?1Ve1N8PuRbN{ae`j!Zr}Lp|FjFZ7ggPVVeruOxWhawh*?Z zu&sn`J-~QbaDVOUvAN7{bF30*;d$g!nPN-gRmWi?IdhxVY>+1RoHIAb{DpXuswzCC2VhD`v}`t z*nYzH7j}TK1BD$V>|kMs2s>2RVZsg?C0)3p+*FslrYZcDk@LgqrVtKFu! z-KNFerqazG<~!t?k*^NEL#`Eeov`bL-5~5nVK)i8S=cSYZWVT$u-k>*A?!|JcL}>& z*geAT6?UJn`-MFq>_K4<342)BBf=gP_L#88g*_qcNnuY3dwPKJvf%#O)njv+-R5Sy z%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA51jC^(Q9rCQO=Y%~k z>;+*j3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~uCVuny)WzoVIK4K_Y29Xn z-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1 zrmNkixZS43-KNsb9_Bk_l&Sy!9Wtu0uL%39u&)UlP1xwd#t=59u&)dIhOn`OeN))j z!p0FcuCQ+j8&BBy!X^;*ZDHRL_FZA$6E>l+iG)ooY!YFU3Y$#Wq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dn^r9sD0M zm9VLWO(SetVbcklUf2x6W)wD)u$hH@U)U_dW)=1WVY3PQp|IJ7%^~bZ!sZnAV_`oL zHkYuuh0P;uUSabI`>C*>37cQo&j%PU3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(R zr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCl$X5s7AqxsyNZ7){ej)6a!hR*}*TNPNwy3bh zg#AX?Z-p%`YzbjY3R_Cp(!!Pzwydz_ge@;@1!2Dv_IqJ}5VoSQKMGq(*q?;`S=h=0 zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( zS!Lv_gYS@4g{>xRbzy4=TT|Ft!qyh{7h!)D_BUbc2>ZLRe+c`huyuv4C+uIs{w-{M zVH*hBP}oMoHWs#tuuX++CTw$ITL{}y*jB=}9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQv)UmbjhY%6R#VcQGaLD-JMb`rL; zuw8`hDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!aJ3`oz z!j2Ml^Z?^!!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!z zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!I zD&6d1zC(@~`Rd?19*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br={$X5s7A=e7KPT2LrZV+~( zu$zS4EbJCxw+g#W*zLmZ5O$}qyM)~>>>gqF3cF9({lXp)_Motbggq?m5n+!Cdra8l z!k!TJq_C%iJw3p9S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LP-WT?Pun&cOB0)75TM+-}q2Zd2)I5Az)|$~6D~4jEP0SA>04 z*w=)OCTw(JV+b2l*w=-9L)citzA0>MVdDrJSJ=0NjVEk;VG{`Zwy^IA`>wF>37b&Z zM8YN(Hi@uFg-s@Ga$!>pFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A z-KMMErnudv#oeaT%^v1EWXh4R4*n0BO4!uGrV%!+u<3+NFKh;3GYXqY*v!JdFKiZJ zvkLoxu-SzDP}uCk<`DKHVRH)mv9O;An@iZ-!sZb+udw-q{Z!b`gv~GP=L3wF1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lN1d zg0SBS`@OI~2wPFuABC+X>`%h}ENtZg#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jONZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yz40e0A_0a;&i9gdH#J1Ysu%J4x8d z!cGx(s<6|9oi6MQVP^_EOW4`M&JlL5u=9kSFYE$g7Ye&b*u}yw5q7Dt%Ymw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3|{ew>~>*y2)k3*UBd1bc8{=o zh21CYeqj#?dr;Uz!X6g(h_FY6JtpjNVNVEqQrJ_%o*rPlEV#dR_1Iiyx4GGFbIsl6 z&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_In zx=p*fP1U+h@48J1yGgvanZ#y(;WAVXq5&L)e?b-V*k@#7X z3;U0-{|fs;*p~y0mj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrZ}W!nFLhm0!hE5g1i>}$eC6E?cAF@%jN?CZk5A#5yR-xM~suyKTq zE9_gs#uGNaunB~HTiADmeOK7`giR=HB4HB?n?%^8!X^_oxv(h)7%vO%uU$Phm)UJ@ zw%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a- zZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGUdou2mgmmC2VS8 z(+HbZ*mT0C7dC^i8HLRxY-VBK7dDHqS%v*T*lfanC~S6Na|rv9usMbOSlCa5%_VGZ zVe<%^SJ-^Qek$x|!sZwD^8v=og8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A z+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ< z)U(@kwc8Z8+qAgbRJz&2e1|MB^3}n2$b!Na61K3gUkLl9uwM!LwXj8mEh=m=VZRaf zTVaa}TSC~9!j=-Yw6JA_Eh}s}Vap3!LD=tv{a)A~gsmv-kHS_G_9tO~7Pj&L<7L79 zwX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{ z%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`RvG!~ z;5%ehVXFySUDz7J))cmuu(gH#Mc7}3{Y}_9!u~GoAHx1AY+YgN3Hz6@e+ye**apHj z6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR{HR|nrA+X~xG*!IG95VoVRorLWyY!_j> z3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSVju3XFu%m<> zJ-~QbaDVOUvAN7{bF30Iab(l!j2bqg0K^Xoh0mJVW$W?RoH35P8W8Durr07CG2cr=LkDj*m=Uv z7j}WL3x!=I>|$Y;2)k6+Wx_5Oc7?DjgH)^fg8OS%kIiLvo15)6*W7LHyxT0G z+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3O zRIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1}{!^3}n2$hE?*6L!6@8-(2`>?UD1 z3%fPY*C&7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ z-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFe zrqazG<~!t>k*^NEL!K4(oUrGGy&&vGVJ``LS=cMWUKRG5u-ApXA?!_IZwY%_*gL}B z751L6_l12R>_cH63Hw;sC&E4z_L;EHh5bj^e}#P^?8^bh%YyrBSC7qQcAJ~+HrL#3 z?!4P9pxbPt+pMPB?5W!i_x7ky-Sz5Q*V7FOk zx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nR4W-ga1RO5;nE4X@pHHY&v1n3!6dMjKXFTHnXtr3!6pQtipaE zY&Ky(6gIoCIfVU4*qp+CEbJ%3<`Ooyuz7^dD{MYtKNa>fVee+3&+HH#4ZCc!ID&6d1zC#um`Rd?1WI+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWetBibg@Ex+Mu+@aEE^G~9YYJOS*xJJWBJ8ii{w8c4 zVSg9)4`Kflwyv=Cg#Am{zlE(YYy)8%3foB7#=@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4%uep ztAp>5ZG~+oYsIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEt zYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZ zx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQg#Umbjh94qWNVaE$QLD-4HP7-#quv3Jc zD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNagk37^GGUhsyF%EN!mbi_ z^#J2#!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC*4V`Rd?1~|c9XE1h20|TR$;dZyIt5F!tNAym$18q-6QN?VfP8U zU)Te}9u)SFu!n^`BJ5FNj|qER*b~B@6!w&`rw14>3+}I7JvNuwZEm*PTywX%^KP?% zZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZc$X5s7A>Xk63VTo3`@%jD_MxzkgncaR6JehU`%Kv9!u})d zzrwx{_T>QMWx@TmtHpYyx557WN%s-xc;fVG|0QNZ7=}CJ{ENu*rl?E^LYc#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg z6sp^_tJ_qq+w`v6l(5@0vfI?N+jONZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-ysW(e0A_0vY@bqge@%W7s7ri>{r5mEo>2Ciwavz*l&dWR@mag zmJqh2u%(18Eo>QK%L-dg*z&?w5cWG^zZdogVJiyzqp+2P{YluLg{?fmcv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#RYtx#_zqcB z*lNO77q*75HHEDuY;9qG5%yPMe-pNju)hoYhp>MNTUXe6!u}=f-@?`xwt=t>g>58k zV_};J+f>+Q!ZsJSg|ID!Z6$2$0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghio(Q)xmejw!*d(w!N?&gzYG7Ct*7a+eO%}!gdq3 zyRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD>6Lz?;BZM6(>?mPJ4=`R9 z++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6`Y;22|HWZIl|5rcAl{FgNZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yzqGe0A_0a;>oIgk3M}24Ob}yGhv1!fp|E ztFYUI-7f47VRs6mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3`wz^4*h|7*7WRs;SB1SM>~&#p2zyi5Tf*KJ_KvW3g}o>2 zePJI6`%u_N!af%EiLg(FeJ1Sl|FL2g!5h|f9HhIuySux)ySux)K|x8SI}N%+2_=|wq`Mw$D|?~qZ2jV5e#VPgmz zQ`lI-#uhe?uyKWrCv1FS69}77*hIo67B-2nNrg=&Y;s{!2%A#aRKlhfHjS`pg-s`H zdSNpNn^D+I!e$;|yezoCcJi_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(S!Lv_gYS@4g{>xR zbzy4=TT|Ft!qyhHj<9uwttV`KVH*hBP}oMoHWs#tuuX++CTw$ITL{}y*jB=}7PgJB zZG~+oYq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$Sxya9ejuEDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sA zfx-?FcCfHRgdHmEFky!aJ3`oz!j2Mlw6J4@9V_fOVaE$QLD-4HP7-$V0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%% zE5g1i>{MZ=3HzF`uM0a}*crmk6n2)dvxS`_>>I+qDePQf=LtJs*agBa6n2rYi-lbx z>{4Nu3A4K_Y29Xn-DaKLX1CpD(cNb2-KGNF zrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb zv5~J1zC#`t_Jpt>3H!0ICxtyF>}g@o2zyr8bHbh%_JXjV2>Yq97lpkf>}SG$F6?Dt zuLyfp*lWUG7xsp*UkLl9us4OhCG2fs?+AN$fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA@7ZRb?_bXD`CGD_8Vcp74|z}zZdog zVSg0%Ct-gU_P($Wg#AU>Uxj@r>?2`+6ZUsu{}A?1VgC~LZ(;ut_FrKi3;RUa|Ac)i z>@#7X3;SY#@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWeqs;T=cgU#1MiVx=urY*Ho34VgiR@IDq&L#n?~5Q!ln~8y|5XC%_wXpVKWafUKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_mXWUx{tuZ|*lfaP7dD5m zIfcz7Y;Ixm2%A^fe8T1zwt%n&g)Jm(VPT61TU6L$!WI{{gs>%rEhTJeVao_xR@idF zmKU~yuoZ=^By8mY#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWS5bz4!%Qn6}FqO z-G%KTY)@f(3ENxPKEn1Dwx6*5g&iR5Kw$?7J6PBu!VVR7n6Sfz9U<&UVMhr&TG%nd zjum#Cu;YcDAnZh8CkZ=wfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA*YOdb?_bX6=7c$cB-(`gndoe*M*%f>;hpI3cEe+3&+HH#4ZCc!ID&6d1zC*4X`Rd?1 z-QChT@$cL=*v*j>Wz7Iu%YdxhO6?0dq# zFYJC{4+wiu*h9j8Anb?29v1e9utx_NFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(h zv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{ z!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J*vMB0-yx3+dqUWcg#B39lfs@7_O!5Pggq@{Jp3wuM@FNFP4*qg%M685&RcZ9t= zz<613f9>kAxy){Jv)$&JyUm?ldwMvdtcZG!u}%cufjeQ_K~o^3H!US ze+c`huzv~rx3K>R`>(K%g?%FIf5JW$_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR&7F6f z1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#QRe;fJ7iR0qX`>b*cigb6gHNy zv4xEzY+PaE2^(M71i~g1Hj%K2g-s%CQel$`n_Sow!lo29m9VLWO(SetVbcklUf2x6 zW)wD)u$c!KFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7 z=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2 zZd2)I5Az)|%g9#;|A)*fY&K!D3!6jOoWkZ3Hn*^Ogv~2#K4J3|wq`RvG!~;5%ehVXFySUDz7J z))cmuu(gG)BWzt^>j_(5*apHj6t55jTVdM? z+g{iX!gdt4ldzo!7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8 zZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)JfnvdhR<2j3yP3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<64 z9W3k+VTTGkOxWSVju3XFu%m<>E$kR!#|k@6*zv+n5O$)llZ2f-z<613f9>kAxy){J zv)$&JyUm?%vYKc80Jsg`FkrY+>gJ`-ZS@3OiTWdBV;Yc7d=9gNZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yzqHe0A_0@-1QC7WN%s-xYSfup5NkDC{O-Hw(K(*sa2D z6L!0>JA~aS>@Hz<3%f_yy~6Gj_B~>*)45cWf14-0!l*rNlCmj(CN zt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_E zN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9Y~-th z?~uoZJt6Ez!hS65NnuY3ds^5t!k!iOoUrGGy&&u-!hS03MPV-q``h^B342@EJHp-_V7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$a^DS9ejuUO4zT3{YKbth5b(0?}hzA*dK-c zN!Xu-y)WzoVSf?!S79Ft`$*W|g#BIEKZN~L*uRARTiAbu{a4t>!afo9KVhE=`%Kv9 z!oC<_yezoCcJ!9Wtu0(S(gIYz$#z3L8t<*uusUHm^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfW#p@a|3hXKHk+{7h0P&sPGNHi zn_JjC!sZn=pRoCbEg)<`VG9XcSlA-M78SObu*HQfA#6!uO9@+A*fPSF6}FtP<%O*v zY(-%!30rx9@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWetBibg@Ex+Mu+@aEE^G~9YYJOS*xJI@5w@i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(*=6LbgYS@Ch3zJ6cVT-7 z+f&$H!uA%nkFb4(?I&!1VFw61P}o7j4iq-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$SEUV9ejs;Mc7w`ohs}!VP6yWbz!FqJ44u+!p;(Qwy<-AeM8tc zg`F$xJYnYxyFl25!Y&eav9L>oT`KG{VV4WLLfDnUt`c^&uxo@}JHU8ZaDVOUvAN7{ zbF30`IfM6 z3;T|+?+UwK*bTyN6n2xan}yvX>{em73Ah22>YS1hlM>N?9l)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1E|etEE$lzS{wwTbVV?;5pRiAbeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB z-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_l=;8>4jEP0Xu?JpHiobUF z8&}wP!p0Xifv^dMO(bk$VUq}(RM=#~CKon^uqlO2C2VS8(+HbZ*mT0C7dC^i8HLRx zY~}&R%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#RYtx#_zqcB*lNO77q*75HHEDu zY;9rd2wPX!dcxKhwt=t>g>58kV_};J+f>+Q!ZsJSg|ID!Z6$1LVcQ7XR@ipJwimX8 zupNc%By8sa#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO@xDz!FR~6!gdq3yRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy z*rCD>6Lz?;BZM6(>?mPJ3p+;GvBHiMcD%3?gq)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EcgS@kUmbjhd`sB3g?&fZcZFRq>;_>s3cE?z&BAUGcB`=4gxxOe z4qQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^4`c-2j3yT6839hzY+FZVZRghdtrYN_D5lV682|d z?+g1t*k6SGRoI8ZJ`(mfVSg9)4`Kfl_Ag=o7WN-u{}uMJuup{jPuQozJ`?u2urCG} zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)| z$^u`0hm0z0G-0C)8$;Nb!p0Idwy<%8jVo+CVdD#%K-h%BCK5KWut|hXDr_=glM9<`y=O zuz7{eCv1LU3kX|K*h0b<7Pg46MTIRUY;j>r2wPIvQo@!Nwv4c4g)Jv+d0{IETT$3b z!d4z&yezoCcJ61MXI<7L79wX4VGGP}*qcAIPNHh11_ z7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e z)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`b{YBV;5%ejVY><2UDzJN_7t|4 zu)T%tBWzz``w81$*a5;06n2oXgM}R;>`-Bc2|HZa5yFlXc9gKAg&ia8SYgKrJ6_lc z!cG)+lCYBp7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8N zv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)Jfna>~e82j3xI5%yJKrwThw*w=)8UD)Zu&JcE{u(O1nE$kd&-w^gqVdn}v zPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m5O$@otAt%G>>6R$4lrI8++VwTY%a6g+-$eG z=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6oyzg zHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_ zUF|l-?KUm$HkEGnFyA4MjeK?R9rC!aCxrb-*pG!hDeNg>PYZiS*t5c(6ZX8Y7li#p z*iVJMDC{L+KNI$IVJ{1NMcAvtUK94Zus4MLLf9{by(#Q1VQ&k2N7%aqjF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d2i&agYS@E z3H!CM-w6Ayu-^&$y|6zB`=hWw3H!6K_l12R>@ULpD(pjH9|`-Lu)hoYhp>MN`^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrZ}Wx+4MLq-)gny}G@jUjAIVPgp!Ti7_l#uYZ6 zuoyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4w zjC^(Qf5@!DW)n8MusMXyDQqrba|@eC*u28#6E?rF1%xdqY$0I_3tL3kqQVvvwz#k* zge@s-DPc4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_m65LwzC%_Owwkcjg{>iMO<`*ZTU*#V z!qyeGp0M?WZ6ItzVH*kCSlA}QHWjv+u+4>SA#6)wTM64**fzqp6}FwQ?S<_iY)4@` z3EO#q@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWeyNrBw@Ex+Nu-%01E^H5BdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt! zgdHyI2w_JGJ4)Em!j2Jktgz#R9WU$zVJ8YZN!ZB)jF$!X*RCF$%j`Bc+ikA7+uV7# zSwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(Ic4OlgYS^92>YtAQ-z%->}$fl zF6?w+X9zn}*jd8P7Iu!XZwULQuyci-C+vJ-7YMsh*hRuF7IulSONCt~>~djO2)k0) zRl=?oc8#!W2N*94?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~Y zZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9dg~sR|nrA-xBt1Vc!wt>an@ZZgaEU z=9;_Bop+lBbenB-o7HriJ$0L{(&Y3431H3&MUP?5DzB6!wy^p9%Z9u$P6sBJ5RRuL*ly*c-xr zA?%mJ-W2whu(yT1BkbJ)#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jOUf3Um{ZZJTg#B6A`@%jD z_7`D)751U9kA(eA*x!ZyL)brs{Y%)th5bj^e}#Q4>=R-C6ZWaF&xCz0?27@$%YyrB zSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!ZN;|d#3*!aRG5H_K(iG)ooY!YFU3Y$#Wt>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0LTy)wve!eg)Jg%QDKV-TU^)@!j=@al(40REhB7MVao|yUf2r4Rus09u$2cG zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e z%E(s--yy3CTTR&N!qyPBrm(eytu1UFVe1N8PuTjxHW0R}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#T}Hk-_zu}s*lxmh7q*A6J%#NhY;R%v z2-{cKe!}(_c7U)0g&id9U}1*{J5<xp9VP5&VaEtNR@iaEju&=;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO?~nt3p+>HH-vpt*tx>a6L!9^ z3xr)L>>^@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!LgRtAp>5ZwdRhu*A?!|JcL}>&*geAT6?UJn?+N?9u=|BQAnZY54+;B$ zupbJ0SlA=N9vxu3EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfy zZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|wq`-W&Pq;5+13!hS96 zH^P1^?03R`FYFJ({wVBE!u~AmePJI6`-`x@3j0vlN5cLl?C-+Wx@TmtHln^M?R!lo8Bjj(BjO($%6VKWGuQP@nvW*%U?EV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG_3Y$yV+`{G&Hm|Vxgv~E(0bvUYTS(Z#!WI#>sIbL^EiP;cVM_{I zO4!oEmJznBu;qj;FKh*2D+*gl*vbQpmj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxra!W#p@a?~ql6ttM=BVQUCmQ`lO<))uyouyuv4 zCv1IT8wlG_*ha!O7Pg77O@(bHY;$2-2-{NFR>HOxwvDiDg>5Hndto~W+fmp~!gd~D zyezoCcJ|wq`P8s>?;5+0i!oDi(RAHwH`|9~z2|Hid1;Q>Ac9F1)gf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghg>)E)xmejw}gFL*ms0|SJ?H!ZV+~(u$zS4EbJCxw+g#W*zLmZ5O$}qyM)~> z>>gqF3cF9(_k?|4*!{vD5cZ(3hlKq=*bjw0EbI|sj}9rVtKFu!-KNFerqazG<~!uEk*^NELmn6Qgs>k8`?0Vm zg*_$gX<^R@dsf(U!k!oQg0PC)Og}o%~XTp9i>}6rE2zyo7YrYe5 zH-)_=>}_H12zz&c@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWe?~QzQ@E!6iVZRpk8)3f{_B&y}7xo8Xe-!p7VSg6(zOWC3{YBVc zg?%XOBVm6N_IF|b5cW@D{}T3ZVgC{KUtu2$`$X9PgncUPGhv?#`(l9cvf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4gEb`@d$f&|b z6E?cAF@%jNY%F183mZq+xWdL0HomY4giR=HB4HB?n?%^8!X^_oxv(jOO(|?DVN(m6 zM%c8%rV}>3uo;BSC~PKSGY>Fc7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~wATk*^N^51CciY{F(2Hixh|h0P^wZejBXn^)L;!sZvY zfUpIHEhKDVVT%Y`RM=v|78kaJuqA~pC2VP7%LrRm*mA;_7q)`16@{%NY~=yQ%YyrB zSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!&~VLJ~nUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bk_myxdyzC(5uwwtish3z41Phoor+gsQ^!uA!m zpRoOf9U$yLVFw92SlA)L4i$Eou)~ENA?!$DM+rMx*fGM66?UAk_lNF2|Ia! z@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe zr;L1c@E!6MVP6$?s<6|9eNEWcg`Fl zyGYo@!Y&bZsj$n0T`uejVOI*fO4!xHt`T?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%Tf)9A>^s7~E9`nw>~>*y2)k3*UBd1bc8{=oh21CYd&0gi?0#Vn2zyZ2L&AO_?1#c0 z7WRm+M+X=$3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BwZo$X5s7A&(1tLfDUl{aDzO!k!ZLw6JG{JuB=vVb2SDLD)}({Z!bC!d?>g zGhsg$_Oh^7guN>4HDRv{dqdbSg#A+3o5J1__O`HhguOe!cv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#_eQ=t_zwA%uwM)Njj-Pe z`<<}g3;TnxKMMPkus;iXU)Tr2{vzzJ!afxCk+8oB`@67z2>Yk7e+m1yu>T1Audt7W zeIo3C!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L(+Qhi*bKsE6gHEvnFkmz3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqF$X5sdhs-K$ zHes_1n?u-~!sZe-x3GDH%`0p^Ve<=HK-hx97816wutkI|Dr_-fiwj#q*pkAQ61KFk zWrQs&Y&l`e3tK_hio#YBw(52iQ(>D4+g#Wd!nPE)m9VXaZ6j=3VcQAYUf2%8b`-Xgu$>1OFAMIk zT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+T zj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%g9#; z-yypS+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC5O$=n zql6tT>=}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Q%1fz_zwAsu&)X`RoH35z9#JJ!cG@^8gYHjC~yTkkd% z=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(W zA=iz3b?_bXEn(jl_8np06?VO_8-(2`>?UD13%fmw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`w(!u!hR|2O<`{d zdt2B$!rmQVyezoCcJRe24r>*sq2CM%ZtK{Z82Lh5bR;ABFu%*q?>HFYE(he-ZXqVIKMeO zhq_Inx=p*fP1U+h@48J1yG6Qwp0(*wn(N5jL%` z>4Z%$YzAR73Y$sT%ma*<1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3{+7)Y)N5D30qp&GQyS>ww$o#g{>fLMPVxmTX}%-vf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4ojC^(Q9kQyh z)r74sYz<*+3R_Fq+QQZmwyv=Cgsm@Z17RBq+ep~P!Zs1Msj$t2Z7ysJVOt8@O4!!I zwh^|iu4I||!L*v^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrcKW#p@a?~q-E?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV z2M9Y**g?V$7IuiRLxmkC>~LX62s={PQNoTEc8suNg&imCcwr|9J5kt4!cHDwyezoC zcJ*pkAxy){Jv)$&JyUm?~|c9XE1 zh20|TR$;dZyIt5F!tNAym$18q-6QN?VfP99p0Mu=yI|(5cU&cKNa?(u$P4WOxVwb zy)5h%VXq2%P1x(g-VpW+VZRjirm(k!y)En=VebwwUKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmby^*gDzC(T`?AOA6BkZ@rekbhr z!u}xakHY>W?9am97xsa$zX_5W(E9_%op9uS( zuup}3ChT)zUkor_7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~wAR#lQRx8CBS5!bTT1hOjY(jU{YsVdDrJSJ-&M#uqk$unC1tBy3_~ zlL(ts*kr;c7dC~kDTPfXY-(ZC2%A>ebi$?=HiNJkh0P>v<^jgbg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e22_3^3}orA+rjbP1x+h z<`6cgu(^cIEo>fP^9q|!*!;p45VoMOg@i3EY!P9L3R_Ir;=+~?wxqD7ge@&>8DYx` zTTa;W!d4KrqOg^OtvtYZS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LuQZDH#OTUXe6!qykIfv^pQ zZ6s`CVVelsRM=+1HW#*quq}mcC2VV9+X&lM*mlCU7q)}29fj>AZ07;S%YyrBSC7qQ zcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!>yzW3p+&Ep~4OmcDS%3gdHjDC}Bqn zJ4V>C!j2Pmys#65oha-iVJ8nTUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bmbl##CvzC*qu?5n~~6?U4iuL=9Qu+xQ|A?!?HX9+u7 z*g3+!A?%yN&J}i^u=9moAnZb67YVyq*d@X)6?U1h%Y|Jb>`Gx*3Aq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$aN!M z9ejs;OW3!CeMi`LgNZ1dA{ZQD$!X6R!=m6to!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;E zR?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K z*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`x`Rd?1X$+9}9a@*i*uu7WRy= zXN5f{?0I1?2>Xe!p9*_X*h|8GChX_JUKaL>uvdk>ChT=#ZwUK^uwM#$Q`lR=-WK+b zuy+R-FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1 zZc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I z5Az-J-pE%6-yy#e_G@9k5%ybQzZ3R*VSfw_Ge-53;RIWUxfWt*oVSC681M? ze;4)-VgD5NFJb={_8(#Y751^PPlWwX*r&oi6ZW~VF9sMd3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqE5?_9Yj4Et2VWSHhL)e(Y z#u7HRuyKTqD{MSr;|rTW*o49+5;n20NrX)*Y%*b!3!6gNl)|PGHnp&6giR}KI$_fb zn?cx&!e$aS^8n*z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC&gi`Rd^RkXePzCTweEhlVwVJiq*QP@htRvuuyEV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yG$r zY&&7w3)?~1j>2{lw(|hvWx@TmtHMu#*QEFAMIkT|G9J z*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SG zZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z%E(s--yvTS z_Ell03Oh~M*Mxmt*y+N~5O$`pvxJ>3>>Od=5cW-B=L$Pd*!jXP5O$%ki-cV)>=I#@ z3cF0$<-)EIcBQbZgk3G{8e!KCFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1ENZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx5U ze0A_0^0=@kg#Ad^kA*!c>?vVS3wuV`v%;Pe_Pnqcg#AR=PldfG>?L786ZUgqFAIA` z*sH=`6ZX2WH-!B{*e`{>DeNs_Zwq@z*t-Lamj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9Z{(|k?~q>!`?av&2>Y$D-wFG@us;a< zqp&{-`?Ik3g?%9GFT(yR>_cH63HzI{zYF_^uzw2sm#}{e`;V~y3j0{tC&K{DT% z3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3@On$uGY{Min-iu+fE$A#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ37c5hB*G>Y zHkq)=g-s!BN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL<6E?fBIfTtA zY%XDQ3!6vSyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zT zuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3 z*e1d@6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEf zY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu(O4!lDjuCdO zu;YXsFYE+iCki`B*vSKomj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF? zw^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h z>1wwrZntT1x2bfqhxraUW#p@a?~tzu`>L>0g`FnsYr?)R>~vvg2s=~QS;Ed1c8;)b z2>Yh6bA_EJ?0jJt2)j_&MZzu?c8Rb{ga$#2pyHeOy!mbu}jj(G67%vO%uU$Ph zm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%a zlx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna^1*R2j3yz z683Fj-x2m*Vb=@0LD-GLZW4C0uv>)PD(p64w+p*N*qy@e5_Y$+dxYI9>^@=N6ZU;! z_X~SK*n`3z67~aOKNR+`ut$VFI>2~YaDVOUvAN7{bF30d0f~N!hR&|$HJZz_LQ)vg*_weSz*r! zdtTTJ!hRy`r@~$o_L8ul3H!OQmxa9|>{Vf}342}G8^V4e?3cpc6!w;|w}rhU?A-yz z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!g#A|7?}Ytc*dK)bQP`h^{aM)i!afl87h!)D_Mxzkg#As}--Z1{ z*gu8+OW41K{YTh;g?%jS6Jh@o_NlPXgncgTivh;Vg8OS%kIiLvo15)6*W7LHyxT0G z+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3O zRIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20v()R*5OqY4{M*yzH>5H_Z;v4o8+ zY#d?Z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=` zu$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21D zVT%b{T-XxAmK3&>u%(49BWzh=%L!Xv*b2f{6t9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O) zu(gD(Eo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_ z!gdh0qp+QX?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L4I||!L*v`Us5w@$a-GuEfY!6|33foKA-oo|~wy&`L zgzYcv0AU9TJ4o2U!VVF3sIbF?9WLyM0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5Tb)xmejQNoTEc8suNg&imCcwr|9J5kt4 z!cG=;im+3KohIybVP^~djO z3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^5Py3%f(uox<)CcDJy5 zgxxFbK4JF@dqCKO!X6U#u&_sjJu2)mVUG)YVu10o;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(qe0A_0@|3Wrg*_weSz*r!dtTTJ z!d?{ilCYPBy&~*YVXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs6!wv@kA;0A>{DT% z3Hw~w7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3@On<}bfPz9Q_a!bTM~ny{}48(rAfg?&TV7{b0OY)oNe3Hz3?v4xEzY+PaA z7WN%s-xW5VuHj%K2g-tTRcv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Nk_gq_&?;w!X^_oxv(jO z{Y2PLg-t2!XTp9iY${>D5cW%9Qwy6$*tEiaCG6M2rV}>3uo;BSC~PKSGYgwV*sQ{4 z6E?fBIfTtAY%XDQ4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^k zo!w@)-Dc6Uf3UmEhB7MVao~oqp;t>an@Z zZgaEU=9;_Bop+lBbenB-o7HriJ$0L9T9kQyh zzXq-R91_%>ug3HoDDfy3L-t z&CWSO>w(Ti@Qywn?1~T$d)5t9ejsuC2VV9+X&lM*mlCU7q)}29fj>AY-eG+ z2-{WIZo+mKwui7ih3zG5Z(;ig+gI3r!uA(-fUpCF9VF~vVTTAiRM=s{4i|RB0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%C}BqnJ4V>C!j2Pmys#65oha-iVJ8baMcAprP7`*zurq|6DeNp^XA3(=*tx>a z6L!9^3xr)L>>^Zc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhN!R|nrAR|&gX*fqkg6?UDl>xJDQ>_%ZX z3A30c}m#R!k!WKtgz>VJumD9VJ`}MN!ZK6UJ>@Hu-AmWF6<3qZwh-$*xSP1 z5%#XI_k_JK>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLvo15)6*W7LHyxT0G z+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3O zRIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO%a`9FUlI0IVWSEgP1x6jjV|o# z!oDGF3}N3CHm0z#gndic*uusUHmYe5sfA4=Y+7Nz z6839h(+Qhi*bKsE6gHEvnT5?FY*t~j37cKm9Kz-lHkYuu2N*94?yp@vHka9LZnoQ8 zbGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{Lyg zZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu|zR|nrA^9q|!*!;p4 z5VoMOg@i3EY!P9L3R_IrZ-o6;*y6&L5VoYSrGzal?03R`FYFJ(mJznBu;qmPQP}dr zRuHzLu$6?ZENm5Fe;Q!CEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc= z%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG5Emb75NyFkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1EWXqAS4!%RS z61KIlZG>$rY&&7w3)?~1j>2{lwzIHZgzYM9H(|RA+e6r%!uArjx3GPL?JI0QVfza^ zK-hu84ia{-utS6$D(o;}hYLGmfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WAxDmUb?_Z>l(3_P9V6^mVaEwOUf2o3P84>Mu#<(I zBJ5OQrwKb<*crmk6n2)dvxS`_>|9~z2|Hid1;Q>Ac9F1)g@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!LsV ztAp>5tAt%G>>6R$3cF6&^}=otcB8PHgxxIc7GbvvyG_{b!tM}ur?9((-7V}MVfPBV zPuTs!9uW4Ru!n>_EbI|sj|zKC*yF;U7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEt zYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZ zx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT|?UmbjhJSFUDVb2JAR@igGo)`9luos2B zB}_H12zyu9d&1rq_JObug?%LKV_}~N`&8Ix!af)F z#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC%Wt^~>*&uL%39uu+ALChTj%Mi=&VVc!rohOlo68&lX=!oDSJY+>UF8&}x3g?&fZ zcZH27?0dq#FYE`x#uqk$unC3zP}q-zO(bk$VUr9nUKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_(vhzY{tx-Fu*rl?E^G>6KN0p* zVN(kGnXsP=n@ZR(g#A+3)WW6_Hm$H<3H!CM>4Z%$YzAR73Y$sT%)(|7Hmk7Ngv~B& z4q@Z*XSdmH zw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7 zX>qrybhC%~4w+}5d4r2wPIv zQo@!N_B&y}7xo8X%LrRm*mA=DC~SFQD+pUr*h<1y7PgA8KMgQm7TjOEdTcJU+uUro zx#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NC zL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!uiBVQeShpZ~>FT(yR z>~F$W6SlgrHH57xY%O7H3;VmUe+XMg*t)|0DQrDq>kIprunmN5C~PBP8w>llu>T1A zudx3K+eFx=!Zs7Oxv(t;7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr z!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)JfnvgOEE2j3xE3ENuOHo~?QwwFM{AnZV42MIe^*df9W6?T}g!-X9&z<613f9>kA zxy){Jv)$&JyUm?lyGYo@!Y&bZsj$n0T`ug30mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghg>=G)xmejRl=?oc8#!Wg~UdF3@~06 z++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6@{Jp3wuM@o5J1__O`HhguN^5 zJz?()`#{)-!afrAv9M2seJboTVV?{8Vu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx&S_T_iTSA>04*r>ur6ZSP>qYL}Gux|(( zL)bTkjVWv_Vc!xqwy<%8jVtWi!oDNyyTZm3_B~0)75TM+-}q2Zd2)I z5Az)|>Bv_H|A+io*kr;c7dC~kp9uS@uqlQ8OxVwbO(pCX!hR`iYGKm|n^xGbg#B9B zbi$?=HiNJkh0P>vW?{1kn^o9s!e$pXhp;(?%_VH^0mjRM`)gN^&1H6*o9#B&+->f> z+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-nb)xmejyu#)aHove1ge@p+ zAz=#(TSVBR!WI+u8)3f{wz#k*ge@s-DPc9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSV zZqwp!Q|V?8^BwZ%k*^NELsk{`7h!)D_BUax30qy*8p75TwwAE9h5cRFKZLC#Y+Ygh z6ti_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(*>dEogYS^7gl#Qs z8)4fD+fLZ_!gdh0qp+QX?JR5;VY>?3P1x?j_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!j zgM=L{>=0px3Oh{L;lhp>V7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dMyo9ejrzCG2Qn#|S%C*m1&+7j}ZM6NQ~5>||l52s>5S zX~Iqyc80Jsg`FkrY+>gJJ6G6w!p;|Vfv^jOT_o&cVV4NIRM=(0E*Eyi0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%% zDq&X(yGGcx!mbl`y|5dE-6-rPVK)oAMcA#vZWDI9usej^DeNv`cMH2m*uBE;6L!C_ z2ZTK+>>*(f3wuP^qrx5&_PDSo1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eF zZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z; z)5va9&u-JzZd2TD)8cMZ>1Ge}9rEPJR|nrAPYHWk*fYYO751F4=Y_o>>_uTO342-C zE5cqC_L{KQg}ou{O<`{ddt2B$!rm43p0M|YeIV>ZVIK+mSlB1RJ{9(vu+N2kF~E3P zaDVOUvAN7{bF^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfbmXgp|3iK(Y%*b!3!6gNPlWwc*p$M4 zChX_JrV{oGVZRhMwXkV~O)KnI!hS7mI$_fbn?cx&!e$aSv#?o&%_?j*VY3UHL)e_c z<`Opd0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{a zw%%fk$MUSabIn_t)h!WI;^kg$b?Eh21DVT%d-jj-PeTU^)@!j=@al(40R z{Z82Lh5bR;GQyS>ww$m(3R_;-3c^+twvw=wg{>m&PXmmX1^3sk9-GVTHaFXCuDRRX zdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>m zw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`40K>$X5s7A*%}ei?F{6`_5W(E9`&5 zHW9X|u+4;RE^Lbd#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jONLBb9ec8IV;g&ijBaA8LbFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^Nb^3p+vBiNa12cCxTjgq^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WAym9VRYT_fyTVb=+}Uf2!7ZWMNtu$zV5BJ5US zw+Xvl*d4;|6n2-eyM^5&>|SB_3AiLg*_tdQDKh>dtBHP1B{mi_t&l- zo6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-r zX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4ta9qtAp>5 zr-VH%>=|Lt3VTl2^TJ*b_M)(tguN{66=AOmdrjEu!rl<}rm(k!y)En=VebliPuTmy zJ`nbyu#bd&EbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgQGneEA*n6=7c$Hmb1Egndoe=)%4(>>I+y5cW-B zV+tEf*tdj@Eo>ZN;|lw>uVKWJvS=cPXW)(J@u-S#pA#6@za|xS!fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B z+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF z>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA@huUb?_ZBudw-q%`a>LVG9adNZ7){ z77@0nu*HP^M%ZtKEiP;cVM_{IO4!oEekbhr!u}v^8DYx`TTa*?g)J{^1z{@+TS?f; z!d4OXrvb*xg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa z+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgb zRJz&2e24sb!S zePRC+wt=t>g>58kV`2Xm_8(#Y74|=2n+V%f*k-~u7q-O!<7L79wX4VGGP}*qcAIPN zHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F# z3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`wjBBD;5%e1VOtB^M%cE( zwiC9!upNZ$C~PNTI}6)I*sj8M6SljsJ%sHkY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg! zJ4D!_!VVL5xUeGz7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8 zZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)Jfna^%QY2j3w_2|HTYF~W`&cAT)|g`FVmL}4chJ6YH%!cG--ny}M_ zogwT@VP^?DTi7|m&J}i^u=9moAnZb67YVyq*d@X)6?U1h%Y|Jrz<613f9>kAxy){J zv)$&JyUm?<(df3cE|#-NNn>cCWDegxxRf0bvgc zdq~*B!X6R!sIbR`Jud8t0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfy zY_Qv`v)k;p+bp`& zv)gpF+Z4Ckw7A<;y4k~ghdep*)xmejQ^KAW_KdJ+g*_+id0{UIdr{a+!d@2kim+FO zy(a8+VQ&a~Q`lR=-WK+buy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX3@~06++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6Yh6F@=pK>|4Ud7B-HsafN+b*ms0|SJ-&Mz9;Pa z!hRrZd|?v^n^4#fh5bm_M8YN(Hpu|vWx@TmtHTL(+c~QuwM(CPT2IqW)L=`u$hF-ENm8GvkIF{*zCgQ5H_ckAxy){Jv)$&JyUm?eEhp@c!j>1dg0K~Ztt4z^VXFxH(*WaT!Tq(X$L2D-&CPb3Ywk98-fb4p zZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9js zs@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC->z^3}n2$g0BrBJ8ii{w8cSVXF&U zL)e+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWeTaJ8n@Ex+1u&sq{BWzn?+X>rV*bc&W6tVq% zwwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xri_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(IdbHygYS@|gdHvH7-7c> zJ5Jc~!cGu&qOg;Moh=I#@3cF0$<-)EQV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$dw~s9ejseCG2Wp*9f~-*mc6L7j}cN8-?8@>}FxN2)k9-ZNhFB zc89P#h216WZejNbyI0tK!tNLLfUpOJJtXX5VUGxVRM=y}9vAk+0OMuB{k5yd<}$m@ z&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%DPd0w zdq&u^!k!cMys#I9y(sJ@VJ{1NMcAvtUK94Zus4LgDeNs_Zwq@z*t^2s6ZXEa4}^Uv z>?2_x3;RUar@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy* zv%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9Wu&XUw(&tMc7w`jVf$3VP6wAy0EVc`-ZSFgnd)kn8L;q z_AOy!3mZq+xWc|I>^s7~D{MSr-xKzIVLuQyzOV^|O(^V#!hR%dB4HB?n`D6Tvf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4Qj(m0S zf5?x8O(tw|VN(eEiLjpvn^M@%g#BFDRKk8C?3co(7B-ErX@&ht*sq06Cv19QGYFee z*i6D^7B-8pS%u9eY<6LD2%A&bT*BraV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDf zy3L-t&CWSO>w(Ti@Qywn?1~T$UGxo9ejt(D{MYt^9x%**n+|q61K3gMT9LX zY%yWK5%ybQiwj#q*pkAQ61KFk-wFG@us;Y}M%c2#mJ{|zVap3!LD-7IRuZNZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh z-ywe<`Rd?1WL05*5%yPMe-pNvu+@dFA#6=yYYAIh*x!ZyL)bdP))n?oVe1K7U)aBd zZ6ItzVH*kCSlGXX{YTh;h5b+1Cc-uqwwbWag>5mwcv*0N?dq|)%x-hD-R7FR&7F6f z1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#El0jO_zu}h*w(_f5w@+c?SySF zYzJXG3foE8&cb#PwyUt+gzYYD4`F)>+e_Hq!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>! zu)~BMF6@W_#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOa$#2tFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW!tN4wx3GJJ-7D-qVfPDrK-h!A9uoGj zut$VFD(o>~j|+QZfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg z>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EP zHpT5WE$%jzZuT(WAy1Bcb?_bXl(46TJtOQ{Vb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly z*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDr zH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE+BJ8We zMin-iu&)UlUD(%!eM8t7!oDeNOkraQ`t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3BDN4`4vKjg>4CKEQfuqlN7MA%P-O)2bW!hSAnDq+76 z_Df+?3!6sRw8DNR?AOAk6E?lD8HCL!Y$jnd3!6pQtiom!HoLGngv}{zE@5*IFkTki zU%Ps2F0)oaT-KG!S zrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWS)_) z4!%R?6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQr2>Y$D#f2>)Y)N5D30qp&?}Ytc*dK%~ zBWzh=%L)6Vu;qoVAZ$fpD+ya!*eb&QG{AUSaDVOUvAN7{bFYwBzX@AS*y_U85VoeU zwS=uL?C-+k9j)u=RwkFYI5!HW0R|wq`jvV>w;5+0fVMhx)M%b~!juUpg zuoHxxDC{I*Cks18*r~!!6Lz|=GlZQf>?~nt3p+>Hxx&s9cD}F+gk31?B4HN`yF}Qf z!Y&hbxv(n+7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8N zv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)Jfna^=WZ2j3xA3A6h20?RMqxJzyII&R!fq9Io3Pu3-68Bw zVRs3;Ti89q?iF^Qu=|BQAnZY54+(o%*dxLo75130$AvvHz<613f9>kAxy){Jv)$&J zyUm?a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghm11Mm){{@5%yJKqY4{M*w=)OF6`^Vz9DQ3Vc!%srm(SueM{Kb z!p0FcuCQ+l`;M^h3L8(@_k?|4*bjt_FKhx~6AJsGupbGVNZ7=}CK+J7EV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yGQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)JfnGSA3Y2j3y{3Y$;Z{K6IxwxF<_}05w@(b<%IoF*z&?w5VoSQm4vMcgUYd zzB>30Syk9yg#A_6--N9uY;|F42wPLwTEf;A_IF|b5Vnr6b%p&?*m}a&7xph<8wlG_ z*ha!O7WQvp{}J|IVgD1hiLgzDZ6<7UVOtC^UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB z-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_%aN}RzC*SWwzaTrgl#KqJ7L=k+d_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh#LxdeF>@Z=6 z3p-+f@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWeM~-}T@EvlLu%m??BkWjV#|b-L*a^Z;6n2uZlZBlk>{MZ=2|Hcb8N$vKc9yWS zg`FepTw&)4J73rZ!Y&kck+6$}T_WsKVV4QJT-X%@jF$!X*RCF$%j`Bc+ikA7+uV7# zSwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xpL&IgYS^5gk3G{8e!K8yH42k z!fp_Dqp+KV-7M@DVYdpqP1x=9v) z3VTf0q-R91_%>ug3HoDDfy3L-t&CWSO>w(T zi@Qywn?1~T$de;q9ejs8CG2To&j@=~*mJ_37xsd%7lpkf>}6rE2zyo7YrSdso z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%YtAQH6~r z>}$eC7xr~w-w-y2ux|<*Q`lI-z9npIVdDrJSJ=0OeMi`Lg^efdd&0gi><7Ze7dC;g z35ESo*pGxwBy3_~lMFCk7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ` zW}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrV ztKFu!-KNFerqazG<~wB4k*^N^5BagM$%IWVYzkpN5%yDIQwsZ;u%8Q?O4u)i{ZiP} z!ln^6t*~DS`?av?giSAO24OP_n@QNr!e$XRtFYOG%`R*XVRH(bOW524jF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(nP=pygYS@e zh0P~yeqjp;TTs|S!WI^`h_FS4Ehg+Y!hS1kabZgcTT<9k!j=~HJ7K>U_6K3h2wPUz za>D*7YT3$MA)XnHWRkFuq_4{ zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e z<;YhD-yvHG+gjK*!nPH*ov`hN?I3JNVLJ)iS=cVZb``dpu-%32A#6`!dkNcH*gnGc z6}F$S{e>MM>_A}$2|HNWA;Jz7c9^ikg&i@#cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kj zbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#BS*eE_zpQr*wMm{5q7Mw;z#a z3Oh;I$-+(%cB-(`gq<$z3}I&qJ4@Kv!p;$PuCVijoiFSHVHXO!NZ7@~E)jOAu*-y9 zF6@c{#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO-QChT@$cL=*v*j>Wz z7Iu%YdxhO6?0#Vn2zyZ2L&6>w_K2`Yg*_(habZskFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^Wi2 z3wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!rl`0wy<}Ey({cJVebq3K-h=EJ`(n^uup`2 zD(o|1p9}k9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA*0Oq<#)(egnd=msKQ1Q_BCOn3;VjTZwMPh*f)iZDQqlZ-x4;quyKTq zE9~3Cz9a0r!p0N!Jz?J$_5)$#3!6aLgu;F(>_@^T5;n20Nd_1%3+}I7JvNuwZEm*P zTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wn zp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Bpqj$X5sdhx}OBWWpvF zHifXC2>Yq9DTVz^*w2McCF~c%ekp8fVbchkR@kqE{aV;`!loBCgRmKe%_MAQVY3LE zRoHC8W*0VxusMazC2Z~i#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO_EhuauVG9deMA)Lj78CXxVZRl& zxUeOJEh%g%VM`19ov_~v`-8A$ge@yZc~nK z)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9rEXquMWOL zRu%RaVSg3&H({#@TV2>1!qybFmaw&j{ax5UgsmfNU19$eww|!{h5bv|2EsNJwvn)n zh5cLDe}w&4*#CrWB5YG(n+e-o*cJnfmj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrcKa^$On?~tv8Z7pmYVcQDZPT2Osb`Z9su$_eM zENmBHy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3J51Q&!j2eV zyezoCcJ}X-f2s>8Tal(!lc7m`Ig`FhqWMQWWJ5|_e!cG@|wq`t{nO5;5+0hVOI;gM%cB&t`l~>up5Nk zDC{O-Hw(K(*sa2D6L!0>JA~aS>@Hz<3%f_yy~6GjcE7L(ggq$iAz=>-dqmiy!X6X$ zxUeS%7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK z^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yv zW)Jfn^5n=@2j3x2342=DGs2z~_MEWig}or`MPV-qds)~k!d?~jny}Y}y&>#PVQ&e0 zTi83o-WB$qu=j<1AnZe79|`+d*eAk175161&xL(4z<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-kI6gHNyZwVV)*f_$*74~gm-x2m*VdDw=p0Mu=`+>0Wg-sxALSa7? z_9I~v37c5hBm<0>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ| zZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3{+M|wq`<{A0w;5%eqVe<)_ zU)Tb|78JISu!V&!B5YA%iwXOUu-^(>T-XxAmK3&>u%(6lPT22-{Xy6=!j=`boUlI% zTVB`-!d4WvlCYJ9ts?AC1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=Jyl zXSeBUw<&J7X>qrybhC%~4*B!QR|nrAs|x#zu)hlXo3Pb{tuAa0VQUIoOW4}N{x0kv z!qySCuCRX!TTj^f!u};}17RBq+ep~P!u~DnKf?Yi?0>>G5w@wY&4g_(Y>NTL%YyrB zSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!VMh!wUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bmb$dRuOzC(@@cC@f#gdHpFIAO;NJ3-iq!cG!) zvanNxohs}!VW$f_L)e+Z&JuREuycf+E9^XB=L@?)*oDF_5_Yk$ON3o2>@s1O3%g=~ z@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe zSB`vj@EvlMu&ae#BkWpX*9p5`*bTyN6n2xan}yvX>{em73AjF$!X*RCF$%j`Bc+ikA7+uV7#SwOeh zMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d2-~dgYS^1ggq_n8DY-~drsK%!d?*e zqOg~Qy)5h%VXq2%P1x(g-VpYtu(yQ0E$kg(?+SZQ*!#jh5cZ+4kA!_J>=R+13j0jh z=fb`iV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$S4bZ`5p2VVP6$Cs<6?7eNEWt!oDu-8^XpA_Dx}93L8t@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWe^Nf6T@EtO*u=#||FKhu}3kq9E*uugV5w@tX#f1Gv*l&d`E^G;5 zOA1>`*wVs&C+zpa{vd1_Vap0zPS_uXEiY^ZVJiw-N!ZH5RuT560mjRM`)gN^&1H6* zo9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx~cutAp>5RfYXU z*k6VHP1tI}Ru{I0ur-CPC2VbBe;4)-Ve1H6SJ*#=ttV`KVgC}gfv^pQZ6s`CVgDBP zA7TF$_CH~p2-{THX2LcXw#5MBWx@TmtH0)75TM+-}q2Zd2)I5Az*z_TA|3ACBiNhcA2otg}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#D@VRM_zt;B*wwx5k|>;_>s3cE?z z&BAUGcB`=4gxxOe4qNZ7-|9ufAau*ZZwF6@Z` z#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv z+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOuvdk>ChT=#ZwPx+*jvKh7WR&? zcZIzt?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWRwNJ{0{kwu&)XmRoH04z9wvRVP6;a z4Pj#l`=+olg^eZbTf)W`Hjc1yg?(GtcZ7Xc*m%OeC+z#eejsdoVG{_OP}mQJ{YcnE z!X_3r$pGVJ!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!z zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!I zD&6d1zC$J*`Rd^RkRJ=1OxWbYrV#cMVLuf%rLdm~`?;{Gg#AL;FNIAlY#L$H3j39? zUkjT~*!03?5H_Q*nS{+OY!+d&3Y$&X?84>{Hm9(;gv~v`cv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#c}BiE_zsy@*nGm~7q)<~ z1%)jnY++%G2wPOxV#0nS?6<-e7q*13C50^|Y-wS?6ZU&ye-O5euw{iUC+v^HmKU~y zuoZ=^By442s|fqk0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>} z*==^)Z5G{aw%%1#v?61Q9CTulfs|#C0*qXxD61KLmzYF_^uyus3 zE9{@b))ThAuzv~LK-h-DHWIe6uzw5tkFfs=`=78)gl#HpGhv$x+hTz6vf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3tj(m0S9kP|M zt%YqPY+GU53EN)S4#IX6wv(`(h3z72S7Eye+g;cm!uAxlm$1Es?IUboVfzW&U)TY{ z4it8fu!DsiBJ5CMhY34e*bxJamj(CNt{$7q>^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxraUa^$On?~tQ}9WCq_VaEzPPT29nP7rpYu#<$HEbJ6v zrwThw*y+N~5O$`pvxJ>3>>Od|3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S!mb!#yezoC zcJ}p}x2)kC;b;7O}c7w1Rh213VW?{DoyH(h2!fqFKhp;<^-6ia9VfP5TSJ-{R z?icoeum^=bB|wq`o*en=;5+0gVNVNtM%c5$o)h-Guor~ADC{L+ zFAIA`*sH=`6ZX2WH-x<@>@8t$3wuY{yTaZR_P($WgncONBViv4`$X8M!afuBxv(z= z7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$X%Wb00ufmiv~*TXF`;5*tu* zMsm(cGDyxeL88!PBq&i(L_j2iqN11sm_@}bW)#c`MZ|=nq5|_Q?x~r3_xaD%nyH?u znX2~I&-N^qZrr}_I^V{=$8YNn`fc4#zpZ=gw{@faw(h#$)(ZG-?StRea`rLAgdl^HG-^WkktyZ+Cf$) z$Sw`Cxoogq zopZmf8{oHfH~hA4jo;RN^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R- z{I=G{Z)=DAwie27YrFimR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)<#R|2 zUN!MKq-Bt`3bNKg)+Wf>23flxYae7Cf~;eZbqcc1L3UY?bqTVrLDntEx(8X0AnO@q zy@ITFko5_&%Y&?Mko60){y{b%$OZ=4pdcF@WJ7{%XhNnZ3!Ojj)T^zN>9=)e{kBfC z-_|+z+qwaMTX(~6>(=;f-6y}To94H52mQ8gr{C7S_1n79ep`3lZ)*kow)VkqYdQS3 zHpOpiZTz-&$Zu<*{I<5sZ)?^3w)W0%YYF|fHqvivJ^i+J)o*KY{kFE)Z)>H!c3M7% z4C7T3pF@TR*@z$;8Dyh^EG5WB2ice)8yjTfg6xVQ8y{p7f^1@tO$xHfK{h4Gt_-rN zK{hSOQiE)Ikj)6PnL#!y$YuxGoFJPUWb=aTsvw&mWD629Jz41dd8b}&olL*2GwZi? zn*FxUx!=|e@Y}i@ep|Q3Z|gq!ZQV4#tvl$qbvymG?ycX}jrQBR>wa4+;J398ep}1o zx3wvLTWjODwL^Ye3+1=9U4C1u=C`$Xep^fEx3!UeTkGk!wX1$xi|eDD9El3vTK5DagZ$uvZX<`EXbAz*@_^$Hpo^6*{UGBF37GAveiL$Ly)Zr zvKxbJZIG=Cvh_iBQ;=;4vYUf!V~}kMvduxZCCIi0*|s3to{;IuLg&vr^=j*6`fZ(A zzpc~kw{_0_wr+sm*4^;ix;1`V_sMVTrul8%LBFlr>9=)n{kCqj-_~9C+gbs?t$py@ zS`NRhP4U}W8^5g`^4nS{zpd@^+gdfht-bTxT0+0Ajr7}EPrt2Q_1jupzpX9y+gfR_ zotDobJ9yQ^=a8L2c1w`m8f3eI?6x4gJ;?3|vfV*;XOP_$WP5__?jXA-$nFiY`-1HL zAbTLl9t^UFg6!cSdnCyA2HCzKdo;)%3$n+9?1>$i2I{kHD9-_{EF zZS8~K)^hl5ZHnL4+W2klkl)rq`E6~N-`1-6ZS9@k))M+{ZKU7Udirhcs^8Y)`fY8o z-_}Zd?X-Lj+0UycK8HLTWX}cJ^FekX$X*Dt7lZ7jAbUB;UJ0^SgY2~+dp*bw2H6`y z_GXa16=ZJ***ih@ZjikfWQT(6{UG}w$PNeDks$jp$UX|PkAv)!Ap11PK1;~-WTErt zoqDx(GX1vBtl!pY_S-t=ep@%dZ|iROZQUBbt^4G+b<_N|?x5e+?eyEaw|-kU+HdQw z`)#d&-_}0(Z7ql2)~5Jvt&QK-4*6{@l;75N`E9M5-`3vwZ7reS)<*hmt*77CuKH~) zuHV)c`)#eX*G|jlkk5J5#OIJNg6zv6`zpx34zi;`_Dzs|8)V0V?7JX49%SDK*@+^f~<5x zrY8%XKkwA5t&{1ub!PpxPP5_-)-Mzpb0*w{-{owr;22*1h%H zy3u}HcinGm1^l-5!Eb9h{I)j5Z)>h&Tnf8{kAsJZ)-jM zwszHTYjORyw%BiLrM-4qK8Gaps)@fIQYOgC23ffvyEw=$39|A*Rw2kL23e&bs~lui zf~;zgRSUA}K~^KkY6e-YAgdi@b%N~DAgdc>^@6N^kTnRhhC$XS$QlP(lOSsvWX*!C zc|xWq3!Ojj)T^zN>9=)e{kBfC-_|+z+qwaMTX(~6>(=;f-6y}To94H52mQ8gr{C7S z_1n79ep`3lZ)*kow)VkqYdQS3HpOpiZTz-&$Zu<*{I<5sZ)?^3w)W0%YYF|fHqviv zJ^i+J)o*KY{kFE)Z)>H!c3M7%wBS_}pF>&(S*svx9b|2StZk6B3$pe>)*;9`23e;d z>l|d41zDFM>l$R;f~vsBW z-CMt{8|}As*ZsCuz;A0G{I-_EZ);Qhw${dPYlr-{7RqmHyZp9R&2MY({I-_RZ)+p{ zw${^cYghfY7T0fUi~Y7%+H0rfbI34WHSsxQc#w?q z`9ZcIA=8tE&YySc)z-=M+d8v;Tc_D?>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa z>9@6>ep|chx3#!_TU+e6wbEWYEuTXc@~Vl?A&Y|S>L9x&$QB3Lk|0|eWXpnVd62CL zvTK8EWst23vg?BE`XE~!WH$uanjpI|$kqngx*%I0WH$xbh9J8+$TkMqrXbrKWLtu4 zYmjXVvh4|(o-B0!yi>2XPNv`1nf2Q`&3;?w+;8g!_-)+{zpY#2w{@TVwr-l=)*bZQ zx}APo_ttOgM*D5ub-%3@@Y~u4zpdr)+u9Vrt+nyn+9AKKh4S0lF2Ai+^V`}xzpW+o z+uBIKt@ZTV+Eu@;#r50TV!y4G_S$Lr9I}H~O?(d78DzHv*{wmgE68pOvfG2~jv(6| zWOoMHT|u@d$nFlZdxGrVAiFQf?hmpDg6zQ{dnm{r4zfprY;Tb53$jOp?6DwwJjk91 zvL}P=sUUkg$eu~a^kkv)=bd`Bbu#_7&aB_oY4+PX=YCr^z;Ekr_-)-9zpeY^w{_F} zw(g+c*6sA$y0?B?H`;IOuKR7RfZx_W_-!qR-`1x1ZLN*p)(-h?EtKEZcKL0sn%~ym z`E4zs-_}O@ZLO!@)~@<(Ew10z7W-|jwAW6{=aBupYT|RqvqAP;kUbw{2ZHQ{AbT;$ zUJA08gY1j3$oXP>|l_+5oB)$*;_&Oc96XjWbX#qdqH+6$ledK4}$D)kR1uK z4}&*IXoo2tSbMCiw1N^q`hTqn$@!Psj zep@%qZ|e^FZQV}4t$XXYb))^Z?z-RB3ixg9gWuM2_-$>9-`3jrZS9cX)&*IXoo2tSbMCiw1N^q`hTqn$ z@!Psjep@%qZ|e^FZQV}4t$XXYb))^Z?z-RB3ixg9gWuM2_-$>9-`3jrZS9cX)`Aj=qJ znSv~HkYx$7tU;D7$g&4njv&h!WVwPYcaY@?vb;f-FUT$oviw0-Ajk>^S)m{+9Arg; ztZ0y36lBGMtay->2(pqvRw~F!CuDlE(E0ODz1ljNep_eOZ|gMsZJl$!tsCICbvOLB zZjIm8ee&D7X?|OG&~NK@`fc4?zpWeXw{_S3wpPGzYajf!mcwsrQ~b8p#&2tf{I(X# zZ)>~!wpPt=Yw!HFme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{!}mg-=tZa~# z3$lxY?2;fWA7mARtYVN=3bM*URwc-)23fTrs~%)Ef~;nc)e5rOK~^WoE)BA}K~^uw z>IYeaAZr+8je@LkkTnUira{&$$eJf)da}^@^G?0mI+=c3XV!1)H2ZCxbHA+{;J0-* z{I+h5-`0Kd+q!9fTX)cJ>vsBW-CMt{8|}As*ZsCuz;A0G{I-_EZ);Qhw${dPYlr-{ z7RqmHyZp9R&2MY({I-_RZ)+p{w${^cYghfY7T0fUi~Y7%+H0rfb4UwbHSsy5WstQB zverS?Cdk?bS-T)>A7mYZtYeUM3bM{Yc3F^h39_z1)-A}o2U(9G>ltLdf~o?tF4piw{>RywobF();agvx&eM$ zcf)V%*7$ARC%>(m=C^eR{kCqW-`2hL+q%(yTX)@WYX$ta_Q7v!IsCRZ#cykE{I+(; zZ)>6awzkV}Yt{U=_Reo>3H`P<(r;@${kC@1Z);~HZ90fgKT<` z%?PrYK{hMMW(V1vAe$Rx^MdTEAe$d#3lcItS?K(Er(SKHOuwx&>$i29{kG1z-_{NA z+qxTmTerq<>puBy-88?gJLtD{JN>rqt>4y-_S?Gaep@Txx3v#`Tg&0MwJCmEYvZ@I zLw;Ke<+rt6ep{>Nx3zbETTAG-wUK^X>*=?(tA1OH>$kPVep@T;wbSxBWFfDb_#Cn* z$gU2uYl3WXkSz(ar9rkV$d(7$iXgi-$W{i~svx^A$gU5v)j@VckgW-_8-r|ZkgW@{ z^+9%1kZlOEn}cj)kZlUG%|W&$$hHRAwjkS{km<=n=g&L!YU^bBZJk-at<&tcbs*wr;fF)?N48S^>YUeel~_4!^BU@!MJ( zzpWke+gd2Ut?lyLS~b6|z4O~zLcgtz^xIlbzpY*M+ge<|tu6N3T4}GHmd_zOc-6$` zkexwxOOV|fWV?dwwjjGb$nFTT-9dI|klhtzdxGrlAiF2X?hUg0g6#evdmzXj46=uU z?BO7LB*^v#*}foqG{_zcvd4q$i6DD2$es$ar-SU7giKEsI)C1&S6e63Z|ltZZJlPn zt#j_Tbp!mi?uOsit?}EsPkviB&2Q@t`fc4#zpZ=gw{@faw(h#$)(ZG-?StRea`UI?-mgY2asdpXEn39?s%?6n|!J;)9Q*&9LjW{|xVWN!!A zJ3;ntki8dVhl1?=Ap0Q54hPwhAp0=LJ_@prgY1(a`!vWtOUU$Oq4VdRdbM>j{kG1m z-_~jN+dAidTQ|UO>u&gM-5S5G`{cKE)BLvXpx@T*^xL|(ep@%%Z|ko6ZLNUc);{=c zEr;LMruc2Gjo;P|`E4zf-_~~dZLON$*53JTEur7mM*3~7r{C7D`fV+)-_{oUZLPG| zPRr+z&w16v=a4Ug?8_kgD#*SLvZF!vO^|&XWXFQ+yC6FrWZwtbi6HwS$bJm6pMvb? zAp0fAP6pYpLH1jaoeHwwgY1tW`!mQ+2iadi_IHr|6J%$C>}-&oOUU$Oq4VdRdbM>j z{kG1m-_~jN+dAidTQ|UO>u&gM-5S5G`{cKE)BLvXpx@T*^xL|(ep@%%Z|ko6ZLNUc z);{=cEr;LMruc2Gjo;P|`E4zf-_~~dZLON$*53JTEur7mM*3~7r{C7D`fV+)-_{oU zZLPG|PRr+zq>lgo9CAUBWeBp2L6#}VG6z|fAj=wL*@7&4kmU%noI#c=$Z`i+o*>H` zWch;Z!XV2ZWCen(V2~9Gvcf@DB*=;e*+oHCEXaxnS&1Mk8Dyn`taL)ACkvfF@6@ZU zlj*m0X8pEKv)|S^_uIMwep`3LZ|m0hZQUoot()ezbqD>nZl~YYz4hC=(SBQZ-EV6J z{I>SNZ)-XHwl>9YYi<0tcF1pQq5QVC%WrGd{I>SaZ)*wtwl>mlYd!t8cGYidas9To z*l%m4y>?nYha~f=iN79FCdkSLS-Bv)ILIyuvhqPzA;>BQS*0MW9As63tZI-|3$p4# zRwKx223f5js~u!@g6z^Ds~cqXf~o? ztF4piw{>RywobF();agvx&eM$cf)V%*7$ARC%>(m=C^eR{kCqW-`2hL+q%(yTX)@W zYX$ta_Q7v!IsCRZ#cykE{I+(;Z)>6awzkV}Yt{U=_Reo>3H`P<(r;@${kC@1Z)xgS*IZD9AuXTS(hN| z8f4vqtb3642(q3*)+@+*2U(vWyFAGH23fx#>mOtTf^1-r4GOZsK{h1Fh9+csve5bS zPQBVXnSNVm)^F=H`)!?bzpWeKw{p$WnrAbdZe+vavxnF37G3vhhJSA;=~M z*`y$w9As01?8+dU8f4RgEH%ic2ic4un;B%Yf^2q>%?Yx(K{hYQt_rgGLAD?v)02hH zpLgoj*2(nSI3s-_}j@+q#2(Tes71>)!fp-Dtn9 zyY9EO0)AWj;J39Lep{R3x3xBYTRY^pwNQRr+vT^lYJOXL=eMw@h1AX^<|Hw4+5AiFWh)&|+SAX^_~HwD>-AiFupHU`dTY_wBkZlXH?FpHl zEOh?7Q?Is8rr*|?_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^+DN~x_4M1? zRllvp_1oHFzpa(_+G+V5vV&Jmd=A+eWVZy_twFXcA=7_*=rz2*Gqv^Vep^2;zpbCK z-`3xY*Zv?WPg17~l9IY7RsYxjHOr7cX>XP+Nl8g9px@eJWwv}c{~!PLyH-ghlkz5I z%zgepUXYYKX;;Ujf*X@EBvsD-Q$hF@Fhdi1?TuJW1FO;9RDLt|D%6@ z2hN^LO3Iaqe=-TbDfxWK_LHZ(jm@`bO}3;e6&^ZLlWZ72ke#pk@$Sfge#nFa&_9Gf zkstXe<>c$7e9gtz7JSt|$IJLyfUo`dsy{zpg`}iXd>w_h(^AJx9G;poEqU_jbS|1l(e2aeNyT;estWV^FP{W(zw)=QOUhh&;KbSW+%5ClTtOgSIVra z$-^g&O71y)WJ;stiIt>A76V7pEPd#@Z|1Ohff=>pRfK}CD3Ku$f=X3O&*<^+-3O4 zag$OfPaB)ucGk$03H(?KB%M0eYRbL?7wC@{4n1Cc_m+SC@sR^f_pd*EK}L1be@lM{ z(%*sfcOd;8NPh>?-+}aZApIRke+Savf%JDE{T)bu2mUX;1OKbf{}~P)JhY{H@qBAH z@cF;$>3jA0U!Up!^XLD(WcvJH1oNQJ`-`E^%B!Hy`Rh;^TcFSXyP#hWIEerJ`Cp%- z&wnOwlQL!a)YOS7lT!cVGylYiDN{$LB>l%{ekr;eXCHYFu>+WFVwZ}t2S>F3;a_(Xo4 zq37^PWBBv*6VVT*|Cas^q`w2{??C!Hkp2#&zXR#-K>9n7{tl$S1L^NT`a6*R4*Y-e z4(Ma7J}c`Ztv(9tGqb*{A}jRo^7UC?-$J2}$NJ2!&%$}2&;9z0e+s!2eiRQWaE1HB?6p)I=@R zMjc#=x~KCfiG(&T=KufejYqWvB38fv{qXRmk6FTEEbU{~iLwEE* zPxL}>^ugum3;nuCe+fzQWfyif`~Oj^R5T$M-maAMhi7!q4~xC-EzO!zuiZ zKkz3`<1hS;e{cq8aSr-5tP79<8KG|j%8V??ifqV^9LR}W$c;S63;kN)g~*QrD2PHR zj3OwCi%<;3Q354V3Z;>ZGAN63xEPn9JSw0fDxor}pem}NI%=RMYN0mjK;LIn7xhpd z4bTvc&=^h76wS~aEzlCJ&>C&f7VXd;9ncZ_#(82 ze^Y-9z(5SbU<|=f48w4Yz(|Zj3PxiL#$p_T!-ti8aH4KZp2!w!+P9=4Y(N_u?d^8 z1zWKV+pz;XaSLw6F5HIOaR+wePTYk(xEuH2UfhTK@czlNAV55#W8$`ArwXt6vag-hT4J zNJbfyMLArIOHdvaP!W|-8C6gf)leNZP!qLK8+C9g>Y^U%qX8PC5gMZjnxYw+qXk-` z6^ugumi+<>j0T_ru7>pqpieVUz5g3V4 zNWo}~!B~vL6&Q~Rn21T3j48MhQ!x#xn2s5kiCLJ9Ihc!ixC-;J01L4QSK}Hi#u6;W zGAzdmT#J=hh3jxVR^tY&!Hrmpby$y^umLw?BQ{|(wqPr^VLNtUCvL&5*oE70JMO@4 z+=;ue2Y2Hh+>85gKOVq?cnA;U5$wf2Jc`HgIG(_hcnVMB8SKZicn;6w0A9e0cnL4# z6}*bq@H!6S4ZMlB@HXDTyLbXCH za2(&`1b)De_z6Gb7o5be_zkDSt$60Oi0ZO|6&&>sBnVkhw(?n#}{ z8JD38x}qDpqX&AT7kZ-)E=OPVLw^jwKn%iQ48c$g!*GniNQ^=XMq>=dVjQl(cuc@V zOu}SL!IhYbX-LI%%)m^{!fedJT+G8&n2!Zmh()*>*I+T0U@4YiIac6Wti&o@hwHH# zH((8J#9FMwdfbE!xEUL<37fG6Td@t>u>(7C3vR_O+=kn62X^C5+=V^38~5N|+=u(| z03O6cco>ghFZSV4Jch^d1fIlGcpA@OKc2;NcpeAv0$#*Rcp0zYRlJ7RaS(6dO}vG- z@eba_dpLym@c|Cw2tLF|_!ytyQ+$Tc@ddubSNIx7@eRJkF?@&P_#P+l1AfF$_!+<8 zB!0zjIECNw2mZuq{Dr^q56<8$&LJri_a7OM5t)z~S&$XkkR3UY6S$;vy77ag;zwltO7FqYTQT94^KsD31!Lh)Sr8DyWKTsE!(_iCUd zQ4jUe01eRyjnM>6(G1Pe0xi)BtHEXLsqjK>5_#3W3{6kLg^n1)nL#|+HGEX>9n z%*8xhh51;3g;<2EaSaw@36^3RmSY93#Y(Kgb+{g@aRb)iMy$m;tjA5*fSa)qo3I&M zuoc^|9XqfSx8PRn!fm)6cVIW}#9i2fyKxWh#eKLR58y#Ogop76_F^9%#bbCJPvA*B zg{Sch_TyPRhv#tsFW^PIgqQIOUd3y89S89S-o#sY8}HyC&f7VXd;9ncY-&>5GZ3%a5kx}yhrq8ECj4=zVv^h19Pz(5SbU<|=f48w4Yz(|Zj z3PxiL#$p_T!-ti8aH4KZp2!w!+P9=4Y(N_u?d^81zWKV+pz;XaSLw6F5HIOaR+we zPTYk(xEuH2UfhTK@czlNAV55#W8$` zMwXo99_hURF2mS~06XoI$BhxX`zj_8EWxC~v; z72VJsJMYlIr^d>`eOhFVh{#n2!>)9hGPUqViZy^8e=dP<8TGWV*(~(5+-8` zuEbPKLn@|Y24-RwW@8TKVjix-d@R61EW*{e28*!-OR)^gu>#j(C05}&T#wbb0c&t0 z)?yvj<0fpt&De-d*o-aMif!1A9oUIma4UAkb<{vj)Ix34!KJ8+dZ>>E zXoyB=j3#J`W@wHUXo*&6jW%eDc4&_d=!j0}jLXmkUC|BQ(E~lv3%$_?m!mKGp+5#- zAO>MDhF~a$VK_!$Bt{_xqcH|!F%DN?JSJcwCSfwB;7UxzG^AoWW?&{}VK(MqF6QAX z%*O&O#3EdcYp@tguoTO%94l}wR$>*d!}VB=8?Xj9VlCETJ#NAV+>DLbgw5E3t=NX` z*nyq61-D`sZo}=k1G{l2?!q42jeBq}?!*0f01x6JJd8)M7yIxi9>e2!0#D*8JdJ0t zAJ5`BJdXo-0Wabuyo^`yDqh3uIEXj!Cf>r^cn9y|JsiUO_yC7-1Rvrfe2h=p`0Te_b6h;vg#YHHF;wXWVD238UMj4bv zIb4iOP#zUf5tUFGRZtbxP#rZ;6SYtqb#N)_q8{p_0UDwa8lwrCq8XZ_1zMsNTB8lx zq8-|!13ID;I^!~QL05D`cl1C{^g?g+!R6?Se&~+@7>Gd_j3F3`VHl1P7>Q9x!Dx)Z zSd7CJ7>@~u^0*;|8q3jaZ9ySdW{q0XJhKHeoZiU@Nv^J9c0vZo#eCh1+mD?!a!`iMy}| zcjF%1i~Ddt9>9Zm2oK{C?8QDjipTIcp1_lM3Qyx1?8mcs4$tENUcifZ2`}Rnyo%TG zIu7CuyotB)Hr~Ozcn^p0K0d%<9Knb92p{7Ue2UNTIljP`_zGX+D89kBIEL?V9N*&v ze!!3T2|wc(oW!sA4X5xs{=lC&jlb|W{=pfX#X0DkdoDl*WJD%pMiyj6He^Q*jYZ0^>0O6EO*sF$Gs*DyAV7 z(=h`xF$=RX2XiqGS7AODU?CRaYFvZGSc0WkhUHj+Yq1ima2>A4YTSS|xDjiy4(o9f zHsEG##3pRU7Hq{fY{w4l#4WfLyKozB#~s*>J8>8G;BMT5dvPD`#{+l}58+`vg1y*> zNAVaQ#}jxGPvL1igZ+3G&*6C-zzcX0FX3gpf>-exUdKVafj99M-o`t47w_Q^-p2I7RT@%j^lfrzz_HlKjCNmf|K|azu^>q$65a8 zkN)KAY5ax1@ej`6tnlOd#=Z-X0U41AnUMwh@iYGy=&zgp+y6W7Ku^Ata5CRHn4Hv> z?<-8@dkJUrUkv_lg_AO$|DW2@-;w^6a&k8Pp1XDa_et&kq;H>dMml@pVOpZ|OB$h$E5{Le{A zYSK9Vc+&skFIth;*SFH>U#GdR{|EQ){5Q|?C38|6USZ_(P I{?qIKH!>WTL;wH) diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1979.xls b/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-asr-1979.xls deleted file mode 100644 index 71611eee12d553b047f13ed5dd67c515c61f9ffa..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1326080 zcmeFZd7O>)AO8QEecz2NVeDjI1}Tjt*|S88k}PA%R?Jw+L^4GgNzr0ywL~IiEk&Xf zg{UZHNt=|4)F+zX`#Q&%al1^{_wk$WKflLMk2%eG&U5bjKKFTD*Lk0Xou4EeeEzjk zhs^Wm8Vj<2b0aLY08e(`Umkf5#GCthZZ59n{Xfk8EZluXxUWd}73IF7-B*nJigjOc z?knDXCAhCd_m$+nin*_3_f_0|UFN<@xUZ7#tCagH?Y`VD{{KJ!7tcUMxVs}mL#$`# z9bwxn&_ct_4!QrY2;Sr_%?`V-+w3ljF}tD9@WDg+q;whCXH=j5DgT%MwDcWAp8y=g z#sITs?z>2v>u7?N^c`8E?=s1Ex!mWy<-2TVi8e9tWWbpk!Ihf0-!==dn**Esyd2+U z1>a??y9}^3zTesJBlWD5ec=4u2{YUt@h2ppg^jeq*2jk0|J|RSaL1B6;Vs-;_vPL1 za}GzC@2D>N=@mA}9c`oYKaB}!eByMGEh zr?|C|g>2)3$-C%2E^8;;SX@@f@52bN@c%r9{3+tM!!`IN_fj^vfrYrE2&iD|QYu(Q ztLeTfT3zdH)$J-*6V=T7liS=+$_6)c4ep_yZkBHStydu%NV702bMXdhyL}h7 zcmL1*$I#B*unL85qVOXrxUs=@h1Iu!-sf-e6_#?*`MB_>I6L`g499epJ8yYs48LE& zYPm1}xx`PJ`@Sz5T-&+T&3ae6BBf%@iWTeju6`B1zpa|@+HL-86>3%R@#ej&mkl20 z?wO{SKD>gb?ZQL2@F4SVF+bEam#m8qw~^IwJ(GX9wd;D0*n#|mPD{%_?91&XH(get zQiZ(Rd0Vx-E4R6uRo)i3F)H};Tf3$A?{%S6!4|qvIWPJ5p0D_JUN*R@Epq4DV|liA zPHk+9-F@wDk2{ot_kize!8^eRF1R1k>}7X9T=1*@<2kpnbHDA|k-JaxHjsZ#4!VZK zpHsOhzW@6#Hl~2%AS?AlYYY@-< z_4XzBs!Q-Sm*B5og8Ogp#ryRiPxM8{v&^?0x9;{I=MxDDPewf%Wx@XYCGk8TFyNhX z@07D(|M3L4UiHo4UrzA-$;*57OYoO3!534GXLl^`QF;9Q{QKw7JyG!cd#sE5wwzn1 z`)*gng}itkcTeW>{1mf^E8|JKVRW^0woiq4>9d{y6>f zSuBswO-LvnRotCtf9~S)xZA$}Jp0c-R&wk-hvoU6<8(JL?{@VuyXO3PNXp|L-(mNs zyx9!@cX`L}zn0=o&4oO~ch&h%UC0fOvRD|rQK3Tfl;$aU+wnhRzu5P4r%hqosd3SE z%)J6&=KRU|{`l}>HXe8U`9Ig$m7`w>$_lS#Sr_oDoDt}rH5T)21zYkxrn`r_Sht1@ z$O>=a`32mVpiBNjVEDN$1v||>RJvtOMYjR(M%?4{e{Uo=t?-RBP&QJ(!G#;~-u{Me zBbUDYffpZo-Sd0J1G0Mtms{|J1qQp@j~{IP_2b-2-~MVBY-Fy5@{Q!aU)V+(U$~K* zE^#Ee$L1C|lE*xEXR6ysnD6eyQKzMizQmDifBO7J!p_~q2@@vd=Bz?(L0#!+!GlWU2le~!zh87vX=!N}9Tb@NpuoHb1$OC!!VSnj zsQ+bM;&iivD!Mb}4N@a_Q2sRH>|b>f+OV#ra!?{NoQD=>-cGoZm>^ z3>4kz_6D<=I}Cp?am(EOa^VbQg^%@2aucV8SYG~ebGM)Wg}j4ZxpHN$ox2rzXU50Q z-HN<{J!p{j7BbPoWSOWj&%}F0n_(t3U^S?K;y<_1UDXVOxeuKg{ zQu%_7xGVgeV1aq*bAsiha83%}NJ(WQ+dCG%5x2tq?<1+-pzw`UxnLvi3O^@UQ(pR< zU}-O$lfpORod?P8!M(Q^xd?Qsa*oeEr&k3GjUHY8hX`FCQ3g1X+Wh2`= z7QPYp6y(2;q<({f8+kl1(c<01m({OZIi*%gi+=smhiBBA8Q#fe;?$k{6A)ZBH^#jt zSJx`L=O?w?R}1Us{!6#vzV|q=+W?EUu;BCo`wsn{8-nlgXyYF2E4#wuADn*Vd(>Mf8Wk`Q_Q=Y)QfjhyO7=BS;4v8gr^TUaO^bSO|o}4jV|6z{X%x* zU%mQHT15JQ!@ut5yD5&{G%S45%DLS%6eewZ$2Ycq&v$c~cQ<6xDi*Svf|Itr<6j>w zC|ZzME3s-H=JEQ^;-# zPTKa48$SPq@20eOH)PTp6tbIwleWF%)`M^G-CT~{G%9@3QrvDD36oa8!St6eao?2j z?uJZSr9yU7aMJ2GIJsgnzcppOyCIWSt&rUmoV5B4wr$(ScT>*08!~A%3)xMFkqvbstEjUGH$Fu73jaJIv zsGA?}Mk{+ZT5x8}_hj4msO~+|%K000)8gG|b{{ z=fUjOIeYm=tLAUiO@eo$^*kFbc<-CtwX6->Xt;aR*gXkv*{A=^@GCF8=L1UT23bq@ zs$&21kH8^#?Zdqgi1Uc=@oM3@dpzE~s^(tyZ`EgLzs#Y1G6s(rJ~RCO3pW^8JU7bx zA2jJ_neO8;ecaM(u#Ip_Fua_F$6jm{uUh5p0IwqXb`WarHDLEcyq*!@}NyV(y*2LZm9dO;8EeV znv2FK@2K#iP3ZZf@?Xn4D*v^-qw-&S+`TqiV`5P5%Zm9dLUA~)Qx4K7yUgv+O*2G}gUjr;p8;8Q$i?O$Dar##?I} z>pmKW`+m6Z{vY8EWSl$a-QD4gb@PB%+Vbvw+}Y>GE5hA2_wr1e5hL87UUlJi14`uv zTN`)MMtDXQFMQ{1%k3<0Te0q45cdqCZF-;ngNF}HanBVz2O1Rb&TLzEK$!i(?m!2+ z1N6Vy;2QxKm}|S=>E9eiG0YvAzX%@>jCD^k3T)hUpLgR4WaIw+yTrzG(_UD6$lVZZ zyg|W@yAJejJdteN--DOfxPNI7=-YV1f*W^T=qZGtB(ibzq5mEWD|lKS4~(=_cSl;g z;df=aQOLaTE(7!`th-%f(;OKej3krQC|DtmF!S=;-amwJAS)9Ju_ouA6GA)Vh*_6 z74!9O!?>j*-Atia{Lg57ed^v5$-BLC-5V$82HuU-M00VhaN)7KPyB_tjUhEC2y6-! z5n)XbkLyQdq|XfRd*QDHM!I<5S2El&;C1P|qQ&ddc@2iwl=FMle=V=U{MYgt%zy3i zz$m-Y+-q2!Gc$a5@EFfdlij8}`)=~ZcX7dnMl;pyQw+w=mjiQvuT1ovNew~@ZSTYG~$ zgO8^(H9Hoo$i@Dlb+ zfjtJ`NA8ciZT6!36!D7%eg;0x{a%239D6kY{|^Yh%zXea?{`XAX%|cjz-J52u`u_J zaRBZI_nyqAfN=L^cE{iVJ7cjyl^u1uTi&<|%19qMJUt_&Tl&!SKBLl8`uE95Z<>esKCQonB9hS#~7=+k#-ddir=8G}+rju?|N$UQ`)j~taUcz8;`5koVF z4Ih=#GNsRO*CW15KPzbAmm1aX;6C^~B6DOv?8LWo_mb48K0{NwjJWIE+9;*vh7ZngWp_hHp*v`wIdoh~y_zZ5hkN+GCB4tc6t}UweYw~3u4~uj2LD$4 zHyXPc=l0e=eN>_ujq3(J0?&AuDUy@v%70Yri^rFeU#5|cR@kq_gon2)~j2$ z9@@jVVL#4wPx8WTSxtZRs@Ha(=x|wC?*1R^a@*LwXE@vazh8K9_vJ!!?oaV^{|~g; z;WtIkF7T6>X@SX`MO`kEc+>DoY|F22lN2#N$OguX=c1LE{uSy)7 z`dE`A+gg2oG-&mTGB-E-<>=o}RXRN5jrD1bu79O{tMCV2-#By6&x`-QZd>t|wLe@} z^;GSbYD|58$1U%6|GVUhA8t=i-Icod>y+Q4rX_A(5k0l{Cj(PT*81+9tL9Jr`OD94 z8T!_N=_{v?Z*=?i>o?^VyW>>a4@sYHpK$90cSdsEQ>hEj*MiR$eZSG2r$+96K&AB_ znLcz>o!YpZ{OBilZmt{s(68AW9@v%Db@%2Hl}FcEFr!tS7qje8wF!eNl>V~xu`fHn z9~${)_~e&~pHlppC83)Sw@UkH(4o=I-kC6ITlPzfDu>@X_O1tC zy!Xphz2EAx>&2^g)GNK9?drO-662=q>-<)?S6lYqwJm;k`_^AJ>|1HVqQ~y;{du{k z=9fI!sN<)nig)|G@g1)|x_Dde>znItpWk`Ygyl7lwhkWN_=%2#zwP_{;yOoe*f3*p z`jS0mcdlCd_h)C_O}Y4n4jDJQ_yg_+KJ32m7OI=#Vd-@WTy}C#8V071#Dqj|?-aQ? zCBFHgtmntf*w?tVW@i)cx&gl?yOU=1q zF%PHjs6A!PiSacTm0rBR?d4l)4n6dK@^?RuEwSy5oTP8seK4wPR>i$DvX`wokn-88 z8hgwCTJyl|>nh#Z?2$G%{qX7O>W5n&t5GE~un9l->vs>^^@&^MtSIOHx)D40dN}N# zZ|N|ibmRE9FZ*G_%|CB=t^cuvl8*%)ORoCb(2CuSRz z`BLjTA@>}6zFMj00!p3SU9MkBi#h*JiCwq5cJ;2m1zq=8@zvIfOWZd%xA=M6=7|_Dy-O#eoT5{W^a1m!~IR`&)R|;z!n}ZGQKiH~;vt z>X@CYqwk*FY{sKo8ZG(f`6sshx%I&k@77OTbMvHre+}C{c56(QWbfW-ZwL%`MeN+^}}qf-X_5KD@Vm>gq}jM>ni~#pI`^ zRyq20#0#0_{w(?0r`Oz9CF{`&x^)`| zt$g|Px0_PFe53mnPhRon)Az+ZH!}J2S6A0K-hN@{pq+PxSM9X!i>6EG?AU$zkcqpO z#~xUA=a8j?4#k|kwZ_~rAN|ztP-?Zky?bsN)3noy7qUNpu2}EeH$7Q;)pZ|zw!B64 zw^vSDUVQYe3zjVC{Xon1hqpzp@AB%<)XNs_Na=Uo>A5F*uG{nS@Q-JGUv0{RHP`Pc z-mmyanXeUpzTeiXtV{EUD@|>7Wrq_bV#+@}XUfcgs$X9d(K7t4;4K|Dj_mXL&gw%q zO*mEk#}WHq98|hutDe6FR_UAG?zi9GoALOypPdbRZg1n15#PLZ<-Py@@8`cq46Jke z+-AAyZ?CyAecSQpo76q}b?#rMzWHXtp|hus#r@j*zQ>1en08r}e-C`p`|W?uJ{tG( zLrLE+9Q)7lrDK-&-f;GprD+rH`ElplAMM&W`Ea~Biyk^#Wul=#P?#hY1whnsW z?nMD*mu!fRI=$%bgI~|>-07=|ldr$+-o{;rUb(her<4tePkuOHO08$w6x)&*(q!xI z8{T;>V(auzn^k^q<&Y<%uS^$hd<{WxjN(^(HK9&#e+;m_Cq6R~Obo1b(Jezg3$XP)@oy1vtK-R37x*M0r) zn#M2oo80S`0Z+EMarA+s@0Bc*Gx(0|Kd;$ZY~BkATfaW?Pi$z+?3){X(k?B${L-KM z+;m5?=A&O(a;!wupvSxSe*KvWr>CxHx%#1?)em+av-*j#1FB7r@4e`6du#aqw_eYj8 zJNR~R$?=0rw*7hG_OM}}w%M~kCGM$fCWUUEHN3@pBPY~;;io0V=QKUK_0LXo-V7*J zap^Zx+m0Xp$Lo9kd?I(=>i6$%d|T(uM{XRt;FS)mn;z@-;n&?Bcs=%XxuHXP4k}fy z&*Dl;uROMJ>AD~9Jd>Ms)9b(7{`QaQpJiU&c*C@~W?MVeY4GeTw{@=b_?kL9_bndW zrs>gL4W1oz{DXlVs~z7~a?3w0J7)!7y=z+26^p+;xi)EF#f_CFFJH2KQ)uzp2itx$ zcJ8)MrbgdezWp5yyPupjv-$QOVefW$YU0$#ZXf;AjboeUtRMQs^-UjXow~PUjit@& z_pbBA>zPk=+g7aC%in$aX2%T!O8-#(*rbUwH$+GDYcS`%*$-Ts`P$-XFAZFON5im) ztd&FhbRD%~?Xo>}Zd>(k;NtY#?{70auI!#;_pJ-AkP^JP$)Hc#eAxNrrI&rZ_v5#& z@4URh!sLLRed|<6Ii1nz?q2s^ow>f@p4tZoKQcLCc%z76B@Y~&8eewu_q$%cu};e) zE8l+gXzf)$RKMYevng+kEVcK`a((aa(ffg~Mh<`OwWq5O`gz`GXFt5LWXl0lX0A_r zaB98rIf+xsJU@SZe9XaBA9eZt@sgOA8(V2^XS$brk z+rY==pSkt!q{MgIba*v%@X>x1!>(U5Z`%9)u6|d}2~#=v?*9%^0k=9NeHKK$0EJNxwgVDNzK&NrMM`Qfr!BM)?Y zc1Dkgx?=~Vwb{F&d5gM>kIuPePq8C=8@@8~&+&U-E%Qjw{8q;+w0`%4|INzYU-`}S z)OXjFsd@X$zq=E*=iS|7cinVnhhsN=_uZ|-8Z~+F+g+1tk7>VP=c|+V)o!yh{!~Wi znG0fSt^Wg`Zoc^OJ7(96XIHzQly;Bq__RTRNA5cQMT?IVcoaXki0KshZrx&&Pfr>X zK4QeD>*F7*a$w5NWqX1qf14W9D6LZ0pO449S~I-%Lw(+UdhnZ1&fAvMum0Ed1}!NS z-t@;=cR#af*xH|`H}6*b`lc8TSNz+F(KAt@Au@2QbRjJgiTJ3sIjf}0@{_(jx zAMXD5#8;cV_~?z_R(Nq?ix1x1+4gj1)^oqj2^hbn(uThA_wKclv%5T#`})}?rKS$7 zQ?7Wgf4jCAwJ$rQ+6!B^AFMcMNyp$1Z(YCsy>HIn^nk!x?sI9ETGcwOz#p>4?b6}G z4S1J%`M+J)ozDV`KJPDjmrePAqcMX%jrO()wd@CC7HoQZSzm0wF z#m<69Q^-hk=@8=Bo0R|7U|8E}0U+_1N zqXOHyL-7Au(9Y~n_cVS?H?y-n-Rlwk+}|W0YBtNg#8@WFy$6(SR%^Q1s@d*u2S01J zWszB@6=r+an)TXbc66KBu-)#n`TN~RfseQ&{n;$%r2E_EXU*n?1X$(R09#f(z*5Tv z*oLYB*4o{PJDLPoj}`%Tpk08acMGuNJp(MWUx1w*5@6XG0Tz=LV6(CVtjzQPTQEDo zYCRiZs}==VvlRihWo>|Ua<5wK-47GPN?-Afy8RhknLXvywb z+Pva{R=HfDEvp)6sdWQwLz6&j-6GI-v7ihSLWG3Td*k5YOM&gRciyS*``3-vMta$?GCiP`va}lkw80oEYOCX475{c z0xc`Vz4RFyWI4ryEV*2e&8r$@mFouCvL->6+9Jp{v}*buWzTjWD|$A_W-SV`GAn{?!P+3JwJFF}Z40tyyMt`Y{vhjgB*^w2 z3$k7(gY4*;AR87EY^P#^EvvYD*{oc!}X7g4J#gEr^<#{R#i8rbweztNr)x42(fwXLacJP z5L?zW#8Uf(*oGk?);c4^c8m|P9@!ywAScAqXNTDF`5~6MD8$Y#53%gEAr`YK#Aa;^ zu`;_uY{C8zt92yARvinmW+y{z%b5`Cj8NM!KGa%ghuV&uQ0p-})DFxKwe&@yc6@oLWv&gi zvl~M#dt0c*><+bA`$MhFkx*N3EYxb947F8fLakXym~Dv(vrfgsY;V~x>s2+(j@AjY zVNJs9RP!*)Y8Pf9-NG!VXP71T3$uAc!mM&em@OM0W~td>wjn3XTF(x%9rMGi$D%Mh zusqDt*M`~gjbWC#EzHjD3bX9}?o;YV!fe(t_jhqmhS`EMVOA?7+*ZYeTeITfwxw*i zb*dU}d+UT-uO{Jkw0XD(x`ta;&u|NIuSVny3Af~oaGU4;5=rH3_aa74xTU(+ zA~wtqx7LfoZO8I(>#;W64r~m!^ljmGd{?+-?hm)Khr=!VSh&TU47XWl!mUh5ge{1P zuv*0B2s=^J5LLn16BBf@gVM_6)p zgw4x|u*$O|Y}xz>OI;LU8$MTKV`GH%*cM?2c12kF{s=pMIKncIMcCOtA}sq% zgvEqJ+AR0aS(I`AT*ZR2kyfi}q^+tGY0a8M+Lq>#)~Q{j?d=+Ay?RF4(Y}#3Y)GV? z8Wm|-<0CC3JJND;A}x7#q|KWjX_Xg6+Op;Dot3qbwqawWwcZwKJ9b4{kNuH$;Bcg+ zAB(i(e?(g5nMgYu9A()tQ5NI=`qHejQC6mElr5+eWwn|_*{bGI)~sEWZRr|ioq9&u z-o8=RYeg?jz!slKcX!COq3lDj<(F0Xgix6ZP{g`Ev9O;&8ib^Wtv3Wg67dyt6j9M z>Kbj$dPdupzR}icNVM&BFBSG0A8kh`N87NRXgf74+Op=mw}Tf&Th8)mOI{mo^EO6X zctwZ80`)SBzEOA7jf7$5`sI7~AkijI}-!V>^Oltw&6(9Y~I~^s=#byh^NP z)`_*Vjbkmld91~>i?vx@W35cjSXv)7s>E4(oj5z*ILyNIEGN#k z%!;#4^W$vq!Z_=-JkE};iL+rF zG4Zw`*}a)tHr{qriMJkg;_X1=cuQ{{Z^zrlTV~gIJ9|sKW%qTT%p4MLvqr^Rnep+q zU~;_G%89pCv*NAU{CL~4Fy1;XkGH*R;;q-lcsu$*ybaqGZ>RRfTh`%t3po~VIe)}k z@|k#>7o1>~V-jpxa)PCnO|T7B60CKd1l!R#!Fn`Lumf!qEWK-j9ls^PGW#aj**g;~ zdzAag=J*7gH95h`=v>sg(?Z7RG zmfknfj^CMRneO%Rv-c)i_GI^2&YVP>H7n7|%uloh3lpu@@+`rf2|HAqa zU(dUjyaU`%-1|tr>o*6&z@LL@dH)Zvx$YAZb3H3f|4;pwxE=mKJ=}4+R`$JjWws>z z8sBl_I<~(gJnj7TK=<8}`26cZ?g_<`u>9-E?f|cd@E^ns_tLrh_cOxXr!stRFr~E2 z`=&+SH?7=zknXJ$_Xo>coJ#i#f$j|f-}m_22Il^`n^r!C8=h><@jthdI3L5UPIh-j zK^8<9ZfdfX$n#RL54^XQY^8i>p?N@@kGZ$HFWMf?pm!fwm3tW$@m_{kzrD=8eQ^R-{ zx)0U6Yj{TJzZPWI8fMFXE!bVdRQa!kxNDdv|Fuwe4U^=*7Ur&DhWyvU-8D>)|5}8* zhPm-yi*(m8G5%{&?iyyre=XWwL#F)KV%#B@htn7f9*ZgijfECFt{J7+)7Z;qegqcCZ%-uz~m zJ4<n*;zWZpW?^x@O@p0erZ5)8_pX-OqJN(D$`+lSE()^d{KHqn_ z(RajllaI8=<;3gG9Usz@e|%9F9AA|0`0&OZ&R>-O_$=PHl@#Bl|N9EQ@56nUR^a=B z#BZKRbNe>`rJ478KgqlF&mZ!fe|&hr%|Cxwtfb*z@9`a9^tt1^+;;^2%PPL_ixoJg zO1|&?N9_NppZG6J_;OG7$!6Tq<hjtO8*b z39Cd{Wx}cuR+TV(B;R{{)d{+vp+PMnmZ~x=Xjw zYPyZS(`_`NZlfc08||sv=vCcD^j2Q5Z0Ekc7(MjtOH>k3F}1I^@MdMtP5dX3F}7K4TNqXe@g!T3?tSm5p+SJ3wWa>6%R<|+Dx{W#4Z6rXqkqzBO zYIGZU(rqM7w~;~JMmlvHxz%kXTDOsP-9`)OHu^!g(Hy#sPSI_&jc%idbQ=w&+vqOc zMyu&I`cAjegu0E6)NQnZ9A%qPjY#3p~2^&G!U4-3D*hs=g5tcz%CSjuq8$;Mw!p0GH4`KHb zHlDC7!tNt%f`?&cf%(&>9yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g4C*%0 zsoTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5(ZFHn= zqdj#Sy{g-2T-`<&>o!_ivx{;aGSThTyAHXZut|hHK-gr$vI%>Tu!jhnLfBNo9wzJ& z!ln_HL)dh}9wlrBVUH0uld#7LdxEf8gv}=GNy45Y>}kTDA#4s|a|xSA*nGmC^)Rd~ zFn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0=bsM?WZ6sQ^k#*fh z3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9w5M*PS9KeWtJ~;e z-9}4mc2TZFo^yNku0x(D>;=MJB!rmn8Ey6Ys_BLVfcoyS-^y-V0;!rmin3t?Lcd!Mim2-`;3hlG7Z*mlBp5cV-)pAfc_uw8`hChSwf_7Jw0 zu+IqloUktl+eg@b!oDQzE5Z&C_BCPOcoySf)9VYAuVc!yV zl(6pz`<}2L2>X$+p9nif*w2I=C+ru(ekJS#VZRafJ7Iqic9O7Dg#Ag_X~O;@>~F&U zN7z4vogwTjVgC}A>tR?~VE(kJhmFb9ZOp80W14jvbFSM+fNmojx{cK6Hu9v~NSbaV zgSw4$>Naw#+eox-BkQ`27SL_fZ7-7kT6({U6!b%WUlCV;Ql_u}0{>V#cESPjBz5>|__+Jx01tS({o z2&+$61Hu{-mP%M7!Wt9Sgs>|KYf9Kvgk4QoGs3PREX~8PvcUXlQx6-HsoR)Y-NrQQ zHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oHR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5 zx{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|RpGl zAgm=}tq8l8u-1fKM_3!e+7i}|u=a#?Agm){od~<0u+D^aA*?H5-3YsZu62)muI-X4aP1?Eqidf1pu-Nwx7Hl|s(G3UCC1n4%hq1#A} zZX-{+jil)|GN{`~r*0#+x{XBZHnOhUXaU_uKj=1^L$}c>x{bEcZS;_CqoH&g-KE=T zHQh$v={A~Bx6zThjrP=S^r~*7adjJAtlMa5%`VDy$Q^F4-gQVH!uk@{kFfrPr4u%Q zuz`dPB5W{WcM>*)u%UzvBWyTfBM7^Tu)7HxN!TdDG6>5gY&2nG2pdb-IKu8B>|Vmg z6P88TeS}T$Fsv*vf7;Z;#$@U?W>&W`&AN>_*KH&~w~-CqMrw2$dD3kpO}CLj-9|cf z8@bhOBwDwTb=^h_=r;O6x6vHBjZV>Rw2f|~hjbearQ7H(-A1eFHu_Gt(S*8tDiLeIAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X z+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tayAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlWNVm~Yx{dDA zZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay<_|D5_XEPKM6Zc*k6SGP1yek z`-iYIgq zw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*z zBXt|?soUsP-A3c;Ho921(bAe-lOBwC|oHR=1I8-A2}R8!e#Q z=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|< zt=UDn4oPu)^}Zfbp0EmpRV1tuVU-E1LReM8su5P5uqz0wL0C<~Y7thOusVd*C9ED{ z^$BZ0SVO{632Q`HW5Svcb|qm=3A>80s|jmH*foTuc^Fm}m_KdmVPi6N8#Alhm}cF^ zoa;6cpxelXZX-3ijXdc#lBV0ppl&0bx{ciGHWIDd$hvN$1#}zzpxbB;-A1SAHrhtF z(L=h8hSF_xmu{ogbQ^uA+h{`FMn~#4+EcgDtGbQG)opaKZlk3&yC~No&D~zT>yQ?N zwIr++Vb>DYny~8#YeQID!rBqmp0EytbtJ44Vb>GZnXoQ|btSADVK)%gov{h~VBdix;w-eUe!?3cz{Ap7U8!K4 zNciXw=w6sjRfd6vZ32Zjcy}Px{ajiHZrK&NT+Ti zx4Ml)>o&5k+h_sZMnC8_nnSnIDY}ie(QWjQZlj@e8{MVbXf@qN-|04*P`A;Mx{dbK zZS<;cqj7Z`U98(^Y0WOmb;v}wSMNIHe!?aZ_5fj%3CkwzLBbv)Yzkph3455ZM+lon zSPo&+344^V8H7DX*i6D6C+rErW)U`C|oHR=1I8-A2}R8!e#Q z=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)ujb7DlG_G!=i**|< zt=UDn4tdV))w>RPp0F1Pdy%l02wOndLc$giwwSP&30p$gQo>##Y#Cv%61JSM6@j`_4u(t@?K-k-az2jk6Sz!LOsfUfp)NRbHZeyBt z8*{GPNPuo58@i3u=r;1C+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2 z-9``THX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6gBOhir6v^{zuU z5%w-&n+bc5uq}jbCG35|J|JuxVILCq5nj z>~q4tAZ#CD`w9D!u&)R^K-kxWedA$RSz!LOsfUfp)NRbHZeyBt8*{GPNPuo58@i3u z=r;1C+en&jBZIn)bm}&8tJ_GlZX@fujTX>t^n-4rIdmJHqT6U2-9``THX2H|(OtTY zR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6gBOha7Z!^{zt>5q6lcBZPfR*ipj1 zBkX&^ejw~e!hRy`7-2sXcAT(Z2>X?=6NLRn*zbh>LD)&cP7(GeVW$cEi?F{5`yXNd z5O#*JvxNOiSgwa*Wr6wArXDsXQ@1g*x{YbpZOplDBLTXNZ0I&pqua=nZX;>BjST8G z(y80Xt!^XHx{a*sHd;Wp(GR+f=Fn|)if*HAbQ?XS+h{1=MtA8pT1~gnce;%x)NOR6 zZlgVQ8@;OAXk6V!7wa}!TCUc*F(w^R)MgJgjFJ}GGSE+t4dfk!m1N?1z|M^t4UZb!fF#%hp@VY)g!Dv zVGRgtNLVUijRAeZKPATkz3tHqIDZt*KM?bZlfP`8_l8H=oH;X+vqlW zNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay4~ zn+dyxu%3k7O4x0L^&;$c!g_lcRu-5)ZR%lTGIbj>tJ|1n-Nu~jHWHxQ$cAnsHM)&F z={Az4+sL49Bb~a9-0C(Gt=q`DZleWs8~vc$Xb#;*r|34?Mz_&Jx{Zd?ZFHAzqt$d9 zeW%-KLfuA3>NeU_x6!M*jmFh&bg^!ur8T=K*CBVfy?WOneF*DISUAI8&6mk zVfPU>!Nah!!2D@b4;z!I+n8D1#x(0T=3KXt0NqA5bQ`JBZRAO}ku=>#26Y?h)NSNe zw~=VwM%Hy3Euh=z2i-<<=r%ew>0=kWU&}}q_ZlhCl8*QW8 z=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6kvPjc%{rb;u^d z-X&}^Veb*Pg|MxJy-(N&gl!}2L&82HY&&5)2>Y0@PYByd*e=3$6ZR=#dkEW0*k^=& zPS_WO?IUbIVP6vV6=4Sm`w>0=kWU&}}q_ZlhCl8*QW8=po%kL+LiUOSjQ# zx{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6kvPgKn?hb;u#Y4ik2Sux|-FO4xUV zeNWgAg#Ad^PlO#K>}SG`6ZQ*XzY=zWu-^##ov=R$J4x6n!u}-eG+}=c_BUbwBkUi- z&JcE%uzv~5^)Rd~Fn`+A!^ULlHfC10G0nP-IoE9@K(~<%-9~D38+p=gBu%%GLET0= zbsM?WZ6sQ^k#*fh3+OibLATKyx{XfJZM2PUqla`G4W--YF5O0}={EXKx6y>UjgHi9 zw5M*PS9KeWtJ~;e-9}4mc2TZFEcoJeNC07hgar{6OjrnEp@fAI7EV|MVUdJI5f)8Y z3}LZ^#Ss=ySOQ^*ge4JHjIdGFNmwbuN)vWDVPyy_OISG%!^#5lr%gR< zOr~yQW_26WtlOA#-9`d*8`;opq(--qC*4NUbQ>AeZKPATkz3tHqIDZt*KM?bZlfP` z8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay zt^n-4rIdmJHqT6U2-9``T zHX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6gBOhctJ4^{zu&5Z02g zR)k$kSZl(rBdiT!Z3$~fSbM@c5Y~~fPJ~@gSZBhz5Z0BjZiL-HSa-sD5OyPBHxYI- zVYd+0ldxL}yN$43gxyY9Zx6%D0`sR$J#0*-ZewP38`G@Ym~-7m0(2YM&~2nfw~;5^ zM$&W}8Psj0Q@4>@-A1By8(G(Fw194-A9Nedq1)&b-A3E!HhM_6(NMaL?$T|vnr@@- zbQ?{m+vrH$MtkZudR4d4xVnul)@`)3W*6l;eLpVSNefM_7Nt(g_oyXg+sKA)BQ?5>Jn1%)rrXG%ZX=z#joj)s z60O_Fx^ANdbQ}Gk+h`8mMyKdD+D5n0L%NNI(rt8?Zll$78-1tSXhPjaN9s1(Q@7Ep zx{b!wZFI42qop;wDAyqq-Cn)xkoyUnMA!p_O(raxum=fyh_ESyO(pDM!X6=P8eutv zO(*P8!e$Wm7-2IBdz`Q*2%AONY{H%->?y*YChQr)<`6cQuz7^dC+t}d!^#5lr%gR< zOr~yQW_26WtlOA#-9`d*8`;opq(--qC*4NUbQ>AeZKPATkz3tHqIDZt*KM?bZlfP` z8_l8H=oH;X+vqlWNVm~Yx{dDAZM2$hqwjPZO{m-GNZm$z>Na{+x6!z|jV{)0w6tay zo!_Ix6u!}jpop8bc$}HZFCzw zq}ymH-9~rmHd;-$(RaFyCe&?oq;8`;Pe36ZVaVVP%2&)21FaCR4XDv$~CG)@{tWZX*G@jcn*PQls0* zlWrqvx{VC#Hqxov$gOT8(YlSS>o!_Ix6u!}jpop8bc$}HZFCzwq}ymH-9~rmHd;-$ z(RaFyCe&?oq;8`@ULpChUKN{X^Ip z!p;)*FJZYJhLr{8Pn&w!m`vTq%<49#S+_Cgx{Ut^n-4r zIdmJHqT6U2-9``THX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6gBO zhorc@dS4GIPgn)QDiT(Su*!s0A*?E4)d;Ij*cF7;Agm@~wFs+CSRKOZ5>}6}`h+zg ztRZ2kgf$|pF=0&zyOOY`gk440)r2)8>>9$-JPa!f%%3*(urZmsjhWSLOtWrd&UG6J z&~0Qxw~-p%MxJyVNz-j)P`8mz-9~P88;RC!WL>w>0=kWU&}}q_ZlhCl8*QW8=po%k zL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6kvP=5DXvbw~@sS`yZZ zuxklxP1tpWwIQr6VeJTOPgn=SIuh22uLPFN4ZZY1m`!fqz) z7Q%WGb}M1G5!Q>a+X?IKVOUvU{nspmg}ZX+AIjnwEi@}%2H znr$;5=&~5aCZlgJL8=a!tXdB%|59u}NXlzx6#GAjh5EzqFjgE;r8lXhx8$=FJb)%>rYrZVFL&oNZ264 z1`~ECVM7QTO4u;Mh7&e|u)7Gmo3N3DjUp_AuuQ^66E=phv4o8y>>k4IC2TxlS%lq3 z*aQ#5$^!GJO+9Q(rfy?qbsN*H+n96RMgnvj+0bpIMz@hC-A2-M8yVDXq*J$%Tir&Y zbsJgNZM1-HqaSn|&7s@q6x~MK=r(#tx6x3#jqcKIw3=?C?{phYsN3jB-9~%rHhNXJ z(YU&eF4k?dv}PCOI%J~Tt9Ko8KVg#ydw{UXgk=-t^n-4r zIdmJHqT6U2-9``THX2H|(OtTYR?}_too=HEbsHV2+h|YSMz88N8dtZ`#k!4_*6gBO zhdk%@>RpFCPuL5Dy-3(gge@R!Az_OMTTIx?ge@U#DPgY=wv4b>30qFs3c_9^Y$ai@ z6ZQsSs|Z_7*c!st61I-8^@P1i*jt2cAna|z-tjQ3EHHoC)WgPP>NaLpw=vDSjXBqC zBtW;34c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E z8x5t~=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%Uun!6Qh_LO1?I7%9!agBvCtNaLpw=vDSjXBqCBtW;34c$g+bQ^in zZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~=q}wxtLZlS zPPfs7x{Z$1ZM3IuqgQnsjjP+}V%?mR15%xV{ zKM?jKVLuUejIf^xJ5Jayg#Aj`3BrCO?03TcAnYVzrwIF#u+xP7McChj{g1GJ2s=aA zS;GD$EZ4)ZvcUXlQx6-HsoR)Y-NrQQHs)NnkpSIBHgp@Q(QV{Ow~;j6Mh0~o>C|oH zR=1I8-A2}R8!e#Q=m*_KbLciYMYqv5x{V&vZ8Vf_qq}q)t)|=PJKaVT>NYx3x6z)u zjb7DlG_G!=i**|w>0=kWU&}}q_ zZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6kvP z6t`FJ>mlU{t3X&q!YUC~nXoE^RVAz%Vbuw{g0LEd)g-JIVYLaXLs(tH>Je6-um*%R zBrKJ%MuasctO;RP64sQks|dTAux5l^Ls*)JVP%2&)21FaCR4XDv$~CG)@{tWZX*G@ zjcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS>o!_Ix6u!}jpop8bc$}HZFCzwq}ymH z-9~rmHd;-$(RaFyCe&?oq;8`p)mX!a5OlJz<>*>q1yp!nzT517Y0>>p|F!gxy5g&4k@T zSWm)kCG0lBdJ%RzVZA*JD+|n@HubPEnYxXc)oo0(Zez}M8wt>DWJ9-+8r?>obQ?+2 zZDdflkxt!4Zgm@p)@@{6x6uN+jegK=G>2}ZQ*;|`qub~q-9|&{Ho8l<(Q3MlzSC_q zp>CribsO!e+vru@M&s%>x>&c-(wbeA>ySI#UcKv(K7{optRG?h2}>tz0AT|O8${S( z!tNw&2w_7B8%Ef0!bT8w7h!i3Hj=PWgk=zxN!Vz@#t=4^uyKUlL)g89jVCONu=@y` z;9*!Naw#+eox- zBkQ`27SL_>w>0=kWU&}}q_ zZlhCl8*QW8=po%kL+LiUOSjQ#x{bcmZ8V{7qa$@2?Wx=7RozD8>NdJqx6#s?U6kvP z=iFYs>yYOOdx5YQ344jK1%xdmY!P9L3458aC4?;{>=nY65%wx!%L!XS*lUEXBNi?9uZy-nCV9)^_#=1-e?*qBV+#?0zArdhW!=emsq z=r*#U+enRWBTu@Gr0F&?sM|=VZX>t4jYR7!MFrQ2vV-A3Q(Hkwek(UH21_S9|ks&1okbsJr*+h}RcF3NStMz>e*I%E@J?-I6| zu=fbtLfBTq-Y4t>!nP6iAz>d8ww3Hy|=J%sHg>@&hXC+rKt z_7S$9urCSwim(HOeNEUm9)^_#=1-e?*qBV+#?0zArdhW!=emsq=r*#U+enRWBTu@G zr0F&?sM|=VZX>t4jYR7!MFrQ2vV-A3Q( zHkwek(UH21_S9|ks&1okbsJr*+h}RcF3NStLAO`$I^+;xhY34E*tdioCG0!Gz9;Ml z!hR&|C&G>q_A_C}3HybxUkN)w*l&dWPS_uWoh0lOVSf^Kny|kJ` z*uRA3dKgv~m_KdmVPi6N8#Alhm}cF^oa;6cpxelXZX-3ijXdc#lBV0ppl&0bx{ciG zHWIDd$hvN$1#}zzpxbB;-A1SAHrhtF(L=h8hSF_xmu{ogbQ^uA+h{`FMn~#4+EcgD ztGbQG)opaKZlk3&yC~No7IyJEB!I9$!h#43CM<-oP{P6p3nwgsut>t92#Y2xhOk(| z;s}c;EP=2@!jcFpMp!ao#R|C9Ir>VP%2&)21FaCR4XD zv$~CG)@{tWZX*G@jcn*PQls0*lWrqvx{VC#Hqxov$gOT8(YlSS>o!_Ix6u!}jpop8 zbc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`83R)esbgw-OfHeq!Lt4mlt!s-*&fUt&y zr4rVNu*QTnA?!-Rni6&uVOJB@jIe76OY<NaLpw=vDSjXBqCBtW;3 z4c$g+bQ^inZ6r;%kwM)?I&~Yl)omnNw~=+-MhoaR`a!qR9J-B8(QUMiZli~E8x5t~ z=q}wxtLZlSPPfs7x{Z$1ZM3IuqgQnsjjP+}V%2y01LE5fcN ztTkcR5!QyVwuH4KtUX~J29yTUZw=uK2jcL|x%(-qO0lJNB=r&TL+sKn{BWb#g z4C*%0soTh{ZX?mUjjZc7T0pna54w%!&~0>zZli5<8$G1kXeixAcj-1-O}Ei^x{W5( zZFHn=qdj#Sy{g-2T-`<&>o!_ivx{;aa);ZicOBA)u)c)#BdkAR>4Xg+Y#?ES2pde; zorDb`Y$##F2pdk=2*U0n>~6wF5;lsk48k%A8%@|4!p0Idj<9gk=$SA7K+b z3@Z!FpEmWdF`2rJnbmDfvuw~MnZKK=hA>Bqp={CAcx6x|4jlR=uG@)*zBXt|?soUsP-A3c; zHo921(bAe-lo!_Ix6u!}jpop8 zbc$}HZFCzwq}ymH-9~rmHd;-$(RaFyCe&?oq;8`346!Gu(H7XX;Tjyld0R7S>47o>o(?Gw~+wd zMmBUCsnKoZNw<+S-9`p=8|l<-=sVp;6Y4fPQn%5bx{Y4dZ8WZKql?6Xq6Sjk}j|uyPu$_eMB5XHdpAxo*u)TzRM%d?seL>hh z!uAvPC1GC?c7U+23H!#wu(H7XX;Tjyld0R7S>47o>o(?Gw~+wdMmBUCsnKoZNw<+S z-9`p=8|l<-=sVp; z6Y4fPQn%5bx{Y4dZ8WZKqlChRz2zYz8-VJ8Utjj-SUA6CpEc*FaSgRyPfwr$(C?X*c_v|$kzK^c^> z*#>1&CT)y1w$=Y$-|S%z?{#Nqp3C>M^P5N5JHp--_MWi!g?%9GLt!5Y`&if~!af!D znXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L(+Qhi*bKsE6gHEvnFkmz3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqF$X5sdhs-K$Hes_1n?u-~ z!sZe-x3GDH%`0p^Ve<=HK-hx97816wutkI|Dr_-fiwj#q*pkAQ61KFkWrQs&Y&l`e z3tK_hio#YBw(52iQ(>D4+g#Wd!nPE)m9VXaZ6j=3VcQAYUf2%8b`-Xgu$>1OFAMIkT|G9J*==sN z+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X z)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az+e%g9#;-yypS+fCT+ z!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC5O$=nql6tT>=;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO!cG=;im+3KohIybVP^30 zxkA{L!hR_1N5XzA>?gv0D(q*%t`c^&uxo@}E9~dOej)6a!hR*}*TQ}y>^foB3%fzs zjlymccC)ZsgxxCaHet65yF=KW!tNSiyezoCcJ|SB_3Ae+3&+HH#4ZCc!ID&6d1 zzC)fK`Rd?1=j|J3VTi1>%!g;_NK76guN~7 z9bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GMMeOhq_Inx=p*f zP1U+h@48J1yG6Qwp0(*wn(N5jL%`>4Z%$YzAR7 z3Y$sT%ma*<1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3{+7)Y)N5D30qp&GQyS>ww$o#g{>fLMPVxmTX}%-vf%#O)njv+-R5Sy%{6zM zJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP z>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4ojC^(Q9kQyh)r74sYz<*+ z3R_Fq+QQZmwyv=Cgsm@Z17RBq+ep~P!Zs1Msj$t2Z7ysJVOt8@O4!!Iwh^|iu4I||!L*v^3*sZLYc7+cM*;BV!TDRF?w^?Vm z*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwr zZntT1x2bfqhxrcKW#p@a?~q-E?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$ z7IuiRLxmkC>~LX62s={PQNoTEc8suNg?&ZXSA`uX?08{c6L!J?<7L79wX4VGGP}*q zcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$f zZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`P8|8_;5+0bVJ8ba zMcAprP7`*zurq|6DeUXQz9H-^VP^|FN7%W-&J%XNux|?cmauON`;M>+gk31?B4HN` zyF}Qf!oDl)d&0gi><7Xw8(_RFxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM z%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNa zJ-ba;yG?PsO^drtrJFs>cgW=R|&gX*fqkg z74~yszYz9IVZRdgYhk|;cAc>6h20?RMqxJzyII&R!fq9Io3Pu3-68BwVRsEMUKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb?vbw! zzC-R2cCWDegxxRfx59oW>;Yj93VTS{!@_<_~JDC|$d{w(Y-!X6R!sIb2Z`NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(re0A_0@{F)&g*_+id0{UIdr{bbh5b+1 zOTu0j_KL7qg}o;1bzyG^dsEn3!rm74j<9!yy(jE_VIK(lP}oPpJ{IrVtKFu!-KNFerqazG z<~wAR@xJ^H8CBS5!bTT1hOjY(jU{YsVdDrJSJ-&M#uqk$unC1tBy3_~lL(ts*kr;c z7dC~kDTPfXY-(ZC2%A>ebi$?=HiNJkh0P>v<^jgbg8OS%kIiLvo15)6*W7LHyxT0G z+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3O zRIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e22_3^3}orA+rjbP1x+h<`6cgu(^cI zEo>fP^9q|!*!;p45VoMOg@i3EY!P9L3R_Ir;=+~?wxqD7ge@&>8DYx`TTa;W!d4Kr zqOg^OtvtYZS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LuQZDH#OTUXe6!qykIfv^pQZ6s`CVVels zRM=+1HW#*quq}mcC2VV9+X&lM*mlCU7q)}29fj>AZ07;S%YyrBSC7qQcAJ~+HrL#3 z?!4P9pxbPt+pMPB?5W!>yzW3p+&Ep~4OmcDS%3gdHjDC}BqnJ4V>C!oDKx ztHO>GcD%5!2|Hnc@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWeCysn|@EvlJu#<(IBJ5OQrwKb<*crmk6!vvt-w<||u(O4oBkWvZ z=LtJs*f)iJOW3!CeMi^@!Y&kck+6$}T_WsKVc!+@Jz?J$_5)#;4KQ97++VwTY%a6g z+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6>6R$3j4XRUkLl9uwM!LwXoj^yH42k!fp_Dqp+KV z-7M@DVYdpqP1x0)75TM+-}q2Zd2)I5Az*z_sCZV-y!!1yI0tK!tNLLTVcNw_JFVlg*_zfVPU@) z_6K2q6!s@!e-`!^VUGxVRM=mI{Y}{4h5bX=KZX5E*ki&T7xr&q{}J|tuqTB*HNbdT zaDVOUvAN7{bF30c}Cc?!k!cMys#I9y(sLz!u}`hC1EcMdqvo*!d?^hy0ABdy(#Q1VQ&k2N7%c< z-V^q|un&ZNDC{F)9}D|L*r&oi6ZW~VF9sMd3+}I7JvNuwZEm*PTywX%^KP?%ZnKSU zvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqE_+Ng9j4Et2VWSHhL)e(Y#u7HRuyKTq zD{MSr;|rTW*o49+5;n20NrX)*Y%*b!3!6gNl)|PGHnp&6giR}KI$_fbn?cx&!e$aS z^8n*z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQR zD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1 zzC&gi`Rd^RkXePzCTweEhlVwVJiq*QP@htRvuuyEV#dR_1Iiyx4GGFbIsl6&b!S5 zy3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*f zP1U+h@48J1yG$rY&&7w3)?~1 zj>2{lw(|hvWx@TmtH}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#6Gy%}_zpQq*vZ095q7Gu z(}bNa>ACG6Y6z9Z}cVHXO!NZ7@~E)jOA zuZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9dh}|R|nrAR|vaO*bjyMNZ5~s{Y2PLh5by}Rl=?oc8#!Wh5cOE zFNFP4*sp~BTG(%dT_@~%VK)f7QP@qwZWeZnuv>-QChT@$cL=*v*j)pRmj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb@i`F3;VaQ{|I|R*ptGZ8eqIExW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgWKtUmbjhJR|H`Vb2MBUf2u5UKI9UVgD2MlCYPB zy&~*YVXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs6!wv@kA;0A>{DT%3Hw~w7Xyr! z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3@On zf-k>AMin-iu+fE$A#6-xV+k8u*f_$*6*iu*@r6wwY(ilZ37c5hB*G>YHkq)=g-s!B zN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL<6E?fBIfTtAY%XDQ3!6vS zyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~JM%c2#mJ_zTuoZ-@C~PHR zD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0E zrUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu!-KNFerqazG z<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry)AZ$Zn8wuN3*e1d@6}FkM z&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_ zHdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q9kQ#i-GuEfY!6|33foKA z-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu(O4!lDjuCdOu&)UFs<7jP z9WU%_!cG`qyezoCcJ||l52s>5SX~Iqyc80Jsg?(MvH-w!f>}+A@2s>BUdBV;Y z_Dx~m683Fj-w}3!unUD@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!L~ftAp>5D}-Gs?1#dB zB<#n+ej@Cr!hR;~Dq&X(yGGcx!hSC77s7ri>{r5mE$lbKt`l~>up5NkDC{O-Hw(K( z*sa2D6L!0>JA~aS?5+XE%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!`7ry4KQ97++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6T2rN!ZK6UJ>@Hu-AmWF6<3qZwh-$*xSP15%#XI_k_JK z>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%S zsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb z+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO;g{bbqY4{M*yzH>5H_Z;v4o8+Y#d?Z3L8(@ z_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1VbcnmPT2IqW)L=`u$hF-JivHa zaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^kg$b?Eh21DVT%b{T-XxA zmK3&>u%(49BWzh=%L!Xv*b2f{6t9*CZqu%AQ?+i> zyKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{oP1x$f))2O)u(gD(Eo>cO z>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs8)4fD+fLZ_!gdh0qp+QX z?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb#F4KKzC%tDcCxTjgqKcDAr{gqf>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghg?4L)xmej6~e9*_CsMm682+ZKN0p*VLuagm9VRYT_fyTVLuo43t_($ z_A6n(7WNxq*9p5`*bTyN6n2xan}yvX>{em73A_EbRBf{vhm+!u}-e&%*v9>=9v)3j3?DzX|)huzv{qr?7ts zdra8l!u~DnKf<06_N1_<1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy* zv%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9rE}_H12zyu9d&1rq_JObug?%LKV_}~N`&8Ix!af)F#Q@`F!Tq(X z$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`m zZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt=*#br zQH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9!X_3riLgn9O(tw|VN(d3QrJ|& zrWQ7huxW)&Cv19QGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgQRwUmg4(GOMuJgv~B&4qLVG9adNZ7){77@0nu*HNeE^G;5OA1>`*wVt55w@(b<%BISYz1K}3R_9o$^(p- z1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({s zL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lS z5Emb75Nu z+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa z&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h z@48J1yG?^{)D(pC6#|!(K zuoDItFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1 zZc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I z5Az*z;>cGA-ytUnJ6YH%!cG--ny}M_ogwT@VP6;a4Pj>qJ6qT}!p;?Tp0M+UeN))C zgne7scZ6La>_TA|3ACBiNh_FZA$6ZU;!KM;1=0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%3Sn0Y`=PKO3H!0I zp9uS@u%8LLO4!xHt`T;vu%8S2g|J@=`<1X?3;T_*>x5k|>;_>s3cE?z&BAUGcB`=4 zgxxOe4qoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA3}k9>9T9deJbdxhO6?0#Xt74|z}4+wiu*h9h|7WR8#e-QRZVSf_# zXJLO4_K2`Yh5c37--P{L*gu5*Q`o@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4taXytAp>5XM{Z~ z>^Wi23wuG>i^BdZ?0>>u685sNSA@MP>@{Jp3wuM@o5J1__O`HhguN^5Jz?()`#{)- z!afrAv9M2seJboTVV?{8Vu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yx$+{N;DZsKQ1QHoCAegpDa|EMa2{8%NlAAuwt}z~g{>rPrVtKFu!-KNFerqazG<~wAU zk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV42MIe^*df9W6?T}g!-X9o z>_}lp2|HTYF~W`&_7!1Y6?UAk^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUapbFm?~s#(ohC~gk3D`5@DAL`>wF>3H!dV z9|*f_fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA(xMQb?_Z>g|I7y{ZQDCg#B39PlWwc*w2JrCG2Wp*9f~-*w2OiLf9{b{Yu!c zh5bg@b;7O}c7w1Rh213VW?{DoyH(h2!fqFKhp;<^-8H~?S#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0L>*(f3;VsWKM4Dyus;d=v#`Gidqmiy!u~4kZ^HgA>>tAZDePau9uxMs zuzw5tkFY0%Jt^#|0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghde#<)xmejGs2z~_MEWig}or`MPdIH_CH}S342-CE5cqC_L{KQ zg}ou{O<`{ddt2B$!rm43p0M|YeIV>ZVIK+mSlB1RJ{9(vu+N2kF~E3PaDVOUvAN7{ zbFZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9 z&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c<`Ooyuz7^dD{MYt^9x%* z*n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4ZCc!ID&6d1zC%_S`Rd?1 zWL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAPk+6-0Z6a(_VVeotT-X-EwiLFN zu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ zZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j_7JwGu)T!sEo>iQ`wH7n z*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH7-7c>`--ry3Oi2N@xs0)?1TZv z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!kAxy){Jv)$&JyUm?}SHR5_Yw)YlK}Z?B~LMA?%mJekJVJ!hR#{I$_rfyFu8E!fq0Fv#?u)-74%hVYdsr zL)e|d?iygcEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE* zyUo_SO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGiLh5cUGAB6o;*q?;`S=e8M zJtFK;VSg3&H(`Gl_77qI6!tG+j|qER*uRDSN7xg>o)q@f0OMuB{k5yd<}$m@&32n> z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%8DY-~drsK% z!d?*eqOku8`=79vguN{66=AOmdrjEu!rl<}rm(k!y)En=VebliPuTmyJ`nbyu#bd& zEbJ3up9=d-*yqB&7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8 zI=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba; zyG?PsO^drtrJFs>cgQG{e)%0Ts<6?7jV^2qVPgs#OW4@L#t}BIu@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=L zO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4w+@-tAqbTW)(J@ zu-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQRg)Jd$NnuL~TUyvM z!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3 zHXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y z_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2vTT9s5!qySCuCVoltuJf? zVH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c?SySFYzJXG3foE8&I62>1^3sk z9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hM zw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3~7-NLBb9ec8IV;g&ijBaA8LXJ5tzD z!j2YpjId*ceMQ(;g&imCcwt`?cESMTWx@TmtHa6L!9^ZwmXCux|_dj<5@aT`24#VHXR#MA)UmzANl|!oDx;2f{8J zV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$mJtn9ejseA?!+FKNR*OVLul36Jb9U_A_Bu3A*A?!|JcMULJ7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!u>k*^NEL+%lFudw@s-7oC7!hR?0 z0bvgcdq~*B!hSF855oQ^>`%h}EbK4B9ufAau)hlXo3OtN`-iZ93j3F^$AmpD?BBxv zBkT!bPYQc#fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WAy1Edb?_bXjId{gJtypWVJ`@KQP_Wl{ZH6S!d@2kim+FOy(a8+VQ&a~ zQ`lR=-WK+buy=*MC+vM;9|-$U*hj)X7WRp-PlbIZ>~mpX3@~06++VwTY%a6g+-$eG z=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6f>+bp2lY@^$(rrYeP+bpfyY_Qv` zv)k;p+bp`&v)gpF z+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c30Syk9- z!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0n+V%f*k-~u7q*44Ero3*Y-?fL z2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A z+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ< z)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66SljsJ%sHkY%gJZ3)@H7zQXnsw!g3g zgdHgCAYlg!J4D!_!VVL5xUeIH9VzT6VMhx)M%b~!z9Q_a!j2Pmys)ncJ7IwFvf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA33j(m0S z9deSelZBlk>{MZ=2|Hcb8N$vK_H|+35O$WZvxS`_>|9~z2|HidH-&vm*tdm!N7x0z zE);f=u#1IVBJ5IO-xc;fVc!?_17Vj9FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EYe5UkUrQu-^!~PT2LrZV+~(u$zS4EbJCxw+g#W*zLmZ5O$}q zy9O993+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1n zQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^Br>c$X5s7A@>NoSJ-{R?ico3VZRghfUpOJJtXX5VZRsl2Vs8{_9tO~7WNlmj|h8I z*k6VHP1xUs{X^J4h5bv|W5OO6_HSYT5%z?zCxtyVz<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-k?2_x3;RUa zr@}rH_PMYx1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~Y zZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9Wu(~Uw(&-Dr_`iqYE2D*qFk`5;nH5afFR4Y&>D(3!6aLgu*5gHnFft zgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@0OMuB{k5yd<}$m@&32n> z?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD z2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4EhcPnVM_>GQrJ?$mKL^*uw{iU zCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8 zI=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba; zyG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM3 z61K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!ID&6d1zC(5y`Rd?1WLIIk z3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;dVTTDjT-Xu9judv3u%m?? zBkWjVUlI0IVaEwOUf9=!oiM<7S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3AiN4`4v4mnBK$-+(%cB-(`gq<$z3}I&q`?|1i2s=yI z*}~2dcCN7Vgq<(!o5H>&?AyY=BkTfU7Ye&b*u}yw5q7Dt?+W{#uQK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna{0(t z2j3xA2)k0)4~6|m*pG$%MA%P-{Y=w>~>*y2)k3*T?34l1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3|{z2u-^%LK-h!A z9uoGju-^;&gRnme`;)Lg3;T<(M}$2p?61Q9ChYIR{vqt2!u}=fF=3Aj`?s+F2zx@< zlfs@FV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$kQWV9ejs8BkWmW&k1{8*bBm56!u?X{}c9-u$P6sBJ5RRuL*ly*c-y$6!w;| zw}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi_t&l-o6GDrH`{Hlx!c@% zw^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE;NFTX=Z6*ii%(S?m6Y)oNe z2^(A3IKsviHlDEYg-sxALSYjLn^@Q+!X_0qnXt))O(ASbVN(g4TG%wgrWH1wu<3=( zAZ$iqGYOk{fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gY zHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5W zE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*En@8BZ!sZh;zpw>_EhuauVG9de zMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU4=`R9++VwTY%a6g+-$eG z=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH* zov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V z>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX z?KZ{jHZATpm2UPh-yyq+e_Hq!uAoiudw}u?Jw*AVFwC3 zNZ7%`4iR>!u)~BMF6;MeOhq_Inx=p*fP1U+h@48J1yGgJJ6G6w!p;}=O<~^>_HAL`5q5#F3x!=I z>|$Y;2)k6+cZGdV*!P9~K-gsijF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xqRfSgYS?lgk34@hr)g&?8m}>BJ8KaekSZHVOI;g zM%cB&elF}6!hR|2SHgZR>^H)$6L!6@8-(2`>?UD13%f)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E;+*j3j43H z{|S3Z*vrCR5%#LE*Mz+;>a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghm11im){|y3L8z>=)%SjHm0z#gpDn19AV=M8&BBy!X^+lp|FXBO)P8@VUr4* zOxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+ez<613f9>kAxy){Jv)$&JyUm?< zn+0^6ZFHN}belbOo27M|4R)J#cAMRHn?-k5)6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD z)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uLY#m|i3R_Ru`ocC4wxO_%gl#Nr z6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9su$_eMJivHaaDVOUvAN7{bF30*;UwX!gd$7 zhp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B}X-f2s>8T zSA>04*m1&+7xpz_Ck!xN7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ` zW}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrV ztKFu!-KNFerqazG<~!uXk*^NELrxNQvanNxohs}!VW$f_L)e+ZzAo$=!p;(Qwy<-A zoh$4-Vdo3`rm$}b`?j#}2)jVog~BcpcCoNagk37^yTZOF?EAugAndXM#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO_G4i`5%yDIKNEJ9u&ae#BkWpXKNt23VZRjiD`CGD_8Vc>3A~| zc9XE1h20|TR$;dZyIt5F!tNAy*8t;X!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC-RF`Rd?1U|O3H!USe+c`huzv}AOxWYX{w?f3!k!TJq_C$3 z7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yv zZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn z^7P182j3yj2zyr8bHbh%_JXh%h5c99|Af6H>}6rE2zyo7YrS zdso?lyPcZ5GgN zw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qyw zn?1~T$SfmY9sD0MtFYOG%`R*XVRH(bOW54P<`Fipu=#||FKhu}3kq9E*uugV5w@tX z#e^*`YzbjY3R_Cp(!!Pzwydz_ge@;@1z{@+TS?f;1B{mi_t&l-o6GDrH`{Hlx!c@% zw^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P& zX;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4q0X7tAp>5RfVl4Y;|F42wPLw zTEf;AwvMoMg{>!SePJ62+fdj>!ZsGRiLgzDZ6<7UVOt2>QrK3)widRHux*8HCv1CR zI|$oR*iOQB9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jto zyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?Ps zO^drtrJFs>cgQXyUmbjh>?&+GVY>_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh# zLxdeF>@Z=63p+yCk;0A=cC@f#gdHpFE5g1i>^Nb^3;UX|69yPB3+}I7JvNuwZEm*P zTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wn zp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>H$X5s7AtwntS=cGU zP8D{Vu+xQ|A?!?HUl;ZbVP^?DTi7|m&J}i^u=9m|Q`onJeOuUfgk2!)LSYvPyI9yI z!Y&o|U18r7_I+VL5O&!B<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H z*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3C zZMxcRirZ~k+-)k|>|wq`E+6^o;5+0BVOI+Kp|Bqb`?0W}2>Yq9p9#B4*wwNZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ywI8e0A_0 za*wckh21CYeqp~A_B&w@2zyZ2L&6>w_IqJ}5cWr5e-id*VSf?!h_FY6{Z-iCg#BIE zKZN~L*uR85ChT!x{}%QiVNVEqQrJ@ijF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_ zx7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d3xllgYS@Mggq4HDRv{dqdcp!rl`0wy<}Ey({cJVebq3K-h=EJ`(n^uup`2D(o|1p9}k9 zfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd% z=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(W zA)`$F<#))a!bTG|y09^XjVWv_VPgv$N7%T+#uGNaunB}sC~P8O6APO}*rdWH6E?Z9 zDTGZaY${<>3!6sRw8EwnHodSJgv}^yCSfxVFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWR{Vy4*n0BRoHC8W*0VxusMazC2VeC z^9Y+)*nGm~7q)<~1%)jnY++%G2wPOxV!{>|wuG=Hg)Jp)X<^F1dg0K~Z ztt4#a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`< zY`xo5pxgAJ+mxf*G^N|rrrUI=+Z3wXw5!`xt=sgj+mx`|G_u>&v)gpF+Z4Ckw7A<; zy4k~ghpaO4)xmejs=`(iwz{x2gsmxTEn#a5TSwTs!qyYEzOW61Z76IbVH*qEMA)Xn zHWRkFuq}jbDQqiYTMOGp*tWv96Slpu9fa*DY$stm4=`R9++VwTY%a6g+-$eG=5BN6 z-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6MM>_A}$2|HNWA;Jz7c9^ikg&iU6NMT0_J6hN=!j2X8e^$&Q zc*DAmgP^E{iXb4}pp?>}sDKIvsnUudqI6nFcXxMpcXxMpcXv1b_xiGjJ-pYQop~mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3~7~WM+X~xG*!IG95VoVRorLWyY!_j> z3foQC?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSVju>FPEV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1R|~sF*tNp06L!6@8-(2`>?UD1 z3%f zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J z_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kj zbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Q6~KIJ7iR0UlI0IVWSEAny{}6`-ZU5 zg^eL>OkraQ`=+pO3H!FNv4wp{*f_$*74}_W;|UvI*aX79Cu~At6A7DG*d)Rx6*if$ z$%RcZz<613f9>kAxy){Jv)$&JyUm?rVtKFu!-KNFerqazG<~wA8k*^NELlzYF3t_($_A6lv z30qj$uZ8_a*l&gXPS_&C78SObu*HQfA#6!uzZdogVSg01l(40REhB7MVao|yUf2r4 z{v_)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EWaW{s4!%SFDr^;De-pNR`>(K#g#Az0#=rVtKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@9V_fOVaE$QLD-4HP7-#quv3Jc zD(p02rwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNagk37^GGUhsyJCRxvf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3pj(m0S z9debhtA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F!tNAym$18q-6QN?VfP8U zU)Te}9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2JuU1RVb2PCPT2FpUJ&-8u$P3r zEbJ9wuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD_MxzkgncaR6JehU`%Kv9!oC<_ zyezoCcJpYyx556E>l+iG)ooY!YFU3Y$#Wq-R91_%>ug3 zHoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$dn^r9sD0Mm9VLWO(SetVbcklUfB1A z{Xp0Z!e$gUldzeE%_8iF!hR%dR$;RVn_bu(!sZkC*> z3H!OQ`3D#;3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVy zZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp! zQ|V?8^BuCl$X5s7Aqxuog|J@=`<1YTge@%W*TQ}y?6<;xCu|X6iwavz*y6&L5VoYS z-wXSLus;f0O4!oEmJznBu;qj;FKh*2e-id*VJiyzi?Edj7%vO%uU$Phm)UJ@w%c5D zx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfnvhv7R2j3xo6}F17zX@Aa z*x!ZyL)dDj+y{*m}a&7q)@04Tb$v*uRARTiAbu{a4sV!u}_0 zV_};J+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6w!*d(w!N?&gzYG7Ct*7a+eO%}!gdq3 zyRbck?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD>6Lz?;BL)~R3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>J$X5s7Ax8;2 zTG%ndjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i(}kTO>`Y;22|HWZIl|5rcAl{Fgt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3A)N4`4v4!KI$)xxe3cCE1Mgk3M}24Ob}yGhv1!fp|E ztFYUI-7f47VRs6^4*h|7*7WRs;SB1SM>~&#p2zyi5Tf*KJ_KvW3g}o>2 zePJI6`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bk_l!?Fm4jEP0SA>04*l5DOChY6Nz9DRMVPgmz zQ`lI-zA5Zm!oDqRY+>IKHjc1yg?(4pc*4dPHi5A337b&ZM8YN(Hi@uFg-s@Ga$!>p zFkTkiU%Ps2F0)oaT z-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E zWXh4R4*n0BO4!uGrV%!+u<3+NFYNomejscHVKWMwN!ZN7W)b#7VLuW!tFYOG%`R*X zVRH(bOW54P<`FipupbNiiLm*E{Z!b`g#BFD`~!@a1^3sk9-GVTHaFXCuDRRXdAC_W zx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_m zsam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3_lNr2wPIv?}hzA*dK*0C2VP7%LrRm*mA;_7q)`1KMDJ@ zuoZ>i_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(S$X8EgYS^P3R^|k--N9y?C-+|etEE$lzS{wr)FVgD1hv9L{qZ7OUtVVeuvVu10o;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yvI$e0A_0vX!u{g>55j zTVdM?+g{iX!gdt4ldzqI?ILVfVY><2UDzJN_7t|4u)T%tBWzz``w81$*a5;06n2oX zgM}R;>`-Bc2|HZa5d(~u1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3^a9=a?A3Oh~M z>B7zscBZhigqMeOhq_Inx=p*fP1U+h@48J1yGD> zYGKz1yH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9ZWnfkusem_CG2it_XxXJ*nPt87xsX# z2ZcQ(>|tS#2zyl6W5OO6_QU|=Wx@TmtH?L6@3wuS_ ztHNFr_PVe)guN;3En#m9dq>#2!rl}1zOWC3eJJcBVIK?oMA)aoJ`?u2urCG}FAMIk zT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+T zj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az)|$|PTY zhm0!hE5g1iY&2nC6ZUms-w-ysurY*QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJN zQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGUdou2mgmmC2VS8(+HbZ*mT0C7xsN&KM*#9 zuo;ETBy473vk3d4upbGVRoHC8W*0VxusMazC2VeC^9Y+)*pG$%MA&@7ek$x|!hSAn z{sG3zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibnt zRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2 ze1|MB^3}n2$b!OtA?%mJekE)nVG9fUwXoj^`>n9w30p+iqQVvvwz#k*ge@uT_rm@l z?2p2h61KFkWrQs&Y&l`e3tK_hpM?Ec*owmbB5b7r#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jOm&Z^Bj;_IF|b z5Vo4I)rGAgY)xTn30qs(I>Oc!ww|!{g>4{gLt+0E_Ag=o7WN-u{}r~8u>T3$SlA}Q zHWjv+u+4>SF~E3PaDVOUvAN7{bF30*-F^f!nP5%t+4HcZ7*yGVLJ-jN!ZT9b`iF#u-%01E^H5B zdkWi2*xthS5w@?e{e;Pd03Oh*H!NLv^cBrt!gdHyIhyljSg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1{x4^3}n2$Wg+M7IuuV zV}%_j?08`(2s=^ONy1JRc8ai5g`FnsbYW)*J5$(M!p;_Uj<9ouohR&kVHXIyP}oJn zE*5r)uuFwqChT%yR}3&-7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ` zW}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrV ztKFu!-KNFerqazG<~!udk*^NEL#`5bwXkc1T`TN5Vb=@0LD-GLZW4C0uv>)PD(p64 zw+p*N*qy@e5_Y$+dxYI9>^@=l3wuD=gTfvX_OP%=ggq+kF=3Ajdt!j`vf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3hj(m0S9rBd0 zr-eNu>{(&Y3431H3&LI$_L8udg}ox|Rbj6QdtKNY!rm12maw;ly(8>hVebihU)Tr2 zJ{0zmu#bg(BJ5LPp9%Y1*cStgmj(CNt{$7q>^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrZ}WzsLdLq-+$6=7c$Hkz=n3H!RRZwMP**cigb6gHNy zZwmXCux|?+TiADmjU#MaVc!)tp0M$SO(5)h!X^|pk+6w{O(JYkVUr1)T-X!?jF$!X z*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN- zDMzrEakr^-vxoT(nR4W- zga1RO5;nE4X@pHHY&v1n3;VvX9|)U4*o?wv5;n82S%m#i*pGzGDr`1kvkRL;*qp-V z5;nK6d4$a??8m}>B5XckKNa>fVLul({{Z7e+3&+HH#4ZCc!ID&6d1zC#um`Rd?1WIww$o#g{>g$Ps08zY(-&z z5w_9*<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O z-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k| z>|wq`Rv!84;5+26!d4OXH({#^`@67z2wP3q>cZ9#wx+PPgsm-X9bxMVTTj^f!Zr}L zp|F1n`cgU6_UmbjhY$a@KVcQ7XR@ipJ zwimX8upNc%By4A4y9nD=*lxmh7q*A6J%#NhY;R%v2-{cKe!}(_c7U)0g&id9U}1*{ zJ5<e+3&+HH#4 zZCc!ID&6d1zC(^2`Rd?19*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>K$X5s7Ay)~zTG%zh zt`&Bju`q~K3At>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0LK!d?;fs<79D zy)NtxVQ&h1OW51O-Vye$u=j+$FYE(h9}4?O*vG;?5%#ID&xCz0?27@$%YyrBSC7qQ zcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!L zVG|0QNZ7=}CJ{ENu*rl?E^LYc#>;~HYgdoWWpe+w7^^ zEUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0 zvfI?N+jO_@_86*il&*@ev^Y))Zw37cEkJi_J`_G4i`5jLN&p9=e#u%8Q?e}M6_ z;QrdxV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ysW( ze0A_0vY@bE2>Ye5UkO`C*uuhoE$lbKek<&E!WI#>sIbL^EiP;cVM_}8y|6zB`=hX> zge@&>8DYx`TTa;W!d4LWCt-gUwxY1V2wQ1@@v`9l+SOxonce1QyUjIsn>+6|3+Oi6 z=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvD zHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWeE0272@E!73VXFxHo3K@d{ax5UgsmoQ zbzy4=TT|Ft!qyhHj<9uwttV`KVH*hBP}o0({Y%)th5bj^e}!!%?0>>G7Pg77O@(bH zY;$2-3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`J7mj|uMWOLwi33rux*5GD{MPq+Y8%4*p9+>61KCjU4-o_Y&T)M3)@53p2GGL zwzsf-gzYPAKVka|J3!ch!VVI4u&_gf9V+ZFVTTJlVu10o;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yuhie0A_0a+I*6g&ia8SYgKr zJ6_lc!cG)+lCYD7og(a1VW$Z@UDz4I&J=c*u(O4oBkWvZ=LtJs*agBa6n2rYi-lbx z>{4Nu3Amw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3|{q=t3S3cF3%?ZWO5 zcBinrgxxLd9%1(iyHD8t!X6OzpsMeO zhq_Inx=p*fP1U+h@48J1yGBVQeShdd?hX<^R@ zdsf(U!k!oQg0L5by(H{qVXp{#RoH97UKjR;us4OhCG2fs?+ANW*n7g>7xsa$4~2as z>|VpnXTm-g_Qe3>Wx@TmtH& z?AyY|7WN%s;|Lp9*ms4ECv1FS6A1gBunC1tBy3_~lL(ts*kr;c7dFKJ<7L79wX4VG zGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_ z(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`rX2a|;Qx@R zgiS4M8e!84n@-sD!oDx;2f}6$Hlwhagv~5$7GXaW_9J1l3Y$&X?84>{Hm9(;gv~8% z9%1te`?0W}2%AsXPlf$V*w2N{KfridaDVOUvAN7{bF30Sy0$7g#A+3uY@fmY++%)7WNxqzZLd7 zVT%Y`RM=v|78kaJuqB24Uf3Um{ZZIb!j=}cjId>eEhlVwVJisxldwMvTT$3wgsn8d zcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`y zn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN# zl}Elh_zwB2uvLWpP1vf!{x0kv!d4Tuy0A5btto6RVQULpN7%Z;))ThAunmN5DD0oY z{w3_+!u})dzrr>W_CH}83)@84rouK8wz;q^1{g03?yp@vHka9LZnoQ8bGNzkZnJ=H zvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kS)fR|nrATM64**fzqp6}FwQ?S<_i zY)4@`3ENrNF2Z&dwwtish3z41Phoor+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eo zu)~ENF~E3PaDVOUvAN7{bF30IZD{k!j2Jktgz#R9WU$zVJ8YZN!ZE4P7!vhu+xN{F6<0pX9_z@ z*xAC)5q7Sy^Msu*>;hpI3cErVtKFu! z-KNFerqazG<~!uck*^NEL!J`$w6JG{JuB=vVb2SDLD-AJUJ~}Quvdh=D(p33uM2xa z*qg%M685&RcZ9tw>^))c3;RIWhr&J*_OY-}gncUPGhv?#`(l9cvf%#O)njv+-R5Sy z%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1Hnr(C z9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4gO!4J+$f&};BJ8We zMicfmVP6;a4Pm1T8$;Nb!p0KzO<~^>_HAKf3;T|+afFR4?7PCo6E?oE350!5*o49+ z5;n20NrX)*Y%*b!3!7qq@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp z>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6 zHeKyD#qBmN?lzTf_AuWeQ;vLf@PEiu!lo8Bjj(BjO($%6Vc!?_17R}=n^D+I!e$mW zi?AOG`;o9&h0P{xc42b}n^V|a!sZq>kFa@#{aDyfgv}@Hr^0?F?B~MfA7H#JxW9Jw z*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{ zO;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgO-GUmbjh zEGX<3!hR|2SHcz&wy>~Y3;T_*-wOMkutkI|Dr_-fiwj#q*pkA2FYFJ({wQoIVM_~J zM%c2#mJ_zTuoZ;;N!Xu-ttjj-!d4n!yezoCcJj_(5*apHj6!uSH{}T3ZVgC{KUtt>w`=79lg>52iQ(>D4+g#Wd z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4%u?#tAp>5t%PkYY#U+Q3foTD_QG}$wxh6}gzYSB7h$^!+fCT+!uAlhr?9<*?JaB{ zVfzZ(PuTv#4iI*ru!DphEbI_rhYCAP*x|yC7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgT?=Umbjh93|{%VaEtNR@iaEju&=< zuoH!yB}+A@2s>BUdBV;Yc7d=9ge+3&+HH#4ZCc!I zD&6d1zC*4Y`Rd?1?h|&uum^-aDC{9&4-0!l*rUQ86ZW{UCk7ZV3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BwZ!$X5s7Ax{Z=TG%tfo)z|- zu;+!nAnZk9F9~~D*ek+b75192*M+?y>`h^B342@EJHp--_MWi!g?%9GLt!5Y`&if~ z!af!DnXu1=eKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L~a5%yJKqY3+(u&)dIhOp6vjUjAIVPgsVrm$}b`?j#L zg?&fZIKsvi_FZA)2^(M71j4>2Y(ilZ37c5hB*G>YHkq)=g-tQQcv*0N?dq|)%x-hD z-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0A zn+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#DM!9K_&;PSVN(m6 zM%c8%rV}>3uTUgkyh5bg@Z-xC%*doFf z6}FhL#f2>)Y)N6i7xo8Xe-yTqu%(49BWzh=%L!Xv*b2h_B<#<^RuuLZVJi(VUKZS6 zyLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw z9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_<&m!r zzC->hY!zXD6Sk_bzYF_^u+@aEE^G~9YYJOS*xJI@5w@T1Audt1T{ZH7&!Zs1Msj$t2Z7yt!0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghip0W)xmejR>HOxwvDiDg>5Hndto~W+fmp~ z!gdz6i?CgV?Ivt@VS5PMQ`la@_7=8}uziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX6 z3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6@;Dg3p+#DnZnKzcDAr{ zgqoT`KG{VV4WLVu10o;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yv6ye0A_0a+R>FgN>``Hl z342`F69bHw1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3`w<|(5cZ<5mxR46>=j|J3VTi1>%!g;_NK76 zguN~79bxYZdr#Q=!afl8p|FpHeJtz~VV?^7OxWkbz8GMMeOhq_In zx=p*fP1U+h@48J1yGYtA(S&_X z*w=-9L)hrT#t=59u(5=FQ`onJeOuVr!oDMH9AV=M`>wF@gpDt30%6}1HleVIgiS1L z5@C}Hn@rf`!loEtyezoCcJ(+Qhi*!P9~K-dhzW)wD)u$hI;BJ794 zek5#GVY3OFUDzDL<`g!Uu(^fJBWzw_KNj{AVe<+5sj#03`?;|B2N*94?yp@vHka9L zZnoQ8bGNzkZnJ=HvyE=Enr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#g zn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kRg4R|nrA3kv&% zuwM%Mm9T|`EiCNU!hR#{x59oWY!P9L3R_Ir;=+~?wxqD%3;TnxKMGq)*wVt55w@(b z<%BISYz1L|682|dD+>FIu$2ZFFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`ye zv~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;Z zZd1>0)75TM+-}q2Zd2)I5Az+e^2k>Q-ywe$wu-R730qaz--Z1{*lNO77q*75HHEDu zY;9rd2wPX!dcxKhwt=t>h5b|5zl8l;*nfomSJ+0v{wHi>VVelsRM=+1HW#+V0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk$MD`8s;+eX;7!nPB(y|5jG?I>&~VLJ=kMcA&wb`!R{uswwBDQqucdkfn~*uKK{ z6Slvw1B4wY>>yzW3p+&Ep~4OmcDS%31{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=E znr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9dhKzR|nrAM+rMx*fGM66?UAk_lNF z2|HQXDZ)+_cABu$g`FYnOkrmUJ6qT}!p;?Tp0M+UT_Eg2VHXLzSlA`PE){l}u*-#A zF~E3PaDVOUvAN7{bF30xk}j8!mbf^t+4BaT`%kgVK)l9N!ZQ8ZV`5?u-k;)F6<6rcM7{p*xkbJ z5q7Vz`-I&u>;Yj93VTS{!@?dB_NcJOggq|oi2=sTg8OS%kIiLvo15)6*W7LHyxT0G z+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3O zRIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+a^3}n2$Wy|e7WRy=XN5f{?0I1? z2zyc3OTu0j_KL7qg}o;1bzyG^dsEn3!rm74j<9!yy(jE_VIK(lP}oPpJ{IrVtKFu!-KNFe zrqazG<~wARslWUV8CBR4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_%8{=Q{tuZ-*wn(N5jL%` z>4Z%$?EAugAZ!Lpu-SyoE^H2Aa|)YF*xbVA5jL-|9}D}5 zu=#}jRM^ji{ao1m1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z* zXSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBU zw<&J7X>qrybhC%~4q0I2tAp>51%>@W*e`|sO4vfe78dqvVZRafTVcNwwurDrg)Js* zabZgcTTAAuwt}!f3H!6K6@~pp*h&M8mj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxra!dE~2u?~uO= zTSeI4gsm#<@525eY&Bu43tL0jn!?r+wzjZ!gsm%VJz?t$+d$Zc!u~1jU&8(^>_5W( zD{LcS{}Z;cuuX(*Dr_@hn+w}wfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WAzO}ob?_asm9VXaZ6j=3VcQAYUf2%8b`-Xgu$_hN zB5YS-y9wJ}*dD_66t@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4mon< ztAp>5ql6tT>=!p;zOrm(Ywoh|GfVdn}v zPuTgwE)aI1u#1FUEbJ0tmkPT~*yX~m7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEt zYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZ zx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgU3^UmbjhTqW#kVb=(|R@imIt`~NLup5Ql zB~3NA2)kFe+3&+HH#4ZCc!ID&6d1 zzC)fI`Rd?19*CZqu%A zQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqEG+%y)j4JFa!oDhOG+|#8_H|+3 z5H`B7F@%jNY%F2l6!tA)-xfBuu0)75TM+-}q2 zZd2)I5Az)|<;YhD|A$N^Y-(ZC2%A>ebi$?=_I+VL5H^Fb8HLRxY-VAz2>YS19|@aP z*lfaP7dD5mIfcz7Y;Ixm2%A^fkA?k2*nGl%D(q*%elBeO0mjRM`)gN^&1H6*o9#B& z+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghb%Di)xmejg2H|w?3coR zC2S#K3k&iMO<`*ZTU*#V z!qyeGp0M?WZ6ItzVgD5NFJb={_8(#Y6}FME{|Vbz*e1d@6}FkM&4q0-z<613f9>kA zxy){Jv)$&JyUm?4I||!L*v`Us5w@$a-GuEfY!6|33foKA-oo|~wy&`LgzYcv z0AU9TJ4o2U!VVF3sIbF?9WLyM0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~gha5Tb)xmejQNoTEc8suNg&imCcwr|9J5kt4!cG=; zim+3KohIybVP^~djO3@~06 z++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6^5Py3%f(uox<)CcDJy5gxxFb zK4JF@dqCKO!X6U#u&_sjJu2)mVUG)YVu10o;QrdxV{@6^=4QLiHFujk?=}nQHrwbn ztLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr z>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yu(qe0A_0@|3Wrg*_weSz*r!dtTTJ!d?{i zlCYPBy&~*YVXp~$UDzAK-W2whu(yT1BkWya?+JTf*ayNs6!wv@kA;0A>{DT%3Hw~w z7Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8P zsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;=sdTf4 z`3@On+AqIDMiurIVP6$Cny{}4`?|1i2pe747{bOBHkPn&3j3C@Zwnh+*ms1DBWzq@ z-xW5VuCKNW2u!)6DB5YD&lL?z#*c1bdmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfa^$On|3jt{Hnp&6giR}KI$_fb z`@XOr2%ACJjKXFTHnXr z74|b>KNmLt0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^) zZ5G{aw%%fk$ML1DiT_Df;E61I@Ag@yfE*l&dWR@m=^Eh21DVT%b{T-XxA zmK64TVSfq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$d)5t9ejsuC2VV9+X&lM*mlCU7q)}29fj>AY-eG+2-{WI zZo+mKwui7ih3zG5Z(;ig+gI3r!uA(-fUpCF9VF~vVTTAiRM=s{4i|RB0OMuB{k5yd z<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%% zC}BqnJ4V>C!j2Pmys#65oha-iVJ8baMcAprP7`*zurq|6DeNp^XA3(=*tx>a6L!9^ z3xr)L>>^Zc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z; z)5va9&u-JzZd2TD)8cMZ>1Ge}9dhN!R|nrAR|&gX*fqkg6?UDl>xJDQ>_%ZX3A30c}m#R!k!WKtgz>VJumD9VJ`}MN!ZK6UJ>@Hu-AmWF6<3qZwh-$*xSP15%#XI z_k_JK>;qvR3j0Xd$HG1l_NlPXgncgTivh;Vg8OS%kIiLvo15)6*W7LHyxT0G+iauT ztft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2(+qA3ORIS_e zuG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20uO-Iw1XqYC?qu&)XmP1x6jeO=f$gpDq2 z3}Ism8%x+Xg?&rdw}p)@>^s875jL){?+P1F*!aRG5cWM`6AGJ1*u=sn5jLr?$%IWV zY>ENK%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao z?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WAq$Lrb?_asps-&E`=zj730p|m z!oq$n>^H)GE9`f|77@0nu*HNeE^G;5OA7nFus;aoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA37k9>9T9r9OUs|fp>uvLZqUD!W_ttM=BVQUCmQ`lO<))uyouyuv4 zCv1IT8wlG_*gu8+OW41K{YTh;g>5A4f5J8vwu!J!g>5Emb75NyFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWXqAS4!%RS61KIl zZG>$rY&&7w3)?~1j>2{lwzIHZgzYM9H(|RA+e6r%!uArjx3GPL?JI0QVfza^K-hu8 z4ia{-utS6$D(o;}hYLGmfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WAxDmUb?_Z>l(3_P9V6^mVaEwOUf2o3P84>Mu#<(IBJ5OQ zrwKb<*crmk6n2)dvxS`_>|9~z2|Hid1;Q>Ac9F1)g@Z*XSdmHw^?+z*?PCBK)2~bw<$-r zX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!LsVtAp>5 ztAt%G>>6R$3cF6&^}=otcB8PHgxxIc7GbvvyG_{b!tM}ur?9((-7V}MVfPBVPuTs! z9uW4Ru!n>_EbI|sj|zKC*yF;U7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vy zy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhY zO(VNaJ-ba;yG?PsO^drtrJFs>cgT|?UmbjhJSFUDVb2JAR@igGo)`9luos2BB}_H12zyu9d&1rq_JObug?%LKV_}~N`&8Ix!af)F#Q@`F z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E z&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4ZCc!ID&6d1zC%Wt z{>$%>QH6a)*jI&(ChTj%zAo$=!bTT1hOjY(jV0`x!oDT!+rq{c_8np42pd<}cZH27 zYYI}35880Y+_-P2%A*cWWpvFHpKwrWx@TmtHkAxy){Jv)$&JyUm?t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0LQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)JfnvgOEE2j3xE3ENuOHo~?QwwFM{AnZV42MIe^*df9W6?T}g!-X9&z<613f9>kAxy){J zv)$&JyUm?l zyGYo@!Y&bZsj$n0T`ug30mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfy zY_Qv`v)k;p+bp`& zv)gpF+Z4Ckw7A<;y4k~ghg>=G)xmejRl=?oc8#!Wg~UdF3@~06++VwT zY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6@{Jp3wuM@o5J1__O`HhguN^5Jz?() z`#{)-!afrAv9M2seJboTVV?{8Vu10o;Qrdx|DP4J2;Q)+;~?GL-QC^Y-QC^Y9R`g- zcPgo%V30~TN~b|6C}DyL;(xC%d)UK!-PxJv^8M`m=E3GNyUopZn``biciwFl&~3KS zZC2B5_S9{b)@?S}ZPwXscH3ln^M?R!lo8Bjj(BjO($%6VKWGuQP@nv zW*%U?EV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_S zO$EA5AG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG_3Y$yV+`{G&Hm|Vxgv~E(0bvUYTS(Z#!WI#>sIbL^ zEiP;cVM_{IO4!oEmJznBu;qj;FKh*2D+*gl*vbQpmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxra!W#p@a?~ql6ttM=BVQUCmQ`lO< z))uyouyuv4Cv1IT8wlG_*ha!O7Pg77O@(bHY;$2-2-{NFR>HOxwvDiDg>5Hndto~W z+fmp~!gd~DyezoCcJ|wq`P8s>?;5+10VP6sURbgKf z_H|*W2|Hcb8N$vKc9yWSg`FepTw&i3_Dx~m683Fj=LtJs*agBa6n2rYi-lbx>{4Nu z3AZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-Jz zZd2TD)8cMZ>1Ge}9dgacR|nrA*9yB%*!9A`Bka4vZV+~(u$zS4EbJCxw+j27uYq9yM)~>>>gqF3cF9({lb1G?B@fFmj(CNt{$7q z>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8 zx2a9H=}@;RRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9VC1WV?~n(D zJtXX5VUGxVRM=y}9vAk6uqTB*CG2To&j@=~*e`_rQrL6Co)`9luos2BBQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3 z$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^47>#2j3xY3wuY{yTX1a?DxXn6ZXEaKM4Dyun&ZN zDC{F)9}D}Fus;j?i?F{6`8U`(l9c zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4g z%=6`U$f&|b6E?cAF@%jNY%F183mZq+xWdL0HomY4giR=HB4HB?n?%^8!X^_oxv(jO zO(|?DVN(m6M%c8%rV}>3uo;BSC~PKSGY>Fc7TjOEdTcJU+uUrox#n(j=iO!j-DVrz zW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$ zcipCh-KLSrVtKFu!-KNFerqazG<~wATk*^N^51CciY{F(2Hixh|h0P^wZejBX zn^)L;!sZvYfUpIHEhKDVVT%Y`RM=v|78kaJuqA~pC2VP7%LrRm*mA;_7q)`16@{%N zY~=yQ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!&~VLJ~nUKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_myxdyzC(5uwwtish3z41Phoor z+gsQ^!uA!mpRoOf9U$yLVFw92SlA)L4i$Eou)~ENA?!$DM+rMx*fGM66?UAk_lNF2|Ia!@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWer;L1c@Evlhu&)UFs<5vK`?|2xgq<$z3}I&qJ4@Kv!p;$PuCQ+i`=+pO z3H!FN^Msu*>;hpI3cE@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV# zw<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4!LIJtAp>5YlU4W?0R9} z5%yhSHwe2?*iFK27IurUTZMg3*!P9qChT@$KM?jqVRs0-Q`nD${aDyfg#A?5UBd1b zc8{=oh21CYeqlco_VWS8%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!~j|+Q3*ptGZ685yPXM{Z~ z>=(j*DeO66&kK7&*o(qm685sNSA@MP>@{Jp3wuM@o5Fr2?AOA6BkZ>WjF$!X*RCF$ z%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d28gWgYS^H zg}o!}U17fy_IqLP3434IAB6o;*ayNs6!wv@kA?k7*q?>{Mc7}3{Y}{4g?%FIQ(^xQ z_D^B|683Ll{}J|IVV?>6T-g7FeKEjzS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0L(+Qhi*bKsE6gHEvnFkmz z3+}I7JvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;N zhi+4jZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqF z$X5sdhs-K$Hes_1n?u-~!sZe-x3GDH%`0p^Ve<=HK-hx97816wutkI|Dr_-fiwj#q z*pkAQ61KFkWrQs&Y&l`e3tK_hio#YBw(52iQ(>D4+g#Wd!nPE)m9VXaZ6j=3VcQAYUf2%8b`-Xg zu$>1OFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1 zZc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I z5Az+e%g9#;-yypS+fCT+!uAlhr?9<*?JaB{VfzZ(PuTv#4iI*ru!DphEbI_rhYCAP z*x|yC5O$=nql6tT>=}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Q%1fz_zpQ$*jI#oRoK^reO=gT z!cG@f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p z+bp`&v)gpF+Z4Ck zw7A<;y4k~ghg>uA)xmejwZg6wcD=Cg2>Y(E8-(2`>?UD13%f z9|-%Qusej^DeOnWek|-K!hS03E@5{IyGPi)!tN7xzp$SP`}qLlWx@TmtH`7ry342=DGs2z~_6uRZ6!x63=Y_o>>_uTO342-CE5cqC_L{KQ zg}ou{O<}(h_G@9k5%${w#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jO;qvR3j0Xd z$HM+3?9amfBJ8ii{wD12!afo9sjzMeOhq_Inx=p*fP1U+h@48J1yG6Qwp0( z*wn(N5jL%`>4Z%$YzAR73Y$sT%ma*<1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXu zQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM= zw`pXzsb{z8YPTtFw`p;=sdTf4`3{+7)Y)N5D30qp&GQyS>ww$o#g{>fLMPVxmTX}%- zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4o zjC^(Q9kQyh)r74sYz<*+3R_Fq+QQZmwyv=Cgsm@Z17RBq+ep~P!Zs1Msj$t2Z7ysJ zVOt8@O4!!Iwh^|iu4I||!L*v^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcKW#p@a?~q-E?Ivt@VS5PMQ`la@_7=8} zuziK?Cv1OV2M9Y**g?V$7IuiRLxmkC>~LX62s={PQNoTEc8suNg&imCcwr|9J5kt4 z!cHDwyezoCcJ?^{)D(q{*zAo%EVW$f_L)e+Z&JuREuycf+E9@J>zA5Zm!oDr+ zJYnYxyFl25!Y&eav9L>oT`KG{VV4WLLfDnUt`c_j0OMuB{k5yd<}$m@&32n>?lyPc zZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fk%%T4C1-yI$CLgnd`o z4Z>~|c9XE1h20|TR$<>0_I+Wu3AoyzgHtXy* zyX`iM?lxQRHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l- z?KUm$HkEGnFyA2$jC^(Q9rB>ChlD*W>=9v)3VTf0a~-<7L79wX4VGGP}*q zcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O-fb$-ZTiq{%F%6_(rs$f zZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k|>|wq`-WvJp;5+1PVebfg zSJ>}_{a)C6!rmA52Vs8{_JObug?%LKV_|<1_Ge*#5%yPMe-rk1VV?;5RMrVtKFu!-KNFerqazG<~wAR`M>-Q8CBS5!bTT1hOjY(jU{YsVdDrJSJ-&M#uqk$ zunC1tBy3_~lL(ts*kr;c7dC~kDTPfXY-(ZC2%A>ebi$?=HiNJkh0P>v<^jgbg8OS% zkIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B z+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e22_3^3}or zA+rjbP1x+h<`6cgu(^cIEo>fP^9q|!*!;p45VoMOg@i3EY!P9L3R_Ir;=+~?wxqD7 zge@&>8DYx`TTa;W!d4KrqOg^OtvtYZS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0LuQZDH#OTUXe6 z!qykIfv^pQZ6s`CVVelsRM=+1HW#*quq}mcC2VV9+X&lM*mlCU7q)}29fj>AZ07;S z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!>yzW3p+&Ep~4OmcDS%3 zgdHjDC}BqnJ4V>C!j2Pmys#65oha-iVJ8nTUKZS6yLxOcv)kNkx4GtSbLZV=0o`UB z-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbl##CvzC%tG_7!1Y74|h@Ul(?ou+xQ| zA?!?HX9+u7*g3+^74{8b-xT&OVc!;Zp0M+UT_Eg2VHXLzSlA`PE){l}u*-#AA?!+F zR|&g%fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~y zTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jz zZuT(WA=iw2b?_Z>t+4BaT`%lA!oDl)24Ob}yGhv1!fp|EtFZ40`@XQ-gxxOe2f}_R z><(df3j2|;9}D}5u%8OMOW57Q?h$scu=|AFFYIT+em=l>S#W>t>an@ZZgaEU=9;_B zop+lBbenB-o7HriJ$0Lw_K2`Y zg*_(habZsgds5g_!k!lPjId{g{X*C;g*_+id0{UIdr{a+!d@2kim+FOy(a8+VQ&a~ zQ`oPB{aV;>g#C7a@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWeZ;gC)@E!8Duy=&LE9`f|elP4jVebq3gRnme`#{)-!afrAv9Lc0 z`?IjW2>YwBzX|)huup`2D(oM^{weHV!u~DnKf?Yi>@#7X3;Un2F9sMd3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BpqE0$+ZIj4Et2 zVWSHhL)e(Y#u7HRuyKTqD{MSr;|rTW*o49+5;n20NrX)*Y%*b!3!6gNl)|PGHnp&6 zgiR}KI$_fbn?cx&!e$aS^8n*z!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5 zZ8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a z>e+3&+HH#4ZCc!ID&6d1zC&gi`Rd^RkXePzCTweEhlVwVJiq*QP@htRvuuyEV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG$rY&&7w3)?~1j>2{lw(|hvWx@TmtHMu#*QE zFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7 z(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az*z z%E(s--yx?8`--ry3j3O{uM0a(*y+N~5O$`pvxJ>3>>Od|3j2nzZwmXCux|@HPuTgw zE)aI1u#1FUEbJ0tmkPT~*yX~m5O$@otAt%Wz<613f9>kAxy){Jv)$&JyUm?MeOhq_Inx=p*fP1U+h@48J1yG-dqmiy!X6X$xUeULJt^!dVNVNtM%c5$ej)6a!k!cM zys#I9y(sJ@VJ{1NMcAvtUK94Zus4LgDePCmel6@b!hSozcv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#w?@7?_zrnn*gL}B74|z} zzZdqNu=j=iLD(OKeIV>ZVIK+mSlFM0{aM&wg#A_6--P{L*eAk174{Ed{}lEwVgDBP zA7TF$_L;EHh5b+17Xyr!1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3@On!7slYHkq)=g-s!BN?}t8n_Ad3!lo5Aov`VJ%^++>VKWJvd4Tb<;QrdxV{@6^ z=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyS%e0A`D$gIL< z6E?fBIfTtAY%XDQ3!6vSyu#)aHove1ge@p+Az=#(TSVBR!WI*@xUeOJEh%g%VM_~J zM%c2#mJ_zTuoZ-@C~PHRD-SSU7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~wASk*^NELsk{Gny}S{ts!hpVQUFnTi80n))ls%u=Ry) zAZ$Zn8wuN3*e1d@6}FkM&4q0tY)fHV3ENuOHo~?QwwoyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4&jC^(Q z9kQ#i-GuEfY!6|33foKA-oo|~wy&`LgzYcv0AU9TJ4o2U!VVF3sIbF?9WLw$VMhu( zO4!lDjuCdOu;YXsFYE+iCki`B*vSKomj(CNt{$7q>^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxraUW#p@a?~qf4eMQ(;g?&xf*M*%X>~vvg2s=~Q zS;Ed1c8;)fg?&TVH-&vm*tdn9C+vJ-7YMsh*hRuF7IulSONCt~>~djO2)k0)Rl=?w zV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T z$TcHh9ejseE9^R9*9-fOu)PD(rj0zAx-HVYdtWfv_J6yF=KW z!hR&|$HIOh?5D!+5_Y$+dxYI9>^@=l3;UU{pARrz7TjOEdTcJU+uUrox#n(j=iO!j z-DVrzW;NYrPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgL zrfS`$cipCh-KLSrVtKFu!-KNFerqazG<~!tpk*^NELmm|Nkg$h^JtFK;VUG!W zT-X!Bo)q?!u&0GRBkWmWzYz9IVb2MBUf2u5UKI9{u$P6sBJ5RRuL*ly*c-y$6!t4& zzZUizVZR+>Xk63j3X~-wS(B*!#l%AncFAJ`nbyu#bd&EbLFh{w(Y- z!u~4kZ^HgA>=R+13j2q!e+v7Tuzw5tkFfs=`%Kv9!u}`hivh;Vg8OS%kIiLvo15)6 z*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~X zsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e20v((3jsKqY4{M*yzH> z5H_Z;v4o8+Y#d?Z3L8(@_`)U-HleVIgiS1L5@C}Hn@rf`!ln>5rLd`lO)YF1Vbcnm zPT2IqW)L=`u$hF-JivHaaDVOUvAN7{bF3nWL9Cb37cKm9Kz-lHkYuuh0P;uUSabIn_t)h!WI;^ zkg$b?Eh21DVT%b{T-XxAmK3&>u%(49BWzh=%L!Xv*b2f{6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCv$X5s7A*%{o zP1x$f))2O)u(gD(Eo>cO>k3;>*!sdY5VoPPjf8D1Y!hLd3foNB=EAlRwxzJGgl#Qs z8)4fD+fLZ_!gdh0qp+QX?L5GES#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3BXM!q`u4%t=MZo+mKwui7ih3zG5Z(;ig+gI3r!uA(- zfUpCF9VF~vVTTAiRM=s{4i|QWup@;XCG2Qn#|S%C*m1&+7j}ZM6NQ~5?BoH)%YyrB zSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!%vYGcDk@Lgq&?AyZ56L!9^3xr)L z>>^)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1ExF$s*ms59AnZnAHwn90 z*e$|t74|)0-xqe9u-k?GK-dq3-68BwVLuY~V_`oL_ETYZ3A9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8 z^BwZQ$X5s7ArA_BNZ7-|9ufAau*ZZwF6;?mPYQcV*wezE5%#RGUkLl9u;+w5FYE4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmbt&y(|zC+#?_KvW3h5b(0?}fc5 z?0sQ>5cWr59|-$U*hj)X7WOA$e-`!^VSg3&H(`Gl_KC1hh5bX=KZX5E*uRDSN7#Rb zeJ1R4VgD2M#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC%V?_{;B*QH6~rY;<8`2pdz_Si;5@Hjc1yg^ed{d|?v^n^4$9!X_3r ziLgn9O(tw|VN(d3QrJ|&rWQ7huxW)&Cv19QGYFee*i6D^9$>sIxW9Jw*j#3}x!G=W z&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc| zx=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQRwUmg4(GOMuJgv~B& z4qLVG9adNZ7){77@0nu*HNeE^G;5OA1>`*wVt55w@(b z<%BISYz1K}3R_9o$^(p-1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3_lS5Emb75Nu+fvw8!nPK+jj(NnZ6|DdVLJ%hQP@txb{=57EV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yG^Nb^3p+vBiNa12cJct@Wx@TmtH_HAM32|Hid1;Q>Ac9F1)gQK^=?yvZqtWu zQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfna?QwB z2j3yr3cF6&^}@a*?7PBl5O$-mn}ppg>=t3S3j3b0?+d$4*zLl8Anb?2?htmTupbHg zv9O;A`>C+IgxxLd9%1(iyHD8t!hR;~=L3wF1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLw zSxvXuQ@2@Kx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(` zUAHM=w`pXzsb{z8YPTtFw`p;=sdTf4`3`wt}g@o2zyr8FNFP4*mJ_37xsd%7lpkf>}6rE2zyo7Yr0)75TM+-}q2Zd2)I z5Az-J*2q@}-yv@cdq>#2!hR?0_rl&2_P($`2>YY34}^Uv>?2_x3;UC>KMVVdu)hlX zo3OtN`$X8M!u}!bpThnn?BBxvBkaGzJ`?u2u>T4BVu10o;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yx$c^5u8PsKQ1QHoCAegpDa| zEMa2{8%NlAAuwt}z~g{>rPrV ztKFu!-KNFerqazG<~wAUk*^NELv|Imo3P!5?ICPWVS5SNTi8Cr_7%3Du>FM{AnZV4 z2MIe^*df9W6?T}g!-X9o>_}lp2|HTYF~W`&cAT)|g`FVmL}4chJ9&Wdvf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA4kjC^(Q9dfF$ zuL%39u&)XGy0FuPoi6MQVP^_EOW4`M&JlL5ux|+arm$}b`?j$2gq<(!0$~>lyGYo@ z!Y&bZsj$n0T`uejVOI*fO4!u{jF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky- zSz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xn|_6gYS@Qg~>*45cWf1cL=*v*pGz$SlCa5{Z!ap!tNG!kFa}%-6!mRVLuc0^8v=o zg8OS%kIiLvo15)6*W7LHyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1R zq1%+B+cc%y)TY~XsM{2(+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e1|+R z^3}n2$b-Tj685mLM}$2p>@i`F3wuJ?lfs@7_O!5Pggq^Wi23wuG>i^5(K z_Oh^7guN>4HDRv{dqdcp!hR*}*TQ}y?6(7qmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrb9Yvikg?~u2Jy(8>hVZRghdtvVhdtcZe zg#A(22f{uS_K~oUh5bp`pN0KJ*k6VHP1xUseIo2rVgC^JPhtNO_HSYT5%ynUp9%Y1 z*#CrmF~E3PaDVOUvAN7{bFZc~nK)0A#gn{LygZd0gk z)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu+vR|o%x%qna)VY3UHL)e_c z<`Ooyuz7^dD{MYt^9x%**n+|q61K3gMT9LXY%yVr3tK|ilERh}wzRNige@ye+3&+HH#4 zZCc!ID&6d1zC%_S`Rd?1WL06S30qy*8p75TwwAE9g{>oOU1949TVL1)!ZsAPk+6-0 zZ6a(_VVeotT-X-EwiLFNu&sq{BWzn?+X>rV*bc&W6t9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuCw$X5s7A-f9OP1x?j z_7JwGu)T!sEo>iQ`wH7n*#5!}5O$!jgM=L{>=0px3Oh{L;lhp(cBHVQgdHvH7-7c> zJ5Jc~!cGu&qOg;MojkyJS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L04*w=)8UD#>DP8W8Durr07CG2cr=LkDj z*f)fIQ`onJeOuUh!p;|Vfv^jOT_o&cVV4NIRM=(0E*Ex%uq%aKCG6?}#>;~HYgdoW zWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v}; zrQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOwDXgxx6YCSf-VyG7Wo!oDZ$`@(J$cDt}22>YS1JA~aS>_@_WEbJ%3 zek$xPVRs9=N7%i>?h|&uu%8M0`2gc(!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v z)NPj5Z8q3#*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJ zZ5r8a>e+3&+HH#4ZCc!ID&6d1zC#`u`Rd?1#PVZRdgYhk|;_S*r* z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!Y+F&xCz0?0>?(7+}0CxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQG@Z*XSdmHw^?+z z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qry zbhC%~4w+@-tAqbTW)(J@u-S#pA#6@za|xSU*gV4K6*ix+`GqYYY(ZfQ30qj$BEl9G zwwSQRg)Jd$NnuL~TUyvM!j=`boUrAEtsrbgVJit+d4Tb<;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yy4ve0A_0vZ}Dvgsm=Y4Pk2v zTT9s5!qySCuCVoltuJf?VH*nDNZ7{0HW9X|u+4;RE^G^7TMFAs*w(_f5w@+c?SySF zYzJXG3foE8&I62>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ| zZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3~7-NLBb9e zc8IV;g&ijBaA8LXJ5tzD!j2YpjId*c9VhH~VJ8SXQP@esP99*qEV#dR_1Iiyx4GGF zbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBMO>MeO zhq_Inx=p*fP1U+h@48J1yG}$flF6=a6rwcnn*qOr45_Yz*bA+8M>>I+qDePOqzAfxLVdo3GK-h)CE)sUJuuFtp zD(o_0mkYZ>*p|wq`t{M62;5+16Vb=+}Uf6epeOK5G!fq6HldzkG-6HH(Vc!$> zePOo=yIt51g#A$19m4Ju_9J0G7WNZiKNWVDu)BrbBkW#b_X)dS*w2Lhe1P$?;Qrdx zV{@6^=4QLiHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-ysi-e0A_0 z@}RJXggq?m5n+!Cdra8l!k!TJq_C%iJuU1RVb2Qtg|J@=drsK%!d?*eqOg~Qy)5h% zVXq2%P1x(g-VpYtuwM!LwXoj^`|SYZWx@TmtHUf6rW-WT=f>+bp2l zY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghs-ka)xrNEvkIF{*zCgQ5H_c30Syk9-!d4fyhOjk-ttD)2Ve1H6SJ-;O))%&cunmQ6By3}0n+V%f z*k-~u7q*44Ero3*Y-?fL2-{ZJcEYw7wu7)8h3zD4=K;pcg8OS%kIiLvo15)6*W7LH zyxT0G+iauTtft%SsoN~A+ibAgth3wfw%aVa+ibntRG{1Rq1%+B+cc%y)TY~XsM{2( z+qA3ORIS_euG^Hb+cdJ<)U(@kwc8Z8+qAgbRJz&2e245Z^3}n2$gaY66SljsJ%sHk zY%gJZ3)@H7zQXnsw!g3ggdHgCAYlg!J4D!_!VVL5xUeIH9VzT6VMhx)M%b~!juUpg zuoHxxDC{I*Cl4@Q7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r|-DZQ`W}V$; zx7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLSrVtKFu! z-KNFerqazG<~!t+k*^NELrxX;6=7c$_BCN&7j~Mk(}kTO>`Y;22|HWZIl|5r_6=d* z6!tA)-xhYBu=9moAnZb67YVyq*d@X)6?U1h%Y|Jb>`Gx*3A=iL@v`9l+SOxonce1Q zyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|L zHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe*Nl91@Evlku}SG$KEQZcaDVOUvAN7{bF30c~ICx!X6g(h_FY6JtpjNVNVEqQrJ_%o)-3u zuxEw+Lf9{bJtypWVJ`@KQP@kuUKaL>uvdk>ChT=#ZwPx+*sp~BTG(%d{dR!yvf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3>jeK?R z9rCuYcZ9tw?03R`FYG;G?+g2bus;g>K-h=EJ`(n^us;d=v#`Gi`>U|O3H!USPlSCc z>>tAZDePau{w?f3!u~7lGhv?#`=78c1{g03?yp@vHka9LZnoQ8bGNzkZnJ=HvyE=E znr^eFZnLy*v%zk&&Tg~YZnNlav-NIMfo{`>Zc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wu%iUw(&-Dr_`iqYE2D*qFk`5;nH5afFR4 zY&>D(3!6aLgu*5gHnFftgiR`JGGUVon?l%>!ln{7wXkV~O)G3VVbcqnLD-DKW)e2@ z0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry7S%u9eY<6LD2%A&bT*BrSHjl7*h0P~yeqjp;TTs|S!WI^`h_FS4EhcPn zVM_>GQrJ?$mKL^*uw{iUCv16PD+pUr*h<1y9$>sIxW9Jw*j#3}x!G=W&E4kCyUhZ+ z%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H z)w)gZx=jhYO(VNaJ-ba;yG?PsO^drtrJFs>cgQLuUmbjhtSW3ZVXF&UL)ekHdJ*oMM361K6hO@wVKY%^h-3)@22mcq6YwzaTrgl#KqJ7L=k+de+3&+HH#4ZCc!I zD&6d1zC(5y`Rd?1WLIIk3EN%R9>Vq%wwJKIh3zA3Ut#+R+h5oL!VVO6kg$V=9U|;d zVTTDjT-Xu9judv3u%m??BkWjV#|b-L*a^Z;6n2uZlLr_t3+}I7JvNuwZEm*PTywX% z^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wnp>9*C zZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br=^$X5s7A*TxaimB7zscBZhigq=I#@3cF0$ z<-)EIcBQbZgk3$rcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr} zo85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7 z;&z)BcbiH#dzkN#Yev30_zt;N*mc6L7xo=t-xYR)up5QlBPleqj>~3NA2)kFcgO=HUmbjhJSglT zVGj#?MA)Ok9uxMsuqT8)DeNg>PYZiS*t5cZA?%mJo)h-Guor~ADC{L+FAIA`*sH=` z6ZX2WH-x<@>{r5mE$lbKemlT;S#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3CcM!q`u4tZPHJHp--_B&y}7xtd8_l5mI*dK*`AnZe7 z9|`+d*q?;`S=e8M{Z-iCg#BIEC&E4z_77qI6!tG+{}%QiVgD8OnXu1={ZH5z1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE<1 zFTX=Z6*ii%(S?m6Y)oNe2^(A3IKsviHlDEYg-sxALSYjLn^@Q+!X_0qnXt))O(ASb zVN(g4TG%wgrWH1wu<3=(AZ$iqGYOk{fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{ z={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dX zHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA+wBpb?|@4tiom!HoLGngv}{zE@5*En@8BZ z!sZh;zpw>_EhuauVG9deMA)Lj78AC(uqA{oDQqcWOAA{@*s{Ww6Slmt6@;xQY$ahU z4=`R9++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc64~hOJQ3H+gjK*!nPH*ov`hN?I3JNVLJ)id4Tb<;QrdxV{@6^=4QLiHFujk?=}nQ zHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&* zRqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yyq+e_Hq z!uAoiudw}u?Jw*AVFwC3NZ7%`4iR>!u)~BMF6;;z#a z3Oh;I$peg+1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ|ZMRu; zx7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtFw`p;= zsdTf4`3^Z{a$#2pyHeOy!mb`*yezoCcJ^foB3;T|+ z?+Uv?*p0$&5_Yq&TZG*z?0dq#FYGp9w+s7$upbJ$L)e|dekAP2!hRy`r^4{(&I z5cW%9&k1{8*bBm56!wy^mxa9|>{Vf}342}G8^Ycc_A6n(7WNxqza3z_EV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yG`%h}EbK4B{wnNm!u~Go6JehU`-iZ9 z3j3F^e+&DMu>T7COxWkb{wM5<0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm5k+m){|y3L8z>=)%SjHm0z#gpDn19AV=M8&BBy z!X^+lp|FXBO)P8@VUr4*OxWbYrVuuzu&IPiEo>TL(+ZnT*!03?5H_Q*nS{+ez<613 zf9>kAxy){Jv)$&JyUm?5) z6tZc~nK)0A#gn{LygZd0gk)2?n)wQke9 zZd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9kR;ER|nrAs|s69*y_U85VoeUwS=uLY#m|i z3R_Ru`ocC4wxO_%gl#Nr6JeVQ+f3Nz!nP2$rLe7pZ7pmYVcQDZPT2Osb`Z9su$_eM zJivHaaDVOUvAN7{bF30*;UwX!gd$7hp;_`?Imn)VfzT%SJ-~S_7`@5umgo1B}X-f2s>8Tal(!lc7m`Ig`FhqanH>~S8h=M4BfQkwzA)qJ+e_Hq!uAoiudw}u?Jw*AVFwC3 zNZ7%`4iR>!u)~BMF6@W_#>;~HYgdoWWpe+w7^^EUnvY zu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N z+jOa$#2tFkTkiU%Ps2 zF0)oaT-KG!SrX1a- zDcz@A-KMMErnudv#oeaT%^v1E^foB3%fzsjlymccC)ZsgxxCaHet65yF=KW!tN4wx3GJJ-7D-qVfPDr zK-h!A9uoGjut$VFD(o>~j|+QZfbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@n zHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyf zjqEn{>^5EPHpT5WE$%jzZuT(WAy1Bcb?_bXl(46TJtOQ{Vb2MBUf2u5UKI9{u$P6s zBJ5RRuL*ly*c-y$6!w;|w}rhU>|J5+3434I2f{uS_K~oUg?%FIQ(>P8`&`%;1B{mi z_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~b zw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~4jE+BJ8WeMin-iu&)UlUD(%!eM8t7!oDeNOkraQ`t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0L4CKEQfuqlN7MA%P-O)2bW z!hSAnDq+76_Df+?3!6sRw8DNR?AOAk6E?lD8HCL!Y$jnd3!6pQtiom!HoLGngv}{z zE@5*IFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT z%^v1EWS)_)4!%R?6*ix+`GqYYY(ZfQ30qj$BEl9GwwSQr2>Y$D#f2>)Y)N5D30qp& z?}Ytc*dK%~BWzh=%L)6Vu;qoVAZ$fpD+ya!*eb&QG{AUSaDVOUvAN7{bFYwBzX@AS z*y_U85VoeUwS=uL?C-+k9j)u=RwkFYI5!HW0R|wq`jvV>w;5+0fVMhx) zM%b~!juUpguoHxxDC{I*Cks18*r~!!6Lz|=GlZQf>?~nt3p+>Hxx&s9cD}F+gk31? zB4HN`yF}Qf!Y&hbxv(n+7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr z!EUq8ZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5 zZqwCnQ`~OT;%-yvW)Jfna^=WZ2j3xA3A6h20?RMqxJzyII&R!fq9I zo3Pu3-68BwVRs3;Ti89q?iF^Qu=|BQAnZY54+(o%*dxLo75130$AvvHz<613f9>kA zxy){Jv)$&JyUm?a0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP z+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghm11Im){{@5%yJKqY4{M*w=)OF6`^Vz9DQ3Vc!%s zrm(SueM{Kb!p0FcuCQ+l`;M^h3L8(@_k?|4*bjt_FKhx~6AJsGupbGVNZ7=}CK+J7 zEV#dR_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5 zAG%FBx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yGQK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGc zZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)JfnGSA3Y2j3y{3Y$;Z{K6IxwxF<_}05w@(b<%IoF*z&?w5VoSQm4vM< zY!zXD8eqIExW9Jw*j#3}x!G=W&E4kCyUhZ+%{IEtYP!vyy3NwM%?7*8I=jtoyUn7z z&DOh31-eZix=lH{O;fr}ZMsc|x=o?FO}n~H)w)gZx=jhYO(VNaJ-ba;yG?PsO^drt zrJFs>cgUYdzB>30Syk9yg#A_6--N9uY;|F42wPLwTEf;A_IF|b5Vnr6b%p&?*m}a& z7xph<8wlG_*ha!O7WQvp{}J|IVgD1hiLgzDZ6<7UVOtC^UKZS6yLxOcv)kNkx4GtS zbLZV=0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGP zP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_%aN}RzC*SWwzaTrgl#Kq zJ7L=k+d_4L)f0e_7b+YuziH>D{Mbu`wKfj*nz?h5_Yh# zLxdeF>@Z=63p-+f@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{ zHoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD z#qBmN?lzTf_AuWeM~-}T@EvlLu%m??BkWjV#|b-L*a^Z;6n2uZlZBlk>{MZ=2|Hcb z8N$vKc9yWSg`FepTw&)4J73rZ!Y&kck+6$}T_WsKVV4QJT-X%@jF$!X*RCF$%j`Bc z+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(xpL&IgYS^5gk3G{ z8e!K8yH42k!fp_Dqp+KV-7M@DVYdpqP1x=9v)3VTf0q-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$de;q9ejs8CG2To&j@=~*mJ_37xsd%7lpkf>}6rE2zyo7 zYrSdso?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%YtAQH6~r>}$eC7xr~w-w-y2ux|<*Q`lI-z9npIVdDrJSJ=0OeMi`Lg^efdd&0gi z><7Ze7dC;g35ESo*pGxwBy3_~lMFCk7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYr zPu*r|-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh z-KLSrVtKFu!-KNFerqazG<~wB4k*^N^5BagM$%IWVYzkpN5%yDIQwsZ;u%8Q? zO4u)i{ZiP}!ln^6t*~DS`?av?giSAO24OP_n@QNr!e$XRtFYOG%`R*XVRH(bOW524 zjF$!X*RCF$%j`Bc+ikA7+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=S zx9LN-DMzrEakr^-vxoT( znP=pygYS@eh0P~yeqjp;TTs|S!WI^`h_FS4Ehg+Y!hS1kabZgcTT<9k!j=~HJ7K>U z_6K3h2wPUza>D*7YT3$MA)Xn zHWRkFuq_4{FAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7 z=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2 zZd2)I5Az+e<;YhD-yvHG+gjK*!nPH*ov`hN?I3JNVLJ)iS=cVZb``dpu-%32A#6`! zdkNcH*gnGc6}F$S{e>MM>_A}$2|HNWA;Jz7c9^ikg&i@#cv*0N?dq|)%x-hD-R7FR z&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oG zLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#BS*eE_zpQr*wMm{5q7Mw z;z#a3Oh;I$-+(%cB-(`gq<$z3}I&qJ4@Kv!p;$PuCVijoiFSHVHXO!NZ7@~ zE)jOAu*-y9F6@c{#>;~HYgdoWWpe+w7^^EUnvYu-mM& z+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO-QChT@$ zcL=*v*j>Wz7Iu%YdxhO6?0#Vn2zyZ2L&6>w_K2`Yg*_(habZskFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1E^Wi23wuG>i^5(K_Oh^7guN>4HDRv{dqdcp!rl`0wy<}Ey({cJVebq3K-h=E zJ`(n^uup`2D(o|1p9}k9fbp{6{@T@JbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^ z8|*gg>^8gYHjC~yTkkd%=r(=mHs$CxP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{ z>^5EPHpT5WE$%jzZuT(WA*0Op<#)(egnd=msKQ1Q_BCOn3;VjTZwMPh*f)iZDQqlZ z-x4;quyKTqE9~3Cz9a0r!p0N!Jz?J$_5)$#3!6aLgu;F(>_@^T5;n20Nd_1%3+}I7 zJvNuwZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4j zZqt-*Q=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Bpqj$X5sd zhx}OBWWpvFHifXC2>Yq9DTVz^*w2McCF~c%ekp8fVbchkR@kqE{aV;`!loBCgRmKe z%_MAQVY3LERoHC8W*0VxusMazC2Z~i#>;~HYgdoWWpe z+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6 zl(5@0vfI?N+jO_EhuauVG9deMA)Lj z78CXxVZRl&xUeOJEh%g%VM`19ov_~v`-8A$ge@yZc~nK)0A#gn{LygZd0gk)2?n)wQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge} z9rEXquMWOLRu%RaVSg3&H({#@TV2>1!qybFmaw&j{ax5UgsmfNU19$eww|!{h5bv| z2EsNJwvn)nh5cLDe}w&4*#CrWB5YG(n+e-o*cJnfmj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnY zx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrcKa^$On?~tv8Z7pmYVcQDZPT2Os zb`Z9su$_eMENmBHy9(P)*zUsi5VohVy@c&8Y#(9!3foWE{=yCrcA&6>gdHsG5MhT3 zJ51Q&!j2eVyezoCcJ}X-f2s>8Tal(!lc7m`Ig`FhqWMQWWJ5|_e!cG@|wq`t{nO5;5+0hVOI;gM%cB& zt`l~>up5NkDC{O-Hw(K(*sa2D6L!0>JA~aS>@Hz<3%f_yy~6GjcE7L(ggq$iAz=>- zdqmiy!X6X$xUeS%7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8 zZnN8Nv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCn zQ`~OT;%-yvW)Jfn^5n=@2j3x2342=DGs2z~_MEWig}or`MPV-qds)~k!d?~jny}Y} zy&>#PVQ&e0Ti83o-WB$qu=j<1AnZe79|`+d*eAk175161&xL(4z<613f9>kAxy){J zv)$&JyUm?I6gHNyZwVV)*f_$*74~gm-x2m*VdDw=p0Mu=`+>0W zg-sxALSa7?_9I~v37c5hBm<0>1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@K zx7lE~S!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXz zsb{z8YPTtFw`p;=sdTf4`3{+M|wq`<{A0w z;5%eqVe<)_U)Tb|78JISu!V&!B5YA%iwXOUu-^(>T-XxAmK3&>u%(6lPT22-{Xy6= z!j=`boUlI%TVB`-!d4WvlCYJ9ts?AC1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cn zO}E)ow^>@Z*XSdmHw^?+z*?PCBK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4 zw<%$_X=JylXSeBUw<&J7X>qrybhC%~4*B!QR|nrAs|x#zu)hlXo3Pb{tuAa0VQUIo zOW4}N{x0kv!qySCuCRX!TTj^f!u};}17RBq+ep~P!u~DnKf?Yi?0>>G5w@wY&4g_( zY>NTL%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!VMh!wUKZS6yLxOcv)kNkx4GtSbLZV= z0o`UB-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o z-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb$dRuOzC(@@cC@f#gdHpFIAO;N zJ3-iq!cG!)vanNxohs}!VW$f_L)e+Z&JuREuycf+E9^XB=L@?)*oDF_5_Yk$ON3o2 z>@s1O3%g=~@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUM zi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN z?lzTf_AuWeSB`vj@EvlMu&ae#BkWpX*9p5`*bTyN6n2xan}yvX>{em73AjF$!X*RCF$%j`Bc+ikA7 z+uV7#SwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(d2-~dgYS^1ggq_n8DY-~ zdrsK%!d?*eqOg~Qy)5h%VXq2%P1x(g-VpYtu(yQ0E$kg(?+SZQ*!#jh5cZ+4kA!_J z>=R+13j0jh=fb`iV7x52zjpQ5TxPeq*=}>q-R91_%>ug3HoDDfy3L-t&CWS zO>w(Ti@Qywn?1~T$S8As`5p2VVP6$Cs<6?7eNEWt!oDu-8^XpA_Dx}93L8t@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbze zOY1fp>^AG{HoNUMi|#gC?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh z>^Al6HeKyD#qBmN?lzTf_AuWe^Nf6T@EtO*u=#||FKhu}3kq9E*uugV5w@tX#f1Gv z*l&d`E^G;5OA1>`*wVs&C+zpa{vd1_Vap0zPS_uXEiY^ZVJiw-N!ZH5RuT560mjRM z`)gN^&1H6*o9#B&+->f>+bp2lY@^$(rrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghx~cu ztAp>5RfYXU*k6VHP1tI}Ru{I0ur-CPC2VbBe;4)-Ve1H6SJ*#=ttV`KVgC}gfv^pQ zZ6s`CVgDBPA7TF$_CH~p2-{THX2LcXw#5MBWx@TmtH0)75TM+-}q2Zd2)I z5Az*z_TA|3ACBiNhcA2otg}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&V zb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#D@VRM_zt;B*wwx5k| z>;_>s3cE?z&BAUGcB`=4gxxOe4qNZ7-|9ufAa zu*ZZwF6@Z`#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6 zEV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jOuvdk>ChT=#ZwPx+ z*jvKh7WR&?cZIzt?0sP$2>VdjN5Vc9_KC1hg?%RMb75Z$FkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMMErnudv#oeaT%^v1EWRy9-{0{kwu&)XmRoH04 zz9wvRVP6;a4Pj#l`=+olg^eZbTf)W`Hjc1yg?(GtcZ7Xc*m%OeC+z#eejsdoVG{_O zP}mQJ{YcnE!X_3r$pGVJ!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3# z*4b@#+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3& z+HH#4ZCc!ID&6d1zC$J*`Rd^RkRJ=1OxWbYrV#cMVLuf%rLdm~`?;{Gg#AL;FNIAl zY#L$H3j39?UkjT~*!03?5H_Q*nS{+OY!+d&3Y$&X?84>{Hm9(;gv~v`cv*0N?dq|) z%x-hD-R7FR&7F6f1$3Kjbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()f zber0An+|oGLUo&Vb(^Yno8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#c}BiE_zsy@ z*nGm~7q)<~1%)jnY++%G2wPOxV#0nS?6<-e7q*13C50^|Y-wS?6ZU&ye-O5euw{iU zC+v^HmKU~yuoZ=^By442s|fqk0OMuB{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+D zZI;$;HrQ>}*==^)Z5G{aw%%1#v?61Q9CTulfs|#C0*qXxD61KLm zzYF_^uyus3E9{@b))ThAuzv~LK-h-DHWIe6uzw5tkFfs=`=78)gl#HpGhv$x+hTz6 zvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbL zedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3t zj(m0S9kP|Mt%YqPY+GU53EN)S4#IX6wv(`(h3z72S7Eye+g;cm!uAxlm$1Es?IUbo zVfzW&U)TY{4it8fu!DsiBJ5CMhY34e*bxJamj(CNt{$7q>^3*sZLYc7+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU z>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxraUa^$On?~tQ}9WCq_VaEzPPT29nP7rpY zu#<$HEbJ6vrwThw*y+N~5O$`pvxJ>3>>Od|3Oi5O`NA#`cA>C~gk3D`5@DALyG+>S z!mb!#yezoCcJ}p}x2)kC;b;7O}c7w1Rh213VW?{DoyH(h2!fqFKhp;<^-6ia9 zVfP5TSJ-{R?icoeum^=bB|wq`o*en=;5+0gVNVNtM%c5$o)h-G zuor~ADC{L+FAIA`*sH=`6ZX2WH-x<@>@8t$3wuY{yTaZR_P($WgncONBViv4`$X8M z!afuBxv(z=7%vO%uU$Phm)UJ@w%c5Dx4H9fvw&{1jc&7=ZnLLuv$Srr!EUq8ZnN8N zv*>QK^=?yvZqtWuQ;u%alx|a-ZquP|Q>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT z;%-yvW)JfnGRjD#6ZU;!KM*#)unB}sDC~#Aek5!nVG|3RWPtIq;QrdxV{@6^=4QLi zHFujk?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVyHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yxHZe0A`D$d83hCTwzH zQwaNsu%8N>QrORg{an~o!hRv_m%^qNHjS`ph5bs{uZ2w~Y~8ge@v;F=4+E_FG|# z3tK|ilERh}wzRO{3H!aUKL}e!*s{Ww6ZS`8%L`jU*owkd61K9iRfPR%fbp{6{@T@J zbD7=dX1mQbcbhx!HVf!B+vql{={9@nHcRU^8|*gg>^8gYHjC~yTkkd%=r(=mHs$Cx zP3bnZ={6neHihao?dmpF>o&dXHYMyfjqEn{>^5EPHpT5WE$%jzZuT(WA%7nE>fk$M zRbhV-_E%wl6SkVL)rGAgY)xTn30qs(--Z1{*gC@274}bI>j_(5*uR8rAZ$Zn8wuN3 z*uRDSN7#Rb{ZH5?!ZsDQnXt`;Z85-jS#W>t>an@ZZgaEU=9;_Bop+lBbenB-o7Hri zJ$0LFMXFYEwe2MRk#*ulaM5q7As!-O3!?1%xz z%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!~vvg2s=~QS;Ed1c8;)f zg`Fqtd|?*|yHMCg!Y&qeiLgtBT_)^uVOI<=UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB z-DWl2W>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Y zrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bmb%8{=QzC*4OcD1l;gk3A_I$_rfyFu8E z!fq0Fv#?u)-74%hVYdsrL)e|d?h@i`F z3wvUK@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC z?=}_aHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf z_AuWePmX+b@E!7$u&0GRBkWmW&k1{8*bBm56!wy^mxa9|>{Vf}342}G8^Ycc_Li`> zg}o!}U19GDdtcZG!afxCk+6@2eIo2rVV?>6T-X-_jF$!X*RCF$%j`Bc+ikA7+uV7# zSwOehMz>i_x7ky-Sz5Q*V7FOkx7lsCS#-DAdbg=Sx9LN-DMzrEakr^-vxoT(8D;J-zeBzv?5n~?6*ii%uL&Dn z*w=-9L)aL?zA0=>VPgsVmawsfjU#MaVc!<^9bw-UHlDEW3H!dV9|#*?*aX5R6!t@5 zKN2>Pu!)6DGQfCQaDVOUvAN7{bF3n4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9( zrbFGPP~E0o-KJ{Yrgz<@gx#i*-KL)1rmNkixZS43-KNsb9_Bk_o{_H(zC-2}HlMKh zg)Ja#L17CCTUgj4!WI>_n6Tdn`>n9Wg)Jd$NnuL~TUyxfg#BLFAA~IkAxy){Jv)$&JyUm?U|O30qCr>cZ9#wx+PPgsm;?@525e zY#m|i3j3$9^@Oc2>|eq*5VoPPjf8D1?BBxvBkaGz{wHh`VVeruOxWhawisZ%EV#dR z_1Iiyx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FB zx=mBMO>MeOhq_Inx=p*fP1U+h@48J1yG+1RoHIAb{DpXuswzCC2VhD`v}`t*nYzH z7j}TK1BD$V>|kMs2s>2RVZsg?C0) z3p+*FslrYZcDk@Lgq0)75TM+-}q2Zd2)I5Az*z z<;YhD-yv5CyIR;a!mbr|ov`bL-5~5nVK)i8S=cSYZWVT$u-k>*A?!|JcL}>&*geAT z6?UJn`-MFq>_K4<342)BBf=gP_L#88g*`FAcv*0N?dq|)%x-hD-R7FR&7F6f1$3Kj zbeq+5n>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yn zo8EPs5_X$LcAI*3o33`7;&z)BcbiH#dzkN#Cr7?I_zrnW*wezE5%#RG=Y%~k>;+*j z3VTV|%fem}_NuVgguO284PkEzdrR2c!rl?~uCVuny)WzoVIK;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|ol zz1viv+w`H^l%v};rQ6h|+jOYg6sp^_tJ_qq+w`v6l(5@0vfI?N+jO*MyBO?CZk5A#4m`-xM~cu(5=FOW4@L#t}BIux|_d zjcgUn8Umg4(@?&9>37cHl6vBQY z?5Dz}6!tS=KNmKYuwMxKrLd`mO(SetVZRdgYhlv~n_k!q!e$gUldzeE%_3}8VY3OF zUDzDL<`g!Uu(<~qFAMIkT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsA zv)gX7=x($1Zc~A7(}!+Tj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM z+-}q2Zd2)I5Az)|&&XE?-y!n~n@`yM!WIy=psq-R91_%>ug3HoDDfy3L-t&CWSO>w(Ti@Qywn?1~T$e%~PI`|G*RoGvI z{Z-iCgsmoQbzy4=TT|Ft!qyh{cVYh!wvMoMh5b|5dcxKh_Ag-@2-{HDM#450_HSYT z5%ynU{}Z-}uuX++CTw$ITMRH>7TjOEdTcJU+uUrox#n(j=iO!j-DVrzW;NYrPu*r| z-DZQ`W}V$;x7}vZ-Dd0ErUKoj58b95-KHtsrZ(NCL*1rO-KJgLrfS`$cipCh-KLS< zrk>rVtKFu!-KNFerqazG<~wA|k*^NEL$(sOwXki3Z7Xa$VcQGaLD-JMb`rL;uw8`h zDr`4ly9?Vx*q*}n61KOneT3~RY(HW93p+sAfx-?FcCfHRgdHmEFky!aJ7R$Gvf%#O z)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj z=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3Zj(m0S z9deYgqlFzK>{wyP2|Hfc3Bpbkc9O7@g`FboRAHwHJ6+fr!p;^3*sZLYc7+cM z*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%e zVYg{yx2b2h>1wwrZntT1x2bfqhxrb>>gqF3cF9({lXp)_Motbggq?m5n+!Cdra8l!k!pl zyezoCcJ}g@o2zyr8bHbh%_JXh%g}o%~Wnr%fdsWzL!d@5lhOjqP-WT?Pun&cOB|wq`Mw$1^?~tzu`>L=}g^eccYr;ks_H|+3 z5H^OeZwebz*jU28C2VYA;|Lp9*tdm!N7#3TjVJ7T!oDx;2g1e|Hi57Sh5b<2kAzJm zY+_-P3@~06++VwTY%a6g+-$eG=5BN6-DUyZW*gmRHQi=U-DYXsW`o^ko!w@)-Dc6< zX6xOi0^Oz$-KHGfrYYT~Hr=K}-KJ38rd{2pYTc%H-KK=yrjgyIp53Oa-KMzRrp4W+ z(#;;`J7m(4uMYkX`LVFcgiS7N3SmDH_ETX~3j3L`p9`Bx*e`_rQrOhOrV%!+uwM!L zwXo@gO)qQ)VKWMwN!ZN7W)U{4u-SyoE^H2Aa|)YF*xUn*mj(CNt{$7q>^3*sZLYc7 z+cM*;BV!TDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;R zRJUnYx2amU>0P%eVYg{yx2b2h>1wwrZntT1x2bfqhxrbfXXLAc?~r+g%_nSrVG9Ub zP}oAk78bUMutkL}ChRxDek*KoVM_>GQrJ?$mKOFqVZRsl2Vu(yTUOX|!u}|1d0{IE zTT$3b!d4cxim*QoFkTkiU%Ps2F0)oaT-KG!SrX1a-Dcz@A-KMME zrnudv#oeaT%^v1EY+F{|Vbf*rviZ6SldqEe04b3+}I7JvNuw zZEm*PTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-* zQ=4wnp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^BuC~$X5s7AzKOC zTG%$iwiULWut>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L< zb(;-#n{{@Z-FBNrcblzun+kNBK6IOMbepDho7!}n4t1MCb(?l|o2qr2-gTQ2cAG|a zn|gMeu6CQ^cAFM=n@Tr(nD3AyN4`4v4mnEL(ZY@qcC4`DgdH#J1Ysu%J4x8d!cGx( zs<6|9oi6MQVP^_EOW4`M&JlL5u=9kSFYE$g7Ye&b*u}yw5q7Dt%YHUuxo`~C+vD*Hwe2?*iFK27IurUTZP>w>~>*y2)k3*UBd1bc8{=oh21CY zeqj#?dr;Uz!X6g(h_FY6JtpjNVNVP&UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2 zW>4K_Y29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@ zgx#i*-KL)1rmNkixZS43-KNsb9_Bmb$&s%PzC)f8_O!5Pggqg zvanZ#y(;WAVXq5&L)e?b-V*k@#7X3;SY# z@v`9l+SOxonce1QyUjIsn>+6|3+Oi6=r*hAHhbzeOY1fp>^AG{HoNUMi|#gC?=}_a zHht(e<>)p|={B|LHXZ6Vh3Yo#>NZvDHofaMCG0kh>^Al6HeKyD#qBmN?lzTf_AuWe zqs;f^cgRZc~nK)0A#gn{LygZd0gk)2?n) zwQke9Zd1Z;)5va9&u-JzZd2TD)8cMZ>1Ge}9Wv?2R|o%x{8-pz!X_6sg|MFp`>C)g zh5by}&xK7T>=(j*DQs$C(+HbZ*sp~BTG({LrWZDYuo;ETBy473vk042*lfaP7dD5m zIfcz7Z0-TZ%YyrBSC7qQcAJ~+HrL#3?!4P9pxbPt+pMPB?5W!QK^=?yvZqtWuQ;u%alx|a-ZquP| zQ>bp!u5MGcZqvJNQ^Ic3$Zk{5ZqwCnQ`~OT;%-yvW)Jfn^5>DS4!%QH74{cle--vO zVXFySUDz7J))cmuu(gH#UD!W_ts`t*VgD4ip0M?W{Y%&e!ZsAPk+6-0{ae_7g#B08 z|AcKKY*S&I3EN!Q76Xiz1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~ zS!cJ|ZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8 zYPTtFw`p;=sdTf4`3~7~WM+X~xG*!IG95VoVRorLWyY!_j>3foQC z?!xvEwx_VYgzYVCA7T3n+fUg3!VVC2ps<649W3k+VTTGkOxWSVju>FPEV#dR_1Iiy zx4GGFbIsl6&b!S5y3IDa&1$;Mp1RG_y3Gc=%{sfyZoAE*yUo_SO$EA5AG%FBx=mBM zO>MeOhq_Inx=p*fP1U+h@48J1yG|$Y;2)k6+Wx_5OcEteWWx@TmtH1R|~sF*tNp06L!6@8-(2`>?UD13%fFAMIk zT|G9J*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~A7(}!+T zj&9SGZd03X)1hutsBY7)Zd0{x)4Og{!fw;ZZd1>0)75TM+-}q2Zd2)I5Az-J_cH63Hw;sC&E4z_L;EHg?%x=cv*0N?dq|)%x-hD-R7FR&7F6f1$3Kjbeq+5 zn>}@#rFEMPcAIr}o85MsMR%L6cbf`yn?7`#a&()fber0An+|oGLUo&Vb(^Yno8EPs z5_X$LcAI*3o33`7;&z)BcbiH#dzkN#QRe^hJLD_EzA9`~VWSEAny}G@eO=f$gpDEW zo5IEvHkPn&2^(A3IKsvi_HAL`5%yhS;|cqoun^@Q+ z1B{mi_t&l-o6GDrH`{Hlx!c@%w^=~9*+#cnO}E)ow^>@Z*XSdmHw^?+z*?PCB zK)2~bw<$-rX-c=LO}FV#w<%P&X;-(YTDR$4w<%$_X=JylXSeBUw<&J7X>qrybhC%~ z4w-c1tAqbTek^P{r5mEo?er z(+itH*o?wv5;n82S%l3hY&K!D3!6jOoWkZ3HunJIWx@TmtH5)6ti_x7ky-Sz5Q*V7FOkx7lsC zS#-DAdbg=Sx9LN-DMzrE zakr^-vxoT(`SZwE2j3y93j2$&zY6=Cu+@aEE^G~9YYJOS*xJJWF6rV ztKFu!-KNFerqazG<~!ubk*^NELyi)5w6J4@9V_fOVaE$QLD-4HP7-#quv3JcD(p02 zrwcnn*qOr45_Yz*bA+8M>^x!T3%fwrg~BcpcCoNagk37^GGUhsyJCRxvf%#O)njv+ z-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQRHWlbLedspj=r&F1 zHnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGnFyA3pj(m0S9debh ztA$-7>{?;h3A~|c9XE1h20|TR$;dZyIt5F!tNAym$18q-6QN?VfP8UU)Te} z9u)SFu!n^`BJ5FNj|qER*b@Vcmj(CNt{$7q>^3*sZLYc7+cM*;BV! zTDRF?w^?Vm*=@I3bhp`hx2Zt4=|i_EN4IH8x2a9H=}@;RRJUnYx2amU>0P%eVYg{y zx2b2h>1wwrZntT1x2bfqhxrb9a^$On?~td2JuU1RVb2PCPT2FpUJ&-8u$P3rEbJ9w zuL^rj*z3aH5ca09w}ibd>>Xk63VTo3`@%jD_MxzkgncaR6JehU`%Kv9!oC<_yezoC zcJY(E@q~R( z*!P9~K-l=gCJ;8EupbKhk+6w`O)PAZ0mjRM`)gN^&1H6*o9#B&+->f>+bp2lY@^$( zrrYeP+bpfyY_Qv`v)k;p+bp`&v)gpF+Z4Ckw7A<;y4k~ghfF&1)xrNEKNdEbu*ro@A?zo@ekyEAVLuc0 zb74~n`-QMy3Y%KkG{UA8_A6n(7B-!*>4nW8Y(`--37c8iEW&0LHk+{7h0P&sPGNHi zn|pxqvf%#O)njv+-R5Sy%{6zMJMT6N=r-HvHmm72d+Ihz>oyzgHtXy*yX`iM?lxQR zHWlbLedspj=r&F1Hnr(C9qKlP>Nf4_HdX63z3Vn5>^6<;HudZ_UF|l-?KUm$HkEGn zFyA5bjC^(Q9Wt-5`Gn0cYyn{l3R_6n!on62wy3bhg#AX?Z-p%`YzbjY3R_Cp(!zcx z?DxX{AZ!_7%L-dg*dK*0FKh*2D+*gl*vi6I5%#A6#>;~HYgdoWWpe+w7^^EUnvYu-mM&+w8X6EV|olz1viv+w`H^l%v};rQ6h|+jOYg6sp^_ ztJ_qq+w`v6l(5@0vfI?N+jOj+y{*gu7>Cv1IT{}Q%=unmQ6By3}0{}%QiVgD8OKVh2) z+f>+Q!ZsJS#Q@`F!Tq(X$L2D-&CPb3Ywk98-fb4pZMM;ER?}_v)NPj5Z8q3#*4b@# z+ie!zZMNQRD$s5E&~3`mZJN?;YSV2x)NKmYZQ9jss@83K*KJDJZ5r8a>e+3&+HH#4 zZCc!ID&6d1zC*Sg`Rd?1WGi7?3)@E6w!*d(w!N?&gzYG7Ct*7a+eO%}!gdq3yRbck z?I~<8VS5YPN7%l?_7k?humgl0DC{6%2Maqy*rCD>6Lz?;BL)~R3+}I7JvNuwZEm*P zTywX%^KP?%ZnKSUvzl(Rr*5;fZnME|v(9d_+itVyZnO1nQ-N;Nhi+4jZqt-*Q=4wn zp>9*CZqu%AQ?+i>yKYm$ZqvwaQ_pVG)oxSVZqwp!Q|V?8^Br>J$X5s7Ax8;2TG%nd zjum#Cu;YcDAnZh8CkZ=Q*eSwJ6?U4i(}kTO>`Y;22|HWZIl|5rcAl{Fgt>an@ZZgaEU=9;_Bop+lBbenB-o7HriJ$0L^4*h|7*7WRs;SB1SM>~&#p2zyi5Tf*KJ_KvW3g}o>2ePJI6 z`%u_N!af%EiLg(FeJ1R4VP6a|UKZS6yLxOcv)kNkx4GtSbLZV=0o`UB-DWl2W>4K_ zY29Xn-DaKLX1CpD(cNb2-KGNFrVrhw9NnfV-KI9(rbFGPP~E0o-KJ{Yrgz<@gx#i* z-KL)1rmNkixZS43-KNsb9_Bk_lm);14*80(uL>Jg*l5DOCTw(JUl;ZbVPgpUrm!)E zjV0_`!p0Uhj<9iseOuUfgnd`oc*4FX?EAugAZ&bL69}77*bjyMNZ3TeCKfiy0OMuB z{k5yd<}$m@&32n>?lyPcZ5GgNw$W`?({1+DZI;$;HrQ>}*==^)Z5G{aw%%fry79}AmI*yO^d5cU&cKNU8mu%8M0xv;5({X*C;g-tDN8e!84`<1X?3!6^Z^ulHk zHlwhagv~5$7Gbjrn@!m4!sZY*r?9z%%{{<)S#W>t>an@ZZgaEU=9;_Bop+lBbenB- zo7HriJ$0La6j<7L79wX4VGGP}*qcAIPNHh11_7SL_B(QQ`KZT8e{mey@H*lpI?ZFbvj7Ts;O z-fb$-ZTiq{%F%6_(rs$fZ93F#3e|1e)orTQZF<*jO4w~0*=_3CZMxcRirZ~k+-)k| z>|wq`{yg&4!FR~2!u}%cufqN&Y&Bu43tL0jn!?r+wzjap3;Tz#b%d=e?4QEc6Slsv ze+k<_*oMM361K6he+&DMu>T7CpRi4YZ7OUtVVeuvVu10o;QrdxV{@6^=4QLiHFujk z?=}nQHrwbntLZj->NZR3HXH0V>+CkW?KX?NbVy zHtp&*RqHmr>oz6qHjV5y_3SoX?KZ{jHZATpm2UPh-yvI$e0A_0vX!u{g>55jTVdM? z+g{iX!gdt4ldzqI?ILVfVY><2UDzJN_7t|4u)T%tBWzz``w81$*a5;06n2oXgM}R; z>`-Bc2|HZa5d(~u1^3sk9-GVTHaFXCuDRRXdAC_Wx7kLwSxvXuQ@2@Kx7lE~S!cJ| zZMRu;x7m8PsX({sL$@hMw`oeZsZF=(P`4>mw`o_msam(`UAHM=w`pXzsb{z8YPTtF zw`p;=sdTf4`3^a9=a?A3Oh~M>B7zs zcBZhigqMeO zhq_Inx=p*fP1U+h@48J1yGD>YGKz1 zyH?nB!mbx~gRmQg-6ZU0VYdjoRoHF9ZWnfkusem_CG2it_XxXJ*nPt87xsX#2ZcQ( z>|tS#2zyl6W5OO6_QU|=Wx@TmtH?L6@3wuS_tHNFr z_PVe)guN;3En#m9dq>#2!rl}1zOWC3eJJcBVIK?oMA)aoJ`?u2urCG}FAMIkT|G9J z*==sN+gx+Ex$|zbfNrymZnK(hv!`yev~IJ(ZnMsAv)gX7=x($1Zc~B(w{ssrT9QqfPz_6%wk5&86%2WQGxqC%+$TJ z@BHr8xwm?&cB|U0kL?_ezWDk)XZ|ntj^EZk_-!qR-`1x1ZLN*p)(-h?EtKEZcKL0s zn%~ym`E4zs-_}O@ZLO!@)~@<(Ew10z7W-|jwAW6{=a8f}|Nb13A;>ZYS*9S%9AsI7 zENhTu3$pA%mLtf{3$mO+mMh3|2U(sV%Nu0*f-HZK6$r9|K~^Zp3I|z{AS)VV#e%GO zkewf7C4#JEkd+Fu(m{4XLZ&ARoj>o?tF4piw{>RywobF();agvx&eM$cf)V%*7$AR zC%>(m=C^eR{kCqW-`2hL+q%(yTX)@WYX$ta_Q7v!IsCRZ#cykE{I+(;Z)>6awzkV} zYt{U=_Reo>3H`P<(r;@${kC@1Z)2XPNv`1nf2Q`&3;?w+;8g!_-)+{zpY#2 zw{@TVwr-l=)*bZQx}APo_ttOgM*D5ub-%3@@Y~u4zpdr)+u9Vrt+nyn+9AKKh4S0l zF2Ai+^V`}xzpW+o+uBIKt@ZTV+Eu@;#r50TV!y4G_S$Lr9MX(eO?(b%9%L23flxYae7Cf~;eZbqcc1LDnV6x&~RdAnP7vJ%X%fko5|(-a*zU$od9Z zzaZ-$WCMb1V31uFWP^fiaF7j2$n<2P^XHv3(-`4H)+q$=YTQ}No>#qB4t$^RwKKN}dhu_ww_-(C?-_{QKZ7r1F z)^_=At(xD~-uZ1Uq2Ja<`faVJ-`1}BZ7r_f))xD1t+dxp%jb}xylUce$gm(A9%Lhe zY-Et71lgz{8y#e0f^2M%jSI5zK{g@CCI;E0Ae$UyQ-W-2kWCA+=|PqnWHW+nW{_PT zWV3>7c96{pvbjMvFUaNx*%d*yAR*I}h0dRM>ebfC^xHbKep{#6Z|j`bJGHep_4Yx3$t7V@fz&moI~Y;llX z8DvX>Y-x~P6=YWj*|H#89%L(mY-NzG3bNHfwkF8d2HCnGTOVW_f^1`uZ3?o@L3T}$ zZ3(iiLAEW(wg=g@LAE2vt_!lALAEO))02hHpLgoj*2(nSI3s-_}j@+q#2(Tes71>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3x3xBYTRY^p zwNQRr+vT^lYJOXL=eMZV0j) zgY2dt+Z|*#2iYw_c59IB39{RQ?Dinr8)SC`*_}bQFUal+vb%%qo*=t7$o2=>eL;4A zkR1rJgF*H{kUbb=4+Yu7LH01=-^XnVu|k{=8GKwoazs)|vI&I?aAt=iG1W z2Ka5=4Zp2hqh%+-F3gM74X~I2fwZ5@Y~uHzpb_L z+u9+&t%dU2+AhDXRrA~0JHM?Z^xN7(!>~N4h9c0f0*|S0RT#!8zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6wbEWYEuTX^ z=2a7)Lp}+zPlN2UAp1PXjtAKnLH1>keHCP12iZ44_HB@z2(s^j?E4@)8Du{M*^fc? zQ;_`}WWNO2uR-=(ko_KHe+1d7Ap0}O{tB|cgY0yWoe8qD37MWObpE_kueMI6-`1J+ z+d9pDTj$(w>jwC3-3`C3TjRHNpZvCNn%~wP^xL|fep~m}Z|g?;ZQXUhtrhUw+6TX_ zLox(e#vscSWSN63OORy^vTQ+?J;-td*?B>hGstoUS?(aq6J&XVEMJi2 z53&M5Rxrp41zF)BD-vWygREGP6%VrWgRDf5l?<{{K~_4*E=b7qWTErtoqDx(GX1vB ztl!pY_S-t=ep@%dZ|iROZQUBbt^4G+b<_N|?x5e+?eyEaw|-kU+HdQw`)#d&-_}0( zZ7ql2)~5Jvt&QK-4*6{@l;75N`E9M5-`3vwZ7reS)<*hmt*77CuKH~)uHV)c`)#eX z*G|jlkYrvp@z+Dj1Xe20_*^$QlLNB|+9W$Sw`CCPCITA=8tE&YySc)z-=M z+d8v;Tc_D?>zw;--2lI>yWzKWYy7tEli$`&^V_cgnnBa>9@6>ep|chx3#!_TU+e6 zwbEWYEuTZ0@v4c>A_1tS=%6M7i8^&tV57>46;r^);Y+!1XlS3)gRDo8^$fCJLDoCS`UF|uAnO-o{ex^kkPQs7%YtlBkPQy9AqknDEOh?7Q?Is8 zrr*|?_1iklep~0y6B+7!R7wej29A-}DK^4r=jzpYjC+uA$7ttIr^+DN~x_4M1?Rllvp_1oHF zzpa(_+G+V5GL%Y)p`i4YF}THa^HE1lhzOn-pY| zgKSEWO%1YXK{h?eQiE(pkj)IT%Y$rIkj)OVIYBlz$mRvv{2;p`$QC4Ida}^@^G?0m zI+=c3XV!1)H2ZCxbHA+{;J0-*{I+h5-`0Kd+q!9fTX)cJ>vsBW-CMt{8|}As*ZsCu zz;A0G{I-_EZ);Qhw${dPYlr-{7RqmHyZp9R&2MY({I-_RZ)+p{w${^cYghfY7T0fU zi~Y7%+H0rfbI3woHSsxQQIIVTvMYmZNsuiKva5pZ>L6PdWXpqWMUbrwvQ^=p z+1emm7i8;$Y(tQ346;o@wmHbI39>Cgwl&DM1=;o>yEe#n1le^#wlm0fC1iTC(E0OD zz1ljNep_eOZ|gMsZJl$!tsCICbvOLBZjIm8ee&D7X?|OG&~NK@`fc4?zpWeXw{_S3 zwpPGzYajf!mcwsrQ~b8p#&2tf{I(X#Z)>~!wpPt=Yw!HFme6l&BmK74({F26{k9g@ zZ)=PFwpQ9}r{#0V^}K50bI1)rc4Ls;6lA-D?B*c5CCF|KvOPg|TaeuzWP5|`jv%`; z$o2)ebfC^xHbKep{#6Z|j`bJGHep_4Yx3$t4)Lmq&mm6)*^@!`RFEAGvZsUWnIL;M$es(b=Y#BpAbT;$ zUJ9}!LH2Txy%J=v2H9&t_Ii-L5oB)$+0h_-E69!o+1o+(PLRDDWbXyp`$6_WkbM|r zA0=dZve5bSPQBVXnSNVm)^F=H`)!?bzpWeKw{rb~Yi?lZDQock0#F$@JSgvwmBr*>CHd`)%C-zpcCBw{>g$w(gVP)=l%uP<~t6<+rtJep`Fzx3z?R zTN~-OwVr-kyXv>KxPDt(?6^S)m{+9Arg;tZ0xG3$o%tc7BkR2(pqv zRw~F!2iXM)nVu|k{=8GKwoazs)|vI&I?aAt=iG1W2Ka5=4Zp2hqh%+-F3gM74X~I2fwZ5@Y~uHzpb_L+u9+&t%dU2+AhDXRrA~0JHM?Z z^xN7NSPoj8)W5z?7|=`A7mARtYVN= z3bM*URwc-)23fTrs~%)Ef~;nc)e5rOK~^Wo>IPZ8AiF5YE)KH#LDnG18U|UTAiE^U z8VA{>LDnS5nkHm=ve5bSPQBVXnSNVm)^F=H`)!?bzpWeKw{f& zWbJ~ieUNnsvW`L4DabkpS(hN|8f4vqtb3642(q3*)+@+*2U(vW>l3s-_}j@ z+q#2(Tes71>)!fp-Dtn9yY9EO0)AWj;J39Lep{R3x3xBYTRY^pwNQRr+vT^lYJOXL z=eMQ%YtlqkgW)^l|i;D$W{m0njl*nWb1-#eUNPkvW-EuDabYl*)>77CCIi0*|s3t z9%R=B*^VH)F35HU*{+04PZm0V-l3f-`1`1+qzGF zTQ|*b>kj&D-A=!)d+WD#qy4t-y5H6c_-*Zj-_~;YZEcF**4p@O?U3KrLiufNm*3W^ z`EBi;-_{cPZEd9A)_VGF?W*6_;`(iEvESB8d+oG*4!NFJO?(cyA;@kFvYUczcaYs2 zWVZy_twFXY$ZiX=+kvsBW-CMt{8|}As*ZsCuz;A0G{I-_EZ);Qhw${dPYlr-{7RqmH zyZp9R&2MY({I-_RZ)+p{w${^cYghfY7T0fUi~Y7%+H0rfbI2iHHSsy*i6DD2$es$a z!$J0RkUbM*&j#6ZLH2x*y%1zC2H8tNb|lDN4zgE*?A0K9Ey!LEvNwY4%^*7(WN!u8 zu^@Xp$leLEcZ2M`AbUT^J_xc8gY2V(Oiva%f8MEATPM?R>&*IXoo2tSbMCiw1N^q` zhTqn$@!Psjep@%qZ|e^FZQV}4t$XXYb))^Z?z-RB3ixg9gWuM2_-$>9-`3jrZS9cX z)oogqopZmf z8{oHfH~hA4jo;RN^4q#;ep`3YZ|ipYZQWbHtsCvPb=Up2R={s-AN;nK!*6R-{I=G{ zZ)=DAwie27YrFimR?Tl~@BFrw&~Ixa{kGQAZ);cmwiefKYm5E1R@!T)<#R|<`+t89 z$q-~2gDg{!We&0|L6$YhvISZ8Aj=VC=LK2LAj=hGxq~cEkmU`sd_k5!$O;5m!5}LX zWQBvQNRSl`vSLA2Jjl)uvJyd7GRR5=S?M6VAR*I}h0dRM>ebfC^xHbKep{#6Z|j`< zZQTIBt-Im3b!+^#?vvlvP4nBjgMM4L({JnE`fc54zpcCOx3vO(Tl?U*wH$t1o8q^% zHhx<>bJGHep_4Yx3$tl6lp{ zUk@o0WMzY_T##KDWaWdbLXcGqvPwZ#ImoI6S=At`7G%|ftVWR446<55Ry)Y*1X&*IXoo2tS zbMCiw1N^q`hTqn$@!Psjep@%qZ|e^FZQV}4t$XXYb))^Z?z-RB3ixg9gWuM2_-$>9 z-`3jrZS9cX)G zt0q2&G!L>CLDn+JS_N6_AZrt3ZG)^`khKr84nfv2$T|gC=OF76WL<--Taa}RvK~R! zGst=cS??h06J&jZtY47z53&J4HZaI83$j5$HaN(JBxHKB(E0ODz1ljNep_eOZ|gMs zZJl$!tsCICbvOLBZjIm8ee&D7X?|OG&~NK@`fc4?zpWeXw{_S3wpPGzYajf!mcwsr zQ~b8p#&2tf{I(X#Z)>~!wpPt=Yw!HFme6l&BmK74({F26{k9g@Z)=PFwpQ9}r{#0V zP+m3hIb>Ln4G*#rK{hhTQi5z$kc|$qF+nyq$i@ZP_#m4QWD|pIQjkp!vME6}HOQs~ z+4LYw4YC!$f_-9f*t+v&G;Z~eAzwBOcU_uE{qT)(X?_S;%%ubr09 zAq#oc#OIJjLAE%^t_-pzLAEr=t_rfNgKSxlEf2C4LAEl;Rt4GWAX^h;YlCcEkgX50 z4MDas$TkJp<{-N!$hHL8)*#y!WZQ%6+92BzWY-1R&LG>Bkm<=n=g&L!YU^bBZJk-a zt<&tcbs*wr;fF)?N48S^>YUeel~_ z4!^BU@!MJ(zpWke+gd2Ut?lyLS~b6|z4O~zLcgtz^xIlbzpY*M+ge<|tu6N3T4}GH zmd_#A^Qwu@AvXlsjX`!(knK*$^xqzO4e#$vZN0kR*3Zjt>u2n@_4nenk0s?v>X0ER zsasNwfBs*Sj0KVoWX+nCl++CRtu`}>NlEAZpEUiC{{0;|b2cd{S7!dnB>bl2 z?$VVwBU+eKT7hjw4 zRsS42@wFgd`|(wOe!hxHNu~KZ60N7Fj-5CxHD!A8+7`|J9F%GUYP2+ zKPMkwdk&j4cKop9ZqtTMAEuwL{#qr`dF+U3lc!G}m73gn*od){QYTLzliYgNh?EKZ zSTiL3`c;c52M=e^A1@s8O^H1_{_)32b=r40wE67}nbb-DE&Uxxe+Savf%JDE{T)bu z2h!hx^micr9Y}u%(%*sfcOd;8_%C_~{gm$`M=t!efs>b&-DNL z`9Ck2KK~cRJm~ZO66mw?D(G|mCKSOA==1+>=+^^|;9o!g>vQzE&*ZIArVN{wIx%HZ z>OVg7Pn?)CZA41aKRzSpJNFt?|F2(5^WysJX2H3S{Dt^~iu$99Wx7q{!}*Y2V^b%j zOi#*1F*84=5Aphm_nka#{PZy?DXG)Xy%v9~=YB{(=Ptu0^6LyehD{pHpQoRQelY#F z^micr9Y}u%(%*sfcOd;8NPh>?-+}aZApIRke+Savf%JFaf5(7(&qXMKGOg+3nZGrK+u=Yc-=>ob0S=->70bG|-i7luCT>(>K{p*YS*3Fz~E zDd^+&1xQ92ltnpQi1Mfaz9k^35-NlLv96@5sD|pOftsj=+NguNsE3PiG4x#_4WNJD z-w2nWF)l?DG(|HsM+>w>E9je0+Mq4kp*=dFBRZiox}Yn%p*wn@Cwieb`k*iL>mvOz z00VIu24OIUU?_%RI7VP3QZNdmF$QBX4&yNa6QOTNn2afyifNdRRLsCkT#i|ojX9W$ zd6Lv1FZSa;+>Zk|hzIZ>9>T+T1drk| zJdQ(n0#D*89LCdl2G8O-JdYRfB3{A~yo^`yDqh3ucmr?ZDBi*`yp4D8F5biY_y8Z` zBYccc@F_mS=Qxfp@Fl*&*Z2nC;sn0K_c)0k@FRZ0&-ewu;y3(`KX3|v;xGJ-(>Q~( z(63=-Kt^POz6~e~vLYL@BL~hyPUJ#v$q8N(fe3U>*ltO7- zfMk?GS(L+tD31!Lh)Sr8DyWKTsE!(_iCUNr4bcdfpfN5*6EsCL zG)D`xL@TsL8?;3`w1>WNtt0e(OP$dLUC|BQ(E~lv3%$_?eWCAf>W={!h|4etgE0g{ zF$}{o0wa-vQ5cOe7>jWjj|rHFNtlc&n2Kqbj#SLROk9pxn2kA@i+PxjE3g0yu?UNC zC6-_*uENz=hUHj+l~{$v#ii;waw2F}#g;@GjoN`}hDK;v;;FPw*)|!{<1T zFYqP4!q@l)-{J(m!}mCeAMhi7!q4~xzv4Iijz4e;f8sCvjng=Tv(SI>XFx_|LS|$^ zR%AnV@+p*HHEF6!YTT#Wi?fQD##!5Ma6N9ojkpQBaWihgt=NOxa69(m4%~@-xC?jV z9^8xlxDWT^01n~-Jcx(zFdo69cnpu@5T3x3cnXK{G@ik;cn;6w1-yuta0D;o6}*bq z@H*bWn>dQMa13wb9lVS8@IF4khxiB|;}d*}&+s{p;|qL=ukba#!M8Yp@9;fN;s^YQ zpYSt&!LRrYzvB;_!k_pHf8#XH;4JjeuWvlfh)l?gEXay%$c`L14>^$wxseBXkq`M% z00mJ9g;4}WQ4Ga#K1!e@N})6^Kr+gpEXv_Rlt%?rL?u*46;wqvR7VZeL@m@t9n?iV zT!f2J9}UnDjc^GX<5Dz1Q#3N{&!f1@aSd7DXOu$4;!emUrR7}Hkq+$kU z;&RNwY|O!2%)@+KfdyEIMOch0u>?zT6|TlIEXNA0#44=D8mz@Stj7jy#3pRUHQ0i! z*oN)67CUeqc48N<#|^jzQ;-YfFJP_e#S5O6~Ezk{DD*W z6Mx}voW>cPMN($&KQbZ{G9wGJA{(+J2hKxISt$60Oi0ZO|6&&>kJo5uMN(UCcO{6TQ$Ieb5*E&>sUZ5SL*P24e_@ zVi<;F1V$nSqc9p{Fc#x59uqJTlQ0=mFcs4<9jTasnYbLYFdK6)7xOS5S6~4aVi6YO zN-V)rT!pK#49l?sE3pczu?B0g4(qW28?gzSaSgU$E4E=fuEh>qhn?7k>v02a#7)?Z zn{f+n#U9*-+p!mS;7;trUAP~y{={GS8>evwXOWbJ`;Uysgv`i- ztjLD!$bs{a6Sk zLSva@jK>5_ z#3W3{6imf5Oh+naU?widEX>9n%*8y+#}!zBg;<2exDrdS6j$MDEW>iFz)GybYOKLp ztiyV2z(#DsW?X|U*otk~j%%?4*I_4i;d(wa2M{z zJ-8S9aUbr-0UX2wcn}ZaVLXCI@faS*Av}R6@e~f@X*`2x@f@DV3wRMP;Rs&FD|i*J z;dQ)$H*pki;TYb=J9roG;eC975AhK`#wYj`pW$;H#~1h#U*T(fgKu#H-{E_l#1Hrp zKjCNmf?x3)e#aj;g+K8Z{>EvX!C53_<^CfhG9fdvK>uHv*^nJMa2|3Z7jh#H@**Gd zqW}t`5DKFRilP{b<9w7rNt8lqT!3VhL0Oc;g(!~-sEA6aj4G&#YN(DHsEJyrjXJ1{ zdbkJ|qdpp-AsXQlG{&W9f~IJO=4gSIXoc2jgSKdg_UM3)=!DMbg0AR>?&yJ@=!M?s zgTCm8{uqFPxD10Z7(*}=!!R5pFcK*kh0z#;u^5N(n1G3xgvpqKshEc8NW~1y#O0WU z*_ea5n1}he0t>JZi?A41VhNVwDqM|aSdJA~iB(vQHCT&vSdR_Zh)vjxYp?}du?^dC zEq35K?8Giyj~j3!Zo+Qdj9YLk_TV<$j=i`8cVZvz!rizB_hLWp!~HmbgLnWB;vqbY zNAM^f!{a!FC-5Ym!eKm(XYeeZ!}E9nFXAN}!OM6Bui`bljyLcoj^ZsG!`pZV@8UhY zj}P!6KElWN1fSwFe2(Mz0$<`Qe2s7LEl%J&e2)aV-40~9oAz5HewSt;~H$iR&2v|T#FsJ4m+_6*W(79bZNANOU!K-);uj388iKBQ6$M81Z!Mk`5@8bh}h>!3wKEbE>44>mTzQC9G z3SZ+Je2WwK4&UP>e!!3T2|wc({EFZ3JO02a{E5HtH%{XW&O-l!KLau%6EY(UvLYL@ zBL~hyPUJ#vt^6hToGLvfss5-5pMD2)q{j4~*Ta<~xXQ2`ZE36)U= zRZ$JqQ3Ewm3$;-Pbx{u&;bPQB12jYr+Fc6nv5C&rihGH0oV+2Mb1*0$;V=xxuFdh>y5tA?( zQ!o|NFdeCwftk1*voITTFcSQe1_ru?)+x0xPi!tFZ=au@398 z0UNOin{f@cU@Nv^JFdkJT!)?5h3jzxZp2O4jhk@`Zp9wlhTE|hci>L!!(F%=_uyXa z$9=dT2XGJ%;6Xfuhw%s=#bbCJhwucR#8Wtor|}G)#dCNbFW^PIgd=zvui#a@hS%{1 z-o#P7g=2Ud@8Dg$hxhRTKEy}(7@y!%e1^|)9ADr|e1)&^4Zg(*e24FG5kb<{vj)Ix34L0#0tMYtIC z(Ett62$!HSE=3bGMKd%<3$#Qlv_>1WMLV=d2XsUybVe6+MK^Ru5A;MY^hO`_ML+b% z01U)s7=*zXf}t3O;TVCDNWmzK#u$vnIE=>xOvEHi#uQA&G)zY-W?&{R$1Kdo9L&W$ z%*Pd2fQ49u#kdknuoPF}YAnNYtiVdF!fLF+TCBr*Y`{ir!e(59E!c`}*p6$l1J_|E zcHw&5fE#fWcH?H;f?Kf%x8Zi|#T~d4`*0WT#yz+f`*9!c#{nF~19%V*;bA<2NAVaQ z$00m{C-D>x<7qsDXYm}K#|wB7FX0GY#w&Ogui<5?|qKe1mUs0^i|#oWu|K5kKK){DNQc8_w`QfAj}mPvKAeg}-qc zXM`WuH}+*fMr1-}WI7L4nOzv82=xO#(yf1 zl<|MRzJ3nIpK`8p{6xWXU$gL?n=|;X%85zC&i%c&=Uo_e?&qW=HEAq=Jn29Ai&o$&%EHR~T{b=a6#lpTPgy&!@rv$KU_ie|i1?1;O~0P5=M^ diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-est00int-agesex-5yr.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-est00int-agesex-5yr.csv index 9ca3e87578..da65ba9c21 100644 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-est00int-agesex-5yr.csv +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/co-est00int-agesex-5yr.csv @@ -1,400 +1,500 @@ -SUMLEV,STATE,COUNTY,STNAME,CTYNAME,SEX,AGEGRP,ESTIMATESBASE2000,POPESTIMATE2000,POPESTIMATE2001,POPESTIMATE2002,POPESTIMATE2003,POPESTIMATE2004,POPESTIMATE2005,POPESTIMATE2006,POPESTIMATE2007,POPESTIMATE2008,POPESTIMATE2009,CENSUS2010POP,POPESTIMATE2010 -50,1,1,Alabama,Autauga County,0,0,43751,44021,44889,45909,46800,48366,49676,51328,52405,53277,54135,54571,54632 -50,1,1,Alabama,Autauga County,0,1,3021,3029,3120,3191,3192,3353,3487,3492,3485,3437,3584,3579,3581 -50,1,1,Alabama,Autauga County,0,2,3622,3619,3541,3596,3630,3692,3719,3972,4076,4091,4020,3991,3991 -50,1,1,Alabama,Autauga County,0,3,3744,3776,3896,4016,4072,4166,4238,4175,4220,4337,4307,4290,4284 -50,1,1,Alabama,Autauga County,0,4,3266,3297,3306,3408,3578,3775,4008,4247,4406,4517,4611,4290,4262 -50,1,1,Alabama,Autauga County,0,5,2344,2366,2485,2505,2598,2771,2797,2808,2852,2893,2919,3080,3091 -50,1,1,Alabama,Autauga County,0,6,2710,2701,2591,2567,2550,2695,2810,2971,2990,3035,3088,3157,3181 -50,1,1,Alabama,Autauga County,0,7,3033,3043,3120,3165,3187,3270,3294,3295,3305,3263,3253,3330,3353 -50,1,1,Alabama,Autauga County,0,8,4002,4002,3975,3892,3918,3919,3840,4017,4168,4094,4149,4157,4126 -50,1,1,Alabama,Autauga County,0,9,3678,3698,3821,4072,4058,4074,4170,4214,4121,4223,4147,4086,4081 -50,1,1,Alabama,Autauga County,0,10,3028,3060,3187,3264,3462,3663,3832,3973,4173,4253,4285,4332,4308 -50,1,1,Alabama,Autauga County,0,11,2610,2649,2807,2823,2840,2957,3075,3248,3337,3550,3746,3873,3882 -50,1,1,Alabama,Autauga County,0,12,2301,2326,2360,2526,2573,2609,2747,2862,2890,2921,3017,3083,3103 -50,1,1,Alabama,Autauga County,0,13,1904,1924,2013,2067,2148,2232,2286,2384,2531,2607,2667,2777,2805 -50,1,1,Alabama,Autauga County,0,14,1549,1560,1605,1685,1759,1811,1834,1952,2008,2097,2209,2277,2297 -50,1,1,Alabama,Autauga County,0,15,1153,1160,1236,1253,1294,1317,1411,1482,1563,1619,1673,1736,1744 -50,1,1,Alabama,Autauga County,0,16,835,843,886,890,919,974,1022,1109,1092,1125,1187,1251,1246 -50,1,1,Alabama,Autauga County,0,17,516,525,496,546,587,635,633,656,656,670,715,731,743 -50,1,1,Alabama,Autauga County,0,18,435,443,444,443,435,453,473,471,532,545,558,551,554 -50,1,1,Alabama,Autauga County,1,0,21252,21385,21813,22362,22760,23512,24200,24988,25468,25873,26364,26569,26596 -50,1,1,Alabama,Autauga County,1,1,1500,1503,1526,1506,1528,1624,1731,1782,1753,1752,1870,1866,1863 -50,1,1,Alabama,Autauga County,1,2,1875,1874,1807,1844,1831,1858,1868,2021,2031,2051,2023,2001,2005 -50,1,1,Alabama,Autauga County,1,3,1959,1976,2028,2135,2158,2147,2163,2111,2122,2219,2218,2171,2167 -50,1,1,Alabama,Autauga County,1,4,1679,1698,1716,1784,1856,1984,2099,2215,2316,2361,2362,2213,2196 -50,1,1,Alabama,Autauga County,1,5,1182,1193,1255,1241,1278,1382,1393,1436,1430,1455,1469,1539,1540 -50,1,1,Alabama,Autauga County,1,6,1277,1274,1214,1232,1236,1315,1378,1402,1420,1442,1469,1543,1559 -50,1,1,Alabama,Autauga County,1,7,1471,1477,1520,1536,1537,1536,1554,1568,1574,1537,1558,1594,1605 -50,1,1,Alabama,Autauga County,1,8,1941,1942,1967,1895,1914,1957,1881,1962,2060,1980,1992,2004,1992 -50,1,1,Alabama,Autauga County,1,9,1784,1791,1829,2011,1975,1979,2053,2034,1941,2027,2015,1974,1972 -50,1,1,Alabama,Autauga County,1,10,1501,1518,1585,1602,1677,1778,1886,1948,2112,2127,2131,2174,2159 -50,1,1,Alabama,Autauga County,1,11,1241,1260,1370,1388,1406,1471,1529,1633,1644,1699,1801,1866,1871 -50,1,1,Alabama,Autauga County,1,12,1085,1097,1098,1196,1251,1261,1330,1406,1413,1433,1494,1524,1535 -50,1,1,Alabama,Autauga County,1,13,931,940,992,1025,1017,1059,1072,1090,1175,1229,1243,1279,1291 -50,1,1,Alabama,Autauga County,1,14,711,716,746,784,828,839,865,922,922,928,994,1014,1024 -50,1,1,Alabama,Autauga County,1,15,498,501,538,530,593,590,636,671,725,735,764,807,810 -50,1,1,Alabama,Autauga County,1,16,330,334,344,357,366,389,408,432,429,485,527,546,544 -50,1,1,Alabama,Autauga County,1,17,172,173,158,175,196,217,226,248,265,265,277,295,303 -50,1,1,Alabama,Autauga County,1,18,115,118,120,121,113,126,128,107,136,148,157,159,160 -50,1,1,Alabama,Autauga County,2,0,22499,22636,23076,23547,24040,24854,25476,26340,26937,27404,27771,28002,28036 -50,1,1,Alabama,Autauga County,2,1,1521,1526,1594,1685,1664,1729,1756,1710,1732,1685,1714,1713,1718 -50,1,1,Alabama,Autauga County,2,2,1747,1745,1734,1752,1799,1834,1851,1951,2045,2040,1997,1990,1986 -50,1,1,Alabama,Autauga County,2,3,1785,1800,1868,1881,1914,2019,2075,2064,2098,2118,2089,2119,2117 -50,1,1,Alabama,Autauga County,2,4,1587,1599,1590,1624,1722,1791,1909,2032,2090,2156,2249,2077,2066 -50,1,1,Alabama,Autauga County,2,5,1162,1173,1230,1264,1320,1389,1404,1372,1422,1438,1450,1541,1551 -50,1,1,Alabama,Autauga County,2,6,1433,1427,1377,1335,1314,1380,1432,1569,1570,1593,1619,1614,1622 -50,1,1,Alabama,Autauga County,2,7,1562,1566,1600,1629,1650,1734,1740,1727,1731,1726,1695,1736,1748 -50,1,1,Alabama,Autauga County,2,8,2061,2060,2008,1997,2004,1962,1959,2055,2108,2114,2157,2153,2134 -50,1,1,Alabama,Autauga County,2,9,1894,1907,1992,2061,2083,2095,2117,2180,2180,2196,2132,2112,2109 -50,1,1,Alabama,Autauga County,2,10,1527,1542,1602,1662,1785,1885,1946,2025,2061,2126,2154,2158,2149 -50,1,1,Alabama,Autauga County,2,11,1369,1389,1437,1435,1434,1486,1546,1615,1693,1851,1945,2007,2011 -50,1,1,Alabama,Autauga County,2,12,1216,1229,1262,1330,1322,1348,1417,1456,1477,1488,1523,1559,1568 -50,1,1,Alabama,Autauga County,2,13,973,984,1021,1042,1131,1173,1214,1294,1356,1378,1424,1498,1514 -50,1,1,Alabama,Autauga County,2,14,838,844,859,901,931,972,969,1030,1086,1169,1215,1263,1273 -50,1,1,Alabama,Autauga County,2,15,655,659,698,723,701,727,775,811,838,884,909,929,934 -50,1,1,Alabama,Autauga County,2,16,505,509,542,533,553,585,614,677,663,640,660,705,702 -50,1,1,Alabama,Autauga County,2,17,344,352,338,371,391,418,407,408,391,405,438,436,440 -50,1,1,Alabama,Autauga County,2,18,320,325,324,322,322,327,345,364,396,397,401,392,394 -50,1,3,Alabama,Baldwin County,0,0,140416,141342,144875,147957,151509,156266,162183,168121,172404,175827,179406,182265,183195 -50,1,3,Alabama,Baldwin County,0,1,8621,8642,8887,8964,9092,9417,9903,10441,10820,11100,11248,11158,11191 -50,1,3,Alabama,Baldwin County,0,2,9488,9482,9487,9466,9507,9667,10105,10535,10882,11101,11323,11599,11644 -50,1,3,Alabama,Baldwin County,0,3,10145,10235,10540,10711,10778,11005,11081,11395,11550,11634,11776,11926,11964 -50,1,3,Alabama,Baldwin County,0,4,9463,9537,9641,9829,10066,10326,10621,11031,11330,11512,11683,11600,11575 -50,1,3,Alabama,Baldwin County,0,5,7090,7177,7588,7814,8197,8318,8565,8802,9051,9069,9197,9449,9507 -50,1,3,Alabama,Baldwin County,0,6,8088,8048,7815,7585,7711,8081,8570,9304,9636,9918,10051,10247,10330 -50,1,3,Alabama,Baldwin County,0,7,8934,8965,9096,9393,9491,9684,9755,9725,9662,9909,10412,10709,10826 -50,1,3,Alabama,Baldwin County,0,8,10750,10753,10636,10434,10185,10159,10505,10998,11516,11646,11602,11558,11521 -50,1,3,Alabama,Baldwin County,0,9,11159,11234,11522,11656,11747,11994,12234,12149,11993,11927,11857,11995,12035 -50,1,3,Alabama,Baldwin County,0,10,10232,10348,10742,11247,11657,12028,12358,12812,12922,13012,13321,13431,13426 -50,1,3,Alabama,Baldwin County,0,11,9374,9516,10039,10125,10413,10856,11539,12025,12604,13051,13336,13490,13569 -50,1,3,Alabama,Baldwin County,0,12,8274,8365,8655,9476,9993,10523,11206,11881,11797,11822,12127,12523,12639 -50,1,3,Alabama,Baldwin County,0,13,7095,7157,7642,7957,8559,9259,9836,10174,10991,11369,11700,12012,12176 -50,1,3,Alabama,Baldwin County,0,14,6622,6662,6813,7101,7360,7760,8071,8461,8772,9349,9926,10174,10278 -50,1,3,Alabama,Baldwin County,0,15,5733,5771,5949,6061,6164,6337,6681,6855,6963,7227,7405,7629,7697 -50,1,3,Alabama,Baldwin County,0,16,4429,4475,4619,4727,4883,4969,5078,5253,5351,5334,5428,5598,5599 -50,1,3,Alabama,Baldwin County,0,17,2755,2797,2959,3125,3313,3414,3518,3584,3727,3872,3886,3934,3954 -50,1,3,Alabama,Baldwin County,0,18,2164,2178,2245,2286,2393,2469,2557,2696,2837,2975,3128,3233,3264 -50,1,3,Alabama,Baldwin County,1,0,68848,69302,70911,72399,74202,76547,79416,82192,84173,85797,87701,89196,89655 -50,1,3,Alabama,Baldwin County,1,1,4385,4391,4437,4510,4610,4789,4987,5265,5476,5572,5637,5614,5627 -50,1,3,Alabama,Baldwin County,1,2,4938,4930,4851,4794,4758,4862,5175,5326,5442,5630,5720,5832,5864 -50,1,3,Alabama,Baldwin County,1,3,5212,5255,5387,5482,5566,5724,5731,5805,5892,5906,5951,6076,6094 -50,1,3,Alabama,Baldwin County,1,4,4882,4920,5018,5091,5210,5253,5421,5651,5796,5880,5990,5930,5916 -50,1,3,Alabama,Baldwin County,1,5,3605,3648,3808,3918,4166,4284,4381,4561,4611,4588,4649,4793,4820 -50,1,3,Alabama,Baldwin County,1,6,3994,3981,3918,3849,3880,4050,4264,4605,4757,4989,5091,5183,5234 -50,1,3,Alabama,Baldwin County,1,7,4424,4440,4444,4617,4698,4816,4819,4845,4822,4919,5167,5317,5370 -50,1,3,Alabama,Baldwin County,1,8,5303,5304,5239,5067,4915,4918,5115,5347,5611,5693,5743,5725,5705 -50,1,3,Alabama,Baldwin County,1,9,5378,5413,5605,5709,5769,5910,6049,5929,5819,5794,5806,5895,5916 -50,1,3,Alabama,Baldwin County,1,10,5000,5058,5251,5450,5636,5778,5924,6173,6279,6313,6528,6622,6620 -50,1,3,Alabama,Baldwin County,1,11,4570,4640,4912,4938,5082,5240,5577,5784,6035,6226,6382,6425,6460 -50,1,3,Alabama,Baldwin County,1,12,3947,3988,4093,4490,4775,5009,5362,5715,5629,5618,5735,5943,5997 -50,1,3,Alabama,Baldwin County,1,13,3399,3427,3666,3826,4094,4467,4699,4823,5229,5416,5572,5728,5808 -50,1,3,Alabama,Baldwin County,1,14,3277,3299,3368,3512,3597,3778,3881,4074,4222,4509,4753,4895,4945 -50,1,3,Alabama,Baldwin County,1,15,2746,2769,2889,2958,3019,3108,3301,3407,3462,3488,3587,3663,3696 -50,1,3,Alabama,Baldwin County,1,16,1966,1988,2081,2162,2249,2306,2406,2479,2515,2519,2555,2644,2643 -50,1,3,Alabama,Baldwin County,1,17,1157,1178,1262,1323,1410,1465,1460,1461,1581,1674,1694,1735,1751 -50,1,3,Alabama,Baldwin County,1,18,665,673,682,703,768,790,864,942,995,1063,1141,1176,1189 -50,1,3,Alabama,Baldwin County,2,0,71568,72040,73964,75558,77307,79719,82767,85929,88231,90030,91705,93069,93540 -50,1,3,Alabama,Baldwin County,2,1,4236,4251,4450,4454,4482,4628,4916,5176,5344,5528,5611,5544,5564 -50,1,3,Alabama,Baldwin County,2,2,4550,4552,4636,4672,4749,4805,4930,5209,5440,5471,5603,5767,5780 -50,1,3,Alabama,Baldwin County,2,3,4933,4980,5153,5229,5212,5281,5350,5590,5658,5728,5825,5850,5870 -50,1,3,Alabama,Baldwin County,2,4,4581,4617,4623,4738,4856,5073,5200,5380,5534,5632,5693,5670,5659 -50,1,3,Alabama,Baldwin County,2,5,3485,3529,3780,3896,4031,4034,4184,4241,4440,4481,4548,4656,4687 -50,1,3,Alabama,Baldwin County,2,6,4094,4067,3897,3736,3831,4031,4306,4699,4879,4929,4960,5064,5096 -50,1,3,Alabama,Baldwin County,2,7,4510,4525,4652,4776,4793,4868,4936,4880,4840,4990,5245,5392,5456 -50,1,3,Alabama,Baldwin County,2,8,5447,5449,5397,5367,5270,5241,5390,5651,5905,5953,5859,5833,5816 -50,1,3,Alabama,Baldwin County,2,9,5781,5821,5917,5947,5978,6084,6185,6220,6174,6133,6051,6100,6119 -50,1,3,Alabama,Baldwin County,2,10,5232,5290,5491,5797,6021,6250,6434,6639,6643,6699,6793,6809,6806 -50,1,3,Alabama,Baldwin County,2,11,4804,4876,5127,5187,5331,5616,5962,6241,6569,6825,6954,7065,7109 -50,1,3,Alabama,Baldwin County,2,12,4327,4377,4562,4986,5218,5514,5844,6166,6168,6204,6392,6580,6642 -50,1,3,Alabama,Baldwin County,2,13,3696,3730,3976,4131,4465,4792,5137,5351,5762,5953,6128,6284,6368 -50,1,3,Alabama,Baldwin County,2,14,3345,3363,3445,3589,3763,3982,4190,4387,4550,4840,5173,5279,5333 -50,1,3,Alabama,Baldwin County,2,15,2987,3002,3060,3103,3145,3229,3380,3448,3501,3739,3818,3966,4001 -50,1,3,Alabama,Baldwin County,2,16,2463,2487,2538,2565,2634,2663,2672,2774,2836,2815,2873,2954,2956 -50,1,3,Alabama,Baldwin County,2,17,1598,1619,1697,1802,1903,1949,2058,2123,2146,2198,2192,2199,2203 -50,1,3,Alabama,Baldwin County,2,18,1499,1505,1563,1583,1625,1679,1693,1754,1842,1912,1987,2057,2075 -50,1,5,Alabama,Barbour County,0,0,29042,29015,28863,28653,28594,28287,28027,27861,27757,27808,27657,27457,27411 -50,1,5,Alabama,Barbour County,0,1,1788,1781,1858,1787,1729,1755,1778,1717,1753,1797,1708,1702,1699 -50,1,5,Alabama,Barbour County,0,2,2056,2035,1937,1891,1780,1707,1592,1621,1645,1677,1628,1642,1648 -50,1,5,Alabama,Barbour County,0,3,2156,2161,2123,2074,2108,1955,1929,1822,1695,1637,1631,1599,1600 -50,1,5,Alabama,Barbour County,0,4,2148,2147,2115,2062,2012,1977,1909,1922,1896,1862,1812,1731,1710 -50,1,5,Alabama,Barbour County,0,5,1929,1933,1947,1988,2032,2008,1983,1914,1872,1830,1818,1794,1783 -50,1,5,Alabama,Barbour County,0,6,2058,2041,1947,1873,1868,1846,1837,1919,1939,1972,1985,2010,2008 -50,1,5,Alabama,Barbour County,0,7,2008,2008,2033,2053,2080,2079,2057,1916,1828,1802,1806,1808,1813 -50,1,5,Alabama,Barbour County,0,8,2350,2340,2273,2207,2102,1967,1890,1908,1893,1864,1879,1819,1809 -50,1,5,Alabama,Barbour County,0,9,2185,2182,2120,2131,2205,2221,2190,2141,2027,1917,1878,1809,1803 -50,1,5,Alabama,Barbour County,0,10,1956,1963,2038,2045,2053,2034,2067,2042,2074,2135,2153,2108,2093 -50,1,5,Alabama,Barbour County,0,11,1970,1987,1976,1991,1972,1950,1918,1943,1931,1935,1918,1910,1908 -50,1,5,Alabama,Barbour County,0,12,1423,1427,1514,1632,1728,1784,1857,1861,1880,1884,1849,1817,1817 -50,1,5,Alabama,Barbour County,0,13,1141,1141,1158,1159,1223,1279,1328,1452,1569,1676,1722,1799,1805 -50,1,5,Alabama,Barbour County,0,14,1061,1053,1056,1034,1022,1065,1049,1065,1099,1157,1246,1290,1295 -50,1,5,Alabama,Barbour County,0,15,978,973,973,978,938,892,912,913,924,913,950,948,953 -50,1,5,Alabama,Barbour County,0,16,806,806,780,753,775,773,742,742,745,715,669,685,681 -50,1,5,Alabama,Barbour County,0,17,517,522,520,535,538,593,583,529,549,598,559,543,544 -50,1,5,Alabama,Barbour County,0,18,512,515,495,460,429,402,406,434,438,437,446,443,442 -50,1,5,Alabama,Barbour County,1,0,14974,14954,14893,14920,15021,14854,14713,14718,14621,14774,14688,14576,14544 -50,1,5,Alabama,Barbour County,1,1,930,926,968,919,891,883,884,882,893,940,861,847,844 -50,1,5,Alabama,Barbour County,1,2,1075,1063,998,987,926,909,833,831,861,868,823,826,836 -50,1,5,Alabama,Barbour County,1,3,1081,1083,1067,1028,1061,1001,978,923,858,855,853,820,821 -50,1,5,Alabama,Barbour County,1,4,1117,1117,1089,1072,1036,997,960,997,975,987,973,919,906 -50,1,5,Alabama,Barbour County,1,5,1184,1183,1187,1200,1225,1202,1207,1158,1110,1074,1059,1048,1043 -50,1,5,Alabama,Barbour County,1,6,1229,1220,1169,1166,1190,1165,1153,1209,1192,1214,1200,1212,1210 -50,1,5,Alabama,Barbour County,1,7,1156,1157,1167,1213,1231,1256,1256,1183,1164,1161,1152,1162,1162 -50,1,5,Alabama,Barbour County,1,8,1309,1303,1257,1235,1220,1132,1089,1098,1099,1063,1077,1046,1042 -50,1,5,Alabama,Barbour County,1,9,1192,1190,1155,1149,1191,1220,1198,1178,1122,1090,1095,1069,1066 -50,1,5,Alabama,Barbour County,1,10,986,989,1039,1077,1113,1093,1123,1127,1125,1157,1188,1164,1157 -50,1,5,Alabama,Barbour County,1,11,1002,1011,1018,1031,1026,1010,981,1003,1003,1030,999,1000,995 -50,1,5,Alabama,Barbour County,1,12,696,699,739,801,855,906,950,947,959,946,925,910,912 -50,1,5,Alabama,Barbour County,1,13,534,534,556,551,599,614,628,684,721,787,816,859,862 -50,1,5,Alabama,Barbour County,1,14,493,490,486,484,461,497,486,516,526,565,611,631,631 -50,1,5,Alabama,Barbour County,1,15,400,399,408,407,418,378,415,400,413,396,428,436,434 -50,1,5,Alabama,Barbour County,1,16,288,287,290,306,306,309,285,299,297,320,285,303,299 -50,1,5,Alabama,Barbour County,1,17,179,181,178,174,159,175,184,183,200,202,213,195,195 -50,1,5,Alabama,Barbour County,1,18,123,122,122,120,113,107,103,100,103,119,130,129,129 -50,1,5,Alabama,Barbour County,2,0,14068,14061,13970,13733,13573,13433,13314,13143,13136,13034,12969,12881,12867 -50,1,5,Alabama,Barbour County,2,1,858,855,890,868,838,872,894,835,860,857,847,855,855 -50,1,5,Alabama,Barbour County,2,2,981,972,939,904,854,798,759,790,784,809,805,816,812 -50,1,5,Alabama,Barbour County,2,3,1075,1078,1056,1046,1047,954,951,899,837,782,778,779,779 -50,1,5,Alabama,Barbour County,2,4,1031,1030,1026,990,976,980,949,925,921,875,839,812,804 -50,1,5,Alabama,Barbour County,2,5,745,750,760,788,807,806,776,756,762,756,759,746,740 -50,1,5,Alabama,Barbour County,2,6,829,821,778,707,678,681,684,710,747,758,785,798,798 -50,1,5,Alabama,Barbour County,2,7,852,851,866,840,849,823,801,733,664,641,654,646,651 -50,1,5,Alabama,Barbour County,2,8,1041,1037,1016,972,882,835,801,810,794,801,802,773,767 -50,1,5,Alabama,Barbour County,2,9,993,992,965,982,1014,1001,992,963,905,827,783,740,737 -50,1,5,Alabama,Barbour County,2,10,970,974,999,968,940,941,944,915,949,978,965,944,936 -50,1,5,Alabama,Barbour County,2,11,968,976,958,960,946,940,937,940,928,905,919,910,913 -50,1,5,Alabama,Barbour County,2,12,727,728,775,831,873,878,907,914,921,938,924,907,905 -50,1,5,Alabama,Barbour County,2,13,607,607,602,608,624,665,700,768,848,889,906,940,943 -50,1,5,Alabama,Barbour County,2,14,568,563,570,550,561,568,563,549,573,592,635,659,664 -50,1,5,Alabama,Barbour County,2,15,578,574,565,571,520,514,497,513,511,517,522,512,519 -50,1,5,Alabama,Barbour County,2,16,518,519,490,447,469,464,457,443,448,395,384,382,382 -50,1,5,Alabama,Barbour County,2,17,338,341,342,361,379,418,399,346,349,396,346,348,349 -50,1,5,Alabama,Barbour County,2,18,389,393,373,340,316,295,303,334,335,318,316,314,313 -50,1,7,Alabama,Bibb County,0,0,19856,19913,21028,21199,21399,21721,22042,22099,22438,22705,22941,22915,22867 -50,1,7,Alabama,Bibb County,0,1,1447,1447,1429,1478,1454,1449,1394,1374,1394,1400,1376,1378,1370 -50,1,7,Alabama,Bibb County,0,2,1525,1516,1474,1458,1448,1457,1452,1436,1462,1447,1441,1405,1402 -50,1,7,Alabama,Bibb County,0,3,1452,1463,1539,1553,1529,1552,1567,1495,1518,1489,1466,1440,1440 -50,1,7,Alabama,Bibb County,0,4,1369,1379,1354,1377,1418,1413,1485,1538,1531,1559,1589,1543,1525 -50,1,7,Alabama,Bibb County,0,5,1263,1274,1415,1381,1431,1469,1421,1357,1436,1467,1504,1491,1490 -50,1,7,Alabama,Bibb County,0,6,1406,1400,1492,1489,1526,1530,1553,1583,1589,1582,1638,1603,1606 -50,1,7,Alabama,Bibb County,0,7,1492,1494,1633,1610,1575,1610,1618,1577,1592,1604,1652,1646,1652 -50,1,7,Alabama,Bibb County,0,8,1458,1451,1648,1652,1666,1658,1722,1733,1733,1716,1724,1747,1738 -50,1,7,Alabama,Bibb County,0,9,1456,1460,1541,1543,1534,1583,1602,1639,1626,1645,1633,1635,1633 -50,1,7,Alabama,Bibb County,0,10,1336,1351,1452,1528,1590,1636,1655,1637,1671,1722,1775,1805,1789 -50,1,7,Alabama,Bibb County,0,11,1270,1286,1383,1371,1361,1430,1509,1523,1551,1575,1572,1581,1576 -50,1,7,Alabama,Bibb County,0,12,1076,1084,1131,1187,1235,1288,1335,1408,1378,1383,1376,1401,1399 -50,1,7,Alabama,Bibb County,0,13,899,905,932,998,1051,1056,1084,1107,1178,1274,1313,1334,1346 -50,1,7,Alabama,Bibb County,0,14,690,687,733,756,768,795,868,862,894,943,964,966,970 -50,1,7,Alabama,Bibb County,0,15,629,628,647,632,655,649,635,665,704,703,722,757,758 -50,1,7,Alabama,Bibb County,0,16,504,503,522,539,541,527,534,538,532,558,553,549,544 -50,1,7,Alabama,Bibb County,0,17,251,255,307,306,333,367,368,371,385,370,365,355,350 -50,1,7,Alabama,Bibb County,0,18,333,330,396,341,284,252,240,256,264,268,278,279,279 -50,1,7,Alabama,Bibb County,1,0,9788,9825,10715,10881,11065,11314,11548,11663,11849,12040,12333,12301,12272 -50,1,7,Alabama,Bibb County,1,1,775,774,753,789,784,771,716,720,734,748,728,712,708 -50,1,7,Alabama,Bibb County,1,2,764,760,750,752,780,779,791,787,775,758,779,759,761 -50,1,7,Alabama,Bibb County,1,3,698,702,752,756,753,778,795,753,775,789,772,771,770 -50,1,7,Alabama,Bibb County,1,4,725,732,735,758,741,738,740,798,797,814,838,806,795 -50,1,7,Alabama,Bibb County,1,5,621,627,721,723,764,807,809,782,814,802,824,811,809 -50,1,7,Alabama,Bibb County,1,6,702,701,833,814,840,864,883,900,935,951,1009,987,987 -50,1,7,Alabama,Bibb County,1,7,750,754,890,884,874,931,963,939,929,946,1010,1013,1013 -50,1,7,Alabama,Bibb County,1,8,724,720,885,928,932,904,928,957,975,968,986,1003,999 -50,1,7,Alabama,Bibb County,1,9,740,742,835,811,805,841,854,864,891,910,896,892,893 -50,1,7,Alabama,Bibb County,1,10,689,700,771,817,878,895,931,948,942,960,1012,1036,1027 -50,1,7,Alabama,Bibb County,1,11,632,641,709,711,723,776,804,795,801,844,851,847,848 -50,1,7,Alabama,Bibb County,1,12,547,551,587,601,611,650,684,719,725,726,723,734,732 -50,1,7,Alabama,Bibb County,1,13,427,429,460,497,522,526,541,570,584,630,668,684,690 -50,1,7,Alabama,Bibb County,1,14,334,333,352,367,368,374,415,395,407,441,463,456,458 -50,1,7,Alabama,Bibb County,1,15,293,293,298,290,298,296,298,313,338,332,330,347,346 -50,1,7,Alabama,Bibb County,1,16,181,181,176,192,200,195,211,231,226,223,241,232,227 -50,1,7,Alabama,Bibb County,1,17,84,84,99,95,109,112,116,119,130,128,132,138,136 -50,1,7,Alabama,Bibb County,1,18,102,101,109,96,83,77,69,73,71,70,71,73,73 -50,1,7,Alabama,Bibb County,2,0,10068,10088,10313,10318,10334,10407,10494,10436,10589,10665,10608,10614,10595 -50,1,7,Alabama,Bibb County,2,1,672,673,676,689,670,678,678,654,660,652,648,666,662 -50,1,7,Alabama,Bibb County,2,2,761,756,724,706,668,678,661,649,687,689,662,646,641 -50,1,7,Alabama,Bibb County,2,3,754,761,787,797,776,774,772,742,743,700,694,669,670 -50,1,7,Alabama,Bibb County,2,4,644,647,619,619,677,675,745,740,734,745,751,737,730 -50,1,7,Alabama,Bibb County,2,5,642,647,694,658,667,662,612,575,622,665,680,680,681 -50,1,7,Alabama,Bibb County,2,6,704,699,659,675,686,666,670,683,654,631,629,616,619 -50,1,7,Alabama,Bibb County,2,7,742,740,743,726,701,679,655,638,663,658,642,633,639 -50,1,7,Alabama,Bibb County,2,8,734,731,763,724,734,754,794,776,758,748,738,744,739 -50,1,7,Alabama,Bibb County,2,9,716,718,706,732,729,742,748,775,735,735,737,743,740 -50,1,7,Alabama,Bibb County,2,10,647,651,681,711,712,741,724,689,729,762,763,769,762 -50,1,7,Alabama,Bibb County,2,11,638,645,674,660,638,654,705,728,750,731,721,734,728 -50,1,7,Alabama,Bibb County,2,12,529,533,544,586,624,638,651,689,653,657,653,667,667 -50,1,7,Alabama,Bibb County,2,13,472,476,472,501,529,530,543,537,594,644,645,650,656 -50,1,7,Alabama,Bibb County,2,14,356,354,381,389,400,421,453,467,487,502,501,510,512 -50,1,7,Alabama,Bibb County,2,15,336,335,349,342,357,353,337,352,366,371,392,410,412 -50,1,7,Alabama,Bibb County,2,16,323,322,346,347,341,332,323,307,306,335,312,317,317 -50,1,7,Alabama,Bibb County,2,17,167,171,208,211,224,255,252,252,255,242,233,217,214 -50,1,7,Alabama,Bibb County,2,18,231,229,287,245,201,175,171,183,193,198,207,206,206 -50,1,9,Alabama,Blount County,0,0,50982,51107,51845,52551,53457,54124,54624,55485,56240,57055,57341,57322,57338 -50,1,9,Alabama,Blount County,0,1,3529,3534,3513,3517,3577,3633,3649,3646,3566,3676,3641,3616,3613 -50,1,9,Alabama,Blount County,0,2,3632,3627,3748,3808,3842,3873,3843,3828,3880,3846,3877,3880,3877 -50,1,9,Alabama,Blount County,0,3,3656,3675,3765,3860,3875,3894,3972,4047,4058,4126,4115,4084,4087 -50,1,9,Alabama,Blount County,0,4,3372,3397,3400,3384,3594,3651,3698,3798,3953,3971,3955,4033,3985 -50,1,9,Alabama,Blount County,0,5,3033,3055,3147,3085,3049,3048,3046,3009,2988,3118,3137,3107,3103 -50,1,9,Alabama,Blount County,0,6,3482,3457,3367,3373,3374,3409,3398,3390,3445,3466,3424,3436,3453 -50,1,9,Alabama,Blount County,0,7,3681,3675,3705,3765,3790,3735,3637,3542,3477,3482,3462,3441,3465 -50,1,9,Alabama,Blount County,0,8,3963,3944,3957,3950,3980,4019,4034,4031,4034,4077,4068,3892,3869 -50,1,9,Alabama,Blount County,0,9,3772,3775,3850,3916,4034,4056,4105,4184,4249,4180,4159,4033,4035 -50,1,9,Alabama,Blount County,0,10,3571,3592,3717,3825,3854,3802,3861,3958,3961,4093,4138,4163,4136 -50,1,9,Alabama,Blount County,0,11,3330,3360,3490,3458,3514,3606,3664,3765,3914,3905,3898,3922,3926 -50,1,9,Alabama,Blount County,0,12,2919,2937,3017,3117,3201,3384,3432,3581,3539,3611,3626,3694,3713 -50,1,9,Alabama,Blount County,0,13,2482,2497,2504,2693,2809,2869,2983,3080,3294,3377,3533,3582,3611 -50,1,9,Alabama,Blount County,0,14,2039,2041,2097,2182,2303,2344,2407,2501,2666,2762,2826,2892,2908 -50,1,9,Alabama,Blount County,0,15,1727,1727,1717,1743,1789,1833,1808,1969,2034,2138,2148,2187,2190 -50,1,9,Alabama,Blount County,0,16,1207,1212,1249,1301,1311,1362,1438,1422,1423,1461,1521,1517,1516 -50,1,9,Alabama,Blount County,0,17,871,880,838,819,838,862,873,961,986,969,987,1035,1039 -50,1,9,Alabama,Blount County,0,18,716,722,764,755,723,744,776,773,773,797,826,808,812 -50,1,9,Alabama,Blount County,1,0,25454,25519,25923,26175,26608,26933,27152,27528,27941,28358,28395,28362,28365 -50,1,9,Alabama,Blount County,1,1,1836,1839,1832,1825,1814,1817,1814,1813,1778,1850,1818,1805,1802 -50,1,9,Alabama,Blount County,1,2,1906,1902,1972,1979,2039,2029,2013,1982,1990,1917,1938,1936,1942 -50,1,9,Alabama,Blount County,1,3,1881,1892,1940,1955,1937,2021,2073,2131,2129,2188,2144,2113,2117 -50,1,9,Alabama,Blount County,1,4,1725,1742,1726,1748,1885,1912,1928,1962,2067,2071,2089,2139,2113 -50,1,9,Alabama,Blount County,1,5,1569,1579,1649,1597,1588,1538,1520,1499,1507,1598,1583,1577,1575 -50,1,9,Alabama,Blount County,1,6,1823,1812,1749,1742,1741,1784,1767,1781,1823,1827,1738,1735,1741 -50,1,9,Alabama,Blount County,1,7,1868,1865,1911,1937,1936,1934,1904,1823,1763,1758,1739,1730,1737 -50,1,9,Alabama,Blount County,1,8,2030,2021,2030,2018,2015,2010,2027,2042,2056,2059,2087,1989,1977 -50,1,9,Alabama,Blount County,1,9,1920,1921,1977,2029,2080,2093,2098,2138,2158,2117,2096,2033,2035 -50,1,9,Alabama,Blount County,1,10,1848,1858,1887,1915,1937,1920,1931,1995,2001,2089,2096,2096,2084 -50,1,9,Alabama,Blount County,1,11,1600,1613,1696,1716,1754,1815,1865,1861,1924,1954,1969,1972,1974 -50,1,9,Alabama,Blount County,1,12,1405,1412,1462,1480,1490,1581,1620,1713,1726,1761,1767,1810,1820 -50,1,9,Alabama,Blount County,1,13,1259,1267,1246,1320,1392,1406,1426,1487,1567,1558,1646,1700,1716 -50,1,9,Alabama,Blount County,1,14,966,968,1008,1064,1132,1153,1196,1222,1289,1351,1352,1352,1360 -50,1,9,Alabama,Blount County,1,15,784,786,772,794,824,850,835,914,951,994,1011,1039,1038 -50,1,9,Alabama,Blount County,1,16,483,485,499,525,534,541,601,596,624,649,696,684,681 -50,1,9,Alabama,Blount County,1,17,321,326,327,302,300,317,322,355,371,384,387,418,418 -50,1,9,Alabama,Blount County,1,18,230,231,240,229,210,212,212,214,217,233,239,234,235 -50,1,9,Alabama,Blount County,2,0,25528,25588,25922,26376,26849,27191,27472,27957,28299,28697,28946,28960,28973 -50,1,9,Alabama,Blount County,2,1,1693,1695,1681,1692,1763,1816,1835,1833,1788,1826,1823,1811,1811 -50,1,9,Alabama,Blount County,2,2,1726,1725,1776,1829,1803,1844,1830,1846,1890,1929,1939,1944,1935 -50,1,9,Alabama,Blount County,2,3,1775,1783,1825,1905,1938,1873,1899,1916,1929,1938,1971,1971,1970 -50,1,9,Alabama,Blount County,2,4,1647,1655,1674,1636,1709,1739,1770,1836,1886,1900,1866,1894,1872 -50,1,9,Alabama,Blount County,2,5,1464,1476,1498,1488,1461,1510,1526,1510,1481,1520,1554,1530,1528 -50,1,9,Alabama,Blount County,2,6,1659,1645,1618,1631,1633,1625,1631,1609,1622,1639,1686,1701,1712 -50,1,9,Alabama,Blount County,2,7,1813,1810,1794,1828,1854,1801,1733,1719,1714,1724,1723,1711,1728 -50,1,9,Alabama,Blount County,2,8,1933,1923,1927,1932,1965,2009,2007,1989,1978,2018,1981,1903,1892 -50,1,9,Alabama,Blount County,2,9,1852,1854,1873,1887,1954,1963,2007,2046,2091,2063,2063,2000,2000 -50,1,9,Alabama,Blount County,2,10,1723,1734,1830,1910,1917,1882,1930,1963,1960,2004,2042,2067,2052 -50,1,9,Alabama,Blount County,2,11,1730,1747,1794,1742,1760,1791,1799,1904,1990,1951,1929,1950,1952 -50,1,9,Alabama,Blount County,2,12,1514,1525,1555,1637,1711,1803,1812,1868,1813,1850,1859,1884,1893 -50,1,9,Alabama,Blount County,2,13,1223,1230,1258,1373,1417,1463,1557,1593,1727,1819,1887,1882,1895 -50,1,9,Alabama,Blount County,2,14,1073,1073,1089,1118,1171,1191,1211,1279,1377,1411,1474,1540,1548 -50,1,9,Alabama,Blount County,2,15,943,941,945,949,965,983,973,1055,1083,1144,1137,1148,1152 -50,1,9,Alabama,Blount County,2,16,724,727,750,776,777,821,837,826,799,812,825,833,835 -50,1,9,Alabama,Blount County,2,17,550,554,511,517,538,545,551,606,615,585,600,617,621 -50,1,9,Alabama,Blount County,2,18,486,491,524,526,513,532,564,559,556,564,587,574,577 -50,1,11,Alabama,Bullock County,0,0,11603,11581,11358,11256,11316,11056,11011,10776,11011,10953,10987,10914,10890 -50,1,11,Alabama,Bullock County,0,1,733,728,727,706,684,673,620,678,678,695,707,742,727 -50,1,11,Alabama,Bullock County,0,2,864,854,787,750,742,687,671,610,592,567,610,570,561 -50,1,11,Alabama,Bullock County,0,3,864,862,825,811,815,824,790,748,716,729,695,675,685 -50,1,11,Alabama,Bullock County,0,4,882,879,884,845,824,788,772,790,820,767,777,726,721 -50,1,11,Alabama,Bullock County,0,5,879,879,858,812,848,823,832,776,788,762,718,711,697 -50,1,11,Alabama,Bullock County,0,6,856,849,820,831,837,809,863,813,838,813,839,822,797 -50,1,11,Alabama,Bullock County,0,7,738,735,738,749,746,694,686,682,718,726,732,733,734 -50,1,11,Alabama,Bullock County,0,8,886,883,839,799,759,713,673,675,711,722,699,712,719 -50,1,11,Alabama,Bullock County,0,9,911,910,862,853,858,854,810,781,760,694,673,650,657 -50,1,11,Alabama,Bullock County,0,10,798,802,806,820,817,809,853,790,832,875,873,845,850 -50,1,11,Alabama,Bullock County,0,11,693,699,749,734,793,783,791,812,830,803,826,852,855 -50,1,11,Alabama,Bullock County,0,12,525,526,497,538,583,593,646,685,710,746,761,768,770 -50,1,11,Alabama,Bullock County,0,13,439,439,442,461,470,498,498,488,546,564,588,639,642 -50,1,11,Alabama,Bullock County,0,14,374,373,378,391,409,408,407,413,428,451,467,476,480 -50,1,11,Alabama,Bullock County,0,15,310,310,328,320,330,337,373,349,363,371,371,359,361 -50,1,11,Alabama,Bullock County,0,16,315,316,289,291,280,272,269,274,275,249,270,275,271 -50,1,11,Alabama,Bullock County,0,17,261,262,249,264,263,234,196,158,165,184,170,151,154 -50,1,11,Alabama,Bullock County,0,18,275,275,280,281,258,257,261,254,241,235,211,208,209 -50,1,11,Alabama,Bullock County,1,0,6077,6062,5985,5975,6087,5932,5901,5764,5958,5957,6007,5912,5893 -50,1,11,Alabama,Bullock County,1,1,373,371,383,368,353,355,343,374,367,387,389,402,389 -50,1,11,Alabama,Bullock County,1,2,455,450,413,391,395,354,342,312,299,261,310,295,298 -50,1,11,Alabama,Bullock County,1,3,417,416,395,393,406,403,395,387,370,381,359,337,341 -50,1,11,Alabama,Bullock County,1,4,457,454,458,421,399,398,365,377,387,368,381,365,360 -50,1,11,Alabama,Bullock County,1,5,530,529,522,498,530,497,491,461,449,445,413,392,387 -50,1,11,Alabama,Bullock County,1,6,524,520,496,523,548,517,554,497,521,492,512,500,489 -50,1,11,Alabama,Bullock County,1,7,431,430,435,442,449,425,417,403,441,443,456,444,443 -50,1,11,Alabama,Bullock County,1,8,512,510,477,467,451,427,416,416,438,448,435,440,441 -50,1,11,Alabama,Bullock County,1,9,512,511,475,477,478,465,434,413,427,407,386,376,377 -50,1,11,Alabama,Bullock County,1,10,442,445,470,478,471,472,493,450,484,514,510,500,504 -50,1,11,Alabama,Bullock County,1,11,365,368,393,380,431,426,449,468,480,463,467,472,473 -50,1,11,Alabama,Bullock County,1,12,257,258,250,293,312,318,344,356,365,401,429,433,434 -50,1,11,Alabama,Bullock County,1,13,224,224,226,231,245,250,248,250,293,299,306,330,334 -50,1,11,Alabama,Bullock County,1,14,163,162,174,189,195,206,211,207,214,229,230,223,223 -50,1,11,Alabama,Bullock County,1,15,119,119,135,138,150,151,166,156,170,168,168,170,170 -50,1,11,Alabama,Bullock County,1,16,117,117,99,108,110,115,107,112,117,112,121,117,112 -50,1,11,Alabama,Bullock County,1,17,95,95,98,94,83,75,51,47,57,64,69,54,55 -50,1,11,Alabama,Bullock County,1,18,84,83,86,84,81,78,75,78,79,75,66,62,63 -50,1,11,Alabama,Bullock County,2,0,5526,5519,5373,5281,5229,5124,5110,5012,5053,4996,4980,5002,4997 -50,1,11,Alabama,Bullock County,2,1,360,357,344,338,331,318,277,304,311,308,318,340,338 -50,1,11,Alabama,Bullock County,2,2,409,404,374,359,347,333,329,298,293,306,300,275,263 -50,1,11,Alabama,Bullock County,2,3,447,446,430,418,409,421,395,361,346,348,336,338,344 -50,1,11,Alabama,Bullock County,2,4,425,425,426,424,425,390,407,413,433,399,396,361,361 -50,1,11,Alabama,Bullock County,2,5,349,350,336,314,318,326,341,315,339,317,305,319,310 -50,1,11,Alabama,Bullock County,2,6,332,329,324,308,289,292,309,316,317,321,327,322,308 -50,1,11,Alabama,Bullock County,2,7,307,305,303,307,297,269,269,279,277,283,276,289,291 -50,1,11,Alabama,Bullock County,2,8,374,373,362,332,308,286,257,259,273,274,264,272,278 -50,1,11,Alabama,Bullock County,2,9,399,399,387,376,380,389,376,368,333,287,287,274,280 -50,1,11,Alabama,Bullock County,2,10,356,357,336,342,346,337,360,340,348,361,363,345,346 -50,1,11,Alabama,Bullock County,2,11,328,331,356,354,362,357,342,344,350,340,359,380,382 -50,1,11,Alabama,Bullock County,2,12,268,268,247,245,271,275,302,329,345,345,332,335,336 -50,1,11,Alabama,Bullock County,2,13,215,215,216,230,225,248,250,238,253,265,282,309,308 -50,1,11,Alabama,Bullock County,2,14,211,211,204,202,214,202,196,206,214,222,237,253,257 -50,1,11,Alabama,Bullock County,2,15,191,191,193,182,180,186,207,193,193,203,203,189,191 -50,1,11,Alabama,Bullock County,2,16,198,199,190,183,170,157,162,162,158,137,149,158,159 -50,1,11,Alabama,Bullock County,2,17,166,167,151,170,180,159,145,111,108,120,101,97,99 -50,1,11,Alabama,Bullock County,2,18,191,192,194,197,177,179,186,176,162,160,145,146,146 -50,1,13,Alabama,Butler County,0,0,21394,21325,21139,20803,20833,20870,20830,20815,20894,20949,20867,20947,20951 -50,1,13,Alabama,Butler County,0,1,1358,1347,1325,1302,1354,1379,1351,1355,1360,1345,1356,1372,1356 -50,1,13,Alabama,Butler County,0,2,1539,1518,1471,1375,1354,1354,1358,1329,1343,1345,1350,1351,1346 -50,1,13,Alabama,Butler County,0,3,1699,1697,1627,1665,1630,1568,1532,1510,1459,1481,1489,1465,1461 -50,1,13,Alabama,Butler County,0,4,1803,1802,1741,1632,1557,1570,1525,1499,1527,1468,1392,1391,1391 -50,1,13,Alabama,Butler County,0,5,1187,1189,1271,1283,1312,1339,1328,1297,1263,1211,1177,1170,1171 -50,1,13,Alabama,Butler County,0,6,1154,1137,1068,1031,1046,1053,1140,1221,1256,1318,1295,1283,1287 -50,1,13,Alabama,Butler County,0,7,1182,1170,1174,1145,1164,1165,1143,1090,1122,1151,1195,1244,1253 -50,1,13,Alabama,Butler County,0,8,1472,1460,1361,1265,1198,1174,1173,1175,1183,1183,1182,1162,1161 -50,1,13,Alabama,Butler County,0,9,1569,1565,1542,1473,1449,1445,1422,1347,1291,1245,1194,1215,1213 -50,1,13,Alabama,Butler County,0,10,1547,1550,1571,1577,1610,1563,1532,1531,1476,1461,1457,1428,1419 -50,1,13,Alabama,Butler County,0,11,1338,1346,1388,1478,1473,1524,1554,1596,1609,1619,1602,1552,1553 -50,1,13,Alabama,Butler County,0,12,1100,1100,1138,1179,1206,1250,1318,1358,1434,1473,1503,1531,1538 -50,1,13,Alabama,Butler County,0,13,942,943,955,988,1031,1057,1057,1106,1165,1235,1218,1294,1305 -50,1,13,Alabama,Butler County,0,14,907,902,889,885,871,883,871,905,910,950,961,1004,1008 -50,1,13,Alabama,Butler County,0,15,849,845,839,810,821,818,820,789,831,793,827,825,824 -50,1,13,Alabama,Butler County,0,16,661,658,694,704,732,723,715,709,665,677,674,660,657 -50,1,13,Alabama,Butler County,0,17,563,567,555,511,525,478,474,492,513,494,488,488,494 -50,1,13,Alabama,Butler County,0,18,524,529,530,500,500,527,517,506,487,500,507,512,514 -50,1,13,Alabama,Butler County,1,0,10016,9992,9913,9781,9789,9814,9801,9802,9854,9814,9757,9838,9834 -50,1,13,Alabama,Butler County,1,1,679,672,673,659,711,746,738,746,729,718,713,714,703 -50,1,13,Alabama,Butler County,1,2,818,807,775,708,692,687,689,666,672,674,709,726,728 -50,1,13,Alabama,Butler County,1,3,880,877,830,853,816,809,786,787,784,769,757,750,747 -50,1,13,Alabama,Butler County,1,4,887,890,866,802,776,773,775,769,786,782,742,744,741 -50,1,13,Alabama,Butler County,1,5,555,557,589,609,625,621,639,618,583,540,521,534,537 -50,1,13,Alabama,Butler County,1,6,520,511,503,492,468,487,513,545,578,615,574,578,581 -50,1,13,Alabama,Butler County,1,7,562,558,554,542,556,540,519,493,510,505,550,574,575 -50,1,13,Alabama,Butler County,1,8,656,650,625,574,563,541,539,556,553,550,542,541,538 -50,1,13,Alabama,Butler County,1,9,762,760,731,703,672,655,634,597,572,561,549,550,552 -50,1,13,Alabama,Butler County,1,10,735,740,746,733,769,763,731,720,688,668,661,638,635 -50,1,13,Alabama,Butler County,1,11,671,675,694,747,715,731,770,780,781,802,792,763,759 -50,1,13,Alabama,Butler County,1,12,528,529,550,565,600,619,633,658,692,681,695,714,718 -50,1,13,Alabama,Butler County,1,13,442,444,448,463,479,496,512,542,571,612,602,628,634 -50,1,13,Alabama,Butler County,1,14,388,388,384,410,412,424,406,423,435,442,459,492,494 -50,1,13,Alabama,Butler County,1,15,355,354,362,341,336,344,347,333,376,339,350,347,347 -50,1,13,Alabama,Butler County,1,16,243,242,256,267,279,255,262,264,236,243,254,253,250 -50,1,13,Alabama,Butler County,1,17,194,196,193,186,187,169,154,165,170,166,149,155,157 -50,1,13,Alabama,Butler County,1,18,141,142,134,127,133,154,154,140,138,147,138,137,138 -50,1,13,Alabama,Butler County,2,0,11378,11333,11226,11022,11044,11056,11029,11013,11040,11135,11110,11109,11117 -50,1,13,Alabama,Butler County,2,1,679,675,652,643,643,633,613,609,631,627,643,658,653 -50,1,13,Alabama,Butler County,2,2,721,711,696,667,662,667,669,663,671,671,641,625,618 -50,1,13,Alabama,Butler County,2,3,819,820,797,812,814,759,746,723,675,712,732,715,714 -50,1,13,Alabama,Butler County,2,4,916,912,875,830,781,797,750,730,741,686,650,647,650 -50,1,13,Alabama,Butler County,2,5,632,632,682,674,687,718,689,679,680,671,656,636,634 -50,1,13,Alabama,Butler County,2,6,634,626,565,539,578,566,627,676,678,703,721,705,706 -50,1,13,Alabama,Butler County,2,7,620,612,620,603,608,625,624,597,612,646,645,670,678 -50,1,13,Alabama,Butler County,2,8,816,810,736,691,635,633,634,619,630,633,640,621,623 -50,1,13,Alabama,Butler County,2,9,807,805,811,770,777,790,788,750,719,684,645,665,661 -50,1,13,Alabama,Butler County,2,10,812,810,825,844,841,800,801,811,788,793,796,790,784 -50,1,13,Alabama,Butler County,2,11,667,671,694,731,758,793,784,816,828,817,810,789,794 -50,1,13,Alabama,Butler County,2,12,572,571,588,614,606,631,685,700,742,792,808,817,820 -50,1,13,Alabama,Butler County,2,13,500,499,507,525,552,561,545,564,594,623,616,666,671 -50,1,13,Alabama,Butler County,2,14,519,514,505,475,459,459,465,482,475,508,502,512,514 -50,1,13,Alabama,Butler County,2,15,494,491,477,469,485,474,473,456,455,454,477,478,477 -50,1,13,Alabama,Butler County,2,16,418,416,438,437,453,468,453,445,429,434,420,407,407 -50,1,13,Alabama,Butler County,2,17,369,371,362,325,338,309,320,327,343,328,339,333,337 -50,1,13,Alabama,Butler County,2,18,383,387,396,373,367,373,363,366,349,353,369,375,376 \ No newline at end of file +SUMLEV,STATE,COUNTY,STNAME,CTYNAME,SEX,AGEGRP,ESTIMATESBASE2000,POPESTIMATE2000,POPESTIMATE2001,POPESTIMATE2002,POPESTIMATE2003,POPESTIMATE2004,POPESTIMATE2005,POPESTIMATE2006,POPESTIMATE2007,POPESTIMATE2008,POPESTIMATE2009,CENSUS2010POP,POPESTIMATE2010 +50,1,1,Alabama,Autauga County,0,0,43751,44021,44889,45909,46800,48366,49676,51328,52405,53277,54135,54571,54632 +50,1,1,Alabama,Autauga County,0,1,3021,3029,3120,3191,3192,3353,3487,3492,3485,3437,3584,3579,3581 +50,1,1,Alabama,Autauga County,0,2,3622,3619,3541,3596,3630,3692,3719,3972,4076,4091,4020,3991,3991 +50,1,1,Alabama,Autauga County,0,3,3744,3776,3896,4016,4072,4166,4238,4175,4220,4337,4307,4290,4284 +50,1,1,Alabama,Autauga County,0,4,3266,3297,3306,3408,3578,3775,4008,4247,4406,4517,4611,4290,4262 +50,1,1,Alabama,Autauga County,0,5,2344,2366,2485,2505,2598,2771,2797,2808,2852,2893,2919,3080,3091 +50,1,1,Alabama,Autauga County,0,6,2710,2701,2591,2567,2550,2695,2810,2971,2990,3035,3088,3157,3181 +50,1,1,Alabama,Autauga County,0,7,3033,3043,3120,3165,3187,3270,3294,3295,3305,3263,3253,3330,3353 +50,1,1,Alabama,Autauga County,0,8,4002,4002,3975,3892,3918,3919,3840,4017,4168,4094,4149,4157,4126 +50,1,1,Alabama,Autauga County,0,9,3678,3698,3821,4072,4058,4074,4170,4214,4121,4223,4147,4086,4081 +50,1,1,Alabama,Autauga County,0,10,3028,3060,3187,3264,3462,3663,3832,3973,4173,4253,4285,4332,4308 +50,1,1,Alabama,Autauga County,0,11,2610,2649,2807,2823,2840,2957,3075,3248,3337,3550,3746,3873,3882 +50,1,1,Alabama,Autauga County,0,12,2301,2326,2360,2526,2573,2609,2747,2862,2890,2921,3017,3083,3103 +50,1,1,Alabama,Autauga County,0,13,1904,1924,2013,2067,2148,2232,2286,2384,2531,2607,2667,2777,2805 +50,1,1,Alabama,Autauga County,0,14,1549,1560,1605,1685,1759,1811,1834,1952,2008,2097,2209,2277,2297 +50,1,1,Alabama,Autauga County,0,15,1153,1160,1236,1253,1294,1317,1411,1482,1563,1619,1673,1736,1744 +50,1,1,Alabama,Autauga County,0,16,835,843,886,890,919,974,1022,1109,1092,1125,1187,1251,1246 +50,1,1,Alabama,Autauga County,0,17,516,525,496,546,587,635,633,656,656,670,715,731,743 +50,1,1,Alabama,Autauga County,0,18,435,443,444,443,435,453,473,471,532,545,558,551,554 +50,1,1,Alabama,Autauga County,1,0,21252,21385,21813,22362,22760,23512,24200,24988,25468,25873,26364,26569,26596 +50,1,1,Alabama,Autauga County,1,1,1500,1503,1526,1506,1528,1624,1731,1782,1753,1752,1870,1866,1863 +50,1,1,Alabama,Autauga County,1,2,1875,1874,1807,1844,1831,1858,1868,2021,2031,2051,2023,2001,2005 +50,1,1,Alabama,Autauga County,1,3,1959,1976,2028,2135,2158,2147,2163,2111,2122,2219,2218,2171,2167 +50,1,1,Alabama,Autauga County,1,4,1679,1698,1716,1784,1856,1984,2099,2215,2316,2361,2362,2213,2196 +50,1,1,Alabama,Autauga County,1,5,1182,1193,1255,1241,1278,1382,1393,1436,1430,1455,1469,1539,1540 +50,1,1,Alabama,Autauga County,1,6,1277,1274,1214,1232,1236,1315,1378,1402,1420,1442,1469,1543,1559 +50,1,1,Alabama,Autauga County,1,7,1471,1477,1520,1536,1537,1536,1554,1568,1574,1537,1558,1594,1605 +50,1,1,Alabama,Autauga County,1,8,1941,1942,1967,1895,1914,1957,1881,1962,2060,1980,1992,2004,1992 +50,1,1,Alabama,Autauga County,1,9,1784,1791,1829,2011,1975,1979,2053,2034,1941,2027,2015,1974,1972 +50,1,1,Alabama,Autauga County,1,10,1501,1518,1585,1602,1677,1778,1886,1948,2112,2127,2131,2174,2159 +50,1,1,Alabama,Autauga County,1,11,1241,1260,1370,1388,1406,1471,1529,1633,1644,1699,1801,1866,1871 +50,1,1,Alabama,Autauga County,1,12,1085,1097,1098,1196,1251,1261,1330,1406,1413,1433,1494,1524,1535 +50,1,1,Alabama,Autauga County,1,13,931,940,992,1025,1017,1059,1072,1090,1175,1229,1243,1279,1291 +50,1,1,Alabama,Autauga County,1,14,711,716,746,784,828,839,865,922,922,928,994,1014,1024 +50,1,1,Alabama,Autauga County,1,15,498,501,538,530,593,590,636,671,725,735,764,807,810 +50,1,1,Alabama,Autauga County,1,16,330,334,344,357,366,389,408,432,429,485,527,546,544 +50,1,1,Alabama,Autauga County,1,17,172,173,158,175,196,217,226,248,265,265,277,295,303 +50,1,1,Alabama,Autauga County,1,18,115,118,120,121,113,126,128,107,136,148,157,159,160 +50,1,1,Alabama,Autauga County,2,0,22499,22636,23076,23547,24040,24854,25476,26340,26937,27404,27771,28002,28036 +50,1,1,Alabama,Autauga County,2,1,1521,1526,1594,1685,1664,1729,1756,1710,1732,1685,1714,1713,1718 +50,1,1,Alabama,Autauga County,2,2,1747,1745,1734,1752,1799,1834,1851,1951,2045,2040,1997,1990,1986 +50,1,1,Alabama,Autauga County,2,3,1785,1800,1868,1881,1914,2019,2075,2064,2098,2118,2089,2119,2117 +50,1,1,Alabama,Autauga County,2,4,1587,1599,1590,1624,1722,1791,1909,2032,2090,2156,2249,2077,2066 +50,1,1,Alabama,Autauga County,2,5,1162,1173,1230,1264,1320,1389,1404,1372,1422,1438,1450,1541,1551 +50,1,1,Alabama,Autauga County,2,6,1433,1427,1377,1335,1314,1380,1432,1569,1570,1593,1619,1614,1622 +50,1,1,Alabama,Autauga County,2,7,1562,1566,1600,1629,1650,1734,1740,1727,1731,1726,1695,1736,1748 +50,1,1,Alabama,Autauga County,2,8,2061,2060,2008,1997,2004,1962,1959,2055,2108,2114,2157,2153,2134 +50,1,1,Alabama,Autauga County,2,9,1894,1907,1992,2061,2083,2095,2117,2180,2180,2196,2132,2112,2109 +50,1,1,Alabama,Autauga County,2,10,1527,1542,1602,1662,1785,1885,1946,2025,2061,2126,2154,2158,2149 +50,1,1,Alabama,Autauga County,2,11,1369,1389,1437,1435,1434,1486,1546,1615,1693,1851,1945,2007,2011 +50,1,1,Alabama,Autauga County,2,12,1216,1229,1262,1330,1322,1348,1417,1456,1477,1488,1523,1559,1568 +50,1,1,Alabama,Autauga County,2,13,973,984,1021,1042,1131,1173,1214,1294,1356,1378,1424,1498,1514 +50,1,1,Alabama,Autauga County,2,14,838,844,859,901,931,972,969,1030,1086,1169,1215,1263,1273 +50,1,1,Alabama,Autauga County,2,15,655,659,698,723,701,727,775,811,838,884,909,929,934 +50,1,1,Alabama,Autauga County,2,16,505,509,542,533,553,585,614,677,663,640,660,705,702 +50,1,1,Alabama,Autauga County,2,17,344,352,338,371,391,418,407,408,391,405,438,436,440 +50,1,1,Alabama,Autauga County,2,18,320,325,324,322,322,327,345,364,396,397,401,392,394 +50,1,3,Alabama,Baldwin County,0,0,140416,141342,144875,147957,151509,156266,162183,168121,172404,175827,179406,182265,183195 +50,1,3,Alabama,Baldwin County,0,1,8621,8642,8887,8964,9092,9417,9903,10441,10820,11100,11248,11158,11191 +50,1,3,Alabama,Baldwin County,0,2,9488,9482,9487,9466,9507,9667,10105,10535,10882,11101,11323,11599,11644 +50,1,3,Alabama,Baldwin County,0,3,10145,10235,10540,10711,10778,11005,11081,11395,11550,11634,11776,11926,11964 +50,1,3,Alabama,Baldwin County,0,4,9463,9537,9641,9829,10066,10326,10621,11031,11330,11512,11683,11600,11575 +50,1,3,Alabama,Baldwin County,0,5,7090,7177,7588,7814,8197,8318,8565,8802,9051,9069,9197,9449,9507 +50,1,3,Alabama,Baldwin County,0,6,8088,8048,7815,7585,7711,8081,8570,9304,9636,9918,10051,10247,10330 +50,1,3,Alabama,Baldwin County,0,7,8934,8965,9096,9393,9491,9684,9755,9725,9662,9909,10412,10709,10826 +50,1,3,Alabama,Baldwin County,0,8,10750,10753,10636,10434,10185,10159,10505,10998,11516,11646,11602,11558,11521 +50,1,3,Alabama,Baldwin County,0,9,11159,11234,11522,11656,11747,11994,12234,12149,11993,11927,11857,11995,12035 +50,1,3,Alabama,Baldwin County,0,10,10232,10348,10742,11247,11657,12028,12358,12812,12922,13012,13321,13431,13426 +50,1,3,Alabama,Baldwin County,0,11,9374,9516,10039,10125,10413,10856,11539,12025,12604,13051,13336,13490,13569 +50,1,3,Alabama,Baldwin County,0,12,8274,8365,8655,9476,9993,10523,11206,11881,11797,11822,12127,12523,12639 +50,1,3,Alabama,Baldwin County,0,13,7095,7157,7642,7957,8559,9259,9836,10174,10991,11369,11700,12012,12176 +50,1,3,Alabama,Baldwin County,0,14,6622,6662,6813,7101,7360,7760,8071,8461,8772,9349,9926,10174,10278 +50,1,3,Alabama,Baldwin County,0,15,5733,5771,5949,6061,6164,6337,6681,6855,6963,7227,7405,7629,7697 +50,1,3,Alabama,Baldwin County,0,16,4429,4475,4619,4727,4883,4969,5078,5253,5351,5334,5428,5598,5599 +50,1,3,Alabama,Baldwin County,0,17,2755,2797,2959,3125,3313,3414,3518,3584,3727,3872,3886,3934,3954 +50,1,3,Alabama,Baldwin County,0,18,2164,2178,2245,2286,2393,2469,2557,2696,2837,2975,3128,3233,3264 +50,1,3,Alabama,Baldwin County,1,0,68848,69302,70911,72399,74202,76547,79416,82192,84173,85797,87701,89196,89655 +50,1,3,Alabama,Baldwin County,1,1,4385,4391,4437,4510,4610,4789,4987,5265,5476,5572,5637,5614,5627 +50,1,3,Alabama,Baldwin County,1,2,4938,4930,4851,4794,4758,4862,5175,5326,5442,5630,5720,5832,5864 +50,1,3,Alabama,Baldwin County,1,3,5212,5255,5387,5482,5566,5724,5731,5805,5892,5906,5951,6076,6094 +50,1,3,Alabama,Baldwin County,1,4,4882,4920,5018,5091,5210,5253,5421,5651,5796,5880,5990,5930,5916 +50,1,3,Alabama,Baldwin County,1,5,3605,3648,3808,3918,4166,4284,4381,4561,4611,4588,4649,4793,4820 +50,1,3,Alabama,Baldwin County,1,6,3994,3981,3918,3849,3880,4050,4264,4605,4757,4989,5091,5183,5234 +50,1,3,Alabama,Baldwin County,1,7,4424,4440,4444,4617,4698,4816,4819,4845,4822,4919,5167,5317,5370 +50,1,3,Alabama,Baldwin County,1,8,5303,5304,5239,5067,4915,4918,5115,5347,5611,5693,5743,5725,5705 +50,1,3,Alabama,Baldwin County,1,9,5378,5413,5605,5709,5769,5910,6049,5929,5819,5794,5806,5895,5916 +50,1,3,Alabama,Baldwin County,1,10,5000,5058,5251,5450,5636,5778,5924,6173,6279,6313,6528,6622,6620 +50,1,3,Alabama,Baldwin County,1,11,4570,4640,4912,4938,5082,5240,5577,5784,6035,6226,6382,6425,6460 +50,1,3,Alabama,Baldwin County,1,12,3947,3988,4093,4490,4775,5009,5362,5715,5629,5618,5735,5943,5997 +50,1,3,Alabama,Baldwin County,1,13,3399,3427,3666,3826,4094,4467,4699,4823,5229,5416,5572,5728,5808 +50,1,3,Alabama,Baldwin County,1,14,3277,3299,3368,3512,3597,3778,3881,4074,4222,4509,4753,4895,4945 +50,1,3,Alabama,Baldwin County,1,15,2746,2769,2889,2958,3019,3108,3301,3407,3462,3488,3587,3663,3696 +50,1,3,Alabama,Baldwin County,1,16,1966,1988,2081,2162,2249,2306,2406,2479,2515,2519,2555,2644,2643 +50,1,3,Alabama,Baldwin County,1,17,1157,1178,1262,1323,1410,1465,1460,1461,1581,1674,1694,1735,1751 +50,1,3,Alabama,Baldwin County,1,18,665,673,682,703,768,790,864,942,995,1063,1141,1176,1189 +50,1,3,Alabama,Baldwin County,2,0,71568,72040,73964,75558,77307,79719,82767,85929,88231,90030,91705,93069,93540 +50,1,3,Alabama,Baldwin County,2,1,4236,4251,4450,4454,4482,4628,4916,5176,5344,5528,5611,5544,5564 +50,1,3,Alabama,Baldwin County,2,2,4550,4552,4636,4672,4749,4805,4930,5209,5440,5471,5603,5767,5780 +50,1,3,Alabama,Baldwin County,2,3,4933,4980,5153,5229,5212,5281,5350,5590,5658,5728,5825,5850,5870 +50,1,3,Alabama,Baldwin County,2,4,4581,4617,4623,4738,4856,5073,5200,5380,5534,5632,5693,5670,5659 +50,1,3,Alabama,Baldwin County,2,5,3485,3529,3780,3896,4031,4034,4184,4241,4440,4481,4548,4656,4687 +50,1,3,Alabama,Baldwin County,2,6,4094,4067,3897,3736,3831,4031,4306,4699,4879,4929,4960,5064,5096 +50,1,3,Alabama,Baldwin County,2,7,4510,4525,4652,4776,4793,4868,4936,4880,4840,4990,5245,5392,5456 +50,1,3,Alabama,Baldwin County,2,8,5447,5449,5397,5367,5270,5241,5390,5651,5905,5953,5859,5833,5816 +50,1,3,Alabama,Baldwin County,2,9,5781,5821,5917,5947,5978,6084,6185,6220,6174,6133,6051,6100,6119 +50,1,3,Alabama,Baldwin County,2,10,5232,5290,5491,5797,6021,6250,6434,6639,6643,6699,6793,6809,6806 +50,1,3,Alabama,Baldwin County,2,11,4804,4876,5127,5187,5331,5616,5962,6241,6569,6825,6954,7065,7109 +50,1,3,Alabama,Baldwin County,2,12,4327,4377,4562,4986,5218,5514,5844,6166,6168,6204,6392,6580,6642 +50,1,3,Alabama,Baldwin County,2,13,3696,3730,3976,4131,4465,4792,5137,5351,5762,5953,6128,6284,6368 +50,1,3,Alabama,Baldwin County,2,14,3345,3363,3445,3589,3763,3982,4190,4387,4550,4840,5173,5279,5333 +50,1,3,Alabama,Baldwin County,2,15,2987,3002,3060,3103,3145,3229,3380,3448,3501,3739,3818,3966,4001 +50,1,3,Alabama,Baldwin County,2,16,2463,2487,2538,2565,2634,2663,2672,2774,2836,2815,2873,2954,2956 +50,1,3,Alabama,Baldwin County,2,17,1598,1619,1697,1802,1903,1949,2058,2123,2146,2198,2192,2199,2203 +50,1,3,Alabama,Baldwin County,2,18,1499,1505,1563,1583,1625,1679,1693,1754,1842,1912,1987,2057,2075 +50,1,5,Alabama,Barbour County,0,0,29042,29015,28863,28653,28594,28287,28027,27861,27757,27808,27657,27457,27411 +50,1,5,Alabama,Barbour County,0,1,1788,1781,1858,1787,1729,1755,1778,1717,1753,1797,1708,1702,1699 +50,1,5,Alabama,Barbour County,0,2,2056,2035,1937,1891,1780,1707,1592,1621,1645,1677,1628,1642,1648 +50,1,5,Alabama,Barbour County,0,3,2156,2161,2123,2074,2108,1955,1929,1822,1695,1637,1631,1599,1600 +50,1,5,Alabama,Barbour County,0,4,2148,2147,2115,2062,2012,1977,1909,1922,1896,1862,1812,1731,1710 +50,1,5,Alabama,Barbour County,0,5,1929,1933,1947,1988,2032,2008,1983,1914,1872,1830,1818,1794,1783 +50,1,5,Alabama,Barbour County,0,6,2058,2041,1947,1873,1868,1846,1837,1919,1939,1972,1985,2010,2008 +50,1,5,Alabama,Barbour County,0,7,2008,2008,2033,2053,2080,2079,2057,1916,1828,1802,1806,1808,1813 +50,1,5,Alabama,Barbour County,0,8,2350,2340,2273,2207,2102,1967,1890,1908,1893,1864,1879,1819,1809 +50,1,5,Alabama,Barbour County,0,9,2185,2182,2120,2131,2205,2221,2190,2141,2027,1917,1878,1809,1803 +50,1,5,Alabama,Barbour County,0,10,1956,1963,2038,2045,2053,2034,2067,2042,2074,2135,2153,2108,2093 +50,1,5,Alabama,Barbour County,0,11,1970,1987,1976,1991,1972,1950,1918,1943,1931,1935,1918,1910,1908 +50,1,5,Alabama,Barbour County,0,12,1423,1427,1514,1632,1728,1784,1857,1861,1880,1884,1849,1817,1817 +50,1,5,Alabama,Barbour County,0,13,1141,1141,1158,1159,1223,1279,1328,1452,1569,1676,1722,1799,1805 +50,1,5,Alabama,Barbour County,0,14,1061,1053,1056,1034,1022,1065,1049,1065,1099,1157,1246,1290,1295 +50,1,5,Alabama,Barbour County,0,15,978,973,973,978,938,892,912,913,924,913,950,948,953 +50,1,5,Alabama,Barbour County,0,16,806,806,780,753,775,773,742,742,745,715,669,685,681 +50,1,5,Alabama,Barbour County,0,17,517,522,520,535,538,593,583,529,549,598,559,543,544 +50,1,5,Alabama,Barbour County,0,18,512,515,495,460,429,402,406,434,438,437,446,443,442 +50,1,5,Alabama,Barbour County,1,0,14974,14954,14893,14920,15021,14854,14713,14718,14621,14774,14688,14576,14544 +50,1,5,Alabama,Barbour County,1,1,930,926,968,919,891,883,884,882,893,940,861,847,844 +50,1,5,Alabama,Barbour County,1,2,1075,1063,998,987,926,909,833,831,861,868,823,826,836 +50,1,5,Alabama,Barbour County,1,3,1081,1083,1067,1028,1061,1001,978,923,858,855,853,820,821 +50,1,5,Alabama,Barbour County,1,4,1117,1117,1089,1072,1036,997,960,997,975,987,973,919,906 +50,1,5,Alabama,Barbour County,1,5,1184,1183,1187,1200,1225,1202,1207,1158,1110,1074,1059,1048,1043 +50,1,5,Alabama,Barbour County,1,6,1229,1220,1169,1166,1190,1165,1153,1209,1192,1214,1200,1212,1210 +50,1,5,Alabama,Barbour County,1,7,1156,1157,1167,1213,1231,1256,1256,1183,1164,1161,1152,1162,1162 +50,1,5,Alabama,Barbour County,1,8,1309,1303,1257,1235,1220,1132,1089,1098,1099,1063,1077,1046,1042 +50,1,5,Alabama,Barbour County,1,9,1192,1190,1155,1149,1191,1220,1198,1178,1122,1090,1095,1069,1066 +50,1,5,Alabama,Barbour County,1,10,986,989,1039,1077,1113,1093,1123,1127,1125,1157,1188,1164,1157 +50,1,5,Alabama,Barbour County,1,11,1002,1011,1018,1031,1026,1010,981,1003,1003,1030,999,1000,995 +50,1,5,Alabama,Barbour County,1,12,696,699,739,801,855,906,950,947,959,946,925,910,912 +50,1,5,Alabama,Barbour County,1,13,534,534,556,551,599,614,628,684,721,787,816,859,862 +50,1,5,Alabama,Barbour County,1,14,493,490,486,484,461,497,486,516,526,565,611,631,631 +50,1,5,Alabama,Barbour County,1,15,400,399,408,407,418,378,415,400,413,396,428,436,434 +50,1,5,Alabama,Barbour County,1,16,288,287,290,306,306,309,285,299,297,320,285,303,299 +50,1,5,Alabama,Barbour County,1,17,179,181,178,174,159,175,184,183,200,202,213,195,195 +50,1,5,Alabama,Barbour County,1,18,123,122,122,120,113,107,103,100,103,119,130,129,129 +50,1,5,Alabama,Barbour County,2,0,14068,14061,13970,13733,13573,13433,13314,13143,13136,13034,12969,12881,12867 +50,1,5,Alabama,Barbour County,2,1,858,855,890,868,838,872,894,835,860,857,847,855,855 +50,1,5,Alabama,Barbour County,2,2,981,972,939,904,854,798,759,790,784,809,805,816,812 +50,1,5,Alabama,Barbour County,2,3,1075,1078,1056,1046,1047,954,951,899,837,782,778,779,779 +50,1,5,Alabama,Barbour County,2,4,1031,1030,1026,990,976,980,949,925,921,875,839,812,804 +50,1,5,Alabama,Barbour County,2,5,745,750,760,788,807,806,776,756,762,756,759,746,740 +50,1,5,Alabama,Barbour County,2,6,829,821,778,707,678,681,684,710,747,758,785,798,798 +50,1,5,Alabama,Barbour County,2,7,852,851,866,840,849,823,801,733,664,641,654,646,651 +50,1,5,Alabama,Barbour County,2,8,1041,1037,1016,972,882,835,801,810,794,801,802,773,767 +50,1,5,Alabama,Barbour County,2,9,993,992,965,982,1014,1001,992,963,905,827,783,740,737 +50,1,5,Alabama,Barbour County,2,10,970,974,999,968,940,941,944,915,949,978,965,944,936 +50,1,5,Alabama,Barbour County,2,11,968,976,958,960,946,940,937,940,928,905,919,910,913 +50,1,5,Alabama,Barbour County,2,12,727,728,775,831,873,878,907,914,921,938,924,907,905 +50,1,5,Alabama,Barbour County,2,13,607,607,602,608,624,665,700,768,848,889,906,940,943 +50,1,5,Alabama,Barbour County,2,14,568,563,570,550,561,568,563,549,573,592,635,659,664 +50,1,5,Alabama,Barbour County,2,15,578,574,565,571,520,514,497,513,511,517,522,512,519 +50,1,5,Alabama,Barbour County,2,16,518,519,490,447,469,464,457,443,448,395,384,382,382 +50,1,5,Alabama,Barbour County,2,17,338,341,342,361,379,418,399,346,349,396,346,348,349 +50,1,5,Alabama,Barbour County,2,18,389,393,373,340,316,295,303,334,335,318,316,314,313 +50,1,7,Alabama,Bibb County,0,0,19856,19913,21028,21199,21399,21721,22042,22099,22438,22705,22941,22915,22867 +50,1,7,Alabama,Bibb County,0,1,1447,1447,1429,1478,1454,1449,1394,1374,1394,1400,1376,1378,1370 +50,1,7,Alabama,Bibb County,0,2,1525,1516,1474,1458,1448,1457,1452,1436,1462,1447,1441,1405,1402 +50,1,7,Alabama,Bibb County,0,3,1452,1463,1539,1553,1529,1552,1567,1495,1518,1489,1466,1440,1440 +50,1,7,Alabama,Bibb County,0,4,1369,1379,1354,1377,1418,1413,1485,1538,1531,1559,1589,1543,1525 +50,1,7,Alabama,Bibb County,0,5,1263,1274,1415,1381,1431,1469,1421,1357,1436,1467,1504,1491,1490 +50,1,7,Alabama,Bibb County,0,6,1406,1400,1492,1489,1526,1530,1553,1583,1589,1582,1638,1603,1606 +50,1,7,Alabama,Bibb County,0,7,1492,1494,1633,1610,1575,1610,1618,1577,1592,1604,1652,1646,1652 +50,1,7,Alabama,Bibb County,0,8,1458,1451,1648,1652,1666,1658,1722,1733,1733,1716,1724,1747,1738 +50,1,7,Alabama,Bibb County,0,9,1456,1460,1541,1543,1534,1583,1602,1639,1626,1645,1633,1635,1633 +50,1,7,Alabama,Bibb County,0,10,1336,1351,1452,1528,1590,1636,1655,1637,1671,1722,1775,1805,1789 +50,1,7,Alabama,Bibb County,0,11,1270,1286,1383,1371,1361,1430,1509,1523,1551,1575,1572,1581,1576 +50,1,7,Alabama,Bibb County,0,12,1076,1084,1131,1187,1235,1288,1335,1408,1378,1383,1376,1401,1399 +50,1,7,Alabama,Bibb County,0,13,899,905,932,998,1051,1056,1084,1107,1178,1274,1313,1334,1346 +50,1,7,Alabama,Bibb County,0,14,690,687,733,756,768,795,868,862,894,943,964,966,970 +50,1,7,Alabama,Bibb County,0,15,629,628,647,632,655,649,635,665,704,703,722,757,758 +50,1,7,Alabama,Bibb County,0,16,504,503,522,539,541,527,534,538,532,558,553,549,544 +50,1,7,Alabama,Bibb County,0,17,251,255,307,306,333,367,368,371,385,370,365,355,350 +50,1,7,Alabama,Bibb County,0,18,333,330,396,341,284,252,240,256,264,268,278,279,279 +50,1,7,Alabama,Bibb County,1,0,9788,9825,10715,10881,11065,11314,11548,11663,11849,12040,12333,12301,12272 +50,1,7,Alabama,Bibb County,1,1,775,774,753,789,784,771,716,720,734,748,728,712,708 +50,1,7,Alabama,Bibb County,1,2,764,760,750,752,780,779,791,787,775,758,779,759,761 +50,1,7,Alabama,Bibb County,1,3,698,702,752,756,753,778,795,753,775,789,772,771,770 +50,1,7,Alabama,Bibb County,1,4,725,732,735,758,741,738,740,798,797,814,838,806,795 +50,1,7,Alabama,Bibb County,1,5,621,627,721,723,764,807,809,782,814,802,824,811,809 +50,1,7,Alabama,Bibb County,1,6,702,701,833,814,840,864,883,900,935,951,1009,987,987 +50,1,7,Alabama,Bibb County,1,7,750,754,890,884,874,931,963,939,929,946,1010,1013,1013 +50,1,7,Alabama,Bibb County,1,8,724,720,885,928,932,904,928,957,975,968,986,1003,999 +50,1,7,Alabama,Bibb County,1,9,740,742,835,811,805,841,854,864,891,910,896,892,893 +50,1,7,Alabama,Bibb County,1,10,689,700,771,817,878,895,931,948,942,960,1012,1036,1027 +50,1,7,Alabama,Bibb County,1,11,632,641,709,711,723,776,804,795,801,844,851,847,848 +50,1,7,Alabama,Bibb County,1,12,547,551,587,601,611,650,684,719,725,726,723,734,732 +50,1,7,Alabama,Bibb County,1,13,427,429,460,497,522,526,541,570,584,630,668,684,690 +50,1,7,Alabama,Bibb County,1,14,334,333,352,367,368,374,415,395,407,441,463,456,458 +50,1,7,Alabama,Bibb County,1,15,293,293,298,290,298,296,298,313,338,332,330,347,346 +50,1,7,Alabama,Bibb County,1,16,181,181,176,192,200,195,211,231,226,223,241,232,227 +50,1,7,Alabama,Bibb County,1,17,84,84,99,95,109,112,116,119,130,128,132,138,136 +50,1,7,Alabama,Bibb County,1,18,102,101,109,96,83,77,69,73,71,70,71,73,73 +50,1,7,Alabama,Bibb County,2,0,10068,10088,10313,10318,10334,10407,10494,10436,10589,10665,10608,10614,10595 +50,1,7,Alabama,Bibb County,2,1,672,673,676,689,670,678,678,654,660,652,648,666,662 +50,1,7,Alabama,Bibb County,2,2,761,756,724,706,668,678,661,649,687,689,662,646,641 +50,1,7,Alabama,Bibb County,2,3,754,761,787,797,776,774,772,742,743,700,694,669,670 +50,1,7,Alabama,Bibb County,2,4,644,647,619,619,677,675,745,740,734,745,751,737,730 +50,1,7,Alabama,Bibb County,2,5,642,647,694,658,667,662,612,575,622,665,680,680,681 +50,1,7,Alabama,Bibb County,2,6,704,699,659,675,686,666,670,683,654,631,629,616,619 +50,1,7,Alabama,Bibb County,2,7,742,740,743,726,701,679,655,638,663,658,642,633,639 +50,1,7,Alabama,Bibb County,2,8,734,731,763,724,734,754,794,776,758,748,738,744,739 +50,1,7,Alabama,Bibb County,2,9,716,718,706,732,729,742,748,775,735,735,737,743,740 +50,1,7,Alabama,Bibb County,2,10,647,651,681,711,712,741,724,689,729,762,763,769,762 +50,1,7,Alabama,Bibb County,2,11,638,645,674,660,638,654,705,728,750,731,721,734,728 +50,1,7,Alabama,Bibb County,2,12,529,533,544,586,624,638,651,689,653,657,653,667,667 +50,1,7,Alabama,Bibb County,2,13,472,476,472,501,529,530,543,537,594,644,645,650,656 +50,1,7,Alabama,Bibb County,2,14,356,354,381,389,400,421,453,467,487,502,501,510,512 +50,1,7,Alabama,Bibb County,2,15,336,335,349,342,357,353,337,352,366,371,392,410,412 +50,1,7,Alabama,Bibb County,2,16,323,322,346,347,341,332,323,307,306,335,312,317,317 +50,1,7,Alabama,Bibb County,2,17,167,171,208,211,224,255,252,252,255,242,233,217,214 +50,1,7,Alabama,Bibb County,2,18,231,229,287,245,201,175,171,183,193,198,207,206,206 +50,1,9,Alabama,Blount County,0,0,50982,51107,51845,52551,53457,54124,54624,55485,56240,57055,57341,57322,57338 +50,1,9,Alabama,Blount County,0,1,3529,3534,3513,3517,3577,3633,3649,3646,3566,3676,3641,3616,3613 +50,1,9,Alabama,Blount County,0,2,3632,3627,3748,3808,3842,3873,3843,3828,3880,3846,3877,3880,3877 +50,1,9,Alabama,Blount County,0,3,3656,3675,3765,3860,3875,3894,3972,4047,4058,4126,4115,4084,4087 +50,1,9,Alabama,Blount County,0,4,3372,3397,3400,3384,3594,3651,3698,3798,3953,3971,3955,4033,3985 +50,1,9,Alabama,Blount County,0,5,3033,3055,3147,3085,3049,3048,3046,3009,2988,3118,3137,3107,3103 +50,1,9,Alabama,Blount County,0,6,3482,3457,3367,3373,3374,3409,3398,3390,3445,3466,3424,3436,3453 +50,1,9,Alabama,Blount County,0,7,3681,3675,3705,3765,3790,3735,3637,3542,3477,3482,3462,3441,3465 +50,1,9,Alabama,Blount County,0,8,3963,3944,3957,3950,3980,4019,4034,4031,4034,4077,4068,3892,3869 +50,1,9,Alabama,Blount County,0,9,3772,3775,3850,3916,4034,4056,4105,4184,4249,4180,4159,4033,4035 +50,1,9,Alabama,Blount County,0,10,3571,3592,3717,3825,3854,3802,3861,3958,3961,4093,4138,4163,4136 +50,1,9,Alabama,Blount County,0,11,3330,3360,3490,3458,3514,3606,3664,3765,3914,3905,3898,3922,3926 +50,1,9,Alabama,Blount County,0,12,2919,2937,3017,3117,3201,3384,3432,3581,3539,3611,3626,3694,3713 +50,1,9,Alabama,Blount County,0,13,2482,2497,2504,2693,2809,2869,2983,3080,3294,3377,3533,3582,3611 +50,1,9,Alabama,Blount County,0,14,2039,2041,2097,2182,2303,2344,2407,2501,2666,2762,2826,2892,2908 +50,1,9,Alabama,Blount County,0,15,1727,1727,1717,1743,1789,1833,1808,1969,2034,2138,2148,2187,2190 +50,1,9,Alabama,Blount County,0,16,1207,1212,1249,1301,1311,1362,1438,1422,1423,1461,1521,1517,1516 +50,1,9,Alabama,Blount County,0,17,871,880,838,819,838,862,873,961,986,969,987,1035,1039 +50,1,9,Alabama,Blount County,0,18,716,722,764,755,723,744,776,773,773,797,826,808,812 +50,1,9,Alabama,Blount County,1,0,25454,25519,25923,26175,26608,26933,27152,27528,27941,28358,28395,28362,28365 +50,1,9,Alabama,Blount County,1,1,1836,1839,1832,1825,1814,1817,1814,1813,1778,1850,1818,1805,1802 +50,1,9,Alabama,Blount County,1,2,1906,1902,1972,1979,2039,2029,2013,1982,1990,1917,1938,1936,1942 +50,1,9,Alabama,Blount County,1,3,1881,1892,1940,1955,1937,2021,2073,2131,2129,2188,2144,2113,2117 +50,1,9,Alabama,Blount County,1,4,1725,1742,1726,1748,1885,1912,1928,1962,2067,2071,2089,2139,2113 +50,1,9,Alabama,Blount County,1,5,1569,1579,1649,1597,1588,1538,1520,1499,1507,1598,1583,1577,1575 +50,1,9,Alabama,Blount County,1,6,1823,1812,1749,1742,1741,1784,1767,1781,1823,1827,1738,1735,1741 +50,1,9,Alabama,Blount County,1,7,1868,1865,1911,1937,1936,1934,1904,1823,1763,1758,1739,1730,1737 +50,1,9,Alabama,Blount County,1,8,2030,2021,2030,2018,2015,2010,2027,2042,2056,2059,2087,1989,1977 +50,1,9,Alabama,Blount County,1,9,1920,1921,1977,2029,2080,2093,2098,2138,2158,2117,2096,2033,2035 +50,1,9,Alabama,Blount County,1,10,1848,1858,1887,1915,1937,1920,1931,1995,2001,2089,2096,2096,2084 +50,1,9,Alabama,Blount County,1,11,1600,1613,1696,1716,1754,1815,1865,1861,1924,1954,1969,1972,1974 +50,1,9,Alabama,Blount County,1,12,1405,1412,1462,1480,1490,1581,1620,1713,1726,1761,1767,1810,1820 +50,1,9,Alabama,Blount County,1,13,1259,1267,1246,1320,1392,1406,1426,1487,1567,1558,1646,1700,1716 +50,1,9,Alabama,Blount County,1,14,966,968,1008,1064,1132,1153,1196,1222,1289,1351,1352,1352,1360 +50,1,9,Alabama,Blount County,1,15,784,786,772,794,824,850,835,914,951,994,1011,1039,1038 +50,1,9,Alabama,Blount County,1,16,483,485,499,525,534,541,601,596,624,649,696,684,681 +50,1,9,Alabama,Blount County,1,17,321,326,327,302,300,317,322,355,371,384,387,418,418 +50,1,9,Alabama,Blount County,1,18,230,231,240,229,210,212,212,214,217,233,239,234,235 +50,1,9,Alabama,Blount County,2,0,25528,25588,25922,26376,26849,27191,27472,27957,28299,28697,28946,28960,28973 +50,1,9,Alabama,Blount County,2,1,1693,1695,1681,1692,1763,1816,1835,1833,1788,1826,1823,1811,1811 +50,1,9,Alabama,Blount County,2,2,1726,1725,1776,1829,1803,1844,1830,1846,1890,1929,1939,1944,1935 +50,1,9,Alabama,Blount County,2,3,1775,1783,1825,1905,1938,1873,1899,1916,1929,1938,1971,1971,1970 +50,1,9,Alabama,Blount County,2,4,1647,1655,1674,1636,1709,1739,1770,1836,1886,1900,1866,1894,1872 +50,1,9,Alabama,Blount County,2,5,1464,1476,1498,1488,1461,1510,1526,1510,1481,1520,1554,1530,1528 +50,1,9,Alabama,Blount County,2,6,1659,1645,1618,1631,1633,1625,1631,1609,1622,1639,1686,1701,1712 +50,1,9,Alabama,Blount County,2,7,1813,1810,1794,1828,1854,1801,1733,1719,1714,1724,1723,1711,1728 +50,1,9,Alabama,Blount County,2,8,1933,1923,1927,1932,1965,2009,2007,1989,1978,2018,1981,1903,1892 +50,1,9,Alabama,Blount County,2,9,1852,1854,1873,1887,1954,1963,2007,2046,2091,2063,2063,2000,2000 +50,1,9,Alabama,Blount County,2,10,1723,1734,1830,1910,1917,1882,1930,1963,1960,2004,2042,2067,2052 +50,1,9,Alabama,Blount County,2,11,1730,1747,1794,1742,1760,1791,1799,1904,1990,1951,1929,1950,1952 +50,1,9,Alabama,Blount County,2,12,1514,1525,1555,1637,1711,1803,1812,1868,1813,1850,1859,1884,1893 +50,1,9,Alabama,Blount County,2,13,1223,1230,1258,1373,1417,1463,1557,1593,1727,1819,1887,1882,1895 +50,1,9,Alabama,Blount County,2,14,1073,1073,1089,1118,1171,1191,1211,1279,1377,1411,1474,1540,1548 +50,1,9,Alabama,Blount County,2,15,943,941,945,949,965,983,973,1055,1083,1144,1137,1148,1152 +50,1,9,Alabama,Blount County,2,16,724,727,750,776,777,821,837,826,799,812,825,833,835 +50,1,9,Alabama,Blount County,2,17,550,554,511,517,538,545,551,606,615,585,600,617,621 +50,1,9,Alabama,Blount County,2,18,486,491,524,526,513,532,564,559,556,564,587,574,577 +50,1,11,Alabama,Bullock County,0,0,11603,11581,11358,11256,11316,11056,11011,10776,11011,10953,10987,10914,10890 +50,1,11,Alabama,Bullock County,0,1,733,728,727,706,684,673,620,678,678,695,707,742,727 +50,1,11,Alabama,Bullock County,0,2,864,854,787,750,742,687,671,610,592,567,610,570,561 +50,1,11,Alabama,Bullock County,0,3,864,862,825,811,815,824,790,748,716,729,695,675,685 +50,1,11,Alabama,Bullock County,0,4,882,879,884,845,824,788,772,790,820,767,777,726,721 +50,1,11,Alabama,Bullock County,0,5,879,879,858,812,848,823,832,776,788,762,718,711,697 +50,1,11,Alabama,Bullock County,0,6,856,849,820,831,837,809,863,813,838,813,839,822,797 +50,1,11,Alabama,Bullock County,0,7,738,735,738,749,746,694,686,682,718,726,732,733,734 +50,1,11,Alabama,Bullock County,0,8,886,883,839,799,759,713,673,675,711,722,699,712,719 +50,1,11,Alabama,Bullock County,0,9,911,910,862,853,858,854,810,781,760,694,673,650,657 +50,1,11,Alabama,Bullock County,0,10,798,802,806,820,817,809,853,790,832,875,873,845,850 +50,1,11,Alabama,Bullock County,0,11,693,699,749,734,793,783,791,812,830,803,826,852,855 +50,1,11,Alabama,Bullock County,0,12,525,526,497,538,583,593,646,685,710,746,761,768,770 +50,1,11,Alabama,Bullock County,0,13,439,439,442,461,470,498,498,488,546,564,588,639,642 +50,1,11,Alabama,Bullock County,0,14,374,373,378,391,409,408,407,413,428,451,467,476,480 +50,1,11,Alabama,Bullock County,0,15,310,310,328,320,330,337,373,349,363,371,371,359,361 +50,1,11,Alabama,Bullock County,0,16,315,316,289,291,280,272,269,274,275,249,270,275,271 +50,1,11,Alabama,Bullock County,0,17,261,262,249,264,263,234,196,158,165,184,170,151,154 +50,1,11,Alabama,Bullock County,0,18,275,275,280,281,258,257,261,254,241,235,211,208,209 +50,1,11,Alabama,Bullock County,1,0,6077,6062,5985,5975,6087,5932,5901,5764,5958,5957,6007,5912,5893 +50,1,11,Alabama,Bullock County,1,1,373,371,383,368,353,355,343,374,367,387,389,402,389 +50,1,11,Alabama,Bullock County,1,2,455,450,413,391,395,354,342,312,299,261,310,295,298 +50,1,11,Alabama,Bullock County,1,3,417,416,395,393,406,403,395,387,370,381,359,337,341 +50,1,11,Alabama,Bullock County,1,4,457,454,458,421,399,398,365,377,387,368,381,365,360 +50,1,11,Alabama,Bullock County,1,5,530,529,522,498,530,497,491,461,449,445,413,392,387 +50,1,11,Alabama,Bullock County,1,6,524,520,496,523,548,517,554,497,521,492,512,500,489 +50,1,11,Alabama,Bullock County,1,7,431,430,435,442,449,425,417,403,441,443,456,444,443 +50,1,11,Alabama,Bullock County,1,8,512,510,477,467,451,427,416,416,438,448,435,440,441 +50,1,11,Alabama,Bullock County,1,9,512,511,475,477,478,465,434,413,427,407,386,376,377 +50,1,11,Alabama,Bullock County,1,10,442,445,470,478,471,472,493,450,484,514,510,500,504 +50,1,11,Alabama,Bullock County,1,11,365,368,393,380,431,426,449,468,480,463,467,472,473 +50,1,11,Alabama,Bullock County,1,12,257,258,250,293,312,318,344,356,365,401,429,433,434 +50,1,11,Alabama,Bullock County,1,13,224,224,226,231,245,250,248,250,293,299,306,330,334 +50,1,11,Alabama,Bullock County,1,14,163,162,174,189,195,206,211,207,214,229,230,223,223 +50,1,11,Alabama,Bullock County,1,15,119,119,135,138,150,151,166,156,170,168,168,170,170 +50,1,11,Alabama,Bullock County,1,16,117,117,99,108,110,115,107,112,117,112,121,117,112 +50,1,11,Alabama,Bullock County,1,17,95,95,98,94,83,75,51,47,57,64,69,54,55 +50,1,11,Alabama,Bullock County,1,18,84,83,86,84,81,78,75,78,79,75,66,62,63 +50,1,11,Alabama,Bullock County,2,0,5526,5519,5373,5281,5229,5124,5110,5012,5053,4996,4980,5002,4997 +50,1,11,Alabama,Bullock County,2,1,360,357,344,338,331,318,277,304,311,308,318,340,338 +50,1,11,Alabama,Bullock County,2,2,409,404,374,359,347,333,329,298,293,306,300,275,263 +50,1,11,Alabama,Bullock County,2,3,447,446,430,418,409,421,395,361,346,348,336,338,344 +50,1,11,Alabama,Bullock County,2,4,425,425,426,424,425,390,407,413,433,399,396,361,361 +50,1,11,Alabama,Bullock County,2,5,349,350,336,314,318,326,341,315,339,317,305,319,310 +50,1,11,Alabama,Bullock County,2,6,332,329,324,308,289,292,309,316,317,321,327,322,308 +50,1,11,Alabama,Bullock County,2,7,307,305,303,307,297,269,269,279,277,283,276,289,291 +50,1,11,Alabama,Bullock County,2,8,374,373,362,332,308,286,257,259,273,274,264,272,278 +50,1,11,Alabama,Bullock County,2,9,399,399,387,376,380,389,376,368,333,287,287,274,280 +50,1,11,Alabama,Bullock County,2,10,356,357,336,342,346,337,360,340,348,361,363,345,346 +50,1,11,Alabama,Bullock County,2,11,328,331,356,354,362,357,342,344,350,340,359,380,382 +50,1,11,Alabama,Bullock County,2,12,268,268,247,245,271,275,302,329,345,345,332,335,336 +50,1,11,Alabama,Bullock County,2,13,215,215,216,230,225,248,250,238,253,265,282,309,308 +50,1,11,Alabama,Bullock County,2,14,211,211,204,202,214,202,196,206,214,222,237,253,257 +50,1,11,Alabama,Bullock County,2,15,191,191,193,182,180,186,207,193,193,203,203,189,191 +50,1,11,Alabama,Bullock County,2,16,198,199,190,183,170,157,162,162,158,137,149,158,159 +50,1,11,Alabama,Bullock County,2,17,166,167,151,170,180,159,145,111,108,120,101,97,99 +50,1,11,Alabama,Bullock County,2,18,191,192,194,197,177,179,186,176,162,160,145,146,146 +50,1,13,Alabama,Butler County,0,0,21394,21325,21139,20803,20833,20870,20830,20815,20894,20949,20867,20947,20951 +50,1,13,Alabama,Butler County,0,1,1358,1347,1325,1302,1354,1379,1351,1355,1360,1345,1356,1372,1356 +50,1,13,Alabama,Butler County,0,2,1539,1518,1471,1375,1354,1354,1358,1329,1343,1345,1350,1351,1346 +50,1,13,Alabama,Butler County,0,3,1699,1697,1627,1665,1630,1568,1532,1510,1459,1481,1489,1465,1461 +50,1,13,Alabama,Butler County,0,4,1803,1802,1741,1632,1557,1570,1525,1499,1527,1468,1392,1391,1391 +50,1,13,Alabama,Butler County,0,5,1187,1189,1271,1283,1312,1339,1328,1297,1263,1211,1177,1170,1171 +50,1,13,Alabama,Butler County,0,6,1154,1137,1068,1031,1046,1053,1140,1221,1256,1318,1295,1283,1287 +50,1,13,Alabama,Butler County,0,7,1182,1170,1174,1145,1164,1165,1143,1090,1122,1151,1195,1244,1253 +50,1,13,Alabama,Butler County,0,8,1472,1460,1361,1265,1198,1174,1173,1175,1183,1183,1182,1162,1161 +50,1,13,Alabama,Butler County,0,9,1569,1565,1542,1473,1449,1445,1422,1347,1291,1245,1194,1215,1213 +50,1,13,Alabama,Butler County,0,10,1547,1550,1571,1577,1610,1563,1532,1531,1476,1461,1457,1428,1419 +50,1,13,Alabama,Butler County,0,11,1338,1346,1388,1478,1473,1524,1554,1596,1609,1619,1602,1552,1553 +50,1,13,Alabama,Butler County,0,12,1100,1100,1138,1179,1206,1250,1318,1358,1434,1473,1503,1531,1538 +50,1,13,Alabama,Butler County,0,13,942,943,955,988,1031,1057,1057,1106,1165,1235,1218,1294,1305 +50,1,13,Alabama,Butler County,0,14,907,902,889,885,871,883,871,905,910,950,961,1004,1008 +50,1,13,Alabama,Butler County,0,15,849,845,839,810,821,818,820,789,831,793,827,825,824 +50,1,13,Alabama,Butler County,0,16,661,658,694,704,732,723,715,709,665,677,674,660,657 +50,1,13,Alabama,Butler County,0,17,563,567,555,511,525,478,474,492,513,494,488,488,494 +50,1,13,Alabama,Butler County,0,18,524,529,530,500,500,527,517,506,487,500,507,512,514 +50,1,13,Alabama,Butler County,1,0,10016,9992,9913,9781,9789,9814,9801,9802,9854,9814,9757,9838,9834 +50,1,13,Alabama,Butler County,1,1,679,672,673,659,711,746,738,746,729,718,713,714,703 +50,1,13,Alabama,Butler County,1,2,818,807,775,708,692,687,689,666,672,674,709,726,728 +50,1,13,Alabama,Butler County,1,3,880,877,830,853,816,809,786,787,784,769,757,750,747 +50,1,13,Alabama,Butler County,1,4,887,890,866,802,776,773,775,769,786,782,742,744,741 +50,1,13,Alabama,Butler County,1,5,555,557,589,609,625,621,639,618,583,540,521,534,537 +50,1,13,Alabama,Butler County,1,6,520,511,503,492,468,487,513,545,578,615,574,578,581 +50,1,13,Alabama,Butler County,1,7,562,558,554,542,556,540,519,493,510,505,550,574,575 +50,1,13,Alabama,Butler County,1,8,656,650,625,574,563,541,539,556,553,550,542,541,538 +50,1,13,Alabama,Butler County,1,9,762,760,731,703,672,655,634,597,572,561,549,550,552 +50,1,13,Alabama,Butler County,1,10,735,740,746,733,769,763,731,720,688,668,661,638,635 +50,1,13,Alabama,Butler County,1,11,671,675,694,747,715,731,770,780,781,802,792,763,759 +50,1,13,Alabama,Butler County,1,12,528,529,550,565,600,619,633,658,692,681,695,714,718 +50,1,13,Alabama,Butler County,1,13,442,444,448,463,479,496,512,542,571,612,602,628,634 +50,1,13,Alabama,Butler County,1,14,388,388,384,410,412,424,406,423,435,442,459,492,494 +50,1,13,Alabama,Butler County,1,15,355,354,362,341,336,344,347,333,376,339,350,347,347 +50,1,13,Alabama,Butler County,1,16,243,242,256,267,279,255,262,264,236,243,254,253,250 +50,1,13,Alabama,Butler County,1,17,194,196,193,186,187,169,154,165,170,166,149,155,157 +50,1,13,Alabama,Butler County,1,18,141,142,134,127,133,154,154,140,138,147,138,137,138 +50,1,13,Alabama,Butler County,2,0,11378,11333,11226,11022,11044,11056,11029,11013,11040,11135,11110,11109,11117 +50,1,13,Alabama,Butler County,2,1,679,675,652,643,643,633,613,609,631,627,643,658,653 +50,1,13,Alabama,Butler County,2,2,721,711,696,667,662,667,669,663,671,671,641,625,618 +50,1,13,Alabama,Butler County,2,3,819,820,797,812,814,759,746,723,675,712,732,715,714 +50,1,13,Alabama,Butler County,2,4,916,912,875,830,781,797,750,730,741,686,650,647,650 +50,1,13,Alabama,Butler County,2,5,632,632,682,674,687,718,689,679,680,671,656,636,634 +50,1,13,Alabama,Butler County,2,6,634,626,565,539,578,566,627,676,678,703,721,705,706 +50,1,13,Alabama,Butler County,2,7,620,612,620,603,608,625,624,597,612,646,645,670,678 +50,1,13,Alabama,Butler County,2,8,816,810,736,691,635,633,634,619,630,633,640,621,623 +50,1,13,Alabama,Butler County,2,9,807,805,811,770,777,790,788,750,719,684,645,665,661 +50,1,13,Alabama,Butler County,2,10,812,810,825,844,841,800,801,811,788,793,796,790,784 +50,1,13,Alabama,Butler County,2,11,667,671,694,731,758,793,784,816,828,817,810,789,794 +50,1,13,Alabama,Butler County,2,12,572,571,588,614,606,631,685,700,742,792,808,817,820 +50,1,13,Alabama,Butler County,2,13,500,499,507,525,552,561,545,564,594,623,616,666,671 +50,1,13,Alabama,Butler County,2,14,519,514,505,475,459,459,465,482,475,508,502,512,514 +50,1,13,Alabama,Butler County,2,15,494,491,477,469,485,474,473,456,455,454,477,478,477 +50,1,13,Alabama,Butler County,2,16,418,416,438,437,453,468,453,445,429,434,420,407,407 +50,1,13,Alabama,Butler County,2,17,369,371,362,325,338,309,320,327,343,328,339,333,337 +50,1,13,Alabama,Butler County,2,18,383,387,396,373,367,373,363,366,349,353,369,375,376 +50,1,15,Alabama,Calhoun County,0,0,111882,111081,111266,111625,112705,113462,114477,115388,116211,117274,118363,118572,118510 +50,1,15,Alabama,Calhoun County,0,1,6887,6780,7026,7019,7152,7163,7315,7238,7175,7297,7233,7204,7196 +50,1,15,Alabama,Calhoun County,0,2,7378,7254,6998,7092,7019,7048,7104,7330,7329,7364,7471,7521,7541 +50,1,15,Alabama,Calhoun County,0,3,7442,7380,7448,7392,7620,7671,7619,7479,7611,7497,7660,7719,7691 +50,1,15,Alabama,Calhoun County,0,4,8166,8132,7890,7786,7691,7883,8068,8263,8324,8683,8754,8607,8534 +50,1,15,Alabama,Calhoun County,0,5,8117,8146,8614,8752,8824,8699,8652,8623,8641,8687,8849,9022,9020 +50,1,15,Alabama,Calhoun County,0,6,7071,6930,6722,6859,7173,7542,7785,8096,8133,8078,7842,7601,7586 +50,1,15,Alabama,Calhoun County,0,7,7292,7195,7149,7131,7133,7030,6929,6684,6638,6842,7182,7186,7225 +50,1,15,Alabama,Calhoun County,0,8,8103,7981,7766,7505,7356,7312,7292,7368,7417,7446,7306,7232,7183 +50,1,15,Alabama,Calhoun County,0,9,8653,8578,8523,8458,8343,8221,8030,7882,7725,7500,7488,7395,7383 +50,1,15,Alabama,Calhoun County,0,10,8292,8255,8397,8425,8645,8601,8548,8574,8487,8366,8387,8291,8226 +50,1,15,Alabama,Calhoun County,0,11,7625,7623,7806,7814,7877,7971,8148,8369,8508,8656,8696,8695,8699 +50,1,15,Alabama,Calhoun County,0,12,5907,5885,6022,6424,6691,7002,7366,7668,7720,7798,7911,8024,8063 +50,1,15,Alabama,Calhoun County,0,13,5101,5073,5079,5185,5314,5509,5624,5861,6281,6515,6782,7085,7143 +50,1,15,Alabama,Calhoun County,0,14,4757,4753,4758,4715,4736,4703,4707,4736,4885,5005,5230,5337,5368 +50,1,15,Alabama,Calhoun County,0,15,4181,4178,4192,4216,4108,4069,4098,4062,4085,4177,4103,4100,4105 +50,1,15,Alabama,Calhoun County,0,16,3206,3215,3175,3191,3259,3278,3350,3320,3308,3263,3337,3374,3361 +50,1,15,Alabama,Calhoun County,0,17,2059,2074,2147,2148,2203,2200,2204,2197,2272,2342,2361,2375,2371 +50,1,15,Alabama,Calhoun County,0,18,1645,1649,1554,1513,1561,1560,1638,1638,1672,1758,1771,1804,1815 +50,1,15,Alabama,Calhoun County,1,0,53526,53124,53291,53526,54137,54575,55055,55518,55911,56462,57079,57176,57167 +50,1,15,Alabama,Calhoun County,1,1,3445,3386,3544,3540,3639,3688,3766,3714,3687,3758,3738,3705,3695 +50,1,15,Alabama,Calhoun County,1,2,3736,3672,3551,3584,3546,3563,3591,3723,3730,3734,3833,3881,3899 +50,1,15,Alabama,Calhoun County,1,3,3833,3803,3817,3803,3926,3909,3893,3854,3881,3779,3905,3936,3923 +50,1,15,Alabama,Calhoun County,1,4,4175,4158,4043,3987,3899,4019,4096,4181,4199,4456,4398,4343,4312 +50,1,15,Alabama,Calhoun County,1,5,3955,3967,4168,4255,4312,4243,4209,4246,4305,4272,4394,4474,4471 +50,1,15,Alabama,Calhoun County,1,6,3569,3499,3368,3409,3568,3751,3866,3943,3963,3968,3828,3711,3711 +50,1,15,Alabama,Calhoun County,1,7,3575,3527,3512,3512,3551,3546,3492,3361,3302,3374,3533,3517,3531 +50,1,15,Alabama,Calhoun County,1,8,3998,3937,3834,3684,3586,3539,3518,3548,3565,3597,3567,3524,3496 +50,1,15,Alabama,Calhoun County,1,9,4156,4119,4090,4114,4053,4012,3948,3894,3805,3707,3681,3637,3638 +50,1,15,Alabama,Calhoun County,1,10,4052,4034,4128,4125,4232,4188,4130,4101,4081,4032,4119,4086,4058 +50,1,15,Alabama,Calhoun County,1,11,3752,3753,3793,3779,3808,3873,3951,4101,4173,4249,4181,4172,4173 +50,1,15,Alabama,Calhoun County,1,12,2773,2762,2877,3095,3287,3424,3585,3658,3645,3708,3798,3858,3882 +50,1,15,Alabama,Calhoun County,1,13,2412,2397,2370,2428,2472,2579,2635,2794,2991,3131,3233,3372,3399 +50,1,15,Alabama,Calhoun County,1,14,2112,2111,2151,2158,2177,2167,2191,2176,2273,2321,2437,2470,2483 +50,1,15,Alabama,Calhoun County,1,15,1676,1680,1734,1727,1691,1699,1764,1772,1796,1837,1825,1849,1851 +50,1,15,Alabama,Calhoun County,1,16,1167,1169,1161,1166,1210,1223,1247,1286,1279,1274,1317,1336,1332 +50,1,15,Alabama,Calhoun County,1,17,697,705,735,728,736,727,727,730,796,801,832,838,841 +50,1,15,Alabama,Calhoun County,1,18,443,445,415,432,444,425,446,436,440,464,460,467,472 +50,1,15,Alabama,Calhoun County,2,0,58356,57957,57975,58099,58568,58887,59422,59870,60300,60812,61284,61396,61343 +50,1,15,Alabama,Calhoun County,2,1,3442,3394,3482,3479,3513,3475,3549,3524,3488,3539,3495,3499,3501 +50,1,15,Alabama,Calhoun County,2,2,3642,3582,3447,3508,3473,3485,3513,3607,3599,3630,3638,3640,3642 +50,1,15,Alabama,Calhoun County,2,3,3609,3577,3631,3589,3694,3762,3726,3625,3730,3718,3755,3783,3768 +50,1,15,Alabama,Calhoun County,2,4,3991,3974,3847,3799,3792,3864,3972,4082,4125,4227,4356,4264,4222 +50,1,15,Alabama,Calhoun County,2,5,4162,4179,4446,4497,4512,4456,4443,4377,4336,4415,4455,4548,4549 +50,1,15,Alabama,Calhoun County,2,6,3502,3431,3354,3450,3605,3791,3919,4153,4170,4110,4014,3890,3875 +50,1,15,Alabama,Calhoun County,2,7,3717,3668,3637,3619,3582,3484,3437,3323,3336,3468,3649,3669,3694 +50,1,15,Alabama,Calhoun County,2,8,4105,4044,3932,3821,3770,3773,3774,3820,3852,3849,3739,3708,3687 +50,1,15,Alabama,Calhoun County,2,9,4497,4459,4433,4344,4290,4209,4082,3988,3920,3793,3807,3758,3745 +50,1,15,Alabama,Calhoun County,2,10,4240,4221,4269,4300,4413,4413,4418,4473,4406,4334,4268,4205,4168 +50,1,15,Alabama,Calhoun County,2,11,3873,3870,4013,4035,4069,4098,4197,4268,4335,4407,4515,4523,4526 +50,1,15,Alabama,Calhoun County,2,12,3134,3123,3145,3329,3404,3578,3781,4010,4075,4090,4113,4166,4181 +50,1,15,Alabama,Calhoun County,2,13,2689,2676,2709,2757,2842,2930,2989,3067,3290,3384,3549,3713,3744 +50,1,15,Alabama,Calhoun County,2,14,2645,2642,2607,2557,2559,2536,2516,2560,2612,2684,2793,2867,2885 +50,1,15,Alabama,Calhoun County,2,15,2505,2498,2458,2489,2417,2370,2334,2290,2289,2340,2278,2251,2254 +50,1,15,Alabama,Calhoun County,2,16,2039,2046,2014,2025,2049,2055,2103,2034,2029,1989,2020,2038,2029 +50,1,15,Alabama,Calhoun County,2,17,1362,1369,1412,1420,1467,1473,1477,1467,1476,1541,1529,1537,1530 +50,1,15,Alabama,Calhoun County,2,18,1202,1204,1139,1081,1117,1135,1192,1202,1232,1294,1311,1337,1343 +50,1,17,Alabama,Chambers County,0,0,36600,36571,36274,35965,35680,35463,35279,34945,34847,34563,34384,34215,34157 +50,1,17,Alabama,Chambers County,0,1,2432,2416,2294,2262,2227,2208,2159,2058,1992,1965,1952,1953,1952 +50,1,17,Alabama,Chambers County,0,2,2605,2583,2622,2571,2509,2434,2364,2278,2227,2148,2100,2045,2047 +50,1,17,Alabama,Chambers County,0,3,2477,2480,2502,2576,2581,2580,2554,2550,2491,2403,2346,2237,2234 +50,1,17,Alabama,Chambers County,0,4,2480,2483,2356,2218,2227,2227,2256,2307,2374,2352,2322,2298,2278 +50,1,17,Alabama,Chambers County,0,5,2187,2204,2212,2219,2226,2149,2059,1983,1869,1847,1871,1925,1921 +50,1,17,Alabama,Chambers County,0,6,2389,2361,2284,2168,2097,2065,2039,2042,2035,2002,1932,1887,1885 +50,1,17,Alabama,Chambers County,0,7,2363,2353,2305,2333,2279,2249,2184,2100,2037,1968,1907,1914,1924 +50,1,17,Alabama,Chambers County,0,8,2505,2495,2502,2395,2302,2280,2287,2190,2242,2211,2178,2147,2128 +50,1,17,Alabama,Chambers County,0,9,2615,2612,2597,2598,2560,2511,2457,2411,2341,2276,2305,2285,2275 +50,1,17,Alabama,Chambers County,0,10,2533,2549,2548,2569,2565,2548,2539,2550,2540,2483,2452,2402,2382 +50,1,17,Alabama,Chambers County,0,11,2437,2463,2520,2429,2465,2492,2491,2529,2630,2649,2641,2647,2647 +50,1,17,Alabama,Chambers County,0,12,1987,1994,1989,2158,2233,2298,2402,2425,2363,2436,2459,2467,2470 +50,1,17,Alabama,Chambers County,0,13,1662,1664,1701,1717,1745,1827,1922,1947,2132,2177,2228,2302,2318 +50,1,17,Alabama,Chambers County,0,14,1595,1584,1594,1619,1594,1570,1554,1607,1608,1675,1763,1823,1823 +50,1,17,Alabama,Chambers County,0,15,1396,1385,1358,1342,1301,1330,1325,1325,1377,1360,1324,1285,1281 +50,1,17,Alabama,Chambers County,0,16,1211,1207,1187,1127,1140,1087,1090,1062,1042,1037,1091,1085,1076 +50,1,17,Alabama,Chambers County,0,17,908,912,903,880,874,853,814,780,749,765,724,742,742 +50,1,17,Alabama,Chambers County,0,18,818,826,800,784,755,755,783,801,798,809,789,771,774 +50,1,17,Alabama,Chambers County,1,0,17292,17285,17222,17110,16997,16885,16724,16654,16639,16525,16430,16363,16321 +50,1,17,Alabama,Chambers County,1,1,1256,1246,1209,1204,1178,1162,1107,1045,966,972,982,981,979 +50,1,17,Alabama,Chambers County,1,2,1288,1278,1286,1276,1267,1246,1213,1197,1213,1149,1117,1081,1082 +50,1,17,Alabama,Chambers County,1,3,1267,1269,1286,1306,1310,1271,1241,1240,1199,1200,1194,1134,1133 +50,1,17,Alabama,Chambers County,1,4,1275,1278,1202,1151,1133,1151,1140,1185,1218,1206,1150,1168,1161 +50,1,17,Alabama,Chambers County,1,5,1050,1060,1086,1093,1103,1060,1022,989,954,929,955,1003,1003 +50,1,17,Alabama,Chambers County,1,6,1133,1120,1084,1040,1004,985,974,993,987,965,929,902,894 +50,1,17,Alabama,Chambers County,1,7,1211,1206,1171,1156,1120,1094,1049,1000,988,977,932,922,924 +50,1,17,Alabama,Chambers County,1,8,1225,1221,1229,1181,1146,1146,1168,1118,1119,1082,1047,1032,1020 +50,1,17,Alabama,Chambers County,1,9,1257,1255,1255,1273,1263,1225,1187,1153,1139,1118,1163,1157,1152 +50,1,17,Alabama,Chambers County,1,10,1249,1259,1259,1227,1230,1237,1217,1243,1257,1238,1215,1168,1159 +50,1,17,Alabama,Chambers County,1,11,1148,1160,1216,1181,1223,1239,1218,1231,1242,1241,1257,1262,1259 +50,1,17,Alabama,Chambers County,1,12,942,946,930,1020,1035,1053,1116,1150,1152,1188,1176,1165,1170 +50,1,17,Alabama,Chambers County,1,13,775,776,786,797,830,854,897,912,995,994,1019,1077,1086 +50,1,17,Alabama,Chambers County,1,14,702,698,703,709,715,717,727,753,748,787,815,830,831 +50,1,17,Alabama,Chambers County,1,15,563,560,576,590,548,568,588,591,622,633,631,626,622 +50,1,17,Alabama,Chambers County,1,16,429,429,429,398,412,402,399,406,410,400,417,419,413 +50,1,17,Alabama,Chambers County,1,17,311,312,306,299,292,279,264,253,231,256,231,247,243 +50,1,17,Alabama,Chambers County,1,18,211,212,209,209,188,196,197,195,199,190,200,189,190 +50,1,17,Alabama,Chambers County,2,0,19308,19286,19052,18855,18683,18578,18555,18291,18208,18038,17954,17852,17836 +50,1,17,Alabama,Chambers County,2,1,1176,1170,1085,1058,1049,1046,1052,1013,1026,993,970,972,973 +50,1,17,Alabama,Chambers County,2,2,1317,1305,1336,1295,1242,1188,1151,1081,1014,999,983,964,965 +50,1,17,Alabama,Chambers County,2,3,1210,1211,1216,1270,1271,1309,1313,1310,1292,1203,1152,1103,1101 +50,1,17,Alabama,Chambers County,2,4,1205,1205,1154,1067,1094,1076,1116,1122,1156,1146,1172,1130,1117 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/nc-est2021-agesex-res.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/nc-est2021-agesex-res.csv deleted file mode 100644 index 1cd90c8b8e..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/nc-est2021-agesex-res.csv +++ /dev/null @@ -1,116 +0,0 @@ -SEX,AGE,ESTIMATESBASE2020,POPESTIMATE2020,POPESTIMATE2021 -0,0,3733173,3699196,3564493 -0,1,3775586,3762475,3702936 -0,35,4463428,4495783,4492867 -0,36,4418566,4402887,4490254 -0,37,4480171,4469989,4397037 -0,38,4435918,4463898,4463130 -0,39,4412687,4400531,4456030 -0,40,4335730,4382102,4391796 -0,41,4173784,4203093,4372860 -0,72,3053046,2996493,2988058 -0,73,3032409,3153671,2917030 -0,74,2165171,2229629,3060676 -0,75,2135295,2134436,2157557 -0,76,2097610,2072831,2060045 -0,77,2053604,2087365,1992972 -0,78,1757120,1780631,1997941 -0,79,1573136,1590886,1696254 -0,80,1433747,1450143,1507612 -0,81,1346359,1340847,1366271 -0,82,1234493,1246048,1254351 -0,83,1098372,1105091,1156487 -0,84,1015241,1012871,1016585 -0,99,58641,57687,52579 -0,100,103442,100193,97914 -0,999,331449281,331501080,331893745 -1,0,1907982,1891716,1821502 -1,1,1928926,1921621,1893355 -1,2,1980392,1969341,1923960 -1,21,2185108,2181892,2218825 -1,22,2171094,2175420,2182026 -1,23,2178603,2176213,2176169 -1,24,2207336,2193095,2177152 -1,25,2238236,2231768,2193434 -1,26,2285714,2279272,2231579 -1,27,2328006,2315220,2278881 -1,28,2365648,2361974,2314500 -1,29,2403221,2392526,2360664 -1,30,2381929,2398003,2390865 -1,31,2326475,2332609,2395705 -1,32,2287877,2291690,2330455 -1,33,2270075,2271383,2288929 -1,34,2283203,2279179,2268350 -1,35,2257491,2275208,2275283 -1,36,2233065,2224483,2270793 -1,37,2261913,2256790,2220050 -1,38,2237770,2251388,2251810 -1,39,2223666,2217767,2245897 -1,40,2182540,2206684,2211730 -1,41,2095733,2110121,2200412 -1,42,2062666,2060916,2103818 -1,43,2005945,2029723,2054668 -1,44,1966990,1960854,2023152 -1,45,1977202,1981680,1953729 -1,46,1941478,1942320,1973854 -1,47,1984563,1967428,1933736 -1,48,2095666,2067592,1957672 -1,49,2220803,2197850,2056766 -1,50,2143996,2163045,2185720 -1,51,2073714,2079364,2150184 -1,52,2025205,2032322,2065837 -1,53,2043490,2032960,2017818 -1,54,2075610,2061809,2016643 -1,55,2155586,2132868,2043325 -1,56,2189190,2183121,2112327 -1,57,2179978,2179383,2160708 -1,58,2195068,2184821,2155074 -1,59,2172140,2177268,2158625 -1,60,2133820,2137200,2149550 -1,61,2089447,2088345,2107829 -1,62,2071968,2065394,2057162 -1,77,928222,943589,899595 -1,78,785137,796474,895904 -1,79,695899,703259,752031 -1,93,96380,95326,92736 -1,94,75546,74913,73399 -1,95,56845,56973,56248 -1,96,43169,42524,41747 -1,97,31452,31632,30329 -1,98,21712,20920,21873 -1,99,15569,15515,13957 -1,100,24968,24172,24487 -1,999,164192524,164214877,164384742 -2,0,1825191,1807480,1742991 -2,1,1846660,1840854,1809581 -2,2,1891347,1882789,1843468 -2,3,1935784,1919586,1885193 -2,4,1978806,1973350,1921753 -2,5,1994479,1992304,1975431 -2,38,2198148,2212510,2211320 -2,39,2189021,2182764,2210133 -2,40,2153190,2175418,2180066 -2,41,2078051,2092972,2172448 -2,42,2052806,2047562,2089932 -2,43,2003387,2027526,2044334 -2,44,1966469,1958546,2023976 -2,45,1976212,1982505,1954576 -2,46,1945479,1946512,1977932 -2,47,1991172,1975784,1941473 -2,48,2093677,2068589,1969820 -2,64,2068477,2065803,2126510 -2,65,2019270,2025793,2043120 -2,66,1946760,1963508,2002460 -2,67,1885107,1889520,1939336 -2,68,1826890,1823643,1864295 -2,69,1714706,1746575,1796896 -2,70,1668891,1671674,1718203 -2,71,1625457,1631402,1641434 -2,72,1624945,1596562,1598909 -2,73,1605107,1671886,1561465 -2,74,1171117,1201548,1630918 -2,97,79773,79639,76591 -2,98,57655,56334,56594 -2,99,43072,42172,38622 -2,100,78474,76021,73427 -2,999,167256757,167286203,167509003 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1980.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1980.csv deleted file mode 100644 index c8bdeb8311..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1980.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1980",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1980,1001,White male,985,1096,1271,1308,972,850,891,942,854,828,631,524,428,358,242,123,52,39 -1980,1001,White female,831,987,1074,1259,1006,912,983,1015,882,739,602,532,451,417,332,237,137,86 -1980,1001,Black male,357,427,395,460,300,240,163,120,133,107,113,113,126,128,87,70,31,13 -1980,1001,Black female,346,395,415,429,380,235,196,158,147,154,165,150,166,160,119,94,57,44 -1980,1001,Other races male,4,9,4,10,3,2,4,3,2,4,1,1,0,1,0,0,0,0 -1980,1001,Other races female,7,8,11,5,3,11,10,12,11,11,7,2,1,0,0,0,0,1 -1980,1003,White male,2422,2661,2783,3049,2423,2372,2410,2101,1881,1708,1657,1641,1630,1503,1163,671,331,187 -1980,1003,White female,2346,2467,2614,2841,2428,2475,2400,2202,1859,1694,1798,1943,1819,1729,1335,906,527,408 -1980,1003,Black male,672,740,644,711,516,414,303,224,206,219,203,178,171,170,164,87,43,27 -1980,1003,Black female,645,680,670,762,601,469,352,260,288,236,261,219,209,232,182,129,67,65 -1980,1003,Other races male,30,30,26,37,18,19,17,21,10,13,7,8,8,6,4,3,1,1 -1980,1003,Other races female,24,25,26,20,25,33,23,25,14,20,15,14,4,7,3,6,2,1 -1980,1005,White male,490,545,601,578,448,452,514,389,370,368,393,381,369,310,207,140,56,30 -1980,1005,White female,396,476,527,546,450,440,520,440,374,376,410,497,409,384,341,239,139,105 -1980,1005,Black male,534,598,603,629,387,348,314,193,172,142,176,151,204,201,154,103,44,43 -1980,1005,Black female,533,544,559,674,496,452,381,257,200,224,261,255,301,281,227,163,95,74 -1980,1005,Other races male,1,2,2,1,3,2,1,2,3,3,1,2,1,0,1,0,0,0 -1980,1005,Other races female,2,1,3,3,0,5,7,2,2,2,0,1,2,0,0,0,0,1 -1980,1007,White male,410,535,549,550,468,462,416,440,298,303,311,291,229,221,204,126,71,35 -1980,1007,White female,439,470,518,502,444,424,430,403,338,319,303,319,282,316,253,190,120,77 -1980,1007,Black male,199,188,210,220,154,156,90,64,54,39,47,53,55,61,63,42,13,9 -1980,1007,Black female,196,191,206,243,186,137,94,77,65,60,71,95,68,84,73,54,19,29 -1980,1007,Other races male,0,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0 -1980,1007,Other races female,0,0,0,3,3,0,0,1,1,0,0,0,0,1,1,0,0,0 -1980,1009,White male,1275,1473,1630,1716,1390,1320,1320,1199,1090,951,941,813,761,733,566,333,160,89 -1980,1009,White female,1228,1429,1470,1561,1299,1330,1362,1251,1047,966,982,924,876,766,713,455,247,196 -1980,1009,Black male,32,31,32,38,24,19,14,9,11,9,11,10,8,15,8,5,3,1 -1980,1009,Black female,26,31,30,39,29,26,17,12,16,13,14,14,11,14,6,9,4,6 -1980,1009,Other races male,0,1,5,3,6,4,2,3,3,3,1,1,1,2,1,0,0,0 -1980,1009,Other races female,5,3,3,5,3,2,4,5,2,1,1,1,2,1,2,1,0,0 -1980,1011,White male,114,121,106,128,123,136,134,108,83,81,87,126,112,86,69,29,20,11 -1980,1011,White female,115,107,102,107,123,108,116,88,84,118,97,130,103,138,87,57,39,32 -1980,1011,Black male,317,370,364,406,250,214,178,136,114,98,86,92,132,163,132,77,44,38 -1980,1011,Black female,349,384,377,431,301,283,216,183,135,138,143,163,196,229,170,130,51,80 -1980,1011,Other races male,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0 -1980,1011,Other races female,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0 -1980,1013,White male,437,476,480,524,452,452,444,349,310,349,378,358,390,318,247,159,81,79 -1980,1013,White female,418,459,471,514,452,439,421,368,356,373,386,447,463,480,372,274,200,153 -1980,1013,Black male,463,480,437,420,288,253,224,175,137,117,127,133,147,141,122,115,45,29 -1980,1013,Black female,517,445,466,484,401,354,218,186,163,152,185,181,181,206,178,134,57,62 -1980,1013,Other races male,1,1,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0 -1980,1013,Other races female,2,2,1,0,1,1,2,1,0,0,1,0,1,0,1,1,0,1 -1980,1015,White male,3331,3591,3993,5772,5601,4050,3805,2972,2522,2388,2415,2177,1906,1584,1127,670,325,215 -1980,1015,White female,3240,3477,3664,4734,5028,4087,3723,3011,2527,2532,2687,2620,2295,2044,1685,1138,673,478 -1980,1015,Black male,1043,942,966,1464,1384,835,578,404,348,334,344,350,318,284,207,114,55,42 -1980,1015,Black female,1046,970,1013,1346,1435,939,647,475,420,475,480,442,402,373,290,182,117,89 -1980,1015,Other races male,34,28,34,50,56,31,36,27,10,9,6,7,6,2,2,1,0,0 -1980,1015,Other races female,36,32,21,38,68,55,66,30,36,23,15,8,5,2,4,5,2,0 -1980,1017,White male,747,871,972,981,836,862,897,745,639,656,687,699,733,653,503,292,142,83 -1980,1017,White female,714,926,868,947,856,868,888,710,614,716,768,875,888,884,764,487,304,223 -1980,1017,Black male,732,740,851,801,556,514,371,286,246,202,215,192,203,204,161,113,48,38 -1980,1017,Black female,675,755,739,789,688,562,502,377,265,304,287,300,331,297,233,145,88,79 -1980,1017,Other races male,0,0,0,3,1,2,1,0,1,3,1,0,1,0,0,0,0,0 -1980,1017,Other races female,0,0,2,3,3,5,3,2,3,2,2,2,0,1,0,0,0,0 -1980,1019,White male,608,695,751,758,736,629,630,505,528,472,428,460,419,380,278,161,77,60 -1980,1019,White female,584,634,626,688,672,602,636,565,513,496,491,498,477,433,343,235,138,108 -1980,1019,Black male,79,74,70,86,71,64,46,37,32,25,35,20,21,23,22,16,3,1 -1980,1019,Black female,69,98,88,82,79,65,52,37,38,34,38,21,40,30,23,21,5,4 -1980,1019,Other races male,0,0,4,2,1,0,0,0,0,0,0,1,0,0,0,1,0,0 -1980,1019,Other races female,0,1,3,0,1,0,1,1,3,1,1,0,2,0,0,0,0,1 -1980,1021,White male,1025,1097,1075,1216,1093,1028,964,833,774,691,679,638,570,579,448,257,128,66 -1980,1021,White female,996,996,1085,1107,1078,1007,974,833,742,739,705,736,735,706,582,422,209,184 -1980,1021,Black male,180,185,177,216,148,120,102,64,62,74,68,68,64,61,46,35,14,12 -1980,1021,Black female,188,219,207,225,158,128,103,86,85,87,78,75,58,84,49,53,22,18 -1980,1021,Other races male,2,0,1,0,1,1,0,0,0,0,1,0,0,0,0,1,1,0 -1980,1021,Other races female,1,2,2,0,1,4,1,2,1,4,0,0,0,2,0,3,0,0 -1980,1023,White male,386,389,400,410,342,328,303,351,265,237,265,247,192,179,172,101,43,27 -1980,1023,White female,333,374,401,412,330,306,353,304,272,276,272,275,234,212,211,156,70,62 -1980,1023,Black male,365,383,426,449,246,230,197,162,120,119,104,136,109,124,125,75,44,28 -1980,1023,Black female,381,441,382,394,339,272,225,180,143,151,145,165,147,150,126,104,68,35 -1980,1023,Other races male,1,3,0,2,1,2,0,0,0,1,0,0,0,0,0,0,0,0 -1980,1023,Other races female,1,0,0,0,0,1,3,0,2,1,1,0,0,1,0,0,0,0 -1980,1025,White male,594,612,679,679,577,598,584,507,459,406,387,342,355,333,279,159,100,69 -1980,1025,White female,575,600,631,650,572,634,574,530,450,408,401,417,441,399,329,229,174,144 -1980,1025,Black male,652,684,665,710,487,397,264,242,198,223,212,168,179,194,169,112,54,42 -1980,1025,Black female,601,664,665,749,540,390,333,278,253,232,243,223,232,238,226,150,74,93 -1980,1025,Other races male,2,3,2,3,2,1,2,1,2,2,1,0,0,0,0,0,0,0 -1980,1025,Other races female,2,4,5,4,0,3,6,1,3,2,2,2,1,0,2,1,0,1 -1980,1027,White male,389,442,472,528,408,365,390,327,304,290,292,275,280,284,237,140,96,57 -1980,1027,White female,369,402,434,505,410,375,391,308,333,312,317,291,349,351,304,203,141,93 -1980,1027,Black male,142,150,137,120,75,64,72,60,52,36,34,28,21,22,22,12,9,3 -1980,1027,Black female,109,143,150,148,111,77,78,69,50,47,45,37,29,38,29,24,13,10 -1980,1027,Other races male,2,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 -1980,1027,Other races female,0,0,0,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0 -1980,1029,White male,441,504,541,552,487,428,420,409,324,299,311,277,272,239,157,132,68,43 -1980,1029,White female,401,459,479,525,463,426,454,373,339,315,347,291,321,284,244,182,96,80 -1980,1029,Black male,33,32,31,34,25,16,21,14,17,19,7,9,9,13,8,5,4,0 -1980,1029,Black female,29,34,30,50,34,22,21,17,18,14,11,11,14,19,12,6,3,5 -1980,1029,Other races male,1,0,1,0,0,3,0,1,0,0,0,0,0,0,1,1,0,0 -1980,1029,Other races female,1,0,2,0,1,0,2,1,1,1,1,0,0,0,0,0,0,0 -1980,1031,White male,1127,1290,1316,1505,1222,1208,1374,1053,877,894,851,793,706,602,420,255,142,74 -1980,1031,White female,1017,1160,1230,1391,1217,1245,1308,1067,992,886,851,893,778,743,559,456,236,219 -1980,1031,Black male,320,339,406,370,266,229,176,159,123,111,125,112,87,94,67,52,37,29 -1980,1031,Black female,310,317,317,389,323,231,247,171,158,152,165,144,115,160,95,95,49,32 -1980,1031,Other races male,8,12,8,12,10,10,11,6,2,4,1,4,2,2,0,0,0,0 -1980,1031,Other races female,10,14,2,6,20,31,22,10,10,18,6,3,3,2,2,0,1,0 -1980,1033,White male,1498,1667,1940,2117,1869,1729,1654,1372,1313,1229,1246,1223,1071,835,570,384,195,115 -1980,1033,White female,1457,1527,1726,2094,1909,1787,1676,1527,1355,1243,1357,1359,1223,1030,842,562,339,286 -1980,1033,Black male,422,417,438,503,335,324,297,210,157,176,162,168,174,129,108,88,51,25 -1980,1033,Black female,430,469,477,505,399,409,325,251,207,210,226,245,191,182,174,117,60,65 -1980,1033,Other races male,7,3,5,15,1,5,7,9,4,4,2,2,1,0,1,1,1,0 -1980,1033,Other races female,4,7,3,2,1,13,12,3,6,3,4,0,1,1,5,1,0,0 -1980,1035,White male,323,328,371,389,351,335,296,267,234,228,263,242,246,231,189,116,65,42 -1980,1035,White female,314,321,316,381,304,326,314,230,220,243,289,270,291,294,262,187,110,100 -1980,1035,Black male,321,345,331,391,264,224,155,126,89,82,107,104,82,117,107,79,45,33 -1980,1035,Black female,348,314,370,384,326,230,190,142,115,123,141,135,151,150,153,105,69,58 -1980,1035,Other races male,1,1,1,1,1,0,1,2,0,0,1,0,6,1,2,0,0,0 -1980,1035,Other races female,0,3,1,0,1,2,0,1,0,3,2,3,0,2,1,0,0,0 -1980,1037,White male,242,238,280,302,300,270,225,215,172,190,235,225,220,186,152,101,38,26 -1980,1037,White female,239,266,268,274,276,248,242,199,192,210,259,232,253,212,182,131,79,55 -1980,1037,Black male,163,230,257,228,174,143,110,81,96,82,80,75,46,63,52,36,25,11 -1980,1037,Black female,149,232,225,217,159,152,108,94,95,100,95,63,90,70,66,49,14,13 -1980,1037,Other races male,0,1,0,1,0,0,0,2,0,1,0,0,0,1,0,0,0,0 -1980,1037,Other races female,0,0,0,0,0,0,1,0,1,2,0,0,1,0,0,0,0,0 -1980,1039,White male,1036,1090,1134,1474,1152,1043,1020,914,782,846,853,937,839,784,607,371,195,164 -1980,1039,White female,1000,999,1181,1225,1111,1033,1081,912,912,874,973,1034,1102,1077,945,637,380,267 -1980,1039,Black male,207,271,281,289,173,114,116,92,103,68,88,74,71,94,55,42,16,17 -1980,1039,Black female,231,258,276,289,217,182,148,117,118,128,106,115,126,101,107,76,31,29 -1980,1039,Other races male,0,2,3,4,3,4,5,3,3,1,2,0,0,0,2,0,0,0 -1980,1039,Other races female,6,2,5,5,3,2,6,7,3,1,3,1,0,1,2,1,1,0 -1980,1041,White male,387,407,394,439,392,301,353,303,236,275,257,267,277,285,226,117,59,49 -1980,1041,White female,316,352,377,387,321,371,368,268,259,265,294,363,345,349,287,218,131,99 -1980,1041,Black male,180,168,182,221,131,109,88,69,57,61,69,71,71,68,51,36,18,27 -1980,1041,Black female,178,197,188,205,187,122,108,77,92,67,92,82,78,106,78,90,24,42 -1980,1041,Other races male,1,4,2,1,2,0,0,1,1,0,1,0,0,0,1,0,0,0 -1980,1041,Other races female,0,2,3,2,1,3,3,0,2,0,1,1,0,0,2,1,0,1 -1980,1043,White male,2140,2373,2688,2860,2467,2151,2194,1856,1625,1610,1599,1515,1419,1266,933,603,287,205 -1980,1043,White female,2133,2367,2460,2686,2352,2225,2241,1923,1759,1642,1725,1769,1579,1516,1206,860,480,392 -1980,1043,Black male,26,32,29,32,20,17,13,13,17,10,12,2,9,9,4,9,4,1 -1980,1043,Black female,25,24,17,38,26,16,20,15,13,14,14,5,5,12,12,7,0,7 -1980,1043,Other races male,5,10,5,5,5,6,3,4,3,3,4,4,1,4,2,2,0,0 -1980,1043,Other races female,3,7,6,9,4,13,9,7,3,6,10,4,3,1,1,1,1,1 -1980,1045,White male,1722,1728,1559,2099,2759,2122,1909,1242,989,945,835,776,623,494,351,216,124,69 -1980,1045,White female,1584,1562,1484,1650,1916,1719,1572,1141,1030,883,827,803,639,586,514,405,241,196 -1980,1045,Black male,420,414,336,473,778,454,257,168,109,95,122,104,73,88,69,46,33,12 -1980,1045,Black female,475,399,361,398,488,361,237,184,144,117,132,132,108,115,102,58,28,27 -1980,1045,Other races male,30,35,19,36,56,33,29,14,7,9,5,3,4,2,0,1,0,2 -1980,1045,Other races female,36,31,23,21,86,93,48,36,33,37,25,5,6,2,2,3,0,0 -1980,1047,White male,839,872,953,1075,901,900,916,745,639,630,655,630,580,440,340,208,104,53 -1980,1047,White female,813,915,934,1003,1002,952,947,757,684,672,722,774,626,635,528,404,255,220 -1980,1047,Black male,1513,1609,1656,1881,1205,865,700,524,507,436,439,403,422,472,384,265,128,108 -1980,1047,Black female,1464,1543,1601,1894,1382,1132,920,704,679,658,663,612,547,747,526,400,226,238 -1980,1047,Other races male,3,4,5,6,4,2,10,5,5,1,4,2,0,2,0,0,0,0 -1980,1047,Other races female,6,6,3,5,2,8,10,4,3,4,2,3,1,4,0,4,1,1 -1980,1049,White male,1965,2237,2262,2282,2082,1925,1879,1603,1341,1396,1298,1231,1182,1080,826,537,280,170 -1980,1049,White female,1867,2019,2160,2238,2088,1935,1970,1599,1490,1375,1404,1453,1346,1421,1145,859,448,350 -1980,1049,Black male,35,58,53,45,36,31,39,25,17,16,16,15,3,12,19,9,1,3 -1980,1049,Black female,53,40,55,51,46,40,33,29,23,20,14,28,13,21,23,9,7,4 -1980,1049,Other races male,8,7,9,6,5,4,4,4,3,6,3,4,2,3,0,0,0,0 -1980,1049,Other races female,3,8,10,4,4,8,10,7,5,4,2,3,3,5,1,2,0,1 -1980,1051,White male,1177,1329,1385,1499,1335,1346,1341,1129,1045,941,897,878,757,668,430,271,142,103 -1980,1051,White female,1135,1257,1348,1331,1297,1280,1360,1077,1034,869,945,919,834,730,643,463,275,248 -1980,1051,Black male,458,511,516,623,578,443,301,213,157,131,135,144,137,131,122,86,40,26 -1980,1051,Black female,399,496,588,574,453,403,301,207,186,191,173,188,178,188,150,104,62,64 -1980,1051,Other races male,6,4,1,2,7,6,5,1,2,2,1,1,0,1,1,0,0,1 -1980,1051,Other races female,2,4,1,1,6,10,4,10,6,2,5,2,0,1,0,2,0,0 -1980,1053,White male,938,1025,1058,1178,1045,977,1020,873,826,680,677,645,566,485,385,222,122,82 -1980,1053,White female,869,984,927,1168,965,915,942,859,765,708,722,707,660,650,562,389,223,174 -1980,1053,Black male,523,609,559,636,575,607,464,259,205,206,179,178,146,201,128,106,41,35 -1980,1053,Black female,562,562,548,615,437,423,322,239,222,242,238,214,232,256,181,159,87,95 -1980,1053,Other races male,66,55,59,59,46,36,41,24,26,10,21,9,13,17,10,4,3,0 -1980,1053,Other races female,49,49,48,59,40,28,41,31,18,17,21,16,20,15,9,6,4,2 -1980,1055,White male,3117,3471,3646,3812,3443,3358,3290,2716,2269,2158,2375,2389,2115,1873,1325,805,378,220 -1980,1055,White female,2936,3245,3427,3628,3558,3399,3318,2694,2488,2430,2645,2785,2650,2421,1922,1342,810,572 -1980,1055,Black male,636,678,696,782,574,479,382,241,205,209,280,287,276,247,167,122,50,33 -1980,1055,Black female,681,643,721,724,703,575,458,294,326,345,384,380,344,338,247,146,88,61 -1980,1055,Other races male,5,17,8,13,26,20,8,8,6,8,3,5,4,5,1,3,0,0 -1980,1055,Other races female,11,11,12,15,22,20,13,11,11,7,7,6,3,4,0,5,3,2 -1980,1057,White male,604,608,673,722,609,598,588,492,463,413,388,398,385,379,299,191,83,48 -1980,1057,White female,601,651,628,690,618,580,569,513,472,390,455,465,454,445,416,255,153,135 -1980,1057,Black male,122,109,117,134,95,85,58,46,41,47,52,53,40,47,45,28,13,6 -1980,1057,Black female,95,107,144,119,116,82,73,51,48,56,66,50,59,61,54,38,20,17 -1980,1057,Other races male,0,1,2,1,1,0,0,0,0,1,0,2,0,0,0,0,0,0 -1980,1057,Other races female,0,0,2,0,2,0,3,1,3,3,1,0,1,1,0,1,0,0 -1980,1059,White male,989,1087,1094,1170,1101,955,920,845,748,711,713,653,575,580,421,272,150,98 -1980,1059,White female,900,938,1076,1139,1017,1015,988,833,796,757,728,735,773,672,638,440,283,185 -1980,1059,Black male,64,63,68,74,58,44,39,29,25,25,29,23,23,17,27,8,4,3 -1980,1059,Black female,48,60,58,70,63,62,35,31,29,35,36,35,22,36,23,14,13,7 -1980,1059,Other races male,5,1,1,3,0,2,5,1,1,3,0,2,2,0,1,0,0,0 -1980,1059,Other races female,1,2,0,3,1,6,2,0,2,1,1,3,0,0,1,0,1,0 -1980,1061,White male,711,797,930,943,771,724,747,623,535,566,530,541,527,499,390,227,127,61 -1980,1061,White female,692,778,810,853,754,727,703,667,610,530,585,585,597,636,521,364,206,147 -1980,1061,Black male,149,196,183,179,104,90,81,53,43,52,50,55,53,42,46,27,9,12 -1980,1061,Black female,174,177,168,170,147,107,92,61,86,59,70,67,69,64,56,39,27,15 -1980,1061,Other races male,3,3,4,6,7,0,2,2,4,1,4,4,1,4,2,1,2,0 -1980,1061,Other races female,7,6,4,4,2,3,1,2,5,8,4,5,6,3,3,1,1,1 -1980,1063,White male,60,69,79,94,87,99,67,60,75,78,74,62,62,67,57,34,12,4 -1980,1063,White female,66,55,78,89,81,77,72,64,78,76,76,61,88,90,69,63,45,44 -1980,1063,Black male,440,458,468,510,300,274,166,128,123,132,146,119,132,167,160,124,49,33 -1980,1063,Black female,429,440,484,520,386,317,254,173,175,171,185,179,180,229,256,142,73,73 -1980,1063,Other races male,2,1,1,0,0,0,0,2,0,0,0,1,0,0,0,1,0,0 -1980,1063,Other races female,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 -1980,1065,White male,191,193,192,251,209,190,212,177,152,154,141,182,163,127,99,67,40,36 -1980,1065,White female,193,177,182,233,183,201,207,163,150,152,175,195,186,178,173,111,86,75 -1980,1065,Black male,539,500,565,632,352,280,215,149,131,137,157,145,151,213,150,133,72,42 -1980,1065,Black female,517,465,500,611,479,348,236,181,199,188,228,209,221,237,218,170,98,91 -1980,1065,Other races male,0,2,2,1,1,0,0,1,0,0,1,1,0,1,0,0,0,0 -1980,1065,Other races female,2,0,0,2,2,4,2,1,0,0,1,2,1,0,1,1,0,0 -1980,1067,White male,328,335,386,342,302,339,355,298,230,219,262,290,237,260,176,118,51,34 -1980,1067,White female,328,351,326,337,327,354,346,304,226,256,276,306,300,317,255,173,100,66 -1980,1067,Black male,275,329,294,301,209,210,199,117,119,85,98,95,83,96,80,47,21,14 -1980,1067,Black female,286,314,309,334,251,265,149,153,132,125,139,124,134,128,109,82,43,32 -1980,1067,Other races male,2,1,4,2,0,1,2,2,2,0,0,0,0,0,0,0,0,0 -1980,1067,Other races female,1,2,2,0,0,1,3,1,0,0,0,0,0,1,0,1,0,0 -1980,1069,White male,2145,2353,2384,2488,2270,2339,2372,1991,1591,1551,1588,1356,1161,985,693,388,186,134 -1980,1069,White female,2114,2124,2251,2458,2433,2488,2397,1989,1745,1585,1614,1501,1350,1276,964,752,435,332 -1980,1069,Black male,878,945,903,885,649,584,469,365,291,288,307,258,274,238,189,96,48,43 -1980,1069,Black female,880,878,873,937,821,733,553,425,403,386,390,346,348,348,273,204,86,78 -1980,1069,Other races male,34,39,28,19,21,34,25,25,16,5,8,7,0,2,1,2,0,0 -1980,1069,Other races female,19,30,23,22,24,37,24,15,17,15,8,10,4,6,1,7,0,0 -1980,1071,White male,1920,2086,2194,2203,2048,2021,1977,1663,1445,1244,1178,1031,920,836,568,406,173,87 -1980,1071,White female,1929,2050,2025,2199,2040,2053,2004,1646,1413,1314,1219,1146,1136,1011,767,575,292,233 -1980,1071,Black male,97,122,88,114,96,100,64,49,30,32,50,44,29,62,23,18,7,5 -1980,1071,Black female,81,104,104,106,94,89,80,58,53,39,61,54,46,46,55,17,10,17 -1980,1071,Other races male,8,15,22,16,5,12,4,12,10,9,3,5,3,1,1,0,0,0 -1980,1071,Other races female,9,15,19,14,7,8,16,8,6,5,5,5,2,4,1,2,1,0 -1980,1073,White male,14323,14507,15695,17673,19867,20449,17886,13757,11491,11143,12390,11985,9793,7763,5771,3749,1906,1111 -1980,1073,White female,13788,13995,14838,17362,21067,20836,18051,14423,12672,12516,13808,13761,11840,10758,9242,6905,4355,3475 -1980,1073,Black male,10254,9959,10093,11339,9973,9087,6961,4504,3755,3742,4211,4012,3791,3804,2976,2116,934,629 -1980,1073,Black female,10322,9538,9973,11670,12250,11033,8086,5615,5201,5265,5972,5514,5020,5272,4253,3120,1677,1364 -1980,1073,Other races male,102,86,86,74,116,143,130,141,70,57,33,23,24,14,12,13,4,5 -1980,1073,Other races female,106,87,83,94,116,138,170,104,78,69,44,35,25,33,26,16,17,5 -1980,1075,White male,523,595,603,628,543,489,486,441,418,401,333,328,340,326,296,167,91,61 -1980,1075,White female,526,561,557,583,522,469,510,439,421,377,412,398,390,375,374,278,116,87 -1980,1075,Black male,87,113,108,115,73,71,58,33,35,44,37,39,31,31,24,22,15,6 -1980,1075,Black female,91,116,107,94,95,78,59,29,53,35,55,46,35,46,40,26,13,10 -1980,1075,Other races male,0,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,1 -1980,1075,Other races female,1,1,1,0,1,2,0,2,1,0,1,0,0,0,2,0,0,1 -1980,1077,White male,2430,2574,3057,3579,3455,2791,2658,2356,1943,1916,1814,1738,1561,1225,940,560,277,182 -1980,1077,White female,2315,2613,2853,3679,3524,2806,2768,2333,2106,2015,2013,1994,1804,1508,1388,898,533,466 -1980,1077,Black male,357,368,426,459,359,280,193,180,120,118,123,126,135,116,97,59,50,34 -1980,1077,Black female,336,359,410,502,441,316,248,224,186,164,185,166,182,178,134,97,61,51 -1980,1077,Other races male,11,8,8,14,10,10,10,13,10,6,6,2,1,0,2,0,0,0 -1980,1077,Other races female,11,13,14,7,14,14,17,11,12,10,9,2,4,4,4,0,1,1 -1980,1079,White male,939,1078,1173,1260,949,921,914,856,753,614,632,555,526,444,357,199,89,59 -1980,1079,White female,902,1025,1176,1195,984,938,914,864,685,641,629,602,568,582,441,268,166,142 -1980,1079,Black male,243,315,327,308,183,196,143,112,79,52,74,78,62,77,78,48,20,18 -1980,1079,Black female,275,285,282,279,230,211,166,129,89,89,104,96,85,109,78,50,39,45 -1980,1079,Other races male,4,7,10,6,3,5,5,3,2,1,1,2,0,0,0,0,0,0 -1980,1079,Other races female,6,6,7,5,3,3,6,3,4,8,2,3,1,0,0,0,0,1 -1980,1081,White male,1557,1696,1883,3993,7183,2569,1982,1590,1262,1236,1033,1012,828,646,427,249,126,77 -1980,1081,White female,1551,1585,1800,3929,5581,2255,1885,1564,1237,1182,1099,1086,937,797,630,452,254,204 -1980,1081,Black male,910,846,966,1086,936,738,596,409,383,342,295,295,256,288,171,125,59,39 -1980,1081,Black female,838,912,942,1054,982,857,617,502,449,458,443,376,381,380,323,200,101,110 -1980,1081,Other races male,24,17,15,18,47,69,33,40,15,10,6,4,1,2,3,1,0,0 -1980,1081,Other races female,25,16,12,23,34,44,36,22,19,8,12,3,4,6,4,2,0,0 -1980,1083,White male,1507,1591,1752,1888,1696,1542,1437,1289,1147,1077,945,938,748,661,497,281,147,88 -1980,1083,White female,1387,1489,1743,1796,1686,1521,1532,1264,1203,1091,1033,992,889,869,684,493,283,217 -1980,1083,Black male,316,312,364,390,275,246,182,144,118,114,114,112,107,91,81,67,33,16 -1980,1083,Black female,307,287,337,421,319,259,217,152,145,150,166,136,135,109,121,78,39,50 -1980,1083,Other races male,4,2,5,2,5,4,5,2,4,6,0,1,0,1,0,0,0,0 -1980,1083,Other races female,3,6,3,3,4,4,2,5,1,2,1,2,0,1,3,2,0,0 -1980,1085,White male,116,110,110,136,125,119,126,94,88,101,104,88,81,74,48,36,14,9 -1980,1085,White female,100,109,126,127,115,122,104,106,97,102,100,106,101,91,81,63,42,30 -1980,1085,Black male,577,600,576,731,369,295,203,169,157,107,132,123,142,153,132,83,44,34 -1980,1085,Black female,548,593,561,680,480,351,280,199,211,188,191,202,182,208,150,116,66,63 -1980,1085,Other races male,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0 -1980,1085,Other races female,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0 -1980,1087,White male,105,143,133,154,156,141,144,158,103,94,134,165,166,130,107,58,52,36 -1980,1087,White female,94,119,121,127,125,132,145,117,79,81,119,114,134,122,123,75,47,42 -1980,1087,Black male,836,962,976,1430,1409,782,578,413,310,305,347,519,446,409,311,215,126,119 -1980,1087,Black female,871,955,996,1499,1560,916,678,508,466,411,522,519,472,515,464,343,150,186 -1980,1087,Other races male,6,3,4,2,11,9,9,3,3,5,2,0,2,1,3,0,0,1 -1980,1087,Other races female,9,1,2,2,5,8,6,1,1,5,1,2,2,2,2,2,0,0 -1980,1089,White male,5045,5572,6676,8039,7237,6581,6001,5097,5169,5374,4521,4027,2827,2108,1349,794,382,203 -1980,1089,White female,4839,5400,6367,7480,7086,6357,6082,5732,5544,5151,4598,4202,3152,2549,1926,1324,791,624 -1980,1089,Black male,1773,1902,1985,2432,2720,1882,1392,948,722,708,480,465,407,336,263,165,90,83 -1980,1089,Black female,1828,1807,1991,2714,2875,1831,1599,1114,903,711,649,614,509,494,333,264,135,127 -1980,1089,Other races male,85,95,96,95,115,131,110,80,58,48,33,20,11,7,5,0,1,1 -1980,1089,Other races female,108,96,97,80,100,144,142,114,84,74,61,25,12,11,10,5,1,2 -1980,1091,White male,398,439,467,517,453,435,417,374,344,345,353,288,260,232,159,110,58,37 -1980,1091,White female,370,402,470,502,419,408,426,380,369,365,341,309,323,287,253,175,87,91 -1980,1091,Black male,705,690,768,778,452,393,314,218,196,181,225,209,212,242,250,187,80,60 -1980,1091,Black female,653,691,728,725,585,473,372,293,237,253,319,313,321,342,297,248,126,128 -1980,1091,Other races male,2,0,1,1,1,0,0,1,0,3,0,0,2,1,0,0,0,0 -1980,1091,Other races female,1,2,1,0,1,0,4,3,1,0,2,3,0,0,0,0,1,0 -1980,1093,White male,1041,1197,1299,1315,1107,1072,1077,909,810,728,740,686,631,612,493,319,153,103 -1980,1093,White female,1004,1154,1219,1269,1139,1021,1076,923,855,742,827,738,768,810,635,448,255,176 -1980,1093,Black male,23,36,39,51,32,27,22,28,15,12,9,9,15,14,9,7,5,2 -1980,1093,Black female,28,37,37,31,31,25,18,18,28,16,16,7,16,15,11,10,5,3 -1980,1093,Other races male,3,7,2,5,3,0,2,2,1,2,3,0,1,0,0,0,0,0 -1980,1093,Other races female,0,4,5,3,3,5,3,3,4,2,0,3,0,0,5,1,0,0 -1980,1095,White male,2188,2613,2823,3051,2631,2419,2262,1987,1783,1662,1713,1535,1453,1224,906,584,306,196 -1980,1095,White female,2152,2476,2559,2906,2595,2443,2423,2104,1882,1852,1843,1781,1714,1516,1325,913,505,374 -1980,1095,Black male,44,55,59,63,49,38,28,30,23,12,19,21,17,19,14,3,4,5 -1980,1095,Black female,27,47,61,49,37,52,30,25,16,29,27,26,25,15,18,9,12,10 -1980,1095,Other races male,5,5,2,1,4,5,4,12,4,4,2,1,1,0,0,1,0,1 -1980,1095,Other races female,4,2,7,6,9,7,11,3,4,9,4,3,1,3,4,3,0,0 -1980,1097,White male,9616,9704,9823,11096,11696,11255,10212,7911,6696,5936,6177,6032,4958,4062,2901,1693,806,453 -1980,1097,White female,9072,9089,9561,10995,12136,10912,10048,8013,6667,6094,6754,6860,5834,5315,4182,2937,1736,1326 -1980,1097,Black male,6245,5706,5927,6519,5252,4482,3158,2248,2120,1944,2029,2109,1734,1584,1125,765,316,177 -1980,1097,Black female,6045,5570,5748,6823,6320,5103,3949,2952,2817,2622,2707,2602,2242,2215,1588,1088,597,494 -1980,1097,Other races male,127,149,147,116,112,129,127,86,68,49,42,31,27,16,19,10,4,2 -1980,1097,Other races female,115,144,122,113,129,145,143,104,55,58,45,36,31,28,25,16,4,4 -1980,1099,White male,467,509,507,554,450,459,470,405,358,327,346,301,281,270,193,151,75,55 -1980,1099,White female,468,490,492,549,423,484,462,454,340,330,334,336,359,351,285,196,130,131 -1980,1099,Black male,526,595,605,585,368,324,237,174,163,135,169,132,151,161,113,84,47,34 -1980,1099,Black female,533,555,562,585,409,362,253,208,184,179,224,173,200,211,167,138,69,78 -1980,1099,Other races male,5,9,9,7,11,4,5,5,6,1,5,2,5,2,1,0,0,0 -1980,1099,Other races female,5,7,10,5,4,9,5,4,3,4,4,1,4,5,2,1,2,0 -1980,1101,White male,3897,4320,4362,4977,5301,5100,4844,4239,3377,3151,3118,2918,2532,1844,1265,779,362,248 -1980,1101,White female,3803,4092,4117,4846,5461,5330,5065,4224,3428,3287,3427,3601,2949,2690,2098,1603,1038,934 -1980,1101,Black male,3936,4054,3775,4407,3879,2981,2385,1551,1358,1260,1207,1199,1054,1013,769,482,218,170 -1980,1101,Black female,3900,4031,3790,4662,4843,3752,2624,1959,1835,1701,1651,1583,1381,1519,1181,830,451,452 -1980,1101,Other races male,31,66,44,34,37,29,51,37,32,23,9,5,7,7,3,2,2,2 -1980,1101,Other races female,41,69,56,24,54,69,94,56,38,26,25,15,9,7,8,6,1,2 -1980,1103,White male,2939,3156,3655,3890,3319,3283,3165,2788,2363,2178,2138,1907,1685,1281,992,567,278,153 -1980,1103,White female,2857,2970,3423,3671,3270,3324,3324,2838,2457,2247,2268,2111,1886,1667,1360,870,540,429 -1980,1103,Black male,505,484,479,420,350,328,235,165,163,128,133,137,144,142,104,63,35,20 -1980,1103,Black female,481,459,504,533,425,380,291,215,203,177,196,164,193,192,131,127,50,48 -1980,1103,Other races male,6,10,7,5,5,12,13,9,7,7,3,3,0,3,2,0,0,1 -1980,1103,Other races female,9,6,11,10,15,12,11,13,8,6,5,6,5,8,3,1,0,1 -1980,1105,White male,179,194,197,384,232,195,194,151,149,180,133,136,143,129,126,72,42,21 -1980,1105,White female,190,163,182,356,290,181,161,166,142,159,172,161,179,175,176,131,63,53 -1980,1105,Black male,494,524,488,544,306,240,198,137,150,122,139,122,134,162,166,120,56,41 -1980,1105,Black female,478,526,477,548,361,329,220,180,202,158,227,188,207,229,208,145,74,94 -1980,1105,Other races male,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1980,1105,Other races female,2,1,0,1,1,2,1,0,1,2,1,1,0,0,0,0,0,0 -1980,1107,White male,428,430,475,552,478,426,452,371,346,359,347,335,330,276,240,139,68,58 -1980,1107,White female,385,426,467,509,426,387,443,366,410,336,396,339,351,357,319,216,140,128 -1980,1107,Black male,480,458,507,490,367,289,193,128,153,146,127,146,134,169,127,96,64,36 -1980,1107,Black female,514,480,521,567,394,320,247,191,193,177,204,205,198,206,159,140,83,74 -1980,1107,Other races male,2,0,1,5,0,1,2,1,2,0,0,2,0,1,0,0,0,0 -1980,1107,Other races female,1,0,1,0,0,3,4,3,1,0,2,0,0,2,1,1,0,0 -1980,1109,White male,514,596,613,974,1295,633,574,509,423,371,423,433,377,351,312,196,91,62 -1980,1109,White female,478,539,616,1056,1171,599,579,527,449,427,416,525,489,480,407,313,202,190 -1980,1109,Black male,414,498,486,633,452,282,208,168,139,137,133,151,142,235,138,87,47,37 -1980,1109,Black female,466,492,525,662,601,355,300,200,208,200,194,217,235,278,214,149,85,60 -1980,1109,Other races male,2,2,7,9,10,2,0,1,1,3,0,2,0,0,0,0,0,1 -1980,1109,Other races female,2,4,8,7,13,8,2,1,3,1,1,2,2,1,1,0,0,0 -1980,1111,White male,531,584,617,599,587,509,490,411,375,393,435,376,377,375,275,167,91,72 -1980,1111,White female,464,515,606,642,537,532,496,413,398,432,444,472,493,474,386,331,194,129 -1980,1111,Black male,265,282,257,286,200,152,124,107,93,65,90,76,87,92,62,42,18,15 -1980,1111,Black female,249,249,263,269,207,211,151,118,112,97,92,100,111,110,83,61,39,25 -1980,1111,Other races male,0,3,1,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0 -1980,1111,Other races female,0,1,0,2,1,1,2,2,0,1,1,0,1,0,0,0,0,0 -1980,1113,White male,1002,1069,1123,1244,1256,1164,1105,851,761,775,820,768,670,532,332,190,82,57 -1980,1113,White female,995,1029,999,1205,1271,1255,1081,908,825,815,875,874,769,658,548,361,162,123 -1980,1113,Black male,840,944,975,1117,758,634,486,377,363,373,378,340,285,322,240,118,57,52 -1980,1113,Black female,780,897,965,1080,896,684,606,484,459,463,519,441,444,436,333,200,108,109 -1980,1113,Other races male,5,1,4,1,2,3,3,10,3,6,5,1,2,1,1,0,0,0 -1980,1113,Other races female,7,5,2,3,6,8,8,11,6,3,5,2,4,1,2,1,0,2 -1980,1115,White male,1526,1612,1671,1637,1426,1495,1507,1284,1051,975,942,871,763,596,499,260,162,86 -1980,1115,White female,1423,1444,1526,1614,1514,1498,1490,1253,1029,960,1005,934,876,734,621,422,214,191 -1980,1115,Black male,192,212,226,235,149,142,134,74,100,75,74,58,67,75,45,35,16,17 -1980,1115,Black female,190,227,227,247,196,174,129,103,79,108,91,96,107,85,43,47,33,15 -1980,1115,Other races male,1,6,6,3,6,4,10,4,2,2,0,2,0,0,1,1,0,0 -1980,1115,Other races female,3,6,6,1,4,4,7,5,3,7,1,0,0,0,3,1,1,0 -1980,1117,White male,2584,2522,2504,2674,2500,2677,2972,2355,1735,1461,1413,1208,891,806,562,350,148,99 -1980,1117,White female,2473,2457,2373,2666,2820,2890,2962,2222,1701,1409,1338,1248,993,941,735,520,277,210 -1980,1117,Black male,322,359,451,421,316,257,197,144,117,130,100,105,91,80,89,56,33,20 -1980,1117,Black female,344,331,389,449,390,299,216,167,154,128,153,116,119,135,102,89,32,32 -1980,1117,Other races male,9,12,5,19,13,18,23,14,12,4,5,2,2,2,0,0,0,1 -1980,1117,Other races female,18,6,14,16,16,14,22,17,12,8,9,7,2,2,3,0,1,0 -1980,1119,White male,178,158,160,236,328,219,183,146,112,106,137,132,117,126,105,63,35,17 -1980,1119,White female,155,157,137,216,292,192,153,138,125,119,150,136,140,162,157,91,54,48 -1980,1119,Black male,618,666,603,708,536,370,231,189,159,154,166,178,186,205,190,150,76,58 -1980,1119,Black female,624,597,629,733,608,405,283,229,227,228,249,287,267,292,236,172,108,92 -1980,1119,Other races male,0,3,2,1,2,1,0,0,1,1,0,0,0,0,0,2,0,0 -1980,1119,Other races female,1,0,1,0,0,1,2,2,3,1,3,0,0,2,1,0,0,0 -1980,1121,White male,1805,2052,2172,2349,2006,1904,1841,1551,1314,1352,1336,1296,1151,1087,736,436,188,103 -1980,1121,White female,1765,1932,2111,2159,2096,1890,1853,1531,1395,1404,1560,1518,1439,1352,1066,724,371,245 -1980,1121,Black male,1160,1375,1401,1332,1005,751,618,454,413,418,378,337,309,329,219,142,61,30 -1980,1121,Black female,1153,1249,1331,1462,1233,877,744,536,489,502,458,459,402,383,281,217,109,93 -1980,1121,Other races male,4,6,4,5,5,5,4,2,8,2,2,2,0,2,0,0,0,0 -1980,1121,Other races female,6,8,7,4,9,5,14,4,4,6,1,1,2,2,0,0,0,0 -1980,1123,White male,954,1022,1188,1193,999,1065,963,862,710,689,757,797,754,666,497,306,146,106 -1980,1123,White female,795,1019,1066,1144,932,1018,995,855,712,838,803,957,931,885,652,488,280,240 -1980,1123,Black male,476,589,561,576,457,344,297,225,211,173,203,147,141,189,126,95,36,30 -1980,1123,Black female,512,595,593,574,437,424,358,274,231,224,270,224,208,203,151,148,68,62 -1980,1123,Other races male,1,1,2,0,3,0,2,0,2,1,0,0,2,0,0,1,0,0 -1980,1123,Other races female,2,5,4,2,2,3,3,2,1,2,0,3,2,2,3,1,0,0 -1980,1125,White male,3070,3413,3446,5345,7252,4520,3790,2959,2509,2355,2615,2363,1873,1562,1145,701,368,244 -1980,1125,White female,2943,3094,3253,5435,6631,4284,3668,2958,2476,2611,2665,2348,2095,1937,1586,1166,629,554 -1980,1125,Black male,1868,1862,1754,2049,1949,1488,1096,669,613,613,624,601,511,522,358,256,136,98 -1980,1125,Black female,1862,1969,1702,2275,2461,1857,1193,875,835,822,914,733,694,778,570,387,200,188 -1980,1125,Other races male,18,20,23,22,35,33,33,25,20,4,4,13,6,6,2,3,0,0 -1980,1125,Other races female,33,22,20,22,40,47,35,21,15,12,12,6,4,6,4,3,0,0 -1980,1127,White male,2331,2645,2840,2840,2501,2445,2364,1972,1777,1614,1610,1561,1246,1198,917,595,328,190 -1980,1127,White female,2369,2440,2530,2759,2533,2416,2387,1998,1784,1546,1756,1809,1565,1581,1337,916,486,420 -1980,1127,Black male,235,243,227,289,205,173,114,81,71,76,67,75,77,88,69,54,41,30 -1980,1127,Black female,273,232,221,282,251,181,129,108,105,100,105,115,105,98,114,90,55,44 -1980,1127,Other races male,14,5,9,5,10,7,7,1,6,5,2,1,3,1,2,0,1,0 -1980,1127,Other races female,13,12,13,5,8,15,15,14,6,9,6,0,5,6,3,2,4,3 -1980,1129,White male,460,513,537,543,435,431,415,357,341,301,276,234,251,205,164,107,49,39 -1980,1129,White female,452,478,520,510,452,446,408,366,326,296,284,244,223,260,183,147,82,72 -1980,1129,Black male,255,249,273,277,211,162,139,106,65,83,79,80,60,72,63,47,20,17 -1980,1129,Black female,228,255,281,321,196,187,139,132,92,102,87,94,108,92,69,57,29,31 -1980,1129,Other races male,47,49,49,56,29,31,37,26,13,18,9,14,8,4,5,4,0,0 -1980,1129,Other races female,43,35,48,46,40,39,33,20,20,9,18,13,13,8,8,3,1,2 -1980,1131,White male,162,173,183,163,157,170,156,127,114,114,139,140,110,120,86,37,31,12 -1980,1131,White female,174,156,158,154,143,162,155,113,134,136,145,159,141,128,128,95,66,61 -1980,1131,Black male,536,569,650,665,335,294,239,174,117,125,145,162,153,214,158,110,51,42 -1980,1131,Black female,604,571,570,640,420,350,244,206,175,187,214,200,216,258,210,169,90,87 -1980,1131,Other races male,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 -1980,1131,Other races female,1,2,1,0,0,1,0,0,2,0,0,0,0,0,1,0,0,0 -1980,1133,White male,806,892,1023,1043,826,783,802,725,642,567,520,548,447,438,287,201,87,50 -1980,1133,White female,788,814,922,990,824,818,845,758,617,586,634,564,539,504,419,267,163,115 -1980,1133,Black male,5,3,2,6,2,1,1,1,1,1,1,1,1,1,2,0,0,0 -1980,1133,Black female,5,5,4,3,4,4,1,0,4,1,1,0,3,1,2,1,0,1 -1980,1133,Other races male,3,2,6,0,0,0,4,3,1,0,1,2,0,0,0,0,0,0 -1980,1133,Other races female,5,3,3,4,3,4,4,2,3,0,3,0,0,0,0,1,0,1 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1981.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1981.csv deleted file mode 100644 index a2675c8d4d..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1981.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1981",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1981,1001,White male,996,1046,1261,1244,981,877,928,922,840,806,636,533,436,354,244,129,55,38 -1981,1001,White female,849,940,1066,1201,1006,936,1017,992,869,729,611,543,459,414,336,247,143,93 -1981,1001,Black male,349,399,387,445,295,240,172,120,132,105,111,110,121,122,87,70,31,14 -1981,1001,Black female,341,374,403,415,375,240,209,159,148,151,158,148,160,153,118,92,57,46 -1981,1001,Other races male,4,9,4,10,4,2,5,3,3,4,1,1,0,1,0,0,0,0 -1981,1001,Other races female,7,8,11,5,3,10,10,12,10,10,8,3,2,0,0,0,0,1 -1981,1003,White male,2481,2575,2825,2969,2472,2447,2530,2146,1942,1744,1690,1681,1702,1545,1218,714,349,196 -1981,1003,White female,2398,2382,2649,2768,2475,2554,2539,2250,1918,1744,1822,1972,1896,1776,1390,973,565,432 -1981,1003,Black male,669,706,647,696,513,421,323,228,209,214,198,180,169,164,162,90,46,29 -1981,1003,Black female,645,651,664,744,601,483,381,265,283,238,259,220,208,226,184,133,69,65 -1981,1003,Other races male,28,30,28,37,19,19,19,21,12,15,9,10,9,6,4,3,1,1 -1981,1003,Other races female,25,26,28,22,26,33,26,28,16,20,17,15,6,8,4,6,2,1 -1981,1005,White male,492,517,598,563,458,467,527,395,378,364,387,379,371,307,213,146,58,32 -1981,1005,White female,400,457,525,529,461,452,527,439,381,371,402,486,409,386,343,249,144,109 -1981,1005,Black male,538,580,600,615,395,357,328,199,179,146,170,152,196,191,153,106,46,43 -1981,1005,Black female,537,532,559,654,499,459,394,261,213,227,251,250,294,272,228,167,97,76 -1981,1005,Other races male,1,2,2,2,3,2,1,2,3,3,1,2,1,0,1,0,0,0 -1981,1005,Other races female,2,1,3,3,0,5,7,2,3,2,0,1,2,0,0,0,0,1 -1981,1007,White male,419,515,552,542,486,475,435,434,308,311,309,293,239,218,201,129,71,37 -1981,1007,White female,443,451,520,497,462,436,446,401,341,323,305,321,285,311,253,200,121,82 -1981,1007,Black male,196,184,211,215,156,154,96,66,56,41,46,52,53,58,60,41,14,10 -1981,1007,Black female,196,182,207,234,186,140,101,79,66,61,69,92,67,82,72,54,21,29 -1981,1007,Other races male,0,0,2,0,0,1,0,0,1,1,1,0,0,0,0,0,0,0 -1981,1007,Other races female,0,0,0,3,3,0,0,1,1,0,0,0,0,1,1,0,0,0 -1981,1009,White male,1294,1399,1620,1660,1427,1354,1364,1193,1086,954,946,822,777,715,565,346,164,92 -1981,1009,White female,1245,1360,1472,1517,1338,1355,1403,1242,1056,967,983,930,884,767,722,478,264,202 -1981,1009,Black male,31,29,31,37,23,19,15,10,12,9,11,10,8,14,8,5,3,1 -1981,1009,Black female,26,29,29,37,29,26,19,12,17,13,14,13,11,14,7,9,5,6 -1981,1009,Other races male,1,2,5,3,5,4,3,4,4,3,2,1,1,2,1,0,0,0 -1981,1009,Other races female,5,4,4,6,3,2,4,5,3,2,1,1,2,1,2,1,0,0 -1981,1011,White male,112,112,106,122,127,139,140,112,85,81,86,122,110,86,71,32,20,11 -1981,1011,White female,114,98,100,102,121,106,116,88,83,112,96,128,103,133,88,63,41,33 -1981,1011,Black male,328,366,369,396,257,229,195,143,120,105,90,94,127,154,130,81,44,39 -1981,1011,Black female,360,377,383,425,310,292,233,185,139,142,140,163,191,222,176,134,57,79 -1981,1011,Other races male,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0 -1981,1011,Other races female,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0 -1981,1013,White male,451,468,492,516,463,467,469,360,318,350,376,361,395,318,260,167,85,78 -1981,1013,White female,429,452,479,506,462,454,448,374,360,372,385,452,470,474,383,295,206,160 -1981,1013,Black male,472,480,451,429,295,257,240,177,144,124,129,133,145,137,124,117,47,32 -1981,1013,Black female,520,443,481,486,412,365,242,196,171,157,184,182,183,205,181,139,63,64 -1981,1013,Other races male,1,1,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0 -1981,1013,Other races female,2,2,2,0,1,1,2,1,0,0,1,0,1,0,1,1,0,1 -1981,1015,White male,3369,3435,4007,5543,5675,4120,3920,2999,2569,2396,2409,2197,1957,1595,1168,705,339,216 -1981,1015,White female,3252,3326,3680,4591,5091,4125,3852,3040,2575,2522,2664,2643,2357,2079,1734,1207,702,508 -1981,1015,Black male,1048,928,982,1440,1390,859,631,422,363,342,342,351,316,279,211,118,57,44 -1981,1015,Black female,1055,943,1025,1328,1461,965,707,493,431,474,475,444,408,376,299,193,122,91 -1981,1015,Other races male,36,29,36,53,58,33,38,27,12,11,7,8,7,3,2,1,0,0 -1981,1015,Other races female,37,33,24,38,71,56,71,35,40,25,17,10,6,3,4,5,2,0 -1981,1017,White male,762,835,970,956,867,877,922,744,645,655,681,697,734,641,514,308,151,85 -1981,1017,White female,725,878,870,925,881,880,915,712,625,707,755,875,886,875,773,518,318,230 -1981,1017,Black male,729,713,846,792,573,525,392,290,252,210,215,193,200,199,163,117,50,38 -1981,1017,Black female,673,725,738,784,696,575,525,379,281,307,284,302,326,295,237,156,91,81 -1981,1017,Other races male,0,1,0,3,1,2,1,0,1,3,1,0,1,0,0,0,0,0 -1981,1017,Other races female,0,0,2,3,3,5,3,2,3,2,2,2,0,1,0,0,0,0 -1981,1019,White male,622,669,768,757,762,649,665,517,538,480,444,470,436,388,292,173,81,60 -1981,1019,White female,594,616,647,683,698,626,665,572,527,503,500,517,494,443,360,253,147,113 -1981,1019,Black male,79,72,71,84,72,63,49,38,33,26,35,21,21,23,20,15,4,2 -1981,1019,Black female,67,92,86,82,80,65,54,38,39,34,38,21,40,29,25,21,6,5 -1981,1019,Other races male,0,0,4,2,2,0,0,0,0,0,0,1,0,0,0,1,0,0 -1981,1019,Other races female,0,1,3,0,2,1,2,2,3,2,1,0,2,0,0,0,0,1 -1981,1021,White male,1026,1048,1084,1174,1112,1046,1000,834,772,695,680,642,581,569,448,267,134,70 -1981,1021,White female,997,952,1095,1078,1093,1024,1012,833,746,735,701,743,731,696,588,440,217,189 -1981,1021,Black male,181,178,179,213,147,120,108,66,65,72,66,70,62,59,46,34,15,12 -1981,1021,Black female,186,207,205,219,157,131,109,88,84,86,78,76,58,82,51,54,24,20 -1981,1021,Other races male,2,1,2,0,1,1,1,0,1,1,2,0,0,0,0,1,1,0 -1981,1021,Other races female,2,2,2,0,1,4,2,3,2,4,1,1,0,2,0,3,0,0 -1981,1023,White male,379,363,398,398,344,330,312,338,261,241,263,244,197,179,168,103,45,29 -1981,1023,White female,331,351,395,397,336,308,356,297,271,272,270,276,239,213,208,158,74,66 -1981,1023,Black male,359,366,418,437,247,235,205,161,123,122,106,132,107,119,121,77,45,29 -1981,1023,Black female,376,416,382,391,338,276,239,181,147,153,141,164,144,148,126,106,68,37 -1981,1023,Other races male,1,3,0,2,1,2,0,0,0,1,0,0,0,0,0,0,0,0 -1981,1023,Other races female,1,0,0,0,0,1,3,0,2,1,1,0,0,1,0,0,0,0 -1981,1025,White male,603,594,683,670,595,610,607,507,465,412,398,353,362,329,285,168,101,70 -1981,1025,White female,581,578,641,641,592,646,593,535,456,420,409,424,443,400,343,246,180,146 -1981,1025,Black male,654,662,681,707,499,411,291,244,203,225,213,174,181,189,167,114,56,44 -1981,1025,Black female,601,648,675,746,556,413,363,279,256,237,245,229,234,236,224,153,76,92 -1981,1025,Other races male,3,3,2,3,2,1,2,1,2,2,1,0,0,0,0,0,0,0 -1981,1025,Other races female,3,4,5,4,0,3,7,1,3,2,2,2,1,0,2,1,0,1 -1981,1027,White male,391,424,475,515,426,377,407,328,306,294,293,279,286,278,239,147,97,59 -1981,1027,White female,374,385,438,492,422,385,406,310,335,312,319,299,354,346,311,217,146,102 -1981,1027,Black male,143,143,137,121,81,66,74,59,51,38,36,28,22,22,21,12,10,4 -1981,1027,Black female,109,136,147,146,114,81,82,67,52,49,46,38,30,39,29,24,14,11 -1981,1027,Other races male,2,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 -1981,1027,Other races female,0,0,0,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0 -1981,1029,White male,451,484,548,544,504,446,442,407,328,308,311,280,279,237,164,136,66,45 -1981,1029,White female,411,445,484,513,481,441,471,375,343,318,345,299,327,282,252,188,98,84 -1981,1029,Black male,33,31,31,32,25,16,21,14,16,18,8,11,9,12,8,5,4,0 -1981,1029,Black female,30,32,29,48,34,22,22,16,17,15,12,12,13,18,12,6,4,6 -1981,1029,Other races male,1,0,1,0,0,3,0,1,0,0,0,0,0,0,1,1,0,0 -1981,1029,Other races female,1,0,2,0,1,0,2,1,1,1,1,0,0,0,0,0,0,0 -1981,1031,White male,1163,1248,1343,1480,1284,1275,1425,1064,913,909,865,815,734,611,441,273,148,78 -1981,1031,White female,1053,1124,1253,1369,1266,1289,1361,1086,1011,898,872,915,804,757,589,483,251,229 -1981,1031,Black male,329,332,414,372,275,241,192,162,130,117,126,114,89,94,70,53,39,31 -1981,1031,Black female,316,313,326,390,332,245,267,177,165,156,164,146,119,158,98,98,51,36 -1981,1031,Other races male,9,12,9,14,11,11,11,7,3,5,1,4,3,2,0,0,0,0 -1981,1031,Other races female,10,14,4,7,20,31,26,14,12,18,7,4,4,2,2,0,1,0 -1981,1033,White male,1521,1597,1926,2031,1910,1758,1707,1374,1305,1218,1247,1229,1095,844,598,402,198,117 -1981,1033,White female,1470,1459,1717,2002,1928,1814,1734,1513,1354,1251,1349,1364,1245,1051,874,596,352,292 -1981,1033,Black male,421,404,443,487,338,328,304,208,165,179,160,168,169,129,111,90,50,27 -1981,1033,Black female,433,448,474,491,406,414,341,251,215,213,220,241,191,186,177,120,62,67 -1981,1033,Other races male,7,4,6,14,2,6,7,10,5,5,2,3,1,1,1,1,1,0 -1981,1033,Other races female,6,8,4,3,1,13,12,5,6,3,4,0,2,1,5,1,0,0 -1981,1035,White male,318,308,365,370,349,332,303,260,232,224,257,240,248,225,191,118,67,42 -1981,1035,White female,304,301,315,359,300,325,318,231,218,237,278,267,293,290,260,193,112,100 -1981,1035,Black male,321,331,327,377,260,225,162,125,92,85,104,102,81,112,105,78,46,32 -1981,1035,Black female,341,301,368,370,327,233,201,144,118,124,136,133,147,146,151,107,68,59 -1981,1035,Other races male,1,1,2,1,1,0,1,2,1,0,1,0,6,1,2,0,0,0 -1981,1035,Other races female,0,3,1,1,1,2,0,1,0,3,2,3,0,2,1,0,0,0 -1981,1037,White male,248,230,282,292,306,276,239,218,174,191,230,225,224,185,155,103,40,27 -1981,1037,White female,244,253,269,267,282,253,253,200,193,209,254,234,256,210,184,135,81,56 -1981,1037,Black male,167,220,250,225,180,148,117,83,95,82,80,77,46,62,50,36,26,12 -1981,1037,Black female,151,221,220,217,165,158,114,94,94,100,93,67,88,69,67,51,16,15 -1981,1037,Other races male,0,2,0,1,0,0,0,2,0,1,0,0,0,1,0,0,0,0 -1981,1037,Other races female,0,0,0,0,0,0,2,0,1,2,0,1,1,0,0,0,0,0 -1981,1039,White male,1048,1050,1154,1417,1167,1075,1063,909,793,836,842,927,847,770,614,383,199,162 -1981,1039,White female,1013,971,1184,1192,1132,1056,1113,912,909,864,962,1031,1099,1057,947,663,391,276 -1981,1039,Black male,210,257,279,286,177,119,123,90,102,69,86,74,71,89,54,44,17,17 -1981,1039,Black female,232,250,277,282,222,185,159,120,117,127,107,115,121,100,105,77,33,31 -1981,1039,Other races male,0,2,3,4,3,5,5,3,3,1,2,1,0,0,2,0,0,0 -1981,1039,Other races female,6,2,5,5,3,3,6,7,4,1,3,1,0,1,2,1,1,0 -1981,1041,White male,389,392,395,428,395,312,367,299,243,274,252,265,279,279,228,124,61,50 -1981,1041,White female,320,338,378,376,330,375,374,272,263,261,292,359,346,347,291,226,134,104 -1981,1041,Black male,182,161,185,216,134,112,91,69,57,62,68,71,69,65,51,36,19,26 -1981,1041,Black female,176,188,188,203,187,125,116,79,93,68,91,82,77,104,79,91,26,41 -1981,1041,Other races male,1,4,2,1,2,0,0,1,1,0,1,0,0,0,1,0,0,0 -1981,1041,Other races female,0,2,3,2,1,3,3,0,2,0,1,1,1,0,2,1,0,1 -1981,1043,White male,2176,2277,2678,2758,2519,2215,2281,1856,1645,1606,1588,1516,1447,1251,949,624,296,205 -1981,1043,White female,2155,2259,2462,2607,2400,2277,2317,1923,1770,1635,1713,1764,1603,1514,1231,903,508,410 -1981,1043,Black male,26,30,31,33,22,17,14,13,15,10,13,3,10,8,4,9,4,1 -1981,1043,Black female,24,22,19,37,26,16,22,14,14,14,14,6,6,11,11,7,1,7 -1981,1043,Other races male,6,10,6,6,5,6,4,5,4,3,5,4,1,4,2,2,0,0 -1981,1043,Other races female,3,8,7,9,4,13,9,8,5,7,10,4,3,1,1,1,1,1 -1981,1045,White male,1749,1651,1571,2028,2818,2219,1960,1245,1007,940,841,786,644,506,369,224,127,73 -1981,1045,White female,1623,1500,1489,1600,1959,1777,1632,1152,1033,886,841,817,666,599,523,419,251,205 -1981,1045,Black male,436,413,350,470,767,465,280,174,117,101,117,103,74,87,68,47,33,14 -1981,1045,Black female,484,399,373,400,499,381,264,190,151,123,134,132,109,115,101,63,30,29 -1981,1045,Other races male,30,34,21,37,56,34,31,14,9,10,5,4,4,2,1,1,0,2 -1981,1045,Other races female,38,30,26,21,85,93,54,38,33,35,26,9,8,3,3,3,0,0 -1981,1047,White male,834,828,943,1029,901,901,924,733,641,618,648,623,586,440,351,216,106,55 -1981,1047,White female,814,865,921,961,995,949,955,750,678,659,708,767,638,638,537,418,256,225 -1981,1047,Black male,1518,1562,1667,1842,1216,885,743,524,509,442,438,403,418,451,381,269,130,107 -1981,1047,Black female,1478,1500,1611,1856,1406,1164,984,708,683,658,658,618,554,728,524,418,232,240 -1981,1047,Other races male,4,5,5,7,4,2,10,6,5,1,5,2,0,2,0,0,0,0 -1981,1047,Other races female,6,6,3,5,2,8,10,5,3,4,2,3,1,4,0,4,1,1 -1981,1049,White male,1983,2134,2280,2239,2132,1973,1956,1611,1369,1395,1298,1243,1207,1065,839,556,288,173 -1981,1049,White female,1872,1936,2177,2183,2134,1981,2044,1614,1505,1382,1407,1469,1370,1413,1166,896,469,367 -1981,1049,Black male,35,55,52,47,38,32,40,25,18,18,16,16,4,12,17,9,2,3 -1981,1049,Black female,52,38,55,50,46,42,35,30,23,20,15,27,13,21,23,10,7,4 -1981,1049,Other races male,9,9,12,9,7,6,6,6,5,7,4,4,2,3,0,0,0,0 -1981,1049,Other races female,5,11,15,6,5,8,12,9,7,6,3,3,3,5,1,2,0,1 -1981,1051,White male,1201,1277,1389,1450,1363,1376,1393,1140,1056,942,907,878,767,657,444,284,146,99 -1981,1051,White female,1141,1204,1349,1298,1313,1309,1406,1090,1041,871,942,920,843,729,649,476,281,255 -1981,1051,Black male,460,482,511,608,607,475,340,227,169,138,134,142,133,125,120,86,40,27 -1981,1051,Black female,406,474,571,560,464,414,323,213,190,191,171,190,172,185,147,105,62,63 -1981,1051,Other races male,6,5,3,4,8,7,6,2,3,3,2,1,0,1,1,0,0,1 -1981,1051,Other races female,3,5,2,2,7,10,6,11,7,3,5,2,1,1,0,2,0,0 -1981,1053,White male,923,957,1044,1122,1042,977,1030,846,801,664,670,635,568,473,386,226,122,83 -1981,1053,White female,854,918,918,1109,955,911,946,838,749,695,709,700,662,636,558,400,232,178 -1981,1053,Black male,511,569,544,614,564,594,474,262,205,205,173,176,142,188,126,107,41,35 -1981,1053,Black female,542,524,538,589,436,419,333,238,221,237,231,212,227,245,181,159,87,93 -1981,1053,Other races male,65,54,61,61,47,36,42,25,26,12,20,10,13,16,11,4,3,0 -1981,1053,Other races female,48,47,49,58,40,30,40,31,20,17,22,16,20,15,10,7,5,3 -1981,1055,White male,3105,3291,3632,3701,3494,3374,3362,2714,2300,2159,2347,2365,2143,1865,1364,847,388,221 -1981,1055,White female,2928,3076,3424,3527,3591,3408,3397,2702,2515,2401,2608,2767,2674,2429,1980,1415,841,600 -1981,1055,Black male,640,655,697,768,582,488,407,250,217,211,272,281,270,240,169,125,51,34 -1981,1055,Black female,681,621,717,713,711,588,489,308,330,340,375,378,342,335,252,154,90,63 -1981,1055,Other races male,6,16,9,17,32,22,9,10,7,9,4,5,4,5,1,3,0,0 -1981,1055,Other races female,11,11,14,20,25,20,15,13,11,8,8,7,4,4,0,5,3,2 -1981,1057,White male,605,588,679,709,623,608,606,494,465,415,394,402,390,371,301,197,89,52 -1981,1057,White female,600,623,638,682,630,591,591,516,472,397,455,465,459,445,418,271,165,139 -1981,1057,Black male,120,107,118,132,96,85,62,47,43,48,51,52,41,46,44,28,14,7 -1981,1057,Black female,95,102,142,117,117,85,77,52,50,57,64,52,58,61,55,40,21,18 -1981,1057,Other races male,0,1,2,1,1,0,0,0,0,1,0,2,0,0,0,0,0,0 -1981,1057,Other races female,0,0,2,0,2,0,3,1,3,3,1,0,1,1,0,1,0,0 -1981,1059,White male,986,1026,1092,1127,1112,961,947,828,738,702,708,652,589,568,424,278,149,99 -1981,1059,White female,903,894,1068,1092,1030,1026,1009,828,786,744,725,736,772,666,641,454,286,195 -1981,1059,Black male,64,61,67,72,57,44,41,28,26,25,28,23,22,18,25,8,5,3 -1981,1059,Black female,48,57,56,68,64,63,37,33,29,33,35,35,24,35,22,16,13,7 -1981,1059,Other races male,5,1,2,3,0,2,5,2,2,3,0,2,2,0,1,0,0,0 -1981,1059,Other races female,1,2,1,3,1,6,2,1,3,1,1,3,0,0,1,0,1,0 -1981,1061,White male,708,749,912,903,779,727,754,614,533,553,523,535,529,486,392,234,130,62 -1981,1061,White female,687,730,797,816,757,727,717,652,601,524,579,578,598,618,519,381,211,153 -1981,1061,Black male,148,182,178,175,105,92,83,51,44,50,48,55,50,41,44,26,11,12 -1981,1061,Black female,168,165,166,166,144,109,97,60,83,59,68,66,67,61,56,41,28,17 -1981,1061,Other races male,3,3,4,6,7,0,2,2,4,1,4,4,1,4,2,1,2,0 -1981,1061,Other races female,6,6,4,5,3,3,2,3,5,7,4,5,6,3,3,1,1,1 -1981,1063,White male,61,67,77,88,88,98,70,61,73,76,74,65,65,66,58,35,13,5 -1981,1063,White female,65,52,75,84,82,78,74,63,76,74,77,64,89,87,71,64,45,44 -1981,1063,Black male,444,449,477,502,300,279,181,136,126,132,144,121,133,160,157,126,52,37 -1981,1063,Black female,427,434,490,511,390,327,274,183,180,173,183,181,182,223,252,147,79,75 -1981,1063,Other races male,2,1,1,0,0,0,0,2,0,0,0,1,0,0,0,1,0,0 -1981,1063,Other races female,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 -1981,1065,White male,195,186,199,241,210,195,220,179,153,155,144,180,162,129,104,70,42,36 -1981,1065,White female,195,173,188,227,188,206,213,165,152,152,175,192,188,178,174,116,88,77 -1981,1065,Black male,533,482,559,612,352,283,227,155,136,138,152,142,150,202,147,135,70,44 -1981,1065,Black female,510,451,502,589,476,358,260,190,197,186,222,207,219,232,215,169,100,93 -1981,1065,Other races male,0,2,2,1,1,0,0,1,0,0,1,1,0,1,0,0,0,0 -1981,1065,Other races female,2,0,0,2,2,4,2,1,0,0,1,2,1,0,1,1,0,0 -1981,1067,White male,330,323,391,339,313,347,366,299,240,223,261,288,247,258,178,125,53,34 -1981,1067,White female,334,335,333,334,335,359,357,306,238,256,274,309,303,319,261,183,105,71 -1981,1067,Black male,273,313,295,299,213,211,203,119,122,87,98,95,83,93,81,49,23,15 -1981,1067,Black female,285,299,309,328,256,263,158,155,131,128,138,124,132,126,111,86,45,34 -1981,1067,Other races male,2,1,4,2,0,1,2,2,2,0,0,0,0,0,0,0,0,0 -1981,1067,Other races female,1,2,2,0,0,1,3,1,0,0,0,0,0,1,0,1,0,0 -1981,1069,White male,2195,2274,2411,2439,2324,2402,2474,2010,1639,1565,1583,1377,1207,998,726,414,200,135 -1981,1069,White female,2150,2056,2278,2403,2486,2548,2499,2018,1781,1605,1620,1528,1398,1299,1008,798,461,353 -1981,1069,Black male,901,925,921,892,666,603,507,373,305,295,305,261,272,236,194,102,51,45 -1981,1069,Black female,896,868,899,935,845,760,604,446,410,398,390,350,354,347,283,214,92,82 -1981,1069,Other races male,33,37,31,22,21,33,26,25,17,7,9,7,2,2,1,2,0,0 -1981,1069,Other races female,20,30,24,23,24,36,26,17,19,16,9,11,4,7,1,7,0,0 -1981,1071,White male,1906,1964,2182,2131,2070,2032,2013,1638,1435,1245,1194,1047,948,831,580,416,177,92 -1981,1071,White female,1913,1935,2020,2123,2061,2062,2037,1632,1415,1311,1226,1171,1149,1011,792,602,305,239 -1981,1071,Black male,98,115,91,112,94,98,66,49,32,32,48,42,29,58,23,19,8,5 -1981,1071,Black female,82,99,103,105,96,90,84,59,54,40,59,53,46,45,55,19,11,16 -1981,1071,Other races male,10,21,30,21,7,13,7,15,13,11,5,6,3,2,1,0,0,0 -1981,1071,Other races female,11,19,29,19,9,11,19,14,12,7,6,7,3,5,2,2,1,0 -1981,1073,White male,14377,13792,15547,16844,19904,20465,18264,13748,11565,10998,12039,11709,9917,7761,5903,3844,1937,1137 -1981,1073,White female,13814,13299,14699,16591,21060,20773,18421,14417,12658,12264,13419,13547,11947,10747,9327,7116,4438,3564 -1981,1073,Black male,10288,9662,10118,11043,9972,9132,7310,4663,3945,3774,4096,3966,3728,3687,2956,2133,942,646 -1981,1073,Black female,10320,9304,10001,11324,12213,11087,8644,5849,5333,5231,5807,5464,5003,5185,4261,3189,1709,1399 -1981,1073,Other races male,107,91,95,83,128,155,145,140,76,65,37,26,26,16,13,13,4,5 -1981,1073,Other races female,116,94,87,97,126,153,182,112,85,73,48,38,27,34,26,16,15,5 -1981,1075,White male,524,560,604,607,550,502,501,438,415,397,335,332,342,316,294,171,93,61 -1981,1075,White female,524,530,559,569,535,482,524,433,419,376,410,400,393,372,371,285,125,96 -1981,1075,Black male,88,107,107,114,74,71,60,35,36,42,36,38,31,31,23,21,15,7 -1981,1075,Black female,89,109,106,93,95,79,62,31,52,34,54,44,36,46,39,28,14,11 -1981,1075,Other races male,0,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,1 -1981,1075,Other races female,1,1,1,0,1,2,0,2,1,0,1,0,0,0,2,0,0,1 -1981,1077,White male,2474,2483,3050,3442,3532,2844,2760,2358,1963,1921,1822,1754,1603,1250,976,589,291,187 -1981,1077,White female,2347,2505,2853,3549,3591,2865,2868,2340,2124,2009,2013,2016,1849,1549,1431,953,575,488 -1981,1077,Black male,364,358,420,450,370,285,204,179,123,123,121,128,133,114,99,61,48,34 -1981,1077,Black female,342,349,407,491,451,325,267,222,188,169,183,168,182,175,139,99,64,53 -1981,1077,Other races male,11,9,8,14,10,11,10,12,10,6,8,3,2,0,2,0,0,0 -1981,1077,Other races female,11,13,14,9,13,14,17,12,12,10,10,3,4,4,4,0,1,1 -1981,1079,White male,950,1010,1147,1199,982,955,939,835,739,620,634,561,534,440,361,205,92,61 -1981,1079,White female,904,955,1144,1140,1013,963,934,840,683,643,626,607,577,574,447,287,169,143 -1981,1079,Black male,242,294,319,304,190,196,145,112,81,56,73,76,61,75,76,48,21,18 -1981,1079,Black female,270,269,280,272,235,210,173,130,92,91,102,94,84,106,78,53,40,43 -1981,1079,Other races male,10,24,31,21,7,7,13,12,11,5,3,3,1,1,0,0,0,0 -1981,1079,Other races female,12,22,28,17,7,11,20,15,10,10,4,4,2,1,1,1,0,1 -1981,1081,White male,1599,1635,1880,3894,7438,2637,2054,1607,1298,1244,1050,1027,851,655,449,267,132,80 -1981,1081,White female,1583,1531,1805,3863,5822,2297,1965,1582,1271,1196,1107,1099,959,807,649,475,271,216 -1981,1081,Black male,919,824,968,1066,955,753,627,413,393,345,298,295,254,278,170,127,61,41 -1981,1081,Black female,857,877,936,1036,1009,878,662,512,454,458,438,382,381,374,325,208,108,112 -1981,1081,Other races male,30,19,18,24,60,81,45,41,17,12,8,6,2,2,3,1,0,0 -1981,1081,Other races female,30,18,15,28,41,53,43,25,20,10,13,5,5,6,4,2,0,0 -1981,1083,White male,1511,1505,1726,1801,1722,1601,1510,1282,1154,1071,954,939,758,652,496,290,151,88 -1981,1083,White female,1396,1408,1709,1711,1710,1565,1584,1261,1196,1079,1024,994,891,855,686,511,289,222 -1981,1083,Black male,307,293,351,368,289,270,208,151,125,115,112,109,104,87,79,65,32,18 -1981,1083,Black female,295,270,324,395,318,261,226,150,146,145,159,135,133,105,119,77,40,48 -1981,1083,Other races male,5,3,7,4,6,5,6,3,6,7,1,2,1,1,0,0,0,0 -1981,1083,Other races female,4,7,3,5,5,5,3,7,3,3,2,3,1,1,3,2,0,0 -1981,1085,White male,116,106,108,127,123,121,128,95,88,97,102,90,83,72,49,37,15,11 -1981,1085,White female,102,104,122,119,115,125,107,104,94,100,100,108,99,89,82,65,43,31 -1981,1085,Black male,571,571,574,705,373,302,215,168,155,112,129,121,138,145,130,85,47,36 -1981,1085,Black female,544,562,562,657,483,362,292,205,213,187,188,200,179,202,152,119,66,64 -1981,1085,Other races male,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0 -1981,1085,Other races female,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0 -1981,1087,White male,105,133,130,145,158,143,146,149,103,96,130,159,162,127,107,60,50,35 -1981,1087,White female,98,111,119,123,127,134,144,115,82,83,113,112,132,119,121,77,48,40 -1981,1087,Black male,841,911,964,1422,1421,775,593,411,321,312,338,498,431,403,317,221,127,116 -1981,1087,Black female,871,912,982,1492,1576,907,699,508,474,415,505,512,467,511,466,350,160,187 -1981,1087,Other races male,6,3,4,2,10,9,9,4,3,5,2,0,2,1,3,0,0,1 -1981,1087,Other races female,9,1,2,3,6,8,6,1,1,5,1,2,2,2,2,2,0,0 -1981,1089,White male,5232,5380,6580,7607,7362,6986,6445,5177,5135,5245,4536,4113,2948,2160,1419,835,394,216 -1981,1089,White female,5011,5192,6279,7080,7199,6697,6437,5702,5465,5077,4632,4277,3257,2624,1995,1401,838,659 -1981,1089,Black male,1814,1845,1972,2418,2772,1935,1491,964,759,724,499,476,404,333,268,168,91,85 -1981,1089,Black female,1852,1763,1972,2680,2942,1918,1697,1131,939,738,664,625,509,492,345,271,138,132 -1981,1089,Other races male,100,110,120,110,126,147,133,93,73,59,39,26,13,9,7,1,2,1 -1981,1089,Other races female,123,109,120,93,110,155,168,133,102,82,66,32,19,13,12,6,2,2 -1981,1091,White male,400,420,464,499,450,436,427,372,338,339,347,291,266,230,164,110,60,38 -1981,1091,White female,374,383,465,479,425,413,433,373,362,356,339,314,324,281,256,182,94,94 -1981,1091,Black male,693,654,758,754,456,396,325,218,199,184,218,206,206,228,240,183,80,62 -1981,1091,Black female,641,657,715,704,585,472,393,292,243,252,304,308,311,333,291,246,128,128 -1981,1091,Other races male,2,0,1,1,1,0,0,1,0,3,0,0,2,1,0,0,0,0 -1981,1091,Other races female,1,2,1,0,1,0,4,3,1,0,2,3,0,0,0,0,1,0 -1981,1093,White male,1054,1142,1293,1285,1148,1106,1103,904,817,734,751,696,648,605,497,327,159,107 -1981,1093,White female,1011,1101,1220,1238,1168,1041,1108,917,861,749,827,750,781,800,646,475,268,189 -1981,1093,Black male,25,34,39,50,34,30,27,28,16,14,10,10,15,15,10,8,5,3 -1981,1093,Black female,29,35,36,33,33,26,21,18,27,17,17,8,16,15,11,11,5,4 -1981,1093,Other races male,4,7,2,5,3,0,2,2,2,2,3,1,1,0,0,0,0,0 -1981,1093,Other races female,1,4,5,3,3,5,3,3,4,2,0,3,0,0,5,1,0,0 -1981,1095,White male,2229,2496,2819,2960,2679,2486,2364,2001,1798,1673,1714,1558,1495,1221,931,604,314,198 -1981,1095,White female,2194,2370,2571,2815,2650,2513,2516,2119,1902,1849,1844,1809,1751,1525,1357,958,537,397 -1981,1095,Black male,46,52,57,63,51,39,30,29,22,14,19,20,17,18,13,4,5,5 -1981,1095,Black female,29,45,59,49,39,52,32,27,17,27,26,26,25,17,18,10,11,10 -1981,1095,Other races male,6,6,3,3,4,5,5,12,5,6,3,2,2,0,0,1,0,1 -1981,1095,Other races female,5,4,8,8,9,8,12,5,6,9,5,4,2,3,4,3,0,0 -1981,1097,White male,9792,9384,9945,10805,11891,11431,10607,8038,6846,6017,6187,6023,5097,4116,3024,1785,848,479 -1981,1097,White female,9241,8785,9659,10706,12366,11126,10472,8130,6858,6195,6716,6858,5983,5402,4313,3109,1821,1402 -1981,1097,Black male,6311,5600,6009,6399,5267,4540,3381,2309,2159,1969,2022,2109,1733,1578,1153,793,331,190 -1981,1097,Black female,6117,5480,5838,6671,6354,5236,4263,3029,2871,2653,2701,2623,2259,2226,1640,1145,622,516 -1981,1097,Other races male,140,157,163,139,140,141,139,97,78,58,46,35,29,17,18,11,5,2 -1981,1097,Other races female,129,153,140,128,146,155,160,116,70,66,50,41,33,30,26,17,5,4 -1981,1099,White male,473,489,515,543,462,472,490,407,362,331,344,305,290,268,194,155,74,56 -1981,1099,White female,475,472,498,537,436,491,478,455,343,335,333,340,358,344,290,206,134,131 -1981,1099,Black male,521,565,598,574,370,326,250,176,164,138,166,130,148,153,114,87,46,35 -1981,1099,Black female,525,528,555,571,413,365,269,214,184,178,216,174,198,202,165,138,69,78 -1981,1099,Other races male,6,10,10,8,12,5,6,6,6,2,5,3,5,2,1,0,0,0 -1981,1099,Other races female,6,8,10,6,5,9,6,4,4,5,4,2,4,5,2,1,2,0 -1981,1101,White male,3985,4149,4363,4793,5369,5225,5032,4256,3432,3148,3098,2917,2573,1871,1330,821,381,254 -1981,1101,White female,3868,3926,4118,4680,5518,5391,5218,4247,3484,3278,3381,3577,3006,2731,2162,1681,1077,968 -1981,1101,Black male,4023,3963,3843,4418,3966,3071,2549,1622,1420,1285,1206,1208,1048,994,771,500,228,175 -1981,1101,Black female,3967,3935,3852,4650,4930,3863,2871,2051,1881,1721,1655,1602,1392,1503,1195,860,462,460 -1981,1101,Other races male,35,66,51,40,43,35,56,38,35,26,11,7,8,8,4,2,2,2 -1981,1101,Other races female,44,69,61,31,58,71,100,60,45,28,27,17,11,8,8,6,2,2 -1981,1103,White male,2953,3016,3613,3703,3337,3346,3273,2773,2374,2175,2125,1910,1705,1276,1008,581,290,159 -1981,1103,White female,2871,2827,3383,3492,3304,3373,3412,2830,2464,2229,2245,2112,1907,1660,1381,919,560,442 -1981,1103,Black male,504,465,480,417,357,335,259,172,166,131,132,135,138,135,102,65,35,21 -1981,1103,Black female,481,440,498,512,433,393,315,222,206,177,192,166,187,183,134,127,51,49 -1981,1103,Other races male,8,12,10,7,7,13,15,11,10,9,5,3,1,3,3,1,0,1 -1981,1103,Other races female,11,9,13,12,15,13,13,15,10,8,6,7,5,8,3,1,0,1 -1981,1105,White male,174,181,192,372,237,193,193,146,144,173,133,137,142,126,125,75,43,22 -1981,1105,White female,186,151,180,342,292,179,163,161,139,155,170,162,178,173,174,133,67,55 -1981,1105,Black male,493,505,497,538,309,245,210,136,149,123,139,124,132,156,162,120,57,43 -1981,1105,Black female,476,504,484,540,366,333,236,185,201,162,221,187,204,224,206,146,79,95 -1981,1105,Other races male,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1981,1105,Other races female,2,1,0,1,1,2,1,0,1,2,1,1,0,0,0,0,0,0 -1981,1107,White male,434,415,485,534,491,439,470,373,350,353,353,343,344,278,244,147,70,59 -1981,1107,White female,392,407,468,495,438,400,458,366,403,341,399,350,366,358,325,230,150,132 -1981,1107,Black male,482,451,513,484,370,292,208,135,152,147,129,150,135,166,129,99,65,38 -1981,1107,Black female,516,475,530,557,402,331,270,197,196,179,205,207,199,206,165,146,85,78 -1981,1107,Other races male,2,0,1,5,0,1,2,1,2,0,0,2,0,1,0,0,0,0 -1981,1107,Other races female,1,1,1,0,0,3,4,3,1,1,2,0,0,2,1,1,0,0 -1981,1109,White male,529,573,621,965,1349,649,596,508,430,381,423,435,388,352,316,202,94,63 -1981,1109,White female,492,520,618,1043,1224,614,599,527,453,433,420,521,491,482,417,328,208,195 -1981,1109,Black male,432,485,487,627,464,293,224,169,146,142,134,151,138,225,137,91,47,38 -1981,1109,Black female,467,479,525,656,620,370,323,208,215,202,193,218,229,272,216,157,90,66 -1981,1109,Other races male,3,3,7,10,10,3,1,1,1,3,0,2,1,0,0,0,0,1 -1981,1109,Other races female,2,4,8,8,13,8,3,2,4,2,1,2,3,1,1,0,0,0 -1981,1111,White male,533,564,615,588,599,523,517,416,379,390,429,381,388,371,282,174,94,73 -1981,1111,White female,468,494,604,620,552,543,515,418,401,424,440,474,499,470,392,340,198,134 -1981,1111,Black male,262,272,259,284,203,156,134,105,94,67,89,76,85,88,61,44,19,15 -1981,1111,Black female,248,241,262,263,213,213,159,120,113,97,94,101,108,108,85,63,41,27 -1981,1111,Other races male,0,3,1,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0 -1981,1111,Other races female,0,1,0,2,1,1,2,2,1,1,1,0,1,0,0,0,0,0 -1981,1113,White male,1019,1015,1105,1183,1271,1183,1131,846,759,762,804,757,677,526,342,197,84,56 -1981,1113,White female,998,969,989,1148,1282,1254,1101,896,818,802,858,868,775,656,552,375,173,129 -1981,1113,Black male,835,892,961,1076,761,636,512,375,363,367,373,338,282,311,237,125,58,53 -1981,1113,Black female,777,848,940,1039,893,700,636,479,459,461,502,435,438,427,335,210,111,108 -1981,1113,Other races male,6,2,4,2,2,4,4,10,4,6,5,2,2,1,1,0,0,0 -1981,1113,Other races female,7,5,2,3,7,8,9,11,8,4,5,3,4,1,2,1,0,2 -1981,1115,White male,1555,1544,1676,1599,1465,1537,1567,1291,1077,993,948,880,788,610,511,273,163,90 -1981,1115,White female,1435,1385,1535,1568,1543,1529,1538,1261,1056,977,1001,947,900,744,635,440,231,200 -1981,1115,Black male,191,200,221,229,156,156,152,86,104,77,73,60,67,70,43,36,17,16 -1981,1115,Black female,189,213,221,239,196,175,135,102,81,105,89,95,101,83,46,47,33,16 -1981,1115,Other races male,2,6,7,3,6,5,10,5,3,3,1,2,0,0,1,1,0,0 -1981,1115,Other races female,4,6,7,1,4,5,8,5,4,7,1,1,1,0,3,1,1,0 -1981,1117,White male,2703,2512,2578,2630,2592,2837,3165,2477,1877,1544,1450,1240,949,817,579,363,157,102 -1981,1117,White female,2580,2422,2446,2633,2943,3049,3180,2371,1835,1489,1380,1287,1039,960,754,550,290,223 -1981,1117,Black male,325,345,436,403,323,263,212,146,121,128,100,104,88,77,87,54,33,20 -1981,1117,Black female,343,318,381,433,396,304,234,173,158,132,150,115,117,129,101,90,34,33 -1981,1117,Other races male,11,14,7,21,15,20,26,16,14,6,7,3,3,3,1,0,0,1 -1981,1117,Other races female,21,11,16,18,18,16,26,19,14,9,11,8,3,3,3,0,1,0 -1981,1119,White male,177,153,159,235,341,220,186,145,115,107,135,134,119,124,106,65,35,17 -1981,1119,White female,157,151,138,216,303,194,158,140,125,117,148,137,142,159,155,95,59,51 -1981,1119,Black male,620,639,618,705,538,379,257,197,162,156,164,176,185,199,190,151,76,60 -1981,1119,Black female,623,579,639,728,616,420,317,239,228,227,249,288,265,289,241,179,113,94 -1981,1119,Other races male,0,3,2,1,3,1,0,0,1,1,0,0,0,0,0,2,0,0 -1981,1119,Other races female,1,0,1,1,0,1,2,2,3,1,3,0,0,2,1,0,0,0 -1981,1121,White male,1821,1956,2178,2282,2040,1947,1905,1575,1348,1356,1332,1306,1175,1076,756,459,197,109 -1981,1121,White female,1774,1844,2116,2100,2133,1918,1921,1550,1410,1392,1544,1524,1461,1349,1091,762,396,258 -1981,1121,Black male,1162,1308,1391,1330,1020,772,663,473,433,422,373,340,310,319,221,148,63,33 -1981,1121,Black female,1153,1205,1324,1450,1250,898,792,548,501,499,456,462,402,383,288,223,113,99 -1981,1121,Other races male,5,7,5,6,6,6,5,3,9,4,2,3,0,2,0,0,0,0 -1981,1121,Other races female,6,9,8,5,10,6,14,5,5,7,2,2,2,2,1,0,0,0 -1981,1123,White male,955,973,1179,1152,1018,1072,994,861,716,692,750,788,762,659,507,320,153,105 -1981,1123,White female,805,962,1064,1110,957,1027,1022,858,721,826,796,950,933,879,672,518,290,245 -1981,1123,Black male,474,554,557,566,459,348,311,225,213,174,200,149,142,179,127,96,37,30 -1981,1123,Black female,513,562,586,568,449,431,373,276,237,223,260,223,211,203,151,150,69,64 -1981,1123,Other races male,1,1,2,0,3,0,2,1,2,1,0,0,2,0,0,1,0,0 -1981,1123,Other races female,3,5,4,2,2,3,4,2,2,2,0,3,2,2,3,1,0,0 -1981,1125,White male,3121,3255,3449,5196,7448,4581,3926,3009,2562,2353,2575,2345,1937,1590,1177,731,379,250 -1981,1125,White female,2978,2957,3263,5301,6835,4323,3797,3010,2535,2578,2616,2375,2158,1950,1618,1221,662,584 -1981,1125,Black male,1862,1793,1764,2015,1960,1490,1143,708,631,613,612,600,507,511,362,264,135,100 -1981,1125,Black female,1851,1878,1713,2251,2482,1857,1283,917,849,812,894,740,697,762,573,401,206,194 -1981,1125,Other races male,20,22,25,26,50,45,41,27,22,7,6,13,6,7,2,3,0,0 -1981,1125,Other races female,36,23,23,24,48,53,41,24,18,14,13,8,5,7,4,3,0,0 -1981,1127,White male,2320,2486,2811,2740,2539,2467,2410,1959,1772,1607,1602,1557,1274,1187,921,603,326,191 -1981,1127,White female,2339,2304,2523,2663,2557,2432,2442,1990,1788,1545,1736,1793,1584,1573,1342,950,514,432 -1981,1127,Black male,232,232,228,278,202,169,121,83,73,77,66,75,75,83,69,53,39,29 -1981,1127,Black female,264,223,222,270,246,183,140,111,103,98,103,113,102,96,110,90,55,46 -1981,1127,Other races male,13,5,9,5,10,7,7,2,6,5,3,1,3,1,2,0,1,0 -1981,1127,Other races female,12,11,12,6,7,14,15,13,7,9,6,1,5,6,3,2,4,3 -1981,1129,White male,478,503,556,541,458,450,444,365,351,310,290,248,263,209,174,113,51,41 -1981,1129,White female,464,474,535,511,474,467,435,377,336,307,294,259,236,266,193,159,88,76 -1981,1129,Black male,265,252,283,280,218,168,153,108,71,86,80,84,62,72,64,49,21,18 -1981,1129,Black female,235,255,287,322,209,198,154,135,97,107,90,97,109,94,72,61,31,33 -1981,1129,Other races male,50,51,54,59,32,36,40,28,15,19,10,15,8,5,5,4,0,0 -1981,1129,Other races female,47,40,52,46,42,41,37,22,21,11,19,15,14,8,9,4,2,2 -1981,1131,White male,164,164,183,160,161,170,161,130,116,115,139,138,116,120,88,42,33,13 -1981,1131,White female,172,150,161,150,145,163,159,114,133,134,146,162,146,134,130,98,68,63 -1981,1131,Black male,537,556,656,658,343,302,253,176,124,128,143,161,151,205,159,113,54,44 -1981,1131,Black female,601,553,583,632,429,361,264,211,180,190,212,202,216,254,214,175,92,89 -1981,1131,Other races male,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 -1981,1131,Other races female,1,2,1,0,0,1,0,0,2,0,0,0,0,0,1,0,0,0 -1981,1133,White male,806,846,1012,1004,847,803,825,713,640,570,525,549,458,434,296,207,91,54 -1981,1133,White female,789,774,914,954,844,832,857,746,623,589,626,568,551,504,425,283,170,121 -1981,1133,Black male,5,3,2,6,2,1,1,1,1,1,1,1,1,1,2,0,0,0 -1981,1133,Black female,5,5,4,3,4,4,1,0,4,1,1,0,3,1,2,1,0,1 -1981,1133,Other races male,3,2,5,0,0,0,4,3,1,0,1,2,0,0,0,0,0,0 -1981,1133,Other races female,5,3,3,4,3,4,4,2,3,0,3,0,0,0,0,1,0,1 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1982.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1982.csv deleted file mode 100644 index 55f23367e3..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1982.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1982",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1982,1001,White male,1002,1026,1248,1189,985,912,922,977,843,794,643,546,450,355,249,136,63,37 -1982,1001,White female,861,918,1055,1151,1003,968,1001,1048,874,727,622,558,471,413,345,257,150,100 -1982,1001,Black male,342,384,383,429,288,243,177,125,131,106,111,108,119,118,85,69,32,15 -1982,1001,Black female,335,363,397,405,368,248,217,166,150,147,153,145,159,150,119,91,58,48 -1982,1001,Other races male,4,8,4,10,4,2,5,3,4,4,1,2,0,1,0,0,0,0 -1982,1001,Other races female,7,8,11,6,3,9,10,12,10,10,9,4,3,0,0,0,0,1 -1982,1003,White male,2529,2564,2867,2910,2504,2542,2530,2364,2040,1796,1730,1737,1792,1609,1283,763,381,206 -1982,1003,White female,2442,2367,2682,2712,2512,2658,2556,2482,2014,1808,1852,2017,1999,1846,1468,1046,614,461 -1982,1003,Black male,662,692,657,679,509,434,333,244,214,210,196,184,172,160,161,93,49,32 -1982,1003,Black female,643,639,665,726,599,502,398,286,282,242,260,222,212,220,192,138,72,66 -1982,1003,Other races male,26,30,28,37,20,19,21,22,13,15,9,12,9,6,4,3,1,1 -1982,1003,Other races female,26,26,31,23,27,35,28,31,17,19,19,15,7,9,4,6,2,1 -1982,1005,White male,487,498,590,547,464,482,509,430,390,361,378,376,376,305,218,151,64,34 -1982,1005,White female,399,448,518,509,469,467,505,470,394,368,393,476,413,389,346,257,151,112 -1982,1005,Black male,535,574,601,596,396,366,331,214,188,150,166,153,190,184,154,109,48,41 -1982,1005,Black female,536,531,559,630,500,469,392,278,226,228,244,244,290,263,233,171,100,79 -1982,1005,Other races male,1,2,2,2,4,2,1,2,3,3,2,2,1,0,1,0,0,0 -1982,1005,Other races female,2,1,4,3,1,4,6,2,3,2,1,2,2,0,0,0,0,1 -1982,1007,White male,426,506,554,535,500,490,433,462,323,322,308,296,251,217,198,131,74,37 -1982,1007,White female,443,443,520,495,477,450,441,431,350,332,305,325,292,311,258,209,126,87 -1982,1007,Black male,191,183,211,209,157,154,99,70,59,43,45,50,52,56,58,41,15,11 -1982,1007,Black female,194,178,208,226,186,145,104,85,68,61,66,89,68,80,72,54,23,29 -1982,1007,Other races male,0,0,2,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0 -1982,1007,Other races female,0,0,0,3,2,0,0,1,2,0,1,0,0,1,1,0,0,0 -1982,1009,White male,1283,1339,1580,1585,1427,1373,1318,1258,1081,948,934,822,789,697,559,353,171,94 -1982,1009,White female,1233,1307,1445,1454,1346,1366,1351,1305,1065,961,967,925,885,762,726,493,280,207 -1982,1009,Black male,28,26,30,34,23,21,16,11,11,9,11,9,8,13,7,6,3,1 -1982,1009,Black female,26,26,27,34,27,26,20,12,16,13,13,13,11,14,7,9,5,5 -1982,1009,Other races male,1,2,5,3,5,4,3,4,5,3,2,1,1,2,2,0,0,0 -1982,1009,Other races female,5,5,5,6,4,2,5,6,3,3,2,1,2,1,2,1,0,0 -1982,1011,White male,107,105,103,115,129,141,136,123,88,82,84,116,108,87,71,36,21,11 -1982,1011,White female,110,90,96,96,115,103,109,93,83,106,93,124,101,128,88,69,43,34 -1982,1011,Black male,330,363,369,378,257,241,205,157,125,109,92,94,122,145,128,83,47,38 -1982,1011,Black female,362,370,384,410,310,296,239,193,144,143,137,161,184,210,182,137,64,80 -1982,1011,Other races male,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0 -1982,1011,Other races female,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0 -1982,1013,White male,454,463,496,502,464,476,460,396,329,347,368,361,399,316,269,170,90,77 -1982,1013,White female,430,449,479,490,460,463,447,405,366,369,379,451,474,467,394,313,214,166 -1982,1013,Black male,469,484,463,431,295,262,245,185,150,129,130,132,145,134,126,118,50,35 -1982,1013,Black female,514,445,492,480,413,376,256,214,179,160,182,180,186,202,183,142,69,68 -1982,1013,Other races male,1,1,0,0,0,0,2,1,1,0,0,0,0,0,0,0,0,0 -1982,1013,Other races female,2,2,2,0,1,1,2,1,0,0,1,0,1,0,1,1,0,1 -1982,1015,White male,3380,3368,4006,5330,5687,4206,3836,3257,2656,2421,2406,2230,2025,1627,1220,739,368,220 -1982,1015,White female,3237,3262,3678,4459,5114,4184,3786,3306,2666,2534,2640,2673,2444,2134,1805,1282,744,544 -1982,1015,Black male,1043,937,1006,1411,1389,890,665,461,380,350,342,354,318,275,214,123,61,44 -1982,1015,Black female,1056,938,1043,1307,1481,1002,746,536,448,474,470,450,419,380,311,204,130,95 -1982,1015,Other races male,38,31,38,51,58,35,39,29,15,12,8,9,8,3,2,1,0,0 -1982,1015,Other races female,38,35,29,39,70,57,74,41,45,30,18,12,7,3,4,5,2,1 -1982,1017,White male,764,808,953,922,881,885,890,792,656,654,672,693,734,631,522,319,165,89 -1982,1017,White female,721,845,858,896,889,887,884,763,641,694,734,867,883,863,784,543,335,237 -1982,1017,Black male,712,694,838,770,582,537,398,307,258,216,212,192,197,193,165,121,53,39 -1982,1017,Black female,659,705,736,769,693,587,528,396,294,308,281,301,322,289,243,166,97,84 -1982,1017,Other races male,0,1,1,3,1,2,1,0,1,3,1,0,1,0,0,0,0,0 -1982,1017,Other races female,0,0,2,2,2,5,3,2,3,2,2,2,0,1,0,0,0,0 -1982,1019,White male,623,651,768,747,768,663,658,564,549,483,454,475,451,394,302,184,86,58 -1982,1019,White female,588,601,652,670,708,643,651,615,541,505,500,531,512,453,377,266,156,116 -1982,1019,Black male,77,68,71,81,70,63,50,39,34,27,34,22,23,22,20,14,5,2 -1982,1019,Black female,64,87,84,82,77,65,53,39,39,35,37,22,39,27,26,22,7,5 -1982,1019,Other races male,1,0,4,2,2,1,1,1,0,0,0,1,0,0,0,1,0,0 -1982,1019,Other races female,0,1,3,0,2,2,2,2,2,2,1,0,2,0,0,0,0,1 -1982,1021,White male,1001,1006,1070,1119,1099,1049,971,883,768,691,668,638,587,557,440,271,142,70 -1982,1021,White female,975,918,1083,1035,1082,1029,982,884,748,724,684,739,724,679,591,451,225,193 -1982,1021,Black male,176,174,178,203,143,119,110,70,67,68,64,69,61,58,46,33,16,12 -1982,1021,Black female,179,196,200,208,154,134,111,91,83,83,77,74,57,76,51,53,24,22 -1982,1021,Other races male,2,1,2,1,1,1,1,1,1,1,2,0,0,0,0,1,1,0 -1982,1021,Other races female,2,3,2,0,1,4,2,3,2,3,1,2,0,2,0,3,0,0 -1982,1023,White male,364,341,390,384,337,327,298,345,259,244,256,239,201,177,163,101,45,30 -1982,1023,White female,321,331,383,380,333,307,334,310,270,263,264,274,241,210,205,157,79,68 -1982,1023,Black male,346,355,407,415,244,239,204,165,126,123,107,127,106,116,114,76,48,30 -1982,1023,Black female,362,396,378,379,330,277,243,188,150,152,136,161,141,144,127,104,68,37 -1982,1023,Other races male,1,3,0,2,1,2,0,0,0,1,0,0,0,0,0,0,0,0 -1982,1023,Other races female,1,0,0,0,0,1,2,0,2,1,1,0,0,1,0,0,0,0 -1982,1025,White male,592,577,668,644,592,609,584,532,470,413,399,356,363,319,283,172,102,70 -1982,1025,White female,567,556,632,619,593,646,568,566,462,424,406,423,440,396,353,257,182,148 -1982,1025,Black male,635,640,684,686,496,418,301,254,203,222,210,175,182,183,162,113,59,44 -1982,1025,Black female,583,631,670,723,555,431,375,290,255,237,245,231,232,229,220,153,80,91 -1982,1025,Other races male,3,4,2,3,2,1,3,1,2,2,1,0,0,0,0,0,0,0 -1982,1025,Other races female,3,4,5,3,0,4,7,1,3,2,2,2,1,0,2,1,0,1 -1982,1027,White male,382,407,467,491,429,383,394,347,305,292,289,282,289,273,236,151,98,60 -1982,1027,White female,367,369,432,470,421,390,391,329,338,307,316,301,353,336,316,227,150,107 -1982,1027,Black male,139,136,136,118,85,69,73,59,51,38,36,28,23,22,20,12,10,4 -1982,1027,Black female,105,131,143,141,114,85,81,66,53,49,45,38,31,39,29,26,15,11 -1982,1027,Other races male,2,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0 -1982,1027,Other races female,0,0,0,0,0,1,0,1,1,0,1,1,0,0,0,0,0,0 -1982,1029,White male,451,472,546,531,509,462,437,432,334,315,308,281,284,236,169,138,68,45 -1982,1029,White female,412,434,481,498,488,455,459,402,349,322,340,304,332,279,260,192,103,87 -1982,1029,Black male,34,31,31,32,25,18,19,14,15,16,9,12,9,11,8,5,4,0 -1982,1029,Black female,31,31,29,44,34,24,22,16,16,15,12,13,13,17,12,7,4,6 -1982,1029,Other races male,1,0,1,0,0,3,1,1,0,0,0,0,0,0,1,1,0,0 -1982,1029,Other races female,1,0,2,0,1,0,2,1,2,1,1,1,0,0,0,0,0,0 -1982,1031,White male,1160,1207,1330,1425,1305,1319,1369,1128,943,910,856,823,749,612,455,287,154,81 -1982,1031,White female,1055,1089,1239,1317,1277,1308,1312,1163,1024,893,871,916,820,758,611,499,265,239 -1982,1031,Black male,327,324,414,363,276,249,197,169,135,121,124,114,91,92,72,54,40,32 -1982,1031,Black female,313,307,329,381,330,257,272,188,169,157,159,145,121,154,102,99,53,38 -1982,1031,Other races male,10,11,10,16,12,11,11,8,4,6,2,4,3,2,0,0,0,0 -1982,1031,Other races female,11,15,6,8,20,30,28,18,14,18,8,5,4,2,2,0,1,0 -1982,1033,White male,1500,1537,1864,1915,1891,1761,1639,1454,1296,1195,1226,1220,1105,845,617,411,206,117 -1982,1033,White female,1444,1401,1668,1877,1893,1816,1669,1582,1352,1244,1315,1347,1255,1064,899,620,363,296 -1982,1033,Black male,408,395,443,461,334,328,296,214,169,177,156,167,165,129,111,88,49,29 -1982,1033,Black female,427,427,464,469,404,414,340,261,220,212,215,234,190,188,180,120,64,67 -1982,1033,Other races male,7,5,7,13,3,6,8,10,5,5,2,3,1,1,1,1,1,0 -1982,1033,Other races female,7,7,5,3,1,13,11,6,6,3,4,0,2,2,4,1,0,0 -1982,1035,White male,310,297,359,353,344,332,295,277,233,223,254,241,249,222,194,121,72,41 -1982,1035,White female,292,289,315,340,296,327,306,253,220,234,266,265,298,287,263,199,117,101 -1982,1035,Black male,319,326,326,362,255,227,164,130,96,89,102,100,82,107,101,76,47,32 -1982,1035,Black female,332,297,366,355,327,239,206,152,121,123,131,132,147,144,151,108,68,60 -1982,1035,Other races male,1,1,2,1,1,1,1,2,1,0,1,0,5,1,2,0,0,0 -1982,1035,Other races female,0,3,1,1,1,2,0,1,1,3,2,3,0,2,1,0,0,0 -1982,1037,White male,247,223,278,277,301,279,238,234,173,188,221,223,224,182,155,102,43,27 -1982,1037,White female,243,243,263,258,280,254,247,213,192,204,246,231,256,208,183,138,83,55 -1982,1037,Black male,165,211,239,216,181,152,118,86,93,80,79,75,46,61,50,36,26,13 -1982,1037,Black female,150,209,211,210,169,162,113,98,93,100,90,68,87,66,66,52,18,16 -1982,1037,Other races male,1,2,0,1,0,0,0,2,0,1,0,0,0,1,0,0,0,0 -1982,1037,Other races female,0,0,0,0,0,0,2,0,1,2,0,1,1,0,0,0,0,0 -1982,1039,White male,1039,1025,1154,1351,1157,1099,1040,964,808,822,822,913,852,758,619,391,209,159 -1982,1039,White female,1008,953,1168,1150,1132,1071,1077,975,912,851,941,1018,1094,1033,950,682,406,285 -1982,1039,Black male,208,247,276,278,177,124,125,92,102,70,85,73,73,85,54,46,18,16 -1982,1039,Black female,229,245,276,272,220,188,162,127,116,124,107,115,118,102,105,78,35,32 -1982,1039,Other races male,0,3,3,5,3,5,6,3,3,1,2,1,0,0,2,0,0,0 -1982,1039,Other races female,6,2,5,5,3,3,6,7,4,2,3,1,0,1,2,1,1,0 -1982,1041,White male,381,378,388,411,387,318,355,314,247,269,243,261,277,270,227,127,67,49 -1982,1041,White female,314,327,375,363,331,374,355,293,266,255,284,351,344,343,292,228,137,108 -1982,1041,Black male,179,155,185,206,134,114,89,72,58,62,65,70,69,63,53,36,19,26 -1982,1041,Black female,169,181,186,198,184,127,117,83,94,70,89,79,78,99,82,90,28,41 -1982,1041,Other races male,1,4,2,1,2,0,0,1,1,1,1,0,0,0,1,0,0,0 -1982,1041,Other races female,0,2,2,2,1,3,3,0,2,0,1,1,1,0,2,1,0,1 -1982,1043,White male,2185,2233,2648,2658,2538,2281,2244,1991,1685,1607,1571,1523,1480,1248,966,643,315,205 -1982,1043,White female,2152,2203,2446,2528,2424,2337,2268,2064,1803,1635,1695,1758,1635,1521,1265,945,542,433 -1982,1043,Black male,25,28,33,34,24,18,14,14,15,10,13,4,10,7,4,8,4,1 -1982,1043,Black female,23,21,20,36,26,17,22,13,14,14,14,7,6,11,11,7,1,6 -1982,1043,Other races male,6,8,7,7,4,6,5,6,5,3,5,3,2,5,2,2,0,0 -1982,1043,Other races female,3,7,7,10,4,14,9,9,6,6,10,5,3,1,1,1,1,1 -1982,1045,White male,1728,1586,1548,1927,2795,2286,1873,1318,1023,925,832,785,660,514,381,228,132,75 -1982,1045,White female,1619,1449,1459,1525,1954,1814,1578,1227,1035,879,840,822,688,604,528,425,261,216 -1982,1045,Black male,439,414,361,455,736,471,289,185,125,107,111,100,74,84,67,45,32,16 -1982,1045,Black female,480,400,382,394,499,399,279,204,156,128,133,129,109,116,101,65,32,30 -1982,1045,Other races male,30,35,24,36,56,35,32,15,10,10,6,4,4,2,1,1,0,2 -1982,1045,Other races female,39,29,30,20,79,91,55,41,34,35,26,12,11,4,3,3,0,0 -1982,1047,White male,824,806,931,988,891,906,885,780,656,611,641,619,597,446,364,224,112,56 -1982,1047,White female,811,837,905,923,982,952,915,803,684,653,695,764,656,649,551,432,262,234 -1982,1047,Black male,1513,1554,1688,1797,1220,918,761,550,520,450,441,405,419,438,378,272,137,111 -1982,1047,Black female,1482,1489,1632,1814,1424,1208,1020,750,697,659,658,627,571,712,530,435,244,250 -1982,1047,Other races male,4,5,5,7,4,2,10,7,5,1,5,2,0,2,1,0,0,0 -1982,1047,Other races female,6,6,4,5,3,8,10,6,3,4,3,3,1,3,0,4,1,1 -1982,1049,White male,1943,2043,2240,2157,2114,1986,1894,1705,1388,1373,1271,1234,1215,1039,838,563,298,172 -1982,1049,White female,1819,1859,2138,2088,2118,1995,1972,1716,1511,1368,1381,1457,1377,1387,1176,914,487,379 -1982,1049,Black male,35,53,51,47,40,32,39,25,20,18,16,16,5,11,16,8,2,3 -1982,1049,Black female,51,38,55,48,47,42,35,32,24,20,16,26,14,21,24,10,8,4 -1982,1049,Other races male,9,11,16,13,9,7,7,8,7,7,5,4,2,4,1,0,0,0 -1982,1049,Other races female,6,13,20,9,6,9,14,12,8,7,4,3,3,5,1,2,0,1 -1982,1051,White male,1219,1262,1392,1411,1384,1417,1378,1240,1091,954,921,886,787,656,460,299,154,97 -1982,1051,White female,1140,1186,1347,1272,1323,1348,1382,1191,1071,884,943,926,863,739,663,490,295,264 -1982,1051,Black male,460,466,512,593,635,514,372,253,180,146,133,141,130,122,119,85,39,29 -1982,1051,Black female,414,463,561,547,474,432,337,233,196,189,171,192,172,184,145,107,63,64 -1982,1051,Other races male,6,6,4,5,9,7,7,3,4,4,2,2,0,1,1,0,0,1 -1982,1051,Other races female,3,5,3,3,8,9,7,11,7,4,5,2,1,1,0,2,0,0 -1982,1053,White male,912,926,1038,1083,1039,989,1000,891,799,659,670,639,581,472,392,232,129,85 -1982,1053,White female,841,887,915,1068,950,920,912,890,757,694,702,703,677,637,566,416,245,185 -1982,1053,Black male,501,549,540,596,558,592,473,281,210,205,170,176,143,181,125,108,43,35 -1982,1053,Black female,524,506,538,568,437,426,338,252,223,234,227,213,227,235,186,160,90,94 -1982,1053,Other races male,64,54,64,61,50,38,42,26,26,13,19,10,13,14,11,4,3,1 -1982,1053,Other races female,49,46,50,56,42,34,40,31,21,18,22,16,21,15,11,7,5,3 -1982,1055,White male,3034,3164,3560,3564,3469,3365,3227,2888,2343,2152,2294,2327,2165,1861,1396,881,408,221 -1982,1055,White female,2863,2957,3371,3400,3556,3397,3267,2886,2556,2365,2544,2727,2693,2430,2040,1476,877,628 -1982,1055,Black male,631,641,695,741,580,497,415,271,226,211,263,276,266,231,170,124,53,36 -1982,1055,Black female,668,605,710,693,707,599,501,333,334,332,365,373,341,329,258,160,93,65 -1982,1055,Other races male,7,16,10,21,40,23,10,12,8,10,5,5,4,5,2,3,0,0 -1982,1055,Other races female,11,12,17,24,29,21,17,15,12,7,8,7,4,4,1,4,3,2 -1982,1057,White male,601,584,685,696,632,622,593,536,475,421,398,407,399,367,304,202,98,55 -1982,1057,White female,595,610,643,676,636,604,582,559,480,407,456,466,466,450,425,288,181,145 -1982,1057,Black male,116,106,118,129,96,87,62,50,43,47,48,51,40,43,44,29,14,7 -1982,1057,Black female,97,101,141,115,117,90,80,55,52,57,63,54,58,60,56,41,23,20 -1982,1057,Other races male,1,1,2,1,1,0,0,0,0,1,0,2,0,0,0,0,0,0 -1982,1057,Other races female,1,0,2,0,2,0,3,1,3,2,1,0,1,1,0,1,0,0 -1982,1059,White male,976,996,1089,1093,1113,974,929,876,744,699,705,657,607,563,430,286,155,101 -1982,1059,White female,902,874,1059,1055,1039,1044,982,889,793,740,724,743,782,666,654,469,294,208 -1982,1059,Black male,64,58,66,69,57,44,41,29,27,27,27,24,22,19,24,8,5,3 -1982,1059,Black female,48,56,54,64,64,63,37,35,29,33,33,35,25,34,22,18,13,8 -1982,1059,Other races male,5,2,3,3,0,2,5,2,2,3,0,2,2,0,1,0,0,0 -1982,1059,Other races female,2,3,1,3,1,6,2,1,3,1,1,3,0,0,1,0,1,0 -1982,1061,White male,702,724,895,869,781,734,723,655,540,549,517,534,534,481,394,242,139,63 -1982,1061,White female,678,703,783,783,758,732,694,689,603,522,574,576,604,607,523,398,223,162 -1982,1061,Black male,146,172,172,170,106,96,83,52,45,49,45,55,49,38,44,25,12,11 -1982,1061,Black female,161,157,164,161,141,112,100,63,81,58,68,65,67,58,56,40,28,18 -1982,1061,Other races male,3,3,4,6,6,1,3,2,4,1,4,4,1,3,2,1,2,0 -1982,1061,Other races female,6,5,4,5,3,3,2,3,5,6,4,5,5,3,3,1,1,1 -1982,1063,White male,62,63,74,82,85,95,69,65,70,74,72,68,67,65,57,36,14,5 -1982,1063,White female,63,51,70,77,79,77,71,66,74,71,75,65,91,83,72,64,45,43 -1982,1063,Black male,435,443,481,483,295,280,188,148,128,132,141,122,131,153,152,125,56,38 -1982,1063,Black female,415,428,493,490,386,334,281,199,183,173,180,180,183,216,247,150,87,79 -1982,1063,Other races male,2,1,1,0,0,0,0,2,0,0,0,1,0,0,0,1,0,0 -1982,1063,Other races female,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 -1982,1065,White male,196,182,203,230,205,199,214,194,153,155,143,177,161,131,106,71,44,37 -1982,1065,White female,193,171,190,218,187,210,206,177,152,152,172,187,188,176,174,119,90,78 -1982,1065,Black male,516,470,551,582,348,284,229,165,140,137,146,138,148,188,142,136,71,45 -1982,1065,Black female,494,442,500,559,464,367,270,205,195,180,215,201,217,226,212,166,103,95 -1982,1065,Other races male,0,2,2,1,2,0,0,1,0,0,1,1,0,1,0,0,0,0 -1982,1065,Other races female,2,0,0,2,2,3,2,1,0,0,1,2,1,0,1,1,0,0 -1982,1067,White male,318,309,385,327,313,345,350,316,245,223,256,280,252,253,179,129,58,33 -1982,1067,White female,327,318,330,323,330,356,339,325,246,252,265,307,301,313,264,187,110,74 -1982,1067,Black male,263,297,291,288,210,207,194,121,122,88,97,91,82,88,77,51,24,16 -1982,1067,Black female,274,285,302,312,252,257,159,160,130,128,134,122,129,122,111,87,48,34 -1982,1067,Other races male,2,1,4,2,0,1,2,2,2,1,0,0,0,0,0,0,0,0 -1982,1067,Other races female,1,2,2,0,1,1,3,1,1,0,0,0,0,1,0,1,0,0 -1982,1069,White male,2206,2229,2402,2370,2326,2450,2425,2161,1697,1573,1560,1390,1250,1014,757,435,220,137 -1982,1069,White female,2146,2019,2272,2330,2495,2597,2448,2183,1827,1621,1610,1544,1444,1320,1053,837,490,375 -1982,1069,Black male,908,916,937,885,672,620,521,397,320,300,303,261,269,233,197,107,56,46 -1982,1069,Black female,896,867,921,924,859,789,631,483,421,405,390,354,360,345,292,221,100,85 -1982,1069,Other races male,33,37,34,24,21,33,27,25,18,9,9,7,4,3,1,2,0,0 -1982,1069,Other races female,22,30,26,23,24,36,27,20,20,18,10,11,5,7,2,6,0,0 -1982,1071,White male,1866,1885,2149,2056,2059,2037,1935,1730,1442,1251,1203,1062,978,831,591,427,185,96 -1982,1071,White female,1871,1862,1995,2043,2055,2071,1957,1734,1433,1312,1227,1195,1165,1015,824,625,321,248 -1982,1071,Black male,97,110,94,110,91,96,65,53,34,33,46,42,29,57,23,20,9,5 -1982,1071,Black female,83,95,101,104,96,91,83,61,57,42,57,54,47,45,54,20,11,16 -1982,1071,Other races male,12,27,37,25,10,14,10,18,16,12,6,6,3,2,1,1,1,0 -1982,1071,Other races female,13,23,41,23,12,14,22,20,17,8,7,8,4,5,2,2,1,0 -1982,1073,White male,14192,13332,15206,15948,19552,20380,17562,14667,11728,10847,11601,11402,10037,7790,6017,3909,2022,1162 -1982,1073,White female,13617,12839,14378,15746,20708,20642,17699,15392,12746,12014,12934,13259,12067,10750,9446,7273,4564,3670 -1982,1073,Black male,10150,9514,10126,10610,9829,9179,7360,5010,4149,3778,3973,3907,3682,3576,2923,2130,979,666 -1982,1073,Black female,10160,9193,10009,10867,12009,11153,8865,6317,5483,5164,5636,5389,5013,5070,4292,3230,1768,1449 -1982,1073,Other races male,111,95,104,89,137,167,155,142,81,73,42,29,30,16,13,13,4,5 -1982,1073,Other races female,122,98,93,99,136,169,187,121,90,76,52,42,29,33,26,15,14,5 -1982,1075,White male,520,542,601,590,552,518,489,467,418,395,338,338,347,310,292,174,100,61 -1982,1075,White female,518,514,559,556,544,496,509,458,424,377,406,404,402,372,374,291,137,106 -1982,1075,Black male,90,103,107,113,74,73,59,38,36,41,35,39,30,30,22,20,15,7 -1982,1075,Black female,88,105,105,93,95,82,66,35,52,35,54,45,37,46,38,30,15,12 -1982,1075,Other races male,0,1,0,0,1,1,1,0,1,0,0,0,0,0,1,0,0,1 -1982,1075,Other races female,1,1,1,1,1,2,0,2,1,0,1,0,0,0,2,0,0,1 -1982,1077,White male,2456,2416,2979,3263,3512,2862,2676,2500,1984,1910,1801,1753,1632,1269,1003,608,312,191 -1982,1077,White female,2321,2422,2793,3372,3571,2896,2776,2486,2145,1988,1982,2011,1882,1578,1470,996,619,508 -1982,1077,Black male,364,350,411,432,374,287,205,184,125,127,118,128,128,111,100,63,47,35 -1982,1077,Black female,341,341,401,471,453,333,273,227,188,172,180,168,182,170,141,101,67,53 -1982,1077,Other races male,11,8,8,14,10,12,11,12,9,7,8,4,2,1,2,0,0,0 -1982,1077,Other races female,12,13,14,10,13,13,17,12,13,11,10,4,5,4,3,1,1,1 -1982,1079,White male,958,977,1120,1150,1008,998,921,884,743,634,640,572,550,444,368,214,98,62 -1982,1079,White female,903,915,1111,1094,1040,1000,910,886,697,652,626,619,594,573,462,308,178,149 -1982,1079,Black male,243,282,314,300,197,200,145,116,83,60,73,73,62,74,74,48,21,20 -1982,1079,Black female,267,262,281,266,240,214,177,136,97,94,100,91,86,104,79,55,41,40 -1982,1079,Other races male,16,39,52,37,11,10,20,22,19,9,6,4,2,1,1,0,0,0 -1982,1079,Other races female,17,37,51,28,10,18,33,26,17,13,7,5,3,1,2,1,0,1 -1982,1081,White male,1624,1613,1862,3800,7608,2712,2015,1744,1351,1260,1065,1046,878,669,473,286,141,83 -1982,1081,White female,1598,1511,1799,3798,6017,2347,1941,1719,1322,1215,1112,1113,987,824,675,499,291,232 -1982,1081,Black male,917,821,973,1041,965,771,634,437,406,347,300,294,255,271,171,130,66,43 -1982,1081,Black female,870,860,934,1014,1029,908,682,545,464,456,434,389,386,369,331,216,118,114 -1982,1081,Other races male,36,22,22,30,76,92,56,44,20,14,9,7,3,2,4,1,0,0 -1982,1081,Other races female,35,21,18,33,51,62,49,29,21,12,14,7,5,6,4,2,0,0 -1982,1083,White male,1518,1477,1714,1743,1751,1684,1524,1387,1192,1085,974,955,781,659,504,302,161,89 -1982,1083,White female,1408,1381,1687,1652,1742,1632,1572,1369,1223,1087,1027,1012,911,858,705,536,304,232 -1982,1083,Black male,301,285,344,351,303,301,230,168,132,117,113,109,105,85,79,65,31,20 -1982,1083,Black female,285,264,317,373,318,271,231,157,148,143,154,135,133,106,120,78,42,48 -1982,1083,Other races male,5,4,9,6,6,5,7,4,8,8,2,2,1,1,0,0,0,0 -1982,1083,Other races female,4,7,3,7,5,5,4,8,5,3,3,3,1,1,3,2,0,0 -1982,1085,White male,114,102,105,116,118,120,123,100,89,95,99,91,85,70,50,37,16,12 -1982,1085,White female,103,100,116,111,112,127,103,108,90,99,98,107,98,88,83,65,42,32 -1982,1085,Black male,548,545,565,664,368,306,216,173,149,114,127,117,132,136,126,85,50,35 -1982,1085,Black female,524,533,557,620,474,369,291,217,212,181,183,193,174,193,152,119,67,64 -1982,1085,Other races male,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0 -1982,1085,Other races female,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0 -1982,1087,White male,102,126,127,137,158,143,142,150,104,98,123,151,159,124,105,61,50,35 -1982,1087,White female,99,106,115,118,129,136,136,122,86,86,107,110,131,115,120,79,48,40 -1982,1087,Black male,837,880,954,1399,1418,772,587,427,335,316,328,477,420,400,321,227,131,116 -1982,1087,Black female,862,887,971,1473,1577,904,697,532,484,415,489,505,467,507,472,356,172,192 -1982,1087,Other races male,6,3,4,3,9,9,9,4,3,4,2,0,2,1,2,0,0,1 -1982,1087,Other races female,8,2,3,3,6,9,6,2,1,4,1,2,2,2,2,2,0,0 -1982,1089,White male,5366,5314,6445,7199,7398,7411,6541,5644,5173,5148,4541,4212,3091,2233,1491,874,420,227 -1982,1089,White female,5133,5105,6151,6697,7247,7065,6443,6095,5468,5033,4655,4356,3387,2715,2084,1480,898,700 -1982,1089,Black male,1835,1827,1971,2387,2802,2000,1538,1025,803,737,518,486,407,330,273,170,96,88 -1982,1089,Black female,1857,1754,1961,2635,2990,2019,1740,1200,983,764,681,636,516,489,362,277,144,139 -1982,1089,Other races male,115,125,146,122,135,165,152,106,86,71,45,30,16,11,8,1,3,1 -1982,1089,Other races female,136,121,145,106,119,169,188,158,119,90,73,39,26,15,13,6,3,2 -1982,1091,White male,401,412,462,482,444,441,415,399,341,338,342,297,276,232,171,113,63,39 -1982,1091,White female,375,377,460,458,430,422,419,396,365,352,339,321,332,280,262,187,101,98 -1982,1091,Black male,679,637,758,731,459,405,328,231,204,187,211,206,203,220,232,180,83,64 -1982,1091,Black female,629,641,709,684,585,478,404,308,251,253,294,305,307,328,292,247,133,131 -1982,1091,Other races male,2,0,1,1,1,0,0,1,0,2,0,0,2,1,0,0,0,0 -1982,1091,Other races female,1,2,1,0,1,0,3,3,1,0,2,2,0,0,0,0,1,0 -1982,1093,White male,1055,1112,1277,1255,1171,1143,1069,967,834,742,758,707,669,604,502,334,169,113 -1982,1093,White female,1006,1073,1208,1207,1181,1063,1079,978,878,759,824,760,798,793,662,500,285,204 -1982,1093,Black male,28,35,40,47,37,35,32,30,17,15,11,11,14,15,11,9,5,3 -1982,1093,Black female,31,35,36,35,36,29,24,18,28,16,18,9,16,15,11,11,5,5 -1982,1093,Other races male,4,7,2,5,3,0,2,3,2,2,3,1,1,0,0,0,0,0 -1982,1093,Other races female,1,4,5,2,3,5,3,3,3,2,0,3,0,0,5,1,0,0 -1982,1095,White male,2239,2429,2785,2863,2680,2549,2332,2152,1831,1684,1706,1578,1540,1224,955,622,330,200 -1982,1095,White female,2205,2312,2556,2718,2668,2581,2467,2284,1940,1847,1834,1831,1793,1538,1397,997,575,422 -1982,1095,Black male,48,50,55,61,55,38,31,30,23,14,19,19,16,18,13,5,5,4 -1982,1095,Black female,31,44,57,48,41,51,33,30,19,27,25,26,24,18,18,11,11,10 -1982,1095,Other races male,6,7,4,4,5,5,6,12,6,7,3,2,2,1,1,1,0,1 -1982,1095,Other races female,6,6,9,10,9,8,12,7,6,8,6,5,3,4,3,2,0,0 -1982,1097,White male,9844,9262,9983,10497,11904,11601,10415,8752,7076,6114,6171,6019,5255,4204,3153,1873,919,508 -1982,1097,White female,9299,8659,9677,10397,12445,11355,10315,8841,7130,6314,6652,6841,6165,5516,4479,3273,1933,1488 -1982,1097,Black male,6294,5597,6104,6221,5224,4615,3483,2475,2218,1987,2018,2107,1746,1579,1180,816,359,204 -1982,1097,Black female,6116,5481,5940,6477,6326,5397,4432,3247,2947,2676,2699,2642,2301,2230,1712,1197,663,547 -1982,1097,Other races male,153,164,179,160,170,154,148,108,87,67,51,38,33,19,18,12,6,3 -1982,1097,Other races female,142,161,159,143,163,167,172,132,85,73,55,48,35,33,26,18,6,4 -1982,1099,White male,470,479,518,528,468,483,479,439,371,336,340,309,300,267,194,157,77,55 -1982,1099,White female,473,461,498,522,443,499,463,487,352,338,327,341,360,338,297,215,140,132 -1982,1099,Black male,509,544,592,557,367,329,254,183,165,139,162,128,146,146,112,89,44,36 -1982,1099,Black female,510,511,546,554,412,371,278,230,183,176,207,174,195,194,164,138,70,80 -1982,1099,Other races male,6,10,10,9,13,5,6,6,6,2,5,3,5,2,1,1,0,0 -1982,1099,Other races female,6,8,9,7,6,9,7,4,5,6,5,2,4,4,2,2,2,0 -1982,1101,White male,3990,4033,4290,4568,5311,5309,4901,4544,3500,3130,3040,2897,2602,1896,1384,855,409,256 -1982,1101,White female,3855,3811,4049,4470,5465,5412,5040,4542,3553,3255,3297,3518,3055,2764,2226,1740,1123,1003 -1982,1101,Black male,4029,3917,3889,4352,3983,3152,2599,1750,1481,1294,1197,1209,1043,971,764,512,244,179 -1982,1101,Black female,3958,3875,3890,4570,4933,3969,2999,2218,1926,1723,1647,1607,1405,1471,1210,881,478,471 -1982,1101,Other races male,40,65,57,46,50,40,57,41,39,30,13,10,9,8,4,3,2,2 -1982,1101,Other races female,47,67,66,38,63,72,102,67,52,32,30,19,13,8,8,6,2,2 -1982,1103,White male,2944,2960,3561,3538,3323,3428,3219,2973,2426,2186,2117,1928,1740,1286,1032,596,312,165 -1982,1103,White female,2866,2761,3334,3334,3320,3444,3327,3042,2514,2230,2227,2121,1949,1670,1420,971,592,461 -1982,1103,Black male,497,458,485,414,363,346,275,189,170,135,131,133,134,131,101,68,35,22 -1982,1103,Black female,477,432,495,492,440,411,331,242,208,178,190,167,184,176,138,125,53,50 -1982,1103,Other races male,9,13,14,9,9,14,16,15,11,10,7,4,2,3,3,1,0,1 -1982,1103,Other races female,13,11,17,13,15,14,15,19,13,9,7,8,5,7,4,1,0,1 -1982,1105,White male,167,173,186,358,236,191,181,154,142,166,132,139,141,125,123,76,44,23 -1982,1105,White female,179,142,176,325,288,176,157,166,138,152,165,161,177,170,172,132,70,57 -1982,1105,Black male,484,494,504,527,309,249,211,142,152,122,140,125,130,149,157,120,61,44 -1982,1105,Black female,469,488,490,527,368,338,242,197,201,164,216,186,201,219,205,147,86,98 -1982,1105,Other races male,0,3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1982,1105,Other races female,2,1,0,2,2,2,1,0,1,2,1,1,0,0,0,0,0,0 -1982,1107,White male,426,402,482,507,488,446,453,397,354,344,350,346,355,277,244,152,75,60 -1982,1107,White female,387,389,457,474,437,408,439,388,394,340,394,356,379,352,329,238,158,134 -1982,1107,Black male,470,446,513,467,361,292,211,144,149,145,129,151,134,162,129,100,66,40 -1982,1107,Black female,506,470,529,535,401,339,280,209,197,178,201,205,197,204,169,148,87,83 -1982,1107,Other races male,2,1,1,4,0,1,2,1,2,0,0,2,0,1,0,0,0,0 -1982,1107,Other races female,1,1,2,0,0,3,4,3,1,1,2,0,1,2,1,1,0,0 -1982,1109,White male,521,545,602,926,1340,645,567,527,430,380,410,421,387,343,308,200,96,62 -1982,1109,White female,482,494,595,995,1226,607,567,545,450,428,408,502,478,471,418,331,209,195 -1982,1109,Black male,429,465,475,595,457,295,225,172,146,140,131,146,133,209,131,90,47,38 -1982,1109,Black female,449,459,511,626,613,377,324,221,214,195,189,211,219,256,213,160,94,70 -1982,1109,Other races male,3,4,7,11,10,4,2,2,2,3,1,2,1,1,0,0,0,1 -1982,1109,Other races female,3,5,8,8,13,8,4,3,4,3,2,3,3,1,1,0,0,0 -1982,1111,White male,526,552,608,576,602,535,512,451,387,386,421,385,400,370,290,181,98,72 -1982,1111,White female,466,479,594,597,559,552,503,453,408,415,433,476,504,467,401,347,205,142 -1982,1111,Black male,255,267,259,276,204,161,138,107,95,69,89,75,84,85,62,45,20,15 -1982,1111,Black female,244,238,260,254,216,216,161,125,114,97,95,99,106,107,87,65,43,30 -1982,1111,Other races male,0,3,2,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0 -1982,1111,Other races female,0,1,0,2,1,1,2,2,1,2,1,0,1,0,0,0,0,0 -1982,1113,White male,1028,986,1083,1128,1273,1204,1099,907,768,754,788,748,687,524,353,204,90,57 -1982,1113,White female,995,936,973,1096,1283,1261,1064,953,822,795,840,863,787,658,561,391,188,138 -1982,1113,Black male,824,864,953,1029,760,643,522,393,370,362,370,338,282,302,235,131,62,51 -1982,1113,Black female,768,820,921,998,886,722,645,498,467,458,489,432,439,418,341,219,118,109 -1982,1113,Other races male,6,3,4,3,2,5,4,10,4,6,4,2,2,1,1,0,0,0 -1982,1113,Other races female,7,5,2,3,7,8,9,10,8,5,5,3,4,2,2,1,0,2 -1982,1115,White male,1565,1511,1667,1559,1482,1579,1542,1393,1115,1011,949,889,817,628,520,283,167,94 -1982,1115,White female,1430,1355,1533,1522,1557,1561,1502,1361,1092,995,993,959,928,761,655,455,250,210 -1982,1115,Black male,187,192,215,220,161,173,164,98,108,80,73,61,67,66,43,35,17,16 -1982,1115,Black female,185,204,216,227,194,175,137,104,84,102,87,93,98,79,50,47,32,16 -1982,1115,Other races male,2,7,7,3,6,5,10,6,3,4,2,2,1,1,1,1,0,0 -1982,1115,Other races female,4,6,8,2,4,6,9,5,5,6,2,1,1,0,3,1,1,0 -1982,1117,White male,2764,2531,2608,2563,2629,2974,3154,2751,2016,1611,1469,1264,1001,827,590,373,168,104 -1982,1117,White female,2634,2413,2479,2574,3013,3187,3191,2667,1968,1554,1403,1312,1083,972,772,571,304,235 -1982,1117,Black male,320,335,420,381,325,267,220,154,124,125,100,102,87,74,84,52,33,19 -1982,1117,Black female,337,308,371,412,395,309,243,184,159,132,146,113,115,122,101,91,36,34 -1982,1117,Other races male,13,17,9,21,15,20,27,18,15,8,8,4,4,3,1,0,0,1 -1982,1117,Other races female,22,14,18,17,18,17,27,22,15,10,13,9,4,4,3,0,1,0 -1982,1119,White male,173,149,155,231,348,218,180,152,116,108,130,132,120,121,105,66,35,17 -1982,1119,White female,156,146,136,212,308,192,151,151,124,115,143,134,143,154,151,99,62,54 -1982,1119,Black male,608,615,627,685,530,385,270,211,165,155,163,175,183,191,188,151,79,61 -1982,1119,Black female,609,566,643,710,611,434,337,258,230,223,248,286,261,283,245,183,119,96 -1982,1119,Other races male,0,2,2,1,3,1,0,0,1,1,0,0,0,0,0,2,0,0 -1982,1119,Other races female,1,0,1,1,0,1,2,2,3,1,3,0,0,2,1,0,0,0 -1982,1121,White male,1813,1901,2166,2211,2045,1989,1861,1713,1396,1363,1323,1316,1204,1074,779,481,214,115 -1982,1121,White female,1759,1796,2102,2037,2142,1946,1882,1679,1441,1386,1523,1529,1490,1353,1122,797,424,273 -1982,1121,Black male,1149,1269,1384,1315,1024,796,683,512,456,423,370,346,314,310,223,152,67,37 -1982,1121,Black female,1139,1181,1317,1429,1255,923,811,584,516,494,453,467,404,383,299,229,118,105 -1982,1121,Other races male,6,7,5,7,6,6,6,4,9,6,3,3,0,2,0,0,0,0 -1982,1121,Other races female,6,8,9,5,10,7,13,6,5,7,2,2,2,2,1,0,0,0 -1982,1123,White male,937,938,1149,1101,1012,1070,962,916,728,691,735,774,765,652,512,329,164,103 -1982,1123,White female,799,916,1043,1066,962,1028,983,914,734,812,780,934,934,871,692,539,301,250 -1982,1123,Black male,464,527,550,550,452,350,309,232,213,173,194,150,142,169,127,94,37,31 -1982,1123,Black female,503,538,578,555,454,435,372,289,241,219,250,220,214,200,151,151,70,67 -1982,1123,Other races male,1,2,2,0,3,1,2,1,2,2,0,0,2,0,0,1,0,0 -1982,1123,Other races female,3,5,4,2,2,3,5,3,2,2,0,3,2,2,2,1,0,0 -1982,1125,White male,3085,3123,3375,4968,7425,4571,3788,3229,2604,2322,2489,2295,1979,1603,1193,747,396,253 -1982,1125,White female,2931,2840,3197,5082,6864,4300,3660,3231,2580,2517,2518,2364,2200,1943,1636,1254,693,610 -1982,1125,Black male,1805,1733,1754,1934,1922,1477,1129,765,644,603,594,588,498,497,360,267,137,101 -1982,1125,Black female,1793,1796,1704,2180,2446,1837,1310,986,856,790,865,735,695,732,572,408,213,202 -1982,1125,Other races male,23,23,26,29,66,57,46,30,23,9,8,13,6,8,2,3,0,0 -1982,1125,Other races female,37,23,26,26,56,58,44,26,20,17,13,9,6,7,4,3,1,0 -1982,1127,White male,2283,2387,2761,2643,2543,2489,2328,2088,1791,1608,1590,1554,1307,1186,929,609,337,193 -1982,1127,White female,2283,2222,2498,2567,2555,2451,2365,2128,1815,1550,1711,1774,1613,1574,1359,981,549,449 -1982,1127,Black male,228,227,229,263,196,167,123,88,74,78,66,74,74,79,68,53,37,29 -1982,1127,Black female,253,219,225,258,238,188,148,116,102,96,100,109,100,97,108,88,55,47 -1982,1127,Other races male,12,5,8,5,9,7,7,2,6,6,4,1,3,1,2,0,1,0 -1982,1127,Other races female,11,9,12,7,7,13,15,13,6,8,7,1,5,6,2,2,3,3 -1982,1129,White male,471,484,549,520,459,454,431,387,352,310,290,255,264,208,179,114,56,40 -1982,1129,White female,455,460,526,491,473,469,422,401,340,309,292,263,245,263,199,164,93,78 -1982,1129,Black male,260,253,286,271,215,171,155,111,75,87,79,84,64,71,63,50,21,19 -1982,1129,Black female,231,251,282,309,210,204,159,139,101,106,90,97,107,93,74,61,32,32 -1982,1129,Other races male,51,51,56,58,33,39,39,29,17,20,9,15,8,6,5,4,1,0 -1982,1129,Other races female,50,43,54,45,44,42,38,25,21,12,20,16,14,8,9,4,2,2 -1982,1131,White male,165,159,184,159,164,171,158,142,120,117,139,136,121,121,88,46,32,14 -1982,1131,White female,168,146,163,146,148,165,155,123,136,133,144,164,153,141,135,103,70,65 -1982,1131,Black male,534,554,665,646,351,311,262,187,133,133,142,161,151,199,160,117,60,45 -1982,1131,Black female,593,545,602,622,438,377,276,227,186,194,212,204,217,252,222,180,97,94 -1982,1131,Other races male,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 -1982,1131,Other races female,1,2,1,0,0,1,0,0,2,0,0,0,0,0,1,0,0,0 -1982,1133,White male,796,819,991,964,854,822,800,751,645,573,527,551,471,432,303,213,97,57 -1982,1133,White female,782,750,897,916,854,847,819,787,637,593,614,571,565,506,434,297,180,126 -1982,1133,Black male,4,4,2,5,2,1,1,1,1,1,1,1,1,1,2,0,0,0 -1982,1133,Black female,4,4,4,3,3,4,1,1,4,1,1,0,3,1,2,1,0,1 -1982,1133,Other races male,3,2,5,1,1,0,4,2,1,1,1,2,0,0,0,0,0,0 -1982,1133,Other races female,5,3,3,4,3,4,4,2,3,1,3,0,0,0,0,1,0,1 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1983.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1983.csv deleted file mode 100644 index 8411f2636a..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1983.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1983",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1983,1001,White male,1006,1022,1230,1140,984,947,933,981,867,790,643,563,461,352,253,143,68,39 -1983,1001,White female,875,912,1041,1102,988,995,1006,1047,900,734,628,573,484,409,355,265,157,107 -1983,1001,Black male,332,369,379,415,284,247,183,131,129,105,110,104,117,114,85,67,33,17 -1983,1001,Black female,329,353,390,391,360,257,221,175,150,144,147,142,159,143,120,90,58,51 -1983,1001,Other races male,5,7,4,9,5,3,5,3,4,4,1,2,0,1,0,0,0,0 -1983,1001,Other races female,7,7,10,6,4,8,10,12,9,9,10,5,3,1,0,1,0,1 -1983,1003,White male,2564,2580,2885,2852,2521,2630,2575,2459,2177,1862,1746,1798,1867,1657,1346,808,403,217 -1983,1003,White female,2475,2376,2699,2649,2517,2744,2614,2574,2145,1887,1859,2059,2091,1880,1544,1108,655,490 -1983,1003,Black male,651,680,661,662,502,442,343,259,219,207,193,186,175,154,157,98,50,34 -1983,1003,Black female,635,628,663,705,591,517,412,302,280,246,258,222,215,210,196,140,74,67 -1983,1003,Other races male,25,31,29,34,21,19,24,24,15,16,10,13,9,6,4,3,2,1 -1983,1003,Other races female,26,27,34,25,27,34,30,35,19,20,20,16,9,10,5,6,2,2 -1983,1005,White male,483,489,581,535,469,497,505,443,412,363,367,377,377,304,224,158,68,36 -1983,1005,White female,397,446,513,492,470,480,496,475,415,369,382,468,415,386,352,263,158,117 -1983,1005,Black male,532,571,598,577,398,376,333,229,195,155,161,152,186,175,153,111,49,40 -1983,1005,Black female,533,531,558,606,495,475,391,294,238,231,234,237,288,250,236,174,103,81 -1983,1005,Other races male,2,2,2,2,4,2,2,2,3,3,2,2,1,0,1,0,0,0 -1983,1005,Other races female,2,2,4,3,1,4,6,3,3,2,1,2,2,1,1,0,0,1 -1983,1007,White male,427,500,546,528,508,498,435,462,342,333,300,298,257,213,194,132,75,40 -1983,1007,White female,439,436,511,486,483,457,438,434,364,338,301,324,294,301,258,215,125,90 -1983,1007,Black male,185,183,212,200,156,151,100,75,61,45,44,48,53,53,55,42,16,11 -1983,1007,Black female,190,174,207,215,181,147,106,89,69,61,63,83,67,75,72,53,25,30 -1983,1007,Other races male,0,1,3,1,0,1,0,1,1,1,1,0,0,0,0,0,0,0 -1983,1007,Other races female,0,0,0,3,2,0,0,1,2,1,1,0,0,1,1,0,0,0 -1983,1009,White male,1285,1315,1549,1536,1438,1406,1316,1273,1114,963,924,839,801,681,558,365,175,97 -1983,1009,White female,1233,1287,1430,1410,1355,1385,1343,1314,1106,977,954,932,893,754,741,509,297,213 -1983,1009,Black male,27,24,29,31,22,20,17,12,12,9,10,9,8,12,7,6,3,1 -1983,1009,Black female,26,24,25,30,26,26,19,13,17,13,13,12,11,13,8,8,5,5 -1983,1009,Other races male,1,3,6,3,4,4,4,5,5,3,3,2,1,2,2,0,0,0 -1983,1009,Other races female,5,5,5,6,4,3,5,6,4,5,2,2,2,1,2,1,0,0 -1983,1011,White male,102,99,100,110,131,144,137,128,93,84,81,113,105,86,72,38,21,11 -1983,1011,White female,108,86,93,91,110,101,107,94,85,100,90,122,100,122,90,73,44,35 -1983,1011,Black male,336,365,374,364,261,255,214,171,130,115,96,95,121,136,126,87,49,40 -1983,1011,Black female,366,370,388,399,313,305,244,201,149,149,134,159,182,199,191,139,69,79 -1983,1011,Other races male,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,0 -1983,1011,Other races female,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0 -1983,1013,White male,453,463,494,486,457,482,460,407,343,345,354,360,394,309,279,174,94,75 -1983,1013,White female,428,449,470,472,449,467,450,409,377,368,368,447,472,448,402,326,217,170 -1983,1013,Black male,463,486,470,429,293,261,248,191,154,135,130,129,145,128,124,116,49,39 -1983,1013,Black female,501,445,498,470,410,378,266,229,183,162,176,175,189,194,184,143,74,71 -1983,1013,Other races male,2,1,1,1,1,0,2,1,2,0,0,1,0,0,0,0,0,0 -1983,1013,Other races female,2,2,2,1,1,1,2,1,0,1,1,0,1,0,1,1,0,1 -1983,1015,White male,3335,3293,3920,5059,5587,4221,3773,3302,2763,2433,2339,2242,2046,1621,1250,766,381,221 -1983,1015,White female,3166,3187,3605,4262,4995,4156,3735,3342,2771,2532,2554,2668,2483,2123,1850,1326,767,575 -1983,1015,Black male,1020,933,1008,1358,1363,903,688,491,390,357,335,349,316,266,215,126,61,46 -1983,1015,Black female,1037,922,1042,1262,1465,1014,770,567,457,470,457,442,425,369,318,211,135,97 -1983,1015,Other races male,39,32,42,51,57,36,37,30,18,13,8,9,8,3,3,1,1,1 -1983,1015,Other races female,38,36,31,39,68,56,74,46,49,32,18,14,8,4,5,5,2,1 -1983,1017,White male,765,795,933,895,891,896,880,799,681,657,655,693,726,617,531,334,176,92 -1983,1017,White female,719,822,843,869,890,892,873,771,671,691,708,863,877,840,797,567,348,244 -1983,1017,Black male,695,681,827,749,594,544,402,323,263,223,208,191,197,187,165,123,55,42 -1983,1017,Black female,644,689,732,753,685,596,528,411,310,312,276,301,320,279,248,174,100,89 -1983,1017,Other races male,1,1,1,3,2,2,1,0,1,3,1,0,1,0,0,0,0,0 -1983,1017,Other races female,0,0,3,2,2,5,3,2,3,2,2,2,0,1,0,0,0,0 -1983,1019,White male,604,622,742,716,749,657,643,563,556,477,444,470,450,387,303,188,88,56 -1983,1019,White female,566,579,638,637,689,639,630,606,552,498,483,530,507,441,381,270,159,116 -1983,1019,Black male,72,64,69,75,67,60,49,40,33,27,32,22,22,19,18,12,6,2 -1983,1019,Black female,57,79,78,78,73,62,52,39,39,34,35,22,38,23,27,21,8,6 -1983,1019,Other races male,1,1,4,2,2,1,1,1,0,0,0,1,0,0,0,1,0,0 -1983,1019,Other races female,1,1,4,1,2,2,2,3,2,2,1,1,2,0,0,0,0,1 -1983,1021,White male,1003,1004,1076,1096,1109,1077,983,911,801,711,667,655,602,553,443,283,150,75 -1983,1021,White female,974,918,1091,1017,1085,1056,995,907,786,738,679,755,727,668,609,469,236,201 -1983,1021,Black male,176,173,182,199,143,122,113,77,71,67,62,71,62,56,47,34,17,14 -1983,1021,Black female,176,191,200,203,152,138,115,93,84,85,78,76,59,75,54,53,26,24 -1983,1021,Other races male,3,2,2,1,1,1,2,1,1,1,3,0,0,0,0,1,1,0 -1983,1021,Other races female,2,3,2,1,2,4,3,4,3,3,1,3,0,2,0,3,0,1 -1983,1023,White male,358,336,394,383,341,335,300,346,272,256,255,242,208,180,163,105,49,32 -1983,1023,White female,320,327,382,375,338,316,332,314,285,270,263,283,250,214,206,161,85,74 -1983,1023,Black male,345,356,408,409,247,250,208,175,131,130,111,126,108,115,111,78,51,32 -1983,1023,Black female,358,390,389,380,329,288,251,199,157,157,135,162,144,143,132,107,69,40 -1983,1023,Other races male,1,2,1,2,1,2,0,0,0,1,0,0,0,0,0,0,0,0 -1983,1023,Other races female,1,1,0,0,0,1,2,0,2,1,1,1,0,1,0,1,0,0 -1983,1025,White male,584,568,654,626,591,609,579,534,484,419,400,367,364,311,284,179,103,71 -1983,1025,White female,556,544,625,600,590,645,559,568,475,435,403,425,438,387,366,268,187,151 -1983,1025,Black male,617,627,689,668,496,427,312,265,204,219,207,177,184,176,157,112,59,44 -1983,1025,Black female,565,623,668,704,552,448,386,298,256,241,243,232,235,219,215,152,82,89 -1983,1025,Other races male,3,4,2,3,2,2,3,1,2,2,1,0,0,0,0,0,0,0 -1983,1025,Other races female,4,3,4,3,0,4,7,1,2,2,3,3,1,0,1,1,1,1 -1983,1027,White male,374,398,461,474,436,390,394,351,314,298,282,285,292,265,235,157,100,61 -1983,1027,White female,362,362,428,452,421,395,387,333,349,309,312,307,355,324,321,237,154,115 -1983,1027,Black male,135,133,134,117,90,71,71,60,51,40,39,28,23,22,20,12,11,5 -1983,1027,Black female,103,125,137,136,114,89,81,66,54,51,44,39,32,38,30,25,15,12 -1983,1027,Other races male,2,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0 -1983,1027,Other races female,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0 -1983,1029,White male,443,456,533,513,505,469,434,429,341,321,297,281,285,228,174,138,64,47 -1983,1029,White female,407,425,470,473,482,459,448,401,357,321,327,305,332,268,265,192,103,89 -1983,1029,Black male,33,29,30,27,26,18,19,14,15,15,10,13,9,11,8,5,4,0 -1983,1029,Black female,31,30,26,40,31,24,21,15,16,15,13,13,12,16,12,7,4,6 -1983,1029,Other races male,1,1,1,1,0,2,1,1,0,1,0,0,0,0,1,1,0,0 -1983,1029,Other races female,1,0,1,1,1,0,2,1,2,1,2,1,1,0,0,0,0,0 -1983,1031,White male,1167,1191,1323,1387,1332,1373,1356,1144,1002,927,847,844,763,614,471,303,158,84 -1983,1031,White female,1064,1078,1231,1278,1282,1330,1301,1185,1067,909,872,928,838,755,641,518,278,249 -1983,1031,Black male,327,320,416,358,281,259,205,178,138,127,123,113,94,92,74,53,40,33 -1983,1031,Black female,310,305,331,375,329,269,278,200,173,159,155,144,126,146,105,101,56,41 -1983,1031,Other races male,11,12,11,17,12,11,11,9,4,8,2,4,3,2,1,1,0,0 -1983,1031,Other races female,11,15,8,9,21,29,29,23,16,20,9,5,5,2,3,1,1,0 -1983,1033,White male,1485,1503,1802,1815,1873,1764,1613,1464,1318,1188,1195,1221,1110,845,640,423,210,120 -1983,1033,White female,1420,1367,1615,1763,1843,1816,1645,1571,1380,1253,1274,1338,1263,1061,929,642,372,302 -1983,1033,Black male,397,387,441,435,329,328,289,220,176,178,151,164,161,127,112,88,48,30 -1983,1033,Black female,419,412,454,446,401,413,340,268,226,213,207,226,192,184,183,120,66,68 -1983,1033,Other races male,6,6,8,13,4,7,8,10,6,6,2,3,1,1,1,1,1,0 -1983,1033,Other races female,8,8,5,4,1,12,11,8,6,3,4,1,2,2,4,1,0,0 -1983,1035,White male,299,289,349,337,336,330,293,277,239,223,243,240,249,216,193,122,74,42 -1983,1035,White female,279,280,310,320,287,325,298,258,225,232,253,262,300,280,262,202,120,102 -1983,1035,Black male,316,320,322,345,247,226,164,132,100,93,99,98,83,103,98,75,48,32 -1983,1035,Black female,321,293,363,339,321,240,209,160,124,124,126,130,146,137,149,108,67,62 -1983,1035,Other races male,1,1,2,2,1,1,1,1,1,1,1,0,5,1,1,0,0,0 -1983,1035,Other races female,1,3,1,1,2,2,1,2,1,2,2,2,0,2,1,0,0,0 -1983,1037,White male,247,219,273,265,296,281,243,240,179,190,211,222,223,179,156,102,44,29 -1983,1037,White female,242,236,259,248,276,258,247,215,197,205,236,231,258,204,184,138,84,56 -1983,1037,Black male,163,204,229,208,182,157,118,91,92,80,78,75,48,59,48,35,26,15 -1983,1037,Black female,148,203,204,205,170,166,114,100,91,99,86,70,85,62,65,52,20,17 -1983,1037,Other races male,1,2,0,1,0,1,0,1,0,2,0,0,0,1,0,0,0,0 -1983,1037,Other races female,0,1,0,0,1,0,2,0,1,2,1,1,1,0,0,0,0,0 -1983,1039,White male,1038,1023,1161,1302,1154,1131,1047,979,849,824,802,911,858,747,628,403,215,159 -1983,1039,White female,1009,958,1156,1117,1130,1092,1073,989,942,854,920,1017,1093,1005,962,702,420,298 -1983,1039,Black male,209,240,274,273,178,129,129,93,100,70,82,73,75,81,53,48,20,17 -1983,1039,Black female,227,242,276,264,221,192,167,135,115,122,108,115,116,101,104,79,38,33 -1983,1039,Other races male,0,3,4,5,3,5,6,4,4,2,2,1,0,0,2,0,0,0 -1983,1039,Other races female,6,3,5,5,3,3,6,7,4,2,3,1,0,1,2,1,1,0 -1983,1041,White male,377,373,383,400,382,326,354,314,260,272,234,261,277,264,228,132,70,50 -1983,1041,White female,313,323,368,353,331,376,345,301,279,254,275,344,343,335,297,233,141,111 -1983,1041,Black male,175,152,188,198,134,117,88,76,59,63,64,69,68,60,54,37,20,24 -1983,1041,Black female,163,177,186,193,180,131,120,88,94,71,87,77,78,95,84,89,30,41 -1983,1041,Other races male,1,4,2,1,1,0,0,1,1,1,1,1,0,0,1,0,0,0 -1983,1041,Other races female,0,1,2,2,1,2,3,0,2,1,1,1,1,0,1,1,0,1 -1983,1043,White male,2210,2234,2623,2589,2563,2361,2272,2043,1776,1636,1551,1551,1511,1246,989,670,326,209 -1983,1043,White female,2164,2194,2435,2470,2438,2402,2281,2108,1887,1664,1677,1770,1674,1515,1311,987,574,456 -1983,1043,Black male,25,26,35,33,27,18,15,14,14,11,14,5,11,7,3,8,4,1 -1983,1043,Black female,21,21,21,33,25,17,22,13,15,14,14,9,6,10,10,7,2,6 -1983,1043,Other races male,6,8,7,8,4,6,6,6,5,4,6,3,2,5,2,3,0,0 -1983,1043,Other races female,3,8,8,9,4,14,9,9,7,7,9,5,3,1,1,1,1,1 -1983,1045,White male,1722,1558,1530,1851,2785,2373,1847,1335,1072,928,820,797,675,522,397,234,134,79 -1983,1045,White female,1629,1430,1435,1465,1943,1857,1569,1248,1068,889,838,833,712,608,539,434,272,227 -1983,1045,Black male,446,420,372,443,711,477,299,197,132,113,105,98,76,85,65,45,32,19 -1983,1045,Black female,479,406,392,390,498,418,292,217,163,134,132,128,111,114,101,68,32,31 -1983,1045,Other races male,31,35,26,36,55,35,32,16,12,10,6,5,4,2,2,1,0,2 -1983,1045,Other races female,40,28,34,21,74,89,58,44,35,35,26,16,13,5,4,2,0,0 -1983,1047,White male,804,786,902,940,868,900,856,776,681,605,623,613,598,445,375,230,114,60 -1983,1047,White female,798,812,876,874,944,939,882,803,695,645,671,754,666,642,561,439,264,240 -1983,1047,Black male,1487,1537,1685,1731,1211,933,773,571,523,453,437,401,418,414,371,272,140,112 -1983,1047,Black female,1467,1472,1633,1750,1418,1231,1041,778,703,658,645,624,584,676,528,447,249,256 -1983,1047,Other races male,5,5,5,8,4,3,10,8,5,1,6,2,0,2,1,0,0,0 -1983,1047,Other races female,7,6,4,6,3,8,10,6,4,4,3,3,2,3,0,3,1,1 -1983,1049,White male,1924,2004,2216,2109,2113,2021,1894,1733,1455,1383,1248,1248,1229,1020,846,578,306,176 -1983,1049,White female,1789,1832,2115,2020,2105,2024,1962,1747,1567,1385,1359,1467,1393,1359,1202,934,508,397 -1983,1049,Black male,36,52,50,50,42,33,38,26,22,19,16,17,7,11,14,8,3,3 -1983,1049,Black female,49,38,56,47,47,44,35,33,26,20,18,25,14,20,23,11,8,4 -1983,1049,Other races male,9,13,18,15,11,8,8,10,8,8,6,4,2,4,1,1,0,0 -1983,1049,Other races female,7,16,25,10,7,9,16,14,11,8,4,3,4,5,1,3,0,1 -1983,1051,White male,1228,1252,1376,1367,1387,1445,1380,1268,1139,968,919,892,793,646,474,311,157,95 -1983,1051,White female,1131,1173,1328,1237,1308,1370,1375,1219,1109,896,928,927,871,730,673,497,302,270 -1983,1051,Black male,453,451,507,573,658,546,398,276,192,152,131,139,128,115,116,84,38,29 -1983,1051,Black female,414,454,543,528,477,442,347,247,201,190,168,192,170,176,142,107,65,65 -1983,1051,Other races male,6,6,5,7,9,7,7,5,6,5,2,2,0,1,1,1,0,1 -1983,1051,Other races female,4,5,5,3,8,9,9,12,8,5,6,3,1,1,1,2,0,0 -1983,1053,White male,904,908,1031,1051,1033,1005,993,893,819,664,666,647,592,471,399,241,134,88 -1983,1053,White female,831,871,910,1031,934,928,902,894,779,703,693,710,690,628,577,429,259,193 -1983,1053,Black male,492,535,535,581,550,587,475,300,215,207,166,176,145,173,126,110,44,36 -1983,1053,Black female,506,492,536,549,436,430,343,266,227,233,223,212,229,222,189,161,92,95 -1983,1053,Other races male,62,53,67,62,52,38,42,28,27,15,18,11,13,13,12,5,4,1 -1983,1053,Other races female,48,45,51,54,42,35,39,32,23,18,21,16,21,15,12,8,5,3 -1983,1055,White male,2987,3110,3507,3476,3465,3385,3192,2944,2460,2190,2243,2329,2191,1860,1438,925,423,226 -1983,1055,White female,2822,2904,3334,3306,3513,3402,3236,2942,2675,2376,2484,2720,2726,2419,2123,1540,916,661 -1983,1055,Black male,627,637,698,723,582,505,427,291,240,214,257,270,267,225,173,127,53,38 -1983,1055,Black female,662,599,708,678,705,611,513,360,339,328,354,368,345,320,268,167,96,67 -1983,1055,Other races male,9,16,11,25,48,25,10,13,8,10,6,6,4,4,2,3,0,0 -1983,1055,Other races female,12,12,18,27,33,21,19,17,14,8,8,8,5,4,1,4,3,1 -1983,1057,White male,585,576,673,674,626,623,582,541,485,424,391,407,396,352,301,203,105,57 -1983,1057,White female,576,594,634,658,623,602,573,560,489,415,442,460,463,441,425,297,192,150 -1983,1057,Black male,112,105,116,124,94,87,63,51,45,47,46,49,42,42,43,32,15,8 -1983,1057,Black female,94,97,134,111,114,92,81,57,53,56,59,54,58,57,56,41,24,20 -1983,1057,Other races male,1,1,2,1,1,1,0,0,0,1,0,1,0,0,0,0,0,0 -1983,1057,Other races female,1,1,1,0,1,1,2,1,3,2,1,0,1,1,0,1,0,0 -1983,1059,White male,970,983,1083,1065,1115,989,932,883,769,706,697,668,625,560,437,296,156,104 -1983,1059,White female,902,869,1048,1021,1040,1061,976,905,818,745,719,753,790,659,668,484,302,221 -1983,1059,Black male,64,56,65,67,55,43,41,30,28,27,24,24,21,19,24,8,6,3 -1983,1059,Black female,48,55,54,63,63,64,38,38,28,32,31,36,26,31,21,20,13,8 -1983,1059,Other races male,5,2,3,3,1,2,4,2,3,3,0,1,2,0,1,0,0,0 -1983,1059,Other races female,2,3,2,3,1,6,2,2,4,1,2,2,0,1,1,1,1,0 -1983,1061,White male,696,710,874,843,783,743,712,664,563,550,509,536,537,474,400,250,145,64 -1983,1061,White female,670,688,768,757,751,735,689,692,620,529,568,577,611,591,532,415,230,172 -1983,1061,Black male,142,167,168,165,106,99,82,54,46,48,44,56,49,38,44,24,13,11 -1983,1061,Black female,154,153,162,156,137,114,100,65,80,59,67,64,67,55,58,41,29,19 -1983,1061,Other races male,3,3,3,6,6,1,3,2,4,2,4,4,2,3,1,1,2,0 -1983,1061,Other races female,5,5,4,5,3,3,3,3,4,5,4,5,5,3,3,1,1,1 -1983,1063,White male,61,63,72,78,83,96,70,67,70,73,70,72,69,64,57,37,17,6 -1983,1063,White female,61,50,67,73,77,77,71,66,74,70,74,69,92,81,74,64,44,42 -1983,1063,Black male,435,449,489,471,292,285,196,161,131,133,139,124,136,145,151,126,59,42 -1983,1063,Black female,409,433,502,478,386,344,291,219,190,177,178,182,191,205,244,155,95,84 -1983,1063,Other races male,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0 -1983,1063,Other races female,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 -1983,1065,White male,197,180,206,221,199,205,212,200,159,157,143,175,160,133,108,73,45,36 -1983,1065,White female,190,172,194,211,187,214,204,181,157,153,168,183,190,174,176,121,93,81 -1983,1065,Black male,501,464,542,555,343,285,233,175,144,137,142,135,151,176,137,137,71,47 -1983,1065,Black female,479,438,501,531,450,374,282,219,193,177,208,197,218,215,208,164,105,96 -1983,1065,Other races male,1,2,2,1,2,0,0,1,0,0,1,1,0,1,0,0,0,0 -1983,1065,Other races female,2,1,0,2,2,3,2,1,1,0,1,1,1,0,1,1,0,0 -1983,1067,White male,312,306,382,322,317,347,343,319,261,228,249,277,259,249,179,133,60,34 -1983,1067,White female,324,311,328,316,327,354,332,329,264,254,257,306,301,306,270,194,114,77 -1983,1067,Black male,255,285,289,280,211,204,187,125,122,91,96,90,82,83,75,52,25,17 -1983,1067,Black female,264,273,300,300,249,253,162,164,127,129,130,120,129,119,112,89,50,36 -1983,1067,Other races male,2,1,3,2,1,1,1,3,1,1,0,0,0,0,0,0,0,0 -1983,1067,Other races female,1,1,2,0,1,2,2,1,1,0,0,0,0,1,0,1,0,0 -1983,1069,White male,2198,2196,2360,2293,2304,2478,2408,2186,1777,1584,1509,1403,1272,1015,782,455,234,137 -1983,1069,White female,2125,1992,2237,2239,2453,2611,2424,2212,1895,1640,1573,1552,1473,1311,1093,862,511,393 -1983,1069,Black male,904,902,941,871,673,628,532,416,330,302,295,258,267,225,199,112,57,46 -1983,1069,Black female,885,863,933,903,856,803,651,511,425,412,381,351,365,333,300,225,104,89 -1983,1069,Other races male,31,36,37,26,21,31,27,25,18,11,10,8,6,3,1,2,0,0 -1983,1069,Other races female,23,29,28,24,24,35,27,22,23,19,11,11,5,8,2,6,0,0 -1983,1071,White male,1803,1811,2083,1968,2017,2019,1879,1714,1465,1255,1186,1073,990,817,596,433,187,101 -1983,1071,White female,1806,1795,1940,1941,2003,2047,1894,1725,1465,1313,1203,1211,1164,994,849,638,331,254 -1983,1071,Black male,97,106,95,106,87,94,63,54,36,33,43,39,28,53,23,21,9,5 -1983,1071,Black female,82,91,96,101,96,90,83,63,57,42,54,52,49,42,54,22,11,15 -1983,1071,Other races male,14,32,46,28,12,15,14,22,19,15,7,6,3,3,2,1,1,1 -1983,1071,Other races female,16,27,51,27,14,16,23,26,23,10,8,10,5,5,3,2,1,0 -1983,1073,White male,14114,13157,14913,15262,19277,20432,17392,14956,12247,10900,11151,11259,10157,7833,6175,4016,2071,1208 -1983,1073,White female,13516,12663,14108,15050,20282,20569,17488,15652,13204,11986,12455,13116,12231,10674,9650,7432,4684,3802 -1983,1073,Black male,10067,9487,10180,10267,9759,9233,7463,5383,4364,3834,3868,3849,3690,3462,2902,2137,1000,692 -1983,1073,Black female,10040,9208,10068,10482,11802,11211,9112,6785,5647,5170,5472,5310,5100,4908,4346,3274,1824,1506 -1983,1073,Other races male,116,98,111,94,148,177,165,144,86,81,47,32,32,16,14,13,4,5 -1983,1073,Other races female,129,104,95,100,142,182,192,132,97,79,56,43,30,33,27,15,13,4 -1983,1075,White male,510,526,591,569,547,527,483,469,426,395,333,343,347,299,288,176,104,62 -1983,1075,White female,506,498,552,539,542,504,500,456,434,378,395,402,402,361,371,293,146,114 -1983,1075,Black male,90,99,104,112,75,72,59,40,37,39,34,38,30,28,22,19,15,8 -1983,1075,Black female,84,101,101,90,94,82,68,39,50,35,52,43,39,45,38,32,16,13 -1983,1075,Other races male,0,2,0,0,1,1,1,1,1,0,1,0,0,0,1,0,0,1 -1983,1075,Other races female,1,1,1,1,1,2,1,2,1,1,1,0,1,0,1,0,0,1 -1983,1077,White male,2436,2379,2893,3100,3477,2873,2649,2512,2048,1919,1760,1762,1646,1280,1026,631,325,197 -1983,1077,White female,2293,2369,2719,3200,3510,2907,2738,2496,2206,1985,1933,2009,1904,1582,1509,1029,653,525 -1983,1077,Black male,360,345,399,415,378,289,206,189,125,131,114,127,126,106,101,62,44,34 -1983,1077,Black female,340,336,392,449,448,338,279,231,189,174,175,168,182,160,145,100,69,54 -1983,1077,Other races male,12,9,8,14,10,13,11,13,10,7,9,5,2,1,2,1,0,0 -1983,1077,Other races female,12,14,13,11,12,13,17,13,14,11,11,5,5,3,3,1,1,1 -1983,1079,White male,960,948,1079,1097,1026,1035,915,881,758,647,635,584,556,442,374,221,103,63 -1983,1079,White female,896,881,1066,1042,1051,1024,898,877,720,663,617,628,604,560,473,325,181,153 -1983,1079,Black male,239,270,306,295,200,199,144,120,86,64,73,70,62,71,71,47,22,20 -1983,1079,Black female,258,252,279,258,240,214,178,140,101,98,97,88,86,100,79,57,41,39 -1983,1079,Other races male,23,54,74,49,15,12,29,31,27,11,8,4,4,2,1,1,1,0 -1983,1079,Other races female,24,52,75,38,14,26,46,38,23,15,9,6,4,2,2,1,0,1 -1983,1081,White male,1629,1593,1817,3677,7663,2753,1998,1773,1418,1272,1054,1059,887,672,491,302,147,85 -1983,1081,White female,1593,1495,1766,3689,6077,2357,1932,1743,1384,1233,1096,1117,1001,817,693,511,305,244 -1983,1081,Black male,902,811,965,1002,966,776,634,455,413,348,300,290,255,258,168,130,68,47 -1983,1081,Black female,867,838,918,978,1030,918,694,567,466,452,421,390,391,353,332,219,126,117 -1983,1081,Other races male,42,25,25,34,89,102,66,46,22,17,11,9,3,3,4,1,1,0 -1983,1081,Other races female,40,22,21,36,58,69,55,33,23,13,15,9,6,6,5,2,0,0 -1983,1083,White male,1535,1478,1705,1703,1787,1779,1578,1433,1266,1116,989,986,806,665,514,317,168,92 -1983,1083,White female,1430,1382,1671,1608,1767,1708,1602,1413,1284,1113,1028,1038,936,854,731,561,318,245 -1983,1083,Black male,294,280,337,337,322,334,254,184,139,122,114,107,106,81,79,63,31,22 -1983,1083,Black female,278,260,312,354,317,280,236,163,152,141,150,136,136,103,122,77,44,48 -1983,1083,Other races male,5,5,11,7,7,6,8,5,9,9,2,3,1,1,0,0,0,0 -1983,1083,Other races female,5,7,4,9,6,6,5,9,5,4,4,3,1,1,2,1,0,0 -1983,1085,White male,114,102,102,109,115,123,121,101,91,92,94,94,87,68,51,38,16,13 -1983,1085,White female,103,99,113,105,110,131,104,107,89,99,97,109,96,87,85,65,43,34 -1983,1085,Black male,535,533,564,633,369,312,220,181,148,120,126,114,131,129,126,88,52,38 -1983,1085,Black female,511,516,558,593,469,380,291,230,215,179,179,192,175,184,157,122,68,65 -1983,1085,Other races male,1,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0 -1983,1085,Other races female,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0 -1983,1087,White male,100,119,121,129,157,143,139,142,106,101,116,145,154,119,103,61,48,34 -1983,1087,White female,101,101,112,114,127,138,129,121,90,88,99,106,127,111,118,79,49,39 -1983,1087,Black male,824,848,933,1367,1405,757,577,439,346,322,317,448,409,393,322,230,132,116 -1983,1087,Black female,844,861,949,1441,1556,885,688,548,491,416,469,491,466,490,474,356,183,194 -1983,1087,Other races male,5,4,4,3,8,10,9,5,3,4,2,1,2,2,2,0,0,1 -1983,1087,Other races female,8,2,3,4,6,9,5,2,1,4,1,2,2,2,1,1,0,0 -1983,1089,White male,5531,5354,6322,6879,7460,7886,6812,5864,5364,5143,4529,4370,3228,2304,1574,922,438,244 -1983,1089,White female,5284,5122,6040,6371,7265,7453,6615,6199,5624,5076,4668,4481,3526,2780,2191,1556,954,747 -1983,1089,Black male,1864,1830,1975,2370,2855,2068,1593,1092,848,760,539,498,413,329,279,174,99,91 -1983,1089,Black female,1868,1764,1958,2602,3037,2119,1785,1269,1028,799,698,645,529,482,380,283,150,147 -1983,1089,Other races male,129,139,171,132,146,180,171,123,100,83,51,36,19,14,10,2,4,1 -1983,1089,Other races female,148,132,169,117,126,179,207,181,135,99,78,45,31,16,14,7,3,2 -1983,1091,White male,401,410,457,470,437,443,414,407,353,341,334,305,283,233,177,114,64,40 -1983,1091,White female,378,374,453,439,430,429,414,398,375,351,337,328,337,274,270,195,109,101 -1983,1091,Black male,663,625,754,707,462,412,328,244,211,191,205,203,202,207,222,176,86,66 -1983,1091,Black female,615,629,702,663,580,477,412,322,259,254,281,299,306,316,290,243,137,134 -1983,1091,Other races male,2,0,1,1,1,1,0,1,0,2,0,0,1,1,0,0,0,0 -1983,1091,Other races female,1,1,1,0,1,0,3,3,1,0,2,2,0,0,0,0,1,0 -1983,1093,White male,1066,1109,1267,1244,1205,1190,1070,990,880,763,765,732,692,606,511,344,177,120 -1983,1093,White female,1010,1070,1204,1190,1196,1092,1085,999,922,786,822,781,821,783,685,529,302,222 -1983,1093,Black male,29,35,41,45,39,38,34,32,20,18,11,11,15,16,12,9,5,4 -1983,1093,Black female,32,35,37,34,39,29,27,20,27,18,19,9,17,16,11,12,6,6 -1983,1093,Other races male,4,6,2,5,2,0,3,3,2,2,3,1,1,1,0,0,0,0 -1983,1093,Other races female,2,5,4,2,3,5,3,4,3,2,1,3,0,0,4,1,0,0 -1983,1095,White male,2250,2396,2738,2781,2676,2612,2352,2201,1908,1715,1682,1613,1576,1223,981,640,338,206 -1983,1095,White female,2216,2288,2532,2625,2659,2642,2467,2329,2021,1867,1811,1860,1830,1531,1441,1030,607,448 -1983,1095,Black male,49,48,53,61,57,39,31,32,23,15,19,18,16,16,12,6,5,4 -1983,1095,Black female,33,43,56,48,44,50,33,32,21,27,24,26,24,19,20,12,10,9 -1983,1095,Other races male,7,7,5,5,5,6,7,12,6,9,4,3,2,1,1,1,0,1 -1983,1095,Other races female,6,7,11,10,10,8,13,9,7,8,7,5,4,4,3,2,0,0 -1983,1097,White male,9851,9222,9932,10188,11821,11707,10404,8994,7438,6251,6069,6030,5355,4248,3267,1958,961,539 -1983,1097,White female,9310,8616,9610,10051,12335,11485,10322,9046,7527,6471,6504,6817,6300,5524,4636,3401,2019,1572 -1983,1097,Black male,6234,5598,6153,6016,5156,4638,3569,2628,2260,2009,1997,2081,1764,1557,1200,836,377,220 -1983,1097,Black female,6066,5491,6001,6243,6217,5495,4564,3430,2999,2705,2668,2628,2348,2186,1771,1237,693,572 -1983,1097,Other races male,163,170,193,178,199,163,155,120,95,78,55,41,34,19,17,12,6,3 -1983,1097,Other races female,153,168,176,154,176,173,181,148,99,82,60,53,39,33,29,19,7,5 -1983,1099,White male,467,474,516,514,470,492,479,446,388,345,331,313,306,262,192,160,77,56 -1983,1099,White female,471,458,496,506,443,500,459,490,366,346,320,343,359,327,302,221,143,134 -1983,1099,Black male,493,525,580,540,363,330,258,192,163,140,157,126,144,136,113,92,43,36 -1983,1099,Black female,491,494,534,533,409,371,283,241,182,176,197,172,194,181,165,136,70,80 -1983,1099,Other races male,7,10,10,10,14,5,6,7,6,3,5,3,5,2,2,1,0,0 -1983,1099,Other races female,6,7,9,8,6,10,7,5,5,5,5,3,4,4,2,2,1,0 -1983,1101,White male,3998,3980,4203,4374,5240,5393,4885,4608,3649,3149,2959,2898,2617,1911,1440,893,428,264 -1983,1101,White female,3844,3754,3971,4274,5358,5414,4973,4596,3703,3269,3193,3475,3095,2757,2298,1789,1159,1037 -1983,1101,Black male,4027,3893,3925,4289,4007,3217,2650,1876,1538,1311,1185,1202,1046,941,758,526,254,184 -1983,1101,Black female,3939,3844,3922,4484,4907,4046,3113,2370,1965,1736,1634,1599,1429,1415,1223,896,490,482 -1983,1101,Other races male,44,64,66,50,56,45,60,43,43,34,15,11,9,8,4,3,2,2 -1983,1101,Other races female,49,67,71,44,66,73,102,73,60,35,31,21,15,9,8,6,2,1 -1983,1103,White male,2951,2958,3510,3412,3315,3523,3251,3040,2544,2235,2099,1967,1770,1297,1061,618,328,174 -1983,1103,White female,2872,2749,3290,3200,3319,3517,3329,3107,2628,2267,2202,2149,1993,1665,1468,1020,620,482 -1983,1103,Black male,493,457,490,412,372,356,291,206,176,141,132,132,133,125,101,69,36,22 -1983,1103,Black female,475,430,494,473,444,428,347,259,214,181,187,169,182,165,145,125,55,51 -1983,1103,Other races male,11,15,18,11,10,15,18,18,14,11,8,4,3,3,3,1,0,1 -1983,1103,Other races female,16,14,19,14,15,15,17,21,15,11,8,9,6,7,4,1,0,1 -1983,1105,White male,161,169,181,353,242,193,178,155,144,165,132,144,143,124,125,80,46,25 -1983,1105,White female,174,138,175,316,290,175,154,164,142,151,163,163,179,167,175,134,75,60 -1983,1105,Black male,483,496,520,525,313,257,220,149,155,125,144,129,133,145,155,121,64,47 -1983,1105,Black female,469,487,504,522,372,349,255,214,206,170,212,188,204,213,207,150,94,101 -1983,1105,Other races male,0,2,1,3,1,0,0,0,1,0,0,0,0,0,0,0,0,0 -1983,1105,Other races female,1,1,1,2,2,1,1,0,1,1,1,1,0,0,0,0,0,0 -1983,1107,White male,424,398,480,486,488,453,449,403,367,339,346,354,364,277,247,158,78,60 -1983,1107,White female,387,380,448,454,435,416,434,391,398,348,390,365,391,345,336,248,167,139 -1983,1107,Black male,460,447,517,452,355,294,216,154,147,143,131,151,136,158,129,102,67,42 -1983,1107,Black female,498,471,533,516,399,349,290,220,198,180,198,204,198,197,177,149,87,87 -1983,1107,Other races male,2,1,1,4,0,1,2,1,2,1,0,1,0,1,0,0,0,0 -1983,1107,Other races female,2,1,2,0,0,3,4,3,2,1,2,0,1,2,1,2,0,0 -1983,1109,White male,522,535,593,907,1349,650,561,528,446,390,399,419,390,337,306,202,100,62 -1983,1109,White female,481,485,579,966,1235,611,557,545,464,432,401,491,473,461,427,337,215,197 -1983,1109,Black male,433,456,468,577,458,301,228,179,150,142,129,144,131,196,128,91,46,38 -1983,1109,Black female,436,449,502,606,612,386,330,235,216,195,186,206,215,239,212,164,98,76 -1983,1109,Other races male,4,5,8,11,10,5,2,2,2,4,1,3,1,1,0,0,0,1 -1983,1109,Other races female,3,5,8,8,13,8,4,4,5,4,2,3,3,2,2,1,0,0 -1983,1111,White male,511,542,588,557,593,538,511,457,399,380,403,386,403,361,292,186,101,71 -1983,1111,White female,454,468,576,565,551,550,496,457,418,405,415,471,501,449,404,346,206,146 -1983,1111,Black male,244,258,256,265,201,163,143,107,94,69,86,72,81,78,59,45,21,17 -1983,1111,Black female,235,229,254,241,213,213,161,130,113,96,95,97,102,102,88,65,44,32 -1983,1111,Other races male,1,4,2,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0 -1983,1111,Other races female,0,1,0,3,1,2,3,2,1,2,1,0,1,0,0,0,0,0 -1983,1113,White male,1029,963,1048,1070,1261,1218,1082,914,790,748,760,741,689,517,360,212,95,59 -1983,1113,White female,983,908,946,1037,1260,1251,1043,950,839,790,808,855,791,645,567,400,199,146 -1983,1113,Black male,805,832,932,977,751,641,526,407,371,356,363,334,283,288,231,137,63,52 -1983,1113,Black female,750,788,892,947,866,733,646,510,466,455,469,423,437,401,342,225,121,109 -1983,1113,Other races male,6,4,4,4,3,6,5,9,5,6,4,3,1,1,2,0,0,0 -1983,1113,Other races female,7,5,2,3,7,8,10,10,10,5,5,4,4,2,3,1,0,1 -1983,1115,White male,1575,1500,1653,1529,1498,1620,1547,1424,1180,1041,942,907,840,640,531,293,167,97 -1983,1115,White female,1425,1344,1525,1480,1555,1589,1496,1390,1154,1023,977,975,953,763,676,468,266,221 -1983,1115,Black male,184,185,209,212,166,188,175,113,112,83,73,63,69,62,41,38,16,15 -1983,1115,Black female,181,195,210,217,189,175,137,107,85,100,84,90,93,76,54,47,31,16 -1983,1115,Other races male,2,6,8,4,6,5,10,7,4,5,4,3,1,1,1,1,0,0 -1983,1115,Other races female,4,5,9,2,3,6,11,5,5,6,2,2,2,0,3,1,1,0 -1983,1117,White male,2835,2592,2639,2520,2672,3123,3222,2900,2204,1700,1478,1302,1050,835,605,383,178,107 -1983,1117,White female,2696,2448,2513,2529,3064,3326,3276,2834,2145,1642,1420,1350,1126,975,794,590,316,248 -1983,1117,Black male,317,329,404,361,329,271,224,162,126,123,99,101,84,69,81,50,33,21 -1983,1117,Black female,331,303,362,395,393,315,250,195,164,136,143,111,115,114,101,91,36,34 -1983,1117,Other races male,16,19,10,21,16,22,28,21,17,9,9,6,5,3,1,0,0,1 -1983,1117,Other races female,26,18,20,18,19,18,28,24,16,11,13,10,5,4,3,0,1,0 -1983,1119,White male,167,148,153,230,352,218,177,153,121,108,124,133,120,117,104,67,34,16 -1983,1119,White female,155,144,133,211,310,190,147,154,126,113,140,132,146,149,150,102,65,57 -1983,1119,Black male,597,600,639,668,522,389,288,228,168,157,161,170,181,183,186,151,82,62 -1983,1119,Black female,594,559,648,694,605,445,359,276,231,222,245,282,262,274,249,185,123,98 -1983,1119,Other races male,0,2,1,1,4,1,1,0,1,1,0,1,0,0,0,1,0,0 -1983,1119,Other races female,1,0,1,1,0,1,2,2,3,2,2,0,0,1,1,0,0,0 -1983,1121,White male,1816,1884,2156,2164,2054,2043,1871,1778,1487,1394,1310,1345,1231,1072,804,506,228,124 -1983,1121,White female,1755,1784,2093,1988,2141,1979,1894,1732,1514,1405,1499,1547,1523,1346,1166,834,452,289 -1983,1121,Black male,1138,1242,1378,1308,1033,820,707,553,481,429,368,350,320,303,226,158,69,41 -1983,1121,Black female,1128,1171,1315,1413,1257,948,833,622,533,495,450,471,413,376,309,234,124,111 -1983,1121,Other races male,8,7,5,8,6,7,7,6,10,8,3,4,0,3,0,1,0,0 -1983,1121,Other races female,6,8,9,6,11,8,13,6,5,7,3,3,2,3,1,0,0,0 -1983,1123,White male,930,927,1127,1066,1016,1079,961,933,762,705,721,775,772,648,524,342,172,104 -1983,1123,White female,800,896,1029,1034,968,1037,975,930,768,814,765,931,939,859,719,564,314,257 -1983,1123,Black male,455,508,548,538,451,355,314,242,217,177,191,152,146,160,128,95,37,30 -1983,1123,Black female,498,523,574,546,461,441,374,303,249,219,239,218,221,195,152,152,72,71 -1983,1123,Other races male,2,2,3,1,3,1,2,1,2,2,0,0,2,0,1,1,0,0 -1983,1123,Other races female,4,5,5,2,2,3,5,3,3,2,1,2,2,2,2,1,0,1 -1983,1125,White male,3093,3080,3334,4839,7487,4627,3790,3331,2742,2351,2417,2294,2033,1631,1224,776,410,262 -1983,1125,White female,2926,2805,3166,4944,6919,4323,3654,3323,2717,2519,2441,2397,2265,1935,1682,1296,727,643 -1983,1125,Black male,1772,1709,1761,1884,1911,1476,1133,830,665,607,582,582,502,484,365,273,137,105 -1983,1125,Black female,1756,1751,1715,2138,2424,1829,1347,1059,869,784,841,733,710,702,579,418,221,209 -1983,1125,Other races male,25,25,28,30,80,66,52,33,26,11,9,12,7,7,3,3,0,0 -1983,1125,Other races female,38,25,29,26,63,60,48,30,23,17,13,10,7,8,4,3,1,0 -1983,1127,White male,2248,2326,2703,2561,2542,2514,2299,2117,1854,1627,1565,1567,1332,1181,937,617,339,198 -1983,1127,White female,2230,2177,2465,2477,2527,2464,2339,2156,1887,1577,1676,1763,1639,1555,1380,1007,580,465 -1983,1127,Black male,222,223,232,252,189,164,127,92,76,80,64,71,71,74,66,51,35,28 -1983,1127,Black female,242,215,229,244,229,192,154,124,100,95,98,107,98,95,104,87,55,49 -1983,1127,Other races male,11,6,8,5,9,6,7,3,6,6,5,2,3,1,2,0,1,0 -1983,1127,Other races female,11,8,11,8,6,12,14,12,7,8,7,1,6,5,2,1,3,4 -1983,1129,White male,463,471,540,500,458,455,428,388,362,312,288,261,265,206,182,117,58,40 -1983,1129,White female,443,452,514,471,467,470,417,403,350,314,287,269,250,256,204,170,96,81 -1983,1129,Black male,255,251,285,261,211,172,158,114,78,87,75,84,64,69,60,51,22,19 -1983,1129,Black female,225,246,276,296,212,207,160,143,102,106,90,96,104,91,77,61,34,33 -1983,1129,Other races male,52,52,58,54,35,42,38,31,19,20,9,13,9,6,6,3,1,1 -1983,1129,Other races female,52,46,56,43,44,43,39,27,22,13,19,18,14,9,9,5,3,2 -1983,1131,White male,165,157,181,158,168,171,157,148,127,120,138,136,128,119,88,51,34,15 -1983,1131,White female,163,143,163,141,148,164,152,127,140,133,142,167,158,145,141,105,72,67 -1983,1131,Black male,527,555,670,633,356,317,268,197,142,138,139,159,151,189,161,120,63,47 -1983,1131,Black female,580,540,617,607,439,388,288,240,192,197,209,205,220,243,228,182,100,96 -1983,1131,Other races male,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0 -1983,1131,Other races female,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0 -1983,1133,White male,781,797,960,922,854,836,790,746,660,579,520,553,476,426,308,217,101,60 -1983,1133,White female,769,733,870,874,850,851,796,781,660,599,595,573,573,496,440,309,186,131 -1983,1133,Black male,4,4,2,5,2,2,1,1,1,1,1,1,1,1,1,1,0,0 -1983,1133,Black female,4,4,3,4,3,4,1,1,3,1,1,0,2,1,2,1,1,1 -1983,1133,Other races male,3,2,4,1,1,0,3,2,2,1,1,2,0,0,0,0,0,0 -1983,1133,Other races female,6,3,2,4,3,3,3,2,3,1,3,0,0,1,0,1,0,1 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1984.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1984.csv deleted file mode 100644 index 72bc3c4a92..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1984.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1984",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1984,1001,White male,1008,1026,1202,1103,980,975,955,996,877,789,651,578,468,356,256,150,72,39 -1984,1001,White female,882,912,1018,1067,974,1020,1025,1063,912,741,642,586,492,410,360,275,166,112 -1984,1001,Black male,320,363,372,401,276,249,187,141,130,106,110,102,114,110,84,68,34,18 -1984,1001,Black female,319,352,378,381,348,264,229,186,152,144,142,140,154,139,118,87,59,54 -1984,1001,Other races male,5,7,4,9,5,3,6,3,5,4,1,2,0,1,0,0,0,0 -1984,1001,Other races female,7,7,10,6,4,8,10,12,9,9,11,6,4,1,0,1,0,1 -1984,1003,White male,2617,2651,2913,2849,2560,2735,2676,2614,2307,1957,1803,1873,1951,1746,1412,867,429,233 -1984,1003,White female,2523,2437,2718,2646,2551,2858,2732,2735,2274,1994,1914,2115,2193,1963,1620,1192,714,520 -1984,1003,Black male,642,686,670,653,501,454,359,281,226,206,194,191,177,154,155,102,55,36 -1984,1003,Black female,628,636,662,697,588,538,434,328,281,253,261,226,220,210,201,145,78,70 -1984,1003,Other races male,23,32,30,33,23,19,26,25,17,18,12,15,10,6,4,3,2,1 -1984,1003,Other races female,27,28,35,25,29,34,32,40,22,21,21,16,10,9,5,6,2,2 -1984,1005,White male,477,486,567,530,474,511,507,463,429,367,363,378,378,307,229,164,70,38 -1984,1005,White female,395,448,502,481,474,492,495,489,434,373,378,459,417,392,354,273,167,121 -1984,1005,Black male,526,582,594,562,402,386,340,250,204,160,157,153,178,169,152,115,51,40 -1984,1005,Black female,528,546,556,587,492,483,394,315,253,237,226,231,282,243,238,180,108,83 -1984,1005,Other races male,2,2,2,3,4,2,2,2,3,3,2,2,1,0,1,0,0,0 -1984,1005,Other races female,2,2,4,3,1,4,5,3,4,2,1,2,2,1,1,0,0,1 -1984,1007,White male,428,501,537,523,518,508,443,470,359,346,299,300,265,212,188,134,75,41 -1984,1007,White female,435,436,500,486,491,466,443,444,376,348,302,325,296,297,258,224,129,95 -1984,1007,Black male,176,186,211,195,154,149,103,80,63,47,43,47,52,52,50,41,16,12 -1984,1007,Black female,184,173,205,206,177,149,109,96,71,62,62,79,67,74,69,53,27,29 -1984,1007,Other races male,0,1,3,1,0,1,0,1,2,1,1,0,0,0,0,0,0,0 -1984,1007,Other races female,0,0,0,3,2,0,0,1,2,1,1,0,0,1,1,0,0,0 -1984,1009,White male,1287,1311,1515,1510,1453,1440,1335,1312,1138,986,932,853,814,679,557,380,181,102 -1984,1009,White female,1233,1288,1409,1390,1372,1410,1357,1349,1143,1002,961,939,902,762,750,533,320,221 -1984,1009,Black male,26,24,29,30,23,21,18,13,12,9,10,8,8,11,7,6,3,1 -1984,1009,Black female,26,24,25,29,26,26,20,14,17,13,12,12,11,13,8,8,6,4 -1984,1009,Other races male,2,3,6,3,4,4,4,5,6,3,3,2,1,2,2,0,0,0 -1984,1009,Other races female,5,5,6,7,4,3,5,6,5,5,2,2,2,1,2,1,0,0 -1984,1011,White male,99,94,100,108,133,148,141,137,96,85,80,109,103,88,72,41,21,11 -1984,1011,White female,105,80,89,88,104,98,105,96,85,98,89,120,99,119,90,79,46,35 -1984,1011,Black male,341,379,376,353,265,271,228,190,138,123,100,96,118,131,124,90,49,40 -1984,1011,Black female,370,381,392,393,317,314,256,215,155,156,135,159,179,192,197,145,77,78 -1984,1011,Other races male,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0,0 -1984,1011,Other races female,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0 -1984,1013,White male,451,466,487,474,450,484,465,424,354,347,346,357,388,310,285,178,96,75 -1984,1013,White female,424,452,462,460,439,472,460,421,384,368,361,443,467,436,406,343,224,173 -1984,1013,Black male,453,499,472,430,290,260,253,201,158,140,131,126,143,124,122,115,52,41 -1984,1013,Black female,485,456,499,461,404,382,279,249,189,164,172,171,189,189,181,144,80,73 -1984,1013,Other races male,2,1,1,1,1,0,2,1,2,0,0,1,0,0,0,0,0,0 -1984,1013,Other races female,2,2,3,1,1,1,2,1,0,1,1,0,1,0,1,1,0,1 -1984,1015,White male,3300,3281,3837,4877,5516,4253,3787,3418,2856,2479,2325,2265,2075,1653,1282,800,398,227 -1984,1015,White female,3108,3177,3530,4151,4923,4155,3765,3461,2868,2566,2527,2671,2530,2164,1891,1391,807,600 -1984,1015,Black male,996,957,1015,1323,1341,921,720,538,406,365,332,348,315,264,214,130,64,47 -1984,1015,Black female,1018,932,1041,1238,1458,1035,807,616,471,471,452,441,433,372,322,221,143,100 -1984,1015,Other races male,38,34,42,53,59,37,37,31,20,15,9,9,9,4,3,1,1,1 -1984,1015,Other races female,37,37,35,39,68,57,76,54,55,34,20,16,9,4,5,5,2,1 -1984,1017,White male,759,785,899,870,897,896,874,814,694,661,643,688,712,609,533,347,183,95 -1984,1017,White female,709,805,818,846,886,889,869,788,691,687,689,848,858,827,795,591,365,250 -1984,1017,Black male,668,676,808,728,599,547,409,344,268,229,208,189,192,184,164,126,58,42 -1984,1017,Black female,619,684,717,739,673,599,530,432,324,315,272,298,315,273,249,183,105,90 -1984,1017,Other races male,1,2,1,3,2,2,1,0,1,3,1,0,1,0,0,0,0,0 -1984,1017,Other races female,0,0,3,2,2,5,3,2,3,2,2,2,0,1,0,0,0,0 -1984,1019,White male,587,607,717,700,734,653,642,576,560,478,446,465,449,388,304,195,89,55 -1984,1019,White female,544,569,624,619,679,640,624,612,559,499,477,532,508,441,385,278,165,115 -1984,1019,Black male,70,63,67,71,64,58,51,41,34,27,31,22,22,18,16,11,6,3 -1984,1019,Black female,53,75,73,75,70,60,52,42,38,34,35,22,36,21,27,22,9,7 -1984,1019,Other races male,1,1,4,2,3,1,1,1,0,0,0,1,0,0,0,1,0,0 -1984,1019,Other races female,1,1,4,1,3,3,3,3,2,3,1,1,2,0,0,0,0,1 -1984,1021,White male,993,1010,1072,1079,1115,1098,1003,946,821,733,673,667,613,555,444,294,158,80 -1984,1021,White female,967,925,1089,1007,1087,1076,1018,942,811,755,681,766,727,667,616,488,251,207 -1984,1021,Black male,173,175,183,195,140,124,119,84,75,65,60,72,60,56,47,35,18,13 -1984,1021,Black female,172,189,196,199,151,143,119,101,84,85,79,76,60,73,54,53,27,25 -1984,1021,Other races male,3,3,3,1,1,1,2,1,2,2,3,0,0,0,0,1,1,0 -1984,1021,Other races female,3,3,2,1,2,4,3,5,4,2,2,3,0,2,0,3,0,1 -1984,1023,White male,348,329,387,379,337,336,303,345,278,267,255,242,214,184,159,107,51,35 -1984,1023,White female,315,323,370,368,337,317,329,318,293,272,265,286,255,217,204,164,92,78 -1984,1023,Black male,333,356,401,395,248,258,213,186,134,135,114,123,108,114,106,79,52,33 -1984,1023,Black female,348,386,389,376,323,295,259,213,164,160,133,162,142,143,133,108,71,44 -1984,1023,Other races male,1,2,1,2,1,2,0,0,0,1,0,0,0,0,0,0,0,0 -1984,1023,Other races female,1,1,0,0,0,1,2,0,2,1,1,1,0,1,0,1,0,0 -1984,1025,White male,569,564,628,609,584,606,575,536,489,425,401,371,360,304,281,184,102,71 -1984,1025,White female,540,537,607,584,585,638,552,576,481,444,402,421,429,383,371,277,191,149 -1984,1025,Black male,590,618,684,646,490,431,325,278,205,218,206,177,183,171,150,112,60,45 -1984,1025,Black female,540,619,657,682,544,461,397,311,255,242,241,230,232,213,206,152,85,86 -1984,1025,Other races male,4,4,2,3,2,2,3,1,2,2,1,0,0,0,0,0,0,0 -1984,1025,Other races female,4,3,4,3,0,4,8,1,2,2,3,3,1,0,1,1,1,1 -1984,1027,White male,363,392,446,459,436,394,393,357,318,302,278,286,289,260,230,162,100,64 -1984,1027,White female,353,355,416,435,415,398,384,339,353,310,311,308,353,315,321,247,160,120 -1984,1027,Black male,130,128,129,113,95,72,70,61,50,41,40,28,25,21,19,12,12,5 -1984,1027,Black female,99,122,130,132,111,92,82,67,56,52,42,38,33,37,30,26,16,12 -1984,1027,Other races male,2,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0 -1984,1027,Other races female,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0 -1984,1029,White male,436,447,516,499,500,476,436,431,344,328,290,278,281,225,177,139,64,48 -1984,1029,White female,399,419,453,457,478,463,445,406,360,324,320,305,329,260,264,192,106,90 -1984,1029,Black male,33,30,31,26,26,18,18,15,15,15,10,14,9,10,8,5,4,0 -1984,1029,Black female,31,30,26,38,31,24,20,16,16,16,13,14,11,16,12,7,5,7 -1984,1029,Other races male,1,1,1,1,0,2,1,1,0,1,0,0,0,0,1,1,0,0 -1984,1029,Other races female,1,0,1,1,1,0,2,1,2,1,2,1,1,0,0,0,0,0 -1984,1031,White male,1153,1173,1288,1344,1338,1403,1340,1161,1033,935,839,848,767,617,478,316,160,89 -1984,1031,White female,1054,1063,1194,1237,1274,1335,1291,1211,1083,914,871,923,841,754,653,531,292,253 -1984,1031,Black male,320,318,411,348,279,264,210,188,143,130,121,112,94,90,73,53,40,33 -1984,1031,Black female,301,307,329,366,321,277,284,212,177,160,151,141,127,142,106,101,57,45 -1984,1031,Other races male,11,12,12,18,13,12,11,10,5,9,2,4,4,2,1,1,0,0 -1984,1031,Other races female,11,16,10,10,20,29,31,27,17,20,10,6,6,2,3,1,1,0 -1984,1033,White male,1460,1486,1723,1730,1847,1757,1605,1490,1322,1184,1181,1216,1111,854,655,435,212,123 -1984,1033,White female,1388,1348,1551,1670,1793,1808,1639,1580,1390,1267,1249,1319,1263,1074,947,664,387,302 -1984,1033,Black male,381,387,434,412,323,324,283,230,181,177,148,160,155,128,112,86,47,32 -1984,1033,Black female,408,403,440,425,394,410,341,280,232,216,201,218,191,186,182,121,69,70 -1984,1033,Other races male,6,6,9,11,5,7,8,11,6,7,2,4,1,2,1,1,1,0 -1984,1033,Other races female,10,9,6,4,1,12,11,9,6,3,4,1,3,2,3,1,0,0 -1984,1035,White male,290,284,337,324,326,324,292,280,241,222,238,238,247,214,192,125,77,43 -1984,1035,White female,264,275,304,304,277,323,295,269,227,231,243,258,301,279,260,208,124,101 -1984,1035,Black male,307,321,316,331,240,225,168,139,103,97,97,95,84,100,94,72,48,31 -1984,1035,Black female,307,293,358,325,318,243,214,170,128,124,122,128,144,133,145,109,67,63 -1984,1035,Other races male,1,1,3,2,1,1,1,1,2,1,1,0,4,1,1,0,0,0 -1984,1035,Other races female,1,3,1,2,2,2,1,2,1,2,2,2,0,2,1,0,0,0 -1984,1037,White male,245,219,267,255,291,285,249,249,182,192,204,221,224,180,156,102,46,29 -1984,1037,White female,239,235,252,243,274,260,250,221,199,206,229,229,257,203,184,142,87,55 -1984,1037,Black male,162,202,220,203,182,160,121,97,92,80,79,75,48,59,45,35,27,15 -1984,1037,Black female,147,199,195,202,171,169,114,106,91,100,84,73,85,60,64,53,22,18 -1984,1037,Other races male,1,3,0,1,0,1,0,1,0,2,0,0,0,1,0,0,0,0 -1984,1037,Other races female,0,1,0,0,1,0,3,0,1,2,1,2,1,0,0,0,0,0 -1984,1039,White male,1031,1031,1156,1262,1146,1160,1064,1004,878,830,791,906,858,744,633,418,221,159 -1984,1039,White female,1007,971,1135,1097,1126,1108,1081,1020,960,862,912,1010,1084,989,961,726,439,306 -1984,1039,Black male,206,237,269,269,178,135,133,97,101,74,82,74,77,80,51,49,21,16 -1984,1039,Black female,221,244,274,257,222,195,171,145,115,121,110,115,112,102,102,80,40,33 -1984,1039,Other races male,0,3,4,5,3,6,6,4,4,2,2,2,0,0,2,0,0,0 -1984,1039,Other races female,6,3,5,5,3,4,6,7,5,2,3,1,0,1,2,1,1,0 -1984,1041,White male,369,372,374,392,376,332,357,318,269,274,228,259,273,260,227,138,73,51 -1984,1041,White female,307,323,360,345,332,374,338,312,287,253,270,337,339,334,298,238,146,113 -1984,1041,Black male,171,151,188,191,134,119,87,80,60,63,62,68,68,57,53,37,21,23 -1984,1041,Black female,155,175,183,190,174,134,124,94,96,73,86,76,79,92,84,89,32,41 -1984,1041,Other races male,1,4,2,1,1,0,0,1,1,1,1,1,0,0,1,0,0,0 -1984,1041,Other races female,0,1,2,2,1,2,3,0,2,1,1,1,2,0,1,1,0,1 -1984,1043,White male,2238,2276,2598,2559,2603,2451,2341,2136,1856,1685,1563,1582,1548,1269,1012,702,343,217 -1984,1043,White female,2178,2223,2422,2458,2472,2481,2337,2201,1965,1713,1693,1785,1716,1544,1350,1042,620,480 -1984,1043,Black male,24,26,36,33,28,18,16,15,13,11,15,5,12,6,3,8,4,1 -1984,1043,Black female,20,20,24,32,24,17,21,14,15,15,13,10,7,9,10,7,3,6 -1984,1043,Other races male,7,7,8,9,4,6,7,7,6,4,6,3,2,5,2,3,0,0 -1984,1043,Other races female,3,8,8,9,4,14,9,10,8,8,9,5,3,1,1,1,1,1 -1984,1045,White male,1684,1524,1479,1767,2726,2415,1817,1350,1090,922,810,795,676,531,405,239,135,83 -1984,1045,White female,1604,1407,1380,1401,1906,1870,1560,1270,1072,891,835,829,723,611,535,436,282,234 -1984,1045,Black male,442,427,377,428,673,475,308,212,138,117,101,95,77,84,62,44,30,20 -1984,1045,Black female,467,414,391,381,490,428,306,232,167,139,130,122,111,111,98,72,34,31 -1984,1045,Other races male,31,36,29,36,53,36,33,17,14,11,5,5,4,2,2,1,0,2 -1984,1045,Other races female,39,28,37,21,70,85,60,48,36,35,27,19,16,5,4,2,0,0 -1984,1047,White male,786,779,873,905,846,894,842,788,698,605,616,607,598,452,384,238,116,62 -1984,1047,White female,786,799,842,842,910,928,868,820,704,645,658,744,674,649,566,451,270,243 -1984,1047,Black male,1456,1555,1680,1679,1201,951,792,606,531,462,439,398,415,401,359,273,142,113 -1984,1047,Black female,1447,1491,1628,1706,1415,1259,1077,827,714,661,642,624,594,659,521,462,260,260 -1984,1047,Other races male,5,6,5,8,4,3,10,9,5,1,6,2,0,2,1,0,0,0 -1984,1047,Other races female,7,6,4,6,3,8,10,7,4,4,3,3,2,3,0,3,1,1 -1984,1049,White male,1896,1987,2176,2080,2107,2049,1918,1785,1503,1399,1242,1258,1237,1017,848,596,312,181 -1984,1049,White female,1749,1825,2075,1978,2094,2052,1980,1804,1606,1409,1358,1470,1404,1352,1212,961,535,413 -1984,1049,Black male,35,51,48,51,43,33,37,27,23,21,16,18,8,10,13,7,4,3 -1984,1049,Black female,47,38,55,46,46,45,36,36,26,20,18,24,14,19,23,12,8,4 -1984,1049,Other races male,10,16,21,18,13,9,9,12,10,8,6,4,2,4,1,1,0,0 -1984,1049,Other races female,8,19,30,13,8,9,18,17,13,10,5,3,4,5,1,3,0,1 -1984,1051,White male,1234,1264,1356,1341,1393,1474,1403,1320,1175,989,930,899,800,649,486,326,163,94 -1984,1051,White female,1121,1179,1306,1221,1299,1396,1390,1271,1141,917,932,927,880,736,677,510,314,278 -1984,1051,Black male,445,444,499,557,683,578,430,304,204,160,131,136,125,114,114,84,37,29 -1984,1051,Black female,414,453,524,515,482,454,361,270,208,191,167,192,166,173,138,107,66,66 -1984,1051,Other races male,6,7,6,8,10,8,8,6,6,6,3,2,0,1,1,1,0,1 -1984,1051,Other races female,4,5,6,4,9,9,10,13,9,5,6,3,2,1,1,2,0,0 -1984,1053,White male,891,902,1015,1031,1025,1018,999,910,828,673,673,654,601,476,404,249,138,93 -1984,1053,White female,816,865,900,1005,921,936,904,916,796,719,696,715,703,632,582,446,275,201 -1984,1053,Black male,479,529,527,567,542,580,480,327,222,210,164,175,146,167,122,112,44,36 -1984,1053,Black female,484,487,531,534,433,432,352,286,232,234,221,214,230,217,190,163,96,96 -1984,1053,Other races male,60,53,67,64,53,39,42,29,28,17,18,10,14,12,13,5,4,1 -1984,1053,Other races female,46,44,51,54,42,38,38,33,24,19,22,16,21,15,12,9,6,4 -1984,1055,White male,2903,3064,3398,3390,3424,3359,3170,3016,2526,2220,2203,2300,2187,1871,1459,967,435,230 -1984,1055,White female,2743,2862,3244,3224,3446,3370,3221,3020,2742,2381,2440,2676,2724,2425,2165,1601,957,682 -1984,1055,Black male,612,638,688,700,577,510,438,315,252,216,250,263,263,219,171,128,55,39 -1984,1055,Black female,642,599,695,663,696,617,527,390,344,325,345,362,345,315,269,174,100,69 -1984,1055,Other races male,10,16,12,28,55,25,11,16,8,11,6,6,4,4,2,3,0,0 -1984,1055,Other races female,12,13,20,32,38,21,20,19,14,9,9,9,6,4,1,4,3,1 -1984,1057,White male,575,584,667,667,626,631,585,561,498,435,395,412,398,350,301,212,110,63 -1984,1057,White female,564,595,629,656,622,610,582,580,500,429,444,459,466,443,424,314,209,153 -1984,1057,Black male,107,106,115,121,93,88,65,55,46,48,45,48,42,42,42,31,16,9 -1984,1057,Black female,95,98,131,109,111,95,84,61,55,57,58,55,58,56,57,43,24,21 -1984,1057,Other races male,1,1,2,1,1,1,0,0,0,1,0,1,0,0,0,0,0,0 -1984,1057,Other races female,1,1,1,0,1,1,2,1,3,2,1,0,1,1,0,1,0,0 -1984,1059,White male,964,986,1076,1055,1118,1006,952,908,788,721,703,681,643,564,444,308,160,107 -1984,1059,White female,904,882,1035,1006,1047,1085,991,941,839,760,730,763,799,668,679,504,316,234 -1984,1059,Black male,64,57,64,66,55,45,42,32,30,29,24,26,21,19,21,8,7,3 -1984,1059,Black female,48,56,52,61,63,64,40,43,30,33,31,36,29,31,21,23,13,8 -1984,1059,Other races male,5,2,4,3,1,2,4,3,3,3,0,1,2,0,1,0,0,0 -1984,1059,Other races female,2,3,2,3,1,6,2,2,4,1,2,2,0,1,1,1,1,0 -1984,1061,White male,693,712,855,830,790,753,718,686,584,559,513,543,544,477,405,261,151,68 -1984,1061,White female,665,688,753,743,753,744,698,710,636,543,575,579,620,588,538,439,244,182 -1984,1061,Black male,141,163,165,164,107,104,82,57,49,49,44,57,48,39,44,24,15,10 -1984,1061,Black female,148,149,161,154,133,120,104,70,79,61,68,64,68,53,59,43,30,20 -1984,1061,Other races male,3,3,3,6,5,1,3,2,4,2,4,4,2,2,1,1,2,0 -1984,1061,Other races female,4,5,4,6,4,3,3,4,4,5,4,5,5,3,3,1,1,1 -1984,1063,White male,60,63,68,71,81,91,71,69,68,72,69,74,71,63,55,37,17,6 -1984,1063,White female,58,49,61,66,75,76,70,66,73,69,73,70,91,76,75,63,44,41 -1984,1063,Black male,420,450,484,452,282,284,204,176,132,132,137,123,134,139,142,123,61,45 -1984,1063,Black female,390,436,493,459,376,348,297,237,193,175,173,178,189,198,233,156,103,84 -1984,1063,Other races male,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0 -1984,1063,Other races female,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0 -1984,1065,White male,197,182,208,214,196,210,214,208,163,161,145,174,156,137,112,76,48,36 -1984,1065,White female,188,176,195,206,186,219,205,187,163,157,168,179,192,174,176,127,96,83 -1984,1065,Black male,483,466,532,533,338,285,237,191,148,137,138,131,149,169,132,137,70,49 -1984,1065,Black female,462,442,498,510,438,382,298,240,191,175,203,192,216,212,204,162,109,97 -1984,1065,Other races male,1,2,2,1,2,0,0,1,0,0,1,1,0,1,0,0,0,0 -1984,1065,Other races female,2,1,0,2,2,3,2,1,1,0,1,1,1,0,1,1,0,0 -1984,1067,White male,306,306,376,319,320,351,343,329,273,236,247,274,266,249,179,141,62,34 -1984,1067,White female,321,308,326,314,325,353,332,339,279,259,255,308,301,307,275,203,121,80 -1984,1067,Black male,246,281,287,275,210,201,184,133,124,93,96,88,83,82,73,54,27,18 -1984,1067,Black female,255,271,294,291,247,251,168,174,128,133,129,119,127,116,111,91,54,37 -1984,1067,Other races male,2,1,3,2,1,1,1,3,1,1,0,0,0,0,0,0,0,0 -1984,1067,Other races female,1,1,2,0,1,2,2,1,1,0,0,0,0,1,0,1,0,0 -1984,1069,White male,2176,2185,2305,2236,2274,2492,2419,2239,1835,1602,1482,1410,1288,1029,799,475,247,138 -1984,1069,White female,2094,1988,2184,2175,2418,2621,2435,2275,1941,1668,1559,1551,1494,1321,1118,894,537,406 -1984,1069,Black male,893,907,939,860,670,635,546,443,343,307,292,256,263,223,198,117,60,47 -1984,1069,Black female,867,877,937,887,855,818,674,551,431,421,378,350,369,329,302,230,112,92 -1984,1069,Other races male,30,36,40,28,21,30,26,26,19,12,11,8,8,3,1,2,0,0 -1984,1069,Other races female,24,30,30,23,24,34,28,24,24,21,11,12,5,9,2,6,0,0 -1984,1071,White male,1738,1762,2009,1906,1976,1996,1854,1727,1474,1271,1190,1084,1003,817,600,443,191,106 -1984,1071,White female,1738,1753,1878,1874,1961,2026,1867,1749,1487,1325,1204,1222,1161,993,866,658,347,257 -1984,1071,Black male,96,101,96,104,83,91,62,58,38,34,41,37,29,51,23,23,10,5 -1984,1071,Black female,80,90,93,99,94,90,84,66,58,44,51,52,48,42,53,24,12,15 -1984,1071,Other races male,16,39,54,32,15,16,17,25,23,17,8,7,3,4,2,1,1,1 -1984,1071,Other races female,18,32,61,30,17,19,25,32,28,12,9,11,5,6,3,2,1,0 -1984,1073,White male,13938,13098,14474,14682,18904,20339,17388,15411,12579,10979,10838,11045,10205,7967,6271,4131,2124,1261 -1984,1073,White female,13323,12599,13693,14502,19824,20413,17472,16118,13485,12000,12140,12867,12305,10747,9714,7625,4856,3884 -1984,1073,Black male,9880,9616,10138,9946,9625,9240,7601,5852,4579,3891,3792,3792,3649,3415,2842,2139,1021,716 -1984,1073,Black female,9818,9382,10024,10146,11547,11236,9414,7388,5821,5191,5345,5231,5118,4842,4324,3332,1896,1547 -1984,1073,Other races male,119,104,118,101,157,188,177,149,93,90,52,34,35,17,15,13,4,5 -1984,1073,Other races female,136,111,100,103,151,198,199,145,105,86,60,47,31,33,27,15,13,4 -1984,1075,White male,499,516,579,555,542,536,485,477,432,398,336,347,345,293,283,179,106,63 -1984,1075,White female,494,490,540,530,541,513,501,462,440,384,392,403,405,360,366,298,158,122 -1984,1075,Black male,90,97,101,110,75,71,59,44,37,38,33,38,31,28,21,18,15,9 -1984,1075,Black female,81,98,97,89,93,83,69,45,51,35,52,41,39,46,36,33,17,14 -1984,1075,Other races male,0,2,0,0,1,1,1,1,1,0,1,0,0,0,1,0,0,1 -1984,1075,Other races female,1,1,1,1,1,2,1,2,1,1,1,0,1,0,1,0,0,1 -1984,1077,White male,2410,2376,2794,2976,3445,2881,2661,2564,2091,1942,1751,1769,1658,1312,1046,658,339,205 -1984,1077,White female,2258,2352,2634,3076,3462,2926,2745,2552,2249,2000,1917,2004,1925,1617,1533,1073,702,539 -1984,1077,Black male,357,345,387,400,379,289,209,199,128,137,112,127,122,104,101,63,43,34 -1984,1077,Black female,334,337,382,435,449,343,287,240,190,178,172,168,182,155,148,100,72,55 -1984,1077,Other races male,12,9,8,13,10,13,11,14,10,7,10,5,3,1,2,1,0,0 -1984,1077,Other races female,12,14,13,12,12,12,17,14,14,12,12,6,5,3,2,1,1,1 -1984,1079,White male,964,937,1039,1064,1050,1076,928,896,769,671,645,600,564,449,378,232,106,67 -1984,1079,White female,893,865,1020,1010,1070,1057,907,887,742,684,624,638,617,561,482,347,190,156 -1984,1079,Black male,237,264,298,292,207,201,144,129,89,69,75,69,62,71,68,48,23,20 -1984,1079,Black female,251,251,275,254,245,216,182,150,105,102,96,87,88,98,79,60,42,37 -1984,1079,Other races male,29,72,96,64,19,15,36,41,34,15,10,5,5,3,1,1,1,0 -1984,1079,Other races female,29,69,97,50,18,33,59,52,30,18,12,7,4,2,3,2,0,1 -1984,1081,White male,1645,1608,1776,3628,7785,2810,2026,1844,1481,1305,1071,1079,903,692,508,324,154,90 -1984,1081,White female,1598,1511,1736,3665,6212,2391,1969,1811,1443,1271,1104,1127,1021,832,712,533,326,253 -1984,1081,Black male,890,824,959,979,972,788,647,486,426,351,306,289,254,253,166,132,71,49 -1984,1081,Black female,867,842,905,961,1043,938,719,607,474,454,418,394,394,348,332,226,135,121 -1984,1081,Other races male,46,28,29,39,101,114,76,49,24,19,13,9,4,3,4,1,1,0 -1984,1081,Other races female,43,25,25,41,65,78,60,38,24,15,16,11,7,6,5,2,0,0 -1984,1083,White male,1526,1479,1665,1660,1798,1849,1630,1479,1310,1142,1007,1001,818,673,515,328,173,94 -1984,1083,White female,1430,1382,1623,1563,1773,1762,1633,1462,1315,1133,1033,1047,943,856,738,582,332,251 -1984,1083,Black male,284,277,326,320,334,362,275,205,145,124,115,105,105,81,77,63,30,24 -1984,1083,Black female,264,258,301,334,313,286,239,172,154,138,145,136,136,101,120,77,45,47 -1984,1083,Other races male,6,5,13,9,8,7,9,5,11,10,3,4,2,1,0,0,0,0 -1984,1083,Other races female,5,8,4,10,6,6,6,10,7,4,4,4,2,1,2,1,0,0 -1984,1085,White male,113,101,99,104,113,124,123,105,94,93,94,96,88,68,52,38,17,14 -1984,1085,White female,104,98,107,101,110,134,105,109,88,101,98,110,96,87,86,67,44,34 -1984,1085,Black male,522,536,564,610,370,321,226,192,147,126,125,113,129,125,124,90,55,38 -1984,1085,Black female,499,516,562,575,466,394,299,251,219,181,178,190,174,180,159,126,73,68 -1984,1085,Other races male,1,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0 -1984,1085,Other races female,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0 -1984,1087,White male,97,113,115,121,153,140,136,134,107,103,111,136,146,118,100,64,45,33 -1984,1087,White female,102,96,106,110,127,137,123,121,94,91,93,102,124,106,115,80,49,38 -1984,1087,Black male,801,828,901,1333,1379,738,568,457,355,326,307,421,390,391,319,232,131,114 -1984,1087,Black female,817,847,916,1410,1524,861,680,572,494,418,449,476,458,482,466,357,194,193 -1984,1087,Other races male,5,4,4,3,8,10,9,5,3,4,2,1,2,2,2,0,0,1 -1984,1087,Other races female,7,2,3,4,7,9,5,2,1,3,1,2,2,2,1,1,0,0 -1984,1089,White male,5659,5445,6144,6612,7493,8326,7148,6156,5477,5155,4573,4504,3345,2401,1643,973,458,260 -1984,1089,White female,5401,5190,5871,6115,7282,7826,6861,6390,5705,5140,4741,4572,3642,2886,2268,1639,1021,784 -1984,1089,Black male,1872,1865,1961,2361,2893,2128,1657,1176,892,785,565,509,414,332,282,177,101,96 -1984,1089,Black female,1859,1808,1938,2581,3076,2217,1841,1362,1075,838,719,654,536,484,392,290,158,153 -1984,1089,Other races male,141,154,194,144,155,196,190,139,116,95,58,42,22,16,11,3,4,1 -1984,1089,Other races female,160,145,192,129,133,191,228,208,154,110,84,52,38,18,16,8,4,2 -1984,1091,White male,396,409,444,456,425,442,414,417,356,342,328,310,286,234,182,115,66,40 -1984,1091,White female,376,374,438,422,428,432,412,403,377,351,337,331,338,272,271,202,117,102 -1984,1091,Black male,638,619,740,681,459,415,330,259,215,194,201,200,199,198,208,172,86,69 -1984,1091,Black female,590,624,683,642,570,473,420,340,267,255,268,292,298,308,282,241,142,136 -1984,1091,Other races male,2,0,1,1,1,1,0,1,0,2,0,0,1,1,0,0,0,0 -1984,1091,Other races female,1,1,1,0,1,0,3,3,1,0,2,2,0,0,0,0,1,0 -1984,1093,White male,1040,1082,1209,1205,1200,1196,1049,997,888,769,761,730,690,595,500,346,180,123 -1984,1093,White female,980,1046,1154,1150,1175,1086,1070,1002,929,793,809,774,815,761,682,543,315,229 -1984,1093,Black male,31,35,40,42,41,41,38,34,21,20,12,12,14,16,13,10,5,4 -1984,1093,Black female,33,35,35,36,40,31,29,21,26,19,19,10,16,15,11,12,6,7 -1984,1093,Other races male,5,6,2,5,2,0,3,3,3,2,3,2,1,1,0,0,0,0 -1984,1093,Other races female,3,5,4,2,3,5,3,4,3,2,1,3,0,0,4,1,0,0 -1984,1095,White male,2259,2403,2687,2736,2677,2678,2409,2289,1969,1761,1689,1647,1611,1242,1003,665,349,214 -1984,1095,White female,2227,2299,2501,2576,2667,2712,2514,2422,2090,1907,1822,1888,1867,1555,1475,1076,652,471 -1984,1095,Black male,50,48,50,60,59,39,31,34,22,17,18,17,16,16,12,7,6,4 -1984,1095,Black female,34,44,52,47,45,50,34,36,22,26,23,26,23,19,20,12,9,9 -1984,1095,Other races male,7,7,6,7,5,6,8,14,7,10,4,4,3,1,1,1,0,1 -1984,1095,Other races female,7,8,12,12,10,9,13,11,9,8,7,6,4,4,2,2,0,0 -1984,1097,White male,9715,9194,9708,9869,11590,11646,10414,9267,7630,6356,5993,5957,5374,4309,3327,2034,998,568 -1984,1097,White female,9186,8583,9371,9725,12114,11483,10365,9299,7764,6599,6389,6686,6337,5566,4692,3519,2112,1620 -1984,1097,Black male,6064,5649,6099,5779,5012,4603,3645,2806,2288,2017,1977,2040,1745,1555,1195,847,393,232 -1984,1097,Black female,5908,5553,5958,5991,6035,5534,4688,3652,3032,2721,2635,2595,2347,2169,1787,1272,725,589 -1984,1097,Other races male,171,177,203,196,226,173,162,133,104,86,60,45,35,21,17,13,6,3 -1984,1097,Other races female,163,175,191,167,189,182,189,164,114,89,65,58,40,33,29,21,8,5 -1984,1099,White male,470,480,520,515,480,508,493,467,405,361,335,322,317,269,194,165,78,57 -1984,1099,White female,475,466,498,507,453,513,470,511,383,361,323,352,362,327,309,233,153,136 -1984,1099,Black male,483,527,577,534,366,334,267,206,167,146,157,126,145,133,113,97,42,37 -1984,1099,Black female,477,498,530,527,412,378,296,265,185,180,192,173,195,176,163,138,73,81 -1984,1099,Other races male,7,11,11,11,14,6,7,8,6,3,5,4,5,2,2,1,0,0 -1984,1099,Other races female,7,8,9,8,7,10,8,5,5,6,5,4,4,4,2,2,1,0 -1984,1101,White male,4013,3991,4107,4244,5184,5488,4954,4758,3774,3201,2938,2906,2631,1965,1494,938,451,276 -1984,1101,White female,3836,3761,3880,4151,5285,5440,5004,4747,3830,3320,3155,3431,3137,2810,2353,1861,1217,1067 -1984,1101,Black male,4016,3967,3956,4270,4038,3296,2737,2051,1607,1340,1191,1204,1045,937,746,538,266,189 -1984,1101,Black female,3909,3909,3945,4456,4897,4146,3270,2589,2021,1769,1640,1606,1447,1402,1224,919,512,492 -1984,1101,Other races male,46,64,70,56,62,50,64,47,47,37,17,14,10,9,5,3,2,2 -1984,1101,Other races female,51,67,75,52,69,73,104,79,69,39,34,24,17,9,8,6,3,1 -1984,1103,White male,2948,2995,3443,3322,3306,3613,3325,3152,2632,2297,2111,2004,1798,1329,1083,641,345,185 -1984,1103,White female,2870,2772,3224,3110,3326,3594,3381,3226,2719,2321,2212,2171,2032,1689,1504,1080,659,497 -1984,1103,Black male,486,463,495,412,378,368,309,228,182,147,133,131,129,122,99,73,36,24 -1984,1103,Black female,471,436,491,461,452,446,365,283,219,185,187,171,179,159,149,126,58,53 -1984,1103,Other races male,12,17,21,12,12,16,19,22,17,12,10,4,4,3,4,2,0,1 -1984,1103,Other races female,18,17,22,15,15,16,19,25,17,13,8,9,6,7,4,1,0,1 -1984,1105,White male,153,165,170,342,240,191,173,154,142,159,132,145,141,123,121,81,47,26 -1984,1105,White female,165,131,167,302,283,169,152,163,141,150,158,162,174,163,171,134,80,62 -1984,1105,Black male,469,493,522,514,310,257,223,158,155,124,144,128,132,140,148,119,64,49 -1984,1105,Black female,455,484,504,509,368,349,262,230,205,173,207,186,201,209,201,148,101,100 -1984,1105,Other races male,0,2,1,3,1,0,0,0,1,0,0,0,0,0,0,0,0,0 -1984,1105,Other races female,1,1,1,2,2,1,1,0,1,1,1,1,0,0,0,0,0,0 -1984,1107,White male,415,396,473,466,481,458,447,412,374,336,347,359,371,279,246,163,81,63 -1984,1107,White female,381,373,433,438,430,422,432,396,393,354,388,370,400,343,336,258,176,141 -1984,1107,Black male,444,453,510,436,346,290,222,169,145,143,132,152,135,154,126,103,68,43 -1984,1107,Black female,480,477,529,496,395,355,300,235,199,182,195,201,196,195,177,152,90,90 -1984,1107,Other races male,2,1,1,3,0,1,2,1,2,1,0,1,0,1,0,0,0,0 -1984,1107,Other races female,2,2,2,0,0,3,4,3,2,2,2,0,1,2,1,2,0,0 -1984,1109,White male,514,522,573,883,1344,645,555,529,452,396,390,410,386,335,299,202,100,63 -1984,1109,White female,473,474,554,938,1234,606,549,545,467,436,394,472,460,455,425,342,218,195 -1984,1109,Black male,430,453,453,552,451,303,232,185,153,142,127,139,124,184,121,91,45,38 -1984,1109,Black female,415,446,485,584,603,390,334,251,218,192,181,199,205,227,207,167,103,80 -1984,1109,Other races male,5,5,8,11,10,6,3,2,2,4,1,3,2,1,0,0,0,1 -1984,1109,Other races female,3,5,8,9,13,8,5,4,5,4,2,3,4,2,2,1,0,0 -1984,1111,White male,504,546,574,553,592,550,525,476,412,382,398,390,410,361,297,196,103,72 -1984,1111,White female,451,467,560,549,553,555,502,475,432,405,412,473,504,447,410,352,215,153 -1984,1111,Black male,235,259,257,261,201,166,149,111,94,72,85,72,80,76,57,46,21,17 -1984,1111,Black female,228,231,251,235,215,217,164,139,113,96,96,96,98,100,89,67,46,34 -1984,1111,Other races male,1,4,2,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0 -1984,1111,Other races female,0,1,0,3,1,2,3,2,2,2,1,0,1,0,0,0,0,0 -1984,1113,White male,1045,971,1025,1043,1271,1248,1101,951,817,761,757,744,698,526,372,222,99,61 -1984,1113,White female,984,910,931,1012,1264,1263,1056,981,862,805,807,859,804,657,576,420,216,156 -1984,1113,Black male,792,831,925,947,755,651,544,437,380,359,366,336,286,289,229,145,66,51 -1984,1113,Black female,743,790,874,923,860,759,665,543,479,464,463,422,442,398,346,238,128,111 -1984,1113,Other races male,7,5,4,4,3,6,6,9,6,6,3,3,1,1,2,0,0,0 -1984,1113,Other races female,7,5,2,3,8,8,11,10,11,5,5,5,4,2,3,1,0,1 -1984,1115,White male,1623,1546,1671,1553,1554,1702,1617,1515,1261,1106,973,945,881,681,553,315,173,104 -1984,1115,White female,1453,1387,1547,1496,1600,1658,1552,1479,1234,1087,1005,1012,1001,799,707,496,293,235 -1984,1115,Black male,183,187,209,210,177,212,193,133,119,88,77,67,72,59,41,38,18,15 -1984,1115,Black female,180,196,209,214,191,181,143,115,90,103,84,90,91,76,59,48,31,18 -1984,1115,Other races male,3,6,8,4,6,6,10,8,4,6,5,3,1,1,1,1,0,0 -1984,1115,Other races female,5,5,9,2,3,7,12,5,5,6,2,2,3,0,3,1,1,0 -1984,1117,White male,2932,2716,2684,2532,2745,3303,3372,3130,2391,1818,1529,1351,1108,868,624,401,187,113 -1984,1117,White female,2782,2546,2559,2551,3165,3508,3446,3083,2325,1757,1476,1398,1181,1008,818,622,336,263 -1984,1117,Black male,315,334,392,349,336,279,236,177,131,124,103,101,83,68,78,48,33,21 -1984,1117,Black female,328,308,356,383,396,322,263,213,169,141,142,111,116,110,101,92,38,34 -1984,1117,Other races male,18,22,13,23,17,22,29,25,18,11,12,7,6,4,2,0,0,1 -1984,1117,Other races female,28,22,24,20,21,20,31,26,19,12,14,11,5,5,3,0,1,0 -1984,1119,White male,164,149,149,231,359,217,176,157,126,112,122,134,122,117,103,70,34,17 -1984,1119,White female,155,143,132,212,317,190,148,160,129,113,137,133,146,146,146,106,70,60 -1984,1119,Black male,586,598,649,660,517,396,307,250,173,160,162,168,182,181,184,150,83,65 -1984,1119,Black female,578,567,651,687,600,458,384,303,235,223,247,283,262,272,252,194,131,99 -1984,1119,Other races male,0,2,1,1,5,1,1,0,1,1,0,1,0,0,0,1,0,0 -1984,1119,Other races female,1,0,1,2,0,1,2,2,3,2,2,0,0,1,1,0,0,0 -1984,1121,White male,1779,1856,2093,2098,2020,2052,1870,1836,1532,1405,1292,1344,1231,1069,811,527,236,131 -1984,1121,White female,1711,1760,2031,1926,2106,1975,1896,1782,1544,1404,1471,1531,1523,1337,1173,859,479,297 -1984,1121,Black male,1100,1218,1340,1282,1021,832,724,597,498,429,363,350,319,293,220,160,72,44 -1984,1121,Black female,1089,1165,1281,1381,1235,955,847,661,540,490,443,465,411,373,312,237,129,115 -1984,1121,Other races male,9,8,6,9,7,8,8,7,10,10,3,5,0,3,0,1,0,0 -1984,1121,Other races female,6,9,10,6,11,9,12,7,6,8,3,3,2,3,2,0,0,0 -1984,1123,White male,912,923,1092,1038,1012,1078,968,959,782,719,714,769,771,649,528,357,179,106 -1984,1123,White female,795,881,1003,1011,971,1039,977,958,792,819,758,918,936,857,736,591,329,262 -1984,1123,Black male,442,496,539,524,445,357,316,256,219,178,188,154,147,154,125,94,38,30 -1984,1123,Black female,487,513,562,538,463,444,378,320,255,220,231,216,226,194,150,153,74,74 -1984,1123,Other races male,2,2,3,1,3,1,2,2,2,2,0,0,2,0,1,1,0,0 -1984,1123,Other races female,4,5,5,2,2,3,6,3,4,2,1,2,2,2,2,1,0,1 -1984,1125,White male,3086,3069,3265,4748,7527,4656,3832,3474,2840,2389,2379,2283,2077,1678,1247,807,425,272 -1984,1125,White female,2906,2803,3105,4862,6978,4336,3692,3465,2822,2535,2399,2412,2316,1957,1706,1345,770,669 -1984,1125,Black male,1723,1715,1757,1841,1893,1467,1143,911,686,611,576,576,498,482,362,280,137,109 -1984,1125,Black female,1703,1740,1710,2108,2399,1819,1394,1155,887,782,827,734,715,688,577,429,231,216 -1984,1125,Other races male,28,27,30,33,95,79,58,36,28,14,11,12,7,8,3,3,0,0 -1984,1125,Other races female,39,26,33,29,71,67,52,35,25,20,13,12,8,8,4,3,1,0 -1984,1127,White male,2206,2292,2628,2506,2538,2528,2301,2176,1895,1657,1564,1575,1354,1193,938,629,342,204 -1984,1127,White female,2169,2156,2419,2420,2504,2472,2349,2219,1937,1611,1667,1745,1659,1562,1384,1042,618,477 -1984,1127,Black male,215,223,232,240,184,160,131,99,77,82,65,70,70,71,65,50,33,27 -1984,1127,Black female,228,218,229,234,220,197,161,134,100,94,96,104,96,94,100,86,57,51 -1984,1127,Other races male,10,6,8,5,9,6,7,4,6,6,5,2,3,1,2,0,1,0 -1984,1127,Other races female,10,8,11,8,6,11,14,12,8,8,7,2,6,5,2,1,2,4 -1984,1129,White male,447,458,519,475,448,447,423,387,360,311,284,263,259,202,183,117,59,40 -1984,1129,White female,421,443,490,450,451,463,411,403,350,314,282,270,251,249,205,173,99,80 -1984,1129,Black male,244,252,279,250,204,169,160,117,82,86,74,83,63,67,57,50,22,18 -1984,1129,Black female,214,243,264,278,210,209,164,147,104,106,88,93,98,88,76,60,35,33 -1984,1129,Other races male,49,52,59,53,36,44,36,32,20,21,10,12,9,6,6,3,1,1 -1984,1129,Other races female,52,50,57,42,43,41,40,30,23,13,18,18,13,9,10,6,3,2 -1984,1131,White male,160,149,172,154,165,165,154,153,127,121,134,129,129,118,86,53,34,16 -1984,1131,White female,154,137,157,135,144,160,148,128,139,131,137,165,158,148,140,105,72,66 -1984,1131,Black male,502,550,652,602,350,317,267,205,145,139,136,152,145,180,155,120,66,49 -1984,1131,Black female,547,531,611,580,427,387,293,252,193,197,204,200,216,232,225,182,102,96 -1984,1131,Other races male,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0 -1984,1131,Other races female,1,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0 -1984,1133,White male,777,799,941,908,870,863,805,767,682,600,533,565,490,434,318,226,107,66 -1984,1133,White female,766,739,854,860,864,873,798,802,690,621,596,582,591,505,451,328,199,137 -1984,1133,Black male,4,4,2,4,2,2,1,1,1,1,1,1,1,1,1,1,0,0 -1984,1133,Black female,3,4,3,4,2,4,1,1,3,1,1,0,2,1,2,1,1,1 -1984,1133,Other races male,3,2,4,1,1,0,3,2,2,1,1,2,0,0,0,0,0,0 -1984,1133,Other races female,6,3,2,4,3,3,3,2,3,1,3,0,0,1,0,1,0,1 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1985.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1985.csv deleted file mode 100644 index bb819d57c7..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1985.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1985",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1985,1001,White male,1012,1038,1171,1085,966,1002,983,1010,884,784,665,593,474,362,257,157,77,39 -1985,1001,White female,892,923,991,1050,954,1045,1053,1074,920,747,662,597,499,411,366,280,175,119 -1985,1001,Black male,309,358,364,391,268,248,194,149,129,107,109,99,110,106,81,66,35,17 -1985,1001,Black female,310,351,367,372,340,268,238,197,155,141,137,138,152,135,117,85,61,55 -1985,1001,Other races male,5,7,4,9,6,3,6,4,6,4,2,3,1,1,0,0,0,0 -1985,1001,Other races female,8,7,10,7,4,7,11,13,9,9,11,7,5,1,1,1,0,0 -1985,1003,White male,2672,2734,2920,2890,2560,2825,2792,2756,2426,2033,1870,1943,2022,1842,1465,919,459,248 -1985,1003,White female,2572,2513,2720,2679,2560,2963,2872,2889,2390,2089,1981,2157,2283,2046,1694,1254,782,549 -1985,1003,Black male,632,697,676,648,493,461,377,305,233,204,193,193,179,152,152,105,59,39 -1985,1003,Black female,623,647,660,689,583,555,460,354,283,261,266,228,222,206,204,149,82,70 -1985,1003,Other races male,20,33,31,34,24,20,27,26,17,19,13,18,10,6,4,3,2,0 -1985,1003,Other races female,27,30,37,26,30,35,35,44,24,21,23,17,11,10,6,6,3,2 -1985,1005,White male,470,485,550,531,468,521,511,481,443,368,358,375,375,310,230,171,74,39 -1985,1005,White female,394,454,488,477,472,504,494,500,447,373,374,445,414,395,354,277,176,123 -1985,1005,Black male,519,593,586,549,400,389,346,268,212,165,154,152,171,163,149,115,55,38 -1985,1005,Black female,520,561,550,568,485,485,397,336,266,241,219,225,276,234,237,181,113,85 -1985,1005,Other races male,2,3,2,3,5,3,2,3,3,4,3,2,0,0,0,1,0,0 -1985,1005,Other races female,3,2,5,2,2,3,5,3,4,3,2,3,1,1,1,0,1,0 -1985,1007,White male,429,504,525,527,519,513,453,474,372,357,297,302,269,212,181,136,76,42 -1985,1007,White female,430,438,487,491,493,475,452,454,384,357,305,323,296,294,257,228,133,98 -1985,1007,Black male,169,190,208,189,152,144,106,86,65,50,43,45,51,51,47,40,17,13 -1985,1007,Black female,180,174,204,198,172,151,112,102,73,63,59,75,67,72,68,52,28,30 -1985,1007,Other races male,0,1,4,2,0,0,0,2,2,0,0,1,1,0,0,1,0,0 -1985,1007,Other races female,0,0,1,3,1,1,0,0,3,1,2,0,0,0,0,1,0,0 -1985,1009,White male,1301,1325,1485,1518,1460,1478,1372,1355,1165,1010,952,875,829,685,555,394,189,106 -1985,1009,White female,1244,1306,1392,1400,1389,1444,1395,1391,1180,1026,983,949,911,775,766,552,350,227 -1985,1009,Black male,25,23,29,30,21,22,19,15,13,10,10,8,8,10,6,7,2,1 -1985,1009,Black female,27,24,24,28,27,29,22,15,18,12,11,11,10,13,9,8,6,4 -1985,1009,Other races male,2,4,6,3,3,3,5,6,6,3,4,2,1,3,3,1,0,0 -1985,1009,Other races female,4,6,7,7,5,3,6,7,5,6,3,2,3,1,3,2,1,0 -1985,1011,White male,94,92,96,104,130,148,141,141,98,86,80,103,99,89,72,44,22,11 -1985,1011,White female,101,75,84,85,98,96,103,98,85,91,87,115,96,115,89,83,49,36 -1985,1011,Black male,341,386,372,339,263,279,239,204,142,129,105,96,112,124,118,93,50,40 -1985,1011,Black female,369,385,388,380,313,315,263,224,159,158,131,155,172,181,198,144,84,77 -1985,1011,Other races male,2,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0 -1985,1011,Other races female,0,0,1,0,0,1,2,0,1,0,0,1,0,0,0,0,0,0 -1985,1013,White male,448,471,477,469,436,481,472,439,361,343,338,354,379,310,287,181,100,73 -1985,1013,White female,420,460,447,453,424,474,472,430,387,364,357,433,461,424,408,352,234,176 -1985,1013,Black male,442,513,472,429,283,257,257,210,162,147,132,121,139,121,120,113,54,43 -1985,1013,Black female,469,467,498,454,397,382,292,268,195,167,170,167,187,186,178,145,86,75 -1985,1013,Other races male,2,1,1,1,1,1,1,2,2,1,1,1,0,0,1,0,0,0 -1985,1013,Other races female,1,3,3,1,1,1,2,0,1,1,0,1,1,0,0,0,0,0 -1985,1015,White male,3179,3192,3628,4637,5213,4139,3711,3422,2852,2431,2262,2216,2029,1643,1266,805,406,222 -1985,1015,White female,2966,3094,3338,3987,4668,4027,3716,3467,2865,2507,2450,2588,2492,2143,1874,1395,836,613 -1985,1015,Black male,947,957,989,1256,1272,904,735,567,408,365,321,334,302,256,207,128,64,45 -1985,1015,Black female,971,922,1010,1180,1407,1020,825,646,471,457,434,425,425,363,317,222,147,97 -1985,1015,Other races male,38,35,42,51,56,38,36,31,22,16,10,10,10,4,3,1,1,1 -1985,1015,Other races female,35,39,37,40,65,55,77,58,58,37,20,17,10,5,5,4,2,2 -1985,1017,White male,749,775,855,854,883,888,867,819,699,657,633,676,689,600,526,355,194,98 -1985,1017,White female,697,789,782,831,871,881,867,796,700,677,672,825,832,810,789,602,384,251 -1985,1017,Black male,639,670,780,705,595,542,414,363,271,235,205,184,184,180,160,126,62,41 -1985,1017,Black female,594,676,698,720,653,597,531,450,336,315,268,292,303,265,247,188,110,91 -1985,1017,Other races male,1,2,2,2,2,2,2,1,1,4,2,1,0,0,0,0,0,0 -1985,1017,Other races female,1,0,3,1,1,4,2,3,4,3,2,1,0,1,1,1,0,0 -1985,1019,White male,575,596,693,697,715,647,649,587,562,477,453,462,448,393,304,202,92,53 -1985,1019,White female,528,563,609,613,666,640,624,618,566,497,477,532,508,442,392,283,174,116 -1985,1019,Black male,66,60,66,66,61,56,51,42,33,28,31,23,22,19,15,10,7,3 -1985,1019,Black female,49,71,69,73,66,57,51,42,38,33,33,22,34,20,28,22,10,7 -1985,1019,Other races male,2,1,4,1,3,2,2,2,0,1,1,2,1,1,0,1,0,0 -1985,1019,Other races female,1,1,4,1,3,4,3,4,1,3,1,1,1,1,1,0,0,0 -1985,1021,White male,990,1025,1066,1084,1109,1119,1037,983,842,751,687,681,624,564,440,306,168,84 -1985,1021,White female,965,944,1083,1019,1084,1100,1053,978,838,770,693,777,726,670,628,504,270,215 -1985,1021,Black male,172,180,187,193,138,124,123,91,78,65,61,74,60,55,47,33,19,13 -1985,1021,Black female,168,189,195,195,150,147,125,108,85,85,81,77,60,72,56,54,28,26 -1985,1021,Other races male,3,3,3,2,1,2,3,2,2,2,4,0,0,0,0,0,1,0 -1985,1021,Other races female,3,4,2,1,2,3,4,5,4,2,2,4,0,1,1,2,0,1 -1985,1023,White male,338,326,382,384,332,339,309,346,282,275,257,241,217,190,155,108,55,38 -1985,1023,White female,311,321,361,367,337,322,331,325,299,274,268,288,260,220,204,165,99,80 -1985,1023,Black male,325,362,393,388,246,262,218,198,139,141,118,119,108,113,100,81,54,35 -1985,1023,Black female,338,386,390,376,318,300,271,227,170,165,132,162,141,144,133,110,73,46 -1985,1023,Other races male,1,2,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0 -1985,1023,Other races female,0,1,0,0,0,2,1,1,1,0,2,1,0,0,0,1,0,0 -1985,1025,White male,556,564,601,602,568,595,574,539,493,427,405,375,354,300,275,189,103,72 -1985,1025,White female,524,531,586,577,574,632,550,582,486,450,405,416,418,378,376,284,198,149 -1985,1025,Black male,566,615,678,630,481,430,337,290,206,216,204,178,181,164,142,109,62,44 -1985,1025,Black female,514,622,643,663,537,471,409,322,257,244,240,230,229,207,198,149,89,83 -1985,1025,Other races male,4,5,2,3,3,2,4,0,2,2,1,0,0,0,0,1,0,0 -1985,1025,Other races female,5,3,4,2,1,5,8,1,2,2,3,3,2,0,1,0,1,0 -1985,1027,White male,353,391,434,454,437,397,401,364,322,305,278,290,289,257,224,167,101,65 -1985,1027,White female,348,352,405,430,413,401,389,347,359,310,312,310,350,308,325,255,168,127 -1985,1027,Black male,126,126,127,113,99,74,69,63,50,43,42,28,25,21,18,13,12,6 -1985,1027,Black female,95,122,125,128,112,96,82,67,58,54,44,39,35,39,29,26,17,13 -1985,1027,Other races male,3,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0 -1985,1027,Other races female,1,1,1,1,1,0,1,2,1,1,1,2,1,0,0,0,0,0 -1985,1029,White male,432,446,504,498,493,485,445,437,351,336,289,279,281,226,178,139,63,49 -1985,1029,White female,397,422,441,453,475,471,450,415,366,329,318,308,328,256,269,191,111,92 -1985,1029,Black male,31,30,29,25,25,19,17,16,14,15,11,15,9,9,7,4,4,1 -1985,1029,Black female,31,29,24,35,30,25,21,16,15,17,13,15,11,15,12,8,5,7 -1985,1029,Other races male,1,1,1,1,1,2,2,0,0,1,0,0,0,0,0,0,0,0 -1985,1029,Other races female,0,0,1,1,0,1,1,2,3,1,2,2,1,1,0,0,0,0 -1985,1031,White male,1146,1165,1252,1328,1332,1433,1338,1178,1065,941,839,858,768,625,484,328,166,92 -1985,1031,White female,1053,1061,1158,1220,1259,1342,1296,1237,1097,919,884,918,843,755,667,540,310,260 -1985,1031,Black male,315,319,406,343,277,268,218,197,146,136,121,111,94,91,73,52,42,34 -1985,1031,Black female,292,309,329,359,316,286,291,225,182,161,147,139,128,137,106,100,60,48 -1985,1031,Other races male,12,12,13,19,14,12,10,11,6,10,3,5,4,2,1,1,0,0 -1985,1031,Other races female,12,17,11,11,22,28,32,31,20,21,11,7,6,2,3,1,0,1 -1985,1033,White male,1450,1484,1652,1688,1809,1755,1618,1522,1328,1181,1183,1217,1111,876,671,447,218,127 -1985,1033,White female,1369,1346,1489,1614,1739,1812,1659,1596,1403,1282,1246,1305,1265,1096,971,684,410,306 -1985,1033,Black male,368,392,433,396,317,323,281,239,188,178,147,158,150,130,113,86,47,33 -1985,1033,Black female,400,400,430,411,391,409,346,294,240,219,196,211,190,188,180,121,72,70 -1985,1033,Other races male,6,7,10,11,6,8,9,11,6,7,2,4,2,2,0,2,0,0 -1985,1033,Other races female,11,9,7,5,2,12,10,10,7,3,5,1,3,3,3,0,0,0 -1985,1035,White male,281,281,324,314,313,320,295,282,245,223,236,239,246,215,192,127,81,43 -1985,1035,White female,251,272,297,293,268,320,294,278,232,229,236,253,301,277,259,210,131,101 -1985,1035,Black male,303,325,311,319,231,222,172,147,107,102,95,93,84,98,90,69,50,30 -1985,1035,Black female,295,296,353,312,311,246,222,181,131,127,119,126,140,132,143,109,68,63 -1985,1035,Other races male,2,2,3,2,2,2,1,1,2,1,0,0,4,0,1,0,0,0 -1985,1035,Other races female,1,2,2,2,2,3,1,2,2,2,2,2,0,1,0,1,0,0 -1985,1037,White male,241,216,256,247,279,281,255,252,182,191,197,217,218,178,154,100,47,30 -1985,1037,White female,234,229,240,237,264,256,250,223,199,202,222,221,252,199,179,139,90,55 -1985,1037,Black male,157,198,205,194,179,161,122,101,88,79,77,74,47,58,42,33,27,15 -1985,1037,Black female,144,193,184,196,171,170,114,108,88,99,80,74,82,58,62,53,23,18 -1985,1037,Other races male,2,3,0,2,1,1,1,1,1,2,1,0,0,0,0,0,0,0 -1985,1037,Other races female,0,1,1,0,1,0,3,0,2,1,1,2,0,0,0,0,0,0 -1985,1039,White male,1028,1045,1147,1244,1122,1181,1089,1027,903,830,786,900,853,747,631,428,230,159 -1985,1039,White female,1005,995,1108,1096,1115,1125,1100,1048,974,865,913,1000,1071,976,962,741,466,315 -1985,1039,Black male,205,235,265,266,178,140,137,102,100,75,81,72,78,77,51,51,22,15 -1985,1039,Black female,217,248,273,252,220,197,178,156,116,120,112,113,108,103,100,80,44,34 -1985,1039,Other races male,1,4,4,6,4,6,7,4,4,2,2,2,1,0,2,1,0,1 -1985,1039,Other races female,6,3,5,4,3,4,5,7,5,3,2,2,1,2,2,0,0,0 -1985,1041,White male,364,373,364,391,364,340,363,323,279,277,224,258,270,258,225,142,76,52 -1985,1041,White female,305,326,352,345,331,374,339,323,295,252,270,329,335,336,301,241,152,116 -1985,1041,Black male,169,151,190,186,132,120,87,84,60,64,62,67,67,57,53,37,21,22 -1985,1041,Black female,149,176,182,188,170,135,128,100,97,75,84,74,77,88,85,87,35,40 -1985,1041,Other races male,1,4,1,2,1,0,0,2,2,2,1,1,1,1,0,0,0,0 -1985,1041,Other races female,0,1,1,2,0,2,3,1,3,1,1,0,2,1,1,0,0,0 -1985,1043,White male,2249,2307,2533,2546,2582,2505,2401,2198,1910,1704,1569,1595,1560,1286,1017,722,358,220 -1985,1043,White female,2175,2243,2372,2456,2462,2532,2390,2266,2011,1734,1709,1774,1734,1558,1377,1072,669,499 -1985,1043,Black male,23,24,37,34,30,19,16,17,13,11,14,6,12,5,3,7,4,2 -1985,1043,Black female,19,19,24,31,25,17,22,13,16,16,12,11,7,9,9,6,3,5 -1985,1043,Other races male,7,7,9,10,3,6,8,8,6,4,6,2,3,6,1,3,1,0 -1985,1043,Other races female,4,9,9,10,5,15,10,11,9,8,9,6,3,0,2,1,2,1 -1985,1045,White male,1665,1512,1434,1730,2659,2469,1811,1373,1114,917,812,797,681,546,411,242,139,85 -1985,1045,White female,1601,1407,1331,1375,1871,1897,1577,1299,1082,895,848,830,736,620,536,437,297,242 -1985,1045,Black male,443,441,385,418,636,475,320,226,146,124,94,90,76,83,61,42,31,21 -1985,1045,Black female,460,429,396,378,485,442,321,248,174,145,131,120,109,112,95,74,36,32 -1985,1045,Other races male,29,37,32,36,52,37,34,19,16,12,6,6,5,3,3,0,0,1 -1985,1045,Other races female,40,30,40,20,65,85,62,51,38,35,28,23,18,6,5,2,1,0 -1985,1047,White male,762,773,833,879,803,877,827,789,706,594,610,598,589,459,386,244,120,64 -1985,1047,White female,769,788,797,817,862,908,855,829,705,637,647,725,676,654,568,453,279,248 -1985,1047,Black male,1423,1575,1664,1626,1175,955,811,635,536,468,441,393,407,388,346,270,147,111 -1985,1047,Black female,1422,1509,1613,1654,1399,1272,1111,871,721,662,637,620,599,636,509,470,271,261 -1985,1047,Other races male,6,6,6,9,3,3,11,10,5,0,6,1,1,2,2,0,0,0 -1985,1047,Other races female,7,5,5,6,4,8,11,8,4,3,4,3,2,2,1,3,0,0 -1985,1049,White male,1857,1964,2107,2070,2057,2048,1935,1814,1533,1392,1233,1255,1225,1009,834,602,322,183 -1985,1049,White female,1697,1814,2008,1949,2048,2057,1994,1841,1622,1414,1356,1454,1395,1335,1212,967,564,423 -1985,1049,Black male,34,50,47,54,44,34,36,27,24,22,15,18,9,10,12,7,4,3 -1985,1049,Black female,46,39,53,45,46,45,37,38,27,21,19,23,15,20,24,12,9,5 -1985,1049,Other races male,10,18,25,21,14,10,10,14,11,9,6,5,2,5,2,1,0,1 -1985,1049,Other races female,9,22,35,16,9,10,19,20,15,11,6,4,4,6,2,3,1,1 -1985,1051,White male,1247,1284,1334,1341,1384,1498,1440,1369,1210,1006,952,906,801,657,496,339,170,94 -1985,1051,White female,1117,1197,1281,1229,1286,1424,1424,1322,1171,938,945,926,886,745,683,514,334,284 -1985,1051,Black male,441,441,493,547,706,609,462,334,216,170,131,133,122,110,110,83,37,30 -1985,1051,Black female,415,457,506,506,486,463,378,290,214,192,167,192,164,173,133,107,68,66 -1985,1051,Other races male,6,8,7,9,11,8,9,7,7,7,3,3,0,2,0,1,0,0 -1985,1051,Other races female,5,6,7,5,10,8,11,13,10,6,6,3,2,1,1,1,0,1 -1985,1053,White male,874,897,989,1020,998,1020,1006,915,828,673,678,657,600,481,404,255,143,95 -1985,1053,White female,800,859,878,990,895,938,906,928,805,724,699,713,707,632,582,454,296,207 -1985,1053,Black male,464,524,514,553,526,565,483,351,227,213,162,173,144,161,119,112,46,36 -1985,1053,Black female,462,482,523,516,429,431,360,303,236,234,219,213,229,209,190,161,99,92 -1985,1053,Other races male,58,55,69,64,55,40,44,31,29,19,17,11,12,11,13,5,4,2 -1985,1053,Other races female,45,45,50,54,41,40,38,33,26,20,22,15,21,15,13,9,6,4 -1985,1055,White male,2836,3047,3288,3374,3349,3330,3177,3085,2591,2240,2188,2275,2180,1901,1475,1003,453,233 -1985,1055,White female,2683,2849,3151,3207,3363,3346,3246,3100,2805,2382,2428,2631,2717,2445,2215,1645,1018,708 -1985,1055,Black male,602,645,682,686,572,511,451,340,263,219,244,255,256,215,172,128,58,40 -1985,1055,Black female,628,606,682,651,689,623,545,422,350,323,337,356,342,311,271,179,105,72 -1985,1055,Other races male,11,16,13,32,63,27,12,19,9,12,7,6,4,4,3,2,1,0 -1985,1055,Other races female,12,14,21,37,41,22,21,21,15,9,9,9,6,5,2,3,3,1 -1985,1057,White male,561,589,651,667,615,630,589,575,505,438,400,412,395,346,295,214,118,67 -1985,1057,White female,546,593,615,661,609,610,590,594,505,439,444,450,461,444,421,322,226,156 -1985,1057,Black male,102,107,113,117,90,87,67,59,47,48,43,46,42,41,41,31,17,9 -1985,1057,Black female,93,97,125,105,107,99,85,66,58,56,58,56,57,54,56,43,25,21 -1985,1057,Other races male,2,2,1,0,0,1,0,0,1,0,1,1,0,1,1,0,0,0 -1985,1057,Other races female,2,1,1,0,1,1,2,2,2,1,2,0,1,0,0,0,1,0 -1985,1059,White male,947,980,1048,1047,1094,1003,964,915,794,721,705,684,649,565,441,314,163,109 -1985,1059,White female,893,886,1002,993,1032,1089,1000,962,846,760,736,762,795,667,682,511,330,245 -1985,1059,Black male,63,57,64,63,53,43,43,33,30,30,23,27,19,20,20,9,7,3 -1985,1059,Black female,48,56,51,60,62,65,41,46,30,32,30,35,29,30,20,25,12,9 -1985,1059,Other races male,4,3,5,2,1,2,4,3,4,2,1,1,3,1,0,0,1,0 -1985,1059,Other races female,3,4,3,3,0,6,3,3,5,2,2,2,0,1,1,1,0,0 -1985,1061,White male,690,715,830,830,785,762,723,706,598,561,517,547,544,483,406,272,160,69 -1985,1061,White female,659,690,733,741,746,750,713,726,647,551,585,579,625,585,543,454,262,192 -1985,1061,Black male,140,163,160,162,107,105,83,60,51,48,43,57,47,38,43,22,16,10 -1985,1061,Black female,144,150,160,153,131,122,107,74,77,61,69,63,66,51,58,43,30,21 -1985,1061,Other races male,3,2,3,5,5,2,4,3,5,2,3,4,2,2,1,1,1,0 -1985,1061,Other races female,4,4,5,6,4,4,4,4,4,5,4,5,4,3,3,1,0,0 -1985,1063,White male,59,62,64,67,75,86,73,69,65,71,67,76,70,61,54,38,18,7 -1985,1063,White female,55,47,54,62,69,75,70,65,72,65,73,70,91,73,76,61,44,40 -1985,1063,Black male,407,455,478,436,270,279,212,189,134,132,134,122,132,132,133,121,63,47 -1985,1063,Black female,371,443,487,439,365,349,306,253,194,175,170,175,187,188,219,155,110,86 -1985,1063,Other races male,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0 -1985,1063,Other races female,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1985,1065,White male,194,180,206,208,185,209,215,212,163,160,147,170,151,139,112,76,49,37 -1985,1065,White female,183,178,191,203,182,220,206,189,163,156,166,171,188,172,172,126,99,83 -1985,1065,Black male,458,465,514,504,324,279,240,203,151,135,133,125,147,159,123,134,71,49 -1985,1065,Black female,439,443,486,480,417,382,308,255,188,171,196,183,212,205,194,157,112,97 -1985,1065,Other races male,1,3,2,1,3,0,1,0,0,0,1,0,1,0,0,0,0,0 -1985,1065,Other races female,2,1,1,1,1,2,2,0,1,1,1,1,0,0,0,0,0,0 -1985,1067,White male,300,309,369,322,320,352,346,338,285,242,249,271,273,251,179,145,66,33 -1985,1067,White female,318,308,322,317,321,353,334,349,294,261,253,307,300,308,278,208,130,86 -1985,1067,Black male,239,278,282,272,208,197,181,140,125,96,97,88,83,80,72,55,28,19 -1985,1067,Black female,247,268,290,285,245,245,172,184,127,135,129,118,124,115,112,92,58,39 -1985,1067,Other races male,1,0,3,2,1,1,1,3,1,2,1,1,0,0,0,1,0,0 -1985,1067,Other races female,2,1,2,0,2,2,2,2,2,1,1,1,1,1,0,0,0,0 -1985,1069,White male,2174,2200,2249,2228,2227,2506,2456,2294,1891,1617,1473,1419,1302,1054,815,493,263,139 -1985,1069,White female,2075,2006,2131,2157,2374,2640,2475,2342,1986,1691,1567,1554,1515,1340,1150,916,575,425 -1985,1069,Black male,889,922,941,857,668,641,564,473,355,312,291,255,258,222,197,121,65,47 -1985,1069,Black female,856,901,946,878,855,833,704,594,439,431,376,347,370,325,306,234,121,93 -1985,1069,Other races male,28,36,42,31,22,30,27,26,20,15,12,8,10,4,1,1,0,0 -1985,1069,Other races female,25,32,31,24,23,33,28,26,27,22,11,12,6,9,3,5,1,1 -1985,1071,White male,1669,1715,1918,1866,1900,1954,1828,1723,1469,1269,1195,1088,1002,817,594,445,196,109 -1985,1071,White female,1667,1714,1797,1826,1891,1990,1842,1756,1493,1321,1206,1222,1146,987,878,664,366,261 -1985,1071,Black male,92,97,96,100,78,86,62,60,40,34,39,34,28,49,23,23,11,5 -1985,1071,Black female,80,87,88,97,92,89,82,70,60,45,50,51,49,41,52,24,12,14 -1985,1071,Other races male,18,45,61,36,18,17,20,29,26,20,10,7,4,4,2,2,2,1 -1985,1071,Other races female,19,37,70,35,19,22,27,38,33,13,10,12,6,6,4,2,1,1 -1985,1073,White male,13819,13139,13991,14366,18302,20172,17512,15828,12871,10990,10618,10820,10198,8159,6323,4212,2200,1301 -1985,1073,White female,13178,12640,13231,14202,19230,20250,17628,16562,13713,11957,11949,12582,12331,10852,9796,7714,5108,3987 -1985,1073,Black male,9733,9819,10105,9691,9434,9179,7783,6329,4792,3959,3718,3728,3600,3372,2777,2123,1054,724 -1985,1073,Black female,9633,9633,9998,9850,11275,11208,9779,7992,6005,5215,5245,5151,5125,4781,4305,3343,1992,1583 -1985,1073,Other races male,122,112,125,110,169,202,187,154,99,99,58,38,36,19,15,13,5,4 -1985,1073,Other races female,142,122,103,108,159,213,207,158,114,91,65,50,32,33,26,16,12,4 -1985,1075,White male,497,518,571,559,537,549,497,494,440,404,345,357,346,291,280,183,113,64 -1985,1075,White female,488,492,535,535,547,528,512,473,451,391,397,404,408,364,366,303,175,133 -1985,1075,Black male,91,98,100,110,75,72,61,48,39,37,33,38,30,29,21,17,14,9 -1985,1075,Black female,78,97,95,90,91,85,73,48,51,37,53,41,41,46,36,34,19,15 -1985,1075,Other races male,0,2,1,0,1,1,0,1,2,1,1,0,1,0,0,0,0,0 -1985,1075,Other races female,0,1,2,2,1,2,1,3,2,1,0,1,1,0,1,0,0,0 -1985,1077,White male,2393,2389,2686,2904,3369,2875,2691,2611,2125,1952,1754,1773,1661,1352,1058,678,356,210 -1985,1077,White female,2231,2350,2539,3006,3389,2940,2775,2603,2284,2004,1919,1991,1936,1652,1562,1100,759,557 -1985,1077,Black male,352,350,374,388,380,288,213,207,130,142,111,127,118,102,101,63,43,34 -1985,1077,Black female,331,340,373,419,445,348,295,248,190,182,171,168,181,152,148,101,76,55 -1985,1077,Other races male,12,10,9,12,11,14,12,14,10,8,11,6,3,2,1,1,0,1 -1985,1077,Other races female,13,15,13,13,11,12,16,14,15,13,11,7,6,3,2,2,2,2 -1985,1079,White male,958,922,982,1034,1049,1100,935,896,769,681,652,606,563,453,376,237,111,68 -1985,1079,White female,878,842,957,984,1069,1076,911,883,751,692,627,638,618,555,488,359,199,157 -1985,1079,Black male,229,256,287,287,211,199,142,135,90,74,74,66,61,70,64,46,23,21 -1985,1079,Black female,239,248,270,247,243,215,187,157,109,105,93,84,88,96,77,62,44,36 -1985,1079,Other races male,34,88,117,79,22,18,43,50,42,19,13,6,6,3,2,1,1,0 -1985,1079,Other races female,34,85,118,61,21,41,71,66,36,21,13,8,5,3,4,2,1,2 -1985,1081,White male,1658,1630,1724,3628,7784,2848,2060,1903,1532,1323,1091,1093,910,710,522,339,161,93 -1985,1081,White female,1603,1535,1694,3687,6283,2414,2017,1870,1492,1296,1122,1129,1032,846,727,547,351,266 -1985,1081,Black male,877,841,952,959,971,791,659,515,438,355,310,287,253,248,162,133,74,49 -1985,1081,Black female,866,849,891,942,1046,950,743,645,482,455,416,397,394,344,330,230,146,121 -1985,1081,Other races male,50,31,32,44,115,126,87,52,26,22,15,11,5,3,5,0,1,0 -1985,1081,Other races female,47,28,27,46,72,89,65,43,25,17,17,12,7,5,5,1,1,0 -1985,1083,White male,1563,1529,1658,1687,1832,1959,1737,1561,1379,1186,1057,1039,846,703,525,347,185,98 -1985,1083,White female,1467,1429,1609,1584,1814,1859,1719,1547,1374,1175,1072,1080,972,878,765,611,359,264 -1985,1083,Black male,279,283,322,313,356,395,303,229,156,131,119,106,106,81,76,62,30,27 -1985,1083,Black female,257,264,297,323,316,299,251,184,162,139,145,138,137,104,123,79,50,47 -1985,1083,Other races male,6,6,15,10,8,7,10,6,13,11,4,4,2,2,0,1,0,0 -1985,1083,Other races female,6,8,4,11,7,7,7,11,8,5,5,4,2,1,2,1,0,1 -1985,1085,White male,112,102,94,100,106,125,125,108,96,92,92,99,90,68,52,39,18,15 -1985,1085,White female,105,98,101,97,107,138,108,111,86,101,99,111,95,86,87,67,45,35 -1985,1085,Black male,508,538,559,588,368,327,235,201,146,133,125,110,127,122,118,91,58,38 -1985,1085,Black female,485,515,560,554,460,403,305,269,224,182,180,187,172,178,161,126,75,68 -1985,1085,Other races male,2,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0 -1985,1085,Other races female,1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0,0,0 -1985,1087,White male,94,110,109,118,151,139,137,129,108,105,107,129,140,117,97,64,44,32 -1985,1087,White female,103,94,101,109,124,140,122,122,99,93,88,99,121,104,113,81,52,37 -1985,1087,Black male,793,825,881,1326,1363,721,570,480,368,335,301,396,376,393,319,236,136,112 -1985,1087,Black female,802,852,897,1403,1510,844,687,603,505,424,438,466,455,480,464,358,210,194 -1985,1087,Other races male,5,4,3,4,7,10,10,6,3,3,2,1,2,2,1,1,0,0 -1985,1087,Other races female,7,3,4,5,7,10,5,3,2,3,1,2,2,3,1,1,1,0 -1985,1089,White male,5813,5582,5951,6469,7443,8749,7543,6438,5575,5138,4658,4640,3449,2520,1702,1016,480,277 -1985,1089,White female,5538,5305,5688,5969,7255,8207,7179,6576,5771,5180,4862,4654,3748,2998,2353,1702,1107,823 -1985,1089,Black male,1889,1916,1952,2366,2917,2176,1730,1265,938,811,591,521,416,338,283,179,105,96 -1985,1089,Black female,1857,1867,1921,2572,3112,2306,1912,1457,1125,877,745,665,543,487,404,295,167,158 -1985,1089,Other races male,155,174,215,158,164,215,210,155,130,108,65,48,23,18,12,3,5,1 -1985,1089,Other races female,172,164,212,142,142,205,252,237,174,120,90,59,45,19,17,8,5,1 -1985,1091,White male,394,414,432,452,407,440,417,426,358,342,326,315,287,239,185,116,69,41 -1985,1091,White female,374,377,424,412,422,437,414,407,378,348,340,335,338,268,274,205,127,105 -1985,1091,Black male,613,618,726,660,455,413,334,274,219,198,196,197,195,189,197,166,89,70 -1985,1091,Black female,569,623,666,623,558,468,433,357,275,255,257,286,290,304,273,235,148,136 -1985,1091,Other races male,1,0,1,0,2,1,0,1,1,1,0,1,1,0,0,0,1,0 -1985,1091,Other races female,1,1,1,1,0,1,2,2,0,1,1,1,1,1,0,0,1,0 -1985,1093,White male,1027,1076,1162,1200,1192,1210,1048,1010,902,774,771,736,692,596,492,349,186,129 -1985,1093,White female,962,1042,1115,1142,1159,1090,1077,1016,943,804,811,774,814,749,685,557,338,242 -1985,1093,Black male,31,37,39,39,42,44,42,36,22,23,13,13,13,16,14,11,6,5 -1985,1093,Black female,32,35,34,36,41,32,32,22,26,19,20,11,17,14,12,13,6,8 -1985,1093,Other races male,5,7,2,4,2,1,3,4,3,2,2,2,1,1,0,0,0,0 -1985,1093,Other races female,3,5,4,1,3,5,3,4,2,2,1,4,0,0,4,0,1,0 -1985,1095,White male,2279,2427,2629,2744,2648,2737,2488,2376,2028,1801,1714,1685,1640,1272,1020,684,366,220 -1985,1095,White female,2247,2331,2462,2574,2661,2784,2585,2515,2153,1941,1856,1916,1901,1583,1513,1110,708,497 -1985,1095,Black male,52,47,48,60,62,39,32,36,23,18,18,16,15,16,11,8,6,3 -1985,1095,Black female,35,45,51,49,47,50,36,40,24,25,22,25,22,20,20,13,9,9 -1985,1095,Other races male,8,8,7,8,6,6,9,14,8,11,5,4,3,2,2,1,0,1 -1985,1095,Other races female,8,10,13,13,10,9,14,13,10,7,8,7,5,5,2,1,1,0 -1985,1097,White male,9690,9304,9525,9807,11304,11629,10578,9586,7854,6467,6012,5926,5405,4434,3385,2107,1054,598 -1985,1097,White female,9165,8689,9170,9641,11906,11564,10587,9611,8025,6744,6388,6589,6401,5664,4789,3613,2256,1689 -1985,1097,Black male,5964,5782,6094,5627,4878,4568,3765,3007,2331,2044,1970,2010,1735,1564,1195,857,415,241 -1985,1097,Black female,5818,5702,5967,5810,5891,5590,4875,3897,3097,2757,2632,2580,2356,2168,1819,1300,771,606 -1985,1097,Other races male,181,189,213,218,253,186,171,148,114,95,65,47,36,22,16,14,7,4 -1985,1097,Other races female,173,189,203,183,203,191,201,181,130,99,70,63,43,35,30,22,8,5 -1985,1099,White male,468,484,512,515,476,512,501,480,414,367,333,326,321,272,191,167,78,58 -1985,1099,White female,472,472,490,506,450,514,476,522,391,367,323,350,357,321,313,239,159,134 -1985,1099,Black male,467,523,562,523,359,329,274,216,169,149,153,122,140,127,110,97,41,37 -1985,1099,Black female,458,494,515,513,405,376,305,281,184,180,187,172,192,167,159,134,74,80 -1985,1099,Other races male,8,12,11,12,15,6,7,8,6,4,6,4,4,3,2,2,0,0 -1985,1099,Other races female,7,8,8,9,8,10,9,5,6,7,6,4,3,3,3,3,1,1 -1985,1101,White male,4022,4015,3981,4169,5041,5536,5037,4875,3866,3218,2926,2898,2619,2024,1529,973,476,281 -1985,1101,White female,3826,3783,3760,4082,5151,5438,5059,4871,3924,3340,3133,3362,3151,2861,2401,1898,1290,1096 -1985,1101,Black male,3999,4051,3973,4254,4028,3331,2825,2220,1669,1367,1193,1199,1036,929,730,546,282,189 -1985,1101,Black female,3875,3988,3957,4420,4862,4208,3435,2795,2072,1795,1647,1604,1453,1381,1224,928,537,497 -1985,1101,Other races male,50,66,76,62,67,56,66,50,51,41,19,17,11,9,5,4,2,2 -1985,1101,Other races female,53,69,77,60,72,76,107,86,77,42,37,26,19,9,8,7,3,1 -1985,1103,White male,2965,3061,3372,3300,3264,3701,3433,3267,2720,2352,2148,2043,1821,1370,1101,662,367,196 -1985,1103,White female,2887,2828,3156,3081,3320,3680,3474,3352,2805,2369,2251,2191,2069,1720,1544,1125,708,518 -1985,1103,Black male,480,475,500,415,383,376,330,250,189,154,135,131,127,120,97,73,37,24 -1985,1103,Black female,469,446,490,450,458,461,387,307,226,189,189,174,176,154,153,124,61,53 -1985,1103,Other races male,14,19,25,14,13,17,21,25,19,14,12,5,5,3,4,2,1,0 -1985,1103,Other races female,19,20,24,17,15,17,21,29,20,14,9,10,6,6,5,2,1,1 -1985,1105,White male,143,160,159,336,234,184,167,153,138,153,132,146,135,121,117,84,48,27 -1985,1105,White female,155,126,158,293,273,163,150,159,141,147,156,159,170,162,166,132,84,64 -1985,1105,Black male,453,495,521,503,304,256,227,166,155,126,146,129,129,136,140,115,67,50 -1985,1105,Black female,441,480,504,496,361,349,272,245,203,176,200,181,196,203,193,147,109,101 -1985,1105,Other races male,0,2,1,4,1,0,0,0,1,0,0,1,0,0,0,1,0,0 -1985,1105,Other races female,1,2,1,3,3,1,2,1,1,1,0,0,0,0,0,0,0,0 -1985,1107,White male,409,397,465,457,472,461,451,421,381,331,350,364,376,284,243,170,85,64 -1985,1107,White female,378,371,417,431,422,428,435,403,388,358,391,376,408,341,338,264,190,144 -1985,1107,Black male,430,464,507,424,334,286,229,182,143,143,134,153,135,152,125,103,69,43 -1985,1107,Black female,468,490,526,480,392,361,314,251,202,183,195,200,194,194,180,153,93,93 -1985,1107,Other races male,1,2,2,3,0,1,2,1,1,1,1,1,0,0,1,0,0,0 -1985,1107,Other races female,2,2,3,0,1,2,3,2,2,2,2,0,2,1,0,2,0,0 -1985,1109,White male,521,528,564,901,1353,653,567,544,465,411,393,410,391,343,296,207,104,64 -1985,1109,White female,478,481,540,948,1255,615,560,558,478,447,401,465,457,459,435,350,231,200 -1985,1109,Black male,436,463,450,546,453,310,240,197,159,146,129,138,122,177,117,93,48,38 -1985,1109,Black female,407,455,480,577,608,403,349,273,225,194,183,197,199,221,206,172,111,85 -1985,1109,Other races male,5,6,8,12,10,7,4,3,3,4,2,3,2,2,1,1,1,0 -1985,1109,Other races female,4,6,8,9,13,7,6,5,5,5,3,4,4,2,2,1,1,0 -1985,1111,White male,486,543,547,548,574,547,532,481,414,376,388,388,408,359,295,197,105,70 -1985,1111,White female,438,461,532,532,540,551,503,483,432,395,405,462,493,436,407,348,221,154 -1985,1111,Black male,222,256,249,253,195,164,151,113,95,71,84,69,76,72,54,46,22,16 -1985,1111,Black female,218,229,242,224,212,212,164,144,114,96,96,94,94,98,88,67,49,36 -1985,1111,Other races male,1,4,3,2,0,0,0,1,1,2,0,0,0,0,1,0,0,0 -1985,1111,Other races female,1,1,1,3,2,2,3,3,2,3,1,0,2,1,0,0,0,1 -1985,1113,White male,1056,979,994,1027,1258,1267,1120,981,836,764,756,742,703,538,380,231,104,62 -1985,1113,White female,985,912,904,997,1251,1267,1072,1004,876,811,808,857,813,666,585,430,236,163 -1985,1113,Black male,780,834,912,918,749,650,564,465,389,359,367,337,285,285,223,150,70,51 -1985,1113,Black female,733,791,851,896,849,776,686,572,489,470,457,417,441,395,348,247,137,111 -1985,1113,Other races male,7,6,5,5,3,7,6,9,6,6,3,4,1,2,2,0,0,0 -1985,1113,Other races female,6,6,3,4,8,9,11,9,13,6,4,5,4,3,3,2,0,1 -1985,1115,White male,1654,1586,1661,1584,1572,1758,1677,1585,1323,1148,1001,972,908,717,563,330,179,110 -1985,1115,White female,1467,1424,1541,1516,1612,1706,1604,1547,1295,1131,1029,1034,1032,829,732,513,324,247 -1985,1115,Black male,181,187,206,208,183,229,209,151,125,92,77,69,72,56,41,40,18,14 -1985,1115,Black female,178,197,206,210,190,183,147,122,93,103,83,90,88,74,62,48,32,17 -1985,1115,Other races male,3,7,9,4,6,6,10,9,5,7,5,3,2,2,0,0,0,0 -1985,1115,Other races female,5,6,10,3,3,8,13,5,6,7,3,3,3,0,4,2,0,0 -1985,1117,White male,3055,2880,2736,2608,2804,3495,3566,3373,2584,1935,1599,1409,1167,910,642,420,201,119 -1985,1117,White female,2893,2681,2610,2629,3263,3713,3671,3351,2509,1874,1553,1451,1237,1046,850,649,365,279 -1985,1117,Black male,316,343,381,339,344,285,249,191,137,127,105,102,83,67,75,48,34,20 -1985,1117,Black female,326,316,352,378,401,332,278,232,176,147,143,112,117,107,103,92,41,35 -1985,1117,Other races male,21,26,15,23,18,23,31,28,20,12,14,8,7,4,2,1,0,1 -1985,1117,Other races female,31,27,25,20,22,21,33,29,21,13,15,12,6,6,2,1,2,0 -1985,1119,White male,157,152,143,235,359,214,174,157,129,112,120,135,121,115,100,70,34,17 -1985,1119,White female,152,144,127,215,316,188,150,165,131,112,136,129,147,143,142,109,76,62 -1985,1119,Black male,571,594,654,648,502,395,326,269,176,160,161,164,177,176,178,148,85,65 -1985,1119,Black female,561,572,651,675,590,467,410,329,235,222,246,279,257,269,253,195,139,101 -1985,1119,Other races male,1,1,1,2,5,2,1,0,0,1,1,1,0,0,0,1,0,0 -1985,1119,Other races female,1,0,1,2,1,0,1,1,2,2,2,0,0,1,0,1,1,0 -1985,1121,White male,1757,1849,2033,2079,1974,2066,1892,1895,1578,1415,1291,1350,1231,1077,815,546,250,138 -1985,1121,White female,1682,1759,1970,1908,2065,1978,1928,1836,1574,1404,1464,1519,1522,1336,1189,879,514,309 -1985,1121,Black male,1072,1206,1310,1272,1008,837,749,644,518,434,358,350,318,287,217,163,76,46 -1985,1121,Black female,1059,1171,1255,1360,1217,961,871,703,553,486,442,463,409,372,315,238,135,118 -1985,1121,Other races male,10,8,6,10,7,8,9,8,11,11,4,5,0,3,1,1,1,0 -1985,1121,Other races female,6,9,11,7,12,10,12,8,6,9,4,4,3,3,2,0,0,1 -1985,1123,White male,902,927,1058,1030,998,1077,985,986,803,730,714,764,769,661,531,368,190,106 -1985,1123,White female,796,874,975,1008,970,1044,991,986,815,822,762,907,933,860,756,611,351,267 -1985,1123,Black male,432,488,532,518,440,355,323,270,224,180,188,154,147,146,125,93,38,30 -1985,1123,Black female,478,510,554,534,469,447,382,339,263,222,223,215,229,195,148,153,77,77 -1985,1123,Other races male,2,3,3,1,4,2,3,2,3,3,1,1,2,0,1,0,0,0 -1985,1123,Other races female,5,6,5,3,1,3,7,4,4,2,1,2,3,2,1,0,0,1 -1985,1125,White male,3120,3111,3220,4790,7552,4716,3941,3642,2957,2435,2382,2293,2129,1755,1271,841,446,283 -1985,1125,White female,2924,2850,3065,4910,7061,4390,3802,3638,2943,2560,2405,2445,2382,2003,1750,1388,833,704 -1985,1125,Black male,1700,1750,1771,1827,1882,1464,1171,1002,712,620,576,576,500,486,363,286,141,111 -1985,1125,Black female,1674,1758,1726,2106,2395,1816,1465,1262,916,787,823,740,725,679,580,441,245,224 -1985,1125,Other races male,30,31,31,37,110,91,66,40,31,17,12,12,7,9,3,4,0,1 -1985,1125,Other races female,40,28,36,32,79,73,57,38,29,23,13,13,9,8,5,3,2,1 -1985,1127,White male,2172,2275,2547,2499,2505,2537,2321,2230,1932,1676,1577,1582,1368,1213,933,637,349,210 -1985,1127,White female,2114,2156,2364,2408,2468,2483,2382,2280,1980,1640,1676,1725,1674,1573,1393,1065,669,493 -1985,1127,Black male,209,225,232,230,175,154,134,106,80,84,65,70,68,69,64,49,31,26 -1985,1127,Black female,215,220,230,225,211,198,170,142,100,94,96,102,95,95,96,85,58,51 -1985,1127,Other races male,9,6,7,6,8,6,7,4,6,7,5,2,2,0,1,0,0,0 -1985,1127,Other races female,9,7,10,9,5,10,14,11,8,7,8,2,6,5,1,1,2,4 -1985,1129,White male,437,450,500,465,436,442,425,390,361,311,286,268,255,202,181,116,62,41 -1985,1129,White female,405,442,468,440,440,457,412,409,351,317,281,270,252,247,207,174,105,80 -1985,1129,Black male,236,256,274,242,196,167,163,121,84,87,72,81,63,65,54,50,21,18 -1985,1129,Black female,206,244,256,266,207,209,168,151,104,106,88,91,95,86,74,61,37,34 -1985,1129,Other races male,50,53,60,53,38,48,36,34,21,21,10,12,9,7,6,3,2,1 -1985,1129,Other races female,53,54,56,41,44,42,41,33,23,14,19,19,13,9,10,6,4,1 -1985,1131,White male,159,148,164,153,160,162,154,158,130,121,133,125,133,118,85,56,35,16 -1985,1131,White female,146,136,155,132,142,155,148,130,140,128,137,164,160,154,141,105,75,67 -1985,1131,Black male,485,555,641,585,347,314,273,216,153,142,133,148,138,173,150,122,70,50 -1985,1131,Black female,524,531,613,563,422,391,304,268,196,199,200,196,211,225,223,181,108,96 -1985,1131,Other races male,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0 -1985,1131,Other races female,0,1,2,0,0,1,1,0,1,1,1,0,0,1,1,0,0,0 -1985,1133,White male,766,798,906,899,863,876,815,776,691,609,540,569,495,438,322,232,112,71 -1985,1133,White female,757,740,823,850,861,883,797,813,706,632,595,583,599,509,455,338,213,141 -1985,1133,Black male,3,5,1,4,3,2,1,1,2,1,1,1,0,1,1,1,1,0 -1985,1133,Black female,3,3,3,4,2,4,2,2,3,0,2,1,2,0,1,1,1,1 -1985,1133,Other races male,4,1,3,2,2,0,3,1,2,2,1,3,0,0,1,1,0,0 -1985,1133,Other races female,6,2,2,5,4,3,3,2,4,2,3,1,1,1,1,2,0,0 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1986.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1986.csv deleted file mode 100644 index 543ead136d..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1986.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1986",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1986,1001,White male,1031,1078,1149,1101,951,1045,1027,1053,896,796,688,614,485,376,260,165,84,39 -1986,1001,White female,918,955,974,1069,928,1086,1092,1118,934,768,691,617,513,425,374,291,189,128 -1986,1001,Black male,307,358,356,395,262,251,205,163,130,110,111,96,109,106,81,66,36,19 -1986,1001,Black female,309,358,357,379,329,276,250,215,158,140,135,137,152,134,116,84,64,59 -1986,1001,Other races male,5,8,4,9,6,3,7,4,5,4,2,3,1,1,0,0,0,0 -1986,1001,Other races female,8,7,10,7,4,6,11,13,9,9,12,8,5,1,1,1,0,0 -1986,1003,White male,2707,2823,2876,2957,2500,2890,2880,2919,2498,2103,1922,1989,2066,1936,1504,958,486,259 -1986,1003,White female,2601,2590,2678,2736,2495,3035,2982,3054,2458,2172,2028,2180,2351,2132,1741,1305,836,575 -1986,1003,Black male,623,701,663,651,475,462,391,330,236,201,191,194,180,149,147,106,62,41 -1986,1003,Black female,616,652,641,692,563,562,478,384,277,263,268,227,225,202,205,150,86,71 -1986,1003,Other races male,18,35,30,34,24,20,28,28,19,20,14,20,11,7,4,3,2,0 -1986,1003,Other races female,27,31,38,29,30,35,36,48,25,22,25,17,13,11,6,6,3,2 -1986,1005,White male,463,485,525,539,457,528,512,504,451,367,353,370,370,314,231,173,77,40 -1986,1005,White female,390,463,468,478,459,512,491,515,453,373,368,429,408,402,350,279,185,127 -1986,1005,Black male,512,601,564,545,391,391,349,291,217,168,150,151,163,157,147,116,56,37 -1986,1005,Black female,515,572,533,561,469,482,398,360,273,243,212,214,270,229,234,181,116,86 -1986,1005,Other races male,2,3,2,4,5,3,2,3,3,4,3,2,0,0,0,1,0,0 -1986,1005,Other races female,3,2,5,2,2,3,5,3,5,3,2,3,1,1,1,0,1,0 -1986,1007,White male,422,503,499,532,503,510,456,477,374,362,290,296,269,209,171,133,76,43 -1986,1007,White female,417,437,462,497,477,471,451,459,379,359,302,314,289,288,249,228,134,100 -1986,1007,Black male,161,191,199,185,145,136,106,91,64,51,41,42,49,48,41,38,18,13 -1986,1007,Black female,173,170,196,191,162,151,115,108,72,62,56,69,66,69,65,50,30,29 -1986,1007,Other races male,0,1,4,2,0,0,0,2,3,0,0,1,1,0,0,1,0,0 -1986,1007,Other races female,0,0,1,3,1,1,0,0,3,1,2,0,0,0,0,1,0,0 -1986,1009,White male,1315,1348,1442,1552,1445,1514,1405,1417,1178,1038,974,891,838,694,551,407,199,110 -1986,1009,White female,1255,1333,1362,1435,1377,1470,1426,1448,1204,1056,1002,958,918,796,774,568,377,237 -1986,1009,Black male,24,23,28,29,21,22,20,17,13,10,10,8,8,9,6,7,2,1 -1986,1009,Black female,27,23,23,26,25,28,24,15,17,12,11,11,10,13,9,8,7,4 -1986,1009,Other races male,3,4,6,3,3,3,5,6,6,3,4,2,1,3,3,1,0,0 -1986,1009,Other races female,4,8,7,8,5,3,6,7,5,7,3,2,3,1,3,2,1,0 -1986,1011,White male,87,86,89,100,124,144,139,147,97,83,76,96,91,87,69,45,21,11 -1986,1011,White female,96,68,76,81,86,89,99,97,81,85,83,108,90,108,86,84,49,36 -1986,1011,Black male,334,384,353,323,251,279,242,217,142,132,105,92,104,114,111,90,49,38 -1986,1011,Black female,360,382,368,369,298,307,263,231,157,156,125,146,161,170,195,140,87,74 -1986,1011,Other races male,2,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0 -1986,1011,Other races female,0,0,1,0,0,1,2,0,1,0,0,1,0,0,0,0,0,0 -1986,1013,White male,444,480,461,470,415,481,476,459,363,341,330,347,368,309,290,182,103,71 -1986,1013,White female,415,470,428,451,400,473,481,443,384,362,351,423,451,415,406,359,239,179 -1986,1013,Black male,433,524,463,439,274,249,262,223,165,151,132,117,137,116,118,111,55,45 -1986,1013,Black female,454,476,489,455,381,378,305,291,197,167,166,160,186,181,174,143,93,77 -1986,1013,Other races male,2,1,1,1,1,1,1,2,2,1,1,1,0,0,1,0,0,0 -1986,1013,Other races female,1,3,4,1,1,1,2,0,1,1,0,1,1,0,0,0,0,0 -1986,1015,White male,3121,3190,3460,4563,4935,4098,3698,3532,2868,2442,2238,2200,2013,1673,1272,823,421,221 -1986,1015,White female,2885,3093,3187,3961,4410,3958,3722,3575,2879,2507,2410,2546,2492,2181,1876,1420,868,635 -1986,1015,Black male,924,975,962,1244,1214,900,763,616,415,366,316,327,298,251,203,128,67,46 -1986,1015,Black female,952,926,980,1173,1361,1014,853,696,475,449,425,417,428,363,316,224,153,99 -1986,1015,Other races male,37,38,42,52,53,40,36,33,25,18,11,10,10,5,3,1,1,1 -1986,1015,Other races female,36,42,39,41,63,56,78,64,63,39,22,19,11,5,5,4,2,2 -1986,1017,White male,738,769,804,848,854,874,856,832,695,651,619,658,662,593,517,359,202,99 -1986,1017,White female,681,775,739,828,833,864,858,810,699,663,650,798,802,797,773,609,398,254 -1986,1017,Black male,612,664,737,697,582,532,419,384,270,236,200,178,179,173,156,126,63,40 -1986,1017,Black female,571,667,665,716,621,588,527,473,342,313,261,285,294,259,241,193,113,93 -1986,1017,Other races male,1,3,2,2,2,2,2,1,1,4,2,1,0,0,0,0,0,0 -1986,1017,Other races female,1,0,3,1,1,4,2,3,4,3,2,1,0,1,1,1,0,0 -1986,1019,White male,570,596,673,716,692,648,659,615,566,484,462,463,450,403,307,209,96,52 -1986,1019,White female,517,568,596,624,645,646,630,639,571,505,481,537,510,450,399,290,182,117 -1986,1019,Black male,64,59,64,65,58,54,52,45,33,27,30,23,22,18,14,9,8,4 -1986,1019,Black female,44,68,63,73,63,56,51,45,38,32,34,22,34,18,28,22,11,8 -1986,1019,Other races male,2,1,4,1,4,2,2,2,0,1,1,2,1,1,0,1,0,0 -1986,1019,Other races female,1,1,4,1,4,4,4,4,1,4,1,1,1,1,1,0,0,0 -1986,1021,White male,985,1048,1048,1105,1084,1133,1065,1031,850,772,699,690,628,573,436,316,178,87 -1986,1021,White female,961,968,1066,1044,1055,1118,1084,1023,853,787,701,784,719,675,632,515,284,222 -1986,1021,Black male,172,183,184,195,135,125,126,100,80,63,59,74,60,56,46,32,20,13 -1986,1021,Black female,165,187,189,196,144,150,130,117,83,85,81,76,62,70,56,53,31,28 -1986,1021,Other races male,3,4,4,2,1,2,3,2,3,3,4,0,0,0,0,0,1,0 -1986,1021,Other races female,4,4,2,1,2,3,4,6,5,2,3,5,0,1,1,2,0,1 -1986,1023,White male,328,324,370,393,319,336,313,348,283,286,257,240,219,195,150,110,57,39 -1986,1023,White female,305,321,345,372,327,324,330,331,302,277,271,289,264,227,199,165,107,84 -1986,1023,Black male,318,367,377,388,240,266,222,212,142,145,122,115,108,114,94,80,56,36 -1986,1023,Black female,331,384,383,385,308,301,281,245,176,167,130,159,139,144,133,110,75,48 -1986,1023,Other races male,1,2,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0 -1986,1023,Other races female,0,1,0,0,0,2,1,1,1,0,2,1,0,0,0,1,0,0 -1986,1025,White male,547,572,573,610,550,591,577,551,494,433,413,380,348,297,270,193,104,71 -1986,1025,White female,512,535,566,583,555,626,550,598,487,462,409,413,408,380,380,291,204,150 -1986,1025,Black male,550,614,661,631,468,430,352,309,207,214,202,178,182,161,135,107,64,45 -1986,1025,Black female,499,626,625,664,523,481,424,341,253,246,242,228,229,204,188,147,93,82 -1986,1025,Other races male,5,5,2,3,3,2,4,0,2,2,1,0,0,0,0,1,0,0 -1986,1025,Other races female,5,3,4,2,1,5,9,1,2,2,3,3,2,0,1,0,1,0 -1986,1027,White male,341,388,412,450,422,395,400,370,316,306,274,287,283,254,215,169,102,65 -1986,1027,White female,336,350,385,425,392,399,388,354,354,308,310,308,341,299,319,259,172,133 -1986,1027,Black male,121,123,121,113,100,74,67,64,48,43,43,28,24,21,18,13,13,6 -1986,1027,Black female,92,118,116,126,108,98,82,68,57,54,43,37,35,38,29,26,17,13 -1986,1027,Other races male,3,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0 -1986,1027,Other races female,1,1,1,1,1,0,1,2,1,1,1,2,1,0,0,0,0,0 -1986,1029,White male,424,443,481,503,475,487,448,443,348,341,285,275,277,225,179,138,62,50 -1986,1029,White female,393,424,421,450,460,473,447,424,363,330,311,305,323,251,268,189,114,94 -1986,1029,Black male,31,31,29,23,24,19,17,17,14,14,11,17,9,9,7,4,4,1 -1986,1029,Black female,31,30,23,33,28,25,21,16,15,17,13,15,10,14,12,8,6,8 -1986,1029,Other races male,1,1,1,1,1,2,2,0,0,1,0,0,0,0,0,0,0,0 -1986,1029,Other races female,0,0,1,1,0,1,1,2,3,1,2,2,1,1,0,0,0,0 -1986,1031,White male,1143,1173,1212,1339,1309,1465,1336,1214,1087,954,841,863,766,638,488,339,169,94 -1986,1031,White female,1054,1070,1117,1228,1223,1349,1300,1282,1102,931,894,914,847,769,680,548,328,269 -1986,1031,Black male,313,322,394,346,273,271,227,212,150,140,119,109,96,91,74,52,42,34 -1986,1031,Black female,289,313,322,361,307,293,300,243,183,162,143,136,130,135,108,101,63,50 -1986,1031,Other races male,13,12,14,22,14,13,10,12,5,11,3,5,5,2,1,1,0,0 -1986,1031,Other races female,12,17,13,13,22,27,34,36,22,22,11,7,7,2,3,1,0,1 -1986,1033,White male,1433,1493,1560,1665,1738,1744,1620,1569,1314,1178,1180,1208,1101,896,683,457,224,129 -1986,1033,White female,1346,1350,1411,1580,1644,1801,1668,1624,1396,1298,1234,1283,1259,1125,982,699,426,309 -1986,1033,Black male,357,393,420,386,305,318,278,254,193,178,145,155,146,130,111,84,47,34 -1986,1033,Black female,395,393,410,403,379,402,348,312,244,220,192,202,191,192,179,119,75,71 -1986,1033,Other races male,6,9,11,11,7,8,9,12,7,8,2,5,2,3,0,2,0,0 -1986,1033,Other races female,12,10,7,5,2,12,10,12,7,3,5,1,4,3,3,0,0,0 -1986,1035,White male,273,283,310,317,299,315,301,291,245,225,234,239,244,215,191,130,84,43 -1986,1035,White female,240,274,289,289,251,320,296,294,233,230,229,250,303,282,255,216,137,102 -1986,1035,Black male,302,332,300,317,222,222,176,159,111,107,94,90,84,97,85,68,52,31 -1986,1035,Black female,287,303,345,309,304,248,229,197,135,127,116,124,140,130,139,111,69,65 -1986,1035,Other races male,2,2,4,2,2,2,1,1,3,1,0,0,4,0,1,0,0,0 -1986,1035,Other races female,1,2,2,3,2,3,1,2,2,2,2,2,0,1,0,1,0,0 -1986,1037,White male,244,223,250,249,270,286,266,267,184,195,194,217,217,181,154,101,50,31 -1986,1037,White female,237,234,234,242,257,261,259,233,200,206,220,223,253,202,179,141,93,56 -1986,1037,Black male,159,197,192,197,178,164,126,110,88,79,78,73,49,60,40,31,28,16 -1986,1037,Black female,143,191,174,200,171,174,118,116,88,99,78,76,81,57,62,53,25,20 -1986,1037,Other races male,2,4,0,2,1,1,1,1,1,2,1,0,0,0,0,0,0,0 -1986,1037,Other races female,0,1,1,0,1,0,4,0,2,1,1,3,0,0,0,0,0,0 -1986,1039,White male,1011,1055,1112,1232,1066,1187,1098,1050,907,824,772,877,834,745,622,431,234,157 -1986,1039,White female,992,1012,1059,1098,1066,1125,1101,1074,962,858,897,973,1042,962,941,743,481,321 -1986,1039,Black male,201,231,251,266,173,141,141,107,99,75,79,70,77,73,49,51,23,15 -1986,1039,Black female,211,249,263,247,213,195,181,168,114,117,113,112,104,103,95,78,46,36 -1986,1039,Other races male,1,4,4,6,4,7,7,4,4,2,2,3,1,0,2,1,0,1 -1986,1039,Other races female,6,3,5,4,3,5,5,7,5,3,2,2,1,2,2,0,0,0 -1986,1041,White male,357,380,351,396,346,344,367,329,285,278,219,255,266,256,222,147,80,51 -1986,1041,White female,302,331,340,349,321,371,336,337,298,251,268,321,330,337,299,243,158,120 -1986,1041,Black male,168,148,187,184,130,121,88,91,61,65,61,65,65,55,53,37,22,20 -1986,1041,Black female,143,175,177,188,162,137,131,108,98,77,83,71,77,87,84,85,37,40 -1986,1041,Other races male,1,4,1,2,1,0,0,2,2,2,1,1,1,1,0,0,0,0 -1986,1041,Other races female,0,1,1,2,0,2,3,1,3,1,1,0,3,1,1,0,0,0 -1986,1043,White male,2266,2364,2453,2584,2528,2562,2462,2299,1947,1735,1580,1604,1569,1314,1024,741,375,222 -1986,1043,White female,2179,2288,2310,2505,2406,2580,2441,2363,2039,1766,1722,1764,1751,1592,1394,1102,712,522 -1986,1043,Black male,23,24,38,35,32,19,17,17,12,11,15,7,13,5,3,7,4,2 -1986,1043,Black female,17,20,25,30,23,17,23,13,16,16,12,12,8,8,9,6,4,5 -1986,1043,Other races male,8,8,9,11,3,6,9,8,6,4,6,2,3,6,1,3,1,0 -1986,1043,Other races female,4,9,9,11,5,15,10,11,11,9,9,6,3,0,2,1,2,1 -1986,1045,White male,1672,1537,1402,1750,2593,2557,1832,1437,1141,932,826,810,694,574,426,249,145,90 -1986,1045,White female,1624,1441,1295,1394,1826,1950,1614,1365,1094,916,872,841,759,647,541,445,315,255 -1986,1045,Black male,453,463,389,427,600,480,337,250,155,132,91,88,78,85,59,41,31,23 -1986,1045,Black female,465,451,399,390,481,460,342,272,181,154,133,119,112,115,94,76,38,34 -1986,1045,Other races male,29,39,33,38,50,38,34,20,17,12,6,6,5,3,3,0,0,1 -1986,1045,Other races female,40,30,42,20,59,84,65,55,40,35,28,27,21,7,5,2,1,0 -1986,1047,White male,736,766,780,862,748,853,806,797,704,584,598,581,576,465,388,246,123,66 -1986,1047,White female,749,778,745,799,793,883,833,842,692,626,629,700,672,662,561,452,282,252 -1986,1047,Black male,1389,1586,1602,1602,1128,951,825,673,532,467,437,381,399,370,329,265,148,109 -1986,1047,Black female,1397,1518,1559,1630,1353,1269,1134,922,717,652,627,609,603,615,490,474,278,263 -1986,1047,Other races male,6,7,6,9,3,3,11,11,5,0,7,1,1,2,2,0,0,0 -1986,1047,Other races female,7,5,5,6,4,8,11,8,4,3,4,3,2,2,1,3,0,0 -1986,1049,White male,1817,1954,2020,2093,1973,2043,1948,1867,1542,1394,1224,1244,1210,1006,822,607,330,185 -1986,1049,White female,1647,1816,1925,1951,1960,2052,2004,1899,1617,1424,1349,1434,1384,1328,1202,969,589,435 -1986,1049,Black male,35,49,44,55,45,34,36,29,25,23,15,19,10,10,10,7,5,3 -1986,1049,Black female,43,39,51,44,45,46,36,41,27,21,20,22,15,20,23,13,9,5 -1986,1049,Other races male,11,21,27,24,16,12,12,16,13,9,7,5,2,5,2,1,0,1 -1986,1049,Other races female,11,26,38,18,10,10,21,23,17,13,6,4,4,6,2,3,1,1 -1986,1051,White male,1258,1316,1299,1363,1354,1521,1473,1435,1230,1025,972,909,802,667,502,351,176,91 -1986,1051,White female,1111,1222,1243,1254,1245,1447,1451,1387,1184,958,953,923,889,761,684,518,347,292 -1986,1051,Black male,439,439,477,547,718,635,496,371,226,175,132,130,118,107,107,81,37,30 -1986,1051,Black female,419,461,480,508,482,469,391,316,218,193,166,193,161,171,127,107,70,67 -1986,1051,Other races male,6,9,9,11,11,9,9,8,8,8,4,3,0,2,0,1,0,0 -1986,1051,Other races female,5,7,8,5,10,8,13,14,11,7,6,3,3,1,1,1,0,1 -1986,1053,White male,864,904,959,1033,961,1026,1015,938,824,681,689,659,603,491,404,260,148,97 -1986,1053,White female,787,866,855,997,853,940,912,956,807,737,705,713,712,639,582,465,315,214 -1986,1053,Black male,454,523,496,555,506,550,489,384,230,213,161,170,145,155,116,112,47,37 -1986,1053,Black female,442,478,509,513,419,428,370,328,237,233,217,212,229,202,190,161,103,93 -1986,1053,Other races male,56,56,68,67,56,43,44,34,30,21,18,11,12,10,14,5,4,2 -1986,1053,Other races female,43,46,49,54,41,45,37,36,29,21,24,15,22,15,14,10,7,5 -1986,1055,White male,2759,3037,3134,3398,3205,3278,3161,3180,2614,2261,2162,2227,2153,1928,1480,1030,469,234 -1986,1055,White female,2612,2841,3018,3225,3193,3293,3243,3201,2819,2377,2395,2568,2690,2475,2234,1677,1061,731 -1986,1055,Black male,593,648,660,682,555,509,464,373,270,219,236,245,253,211,170,127,58,41 -1986,1055,Black female,614,608,656,651,666,619,558,459,351,316,329,348,340,308,272,182,108,73 -1986,1055,Other races male,12,16,14,36,69,28,12,21,10,12,8,6,4,4,3,2,1,0 -1986,1055,Other races female,12,14,23,42,44,22,24,24,16,10,10,10,7,5,2,3,3,1 -1986,1057,White male,542,596,625,672,588,623,584,592,501,440,400,408,385,340,286,215,124,69 -1986,1057,White female,526,593,592,669,578,602,591,609,498,445,441,438,452,446,410,329,240,160 -1986,1057,Black male,98,107,107,115,87,86,67,62,47,48,41,44,42,40,37,30,17,10 -1986,1057,Black female,91,97,117,103,104,99,86,69,58,56,55,56,56,53,55,43,26,22 -1986,1057,Other races male,2,2,1,0,0,1,0,0,1,0,1,1,0,1,1,0,0,0 -1986,1057,Other races female,2,1,1,0,1,1,2,2,2,1,2,0,1,0,0,0,1,0 -1986,1059,White male,927,979,1009,1053,1048,996,971,933,788,722,704,680,650,566,436,317,165,111 -1986,1059,White female,883,893,960,990,992,1086,1002,991,838,762,736,754,785,669,675,515,338,255 -1986,1059,Black male,63,57,61,63,50,43,42,35,32,29,21,25,20,21,19,9,8,3 -1986,1059,Black female,47,57,47,58,61,65,41,51,30,30,29,35,31,29,18,26,12,9 -1986,1059,Other races male,4,3,5,2,1,2,4,4,4,2,1,1,3,1,0,0,1,0 -1986,1059,Other races female,3,4,3,3,0,6,3,3,5,2,2,2,0,1,1,1,0,0 -1986,1061,White male,680,716,789,836,761,758,719,730,602,562,518,544,539,486,404,278,166,70 -1986,1061,White female,650,690,700,743,716,746,716,742,646,557,588,572,622,581,538,465,273,200 -1986,1061,Black male,136,158,150,163,105,107,84,62,51,48,42,56,45,38,41,21,17,10 -1986,1061,Black female,136,145,153,152,123,123,109,78,74,62,69,62,66,50,57,43,32,22 -1986,1061,Other races male,3,2,3,5,5,2,4,3,5,2,3,4,2,2,1,1,1,0 -1986,1061,Other races female,3,4,5,7,5,4,4,5,4,5,4,5,4,3,3,1,0,0 -1986,1063,White male,57,62,60,63,70,81,72,72,61,69,66,77,72,61,52,36,19,7 -1986,1063,White female,50,46,48,59,65,73,70,66,68,64,72,71,89,68,76,59,43,38 -1986,1063,Black male,394,458,459,424,253,270,217,205,132,128,129,120,129,125,123,117,66,47 -1986,1063,Black female,355,446,467,426,344,344,308,273,194,172,166,170,187,181,204,152,118,88 -1986,1063,Other races male,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0 -1986,1063,Other races female,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1986,1065,White male,196,184,207,209,176,214,219,221,166,163,150,168,148,145,114,79,51,37 -1986,1065,White female,182,184,191,205,177,225,209,198,165,160,167,167,189,176,172,129,105,84 -1986,1065,Black male,448,473,495,498,314,278,246,223,153,135,129,120,148,152,117,132,71,50 -1986,1065,Black female,428,453,476,473,398,386,325,279,186,168,193,178,211,201,187,153,116,99 -1986,1065,Other races male,1,3,2,1,3,0,1,0,0,0,1,0,1,0,0,0,0,0 -1986,1065,Other races female,2,1,1,1,1,2,2,0,1,1,1,1,0,0,0,0,0,0 -1986,1067,White male,291,309,355,326,311,347,345,345,290,245,243,262,272,249,176,149,69,32 -1986,1067,White female,312,306,312,322,306,347,331,358,299,260,247,303,295,309,276,210,136,87 -1986,1067,Black male,230,272,271,272,202,189,174,149,126,97,96,84,82,77,68,56,28,18 -1986,1067,Black female,237,262,276,280,235,234,175,195,125,137,126,114,121,111,108,92,60,39 -1986,1067,Other races male,1,0,3,2,1,1,1,3,1,2,1,1,0,0,0,1,0,0 -1986,1067,Other races female,2,1,2,0,2,2,2,2,2,1,1,1,1,1,0,0,0,0 -1986,1069,White male,2171,2234,2171,2259,2144,2518,2488,2379,1926,1640,1461,1423,1312,1085,830,511,278,140 -1986,1069,White female,2059,2042,2062,2175,2280,2649,2511,2434,2008,1722,1569,1550,1532,1372,1172,937,608,443 -1986,1069,Black male,890,938,924,874,657,642,584,510,364,316,288,252,254,220,196,124,68,47 -1986,1069,Black female,850,924,939,888,840,841,732,647,442,437,376,345,376,324,308,236,128,97 -1986,1069,Other races male,27,37,44,34,22,29,27,28,22,17,13,8,12,4,1,1,0,0 -1986,1069,Other races female,25,32,31,25,23,33,30,29,29,24,12,13,6,10,3,5,1,1 -1986,1071,White male,1597,1676,1806,1852,1790,1903,1792,1737,1445,1269,1196,1081,995,819,586,447,199,113 -1986,1071,White female,1593,1681,1700,1802,1779,1940,1806,1778,1476,1319,1200,1217,1126,987,880,666,379,264 -1986,1071,Black male,91,94,95,99,72,80,60,64,42,34,37,32,27,47,23,24,11,5 -1986,1071,Black female,78,85,82,96,88,86,82,73,60,46,48,49,49,41,50,26,13,14 -1986,1071,Other races male,20,52,66,41,20,18,24,34,29,22,11,8,4,5,2,2,2,1 -1986,1071,Other races female,20,43,78,40,22,25,30,45,39,15,10,14,7,7,4,2,1,1 -1986,1073,White male,13707,13299,13391,14292,17424,19981,17600,16460,13021,11057,10394,10546,10161,8391,6372,4282,2275,1342 -1986,1073,White female,13048,12788,12673,14131,18234,20008,17731,17197,13772,11960,11719,12273,12334,11061,9793,7789,5302,4094 -1986,1073,Black male,9659,10039,9869,9664,9126,9079,7968,6927,4961,3992,3640,3642,3575,3328,2716,2100,1082,733 -1986,1073,Black female,9529,9886,9792,9781,10821,11104,10114,8740,6121,5195,5140,5047,5163,4749,4249,3363,2067,1634 -1986,1073,Other races male,126,121,130,120,175,216,199,162,106,107,64,41,39,20,16,13,5,4 -1986,1073,Other races female,148,132,103,114,166,231,216,171,123,96,69,53,34,34,26,16,11,4 -1986,1075,White male,488,516,552,564,518,555,502,509,439,405,348,358,343,289,271,184,118,63 -1986,1075,White female,478,494,518,544,532,535,515,483,452,396,397,402,407,366,357,302,187,142 -1986,1075,Black male,92,96,95,112,73,71,61,53,40,35,34,38,30,29,21,17,14,10 -1986,1075,Black female,76,95,92,92,88,84,76,55,50,36,53,39,42,47,35,36,20,16 -1986,1075,Other races male,0,2,1,0,1,1,0,1,2,1,1,0,1,0,0,0,0,0 -1986,1075,Other races female,0,1,2,2,1,2,1,3,2,1,0,1,1,0,1,0,0,0 -1986,1077,White male,2369,2414,2549,2871,3231,2859,2707,2682,2131,1965,1752,1765,1653,1395,1065,694,372,214 -1986,1077,White female,2201,2361,2417,2971,3235,2935,2790,2674,2282,2009,1911,1969,1936,1699,1570,1123,808,572 -1986,1077,Black male,351,351,353,384,375,285,215,218,130,145,107,125,114,99,100,63,41,34 -1986,1077,Black female,329,344,356,414,433,349,304,261,189,184,169,166,180,147,148,99,79,57 -1986,1077,Other races male,12,10,9,13,11,15,12,14,10,8,13,7,4,2,1,1,0,1 -1986,1077,Other races female,13,15,13,15,11,12,16,15,16,13,12,8,6,3,2,2,2,2 -1986,1079,White male,948,906,913,1017,1024,1114,934,902,754,691,653,606,556,458,370,240,115,68 -1986,1079,White female,861,820,884,965,1038,1081,908,884,744,698,623,633,616,552,484,369,204,159 -1986,1079,Black male,225,248,268,288,210,192,142,144,90,76,73,61,61,68,60,45,24,20 -1986,1079,Black female,230,243,259,245,238,207,187,167,112,107,90,79,87,92,75,62,44,34 -1986,1079,Other races male,39,106,135,93,26,20,51,61,50,23,16,6,7,4,2,1,1,0 -1986,1079,Other races female,39,103,137,72,25,50,83,78,42,24,16,9,6,3,4,3,1,2 -1986,1081,White male,1691,1683,1674,3732,7743,2913,2111,2009,1582,1362,1123,1116,924,744,541,358,171,98 -1986,1081,White female,1625,1588,1655,3814,6283,2455,2080,1970,1537,1340,1148,1141,1052,879,744,563,377,279 -1986,1081,Black male,881,869,934,970,967,798,679,559,450,362,317,285,255,245,159,135,79,51 -1986,1081,Black female,881,865,869,955,1047,966,774,701,489,457,417,402,402,344,331,235,158,127 -1986,1081,Other races male,56,36,34,50,128,140,99,56,29,25,17,12,5,3,5,0,1,0 -1986,1081,Other races female,52,31,30,52,79,99,72,48,27,19,18,14,8,5,5,1,1,0 -1986,1083,White male,1571,1565,1607,1714,1806,2033,1812,1637,1409,1216,1088,1056,854,723,526,357,195,100 -1986,1083,White female,1480,1462,1553,1603,1782,1918,1773,1622,1391,1200,1090,1092,979,896,771,626,378,274 -1986,1083,Black male,273,283,307,308,365,421,329,254,162,132,121,103,107,80,75,60,30,27 -1986,1083,Black female,248,266,283,314,308,302,259,197,163,138,141,137,139,103,121,77,52,47 -1986,1083,Other races male,7,8,17,12,9,8,11,7,15,12,4,5,3,2,0,1,0,0 -1986,1083,Other races female,6,9,4,13,7,7,8,13,10,5,6,5,3,1,2,1,0,1 -1986,1085,White male,112,106,90,97,102,126,125,113,96,90,92,100,92,68,53,39,18,17 -1986,1085,White female,107,101,95,96,103,142,110,113,85,102,101,112,93,88,88,67,46,36 -1986,1085,Black male,497,538,543,579,361,329,243,217,144,139,125,108,123,117,115,93,61,39 -1986,1085,Black female,474,512,549,547,447,409,309,292,225,180,178,183,171,174,161,127,77,69 -1986,1085,Other races male,2,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0 -1986,1085,Other races female,1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0,0,0 -1986,1087,White male,93,109,103,115,145,139,139,124,109,110,103,122,133,116,96,65,43,33 -1986,1087,White female,106,95,96,111,123,141,120,125,101,97,84,95,117,105,109,82,53,37 -1986,1087,Black male,791,823,848,1353,1335,705,574,514,379,343,296,372,366,398,319,239,138,110 -1986,1087,Black female,796,858,864,1434,1476,824,693,647,514,430,428,455,456,482,459,360,226,199 -1986,1087,Other races male,5,4,3,4,6,10,10,6,3,3,2,1,2,2,1,1,0,0 -1986,1087,Other races female,7,3,4,5,8,10,5,3,2,3,1,2,2,3,1,1,1,0 -1986,1089,White male,5981,5784,5722,6451,7293,9187,7944,6825,5624,5157,4753,4765,3547,2655,1763,1058,505,294 -1986,1089,White female,5692,5479,5474,5930,7093,8583,7496,6853,5778,5252,4983,4739,3853,3146,2420,1765,1183,867 -1986,1089,Black male,1922,1972,1907,2432,2911,2219,1809,1379,978,831,617,530,420,343,286,179,108,99 -1986,1089,Black female,1875,1931,1875,2627,3107,2386,1980,1579,1163,911,770,673,552,493,414,299,176,167 -1986,1089,Other races male,170,197,235,175,173,236,230,176,146,120,73,53,26,20,14,4,5,1 -1986,1089,Other races female,184,183,231,160,148,218,274,265,193,132,98,65,52,21,18,9,5,1 -1986,1091,White male,389,418,412,452,381,434,417,438,355,341,322,317,288,243,187,115,70,42 -1986,1091,White female,372,381,402,405,406,436,413,413,373,344,340,335,335,267,273,207,135,107 -1986,1091,Black male,592,612,694,651,442,408,335,292,220,199,188,190,190,179,182,158,89,69 -1986,1091,Black female,549,619,634,616,535,457,441,379,277,252,245,275,282,297,262,230,153,138 -1986,1091,Other races male,1,0,1,0,2,1,0,1,1,1,0,1,1,0,0,0,1,0 -1986,1091,Other races female,1,1,1,1,0,1,2,2,0,1,1,1,1,1,0,0,1,0 -1986,1093,White male,998,1057,1085,1194,1146,1201,1025,1019,890,771,765,725,679,589,475,344,190,131 -1986,1093,White female,928,1025,1046,1132,1099,1072,1061,1021,927,804,796,757,797,731,669,559,347,249 -1986,1093,Black male,32,36,37,37,42,49,46,37,22,24,12,13,13,17,15,11,6,5 -1986,1093,Black female,33,34,32,37,41,31,33,22,24,19,19,11,17,14,12,13,6,9 -1986,1093,Other races male,6,8,2,4,2,1,3,4,4,2,2,3,1,1,0,0,0,0 -1986,1093,Other races female,4,5,4,1,3,5,3,4,2,2,1,4,0,0,4,0,1,0 -1986,1095,White male,2277,2447,2522,2770,2553,2763,2535,2471,2042,1829,1719,1696,1647,1296,1025,695,376,223 -1986,1095,White female,2246,2358,2380,2587,2569,2818,2624,2613,2167,1961,1860,1916,1910,1610,1521,1129,750,519 -1986,1095,Black male,53,47,45,60,64,39,34,37,23,19,18,15,15,15,11,9,7,3 -1986,1095,Black female,37,45,47,50,49,49,35,44,25,25,22,25,23,21,19,14,8,9 -1986,1095,Other races male,8,9,8,9,6,6,10,15,9,13,5,5,4,2,2,1,0,1 -1986,1095,Other races female,8,12,14,15,10,10,14,15,11,7,9,7,6,5,2,1,1,0 -1986,1097,White male,9680,9511,9268,9925,10862,11613,10733,10049,7999,6617,6037,5871,5424,4584,3447,2178,1110,627 -1986,1097,White female,9161,8880,8906,9726,11456,11618,10790,10045,8198,6923,6376,6485,6457,5825,4852,3707,2378,1762 -1986,1097,Black male,5916,5935,5975,5612,4687,4518,3894,3269,2359,2057,1965,1972,1738,1577,1198,863,435,252 -1986,1097,Black female,5781,5859,5878,5770,5659,5614,5055,4218,3128,2777,2631,2556,2384,2182,1838,1330,809,633 -1986,1097,Other races male,191,206,221,242,279,200,179,164,123,104,72,51,38,25,16,14,7,4 -1986,1097,Other races female,183,207,215,203,215,201,214,200,147,109,75,67,46,37,31,24,9,5 -1986,1099,White male,466,496,502,528,464,519,513,501,420,377,332,329,323,276,187,171,80,57 -1986,1099,White female,472,483,479,515,442,516,481,541,394,376,325,351,353,321,315,244,168,135 -1986,1099,Black male,456,519,539,524,349,326,280,232,168,150,150,120,139,122,110,98,40,38 -1986,1099,Black female,445,493,494,513,395,374,315,305,184,179,179,170,190,162,154,133,75,81 -1986,1099,Other races male,8,12,12,13,16,7,8,9,6,4,6,5,4,3,2,2,0,0 -1986,1099,Other races female,8,10,8,10,8,10,9,5,6,7,6,5,3,3,3,3,1,1 -1986,1101,White male,4056,4098,3839,4188,4848,5611,5138,5085,3938,3268,2929,2892,2614,2104,1573,1010,503,290 -1986,1101,White female,3840,3859,3630,4100,4936,5447,5128,5075,3992,3390,3119,3303,3176,2952,2442,1942,1356,1133 -1986,1101,Black male,4034,4164,3930,4363,3988,3375,2930,2443,1723,1389,1199,1194,1038,927,719,555,296,192 -1986,1101,Black female,3893,4090,3918,4512,4772,4265,3607,3069,2112,1815,1665,1603,1477,1376,1217,944,559,510 -1986,1101,Other races male,53,70,80,70,73,63,69,53,55,45,22,19,11,10,6,4,2,2 -1986,1101,Other races female,55,73,81,68,76,78,111,95,85,46,39,28,21,10,8,7,4,1 -1986,1103,White male,2987,3163,3275,3340,3178,3791,3540,3432,2783,2418,2188,2079,1838,1424,1119,682,389,204 -1986,1103,White female,2907,2908,3068,3107,3248,3757,3562,3520,2862,2430,2287,2209,2103,1770,1575,1173,754,539 -1986,1103,Black male,481,488,496,429,386,383,352,278,193,160,137,128,124,118,96,75,38,24 -1986,1103,Black female,470,457,480,449,459,476,408,340,229,193,189,176,175,151,157,124,63,56 -1986,1103,Other races male,15,22,28,17,15,18,22,30,22,15,14,5,6,3,5,3,1,0 -1986,1103,Other races female,20,24,27,18,15,18,23,33,23,16,10,11,6,6,5,2,1,1 -1986,1105,White male,131,153,144,330,221,174,158,152,132,146,129,145,129,119,110,84,49,28 -1986,1105,White female,144,120,147,284,253,154,147,155,135,142,151,153,162,157,157,127,89,65 -1986,1105,Black male,437,490,503,497,289,251,229,172,152,123,145,126,124,130,130,112,67,49 -1986,1105,Black female,425,471,486,488,345,340,275,262,198,175,191,175,189,194,184,142,114,100 -1986,1105,Other races male,0,2,1,4,1,0,0,0,1,0,0,1,0,0,0,1,0,0 -1986,1105,Other races female,1,2,1,3,3,1,2,1,1,1,0,0,0,0,0,0,0,0 -1986,1107,White male,402,399,448,451,451,462,452,432,379,326,351,364,378,287,240,173,88,63 -1986,1107,White female,372,368,394,427,405,431,433,411,376,363,392,378,412,340,333,269,200,146 -1986,1107,Black male,417,473,490,420,317,278,235,199,139,140,135,151,134,149,121,102,70,44 -1986,1107,Black female,455,500,512,471,377,363,324,270,201,181,193,195,191,191,181,152,96,97 -1986,1107,Other races male,1,2,2,3,0,1,2,1,1,1,1,1,0,0,1,0,0,0 -1986,1107,Other races female,2,3,3,0,1,2,3,2,2,3,2,0,2,1,0,2,0,0 -1986,1109,White male,523,535,546,924,1328,654,572,557,470,423,394,404,392,349,290,208,109,64 -1986,1109,White female,479,487,517,965,1234,618,564,573,481,455,405,452,448,464,437,355,240,204 -1986,1109,Black male,443,468,434,546,445,312,249,211,163,148,130,135,118,169,113,92,48,38 -1986,1109,Black female,399,459,462,579,598,410,361,297,227,194,183,193,194,214,202,175,117,90 -1986,1109,Other races male,6,8,8,13,10,8,4,3,3,4,2,3,3,2,1,1,1,0 -1986,1109,Other races female,4,6,8,11,13,7,6,6,6,5,3,4,5,2,2,1,1,0 -1986,1111,White male,475,550,521,556,550,550,542,500,415,375,381,388,408,361,294,202,108,69 -1986,1111,White female,431,464,505,528,521,549,508,500,433,389,399,457,487,436,405,345,228,159 -1986,1111,Black male,213,256,242,252,190,165,157,118,94,73,83,66,73,69,53,46,23,16 -1986,1111,Black female,211,231,233,221,207,207,167,153,112,95,98,92,91,95,88,67,50,38 -1986,1111,Other races male,1,4,3,2,0,0,0,1,1,2,0,0,0,0,1,0,0,0 -1986,1111,Other races female,1,1,1,3,2,2,3,3,3,3,1,0,2,1,0,0,0,1 -1986,1113,White male,1084,1008,962,1041,1238,1300,1151,1035,856,782,762,746,711,556,392,242,112,63 -1986,1113,White female,996,933,883,1009,1225,1281,1099,1051,890,830,815,860,826,691,595,447,257,175 -1986,1113,Black male,783,845,893,921,745,656,590,509,398,360,372,339,292,287,221,157,74,51 -1986,1113,Black female,737,802,822,899,832,798,710,619,498,478,454,418,449,397,350,257,146,114 -1986,1113,Other races male,8,7,5,6,3,8,7,9,6,6,3,4,1,2,2,0,0,0 -1986,1113,Other races female,6,6,3,4,9,9,12,9,14,6,4,6,4,3,3,2,0,1 -1986,1115,White male,1667,1622,1620,1629,1545,1793,1717,1659,1355,1185,1018,985,923,750,569,340,182,115 -1986,1115,White female,1465,1457,1510,1547,1573,1733,1634,1619,1325,1168,1038,1045,1051,858,740,521,345,258 -1986,1115,Black male,179,186,197,208,185,243,222,172,129,95,78,70,74,56,38,37,19,13 -1986,1115,Black female,175,194,197,208,183,180,150,129,93,100,82,88,84,73,66,47,33,18 -1986,1115,Other races male,4,8,9,4,6,7,10,10,5,8,6,3,2,2,0,0,0,0 -1986,1115,Other races female,6,7,11,3,3,8,14,5,6,7,3,3,4,0,4,2,0,0 -1986,1117,White male,3178,3074,2759,2727,2817,3683,3753,3664,2744,2060,1669,1461,1222,957,658,436,214,123 -1986,1117,White female,3005,2840,2636,2753,3293,3907,3886,3661,2660,1996,1626,1499,1289,1098,873,675,390,294 -1986,1117,Black male,321,352,364,338,346,293,262,210,142,125,108,101,81,67,74,45,35,20 -1986,1117,Black female,328,324,342,380,402,339,293,255,183,152,143,112,119,105,103,94,43,37 -1986,1117,Other races male,24,29,17,24,20,25,32,32,22,14,16,9,8,5,3,1,0,1 -1986,1117,Other races female,33,31,27,21,23,23,36,33,22,15,17,13,7,6,2,1,2,0 -1986,1119,White male,152,153,135,241,350,211,175,160,131,114,116,133,119,114,98,73,34,17 -1986,1119,White female,151,144,122,222,309,184,149,172,130,110,132,126,147,142,137,110,81,65 -1986,1119,Black male,559,591,643,652,480,393,342,296,177,160,160,159,175,172,172,145,86,63 -1986,1119,Black female,547,579,637,678,567,472,433,357,234,220,246,273,253,264,250,196,145,102 -1986,1119,Other races male,1,1,1,2,6,2,1,0,0,1,1,1,0,0,0,1,0,0 -1986,1119,Other races female,1,0,1,3,1,0,1,1,2,2,2,0,0,1,0,1,1,0 -1986,1121,White male,1736,1860,1956,2098,1897,2076,1911,1985,1610,1434,1290,1350,1226,1089,820,562,262,145 -1986,1121,White female,1656,1774,1896,1923,1983,1977,1952,1912,1585,1410,1454,1501,1519,1348,1194,897,547,320 -1986,1121,Black male,1052,1196,1253,1292,983,841,773,703,532,433,355,347,319,282,214,164,79,49 -1986,1121,Black female,1039,1176,1207,1372,1181,963,891,760,560,481,439,459,410,374,315,238,141,124 -1986,1121,Other races male,11,9,7,11,8,9,10,9,12,13,4,6,0,3,1,1,1,0 -1986,1121,Other races female,6,10,11,7,12,11,12,8,7,9,4,4,3,3,3,0,0,1 -1986,1123,White male,889,935,1008,1036,965,1069,995,1022,812,742,711,752,761,670,532,379,199,106 -1986,1123,White female,793,872,937,1017,945,1040,997,1023,823,823,760,888,922,867,765,627,368,272 -1986,1123,Black male,425,480,513,520,425,353,328,287,223,181,186,155,149,140,122,90,39,30 -1986,1123,Black female,472,506,532,540,465,444,386,363,266,221,215,211,235,194,145,153,78,80 -1986,1123,Other races male,2,3,3,1,4,2,3,3,3,3,1,1,2,0,1,0,0,0 -1986,1123,Other races female,5,6,5,3,1,3,7,4,5,2,1,2,3,2,1,0,0,1 -1986,1125,White male,3161,3188,3148,4926,7473,4778,4049,3873,3045,2497,2392,2296,2179,1844,1297,873,469,295 -1986,1125,White female,2951,2927,3005,5050,7005,4436,3910,3860,3032,2602,2409,2478,2448,2072,1782,1433,888,743 -1986,1125,Black male,1691,1791,1750,1859,1849,1457,1202,1115,735,627,576,571,505,490,366,290,144,111 -1986,1125,Black female,1660,1779,1712,2158,2356,1805,1534,1395,934,788,820,746,743,677,579,453,258,235 -1986,1125,Other races male,33,35,33,42,125,105,72,44,34,20,14,12,7,9,3,4,0,1 -1986,1125,Other races female,41,31,38,36,86,79,61,43,33,26,14,14,10,9,5,3,2,1 -1986,1127,White male,2159,2295,2465,2554,2454,2563,2355,2335,1964,1719,1602,1596,1392,1250,934,647,358,214 -1986,1127,White female,2081,2186,2308,2456,2400,2507,2429,2388,2017,1688,1694,1716,1697,1614,1401,1092,718,513 -1986,1127,Black male,205,230,231,230,167,151,141,118,80,86,64,68,66,66,63,47,29,24 -1986,1127,Black female,205,227,230,224,200,201,179,157,100,93,96,99,94,95,92,84,59,53 -1986,1127,Other races male,8,6,7,6,8,6,7,5,6,7,6,2,2,0,1,0,0,0 -1986,1127,Other races female,9,7,10,10,5,9,14,11,9,7,8,3,6,5,1,1,2,4 -1986,1129,White male,427,447,478,463,421,436,426,395,357,311,288,270,251,202,183,116,64,40 -1986,1129,White female,392,444,445,438,419,452,413,417,349,321,281,272,253,245,206,175,109,81 -1986,1129,Black male,231,261,264,239,188,164,166,127,86,85,69,80,62,65,51,50,21,17 -1986,1129,Black female,198,246,243,261,204,207,171,159,105,104,87,88,92,85,74,60,38,33 -1986,1129,Other races male,51,55,61,54,38,52,35,35,23,21,11,12,9,7,6,3,2,1 -1986,1129,Other races female,55,60,57,42,42,41,42,34,24,16,19,21,13,9,11,7,4,1 -1986,1131,White male,155,144,156,155,155,156,154,163,130,122,132,120,133,119,83,61,36,17 -1986,1131,White female,138,135,148,132,133,152,147,133,138,128,135,162,160,159,140,105,76,68 -1986,1131,Black male,469,560,617,579,337,311,277,229,157,143,128,144,134,165,145,120,73,49 -1986,1131,Black female,504,528,600,555,408,389,312,285,196,197,196,192,209,219,221,180,111,98 -1986,1131,Other races male,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0 -1986,1131,Other races female,0,1,2,0,0,1,1,0,1,1,1,0,0,1,1,0,0,0 -1986,1133,White male,750,797,860,898,838,882,818,788,688,617,545,566,495,443,323,234,117,73 -1986,1133,White female,743,742,782,848,834,883,790,825,710,642,589,579,600,514,454,346,223,147 -1986,1133,Black male,3,5,1,4,3,2,1,1,2,1,1,1,0,1,1,1,1,0 -1986,1133,Black female,3,3,3,4,2,4,2,2,3,0,2,1,2,0,1,1,1,1 -1986,1133,Other races male,4,1,3,2,2,0,3,1,2,2,1,3,0,0,1,1,0,0 -1986,1133,Other races female,6,2,2,5,4,3,3,2,4,2,3,1,1,1,1,2,0,0 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1987.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1987.csv deleted file mode 100644 index bab374001e..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1987.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1987",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1987,1001,White male,1042,1094,1137,1103,926,1064,1064,1030,964,809,709,628,492,387,262,172,91,40 -1987,1001,White female,934,969,966,1069,893,1102,1129,1087,1005,791,718,629,521,437,377,299,197,136 -1987,1001,Black male,302,352,351,398,248,248,214,170,137,112,112,93,109,106,79,64,38,20 -1987,1001,Black female,308,357,350,382,314,279,264,224,167,141,132,134,151,133,114,85,65,61 -1987,1001,Other races male,5,8,4,9,7,3,7,4,7,4,2,3,1,1,0,0,0,0 -1987,1001,Other races female,8,7,10,7,4,5,11,13,9,9,13,9,6,1,1,1,0,0 -1987,1003,White male,2735,2874,2890,3007,2431,2914,2971,2916,2747,2197,1980,2028,2112,2036,1538,997,513,274 -1987,1003,White female,2624,2634,2686,2776,2423,3069,3099,3043,2699,2281,2081,2191,2408,2233,1774,1359,883,605 -1987,1003,Black male,616,697,664,659,454,460,408,344,250,200,189,196,183,148,142,109,65,43 -1987,1003,Black female,614,651,634,699,541,566,502,401,286,270,269,227,228,202,202,154,88,72 -1987,1003,Other races male,16,37,31,35,25,20,30,29,21,21,15,22,11,7,4,3,2,0 -1987,1003,Other races female,27,33,38,31,30,35,38,52,29,22,26,18,14,13,7,6,3,2 -1987,1005,White male,459,482,516,548,446,534,517,500,492,375,352,366,368,321,233,179,83,43 -1987,1005,White female,390,468,461,479,448,517,492,503,496,380,368,415,405,414,346,286,192,132 -1987,1005,Black male,514,610,557,549,382,390,361,307,235,176,146,151,158,153,143,117,59,36 -1987,1005,Black female,517,584,530,558,454,481,405,375,296,249,205,209,267,224,229,185,119,90 -1987,1005,Other races male,2,3,2,4,5,3,2,3,3,4,3,2,0,0,0,1,0,0 -1987,1005,Other races female,3,2,5,2,2,3,4,3,5,3,2,3,1,1,1,0,1,0 -1987,1007,White male,428,510,499,550,501,514,471,467,415,383,294,298,276,215,166,137,79,45 -1987,1007,White female,418,442,459,513,475,475,464,451,414,378,308,315,291,293,246,235,137,106 -1987,1007,Black male,157,195,201,187,141,133,111,96,69,53,42,42,48,47,39,38,19,14 -1987,1007,Black female,173,170,197,189,154,151,119,114,77,63,55,65,66,68,62,49,32,30 -1987,1007,Other races male,0,1,5,2,0,0,0,2,3,0,0,1,1,0,0,1,0,0 -1987,1007,Other races female,0,0,1,3,1,1,0,0,3,1,2,0,0,0,0,1,0,0 -1987,1009,White male,1307,1334,1407,1553,1403,1508,1422,1381,1257,1062,983,891,838,695,537,413,204,115 -1987,1009,White female,1247,1325,1340,1439,1339,1458,1438,1402,1293,1081,1009,948,909,811,764,580,394,244 -1987,1009,Black male,22,21,28,29,20,22,21,18,14,10,10,7,8,8,6,7,2,1 -1987,1009,Black female,27,22,21,27,24,28,25,16,19,12,11,10,10,13,10,8,7,3 -1987,1009,Other races male,3,5,6,3,2,3,6,7,7,3,5,2,1,3,3,1,0,0 -1987,1009,Other races female,4,9,8,8,5,3,6,7,6,8,3,2,3,1,3,2,1,0 -1987,1011,White male,85,84,90,102,127,148,148,153,110,89,78,94,92,93,70,49,22,11 -1987,1011,White female,96,66,74,81,79,87,101,98,90,86,85,108,92,110,87,92,52,38 -1987,1011,Black male,353,406,364,334,252,296,266,238,157,144,113,96,105,114,110,96,52,40 -1987,1011,Black female,380,401,382,384,303,317,285,245,174,167,129,150,162,172,201,148,97,78 -1987,1011,Other races male,2,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0 -1987,1011,Other races female,0,0,1,0,0,1,2,0,1,0,0,1,0,0,0,0,0,0 -1987,1013,White male,442,485,456,472,394,474,484,455,394,345,325,341,359,313,292,184,107,70 -1987,1013,White female,411,476,421,451,376,470,495,432,412,365,347,412,442,412,404,370,244,185 -1987,1013,Black male,430,536,466,453,261,244,271,231,175,158,133,113,136,114,115,108,57,47 -1987,1013,Black female,447,484,491,462,368,374,321,306,210,169,163,156,188,180,167,144,97,81 -1987,1013,Other races male,2,1,1,1,1,1,1,2,2,1,1,1,0,0,1,0,0,0 -1987,1013,Other races female,1,3,4,1,1,1,2,0,1,1,0,1,1,0,0,0,0,0 -1987,1015,White male,3092,3180,3405,4507,4703,4048,3732,3488,3122,2508,2248,2201,2022,1728,1288,845,443,228 -1987,1015,White female,2831,3088,3139,3952,4194,3886,3783,3519,3132,2565,2409,2525,2515,2259,1888,1465,906,672 -1987,1015,Black male,915,994,967,1251,1155,898,807,653,444,377,316,323,298,252,202,130,70,46 -1987,1015,Black female,950,932,981,1187,1321,1015,900,734,506,451,420,414,437,371,315,233,159,102 -1987,1015,Other races male,39,40,42,53,52,42,37,34,28,20,12,11,11,5,3,1,1,1 -1987,1015,Other races female,35,44,41,43,61,56,83,69,71,44,23,21,12,6,5,4,2,2 -1987,1017,White male,733,761,777,847,831,857,854,807,745,662,612,645,641,592,513,367,211,103 -1987,1017,White female,672,759,718,826,801,846,861,786,755,667,637,776,778,795,759,623,412,260 -1987,1017,Black male,597,653,714,698,570,524,430,398,285,245,198,174,175,172,152,126,66,40 -1987,1017,Black female,557,655,650,723,591,581,535,484,366,317,258,281,289,257,236,201,117,97 -1987,1017,Other races male,1,3,2,2,2,2,2,1,1,4,2,1,0,0,0,0,0,0 -1987,1017,Other races female,1,0,3,1,1,4,2,3,4,3,2,1,0,1,1,1,0,0 -1987,1019,White male,567,594,669,734,671,646,678,612,614,500,478,466,455,418,310,218,99,51 -1987,1019,White female,507,571,599,635,628,649,643,627,622,520,489,545,515,468,405,299,193,121 -1987,1019,Black male,64,59,64,64,56,52,54,47,36,28,30,24,23,17,13,8,9,4 -1987,1019,Black female,43,64,60,76,60,54,52,46,41,32,32,22,32,18,27,22,12,8 -1987,1019,Other races male,2,1,4,1,4,2,2,2,0,1,1,2,1,1,0,1,0,0 -1987,1019,Other races female,1,1,4,1,4,5,4,5,1,4,1,1,1,1,1,0,0,0 -1987,1021,White male,970,1048,1042,1107,1043,1124,1085,1012,911,795,705,691,629,579,425,320,185,92 -1987,1021,White female,944,970,1062,1053,1013,1111,1108,1000,917,803,703,780,706,679,625,525,295,230 -1987,1021,Black male,171,184,183,196,127,121,130,105,87,62,58,75,60,56,46,32,21,13 -1987,1021,Black female,162,182,184,196,138,150,133,121,86,85,82,76,62,69,57,53,31,30 -1987,1021,Other races male,3,4,4,2,1,2,4,2,3,3,5,0,0,0,0,0,1,0 -1987,1021,Other races female,4,4,2,1,2,3,5,6,5,1,3,6,0,1,1,2,0,1 -1987,1023,White male,314,313,361,397,301,328,315,326,300,297,256,233,219,200,142,109,59,42 -1987,1023,White female,296,312,330,371,312,317,325,316,321,279,270,285,262,230,191,163,111,89 -1987,1023,Black male,309,363,364,384,229,264,225,218,149,149,124,109,107,112,87,79,58,37 -1987,1023,Black female,321,373,379,390,291,297,288,251,187,169,127,157,138,144,129,110,75,51 -1987,1023,Other races male,1,2,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0 -1987,1023,Other races female,0,1,0,0,0,2,1,1,1,0,2,1,0,0,0,1,0,0 -1987,1025,White male,540,576,562,618,532,582,584,535,535,449,425,386,346,299,269,197,105,73 -1987,1025,White female,503,535,560,590,540,616,555,584,527,482,418,410,402,386,385,301,210,153 -1987,1025,Black male,541,613,665,640,454,430,373,321,217,215,203,180,185,160,128,106,66,45 -1987,1025,Black female,490,630,621,674,509,493,447,351,267,252,244,230,230,203,178,146,96,81 -1987,1025,Other races male,5,5,2,3,3,2,4,0,2,2,1,0,0,0,0,1,0,0 -1987,1025,Other races female,6,3,4,2,1,5,9,1,2,2,3,3,2,0,1,0,1,0 -1987,1027,White male,327,378,398,443,406,388,400,357,335,311,271,283,276,249,206,169,102,68 -1987,1027,White female,325,342,373,417,374,392,385,342,376,310,308,305,333,293,314,263,173,138 -1987,1027,Black male,118,118,117,113,100,74,66,64,49,43,45,27,26,23,17,13,13,7 -1987,1027,Black female,89,113,110,124,103,98,82,67,61,54,43,37,36,38,27,26,18,14 -1987,1027,Other races male,3,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0 -1987,1027,Other races female,1,1,1,1,1,0,1,2,1,1,1,2,1,0,0,0,0,0 -1987,1029,White male,427,445,479,513,467,495,464,434,380,360,288,278,280,229,183,139,63,52 -1987,1029,White female,395,428,418,456,450,478,457,418,396,345,314,310,325,256,271,192,118,97 -1987,1029,Black male,31,31,28,24,24,19,16,17,14,13,12,18,9,8,7,4,4,1 -1987,1029,Black female,32,29,21,32,26,25,21,16,15,19,14,16,10,13,12,8,6,8 -1987,1029,Other races male,1,1,1,1,1,2,2,0,0,1,0,0,0,0,0,0,0,0 -1987,1029,Other races female,0,0,1,1,0,1,1,2,3,1,2,2,1,1,0,0,0,0 -1987,1031,White male,1124,1150,1180,1325,1266,1461,1320,1170,1172,967,836,857,758,647,486,345,173,98 -1987,1031,White female,1039,1052,1085,1212,1171,1323,1292,1239,1170,941,897,895,837,776,678,549,338,274 -1987,1031,Black male,310,316,386,346,263,268,234,216,157,144,117,107,96,90,73,50,43,35 -1987,1031,Black female,284,311,318,362,291,292,307,249,192,163,138,132,131,130,106,101,64,54 -1987,1031,Other races male,14,13,15,24,15,13,10,13,7,12,3,5,5,2,1,1,0,0 -1987,1031,Other races female,12,18,15,14,21,25,36,40,23,22,12,8,7,2,3,1,0,1 -1987,1033,White male,1408,1474,1495,1626,1656,1701,1619,1523,1389,1185,1177,1192,1089,919,690,462,229,132 -1987,1033,White female,1316,1331,1357,1526,1541,1761,1673,1554,1478,1322,1223,1252,1245,1156,984,712,435,315 -1987,1033,Black male,348,390,416,376,289,308,276,257,204,179,141,149,141,132,110,81,46,35 -1987,1033,Black female,391,383,397,396,363,390,353,318,257,223,186,193,190,195,175,121,76,71 -1987,1033,Other races male,6,10,12,10,8,9,9,12,7,8,2,5,2,3,0,2,0,0 -1987,1033,Other races female,13,11,8,6,2,12,10,13,7,3,5,1,4,3,2,0,0,0 -1987,1035,White male,263,277,298,310,277,303,302,279,263,227,230,235,240,215,189,131,88,44 -1987,1035,White female,223,266,284,278,233,309,295,287,248,230,219,242,299,283,248,216,141,101 -1987,1035,Black male,300,329,293,311,206,215,181,161,118,111,91,85,84,93,80,64,53,29 -1987,1035,Black female,278,301,338,304,289,245,234,205,142,129,112,121,139,129,133,111,69,66 -1987,1035,Other races male,2,2,4,2,2,2,1,1,3,1,0,0,3,0,1,0,0,0 -1987,1035,Other races female,1,2,2,3,2,3,1,2,2,2,2,2,0,1,0,1,0,0 -1987,1037,White male,245,226,248,249,259,284,279,265,199,200,191,216,216,186,152,102,52,32 -1987,1037,White female,238,233,229,245,248,261,266,230,215,211,219,220,252,205,176,143,96,56 -1987,1037,Black male,161,196,184,198,176,166,130,114,92,80,78,72,49,60,38,31,28,17 -1987,1037,Black female,145,188,168,204,171,176,120,120,92,101,77,79,80,58,59,54,27,21 -1987,1037,Other races male,2,4,0,2,1,1,1,1,1,2,1,0,0,0,0,0,0,0 -1987,1037,Other races female,0,1,1,0,1,0,4,0,2,1,1,3,0,0,0,0,0,0 -1987,1039,White male,1002,1059,1109,1220,1017,1187,1119,1021,980,832,765,858,822,749,616,437,242,157 -1987,1039,White female,984,1024,1040,1101,1024,1117,1111,1047,1027,870,895,953,1018,959,922,753,495,333 -1987,1039,Black male,202,225,247,270,167,142,145,108,103,76,78,69,79,72,46,51,24,14 -1987,1039,Black female,209,249,260,247,206,193,189,176,119,116,114,110,100,105,91,79,48,37 -1987,1039,Other races male,1,4,4,6,4,7,7,4,4,2,2,3,1,0,2,1,0,1 -1987,1039,Other races female,6,3,5,4,3,5,5,7,6,3,2,2,1,2,2,0,0,0 -1987,1041,White male,353,380,346,400,327,346,373,319,310,283,216,252,261,257,219,151,86,53 -1987,1041,White female,299,333,335,352,311,365,334,334,323,254,266,311,324,342,297,245,162,126 -1987,1041,Black male,166,147,186,182,127,121,90,94,64,67,59,64,65,53,52,36,22,19 -1987,1041,Black female,139,172,174,191,154,137,137,114,102,79,83,71,78,86,83,86,39,40 -1987,1041,Other races male,1,4,1,2,1,0,0,2,2,2,1,1,1,1,0,0,0,0 -1987,1041,Other races female,0,1,1,2,0,2,3,1,3,1,1,0,3,1,1,0,0,0 -1987,1043,White male,2270,2384,2418,2596,2459,2576,2519,2265,2114,1781,1590,1603,1575,1341,1023,757,390,227 -1987,1043,White female,2172,2296,2288,2528,2337,2588,2491,2318,2204,1814,1736,1742,1757,1630,1400,1133,747,546 -1987,1043,Black male,22,22,40,36,31,19,17,18,12,11,15,8,13,4,3,7,4,2 -1987,1043,Black female,16,19,26,30,23,17,24,13,18,16,12,13,8,8,8,6,4,5 -1987,1043,Other races male,8,7,10,12,3,6,10,9,7,4,8,2,3,6,1,3,1,0 -1987,1043,Other races female,4,11,10,11,5,15,10,12,12,9,9,6,3,0,2,1,2,1 -1987,1045,White male,1662,1529,1385,1743,2494,2591,1839,1410,1240,949,838,812,700,598,435,253,149,96 -1987,1045,White female,1628,1444,1272,1390,1761,1960,1643,1341,1176,942,892,842,775,671,538,449,328,267 -1987,1045,Black male,462,475,401,433,553,475,355,263,168,139,86,85,81,86,57,40,30,24 -1987,1045,Black female,467,463,408,402,469,469,364,286,195,161,135,116,113,116,90,80,39,35 -1987,1045,Other races male,29,40,35,38,49,40,36,21,20,13,7,7,5,3,4,0,0,1 -1987,1045,Other races female,41,31,44,22,53,83,70,59,42,35,29,30,23,8,6,2,1,0 -1987,1047,White male,698,741,737,829,682,808,777,752,742,575,582,556,556,468,383,245,125,67 -1987,1047,White female,720,746,699,766,714,834,805,798,720,617,609,666,657,664,546,447,282,254 -1987,1047,Black male,1348,1560,1557,1566,1057,926,837,680,546,467,428,367,389,352,309,256,147,108 -1987,1047,Black female,1367,1495,1516,1597,1282,1242,1155,932,737,642,611,593,601,593,459,475,279,265 -1987,1047,Other races male,7,7,6,10,3,3,11,12,5,0,8,1,1,2,2,0,0,0 -1987,1047,Other races female,7,5,5,6,4,8,11,9,4,3,4,3,2,2,1,3,0,0 -1987,1049,White male,1794,1941,1999,2125,1907,2033,1984,1836,1680,1424,1232,1244,1208,1016,814,617,341,190 -1987,1049,White female,1612,1815,1904,1961,1889,2046,2039,1868,1746,1463,1363,1425,1382,1345,1198,986,613,454 -1987,1049,Black male,35,50,44,58,47,34,38,29,28,24,15,19,11,9,9,6,5,3 -1987,1049,Black female,44,40,52,45,43,47,38,43,29,22,21,21,15,21,22,13,9,5 -1987,1049,Other races male,11,23,30,30,18,13,13,18,15,10,8,5,2,5,2,1,0,1 -1987,1049,Other races female,12,29,42,22,11,10,23,25,19,15,7,4,4,6,2,3,1,1 -1987,1051,White male,1294,1360,1316,1404,1346,1554,1539,1452,1365,1079,1015,927,817,692,519,368,186,93 -1987,1051,White female,1126,1260,1257,1300,1222,1480,1512,1403,1308,1009,986,934,908,798,694,536,365,308 -1987,1051,Black male,448,439,482,563,737,670,544,403,251,190,135,131,118,108,106,81,37,32 -1987,1051,Black female,434,468,474,523,485,481,419,339,236,199,169,197,162,175,123,110,72,69 -1987,1051,Other races male,6,11,10,12,12,9,10,9,9,9,4,3,0,2,0,1,0,0 -1987,1051,Other races female,6,8,9,6,11,8,14,14,12,8,6,3,3,1,1,1,0,1 -1987,1053,White male,843,890,942,1030,914,1009,1018,903,870,690,695,653,599,498,401,265,151,101 -1987,1053,White female,766,853,841,988,804,922,912,923,860,751,706,704,710,648,573,472,329,222 -1987,1053,Black male,444,508,483,554,476,527,497,400,244,217,158,169,144,150,112,112,48,37 -1987,1053,Black female,426,466,501,508,402,420,378,338,249,231,214,211,228,197,186,161,104,94 -1987,1053,Other races male,54,57,65,72,55,44,44,36,32,24,18,12,12,10,14,5,4,2 -1987,1053,Other races female,42,45,48,54,39,47,37,36,32,23,24,15,22,15,15,10,7,5 -1987,1055,White male,2682,2994,3054,3409,3064,3189,3159,3109,2825,2311,2146,2180,2130,1968,1484,1057,485,241 -1987,1055,White female,2541,2802,2954,3229,3027,3207,3255,3126,3039,2409,2378,2501,2663,2526,2245,1717,1099,763 -1987,1055,Black male,589,648,652,684,535,503,480,391,291,223,230,236,249,208,168,126,59,42 -1987,1055,Black female,608,607,646,657,641,615,578,484,369,312,320,340,340,309,267,188,109,75 -1987,1055,Other races male,13,16,15,40,74,30,13,23,11,13,9,6,4,4,3,2,1,0 -1987,1055,Other races female,12,15,25,48,46,22,25,25,18,10,10,10,7,5,2,3,3,1 -1987,1057,White male,518,587,606,666,556,603,578,570,528,443,398,398,373,332,275,213,129,72 -1987,1057,White female,501,577,575,668,541,582,587,583,524,455,433,420,438,442,393,331,249,161 -1987,1057,Black male,92,105,103,113,81,82,68,63,49,47,38,41,41,37,36,30,17,10 -1987,1057,Black female,89,94,112,102,95,99,88,70,60,55,53,56,54,53,53,43,27,23 -1987,1057,Other races male,2,2,1,0,0,1,0,0,1,0,1,1,0,1,1,0,0,0 -1987,1057,Other races female,2,1,1,0,1,1,2,2,2,1,2,0,1,0,0,0,1,0 -1987,1059,White male,906,965,991,1050,999,974,981,897,838,730,705,675,649,568,429,319,167,114 -1987,1059,White female,868,891,936,982,950,1071,1007,962,891,769,741,745,772,677,663,520,345,267 -1987,1059,Black male,63,56,59,63,48,42,44,35,32,29,20,25,19,24,18,9,8,3 -1987,1059,Black female,48,57,45,57,59,63,43,52,30,28,27,34,31,27,17,28,12,9 -1987,1059,Other races male,4,3,6,2,1,2,4,4,5,2,1,1,3,1,0,0,1,0 -1987,1059,Other races female,3,4,4,3,0,6,3,4,6,2,2,2,0,1,1,1,0,0 -1987,1061,White male,670,709,768,836,734,746,718,712,649,570,519,540,533,491,399,283,174,73 -1987,1061,White female,637,683,682,741,686,732,724,716,689,569,593,563,618,580,528,476,283,209 -1987,1061,Black male,135,152,144,164,102,109,85,64,54,47,40,56,44,38,40,20,18,9 -1987,1061,Black female,131,139,151,154,116,125,113,80,76,62,69,60,67,48,57,43,31,23 -1987,1061,Other races male,3,2,3,5,4,2,4,3,5,2,3,4,2,1,1,1,1,0 -1987,1061,Other races female,3,4,5,7,5,4,5,5,4,4,4,5,4,3,3,1,0,0 -1987,1063,White male,56,60,55,58,64,74,72,69,62,68,64,77,71,60,48,36,20,8 -1987,1063,White female,49,45,44,53,59,69,69,62,70,63,70,71,86,66,73,57,42,37 -1987,1063,Black male,383,454,451,416,234,260,225,213,137,127,125,118,128,119,114,113,68,50 -1987,1063,Black female,339,444,456,417,321,338,316,283,201,171,161,165,186,174,188,153,122,91 -1987,1063,Other races male,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0,0,0 -1987,1063,Other races female,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1987,1065,White male,197,187,211,210,167,215,224,220,179,170,154,165,145,152,117,81,54,37 -1987,1065,White female,181,189,194,207,171,225,215,194,178,164,168,162,188,180,169,131,107,88 -1987,1065,Black male,440,476,486,493,299,274,256,235,166,137,127,116,148,147,110,132,71,53 -1987,1065,Black female,421,459,474,467,376,389,343,296,193,167,190,174,211,202,179,152,120,101 -1987,1065,Other races male,1,3,2,1,3,0,1,0,0,0,1,0,1,0,0,0,0,0 -1987,1065,Other races female,2,1,1,1,1,2,2,0,1,1,1,1,0,0,0,0,0,0 -1987,1067,White male,285,310,352,335,304,344,347,340,318,254,246,257,276,255,175,154,72,33 -1987,1067,White female,309,304,313,329,295,342,335,350,332,268,248,300,292,315,277,215,141,93 -1987,1067,Black male,226,266,267,274,196,184,173,154,131,102,96,81,82,77,65,56,30,19 -1987,1067,Black female,232,258,273,280,228,225,179,202,131,140,126,112,119,111,107,96,63,41 -1987,1067,Other races male,1,0,3,2,1,1,1,3,1,2,1,1,0,0,0,1,0,0 -1987,1067,Other races female,2,1,2,0,2,2,2,2,2,1,1,1,1,1,0,0,0,0 -1987,1069,White male,2185,2260,2163,2297,2078,2520,2551,2357,2117,1697,1470,1436,1335,1131,850,532,298,143 -1987,1069,White female,2060,2072,2054,2200,2203,2652,2576,2414,2192,1791,1594,1557,1560,1425,1198,968,640,469 -1987,1069,Black male,905,952,933,904,644,644,614,537,394,326,289,251,255,225,196,128,72,48 -1987,1069,Black female,859,948,956,913,831,849,773,686,470,453,379,347,385,330,308,245,136,102 -1987,1069,Other races male,26,38,46,37,22,29,27,28,23,19,14,8,14,4,1,1,0,0 -1987,1069,Other races female,26,34,32,27,23,32,31,31,32,26,13,13,6,10,3,5,1,1 -1987,1071,White male,1548,1640,1764,1854,1706,1856,1788,1682,1544,1305,1221,1090,1004,836,585,452,206,118 -1987,1071,White female,1541,1652,1665,1793,1694,1896,1803,1726,1586,1354,1220,1226,1119,1007,890,681,395,274 -1987,1071,Black male,92,90,96,100,66,76,61,67,44,34,36,29,28,44,23,25,12,5 -1987,1071,Black female,79,83,81,98,86,85,84,75,64,46,46,48,50,40,48,27,13,13 -1987,1071,Other races male,22,61,73,46,23,19,27,37,34,24,13,8,4,5,2,2,2,1 -1987,1071,Other races female,22,48,87,46,24,28,32,51,45,17,11,15,8,7,5,2,1,1 -1987,1073,White male,13584,13288,13079,14127,16526,19540,17739,16197,14109,11263,10213,10249,10136,8669,6407,4344,2353,1404 -1987,1073,White female,12900,12783,12377,13968,17225,19541,17898,16868,14823,12120,11547,11932,12314,11353,9737,7894,5462,4243 -1987,1073,Black male,9647,10151,9848,9686,8733,8915,8238,7304,5364,4085,3570,3567,3561,3326,2643,2085,1106,760 -1987,1073,Black female,9488,10048,9781,9777,10316,10923,10560,9220,6533,5235,5038,4969,5217,4775,4153,3413,2124,1704 -1987,1073,Other races male,130,130,132,131,180,231,210,165,116,114,71,45,41,22,16,13,5,4 -1987,1073,Other races female,154,142,102,121,170,245,224,179,135,104,74,55,37,35,25,17,11,4 -1987,1075,White male,476,503,537,559,492,550,501,491,465,410,350,357,335,284,260,184,122,64 -1987,1075,White female,461,482,505,545,509,530,512,462,479,401,393,394,401,367,345,301,196,150 -1987,1075,Black male,92,93,92,113,70,69,61,55,41,33,33,37,30,29,19,15,14,10 -1987,1075,Black female,73,90,88,92,84,83,80,57,50,36,51,38,43,46,33,37,21,17 -1987,1075,Other races male,0,2,1,0,1,1,0,1,2,1,1,0,1,0,0,0,0,0 -1987,1075,Other races female,0,1,2,2,1,2,1,3,2,1,0,1,1,0,1,0,0,0 -1987,1077,White male,2344,2411,2470,2821,3092,2805,2729,2610,2288,2003,1758,1753,1646,1444,1070,710,388,223 -1987,1077,White female,2166,2343,2350,2921,3080,2896,2813,2598,2446,2041,1913,1944,1935,1758,1569,1149,849,593 -1987,1077,Black male,352,350,341,381,366,277,221,224,136,151,106,124,111,99,100,62,40,34 -1987,1077,Black female,328,342,347,410,419,347,315,262,197,189,167,165,181,144,147,100,82,59 -1987,1077,Other races male,12,12,9,13,11,16,12,14,10,8,14,8,4,2,1,1,0,1 -1987,1077,Other races female,13,16,13,17,10,11,16,15,18,14,12,9,6,3,1,2,2,2 -1987,1079,White male,941,885,870,997,1002,1120,942,865,798,712,661,607,552,464,366,243,120,71 -1987,1079,White female,846,792,836,946,1011,1081,911,840,796,716,627,630,615,553,481,380,209,162 -1987,1079,Black male,222,237,258,291,207,187,140,147,97,81,73,58,61,69,56,43,24,20 -1987,1079,Black female,225,236,255,245,232,203,191,171,120,110,88,76,87,92,72,64,45,32 -1987,1079,Other races male,46,124,149,110,30,23,59,71,60,27,19,7,8,4,2,1,1,0 -1987,1079,Other races female,45,121,153,85,29,57,96,90,50,27,18,10,7,4,5,3,1,2 -1987,1081,White male,1687,1681,1625,3740,7525,2882,2126,1965,1713,1390,1136,1112,919,764,547,368,177,102 -1987,1081,White female,1611,1592,1616,3841,6142,2417,2109,1922,1661,1373,1154,1126,1048,899,742,571,392,291 -1987,1081,Black male,872,868,917,967,934,783,691,575,474,365,318,278,253,240,155,134,81,52 -1987,1081,Black female,882,853,848,956,1019,954,798,721,509,457,409,401,402,342,318,239,164,130 -1987,1081,Other races male,62,38,35,56,138,151,109,58,32,27,19,14,6,3,5,0,1,0 -1987,1081,Other races female,55,34,30,57,85,106,79,51,29,21,19,16,8,5,5,1,1,0 -1987,1083,White male,1589,1593,1605,1746,1787,2097,1905,1636,1554,1271,1133,1078,871,755,529,371,206,104 -1987,1083,White female,1503,1488,1540,1624,1761,1970,1847,1620,1521,1251,1121,1107,995,924,781,649,394,289 -1987,1083,Black male,271,283,300,306,373,448,359,273,177,138,124,102,108,80,73,58,30,31 -1987,1083,Black female,242,268,278,308,301,308,270,205,174,137,139,138,141,105,119,78,54,47 -1987,1083,Other races male,7,9,19,14,9,8,12,8,17,13,5,5,3,2,0,1,0,0 -1987,1083,Other races female,7,10,4,16,8,8,9,14,12,6,7,5,3,1,2,1,0,1 -1987,1085,White male,112,107,87,93,94,125,127,112,105,91,91,103,92,69,53,40,19,18 -1987,1085,White female,108,103,89,93,97,142,114,110,88,106,102,113,90,89,88,68,46,38 -1987,1085,Black male,491,539,543,577,352,332,254,226,149,145,125,106,122,115,112,94,65,41 -1987,1085,Black female,471,507,552,547,433,417,322,308,237,182,178,181,171,174,161,130,80,71 -1987,1085,Other races male,2,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0 -1987,1085,Other races female,1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0,0,0 -1987,1087,White male,92,106,100,115,142,138,142,116,119,117,102,116,129,120,95,67,43,32 -1987,1087,White female,109,94,93,113,120,143,120,122,114,104,82,93,115,106,107,83,55,36 -1987,1087,Black male,805,823,839,1405,1306,691,588,536,413,359,295,351,361,413,322,246,142,112 -1987,1087,Black female,805,866,856,1490,1449,809,714,676,552,445,424,452,463,498,457,368,241,208 -1987,1087,Other races male,5,4,3,4,5,10,10,7,3,3,2,1,2,2,1,1,0,0 -1987,1087,Other races female,6,3,4,6,8,10,5,3,2,2,1,2,2,3,1,1,1,0 -1987,1089,White male,6148,5924,5621,6394,7133,9518,8381,6846,6082,5245,4870,4882,3652,2809,1818,1101,531,315 -1987,1089,White female,5843,5596,5381,5857,6920,8868,7850,6752,6208,5397,5131,4812,3953,3324,2476,1836,1253,920 -1987,1089,Black male,1969,2011,1906,2516,2876,2246,1907,1450,1063,866,646,540,427,353,287,181,113,102 -1987,1089,Black female,1906,1979,1869,2704,3086,2452,2071,1657,1257,955,799,686,564,507,421,308,181,176 -1987,1089,Other races male,184,219,252,194,177,256,253,192,164,133,81,59,28,25,15,4,7,1 -1987,1089,Other races female,197,203,248,181,154,233,298,288,219,144,105,72,59,23,19,9,6,1 -1987,1091,White male,385,419,404,454,359,426,420,427,378,346,320,320,290,249,189,114,73,43 -1987,1091,White female,371,383,391,399,392,435,413,399,396,348,343,338,335,271,272,211,143,111 -1987,1091,Black male,578,604,681,648,428,401,344,305,234,205,185,185,187,172,168,152,92,72 -1987,1091,Black female,537,612,618,616,513,444,458,392,296,254,234,268,276,296,250,225,156,141 -1987,1091,Other races male,1,0,1,0,2,1,0,1,1,1,0,1,1,0,0,0,1,0 -1987,1091,Other races female,1,1,1,1,0,1,2,2,0,1,1,1,1,1,0,0,1,0 -1987,1093,White male,985,1046,1055,1204,1119,1200,1024,992,959,791,779,727,681,596,466,346,197,138 -1987,1093,White female,912,1015,1021,1136,1059,1060,1068,989,995,829,800,754,792,733,663,574,363,264 -1987,1093,Black male,35,38,38,36,44,51,50,40,24,26,13,14,13,17,16,12,6,6 -1987,1093,Black female,35,36,31,39,41,31,38,22,25,20,20,12,17,14,12,14,6,10 -1987,1093,Other races male,6,8,2,4,2,1,3,4,4,2,2,3,1,1,0,0,0,0 -1987,1093,Other races female,4,5,4,1,3,5,3,4,2,2,1,4,0,0,4,0,1,0 -1987,1095,White male,2281,2443,2478,2788,2461,2765,2598,2437,2209,1886,1736,1709,1661,1329,1031,709,390,230 -1987,1095,White female,2249,2363,2355,2593,2484,2829,2679,2572,2346,2010,1884,1919,1919,1655,1528,1157,788,546 -1987,1095,Black male,55,46,43,61,64,40,38,39,23,21,18,14,15,15,10,10,7,3 -1987,1095,Black female,38,45,44,50,50,47,38,47,28,25,21,25,22,23,19,15,8,9 -1987,1095,Other races male,9,11,9,10,6,6,11,15,10,14,6,5,4,2,2,1,0,1 -1987,1095,Other races female,9,14,15,18,10,10,15,17,12,7,10,8,7,5,1,1,1,0 -1987,1097,White male,9627,9567,9174,9949,10362,11407,10881,9932,8689,6827,6063,5782,5430,4743,3487,2237,1164,663 -1987,1097,White female,9114,8933,8795,9717,10951,11498,10995,9880,8932,7167,6371,6338,6477,6007,4869,3799,2478,1848 -1987,1097,Black male,5884,6002,5963,5606,4437,4419,4047,3413,2489,2092,1957,1930,1741,1603,1192,873,453,267 -1987,1097,Black female,5761,5941,5881,5742,5381,5580,5272,4392,3299,2816,2623,2534,2410,2219,1830,1370,839,660 -1987,1097,Other races male,201,217,226,272,300,211,188,177,135,113,78,55,40,28,15,15,8,4 -1987,1097,Other races female,193,220,224,224,224,211,226,212,168,119,80,73,49,39,30,25,11,5 -1987,1099,White male,466,501,505,539,455,523,525,494,457,393,335,332,327,283,185,172,82,60 -1987,1099,White female,471,490,479,523,432,515,492,530,430,392,328,352,350,324,314,250,174,138 -1987,1099,Black male,451,514,530,532,337,321,291,242,176,153,149,118,139,119,108,100,39,38 -1987,1099,Black female,436,489,486,518,384,368,327,320,191,182,175,169,190,156,149,131,76,84 -1987,1099,Other races male,9,14,12,14,17,7,8,9,7,5,6,5,4,3,2,2,0,0 -1987,1099,Other races female,8,10,8,11,9,10,10,5,7,8,6,5,3,3,3,3,1,1 -1987,1101,White male,4067,4108,3760,4160,4621,5587,5226,4991,4271,3342,2931,2865,2598,2186,1604,1041,530,302 -1987,1101,White female,3828,3868,3554,4069,4689,5364,5186,4970,4326,3468,3102,3218,3180,3052,2457,1983,1407,1176 -1987,1101,Black male,4074,4212,3948,4477,3888,3374,3051,2576,1851,1424,1204,1184,1038,932,700,562,309,197 -1987,1101,Black female,3917,4130,3934,4611,4632,4270,3799,3230,2243,1847,1673,1603,1498,1381,1192,961,574,525 -1987,1101,Other races male,59,71,83,79,76,68,71,57,61,47,25,22,12,11,6,4,2,2 -1987,1101,Other races female,58,74,82,79,78,79,113,99,96,50,42,31,23,11,8,7,4,1 -1987,1103,White male,3002,3220,3248,3357,3081,3829,3653,3408,3042,2515,2235,2107,1857,1481,1133,700,412,219 -1987,1103,White female,2923,2954,3039,3108,3166,3788,3660,3490,3124,2519,2331,2220,2131,1833,1595,1221,791,566 -1987,1103,Black male,483,495,501,446,384,387,377,296,207,168,139,127,123,118,95,77,39,25 -1987,1103,Black female,475,464,478,452,457,487,433,360,244,199,191,178,175,147,158,126,67,59 -1987,1103,Other races male,17,25,31,19,17,19,24,33,24,17,16,5,7,3,5,3,1,0 -1987,1103,Other races female,22,27,29,21,15,19,25,36,26,19,10,12,6,6,5,2,1,1 -1987,1105,White male,124,149,136,331,211,168,152,146,138,143,130,144,125,119,106,84,50,29 -1987,1105,White female,135,114,141,277,239,146,146,145,143,142,149,150,157,156,152,125,92,68 -1987,1105,Black male,429,487,504,503,278,246,237,176,158,123,146,125,124,126,122,108,70,51 -1987,1105,Black female,419,464,486,492,332,336,286,273,205,179,187,171,187,193,174,140,121,103 -1987,1105,Other races male,0,2,1,4,1,0,0,0,1,0,0,1,0,0,0,1,0,0 -1987,1105,Other races female,1,2,1,3,3,1,2,1,1,1,0,0,0,0,0,0,0,0 -1987,1107,White male,390,392,438,437,426,451,448,415,403,321,349,361,376,290,232,173,91,64 -1987,1107,White female,362,355,376,417,381,425,429,391,387,367,388,376,412,339,325,270,206,147 -1987,1107,Black male,403,471,479,415,294,264,240,207,141,138,134,150,132,147,117,101,69,45 -1987,1107,Black female,442,500,500,460,359,357,336,276,207,180,188,189,188,190,176,151,96,102 -1987,1107,Other races male,1,2,2,2,0,1,2,1,1,1,1,1,0,0,1,0,0,0 -1987,1107,Other races female,2,3,3,0,1,2,3,2,2,3,2,0,2,1,0,2,0,0 -1987,1109,White male,522,529,534,937,1291,644,575,538,505,437,391,396,388,353,283,209,112,65 -1987,1109,White female,476,483,498,971,1206,609,567,549,515,466,406,434,434,469,432,358,246,207 -1987,1109,Black male,449,465,425,547,430,311,258,218,172,150,129,131,114,161,107,94,48,38 -1987,1109,Black female,388,455,451,581,580,410,372,312,239,194,183,188,188,206,195,178,121,95 -1987,1109,Other races male,6,9,8,14,10,9,5,3,3,4,2,3,3,2,1,1,1,0 -1987,1109,Other races female,4,6,8,11,13,7,7,7,6,7,3,4,5,2,2,1,1,0 -1987,1111,White male,463,548,504,561,526,544,555,491,447,377,376,384,408,363,294,205,113,70 -1987,1111,White female,422,459,491,522,501,539,514,488,462,389,394,449,481,436,401,344,232,165 -1987,1111,Black male,205,254,238,254,183,164,163,119,98,76,82,65,72,68,50,45,24,16 -1987,1111,Black female,206,228,226,219,202,203,169,158,119,95,99,89,87,95,85,68,52,40 -1987,1111,Other races male,1,4,3,2,0,0,0,1,1,2,0,0,0,0,1,0,0,0 -1987,1111,Other races female,1,1,1,3,2,2,3,3,3,3,1,0,2,1,0,0,0,1 -1987,1113,White male,1095,1013,940,1035,1200,1300,1170,1021,926,797,762,737,710,572,399,248,116,66 -1987,1113,White female,995,929,867,1003,1180,1265,1114,1025,956,851,817,851,829,711,593,458,273,184 -1987,1113,Black male,781,836,880,918,722,647,614,528,420,362,374,336,295,286,215,164,78,51 -1987,1113,Black female,735,794,802,896,799,803,736,638,527,484,446,412,452,400,346,267,151,117 -1987,1113,Other races male,8,8,5,7,3,9,7,9,7,6,2,5,1,2,2,0,0,0 -1987,1113,Other races female,6,6,3,4,9,9,12,9,16,7,4,6,4,3,3,2,0,1 -1987,1115,White male,1708,1665,1638,1691,1542,1836,1789,1668,1510,1257,1056,1009,951,798,580,355,189,123 -1987,1115,White female,1487,1499,1532,1596,1557,1766,1697,1624,1472,1239,1069,1067,1083,906,758,542,372,273 -1987,1115,Black male,180,186,194,213,190,259,243,191,141,101,80,74,77,54,38,40,19,13 -1987,1115,Black female,176,193,194,211,180,180,155,136,103,102,82,88,81,73,69,48,32,19 -1987,1115,Other races male,4,8,10,4,6,7,10,11,6,9,8,3,2,2,0,0,0,0 -1987,1115,Other races female,6,7,12,3,3,9,15,5,7,7,3,4,4,0,4,2,0,0 -1987,1117,White male,3357,3295,2892,2890,2874,3896,4028,3828,3166,2254,1779,1537,1300,1028,686,460,233,133 -1987,1117,White female,3169,3028,2766,2919,3372,4129,4194,3835,3065,2187,1742,1572,1364,1178,908,716,420,319 -1987,1117,Black male,332,364,362,345,352,301,283,226,156,130,113,103,83,69,72,44,36,21 -1987,1117,Black female,338,335,346,392,404,350,318,275,200,163,147,115,123,105,103,97,46,39 -1987,1117,Other races male,27,34,21,27,22,26,36,35,24,17,20,10,9,5,3,1,0,1 -1987,1117,Other races female,36,38,29,24,25,25,39,36,26,17,20,15,8,7,2,1,2,0 -1987,1119,White male,147,154,130,245,340,202,172,154,143,117,113,129,118,114,95,72,35,17 -1987,1119,White female,149,144,118,224,299,176,150,165,137,111,129,122,143,138,128,111,85,68 -1987,1119,Black male,545,575,641,652,451,384,361,308,182,160,156,152,171,169,165,141,87,66 -1987,1119,Black female,531,572,628,679,540,469,455,373,241,217,244,266,249,263,243,198,149,103 -1987,1119,Other races male,1,1,1,2,6,2,1,0,0,1,1,1,0,0,0,1,0,0 -1987,1119,Other races female,1,0,1,3,1,0,1,1,2,2,2,0,0,1,0,1,1,0 -1987,1121,White male,1696,1825,1900,2082,1797,2037,1913,1944,1736,1452,1280,1331,1210,1095,812,571,273,152 -1987,1121,White female,1607,1746,1840,1903,1876,1931,1963,1861,1692,1418,1433,1464,1497,1356,1180,908,567,332 -1987,1121,Black male,1028,1159,1212,1304,937,828,797,731,565,434,347,341,317,276,207,164,81,51 -1987,1121,Black female,1013,1160,1172,1379,1126,946,912,781,586,475,431,452,407,375,311,239,143,129 -1987,1121,Other races male,12,10,7,12,8,9,11,10,13,15,4,6,0,3,1,1,1,0 -1987,1121,Other races female,6,11,12,8,13,12,11,9,7,10,5,5,3,3,3,0,0,1 -1987,1123,White male,877,936,986,1040,935,1052,1013,1006,881,767,716,744,757,684,532,388,210,108 -1987,1123,White female,793,863,922,1026,922,1029,1012,1006,896,840,766,871,916,885,774,649,383,281 -1987,1123,Black male,421,467,508,528,410,348,338,297,236,186,185,155,152,135,122,91,39,30 -1987,1123,Black female,471,496,525,552,459,441,396,376,284,223,208,209,240,199,141,154,81,84 -1987,1123,Other races male,2,3,3,1,4,2,3,3,3,3,1,1,2,0,1,0,0,0 -1987,1123,Other races female,6,6,5,3,1,3,8,4,5,2,1,2,3,2,1,0,0,1 -1987,1125,White male,3195,3221,3140,5032,7366,4775,4166,3889,3353,2590,2406,2291,2228,1943,1319,904,493,310 -1987,1125,White female,2970,2968,3001,5160,6925,4424,4029,3864,3339,2676,2419,2499,2504,2156,1800,1481,939,787 -1987,1125,Black male,1691,1810,1766,1900,1796,1434,1245,1194,793,642,576,570,511,498,365,295,146,115 -1987,1125,Black female,1657,1780,1730,2222,2301,1777,1617,1486,1000,796,817,755,760,682,573,468,269,249 -1987,1125,Other races male,36,39,34,47,138,119,80,49,38,22,16,12,7,10,3,4,0,1 -1987,1125,Other races female,43,33,41,40,94,85,67,48,37,30,14,15,11,10,5,3,2,1 -1987,1127,White male,2124,2267,2417,2575,2377,2536,2377,2293,2119,1767,1621,1593,1402,1282,929,653,366,223 -1987,1127,White female,2026,2175,2283,2467,2308,2479,2462,2343,2182,1743,1705,1685,1704,1653,1390,1115,756,534 -1987,1127,Black male,202,228,232,225,157,143,146,123,86,89,65,68,67,66,61,45,27,24 -1987,1127,Black female,196,226,233,220,187,201,190,166,104,93,95,96,91,97,85,82,60,57 -1987,1127,Other races male,7,6,7,6,8,6,7,5,7,7,8,2,2,0,1,0,0,0 -1987,1127,Other races female,8,6,9,11,4,8,14,10,9,7,8,3,6,5,1,1,1,4 -1987,1129,White male,422,443,473,465,408,432,435,387,386,321,294,276,249,207,184,118,67,41 -1987,1129,White female,382,446,436,439,402,447,420,408,376,332,286,275,257,247,208,180,114,84 -1987,1129,Black male,231,267,265,240,178,161,172,132,94,89,69,80,63,65,49,49,21,17 -1987,1129,Black female,196,247,237,259,201,209,180,162,112,107,89,88,90,86,72,62,39,35 -1987,1129,Other races male,51,57,60,54,40,55,36,38,26,22,11,12,9,9,6,3,2,1 -1987,1129,Other races female,55,65,56,41,42,44,45,38,26,17,19,22,13,9,11,7,5,1 -1987,1131,White male,151,140,149,157,148,149,152,160,140,124,132,114,133,119,81,64,37,17 -1987,1131,White female,130,131,145,129,126,145,147,129,147,125,133,158,159,167,139,106,77,69 -1987,1131,Black male,457,557,604,574,324,305,284,236,169,146,125,137,130,159,140,120,76,51 -1987,1131,Black female,485,519,598,551,390,385,323,294,205,198,192,189,206,214,214,179,112,101 -1987,1131,Other races male,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0 -1987,1131,Other races female,0,1,2,0,0,1,1,0,1,1,1,0,0,1,1,0,0,0 -1987,1133,White male,726,779,824,884,804,870,815,752,728,625,548,557,489,445,320,235,121,77 -1987,1133,White female,721,729,751,833,798,867,776,786,758,652,580,568,597,518,445,351,229,150 -1987,1133,Black male,3,5,1,3,3,2,1,1,2,1,1,1,0,1,1,1,1,0 -1987,1133,Black female,2,3,3,4,1,4,2,2,3,0,2,1,2,0,1,1,1,1 -1987,1133,Other races male,4,1,2,2,2,0,3,1,2,2,1,3,0,0,1,1,0,0 -1987,1133,Other races female,6,2,2,5,4,3,3,2,4,2,3,1,1,1,1,2,0,0 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1988.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1988.csv deleted file mode 100644 index 8a38ab2402..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1988.csv +++ /dev/null @@ -1,409 +0,0 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1988",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1988,1001,White male,1055,1109,1145,1098,901,1072,1098,1028,983,840,741,636,503,393,266,181,98,40 -1988,1001,White female,954,978,972,1066,856,1107,1160,1080,1024,833,754,636,531,443,384,310,206,144 -1988,1001,Black male,302,345,351,401,234,244,222,177,143,113,113,91,106,106,79,65,38,21 -1988,1001,Black female,310,354,347,388,300,280,274,234,177,140,130,133,150,133,113,83,67,65 -1988,1001,Other races male,6,7,4,8,7,4,7,4,8,4,2,3,1,1,0,0,0,0 -1988,1001,Other races female,8,7,9,7,5,4,11,13,9,9,14,9,7,2,1,2,0,0 -1988,1003,White male,2760,2908,2931,3028,2358,2888,3038,2952,2847,2329,2058,2037,2165,2093,1583,1040,537,279 -1988,1003,White female,2646,2660,2721,2791,2341,3050,3188,3079,2790,2431,2155,2178,2466,2293,1819,1416,922,629 -1988,1003,Black male,614,689,667,661,430,454,421,359,261,197,189,196,183,147,138,110,68,45 -1988,1003,Black female,614,644,629,701,516,563,521,416,294,274,272,226,230,200,203,157,90,74 -1988,1003,Other races male,14,39,30,35,25,20,32,30,24,23,17,24,11,8,4,3,3,0 -1988,1003,Other races female,27,36,40,35,30,35,42,56,31,24,28,18,16,14,7,6,3,3 -1988,1005,White male,454,478,513,551,435,532,519,506,510,391,355,359,367,322,237,185,87,44 -1988,1005,White female,389,472,458,479,434,515,492,502,513,396,371,399,404,420,347,293,200,137 -1988,1005,Black male,520,616,557,550,371,389,368,322,250,181,143,149,152,150,142,120,61,35 -1988,1005,Black female,525,594,531,556,438,475,410,391,319,253,200,200,262,221,227,189,121,93 -1988,1005,Other races male,3,3,2,4,5,3,3,3,3,4,3,2,0,0,0,1,0,0 -1988,1005,Other races female,3,3,5,2,2,3,4,4,5,3,2,3,1,2,2,0,1,0 -1988,1007,White male,428,508,497,555,489,503,477,458,429,406,298,291,282,211,159,138,81,45 -1988,1007,White female,413,439,457,521,465,468,468,447,422,397,314,307,289,288,242,242,140,108 -1988,1007,Black male,153,196,198,185,136,125,114,99,74,56,40,38,47,45,34,35,20,15 -1988,1007,Black female,171,166,195,187,146,148,123,117,79,64,53,59,65,69,61,49,33,29 -1988,1007,Other races male,0,2,5,2,0,0,0,2,3,0,0,1,1,0,0,1,0,0 -1988,1007,Other races female,0,0,1,3,1,1,0,0,3,2,2,0,0,0,0,1,0,0 -1988,1009,White male,1313,1324,1401,1556,1371,1492,1440,1379,1281,1118,1011,890,849,689,534,426,212,116 -1988,1009,White female,1249,1321,1346,1446,1311,1438,1457,1396,1325,1138,1037,938,911,820,770,598,413,250 -1988,1009,Black male,21,20,26,28,18,22,22,19,14,10,9,7,8,7,6,7,2,1 -1988,1009,Black female,27,20,20,25,22,28,26,16,19,12,11,10,10,12,10,7,7,3 -1988,1009,Other races male,3,5,7,3,2,3,6,7,9,3,5,3,1,3,3,1,0,0 -1988,1009,Other races female,4,10,9,8,5,4,6,7,7,10,3,3,3,1,3,2,1,0 -1988,1011,White male,82,80,91,103,125,148,153,159,116,95,81,90,90,96,72,53,22,11 -1988,1011,White female,96,61,71,80,72,83,102,98,92,85,88,106,91,108,89,98,54,39 -1988,1011,Black male,372,423,375,340,253,309,285,257,171,155,119,97,104,110,109,101,54,40 -1988,1011,Black female,397,414,393,395,303,323,300,260,187,176,131,150,160,170,209,155,106,79 -1988,1011,Other races male,2,0,0,0,2,2,1,1,1,2,0,0,0,1,0,0,0,0 -1988,1011,Other races female,0,0,1,0,0,1,2,0,1,0,0,1,0,0,0,0,0,0 -1988,1013,White male,436,484,453,464,370,456,486,455,399,351,319,328,349,307,296,186,110,67 -1988,1013,White female,404,476,413,442,349,454,499,427,412,372,345,396,431,396,401,379,245,186 -1988,1013,Black male,427,539,467,460,247,233,273,234,184,163,134,108,132,110,112,105,58,50 -1988,1013,Black female,437,485,491,463,350,361,333,316,220,171,160,148,187,178,162,144,102,82 -1988,1013,Other races male,3,1,2,2,2,1,1,2,3,1,1,2,0,0,1,0,0,0 -1988,1013,Other races female,1,3,4,2,1,1,2,0,1,2,0,1,1,0,0,0,0,0 -1988,1015,White male,3045,3132,3364,4380,4438,3913,3714,3474,3188,2605,2265,2161,2031,1738,1307,870,460,226 -1988,1015,White female,2760,3042,3103,3887,3945,3732,3788,3504,3192,2652,2415,2462,2525,2284,1902,1509,928,693 -1988,1015,Black male,909,1003,970,1245,1086,882,836,682,471,385,314,317,293,250,200,132,71,46 -1988,1015,Black female,948,925,981,1187,1270,999,934,764,532,449,415,406,439,377,313,241,165,104 -1988,1015,Other races male,38,43,43,56,50,44,35,34,30,21,13,13,12,5,4,1,2,2 -1988,1015,Other races female,35,47,44,46,58,55,84,74,77,48,24,23,12,6,6,4,2,2 -1988,1017,White male,726,746,758,837,805,826,846,794,755,682,613,626,624,579,511,378,223,103 -1988,1017,White female,663,736,704,818,767,815,855,776,768,680,630,747,754,781,751,642,423,264 -1988,1017,Black male,584,641,696,697,554,510,437,410,298,251,198,170,170,169,149,127,68,41 -1988,1017,Black female,546,641,640,728,561,567,538,493,390,319,257,275,282,256,234,209,118,99 -1988,1017,Other races male,2,3,2,2,3,2,2,1,1,4,2,1,0,0,0,0,0,0 -1988,1017,Other races female,1,0,4,1,1,4,2,3,4,3,2,1,0,1,1,1,0,0 -1988,1019,White male,568,591,678,752,653,638,694,622,634,528,503,465,464,427,321,229,106,49 -1988,1019,White female,504,574,612,647,613,647,654,631,645,550,508,551,525,479,418,314,201,125 -1988,1019,Black male,63,57,63,63,52,50,57,49,37,29,29,24,23,16,11,7,10,4 -1988,1019,Black female,41,59,57,76,54,50,53,48,42,33,33,23,32,17,27,22,12,9 -1988,1019,Other races male,2,2,4,1,4,2,2,2,0,1,1,2,1,1,0,1,0,0 -1988,1019,Other races female,2,1,5,2,4,6,4,5,1,4,1,2,1,1,1,0,0,0 -1988,1021,White male,966,1051,1058,1114,1014,1109,1108,1020,933,842,726,690,639,578,423,331,195,96 -1988,1021,White female,941,976,1079,1066,980,1100,1136,1008,942,847,721,778,702,680,631,542,307,236 -1988,1021,Black male,173,185,187,198,122,119,136,112,95,59,57,76,59,56,46,31,22,14 -1988,1021,Black female,161,178,184,197,133,150,138,125,92,85,84,76,63,69,57,53,32,32 -1988,1021,Other races male,4,5,4,2,1,2,4,2,3,3,5,0,0,0,0,0,1,0 -1988,1021,Other races female,4,4,2,2,3,3,5,7,6,1,3,7,0,1,1,2,0,2 -1988,1023,White male,302,304,359,397,287,318,315,314,302,315,260,226,222,201,137,109,62,43 -1988,1023,White female,289,305,325,368,302,309,321,309,325,290,274,281,265,232,184,164,117,93 -1988,1023,Black male,305,359,357,382,220,262,229,223,159,154,126,104,108,113,81,79,60,38 -1988,1023,Black female,316,362,380,395,274,292,296,259,198,171,125,154,135,146,127,110,75,53 -1988,1023,Other races male,1,1,2,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0 -1988,1023,Other races female,0,2,0,0,0,2,1,1,1,0,2,2,0,0,0,2,0,0 -1988,1025,White male,526,569,547,613,508,557,579,524,540,466,435,383,340,291,265,202,105,72 -1988,1025,White female,488,524,553,584,514,592,549,574,529,506,424,400,390,382,388,309,212,154 -1988,1025,Black male,530,600,664,639,433,421,386,328,225,214,202,179,185,157,121,104,67,45 -1988,1025,Black female,476,621,615,673,489,489,460,357,273,252,246,229,229,201,168,147,98,80 -1988,1025,Other races male,5,5,2,3,3,3,4,0,2,2,1,0,0,0,0,1,0,0 -1988,1025,Other races female,6,2,3,2,1,5,9,1,1,2,4,4,2,0,0,0,2,0 -1988,1027,White male,318,371,393,439,396,380,401,354,339,324,274,279,275,243,203,175,103,68 -1988,1027,White female,319,336,370,410,356,382,385,338,379,320,315,302,327,287,314,273,177,144 -1988,1027,Black male,115,113,115,115,101,73,65,64,51,46,47,26,27,24,16,13,14,7 -1988,1027,Black female,88,108,104,122,100,100,83,67,64,56,42,37,36,38,27,26,19,14 -1988,1027,Other races male,3,0,1,2,1,2,1,1,0,1,2,0,1,1,0,0,0,0 -1988,1027,Other races female,1,1,1,2,2,0,2,2,1,2,1,2,2,0,0,0,0,0 -1988,1029,White male,424,439,480,517,452,490,472,428,387,382,292,274,281,228,188,140,63,53 -1988,1029,White female,394,427,418,454,436,472,459,415,402,361,316,307,325,253,276,195,120,100 -1988,1029,Black male,31,30,29,22,23,19,15,17,14,12,14,19,9,7,7,4,4,1 -1988,1029,Black female,32,28,20,30,24,25,21,15,15,20,15,17,9,12,12,8,6,8 -1988,1029,Other races male,1,2,1,2,1,1,2,0,0,2,0,0,0,0,0,0,0,0 -1988,1029,Other races female,0,0,0,2,0,1,1,2,3,1,3,2,2,1,0,0,0,0 -1988,1031,White male,1126,1140,1180,1323,1243,1458,1318,1163,1215,1012,855,853,766,652,498,361,178,100 -1988,1031,White female,1042,1047,1084,1207,1134,1300,1297,1239,1193,984,926,882,843,784,696,567,350,282 -1988,1031,Black male,314,315,387,352,256,268,243,224,168,152,118,106,98,92,74,50,44,35 -1988,1031,Black female,285,312,322,366,281,297,316,260,203,166,137,130,133,128,105,102,65,57 -1988,1031,Other races male,15,14,15,25,16,13,10,14,8,13,3,5,5,2,2,2,0,0 -1988,1031,Other races female,12,20,17,15,21,24,39,44,27,24,13,9,8,2,4,2,0,1 -1988,1033,White male,1395,1457,1457,1582,1584,1646,1615,1511,1398,1220,1193,1168,1090,927,706,473,235,131 -1988,1033,White female,1293,1312,1327,1469,1446,1706,1677,1523,1489,1382,1230,1218,1242,1175,1001,735,446,319 -1988,1033,Black male,344,388,414,366,276,297,273,265,218,181,140,146,136,134,111,81,44,37 -1988,1033,Black female,391,372,390,390,351,379,357,325,272,225,185,184,190,201,173,121,78,74 -1988,1033,Other races male,5,10,12,9,9,9,9,12,9,9,2,5,2,3,0,2,0,0 -1988,1033,Other races female,15,12,9,6,2,11,10,15,8,3,5,2,4,3,2,0,0,0 -1988,1035,White male,250,268,289,298,255,286,300,271,262,233,226,227,235,210,186,131,90,43 -1988,1035,White female,209,258,279,264,212,295,289,286,245,234,212,232,296,277,242,219,143,101 -1988,1035,Black male,297,322,287,303,190,205,181,163,126,114,89,81,84,90,75,62,53,28 -1988,1035,Black female,270,295,332,295,274,237,238,210,150,128,107,118,135,128,126,109,67,67 -1988,1035,Other races male,2,2,4,3,2,2,1,0,3,2,0,0,3,0,0,0,0,0 -1988,1035,Other races female,2,2,2,3,3,3,2,3,2,1,2,1,0,1,0,1,0,0 -1988,1037,White male,242,223,246,243,243,276,284,265,200,207,186,209,214,184,152,101,54,33 -1988,1037,White female,234,228,225,242,234,253,267,228,215,217,216,213,249,204,173,144,96,56 -1988,1037,Black male,163,190,173,196,172,164,133,119,95,79,79,72,49,59,36,29,28,18 -1988,1037,Black female,145,181,160,206,167,174,123,122,94,101,75,80,78,56,57,56,29,22 -1988,1037,Other races male,2,4,0,2,1,2,1,0,1,3,1,0,0,0,0,0,0,0 -1988,1037,Other races female,0,2,1,0,2,0,4,0,2,1,2,3,0,0,0,0,0,0 -1988,1039,White male,992,1060,1120,1200,970,1169,1132,1013,1005,858,767,831,817,740,616,446,249,153 -1988,1039,White female,977,1032,1033,1096,980,1095,1117,1041,1036,898,901,923,997,941,912,770,507,340 -1988,1039,Black male,203,218,242,272,161,142,148,110,107,78,78,68,80,69,45,53,25,14 -1988,1039,Black female,208,246,259,246,199,190,193,182,123,113,116,108,96,107,88,79,50,38 -1988,1039,Other races male,1,4,5,6,4,7,7,5,5,3,2,3,1,0,2,1,0,1 -1988,1039,Other races female,6,4,5,4,3,5,5,7,6,3,2,2,1,2,2,0,0,0 -1988,1041,White male,348,379,344,400,309,342,376,315,320,294,215,245,259,253,218,157,90,52 -1988,1041,White female,295,332,334,353,300,355,331,338,329,262,268,298,321,342,296,249,166,128 -1988,1041,Black male,167,146,191,181,124,121,90,97,67,68,59,64,65,51,53,34,23,18 -1988,1041,Black female,137,168,173,193,146,136,142,117,108,81,85,68,78,85,83,85,40,40 -1988,1041,Other races male,1,4,1,2,0,0,0,2,2,2,1,2,1,1,0,0,0,0 -1988,1041,Other races female,0,0,1,2,0,1,3,1,3,2,1,0,3,1,0,0,0,0 -1988,1043,White male,2275,2387,2405,2584,2383,2548,2555,2263,2170,1857,1615,1581,1585,1341,1031,776,405,226 -1988,1043,White female,2163,2289,2287,2529,2259,2554,2519,2313,2248,1892,1766,1700,1763,1639,1413,1165,775,563 -1988,1043,Black male,22,21,41,39,33,19,18,19,11,12,17,9,14,3,2,7,4,2 -1988,1043,Black female,15,18,27,31,21,16,24,13,19,16,13,14,8,7,8,6,5,5 -1988,1043,Other races male,8,7,11,13,3,6,10,10,9,5,8,2,3,6,1,4,1,0 -1988,1043,Other races female,4,11,10,11,5,15,10,13,14,10,8,6,3,0,2,1,2,1 -1988,1045,White male,1683,1539,1409,1751,2440,2632,1867,1428,1300,1002,872,821,724,622,456,264,157,100 -1988,1045,White female,1664,1463,1286,1398,1724,1977,1689,1366,1213,1003,938,849,807,696,549,466,344,283 -1988,1045,Black male,484,496,418,444,516,475,378,280,186,149,84,84,83,90,55,40,31,27 -1988,1045,Black female,483,484,425,418,464,483,389,304,211,172,140,115,116,121,89,86,42,37 -1988,1045,Other races male,30,43,37,42,46,41,37,22,23,13,7,7,5,3,4,0,0,1 -1988,1045,Other races female,42,33,49,24,48,82,74,64,46,38,31,35,27,9,6,1,1,0 -1988,1047,White male,670,718,705,794,622,759,746,725,744,579,576,528,544,464,384,248,127,68 -1988,1047,White female,696,718,665,732,641,781,776,774,711,623,597,631,650,661,538,448,278,257 -1988,1047,Black male,1326,1538,1530,1533,992,900,847,689,562,467,426,354,379,337,293,250,149,104 -1988,1047,Black female,1353,1471,1494,1567,1220,1212,1175,946,755,634,603,580,600,575,439,484,282,267 -1988,1047,Other races male,7,7,6,10,3,4,11,12,5,0,8,1,1,2,2,0,0,0 -1988,1047,Other races female,8,5,5,7,4,8,11,10,5,3,4,3,3,2,1,2,0,0 -1988,1049,White male,1777,1921,2006,2149,1843,1998,2012,1838,1733,1485,1256,1232,1217,1009,818,633,354,191 -1988,1049,White female,1583,1807,1909,1963,1820,2015,2065,1874,1785,1536,1394,1404,1387,1343,1206,1010,633,469 -1988,1049,Black male,36,48,43,64,46,33,38,30,30,27,16,20,12,9,7,6,6,3 -1988,1049,Black female,44,40,52,46,42,46,40,45,30,22,22,20,15,22,21,14,9,5 -1988,1049,Other races male,11,27,32,33,20,14,14,20,17,10,10,5,2,5,2,2,0,1 -1988,1049,Other races female,13,33,46,24,11,10,25,27,23,16,8,4,5,6,2,4,1,1 -1988,1051,White male,1310,1373,1326,1414,1313,1538,1570,1467,1407,1135,1053,918,826,695,532,383,193,90 -1988,1051,White female,1124,1269,1264,1316,1178,1467,1537,1418,1341,1066,1014,922,914,809,698,546,374,315 -1988,1051,Black male,452,430,479,568,742,688,578,428,272,200,135,128,116,108,104,81,37,33 -1988,1051,Black female,444,465,460,527,478,482,435,356,250,202,173,197,160,177,119,112,73,71 -1988,1051,Other races male,6,11,11,14,13,9,11,10,10,9,4,3,0,2,0,2,0,0 -1988,1051,Other races female,6,8,10,7,12,8,16,15,12,10,7,4,3,1,2,1,0,1 -1988,1053,White male,814,861,921,1006,855,967,1001,871,861,703,701,633,592,490,396,266,155,101 -1988,1053,White female,737,825,829,961,745,881,893,895,855,771,709,679,701,636,560,476,335,224 -1988,1053,Black male,432,487,467,545,440,493,493,412,251,216,153,163,141,143,109,111,48,36 -1988,1053,Black female,405,445,489,497,382,400,381,345,256,226,209,206,223,190,181,160,104,94 -1988,1053,Other races male,51,58,66,73,54,44,43,36,31,25,18,13,12,9,15,6,5,2 -1988,1053,Other races female,39,45,47,54,38,48,36,34,33,24,23,15,22,17,16,11,7,5 -1988,1055,White male,2610,2938,3012,3396,2925,3060,3135,3090,2891,2408,2154,2110,2126,1968,1504,1092,501,239 -1988,1055,White female,2476,2751,2927,3212,2858,3078,3247,3113,3098,2486,2387,2415,2643,2538,2274,1768,1128,786 -1988,1055,Black male,587,643,648,684,514,493,493,411,312,226,225,228,245,205,168,126,61,43 -1988,1055,Black female,603,600,639,660,616,607,594,506,384,309,315,331,339,310,267,196,110,77 -1988,1055,Other races male,14,17,16,47,79,32,14,25,12,14,11,7,4,3,3,2,1,0 -1988,1055,Other races female,13,17,24,55,49,22,27,27,19,11,10,11,8,5,2,3,3,0 -1988,1057,White male,493,577,593,655,523,571,565,558,525,455,402,384,364,317,266,212,134,72 -1988,1057,White female,475,559,564,661,504,555,581,568,519,469,430,399,424,434,381,336,255,162 -1988,1057,Black male,87,104,102,110,75,77,68,64,50,47,35,37,40,36,33,30,17,11 -1988,1057,Black female,88,89,105,100,88,97,88,71,63,55,51,54,52,51,51,43,27,23 -1988,1057,Other races male,2,2,1,0,0,2,0,0,1,0,1,0,0,1,1,0,0,0 -1988,1057,Other races female,2,2,0,0,0,2,1,2,2,1,2,0,1,0,0,0,1,0 -1988,1059,White male,891,951,991,1048,958,945,989,885,848,758,718,667,659,565,429,326,170,115 -1988,1059,White female,862,887,930,973,913,1048,1011,959,899,797,758,734,765,675,663,531,350,277 -1988,1059,Black male,65,55,58,63,44,39,45,37,36,31,19,25,19,25,16,9,9,3 -1988,1059,Black female,49,56,45,57,56,63,44,55,30,28,26,34,32,28,16,30,12,9 -1988,1059,Other races male,4,3,7,2,2,2,3,4,5,2,1,0,3,1,0,0,1,0 -1988,1059,Other races female,3,4,4,3,0,6,3,4,6,2,3,1,0,2,1,2,0,0 -1988,1061,White male,660,698,752,830,706,723,710,706,660,587,526,528,531,485,398,290,180,73 -1988,1061,White female,626,670,672,730,651,709,723,705,694,593,604,548,615,571,524,491,290,218 -1988,1061,Black male,133,146,140,165,99,107,84,65,57,48,39,56,41,38,39,20,20,9 -1988,1061,Black female,127,134,149,154,110,123,116,82,76,63,70,59,67,46,56,44,32,25 -1988,1061,Other races male,3,2,2,5,4,2,4,3,5,3,3,4,3,1,0,1,1,0 -1988,1061,Other races female,2,4,5,7,5,4,5,5,3,4,4,5,4,3,3,1,0,0 -1988,1063,White male,55,59,52,56,59,69,73,69,59,70,64,78,72,59,47,36,21,8 -1988,1063,White female,45,44,39,51,54,66,68,60,68,62,72,72,86,61,73,57,41,36 -1988,1063,Black male,382,458,452,412,219,254,235,224,144,128,123,118,126,114,107,111,70,51 -1988,1063,Black female,335,448,457,413,307,336,328,299,212,171,157,163,187,171,175,155,131,93 -1988,1063,Other races male,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0 -1988,1063,Other races female,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1988,1065,White male,201,192,219,210,158,216,230,226,184,180,161,164,144,157,121,85,57,37 -1988,1065,White female,181,197,202,210,168,227,219,197,183,175,175,157,190,184,171,136,110,91 -1988,1065,Black male,440,480,485,493,290,270,266,249,178,139,125,113,150,143,106,133,72,54 -1988,1065,Black female,421,464,481,464,359,392,365,313,202,168,190,171,214,204,175,154,123,105 -1988,1065,Other races male,2,3,2,1,3,0,1,0,0,0,1,0,1,0,0,0,0,0 -1988,1065,Other races female,2,2,1,1,1,2,2,0,2,1,1,0,0,0,0,0,0,0 -1988,1067,White male,280,310,354,340,296,335,348,339,329,269,249,249,283,255,175,159,75,32 -1988,1067,White female,306,301,316,333,284,330,335,351,344,280,251,296,289,316,279,224,147,97 -1988,1067,Black male,222,259,267,279,189,177,170,159,139,104,98,79,82,74,63,59,32,20 -1988,1067,Black female,228,250,270,281,219,215,185,207,135,143,125,111,119,112,105,98,67,42 -1988,1067,Other races male,1,0,2,2,2,1,0,4,0,2,1,1,0,0,0,1,0,0 -1988,1067,Other races female,2,0,2,0,2,3,1,2,2,1,1,1,1,1,0,0,0,0 -1988,1069,White male,2183,2258,2158,2300,1991,2466,2574,2354,2182,1773,1481,1420,1354,1145,870,553,314,143 -1988,1069,White female,2045,2074,2053,2191,2104,2595,2603,2415,2241,1880,1623,1537,1578,1446,1224,998,662,484 -1988,1069,Black male,919,954,943,925,625,637,634,556,421,332,289,247,251,225,196,133,75,48 -1988,1069,Black female,867,957,973,929,811,846,805,716,492,463,382,345,390,331,309,250,142,106 -1988,1069,Other races male,25,39,48,41,22,29,27,28,25,21,15,9,16,4,1,1,0,0 -1988,1069,Other races female,26,36,32,29,23,31,33,32,35,29,14,13,6,11,3,5,1,1 -1988,1071,White male,1503,1596,1743,1848,1625,1787,1775,1659,1565,1369,1262,1088,1020,839,592,462,213,123 -1988,1071,White female,1494,1617,1653,1773,1608,1831,1791,1713,1613,1416,1254,1224,1119,1015,910,701,408,280 -1988,1071,Black male,93,85,99,101,61,72,60,70,48,35,33,27,27,42,23,26,13,5 -1988,1071,Black female,80,80,77,100,84,83,85,78,67,48,44,47,50,40,46,29,13,13 -1988,1071,Other races male,24,69,78,52,25,20,30,41,38,27,14,8,4,6,3,2,2,2 -1988,1071,Other races female,24,54,96,53,26,31,36,57,52,19,12,17,9,7,5,2,1,1 -1988,1073,White male,13474,13218,12917,13847,15627,18825,17756,16205,14453,11682,10133,9841,10178,8775,6508,4441,2433,1423 -1988,1073,White female,12767,12710,12226,13704,16195,18805,17944,16856,15067,12509,11487,11489,12326,11462,9773,8051,5570,4344 -1988,1073,Black male,9710,10227,9881,9677,8323,8671,8430,7675,5768,4158,3525,3482,3530,3312,2592,2074,1134,767 -1988,1073,Black female,9521,10161,9833,9734,9805,10662,10932,9680,6915,5260,4984,4866,5244,4802,4094,3478,2173,1761 -1988,1073,Other races male,134,138,135,142,186,243,223,168,126,122,78,47,43,25,17,13,5,4 -1988,1073,Other races female,159,153,104,128,175,259,233,187,148,109,78,57,40,36,25,17,10,3 -1988,1075,White male,459,486,528,550,464,534,497,479,463,419,356,351,327,272,251,183,125,63 -1988,1075,White female,444,467,499,539,487,516,507,448,480,413,393,381,395,361,333,301,203,156 -1988,1075,Black male,92,87,89,115,66,66,60,58,43,32,30,35,29,29,18,15,14,11 -1988,1075,Black female,72,86,85,92,80,80,81,61,51,36,51,35,44,47,29,39,21,18 -1988,1075,Other races male,0,3,1,0,1,1,0,2,2,1,2,0,1,0,0,0,0,0 -1988,1075,Other races female,0,1,2,2,1,2,2,3,2,2,0,1,2,0,0,0,0,0 -1988,1077,White male,2328,2398,2423,2756,2957,2721,2741,2587,2331,2083,1786,1724,1653,1469,1088,731,406,224 -1988,1077,White female,2140,2317,2314,2856,2929,2824,2825,2576,2479,2115,1938,1904,1941,1793,1586,1186,885,609 -1988,1077,Black male,356,349,332,378,357,269,225,228,144,157,104,123,108,99,100,63,38,33 -1988,1077,Black female,332,341,340,405,407,343,325,268,205,193,167,164,180,143,148,100,84,60 -1988,1077,Other races male,13,12,9,13,11,17,12,15,11,8,15,9,4,2,1,2,0,1 -1988,1077,Other races female,13,17,12,19,10,11,16,16,18,15,13,9,6,2,1,2,2,2 -1988,1079,White male,940,864,842,976,984,1116,946,847,802,752,679,607,556,465,367,250,124,71 -1988,1079,White female,837,767,802,925,987,1071,913,818,808,754,639,624,618,551,484,398,214,165 -1988,1079,Black male,223,226,250,295,204,182,140,151,103,85,75,55,60,69,53,42,25,20 -1988,1079,Black female,221,230,253,246,227,197,196,177,128,113,86,73,87,90,71,67,45,31 -1988,1079,Other races male,51,143,167,127,34,25,67,80,70,30,21,8,9,5,2,2,2,0 -1988,1079,Other races female,50,138,172,98,32,65,109,99,58,31,21,10,8,4,6,3,1,2 -1988,1081,White male,1730,1720,1641,3825,7505,2886,2183,2007,1800,1482,1194,1126,946,791,572,393,188,104 -1988,1081,White female,1643,1630,1643,3950,6151,2411,2182,1960,1739,1471,1208,1132,1075,929,767,597,414,308 -1988,1081,Black male,892,890,933,990,924,783,716,605,508,376,330,279,257,242,155,136,85,54 -1988,1081,Black female,916,860,853,978,1019,962,838,758,541,465,417,408,411,348,320,249,174,135 -1988,1081,Other races male,67,44,40,64,150,166,122,61,35,30,21,15,7,4,5,0,2,0 -1988,1081,Other races female,60,39,34,63,90,116,85,56,32,24,20,18,9,5,6,1,1,0 -1988,1083,White male,1613,1619,1622,1767,1770,2136,1991,1665,1622,1354,1195,1090,894,771,537,387,217,106 -1988,1083,White female,1531,1512,1550,1639,1739,1998,1913,1649,1572,1330,1169,1115,1013,941,798,678,411,299 -1988,1083,Black male,272,282,295,305,382,470,389,293,192,143,127,100,109,82,74,58,30,33 -1988,1083,Black female,240,266,273,302,295,309,281,213,186,138,138,140,142,106,118,80,56,48 -1988,1083,Other races male,7,9,21,15,10,9,12,9,19,14,6,6,3,2,0,1,0,0 -1988,1083,Other races female,7,11,5,18,8,8,9,15,13,7,8,5,3,1,1,0,0,1 -1988,1085,White male,110,106,85,87,87,120,126,111,106,91,90,102,93,68,52,39,20,19 -1988,1085,White female,108,101,84,89,89,140,114,106,85,108,103,111,88,88,87,68,46,37 -1988,1085,Black male,481,527,534,561,335,326,259,229,150,150,123,101,117,109,107,95,67,40 -1988,1085,Black female,462,490,547,533,414,412,322,317,244,179,177,175,168,171,157,132,80,73 -1988,1085,Other races male,2,0,0,1,0,0,2,1,0,0,0,0,0,0,0,0,0,0 -1988,1085,Other races female,1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0,0,0 -1988,1087,White male,89,100,95,110,132,133,142,106,119,123,98,106,122,116,92,70,42,32 -1988,1087,White female,110,89,89,111,116,141,115,118,116,110,79,88,111,102,102,84,54,34 -1988,1087,Black male,809,804,822,1426,1251,657,589,549,440,368,289,324,348,419,323,249,144,107 -1988,1087,Black female,805,854,840,1517,1392,770,718,694,579,451,412,439,460,504,450,374,252,213 -1988,1087,Other races male,4,5,3,4,4,11,10,7,3,3,2,2,2,3,1,1,0,0 -1988,1087,Other races female,6,3,4,6,8,10,4,3,2,2,1,2,2,3,0,0,1,0 -1988,1089,White male,6357,6076,5618,6324,7005,9760,8820,7018,6259,5466,5075,4973,3802,2929,1907,1160,561,329 -1988,1089,White female,6037,5719,5380,5773,6771,9077,8204,6819,6336,5682,5370,4871,4088,3469,2569,1929,1320,969 -1988,1089,Black male,2045,2054,1927,2610,2852,2266,2002,1530,1156,902,683,553,435,364,293,185,118,105 -1988,1089,Black female,1965,2028,1886,2791,3078,2510,2161,1740,1356,1006,838,700,578,522,433,319,189,187 -1988,1089,Other races male,200,244,272,215,186,277,276,211,187,145,91,68,31,27,17,5,8,1 -1988,1089,Other races female,209,225,267,201,160,246,325,312,248,158,112,79,68,26,21,10,7,1 -1988,1091,White male,381,420,399,452,335,410,422,427,380,358,322,319,292,249,192,115,75,44 -1988,1091,White female,370,383,385,390,375,425,412,392,396,357,351,336,334,269,273,216,149,113 -1988,1091,Black male,568,592,672,643,411,392,346,314,246,209,179,180,183,165,155,145,92,73 -1988,1091,Black female,528,601,606,612,488,428,469,401,312,254,224,259,268,294,240,223,158,143 -1988,1091,Other races male,1,0,1,0,2,2,0,1,1,1,0,1,0,0,0,0,1,0 -1988,1091,Other races female,1,0,1,1,0,1,2,2,0,1,1,1,1,1,0,0,1,0 -1988,1093,White male,968,1021,1027,1196,1084,1172,1007,974,971,821,793,715,680,586,457,347,203,140 -1988,1093,White female,889,993,999,1123,1009,1027,1060,968,1003,863,807,737,786,716,658,587,370,274 -1988,1093,Black male,35,37,37,35,43,53,53,40,25,29,15,15,13,17,17,13,6,6 -1988,1093,Black female,34,35,31,42,41,32,40,23,25,21,21,13,17,14,12,14,7,11 -1988,1093,Other races male,6,8,2,4,1,1,4,4,4,2,2,3,1,2,0,0,0,0 -1988,1093,Other races female,5,6,3,1,3,5,3,5,2,2,2,4,0,0,3,0,1,0 -1988,1095,White male,2281,2424,2457,2784,2364,2723,2639,2441,2257,1976,1770,1700,1681,1336,1046,725,402,231 -1988,1095,White female,2251,2351,2354,2578,2392,2795,2713,2575,2393,2097,1924,1901,1932,1670,1543,1187,819,567 -1988,1095,Black male,58,44,39,63,65,37,38,39,23,23,18,13,15,14,10,11,7,3 -1988,1095,Black female,40,44,42,52,50,43,39,50,30,25,20,25,22,26,20,16,7,8 -1988,1095,Other races male,9,12,10,12,6,7,11,15,10,16,6,6,4,2,2,1,0,1 -1988,1095,Other races female,10,16,16,19,11,10,15,19,14,8,11,9,8,5,1,1,1,0 -1988,1097,White male,9506,9500,9109,9818,9781,10952,10865,9893,8851,7112,6106,5586,5429,4771,3533,2293,1209,675 -1988,1097,White female,8999,8869,8713,9562,10344,11125,11035,9819,9110,7491,6378,6088,6461,6044,4892,3884,2532,1895 -1988,1097,Black male,5848,5998,5936,5534,4144,4247,4131,3524,2596,2098,1948,1870,1721,1612,1185,875,470,273 -1988,1097,Black female,5740,5942,5874,5648,5057,5456,5406,4519,3425,2825,2619,2481,2404,2235,1823,1403,858,682 -1988,1097,Other races male,209,230,229,297,317,222,194,187,148,121,85,59,40,30,15,16,10,4 -1988,1097,Other races female,201,233,232,243,230,216,235,223,187,128,85,76,52,41,30,27,11,6 -1988,1099,White male,466,505,512,545,447,518,538,497,471,416,342,332,335,285,184,175,84,60 -1988,1099,White female,473,495,485,528,423,505,499,531,441,416,335,348,347,321,318,259,180,140 -1988,1099,Black male,447,506,524,538,323,314,301,250,185,158,147,115,137,115,108,102,38,39 -1988,1099,Black female,429,482,479,520,373,361,341,334,198,183,170,168,190,152,145,132,78,85 -1988,1099,Other races male,9,15,12,15,18,7,8,10,7,5,6,5,4,3,3,2,0,0 -1988,1099,Other races female,8,10,8,12,10,11,11,6,9,10,6,6,3,3,3,3,0,1 -1988,1101,White male,4073,4093,3719,4092,4386,5471,5272,4973,4373,3474,2956,2802,2596,2219,1646,1076,555,302 -1988,1101,White female,3814,3853,3515,4005,4426,5198,5202,4949,4417,3606,3113,3101,3185,3097,2489,2032,1441,1205 -1988,1101,Black male,4138,4237,3983,4570,3771,3336,3138,2702,1974,1451,1213,1170,1032,931,687,570,321,198 -1988,1101,Black female,3963,4145,3968,4690,4479,4233,3960,3380,2357,1869,1693,1591,1507,1384,1176,985,585,536 -1988,1101,Other races male,62,74,87,86,80,74,75,58,66,51,28,24,13,12,6,4,2,2 -1988,1101,Other races female,60,77,84,87,80,79,117,103,108,54,43,33,25,11,8,7,4,0 -1988,1103,White male,3004,3248,3236,3332,2965,3789,3727,3421,3131,2650,2294,2098,1877,1504,1153,720,433,223 -1988,1103,White female,2926,2968,3029,3071,3062,3746,3715,3503,3200,2647,2388,2198,2152,1857,1619,1273,821,583 -1988,1103,Black male,487,497,509,459,379,387,398,314,219,174,141,124,118,115,93,80,39,25 -1988,1103,Black female,480,464,479,451,450,492,453,378,257,202,192,179,171,144,159,125,68,60 -1988,1103,Other races male,18,28,33,21,18,20,25,37,28,19,18,5,7,3,5,3,1,0 -1988,1103,Other races female,24,31,31,22,15,20,27,38,28,21,12,13,7,6,5,2,1,1 -1988,1105,White male,112,141,125,321,197,156,143,138,133,140,130,140,120,115,101,85,50,29 -1988,1105,White female,126,105,135,265,220,133,141,135,138,141,145,143,151,151,144,121,94,69 -1988,1105,Black male,417,474,500,498,260,236,238,177,160,121,146,123,120,122,111,105,70,50 -1988,1105,Black female,407,448,481,483,315,322,292,280,208,180,179,164,179,187,164,138,126,103 -1988,1105,Other races male,0,1,2,4,2,0,0,0,2,0,0,1,0,0,0,1,0,0 -1988,1105,Other races female,0,2,2,3,3,0,2,1,1,0,0,0,0,0,0,0,0,0 -1988,1107,White male,379,386,433,421,403,435,441,408,403,322,353,354,377,287,228,175,92,64 -1988,1107,White female,355,345,364,403,360,413,422,381,376,380,390,370,412,332,321,275,212,148 -1988,1107,Black male,393,469,471,407,271,251,243,214,144,136,135,147,130,143,114,100,70,44 -1988,1107,Black female,433,497,495,450,340,350,344,283,213,180,187,183,184,189,175,152,95,104 -1988,1107,Other races male,1,2,2,2,0,1,2,1,1,2,1,0,0,0,1,0,0,0 -1988,1107,Other races female,3,3,3,0,1,2,3,2,3,3,2,0,2,1,0,3,0,0 -1988,1109,White male,522,525,531,947,1258,626,577,531,516,461,397,384,390,352,279,210,115,64 -1988,1109,White female,474,479,490,973,1175,593,565,541,522,489,414,414,424,469,435,365,249,208 -1988,1109,Black male,461,463,418,546,416,308,264,222,182,153,129,127,109,153,103,94,48,38 -1988,1109,Black female,385,452,445,582,564,409,384,325,250,193,183,181,180,201,190,184,123,103 -1988,1109,Other races male,7,9,9,15,10,9,6,3,3,5,2,4,3,2,1,1,1,0 -1988,1109,Other races female,4,6,8,12,13,7,8,8,8,8,3,4,5,3,3,2,1,0 -1988,1111,White male,460,557,505,574,512,540,573,498,462,395,381,386,417,366,300,215,118,70 -1988,1111,White female,423,463,490,521,490,533,525,497,476,403,402,445,484,439,408,352,239,172 -1988,1111,Black male,204,254,241,260,178,164,172,122,103,77,84,64,71,66,50,46,25,17 -1988,1111,Black female,206,229,227,220,199,201,176,164,125,96,101,89,86,95,87,72,55,44 -1988,1111,Other races male,2,5,3,2,0,0,0,1,1,2,0,0,0,0,1,0,0,0 -1988,1111,Other races female,1,1,1,4,2,3,4,3,3,3,1,0,2,1,0,0,0,1 -1988,1113,White male,1102,1008,922,1016,1156,1275,1176,1019,941,825,768,718,712,573,407,256,121,66 -1988,1113,White female,989,918,856,984,1130,1224,1118,1015,967,882,823,831,830,716,593,471,285,192 -1988,1113,Black male,778,819,867,905,694,630,630,544,441,361,375,333,295,285,212,169,80,50 -1988,1113,Black female,735,778,780,886,766,799,751,652,549,488,440,404,450,400,342,277,154,119 -1988,1113,Other races male,8,9,5,8,4,10,8,8,8,6,2,5,0,2,3,0,0,0 -1988,1113,Other races female,6,6,3,4,9,9,13,9,17,9,4,7,4,3,4,2,0,0 -1988,1115,White male,1722,1674,1650,1716,1513,1820,1822,1679,1561,1332,1088,1007,971,821,589,368,192,125 -1988,1115,White female,1484,1509,1548,1609,1513,1745,1721,1635,1520,1315,1095,1063,1101,926,769,555,388,282 -1988,1115,Black male,179,179,188,212,189,267,257,205,151,104,81,75,78,51,37,39,19,12 -1988,1115,Black female,175,186,189,208,172,177,158,137,109,100,82,85,76,72,72,49,31,20 -1988,1115,Other races male,4,8,10,5,6,7,10,11,6,9,9,4,2,2,0,0,0,0 -1988,1115,Other races female,6,7,13,3,2,10,16,5,9,8,3,4,5,0,4,2,0,0 -1988,1117,White male,3505,3471,3028,3006,2890,4009,4237,4005,3403,2473,1893,1578,1374,1069,713,482,249,137 -1988,1117,White female,3304,3168,2900,3039,3401,4249,4435,4033,3283,2403,1857,1613,1429,1228,941,753,441,339 -1988,1117,Black male,342,371,357,347,354,304,301,239,169,133,118,104,84,69,70,43,38,22 -1988,1117,Black female,347,342,346,397,404,353,337,293,215,169,151,115,124,103,104,101,48,41 -1988,1117,Other races male,30,38,22,30,23,30,39,39,28,19,22,11,9,5,3,1,0,1 -1988,1117,Other races female,40,43,32,27,26,27,43,38,29,19,21,16,9,8,2,1,2,0 -1988,1119,White male,137,149,125,244,325,189,168,147,142,119,110,124,114,108,91,73,34,15 -1988,1119,White female,145,139,114,224,285,165,146,162,134,111,126,116,141,132,122,112,85,69 -1988,1119,Black male,533,554,637,644,414,370,373,316,189,159,154,144,168,163,157,135,86,64 -1988,1119,Black female,514,559,620,673,505,458,473,382,246,212,242,255,242,257,238,199,149,104 -1988,1119,Other races male,1,1,0,2,7,2,2,0,0,1,1,2,0,0,0,0,0,0 -1988,1119,Other races female,1,0,1,3,1,0,1,1,2,3,1,0,0,0,0,1,1,0 -1988,1121,White male,1668,1795,1879,2062,1708,1983,1915,1945,1781,1508,1292,1307,1209,1086,819,589,284,157 -1988,1121,White female,1574,1723,1819,1882,1779,1870,1972,1856,1715,1462,1438,1423,1488,1351,1184,928,587,343 -1988,1121,Black male,1018,1124,1184,1321,899,814,818,762,602,436,346,339,316,271,204,166,83,53 -1988,1121,Black female,1003,1142,1149,1388,1078,929,931,806,615,470,432,447,405,378,308,241,146,134 -1988,1121,Other races male,13,11,7,12,8,10,11,11,14,17,4,7,0,4,1,2,1,0 -1988,1121,Other races female,6,11,13,8,13,13,11,10,9,11,5,5,3,4,3,0,0,1 -1988,1123,White male,866,931,975,1037,904,1020,1022,1006,905,806,725,724,757,685,538,402,221,107 -1988,1123,White female,791,847,915,1025,897,1002,1019,1005,920,871,778,848,910,887,789,673,396,286 -1988,1123,Black male,419,452,503,533,392,342,345,307,248,188,184,156,153,130,121,90,39,29 -1988,1123,Black female,473,483,519,562,452,434,403,389,300,224,202,206,245,201,138,156,82,88 -1988,1123,Other races male,3,3,4,2,4,2,3,3,3,3,1,1,2,0,2,0,0,0 -1988,1123,Other races female,6,6,6,3,1,3,9,4,6,2,2,1,3,2,1,0,0,2 -1988,1125,White male,3219,3227,3153,5081,7218,4683,4240,3950,3475,2721,2437,2250,2283,1997,1351,937,516,316 -1988,1125,White female,2979,2980,3021,5216,6793,4335,4106,3920,3456,2789,2445,2489,2559,2198,1828,1531,978,820 -1988,1125,Black male,1695,1816,1784,1928,1734,1395,1269,1267,847,651,578,563,512,505,366,303,149,117 -1988,1125,Black female,1659,1762,1752,2271,2232,1731,1685,1568,1054,800,818,756,772,685,568,485,278,259 -1988,1125,Other races male,37,42,35,52,152,131,88,52,42,25,18,13,8,12,4,4,0,1 -1988,1125,Other races female,45,36,45,45,100,91,72,52,42,33,14,17,11,10,5,3,2,1 -1988,1127,White male,2078,2212,2380,2560,2284,2454,2365,2276,2149,1841,1646,1562,1414,1283,925,658,372,223 -1988,1127,White female,1962,2137,2269,2447,2198,2404,2463,2326,2214,1822,1725,1629,1704,1653,1384,1138,783,544 -1988,1127,Black male,199,225,233,220,144,136,150,128,91,90,65,66,64,61,59,43,25,23 -1988,1127,Black female,188,225,234,214,171,198,198,171,106,92,93,92,89,97,80,81,59,58 -1988,1127,Other races male,6,7,7,6,8,5,7,6,8,7,9,3,2,0,1,0,0,0 -1988,1127,Other races female,7,5,9,12,4,8,13,10,10,8,8,3,7,4,1,0,1,5 -1988,1129,White male,412,434,466,456,391,415,433,381,388,332,302,276,249,205,186,119,69,40 -1988,1129,White female,369,441,428,432,380,432,418,401,378,346,291,274,258,245,209,184,117,84 -1988,1129,Black male,228,268,264,241,168,157,176,133,100,88,67,79,63,64,47,50,22,17 -1988,1129,Black female,193,245,229,255,195,206,184,165,119,108,90,87,86,85,73,62,41,35 -1988,1129,Other races male,51,59,60,55,39,58,35,39,28,23,12,12,10,10,7,2,2,2 -1988,1129,Other races female,58,70,56,43,41,43,45,40,26,18,19,24,13,10,11,8,5,1 -1988,1131,White male,146,133,142,154,138,138,148,158,141,127,129,104,134,114,79,66,37,17 -1988,1131,White female,120,125,141,124,115,134,141,124,143,126,130,151,158,167,136,105,75,68 -1988,1131,Black male,439,542,582,556,306,290,282,236,176,147,119,129,124,148,133,116,78,50 -1988,1131,Black female,463,498,587,534,366,370,326,295,211,195,185,182,198,206,206,177,112,100 -1988,1131,Other races male,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0 -1988,1131,Other races female,0,0,2,0,0,1,1,0,0,1,2,0,0,1,1,0,0,0 -1988,1133,White male,712,765,807,873,778,854,816,739,736,654,563,548,494,444,325,240,126,80 -1988,1133,White female,708,720,738,822,773,846,766,771,772,683,583,558,600,518,447,363,236,154 -1988,1133,Black male,3,5,1,3,3,3,1,1,2,1,1,1,0,1,0,2,1,0 -1988,1133,Black female,2,3,2,5,1,4,2,2,2,0,2,1,1,0,1,1,2,1 -1988,1133,Other races male,4,1,2,2,2,0,2,1,3,2,1,3,0,0,1,1,0,0 -1988,1133,Other races female,7,2,1,5,4,2,2,2,4,2,3,1,1,2,1,2,0,0 \ No newline at end of file diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1989.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1989.csv index 1be741d11e..34c5a09b5b 100644 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1989.csv +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-02-1989.csv @@ -1,409 +1,99 @@ -File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1989",,,,,,,,,,,,,,,,,,,, -"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, -"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, -"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -,,,,,,,,,,,,,,,,,,,, -1989,1001,White male,1072,1117,1156,1081,881,1071,1122,1034,1013,859,771,651,511,401,271,189,106,41 -1989,1001,White female,977,985,982,1051,828,1105,1185,1085,1054,862,791,651,537,455,387,318,215,153 -1989,1001,Black male,304,333,352,397,224,239,230,187,151,116,115,89,105,104,79,63,39,22 -1989,1001,Black female,315,348,346,386,286,281,284,243,189,140,129,131,149,133,111,82,68,69 -1989,1001,Other races male,6,7,4,8,8,4,8,4,8,4,2,4,1,1,0,0,0,0 -1989,1001,Other races female,8,7,9,8,5,4,11,13,9,9,15,10,7,2,1,2,0,0 -1989,1003,White male,2797,2927,2990,3022,2300,2854,3087,3019,2982,2430,2134,2071,2204,2170,1624,1074,566,294 -1989,1003,White female,2679,2675,2774,2781,2282,3025,3265,3147,2915,2551,2232,2192,2506,2380,1845,1465,968,662 -1989,1003,Black male,622,675,680,657,408,442,430,373,278,193,188,196,184,145,133,111,72,47 -1989,1003,Black female,626,631,635,697,495,557,538,433,305,278,276,226,230,199,200,159,93,76 -1989,1003,Other races male,12,40,31,35,26,20,34,31,26,25,19,26,12,8,4,3,3,0 -1989,1003,Other races female,28,37,41,37,31,36,44,58,34,25,30,19,17,14,8,6,3,3 -1989,1005,White male,451,471,511,551,425,525,519,517,531,398,356,356,364,327,241,191,92,47 -1989,1005,White female,389,472,459,471,425,509,489,506,532,405,372,385,397,429,342,298,208,143 -1989,1005,Black male,533,614,561,545,361,382,372,339,272,187,142,149,146,146,141,120,63,34 -1989,1005,Black female,538,596,538,546,422,465,412,406,348,258,196,195,257,220,225,193,126,95 -1989,1005,Other races male,3,3,2,5,6,3,3,3,3,4,4,2,0,0,0,1,0,0 -1989,1005,Other races female,3,3,6,2,3,2,3,4,6,3,3,4,1,2,2,0,1,0 -1989,1007,White male,435,509,505,563,489,496,487,461,454,427,302,294,287,214,155,140,83,48 -1989,1007,White female,414,440,462,529,464,465,476,453,440,416,326,307,289,291,241,248,142,115 -1989,1007,Black male,155,197,204,184,133,120,117,105,80,59,41,37,48,46,32,36,20,15 -1989,1007,Black female,175,163,200,183,141,148,126,124,86,65,52,56,64,69,57,49,36,32 -1989,1007,Other races male,0,2,6,3,0,0,0,3,4,0,0,1,1,0,0,1,0,0 -1989,1007,Other races female,0,0,1,3,0,1,0,0,4,2,3,0,0,0,0,1,0,0 -1989,1009,White male,1334,1316,1413,1556,1358,1481,1459,1400,1329,1163,1047,904,859,695,534,439,224,123 -1989,1009,White female,1267,1319,1368,1449,1303,1422,1476,1413,1380,1188,1072,943,912,844,772,618,437,262 -1989,1009,Black male,21,18,25,27,18,22,23,20,16,10,9,6,8,6,5,8,2,1 -1989,1009,Black female,29,19,20,23,22,27,27,17,20,12,10,9,10,12,11,7,8,2 -1989,1009,Other races male,4,6,7,3,1,3,7,8,9,3,6,3,1,3,4,1,0,0 -1989,1009,Other races female,4,10,9,9,6,4,7,8,8,11,4,3,3,1,3,2,1,0 -1989,1011,White male,77,74,90,98,124,144,153,162,120,97,80,85,86,97,72,56,23,11 -1989,1011,White female,92,55,70,76,64,77,98,98,92,82,87,101,87,105,87,101,56,40 -1989,1011,Black male,386,424,380,329,244,309,295,269,183,161,125,96,99,106,106,101,55,41 -1989,1011,Black female,412,412,399,390,294,317,308,266,199,180,130,146,155,165,209,155,112,78 -1989,1011,Other races male,2,0,0,0,2,2,1,1,1,2,0,0,0,1,0,0,0,0 -1989,1011,Other races female,0,0,1,0,0,1,2,0,1,0,0,1,0,0,0,0,0,0 -1989,1013,White male,432,479,454,454,347,438,481,458,409,354,313,320,336,304,297,186,114,65 -1989,1013,White female,400,472,411,429,325,439,503,425,416,374,343,384,416,386,394,387,249,192 -1989,1013,Black male,429,537,472,464,235,221,275,239,195,167,135,103,129,108,110,100,59,51 -1989,1013,Black female,434,482,498,458,334,349,341,328,235,172,156,142,184,175,156,144,107,85 -1989,1013,Other races male,3,1,2,2,2,1,1,3,3,1,1,2,0,0,1,0,0,0 -1989,1013,Other races female,1,3,5,2,1,1,2,0,1,2,0,1,1,0,0,0,0,0 -1989,1015,White male,3008,3063,3334,4201,4200,3759,3668,3492,3290,2659,2278,2143,2019,1761,1322,885,481,229 -1989,1015,White female,2698,2978,3080,3776,3730,3565,3771,3521,3285,2698,2418,2425,2511,2335,1893,1541,956,728 -1989,1015,Black male,911,999,986,1223,1021,858,860,712,504,391,311,309,289,251,199,132,73,47 -1989,1015,Black female,956,910,994,1174,1223,975,962,794,564,445,411,399,441,383,310,247,169,106 -1989,1015,Other races male,40,46,43,57,49,45,35,35,34,24,15,13,12,6,4,1,2,2 -1989,1015,Other races female,34,50,46,47,57,55,86,78,85,52,25,25,13,7,6,4,2,3 -1989,1017,White male,726,732,746,822,788,798,837,794,777,697,616,616,605,573,512,387,236,106 -1989,1017,White female,659,714,698,804,744,786,852,778,794,687,627,729,728,779,740,657,438,274 -1989,1017,Black male,582,625,690,688,541,494,442,426,317,257,198,168,167,168,149,127,71,41 -1989,1017,Black female,545,622,643,727,536,553,541,507,421,322,256,272,276,255,230,216,124,102 -1989,1017,Other races male,2,4,3,2,3,2,2,1,1,4,2,1,0,0,0,0,0,0 -1989,1017,Other races female,1,0,4,0,0,4,2,3,4,3,2,1,0,1,1,1,0,0 -1989,1019,White male,561,574,675,749,628,616,692,627,648,539,517,460,463,434,323,235,108,49 -1989,1019,White female,493,562,619,638,591,630,648,629,661,561,516,552,520,488,419,319,207,128 -1989,1019,Black male,62,55,64,60,48,46,58,50,39,30,29,25,24,16,10,6,10,5 -1989,1019,Black female,37,55,55,76,50,48,53,49,44,33,33,23,31,15,28,22,13,10 -1989,1019,Other races male,3,2,4,1,5,3,3,3,0,1,1,2,1,1,0,1,0,0 -1989,1019,Other races female,2,1,5,2,5,6,5,6,0,5,1,2,1,1,1,0,0,0 -1989,1021,White male,956,1040,1069,1098,983,1079,1115,1031,959,868,744,690,639,580,419,337,206,99 -1989,1021,White female,932,970,1092,1057,947,1074,1148,1016,969,868,734,776,684,681,627,552,318,245 -1989,1021,Black male,176,182,192,198,115,116,138,117,101,58,55,77,58,57,46,30,23,14 -1989,1021,Black female,161,171,186,195,127,149,141,129,94,86,85,77,64,69,56,53,33,35 -1989,1021,Other races male,4,6,5,3,1,2,5,3,4,4,6,0,0,0,0,0,1,0 -1989,1021,Other races female,5,5,2,2,3,3,6,8,7,0,4,7,0,1,1,2,0,2 -1989,1023,White male,286,287,355,389,269,301,309,301,304,323,259,220,221,201,130,109,64,45 -1989,1023,White female,279,290,316,356,287,295,312,302,327,290,275,276,259,234,176,161,120,95 -1989,1023,Black male,299,348,349,371,209,253,228,228,167,156,129,97,105,111,73,77,61,38 -1989,1023,Black female,312,344,381,392,257,283,299,263,208,172,123,149,131,145,123,110,74,55 -1989,1023,Other races male,1,1,2,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0 -1989,1023,Other races female,0,2,0,0,0,2,0,1,1,0,2,2,0,0,0,2,0,0 -1989,1025,White male,519,565,541,605,488,534,575,521,553,480,447,385,335,288,261,205,108,74 -1989,1025,White female,479,515,554,577,498,569,543,573,541,524,435,395,379,383,387,317,215,157 -1989,1025,Black male,527,584,673,632,416,410,397,337,238,213,203,180,183,154,115,101,69,46 -1989,1025,Black female,473,609,617,666,471,488,472,364,286,255,247,227,227,199,158,144,102,78 -1989,1025,Other races male,6,6,2,3,3,3,5,0,2,2,1,0,0,0,0,1,0,0 -1989,1025,Other races female,7,2,3,1,1,6,10,1,1,2,4,4,2,0,0,0,2,0 -1989,1027,White male,310,362,390,426,387,369,399,353,346,332,276,278,272,240,197,177,105,70 -1989,1027,White female,313,326,369,397,344,372,382,338,388,325,320,301,318,280,308,279,181,152 -1989,1027,Black male,115,108,114,115,103,71,64,64,52,47,49,26,27,24,16,13,15,8 -1989,1027,Black female,87,102,101,120,97,98,83,65,67,57,42,37,37,41,26,27,19,15 -1989,1027,Other races male,3,0,1,2,1,2,1,1,0,1,2,0,1,1,0,0,0,0 -1989,1027,Other races female,1,1,1,2,2,0,2,3,1,2,1,2,2,0,0,0,0,0 -1989,1029,White male,423,430,481,512,441,483,476,428,399,398,294,272,279,229,189,141,63,55 -1989,1029,White female,395,422,419,446,426,465,459,417,413,373,319,308,322,252,275,195,124,104 -1989,1029,Black male,32,30,27,21,22,19,15,18,14,12,14,20,9,7,7,4,4,1 -1989,1029,Black female,34,28,20,28,23,25,21,15,15,20,16,17,8,12,12,9,7,9 -1989,1029,Other races male,1,2,1,2,1,1,3,0,0,2,0,0,0,0,0,0,0,0 -1989,1029,Other races female,0,0,0,2,0,1,1,2,4,1,3,3,2,1,0,0,0,0 -1989,1031,White male,1116,1106,1170,1286,1210,1426,1287,1152,1252,1029,859,848,757,655,500,368,183,103 -1989,1031,White female,1036,1018,1073,1173,1090,1255,1274,1234,1212,999,941,868,828,788,692,570,362,291 -1989,1031,Black male,317,304,386,349,246,263,246,230,179,153,117,103,98,93,74,47,43,35 -1989,1031,Black female,286,304,325,361,267,293,319,267,215,165,133,126,134,126,104,101,67,60 -1989,1031,Other races male,15,14,16,27,16,14,10,15,8,14,4,5,6,2,2,2,0,0 -1989,1031,Other races female,13,20,19,16,21,24,40,46,28,24,14,9,9,2,4,2,0,1 -1989,1033,White male,1394,1439,1431,1528,1530,1594,1611,1522,1428,1243,1214,1163,1089,950,725,484,245,137 -1989,1033,White female,1284,1293,1310,1403,1375,1658,1683,1517,1525,1427,1244,1203,1235,1213,1011,755,461,329 -1989,1033,Black male,345,384,423,354,263,286,268,271,237,181,141,145,132,138,112,78,45,38 -1989,1033,Black female,399,359,389,380,340,366,362,336,292,228,182,177,190,209,171,121,81,75 -1989,1033,Other races male,5,11,13,9,10,10,10,13,10,10,2,6,2,4,0,2,0,0 -1989,1033,Other races female,16,13,9,7,2,11,9,16,9,3,5,2,5,4,1,0,0,0 -1989,1035,White male,240,260,282,288,237,271,298,269,266,234,225,223,231,207,184,132,95,44 -1989,1035,White female,194,248,278,248,195,282,285,290,249,234,206,226,291,278,234,219,145,101 -1989,1035,Black male,301,318,286,292,176,196,183,167,134,118,87,77,84,88,71,58,54,27 -1989,1035,Black female,267,290,333,286,263,231,243,216,159,129,104,114,132,127,119,110,67,70 -1989,1035,Other races male,2,2,5,3,2,3,1,0,4,2,0,0,2,0,0,0,0,0 -1989,1035,Other races female,2,2,2,4,3,3,2,3,3,1,2,1,0,1,0,1,0,0 -1989,1037,White male,245,222,245,237,232,269,291,269,207,213,185,207,212,185,152,100,57,33 -1989,1037,White female,236,225,224,238,226,247,271,230,220,222,215,211,247,205,170,146,98,56 -1989,1037,Black male,167,185,168,195,168,163,136,124,99,80,79,71,50,61,34,29,29,18 -1989,1037,Black female,150,174,156,208,165,173,124,126,98,102,73,83,77,57,55,55,31,24 -1989,1037,Other races male,3,5,0,2,1,2,1,0,1,3,1,0,0,0,0,0,0,0 -1989,1037,Other races female,0,2,1,0,2,0,5,0,2,1,2,4,0,0,0,0,0,0 -1989,1039,White male,988,1055,1138,1166,929,1148,1137,1014,1040,870,769,814,805,738,614,452,260,154 -1989,1039,White female,977,1035,1034,1082,948,1070,1117,1047,1057,915,909,908,971,936,891,779,521,353 -1989,1039,Black male,209,210,242,273,157,142,151,112,112,80,77,68,80,68,44,52,26,13 -1989,1039,Black female,211,243,262,243,194,185,199,189,127,112,118,108,92,109,85,79,52,40 -1989,1039,Other races male,1,5,5,7,4,8,8,5,5,3,2,4,1,0,2,1,0,1 -1989,1039,Other races female,6,4,5,4,3,6,5,7,7,4,2,2,1,2,2,0,0,0 -1989,1041,White male,344,374,343,396,292,337,376,313,334,301,214,240,253,249,216,161,95,54 -1989,1041,White female,294,329,334,348,292,342,325,343,340,265,269,287,313,345,292,251,170,133 -1989,1041,Black male,170,141,195,176,120,118,90,101,71,69,57,63,65,51,53,34,24,17 -1989,1041,Black female,134,164,175,194,138,135,145,122,113,84,84,67,77,84,82,84,42,41 -1989,1041,Other races male,1,4,1,2,0,0,0,2,2,3,1,2,1,1,0,0,0,0 -1989,1041,Other races female,0,0,0,2,0,1,3,1,3,2,1,0,4,1,0,0,0,0 -1989,1043,White male,2295,2385,2410,2552,2328,2514,2580,2288,2256,1911,1642,1581,1589,1356,1039,792,423,231 -1989,1043,White female,2169,2274,2306,2513,2207,2519,2541,2338,2320,1949,1801,1684,1760,1672,1414,1194,811,592 -1989,1043,Black male,22,19,43,39,33,18,19,19,11,12,18,9,15,3,2,6,4,2 -1989,1043,Black female,15,18,28,30,20,16,25,12,19,17,13,15,9,6,7,6,6,4 -1989,1043,Other races male,9,6,11,14,2,6,11,10,9,5,9,1,4,7,1,4,1,0 -1989,1043,Other races female,4,12,11,12,5,16,10,13,16,12,8,7,3,0,2,1,2,1 -1989,1045,White male,1654,1489,1390,1681,2314,2571,1818,1415,1326,1006,878,808,718,633,459,264,161,102 -1989,1045,White female,1648,1426,1263,1346,1642,1920,1668,1359,1224,1016,953,839,802,706,535,462,352,292 -1989,1045,Black male,497,494,430,435,462,455,382,289,200,153,79,80,82,90,53,38,29,28 -1989,1045,Black female,489,483,435,417,445,477,400,314,226,176,138,111,114,121,85,87,43,38 -1989,1045,Other races male,29,44,37,42,44,42,37,22,24,14,8,8,5,3,5,0,0,1 -1989,1045,Other races female,42,32,50,23,43,78,76,65,48,38,30,37,28,9,7,1,1,0 -1989,1047,White male,645,695,683,756,573,715,717,711,761,579,573,511,531,466,385,250,131,71 -1989,1047,White female,678,690,640,694,582,733,748,765,715,623,591,607,640,669,528,447,278,262 -1989,1047,Black male,1331,1512,1531,1491,937,872,853,704,587,469,425,347,371,323,282,243,152,103 -1989,1047,Black female,1370,1446,1500,1530,1171,1183,1198,967,790,629,599,571,603,560,419,489,287,273 -1989,1047,Other races male,8,8,6,11,3,4,11,13,5,0,9,1,1,2,3,0,0,0 -1989,1047,Other races female,8,5,6,7,5,8,11,10,5,3,5,3,3,1,1,2,0,0 -1989,1049,White male,1770,1892,2021,2149,1793,1957,2029,1860,1808,1526,1280,1234,1216,1013,818,645,368,198 -1989,1049,White female,1561,1789,1926,1946,1767,1978,2080,1902,1845,1588,1428,1402,1380,1357,1201,1028,660,494 -1989,1049,Black male,36,47,42,66,46,32,36,31,33,28,16,21,13,8,6,5,7,3 -1989,1049,Black female,44,40,53,45,40,47,39,47,32,23,24,19,16,22,21,15,10,5 -1989,1049,Other races male,12,29,34,36,22,15,15,22,20,11,10,5,2,6,3,2,0,1 -1989,1049,Other races female,14,37,50,27,12,11,27,30,25,19,8,4,5,6,2,4,1,1 -1989,1051,White male,1329,1379,1342,1407,1286,1515,1587,1494,1464,1176,1091,920,826,703,542,395,202,90 -1989,1051,White female,1125,1270,1275,1316,1143,1449,1555,1447,1388,1106,1041,919,912,828,694,553,388,329 -1989,1051,Black male,463,417,484,564,745,698,610,454,296,207,137,125,113,105,102,79,36,32 -1989,1051,Black female,463,459,454,525,473,478,451,374,267,203,174,197,158,179,112,111,75,72 -1989,1051,Other races male,6,12,12,15,13,10,11,11,12,10,5,4,0,2,0,2,0,0 -1989,1051,Other races female,7,9,11,7,12,7,17,16,14,11,7,4,4,1,2,1,0,1 -1989,1053,White male,793,832,913,977,808,927,982,855,864,709,709,623,585,490,392,267,160,102 -1989,1053,White female,714,798,822,926,699,843,878,884,864,784,713,669,691,637,547,480,347,232 -1989,1053,Black male,428,463,459,532,408,458,488,426,266,214,150,160,140,137,105,109,48,36 -1989,1053,Black female,393,422,487,481,363,382,382,355,269,223,207,203,220,183,176,157,106,93 -1989,1053,Other races male,50,59,66,75,53,44,43,38,33,28,18,14,12,8,16,6,5,3 -1989,1053,Other races female,38,45,45,54,38,50,35,35,36,25,24,15,23,17,16,12,8,6 -1989,1055,White male,2552,2869,2984,3351,2807,2925,3096,3106,2995,2471,2164,2067,2106,1991,1523,1120,523,246 -1989,1055,White female,2423,2688,2916,3166,2723,2948,3227,3135,3194,2529,2398,2360,2605,2582,2283,1809,1169,823 -1989,1055,Black male,598,634,655,677,494,479,504,430,337,228,221,221,240,205,167,124,62,44 -1989,1055,Black female,611,589,642,659,594,591,610,531,407,305,310,324,339,312,266,200,114,80 -1989,1055,Other races male,15,17,17,51,85,34,14,27,13,14,12,7,4,3,4,2,1,0 -1989,1055,Other races female,13,17,27,60,52,23,29,29,21,13,11,12,9,5,3,2,3,0 -1989,1057,White male,479,569,590,642,500,548,554,556,535,462,406,377,353,309,259,211,140,77 -1989,1057,White female,458,543,564,654,478,532,577,566,524,483,433,386,411,435,367,341,266,164 -1989,1057,Black male,85,102,101,107,69,74,70,66,53,47,34,35,40,36,32,30,18,12 -1989,1057,Black female,89,86,102,98,84,96,90,73,67,55,48,55,52,52,49,43,27,24 -1989,1057,Other races male,3,2,1,0,0,2,0,0,1,0,1,0,0,1,1,0,0,0 -1989,1057,Other races female,3,2,0,0,0,2,1,2,2,0,2,0,1,0,0,0,1,0 -1989,1059,White male,873,925,985,1026,914,908,981,873,861,767,724,659,658,561,426,328,173,117 -1989,1059,White female,850,872,920,946,876,1012,1000,957,910,807,770,724,748,678,650,535,356,290 -1989,1059,Black male,65,53,57,61,40,38,44,36,37,31,19,26,18,26,15,9,10,3 -1989,1059,Black female,49,55,42,55,53,59,43,57,32,28,26,34,33,27,16,32,12,10 -1989,1059,Other races male,4,4,7,2,2,2,3,5,6,2,1,0,3,1,0,0,1,0 -1989,1059,Other races female,4,5,5,3,0,6,3,5,7,2,3,1,0,2,1,2,0,0 -1989,1061,White male,652,682,740,814,682,697,698,706,679,595,532,521,523,484,397,294,188,75 -1989,1061,White female,616,654,663,713,626,682,721,699,707,605,615,538,605,566,515,501,300,227 -1989,1061,Black male,134,138,136,163,97,108,85,66,60,46,39,56,41,39,39,19,21,8 -1989,1061,Black female,124,127,149,152,103,122,118,84,78,64,69,58,65,45,54,44,33,27 -1989,1061,Other races male,3,2,2,5,3,3,5,3,5,3,3,4,3,0,0,1,1,0 -1989,1061,Other races female,1,3,5,8,6,4,6,6,3,3,4,5,3,3,3,1,0,0 -1989,1063,White male,54,58,49,50,54,62,73,69,58,70,64,80,72,58,46,37,22,9 -1989,1063,White female,43,42,35,45,50,61,67,58,67,61,71,73,83,59,72,55,40,36 -1989,1063,Black male,382,454,455,400,202,243,241,234,151,126,122,116,126,109,100,108,73,54 -1989,1063,Black female,329,445,458,402,288,326,333,311,222,172,156,159,186,166,163,156,137,96 -1989,1063,Other races male,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0 -1989,1063,Other races female,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 -1989,1065,White male,204,193,227,207,150,213,232,230,192,188,169,162,142,163,124,85,61,39 -1989,1065,White female,182,199,208,209,163,225,222,200,191,182,178,152,190,188,169,140,115,93 -1989,1065,Black male,442,479,487,482,276,264,273,262,192,142,124,110,151,137,102,133,72,58 -1989,1065,Black female,423,465,493,455,339,389,382,331,210,168,190,168,213,205,167,151,128,109 -1989,1065,Other races male,2,3,2,1,4,0,1,0,0,0,1,0,1,0,0,0,0,0 -1989,1065,Other races female,2,2,1,1,1,1,2,0,2,1,1,0,0,0,0,0,0,0 -1989,1067,White male,278,310,360,343,293,328,349,344,348,282,254,245,290,257,175,165,81,33 -1989,1067,White female,308,298,324,335,275,321,335,358,365,290,254,297,288,323,279,229,153,102 -1989,1067,Black male,224,251,271,281,183,169,167,166,148,109,100,78,83,75,62,59,33,20 -1989,1067,Black female,229,243,274,281,214,205,191,215,142,147,128,110,117,112,104,100,71,46 -1989,1067,Other races male,1,0,2,2,2,1,0,4,0,3,1,1,0,0,0,1,0,0 -1989,1067,Other races female,2,0,2,0,3,3,1,2,3,1,1,1,1,1,0,0,0,0 -1989,1069,White male,2183,2234,2157,2270,1910,2392,2567,2362,2264,1814,1485,1415,1358,1166,886,565,332,144 -1989,1069,White female,2032,2057,2054,2151,2014,2520,2606,2432,2303,1934,1645,1529,1577,1476,1229,1016,686,507 -1989,1069,Black male,943,943,958,932,606,620,647,576,450,336,288,246,246,227,196,135,78,49 -1989,1069,Black female,883,956,998,930,792,832,829,747,520,471,382,341,391,334,307,254,147,109 -1989,1069,Other races male,24,39,49,44,22,28,28,29,26,24,17,9,18,5,1,1,0,0 -1989,1069,Other races female,27,36,32,29,23,31,34,34,38,31,15,14,7,12,4,4,1,1 -1989,1071,White male,1450,1527,1709,1800,1537,1694,1729,1635,1587,1396,1288,1086,1017,839,592,463,221,127 -1989,1071,White female,1437,1554,1631,1716,1522,1742,1751,1697,1642,1444,1277,1225,1095,1022,910,710,422,289 -1989,1071,Black male,94,81,102,99,54,66,60,72,51,36,32,25,27,42,23,27,13,5 -1989,1071,Black female,83,77,76,98,81,80,86,80,71,49,42,47,51,41,44,30,14,12 -1989,1071,Other races male,26,77,86,57,28,21,34,44,42,30,17,9,4,7,3,3,3,2 -1989,1071,Other races female,26,60,104,57,29,34,38,62,60,21,13,18,9,8,6,2,1,1 -1989,1073,White male,13406,13059,12796,13400,14815,18034,17636,16353,14950,11910,10027,9541,10131,8957,6583,4498,2529,1485 -1989,1073,White female,12673,12553,12120,13275,15309,18009,17881,17002,15460,12695,11412,11169,12218,11690,9687,8137,5727,4516 -1989,1073,Black male,9893,10196,10030,9536,7931,8359,8558,8059,6249,4225,3469,3413,3492,3310,2552,2039,1164,783 -1989,1073,Black female,9675,10170,10010,9574,9325,10320,11244,10161,7393,5274,4922,4777,5259,4840,4007,3503,2238,1833 -1989,1073,Other races male,140,147,141,152,194,257,234,172,136,131,84,52,46,26,18,13,5,4 -1989,1073,Other races female,168,164,106,134,183,272,242,196,161,118,83,61,42,39,25,17,10,3 -1989,1075,White male,449,466,522,536,442,518,489,475,469,422,362,349,320,263,243,183,130,63 -1989,1075,White female,432,450,496,530,470,503,500,441,485,420,394,375,385,359,319,298,211,165 -1989,1075,Black male,94,83,87,114,62,62,60,60,45,30,31,34,28,29,18,14,14,12 -1989,1075,Black female,70,80,82,92,76,77,83,64,52,36,49,34,43,48,28,39,22,19 -1989,1075,Other races male,0,3,1,0,1,1,0,2,3,1,2,0,1,0,0,0,0,0 -1989,1075,Other races female,0,1,2,3,1,2,2,3,2,2,0,1,2,0,0,0,0,0 -1989,1077,White male,2321,2376,2389,2659,2845,2625,2734,2591,2397,2131,1813,1717,1650,1508,1103,750,426,233 -1989,1077,White female,2125,2279,2289,2761,2808,2744,2823,2582,2542,2158,1965,1884,1931,1851,1586,1214,930,634 -1989,1077,Black male,365,343,327,371,348,262,226,233,152,161,103,120,105,98,101,62,37,32 -1989,1077,Black female,339,336,338,396,396,336,333,272,216,197,166,163,179,140,146,100,88,61 -1989,1077,Other races male,13,13,9,13,11,17,13,15,12,9,17,9,5,3,1,2,0,1 -1989,1077,Other races female,14,18,12,20,9,10,16,17,20,16,15,10,7,2,0,3,2,2 -1989,1079,White male,949,841,820,949,975,1113,948,843,819,783,702,614,558,475,371,256,131,74 -1989,1079,White female,836,738,775,900,977,1064,916,810,832,783,658,629,620,558,486,414,221,170 -1989,1079,Black male,227,216,248,299,205,176,139,158,110,91,75,53,60,70,49,41,26,21 -1989,1079,Black female,221,223,255,246,225,192,199,183,139,119,86,71,87,91,68,68,45,30 -1989,1079,Other races male,58,163,187,144,38,28,74,90,79,34,25,8,10,6,3,2,2,0 -1989,1079,Other races female,56,159,193,113,36,71,123,112,67,35,23,11,8,5,6,4,1,2 -1989,1081,White male,1767,1731,1649,3835,7456,2851,2208,2050,1892,1542,1241,1144,957,817,592,412,199,109 -1989,1081,White female,1669,1646,1662,3986,6154,2375,2225,2005,1823,1537,1250,1141,1084,961,777,616,438,326 -1989,1081,Black male,920,894,949,990,908,769,730,630,547,383,340,277,260,243,154,135,89,57 -1989,1081,Black female,956,852,865,984,1013,954,865,794,577,470,421,414,417,354,317,255,184,140 -1989,1081,Other races male,74,48,42,71,161,179,134,64,39,33,24,18,7,4,6,0,2,0 -1989,1081,Other races female,66,42,36,71,98,124,92,59,35,26,22,20,10,5,6,1,1,0 -1989,1083,White male,1651,1641,1655,1778,1769,2170,2073,1716,1714,1425,1262,1118,915,798,548,402,231,110 -1989,1083,White female,1571,1534,1575,1643,1737,2025,1979,1702,1648,1394,1221,1141,1027,974,810,706,432,319 -1989,1083,Black male,275,279,297,301,391,491,416,314,212,150,131,100,111,83,73,55,29,34 -1989,1083,Black female,241,264,273,294,290,310,289,222,200,138,138,142,145,110,117,79,59,49 -1989,1083,Other races male,8,10,23,17,11,10,13,9,21,15,6,7,4,2,0,1,0,0 -1989,1083,Other races female,8,12,5,20,9,9,10,16,16,8,8,6,4,1,1,0,0,1 -1989,1085,White male,110,107,85,83,82,119,127,114,111,95,91,105,95,68,54,41,20,20 -1989,1085,White female,110,102,84,87,87,141,117,108,87,112,107,112,87,90,88,70,48,40 -1989,1085,Black male,491,525,548,554,330,326,269,239,159,159,127,102,116,108,106,97,71,42 -1989,1085,Black female,472,486,566,529,405,416,335,338,262,183,180,174,168,174,159,135,83,74 -1989,1085,Other races male,2,0,0,1,0,0,2,1,0,0,0,0,0,0,0,0,0,0 -1989,1085,Other races female,1,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0,0,0 -1989,1087,White male,87,95,92,106,129,128,140,99,122,128,95,100,117,116,90,69,41,31 -1989,1087,White female,113,85,86,111,111,137,112,119,121,116,74,84,106,102,100,85,55,35 -1989,1087,Black male,828,779,817,1433,1200,621,588,564,473,376,285,300,336,427,325,249,148,107 -1989,1087,Black female,818,835,835,1529,1344,730,721,713,614,457,404,427,458,513,439,376,265,217 -1989,1087,Other races male,4,5,3,5,4,11,10,8,3,2,2,2,2,3,0,1,0,0 -1989,1087,Other races female,5,4,5,7,9,11,4,4,2,1,1,2,2,3,0,0,1,0 -1989,1089,White male,6556,6155,5600,6141,6868,9886,9140,7209,6468,5568,5245,5084,3899,3056,1976,1200,591,350 -1989,1089,White female,6218,5775,5370,5586,6632,9183,8464,6908,6492,5848,5581,4949,4160,3635,2617,1998,1390,1029 -1989,1089,Black male,2136,2067,1959,2657,2813,2253,2068,1604,1260,931,716,565,438,375,298,185,121,108 -1989,1089,Black female,2040,2047,1915,2830,3057,2533,2227,1818,1469,1048,875,711,588,539,439,324,196,195 -1989,1089,Other races male,218,265,294,233,194,297,297,227,210,158,99,76,33,31,18,6,8,1 -1989,1089,Other races female,225,243,289,219,167,258,351,336,276,172,119,87,76,29,22,11,7,1 -1989,1091,White male,381,416,397,444,313,393,419,429,387,364,324,320,294,253,196,115,78,44 -1989,1091,White female,370,379,380,376,361,413,409,390,401,362,358,336,330,268,272,220,156,117 -1989,1091,Black male,563,575,670,628,396,380,347,325,264,212,174,177,177,157,143,138,95,74 -1989,1091,Black female,525,584,600,602,468,409,478,413,334,255,216,252,261,294,228,218,162,147 -1989,1091,Other races male,1,0,1,0,2,2,0,1,1,0,0,1,0,0,0,0,1,0 -1989,1091,Other races female,1,0,1,1,0,1,1,2,0,1,1,0,1,1,0,0,1,0 -1989,1093,White male,960,997,1012,1182,1061,1147,990,972,998,842,812,716,680,585,452,348,212,145 -1989,1093,White female,876,970,991,1108,976,996,1053,964,1026,890,818,734,777,712,648,600,384,289 -1989,1093,Black male,37,37,37,33,43,54,56,42,28,31,15,15,12,18,18,13,6,7 -1989,1093,Black female,36,34,30,43,41,31,42,24,25,22,22,13,17,14,12,15,7,12 -1989,1093,Other races male,7,8,2,4,1,1,4,5,5,2,2,4,1,2,0,0,0,0 -1989,1093,Other races female,6,6,3,0,3,5,3,5,1,2,2,4,0,0,3,0,1,0 -1989,1095,White male,2280,2378,2437,2734,2271,2653,2646,2453,2318,2025,1793,1699,1679,1345,1052,732,416,236 -1989,1095,White female,2250,2315,2353,2519,2307,2736,2716,2586,2453,2142,1953,1893,1916,1694,1533,1204,851,593 -1989,1095,Black male,60,42,37,62,64,35,38,40,25,24,19,12,14,13,9,12,8,2 -1989,1095,Black female,42,43,40,52,49,42,39,52,33,24,21,25,21,27,20,16,6,8 -1989,1095,Other races male,10,12,11,13,7,7,12,16,12,17,7,7,5,3,3,1,0,1 -1989,1095,Other races female,10,18,17,21,11,11,16,21,16,8,11,9,8,6,0,0,1,0 -1989,1097,White male,9406,9366,9071,9563,9254,10449,10757,9931,9095,7272,6128,5445,5375,4833,3561,2328,1259,704 -1989,1097,White female,8909,8739,8660,9292,9823,10706,10998,9839,9365,7690,6374,5901,6376,6137,4849,3930,2604,1970 -1989,1097,Black male,5881,5926,5974,5382,3866,4041,4178,3638,2728,2101,1931,1816,1698,1623,1181,865,485,282 -1989,1097,Black female,5786,5877,5938,5482,4751,5288,5505,4649,3592,2825,2608,2433,2391,2255,1803,1418,881,704 -1989,1097,Other races male,219,240,237,318,336,231,200,197,162,128,89,63,42,33,14,16,10,5 -1989,1097,Other races female,212,244,242,260,242,221,245,233,208,137,89,81,55,44,31,28,12,6 -1989,1099,White male,470,507,525,549,440,512,544,508,490,435,349,337,340,291,183,179,86,61 -1989,1099,White female,477,499,496,531,418,498,505,539,458,435,344,350,343,323,319,266,185,143 -1989,1099,Black male,451,493,525,538,313,306,307,260,197,162,148,113,135,113,108,103,37,40 -1989,1099,Black female,432,471,480,520,363,354,350,349,210,185,166,168,189,150,141,131,79,86 -1989,1099,Other races male,10,15,13,16,18,8,9,11,7,6,6,6,4,3,3,3,0,0 -1989,1099,Other races female,9,11,7,12,10,11,11,6,9,10,7,7,3,2,3,4,0,1 -1989,1101,White male,4104,4063,3698,3987,4188,5348,5293,5015,4533,3562,2986,2775,2580,2280,1690,1106,585,315 -1989,1101,White female,3823,3822,3501,3904,4216,5031,5203,4991,4567,3697,3132,3026,3169,3184,2500,2073,1492,1255 -1989,1101,Black male,4267,4234,4077,4620,3670,3282,3210,2841,2129,1478,1223,1165,1027,937,678,572,335,200 -1989,1101,Black female,4075,4129,4066,4730,4348,4176,4112,3548,2511,1894,1720,1587,1518,1394,1155,997,602,554 -1989,1101,Other races male,67,75,92,94,84,79,78,61,73,54,30,27,13,13,7,5,2,2 -1989,1101,Other races female,62,78,88,97,83,79,120,110,120,59,47,35,27,12,8,7,5,0 -1989,1103,White male,3019,3258,3242,3270,2870,3736,3773,3466,3255,2746,2353,2115,1883,1541,1171,735,458,236 -1989,1103,White female,2941,2967,3037,3006,2986,3691,3751,3555,3317,2735,2448,2201,2156,1903,1626,1315,856,610 -1989,1103,Black male,497,495,521,467,374,381,416,331,236,180,144,121,116,113,92,80,40,26 -1989,1103,Black female,493,461,485,445,446,491,472,398,272,207,195,181,168,140,161,123,71,63 -1989,1103,Other races male,20,30,36,23,20,21,27,40,31,21,21,6,8,3,6,4,1,0 -1989,1103,Other races female,26,35,32,24,15,21,29,42,32,23,12,13,7,5,6,2,1,1 -1989,1105,White male,101,129,115,306,186,142,132,132,128,133,128,136,114,112,95,84,51,29 -1989,1105,White female,113,95,127,246,201,120,135,126,135,138,142,137,141,146,135,116,95,71 -1989,1105,Black male,409,454,497,484,243,223,235,178,165,119,146,120,115,116,102,99,71,52 -1989,1105,Black female,400,424,479,469,295,305,292,286,212,179,171,158,171,183,152,132,128,102 -1989,1105,Other races male,0,1,2,5,2,0,0,0,2,0,0,1,0,0,0,1,0,0 -1989,1105,Other races female,0,2,2,4,4,0,2,1,1,0,0,0,0,0,0,0,0,0 -1989,1107,White male,372,378,434,403,384,423,437,407,413,321,357,354,378,290,225,180,98,64 -1989,1107,White female,350,332,357,391,344,404,418,377,372,390,396,370,415,332,315,280,220,153 -1989,1107,Black male,391,468,473,400,253,239,248,223,148,135,138,146,129,142,112,99,70,45 -1989,1107,Black female,432,495,499,437,327,343,352,294,223,181,186,181,181,189,174,152,98,109 -1989,1107,Other races male,1,3,2,1,0,1,2,1,1,2,1,0,0,0,1,0,0,0 -1989,1107,Other races female,3,4,4,0,1,2,3,2,3,4,2,0,3,1,0,3,0,0 -1989,1109,White male,524,516,530,945,1231,605,573,529,532,480,399,376,387,355,274,211,121,66 -1989,1109,White female,475,472,483,966,1157,575,563,537,533,504,421,399,411,473,431,369,256,214 -1989,1109,Black male,479,455,415,538,401,302,269,229,196,156,130,123,106,145,98,93,48,38 -1989,1109,Black female,384,443,442,576,548,404,391,338,265,194,184,177,173,196,184,188,129,109 -1989,1109,Other races male,8,10,9,15,10,10,6,4,4,5,3,4,4,3,1,1,1,0 -1989,1109,Other races female,5,7,8,13,13,7,8,8,9,8,4,5,6,3,3,2,1,0 -1989,1111,White male,456,558,504,575,496,532,583,509,480,402,384,388,421,369,304,221,123,71 -1989,1111,White female,421,459,486,510,478,522,530,506,493,409,408,443,480,442,406,354,247,180 -1989,1111,Black male,203,250,246,261,172,161,178,125,110,80,83,63,68,65,48,46,25,17 -1989,1111,Black female,208,226,230,219,197,195,179,171,132,98,105,89,81,96,87,72,57,47 -1989,1111,Other races male,2,5,4,2,0,0,0,1,1,2,0,0,0,0,1,0,0,0 -1989,1111,Other races female,1,1,1,4,2,3,4,3,4,4,1,0,2,1,0,0,0,1 -1989,1113,White male,1099,985,900,973,1105,1232,1161,1014,959,830,763,698,701,572,408,258,127,67 -1989,1113,White female,975,890,840,943,1076,1167,1103,1004,975,889,821,811,813,720,581,475,297,200 -1989,1113,Black male,780,787,856,873,660,601,633,557,459,355,372,326,291,280,205,171,81,49 -1989,1113,Black female,740,745,761,856,724,780,756,661,571,484,428,395,443,399,332,280,158,119 -1989,1113,Other races male,9,10,5,8,4,10,9,8,9,6,1,6,0,2,3,0,0,0 -1989,1113,Other races female,6,6,3,4,10,9,14,8,20,9,4,8,4,4,4,2,0,0 -1989,1115,White male,1761,1693,1688,1739,1505,1815,1863,1723,1650,1405,1132,1026,996,858,602,381,201,131 -1989,1115,White female,1506,1527,1590,1621,1498,1737,1755,1678,1603,1389,1134,1082,1124,965,781,573,412,301 -1989,1115,Black male,184,176,190,214,192,278,272,222,164,110,83,78,79,50,36,40,20,11 -1989,1115,Black female,180,181,191,208,166,172,161,142,118,102,82,86,74,74,75,49,31,21 -1989,1115,Other races male,5,9,11,5,6,8,10,12,7,10,10,4,3,3,0,0,0,0 -1989,1115,Other races female,7,7,13,4,2,10,17,5,9,8,4,5,6,0,4,2,0,0 -1989,1117,White male,3666,3625,3178,3085,2917,4093,4413,4213,3676,2659,2004,1635,1436,1121,737,500,269,145 -1989,1117,White female,3450,3289,3049,3125,3451,4341,4651,4261,3537,2588,1975,1669,1479,1291,960,785,465,363 -1989,1117,Black male,358,374,357,344,354,303,314,253,184,134,121,104,83,71,69,41,39,22 -1989,1117,Black female,360,343,353,398,401,353,354,312,233,177,153,116,126,103,104,102,51,43 -1989,1117,Other races male,33,42,25,31,24,31,41,43,30,22,25,12,10,6,4,1,0,1 -1989,1117,Other races female,43,49,33,28,28,29,47,41,32,20,23,17,9,8,2,1,2,0 -1989,1119,White male,132,147,120,242,314,177,163,145,145,121,105,122,110,106,87,71,33,15 -1989,1119,White female,141,135,111,222,274,155,143,162,134,109,124,110,137,129,113,111,88,72 -1989,1119,Black male,527,527,643,631,385,353,384,326,197,158,152,138,162,158,151,131,86,64 -1989,1119,Black female,505,542,621,662,476,445,488,395,253,208,240,248,234,256,230,199,153,104 -1989,1119,Other races male,1,0,0,2,8,2,2,0,0,1,1,2,0,0,0,0,0,0 -1989,1119,Other races female,1,0,1,4,1,0,1,1,2,3,1,0,0,0,0,1,1,0 -1989,1121,White male,1651,1757,1868,2024,1636,1925,1907,1970,1849,1544,1304,1299,1202,1089,824,602,299,163 -1989,1121,White female,1550,1691,1810,1846,1704,1808,1976,1873,1759,1486,1446,1403,1470,1364,1177,945,612,357 -1989,1121,Black male,1023,1082,1175,1323,863,796,836,798,646,438,343,338,316,269,201,165,86,57 -1989,1121,Black female,1007,1117,1146,1387,1035,907,949,835,651,466,432,443,403,384,307,242,150,140 -1989,1121,Other races male,14,12,8,13,9,11,12,12,15,19,5,8,0,4,1,2,1,0 -1989,1121,Other races female,6,12,13,9,14,14,10,10,10,12,6,6,3,4,4,0,0,1 -1989,1123,White male,857,920,964,1019,875,982,1024,1014,936,831,733,712,749,692,541,411,234,109 -1989,1123,White female,792,826,914,1013,876,973,1019,1014,952,888,788,830,894,897,793,691,409,296 -1989,1123,Black male,423,432,504,531,375,330,347,315,262,190,184,157,155,125,120,88,40,28 -1989,1123,Black female,481,466,521,564,447,424,405,402,318,224,197,204,248,206,134,157,85,92 -1989,1123,Other races male,3,4,4,2,4,3,3,4,3,4,1,1,2,0,2,0,0,0 -1989,1123,Other races female,7,6,6,3,1,3,9,5,7,2,2,1,3,2,0,0,0,2 -1989,1125,White male,3259,3216,3186,5079,7113,4575,4287,4049,3640,2814,2467,2236,2321,2071,1377,964,543,331 -1989,1125,White female,3002,2978,3058,5220,6725,4234,4163,4018,3613,2865,2474,2508,2592,2264,1837,1573,1025,869 -1989,1125,Black male,1725,1806,1828,1935,1674,1347,1287,1345,912,662,579,560,514,513,370,305,151,120 -1989,1125,Black female,1684,1732,1801,2299,2174,1674,1746,1657,1127,803,820,760,782,689,560,495,289,272 -1989,1125,Other races male,41,46,36,56,164,145,95,55,46,29,21,13,8,12,4,4,0,1 -1989,1125,Other races female,46,38,47,48,108,95,76,54,46,37,16,18,12,11,5,3,3,1 -1989,1127,White male,2046,2151,2360,2523,2211,2374,2346,2287,2211,1890,1677,1552,1417,1296,921,660,380,229 -1989,1127,White female,1912,2093,2275,2408,2114,2326,2459,2341,2279,1880,1749,1598,1695,1680,1363,1156,819,566 -1989,1127,Black male,200,220,237,213,134,126,152,133,97,93,65,65,62,60,58,41,23,22 -1989,1127,Black female,182,221,238,208,158,193,204,177,110,92,93,90,86,99,73,79,61,61 -1989,1127,Other races male,5,7,6,6,7,5,7,7,8,8,9,3,2,0,1,0,0,0 -1989,1127,Other races female,7,5,8,12,3,7,13,9,12,8,9,4,7,4,0,0,0,5 -1989,1129,White male,401,419,460,440,373,394,429,374,392,336,306,276,242,204,186,118,72,40 -1989,1129,White female,355,432,419,418,359,410,414,397,381,354,293,273,256,243,207,185,119,86 -1989,1129,Black male,229,266,265,234,158,150,178,136,106,88,65,78,63,65,44,48,22,17 -1989,1129,Black female,193,239,226,246,191,201,187,167,125,107,90,85,82,85,70,61,41,36 -1989,1129,Other races male,52,60,60,54,40,61,33,40,30,24,13,12,10,10,7,2,3,2 -1989,1129,Other races female,59,75,55,41,41,43,47,40,27,20,21,25,13,10,12,9,6,1 -1989,1131,White male,142,125,138,152,132,128,144,159,143,128,129,99,134,115,76,68,37,18 -1989,1131,White female,111,118,140,119,109,126,137,123,142,124,129,148,156,171,133,103,75,69 -1989,1131,Black male,432,529,577,540,291,277,284,240,187,148,115,123,117,141,129,115,81,52 -1989,1131,Black female,451,480,595,517,347,359,332,303,220,194,182,176,192,202,199,175,112,102 -1989,1131,Other races male,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,0,0 -1989,1131,Other races female,0,0,2,0,0,1,1,0,0,1,2,0,0,1,1,0,0,0 -1989,1133,White male,708,755,802,862,766,844,820,739,761,679,582,551,499,451,330,244,133,85 -1989,1133,White female,708,713,735,809,760,831,761,772,805,712,593,559,604,532,447,375,247,162 -1989,1133,Black male,2,6,1,2,3,3,1,1,2,1,1,1,0,1,0,2,1,0 -1989,1133,Black female,1,2,2,5,0,4,2,3,2,0,2,1,1,0,1,1,2,1 -1989,1133,Other races male,4,1,1,3,3,0,2,0,3,3,1,3,0,0,1,1,0,0 -1989,1133,Other races female,7,2,1,5,4,2,2,2,4,3,3,1,1,2,1,2,0,0 \ No newline at end of file +File with multiple tables. Each table has row headers in columns B and C and column headers in row 6.,,,,,,,,,,,,,,,,,,,, +"Estimates of the Population of Counties in the United States by Age, Sex, and Race: July 1, 1989",,,,,,,,,,,,,,,,,,,, +"Source: Intercensal Population Estimates by Age, Sex, and Race: 1980-1989",,,,,,,,,,,,,,,,,,,, +"Internet Release date: October 22, 2004",,,,,,,,,,,,,,,,,,,, +"Revised May 12, 2009",,,,,,,,,,,,,,,,,,,, +Year of Estimate,FIPS State and County Codes,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over +,,,,,,,,,,,,,,,,,,,, +1989,1001,White male,1072,1117,1156,1081,881,1071,1122,1034,1013,859,771,651,511,401,271,189,106,41 +1989,1001,White female,977,985,982,1051,828,1105,1185,1085,1054,862,791,651,537,455,387,318,215,153 +1989,1001,Black male,304,333,352,397,224,239,230,187,151,116,115,89,105,104,79,63,39,22 +1989,1001,Black female,315,348,346,386,286,281,284,243,189,140,129,131,149,133,111,82,68,69 +1989,1001,Other races male,6,7,4,8,8,4,8,4,8,4,2,4,1,1,0,0,0,0 +1989,1001,Other races female,8,7,9,8,5,4,11,13,9,9,15,10,7,2,1,2,0,0 +1989,1003,White male,2797,2927,2990,3022,2300,2854,3087,3019,2982,2430,2134,2071,2204,2170,1624,1074,566,294 +1989,1003,White female,2679,2675,2774,2781,2282,3025,3265,3147,2915,2551,2232,2192,2506,2380,1845,1465,968,662 +1989,1003,Black male,622,675,680,657,408,442,430,373,278,193,188,196,184,145,133,111,72,47 +1989,1003,Black female,626,631,635,697,495,557,538,433,305,278,276,226,230,199,200,159,93,76 +1989,1003,Other races male,12,40,31,35,26,20,34,31,26,25,19,26,12,8,4,3,3,0 +1989,1003,Other races female,28,37,41,37,31,36,44,58,34,25,30,19,17,14,8,6,3,3 +1989,1005,White male,451,471,511,551,425,525,519,517,531,398,356,356,364,327,241,191,92,47 +1989,1005,White female,389,472,459,471,425,509,489,506,532,405,372,385,397,429,342,298,208,143 +1989,1005,Black male,533,614,561,545,361,382,372,339,272,187,142,149,146,146,141,120,63,34 +1989,1005,Black female,538,596,538,546,422,465,412,406,348,258,196,195,257,220,225,193,126,95 +1989,1005,Other races male,3,3,2,5,6,3,3,3,3,4,4,2,0,0,0,1,0,0 +1989,1005,Other races female,3,3,6,2,3,2,3,4,6,3,3,4,1,2,2,0,1,0 +1989,1007,White male,435,509,505,563,489,496,487,461,454,427,302,294,287,214,155,140,83,48 +1989,1007,White female,414,440,462,529,464,465,476,453,440,416,326,307,289,291,241,248,142,115 +1989,1007,Black male,155,197,204,184,133,120,117,105,80,59,41,37,48,46,32,36,20,15 +1989,1007,Black female,175,163,200,183,141,148,126,124,86,65,52,56,64,69,57,49,36,32 +1989,1007,Other races male,0,2,6,3,0,0,0,3,4,0,0,1,1,0,0,1,0,0 +1989,1007,Other races female,0,0,1,3,0,1,0,0,4,2,3,0,0,0,0,1,0,0 +1989,1009,White male,1334,1316,1413,1556,1358,1481,1459,1400,1329,1163,1047,904,859,695,534,439,224,123 +1989,1009,White female,1267,1319,1368,1449,1303,1422,1476,1413,1380,1188,1072,943,912,844,772,618,437,262 +1989,1009,Black male,21,18,25,27,18,22,23,20,16,10,9,6,8,6,5,8,2,1 +1989,1009,Black female,29,19,20,23,22,27,27,17,20,12,10,9,10,12,11,7,8,2 +1989,1009,Other races male,4,6,7,3,1,3,7,8,9,3,6,3,1,3,4,1,0,0 +1989,1009,Other races female,4,10,9,9,6,4,7,8,8,11,4,3,3,1,3,2,1,0 +1989,1011,White male,77,74,90,98,124,144,153,162,120,97,80,85,86,97,72,56,23,11 +1989,1011,White female,92,55,70,76,64,77,98,98,92,82,87,101,87,105,87,101,56,40 +1989,1011,Black male,386,424,380,329,244,309,295,269,183,161,125,96,99,106,106,101,55,41 +1989,1011,Black female,412,412,399,390,294,317,308,266,199,180,130,146,155,165,209,155,112,78 +1989,1011,Other races male,2,0,0,0,2,2,1,1,1,2,0,0,0,1,0,0,0,0 +1989,1011,Other races female,0,0,1,0,0,1,2,0,1,0,0,1,0,0,0,0,0,0 +1989,1013,White male,432,479,454,454,347,438,481,458,409,354,313,320,336,304,297,186,114,65 +1989,1013,White female,400,472,411,429,325,439,503,425,416,374,343,384,416,386,394,387,249,192 +1989,1013,Black male,429,537,472,464,235,221,275,239,195,167,135,103,129,108,110,100,59,51 +1989,1013,Black female,434,482,498,458,334,349,341,328,235,172,156,142,184,175,156,144,107,85 +1989,1013,Other races male,3,1,2,2,2,1,1,3,3,1,1,2,0,0,1,0,0,0 +1989,1013,Other races female,1,3,5,2,1,1,2,0,1,2,0,1,1,0,0,0,0,0 +1989,1015,White male,3008,3063,3334,4201,4200,3759,3668,3492,3290,2659,2278,2143,2019,1761,1322,885,481,229 +1989,1015,White female,2698,2978,3080,3776,3730,3565,3771,3521,3285,2698,2418,2425,2511,2335,1893,1541,956,728 +1989,1015,Black male,911,999,986,1223,1021,858,860,712,504,391,311,309,289,251,199,132,73,47 +1989,1015,Black female,956,910,994,1174,1223,975,962,794,564,445,411,399,441,383,310,247,169,106 +1989,1015,Other races male,40,46,43,57,49,45,35,35,34,24,15,13,12,6,4,1,2,2 +1989,1015,Other races female,34,50,46,47,57,55,86,78,85,52,25,25,13,7,6,4,2,3 +1989,1017,White male,726,732,746,822,788,798,837,794,777,697,616,616,605,573,512,387,236,106 +1989,1017,White female,659,714,698,804,744,786,852,778,794,687,627,729,728,779,740,657,438,274 +1989,1017,Black male,582,625,690,688,541,494,442,426,317,257,198,168,167,168,149,127,71,41 +1989,1017,Black female,545,622,643,727,536,553,541,507,421,322,256,272,276,255,230,216,124,102 +1989,1017,Other races male,2,4,3,2,3,2,2,1,1,4,2,1,0,0,0,0,0,0 +1989,1017,Other races female,1,0,4,0,0,4,2,3,4,3,2,1,0,1,1,1,0,0 +1989,1019,White male,561,574,675,749,628,616,692,627,648,539,517,460,463,434,323,235,108,49 +1989,1019,White female,493,562,619,638,591,630,648,629,661,561,516,552,520,488,419,319,207,128 +1989,1019,Black male,62,55,64,60,48,46,58,50,39,30,29,25,24,16,10,6,10,5 +1989,1019,Black female,37,55,55,76,50,48,53,49,44,33,33,23,31,15,28,22,13,10 +1989,1019,Other races male,3,2,4,1,5,3,3,3,0,1,1,2,1,1,0,1,0,0 +1989,1019,Other races female,2,1,5,2,5,6,5,6,0,5,1,2,1,1,1,0,0,0 +1989,1021,White male,956,1040,1069,1098,983,1079,1115,1031,959,868,744,690,639,580,419,337,206,99 +1989,1021,White female,932,970,1092,1057,947,1074,1148,1016,969,868,734,776,684,681,627,552,318,245 +1989,1021,Black male,176,182,192,198,115,116,138,117,101,58,55,77,58,57,46,30,23,14 +1989,1021,Black female,161,171,186,195,127,149,141,129,94,86,85,77,64,69,56,53,33,35 +1989,1021,Other races male,4,6,5,3,1,2,5,3,4,4,6,0,0,0,0,0,1,0 +1989,1021,Other races female,5,5,2,2,3,3,6,8,7,0,4,7,0,1,1,2,0,2 +1989,1023,White male,286,287,355,389,269,301,309,301,304,323,259,220,221,201,130,109,64,45 +1989,1023,White female,279,290,316,356,287,295,312,302,327,290,275,276,259,234,176,161,120,95 +1989,1023,Black male,299,348,349,371,209,253,228,228,167,156,129,97,105,111,73,77,61,38 +1989,1023,Black female,312,344,381,392,257,283,299,263,208,172,123,149,131,145,123,110,74,55 +1989,1023,Other races male,1,1,2,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0 +1989,1023,Other races female,0,2,0,0,0,2,0,1,1,0,2,2,0,0,0,2,0,0 +1989,1025,White male,519,565,541,605,488,534,575,521,553,480,447,385,335,288,261,205,108,74 +1989,1025,White female,479,515,554,577,498,569,543,573,541,524,435,395,379,383,387,317,215,157 +1989,1025,Black male,527,584,673,632,416,410,397,337,238,213,203,180,183,154,115,101,69,46 +1989,1025,Black female,473,609,617,666,471,488,472,364,286,255,247,227,227,199,158,144,102,78 +1989,1025,Other races male,6,6,2,3,3,3,5,0,2,2,1,0,0,0,0,1,0,0 +1989,1025,Other races female,7,2,3,1,1,6,10,1,1,2,4,4,2,0,0,0,2,0 +1989,1027,White male,310,362,390,426,387,369,399,353,346,332,276,278,272,240,197,177,105,70 +1989,1027,White female,313,326,369,397,344,372,382,338,388,325,320,301,318,280,308,279,181,152 +1989,1027,Black male,115,108,114,115,103,71,64,64,52,47,49,26,27,24,16,13,15,8 +1989,1027,Black female,87,102,101,120,97,98,83,65,67,57,42,37,37,41,26,27,19,15 +1989,1027,Other races male,3,0,1,2,1,2,1,1,0,1,2,0,1,1,0,0,0,0 +1989,1027,Other races female,1,1,1,2,2,0,2,3,1,2,1,2,2,0,0,0,0,0 +1989,1029,White male,423,430,481,512,441,483,476,428,399,398,294,272,279,229,189,141,63,55 +1989,1029,White female,395,422,419,446,426,465,459,417,413,373,319,308,322,252,275,195,124,104 +1989,1029,Black male,32,30,27,21,22,19,15,18,14,12,14,20,9,7,7,4,4,1 +1989,1029,Black female,34,28,20,28,23,25,21,15,15,20,16,17,8,12,12,9,7,9 +1989,1029,Other races male,1,2,1,2,1,1,3,0,0,2,0,0,0,0,0,0,0,0 +1989,1029,Other races female,0,0,0,2,0,1,1,2,4,1,3,3,2,1,0,0,0,0 +1989,1031,White male,1116,1106,1170,1286,1210,1426,1287,1152,1252,1029,859,848,757,655,500,368,183,103 +1989,1031,White female,1036,1018,1073,1173,1090,1255,1274,1234,1212,999,941,868,828,788,692,570,362,291 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1900.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1900.csv deleted file mode 100644 index 4cb0d4bc4c..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1900.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1900",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"76,094,000 ","38,867,000 ","37,227,000 ","66,900,000 ","34,249,000 ","32,651,000 ","9,194,000 ","4,618,000 ","4,576,000 " -,,,,,,,,, -0,"1,811,000 ","919,000 ","892,000 ","1,568,000 ","797,000 ","771,000 ","243,000 ","122,000 ","121,000 " -1,"1,835,000 ","928,000 ","907,000 ","1,586,000 ","804,000 ","782,000 ","249,000 ","124,000 ","125,000 " -2,"1,846,000 ","932,000 ","914,000 ","1,594,000 ","807,000 ","787,000 ","252,000 ","125,000 ","127,000 " -3,"1,848,000 ","932,000 ","916,000 ","1,594,000 ","806,000 ","788,000 ","254,000 ","126,000 ","128,000 " -4,"1,841,000 ","928,000 ","913,000 ","1,587,000 ","802,000 ","785,000 ","254,000 ","126,000 ","128,000 " -5,"1,827,000 ","921,000 ","906,000 ","1,574,000 ","795,000 ","779,000 ","253,000 ","126,000 ","127,000 " -6,"1,806,000 ","911,000 ","895,000 ","1,555,000 ","786,000 ","769,000 ","251,000 ","125,000 ","126,000 " -7,"1,780,000 ","899,000 ","881,000 ","1,532,000 ","775,000 ","757,000 ","248,000 ","124,000 ","124,000 " -8,"1,750,000 ","884,000 ","866,000 ","1,506,000 ","762,000 ","744,000 ","244,000 ","122,000 ","122,000 " -9,"1,717,000 ","868,000 ","849,000 ","1,478,000 ","748,000 ","730,000 ","239,000 ","120,000 ","119,000 " -10,"1,682,000 ","851,000 ","831,000 ","1,447,000 ","733,000 ","714,000 ","235,000 ","118,000 ","117,000 " -11,"1,644,000 ","833,000 ","811,000 ","1,415,000 ","717,000 ","698,000 ","229,000 ","116,000 ","113,000 " -12,"1,611,000 ","816,000 ","795,000 ","1,387,000 ","703,000 ","684,000 ","224,000 ","113,000 ","111,000 " -13,"1,585,000 ","800,000 ","785,000 ","1,366,000 ","690,000 ","676,000 ","219,000 ","110,000 ","109,000 " -14,"1,564,000 ","786,000 ","778,000 ","1,350,000 ","679,000 ","671,000 ","214,000 ","107,000 ","107,000 " -15,"1,544,000 ","772,000 ","772,000 ","1,335,000 ","669,000 ","666,000 ","209,000 ","103,000 ","106,000 " -16,"1,519,000 ","756,000 ","763,000 ","1,317,000 ","657,000 ","660,000 ","202,000 ","99,000 ","103,000 " -17,"1,505,000 ","746,000 ","759,000 ","1,305,000 ","649,000 ","656,000 ","200,000 ","97,000 ","103,000 " -18,"1,500,000 ","742,000 ","758,000 ","1,299,000 ","645,000 ","654,000 ","201,000 ","97,000 ","104,000 " -19,"1,500,000 ","741,000 ","759,000 ","1,296,000 ","643,000 ","653,000 ","204,000 ","98,000 ","106,000 " -20,"1,500,000 ","740,000 ","760,000 ","1,293,000 ","641,000 ","652,000 ","207,000 ","99,000 ","108,000 " -21,"1,500,000 ","739,000 ","761,000 ","1,290,000 ","639,000 ","651,000 ","210,000 ","100,000 ","110,000 " -22,"1,491,000 ","736,000 ","755,000 ","1,282,000 ","636,000 ","646,000 ","209,000 ","100,000 ","109,000 " -23,"1,465,000 ","726,000 ","739,000 ","1,264,000 ","630,000 ","634,000 ","201,000 ","96,000 ","105,000 " -24,"1,427,000 ","712,000 ","715,000 ","1,239,000 ","621,000 ","618,000 ","188,000 ","91,000 ","97,000 " -25,"1,392,000 ","700,000 ","692,000 ","1,214,000 ","613,000 ","601,000 ","178,000 ","87,000 ","91,000 " -26,"1,356,000 ","687,000 ","669,000 ","1,190,000 ","605,000 ","585,000 ","166,000 ","82,000 ","84,000 " -27,"1,316,000 ","672,000 ","644,000 ","1,162,000 ","595,000 ","567,000 ","154,000 ","77,000 ","77,000 " -28,"1,275,000 ","654,000 ","621,000 ","1,131,000 ","582,000 ","549,000 ","144,000 ","72,000 ","72,000 " -29,"1,233,000 ","636,000 ","597,000 ","1,098,000 ","568,000 ","530,000 ","135,000 ","68,000 ","67,000 " -30,"1,191,000 ","617,000 ","574,000 ","1,065,000 ","553,000 ","512,000 ","126,000 ","64,000 ","62,000 " -31,"1,145,000 ","597,000 ","548,000 ","1,030,000 ","538,000 ","492,000 ","115,000 ","59,000 ","56,000 " -32,"1,108,000 ","580,000 ","528,000 ","1,000,000 ","525,000 ","475,000 ","108,000 ","55,000 ","53,000 " -33,"1,082,000 ","568,000 ","514,000 ","977,000 ","514,000 ","463,000 ","105,000 ","54,000 ","51,000 " -34,"1,063,000 ","559,000 ","504,000 ","958,000 ","505,000 ","453,000 ","105,000 ","54,000 ","51,000 " -35,"1,044,000 ","550,000 ","494,000 ","939,000 ","496,000 ","443,000 ","105,000 ","54,000 ","51,000 " -36,"1,025,000 ","540,000 ","485,000 ","919,000 ","486,000 ","433,000 ","106,000 ","54,000 ","52,000 " -37,"1,004,000 ","529,000 ","475,000 ","899,000 ","476,000 ","423,000 ","105,000 ","53,000 ","52,000 " -38,"977,000 ","516,000 ","461,000 ","876,000 ","465,000 ","411,000 ","101,000 ","51,000 ","50,000 " -39,"946,000 ","501,000 ","445,000 ","852,000 ","453,000 ","399,000 ","94,000 ","48,000 ","46,000 " -40,"917,000 ","486,000 ","431,000 ","828,000 ","441,000 ","387,000 ","89,000 ","45,000 ","44,000 " -41,"888,000 ","472,000 ","416,000 ","805,000 ","430,000 ","375,000 ","83,000 ","42,000 ","41,000 " -42,"859,000 ","457,000 ","402,000 ","780,000 ","417,000 ","363,000 ","79,000 ","40,000 ","39,000 " -43,"824,000 ","439,000 ","385,000 ","748,000 ","400,000 ","348,000 ","76,000 ","39,000 ","37,000 " -44,"789,000 ","420,000 ","369,000 ","714,000 ","381,000 ","333,000 ","75,000 ","39,000 ","36,000 " -45,"753,000 ","401,000 ","352,000 ","680,000 ","363,000 ","317,000 ","73,000 ","38,000 ","35,000 " -46,"718,000 ","382,000 ","336,000 ","646,000 ","344,000 ","302,000 ","72,000 ","38,000 ","34,000 " -47,"688,000 ","366,000 ","322,000 ","617,000 ","328,000 ","289,000 ","71,000 ","38,000 ","33,000 " -48,"666,000 ","355,000 ","311,000 ","597,000 ","318,000 ","279,000 ","69,000 ","37,000 ","32,000 " -49,"650,000 ","347,000 ","303,000 ","582,000 ","310,000 ","272,000 ","68,000 ","37,000 ","31,000 " -50,"635,000 ","339,000 ","296,000 ","567,000 ","302,000 ","265,000 ","68,000 ","37,000 ","31,000 " -51,"622,000 ","332,000 ","290,000 ","554,000 ","295,000 ","259,000 ","68,000 ","37,000 ","31,000 " -52,"600,000 ","320,000 ","280,000 ","536,000 ","285,000 ","251,000 ","64,000 ","35,000 ","29,000 " -53,"571,000 ","304,000 ","267,000 ","511,000 ","271,000 ","240,000 ","60,000 ","33,000 ","27,000 " -54,"534,000 ","282,000 ","252,000 ","481,000 ","253,000 ","228,000 ","53,000 ","29,000 ","24,000 " -55,"500,000 ","262,000 ","238,000 ","453,000 ","236,000 ","217,000 ","47,000 ","26,000 ","21,000 " -56,"465,000 ","242,000 ","223,000 ","425,000 ","220,000 ","205,000 ","40,000 ","22,000 ","18,000 " -57,"437,000 ","226,000 ","211,000 ","401,000 ","206,000 ","195,000 ","36,000 ","20,000 ","16,000 " -58,"417,000 ","215,000 ","202,000 ","383,000 ","196,000 ","187,000 ","34,000 ","19,000 ","15,000 " -59,"405,000 ","208,000 ","197,000 ","370,000 ","189,000 ","181,000 ","35,000 ","19,000 ","16,000 " -60,"391,000 ","201,000 ","190,000 ","356,000 ","182,000 ","174,000 ","35,000 ","19,000 ","16,000 " -61,"380,000 ","195,000 ","185,000 ","343,000 ","175,000 ","168,000 ","37,000 ","20,000 ","17,000 " -62,"364,000 ","186,000 ","178,000 ","328,000 ","167,000 ","161,000 ","36,000 ","19,000 ","17,000 " -63,"345,000 ","176,000 ","169,000 ","311,000 ","158,000 ","153,000 ","34,000 ","18,000 ","16,000 " -64,"322,000 ","165,000 ","157,000 ","292,000 ","149,000 ","143,000 ","30,000 ","16,000 ","14,000 " -65,"302,000 ","155,000 ","147,000 ","275,000 ","140,000 ","135,000 ","27,000 ","15,000 ","12,000 " -66,"281,000 ","144,000 ","137,000 ","257,000 ","131,000 ","126,000 ","24,000 ","13,000 ","11,000 " -67,"262,000 ","134,000 ","128,000 ","240,000 ","122,000 ","118,000 ","22,000 ","12,000 ","10,000 " -68,"243,000 ","125,000 ","118,000 ","223,000 ","114,000 ","109,000 ","20,000 ","11,000 ","9,000 " -69,"224,000 ","115,000 ","109,000 ","207,000 ","106,000 ","101,000 ","17,000 ","9,000 ","8,000 " -70,"207,000 ","106,000 ","101,000 ","192,000 ","98,000 ","94,000 ","15,000 ","8,000 ","7,000 " -71,"191,000 ","98,000 ","93,000 ","176,000 ","90,000 ","86,000 ","15,000 ","8,000 ","7,000 " -72,"176,000 ","90,000 ","86,000 ","162,000 ","83,000 ","79,000 ","14,000 ","7,000 ","7,000 " -73,"163,000 ","82,000 ","81,000 ","148,000 ","75,000 ","73,000 ","15,000 ","7,000 ","8,000 " -74,"151,000 ","75,000 ","76,000 ","135,000 ","68,000 ","67,000 ","16,000 ","7,000 ","9,000 " -75+,"899,000 ","441,000 ","458,000 ","808,000 ","398,000 ","410,000 ","91,000 ","43,000 ","48,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1902.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1902.csv deleted file mode 100644 index cdb53ba254..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1902.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1902",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"79,163,000 ","40,483,000 ","38,680,000 ","69,722,000 ","35,745,000 ","33,977,000 ","9,441,000 ","4,738,000 ","4,703,000 " -,,,,,,,,, -0,"1,892,000 ","959,000 ","933,000 ","1,642,000 ","834,000 ","808,000 ","250,000 ","125,000 ","125,000 " -1,"1,906,000 ","964,000 ","942,000 ","1,651,000 ","837,000 ","814,000 ","255,000 ","127,000 ","128,000 " -2,"1,910,000 ","964,000 ","946,000 ","1,652,000 ","836,000 ","816,000 ","258,000 ","128,000 ","130,000 " -3,"1,904,000 ","960,000 ","944,000 ","1,645,000 ","832,000 ","813,000 ","259,000 ","128,000 ","131,000 " -4,"1,890,000 ","953,000 ","937,000 ","1,632,000 ","825,000 ","807,000 ","258,000 ","128,000 ","130,000 " -5,"1,873,000 ","944,000 ","929,000 ","1,615,000 ","816,000 ","799,000 ","258,000 ","128,000 ","130,000 " -6,"1,848,000 ","932,000 ","916,000 ","1,593,000 ","805,000 ","788,000 ","255,000 ","127,000 ","128,000 " -7,"1,818,000 ","917,000 ","901,000 ","1,567,000 ","792,000 ","775,000 ","251,000 ","125,000 ","126,000 " -8,"1,788,000 ","903,000 ","885,000 ","1,540,000 ","779,000 ","761,000 ","248,000 ","124,000 ","124,000 " -9,"1,752,000 ","885,000 ","867,000 ","1,510,000 ","764,000 ","746,000 ","242,000 ","121,000 ","121,000 " -10,"1,717,000 ","868,000 ","849,000 ","1,480,000 ","749,000 ","731,000 ","237,000 ","119,000 ","118,000 " -11,"1,681,000 ","851,000 ","830,000 ","1,449,000 ","734,000 ","715,000 ","232,000 ","117,000 ","115,000 " -12,"1,648,000 ","834,000 ","814,000 ","1,422,000 ","720,000 ","702,000 ","226,000 ","114,000 ","112,000 " -13,"1,625,000 ","820,000 ","805,000 ","1,404,000 ","709,000 ","695,000 ","221,000 ","111,000 ","110,000 " -14,"1,610,000 ","809,000 ","801,000 ","1,393,000 ","701,000 ","692,000 ","217,000 ","108,000 ","109,000 " -15,"1,591,000 ","796,000 ","795,000 ","1,380,000 ","692,000 ","688,000 ","211,000 ","104,000 ","107,000 " -16,"1,572,000 ","783,000 ","789,000 ","1,367,000 ","683,000 ","684,000 ","205,000 ","100,000 ","105,000 " -17,"1,560,000 ","774,000 ","786,000 ","1,357,000 ","676,000 ","681,000 ","203,000 ","98,000 ","105,000 " -18,"1,558,000 ","772,000 ","786,000 ","1,354,000 ","674,000 ","680,000 ","204,000 ","98,000 ","106,000 " -19,"1,561,000 ","773,000 ","788,000 ","1,353,000 ","673,000 ","680,000 ","208,000 ","100,000 ","108,000 " -20,"1,563,000 ","774,000 ","789,000 ","1,352,000 ","673,000 ","679,000 ","211,000 ","101,000 ","110,000 " -21,"1,566,000 ","774,000 ","792,000 ","1,351,000 ","672,000 ","679,000 ","215,000 ","102,000 ","113,000 " -22,"1,557,000 ","771,000 ","786,000 ","1,343,000 ","669,000 ","674,000 ","214,000 ","102,000 ","112,000 " -23,"1,532,000 ","762,000 ","770,000 ","1,325,000 ","663,000 ","662,000 ","207,000 ","99,000 ","108,000 " -24,"1,495,000 ","749,000 ","746,000 ","1,300,000 ","655,000 ","645,000 ","195,000 ","94,000 ","101,000 " -25,"1,457,000 ","735,000 ","722,000 ","1,274,000 ","646,000 ","628,000 ","183,000 ","89,000 ","94,000 " -26,"1,422,000 ","723,000 ","699,000 ","1,249,000 ","638,000 ","611,000 ","173,000 ","85,000 ","88,000 " -27,"1,381,000 ","707,000 ","674,000 ","1,220,000 ","627,000 ","593,000 ","161,000 ","80,000 ","81,000 " -28,"1,338,000 ","689,000 ","649,000 ","1,186,000 ","613,000 ","573,000 ","152,000 ","76,000 ","76,000 " -29,"1,292,000 ","667,000 ","625,000 ","1,150,000 ","596,000 ","554,000 ","142,000 ","71,000 ","71,000 " -30,"1,246,000 ","647,000 ","599,000 ","1,114,000 ","580,000 ","534,000 ","132,000 ","67,000 ","65,000 " -31,"1,197,000 ","624,000 ","573,000 ","1,075,000 ","562,000 ","513,000 ","122,000 ","62,000 ","60,000 " -32,"1,157,000 ","605,000 ","552,000 ","1,043,000 ","547,000 ","496,000 ","114,000 ","58,000 ","56,000 " -33,"1,132,000 ","594,000 ","538,000 ","1,021,000 ","537,000 ","484,000 ","111,000 ","57,000 ","54,000 " -34,"1,115,000 ","586,000 ","529,000 ","1,004,000 ","529,000 ","475,000 ","111,000 ","57,000 ","54,000 " -35,"1,096,000 ","576,000 ","520,000 ","986,000 ","520,000 ","466,000 ","110,000 ","56,000 ","54,000 " -36,"1,081,000 ","569,000 ","512,000 ","969,000 ","512,000 ","457,000 ","112,000 ","57,000 ","55,000 " -37,"1,059,000 ","558,000 ","501,000 ","949,000 ","502,000 ","447,000 ","110,000 ","56,000 ","54,000 " -38,"1,030,000 ","543,000 ","487,000 ","925,000 ","490,000 ","435,000 ","105,000 ","53,000 ","52,000 " -39,"995,000 ","527,000 ","468,000 ","897,000 ","477,000 ","420,000 ","98,000 ","50,000 ","48,000 " -40,"963,000 ","511,000 ","452,000 ","871,000 ","464,000 ","407,000 ","92,000 ","47,000 ","45,000 " -41,"932,000 ","495,000 ","437,000 ","846,000 ","452,000 ","394,000 ","86,000 ","43,000 ","43,000 " -42,"899,000 ","479,000 ","420,000 ","818,000 ","438,000 ","380,000 ","81,000 ","41,000 ","40,000 " -43,"863,000 ","460,000 ","403,000 ","785,000 ","420,000 ","365,000 ","78,000 ","40,000 ","38,000 " -44,"827,000 ","441,000 ","386,000 ","750,000 ","401,000 ","349,000 ","77,000 ","40,000 ","37,000 " -45,"790,000 ","421,000 ","369,000 ","715,000 ","382,000 ","333,000 ","75,000 ","39,000 ","36,000 " -46,"754,000 ","402,000 ","352,000 ","680,000 ","363,000 ","317,000 ","74,000 ","39,000 ","35,000 " -47,"723,000 ","385,000 ","338,000 ","650,000 ","346,000 ","304,000 ","73,000 ","39,000 ","34,000 " -48,"701,000 ","374,000 ","327,000 ","630,000 ","336,000 ","294,000 ","71,000 ","38,000 ","33,000 " -49,"686,000 ","367,000 ","319,000 ","616,000 ","329,000 ","287,000 ","70,000 ","38,000 ","32,000 " -50,"671,000 ","359,000 ","312,000 ","601,000 ","321,000 ","280,000 ","70,000 ","38,000 ","32,000 " -51,"657,000 ","353,000 ","304,000 ","588,000 ","315,000 ","273,000 ","69,000 ","38,000 ","31,000 " -52,"637,000 ","342,000 ","295,000 ","570,000 ","305,000 ","265,000 ","67,000 ","37,000 ","30,000 " -53,"604,000 ","323,000 ","281,000 ","542,000 ","289,000 ","253,000 ","62,000 ","34,000 ","28,000 " -54,"565,000 ","300,000 ","265,000 ","510,000 ","270,000 ","240,000 ","55,000 ","30,000 ","25,000 " -55,"527,000 ","278,000 ","249,000 ","478,000 ","251,000 ","227,000 ","49,000 ","27,000 ","22,000 " -56,"490,000 ","256,000 ","234,000 ","448,000 ","233,000 ","215,000 ","42,000 ","23,000 ","19,000 " -57,"459,000 ","238,000 ","221,000 ","421,000 ","217,000 ","204,000 ","38,000 ","21,000 ","17,000 " -58,"438,000 ","227,000 ","211,000 ","402,000 ","207,000 ","195,000 ","36,000 ","20,000 ","16,000 " -59,"424,000 ","219,000 ","205,000 ","387,000 ","199,000 ","188,000 ","37,000 ","20,000 ","17,000 " -60,"409,000 ","211,000 ","198,000 ","372,000 ","191,000 ","181,000 ","37,000 ","20,000 ","17,000 " -61,"396,000 ","204,000 ","192,000 ","358,000 ","183,000 ","175,000 ","38,000 ","21,000 ","17,000 " -62,"380,000 ","195,000 ","185,000 ","343,000 ","175,000 ","168,000 ","37,000 ","20,000 ","17,000 " -63,"360,000 ","185,000 ","175,000 ","325,000 ","166,000 ","159,000 ","35,000 ","19,000 ","16,000 " -64,"337,000 ","173,000 ","164,000 ","306,000 ","156,000 ","150,000 ","31,000 ","17,000 ","14,000 " -65,"316,000 ","162,000 ","154,000 ","288,000 ","147,000 ","141,000 ","28,000 ","15,000 ","13,000 " -66,"296,000 ","152,000 ","144,000 ","271,000 ","138,000 ","133,000 ","25,000 ","14,000 ","11,000 " -67,"275,000 ","141,000 ","134,000 ","253,000 ","129,000 ","124,000 ","22,000 ","12,000 ","10,000 " -68,"256,000 ","131,000 ","125,000 ","236,000 ","120,000 ","116,000 ","20,000 ","11,000 ","9,000 " -69,"238,000 ","122,000 ","116,000 ","220,000 ","112,000 ","108,000 ","18,000 ","10,000 ","8,000 " -70,"218,000 ","112,000 ","106,000 ","202,000 ","103,000 ","99,000 ","16,000 ","9,000 ","7,000 " -71,"201,000 ","103,000 ","98,000 ","186,000 ","95,000 ","91,000 ","15,000 ","8,000 ","7,000 " -72,"185,000 ","94,000 ","91,000 ","170,000 ","86,000 ","84,000 ","15,000 ","8,000 ","7,000 " -73,"170,000 ","86,000 ","84,000 ","154,000 ","78,000 ","76,000 ","16,000 ","8,000 ","8,000 " -74,"156,000 ","78,000 ","78,000 ","139,000 ","70,000 ","69,000 ","17,000 ","8,000 ","9,000 " -75+,"945,000 ","463,000 ","482,000 ","852,000 ","419,000 ","433,000 ","93,000 ","44,000 ","49,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1903.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1903.csv deleted file mode 100644 index b39f1cbd44..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1903.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1903",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"80,632,000 ","41,262,000 ","39,370,000 ","71,084,000 ","36,471,000 ","34,613,000 ","9,548,000 ","4,791,000 ","4,757,000 " -,,,,,,,,, -0,"1,930,000 ","978,000 ","952,000 ","1,678,000 ","852,000 ","826,000 ","252,000 ","126,000 ","126,000 " -1,"1,938,000 ","980,000 ","958,000 ","1,681,000 ","852,000 ","829,000 ","257,000 ","128,000 ","129,000 " -2,"1,938,000 ","978,000 ","960,000 ","1,678,000 ","849,000 ","829,000 ","260,000 ","129,000 ","131,000 " -3,"1,927,000 ","972,000 ","955,000 ","1,667,000 ","843,000 ","824,000 ","260,000 ","129,000 ","131,000 " -4,"1,912,000 ","964,000 ","948,000 ","1,652,000 ","835,000 ","817,000 ","260,000 ","129,000 ","131,000 " -5,"1,889,000 ","952,000 ","937,000 ","1,631,000 ","824,000 ","807,000 ","258,000 ","128,000 ","130,000 " -6,"1,864,000 ","940,000 ","924,000 ","1,608,000 ","813,000 ","795,000 ","256,000 ","127,000 ","129,000 " -7,"1,834,000 ","925,000 ","909,000 ","1,581,000 ","799,000 ","782,000 ","253,000 ","126,000 ","127,000 " -8,"1,801,000 ","909,000 ","892,000 ","1,553,000 ","785,000 ","768,000 ","248,000 ","124,000 ","124,000 " -9,"1,767,000 ","893,000 ","874,000 ","1,524,000 ","771,000 ","753,000 ","243,000 ","122,000 ","121,000 " -10,"1,733,000 ","876,000 ","857,000 ","1,494,000 ","756,000 ","738,000 ","239,000 ","120,000 ","119,000 " -11,"1,695,000 ","858,000 ","837,000 ","1,463,000 ","741,000 ","722,000 ","232,000 ","117,000 ","115,000 " -12,"1,666,000 ","843,000 ","823,000 ","1,438,000 ","728,000 ","710,000 ","228,000 ","115,000 ","113,000 " -13,"1,644,000 ","829,000 ","815,000 ","1,422,000 ","718,000 ","704,000 ","222,000 ","111,000 ","111,000 " -14,"1,631,000 ","819,000 ","812,000 ","1,413,000 ","711,000 ","702,000 ","218,000 ","108,000 ","110,000 " -15,"1,615,000 ","808,000 ","807,000 ","1,402,000 ","703,000 ","699,000 ","213,000 ","105,000 ","108,000 " -16,"1,598,000 ","796,000 ","802,000 ","1,391,000 ","695,000 ","696,000 ","207,000 ","101,000 ","106,000 " -17,"1,589,000 ","789,000 ","800,000 ","1,384,000 ","690,000 ","694,000 ","205,000 ","99,000 ","106,000 " -18,"1,588,000 ","787,000 ","801,000 ","1,382,000 ","688,000 ","694,000 ","206,000 ","99,000 ","107,000 " -19,"1,592,000 ","789,000 ","803,000 ","1,383,000 ","689,000 ","694,000 ","209,000 ","100,000 ","109,000 " -20,"1,595,000 ","791,000 ","804,000 ","1,382,000 ","689,000 ","693,000 ","213,000 ","102,000 ","111,000 " -21,"1,598,000 ","792,000 ","806,000 ","1,382,000 ","689,000 ","693,000 ","216,000 ","103,000 ","113,000 " -22,"1,591,000 ","790,000 ","801,000 ","1,375,000 ","687,000 ","688,000 ","216,000 ","103,000 ","113,000 " -23,"1,565,000 ","781,000 ","784,000 ","1,356,000 ","681,000 ","675,000 ","209,000 ","100,000 ","109,000 " -24,"1,527,000 ","767,000 ","760,000 ","1,330,000 ","672,000 ","658,000 ","197,000 ","95,000 ","102,000 " -25,"1,492,000 ","755,000 ","737,000 ","1,305,000 ","664,000 ","641,000 ","187,000 ","91,000 ","96,000 " -26,"1,454,000 ","741,000 ","713,000 ","1,278,000 ","655,000 ","623,000 ","176,000 ","86,000 ","90,000 " -27,"1,413,000 ","725,000 ","688,000 ","1,248,000 ","643,000 ","605,000 ","165,000 ","82,000 ","83,000 " -28,"1,368,000 ","705,000 ","663,000 ","1,213,000 ","628,000 ","585,000 ","155,000 ","77,000 ","78,000 " -29,"1,321,000 ","684,000 ","637,000 ","1,176,000 ","611,000 ","565,000 ","145,000 ","73,000 ","72,000 " -30,"1,273,000 ","661,000 ","612,000 ","1,138,000 ","593,000 ","545,000 ","135,000 ","68,000 ","67,000 " -31,"1,221,000 ","637,000 ","584,000 ","1,097,000 ","574,000 ","523,000 ","124,000 ","63,000 ","61,000 " -32,"1,181,000 ","618,000 ","563,000 ","1,064,000 ","558,000 ","506,000 ","117,000 ","60,000 ","57,000 " -33,"1,155,000 ","606,000 ","549,000 ","1,042,000 ","548,000 ","494,000 ","113,000 ","58,000 ","55,000 " -34,"1,141,000 ","599,000 ","542,000 ","1,027,000 ","541,000 ","486,000 ","114,000 ","58,000 ","56,000 " -35,"1,124,000 ","591,000 ","533,000 ","1,010,000 ","533,000 ","477,000 ","114,000 ","58,000 ","56,000 " -36,"1,107,000 ","582,000 ","525,000 ","993,000 ","524,000 ","469,000 ","114,000 ","58,000 ","56,000 " -37,"1,086,000 ","572,000 ","514,000 ","974,000 ","515,000 ","459,000 ","112,000 ","57,000 ","55,000 " -38,"1,057,000 ","558,000 ","499,000 ","949,000 ","503,000 ","446,000 ","108,000 ","55,000 ","53,000 " -39,"1,020,000 ","540,000 ","480,000 ","920,000 ","489,000 ","431,000 ","100,000 ","51,000 ","49,000 " -40,"985,000 ","523,000 ","462,000 ","891,000 ","475,000 ","416,000 ","94,000 ","48,000 ","46,000 " -41,"951,000 ","506,000 ","445,000 ","864,000 ","462,000 ","402,000 ","87,000 ","44,000 ","43,000 " -42,"918,000 ","489,000 ","429,000 ","835,000 ","447,000 ","388,000 ","83,000 ","42,000 ","41,000 " -43,"881,000 ","470,000 ","411,000 ","801,000 ","429,000 ","372,000 ","80,000 ","41,000 ","39,000 " -44,"845,000 ","450,000 ","395,000 ","767,000 ","410,000 ","357,000 ","78,000 ","40,000 ","38,000 " -45,"809,000 ","431,000 ","378,000 ","732,000 ","391,000 ","341,000 ","77,000 ","40,000 ","37,000 " -46,"771,000 ","411,000 ","360,000 ","697,000 ","372,000 ","325,000 ","74,000 ","39,000 ","35,000 " -47,"740,000 ","394,000 ","346,000 ","667,000 ","355,000 ","312,000 ","73,000 ","39,000 ","34,000 " -48,"720,000 ","384,000 ","336,000 ","647,000 ","345,000 ","302,000 ","73,000 ","39,000 ","34,000 " -49,"704,000 ","376,000 ","328,000 ","633,000 ","338,000 ","295,000 ","71,000 ","38,000 ","33,000 " -50,"689,000 ","369,000 ","320,000 ","619,000 ","331,000 ","288,000 ","70,000 ","38,000 ","32,000 " -51,"676,000 ","363,000 ","313,000 ","606,000 ","325,000 ","281,000 ","70,000 ","38,000 ","32,000 " -52,"654,000 ","352,000 ","302,000 ","587,000 ","315,000 ","272,000 ","67,000 ","37,000 ","30,000 " -53,"621,000 ","333,000 ","288,000 ","558,000 ","298,000 ","260,000 ","63,000 ","35,000 ","28,000 " -54,"580,000 ","309,000 ","271,000 ","524,000 ","278,000 ","246,000 ","56,000 ","31,000 ","25,000 " -55,"540,000 ","286,000 ","254,000 ","491,000 ","259,000 ","232,000 ","49,000 ","27,000 ","22,000 " -56,"501,000 ","263,000 ","238,000 ","458,000 ","239,000 ","219,000 ","43,000 ","24,000 ","19,000 " -57,"468,000 ","244,000 ","224,000 ","430,000 ","223,000 ","207,000 ","38,000 ","21,000 ","17,000 " -58,"447,000 ","232,000 ","215,000 ","411,000 ","212,000 ","199,000 ","36,000 ","20,000 ","16,000 " -59,"434,000 ","225,000 ","209,000 ","396,000 ","204,000 ","192,000 ","38,000 ","21,000 ","17,000 " -60,"418,000 ","216,000 ","202,000 ","380,000 ","195,000 ","185,000 ","38,000 ","21,000 ","17,000 " -61,"404,000 ","208,000 ","196,000 ","365,000 ","187,000 ","178,000 ","39,000 ","21,000 ","18,000 " -62,"389,000 ","200,000 ","189,000 ","350,000 ","179,000 ","171,000 ","39,000 ","21,000 ","18,000 " -63,"368,000 ","189,000 ","179,000 ","333,000 ","170,000 ","163,000 ","35,000 ","19,000 ","16,000 " -64,"344,000 ","177,000 ","167,000 ","313,000 ","160,000 ","153,000 ","31,000 ","17,000 ","14,000 " -65,"324,000 ","166,000 ","158,000 ","295,000 ","150,000 ","145,000 ","29,000 ","16,000 ","13,000 " -66,"303,000 ","155,000 ","148,000 ","277,000 ","141,000 ","136,000 ","26,000 ","14,000 ","12,000 " -67,"282,000 ","145,000 ","137,000 ","259,000 ","132,000 ","127,000 ","23,000 ","13,000 ","10,000 " -68,"262,000 ","134,000 ","128,000 ","242,000 ","123,000 ","119,000 ","20,000 ","11,000 ","9,000 " -69,"243,000 ","125,000 ","118,000 ","225,000 ","115,000 ","110,000 ","18,000 ","10,000 ","8,000 " -70,"225,000 ","115,000 ","110,000 ","208,000 ","106,000 ","102,000 ","17,000 ","9,000 ","8,000 " -71,"206,000 ","105,000 ","101,000 ","191,000 ","97,000 ","94,000 ","15,000 ","8,000 ","7,000 " -72,"189,000 ","96,000 ","93,000 ","174,000 ","88,000 ","86,000 ","15,000 ","8,000 ","7,000 " -73,"173,000 ","87,000 ","86,000 ","158,000 ","80,000 ","78,000 ","15,000 ","7,000 ","8,000 " -74,"158,000 ","79,000 ","79,000 ","141,000 ","71,000 ","70,000 ","17,000 ","8,000 ","9,000 " -75+,"970,000 ","475,000 ","495,000 ","875,000 ","430,000 ","445,000 ","95,000 ","45,000 ","50,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1904.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1904.csv deleted file mode 100644 index d1c018ba85..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1904.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1904",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"82,166,000 ","42,089,000 ","40,077,000 ","72,520,000 ","37,249,000 ","35,271,000 ","9,646,000 ","4,840,000 ","4,806,000 " -,,,,,,,,, -0,"1,969,000 ","998,000 ","971,000 ","1,715,000 ","871,000 ","844,000 ","254,000 ","127,000 ","127,000 " -1,"1,971,000 ","996,000 ","975,000 ","1,713,000 ","868,000 ","845,000 ","258,000 ","128,000 ","130,000 " -2,"1,965,000 ","992,000 ","973,000 ","1,705,000 ","863,000 ","842,000 ","260,000 ","129,000 ","131,000 " -3,"1,953,000 ","985,000 ","968,000 ","1,691,000 ","855,000 ","836,000 ","262,000 ","130,000 ","132,000 " -4,"1,933,000 ","974,000 ","959,000 ","1,672,000 ","845,000 ","827,000 ","261,000 ","129,000 ","132,000 " -5,"1,909,000 ","962,000 ","947,000 ","1,649,000 ","833,000 ","816,000 ","260,000 ","129,000 ","131,000 " -6,"1,880,000 ","948,000 ","932,000 ","1,623,000 ","820,000 ","803,000 ","257,000 ","128,000 ","129,000 " -7,"1,849,000 ","933,000 ","916,000 ","1,596,000 ","807,000 ","789,000 ","253,000 ","126,000 ","127,000 " -8,"1,817,000 ","917,000 ","900,000 ","1,568,000 ","793,000 ","775,000 ","249,000 ","124,000 ","125,000 " -9,"1,782,000 ","900,000 ","882,000 ","1,538,000 ","778,000 ","760,000 ","244,000 ","122,000 ","122,000 " -10,"1,748,000 ","884,000 ","864,000 ","1,509,000 ","764,000 ","745,000 ","239,000 ","120,000 ","119,000 " -11,"1,712,000 ","867,000 ","845,000 ","1,478,000 ","749,000 ","729,000 ","234,000 ","118,000 ","116,000 " -12,"1,683,000 ","852,000 ","831,000 ","1,455,000 ","737,000 ","718,000 ","228,000 ","115,000 ","113,000 " -13,"1,664,000 ","840,000 ","824,000 ","1,441,000 ","728,000 ","713,000 ","223,000 ","112,000 ","111,000 " -14,"1,653,000 ","831,000 ","822,000 ","1,434,000 ","722,000 ","712,000 ","219,000 ","109,000 ","110,000 " -15,"1,640,000 ","820,000 ","820,000 ","1,426,000 ","715,000 ","711,000 ","214,000 ","105,000 ","109,000 " -16,"1,627,000 ","811,000 ","816,000 ","1,418,000 ","709,000 ","709,000 ","209,000 ","102,000 ","107,000 " -17,"1,619,000 ","805,000 ","814,000 ","1,413,000 ","705,000 ","708,000 ","206,000 ","100,000 ","106,000 " -18,"1,620,000 ","804,000 ","816,000 ","1,412,000 ","704,000 ","708,000 ","208,000 ","100,000 ","108,000 " -19,"1,625,000 ","807,000 ","818,000 ","1,414,000 ","706,000 ","708,000 ","211,000 ","101,000 ","110,000 " -20,"1,628,000 ","809,000 ","819,000 ","1,414,000 ","707,000 ","707,000 ","214,000 ","102,000 ","112,000 " -21,"1,632,000 ","811,000 ","821,000 ","1,415,000 ","708,000 ","707,000 ","217,000 ","103,000 ","114,000 " -22,"1,625,000 ","809,000 ","816,000 ","1,408,000 ","706,000 ","702,000 ","217,000 ","103,000 ","114,000 " -23,"1,599,000 ","800,000 ","799,000 ","1,389,000 ","700,000 ","689,000 ","210,000 ","100,000 ","110,000 " -24,"1,563,000 ","787,000 ","776,000 ","1,363,000 ","691,000 ","672,000 ","200,000 ","96,000 ","104,000 " -25,"1,526,000 ","774,000 ","752,000 ","1,336,000 ","682,000 ","654,000 ","190,000 ","92,000 ","98,000 " -26,"1,488,000 ","761,000 ","727,000 ","1,309,000 ","673,000 ","636,000 ","179,000 ","88,000 ","91,000 " -27,"1,445,000 ","743,000 ","702,000 ","1,277,000 ","660,000 ","617,000 ","168,000 ","83,000 ","85,000 " -28,"1,400,000 ","723,000 ","677,000 ","1,241,000 ","644,000 ","597,000 ","159,000 ","79,000 ","80,000 " -29,"1,351,000 ","700,000 ","651,000 ","1,203,000 ","626,000 ","577,000 ","148,000 ","74,000 ","74,000 " -30,"1,301,000 ","677,000 ","624,000 ","1,163,000 ","607,000 ","556,000 ","138,000 ","70,000 ","68,000 " -31,"1,249,000 ","652,000 ","597,000 ","1,121,000 ","587,000 ","534,000 ","128,000 ","65,000 ","63,000 " -32,"1,206,000 ","632,000 ","574,000 ","1,087,000 ","571,000 ","516,000 ","119,000 ","61,000 ","58,000 " -33,"1,182,000 ","620,000 ","562,000 ","1,065,000 ","560,000 ","505,000 ","117,000 ","60,000 ","57,000 " -34,"1,167,000 ","613,000 ","554,000 ","1,050,000 ","553,000 ","497,000 ","117,000 ","60,000 ","57,000 " -35,"1,150,000 ","604,000 ","546,000 ","1,034,000 ","545,000 ","489,000 ","116,000 ","59,000 ","57,000 " -36,"1,137,000 ","598,000 ","539,000 ","1,020,000 ","538,000 ","482,000 ","117,000 ","60,000 ","57,000 " -37,"1,116,000 ","587,000 ","529,000 ","1,000,000 ","528,000 ","472,000 ","116,000 ","59,000 ","57,000 " -38,"1,083,000 ","571,000 ","512,000 ","973,000 ","515,000 ","458,000 ","110,000 ","56,000 ","54,000 " -39,"1,044,000 ","552,000 ","492,000 ","942,000 ","500,000 ","442,000 ","102,000 ","52,000 ","50,000 " -40,"1,008,000 ","535,000 ","473,000 ","912,000 ","486,000 ","426,000 ","96,000 ","49,000 ","47,000 " -41,"973,000 ","518,000 ","455,000 ","883,000 ","472,000 ","411,000 ","90,000 ","46,000 ","44,000 " -42,"936,000 ","499,000 ","437,000 ","852,000 ","456,000 ","396,000 ","84,000 ","43,000 ","41,000 " -43,"900,000 ","481,000 ","419,000 ","819,000 ","439,000 ","380,000 ","81,000 ","42,000 ","39,000 " -44,"864,000 ","461,000 ","403,000 ","785,000 ","420,000 ","365,000 ","79,000 ","41,000 ","38,000 " -45,"827,000 ","441,000 ","386,000 ","750,000 ","401,000 ","349,000 ","77,000 ","40,000 ","37,000 " -46,"790,000 ","421,000 ","369,000 ","714,000 ","381,000 ","333,000 ","76,000 ","40,000 ","36,000 " -47,"759,000 ","404,000 ","355,000 ","685,000 ","365,000 ","320,000 ","74,000 ","39,000 ","35,000 " -48,"738,000 ","394,000 ","344,000 ","665,000 ","355,000 ","310,000 ","73,000 ","39,000 ","34,000 " -49,"723,000 ","387,000 ","336,000 ","651,000 ","348,000 ","303,000 ","72,000 ","39,000 ","33,000 " -50,"709,000 ","381,000 ","328,000 ","638,000 ","342,000 ","296,000 ","71,000 ","39,000 ","32,000 " -51,"696,000 ","375,000 ","321,000 ","625,000 ","336,000 ","289,000 ","71,000 ","39,000 ","32,000 " -52,"675,000 ","364,000 ","311,000 ","606,000 ","326,000 ","280,000 ","69,000 ","38,000 ","31,000 " -53,"638,000 ","343,000 ","295,000 ","575,000 ","308,000 ","267,000 ","63,000 ","35,000 ","28,000 " -54,"595,000 ","318,000 ","277,000 ","539,000 ","287,000 ","252,000 ","56,000 ","31,000 ","25,000 " -55,"555,000 ","295,000 ","260,000 ","505,000 ","267,000 ","238,000 ","50,000 ","28,000 ","22,000 " -56,"512,000 ","270,000 ","242,000 ","469,000 ","246,000 ","223,000 ","43,000 ","24,000 ","19,000 " -57,"478,000 ","250,000 ","228,000 ","440,000 ","229,000 ","211,000 ","38,000 ","21,000 ","17,000 " -58,"457,000 ","238,000 ","219,000 ","419,000 ","217,000 ","202,000 ","38,000 ","21,000 ","17,000 " -59,"442,000 ","230,000 ","212,000 ","404,000 ","209,000 ","195,000 ","38,000 ","21,000 ","17,000 " -60,"426,000 ","221,000 ","205,000 ","388,000 ","200,000 ","188,000 ","38,000 ","21,000 ","17,000 " -61,"413,000 ","213,000 ","200,000 ","374,000 ","192,000 ","182,000 ","39,000 ","21,000 ","18,000 " -62,"397,000 ","204,000 ","193,000 ","358,000 ","183,000 ","175,000 ","39,000 ","21,000 ","18,000 " -63,"376,000 ","193,000 ","183,000 ","340,000 ","174,000 ","166,000 ","36,000 ","19,000 ","17,000 " -64,"354,000 ","182,000 ","172,000 ","321,000 ","164,000 ","157,000 ","33,000 ","18,000 ","15,000 " -65,"331,000 ","170,000 ","161,000 ","302,000 ","154,000 ","148,000 ","29,000 ","16,000 ","13,000 " -66,"310,000 ","159,000 ","151,000 ","284,000 ","145,000 ","139,000 ","26,000 ","14,000 ","12,000 " -67,"290,000 ","149,000 ","141,000 ","267,000 ","136,000 ","131,000 ","23,000 ","13,000 ","10,000 " -68,"270,000 ","139,000 ","131,000 ","249,000 ","127,000 ","122,000 ","21,000 ","12,000 ","9,000 " -69,"249,000 ","128,000 ","121,000 ","231,000 ","118,000 ","113,000 ","18,000 ","10,000 ","8,000 " -70,"231,000 ","118,000 ","113,000 ","214,000 ","109,000 ","105,000 ","17,000 ","9,000 ","8,000 " -71,"211,000 ","108,000 ","103,000 ","196,000 ","100,000 ","96,000 ","15,000 ","8,000 ","7,000 " -72,"194,000 ","98,000 ","96,000 ","178,000 ","90,000 ","88,000 ","16,000 ","8,000 ","8,000 " -73,"176,000 ","88,000 ","88,000 ","161,000 ","81,000 ","80,000 ","15,000 ","7,000 ","8,000 " -74,"159,000 ","79,000 ","80,000 ","143,000 ","72,000 ","71,000 ","16,000 ","7,000 ","9,000 " -75+,"993,000 ","486,000 ","507,000 ","898,000 ","441,000 ","457,000 ","95,000 ","45,000 ","50,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1906.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1906.csv deleted file mode 100644 index 32b4a7baa9..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1906.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1906",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"85,450,000 ","43,841,000 ","41,609,000 ","75,583,000 ","38,890,000 ","36,693,000 ","9,867,000 ","4,951,000 ","4,916,000 " -,,,,,,,,, -0,"2,050,000 ","1,040,000 ","1,010,000 ","1,793,000 ","911,000 ","882,000 ","257,000 ","129,000 ","128,000 " -1,"2,040,000 ","1,032,000 ","1,008,000 ","1,779,000 ","902,000 ","877,000 ","261,000 ","130,000 ","131,000 " -2,"2,024,000 ","1,022,000 ","1,002,000 ","1,760,000 ","891,000 ","869,000 ","264,000 ","131,000 ","133,000 " -3,"2,002,000 ","1,010,000 ","992,000 ","1,738,000 ","879,000 ","859,000 ","264,000 ","131,000 ","133,000 " -4,"1,976,000 ","996,000 ","980,000 ","1,713,000 ","866,000 ","847,000 ","263,000 ","130,000 ","133,000 " -5,"1,947,000 ","982,000 ","965,000 ","1,685,000 ","852,000 ","833,000 ","262,000 ","130,000 ","132,000 " -6,"1,914,000 ","965,000 ","949,000 ","1,656,000 ","837,000 ","819,000 ","258,000 ","128,000 ","130,000 " -7,"1,881,000 ","949,000 ","932,000 ","1,626,000 ","822,000 ","804,000 ","255,000 ","127,000 ","128,000 " -8,"1,848,000 ","933,000 ","915,000 ","1,597,000 ","808,000 ","789,000 ","251,000 ","125,000 ","126,000 " -9,"1,815,000 ","917,000 ","898,000 ","1,569,000 ","794,000 ","775,000 ","246,000 ","123,000 ","123,000 " -10,"1,782,000 ","901,000 ","881,000 ","1,541,000 ","780,000 ","761,000 ","241,000 ","121,000 ","120,000 " -11,"1,748,000 ","885,000 ","863,000 ","1,512,000 ","766,000 ","746,000 ","236,000 ","119,000 ","117,000 " -12,"1,722,000 ","871,000 ","851,000 ","1,491,000 ","755,000 ","736,000 ","231,000 ","116,000 ","115,000 " -13,"1,708,000 ","862,000 ","846,000 ","1,482,000 ","749,000 ","733,000 ","226,000 ","113,000 ","113,000 " -14,"1,702,000 ","855,000 ","847,000 ","1,480,000 ","745,000 ","735,000 ","222,000 ","110,000 ","112,000 " -15,"1,696,000 ","849,000 ","847,000 ","1,478,000 ","742,000 ","736,000 ","218,000 ","107,000 ","111,000 " -16,"1,687,000 ","841,000 ","846,000 ","1,475,000 ","738,000 ","737,000 ","212,000 ","103,000 ","109,000 " -17,"1,684,000 ","838,000 ","846,000 ","1,475,000 ","737,000 ","738,000 ","209,000 ","101,000 ","108,000 " -18,"1,688,000 ","839,000 ","849,000 ","1,477,000 ","738,000 ","739,000 ","211,000 ","101,000 ","110,000 " -19,"1,695,000 ","844,000 ","851,000 ","1,481,000 ","742,000 ","739,000 ","214,000 ","102,000 ","112,000 " -20,"1,699,000 ","848,000 ","851,000 ","1,483,000 ","745,000 ","738,000 ","216,000 ","103,000 ","113,000 " -21,"1,705,000 ","852,000 ","853,000 ","1,486,000 ","748,000 ","738,000 ","219,000 ","104,000 ","115,000 " -22,"1,699,000 ","851,000 ","848,000 ","1,480,000 ","747,000 ","733,000 ","219,000 ","104,000 ","115,000 " -23,"1,675,000 ","843,000 ","832,000 ","1,461,000 ","741,000 ","720,000 ","214,000 ","102,000 ","112,000 " -24,"1,636,000 ","829,000 ","807,000 ","1,432,000 ","731,000 ","701,000 ","204,000 ","98,000 ","106,000 " -25,"1,596,000 ","814,000 ","782,000 ","1,402,000 ","720,000 ","682,000 ","194,000 ","94,000 ","100,000 " -26,"1,559,000 ","801,000 ","758,000 ","1,373,000 ","710,000 ","663,000 ","186,000 ","91,000 ","95,000 " -27,"1,515,000 ","783,000 ","732,000 ","1,339,000 ","696,000 ","643,000 ","176,000 ","87,000 ","89,000 " -28,"1,466,000 ","761,000 ","705,000 ","1,301,000 ","679,000 ","622,000 ","165,000 ","82,000 ","83,000 " -29,"1,417,000 ","737,000 ","680,000 ","1,261,000 ","659,000 ","602,000 ","156,000 ","78,000 ","78,000 " -30,"1,363,000 ","711,000 ","652,000 ","1,218,000 ","638,000 ","580,000 ","145,000 ","73,000 ","72,000 " -31,"1,308,000 ","684,000 ","624,000 ","1,174,000 ","616,000 ","558,000 ","134,000 ","68,000 ","66,000 " -32,"1,263,000 ","662,000 ","601,000 ","1,138,000 ","598,000 ","540,000 ","125,000 ","64,000 ","61,000 " -33,"1,239,000 ","650,000 ","589,000 ","1,116,000 ","587,000 ","529,000 ","123,000 ","63,000 ","60,000 " -34,"1,226,000 ","644,000 ","582,000 ","1,103,000 ","581,000 ","522,000 ","123,000 ","63,000 ","60,000 " -35,"1,210,000 ","636,000 ","574,000 ","1,087,000 ","573,000 ","514,000 ","123,000 ","63,000 ","60,000 " -36,"1,198,000 ","630,000 ","568,000 ","1,073,000 ","566,000 ","507,000 ","125,000 ","64,000 ","61,000 " -37,"1,177,000 ","619,000 ","558,000 ","1,054,000 ","556,000 ","498,000 ","123,000 ","63,000 ","60,000 " -38,"1,142,000 ","602,000 ","540,000 ","1,025,000 ","542,000 ","483,000 ","117,000 ","60,000 ","57,000 " -39,"1,096,000 ","579,000 ","517,000 ","988,000 ","524,000 ","464,000 ","108,000 ","55,000 ","53,000 " -40,"1,056,000 ","560,000 ","496,000 ","955,000 ","508,000 ","447,000 ","101,000 ","52,000 ","49,000 " -41,"1,013,000 ","539,000 ","474,000 ","920,000 ","491,000 ","429,000 ","93,000 ","48,000 ","45,000 " -42,"974,000 ","519,000 ","455,000 ","887,000 ","474,000 ","413,000 ","87,000 ","45,000 ","42,000 " -43,"937,000 ","499,000 ","438,000 ","853,000 ","456,000 ","397,000 ","84,000 ","43,000 ","41,000 " -44,"902,000 ","480,000 ","422,000 ","820,000 ","438,000 ","382,000 ","82,000 ","42,000 ","40,000 " -45,"867,000 ","462,000 ","405,000 ","787,000 ","420,000 ","367,000 ","80,000 ","42,000 ","38,000 " -46,"831,000 ","442,000 ","389,000 ","753,000 ","401,000 ","352,000 ","78,000 ","41,000 ","37,000 " -47,"800,000 ","426,000 ","374,000 ","724,000 ","386,000 ","338,000 ","76,000 ","40,000 ","36,000 " -48,"780,000 ","416,000 ","364,000 ","705,000 ","376,000 ","329,000 ","75,000 ","40,000 ","35,000 " -49,"765,000 ","410,000 ","355,000 ","691,000 ","370,000 ","321,000 ","74,000 ","40,000 ","34,000 " -50,"750,000 ","403,000 ","347,000 ","678,000 ","364,000 ","314,000 ","72,000 ","39,000 ","33,000 " -51,"738,000 ","399,000 ","339,000 ","666,000 ","359,000 ","307,000 ","72,000 ","40,000 ","32,000 " -52,"716,000 ","387,000 ","329,000 ","646,000 ","348,000 ","298,000 ","70,000 ","39,000 ","31,000 " -53,"677,000 ","366,000 ","311,000 ","613,000 ","330,000 ","283,000 ","64,000 ","36,000 ","28,000 " -54,"630,000 ","338,000 ","292,000 ","572,000 ","306,000 ","266,000 ","58,000 ","32,000 ","26,000 " -55,"584,000 ","312,000 ","272,000 ","532,000 ","283,000 ","249,000 ","52,000 ","29,000 ","23,000 " -56,"537,000 ","285,000 ","252,000 ","492,000 ","260,000 ","232,000 ","45,000 ","25,000 ","20,000 " -57,"499,000 ","263,000 ","236,000 ","459,000 ","241,000 ","218,000 ","40,000 ","22,000 ","18,000 " -58,"475,000 ","249,000 ","226,000 ","437,000 ","228,000 ","209,000 ","38,000 ","21,000 ","17,000 " -59,"463,000 ","242,000 ","221,000 ","423,000 ","220,000 ","203,000 ","40,000 ","22,000 ","18,000 " -60,"447,000 ","233,000 ","214,000 ","407,000 ","211,000 ","196,000 ","40,000 ","22,000 ","18,000 " -61,"433,000 ","225,000 ","208,000 ","393,000 ","203,000 ","190,000 ","40,000 ","22,000 ","18,000 " -62,"417,000 ","216,000 ","201,000 ","377,000 ","194,000 ","183,000 ","40,000 ","22,000 ","18,000 " -63,"395,000 ","204,000 ","191,000 ","358,000 ","184,000 ","174,000 ","37,000 ","20,000 ","17,000 " -64,"371,000 ","191,000 ","180,000 ","338,000 ","173,000 ","165,000 ","33,000 ","18,000 ","15,000 " -65,"349,000 ","179,000 ","170,000 ","319,000 ","163,000 ","156,000 ","30,000 ","16,000 ","14,000 " -66,"327,000 ","168,000 ","159,000 ","300,000 ","153,000 ","147,000 ","27,000 ","15,000 ","12,000 " -67,"305,000 ","156,000 ","149,000 ","281,000 ","143,000 ","138,000 ","24,000 ","13,000 ","11,000 " -68,"284,000 ","145,000 ","139,000 ","262,000 ","133,000 ","129,000 ","22,000 ","12,000 ","10,000 " -69,"263,000 ","134,000 ","129,000 ","244,000 ","124,000 ","120,000 ","19,000 ","10,000 ","9,000 " -70,"242,000 ","123,000 ","119,000 ","225,000 ","114,000 ","111,000 ","17,000 ","9,000 ","8,000 " -71,"223,000 ","113,000 ","110,000 ","207,000 ","105,000 ","102,000 ","16,000 ","8,000 ","8,000 " -72,"204,000 ","103,000 ","101,000 ","188,000 ","95,000 ","93,000 ","16,000 ","8,000 ","8,000 " -73,"185,000 ","93,000 ","92,000 ","169,000 ","85,000 ","84,000 ","16,000 ","8,000 ","8,000 " -74,"167,000 ","83,000 ","84,000 ","150,000 ","75,000 ","75,000 ","17,000 ","8,000 ","9,000 " -75+,"1,046,000 ","511,000 ","535,000 ","950,000 ","465,000 ","485,000 ","96,000 ","46,000 ","50,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1907.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1907.csv deleted file mode 100644 index 2465be366a..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1907.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1907",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"87,008,000 ","44,682,000 ","42,326,000 ","77,055,000 ","39,683,000 ","37,372,000 ","9,953,000 ","4,999,000 ","4,954,000 " -,,,,,,,,, -0,"2,086,000 ","1,059,000 ","1,027,000 ","1,829,000 ","930,000 ","899,000 ","257,000 ","129,000 ","128,000 " -1,"2,069,000 ","1,047,000 ","1,022,000 ","1,808,000 ","917,000 ","891,000 ","261,000 ","130,000 ","131,000 " -2,"2,049,000 ","1,035,000 ","1,014,000 ","1,785,000 ","904,000 ","881,000 ","264,000 ","131,000 ","133,000 " -3,"2,023,000 ","1,021,000 ","1,002,000 ","1,759,000 ","890,000 ","869,000 ","264,000 ","131,000 ","133,000 " -4,"1,993,000 ","1,005,000 ","988,000 ","1,730,000 ","875,000 ","855,000 ","263,000 ","130,000 ","133,000 " -5,"1,963,000 ","990,000 ","973,000 ","1,701,000 ","860,000 ","841,000 ","262,000 ","130,000 ","132,000 " -6,"1,930,000 ","973,000 ","957,000 ","1,670,000 ","844,000 ","826,000 ","260,000 ","129,000 ","131,000 " -7,"1,896,000 ","956,000 ","940,000 ","1,640,000 ","829,000 ","811,000 ","256,000 ","127,000 ","129,000 " -8,"1,861,000 ","939,000 ","922,000 ","1,610,000 ","814,000 ","796,000 ","251,000 ","125,000 ","126,000 " -9,"1,830,000 ","924,000 ","906,000 ","1,583,000 ","801,000 ","782,000 ","247,000 ","123,000 ","124,000 " -10,"1,797,000 ","908,000 ","889,000 ","1,555,000 ","787,000 ","768,000 ","242,000 ","121,000 ","121,000 " -11,"1,765,000 ","893,000 ","872,000 ","1,528,000 ","774,000 ","754,000 ","237,000 ","119,000 ","118,000 " -12,"1,741,000 ","881,000 ","860,000 ","1,509,000 ","764,000 ","745,000 ","232,000 ","117,000 ","115,000 " -13,"1,730,000 ","873,000 ","857,000 ","1,502,000 ","759,000 ","743,000 ","228,000 ","114,000 ","114,000 " -14,"1,726,000 ","867,000 ","859,000 ","1,502,000 ","756,000 ","746,000 ","224,000 ","111,000 ","113,000 " -15,"1,721,000 ","862,000 ","859,000 ","1,502,000 ","754,000 ","748,000 ","219,000 ","108,000 ","111,000 " -16,"1,716,000 ","856,000 ","860,000 ","1,502,000 ","752,000 ","750,000 ","214,000 ","104,000 ","110,000 " -17,"1,715,000 ","854,000 ","861,000 ","1,504,000 ","752,000 ","752,000 ","211,000 ","102,000 ","109,000 " -18,"1,720,000 ","857,000 ","863,000 ","1,508,000 ","755,000 ","753,000 ","212,000 ","102,000 ","110,000 " -19,"1,728,000 ","862,000 ","866,000 ","1,513,000 ","759,000 ","754,000 ","215,000 ","103,000 ","112,000 " -20,"1,733,000 ","866,000 ","867,000 ","1,516,000 ","763,000 ","753,000 ","217,000 ","103,000 ","114,000 " -21,"1,739,000 ","871,000 ","868,000 ","1,520,000 ","767,000 ","753,000 ","219,000 ","104,000 ","115,000 " -22,"1,734,000 ","871,000 ","863,000 ","1,515,000 ","767,000 ","748,000 ","219,000 ","104,000 ","115,000 " -23,"1,709,000 ","863,000 ","846,000 ","1,495,000 ","761,000 ","734,000 ","214,000 ","102,000 ","112,000 " -24,"1,669,000 ","848,000 ","821,000 ","1,465,000 ","750,000 ","715,000 ","204,000 ","98,000 ","106,000 " -25,"1,631,000 ","834,000 ","797,000 ","1,435,000 ","739,000 ","696,000 ","196,000 ","95,000 ","101,000 " -26,"1,592,000 ","820,000 ","772,000 ","1,404,000 ","728,000 ","676,000 ","188,000 ","92,000 ","96,000 " -27,"1,548,000 ","802,000 ","746,000 ","1,369,000 ","714,000 ","655,000 ","179,000 ","88,000 ","91,000 " -28,"1,498,000 ","779,000 ","719,000 ","1,329,000 ","695,000 ","634,000 ","169,000 ","84,000 ","85,000 " -29,"1,446,000 ","753,000 ","693,000 ","1,288,000 ","674,000 ","614,000 ","158,000 ","79,000 ","79,000 " -30,"1,392,000 ","727,000 ","665,000 ","1,245,000 ","653,000 ","592,000 ","147,000 ","74,000 ","73,000 " -31,"1,335,000 ","699,000 ","636,000 ","1,199,000 ","630,000 ","569,000 ","136,000 ","69,000 ","67,000 " -32,"1,292,000 ","678,000 ","614,000 ","1,163,000 ","612,000 ","551,000 ","129,000 ","66,000 ","63,000 " -33,"1,267,000 ","666,000 ","601,000 ","1,141,000 ","601,000 ","540,000 ","126,000 ","65,000 ","61,000 " -34,"1,256,000 ","660,000 ","596,000 ","1,129,000 ","595,000 ","534,000 ","127,000 ","65,000 ","62,000 " -35,"1,240,000 ","652,000 ","588,000 ","1,113,000 ","587,000 ","526,000 ","127,000 ","65,000 ","62,000 " -36,"1,228,000 ","646,000 ","582,000 ","1,100,000 ","580,000 ","520,000 ","128,000 ","66,000 ","62,000 " -37,"1,207,000 ","635,000 ","572,000 ","1,080,000 ","570,000 ","510,000 ","127,000 ","65,000 ","62,000 " -38,"1,170,000 ","617,000 ","553,000 ","1,049,000 ","555,000 ","494,000 ","121,000 ","62,000 ","59,000 " -39,"1,122,000 ","593,000 ","529,000 ","1,011,000 ","536,000 ","475,000 ","111,000 ","57,000 ","54,000 " -40,"1,077,000 ","571,000 ","506,000 ","974,000 ","518,000 ","456,000 ","103,000 ","53,000 ","50,000 " -41,"1,033,000 ","549,000 ","484,000 ","938,000 ","500,000 ","438,000 ","95,000 ","49,000 ","46,000 " -42,"992,000 ","528,000 ","464,000 ","903,000 ","482,000 ","421,000 ","89,000 ","46,000 ","43,000 " -43,"955,000 ","509,000 ","446,000 ","870,000 ","465,000 ","405,000 ","85,000 ","44,000 ","41,000 " -44,"921,000 ","490,000 ","431,000 ","838,000 ","447,000 ","391,000 ","83,000 ","43,000 ","40,000 " -45,"887,000 ","472,000 ","415,000 ","806,000 ","430,000 ","376,000 ","81,000 ","42,000 ","39,000 " -46,"851,000 ","452,000 ","399,000 ","772,000 ","411,000 ","361,000 ","79,000 ","41,000 ","38,000 " -47,"822,000 ","437,000 ","385,000 ","744,000 ","396,000 ","348,000 ","78,000 ","41,000 ","37,000 " -48,"800,000 ","427,000 ","373,000 ","725,000 ","387,000 ","338,000 ","75,000 ","40,000 ","35,000 " -49,"786,000 ","421,000 ","365,000 ","712,000 ","381,000 ","331,000 ","74,000 ","40,000 ","34,000 " -50,"771,000 ","415,000 ","356,000 ","698,000 ","375,000 ","323,000 ","73,000 ","40,000 ","33,000 " -51,"759,000 ","410,000 ","349,000 ","687,000 ","370,000 ","317,000 ","72,000 ","40,000 ","32,000 " -52,"737,000 ","399,000 ","338,000 ","667,000 ","360,000 ","307,000 ","70,000 ","39,000 ","31,000 " -53,"695,000 ","376,000 ","319,000 ","631,000 ","340,000 ","291,000 ","64,000 ","36,000 ","28,000 " -54,"647,000 ","348,000 ","299,000 ","588,000 ","315,000 ","273,000 ","59,000 ","33,000 ","26,000 " -55,"598,000 ","320,000 ","278,000 ","546,000 ","291,000 ","255,000 ","52,000 ","29,000 ","23,000 " -56,"549,000 ","292,000 ","257,000 ","504,000 ","267,000 ","237,000 ","45,000 ","25,000 ","20,000 " -57,"509,000 ","269,000 ","240,000 ","469,000 ","247,000 ","222,000 ","40,000 ","22,000 ","18,000 " -58,"486,000 ","256,000 ","230,000 ","447,000 ","234,000 ","213,000 ","39,000 ","22,000 ","17,000 " -59,"473,000 ","248,000 ","225,000 ","433,000 ","226,000 ","207,000 ","40,000 ","22,000 ","18,000 " -60,"457,000 ","239,000 ","218,000 ","417,000 ","217,000 ","200,000 ","40,000 ","22,000 ","18,000 " -61,"442,000 ","230,000 ","212,000 ","402,000 ","208,000 ","194,000 ","40,000 ","22,000 ","18,000 " -62,"426,000 ","221,000 ","205,000 ","386,000 ","199,000 ","187,000 ","40,000 ","22,000 ","18,000 " -63,"404,000 ","209,000 ","195,000 ","367,000 ","189,000 ","178,000 ","37,000 ","20,000 ","17,000 " -64,"380,000 ","197,000 ","183,000 ","346,000 ","178,000 ","168,000 ","34,000 ","19,000 ","15,000 " -65,"357,000 ","184,000 ","173,000 ","326,000 ","167,000 ","159,000 ","31,000 ","17,000 ","14,000 " -66,"334,000 ","172,000 ","162,000 ","307,000 ","157,000 ","150,000 ","27,000 ","15,000 ","12,000 " -67,"313,000 ","161,000 ","152,000 ","288,000 ","147,000 ","141,000 ","25,000 ","14,000 ","11,000 " -68,"291,000 ","149,000 ","142,000 ","269,000 ","137,000 ","132,000 ","22,000 ","12,000 ","10,000 " -69,"270,000 ","138,000 ","132,000 ","250,000 ","127,000 ","123,000 ","20,000 ","11,000 ","9,000 " -70,"249,000 ","127,000 ","122,000 ","231,000 ","117,000 ","114,000 ","18,000 ","10,000 ","8,000 " -71,"229,000 ","116,000 ","113,000 ","212,000 ","107,000 ","105,000 ","17,000 ","9,000 ","8,000 " -72,"208,000 ","105,000 ","103,000 ","192,000 ","97,000 ","95,000 ","16,000 ","8,000 ","8,000 " -73,"189,000 ","95,000 ","94,000 ","173,000 ","87,000 ","86,000 ","16,000 ","8,000 ","8,000 " -74,"171,000 ","85,000 ","86,000 ","154,000 ","77,000 ","77,000 ","17,000 ","8,000 ","9,000 " -75+,"1,073,000 ","523,000 ","550,000 ","977,000 ","477,000 ","500,000 ","96,000 ","46,000 ","50,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1908.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1908.csv deleted file mode 100644 index 36e5a0087d..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1908.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1908",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"88,710,000 ","45,594,000 ","43,116,000 ","78,658,000 ","40,542,000 ","38,116,000 ","10,052,000 ","5,052,000 ","5,000,000 " -,,,,,,,,, -0,"2,125,000 ","1,080,000 ","1,045,000 ","1,867,000 ","950,000 ","917,000 ","258,000 ","130,000 ","128,000 " -1,"2,102,000 ","1,064,000 ","1,038,000 ","1,841,000 ","934,000 ","907,000 ","261,000 ","130,000 ","131,000 " -2,"2,076,000 ","1,049,000 ","1,027,000 ","1,812,000 ","918,000 ","894,000 ","264,000 ","131,000 ","133,000 " -3,"2,046,000 ","1,033,000 ","1,013,000 ","1,782,000 ","902,000 ","880,000 ","264,000 ","131,000 ","133,000 " -4,"2,015,000 ","1,016,000 ","999,000 ","1,752,000 ","886,000 ","866,000 ","263,000 ","130,000 ","133,000 " -5,"1,981,000 ","999,000 ","982,000 ","1,719,000 ","869,000 ","850,000 ","262,000 ","130,000 ","132,000 " -6,"1,948,000 ","982,000 ","966,000 ","1,688,000 ","853,000 ","835,000 ","260,000 ","129,000 ","131,000 " -7,"1,913,000 ","965,000 ","948,000 ","1,657,000 ","838,000 ","819,000 ","256,000 ","127,000 ","129,000 " -8,"1,880,000 ","949,000 ","931,000 ","1,627,000 ","823,000 ","804,000 ","253,000 ","126,000 ","127,000 " -9,"1,847,000 ","933,000 ","914,000 ","1,599,000 ","809,000 ","790,000 ","248,000 ","124,000 ","124,000 " -10,"1,816,000 ","918,000 ","898,000 ","1,573,000 ","796,000 ","777,000 ","243,000 ","122,000 ","121,000 " -11,"1,785,000 ","904,000 ","881,000 ","1,547,000 ","784,000 ","763,000 ","238,000 ","120,000 ","118,000 " -12,"1,764,000 ","893,000 ","871,000 ","1,530,000 ","775,000 ","755,000 ","234,000 ","118,000 ","116,000 " -13,"1,753,000 ","885,000 ","868,000 ","1,524,000 ","770,000 ","754,000 ","229,000 ","115,000 ","114,000 " -14,"1,753,000 ","881,000 ","872,000 ","1,527,000 ","769,000 ","758,000 ","226,000 ","112,000 ","114,000 " -15,"1,749,000 ","876,000 ","873,000 ","1,529,000 ","768,000 ","761,000 ","220,000 ","108,000 ","112,000 " -16,"1,748,000 ","872,000 ","876,000 ","1,532,000 ","767,000 ","765,000 ","216,000 ","105,000 ","111,000 " -17,"1,749,000 ","871,000 ","878,000 ","1,536,000 ","768,000 ","768,000 ","213,000 ","103,000 ","110,000 " -18,"1,754,000 ","874,000 ","880,000 ","1,541,000 ","772,000 ","769,000 ","213,000 ","102,000 ","111,000 " -19,"1,762,000 ","880,000 ","882,000 ","1,546,000 ","777,000 ","769,000 ","216,000 ","103,000 ","113,000 " -20,"1,769,000 ","886,000 ","883,000 ","1,551,000 ","782,000 ","769,000 ","218,000 ","104,000 ","114,000 " -21,"1,775,000 ","891,000 ","884,000 ","1,556,000 ","787,000 ","769,000 ","219,000 ","104,000 ","115,000 " -22,"1,770,000 ","892,000 ","878,000 ","1,551,000 ","788,000 ","763,000 ","219,000 ","104,000 ","115,000 " -23,"1,744,000 ","883,000 ","861,000 ","1,530,000 ","781,000 ","749,000 ","214,000 ","102,000 ","112,000 " -24,"1,706,000 ","869,000 ","837,000 ","1,500,000 ","770,000 ","730,000 ","206,000 ","99,000 ","107,000 " -25,"1,666,000 ","854,000 ","812,000 ","1,468,000 ","758,000 ","710,000 ","198,000 ","96,000 ","102,000 " -26,"1,628,000 ","840,000 ","788,000 ","1,437,000 ","747,000 ","690,000 ","191,000 ","93,000 ","98,000 " -27,"1,582,000 ","821,000 ","761,000 ","1,401,000 ","732,000 ","669,000 ","181,000 ","89,000 ","92,000 " -28,"1,532,000 ","798,000 ","734,000 ","1,360,000 ","713,000 ","647,000 ","172,000 ","85,000 ","87,000 " -29,"1,480,000 ","772,000 ","708,000 ","1,318,000 ","691,000 ","627,000 ","162,000 ","81,000 ","81,000 " -30,"1,425,000 ","745,000 ","680,000 ","1,274,000 ","669,000 ","605,000 ","151,000 ","76,000 ","75,000 " -31,"1,367,000 ","716,000 ","651,000 ","1,227,000 ","645,000 ","582,000 ","140,000 ","71,000 ","69,000 " -32,"1,322,000 ","694,000 ","628,000 ","1,190,000 ","626,000 ","564,000 ","132,000 ","68,000 ","64,000 " -33,"1,297,000 ","681,000 ","616,000 ","1,168,000 ","615,000 ","553,000 ","129,000 ","66,000 ","63,000 " -34,"1,286,000 ","676,000 ","610,000 ","1,156,000 ","609,000 ","547,000 ","130,000 ","67,000 ","63,000 " -35,"1,273,000 ","669,000 ","604,000 ","1,142,000 ","602,000 ","540,000 ","131,000 ","67,000 ","64,000 " -36,"1,261,000 ","663,000 ","598,000 ","1,129,000 ","595,000 ","534,000 ","132,000 ","68,000 ","64,000 " -37,"1,239,000 ","652,000 ","587,000 ","1,109,000 ","585,000 ","524,000 ","130,000 ","67,000 ","63,000 " -38,"1,199,000 ","632,000 ","567,000 ","1,075,000 ","568,000 ","507,000 ","124,000 ","64,000 ","60,000 " -39,"1,149,000 ","607,000 ","542,000 ","1,034,000 ","548,000 ","486,000 ","115,000 ","59,000 ","56,000 " -40,"1,101,000 ","583,000 ","518,000 ","996,000 ","529,000 ","467,000 ","105,000 ","54,000 ","51,000 " -41,"1,053,000 ","559,000 ","494,000 ","956,000 ","509,000 ","447,000 ","97,000 ","50,000 ","47,000 " -42,"1,011,000 ","538,000 ","473,000 ","920,000 ","491,000 ","429,000 ","91,000 ","47,000 ","44,000 " -43,"974,000 ","518,000 ","456,000 ","887,000 ","473,000 ","414,000 ","87,000 ","45,000 ","42,000 " -44,"942,000 ","501,000 ","441,000 ","857,000 ","457,000 ","400,000 ","85,000 ","44,000 ","41,000 " -45,"909,000 ","483,000 ","426,000 ","826,000 ","440,000 ","386,000 ","83,000 ","43,000 ","40,000 " -46,"873,000 ","464,000 ","409,000 ","793,000 ","422,000 ","371,000 ","80,000 ","42,000 ","38,000 " -47,"845,000 ","450,000 ","395,000 ","766,000 ","408,000 ","358,000 ","79,000 ","42,000 ","37,000 " -48,"825,000 ","440,000 ","385,000 ","748,000 ","399,000 ","349,000 ","77,000 ","41,000 ","36,000 " -49,"810,000 ","434,000 ","376,000 ","734,000 ","393,000 ","341,000 ","76,000 ","41,000 ","35,000 " -50,"793,000 ","427,000 ","366,000 ","720,000 ","387,000 ","333,000 ","73,000 ","40,000 ","33,000 " -51,"780,000 ","422,000 ","358,000 ","708,000 ","382,000 ","326,000 ","72,000 ","40,000 ","32,000 " -52,"758,000 ","411,000 ","347,000 ","688,000 ","372,000 ","316,000 ","70,000 ","39,000 ","31,000 " -53,"717,000 ","388,000 ","329,000 ","651,000 ","351,000 ","300,000 ","66,000 ","37,000 ","29,000 " -54,"664,000 ","358,000 ","306,000 ","605,000 ","325,000 ","280,000 ","59,000 ","33,000 ","26,000 " -55,"613,000 ","329,000 ","284,000 ","561,000 ","300,000 ","261,000 ","52,000 ","29,000 ","23,000 " -56,"563,000 ","301,000 ","262,000 ","517,000 ","275,000 ","242,000 ","46,000 ","26,000 ","20,000 " -57,"521,000 ","277,000 ","244,000 ","480,000 ","254,000 ","226,000 ","41,000 ","23,000 ","18,000 " -58,"496,000 ","262,000 ","234,000 ","456,000 ","240,000 ","216,000 ","40,000 ","22,000 ","18,000 " -59,"483,000 ","254,000 ","229,000 ","443,000 ","232,000 ","211,000 ","40,000 ","22,000 ","18,000 " -60,"467,000 ","245,000 ","222,000 ","427,000 ","223,000 ","204,000 ","40,000 ","22,000 ","18,000 " -61,"455,000 ","238,000 ","217,000 ","413,000 ","215,000 ","198,000 ","42,000 ","23,000 ","19,000 " -62,"436,000 ","227,000 ","209,000 ","396,000 ","205,000 ","191,000 ","40,000 ","22,000 ","18,000 " -63,"416,000 ","216,000 ","200,000 ","378,000 ","195,000 ","183,000 ","38,000 ","21,000 ","17,000 " -64,"390,000 ","202,000 ","188,000 ","356,000 ","183,000 ","173,000 ","34,000 ","19,000 ","15,000 " -65,"366,000 ","189,000 ","177,000 ","335,000 ","172,000 ","163,000 ","31,000 ","17,000 ","14,000 " -66,"345,000 ","178,000 ","167,000 ","316,000 ","162,000 ","154,000 ","29,000 ","16,000 ","13,000 " -67,"321,000 ","165,000 ","156,000 ","296,000 ","151,000 ","145,000 ","25,000 ","14,000 ","11,000 " -68,"299,000 ","153,000 ","146,000 ","277,000 ","141,000 ","136,000 ","22,000 ","12,000 ","10,000 " -69,"276,000 ","141,000 ","135,000 ","256,000 ","130,000 ","126,000 ","20,000 ","11,000 ","9,000 " -70,"255,000 ","130,000 ","125,000 ","237,000 ","120,000 ","117,000 ","18,000 ","10,000 ","8,000 " -71,"234,000 ","119,000 ","115,000 ","217,000 ","110,000 ","107,000 ","17,000 ","9,000 ","8,000 " -72,"213,000 ","107,000 ","106,000 ","197,000 ","99,000 ","98,000 ","16,000 ","8,000 ","8,000 " -73,"193,000 ","97,000 ","96,000 ","177,000 ","89,000 ","88,000 ","16,000 ","8,000 ","8,000 " -74,"174,000 ","87,000 ","87,000 ","157,000 ","79,000 ","78,000 ","17,000 ","8,000 ","9,000 " -75+,"1,103,000 ","536,000 ","567,000 ","1,006,000 ","490,000 ","516,000 ","97,000 ","46,000 ","51,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1909.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1909.csv deleted file mode 100644 index 59b2c65a75..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1909.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1909",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"90,490,000 ","46,545,000 ","43,945,000 ","80,339,000 ","41,438,000 ","38,901,000 ","10,151,000 ","5,107,000 ","5,044,000 " -,,,,,,,,, -0,"2,162,000 ","1,099,000 ","1,063,000 ","1,904,000 ","969,000 ","935,000 ","258,000 ","130,000 ","128,000 " -1,"2,134,000 ","1,081,000 ","1,053,000 ","1,873,000 ","951,000 ","922,000 ","261,000 ","130,000 ","131,000 " -2,"2,104,000 ","1,064,000 ","1,040,000 ","1,841,000 ","933,000 ","908,000 ","263,000 ","131,000 ","132,000 " -3,"2,072,000 ","1,046,000 ","1,026,000 ","1,808,000 ","915,000 ","893,000 ","264,000 ","131,000 ","133,000 " -4,"2,037,000 ","1,027,000 ","1,010,000 ","1,774,000 ","897,000 ","877,000 ","263,000 ","130,000 ","133,000 " -5,"2,002,000 ","1,010,000 ","992,000 ","1,740,000 ","880,000 ","860,000 ","262,000 ","130,000 ","132,000 " -6,"1,967,000 ","992,000 ","975,000 ","1,707,000 ","863,000 ","844,000 ","260,000 ","129,000 ","131,000 " -7,"1,933,000 ","975,000 ","958,000 ","1,676,000 ","847,000 ","829,000 ","257,000 ","128,000 ","129,000 " -8,"1,899,000 ","958,000 ","941,000 ","1,646,000 ","832,000 ","814,000 ","253,000 ","126,000 ","127,000 " -9,"1,869,000 ","944,000 ","925,000 ","1,619,000 ","819,000 ","800,000 ","250,000 ","125,000 ","125,000 " -10,"1,839,000 ","930,000 ","909,000 ","1,594,000 ","807,000 ","787,000 ","245,000 ","123,000 ","122,000 " -11,"1,809,000 ","916,000 ","893,000 ","1,569,000 ","795,000 ","774,000 ","240,000 ","121,000 ","119,000 " -12,"1,789,000 ","906,000 ","883,000 ","1,553,000 ","787,000 ","766,000 ","236,000 ","119,000 ","117,000 " -13,"1,781,000 ","899,000 ","882,000 ","1,549,000 ","783,000 ","766,000 ","232,000 ","116,000 ","116,000 " -14,"1,782,000 ","896,000 ","886,000 ","1,554,000 ","783,000 ","771,000 ","228,000 ","113,000 ","115,000 " -15,"1,780,000 ","891,000 ","889,000 ","1,557,000 ","782,000 ","775,000 ","223,000 ","109,000 ","114,000 " -16,"1,779,000 ","888,000 ","891,000 ","1,561,000 ","782,000 ","779,000 ","218,000 ","106,000 ","112,000 " -17,"1,782,000 ","887,000 ","895,000 ","1,567,000 ","784,000 ","783,000 ","215,000 ","103,000 ","112,000 " -18,"1,789,000 ","892,000 ","897,000 ","1,574,000 ","789,000 ","785,000 ","215,000 ","103,000 ","112,000 " -19,"1,798,000 ","900,000 ","898,000 ","1,581,000 ","796,000 ","785,000 ","217,000 ","104,000 ","113,000 " -20,"1,804,000 ","905,000 ","899,000 ","1,586,000 ","801,000 ","785,000 ","218,000 ","104,000 ","114,000 " -21,"1,811,000 ","911,000 ","900,000 ","1,592,000 ","807,000 ","785,000 ","219,000 ","104,000 ","115,000 " -22,"1,806,000 ","912,000 ","894,000 ","1,587,000 ","808,000 ","779,000 ","219,000 ","104,000 ","115,000 " -23,"1,781,000 ","904,000 ","877,000 ","1,567,000 ","802,000 ","765,000 ","214,000 ","102,000 ","112,000 " -24,"1,741,000 ","889,000 ","852,000 ","1,535,000 ","790,000 ","745,000 ","206,000 ","99,000 ","107,000 " -25,"1,702,000 ","874,000 ","828,000 ","1,503,000 ","778,000 ","725,000 ","199,000 ","96,000 ","103,000 " -26,"1,663,000 ","860,000 ","803,000 ","1,470,000 ","766,000 ","704,000 ","193,000 ","94,000 ","99,000 " -27,"1,618,000 ","841,000 ","777,000 ","1,433,000 ","750,000 ","683,000 ","185,000 ","91,000 ","94,000 " -28,"1,567,000 ","818,000 ","749,000 ","1,392,000 ","731,000 ","661,000 ","175,000 ","87,000 ","88,000 " -29,"1,513,000 ","791,000 ","722,000 ","1,349,000 ","709,000 ","640,000 ","164,000 ","82,000 ","82,000 " -30,"1,458,000 ","763,000 ","695,000 ","1,305,000 ","686,000 ","619,000 ","153,000 ","77,000 ","76,000 " -31,"1,399,000 ","733,000 ","666,000 ","1,257,000 ","661,000 ","596,000 ","142,000 ","72,000 ","70,000 " -32,"1,354,000 ","711,000 ","643,000 ","1,219,000 ","642,000 ","577,000 ","135,000 ","69,000 ","66,000 " -33,"1,330,000 ","699,000 ","631,000 ","1,198,000 ","631,000 ","567,000 ","132,000 ","68,000 ","64,000 " -34,"1,319,000 ","694,000 ","625,000 ","1,185,000 ","625,000 ","560,000 ","134,000 ","69,000 ","65,000 " -35,"1,305,000 ","687,000 ","618,000 ","1,171,000 ","618,000 ","553,000 ","134,000 ","69,000 ","65,000 " -36,"1,295,000 ","681,000 ","614,000 ","1,159,000 ","611,000 ","548,000 ","136,000 ","70,000 ","66,000 " -37,"1,273,000 ","671,000 ","602,000 ","1,138,000 ","601,000 ","537,000 ","135,000 ","70,000 ","65,000 " -38,"1,231,000 ","649,000 ","582,000 ","1,103,000 ","583,000 ","520,000 ","128,000 ","66,000 ","62,000 " -39,"1,177,000 ","622,000 ","555,000 ","1,059,000 ","561,000 ","498,000 ","118,000 ","61,000 ","57,000 " -40,"1,127,000 ","596,000 ","531,000 ","1,018,000 ","540,000 ","478,000 ","109,000 ","56,000 ","53,000 " -41,"1,075,000 ","570,000 ","505,000 ","976,000 ","519,000 ","457,000 ","99,000 ","51,000 ","48,000 " -42,"1,030,000 ","547,000 ","483,000 ","937,000 ","499,000 ","438,000 ","93,000 ","48,000 ","45,000 " -43,"994,000 ","528,000 ","466,000 ","905,000 ","482,000 ","423,000 ","89,000 ","46,000 ","43,000 " -44,"964,000 ","512,000 ","452,000 ","877,000 ","467,000 ","410,000 ","87,000 ","45,000 ","42,000 " -45,"930,000 ","494,000 ","436,000 ","846,000 ","450,000 ","396,000 ","84,000 ","44,000 ","40,000 " -46,"897,000 ","476,000 ","421,000 ","815,000 ","433,000 ","382,000 ","82,000 ","43,000 ","39,000 " -47,"870,000 ","463,000 ","407,000 ","789,000 ","420,000 ","369,000 ","81,000 ","43,000 ","38,000 " -48,"850,000 ","453,000 ","397,000 ","771,000 ","411,000 ","360,000 ","79,000 ","42,000 ","37,000 " -49,"834,000 ","447,000 ","387,000 ","757,000 ","405,000 ","352,000 ","77,000 ","42,000 ","35,000 " -50,"818,000 ","440,000 ","378,000 ","743,000 ","399,000 ","344,000 ","75,000 ","41,000 ","34,000 " -51,"805,000 ","436,000 ","369,000 ","732,000 ","395,000 ","337,000 ","73,000 ","41,000 ","32,000 " -52,"781,000 ","424,000 ","357,000 ","710,000 ","384,000 ","326,000 ","71,000 ","40,000 ","31,000 " -53,"737,000 ","400,000 ","337,000 ","672,000 ","363,000 ","309,000 ","65,000 ","37,000 ","28,000 " -54,"682,000 ","368,000 ","314,000 ","623,000 ","335,000 ","288,000 ","59,000 ","33,000 ","26,000 " -55,"630,000 ","339,000 ","291,000 ","577,000 ","309,000 ","268,000 ","53,000 ","30,000 ","23,000 " -56,"575,000 ","308,000 ","267,000 ","529,000 ","282,000 ","247,000 ","46,000 ","26,000 ","20,000 " -57,"533,000 ","284,000 ","249,000 ","492,000 ","261,000 ","231,000 ","41,000 ","23,000 ","18,000 " -58,"508,000 ","269,000 ","239,000 ","468,000 ","247,000 ","221,000 ","40,000 ","22,000 ","18,000 " -59,"495,000 ","262,000 ","233,000 ","454,000 ","239,000 ","215,000 ","41,000 ","23,000 ","18,000 " -60,"480,000 ","253,000 ","227,000 ","439,000 ","230,000 ","209,000 ","41,000 ","23,000 ","18,000 " -61,"466,000 ","244,000 ","222,000 ","424,000 ","221,000 ","203,000 ","42,000 ","23,000 ","19,000 " -62,"450,000 ","235,000 ","215,000 ","408,000 ","212,000 ","196,000 ","42,000 ","23,000 ","19,000 " -63,"426,000 ","222,000 ","204,000 ","388,000 ","201,000 ","187,000 ","38,000 ","21,000 ","17,000 " -64,"401,000 ","208,000 ","193,000 ","366,000 ","189,000 ","177,000 ","35,000 ","19,000 ","16,000 " -65,"376,000 ","194,000 ","182,000 ","345,000 ","177,000 ","168,000 ","31,000 ","17,000 ","14,000 " -66,"353,000 ","182,000 ","171,000 ","324,000 ","166,000 ","158,000 ","29,000 ","16,000 ","13,000 " -67,"329,000 ","169,000 ","160,000 ","304,000 ","155,000 ","149,000 ","25,000 ","14,000 ","11,000 " -68,"307,000 ","158,000 ","149,000 ","284,000 ","145,000 ","139,000 ","23,000 ","13,000 ","10,000 " -69,"284,000 ","145,000 ","139,000 ","264,000 ","134,000 ","130,000 ","20,000 ","11,000 ","9,000 " -70,"261,000 ","133,000 ","128,000 ","243,000 ","123,000 ","120,000 ","18,000 ","10,000 ","8,000 " -71,"239,000 ","121,000 ","118,000 ","222,000 ","112,000 ","110,000 ","17,000 ","9,000 ","8,000 " -72,"218,000 ","110,000 ","108,000 ","202,000 ","102,000 ","100,000 ","16,000 ","8,000 ","8,000 " -73,"198,000 ","99,000 ","99,000 ","182,000 ","91,000 ","91,000 ","16,000 ","8,000 ","8,000 " -74,"179,000 ","89,000 ","90,000 ","162,000 ","81,000 ","81,000 ","17,000 ","8,000 ","9,000 " -75+,"1,134,000 ","551,000 ","583,000 ","1,036,000 ","504,000 ","532,000 ","98,000 ","47,000 ","51,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1910.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1910.csv deleted file mode 100644 index 2b65ada462..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1910.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1910",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"92,407,000 ","47,554,000 ","44,853,000 ","82,137,000 ","42,385,000 ","39,752,000 ","10,270,000 ","5,169,000 ","5,101,000 " -,,,,,,,,, -0,"2,203,000 ","1,120,000 ","1,083,000 ","1,945,000 ","990,000 ","955,000 ","258,000 ","130,000 ","128,000 " -1,"2,168,000 ","1,099,000 ","1,069,000 ","1,908,000 ","969,000 ","939,000 ","260,000 ","130,000 ","130,000 " -2,"2,135,000 ","1,080,000 ","1,055,000 ","1,872,000 ","949,000 ","923,000 ","263,000 ","131,000 ","132,000 " -3,"2,101,000 ","1,061,000 ","1,040,000 ","1,837,000 ","930,000 ","907,000 ","264,000 ","131,000 ","133,000 " -4,"2,064,000 ","1,041,000 ","1,023,000 ","1,801,000 ","911,000 ","890,000 ","263,000 ","130,000 ","133,000 " -5,"2,029,000 ","1,023,000 ","1,006,000 ","1,766,000 ","893,000 ","873,000 ","263,000 ","130,000 ","133,000 " -6,"1,993,000 ","1,005,000 ","988,000 ","1,732,000 ","876,000 ","856,000 ","261,000 ","129,000 ","132,000 " -7,"1,959,000 ","988,000 ","971,000 ","1,701,000 ","860,000 ","841,000 ","258,000 ","128,000 ","130,000 " -8,"1,926,000 ","972,000 ","954,000 ","1,671,000 ","845,000 ","826,000 ","255,000 ","127,000 ","128,000 " -9,"1,896,000 ","958,000 ","938,000 ","1,644,000 ","832,000 ","812,000 ","252,000 ","126,000 ","126,000 " -10,"1,867,000 ","944,000 ","923,000 ","1,620,000 ","820,000 ","800,000 ","247,000 ","124,000 ","123,000 " -11,"1,839,000 ","931,000 ","908,000 ","1,596,000 ","809,000 ","787,000 ","243,000 ","122,000 ","121,000 " -12,"1,818,000 ","921,000 ","897,000 ","1,580,000 ","801,000 ","779,000 ","238,000 ","120,000 ","118,000 " -13,"1,811,000 ","914,000 ","897,000 ","1,577,000 ","797,000 ","780,000 ","234,000 ","117,000 ","117,000 " -14,"1,812,000 ","911,000 ","901,000 ","1,582,000 ","797,000 ","785,000 ","230,000 ","114,000 ","116,000 " -15,"1,812,000 ","907,000 ","905,000 ","1,587,000 ","797,000 ","790,000 ","225,000 ","110,000 ","115,000 " -16,"1,813,000 ","905,000 ","908,000 ","1,592,000 ","798,000 ","794,000 ","221,000 ","107,000 ","114,000 " -17,"1,815,000 ","904,000 ","911,000 ","1,598,000 ","800,000 ","798,000 ","217,000 ","104,000 ","113,000 " -18,"1,823,000 ","910,000 ","913,000 ","1,606,000 ","806,000 ","800,000 ","217,000 ","104,000 ","113,000 " -19,"1,832,000 ","917,000 ","915,000 ","1,614,000 ","813,000 ","801,000 ","218,000 ","104,000 ","114,000 " -20,"1,839,000 ","923,000 ","916,000 ","1,620,000 ","819,000 ","801,000 ","219,000 ","104,000 ","115,000 " -21,"1,846,000 ","929,000 ","917,000 ","1,626,000 ","825,000 ","801,000 ","220,000 ","104,000 ","116,000 " -22,"1,841,000 ","931,000 ","910,000 ","1,622,000 ","827,000 ","795,000 ","219,000 ","104,000 ","115,000 " -23,"1,815,000 ","922,000 ","893,000 ","1,601,000 ","820,000 ","781,000 ","214,000 ","102,000 ","112,000 " -24,"1,776,000 ","908,000 ","868,000 ","1,568,000 ","808,000 ","760,000 ","208,000 ","100,000 ","108,000 " -25,"1,737,000 ","893,000 ","844,000 ","1,536,000 ","796,000 ","740,000 ","201,000 ","97,000 ","104,000 " -26,"1,699,000 ","879,000 ","820,000 ","1,503,000 ","784,000 ","719,000 ","196,000 ","95,000 ","101,000 " -27,"1,655,000 ","861,000 ","794,000 ","1,467,000 ","769,000 ","698,000 ","188,000 ","92,000 ","96,000 " -28,"1,603,000 ","837,000 ","766,000 ","1,425,000 ","749,000 ","676,000 ","178,000 ","88,000 ","90,000 " -29,"1,549,000 ","810,000 ","739,000 ","1,381,000 ","726,000 ","655,000 ","168,000 ","84,000 ","84,000 " -30,"1,494,000 ","782,000 ","712,000 ","1,337,000 ","703,000 ","634,000 ","157,000 ","79,000 ","78,000 " -31,"1,433,000 ","752,000 ","681,000 ","1,288,000 ","678,000 ","610,000 ","145,000 ","74,000 ","71,000 " -32,"1,387,000 ","728,000 ","659,000 ","1,250,000 ","658,000 ","592,000 ","137,000 ","70,000 ","67,000 " -33,"1,364,000 ","717,000 ","647,000 ","1,228,000 ","647,000 ","581,000 ","136,000 ","70,000 ","66,000 " -34,"1,353,000 ","712,000 ","641,000 ","1,216,000 ","641,000 ","575,000 ","137,000 ","71,000 ","66,000 " -35,"1,341,000 ","706,000 ","635,000 ","1,202,000 ","634,000 ","568,000 ","139,000 ","72,000 ","67,000 " -36,"1,332,000 ","701,000 ","631,000 ","1,191,000 ","628,000 ","563,000 ","141,000 ","73,000 ","68,000 " -37,"1,309,000 ","689,000 ","620,000 ","1,170,000 ","617,000 ","553,000 ","139,000 ","72,000 ","67,000 " -38,"1,264,000 ","666,000 ","598,000 ","1,132,000 ","598,000 ","534,000 ","132,000 ","68,000 ","64,000 " -39,"1,207,000 ","637,000 ","570,000 ","1,085,000 ","574,000 ","511,000 ","122,000 ","63,000 ","59,000 " -40,"1,154,000 ","610,000 ","544,000 ","1,042,000 ","552,000 ","490,000 ","112,000 ","58,000 ","54,000 " -41,"1,099,000 ","582,000 ","517,000 ","997,000 ","529,000 ","468,000 ","102,000 ","53,000 ","49,000 " -42,"1,052,000 ","558,000 ","494,000 ","958,000 ","509,000 ","449,000 ","94,000 ","49,000 ","45,000 " -43,"1,015,000 ","539,000 ","476,000 ","925,000 ","492,000 ","433,000 ","90,000 ","47,000 ","43,000 " -44,"986,000 ","523,000 ","463,000 ","898,000 ","477,000 ","421,000 ","88,000 ","46,000 ","42,000 " -45,"956,000 ","508,000 ","448,000 ","869,000 ","462,000 ","407,000 ","87,000 ","46,000 ","41,000 " -46,"924,000 ","491,000 ","433,000 ","839,000 ","446,000 ","393,000 ","85,000 ","45,000 ","40,000 " -47,"897,000 ","477,000 ","420,000 ","814,000 ","433,000 ","381,000 ","83,000 ","44,000 ","39,000 " -48,"878,000 ","469,000 ","409,000 ","796,000 ","425,000 ","371,000 ","82,000 ","44,000 ","38,000 " -49,"861,000 ","462,000 ","399,000 ","782,000 ","419,000 ","363,000 ","79,000 ","43,000 ","36,000 " -50,"843,000 ","454,000 ","389,000 ","767,000 ","412,000 ","355,000 ","76,000 ","42,000 ","34,000 " -51,"830,000 ","450,000 ","380,000 ","755,000 ","408,000 ","347,000 ","75,000 ","42,000 ","33,000 " -52,"804,000 ","437,000 ","367,000 ","732,000 ","396,000 ","336,000 ","72,000 ","41,000 ","31,000 " -53,"759,000 ","412,000 ","347,000 ","692,000 ","374,000 ","318,000 ","67,000 ","38,000 ","29,000 " -54,"702,000 ","380,000 ","322,000 ","642,000 ","346,000 ","296,000 ","60,000 ","34,000 ","26,000 " -55,"647,000 ","349,000 ","298,000 ","594,000 ","319,000 ","275,000 ","53,000 ","30,000 ","23,000 " -56,"591,000 ","317,000 ","274,000 ","544,000 ","291,000 ","253,000 ","47,000 ","26,000 ","21,000 " -57,"547,000 ","292,000 ","255,000 ","504,000 ","268,000 ","236,000 ","43,000 ","24,000 ","19,000 " -58,"521,000 ","277,000 ","244,000 ","480,000 ","254,000 ","226,000 ","41,000 ","23,000 ","18,000 " -59,"507,000 ","269,000 ","238,000 ","466,000 ","246,000 ","220,000 ","41,000 ","23,000 ","18,000 " -60,"493,000 ","260,000 ","233,000 ","451,000 ","237,000 ","214,000 ","42,000 ","23,000 ","19,000 " -61,"480,000 ","252,000 ","228,000 ","438,000 ","229,000 ","209,000 ","42,000 ","23,000 ","19,000 " -62,"464,000 ","243,000 ","221,000 ","422,000 ","220,000 ","202,000 ","42,000 ","23,000 ","19,000 " -63,"439,000 ","229,000 ","210,000 ","401,000 ","208,000 ","193,000 ","38,000 ","21,000 ","17,000 " -64,"412,000 ","214,000 ","198,000 ","377,000 ","195,000 ","182,000 ","35,000 ","19,000 ","16,000 " -65,"387,000 ","201,000 ","186,000 ","355,000 ","183,000 ","172,000 ","32,000 ","18,000 ","14,000 " -66,"362,000 ","187,000 ","175,000 ","333,000 ","171,000 ","162,000 ","29,000 ","16,000 ","13,000 " -67,"338,000 ","174,000 ","164,000 ","313,000 ","160,000 ","153,000 ","25,000 ","14,000 ","11,000 " -68,"315,000 ","162,000 ","153,000 ","292,000 ","149,000 ","143,000 ","23,000 ","13,000 ","10,000 " -69,"290,000 ","148,000 ","142,000 ","270,000 ","137,000 ","133,000 ","20,000 ","11,000 ","9,000 " -70,"267,000 ","136,000 ","131,000 ","249,000 ","126,000 ","123,000 ","18,000 ","10,000 ","8,000 " -71,"245,000 ","124,000 ","121,000 ","228,000 ","115,000 ","113,000 ","17,000 ","9,000 ","8,000 " -72,"224,000 ","113,000 ","111,000 ","208,000 ","105,000 ","103,000 ","16,000 ","8,000 ","8,000 " -73,"203,000 ","102,000 ","101,000 ","187,000 ","94,000 ","93,000 ","16,000 ","8,000 ","8,000 " -74,"185,000 ","92,000 ","93,000 ","168,000 ","84,000 ","84,000 ","17,000 ","8,000 ","9,000 " -75+,"1,170,000 ","567,000 ","603,000 ","1,072,000 ","520,000 ","552,000 ","98,000 ","47,000 ","51,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1911.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1911.csv deleted file mode 100644 index f26fa96efb..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1911.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1911",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"93,863,000 ","48,290,000 ","45,573,000 ","83,524,000 ","43,088,000 ","40,436,000 ","10,339,000 ","5,202,000 ","5,137,000 " -,,,,,,,,, -0,"2,227,000 ","1,133,000 ","1,094,000 ","1,971,000 ","1,004,000 ","967,000 ","256,000 ","129,000 ","127,000 " -1,"2,194,000 ","1,112,000 ","1,082,000 ","1,935,000 ","983,000 ","952,000 ","259,000 ","129,000 ","130,000 " -2,"2,161,000 ","1,093,000 ","1,068,000 ","1,899,000 ","963,000 ","936,000 ","262,000 ","130,000 ","132,000 " -3,"2,125,000 ","1,073,000 ","1,052,000 ","1,862,000 ","943,000 ","919,000 ","263,000 ","130,000 ","133,000 " -4,"2,089,000 ","1,054,000 ","1,035,000 ","1,826,000 ","924,000 ","902,000 ","263,000 ","130,000 ","133,000 " -5,"2,055,000 ","1,036,000 ","1,019,000 ","1,792,000 ","906,000 ","886,000 ","263,000 ","130,000 ","133,000 " -6,"2,019,000 ","1,018,000 ","1,001,000 ","1,758,000 ","889,000 ","869,000 ","261,000 ","129,000 ","132,000 " -7,"1,985,000 ","1,001,000 ","984,000 ","1,727,000 ","873,000 ","854,000 ","258,000 ","128,000 ","130,000 " -8,"1,952,000 ","985,000 ","967,000 ","1,697,000 ","858,000 ","839,000 ","255,000 ","127,000 ","128,000 " -9,"1,923,000 ","971,000 ","952,000 ","1,671,000 ","845,000 ","826,000 ","252,000 ","126,000 ","126,000 " -10,"1,895,000 ","958,000 ","937,000 ","1,646,000 ","833,000 ","813,000 ","249,000 ","125,000 ","124,000 " -11,"1,867,000 ","946,000 ","921,000 ","1,623,000 ","823,000 ","800,000 ","244,000 ","123,000 ","121,000 " -12,"1,846,000 ","935,000 ","911,000 ","1,606,000 ","814,000 ","792,000 ","240,000 ","121,000 ","119,000 " -13,"1,837,000 ","928,000 ","909,000 ","1,601,000 ","810,000 ","791,000 ","236,000 ","118,000 ","118,000 " -14,"1,835,000 ","923,000 ","912,000 ","1,603,000 ","808,000 ","795,000 ","232,000 ","115,000 ","117,000 " -15,"1,831,000 ","917,000 ","914,000 ","1,604,000 ","806,000 ","798,000 ","227,000 ","111,000 ","116,000 " -16,"1,826,000 ","911,000 ","915,000 ","1,605,000 ","804,000 ","801,000 ","221,000 ","107,000 ","114,000 " -17,"1,827,000 ","910,000 ","917,000 ","1,610,000 ","806,000 ","804,000 ","217,000 ","104,000 ","113,000 " -18,"1,836,000 ","915,000 ","921,000 ","1,618,000 ","811,000 ","807,000 ","218,000 ","104,000 ","114,000 " -19,"1,843,000 ","922,000 ","921,000 ","1,625,000 ","818,000 ","807,000 ","218,000 ","104,000 ","114,000 " -20,"1,851,000 ","928,000 ","923,000 ","1,632,000 ","824,000 ","808,000 ","219,000 ","104,000 ","115,000 " -21,"1,859,000 ","935,000 ","924,000 ","1,639,000 ","831,000 ","808,000 ","220,000 ","104,000 ","116,000 " -22,"1,854,000 ","936,000 ","918,000 ","1,635,000 ","832,000 ","803,000 ","219,000 ","104,000 ","115,000 " -23,"1,832,000 ","929,000 ","903,000 ","1,617,000 ","827,000 ","790,000 ","215,000 ","102,000 ","113,000 " -24,"1,796,000 ","916,000 ","880,000 ","1,587,000 ","816,000 ","771,000 ","209,000 ","100,000 ","109,000 " -25,"1,760,000 ","903,000 ","857,000 ","1,557,000 ","805,000 ","752,000 ","203,000 ","98,000 ","105,000 " -26,"1,724,000 ","891,000 ","833,000 ","1,527,000 ","795,000 ","732,000 ","197,000 ","96,000 ","101,000 " -27,"1,681,000 ","873,000 ","808,000 ","1,491,000 ","780,000 ","711,000 ","190,000 ","93,000 ","97,000 " -28,"1,630,000 ","849,000 ","781,000 ","1,450,000 ","760,000 ","690,000 ","180,000 ","89,000 ","91,000 " -29,"1,576,000 ","822,000 ","754,000 ","1,407,000 ","738,000 ","669,000 ","169,000 ","84,000 ","85,000 " -30,"1,520,000 ","794,000 ","726,000 ","1,362,000 ","715,000 ","647,000 ","158,000 ","79,000 ","79,000 " -31,"1,458,000 ","763,000 ","695,000 ","1,312,000 ","689,000 ","623,000 ","146,000 ","74,000 ","72,000 " -32,"1,411,000 ","739,000 ","672,000 ","1,273,000 ","669,000 ","604,000 ","138,000 ","70,000 ","68,000 " -33,"1,389,000 ","729,000 ","660,000 ","1,252,000 ","659,000 ","593,000 ","137,000 ","70,000 ","67,000 " -34,"1,381,000 ","726,000 ","655,000 ","1,241,000 ","654,000 ","587,000 ","140,000 ","72,000 ","68,000 " -35,"1,370,000 ","721,000 ","649,000 ","1,229,000 ","648,000 ","581,000 ","141,000 ","73,000 ","68,000 " -36,"1,362,000 ","717,000 ","645,000 ","1,218,000 ","643,000 ","575,000 ","144,000 ","74,000 ","70,000 " -37,"1,340,000 ","706,000 ","634,000 ","1,197,000 ","632,000 ","565,000 ","143,000 ","74,000 ","69,000 " -38,"1,294,000 ","682,000 ","612,000 ","1,158,000 ","612,000 ","546,000 ","136,000 ","70,000 ","66,000 " -39,"1,232,000 ","650,000 ","582,000 ","1,108,000 ","586,000 ","522,000 ","124,000 ","64,000 ","60,000 " -40,"1,176,000 ","621,000 ","555,000 ","1,062,000 ","562,000 ","500,000 ","114,000 ","59,000 ","55,000 " -41,"1,118,000 ","590,000 ","528,000 ","1,015,000 ","537,000 ","478,000 ","103,000 ","53,000 ","50,000 " -42,"1,069,000 ","565,000 ","504,000 ","974,000 ","516,000 ","458,000 ","95,000 ","49,000 ","46,000 " -43,"1,034,000 ","548,000 ","486,000 ","942,000 ","500,000 ","442,000 ","92,000 ","48,000 ","44,000 " -44,"1,008,000 ","535,000 ","473,000 ","917,000 ","487,000 ","430,000 ","91,000 ","48,000 ","43,000 " -45,"979,000 ","520,000 ","459,000 ","890,000 ","473,000 ","417,000 ","89,000 ","47,000 ","42,000 " -46,"949,000 ","505,000 ","444,000 ","861,000 ","458,000 ","403,000 ","88,000 ","47,000 ","41,000 " -47,"922,000 ","492,000 ","430,000 ","837,000 ","446,000 ","391,000 ","85,000 ","46,000 ","39,000 " -48,"901,000 ","482,000 ","419,000 ","818,000 ","437,000 ","381,000 ","83,000 ","45,000 ","38,000 " -49,"882,000 ","474,000 ","408,000 ","802,000 ","430,000 ","372,000 ","80,000 ","44,000 ","36,000 " -50,"863,000 ","466,000 ","397,000 ","786,000 ","423,000 ","363,000 ","77,000 ","43,000 ","34,000 " -51,"849,000 ","460,000 ","389,000 ","773,000 ","417,000 ","356,000 ","76,000 ","43,000 ","33,000 " -52,"821,000 ","446,000 ","375,000 ","749,000 ","405,000 ","344,000 ","72,000 ","41,000 ","31,000 " -53,"774,000 ","420,000 ","354,000 ","707,000 ","382,000 ","325,000 ","67,000 ","38,000 ","29,000 " -54,"717,000 ","388,000 ","329,000 ","657,000 ","354,000 ","303,000 ","60,000 ","34,000 ","26,000 " -55,"662,000 ","357,000 ","305,000 ","607,000 ","326,000 ","281,000 ","55,000 ","31,000 ","24,000 " -56,"605,000 ","325,000 ","280,000 ","557,000 ","298,000 ","259,000 ","48,000 ","27,000 ","21,000 " -57,"559,000 ","299,000 ","260,000 ","516,000 ","275,000 ","241,000 ","43,000 ","24,000 ","19,000 " -58,"533,000 ","284,000 ","249,000 ","492,000 ","261,000 ","231,000 ","41,000 ","23,000 ","18,000 " -59,"521,000 ","277,000 ","244,000 ","480,000 ","254,000 ","226,000 ","41,000 ","23,000 ","18,000 " -60,"507,000 ","268,000 ","239,000 ","465,000 ","245,000 ","220,000 ","42,000 ","23,000 ","19,000 " -61,"494,000 ","260,000 ","234,000 ","451,000 ","236,000 ","215,000 ","43,000 ","24,000 ","19,000 " -62,"477,000 ","250,000 ","227,000 ","435,000 ","227,000 ","208,000 ","42,000 ","23,000 ","19,000 " -63,"452,000 ","237,000 ","215,000 ","413,000 ","215,000 ","198,000 ","39,000 ","22,000 ","17,000 " -64,"424,000 ","221,000 ","203,000 ","388,000 ","201,000 ","187,000 ","36,000 ","20,000 ","16,000 " -65,"396,000 ","206,000 ","190,000 ","364,000 ","188,000 ","176,000 ","32,000 ","18,000 ","14,000 " -66,"371,000 ","192,000 ","179,000 ","342,000 ","176,000 ","166,000 ","29,000 ","16,000 ","13,000 " -67,"347,000 ","179,000 ","168,000 ","320,000 ","164,000 ","156,000 ","27,000 ","15,000 ","12,000 " -68,"322,000 ","165,000 ","157,000 ","298,000 ","152,000 ","146,000 ","24,000 ","13,000 ","11,000 " -69,"296,000 ","151,000 ","145,000 ","275,000 ","140,000 ","135,000 ","21,000 ","11,000 ","10,000 " -70,"273,000 ","139,000 ","134,000 ","254,000 ","129,000 ","125,000 ","19,000 ","10,000 ","9,000 " -71,"250,000 ","127,000 ","123,000 ","233,000 ","118,000 ","115,000 ","17,000 ","9,000 ","8,000 " -72,"228,000 ","115,000 ","113,000 ","212,000 ","107,000 ","105,000 ","16,000 ","8,000 ","8,000 " -73,"207,000 ","104,000 ","103,000 ","191,000 ","96,000 ","95,000 ","16,000 ","8,000 ","8,000 " -74,"188,000 ","94,000 ","94,000 ","172,000 ","86,000 ","86,000 ","16,000 ","8,000 ","8,000 " -75+,"1,196,000 ","578,000 ","618,000 ","1,098,000 ","531,000 ","567,000 ","98,000 ","47,000 ","51,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1912.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1912.csv deleted file mode 100644 index 05873bdf2d..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1912.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1912",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"95,335,000 ","49,025,000 ","46,310,000 ","84,928,000 ","43,786,000 ","41,142,000 ","10,407,000 ","5,239,000 ","5,168,000 " -,,,,,,,,, -0,"2,250,000 ","1,145,000 ","1,105,000 ","1,997,000 ","1,017,000 ","980,000 ","253,000 ","128,000 ","125,000 " -1,"2,217,000 ","1,124,000 ","1,093,000 ","1,961,000 ","996,000 ","965,000 ","256,000 ","128,000 ","128,000 " -2,"2,184,000 ","1,105,000 ","1,079,000 ","1,925,000 ","976,000 ","949,000 ","259,000 ","129,000 ","130,000 " -3,"2,149,000 ","1,085,000 ","1,064,000 ","1,888,000 ","956,000 ","932,000 ","261,000 ","129,000 ","132,000 " -4,"2,115,000 ","1,067,000 ","1,048,000 ","1,853,000 ","937,000 ","916,000 ","262,000 ","130,000 ","132,000 " -5,"2,080,000 ","1,049,000 ","1,031,000 ","1,819,000 ","920,000 ","899,000 ","261,000 ","129,000 ","132,000 " -6,"2,047,000 ","1,032,000 ","1,015,000 ","1,786,000 ","903,000 ","883,000 ","261,000 ","129,000 ","132,000 " -7,"2,013,000 ","1,015,000 ","998,000 ","1,755,000 ","887,000 ","868,000 ","258,000 ","128,000 ","130,000 " -8,"1,984,000 ","1,001,000 ","983,000 ","1,727,000 ","873,000 ","854,000 ","257,000 ","128,000 ","129,000 " -9,"1,953,000 ","986,000 ","967,000 ","1,700,000 ","860,000 ","840,000 ","253,000 ","126,000 ","127,000 " -10,"1,926,000 ","973,000 ","953,000 ","1,676,000 ","848,000 ","828,000 ","250,000 ","125,000 ","125,000 " -11,"1,899,000 ","962,000 ","937,000 ","1,653,000 ","838,000 ","815,000 ","246,000 ","124,000 ","122,000 " -12,"1,878,000 ","951,000 ","927,000 ","1,636,000 ","829,000 ","807,000 ","242,000 ","122,000 ","120,000 " -13,"1,865,000 ","942,000 ","923,000 ","1,627,000 ","823,000 ","804,000 ","238,000 ","119,000 ","119,000 " -14,"1,858,000 ","934,000 ","924,000 ","1,625,000 ","819,000 ","806,000 ","233,000 ","115,000 ","118,000 " -15,"1,849,000 ","926,000 ","923,000 ","1,622,000 ","815,000 ","807,000 ","227,000 ","111,000 ","116,000 " -16,"1,841,000 ","918,000 ","923,000 ","1,619,000 ","811,000 ","808,000 ","222,000 ","107,000 ","115,000 " -17,"1,840,000 ","916,000 ","924,000 ","1,621,000 ","811,000 ","810,000 ","219,000 ","105,000 ","114,000 " -18,"1,844,000 ","919,000 ","925,000 ","1,626,000 ","815,000 ","811,000 ","218,000 ","104,000 ","114,000 " -19,"1,854,000 ","926,000 ","928,000 ","1,635,000 ","822,000 ","813,000 ","219,000 ","104,000 ","115,000 " -20,"1,861,000 ","932,000 ","929,000 ","1,642,000 ","828,000 ","814,000 ","219,000 ","104,000 ","115,000 " -21,"1,869,000 ","938,000 ","931,000 ","1,649,000 ","834,000 ","815,000 ","220,000 ","104,000 ","116,000 " -22,"1,864,000 ","939,000 ","925,000 ","1,646,000 ","836,000 ","810,000 ","218,000 ","103,000 ","115,000 " -23,"1,844,000 ","933,000 ","911,000 ","1,629,000 ","831,000 ","798,000 ","215,000 ","102,000 ","113,000 " -24,"1,811,000 ","922,000 ","889,000 ","1,602,000 ","822,000 ","780,000 ","209,000 ","100,000 ","109,000 " -25,"1,780,000 ","911,000 ","869,000 ","1,576,000 ","813,000 ","763,000 ","204,000 ","98,000 ","106,000 " -26,"1,746,000 ","900,000 ","846,000 ","1,548,000 ","804,000 ","744,000 ","198,000 ","96,000 ","102,000 " -27,"1,707,000 ","884,000 ","823,000 ","1,516,000 ","791,000 ","725,000 ","191,000 ","93,000 ","98,000 " -28,"1,657,000 ","861,000 ","796,000 ","1,476,000 ","772,000 ","704,000 ","181,000 ","89,000 ","92,000 " -29,"1,601,000 ","833,000 ","768,000 ","1,431,000 ","749,000 ","682,000 ","170,000 ","84,000 ","86,000 " -30,"1,544,000 ","805,000 ","739,000 ","1,385,000 ","726,000 ","659,000 ","159,000 ","79,000 ","80,000 " -31,"1,482,000 ","774,000 ","708,000 ","1,335,000 ","700,000 ","635,000 ","147,000 ","74,000 ","73,000 " -32,"1,435,000 ","751,000 ","684,000 ","1,297,000 ","681,000 ","616,000 ","138,000 ","70,000 ","68,000 " -33,"1,413,000 ","741,000 ","672,000 ","1,276,000 ","671,000 ","605,000 ","137,000 ","70,000 ","67,000 " -34,"1,407,000 ","739,000 ","668,000 ","1,266,000 ","667,000 ","599,000 ","141,000 ","72,000 ","69,000 " -35,"1,398,000 ","735,000 ","663,000 ","1,254,000 ","661,000 ","593,000 ","144,000 ","74,000 ","70,000 " -36,"1,392,000 ","733,000 ","659,000 ","1,245,000 ","657,000 ","588,000 ","147,000 ","76,000 ","71,000 " -37,"1,370,000 ","722,000 ","648,000 ","1,223,000 ","646,000 ","577,000 ","147,000 ","76,000 ","71,000 " -38,"1,322,000 ","697,000 ","625,000 ","1,183,000 ","625,000 ","558,000 ","139,000 ","72,000 ","67,000 " -39,"1,260,000 ","664,000 ","596,000 ","1,132,000 ","598,000 ","534,000 ","128,000 ","66,000 ","62,000 " -40,"1,200,000 ","632,000 ","568,000 ","1,083,000 ","572,000 ","511,000 ","117,000 ","60,000 ","57,000 " -41,"1,139,000 ","600,000 ","539,000 ","1,034,000 ","546,000 ","488,000 ","105,000 ","54,000 ","51,000 " -42,"1,087,000 ","573,000 ","514,000 ","990,000 ","523,000 ","467,000 ","97,000 ","50,000 ","47,000 " -43,"1,054,000 ","557,000 ","497,000 ","960,000 ","508,000 ","452,000 ","94,000 ","49,000 ","45,000 " -44,"1,030,000 ","546,000 ","484,000 ","937,000 ","497,000 ","440,000 ","93,000 ","49,000 ","44,000 " -45,"1,003,000 ","533,000 ","470,000 ","911,000 ","484,000 ","427,000 ","92,000 ","49,000 ","43,000 " -46,"975,000 ","520,000 ","455,000 ","884,000 ","471,000 ","413,000 ","91,000 ","49,000 ","42,000 " -47,"950,000 ","509,000 ","441,000 ","861,000 ","460,000 ","401,000 ","89,000 ","49,000 ","40,000 " -48,"928,000 ","498,000 ","430,000 ","841,000 ","450,000 ","391,000 ","87,000 ","48,000 ","39,000 " -49,"906,000 ","488,000 ","418,000 ","823,000 ","442,000 ","381,000 ","83,000 ","46,000 ","37,000 " -50,"885,000 ","478,000 ","407,000 ","805,000 ","433,000 ","372,000 ","80,000 ","45,000 ","35,000 " -51,"867,000 ","470,000 ","397,000 ","790,000 ","426,000 ","364,000 ","77,000 ","44,000 ","33,000 " -52,"838,000 ","455,000 ","383,000 ","765,000 ","413,000 ","352,000 ","73,000 ","42,000 ","31,000 " -53,"791,000 ","429,000 ","362,000 ","723,000 ","390,000 ","333,000 ","68,000 ","39,000 ","29,000 " -54,"732,000 ","396,000 ","336,000 ","671,000 ","361,000 ","310,000 ","61,000 ","35,000 ","26,000 " -55,"677,000 ","365,000 ","312,000 ","622,000 ","334,000 ","288,000 ","55,000 ","31,000 ","24,000 " -56,"618,000 ","332,000 ","286,000 ","570,000 ","305,000 ","265,000 ","48,000 ","27,000 ","21,000 " -57,"573,000 ","306,000 ","267,000 ","530,000 ","282,000 ","248,000 ","43,000 ","24,000 ","19,000 " -58,"546,000 ","291,000 ","255,000 ","505,000 ","268,000 ","237,000 ","41,000 ","23,000 ","18,000 " -59,"536,000 ","285,000 ","251,000 ","493,000 ","261,000 ","232,000 ","43,000 ","24,000 ","19,000 " -60,"521,000 ","276,000 ","245,000 ","478,000 ","252,000 ","226,000 ","43,000 ","24,000 ","19,000 " -61,"508,000 ","268,000 ","240,000 ","465,000 ","244,000 ","221,000 ","43,000 ","24,000 ","19,000 " -62,"492,000 ","259,000 ","233,000 ","449,000 ","235,000 ","214,000 ","43,000 ","24,000 ","19,000 " -63,"466,000 ","244,000 ","222,000 ","426,000 ","222,000 ","204,000 ","40,000 ","22,000 ","18,000 " -64,"435,000 ","227,000 ","208,000 ","399,000 ","207,000 ","192,000 ","36,000 ","20,000 ","16,000 " -65,"407,000 ","212,000 ","195,000 ","375,000 ","194,000 ","181,000 ","32,000 ","18,000 ","14,000 " -66,"379,000 ","196,000 ","183,000 ","350,000 ","180,000 ","170,000 ","29,000 ","16,000 ","13,000 " -67,"354,000 ","183,000 ","171,000 ","327,000 ","168,000 ","159,000 ","27,000 ","15,000 ","12,000 " -68,"326,000 ","168,000 ","158,000 ","303,000 ","155,000 ","148,000 ","23,000 ","13,000 ","10,000 " -69,"302,000 ","155,000 ","147,000 ","281,000 ","143,000 ","138,000 ","21,000 ","12,000 ","9,000 " -70,"277,000 ","141,000 ","136,000 ","258,000 ","131,000 ","127,000 ","19,000 ","10,000 ","9,000 " -71,"253,000 ","128,000 ","125,000 ","236,000 ","119,000 ","117,000 ","17,000 ","9,000 ","8,000 " -72,"234,000 ","118,000 ","116,000 ","217,000 ","109,000 ","108,000 ","17,000 ","9,000 ","8,000 " -73,"213,000 ","107,000 ","106,000 ","197,000 ","99,000 ","98,000 ","16,000 ","8,000 ","8,000 " -74,"197,000 ","98,000 ","99,000 ","180,000 ","90,000 ","90,000 ","17,000 ","8,000 ","9,000 " -75+,"1,227,000 ","592,000 ","635,000 ","1,127,000 ","544,000 ","583,000 ","100,000 ","48,000 ","52,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1913.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1913.csv deleted file mode 100644 index 645cab4918..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1913.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1913",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"97,225,000 ","49,957,000 ","47,268,000 ","86,705,000 ","44,663,000 ","42,042,000 ","10,520,000 ","5,294,000 ","5,226,000 " -,,,,,,,,, -0,"2,279,000 ","1,160,000 ","1,119,000 ","2,027,000 ","1,033,000 ","994,000 ","252,000 ","127,000 ","125,000 " -1,"2,249,000 ","1,141,000 ","1,108,000 ","1,993,000 ","1,013,000 ","980,000 ","256,000 ","128,000 ","128,000 " -2,"2,217,000 ","1,122,000 ","1,095,000 ","1,958,000 ","993,000 ","965,000 ","259,000 ","129,000 ","130,000 " -3,"2,185,000 ","1,103,000 ","1,082,000 ","1,924,000 ","974,000 ","950,000 ","261,000 ","129,000 ","132,000 " -4,"2,152,000 ","1,086,000 ","1,066,000 ","1,890,000 ","956,000 ","934,000 ","262,000 ","130,000 ","132,000 " -5,"2,120,000 ","1,069,000 ","1,051,000 ","1,857,000 ","939,000 ","918,000 ","263,000 ","130,000 ","133,000 " -6,"2,088,000 ","1,053,000 ","1,035,000 ","1,826,000 ","923,000 ","903,000 ","262,000 ","130,000 ","132,000 " -7,"2,055,000 ","1,036,000 ","1,019,000 ","1,795,000 ","907,000 ","888,000 ","260,000 ","129,000 ","131,000 " -8,"2,026,000 ","1,022,000 ","1,004,000 ","1,767,000 ","893,000 ","874,000 ","259,000 ","129,000 ","130,000 " -9,"1,996,000 ","1,008,000 ","988,000 ","1,740,000 ","880,000 ","860,000 ","256,000 ","128,000 ","128,000 " -10,"1,968,000 ","995,000 ","973,000 ","1,715,000 ","868,000 ","847,000 ","253,000 ","127,000 ","126,000 " -11,"1,943,000 ","984,000 ","959,000 ","1,693,000 ","858,000 ","835,000 ","250,000 ","126,000 ","124,000 " -12,"1,919,000 ","971,000 ","948,000 ","1,674,000 ","848,000 ","826,000 ","245,000 ","123,000 ","122,000 " -13,"1,901,000 ","960,000 ","941,000 ","1,661,000 ","840,000 ","821,000 ","240,000 ","120,000 ","120,000 " -14,"1,888,000 ","949,000 ","939,000 ","1,653,000 ","833,000 ","820,000 ","235,000 ","116,000 ","119,000 " -15,"1,875,000 ","939,000 ","936,000 ","1,646,000 ","827,000 ","819,000 ","229,000 ","112,000 ","117,000 " -16,"1,860,000 ","928,000 ","932,000 ","1,637,000 ","820,000 ","817,000 ","223,000 ","108,000 ","115,000 " -17,"1,854,000 ","923,000 ","931,000 ","1,635,000 ","818,000 ","817,000 ","219,000 ","105,000 ","114,000 " -18,"1,859,000 ","925,000 ","934,000 ","1,640,000 ","821,000 ","819,000 ","219,000 ","104,000 ","115,000 " -19,"1,868,000 ","931,000 ","937,000 ","1,648,000 ","827,000 ","821,000 ","220,000 ","104,000 ","116,000 " -20,"1,875,000 ","937,000 ","938,000 ","1,655,000 ","833,000 ","822,000 ","220,000 ","104,000 ","116,000 " -21,"1,883,000 ","942,000 ","941,000 ","1,662,000 ","838,000 ","824,000 ","221,000 ","104,000 ","117,000 " -22,"1,880,000 ","944,000 ","936,000 ","1,660,000 ","840,000 ","820,000 ","220,000 ","104,000 ","116,000 " -23,"1,862,000 ","939,000 ","923,000 ","1,646,000 ","837,000 ","809,000 ","216,000 ","102,000 ","114,000 " -24,"1,833,000 ","930,000 ","903,000 ","1,623,000 ","830,000 ","793,000 ","210,000 ","100,000 ","110,000 " -25,"1,804,000 ","920,000 ","884,000 ","1,599,000 ","822,000 ","777,000 ","205,000 ","98,000 ","107,000 " -26,"1,774,000 ","911,000 ","863,000 ","1,575,000 ","815,000 ","760,000 ","199,000 ","96,000 ","103,000 " -27,"1,738,000 ","897,000 ","841,000 ","1,546,000 ","804,000 ","742,000 ","192,000 ","93,000 ","99,000 " -28,"1,687,000 ","874,000 ","813,000 ","1,505,000 ","785,000 ","720,000 ","182,000 ","89,000 ","93,000 " -29,"1,631,000 ","846,000 ","785,000 ","1,460,000 ","762,000 ","698,000 ","171,000 ","84,000 ","87,000 " -30,"1,574,000 ","818,000 ","756,000 ","1,414,000 ","739,000 ","675,000 ","160,000 ","79,000 ","81,000 " -31,"1,512,000 ","788,000 ","724,000 ","1,364,000 ","714,000 ","650,000 ","148,000 ","74,000 ","74,000 " -32,"1,465,000 ","765,000 ","700,000 ","1,325,000 ","694,000 ","631,000 ","140,000 ","71,000 ","69,000 " -33,"1,445,000 ","756,000 ","689,000 ","1,305,000 ","685,000 ","620,000 ","140,000 ","71,000 ","69,000 " -34,"1,440,000 ","755,000 ","685,000 ","1,297,000 ","682,000 ","615,000 ","143,000 ","73,000 ","70,000 " -35,"1,433,000 ","753,000 ","680,000 ","1,286,000 ","678,000 ","608,000 ","147,000 ","75,000 ","72,000 " -36,"1,429,000 ","753,000 ","676,000 ","1,278,000 ","675,000 ","603,000 ","151,000 ","78,000 ","73,000 " -37,"1,407,000 ","742,000 ","665,000 ","1,256,000 ","664,000 ","592,000 ","151,000 ","78,000 ","73,000 " -38,"1,358,000 ","716,000 ","642,000 ","1,215,000 ","642,000 ","573,000 ","143,000 ","74,000 ","69,000 " -39,"1,293,000 ","681,000 ","612,000 ","1,161,000 ","613,000 ","548,000 ","132,000 ","68,000 ","64,000 " -40,"1,229,000 ","647,000 ","582,000 ","1,109,000 ","585,000 ","524,000 ","120,000 ","62,000 ","58,000 " -41,"1,165,000 ","612,000 ","553,000 ","1,057,000 ","557,000 ","500,000 ","108,000 ","55,000 ","53,000 " -42,"1,113,000 ","584,000 ","529,000 ","1,013,000 ","533,000 ","480,000 ","100,000 ","51,000 ","49,000 " -43,"1,078,000 ","568,000 ","510,000 ","982,000 ","518,000 ","464,000 ","96,000 ","50,000 ","46,000 " -44,"1,057,000 ","560,000 ","497,000 ","961,000 ","509,000 ","452,000 ","96,000 ","51,000 ","45,000 " -45,"1,033,000 ","549,000 ","484,000 ","938,000 ","498,000 ","440,000 ","95,000 ","51,000 ","44,000 " -46,"1,007,000 ","538,000 ","469,000 ","912,000 ","486,000 ","426,000 ","95,000 ","52,000 ","43,000 " -47,"982,000 ","527,000 ","455,000 ","890,000 ","476,000 ","414,000 ","92,000 ","51,000 ","41,000 " -48,"958,000 ","515,000 ","443,000 ","868,000 ","465,000 ","403,000 ","90,000 ","50,000 ","40,000 " -49,"933,000 ","503,000 ","430,000 ","848,000 ","455,000 ","393,000 ","85,000 ","48,000 ","37,000 " -50,"911,000 ","492,000 ","419,000 ","828,000 ","445,000 ","383,000 ","83,000 ","47,000 ","36,000 " -51,"890,000 ","482,000 ","408,000 ","811,000 ","437,000 ","374,000 ","79,000 ","45,000 ","34,000 " -52,"858,000 ","465,000 ","393,000 ","783,000 ","422,000 ","361,000 ","75,000 ","43,000 ","32,000 " -53,"811,000 ","439,000 ","372,000 ","741,000 ","399,000 ","342,000 ","70,000 ","40,000 ","30,000 " -54,"752,000 ","406,000 ","346,000 ","689,000 ","370,000 ","319,000 ","63,000 ","36,000 ","27,000 " -55,"696,000 ","375,000 ","321,000 ","640,000 ","343,000 ","297,000 ","56,000 ","32,000 ","24,000 " -56,"636,000 ","341,000 ","295,000 ","588,000 ","314,000 ","274,000 ","48,000 ","27,000 ","21,000 " -57,"591,000 ","316,000 ","275,000 ","547,000 ","291,000 ","256,000 ","44,000 ","25,000 ","19,000 " -58,"564,000 ","301,000 ","263,000 ","522,000 ","277,000 ","245,000 ","42,000 ","24,000 ","18,000 " -59,"553,000 ","294,000 ","259,000 ","510,000 ","270,000 ","240,000 ","43,000 ","24,000 ","19,000 " -60,"538,000 ","285,000 ","253,000 ","495,000 ","261,000 ","234,000 ","43,000 ","24,000 ","19,000 " -61,"526,000 ","278,000 ","248,000 ","483,000 ","254,000 ","229,000 ","43,000 ","24,000 ","19,000 " -62,"508,000 ","268,000 ","240,000 ","465,000 ","244,000 ","221,000 ","43,000 ","24,000 ","19,000 " -63,"481,000 ","252,000 ","229,000 ","441,000 ","230,000 ","211,000 ","40,000 ","22,000 ","18,000 " -64,"449,000 ","235,000 ","214,000 ","413,000 ","215,000 ","198,000 ","36,000 ","20,000 ","16,000 " -65,"419,000 ","218,000 ","201,000 ","386,000 ","200,000 ","186,000 ","33,000 ","18,000 ","15,000 " -66,"390,000 ","203,000 ","187,000 ","360,000 ","186,000 ","174,000 ","30,000 ","17,000 ","13,000 " -67,"362,000 ","187,000 ","175,000 ","335,000 ","172,000 ","163,000 ","27,000 ","15,000 ","12,000 " -68,"335,000 ","172,000 ","163,000 ","311,000 ","159,000 ","152,000 ","24,000 ","13,000 ","11,000 " -69,"309,000 ","158,000 ","151,000 ","287,000 ","146,000 ","141,000 ","22,000 ","12,000 ","10,000 " -70,"283,000 ","144,000 ","139,000 ","264,000 ","134,000 ","130,000 ","19,000 ","10,000 ","9,000 " -71,"259,000 ","131,000 ","128,000 ","242,000 ","122,000 ","120,000 ","17,000 ","9,000 ","8,000 " -72,"239,000 ","121,000 ","118,000 ","222,000 ","112,000 ","110,000 ","17,000 ","9,000 ","8,000 " -73,"219,000 ","110,000 ","109,000 ","203,000 ","102,000 ","101,000 ","16,000 ","8,000 ","8,000 " -74,"203,000 ","101,000 ","102,000 ","187,000 ","93,000 ","94,000 ","16,000 ","8,000 ","8,000 " -75+,"1,263,000 ","608,000 ","655,000 ","1,163,000 ","560,000 ","603,000 ","100,000 ","48,000 ","52,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1914.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1914.csv deleted file mode 100644 index 388b65cabb..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1914.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1914",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"99,111,000 ","50,883,000 ","48,228,000 ","88,480,000 ","45,532,000 ","42,948,000 ","10,631,000 ","5,351,000 ","5,280,000 " -,,,,,,,,, -0,"2,305,000 ","1,173,000 ","1,132,000 ","2,056,000 ","1,047,000 ","1,009,000 ","249,000 ","126,000 ","123,000 " -1,"2,278,000 ","1,155,000 ","1,123,000 ","2,024,000 ","1,028,000 ","996,000 ","254,000 ","127,000 ","127,000 " -2,"2,250,000 ","1,138,000 ","1,112,000 ","1,992,000 ","1,010,000 ","982,000 ","258,000 ","128,000 ","130,000 " -3,"2,220,000 ","1,121,000 ","1,099,000 ","1,960,000 ","992,000 ","968,000 ","260,000 ","129,000 ","131,000 " -4,"2,191,000 ","1,105,000 ","1,086,000 ","1,928,000 ","975,000 ","953,000 ","263,000 ","130,000 ","133,000 " -5,"2,160,000 ","1,089,000 ","1,071,000 ","1,897,000 ","959,000 ","938,000 ","263,000 ","130,000 ","133,000 " -6,"2,129,000 ","1,073,000 ","1,056,000 ","1,866,000 ","943,000 ","923,000 ","263,000 ","130,000 ","133,000 " -7,"2,099,000 ","1,058,000 ","1,041,000 ","1,837,000 ","928,000 ","909,000 ","262,000 ","130,000 ","132,000 " -8,"2,070,000 ","1,045,000 ","1,025,000 ","1,809,000 ","915,000 ","894,000 ","261,000 ","130,000 ","131,000 " -9,"2,040,000 ","1,030,000 ","1,010,000 ","1,782,000 ","901,000 ","881,000 ","258,000 ","129,000 ","129,000 " -10,"2,012,000 ","1,017,000 ","995,000 ","1,757,000 ","889,000 ","868,000 ","255,000 ","128,000 ","127,000 " -11,"1,986,000 ","1,006,000 ","980,000 ","1,734,000 ","879,000 ","855,000 ","252,000 ","127,000 ","125,000 " -12,"1,961,000 ","993,000 ","968,000 ","1,713,000 ","868,000 ","845,000 ","248,000 ","125,000 ","123,000 " -13,"1,940,000 ","979,000 ","961,000 ","1,696,000 ","857,000 ","839,000 ","244,000 ","122,000 ","122,000 " -14,"1,919,000 ","964,000 ","955,000 ","1,682,000 ","847,000 ","835,000 ","237,000 ","117,000 ","120,000 " -15,"1,899,000 ","951,000 ","948,000 ","1,668,000 ","838,000 ","830,000 ","231,000 ","113,000 ","118,000 " -16,"1,878,000 ","936,000 ","942,000 ","1,654,000 ","828,000 ","826,000 ","224,000 ","108,000 ","116,000 " -17,"1,867,000 ","928,000 ","939,000 ","1,647,000 ","823,000 ","824,000 ","220,000 ","105,000 ","115,000 " -18,"1,869,000 ","929,000 ","940,000 ","1,650,000 ","825,000 ","825,000 ","219,000 ","104,000 ","115,000 " -19,"1,879,000 ","935,000 ","944,000 ","1,659,000 ","831,000 ","828,000 ","220,000 ","104,000 ","116,000 " -20,"1,887,000 ","941,000 ","946,000 ","1,665,000 ","836,000 ","829,000 ","222,000 ","105,000 ","117,000 " -21,"1,894,000 ","946,000 ","948,000 ","1,672,000 ","841,000 ","831,000 ","222,000 ","105,000 ","117,000 " -22,"1,893,000 ","947,000 ","946,000 ","1,672,000 ","843,000 ","829,000 ","221,000 ","104,000 ","117,000 " -23,"1,878,000 ","944,000 ","934,000 ","1,660,000 ","841,000 ","819,000 ","218,000 ","103,000 ","115,000 " -24,"1,852,000 ","936,000 ","916,000 ","1,641,000 ","836,000 ","805,000 ","211,000 ","100,000 ","111,000 " -25,"1,827,000 ","928,000 ","899,000 ","1,621,000 ","830,000 ","791,000 ","206,000 ","98,000 ","108,000 " -26,"1,802,000 ","922,000 ","880,000 ","1,602,000 ","826,000 ","776,000 ","200,000 ","96,000 ","104,000 " -27,"1,768,000 ","909,000 ","859,000 ","1,574,000 ","815,000 ","759,000 ","194,000 ","94,000 ","100,000 " -28,"1,720,000 ","887,000 ","833,000 ","1,536,000 ","798,000 ","738,000 ","184,000 ","89,000 ","95,000 " -29,"1,662,000 ","859,000 ","803,000 ","1,490,000 ","775,000 ","715,000 ","172,000 ","84,000 ","88,000 " -30,"1,604,000 ","831,000 ","773,000 ","1,443,000 ","752,000 ","691,000 ","161,000 ","79,000 ","82,000 " -31,"1,542,000 ","801,000 ","741,000 ","1,393,000 ","727,000 ","666,000 ","149,000 ","74,000 ","75,000 " -32,"1,495,000 ","779,000 ","716,000 ","1,354,000 ","708,000 ","646,000 ","141,000 ","71,000 ","70,000 " -33,"1,476,000 ","771,000 ","705,000 ","1,335,000 ","700,000 ","635,000 ","141,000 ","71,000 ","70,000 " -34,"1,474,000 ","772,000 ","702,000 ","1,328,000 ","698,000 ","630,000 ","146,000 ","74,000 ","72,000 " -35,"1,468,000 ","771,000 ","697,000 ","1,318,000 ","694,000 ","624,000 ","150,000 ","77,000 ","73,000 " -36,"1,465,000 ","772,000 ","693,000 ","1,310,000 ","692,000 ","618,000 ","155,000 ","80,000 ","75,000 " -37,"1,444,000 ","762,000 ","682,000 ","1,289,000 ","682,000 ","607,000 ","155,000 ","80,000 ","75,000 " -38,"1,395,000 ","735,000 ","660,000 ","1,247,000 ","659,000 ","588,000 ","148,000 ","76,000 ","72,000 " -39,"1,325,000 ","697,000 ","628,000 ","1,190,000 ","628,000 ","562,000 ","135,000 ","69,000 ","66,000 " -40,"1,259,000 ","661,000 ","598,000 ","1,136,000 ","598,000 ","538,000 ","123,000 ","63,000 ","60,000 " -41,"1,191,000 ","624,000 ","567,000 ","1,081,000 ","568,000 ","513,000 ","110,000 ","56,000 ","54,000 " -42,"1,137,000 ","595,000 ","542,000 ","1,035,000 ","543,000 ","492,000 ","102,000 ","52,000 ","50,000 " -43,"1,105,000 ","580,000 ","525,000 ","1,006,000 ","529,000 ","477,000 ","99,000 ","51,000 ","48,000 " -44,"1,086,000 ","574,000 ","512,000 ","986,000 ","521,000 ","465,000 ","100,000 ","53,000 ","47,000 " -45,"1,063,000 ","566,000 ","497,000 ","964,000 ","512,000 ","452,000 ","99,000 ","54,000 ","45,000 " -46,"1,040,000 ","557,000 ","483,000 ","941,000 ","502,000 ","439,000 ","99,000 ","55,000 ","44,000 " -47,"1,017,000 ","547,000 ","470,000 ","919,000 ","492,000 ","427,000 ","98,000 ","55,000 ","43,000 " -48,"991,000 ","534,000 ","457,000 ","897,000 ","481,000 ","416,000 ","94,000 ","53,000 ","41,000 " -49,"962,000 ","520,000 ","442,000 ","873,000 ","469,000 ","404,000 ","89,000 ","51,000 ","38,000 " -50,"936,000 ","506,000 ","430,000 ","851,000 ","457,000 ","394,000 ","85,000 ","49,000 ","36,000 " -51,"912,000 ","493,000 ","419,000 ","831,000 ","447,000 ","384,000 ","81,000 ","46,000 ","35,000 " -52,"878,000 ","475,000 ","403,000 ","801,000 ","431,000 ","370,000 ","77,000 ","44,000 ","33,000 " -53,"829,000 ","448,000 ","381,000 ","759,000 ","408,000 ","351,000 ","70,000 ","40,000 ","30,000 " -54,"770,000 ","415,000 ","355,000 ","707,000 ","379,000 ","328,000 ","63,000 ","36,000 ","27,000 " -55,"712,000 ","383,000 ","329,000 ","656,000 ","351,000 ","305,000 ","56,000 ","32,000 ","24,000 " -56,"654,000 ","351,000 ","303,000 ","605,000 ","323,000 ","282,000 ","49,000 ","28,000 ","21,000 " -57,"608,000 ","325,000 ","283,000 ","564,000 ","300,000 ","264,000 ","44,000 ","25,000 ","19,000 " -58,"583,000 ","310,000 ","273,000 ","540,000 ","286,000 ","254,000 ","43,000 ","24,000 ","19,000 " -59,"570,000 ","303,000 ","267,000 ","527,000 ","279,000 ","248,000 ","43,000 ","24,000 ","19,000 " -60,"556,000 ","295,000 ","261,000 ","513,000 ","271,000 ","242,000 ","43,000 ","24,000 ","19,000 " -61,"542,000 ","287,000 ","255,000 ","499,000 ","263,000 ","236,000 ","43,000 ","24,000 ","19,000 " -62,"526,000 ","278,000 ","248,000 ","483,000 ","254,000 ","229,000 ","43,000 ","24,000 ","19,000 " -63,"497,000 ","262,000 ","235,000 ","456,000 ","239,000 ","217,000 ","41,000 ","23,000 ","18,000 " -64,"463,000 ","243,000 ","220,000 ","426,000 ","222,000 ","204,000 ","37,000 ","21,000 ","16,000 " -65,"432,000 ","226,000 ","206,000 ","398,000 ","207,000 ","191,000 ","34,000 ","19,000 ","15,000 " -66,"401,000 ","209,000 ","192,000 ","371,000 ","192,000 ","179,000 ","30,000 ","17,000 ","13,000 " -67,"371,000 ","192,000 ","179,000 ","344,000 ","177,000 ","167,000 ","27,000 ","15,000 ","12,000 " -68,"343,000 ","177,000 ","166,000 ","318,000 ","163,000 ","155,000 ","25,000 ","14,000 ","11,000 " -69,"316,000 ","162,000 ","154,000 ","294,000 ","150,000 ","144,000 ","22,000 ","12,000 ","10,000 " -70,"290,000 ","148,000 ","142,000 ","270,000 ","137,000 ","133,000 ","20,000 ","11,000 ","9,000 " -71,"266,000 ","135,000 ","131,000 ","248,000 ","125,000 ","123,000 ","18,000 ","10,000 ","8,000 " -72,"244,000 ","123,000 ","121,000 ","227,000 ","114,000 ","113,000 ","17,000 ","9,000 ","8,000 " -73,"226,000 ","113,000 ","113,000 ","210,000 ","105,000 ","105,000 ","16,000 ","8,000 ","8,000 " -74,"211,000 ","106,000 ","105,000 ","195,000 ","98,000 ","97,000 ","16,000 ","8,000 ","8,000 " -75+,"1,301,000 ","625,000 ","676,000 ","1,198,000 ","575,000 ","623,000 ","103,000 ","50,000 ","53,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1915.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1915.csv deleted file mode 100644 index 06853cfc9d..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1915.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1915",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"100,546,000 ","51,573,000 ","48,973,000 ","89,848,000 ","46,188,000 ","43,660,000 ","10,698,000 ","5,385,000 ","5,313,000 " -,,,,,,,,, -0,"2,317,000 ","1,179,000 ","1,138,000 ","2,072,000 ","1,056,000 ","1,016,000 ","245,000 ","123,000 ","122,000 " -1,"2,295,000 ","1,164,000 ","1,131,000 ","2,044,000 ","1,039,000 ","1,005,000 ","251,000 ","125,000 ","126,000 " -2,"2,270,000 ","1,149,000 ","1,121,000 ","2,015,000 ","1,022,000 ","993,000 ","255,000 ","127,000 ","128,000 " -3,"2,246,000 ","1,134,000 ","1,112,000 ","1,987,000 ","1,006,000 ","981,000 ","259,000 ","128,000 ","131,000 " -4,"2,219,000 ","1,119,000 ","1,100,000 ","1,958,000 ","990,000 ","968,000 ","261,000 ","129,000 ","132,000 " -5,"2,191,000 ","1,105,000 ","1,086,000 ","1,929,000 ","975,000 ","954,000 ","262,000 ","130,000 ","132,000 " -6,"2,163,000 ","1,090,000 ","1,073,000 ","1,900,000 ","960,000 ","940,000 ","263,000 ","130,000 ","133,000 " -7,"2,135,000 ","1,077,000 ","1,058,000 ","1,872,000 ","946,000 ","926,000 ","263,000 ","131,000 ","132,000 " -8,"2,106,000 ","1,063,000 ","1,043,000 ","1,845,000 ","933,000 ","912,000 ","261,000 ","130,000 ","131,000 " -9,"2,079,000 ","1,050,000 ","1,029,000 ","1,819,000 ","920,000 ","899,000 ","260,000 ","130,000 ","130,000 " -10,"2,051,000 ","1,037,000 ","1,014,000 ","1,794,000 ","908,000 ","886,000 ","257,000 ","129,000 ","128,000 " -11,"2,024,000 ","1,025,000 ","999,000 ","1,770,000 ","897,000 ","873,000 ","254,000 ","128,000 ","126,000 " -12,"1,998,000 ","1,011,000 ","987,000 ","1,747,000 ","885,000 ","862,000 ","251,000 ","126,000 ","125,000 " -13,"1,970,000 ","994,000 ","976,000 ","1,725,000 ","872,000 ","853,000 ","245,000 ","122,000 ","123,000 " -14,"1,943,000 ","976,000 ","967,000 ","1,704,000 ","858,000 ","846,000 ","239,000 ","118,000 ","121,000 " -15,"1,916,000 ","959,000 ","957,000 ","1,683,000 ","845,000 ","838,000 ","233,000 ","114,000 ","119,000 " -16,"1,889,000 ","942,000 ","947,000 ","1,663,000 ","833,000 ","830,000 ","226,000 ","109,000 ","117,000 " -17,"1,871,000 ","930,000 ","941,000 ","1,651,000 ","825,000 ","826,000 ","220,000 ","105,000 ","115,000 " -18,"1,871,000 ","929,000 ","942,000 ","1,652,000 ","825,000 ","827,000 ","219,000 ","104,000 ","115,000 " -19,"1,881,000 ","934,000 ","947,000 ","1,659,000 ","829,000 ","830,000 ","222,000 ","105,000 ","117,000 " -20,"1,887,000 ","938,000 ","949,000 ","1,665,000 ","833,000 ","832,000 ","222,000 ","105,000 ","117,000 " -21,"1,895,000 ","942,000 ","953,000 ","1,672,000 ","837,000 ","835,000 ","223,000 ","105,000 ","118,000 " -22,"1,893,000 ","943,000 ","950,000 ","1,672,000 ","839,000 ","833,000 ","221,000 ","104,000 ","117,000 " -23,"1,881,000 ","941,000 ","940,000 ","1,664,000 ","839,000 ","825,000 ","217,000 ","102,000 ","115,000 " -24,"1,860,000 ","936,000 ","924,000 ","1,649,000 ","836,000 ","813,000 ","211,000 ","100,000 ","111,000 " -25,"1,839,000 ","931,000 ","908,000 ","1,633,000 ","833,000 ","800,000 ","206,000 ","98,000 ","108,000 " -26,"1,820,000 ","927,000 ","893,000 ","1,619,000 ","831,000 ","788,000 ","201,000 ","96,000 ","105,000 " -27,"1,788,000 ","915,000 ","873,000 ","1,594,000 ","822,000 ","772,000 ","194,000 ","93,000 ","101,000 " -28,"1,741,000 ","895,000 ","846,000 ","1,557,000 ","806,000 ","751,000 ","184,000 ","89,000 ","95,000 " -29,"1,685,000 ","868,000 ","817,000 ","1,512,000 ","784,000 ","728,000 ","173,000 ","84,000 ","89,000 " -30,"1,626,000 ","840,000 ","786,000 ","1,465,000 ","761,000 ","704,000 ","161,000 ","79,000 ","82,000 " -31,"1,563,000 ","809,000 ","754,000 ","1,415,000 ","736,000 ","679,000 ","148,000 ","73,000 ","75,000 " -32,"1,518,000 ","788,000 ","730,000 ","1,377,000 ","718,000 ","659,000 ","141,000 ","70,000 ","71,000 " -33,"1,499,000 ","781,000 ","718,000 ","1,358,000 ","710,000 ","648,000 ","141,000 ","71,000 ","70,000 " -34,"1,501,000 ","785,000 ","716,000 ","1,353,000 ","710,000 ","643,000 ","148,000 ","75,000 ","73,000 " -35,"1,496,000 ","785,000 ","711,000 ","1,343,000 ","707,000 ","636,000 ","153,000 ","78,000 ","75,000 " -36,"1,495,000 ","787,000 ","708,000 ","1,337,000 ","706,000 ","631,000 ","158,000 ","81,000 ","77,000 " -37,"1,475,000 ","778,000 ","697,000 ","1,316,000 ","696,000 ","620,000 ","159,000 ","82,000 ","77,000 " -38,"1,423,000 ","750,000 ","673,000 ","1,272,000 ","672,000 ","600,000 ","151,000 ","78,000 ","73,000 " -39,"1,352,000 ","711,000 ","641,000 ","1,214,000 ","640,000 ","574,000 ","138,000 ","71,000 ","67,000 " -40,"1,283,000 ","672,000 ","611,000 ","1,157,000 ","608,000 ","549,000 ","126,000 ","64,000 ","62,000 " -41,"1,213,000 ","633,000 ","580,000 ","1,100,000 ","576,000 ","524,000 ","113,000 ","57,000 ","56,000 " -42,"1,157,000 ","603,000 ","554,000 ","1,054,000 ","551,000 ","503,000 ","103,000 ","52,000 ","51,000 " -43,"1,126,000 ","590,000 ","536,000 ","1,025,000 ","538,000 ","487,000 ","101,000 ","52,000 ","49,000 " -44,"1,110,000 ","586,000 ","524,000 ","1,008,000 ","532,000 ","476,000 ","102,000 ","54,000 ","48,000 " -45,"1,089,000 ","580,000 ","509,000 ","987,000 ","524,000 ","463,000 ","102,000 ","56,000 ","46,000 " -46,"1,069,000 ","574,000 ","495,000 ","966,000 ","516,000 ","450,000 ","103,000 ","58,000 ","45,000 " -47,"1,046,000 ","565,000 ","481,000 ","945,000 ","507,000 ","438,000 ","101,000 ","58,000 ","43,000 " -48,"1,018,000 ","551,000 ","467,000 ","921,000 ","495,000 ","426,000 ","97,000 ","56,000 ","41,000 " -49,"987,000 ","534,000 ","453,000 ","895,000 ","481,000 ","414,000 ","92,000 ","53,000 ","39,000 " -50,"956,000 ","517,000 ","439,000 ","869,000 ","467,000 ","402,000 ","87,000 ","50,000 ","37,000 " -51,"930,000 ","503,000 ","427,000 ","847,000 ","455,000 ","392,000 ","83,000 ","48,000 ","35,000 " -52,"894,000 ","483,000 ","411,000 ","816,000 ","438,000 ","378,000 ","78,000 ","45,000 ","33,000 " -53,"844,000 ","455,000 ","389,000 ","772,000 ","414,000 ","358,000 ","72,000 ","41,000 ","31,000 " -54,"785,000 ","423,000 ","362,000 ","721,000 ","386,000 ","335,000 ","64,000 ","37,000 ","27,000 " -55,"729,000 ","392,000 ","337,000 ","672,000 ","359,000 ","313,000 ","57,000 ","33,000 ","24,000 " -56,"669,000 ","358,000 ","311,000 ","620,000 ","330,000 ","290,000 ","49,000 ","28,000 ","21,000 " -57,"624,000 ","333,000 ","291,000 ","580,000 ","308,000 ","272,000 ","44,000 ","25,000 ","19,000 " -58,"598,000 ","319,000 ","279,000 ","556,000 ","295,000 ","261,000 ","42,000 ","24,000 ","18,000 " -59,"586,000 ","311,000 ","275,000 ","543,000 ","287,000 ","256,000 ","43,000 ","24,000 ","19,000 " -60,"572,000 ","304,000 ","268,000 ","529,000 ","280,000 ","249,000 ","43,000 ","24,000 ","19,000 " -61,"560,000 ","297,000 ","263,000 ","516,000 ","272,000 ","244,000 ","44,000 ","25,000 ","19,000 " -62,"541,000 ","286,000 ","255,000 ","498,000 ","262,000 ","236,000 ","43,000 ","24,000 ","19,000 " -63,"512,000 ","270,000 ","242,000 ","471,000 ","247,000 ","224,000 ","41,000 ","23,000 ","18,000 " -64,"475,000 ","250,000 ","225,000 ","438,000 ","229,000 ","209,000 ","37,000 ","21,000 ","16,000 " -65,"443,000 ","232,000 ","211,000 ","409,000 ","213,000 ","196,000 ","34,000 ","19,000 ","15,000 " -66,"411,000 ","214,000 ","197,000 ","380,000 ","197,000 ","183,000 ","31,000 ","17,000 ","14,000 " -67,"379,000 ","196,000 ","183,000 ","351,000 ","181,000 ","170,000 ","28,000 ","15,000 ","13,000 " -68,"348,000 ","180,000 ","168,000 ","323,000 ","166,000 ","157,000 ","25,000 ","14,000 ","11,000 " -69,"320,000 ","164,000 ","156,000 ","298,000 ","152,000 ","146,000 ","22,000 ","12,000 ","10,000 " -70,"294,000 ","150,000 ","144,000 ","273,000 ","139,000 ","134,000 ","21,000 ","11,000 ","10,000 " -71,"270,000 ","137,000 ","133,000 ","251,000 ","127,000 ","124,000 ","19,000 ","10,000 ","9,000 " -72,"249,000 ","126,000 ","123,000 ","232,000 ","117,000 ","115,000 ","17,000 ","9,000 ","8,000 " -73,"233,000 ","117,000 ","116,000 ","216,000 ","108,000 ","108,000 ","17,000 ","9,000 ","8,000 " -74,"220,000 ","111,000 ","109,000 ","203,000 ","102,000 ","101,000 ","17,000 ","9,000 ","8,000 " -75+,"1,334,000 ","640,000 ","694,000 ","1,230,000 ","589,000 ","641,000 ","104,000 ","51,000 ","53,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1916.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1916.csv deleted file mode 100644 index 09442e0cbc..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1916.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1916",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"101,961,000 ","52,234,000 ","49,727,000 ","91,196,000 ","46,819,000 ","44,377,000 ","10,765,000 ","5,415,000 ","5,350,000 " -,,,,,,,,, -0,"2,325,000 ","1,183,000 ","1,142,000 ","2,084,000 ","1,062,000 ","1,022,000 ","241,000 ","121,000 ","120,000 " -1,"2,308,000 ","1,170,000 ","1,138,000 ","2,061,000 ","1,047,000 ","1,014,000 ","247,000 ","123,000 ","124,000 " -2,"2,291,000 ","1,159,000 ","1,132,000 ","2,038,000 ","1,033,000 ","1,005,000 ","253,000 ","126,000 ","127,000 " -3,"2,270,000 ","1,146,000 ","1,124,000 ","2,013,000 ","1,019,000 ","994,000 ","257,000 ","127,000 ","130,000 " -4,"2,248,000 ","1,134,000 ","1,114,000 ","1,988,000 ","1,005,000 ","983,000 ","260,000 ","129,000 ","131,000 " -5,"2,223,000 ","1,121,000 ","1,102,000 ","1,961,000 ","991,000 ","970,000 ","262,000 ","130,000 ","132,000 " -6,"2,199,000 ","1,109,000 ","1,090,000 ","1,936,000 ","978,000 ","958,000 ","263,000 ","131,000 ","132,000 " -7,"2,172,000 ","1,096,000 ","1,076,000 ","1,909,000 ","965,000 ","944,000 ","263,000 ","131,000 ","132,000 " -8,"2,146,000 ","1,083,000 ","1,063,000 ","1,883,000 ","952,000 ","931,000 ","263,000 ","131,000 ","132,000 " -9,"2,118,000 ","1,069,000 ","1,049,000 ","1,857,000 ","939,000 ","918,000 ","261,000 ","130,000 ","131,000 " -10,"2,088,000 ","1,055,000 ","1,033,000 ","1,830,000 ","926,000 ","904,000 ","258,000 ","129,000 ","129,000 " -11,"2,063,000 ","1,044,000 ","1,019,000 ","1,806,000 ","915,000 ","891,000 ","257,000 ","129,000 ","128,000 " -12,"2,034,000 ","1,029,000 ","1,005,000 ","1,781,000 ","902,000 ","879,000 ","253,000 ","127,000 ","126,000 " -13,"2,000,000 ","1,009,000 ","991,000 ","1,753,000 ","886,000 ","867,000 ","247,000 ","123,000 ","124,000 " -14,"1,965,000 ","987,000 ","978,000 ","1,725,000 ","869,000 ","856,000 ","240,000 ","118,000 ","122,000 " -15,"1,932,000 ","967,000 ","965,000 ","1,698,000 ","853,000 ","845,000 ","234,000 ","114,000 ","120,000 " -16,"1,896,000 ","945,000 ","951,000 ","1,670,000 ","836,000 ","834,000 ","226,000 ","109,000 ","117,000 " -17,"1,872,000 ","930,000 ","942,000 ","1,652,000 ","825,000 ","827,000 ","220,000 ","105,000 ","115,000 " -18,"1,869,000 ","927,000 ","942,000 ","1,650,000 ","823,000 ","827,000 ","219,000 ","104,000 ","115,000 " -19,"1,880,000 ","932,000 ","948,000 ","1,658,000 ","827,000 ","831,000 ","222,000 ","105,000 ","117,000 " -20,"1,886,000 ","935,000 ","951,000 ","1,664,000 ","830,000 ","834,000 ","222,000 ","105,000 ","117,000 " -21,"1,893,000 ","937,000 ","956,000 ","1,670,000 ","832,000 ","838,000 ","223,000 ","105,000 ","118,000 " -22,"1,894,000 ","939,000 ","955,000 ","1,672,000 ","835,000 ","837,000 ","222,000 ","104,000 ","118,000 " -23,"1,884,000 ","937,000 ","947,000 ","1,666,000 ","835,000 ","831,000 ","218,000 ","102,000 ","116,000 " -24,"1,866,000 ","934,000 ","932,000 ","1,654,000 ","834,000 ","820,000 ","212,000 ","100,000 ","112,000 " -25,"1,851,000 ","932,000 ","919,000 ","1,644,000 ","834,000 ","810,000 ","207,000 ","98,000 ","109,000 " -26,"1,835,000 ","930,000 ","905,000 ","1,634,000 ","834,000 ","800,000 ","201,000 ","96,000 ","105,000 " -27,"1,807,000 ","921,000 ","886,000 ","1,613,000 ","828,000 ","785,000 ","194,000 ","93,000 ","101,000 " -28,"1,762,000 ","901,000 ","861,000 ","1,578,000 ","813,000 ","765,000 ","184,000 ","88,000 ","96,000 " -29,"1,704,000 ","874,000 ","830,000 ","1,532,000 ","791,000 ","741,000 ","172,000 ","83,000 ","89,000 " -30,"1,647,000 ","847,000 ","800,000 ","1,486,000 ","769,000 ","717,000 ","161,000 ","78,000 ","83,000 " -31,"1,583,000 ","817,000 ","766,000 ","1,435,000 ","744,000 ","691,000 ","148,000 ","73,000 ","75,000 " -32,"1,539,000 ","797,000 ","742,000 ","1,398,000 ","727,000 ","671,000 ","141,000 ","70,000 ","71,000 " -33,"1,523,000 ","792,000 ","731,000 ","1,381,000 ","721,000 ","660,000 ","142,000 ","71,000 ","71,000 " -34,"1,525,000 ","796,000 ","729,000 ","1,376,000 ","721,000 ","655,000 ","149,000 ","75,000 ","74,000 " -35,"1,523,000 ","798,000 ","725,000 ","1,369,000 ","720,000 ","649,000 ","154,000 ","78,000 ","76,000 " -36,"1,524,000 ","802,000 ","722,000 ","1,363,000 ","720,000 ","643,000 ","161,000 ","82,000 ","79,000 " -37,"1,505,000 ","794,000 ","711,000 ","1,343,000 ","711,000 ","632,000 ","162,000 ","83,000 ","79,000 " -38,"1,452,000 ","765,000 ","687,000 ","1,298,000 ","686,000 ","612,000 ","154,000 ","79,000 ","75,000 " -39,"1,379,000 ","724,000 ","655,000 ","1,238,000 ","652,000 ","586,000 ","141,000 ","72,000 ","69,000 " -40,"1,308,000 ","684,000 ","624,000 ","1,180,000 ","619,000 ","561,000 ","128,000 ","65,000 ","63,000 " -41,"1,236,000 ","643,000 ","593,000 ","1,121,000 ","585,000 ","536,000 ","115,000 ","58,000 ","57,000 " -42,"1,179,000 ","612,000 ","567,000 ","1,073,000 ","559,000 ","514,000 ","106,000 ","53,000 ","53,000 " -43,"1,148,000 ","600,000 ","548,000 ","1,045,000 ","547,000 ","498,000 ","103,000 ","53,000 ","50,000 " -44,"1,134,000 ","598,000 ","536,000 ","1,029,000 ","542,000 ","487,000 ","105,000 ","56,000 ","49,000 " -45,"1,116,000 ","594,000 ","522,000 ","1,010,000 ","536,000 ","474,000 ","106,000 ","58,000 ","48,000 " -46,"1,099,000 ","591,000 ","508,000 ","992,000 ","530,000 ","462,000 ","107,000 ","61,000 ","46,000 " -47,"1,077,000 ","583,000 ","494,000 ","970,000 ","521,000 ","449,000 ","107,000 ","62,000 ","45,000 " -48,"1,046,000 ","568,000 ","478,000 ","944,000 ","508,000 ","436,000 ","102,000 ","60,000 ","42,000 " -49,"1,012,000 ","548,000 ","464,000 ","916,000 ","492,000 ","424,000 ","96,000 ","56,000 ","40,000 " -50,"978,000 ","529,000 ","449,000 ","888,000 ","477,000 ","411,000 ","90,000 ","52,000 ","38,000 " -51,"948,000 ","512,000 ","436,000 ","863,000 ","463,000 ","400,000 ","85,000 ","49,000 ","36,000 " -52,"910,000 ","490,000 ","420,000 ","831,000 ","445,000 ","386,000 ","79,000 ","45,000 ","34,000 " -53,"859,000 ","462,000 ","397,000 ","787,000 ","421,000 ","366,000 ","72,000 ","41,000 ","31,000 " -54,"801,000 ","430,000 ","371,000 ","736,000 ","393,000 ","343,000 ","65,000 ","37,000 ","28,000 " -55,"745,000 ","399,000 ","346,000 ","687,000 ","366,000 ","321,000 ","58,000 ","33,000 ","25,000 " -56,"686,000 ","366,000 ","320,000 ","636,000 ","338,000 ","298,000 ","50,000 ","28,000 ","22,000 " -57,"640,000 ","341,000 ","299,000 ","596,000 ","316,000 ","280,000 ","44,000 ","25,000 ","19,000 " -58,"615,000 ","327,000 ","288,000 ","572,000 ","303,000 ","269,000 ","43,000 ","24,000 ","19,000 " -59,"602,000 ","320,000 ","282,000 ","559,000 ","296,000 ","263,000 ","43,000 ","24,000 ","19,000 " -60,"589,000 ","313,000 ","276,000 ","545,000 ","288,000 ","257,000 ","44,000 ","25,000 ","19,000 " -61,"576,000 ","306,000 ","270,000 ","532,000 ","281,000 ","251,000 ","44,000 ","25,000 ","19,000 " -62,"558,000 ","296,000 ","262,000 ","514,000 ","271,000 ","243,000 ","44,000 ","25,000 ","19,000 " -63,"527,000 ","279,000 ","248,000 ","486,000 ","256,000 ","230,000 ","41,000 ","23,000 ","18,000 " -64,"488,000 ","257,000 ","231,000 ","451,000 ","236,000 ","215,000 ","37,000 ","21,000 ","16,000 " -65,"453,000 ","238,000 ","215,000 ","419,000 ","219,000 ","200,000 ","34,000 ","19,000 ","15,000 " -66,"419,000 ","219,000 ","200,000 ","389,000 ","202,000 ","187,000 ","30,000 ","17,000 ","13,000 " -67,"388,000 ","202,000 ","186,000 ","360,000 ","186,000 ","174,000 ","28,000 ","16,000 ","12,000 " -68,"356,000 ","184,000 ","172,000 ","331,000 ","170,000 ","161,000 ","25,000 ","14,000 ","11,000 " -69,"325,000 ","167,000 ","158,000 ","303,000 ","155,000 ","148,000 ","22,000 ","12,000 ","10,000 " -70,"298,000 ","152,000 ","146,000 ","278,000 ","141,000 ","137,000 ","20,000 ","11,000 ","9,000 " -71,"275,000 ","139,000 ","136,000 ","256,000 ","129,000 ","127,000 ","19,000 ","10,000 ","9,000 " -72,"254,000 ","128,000 ","126,000 ","237,000 ","119,000 ","118,000 ","17,000 ","9,000 ","8,000 " -73,"238,000 ","120,000 ","118,000 ","221,000 ","111,000 ","110,000 ","17,000 ","9,000 ","8,000 " -74,"229,000 ","115,000 ","114,000 ","211,000 ","106,000 ","105,000 ","18,000 ","9,000 ","9,000 " -75+,"1,368,000 ","655,000 ","713,000 ","1,261,000 ","602,000 ","659,000 ","107,000 ","53,000 ","54,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1917.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1917.csv deleted file mode 100644 index 06bd000bdc..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1917.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1917",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"103,268,000 ","52,788,000 ","50,480,000 ","92,435,000 ","47,339,000 ","45,096,000 ","10,833,000 ","5,449,000 ","5,384,000 " -,,,,,,,,, -0,"2,329,000 ","1,185,000 ","1,144,000 ","2,092,000 ","1,066,000 ","1,026,000 ","237,000 ","119,000 ","118,000 " -1,"2,320,000 ","1,176,000 ","1,144,000 ","2,076,000 ","1,054,000 ","1,022,000 ","244,000 ","122,000 ","122,000 " -2,"2,308,000 ","1,167,000 ","1,141,000 ","2,058,000 ","1,043,000 ","1,015,000 ","250,000 ","124,000 ","126,000 " -3,"2,294,000 ","1,159,000 ","1,135,000 ","2,039,000 ","1,032,000 ","1,007,000 ","255,000 ","127,000 ","128,000 " -4,"2,276,000 ","1,148,000 ","1,128,000 ","2,018,000 ","1,020,000 ","998,000 ","258,000 ","128,000 ","130,000 " -5,"2,257,000 ","1,138,000 ","1,119,000 ","1,995,000 ","1,008,000 ","987,000 ","262,000 ","130,000 ","132,000 " -6,"2,235,000 ","1,127,000 ","1,108,000 ","1,972,000 ","996,000 ","976,000 ","263,000 ","131,000 ","132,000 " -7,"2,210,000 ","1,115,000 ","1,095,000 ","1,947,000 ","984,000 ","963,000 ","263,000 ","131,000 ","132,000 " -8,"2,185,000 ","1,103,000 ","1,082,000 ","1,922,000 ","972,000 ","950,000 ","263,000 ","131,000 ","132,000 " -9,"2,158,000 ","1,090,000 ","1,068,000 ","1,896,000 ","959,000 ","937,000 ","262,000 ","131,000 ","131,000 " -10,"2,129,000 ","1,076,000 ","1,053,000 ","1,869,000 ","946,000 ","923,000 ","260,000 ","130,000 ","130,000 " -11,"2,103,000 ","1,064,000 ","1,039,000 ","1,844,000 ","934,000 ","910,000 ","259,000 ","130,000 ","129,000 " -12,"2,071,000 ","1,048,000 ","1,023,000 ","1,816,000 ","920,000 ","896,000 ","255,000 ","128,000 ","127,000 " -13,"2,032,000 ","1,025,000 ","1,007,000 ","1,783,000 ","901,000 ","882,000 ","249,000 ","124,000 ","125,000 " -14,"1,989,000 ","999,000 ","990,000 ","1,747,000 ","880,000 ","867,000 ","242,000 ","119,000 ","123,000 " -15,"1,947,000 ","974,000 ","973,000 ","1,713,000 ","860,000 ","853,000 ","234,000 ","114,000 ","120,000 " -16,"1,904,000 ","949,000 ","955,000 ","1,678,000 ","840,000 ","838,000 ","226,000 ","109,000 ","117,000 " -17,"1,875,000 ","931,000 ","944,000 ","1,654,000 ","826,000 ","828,000 ","221,000 ","105,000 ","116,000 " -18,"1,868,000 ","924,000 ","944,000 ","1,648,000 ","820,000 ","828,000 ","220,000 ","104,000 ","116,000 " -19,"1,872,000 ","923,000 ","949,000 ","1,651,000 ","819,000 ","832,000 ","221,000 ","104,000 ","117,000 " -20,"1,876,000 ","922,000 ","954,000 ","1,654,000 ","818,000 ","836,000 ","222,000 ","104,000 ","118,000 " -21,"1,880,000 ","922,000 ","958,000 ","1,656,000 ","817,000 ","839,000 ","224,000 ","105,000 ","119,000 " -22,"1,880,000 ","922,000 ","958,000 ","1,658,000 ","818,000 ","840,000 ","222,000 ","104,000 ","118,000 " -23,"1,872,000 ","921,000 ","951,000 ","1,654,000 ","819,000 ","835,000 ","218,000 ","102,000 ","116,000 " -24,"1,862,000 ","922,000 ","940,000 ","1,649,000 ","822,000 ","827,000 ","213,000 ","100,000 ","113,000 " -25,"1,848,000 ","921,000 ","927,000 ","1,642,000 ","824,000 ","818,000 ","206,000 ","97,000 ","109,000 " -26,"1,840,000 ","923,000 ","917,000 ","1,639,000 ","828,000 ","811,000 ","201,000 ","95,000 ","106,000 " -27,"1,817,000 ","917,000 ","900,000 ","1,623,000 ","825,000 ","798,000 ","194,000 ","92,000 ","102,000 " -28,"1,774,000 ","900,000 ","874,000 ","1,590,000 ","812,000 ","778,000 ","184,000 ","88,000 ","96,000 " -29,"1,718,000 ","875,000 ","843,000 ","1,546,000 ","792,000 ","754,000 ","172,000 ","83,000 ","89,000 " -30,"1,663,000 ","850,000 ","813,000 ","1,502,000 ","772,000 ","730,000 ","161,000 ","78,000 ","83,000 " -31,"1,601,000 ","822,000 ","779,000 ","1,453,000 ","750,000 ","703,000 ","148,000 ","72,000 ","76,000 " -32,"1,557,000 ","803,000 ","754,000 ","1,417,000 ","734,000 ","683,000 ","140,000 ","69,000 ","71,000 " -33,"1,545,000 ","801,000 ","744,000 ","1,402,000 ","730,000 ","672,000 ","143,000 ","71,000 ","72,000 " -34,"1,550,000 ","807,000 ","743,000 ","1,400,000 ","732,000 ","668,000 ","150,000 ","75,000 ","75,000 " -35,"1,549,000 ","811,000 ","738,000 ","1,393,000 ","732,000 ","661,000 ","156,000 ","79,000 ","77,000 " -36,"1,554,000 ","818,000 ","736,000 ","1,390,000 ","734,000 ","656,000 ","164,000 ","84,000 ","80,000 " -37,"1,536,000 ","810,000 ","726,000 ","1,370,000 ","725,000 ","645,000 ","166,000 ","85,000 ","81,000 " -38,"1,481,000 ","780,000 ","701,000 ","1,323,000 ","699,000 ","624,000 ","158,000 ","81,000 ","77,000 " -39,"1,406,000 ","737,000 ","669,000 ","1,262,000 ","664,000 ","598,000 ","144,000 ","73,000 ","71,000 " -40,"1,334,000 ","696,000 ","638,000 ","1,203,000 ","630,000 ","573,000 ","131,000 ","66,000 ","65,000 " -41,"1,258,000 ","652,000 ","606,000 ","1,141,000 ","594,000 ","547,000 ","117,000 ","58,000 ","59,000 " -42,"1,200,000 ","621,000 ","579,000 ","1,092,000 ","567,000 ","525,000 ","108,000 ","54,000 ","54,000 " -43,"1,170,000 ","609,000 ","561,000 ","1,065,000 ","555,000 ","510,000 ","105,000 ","54,000 ","51,000 " -44,"1,159,000 ","611,000 ","548,000 ","1,051,000 ","553,000 ","498,000 ","108,000 ","58,000 ","50,000 " -45,"1,144,000 ","609,000 ","535,000 ","1,034,000 ","548,000 ","486,000 ","110,000 ","61,000 ","49,000 " -46,"1,127,000 ","607,000 ","520,000 ","1,017,000 ","544,000 ","473,000 ","110,000 ","63,000 ","47,000 " -47,"1,108,000 ","601,000 ","507,000 ","997,000 ","536,000 ","461,000 ","111,000 ","65,000 ","46,000 " -48,"1,073,000 ","583,000 ","490,000 ","968,000 ","521,000 ","447,000 ","105,000 ","62,000 ","43,000 " -49,"1,036,000 ","561,000 ","475,000 ","937,000 ","503,000 ","434,000 ","99,000 ","58,000 ","41,000 " -50,"999,000 ","540,000 ","459,000 ","906,000 ","486,000 ","420,000 ","93,000 ","54,000 ","39,000 " -51,"966,000 ","521,000 ","445,000 ","878,000 ","470,000 ","408,000 ","88,000 ","51,000 ","37,000 " -52,"925,000 ","498,000 ","427,000 ","844,000 ","451,000 ","393,000 ","81,000 ","47,000 ","34,000 " -53,"873,000 ","469,000 ","404,000 ","800,000 ","427,000 ","373,000 ","73,000 ","42,000 ","31,000 " -54,"817,000 ","438,000 ","379,000 ","751,000 ","400,000 ","351,000 ","66,000 ","38,000 ","28,000 " -55,"762,000 ","408,000 ","354,000 ","703,000 ","374,000 ","329,000 ","59,000 ","34,000 ","25,000 " -56,"704,000 ","375,000 ","329,000 ","653,000 ","346,000 ","307,000 ","51,000 ","29,000 ","22,000 " -57,"658,000 ","350,000 ","308,000 ","613,000 ","324,000 ","289,000 ","45,000 ","26,000 ","19,000 " -58,"632,000 ","335,000 ","297,000 ","589,000 ","311,000 ","278,000 ","43,000 ","24,000 ","19,000 " -59,"621,000 ","330,000 ","291,000 ","577,000 ","305,000 ","272,000 ","44,000 ","25,000 ","19,000 " -60,"606,000 ","322,000 ","284,000 ","562,000 ","297,000 ","265,000 ","44,000 ","25,000 ","19,000 " -61,"593,000 ","315,000 ","278,000 ","549,000 ","290,000 ","259,000 ","44,000 ","25,000 ","19,000 " -62,"575,000 ","305,000 ","270,000 ","531,000 ","280,000 ","251,000 ","44,000 ","25,000 ","19,000 " -63,"542,000 ","287,000 ","255,000 ","501,000 ","264,000 ","237,000 ","41,000 ","23,000 ","18,000 " -64,"501,000 ","264,000 ","237,000 ","464,000 ","243,000 ","221,000 ","37,000 ","21,000 ","16,000 " -65,"464,000 ","244,000 ","220,000 ","430,000 ","225,000 ","205,000 ","34,000 ","19,000 ","15,000 " -66,"430,000 ","225,000 ","205,000 ","398,000 ","207,000 ","191,000 ","32,000 ","18,000 ","14,000 " -67,"396,000 ","206,000 ","190,000 ","367,000 ","190,000 ","177,000 ","29,000 ","16,000 ","13,000 " -68,"361,000 ","187,000 ","174,000 ","336,000 ","173,000 ","163,000 ","25,000 ","14,000 ","11,000 " -69,"332,000 ","171,000 ","161,000 ","309,000 ","158,000 ","151,000 ","23,000 ","13,000 ","10,000 " -70,"305,000 ","156,000 ","149,000 ","283,000 ","144,000 ","139,000 ","22,000 ","12,000 ","10,000 " -71,"281,000 ","143,000 ","138,000 ","261,000 ","132,000 ","129,000 ","20,000 ","11,000 ","9,000 " -72,"261,000 ","132,000 ","129,000 ","242,000 ","122,000 ","120,000 ","19,000 ","10,000 ","9,000 " -73,"246,000 ","124,000 ","122,000 ","229,000 ","115,000 ","114,000 ","17,000 ","9,000 ","8,000 " -74,"237,000 ","119,000 ","118,000 ","219,000 ","110,000 ","109,000 ","18,000 ","9,000 ","9,000 " -75+,"1,401,000 ","669,000 ","732,000 ","1,294,000 ","617,000 ","677,000 ","107,000 ","52,000 ","55,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1918.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1918.csv deleted file mode 100644 index 5d976889da..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1918.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1918",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"103,208,000 ","51,974,000 ","51,234,000 ","92,352,000 ","46,540,000 ","45,812,000 ","10,856,000 ","5,434,000 ","5,422,000 " -,,,,,,,,, -0,"2,332,000 ","1,187,000 ","1,145,000 ","2,100,000 ","1,071,000 ","1,029,000 ","232,000 ","116,000 ","116,000 " -1,"2,330,000 ","1,181,000 ","1,149,000 ","2,089,000 ","1,061,000 ","1,028,000 ","241,000 ","120,000 ","121,000 " -2,"2,324,000 ","1,175,000 ","1,149,000 ","2,076,000 ","1,052,000 ","1,024,000 ","248,000 ","123,000 ","125,000 " -3,"2,316,000 ","1,169,000 ","1,147,000 ","2,062,000 ","1,043,000 ","1,019,000 ","254,000 ","126,000 ","128,000 " -4,"2,304,000 ","1,162,000 ","1,142,000 ","2,046,000 ","1,034,000 ","1,012,000 ","258,000 ","128,000 ","130,000 " -5,"2,288,000 ","1,154,000 ","1,134,000 ","2,027,000 ","1,024,000 ","1,003,000 ","261,000 ","130,000 ","131,000 " -6,"2,270,000 ","1,145,000 ","1,125,000 ","2,007,000 ","1,014,000 ","993,000 ","263,000 ","131,000 ","132,000 " -7,"2,250,000 ","1,135,000 ","1,115,000 ","1,985,000 ","1,003,000 ","982,000 ","265,000 ","132,000 ","133,000 " -8,"2,226,000 ","1,124,000 ","1,102,000 ","1,961,000 ","992,000 ","969,000 ","265,000 ","132,000 ","133,000 " -9,"2,199,000 ","1,111,000 ","1,088,000 ","1,935,000 ","979,000 ","956,000 ","264,000 ","132,000 ","132,000 " -10,"2,171,000 ","1,097,000 ","1,074,000 ","1,909,000 ","966,000 ","943,000 ","262,000 ","131,000 ","131,000 " -11,"2,141,000 ","1,082,000 ","1,059,000 ","1,880,000 ","951,000 ","929,000 ","261,000 ","131,000 ","130,000 " -12,"2,107,000 ","1,064,000 ","1,043,000 ","1,850,000 ","935,000 ","915,000 ","257,000 ","129,000 ","128,000 " -13,"2,064,000 ","1,041,000 ","1,023,000 ","1,813,000 ","916,000 ","897,000 ","251,000 ","125,000 ","126,000 " -14,"2,016,000 ","1,015,000 ","1,001,000 ","1,773,000 ","895,000 ","878,000 ","243,000 ","120,000 ","123,000 " -15,"1,971,000 ","990,000 ","981,000 ","1,735,000 ","875,000 ","860,000 ","236,000 ","115,000 ","121,000 " -16,"1,925,000 ","966,000 ","959,000 ","1,698,000 ","857,000 ","841,000 ","227,000 ","109,000 ","118,000 " -17,"1,882,000 ","937,000 ","945,000 ","1,661,000 ","832,000 ","829,000 ","221,000 ","105,000 ","116,000 " -18,"1,843,000 ","899,000 ","944,000 ","1,624,000 ","796,000 ","828,000 ","219,000 ","103,000 ","116,000 " -19,"1,808,000 ","857,000 ","951,000 ","1,588,000 ","755,000 ","833,000 ","220,000 ","102,000 ","118,000 " -20,"1,771,000 ","816,000 ","955,000 ","1,553,000 ","716,000 ","837,000 ","218,000 ","100,000 ","118,000 " -21,"1,734,000 ","774,000 ","960,000 ","1,516,000 ","675,000 ","841,000 ","218,000 ","99,000 ","119,000 " -22,"1,711,000 ","749,000 ","962,000 ","1,495,000 ","652,000 ","843,000 ","216,000 ","97,000 ","119,000 " -23,"1,709,000 ","752,000 ","957,000 ","1,496,000 ","656,000 ","840,000 ","213,000 ","96,000 ","117,000 " -24,"1,717,000 ","771,000 ","946,000 ","1,510,000 ","677,000 ","833,000 ","207,000 ","94,000 ","113,000 " -25,"1,725,000 ","788,000 ","937,000 ","1,523,000 ","696,000 ","827,000 ","202,000 ","92,000 ","110,000 " -26,"1,738,000 ","810,000 ","928,000 ","1,541,000 ","719,000 ","822,000 ","197,000 ","91,000 ","106,000 " -27,"1,735,000 ","823,000 ","912,000 ","1,544,000 ","734,000 ","810,000 ","191,000 ","89,000 ","102,000 " -28,"1,708,000 ","821,000 ","887,000 ","1,527,000 ","736,000 ","791,000 ","181,000 ","85,000 ","96,000 " -29,"1,667,000 ","810,000 ","857,000 ","1,496,000 ","729,000 ","767,000 ","171,000 ","81,000 ","90,000 " -30,"1,626,000 ","801,000 ","825,000 ","1,467,000 ","725,000 ","742,000 ","159,000 ","76,000 ","83,000 " -31,"1,582,000 ","790,000 ","792,000 ","1,435,000 ","719,000 ","716,000 ","147,000 ","71,000 ","76,000 " -32,"1,553,000 ","786,000 ","767,000 ","1,412,000 ","717,000 ","695,000 ","141,000 ","69,000 ","72,000 " -33,"1,549,000 ","793,000 ","756,000 ","1,406,000 ","722,000 ","684,000 ","143,000 ","71,000 ","72,000 " -34,"1,562,000 ","806,000 ","756,000 ","1,410,000 ","730,000 ","680,000 ","152,000 ","76,000 ","76,000 " -35,"1,567,000 ","815,000 ","752,000 ","1,409,000 ","735,000 ","674,000 ","158,000 ","80,000 ","78,000 " -36,"1,578,000 ","827,000 ","751,000 ","1,411,000 ","742,000 ","669,000 ","167,000 ","85,000 ","82,000 " -37,"1,563,000 ","822,000 ","741,000 ","1,394,000 ","736,000 ","658,000 ","169,000 ","86,000 ","83,000 " -38,"1,509,000 ","793,000 ","716,000 ","1,348,000 ","711,000 ","637,000 ","161,000 ","82,000 ","79,000 " -39,"1,431,000 ","749,000 ","682,000 ","1,285,000 ","675,000 ","610,000 ","146,000 ","74,000 ","72,000 " -40,"1,358,000 ","707,000 ","651,000 ","1,225,000 ","640,000 ","585,000 ","133,000 ","67,000 ","66,000 " -41,"1,279,000 ","660,000 ","619,000 ","1,160,000 ","601,000 ","559,000 ","119,000 ","59,000 ","60,000 " -42,"1,219,000 ","627,000 ","592,000 ","1,110,000 ","573,000 ","537,000 ","109,000 ","54,000 ","55,000 " -43,"1,191,000 ","618,000 ","573,000 ","1,084,000 ","563,000 ","521,000 ","107,000 ","55,000 ","52,000 " -44,"1,184,000 ","623,000 ","561,000 ","1,073,000 ","563,000 ","510,000 ","111,000 ","60,000 ","51,000 " -45,"1,170,000 ","623,000 ","547,000 ","1,057,000 ","560,000 ","497,000 ","113,000 ","63,000 ","50,000 " -46,"1,158,000 ","624,000 ","534,000 ","1,042,000 ","557,000 ","485,000 ","116,000 ","67,000 ","49,000 " -47,"1,137,000 ","618,000 ","519,000 ","1,022,000 ","550,000 ","472,000 ","115,000 ","68,000 ","47,000 " -48,"1,103,000 ","600,000 ","503,000 ","992,000 ","534,000 ","458,000 ","111,000 ","66,000 ","45,000 " -49,"1,060,000 ","575,000 ","485,000 ","957,000 ","514,000 ","443,000 ","103,000 ","61,000 ","42,000 " -50,"1,020,000 ","551,000 ","469,000 ","924,000 ","495,000 ","429,000 ","96,000 ","56,000 ","40,000 " -51,"983,000 ","529,000 ","454,000 ","893,000 ","477,000 ","416,000 ","90,000 ","52,000 ","38,000 " -52,"940,000 ","504,000 ","436,000 ","858,000 ","457,000 ","401,000 ","82,000 ","47,000 ","35,000 " -53,"889,000 ","476,000 ","413,000 ","814,000 ","433,000 ","381,000 ","75,000 ","43,000 ","32,000 " -54,"833,000 ","445,000 ","388,000 ","766,000 ","407,000 ","359,000 ","67,000 ","38,000 ","29,000 " -55,"777,000 ","415,000 ","362,000 ","718,000 ","381,000 ","337,000 ","59,000 ","34,000 ","25,000 " -56,"720,000 ","383,000 ","337,000 ","669,000 ","354,000 ","315,000 ","51,000 ","29,000 ","22,000 " -57,"674,000 ","358,000 ","316,000 ","629,000 ","332,000 ","297,000 ","45,000 ","26,000 ","19,000 " -58,"650,000 ","345,000 ","305,000 ","606,000 ","320,000 ","286,000 ","44,000 ","25,000 ","19,000 " -59,"637,000 ","338,000 ","299,000 ","593,000 ","313,000 ","280,000 ","44,000 ","25,000 ","19,000 " -60,"623,000 ","331,000 ","292,000 ","579,000 ","306,000 ","273,000 ","44,000 ","25,000 ","19,000 " -61,"611,000 ","325,000 ","286,000 ","567,000 ","300,000 ","267,000 ","44,000 ","25,000 ","19,000 " -62,"591,000 ","314,000 ","277,000 ","547,000 ","289,000 ","258,000 ","44,000 ","25,000 ","19,000 " -63,"558,000 ","296,000 ","262,000 ","516,000 ","272,000 ","244,000 ","42,000 ","24,000 ","18,000 " -64,"515,000 ","272,000 ","243,000 ","478,000 ","251,000 ","227,000 ","37,000 ","21,000 ","16,000 " -65,"476,000 ","250,000 ","226,000 ","442,000 ","231,000 ","211,000 ","34,000 ","19,000 ","15,000 " -66,"440,000 ","230,000 ","210,000 ","408,000 ","212,000 ","196,000 ","32,000 ","18,000 ","14,000 " -67,"404,000 ","210,000 ","194,000 ","375,000 ","194,000 ","181,000 ","29,000 ","16,000 ","13,000 " -68,"370,000 ","192,000 ","178,000 ","344,000 ","177,000 ","167,000 ","26,000 ","15,000 ","11,000 " -69,"337,000 ","174,000 ","163,000 ","314,000 ","161,000 ","153,000 ","23,000 ","13,000 ","10,000 " -70,"311,000 ","159,000 ","152,000 ","289,000 ","147,000 ","142,000 ","22,000 ","12,000 ","10,000 " -71,"286,000 ","146,000 ","140,000 ","266,000 ","135,000 ","131,000 ","20,000 ","11,000 ","9,000 " -72,"267,000 ","135,000 ","132,000 ","248,000 ","125,000 ","123,000 ","19,000 ","10,000 ","9,000 " -73,"253,000 ","127,000 ","126,000 ","235,000 ","118,000 ","117,000 ","18,000 ","9,000 ","9,000 " -74,"247,000 ","124,000 ","123,000 ","229,000 ","115,000 ","114,000 ","18,000 ","9,000 ","9,000 " -75+,"1,435,000 ","683,000 ","752,000 ","1,326,000 ","630,000 ","696,000 ","109,000 ","53,000 ","56,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1919.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1919.csv deleted file mode 100644 index c97c7b129c..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1919.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1919",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"104,514,000 ","53,103,000 ","51,411,000 ","93,684,000 ","47,672,000 ","46,012,000 ","10,830,000 ","5,431,000 ","5,399,000 " -,,,,,,,,, -0,"2,299,000 ","1,169,000 ","1,130,000 ","2,074,000 ","1,057,000 ","1,017,000 ","225,000 ","112,000 ","113,000 " -1,"2,308,000 ","1,170,000 ","1,138,000 ","2,074,000 ","1,054,000 ","1,020,000 ","234,000 ","116,000 ","118,000 " -2,"2,312,000 ","1,169,000 ","1,143,000 ","2,070,000 ","1,049,000 ","1,021,000 ","242,000 ","120,000 ","122,000 " -3,"2,312,000 ","1,168,000 ","1,144,000 ","2,063,000 ","1,044,000 ","1,019,000 ","249,000 ","124,000 ","125,000 " -4,"2,305,000 ","1,163,000 ","1,142,000 ","2,051,000 ","1,037,000 ","1,014,000 ","254,000 ","126,000 ","128,000 " -5,"2,297,000 ","1,159,000 ","1,138,000 ","2,038,000 ","1,030,000 ","1,008,000 ","259,000 ","129,000 ","130,000 " -6,"2,282,000 ","1,151,000 ","1,131,000 ","2,021,000 ","1,021,000 ","1,000,000 ","261,000 ","130,000 ","131,000 " -7,"2,263,000 ","1,142,000 ","1,121,000 ","2,000,000 ","1,011,000 ","989,000 ","263,000 ","131,000 ","132,000 " -8,"2,242,000 ","1,132,000 ","1,110,000 ","1,978,000 ","1,000,000 ","978,000 ","264,000 ","132,000 ","132,000 " -9,"2,214,000 ","1,118,000 ","1,096,000 ","1,952,000 ","987,000 ","965,000 ","262,000 ","131,000 ","131,000 " -10,"2,186,000 ","1,105,000 ","1,081,000 ","1,925,000 ","974,000 ","951,000 ","261,000 ","131,000 ","130,000 " -11,"2,158,000 ","1,091,000 ","1,067,000 ","1,899,000 ","961,000 ","938,000 ","259,000 ","130,000 ","129,000 " -12,"2,121,000 ","1,072,000 ","1,049,000 ","1,865,000 ","944,000 ","921,000 ","256,000 ","128,000 ","128,000 " -13,"2,071,000 ","1,044,000 ","1,027,000 ","1,821,000 ","920,000 ","901,000 ","250,000 ","124,000 ","126,000 " -14,"2,015,000 ","1,012,000 ","1,003,000 ","1,773,000 ","893,000 ","880,000 ","242,000 ","119,000 ","123,000 " -15,"1,959,000 ","981,000 ","978,000 ","1,725,000 ","867,000 ","858,000 ","234,000 ","114,000 ","120,000 " -16,"1,903,000 ","950,000 ","953,000 ","1,678,000 ","842,000 ","836,000 ","225,000 ","108,000 ","117,000 " -17,"1,860,000 ","923,000 ","937,000 ","1,641,000 ","819,000 ","822,000 ","219,000 ","104,000 ","115,000 " -18,"1,839,000 ","904,000 ","935,000 ","1,622,000 ","802,000 ","820,000 ","217,000 ","102,000 ","115,000 " -19,"1,833,000 ","892,000 ","941,000 ","1,615,000 ","790,000 ","825,000 ","218,000 ","102,000 ","116,000 " -20,"1,824,000 ","878,000 ","946,000 ","1,606,000 ","777,000 ","829,000 ","218,000 ","101,000 ","117,000 " -21,"1,816,000 ","864,000 ","952,000 ","1,597,000 ","764,000 ","833,000 ","219,000 ","100,000 ","119,000 " -22,"1,811,000 ","857,000 ","954,000 ","1,594,000 ","758,000 ","836,000 ","217,000 ","99,000 ","118,000 " -23,"1,810,000 ","860,000 ","950,000 ","1,596,000 ","762,000 ","834,000 ","214,000 ","98,000 ","116,000 " -24,"1,810,000 ","868,000 ","942,000 ","1,602,000 ","772,000 ","830,000 ","208,000 ","96,000 ","112,000 " -25,"1,811,000 ","876,000 ","935,000 ","1,608,000 ","782,000 ","826,000 ","203,000 ","94,000 ","109,000 " -26,"1,815,000 ","887,000 ","928,000 ","1,616,000 ","794,000 ","822,000 ","199,000 ","93,000 ","106,000 " -27,"1,805,000 ","890,000 ","915,000 ","1,612,000 ","799,000 ","813,000 ","193,000 ","91,000 ","102,000 " -28,"1,770,000 ","879,000 ","891,000 ","1,587,000 ","792,000 ","795,000 ","183,000 ","87,000 ","96,000 " -29,"1,717,000 ","858,000 ","859,000 ","1,547,000 ","777,000 ","770,000 ","170,000 ","81,000 ","89,000 " -30,"1,667,000 ","838,000 ","829,000 ","1,508,000 ","762,000 ","746,000 ","159,000 ","76,000 ","83,000 " -31,"1,611,000 ","816,000 ","795,000 ","1,465,000 ","746,000 ","719,000 ","146,000 ","70,000 ","76,000 " -32,"1,574,000 ","803,000 ","771,000 ","1,435,000 ","736,000 ","699,000 ","139,000 ","67,000 ","72,000 " -33,"1,566,000 ","805,000 ","761,000 ","1,425,000 ","736,000 ","689,000 ","141,000 ","69,000 ","72,000 " -34,"1,576,000 ","816,000 ","760,000 ","1,425,000 ","741,000 ","684,000 ","151,000 ","75,000 ","76,000 " -35,"1,582,000 ","824,000 ","758,000 ","1,424,000 ","745,000 ","679,000 ","158,000 ","79,000 ","79,000 " -36,"1,592,000 ","835,000 ","757,000 ","1,424,000 ","750,000 ","674,000 ","168,000 ","85,000 ","83,000 " -37,"1,577,000 ","830,000 ","747,000 ","1,406,000 ","743,000 ","663,000 ","171,000 ","87,000 ","84,000 " -38,"1,521,000 ","799,000 ","722,000 ","1,359,000 ","717,000 ","642,000 ","162,000 ","82,000 ","80,000 " -39,"1,443,000 ","754,000 ","689,000 ","1,296,000 ","680,000 ","616,000 ","147,000 ","74,000 ","73,000 " -40,"1,369,000 ","711,000 ","658,000 ","1,235,000 ","644,000 ","591,000 ","134,000 ","67,000 ","67,000 " -41,"1,291,000 ","665,000 ","626,000 ","1,171,000 ","606,000 ","565,000 ","120,000 ","59,000 ","61,000 " -42,"1,231,000 ","632,000 ","599,000 ","1,121,000 ","578,000 ","543,000 ","110,000 ","54,000 ","56,000 " -43,"1,204,000 ","624,000 ","580,000 ","1,095,000 ","568,000 ","527,000 ","109,000 ","56,000 ","53,000 " -44,"1,198,000 ","630,000 ","568,000 ","1,085,000 ","569,000 ","516,000 ","113,000 ","61,000 ","52,000 " -45,"1,187,000 ","632,000 ","555,000 ","1,071,000 ","567,000 ","504,000 ","116,000 ","65,000 ","51,000 " -46,"1,174,000 ","634,000 ","540,000 ","1,056,000 ","565,000 ","491,000 ","118,000 ","69,000 ","49,000 " -47,"1,153,000 ","628,000 ","525,000 ","1,036,000 ","558,000 ","478,000 ","117,000 ","70,000 ","47,000 " -48,"1,118,000 ","610,000 ","508,000 ","1,005,000 ","542,000 ","463,000 ","113,000 ","68,000 ","45,000 " -49,"1,072,000 ","582,000 ","490,000 ","968,000 ","520,000 ","448,000 ","104,000 ","62,000 ","42,000 " -50,"1,030,000 ","556,000 ","474,000 ","933,000 ","499,000 ","434,000 ","97,000 ","57,000 ","40,000 " -51,"990,000 ","532,000 ","458,000 ","899,000 ","479,000 ","420,000 ","91,000 ","53,000 ","38,000 " -52,"945,000 ","506,000 ","439,000 ","862,000 ","458,000 ","404,000 ","83,000 ","48,000 ","35,000 " -53,"893,000 ","477,000 ","416,000 ","818,000 ","434,000 ","384,000 ","75,000 ","43,000 ","32,000 " -54,"840,000 ","448,000 ","392,000 ","772,000 ","409,000 ","363,000 ","68,000 ","39,000 ","29,000 " -55,"785,000 ","418,000 ","367,000 ","726,000 ","384,000 ","342,000 ","59,000 ","34,000 ","25,000 " -56,"730,000 ","387,000 ","343,000 ","679,000 ","358,000 ","321,000 ","51,000 ","29,000 ","22,000 " -57,"685,000 ","363,000 ","322,000 ","640,000 ","337,000 ","303,000 ","45,000 ","26,000 ","19,000 " -58,"661,000 ","350,000 ","311,000 ","617,000 ","325,000 ","292,000 ","44,000 ","25,000 ","19,000 " -59,"649,000 ","344,000 ","305,000 ","605,000 ","319,000 ","286,000 ","44,000 ","25,000 ","19,000 " -60,"634,000 ","336,000 ","298,000 ","590,000 ","311,000 ","279,000 ","44,000 ","25,000 ","19,000 " -61,"621,000 ","330,000 ","291,000 ","577,000 ","305,000 ","272,000 ","44,000 ","25,000 ","19,000 " -62,"602,000 ","320,000 ","282,000 ","558,000 ","295,000 ","263,000 ","44,000 ","25,000 ","19,000 " -63,"567,000 ","301,000 ","266,000 ","525,000 ","277,000 ","248,000 ","42,000 ","24,000 ","18,000 " -64,"522,000 ","276,000 ","246,000 ","485,000 ","255,000 ","230,000 ","37,000 ","21,000 ","16,000 " -65,"483,000 ","254,000 ","229,000 ","449,000 ","235,000 ","214,000 ","34,000 ","19,000 ","15,000 " -66,"444,000 ","233,000 ","211,000 ","413,000 ","215,000 ","198,000 ","31,000 ","18,000 ","13,000 " -67,"408,000 ","213,000 ","195,000 ","380,000 ","197,000 ","183,000 ","28,000 ","16,000 ","12,000 " -68,"372,000 ","193,000 ","179,000 ","347,000 ","179,000 ","168,000 ","25,000 ","14,000 ","11,000 " -69,"341,000 ","176,000 ","165,000 ","318,000 ","163,000 ","155,000 ","23,000 ","13,000 ","10,000 " -70,"313,000 ","160,000 ","153,000 ","291,000 ","148,000 ","143,000 ","22,000 ","12,000 ","10,000 " -71,"289,000 ","147,000 ","142,000 ","269,000 ","136,000 ","133,000 ","20,000 ","11,000 ","9,000 " -72,"271,000 ","137,000 ","134,000 ","252,000 ","127,000 ","125,000 ","19,000 ","10,000 ","9,000 " -73,"257,000 ","129,000 ","128,000 ","239,000 ","120,000 ","119,000 ","18,000 ","9,000 ","9,000 " -74,"254,000 ","127,000 ","127,000 ","235,000 ","118,000 ","117,000 ","19,000 ","9,000 ","10,000 " -75+,"1,454,000 ","690,000 ","764,000 ","1,345,000 ","637,000 ","708,000 ","109,000 ","53,000 ","56,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1920.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1920.csv deleted file mode 100644 index 52530d87cc..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1920.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1920",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"106,461,000 ","54,291,000 ","52,170,000 ","95,510,000 ","48,787,000 ","46,723,000 ","10,951,000 ","5,504,000 ","5,447,000 " -,,,,,,,,, -0,"2,277,000 ","1,154,000 ","1,123,000 ","2,057,000 ","1,045,000 ","1,012,000 ","220,000 ","109,000 ","111,000 " -1,"2,313,000 ","1,172,000 ","1,141,000 ","2,080,000 ","1,056,000 ","1,024,000 ","233,000 ","116,000 ","117,000 " -2,"2,337,000 ","1,183,000 ","1,154,000 ","2,094,000 ","1,062,000 ","1,032,000 ","243,000 ","121,000 ","122,000 " -3,"2,351,000 ","1,190,000 ","1,161,000 ","2,099,000 ","1,064,000 ","1,035,000 ","252,000 ","126,000 ","126,000 " -4,"2,353,000 ","1,190,000 ","1,163,000 ","2,095,000 ","1,061,000 ","1,034,000 ","258,000 ","129,000 ","129,000 " -5,"2,347,000 ","1,187,000 ","1,160,000 ","2,085,000 ","1,056,000 ","1,029,000 ","262,000 ","131,000 ","131,000 " -6,"2,332,000 ","1,179,000 ","1,153,000 ","2,068,000 ","1,047,000 ","1,021,000 ","264,000 ","132,000 ","132,000 " -7,"2,311,000 ","1,168,000 ","1,143,000 ","2,046,000 ","1,035,000 ","1,011,000 ","265,000 ","133,000 ","132,000 " -8,"2,283,000 ","1,153,000 ","1,130,000 ","2,019,000 ","1,021,000 ","998,000 ","264,000 ","132,000 ","132,000 " -9,"2,250,000 ","1,136,000 ","1,114,000 ","1,988,000 ","1,005,000 ","983,000 ","262,000 ","131,000 ","131,000 " -10,"2,213,000 ","1,117,000 ","1,096,000 ","1,954,000 ","987,000 ","967,000 ","259,000 ","130,000 ","129,000 " -11,"2,173,000 ","1,096,000 ","1,077,000 ","1,919,000 ","969,000 ","950,000 ","254,000 ","127,000 ","127,000 " -12,"2,129,000 ","1,073,000 ","1,056,000 ","1,879,000 ","948,000 ","931,000 ","250,000 ","125,000 ","125,000 " -13,"2,084,000 ","1,048,000 ","1,036,000 ","1,838,000 ","926,000 ","912,000 ","246,000 ","122,000 ","124,000 " -14,"2,036,000 ","1,021,000 ","1,015,000 ","1,794,000 ","902,000 ","892,000 ","242,000 ","119,000 ","123,000 " -15,"1,989,000 ","994,000 ","995,000 ","1,751,000 ","878,000 ","873,000 ","238,000 ","116,000 ","122,000 " -16,"1,940,000 ","967,000 ","973,000 ","1,708,000 ","855,000 ","853,000 ","232,000 ","112,000 ","120,000 " -17,"1,904,000 ","946,000 ","958,000 ","1,676,000 ","837,000 ","839,000 ","228,000 ","109,000 ","119,000 " -18,"1,880,000 ","931,000 ","949,000 ","1,655,000 ","824,000 ","831,000 ","225,000 ","107,000 ","118,000 " -19,"1,869,000 ","922,000 ","947,000 ","1,645,000 ","816,000 ","829,000 ","224,000 ","106,000 ","118,000 " -20,"1,855,000 ","912,000 ","943,000 ","1,634,000 ","808,000 ","826,000 ","221,000 ","104,000 ","117,000 " -21,"1,840,000 ","901,000 ","939,000 ","1,622,000 ","799,000 ","823,000 ","218,000 ","102,000 ","116,000 " -22,"1,835,000 ","897,000 ","938,000 ","1,619,000 ","797,000 ","822,000 ","216,000 ","100,000 ","116,000 " -23,"1,845,000 ","904,000 ","941,000 ","1,632,000 ","805,000 ","827,000 ","213,000 ","99,000 ","114,000 " -24,"1,864,000 ","917,000 ","947,000 ","1,652,000 ","818,000 ","834,000 ","212,000 ","99,000 ","113,000 " -25,"1,881,000 ","929,000 ","952,000 ","1,671,000 ","831,000 ","840,000 ","210,000 ","98,000 ","112,000 " -26,"1,904,000 ","945,000 ","959,000 ","1,695,000 ","847,000 ","848,000 ","209,000 ","98,000 ","111,000 " -27,"1,900,000 ","947,000 ","953,000 ","1,696,000 ","851,000 ","845,000 ","204,000 ","96,000 ","108,000 " -28,"1,854,000 ","928,000 ","926,000 ","1,661,000 ","837,000 ","824,000 ","193,000 ","91,000 ","102,000 " -29,"1,782,000 ","895,000 ","887,000 ","1,604,000 ","811,000 ","793,000 ","178,000 ","84,000 ","94,000 " -30,"1,711,000 ","863,000 ","848,000 ","1,548,000 ","786,000 ","762,000 ","163,000 ","77,000 ","86,000 " -31,"1,636,000 ","829,000 ","807,000 ","1,488,000 ","759,000 ","729,000 ","148,000 ","70,000 ","78,000 " -32,"1,584,000 ","808,000 ","776,000 ","1,445,000 ","741,000 ","704,000 ","139,000 ","67,000 ","72,000 " -33,"1,574,000 ","809,000 ","765,000 ","1,434,000 ","741,000 ","693,000 ","140,000 ","68,000 ","72,000 " -34,"1,590,000 ","824,000 ","766,000 ","1,442,000 ","751,000 ","691,000 ","148,000 ","73,000 ","75,000 " -35,"1,599,000 ","835,000 ","764,000 ","1,443,000 ","757,000 ","686,000 ","156,000 ","78,000 ","78,000 " -36,"1,610,000 ","848,000 ","762,000 ","1,447,000 ","765,000 ","682,000 ","163,000 ","83,000 ","80,000 " -37,"1,599,000 ","846,000 ","753,000 ","1,433,000 ","761,000 ","672,000 ","166,000 ","85,000 ","81,000 " -38,"1,553,000 ","821,000 ","732,000 ","1,391,000 ","738,000 ","653,000 ","162,000 ","83,000 ","79,000 " -39,"1,482,000 ","779,000 ","703,000 ","1,331,000 ","702,000 ","629,000 ","151,000 ","77,000 ","74,000 " -40,"1,417,000 ","741,000 ","676,000 ","1,275,000 ","669,000 ","606,000 ","142,000 ","72,000 ","70,000 " -41,"1,348,000 ","700,000 ","648,000 ","1,217,000 ","634,000 ","583,000 ","131,000 ","66,000 ","65,000 " -42,"1,291,000 ","668,000 ","623,000 ","1,168,000 ","606,000 ","562,000 ","123,000 ","62,000 ","61,000 " -43,"1,254,000 ","652,000 ","602,000 ","1,134,000 ","590,000 ","544,000 ","120,000 ","62,000 ","58,000 " -44,"1,229,000 ","645,000 ","584,000 ","1,111,000 ","582,000 ","529,000 ","118,000 ","63,000 ","55,000 " -45,"1,201,000 ","636,000 ","565,000 ","1,085,000 ","572,000 ","513,000 ","116,000 ","64,000 ","52,000 " -46,"1,171,000 ","626,000 ","545,000 ","1,058,000 ","561,000 ","497,000 ","113,000 ","65,000 ","48,000 " -47,"1,140,000 ","614,000 ","526,000 ","1,030,000 ","549,000 ","481,000 ","110,000 ","65,000 ","45,000 " -48,"1,108,000 ","598,000 ","510,000 ","1,002,000 ","535,000 ","467,000 ","106,000 ","63,000 ","43,000 " -49,"1,073,000 ","578,000 ","495,000 ","973,000 ","519,000 ","454,000 ","100,000 ","59,000 ","41,000 " -50,"1,042,000 ","561,000 ","481,000 ","945,000 ","504,000 ","441,000 ","97,000 ","57,000 ","40,000 " -51,"1,012,000 ","544,000 ","468,000 ","919,000 ","490,000 ","429,000 ","93,000 ","54,000 ","39,000 " -52,"973,000 ","522,000 ","451,000 ","886,000 ","472,000 ","414,000 ","87,000 ","50,000 ","37,000 " -53,"922,000 ","494,000 ","428,000 ","842,000 ","448,000 ","394,000 ","80,000 ","46,000 ","34,000 " -54,"863,000 ","461,000 ","402,000 ","792,000 ","420,000 ","372,000 ","71,000 ","41,000 ","30,000 " -55,"806,000 ","429,000 ","377,000 ","742,000 ","392,000 ","350,000 ","64,000 ","37,000 ","27,000 " -56,"748,000 ","396,000 ","352,000 ","692,000 ","364,000 ","328,000 ","56,000 ","32,000 ","24,000 " -57,"701,000 ","369,000 ","332,000 ","652,000 ","341,000 ","311,000 ","49,000 ","28,000 ","21,000 " -58,"676,000 ","356,000 ","320,000 ","630,000 ","330,000 ","300,000 ","46,000 ","26,000 ","20,000 " -59,"665,000 ","351,000 ","314,000 ","619,000 ","325,000 ","294,000 ","46,000 ","26,000 ","20,000 " -60,"650,000 ","344,000 ","306,000 ","606,000 ","319,000 ","287,000 ","44,000 ","25,000 ","19,000 " -61,"639,000 ","339,000 ","300,000 ","595,000 ","314,000 ","281,000 ","44,000 ","25,000 ","19,000 " -62,"619,000 ","328,000 ","291,000 ","576,000 ","304,000 ","272,000 ","43,000 ","24,000 ","19,000 " -63,"581,000 ","308,000 ","273,000 ","541,000 ","285,000 ","256,000 ","40,000 ","23,000 ","17,000 " -64,"534,000 ","282,000 ","252,000 ","497,000 ","261,000 ","236,000 ","37,000 ","21,000 ","16,000 " -65,"493,000 ","259,000 ","234,000 ","459,000 ","240,000 ","219,000 ","34,000 ","19,000 ","15,000 " -66,"452,000 ","237,000 ","215,000 ","421,000 ","219,000 ","202,000 ","31,000 ","18,000 ","13,000 " -67,"413,000 ","215,000 ","198,000 ","385,000 ","199,000 ","186,000 ","28,000 ","16,000 ","12,000 " -68,"377,000 ","196,000 ","181,000 ","351,000 ","181,000 ","170,000 ","26,000 ","15,000 ","11,000 " -69,"343,000 ","177,000 ","166,000 ","320,000 ","164,000 ","156,000 ","23,000 ","13,000 ","10,000 " -70,"315,000 ","161,000 ","154,000 ","293,000 ","149,000 ","144,000 ","22,000 ","12,000 ","10,000 " -71,"291,000 ","148,000 ","143,000 ","271,000 ","137,000 ","134,000 ","20,000 ","11,000 ","9,000 " -72,"273,000 ","138,000 ","135,000 ","254,000 ","128,000 ","126,000 ","19,000 ","10,000 ","9,000 " -73,"263,000 ","133,000 ","130,000 ","245,000 ","124,000 ","121,000 ","18,000 ","9,000 ","9,000 " -74,"260,000 ","131,000 ","129,000 ","243,000 ","123,000 ","120,000 ","17,000 ","8,000 ","9,000 " -75+,"1,449,000 ","690,000 ","759,000 ","1,343,000 ","638,000 ","705,000 ","106,000 ","52,000 ","54,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1921.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1921.csv deleted file mode 100644 index 8500e9a412..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1921.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1921",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"108,538,000 ","55,292,000 ","53,246,000 ","97,416,000 ","49,710,000 ","47,706,000 ","11,122,000 ","5,582,000 ","5,540,000 " -,,,,,,,,, -0,"2,362,000 ","1,202,000 ","1,160,000 ","2,131,000 ","1,086,000 ","1,045,000 ","231,000 ","116,000 ","115,000 " -1,"2,375,000 ","1,206,000 ","1,169,000 ","2,135,000 ","1,086,000 ","1,049,000 ","240,000 ","120,000 ","120,000 " -2,"2,383,000 ","1,208,000 ","1,175,000 ","2,134,000 ","1,084,000 ","1,050,000 ","249,000 ","124,000 ","125,000 " -3,"2,382,000 ","1,206,000 ","1,176,000 ","2,127,000 ","1,079,000 ","1,048,000 ","255,000 ","127,000 ","128,000 " -4,"2,377,000 ","1,202,000 ","1,175,000 ","2,118,000 ","1,073,000 ","1,045,000 ","259,000 ","129,000 ","130,000 " -5,"2,366,000 ","1,195,000 ","1,171,000 ","2,104,000 ","1,065,000 ","1,039,000 ","262,000 ","130,000 ","132,000 " -6,"2,351,000 ","1,187,000 ","1,164,000 ","2,087,000 ","1,056,000 ","1,031,000 ","264,000 ","131,000 ","133,000 " -7,"2,332,000 ","1,177,000 ","1,155,000 ","2,067,000 ","1,045,000 ","1,022,000 ","265,000 ","132,000 ","133,000 " -8,"2,308,000 ","1,164,000 ","1,144,000 ","2,043,000 ","1,032,000 ","1,011,000 ","265,000 ","132,000 ","133,000 " -9,"2,279,000 ","1,149,000 ","1,130,000 ","2,016,000 ","1,018,000 ","998,000 ","263,000 ","131,000 ","132,000 " -10,"2,250,000 ","1,134,000 ","1,116,000 ","1,989,000 ","1,004,000 ","985,000 ","261,000 ","130,000 ","131,000 " -11,"2,220,000 ","1,118,000 ","1,102,000 ","1,961,000 ","989,000 ","972,000 ","259,000 ","129,000 ","130,000 " -12,"2,182,000 ","1,098,000 ","1,084,000 ","1,927,000 ","971,000 ","956,000 ","255,000 ","127,000 ","128,000 " -13,"2,138,000 ","1,074,000 ","1,064,000 ","1,886,000 ","949,000 ","937,000 ","252,000 ","125,000 ","127,000 " -14,"2,089,000 ","1,048,000 ","1,041,000 ","1,842,000 ","926,000 ","916,000 ","247,000 ","122,000 ","125,000 " -15,"2,042,000 ","1,022,000 ","1,020,000 ","1,799,000 ","903,000 ","896,000 ","243,000 ","119,000 ","124,000 " -16,"1,994,000 ","996,000 ","998,000 ","1,757,000 ","881,000 ","876,000 ","237,000 ","115,000 ","122,000 " -17,"1,954,000 ","973,000 ","981,000 ","1,721,000 ","861,000 ","860,000 ","233,000 ","112,000 ","121,000 " -18,"1,925,000 ","956,000 ","969,000 ","1,696,000 ","846,000 ","850,000 ","229,000 ","110,000 ","119,000 " -19,"1,902,000 ","941,000 ","961,000 ","1,677,000 ","834,000 ","843,000 ","225,000 ","107,000 ","118,000 " -20,"1,881,000 ","928,000 ","953,000 ","1,659,000 ","823,000 ","836,000 ","222,000 ","105,000 ","117,000 " -21,"1,855,000 ","912,000 ","943,000 ","1,638,000 ","810,000 ","828,000 ","217,000 ","102,000 ","115,000 " -22,"1,845,000 ","906,000 ","939,000 ","1,631,000 ","806,000 ","825,000 ","214,000 ","100,000 ","114,000 " -23,"1,858,000 ","914,000 ","944,000 ","1,645,000 ","814,000 ","831,000 ","213,000 ","100,000 ","113,000 " -24,"1,884,000 ","929,000 ","955,000 ","1,671,000 ","829,000 ","842,000 ","213,000 ","100,000 ","113,000 " -25,"1,909,000 ","944,000 ","965,000 ","1,696,000 ","844,000 ","852,000 ","213,000 ","100,000 ","113,000 " -26,"1,940,000 ","963,000 ","977,000 ","1,725,000 ","862,000 ","863,000 ","215,000 ","101,000 ","114,000 " -27,"1,942,000 ","967,000 ","975,000 ","1,730,000 ","867,000 ","863,000 ","212,000 ","100,000 ","112,000 " -28,"1,895,000 ","946,000 ","949,000 ","1,695,000 ","852,000 ","843,000 ","200,000 ","94,000 ","106,000 " -29,"1,819,000 ","911,000 ","908,000 ","1,635,000 ","824,000 ","811,000 ","184,000 ","87,000 ","97,000 " -30,"1,746,000 ","877,000 ","869,000 ","1,577,000 ","797,000 ","780,000 ","169,000 ","80,000 ","89,000 " -31,"1,668,000 ","840,000 ","828,000 ","1,515,000 ","768,000 ","747,000 ","153,000 ","72,000 ","81,000 " -32,"1,613,000 ","817,000 ","796,000 ","1,470,000 ","749,000 ","721,000 ","143,000 ","68,000 ","75,000 " -33,"1,600,000 ","817,000 ","783,000 ","1,457,000 ","748,000 ","709,000 ","143,000 ","69,000 ","74,000 " -34,"1,615,000 ","832,000 ","783,000 ","1,464,000 ","758,000 ","706,000 ","151,000 ","74,000 ","77,000 " -35,"1,619,000 ","842,000 ","777,000 ","1,463,000 ","764,000 ","699,000 ","156,000 ","78,000 ","78,000 " -36,"1,627,000 ","854,000 ","773,000 ","1,465,000 ","772,000 ","693,000 ","162,000 ","82,000 ","80,000 " -37,"1,616,000 ","853,000 ","763,000 ","1,451,000 ","768,000 ","683,000 ","165,000 ","85,000 ","80,000 " -38,"1,572,000 ","829,000 ","743,000 ","1,412,000 ","747,000 ","665,000 ","160,000 ","82,000 ","78,000 " -39,"1,508,000 ","792,000 ","716,000 ","1,357,000 ","715,000 ","642,000 ","151,000 ","77,000 ","74,000 " -40,"1,448,000 ","756,000 ","692,000 ","1,305,000 ","684,000 ","621,000 ","143,000 ","72,000 ","71,000 " -41,"1,389,000 ","721,000 ","668,000 ","1,253,000 ","653,000 ","600,000 ","136,000 ","68,000 ","68,000 " -42,"1,333,000 ","690,000 ","643,000 ","1,205,000 ","626,000 ","579,000 ","128,000 ","64,000 ","64,000 " -43,"1,293,000 ","671,000 ","622,000 ","1,169,000 ","608,000 ","561,000 ","124,000 ","63,000 ","61,000 " -44,"1,260,000 ","659,000 ","601,000 ","1,139,000 ","595,000 ","544,000 ","121,000 ","64,000 ","57,000 " -45,"1,223,000 ","644,000 ","579,000 ","1,106,000 ","580,000 ","526,000 ","117,000 ","64,000 ","53,000 " -46,"1,185,000 ","628,000 ","557,000 ","1,072,000 ","564,000 ","508,000 ","113,000 ","64,000 ","49,000 " -47,"1,151,000 ","613,000 ","538,000 ","1,042,000 ","550,000 ","492,000 ","109,000 ","63,000 ","46,000 " -48,"1,119,000 ","598,000 ","521,000 ","1,014,000 ","537,000 ","477,000 ","105,000 ","61,000 ","44,000 " -49,"1,091,000 ","584,000 ","507,000 ","990,000 ","525,000 ","465,000 ","101,000 ","59,000 ","42,000 " -50,"1,064,000 ","571,000 ","493,000 ","966,000 ","514,000 ","452,000 ","98,000 ","57,000 ","41,000 " -51,"1,039,000 ","559,000 ","480,000 ","945,000 ","504,000 ","441,000 ","94,000 ","55,000 ","39,000 " -52,"1,004,000 ","540,000 ","464,000 ","914,000 ","488,000 ","426,000 ","90,000 ","52,000 ","38,000 " -53,"953,000 ","512,000 ","441,000 ","870,000 ","464,000 ","406,000 ","83,000 ","48,000 ","35,000 " -54,"892,000 ","477,000 ","415,000 ","818,000 ","434,000 ","384,000 ","74,000 ","43,000 ","31,000 " -55,"833,000 ","443,000 ","390,000 ","767,000 ","405,000 ","362,000 ","66,000 ","38,000 ","28,000 " -56,"772,000 ","408,000 ","364,000 ","714,000 ","375,000 ","339,000 ","58,000 ","33,000 ","25,000 " -57,"725,000 ","382,000 ","343,000 ","673,000 ","352,000 ","321,000 ","52,000 ","30,000 ","22,000 " -58,"698,000 ","367,000 ","331,000 ","649,000 ","339,000 ","310,000 ","49,000 ","28,000 ","21,000 " -59,"682,000 ","359,000 ","323,000 ","635,000 ","332,000 ","303,000 ","47,000 ","27,000 ","20,000 " -60,"665,000 ","350,000 ","315,000 ","619,000 ","324,000 ","295,000 ","46,000 ","26,000 ","20,000 " -61,"649,000 ","342,000 ","307,000 ","605,000 ","317,000 ","288,000 ","44,000 ","25,000 ","19,000 " -62,"628,000 ","331,000 ","297,000 ","585,000 ","307,000 ","278,000 ","43,000 ","24,000 ","19,000 " -63,"591,000 ","311,000 ","280,000 ","552,000 ","289,000 ","263,000 ","39,000 ","22,000 ","17,000 " -64,"548,000 ","288,000 ","260,000 ","511,000 ","267,000 ","244,000 ","37,000 ","21,000 ","16,000 " -65,"507,000 ","265,000 ","242,000 ","473,000 ","246,000 ","227,000 ","34,000 ","19,000 ","15,000 " -66,"469,000 ","245,000 ","224,000 ","437,000 ","227,000 ","210,000 ","32,000 ","18,000 ","14,000 " -67,"432,000 ","225,000 ","207,000 ","402,000 ","208,000 ","194,000 ","30,000 ","17,000 ","13,000 " -68,"395,000 ","205,000 ","190,000 ","368,000 ","190,000 ","178,000 ","27,000 ","15,000 ","12,000 " -69,"362,000 ","187,000 ","175,000 ","337,000 ","173,000 ","164,000 ","25,000 ","14,000 ","11,000 " -70,"331,000 ","170,000 ","161,000 ","308,000 ","157,000 ","151,000 ","23,000 ","13,000 ","10,000 " -71,"304,000 ","155,000 ","149,000 ","283,000 ","144,000 ","139,000 ","21,000 ","11,000 ","10,000 " -72,"281,000 ","142,000 ","139,000 ","262,000 ","132,000 ","130,000 ","19,000 ","10,000 ","9,000 " -73,"265,000 ","133,000 ","132,000 ","247,000 ","124,000 ","123,000 ","18,000 ","9,000 ","9,000 " -74,"253,000 ","126,000 ","127,000 ","236,000 ","118,000 ","118,000 ","17,000 ","8,000 ","9,000 " -75+,"1,481,000 ","706,000 ","775,000 ","1,372,000 ","653,000 ","719,000 ","109,000 ","53,000 ","56,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1922.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1922.csv deleted file mode 100644 index df7abfa4fe..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1922.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1922",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"110,049,000 ","55,886,000 ","54,163,000 ","98,768,000 ","50,228,000 ","48,540,000 ","11,281,000 ","5,658,000 ","5,623,000 " -,,,,,,,,, -0,"2,413,000 ","1,232,000 ","1,181,000 ","2,171,000 ","1,109,000 ","1,062,000 ","242,000 ","123,000 ","119,000 " -1,"2,413,000 ","1,228,000 ","1,185,000 ","2,165,000 ","1,103,000 ","1,062,000 ","248,000 ","125,000 ","123,000 " -2,"2,408,000 ","1,222,000 ","1,186,000 ","2,156,000 ","1,096,000 ","1,060,000 ","252,000 ","126,000 ","126,000 " -3,"2,403,000 ","1,217,000 ","1,186,000 ","2,146,000 ","1,089,000 ","1,057,000 ","257,000 ","128,000 ","129,000 " -4,"2,394,000 ","1,210,000 ","1,184,000 ","2,134,000 ","1,081,000 ","1,053,000 ","260,000 ","129,000 ","131,000 " -5,"2,382,000 ","1,203,000 ","1,179,000 ","2,120,000 ","1,073,000 ","1,047,000 ","262,000 ","130,000 ","132,000 " -6,"2,366,000 ","1,194,000 ","1,172,000 ","2,102,000 ","1,063,000 ","1,039,000 ","264,000 ","131,000 ","133,000 " -7,"2,349,000 ","1,184,000 ","1,165,000 ","2,084,000 ","1,053,000 ","1,031,000 ","265,000 ","131,000 ","134,000 " -8,"2,328,000 ","1,173,000 ","1,155,000 ","2,062,000 ","1,041,000 ","1,021,000 ","266,000 ","132,000 ","134,000 " -9,"2,303,000 ","1,160,000 ","1,143,000 ","2,039,000 ","1,029,000 ","1,010,000 ","264,000 ","131,000 ","133,000 " -10,"2,278,000 ","1,147,000 ","1,131,000 ","2,014,000 ","1,016,000 ","998,000 ","264,000 ","131,000 ","133,000 " -11,"2,252,000 ","1,133,000 ","1,119,000 ","1,990,000 ","1,003,000 ","987,000 ","262,000 ","130,000 ","132,000 " -12,"2,220,000 ","1,116,000 ","1,104,000 ","1,960,000 ","987,000 ","973,000 ","260,000 ","129,000 ","131,000 " -13,"2,178,000 ","1,094,000 ","1,084,000 ","1,922,000 ","967,000 ","955,000 ","256,000 ","127,000 ","129,000 " -14,"2,132,000 ","1,068,000 ","1,064,000 ","1,880,000 ","944,000 ","936,000 ","252,000 ","124,000 ","128,000 " -15,"2,086,000 ","1,043,000 ","1,043,000 ","1,839,000 ","922,000 ","917,000 ","247,000 ","121,000 ","126,000 " -16,"2,041,000 ","1,018,000 ","1,023,000 ","1,799,000 ","900,000 ","899,000 ","242,000 ","118,000 ","124,000 " -17,"2,001,000 ","995,000 ","1,006,000 ","1,763,000 ","880,000 ","883,000 ","238,000 ","115,000 ","123,000 " -18,"1,966,000 ","975,000 ","991,000 ","1,733,000 ","863,000 ","870,000 ","233,000 ","112,000 ","121,000 " -19,"1,935,000 ","956,000 ","979,000 ","1,707,000 ","847,000 ","860,000 ","228,000 ","109,000 ","119,000 " -20,"1,904,000 ","938,000 ","966,000 ","1,681,000 ","832,000 ","849,000 ","223,000 ","106,000 ","117,000 " -21,"1,870,000 ","918,000 ","952,000 ","1,652,000 ","815,000 ","837,000 ","218,000 ","103,000 ","115,000 " -22,"1,853,000 ","909,000 ","944,000 ","1,639,000 ","808,000 ","831,000 ","214,000 ","101,000 ","113,000 " -23,"1,861,000 ","913,000 ","948,000 ","1,648,000 ","813,000 ","835,000 ","213,000 ","100,000 ","113,000 " -24,"1,885,000 ","927,000 ","958,000 ","1,671,000 ","826,000 ","845,000 ","214,000 ","101,000 ","113,000 " -25,"1,906,000 ","940,000 ","966,000 ","1,692,000 ","839,000 ","853,000 ","214,000 ","101,000 ","113,000 " -26,"1,933,000 ","956,000 ","977,000 ","1,717,000 ","854,000 ","863,000 ","216,000 ","102,000 ","114,000 " -27,"1,934,000 ","959,000 ","975,000 ","1,721,000 ","858,000 ","863,000 ","213,000 ","101,000 ","112,000 " -28,"1,896,000 ","942,000 ","954,000 ","1,693,000 ","846,000 ","847,000 ","203,000 ","96,000 ","107,000 " -29,"1,833,000 ","912,000 ","921,000 ","1,644,000 ","823,000 ","821,000 ","189,000 ","89,000 ","100,000 " -30,"1,773,000 ","884,000 ","889,000 ","1,597,000 ","801,000 ","796,000 ","176,000 ","83,000 ","93,000 " -31,"1,710,000 ","854,000 ","856,000 ","1,547,000 ","777,000 ","770,000 ","163,000 ","77,000 ","86,000 " -32,"1,662,000 ","834,000 ","828,000 ","1,508,000 ","761,000 ","747,000 ","154,000 ","73,000 ","81,000 " -33,"1,641,000 ","829,000 ","812,000 ","1,489,000 ","756,000 ","733,000 ","152,000 ","73,000 ","79,000 " -34,"1,636,000 ","834,000 ","802,000 ","1,482,000 ","759,000 ","723,000 ","154,000 ","75,000 ","79,000 " -35,"1,626,000 ","836,000 ","790,000 ","1,470,000 ","759,000 ","711,000 ","156,000 ","77,000 ","79,000 " -36,"1,616,000 ","839,000 ","777,000 ","1,458,000 ","759,000 ","699,000 ","158,000 ","80,000 ","78,000 " -37,"1,596,000 ","834,000 ","762,000 ","1,438,000 ","753,000 ","685,000 ","158,000 ","81,000 ","77,000 " -38,"1,561,000 ","816,000 ","745,000 ","1,406,000 ","737,000 ","669,000 ","155,000 ","79,000 ","76,000 " -39,"1,515,000 ","790,000 ","725,000 ","1,365,000 ","714,000 ","651,000 ","150,000 ","76,000 ","74,000 " -40,"1,471,000 ","766,000 ","705,000 ","1,326,000 ","693,000 ","633,000 ","145,000 ","73,000 ","72,000 " -41,"1,426,000 ","741,000 ","685,000 ","1,286,000 ","671,000 ","615,000 ","140,000 ","70,000 ","70,000 " -42,"1,382,000 ","717,000 ","665,000 ","1,246,000 ","649,000 ","597,000 ","136,000 ","68,000 ","68,000 " -43,"1,338,000 ","695,000 ","643,000 ","1,207,000 ","628,000 ","579,000 ","131,000 ","67,000 ","64,000 " -44,"1,292,000 ","673,000 ","619,000 ","1,166,000 ","607,000 ","559,000 ","126,000 ","66,000 ","60,000 " -45,"1,245,000 ","650,000 ","595,000 ","1,126,000 ","586,000 ","540,000 ","119,000 ","64,000 ","55,000 " -46,"1,197,000 ","626,000 ","571,000 ","1,083,000 ","563,000 ","520,000 ","114,000 ","63,000 ","51,000 " -47,"1,156,000 ","606,000 ","550,000 ","1,048,000 ","545,000 ","503,000 ","108,000 ","61,000 ","47,000 " -48,"1,127,000 ","594,000 ","533,000 ","1,022,000 ","534,000 ","488,000 ","105,000 ","60,000 ","45,000 " -49,"1,104,000 ","586,000 ","518,000 ","1,003,000 ","528,000 ","475,000 ","101,000 ","58,000 ","43,000 " -50,"1,081,000 ","578,000 ","503,000 ","983,000 ","521,000 ","462,000 ","98,000 ","57,000 ","41,000 " -51,"1,060,000 ","570,000 ","490,000 ","965,000 ","515,000 ","450,000 ","95,000 ","55,000 ","40,000 " -52,"1,029,000 ","556,000 ","473,000 ","938,000 ","503,000 ","435,000 ","91,000 ","53,000 ","38,000 " -53,"979,000 ","528,000 ","451,000 ","895,000 ","479,000 ","416,000 ","84,000 ","49,000 ","35,000 " -54,"921,000 ","494,000 ","427,000 ","844,000 ","449,000 ","395,000 ","77,000 ","45,000 ","32,000 " -55,"864,000 ","461,000 ","403,000 ","795,000 ","421,000 ","374,000 ","69,000 ","40,000 ","29,000 " -56,"807,000 ","427,000 ","380,000 ","744,000 ","391,000 ","353,000 ","63,000 ","36,000 ","27,000 " -57,"759,000 ","399,000 ","360,000 ","703,000 ","367,000 ","336,000 ","56,000 ","32,000 ","24,000 " -58,"726,000 ","380,000 ","346,000 ","673,000 ","350,000 ","323,000 ","53,000 ","30,000 ","23,000 " -59,"701,000 ","367,000 ","334,000 ","652,000 ","339,000 ","313,000 ","49,000 ","28,000 ","21,000 " -60,"676,000 ","353,000 ","323,000 ","629,000 ","326,000 ","303,000 ","47,000 ","27,000 ","20,000 " -61,"651,000 ","339,000 ","312,000 ","607,000 ","314,000 ","293,000 ","44,000 ","25,000 ","19,000 " -62,"623,000 ","324,000 ","299,000 ","582,000 ","301,000 ","281,000 ","41,000 ","23,000 ","18,000 " -63,"591,000 ","307,000 ","284,000 ","552,000 ","285,000 ","267,000 ","39,000 ","22,000 ","17,000 " -64,"553,000 ","287,000 ","266,000 ","517,000 ","267,000 ","250,000 ","36,000 ","20,000 ","16,000 " -65,"518,000 ","269,000 ","249,000 ","484,000 ","250,000 ","234,000 ","34,000 ","19,000 ","15,000 " -66,"485,000 ","252,000 ","233,000 ","453,000 ","234,000 ","219,000 ","32,000 ","18,000 ","14,000 " -67,"451,000 ","234,000 ","217,000 ","421,000 ","217,000 ","204,000 ","30,000 ","17,000 ","13,000 " -68,"418,000 ","217,000 ","201,000 ","390,000 ","201,000 ","189,000 ","28,000 ","16,000 ","12,000 " -69,"383,000 ","198,000 ","185,000 ","358,000 ","184,000 ","174,000 ","25,000 ","14,000 ","11,000 " -70,"352,000 ","181,000 ","171,000 ","328,000 ","168,000 ","160,000 ","24,000 ","13,000 ","11,000 " -71,"322,000 ","165,000 ","157,000 ","300,000 ","153,000 ","147,000 ","22,000 ","12,000 ","10,000 " -72,"292,000 ","148,000 ","144,000 ","272,000 ","137,000 ","135,000 ","20,000 ","11,000 ","9,000 " -73,"263,000 ","131,000 ","132,000 ","245,000 ","122,000 ","123,000 ","18,000 ","9,000 ","9,000 " -74,"235,000 ","114,000 ","121,000 ","220,000 ","107,000 ","113,000 ","15,000 ","7,000 ","8,000 " -75+,"1,512,000 ","721,000 ","791,000 ","1,401,000 ","667,000 ","734,000 ","111,000 ","54,000 ","57,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1923.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1923.csv deleted file mode 100644 index 7f240c360a..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1923.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1923",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"111,947,000 ","56,861,000 ","55,086,000 ","100,510,000 ","51,131,000 ","49,379,000 ","11,437,000 ","5,730,000 ","5,707,000 " -,,,,,,,,, -0,"2,433,000 ","1,242,000 ","1,191,000 ","2,183,000 ","1,115,000 ","1,068,000 ","250,000 ","127,000 ","123,000 " -1,"2,430,000 ","1,237,000 ","1,193,000 ","2,178,000 ","1,110,000 ","1,068,000 ","252,000 ","127,000 ","125,000 " -2,"2,426,000 ","1,232,000 ","1,194,000 ","2,170,000 ","1,104,000 ","1,066,000 ","256,000 ","128,000 ","128,000 " -3,"2,420,000 ","1,226,000 ","1,194,000 ","2,161,000 ","1,097,000 ","1,064,000 ","259,000 ","129,000 ","130,000 " -4,"2,410,000 ","1,219,000 ","1,191,000 ","2,150,000 ","1,090,000 ","1,060,000 ","260,000 ","129,000 ","131,000 " -5,"2,401,000 ","1,213,000 ","1,188,000 ","2,138,000 ","1,083,000 ","1,055,000 ","263,000 ","130,000 ","133,000 " -6,"2,387,000 ","1,205,000 ","1,182,000 ","2,123,000 ","1,074,000 ","1,049,000 ","264,000 ","131,000 ","133,000 " -7,"2,372,000 ","1,196,000 ","1,176,000 ","2,107,000 ","1,065,000 ","1,042,000 ","265,000 ","131,000 ","134,000 " -8,"2,352,000 ","1,185,000 ","1,167,000 ","2,087,000 ","1,054,000 ","1,033,000 ","265,000 ","131,000 ","134,000 " -9,"2,332,000 ","1,174,000 ","1,158,000 ","2,067,000 ","1,043,000 ","1,024,000 ","265,000 ","131,000 ","134,000 " -10,"2,309,000 ","1,162,000 ","1,147,000 ","2,044,000 ","1,031,000 ","1,013,000 ","265,000 ","131,000 ","134,000 " -11,"2,286,000 ","1,150,000 ","1,136,000 ","2,022,000 ","1,019,000 ","1,003,000 ","264,000 ","131,000 ","133,000 " -12,"2,256,000 ","1,134,000 ","1,122,000 ","1,994,000 ","1,004,000 ","990,000 ","262,000 ","130,000 ","132,000 " -13,"2,218,000 ","1,113,000 ","1,105,000 ","1,959,000 ","985,000 ","974,000 ","259,000 ","128,000 ","131,000 " -14,"2,176,000 ","1,090,000 ","1,086,000 ","1,920,000 ","964,000 ","956,000 ","256,000 ","126,000 ","130,000 " -15,"2,133,000 ","1,066,000 ","1,067,000 ","1,882,000 ","943,000 ","939,000 ","251,000 ","123,000 ","128,000 " -16,"2,093,000 ","1,044,000 ","1,049,000 ","1,845,000 ","923,000 ","922,000 ","248,000 ","121,000 ","127,000 " -17,"2,052,000 ","1,021,000 ","1,031,000 ","1,809,000 ","903,000 ","906,000 ","243,000 ","118,000 ","125,000 " -18,"2,015,000 ","1,001,000 ","1,014,000 ","1,777,000 ","886,000 ","891,000 ","238,000 ","115,000 ","123,000 " -19,"1,981,000 ","982,000 ","999,000 ","1,748,000 ","870,000 ","878,000 ","233,000 ","112,000 ","121,000 " -20,"1,947,000 ","964,000 ","983,000 ","1,719,000 ","855,000 ","864,000 ","228,000 ","109,000 ","119,000 " -21,"1,910,000 ","944,000 ","966,000 ","1,689,000 ","839,000 ","850,000 ","221,000 ","105,000 ","116,000 " -22,"1,888,000 ","932,000 ","956,000 ","1,671,000 ","829,000 ","842,000 ","217,000 ","103,000 ","114,000 " -23,"1,885,000 ","931,000 ","954,000 ","1,670,000 ","829,000 ","841,000 ","215,000 ","102,000 ","113,000 " -24,"1,894,000 ","935,000 ","959,000 ","1,680,000 ","834,000 ","846,000 ","214,000 ","101,000 ","113,000 " -25,"1,901,000 ","940,000 ","961,000 ","1,688,000 ","839,000 ","849,000 ","213,000 ","101,000 ","112,000 " -26,"1,910,000 ","945,000 ","965,000 ","1,698,000 ","845,000 ","853,000 ","212,000 ","100,000 ","112,000 " -27,"1,908,000 ","946,000 ","962,000 ","1,699,000 ","847,000 ","852,000 ","209,000 ","99,000 ","110,000 " -28,"1,886,000 ","937,000 ","949,000 ","1,684,000 ","841,000 ","843,000 ","202,000 ","96,000 ","106,000 " -29,"1,853,000 ","922,000 ","931,000 ","1,659,000 ","830,000 ","829,000 ","194,000 ","92,000 ","102,000 " -30,"1,821,000 ","908,000 ","913,000 ","1,635,000 ","820,000 ","815,000 ","186,000 ","88,000 ","98,000 " -31,"1,788,000 ","894,000 ","894,000 ","1,610,000 ","810,000 ","800,000 ","178,000 ","84,000 ","94,000 " -32,"1,755,000 ","881,000 ","874,000 ","1,584,000 ","800,000 ","784,000 ","171,000 ","81,000 ","90,000 " -33,"1,721,000 ","869,000 ","852,000 ","1,556,000 ","790,000 ","766,000 ","165,000 ","79,000 ","86,000 " -34,"1,688,000 ","859,000 ","829,000 ","1,527,000 ","781,000 ","746,000 ","161,000 ","78,000 ","83,000 " -35,"1,654,000 ","848,000 ","806,000 ","1,497,000 ","771,000 ","726,000 ","157,000 ","77,000 ","80,000 " -36,"1,615,000 ","834,000 ","781,000 ","1,464,000 ","759,000 ","705,000 ","151,000 ","75,000 ","76,000 " -37,"1,582,000 ","822,000 ","760,000 ","1,433,000 ","747,000 ","686,000 ","149,000 ","75,000 ","74,000 " -38,"1,552,000 ","809,000 ","743,000 ","1,406,000 ","735,000 ","671,000 ","146,000 ","74,000 ","72,000 " -39,"1,526,000 ","796,000 ","730,000 ","1,380,000 ","722,000 ","658,000 ","146,000 ","74,000 ","72,000 " -40,"1,499,000 ","782,000 ","717,000 ","1,353,000 ","708,000 ","645,000 ","146,000 ","74,000 ","72,000 " -41,"1,473,000 ","769,000 ","704,000 ","1,327,000 ","695,000 ","632,000 ","146,000 ","74,000 ","72,000 " -42,"1,439,000 ","751,000 ","688,000 ","1,295,000 ","678,000 ","617,000 ","144,000 ","73,000 ","71,000 " -43,"1,391,000 ","726,000 ","665,000 ","1,253,000 ","655,000 ","598,000 ","138,000 ","71,000 ","67,000 " -44,"1,335,000 ","696,000 ","639,000 ","1,205,000 ","628,000 ","577,000 ","130,000 ","68,000 ","62,000 " -45,"1,281,000 ","667,000 ","614,000 ","1,158,000 ","602,000 ","556,000 ","123,000 ","65,000 ","58,000 " -46,"1,224,000 ","636,000 ","588,000 ","1,109,000 ","574,000 ","535,000 ","115,000 ","62,000 ","53,000 " -47,"1,176,000 ","612,000 ","564,000 ","1,067,000 ","552,000 ","515,000 ","109,000 ","60,000 ","49,000 " -48,"1,142,000 ","597,000 ","545,000 ","1,038,000 ","539,000 ","499,000 ","104,000 ","58,000 ","46,000 " -49,"1,118,000 ","589,000 ","529,000 ","1,017,000 ","532,000 ","485,000 ","101,000 ","57,000 ","44,000 " -50,"1,092,000 ","580,000 ","512,000 ","994,000 ","524,000 ","470,000 ","98,000 ","56,000 ","42,000 " -51,"1,066,000 ","571,000 ","495,000 ","972,000 ","516,000 ","456,000 ","94,000 ","55,000 ","39,000 " -52,"1,034,000 ","557,000 ","477,000 ","944,000 ","504,000 ","440,000 ","90,000 ","53,000 ","37,000 " -53,"992,000 ","534,000 ","458,000 ","907,000 ","484,000 ","423,000 ","85,000 ","50,000 ","35,000 " -54,"943,000 ","505,000 ","438,000 ","864,000 ","459,000 ","405,000 ","79,000 ","46,000 ","33,000 " -55,"896,000 ","478,000 ","418,000 ","823,000 ","436,000 ","387,000 ","73,000 ","42,000 ","31,000 " -56,"850,000 ","451,000 ","399,000 ","782,000 ","412,000 ","370,000 ","68,000 ","39,000 ","29,000 " -57,"805,000 ","425,000 ","380,000 ","743,000 ","390,000 ","353,000 ","62,000 ","35,000 ","27,000 " -58,"765,000 ","402,000 ","363,000 ","708,000 ","370,000 ","338,000 ","57,000 ","32,000 ","25,000 " -59,"729,000 ","382,000 ","347,000 ","676,000 ","352,000 ","324,000 ","53,000 ","30,000 ","23,000 " -60,"692,000 ","361,000 ","331,000 ","644,000 ","334,000 ","310,000 ","48,000 ","27,000 ","21,000 " -61,"655,000 ","340,000 ","315,000 ","612,000 ","316,000 ","296,000 ","43,000 ","24,000 ","19,000 " -62,"621,000 ","321,000 ","300,000 ","581,000 ","299,000 ","282,000 ","40,000 ","22,000 ","18,000 " -63,"590,000 ","305,000 ","285,000 ","552,000 ","284,000 ","268,000 ","38,000 ","21,000 ","17,000 " -64,"562,000 ","291,000 ","271,000 ","526,000 ","271,000 ","255,000 ","36,000 ","20,000 ","16,000 " -65,"532,000 ","276,000 ","256,000 ","498,000 ","257,000 ","241,000 ","34,000 ","19,000 ","15,000 " -66,"503,000 ","261,000 ","242,000 ","471,000 ","243,000 ","228,000 ","32,000 ","18,000 ","14,000 " -67,"473,000 ","246,000 ","227,000 ","443,000 ","229,000 ","214,000 ","30,000 ","17,000 ","13,000 " -68,"443,000 ","230,000 ","213,000 ","414,000 ","214,000 ","200,000 ","29,000 ","16,000 ","13,000 " -69,"411,000 ","213,000 ","198,000 ","384,000 ","198,000 ","186,000 ","27,000 ","15,000 ","12,000 " -70,"377,000 ","195,000 ","182,000 ","352,000 ","181,000 ","171,000 ","25,000 ","14,000 ","11,000 " -71,"342,000 ","176,000 ","166,000 ","319,000 ","163,000 ","156,000 ","23,000 ","13,000 ","10,000 " -72,"303,000 ","154,000 ","149,000 ","283,000 ","143,000 ","140,000 ","20,000 ","11,000 ","9,000 " -73,"263,000 ","131,000 ","132,000 ","246,000 ","122,000 ","124,000 ","17,000 ","9,000 ","8,000 " -74,"218,000 ","105,000 ","113,000 ","204,000 ","98,000 ","106,000 ","14,000 ","7,000 ","7,000 " -75+,"1,546,000 ","738,000 ","808,000 ","1,433,000 ","683,000 ","750,000 ","113,000 ","55,000 ","58,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1924.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1924.csv deleted file mode 100644 index 75dc1451e6..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1924.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1924",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"114,109,000 ","57,985,000 ","56,124,000 ","102,512,000 ","52,177,000 ","50,335,000 ","11,597,000 ","5,808,000 ","5,789,000 " -,,,,,,,,, -0,"2,476,000 ","1,262,000 ","1,214,000 ","2,214,000 ","1,130,000 ","1,084,000 ","262,000 ","132,000 ","130,000 " -1,"2,465,000 ","1,254,000 ","1,211,000 ","2,204,000 ","1,123,000 ","1,081,000 ","261,000 ","131,000 ","130,000 " -2,"2,454,000 ","1,247,000 ","1,207,000 ","2,193,000 ","1,116,000 ","1,077,000 ","261,000 ","131,000 ","130,000 " -3,"2,443,000 ","1,239,000 ","1,204,000 ","2,182,000 ","1,109,000 ","1,073,000 ","261,000 ","130,000 ","131,000 " -4,"2,431,000 ","1,232,000 ","1,199,000 ","2,170,000 ","1,102,000 ","1,068,000 ","261,000 ","130,000 ","131,000 " -5,"2,419,000 ","1,224,000 ","1,195,000 ","2,157,000 ","1,094,000 ","1,063,000 ","262,000 ","130,000 ","132,000 " -6,"2,404,000 ","1,215,000 ","1,189,000 ","2,142,000 ","1,085,000 ","1,057,000 ","262,000 ","130,000 ","132,000 " -7,"2,389,000 ","1,206,000 ","1,183,000 ","2,126,000 ","1,076,000 ","1,050,000 ","263,000 ","130,000 ","133,000 " -8,"2,373,000 ","1,197,000 ","1,176,000 ","2,109,000 ","1,066,000 ","1,043,000 ","264,000 ","131,000 ","133,000 " -9,"2,354,000 ","1,186,000 ","1,168,000 ","2,089,000 ","1,055,000 ","1,034,000 ","265,000 ","131,000 ","134,000 " -10,"2,335,000 ","1,175,000 ","1,160,000 ","2,070,000 ","1,044,000 ","1,026,000 ","265,000 ","131,000 ","134,000 " -11,"2,315,000 ","1,164,000 ","1,151,000 ","2,050,000 ","1,033,000 ","1,017,000 ","265,000 ","131,000 ","134,000 " -12,"2,290,000 ","1,150,000 ","1,140,000 ","2,026,000 ","1,020,000 ","1,006,000 ","264,000 ","130,000 ","134,000 " -13,"2,257,000 ","1,132,000 ","1,125,000 ","1,995,000 ","1,003,000 ","992,000 ","262,000 ","129,000 ","133,000 " -14,"2,222,000 ","1,112,000 ","1,110,000 ","1,963,000 ","985,000 ","978,000 ","259,000 ","127,000 ","132,000 " -15,"2,185,000 ","1,091,000 ","1,094,000 ","1,929,000 ","966,000 ","963,000 ","256,000 ","125,000 ","131,000 " -16,"2,149,000 ","1,071,000 ","1,078,000 ","1,896,000 ","948,000 ","948,000 ","253,000 ","123,000 ","130,000 " -17,"2,113,000 ","1,052,000 ","1,061,000 ","1,864,000 ","931,000 ","933,000 ","249,000 ","121,000 ","128,000 " -18,"2,076,000 ","1,032,000 ","1,044,000 ","1,832,000 ","914,000 ","918,000 ","244,000 ","118,000 ","126,000 " -19,"2,040,000 ","1,014,000 ","1,026,000 ","1,801,000 ","899,000 ","902,000 ","239,000 ","115,000 ","124,000 " -20,"2,005,000 ","996,000 ","1,009,000 ","1,771,000 ","884,000 ","887,000 ","234,000 ","112,000 ","122,000 " -21,"1,970,000 ","979,000 ","991,000 ","1,742,000 ","870,000 ","872,000 ","228,000 ","109,000 ","119,000 " -22,"1,941,000 ","964,000 ","977,000 ","1,718,000 ","858,000 ","860,000 ","223,000 ","106,000 ","117,000 " -23,"1,923,000 ","955,000 ","968,000 ","1,705,000 ","851,000 ","854,000 ","218,000 ","104,000 ","114,000 " -24,"1,912,000 ","949,000 ","963,000 ","1,698,000 ","847,000 ","851,000 ","214,000 ","102,000 ","112,000 " -25,"1,901,000 ","943,000 ","958,000 ","1,691,000 ","843,000 ","848,000 ","210,000 ","100,000 ","110,000 " -26,"1,888,000 ","936,000 ","952,000 ","1,683,000 ","839,000 ","844,000 ","205,000 ","97,000 ","108,000 " -27,"1,880,000 ","933,000 ","947,000 ","1,678,000 ","837,000 ","841,000 ","202,000 ","96,000 ","106,000 " -28,"1,874,000 ","932,000 ","942,000 ","1,676,000 ","838,000 ","838,000 ","198,000 ","94,000 ","104,000 " -29,"1,872,000 ","933,000 ","939,000 ","1,676,000 ","840,000 ","836,000 ","196,000 ","93,000 ","103,000 " -30,"1,869,000 ","934,000 ","935,000 ","1,675,000 ","842,000 ","833,000 ","194,000 ","92,000 ","102,000 " -31,"1,868,000 ","936,000 ","932,000 ","1,676,000 ","845,000 ","831,000 ","192,000 ","91,000 ","101,000 " -32,"1,850,000 ","931,000 ","919,000 ","1,662,000 ","841,000 ","821,000 ","188,000 ","90,000 ","98,000 " -33,"1,807,000 ","914,000 ","893,000 ","1,628,000 ","828,000 ","800,000 ","179,000 ","86,000 ","93,000 " -34,"1,748,000 ","889,000 ","859,000 ","1,579,000 ","807,000 ","772,000 ","169,000 ","82,000 ","87,000 " -35,"1,690,000 ","864,000 ","826,000 ","1,532,000 ","787,000 ","745,000 ","158,000 ","77,000 ","81,000 " -36,"1,627,000 ","837,000 ","790,000 ","1,480,000 ","765,000 ","715,000 ","147,000 ","72,000 ","75,000 " -37,"1,579,000 ","817,000 ","762,000 ","1,438,000 ","747,000 ","691,000 ","141,000 ","70,000 ","71,000 " -38,"1,554,000 ","807,000 ","747,000 ","1,414,000 ","737,000 ","677,000 ","140,000 ","70,000 ","70,000 " -39,"1,542,000 ","803,000 ","739,000 ","1,399,000 ","731,000 ","668,000 ","143,000 ","72,000 ","71,000 " -40,"1,527,000 ","797,000 ","730,000 ","1,381,000 ","723,000 ","658,000 ","146,000 ","74,000 ","72,000 " -41,"1,513,000 ","792,000 ","721,000 ","1,363,000 ","715,000 ","648,000 ","150,000 ","77,000 ","73,000 " -42,"1,486,000 ","778,000 ","708,000 ","1,336,000 ","701,000 ","635,000 ","150,000 ","77,000 ","73,000 " -43,"1,439,000 ","753,000 ","686,000 ","1,294,000 ","678,000 ","616,000 ","145,000 ","75,000 ","70,000 " -44,"1,380,000 ","721,000 ","659,000 ","1,244,000 ","650,000 ","594,000 ","136,000 ","71,000 ","65,000 " -45,"1,322,000 ","689,000 ","633,000 ","1,195,000 ","622,000 ","573,000 ","127,000 ","67,000 ","60,000 " -46,"1,264,000 ","656,000 ","608,000 ","1,145,000 ","593,000 ","552,000 ","119,000 ","63,000 ","56,000 " -47,"1,213,000 ","629,000 ","584,000 ","1,101,000 ","569,000 ","532,000 ","112,000 ","60,000 ","52,000 " -48,"1,172,000 ","610,000 ","562,000 ","1,066,000 ","552,000 ","514,000 ","106,000 ","58,000 ","48,000 " -49,"1,140,000 ","598,000 ","542,000 ","1,038,000 ","541,000 ","497,000 ","102,000 ","57,000 ","45,000 " -50,"1,105,000 ","583,000 ","522,000 ","1,008,000 ","528,000 ","480,000 ","97,000 ","55,000 ","42,000 " -51,"1,070,000 ","569,000 ","501,000 ","977,000 ","515,000 ","462,000 ","93,000 ","54,000 ","39,000 " -52,"1,035,000 ","553,000 ","482,000 ","947,000 ","501,000 ","446,000 ","88,000 ","52,000 ","36,000 " -53,"997,000 ","533,000 ","464,000 ","914,000 ","484,000 ","430,000 ","83,000 ","49,000 ","34,000 " -54,"960,000 ","512,000 ","448,000 ","881,000 ","466,000 ","415,000 ","79,000 ","46,000 ","33,000 " -55,"923,000 ","492,000 ","431,000 ","848,000 ","448,000 ","400,000 ","75,000 ","44,000 ","31,000 " -56,"887,000 ","472,000 ","415,000 ","816,000 ","431,000 ","385,000 ","71,000 ","41,000 ","30,000 " -57,"849,000 ","450,000 ","399,000 ","782,000 ","412,000 ","370,000 ","67,000 ","38,000 ","29,000 " -58,"805,000 ","425,000 ","380,000 ","743,000 ","390,000 ","353,000 ","62,000 ","35,000 ","27,000 " -59,"757,000 ","398,000 ","359,000 ","702,000 ","367,000 ","335,000 ","55,000 ","31,000 ","24,000 " -60,"712,000 ","372,000 ","340,000 ","662,000 ","344,000 ","318,000 ","50,000 ","28,000 ","22,000 " -61,"664,000 ","345,000 ","319,000 ","620,000 ","320,000 ","300,000 ","44,000 ","25,000 ","19,000 " -62,"623,000 ","322,000 ","301,000 ","584,000 ","300,000 ","284,000 ","39,000 ","22,000 ","17,000 " -63,"594,000 ","307,000 ","287,000 ","557,000 ","286,000 ","271,000 ","37,000 ","21,000 ","16,000 " -64,"573,000 ","296,000 ","277,000 ","537,000 ","276,000 ","261,000 ","36,000 ","20,000 ","16,000 " -65,"547,000 ","283,000 ","264,000 ","513,000 ","264,000 ","249,000 ","34,000 ","19,000 ","15,000 " -66,"521,000 ","270,000 ","251,000 ","489,000 ","252,000 ","237,000 ","32,000 ","18,000 ","14,000 " -67,"494,000 ","256,000 ","238,000 ","463,000 ","239,000 ","224,000 ","31,000 ","17,000 ","14,000 " -68,"466,000 ","242,000 ","224,000 ","436,000 ","225,000 ","211,000 ","30,000 ","17,000 ","13,000 " -69,"435,000 ","226,000 ","209,000 ","407,000 ","210,000 ","197,000 ","28,000 ","16,000 ","12,000 " -70,"401,000 ","207,000 ","194,000 ","375,000 ","193,000 ","182,000 ","26,000 ","14,000 ","12,000 " -71,"362,000 ","186,000 ","176,000 ","338,000 ","173,000 ","165,000 ","24,000 ","13,000 ","11,000 " -72,"317,000 ","162,000 ","155,000 ","297,000 ","151,000 ","146,000 ","20,000 ","11,000 ","9,000 " -73,"268,000 ","134,000 ","134,000 ","251,000 ","125,000 ","126,000 ","17,000 ","9,000 ","8,000 " -74,"211,000 ","102,000 ","109,000 ","198,000 ","95,000 ","103,000 ","13,000 ","7,000 ","6,000 " -75+,"1,587,000 ","758,000 ","829,000 ","1,471,000 ","702,000 ","769,000 ","116,000 ","56,000 ","60,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1925.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1925.csv deleted file mode 100644 index 964d5e2670..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1925.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1925",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"115,829,000 ","58,813,000 ","57,016,000 ","104,061,000 ","52,931,000 ","51,130,000 ","11,768,000 ","5,882,000 ","5,886,000 " -,,,,,,,,, -0,"2,460,000 ","1,252,000 ","1,208,000 ","2,194,000 ","1,119,000 ","1,075,000 ","266,000 ","133,000 ","133,000 " -1,"2,465,000 ","1,254,000 ","1,211,000 ","2,200,000 ","1,121,000 ","1,079,000 ","265,000 ","133,000 ","132,000 " -2,"2,467,000 ","1,254,000 ","1,213,000 ","2,202,000 ","1,121,000 ","1,081,000 ","265,000 ","133,000 ","132,000 " -3,"2,465,000 ","1,252,000 ","1,213,000 ","2,200,000 ","1,119,000 ","1,081,000 ","265,000 ","133,000 ","132,000 " -4,"2,459,000 ","1,248,000 ","1,211,000 ","2,194,000 ","1,115,000 ","1,079,000 ","265,000 ","133,000 ","132,000 " -5,"2,449,000 ","1,242,000 ","1,207,000 ","2,184,000 ","1,109,000 ","1,075,000 ","265,000 ","133,000 ","132,000 " -6,"2,436,000 ","1,233,000 ","1,203,000 ","2,171,000 ","1,101,000 ","1,070,000 ","265,000 ","132,000 ","133,000 " -7,"2,420,000 ","1,224,000 ","1,196,000 ","2,155,000 ","1,092,000 ","1,063,000 ","265,000 ","132,000 ","133,000 " -8,"2,401,000 ","1,213,000 ","1,188,000 ","2,136,000 ","1,081,000 ","1,055,000 ","265,000 ","132,000 ","133,000 " -9,"2,381,000 ","1,201,000 ","1,180,000 ","2,116,000 ","1,070,000 ","1,046,000 ","265,000 ","131,000 ","134,000 " -10,"2,358,000 ","1,188,000 ","1,170,000 ","2,093,000 ","1,057,000 ","1,036,000 ","265,000 ","131,000 ","134,000 " -11,"2,333,000 ","1,173,000 ","1,160,000 ","2,068,000 ","1,043,000 ","1,025,000 ","265,000 ","130,000 ","135,000 " -12,"2,307,000 ","1,158,000 ","1,149,000 ","2,043,000 ","1,029,000 ","1,014,000 ","264,000 ","129,000 ","135,000 " -13,"2,279,000 ","1,141,000 ","1,138,000 ","2,016,000 ","1,013,000 ","1,003,000 ","263,000 ","128,000 ","135,000 " -14,"2,250,000 ","1,124,000 ","1,126,000 ","1,989,000 ","997,000 ","992,000 ","261,000 ","127,000 ","134,000 " -15,"2,222,000 ","1,107,000 ","1,115,000 ","1,962,000 ","981,000 ","981,000 ","260,000 ","126,000 ","134,000 " -16,"2,193,000 ","1,090,000 ","1,103,000 ","1,935,000 ","965,000 ","970,000 ","258,000 ","125,000 ","133,000 " -17,"2,160,000 ","1,072,000 ","1,088,000 ","1,905,000 ","949,000 ","956,000 ","255,000 ","123,000 ","132,000 " -18,"2,124,000 ","1,054,000 ","1,070,000 ","1,873,000 ","933,000 ","940,000 ","251,000 ","121,000 ","130,000 " -19,"2,085,000 ","1,034,000 ","1,051,000 ","1,839,000 ","916,000 ","923,000 ","246,000 ","118,000 ","128,000 " -20,"2,047,000 ","1,016,000 ","1,031,000 ","1,807,000 ","901,000 ","906,000 ","240,000 ","115,000 ","125,000 " -21,"2,012,000 ","1,000,000 ","1,012,000 ","1,776,000 ","887,000 ","889,000 ","236,000 ","113,000 ","123,000 " -22,"1,978,000 ","984,000 ","994,000 ","1,748,000 ","874,000 ","874,000 ","230,000 ","110,000 ","120,000 " -23,"1,947,000 ","968,000 ","979,000 ","1,725,000 ","862,000 ","863,000 ","222,000 ","106,000 ","116,000 " -24,"1,923,000 ","955,000 ","968,000 ","1,707,000 ","852,000 ","855,000 ","216,000 ","103,000 ","113,000 " -25,"1,896,000 ","941,000 ","955,000 ","1,688,000 ","842,000 ","846,000 ","208,000 ","99,000 ","109,000 " -26,"1,866,000 ","925,000 ","941,000 ","1,666,000 ","830,000 ","836,000 ","200,000 ","95,000 ","105,000 " -27,"1,852,000 ","919,000 ","933,000 ","1,657,000 ","826,000 ","831,000 ","195,000 ","93,000 ","102,000 " -28,"1,859,000 ","924,000 ","935,000 ","1,664,000 ","831,000 ","833,000 ","195,000 ","93,000 ","102,000 " -29,"1,877,000 ","936,000 ","941,000 ","1,680,000 ","842,000 ","838,000 ","197,000 ","94,000 ","103,000 " -30,"1,893,000 ","947,000 ","946,000 ","1,694,000 ","852,000 ","842,000 ","199,000 ","95,000 ","104,000 " -31,"1,915,000 ","961,000 ","954,000 ","1,713,000 ","864,000 ","849,000 ","202,000 ","97,000 ","105,000 " -32,"1,909,000 ","961,000 ","948,000 ","1,709,000 ","865,000 ","844,000 ","200,000 ","96,000 ","104,000 " -33,"1,863,000 ","941,000 ","922,000 ","1,672,000 ","849,000 ","823,000 ","191,000 ","92,000 ","99,000 " -34,"1,790,000 ","907,000 ","883,000 ","1,614,000 ","822,000 ","792,000 ","176,000 ","85,000 ","91,000 " -35,"1,720,000 ","875,000 ","845,000 ","1,557,000 ","796,000 ","761,000 ","163,000 ","79,000 ","84,000 " -36,"1,644,000 ","839,000 ","805,000 ","1,496,000 ","767,000 ","729,000 ","148,000 ","72,000 ","76,000 " -37,"1,588,000 ","814,000 ","774,000 ","1,449,000 ","746,000 ","703,000 ","139,000 ","68,000 ","71,000 " -38,"1,564,000 ","806,000 ","758,000 ","1,425,000 ","737,000 ","688,000 ","139,000 ","69,000 ","70,000 " -39,"1,560,000 ","808,000 ","752,000 ","1,416,000 ","736,000 ","680,000 ","144,000 ","72,000 ","72,000 " -40,"1,551,000 ","808,000 ","743,000 ","1,403,000 ","733,000 ","670,000 ","148,000 ","75,000 ","73,000 " -41,"1,540,000 ","806,000 ","734,000 ","1,389,000 ","729,000 ","660,000 ","151,000 ","77,000 ","74,000 " -42,"1,518,000 ","797,000 ","721,000 ","1,366,000 ","719,000 ","647,000 ","152,000 ","78,000 ","74,000 " -43,"1,474,000 ","774,000 ","700,000 ","1,327,000 ","698,000 ","629,000 ","147,000 ","76,000 ","71,000 " -44,"1,417,000 ","742,000 ","675,000 ","1,278,000 ","670,000 ","608,000 ","139,000 ","72,000 ","67,000 " -45,"1,363,000 ","712,000 ","651,000 ","1,231,000 ","643,000 ","588,000 ","132,000 ","69,000 ","63,000 " -46,"1,309,000 ","681,000 ","628,000 ","1,185,000 ","616,000 ","569,000 ","124,000 ","65,000 ","59,000 " -47,"1,256,000 ","652,000 ","604,000 ","1,140,000 ","591,000 ","549,000 ","116,000 ","61,000 ","55,000 " -48,"1,209,000 ","629,000 ","580,000 ","1,099,000 ","570,000 ","529,000 ","110,000 ","59,000 ","51,000 " -49,"1,167,000 ","610,000 ","557,000 ","1,063,000 ","553,000 ","510,000 ","104,000 ","57,000 ","47,000 " -50,"1,123,000 ","590,000 ","533,000 ","1,025,000 ","535,000 ","490,000 ","98,000 ","55,000 ","43,000 " -51,"1,079,000 ","569,000 ","510,000 ","987,000 ","516,000 ","471,000 ","92,000 ","53,000 ","39,000 " -52,"1,039,000 ","550,000 ","489,000 ","952,000 ","499,000 ","453,000 ","87,000 ","51,000 ","36,000 " -53,"1,003,000 ","532,000 ","471,000 ","921,000 ","484,000 ","437,000 ","82,000 ","48,000 ","34,000 " -54,"973,000 ","516,000 ","457,000 ","894,000 ","470,000 ","424,000 ","79,000 ","46,000 ","33,000 " -55,"944,000 ","501,000 ","443,000 ","868,000 ","457,000 ","411,000 ","76,000 ","44,000 ","32,000 " -56,"916,000 ","487,000 ","429,000 ","843,000 ","445,000 ","398,000 ","73,000 ","42,000 ","31,000 " -57,"882,000 ","468,000 ","414,000 ","812,000 ","428,000 ","384,000 ","70,000 ","40,000 ","30,000 " -58,"837,000 ","443,000 ","394,000 ","772,000 ","406,000 ","366,000 ","65,000 ","37,000 ","28,000 " -59,"783,000 ","412,000 ","371,000 ","725,000 ","379,000 ","346,000 ","58,000 ","33,000 ","25,000 " -60,"733,000 ","383,000 ","350,000 ","681,000 ","354,000 ","327,000 ","52,000 ","29,000 ","23,000 " -61,"681,000 ","354,000 ","327,000 ","635,000 ","328,000 ","307,000 ","46,000 ","26,000 ","20,000 " -62,"637,000 ","329,000 ","308,000 ","596,000 ","306,000 ","290,000 ","41,000 ","23,000 ","18,000 " -63,"607,000 ","313,000 ","294,000 ","569,000 ","292,000 ","277,000 ","38,000 ","21,000 ","17,000 " -64,"585,000 ","302,000 ","283,000 ","549,000 ","282,000 ","267,000 ","36,000 ","20,000 ","16,000 " -65,"562,000 ","290,000 ","272,000 ","527,000 ","271,000 ","256,000 ","35,000 ","19,000 ","16,000 " -66,"536,000 ","277,000 ","259,000 ","503,000 ","259,000 ","244,000 ","33,000 ","18,000 ","15,000 " -67,"509,000 ","263,000 ","246,000 ","478,000 ","246,000 ","232,000 ","31,000 ","17,000 ","14,000 " -68,"481,000 ","249,000 ","232,000 ","452,000 ","233,000 ","219,000 ","29,000 ","16,000 ","13,000 " -69,"449,000 ","232,000 ","217,000 ","422,000 ","217,000 ","205,000 ","27,000 ","15,000 ","12,000 " -70,"415,000 ","214,000 ","201,000 ","389,000 ","200,000 ","189,000 ","26,000 ","14,000 ","12,000 " -71,"376,000 ","193,000 ","183,000 ","352,000 ","180,000 ","172,000 ","24,000 ","13,000 ","11,000 " -72,"329,000 ","168,000 ","161,000 ","309,000 ","157,000 ","152,000 ","20,000 ","11,000 ","9,000 " -73,"279,000 ","140,000 ","139,000 ","262,000 ","131,000 ","131,000 ","17,000 ","9,000 ","8,000 " -74,"219,000 ","107,000 ","112,000 ","206,000 ","100,000 ","106,000 ","13,000 ","7,000 ","6,000 " -75+,"1,631,000 ","779,000 ","852,000 ","1,513,000 ","722,000 ","791,000 ","118,000 ","57,000 ","61,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1926.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1926.csv deleted file mode 100644 index 7c1b35fb67..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1926.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1926",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"117,397,000 ","59,588,000 ","57,809,000 ","105,468,000 ","53,628,000 ","51,840,000 ","11,929,000 ","5,960,000 ","5,969,000 " -,,,,,,,,, -0,"2,366,000 ","1,202,000 ","1,164,000 ","2,109,000 ","1,074,000 ","1,035,000 ","257,000 ","128,000 ","129,000 " -1,"2,414,000 ","1,227,000 ","1,187,000 ","2,152,000 ","1,096,000 ","1,056,000 ","262,000 ","131,000 ","131,000 " -2,"2,451,000 ","1,246,000 ","1,205,000 ","2,184,000 ","1,112,000 ","1,072,000 ","267,000 ","134,000 ","133,000 " -3,"2,473,000 ","1,257,000 ","1,216,000 ","2,204,000 ","1,122,000 ","1,082,000 ","269,000 ","135,000 ","134,000 " -4,"2,485,000 ","1,262,000 ","1,223,000 ","2,214,000 ","1,126,000 ","1,088,000 ","271,000 ","136,000 ","135,000 " -5,"2,486,000 ","1,262,000 ","1,224,000 ","2,214,000 ","1,125,000 ","1,089,000 ","272,000 ","137,000 ","135,000 " -6,"2,479,000 ","1,257,000 ","1,222,000 ","2,207,000 ","1,121,000 ","1,086,000 ","272,000 ","136,000 ","136,000 " -7,"2,464,000 ","1,248,000 ","1,216,000 ","2,192,000 ","1,112,000 ","1,080,000 ","272,000 ","136,000 ","136,000 " -8,"2,444,000 ","1,236,000 ","1,208,000 ","2,173,000 ","1,101,000 ","1,072,000 ","271,000 ","135,000 ","136,000 " -9,"2,417,000 ","1,220,000 ","1,197,000 ","2,148,000 ","1,087,000 ","1,061,000 ","269,000 ","133,000 ","136,000 " -10,"2,386,000 ","1,203,000 ","1,183,000 ","2,119,000 ","1,071,000 ","1,048,000 ","267,000 ","132,000 ","135,000 " -11,"2,350,000 ","1,182,000 ","1,168,000 ","2,085,000 ","1,052,000 ","1,033,000 ","265,000 ","130,000 ","135,000 " -12,"2,315,000 ","1,162,000 ","1,153,000 ","2,053,000 ","1,034,000 ","1,019,000 ","262,000 ","128,000 ","134,000 " -13,"2,292,000 ","1,148,000 ","1,144,000 ","2,031,000 ","1,021,000 ","1,010,000 ","261,000 ","127,000 ","134,000 " -14,"2,273,000 ","1,136,000 ","1,137,000 ","2,012,000 ","1,009,000 ","1,003,000 ","261,000 ","127,000 ","134,000 " -15,"2,252,000 ","1,123,000 ","1,129,000 ","1,991,000 ","996,000 ","995,000 ","261,000 ","127,000 ","134,000 " -16,"2,229,000 ","1,109,000 ","1,120,000 ","1,969,000 ","983,000 ","986,000 ","260,000 ","126,000 ","134,000 " -17,"2,202,000 ","1,094,000 ","1,108,000 ","1,944,000 ","969,000 ","975,000 ","258,000 ","125,000 ","133,000 " -18,"2,166,000 ","1,075,000 ","1,091,000 ","1,911,000 ","952,000 ","959,000 ","255,000 ","123,000 ","132,000 " -19,"2,124,000 ","1,055,000 ","1,069,000 ","1,875,000 ","935,000 ","940,000 ","249,000 ","120,000 ","129,000 " -20,"2,085,000 ","1,035,000 ","1,050,000 ","1,841,000 ","918,000 ","923,000 ","244,000 ","117,000 ","127,000 " -21,"2,049,000 ","1,018,000 ","1,031,000 ","1,809,000 ","903,000 ","906,000 ","240,000 ","115,000 ","125,000 " -22,"2,012,000 ","1,000,000 ","1,012,000 ","1,778,000 ","888,000 ","890,000 ","234,000 ","112,000 ","122,000 " -23,"1,976,000 ","982,000 ","994,000 ","1,750,000 ","874,000 ","876,000 ","226,000 ","108,000 ","118,000 " -24,"1,942,000 ","964,000 ","978,000 ","1,724,000 ","860,000 ","864,000 ","218,000 ","104,000 ","114,000 " -25,"1,911,000 ","948,000 ","963,000 ","1,699,000 ","847,000 ","852,000 ","212,000 ","101,000 ","111,000 " -26,"1,873,000 ","929,000 ","944,000 ","1,670,000 ","832,000 ","838,000 ","203,000 ","97,000 ","106,000 " -27,"1,854,000 ","920,000 ","934,000 ","1,657,000 ","826,000 ","831,000 ","197,000 ","94,000 ","103,000 " -28,"1,862,000 ","926,000 ","936,000 ","1,665,000 ","832,000 ","833,000 ","197,000 ","94,000 ","103,000 " -29,"1,887,000 ","941,000 ","946,000 ","1,687,000 ","845,000 ","842,000 ","200,000 ","96,000 ","104,000 " -30,"1,909,000 ","955,000 ","954,000 ","1,707,000 ","858,000 ","849,000 ","202,000 ","97,000 ","105,000 " -31,"1,935,000 ","971,000 ","964,000 ","1,729,000 ","872,000 ","857,000 ","206,000 ","99,000 ","107,000 " -32,"1,934,000 ","973,000 ","961,000 ","1,730,000 ","875,000 ","855,000 ","204,000 ","98,000 ","106,000 " -33,"1,888,000 ","952,000 ","936,000 ","1,693,000 ","858,000 ","835,000 ","195,000 ","94,000 ","101,000 " -34,"1,814,000 ","917,000 ","897,000 ","1,634,000 ","830,000 ","804,000 ","180,000 ","87,000 ","93,000 " -35,"1,743,000 ","883,000 ","860,000 ","1,577,000 ","803,000 ","774,000 ","166,000 ","80,000 ","86,000 " -36,"1,667,000 ","846,000 ","821,000 ","1,515,000 ","773,000 ","742,000 ","152,000 ","73,000 ","79,000 " -37,"1,611,000 ","821,000 ","790,000 ","1,468,000 ","752,000 ","716,000 ","143,000 ","69,000 ","74,000 " -38,"1,588,000 ","814,000 ","774,000 ","1,447,000 ","745,000 ","702,000 ","141,000 ","69,000 ","72,000 " -39,"1,586,000 ","819,000 ","767,000 ","1,440,000 ","746,000 ","694,000 ","146,000 ","73,000 ","73,000 " -40,"1,578,000 ","820,000 ","758,000 ","1,429,000 ","745,000 ","684,000 ","149,000 ","75,000 ","74,000 " -41,"1,570,000 ","822,000 ","748,000 ","1,417,000 ","744,000 ","673,000 ","153,000 ","78,000 ","75,000 " -42,"1,548,000 ","814,000 ","734,000 ","1,395,000 ","735,000 ","660,000 ","153,000 ","79,000 ","74,000 " -43,"1,506,000 ","792,000 ","714,000 ","1,357,000 ","715,000 ","642,000 ","149,000 ","77,000 ","72,000 " -44,"1,450,000 ","760,000 ","690,000 ","1,309,000 ","687,000 ","622,000 ","141,000 ","73,000 ","68,000 " -45,"1,396,000 ","730,000 ","666,000 ","1,263,000 ","661,000 ","602,000 ","133,000 ","69,000 ","64,000 " -46,"1,343,000 ","700,000 ","643,000 ","1,216,000 ","634,000 ","582,000 ","127,000 ","66,000 ","61,000 " -47,"1,289,000 ","670,000 ","619,000 ","1,170,000 ","608,000 ","562,000 ","119,000 ","62,000 ","57,000 " -48,"1,242,000 ","646,000 ","596,000 ","1,129,000 ","586,000 ","543,000 ","113,000 ","60,000 ","53,000 " -49,"1,196,000 ","624,000 ","572,000 ","1,089,000 ","566,000 ","523,000 ","107,000 ","58,000 ","49,000 " -50,"1,149,000 ","601,000 ","548,000 ","1,048,000 ","545,000 ","503,000 ","101,000 ","56,000 ","45,000 " -51,"1,100,000 ","577,000 ","523,000 ","1,005,000 ","523,000 ","482,000 ","95,000 ","54,000 ","41,000 " -52,"1,056,000 ","555,000 ","501,000 ","968,000 ","504,000 ","464,000 ","88,000 ","51,000 ","37,000 " -53,"1,021,000 ","538,000 ","483,000 ","937,000 ","489,000 ","448,000 ","84,000 ","49,000 ","35,000 " -54,"994,000 ","525,000 ","469,000 ","913,000 ","478,000 ","435,000 ","81,000 ","47,000 ","34,000 " -55,"965,000 ","511,000 ","454,000 ","887,000 ","466,000 ","421,000 ","78,000 ","45,000 ","33,000 " -56,"940,000 ","499,000 ","441,000 ","865,000 ","456,000 ","409,000 ","75,000 ","43,000 ","32,000 " -57,"905,000 ","481,000 ","424,000 ","835,000 ","441,000 ","394,000 ","70,000 ","40,000 ","30,000 " -58,"858,000 ","455,000 ","403,000 ","793,000 ","418,000 ","375,000 ","65,000 ","37,000 ","28,000 " -59,"805,000 ","424,000 ","381,000 ","745,000 ","390,000 ","355,000 ","60,000 ","34,000 ","26,000 " -60,"752,000 ","394,000 ","358,000 ","699,000 ","364,000 ","335,000 ","53,000 ","30,000 ","23,000 " -61,"700,000 ","364,000 ","336,000 ","652,000 ","337,000 ","315,000 ","48,000 ","27,000 ","21,000 " -62,"655,000 ","338,000 ","317,000 ","612,000 ","314,000 ","298,000 ","43,000 ","24,000 ","19,000 " -63,"624,000 ","321,000 ","303,000 ","584,000 ","299,000 ","285,000 ","40,000 ","22,000 ","18,000 " -64,"601,000 ","310,000 ","291,000 ","563,000 ","289,000 ","274,000 ","38,000 ","21,000 ","17,000 " -65,"576,000 ","297,000 ","279,000 ","540,000 ","277,000 ","263,000 ","36,000 ","20,000 ","16,000 " -66,"548,000 ","282,000 ","266,000 ","515,000 ","264,000 ","251,000 ","33,000 ","18,000 ","15,000 " -67,"520,000 ","268,000 ","252,000 ","489,000 ","251,000 ","238,000 ","31,000 ","17,000 ","14,000 " -68,"491,000 ","253,000 ","238,000 ","462,000 ","237,000 ","225,000 ","29,000 ","16,000 ","13,000 " -69,"461,000 ","237,000 ","224,000 ","433,000 ","222,000 ","211,000 ","28,000 ","15,000 ","13,000 " -70,"426,000 ","219,000 ","207,000 ","400,000 ","205,000 ","195,000 ","26,000 ","14,000 ","12,000 " -71,"388,000 ","199,000 ","189,000 ","364,000 ","186,000 ","178,000 ","24,000 ","13,000 ","11,000 " -72,"343,000 ","175,000 ","168,000 ","323,000 ","164,000 ","159,000 ","20,000 ","11,000 ","9,000 " -73,"294,000 ","149,000 ","145,000 ","276,000 ","139,000 ","137,000 ","18,000 ","10,000 ","8,000 " -74,"236,000 ","118,000 ","118,000 ","222,000 ","110,000 ","112,000 ","14,000 ","8,000 ","6,000 " -75+,"1,677,000 ","802,000 ","875,000 ","1,557,000 ","744,000 ","813,000 ","120,000 ","58,000 ","62,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1927.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1927.csv deleted file mode 100644 index 7f7e36a033..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1927.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1927",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"119,035,000 ","60,397,000 ","58,638,000 ","106,941,000 ","54,358,000 ","52,583,000 ","12,094,000 ","6,039,000 ","6,055,000 " -,,,,,,,,, -0,"2,305,000 ","1,169,000 ","1,136,000 ","2,051,000 ","1,043,000 ","1,008,000 ","254,000 ","126,000 ","128,000 " -1,"2,383,000 ","1,210,000 ","1,173,000 ","2,120,000 ","1,079,000 ","1,041,000 ","263,000 ","131,000 ","132,000 " -2,"2,441,000 ","1,240,000 ","1,201,000 ","2,171,000 ","1,105,000 ","1,066,000 ","270,000 ","135,000 ","135,000 " -3,"2,480,000 ","1,260,000 ","1,220,000 ","2,205,000 ","1,122,000 ","1,083,000 ","275,000 ","138,000 ","137,000 " -4,"2,502,000 ","1,271,000 ","1,231,000 ","2,225,000 ","1,132,000 ","1,093,000 ","277,000 ","139,000 ","138,000 " -5,"2,512,000 ","1,275,000 ","1,237,000 ","2,233,000 ","1,135,000 ","1,098,000 ","279,000 ","140,000 ","139,000 " -6,"2,509,000 ","1,273,000 ","1,236,000 ","2,230,000 ","1,133,000 ","1,097,000 ","279,000 ","140,000 ","139,000 " -7,"2,496,000 ","1,265,000 ","1,231,000 ","2,218,000 ","1,126,000 ","1,092,000 ","278,000 ","139,000 ","139,000 " -8,"2,474,000 ","1,252,000 ","1,222,000 ","2,199,000 ","1,115,000 ","1,084,000 ","275,000 ","137,000 ","138,000 " -9,"2,445,000 ","1,235,000 ","1,210,000 ","2,173,000 ","1,100,000 ","1,073,000 ","272,000 ","135,000 ","137,000 " -10,"2,410,000 ","1,215,000 ","1,195,000 ","2,141,000 ","1,082,000 ","1,059,000 ","269,000 ","133,000 ","136,000 " -11,"2,366,000 ","1,191,000 ","1,175,000 ","2,102,000 ","1,061,000 ","1,041,000 ","264,000 ","130,000 ","134,000 " -12,"2,330,000 ","1,170,000 ","1,160,000 ","2,070,000 ","1,043,000 ","1,027,000 ","260,000 ","127,000 ","133,000 " -13,"2,311,000 ","1,158,000 ","1,153,000 ","2,050,000 ","1,031,000 ","1,019,000 ","261,000 ","127,000 ","134,000 " -14,"2,299,000 ","1,150,000 ","1,149,000 ","2,038,000 ","1,023,000 ","1,015,000 ","261,000 ","127,000 ","134,000 " -15,"2,283,000 ","1,139,000 ","1,144,000 ","2,021,000 ","1,012,000 ","1,009,000 ","262,000 ","127,000 ","135,000 " -16,"2,267,000 ","1,129,000 ","1,138,000 ","2,005,000 ","1,002,000 ","1,003,000 ","262,000 ","127,000 ","135,000 " -17,"2,244,000 ","1,116,000 ","1,128,000 ","1,982,000 ","989,000 ","993,000 ","262,000 ","127,000 ","135,000 " -18,"2,210,000 ","1,098,000 ","1,112,000 ","1,951,000 ","973,000 ","978,000 ","259,000 ","125,000 ","134,000 " -19,"2,168,000 ","1,077,000 ","1,091,000 ","1,915,000 ","955,000 ","960,000 ","253,000 ","122,000 ","131,000 " -20,"2,128,000 ","1,057,000 ","1,071,000 ","1,880,000 ","938,000 ","942,000 ","248,000 ","119,000 ","129,000 " -21,"2,090,000 ","1,038,000 ","1,052,000 ","1,846,000 ","921,000 ","925,000 ","244,000 ","117,000 ","127,000 " -22,"2,052,000 ","1,019,000 ","1,033,000 ","1,814,000 ","905,000 ","909,000 ","238,000 ","114,000 ","124,000 " -23,"2,013,000 ","999,000 ","1,014,000 ","1,782,000 ","889,000 ","893,000 ","231,000 ","110,000 ","121,000 " -24,"1,975,000 ","980,000 ","995,000 ","1,751,000 ","873,000 ","878,000 ","224,000 ","107,000 ","117,000 " -25,"1,937,000 ","961,000 ","976,000 ","1,721,000 ","858,000 ","863,000 ","216,000 ","103,000 ","113,000 " -26,"1,897,000 ","941,000 ","956,000 ","1,689,000 ","842,000 ","847,000 ","208,000 ","99,000 ","109,000 " -27,"1,872,000 ","929,000 ","943,000 ","1,670,000 ","833,000 ","837,000 ","202,000 ","96,000 ","106,000 " -28,"1,875,000 ","933,000 ","942,000 ","1,674,000 ","837,000 ","837,000 ","201,000 ","96,000 ","105,000 " -29,"1,892,000 ","944,000 ","948,000 ","1,690,000 ","847,000 ","843,000 ","202,000 ","97,000 ","105,000 " -30,"1,907,000 ","954,000 ","953,000 ","1,705,000 ","857,000 ","848,000 ","202,000 ","97,000 ","105,000 " -31,"1,926,000 ","967,000 ","959,000 ","1,722,000 ","868,000 ","854,000 ","204,000 ","99,000 ","105,000 " -32,"1,925,000 ","969,000 ","956,000 ","1,723,000 ","871,000 ","852,000 ","202,000 ","98,000 ","104,000 " -33,"1,888,000 ","952,000 ","936,000 ","1,694,000 ","858,000 ","836,000 ","194,000 ","94,000 ","100,000 " -34,"1,829,000 ","923,000 ","906,000 ","1,647,000 ","835,000 ","812,000 ","182,000 ","88,000 ","94,000 " -35,"1,774,000 ","897,000 ","877,000 ","1,602,000 ","814,000 ","788,000 ","172,000 ","83,000 ","89,000 " -36,"1,714,000 ","868,000 ","846,000 ","1,554,000 ","791,000 ","763,000 ","160,000 ","77,000 ","83,000 " -37,"1,668,000 ","847,000 ","821,000 ","1,515,000 ","773,000 ","742,000 ","153,000 ","74,000 ","79,000 " -38,"1,641,000 ","838,000 ","803,000 ","1,491,000 ","765,000 ","726,000 ","150,000 ","73,000 ","77,000 " -39,"1,627,000 ","838,000 ","789,000 ","1,476,000 ","763,000 ","713,000 ","151,000 ","75,000 ","76,000 " -40,"1,608,000 ","834,000 ","774,000 ","1,457,000 ","758,000 ","699,000 ","151,000 ","76,000 ","75,000 " -41,"1,588,000 ","830,000 ","758,000 ","1,437,000 ","753,000 ","684,000 ","151,000 ","77,000 ","74,000 " -42,"1,560,000 ","820,000 ","740,000 ","1,411,000 ","743,000 ","668,000 ","149,000 ","77,000 ","72,000 " -43,"1,520,000 ","799,000 ","721,000 ","1,375,000 ","724,000 ","651,000 ","145,000 ","75,000 ","70,000 " -44,"1,472,000 ","772,000 ","700,000 ","1,333,000 ","700,000 ","633,000 ","139,000 ","72,000 ","67,000 " -45,"1,426,000 ","746,000 ","680,000 ","1,291,000 ","676,000 ","615,000 ","135,000 ","70,000 ","65,000 " -46,"1,379,000 ","719,000 ","660,000 ","1,249,000 ","652,000 ","597,000 ","130,000 ","67,000 ","63,000 " -47,"1,332,000 ","693,000 ","639,000 ","1,207,000 ","628,000 ","579,000 ","125,000 ","65,000 ","60,000 " -48,"1,281,000 ","667,000 ","614,000 ","1,163,000 ","605,000 ","558,000 ","118,000 ","62,000 ","56,000 " -49,"1,231,000 ","642,000 ","589,000 ","1,120,000 ","582,000 ","538,000 ","111,000 ","60,000 ","51,000 " -50,"1,179,000 ","615,000 ","564,000 ","1,075,000 ","558,000 ","517,000 ","104,000 ","57,000 ","47,000 " -51,"1,127,000 ","589,000 ","538,000 ","1,029,000 ","534,000 ","495,000 ","98,000 ","55,000 ","43,000 " -52,"1,080,000 ","565,000 ","515,000 ","989,000 ","513,000 ","476,000 ","91,000 ","52,000 ","39,000 " -53,"1,043,000 ","547,000 ","496,000 ","957,000 ","497,000 ","460,000 ","86,000 ","50,000 ","36,000 " -54,"1,014,000 ","534,000 ","480,000 ","931,000 ","486,000 ","445,000 ","83,000 ","48,000 ","35,000 " -55,"983,000 ","519,000 ","464,000 ","905,000 ","474,000 ","431,000 ","78,000 ","45,000 ","33,000 " -56,"955,000 ","506,000 ","449,000 ","880,000 ","463,000 ","417,000 ","75,000 ","43,000 ","32,000 " -57,"918,000 ","487,000 ","431,000 ","848,000 ","447,000 ","401,000 ","70,000 ","40,000 ","30,000 " -58,"874,000 ","463,000 ","411,000 ","809,000 ","426,000 ","383,000 ","65,000 ","37,000 ","28,000 " -59,"824,000 ","434,000 ","390,000 ","764,000 ","400,000 ","364,000 ","60,000 ","34,000 ","26,000 " -60,"775,000 ","406,000 ","369,000 ","720,000 ","375,000 ","345,000 ","55,000 ","31,000 ","24,000 " -61,"725,000 ","377,000 ","348,000 ","675,000 ","349,000 ","326,000 ","50,000 ","28,000 ","22,000 " -62,"681,000 ","352,000 ","329,000 ","636,000 ","327,000 ","309,000 ","45,000 ","25,000 ","20,000 " -63,"648,000 ","334,000 ","314,000 ","606,000 ","311,000 ","295,000 ","42,000 ","23,000 ","19,000 " -64,"620,000 ","320,000 ","300,000 ","580,000 ","298,000 ","282,000 ","40,000 ","22,000 ","18,000 " -65,"590,000 ","304,000 ","286,000 ","554,000 ","284,000 ","270,000 ","36,000 ","20,000 ","16,000 " -66,"558,000 ","287,000 ","271,000 ","525,000 ","269,000 ","256,000 ","33,000 ","18,000 ","15,000 " -67,"528,000 ","271,000 ","257,000 ","497,000 ","254,000 ","243,000 ","31,000 ","17,000 ","14,000 " -68,"497,000 ","255,000 ","242,000 ","468,000 ","239,000 ","229,000 ","29,000 ","16,000 ","13,000 " -69,"466,000 ","239,000 ","227,000 ","439,000 ","224,000 ","215,000 ","27,000 ","15,000 ","12,000 " -70,"430,000 ","220,000 ","210,000 ","406,000 ","207,000 ","199,000 ","24,000 ","13,000 ","11,000 " -71,"395,000 ","202,000 ","193,000 ","373,000 ","190,000 ","183,000 ","22,000 ","12,000 ","10,000 " -72,"355,000 ","181,000 ","174,000 ","335,000 ","170,000 ","165,000 ","20,000 ","11,000 ","9,000 " -73,"312,000 ","159,000 ","153,000 ","294,000 ","149,000 ","145,000 ","18,000 ","10,000 ","8,000 " -74,"267,000 ","135,000 ","132,000 ","250,000 ","126,000 ","124,000 ","17,000 ","9,000 ","8,000 " -75+,"1,729,000 ","827,000 ","902,000 ","1,607,000 ","768,000 ","839,000 ","122,000 ","59,000 ","63,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1928.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1928.csv deleted file mode 100644 index b7118f9975..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1928.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1928",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"120,509,000 ","61,101,000 ","59,408,000 ","108,244,000 ","54,982,000 ","53,262,000 ","12,265,000 ","6,119,000 ","6,146,000 " -,,,,,,,,, -0,"2,251,000 ","1,143,000 ","1,108,000 ","2,002,000 ","1,019,000 ","983,000 ","249,000 ","124,000 ","125,000 " -1,"2,345,000 ","1,191,000 ","1,154,000 ","2,083,000 ","1,060,000 ","1,023,000 ","262,000 ","131,000 ","131,000 " -2,"2,416,000 ","1,227,000 ","1,189,000 ","2,144,000 ","1,091,000 ","1,053,000 ","272,000 ","136,000 ","136,000 " -3,"2,466,000 ","1,252,000 ","1,214,000 ","2,188,000 ","1,113,000 ","1,075,000 ","278,000 ","139,000 ","139,000 " -4,"2,500,000 ","1,269,000 ","1,231,000 ","2,217,000 ","1,127,000 ","1,090,000 ","283,000 ","142,000 ","141,000 " -5,"2,515,000 ","1,276,000 ","1,239,000 ","2,231,000 ","1,134,000 ","1,097,000 ","284,000 ","142,000 ","142,000 " -6,"2,518,000 ","1,277,000 ","1,241,000 ","2,234,000 ","1,135,000 ","1,099,000 ","284,000 ","142,000 ","142,000 " -7,"2,509,000 ","1,271,000 ","1,238,000 ","2,227,000 ","1,130,000 ","1,097,000 ","282,000 ","141,000 ","141,000 " -8,"2,490,000 ","1,260,000 ","1,230,000 ","2,211,000 ","1,121,000 ","1,090,000 ","279,000 ","139,000 ","140,000 " -9,"2,464,000 ","1,246,000 ","1,218,000 ","2,189,000 ","1,109,000 ","1,080,000 ","275,000 ","137,000 ","138,000 " -10,"2,429,000 ","1,226,000 ","1,203,000 ","2,159,000 ","1,092,000 ","1,067,000 ","270,000 ","134,000 ","136,000 " -11,"2,385,000 ","1,202,000 ","1,183,000 ","2,121,000 ","1,072,000 ","1,049,000 ","264,000 ","130,000 ","134,000 " -12,"2,351,000 ","1,183,000 ","1,168,000 ","2,091,000 ","1,055,000 ","1,036,000 ","260,000 ","128,000 ","132,000 " -13,"2,334,000 ","1,172,000 ","1,162,000 ","2,074,000 ","1,045,000 ","1,029,000 ","260,000 ","127,000 ","133,000 " -14,"2,325,000 ","1,165,000 ","1,160,000 ","2,063,000 ","1,037,000 ","1,026,000 ","262,000 ","128,000 ","134,000 " -15,"2,313,000 ","1,156,000 ","1,157,000 ","2,050,000 ","1,028,000 ","1,022,000 ","263,000 ","128,000 ","135,000 " -16,"2,298,000 ","1,146,000 ","1,152,000 ","2,034,000 ","1,018,000 ","1,016,000 ","264,000 ","128,000 ","136,000 " -17,"2,277,000 ","1,133,000 ","1,144,000 ","2,014,000 ","1,006,000 ","1,008,000 ","263,000 ","127,000 ","136,000 " -18,"2,245,000 ","1,115,000 ","1,130,000 ","1,985,000 ","990,000 ","995,000 ","260,000 ","125,000 ","135,000 " -19,"2,206,000 ","1,095,000 ","1,111,000 ","1,950,000 ","972,000 ","978,000 ","256,000 ","123,000 ","133,000 " -20,"2,171,000 ","1,076,000 ","1,095,000 ","1,918,000 ","955,000 ","963,000 ","253,000 ","121,000 ","132,000 " -21,"2,134,000 ","1,056,000 ","1,078,000 ","1,886,000 ","938,000 ","948,000 ","248,000 ","118,000 ","130,000 " -22,"2,097,000 ","1,038,000 ","1,059,000 ","1,853,000 ","922,000 ","931,000 ","244,000 ","116,000 ","128,000 " -23,"2,056,000 ","1,017,000 ","1,039,000 ","1,818,000 ","904,000 ","914,000 ","238,000 ","113,000 ","125,000 " -24,"2,014,000 ","997,000 ","1,017,000 ","1,784,000 ","888,000 ","896,000 ","230,000 ","109,000 ","121,000 " -25,"1,973,000 ","977,000 ","996,000 ","1,750,000 ","871,000 ","879,000 ","223,000 ","106,000 ","117,000 " -26,"1,931,000 ","958,000 ","973,000 ","1,715,000 ","855,000 ","860,000 ","216,000 ","103,000 ","113,000 " -27,"1,900,000 ","944,000 ","956,000 ","1,691,000 ","844,000 ","847,000 ","209,000 ","100,000 ","109,000 " -28,"1,889,000 ","939,000 ","950,000 ","1,684,000 ","841,000 ","843,000 ","205,000 ","98,000 ","107,000 " -29,"1,891,000 ","942,000 ","949,000 ","1,688,000 ","845,000 ","843,000 ","203,000 ","97,000 ","106,000 " -30,"1,892,000 ","945,000 ","947,000 ","1,691,000 ","848,000 ","843,000 ","201,000 ","97,000 ","104,000 " -31,"1,891,000 ","947,000 ","944,000 ","1,693,000 ","851,000 ","842,000 ","198,000 ","96,000 ","102,000 " -32,"1,885,000 ","946,000 ","939,000 ","1,690,000 ","851,000 ","839,000 ","195,000 ","95,000 ","100,000 " -33,"1,865,000 ","937,000 ","928,000 ","1,675,000 ","845,000 ","830,000 ","190,000 ","92,000 ","98,000 " -34,"1,836,000 ","925,000 ","911,000 ","1,652,000 ","836,000 ","816,000 ","184,000 ","89,000 ","95,000 " -35,"1,808,000 ","913,000 ","895,000 ","1,629,000 ","826,000 ","803,000 ","179,000 ","87,000 ","92,000 " -36,"1,781,000 ","900,000 ","881,000 ","1,607,000 ","816,000 ","791,000 ","174,000 ","84,000 ","90,000 " -37,"1,750,000 ","888,000 ","862,000 ","1,581,000 ","806,000 ","775,000 ","169,000 ","82,000 ","87,000 " -38,"1,715,000 ","875,000 ","840,000 ","1,552,000 ","795,000 ","757,000 ","163,000 ","80,000 ","83,000 " -39,"1,678,000 ","862,000 ","816,000 ","1,520,000 ","784,000 ","736,000 ","158,000 ","78,000 ","80,000 " -40,"1,639,000 ","848,000 ","791,000 ","1,487,000 ","772,000 ","715,000 ","152,000 ","76,000 ","76,000 " -41,"1,599,000 ","833,000 ","766,000 ","1,452,000 ","759,000 ","693,000 ","147,000 ","74,000 ","73,000 " -42,"1,560,000 ","817,000 ","743,000 ","1,417,000 ","744,000 ","673,000 ","143,000 ","73,000 ","70,000 " -43,"1,523,000 ","799,000 ","724,000 ","1,383,000 ","727,000 ","656,000 ","140,000 ","72,000 ","68,000 " -44,"1,487,000 ","779,000 ","708,000 ","1,349,000 ","708,000 ","641,000 ","138,000 ","71,000 ","67,000 " -45,"1,451,000 ","759,000 ","692,000 ","1,315,000 ","689,000 ","626,000 ","136,000 ","70,000 ","66,000 " -46,"1,416,000 ","740,000 ","676,000 ","1,281,000 ","670,000 ","611,000 ","135,000 ","70,000 ","65,000 " -47,"1,374,000 ","717,000 ","657,000 ","1,243,000 ","649,000 ","594,000 ","131,000 ","68,000 ","63,000 " -48,"1,324,000 ","691,000 ","633,000 ","1,199,000 ","625,000 ","574,000 ","125,000 ","66,000 ","59,000 " -49,"1,270,000 ","663,000 ","607,000 ","1,153,000 ","600,000 ","553,000 ","117,000 ","63,000 ","54,000 " -50,"1,217,000 ","635,000 ","582,000 ","1,107,000 ","575,000 ","532,000 ","110,000 ","60,000 ","50,000 " -51,"1,162,000 ","606,000 ","556,000 ","1,060,000 ","549,000 ","511,000 ","102,000 ","57,000 ","45,000 " -52,"1,111,000 ","579,000 ","532,000 ","1,017,000 ","526,000 ","491,000 ","94,000 ","53,000 ","41,000 " -53,"1,071,000 ","560,000 ","511,000 ","982,000 ","509,000 ","473,000 ","89,000 ","51,000 ","38,000 " -54,"1,034,000 ","542,000 ","492,000 ","950,000 ","494,000 ","456,000 ","84,000 ","48,000 ","36,000 " -55,"997,000 ","525,000 ","472,000 ","919,000 ","480,000 ","439,000 ","78,000 ","45,000 ","33,000 " -56,"960,000 ","507,000 ","453,000 ","887,000 ","465,000 ","422,000 ","73,000 ","42,000 ","31,000 " -57,"923,000 ","488,000 ","435,000 ","855,000 ","449,000 ","406,000 ","68,000 ","39,000 ","29,000 " -58,"882,000 ","466,000 ","416,000 ","818,000 ","429,000 ","389,000 ","64,000 ","37,000 ","27,000 " -59,"838,000 ","440,000 ","398,000 ","778,000 ","406,000 ","372,000 ","60,000 ","34,000 ","26,000 " -60,"796,000 ","417,000 ","379,000 ","740,000 ","385,000 ","355,000 ","56,000 ","32,000 ","24,000 " -61,"753,000 ","392,000 ","361,000 ","701,000 ","363,000 ","338,000 ","52,000 ","29,000 ","23,000 " -62,"714,000 ","370,000 ","344,000 ","665,000 ","343,000 ","322,000 ","49,000 ","27,000 ","22,000 " -63,"676,000 ","349,000 ","327,000 ","631,000 ","324,000 ","307,000 ","45,000 ","25,000 ","20,000 " -64,"639,000 ","330,000 ","309,000 ","598,000 ","307,000 ","291,000 ","41,000 ","23,000 ","18,000 " -65,"604,000 ","311,000 ","293,000 ","566,000 ","290,000 ","276,000 ","38,000 ","21,000 ","17,000 " -66,"567,000 ","291,000 ","276,000 ","533,000 ","272,000 ","261,000 ","34,000 ","19,000 ","15,000 " -67,"533,000 ","273,000 ","260,000 ","502,000 ","256,000 ","246,000 ","31,000 ","17,000 ","14,000 " -68,"498,000 ","254,000 ","244,000 ","470,000 ","239,000 ","231,000 ","28,000 ","15,000 ","13,000 " -69,"465,000 ","237,000 ","228,000 ","439,000 ","223,000 ","216,000 ","26,000 ","14,000 ","12,000 " -70,"432,000 ","220,000 ","212,000 ","408,000 ","207,000 ","201,000 ","24,000 ","13,000 ","11,000 " -71,"400,000 ","204,000 ","196,000 ","378,000 ","192,000 ","186,000 ","22,000 ","12,000 ","10,000 " -72,"369,000 ","188,000 ","181,000 ","348,000 ","177,000 ","171,000 ","21,000 ","11,000 ","10,000 " -73,"337,000 ","172,000 ","165,000 ","318,000 ","162,000 ","156,000 ","19,000 ","10,000 ","9,000 " -74,"307,000 ","157,000 ","150,000 ","288,000 ","147,000 ","141,000 ","19,000 ","10,000 ","9,000 " -75+,"1,787,000 ","855,000 ","932,000 ","1,663,000 ","795,000 ","868,000 ","124,000 ","60,000 ","64,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1929.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1929.csv deleted file mode 100644 index e351f4f3c1..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1929.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1929",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"121,767,000 ","61,680,000 ","60,087,000 ","109,383,000 ","55,509,000 ","53,874,000 ","12,384,000 ","6,171,000 ","6,213,000 " -,,,,,,,,, -0,"2,142,000 ","1,090,000 ","1,052,000 ","1,909,000 ","974,000 ","935,000 ","233,000 ","116,000 ","117,000 " -1,"2,274,000 ","1,155,000 ","1,119,000 ","2,019,000 ","1,028,000 ","991,000 ","255,000 ","127,000 ","128,000 " -2,"2,374,000 ","1,205,000 ","1,169,000 ","2,104,000 ","1,070,000 ","1,034,000 ","270,000 ","135,000 ","135,000 " -3,"2,447,000 ","1,241,000 ","1,206,000 ","2,166,000 ","1,101,000 ","1,065,000 ","281,000 ","140,000 ","141,000 " -4,"2,497,000 ","1,266,000 ","1,231,000 ","2,209,000 ","1,122,000 ","1,087,000 ","288,000 ","144,000 ","144,000 " -5,"2,526,000 ","1,280,000 ","1,246,000 ","2,235,000 ","1,135,000 ","1,100,000 ","291,000 ","145,000 ","146,000 " -6,"2,535,000 ","1,284,000 ","1,251,000 ","2,244,000 ","1,139,000 ","1,105,000 ","291,000 ","145,000 ","146,000 " -7,"2,529,000 ","1,281,000 ","1,248,000 ","2,241,000 ","1,137,000 ","1,104,000 ","288,000 ","144,000 ","144,000 " -8,"2,512,000 ","1,272,000 ","1,240,000 ","2,228,000 ","1,130,000 ","1,098,000 ","284,000 ","142,000 ","142,000 " -9,"2,485,000 ","1,257,000 ","1,228,000 ","2,206,000 ","1,118,000 ","1,088,000 ","279,000 ","139,000 ","140,000 " -10,"2,446,000 ","1,237,000 ","1,209,000 ","2,175,000 ","1,102,000 ","1,073,000 ","271,000 ","135,000 ","136,000 " -11,"2,398,000 ","1,212,000 ","1,186,000 ","2,135,000 ","1,081,000 ","1,054,000 ","263,000 ","131,000 ","132,000 " -12,"2,358,000 ","1,190,000 ","1,168,000 ","2,102,000 ","1,063,000 ","1,039,000 ","256,000 ","127,000 ","129,000 " -13,"2,342,000 ","1,179,000 ","1,163,000 ","2,086,000 ","1,053,000 ","1,033,000 ","256,000 ","126,000 ","130,000 " -14,"2,339,000 ","1,175,000 ","1,164,000 ","2,080,000 ","1,048,000 ","1,032,000 ","259,000 ","127,000 ","132,000 " -15,"2,330,000 ","1,167,000 ","1,163,000 ","2,069,000 ","1,040,000 ","1,029,000 ","261,000 ","127,000 ","134,000 " -16,"2,316,000 ","1,157,000 ","1,159,000 ","2,054,000 ","1,030,000 ","1,024,000 ","262,000 ","127,000 ","135,000 " -17,"2,298,000 ","1,145,000 ","1,153,000 ","2,036,000 ","1,019,000 ","1,017,000 ","262,000 ","126,000 ","136,000 " -18,"2,273,000 ","1,129,000 ","1,144,000 ","2,012,000 ","1,004,000 ","1,008,000 ","261,000 ","125,000 ","136,000 " -19,"2,240,000 ","1,110,000 ","1,130,000 ","1,982,000 ","987,000 ","995,000 ","258,000 ","123,000 ","135,000 " -20,"2,209,000 ","1,092,000 ","1,117,000 ","1,954,000 ","971,000 ","983,000 ","255,000 ","121,000 ","134,000 " -21,"2,179,000 ","1,074,000 ","1,105,000 ","1,927,000 ","955,000 ","972,000 ","252,000 ","119,000 ","133,000 " -22,"2,143,000 ","1,055,000 ","1,088,000 ","1,895,000 ","938,000 ","957,000 ","248,000 ","117,000 ","131,000 " -23,"2,103,000 ","1,035,000 ","1,068,000 ","1,859,000 ","920,000 ","939,000 ","244,000 ","115,000 ","129,000 " -24,"2,060,000 ","1,015,000 ","1,045,000 ","1,823,000 ","903,000 ","920,000 ","237,000 ","112,000 ","125,000 " -25,"2,018,000 ","996,000 ","1,022,000 ","1,786,000 ","886,000 ","900,000 ","232,000 ","110,000 ","122,000 " -26,"1,974,000 ","976,000 ","998,000 ","1,749,000 ","869,000 ","880,000 ","225,000 ","107,000 ","118,000 " -27,"1,937,000 ","959,000 ","978,000 ","1,719,000 ","855,000 ","864,000 ","218,000 ","104,000 ","114,000 " -28,"1,910,000 ","948,000 ","962,000 ","1,699,000 ","847,000 ","852,000 ","211,000 ","101,000 ","110,000 " -29,"1,890,000 ","939,000 ","951,000 ","1,686,000 ","841,000 ","845,000 ","204,000 ","98,000 ","106,000 " -30,"1,870,000 ","931,000 ","939,000 ","1,673,000 ","836,000 ","837,000 ","197,000 ","95,000 ","102,000 " -31,"1,847,000 ","922,000 ","925,000 ","1,658,000 ","830,000 ","828,000 ","189,000 ","92,000 ","97,000 " -32,"1,832,000 ","917,000 ","915,000 ","1,648,000 ","827,000 ","821,000 ","184,000 ","90,000 ","94,000 " -33,"1,829,000 ","918,000 ","911,000 ","1,647,000 ","829,000 ","818,000 ","182,000 ","89,000 ","93,000 " -34,"1,834,000 ","923,000 ","911,000 ","1,650,000 ","833,000 ","817,000 ","184,000 ","90,000 ","94,000 " -35,"1,837,000 ","927,000 ","910,000 ","1,652,000 ","837,000 ","815,000 ","185,000 ","90,000 ","95,000 " -36,"1,843,000 ","932,000 ","911,000 ","1,656,000 ","841,000 ","815,000 ","187,000 ","91,000 ","96,000 " -37,"1,829,000 ","928,000 ","901,000 ","1,644,000 ","838,000 ","806,000 ","185,000 ","90,000 ","95,000 " -38,"1,791,000 ","913,000 ","878,000 ","1,613,000 ","826,000 ","787,000 ","178,000 ","87,000 ","91,000 " -39,"1,732,000 ","888,000 ","844,000 ","1,565,000 ","806,000 ","759,000 ","167,000 ","82,000 ","85,000 " -40,"1,677,000 ","865,000 ","812,000 ","1,520,000 ","787,000 ","733,000 ","157,000 ","78,000 ","79,000 " -41,"1,617,000 ","840,000 ","777,000 ","1,471,000 ","767,000 ","704,000 ","146,000 ","73,000 ","73,000 " -42,"1,565,000 ","817,000 ","748,000 ","1,427,000 ","747,000 ","680,000 ","138,000 ","70,000 ","68,000 " -43,"1,529,000 ","799,000 ","730,000 ","1,393,000 ","730,000 ","663,000 ","136,000 ","69,000 ","67,000 " -44,"1,501,000 ","785,000 ","716,000 ","1,365,000 ","715,000 ","650,000 ","136,000 ","70,000 ","66,000 " -45,"1,470,000 ","768,000 ","702,000 ","1,334,000 ","698,000 ","636,000 ","136,000 ","70,000 ","66,000 " -46,"1,440,000 ","752,000 ","688,000 ","1,303,000 ","681,000 ","622,000 ","137,000 ","71,000 ","66,000 " -47,"1,403,000 ","733,000 ","670,000 ","1,268,000 ","662,000 ","606,000 ","135,000 ","71,000 ","64,000 " -48,"1,357,000 ","709,000 ","648,000 ","1,227,000 ","640,000 ","587,000 ","130,000 ","69,000 ","61,000 " -49,"1,306,000 ","682,000 ","624,000 ","1,184,000 ","617,000 ","567,000 ","122,000 ","65,000 ","57,000 " -50,"1,254,000 ","655,000 ","599,000 ","1,140,000 ","593,000 ","547,000 ","114,000 ","62,000 ","52,000 " -51,"1,207,000 ","630,000 ","577,000 ","1,098,000 ","570,000 ","528,000 ","109,000 ","60,000 ","49,000 " -52,"1,156,000 ","603,000 ","553,000 ","1,055,000 ","547,000 ","508,000 ","101,000 ","56,000 ","45,000 " -53,"1,108,000 ","579,000 ","529,000 ","1,014,000 ","526,000 ","488,000 ","94,000 ","53,000 ","41,000 " -54,"1,060,000 ","555,000 ","505,000 ","974,000 ","506,000 ","468,000 ","86,000 ","49,000 ","37,000 " -55,"1,013,000 ","531,000 ","482,000 ","934,000 ","486,000 ","448,000 ","79,000 ","45,000 ","34,000 " -56,"964,000 ","507,000 ","457,000 ","893,000 ","466,000 ","427,000 ","71,000 ","41,000 ","30,000 " -57,"919,000 ","483,000 ","436,000 ","855,000 ","446,000 ","409,000 ","64,000 ","37,000 ","27,000 " -58,"882,000 ","463,000 ","419,000 ","821,000 ","428,000 ","393,000 ","61,000 ","35,000 ","26,000 " -59,"847,000 ","444,000 ","403,000 ","788,000 ","410,000 ","378,000 ","59,000 ","34,000 ","25,000 " -60,"811,000 ","424,000 ","387,000 ","755,000 ","392,000 ","363,000 ","56,000 ","32,000 ","24,000 " -61,"777,000 ","404,000 ","373,000 ","723,000 ","374,000 ","349,000 ","54,000 ","30,000 ","24,000 " -62,"742,000 ","385,000 ","357,000 ","690,000 ","356,000 ","334,000 ","52,000 ","29,000 ","23,000 " -63,"701,000 ","362,000 ","339,000 ","654,000 ","336,000 ","318,000 ","47,000 ","26,000 ","21,000 " -64,"659,000 ","340,000 ","319,000 ","616,000 ","316,000 ","300,000 ","43,000 ","24,000 ","19,000 " -65,"617,000 ","317,000 ","300,000 ","579,000 ","296,000 ","283,000 ","38,000 ","21,000 ","17,000 " -66,"578,000 ","296,000 ","282,000 ","543,000 ","277,000 ","266,000 ","35,000 ","19,000 ","16,000 " -67,"540,000 ","276,000 ","264,000 ","509,000 ","259,000 ","250,000 ","31,000 ","17,000 ","14,000 " -68,"503,000 ","256,000 ","247,000 ","475,000 ","241,000 ","234,000 ","28,000 ","15,000 ","13,000 " -69,"470,000 ","239,000 ","231,000 ","444,000 ","225,000 ","219,000 ","26,000 ","14,000 ","12,000 " -70,"436,000 ","221,000 ","215,000 ","413,000 ","209,000 ","204,000 ","23,000 ","12,000 ","11,000 " -71,"406,000 ","206,000 ","200,000 ","385,000 ","195,000 ","190,000 ","21,000 ","11,000 ","10,000 " -72,"380,000 ","193,000 ","187,000 ","359,000 ","182,000 ","177,000 ","21,000 ","11,000 ","10,000 " -73,"354,000 ","181,000 ","173,000 ","335,000 ","171,000 ","164,000 ","19,000 ","10,000 ","9,000 " -74,"336,000 ","173,000 ","163,000 ","315,000 ","162,000 ","153,000 ","21,000 ","11,000 ","10,000 " -75+,"1,854,000 ","887,000 ","967,000 ","1,729,000 ","827,000 ","902,000 ","125,000 ","60,000 ","65,000 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1930.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1930.csv deleted file mode 100644 index 7df7f72f9c..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1930.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1930",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"123,076,741 ","62,296,517 ","60,780,224 ","110,558,880 ","56,069,079 ","54,489,801 ","12,517,861 ","6,227,438 ","6,290,423 " -,,,,,,,,, -0,"2,181,398 ","1,107,325 ","1,074,073 ","1,937,916 ","986,374 ","951,542 ","243,482 ","120,951 ","122,531 " -1,"2,164,397 ","1,098,451 ","1,065,946 ","1,926,512 ","980,383 ","946,129 ","237,885 ","118,068 ","119,817 " -2,"2,272,951 ","1,167,027 ","1,105,924 ","2,010,219 ","1,036,349 ","973,870 ","262,732 ","130,678 ","132,054 " -3,"2,375,736 ","1,207,259 ","1,168,477 ","2,096,548 ","1,068,980 ","1,027,568 ","279,188 ","138,279 ","140,909 " -4,"2,377,633 ","1,206,960 ","1,170,673 ","2,101,516 ","1,069,049 ","1,032,467 ","276,117 ","137,911 ","138,206 " -5,"2,489,604 ","1,266,778 ","1,222,826 ","2,198,926 ","1,121,136 ","1,077,790 ","290,678 ","145,642 ","145,036 " -6,"2,512,951 ","1,271,358 ","1,241,593 ","2,217,256 ","1,124,798 ","1,092,458 ","295,695 ","146,560 ","149,135 " -7,"2,482,957 ","1,254,693 ","1,228,264 ","2,193,831 ","1,111,456 ","1,082,375 ","289,126 ","143,237 ","145,889 " -8,"2,569,834 ","1,296,777 ","1,273,057 ","2,275,811 ","1,150,754 ","1,125,057 ","294,023 ","146,023 ","148,000 " -9,"2,534,824 ","1,283,924 ","1,250,900 ","2,254,655 ","1,144,310 ","1,110,345 ","280,169 ","139,614 ","140,555 " -10,"2,472,639 ","1,251,688 ","1,220,951 ","2,200,548 ","1,115,968 ","1,084,580 ","272,091 ","135,720 ","136,371 " -11,"2,430,418 ","1,230,003 ","1,200,415 ","2,164,834 ","1,097,183 ","1,067,651 ","265,584 ","132,820 ","132,764 " -12,"2,396,985 ","1,212,837 ","1,184,148 ","2,137,070 ","1,082,758 ","1,054,312 ","259,915 ","130,079 ","129,836 " -13,"2,375,924 ","1,200,025 ","1,175,899 ","2,118,047 ","1,071,602 ","1,046,445 ","257,877 ","128,423 ","129,454 " -14,"2,364,654 ","1,190,619 ","1,174,035 ","2,105,907 ","1,062,980 ","1,042,927 ","258,747 ","127,639 ","131,108 " -15,"2,351,648 ","1,180,257 ","1,171,391 ","2,091,838 ","1,053,343 ","1,038,495 ","259,810 ","126,914 ","132,896 " -16,"2,335,712 ","1,168,684 ","1,167,028 ","2,074,956 ","1,042,512 ","1,032,444 ","260,756 ","126,172 ","134,584 " -17,"2,317,496 ","1,155,843 ","1,161,653 ","2,056,239 ","1,030,513 ","1,025,726 ","261,257 ","125,330 ","135,927 " -18,"2,295,997 ","1,141,113 ","1,154,884 ","2,035,321 ","1,016,904 ","1,018,417 ","260,676 ","124,209 ","136,467 " -19,"2,271,276 ","1,124,740 ","1,146,536 ","2,012,200 ","1,001,911 ","1,010,289 ","259,076 ","122,829 ","136,247 " -20,"2,245,650 ","1,108,062 ","1,137,588 ","1,988,410 ","986,671 ","1,001,739 ","257,240 ","121,391 ","135,849 " -21,"2,220,398 ","1,091,597 ","1,128,801 ","1,965,137 ","971,702 ","993,435 ","255,261 ","119,895 ","135,366 " -22,"2,190,420 ","1,074,105 ","1,116,315 ","1,937,803 ","955,788 ","982,015 ","252,617 ","118,317 ","134,300 " -23,"2,151,904 ","1,054,756 ","1,097,148 ","1,902,875 ","938,094 ","964,781 ","249,029 ","116,662 ","132,367 " -24,"2,106,848 ","1,034,155 ","1,072,693 ","1,862,331 ","919,268 ","943,063 ","244,517 ","114,887 ","129,630 " -25,"2,061,558 ","1,013,967 ","1,047,591 ","1,821,793 ","900,875 ","920,918 ","239,765 ","113,092 ","126,673 " -26,"2,017,439 ","994,712 ","1,022,727 ","1,782,117 ","883,228 ","898,889 ","235,322 ","111,484 ","123,838 " -27,"1,975,370 ","976,460 ","998,910 ","1,746,036 ","867,282 ","878,754 ","229,334 ","109,178 ","120,156 " -28,"1,936,950 ","959,486 ","977,464 ","1,716,565 ","854,023 ","862,542 ","220,385 ","105,463 ","114,922 " -29,"1,902,713 ","944,177 ","958,536 ","1,693,348 ","843,433 ","849,915 ","209,365 ","100,744 ","108,621 " -30,"1,869,017 ","929,367 ","939,650 ","1,671,011 ","833,474 ","837,537 ","198,006 ","95,893 ","102,113 " -31,"1,832,401 ","913,361 ","919,040 ","1,646,562 ","822,641 ","823,921 ","185,839 ","90,720 ","95,119 " -32,"1,808,190 ","903,784 ","904,406 ","1,631,013 ","816,731 ","814,282 ","177,177 ","87,053 ","90,124 " -33,"1,808,434 ","906,720 ","901,714 ","1,632,649 ","820,217 ","812,432 ","175,785 ","86,503 ","89,282 " -34,"1,826,764 ","918,922 ","907,842 ","1,646,754 ","830,563 ","816,191 ","180,010 ","88,359 ","91,651 " -35,"1,846,872 ","932,017 ","914,855 ","1,661,997 ","841,527 ","820,470 ","184,875 ","90,490 ","94,385 " -36,"1,869,177 ","946,117 ","923,060 ","1,678,840 ","853,221 ","825,619 ","190,337 ","92,896 ","97,441 " -37,"1,874,189 ","951,608 ","922,581 ","1,681,869 ","857,851 ","824,018 ","192,320 ","93,757 ","98,563 " -38,"1,843,703 ","939,470 ","904,233 ","1,656,889 ","848,175 ","808,714 ","186,814 ","91,295 ","95,519 " -39,"1,784,523 ","913,002 ","871,521 ","1,609,144 ","826,790 ","782,354 ","175,379 ","86,212 ","89,167 " -40,"1,721,420 ","884,443 ","836,977 ","1,557,938 ","803,509 ","754,429 ","163,482 ","80,934 ","82,548 " -41,"1,656,726 ","855,009 ","801,717 ","1,505,277 ","779,413 ","725,864 ","151,449 ","75,596 ","75,853 " -42,"1,597,764 ","827,823 ","769,941 ","1,456,016 ","756,450 ","699,566 ","141,748 ","71,373 ","70,375 " -43,"1,553,910 ","807,116 ","746,794 ","1,416,771 ","737,554 ","679,217 ","137,139 ","69,562 ","67,577 " -44,"1,522,279 ","791,612 ","730,667 ","1,385,682 ","721,935 ","663,747 ","136,597 ","69,677 ","66,920 " -45,"1,489,630 ","775,292 ","714,338 ","1,353,468 ","705,455 ","648,013 ","136,162 ","69,837 ","66,325 " -46,"1,454,197 ","757,319 ","696,878 ","1,318,834 ","687,541 ","631,293 ","135,363 ","69,778 ","65,585 " -47,"1,417,238 ","738,562 ","678,676 ","1,283,587 ","669,181 ","614,406 ","133,651 ","69,381 ","64,270 " -48,"1,378,010 ","718,920 ","659,090 ","1,247,964 ","650,627 ","597,337 ","130,046 ","68,293 ","61,753 " -49,"1,336,549 ","698,322 ","638,227 ","1,211,765 ","631,770 ","579,995 ","124,784 ","66,552 ","58,232 " -50,"1,295,061 ","677,528 ","617,533 ","1,175,588 ","612,766 ","562,822 ","119,473 ","64,762 ","54,711 " -51,"1,254,791 ","657,170 ","597,621 ","1,140,198 ","593,997 ","546,201 ","114,593 ","63,173 ","51,420 " -52,"1,210,584 ","634,451 ","576,133 ","1,101,913 ","573,671 ","528,242 ","108,671 ","60,780 ","47,891 " -53,"1,158,516 ","607,175 ","551,341 ","1,057,797 ","550,333 ","507,464 ","100,719 ","56,842 ","43,877 " -54,"1,100,655 ","576,506 ","524,149 ","1,009,354 ","524,768 ","484,586 ","91,301 ","51,738 ","39,563 " -55,"1,042,234 ","545,420 ","496,814 ","960,528 ","498,961 ","461,567 ","81,706 ","46,459 ","35,247 " -56,"983,123 ","513,891 ","469,232 ","911,249 ","472,878 ","438,371 ","71,874 ","41,013 ","30,861 " -57,"929,633 ","485,258 ","444,375 ","865,915 ","448,829 ","417,086 ","63,718 ","36,429 ","27,289 " -58,"887,636 ","462,646 ","424,990 ","828,650 ","428,961 ","399,689 ","58,986 ","33,685 ","25,301 " -59,"854,905 ","444,901 ","410,004 ","797,876 ","412,467 ","385,409 ","57,029 ","32,434 ","24,595 " -60,"823,587 ","427,873 ","395,714 ","768,078 ","396,499 ","371,579 ","55,509 ","31,374 ","24,135 " -61,"793,172 ","411,281 ","381,891 ","738,941 ","380,885 ","358,056 ","54,231 ","30,396 ","23,835 " -62,"760,527 ","393,553 ","366,974 ","708,113 ","364,413 ","343,700 ","52,414 ","29,140 ","23,274 " -63,"722,084 ","372,850 ","349,234 ","672,974 ","345,710 ","327,264 ","49,110 ","27,140 ","21,970 " -64,"679,137 ","349,859 ","329,278 ","634,508 ","325,304 ","309,204 ","44,629 ","24,555 ","20,074 " -65,"636,589 ","327,102 ","309,487 ","596,289 ","305,046 ","291,243 ","40,300 ","22,056 ","18,244 " -66,"594,731 ","304,703 ","290,028 ","558,483 ","284,998 ","273,485 ","36,248 ","19,705 ","16,543 " -67,"555,171 ","283,674 ","271,497 ","522,559 ","266,079 ","256,480 ","32,612 ","17,595 ","15,017 " -68,"519,894 ","265,189 ","254,705 ","490,217 ","249,301 ","240,916 ","29,677 ","15,888 ","13,789 " -69,"488,113 ","248,773 ","239,340 ","460,774 ","234,248 ","226,526 ","27,339 ","14,525 ","12,814 " -70,"457,195 ","232,867 ","224,328 ","432,042 ","219,610 ","212,432 ","25,153 ","13,257 ","11,896 " -71,"427,255 ","217,527 ","209,728 ","404,190 ","205,475 ","198,715 ","23,065 ","12,052 ","11,013 " -72,"396,062 ","201,434 ","194,628 ","374,987 ","190,513 ","184,474 ","21,075 ","10,921 ","10,154 " -73,"361,419 ","183,295 ","178,124 ","342,295 ","173,455 ","168,840 ","19,124 ","9,840 ","9,284 " -74,"324,337 ","163,691 ","160,646 ","307,109 ","154,879 ","152,230 ","17,228 ","8,812 ","8,416 " -75+,"1,945,053 ","931,276 ","1,013,777 ","1,817,658 ","870,781 ","946,877 ","127,395 ","60,495 ","66,900 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1931.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1931.csv deleted file mode 100644 index b2282e5c06..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1931.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1931",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"124,039,648 ","62,725,503 ","61,314,145 ","111,433,404 ","56,462,405 ","54,970,999 ","12,606,244 ","6,263,098 ","6,343,146 " -,,,,,,,,, -0,"2,138,681 ","1,087,341 ","1,051,340 ","1,902,140 ","970,079 ","932,061 ","236,541 ","117,262 ","119,279 " -1,"2,140,300 ","1,083,155 ","1,057,145 ","1,903,378 ","965,694 ","937,684 ","236,922 ","117,461 ","119,461 " -2,"2,225,565 ","1,125,772 ","1,099,793 ","1,974,464 ","1,001,488 ","972,976 ","251,101 ","124,284 ","126,817 " -3,"2,300,649 ","1,180,976 ","1,119,673 ","2,028,157 ","1,045,191 ","982,966 ","272,492 ","135,785 ","136,707 " -4,"2,374,212 ","1,205,680 ","1,168,532 ","2,092,923 ","1,066,386 ","1,026,537 ","281,289 ","139,294 ","141,995 " -5,"2,444,300 ","1,248,266 ","1,196,034 ","2,150,290 ","1,099,796 ","1,050,494 ","294,010 ","148,470 ","145,540 " -6,"2,480,998 ","1,261,280 ","1,219,718 ","2,191,978 ","1,116,722 ","1,075,256 ","289,020 ","144,558 ","144,462 " -7,"2,505,440 ","1,266,910 ","1,238,530 ","2,211,881 ","1,121,582 ","1,090,299 ","293,559 ","145,328 ","148,231 " -8,"2,480,593 ","1,252,653 ","1,227,940 ","2,192,964 ","1,110,418 ","1,082,546 ","287,629 ","142,235 ","145,394 " -9,"2,557,405 ","1,289,352 ","1,268,053 ","2,265,687 ","1,144,897 ","1,120,790 ","291,718 ","144,455 ","147,263 " -10,"2,522,846 ","1,275,649 ","1,247,197 ","2,243,998 ","1,137,307 ","1,106,691 ","278,848 ","138,342 ","140,506 " -11,"2,463,316 ","1,244,250 ","1,219,066 ","2,192,211 ","1,109,795 ","1,082,416 ","271,105 ","134,455 ","136,650 " -12,"2,421,068 ","1,222,012 ","1,199,056 ","2,156,390 ","1,090,592 ","1,065,798 ","264,678 ","131,420 ","133,258 " -13,"2,387,124 ","1,204,150 ","1,182,974 ","2,128,046 ","1,075,541 ","1,052,505 ","259,078 ","128,609 ","130,469 " -14,"2,365,836 ","1,191,265 ","1,174,571 ","2,108,869 ","1,064,295 ","1,044,574 ","256,967 ","126,970 ","129,997 " -15,"2,354,622 ","1,182,319 ","1,172,303 ","2,096,969 ","1,056,038 ","1,040,931 ","257,653 ","126,281 ","131,372 " -16,"2,341,673 ","1,172,452 ","1,169,221 ","2,083,165 ","1,046,801 ","1,036,364 ","258,508 ","125,651 ","132,857 " -17,"2,325,848 ","1,161,403 ","1,164,445 ","2,066,576 ","1,036,386 ","1,030,190 ","259,272 ","125,017 ","134,255 " -18,"2,307,372 ","1,148,959 ","1,158,413 ","2,047,931 ","1,024,756 ","1,023,175 ","259,441 ","124,203 ","135,238 " -19,"2,284,853 ","1,134,309 ","1,150,544 ","2,026,609 ","1,011,371 ","1,015,238 ","258,244 ","122,938 ","135,306 " -20,"2,258,530 ","1,117,747 ","1,140,783 ","2,002,709 ","996,457 ","1,006,252 ","255,821 ","121,290 ","134,531 " -21,"2,231,227 ","1,100,876 ","1,130,351 ","1,978,088 ","981,299 ","996,789 ","253,139 ","119,577 ","133,562 " -22,"2,204,264 ","1,084,248 ","1,120,016 ","1,953,979 ","966,447 ","987,532 ","250,285 ","117,801 ","132,484 " -23,"2,173,482 ","1,066,860 ","1,106,622 ","1,926,339 ","950,787 ","975,552 ","247,143 ","116,073 ","131,070 " -24,"2,135,900 ","1,048,137 ","1,087,763 ","1,892,130 ","933,618 ","958,512 ","243,770 ","114,519 ","129,251 " -25,"2,093,086 ","1,028,535 ","1,064,551 ","1,853,051 ","915,500 ","937,551 ","240,035 ","113,035 ","127,000 " -26,"2,050,165 ","1,009,339 ","1,040,826 ","1,814,029 ","897,792 ","916,237 ","236,136 ","111,547 ","124,589 " -27,"2,008,335 ","991,005 ","1,017,330 ","1,775,791 ","880,769 ","895,022 ","232,544 ","110,236 ","122,308 " -28,"1,968,174 ","973,525 ","994,649 ","1,740,841 ","865,302 ","875,539 ","227,333 ","108,223 ","119,110 " -29,"1,930,868 ","957,054 ","973,814 ","1,711,935 ","852,295 ","859,640 ","218,933 ","104,759 ","114,174 " -30,"1,896,973 ","941,978 ","954,995 ","1,688,734 ","841,736 ","846,998 ","208,239 ","100,242 ","107,997 " -31,"1,863,544 ","927,343 ","936,201 ","1,666,352 ","831,754 ","834,598 ","197,192 ","95,589 ","101,603 " -32,"1,827,400 ","911,589 ","915,811 ","1,642,002 ","820,953 ","821,049 ","185,398 ","90,636 ","94,762 " -33,"1,802,673 ","901,750 ","900,923 ","1,625,897 ","814,724 ","811,173 ","176,776 ","87,026 ","89,750 " -34,"1,800,580 ","903,490 ","897,090 ","1,625,744 ","817,244 ","808,500 ","174,836 ","86,246 ","88,590 " -35,"1,815,328 ","913,849 ","901,479 ","1,637,257 ","826,195 ","811,062 ","178,071 ","87,654 ","90,417 " -36,"1,831,577 ","924,957 ","906,620 ","1,649,724 ","835,668 ","814,056 ","181,853 ","89,289 ","92,564 " -37,"1,849,712 ","936,899 ","912,813 ","1,663,574 ","845,740 ","817,834 ","186,138 ","91,159 ","94,979 " -38,"1,852,003 ","940,967 ","911,036 ","1,664,672 ","849,308 ","815,364 ","187,331 ","91,659 ","95,672 " -39,"1,821,808 ","928,910 ","892,898 ","1,639,945 ","839,691 ","800,254 ","181,863 ","89,219 ","92,644 " -40,"1,765,261 ","903,705 ","861,556 ","1,594,158 ","819,253 ","774,905 ","171,103 ","84,452 ","86,651 " -41,"1,705,029 ","876,521 ","828,508 ","1,545,097 ","797,012 ","748,085 ","159,932 ","79,509 ","80,423 " -42,"1,643,354 ","848,532 ","794,822 ","1,494,693 ","774,016 ","720,677 ","148,661 ","74,516 ","74,145 " -43,"1,586,237 ","822,175 ","764,062 ","1,446,792 ","751,679 ","695,113 ","139,445 ","70,496 ","68,949 " -44,"1,541,659 ","800,978 ","740,681 ","1,406,931 ","732,385 ","674,546 ","134,728 ","68,593 ","66,135 " -45,"1,507,260 ","783,896 ","723,364 ","1,373,668 ","715,520 ","658,148 ","133,592 ","68,376 ","65,216 " -46,"1,471,699 ","765,940 ","705,759 ","1,339,180 ","697,763 ","641,417 ","132,519 ","68,177 ","64,342 " -47,"1,433,448 ","746,368 ","687,080 ","1,302,359 ","678,602 ","623,757 ","131,089 ","67,766 ","63,323 " -48,"1,394,170 ","726,229 ","667,941 ","1,265,301 ","659,178 ","606,123 ","128,869 ","67,051 ","61,818 " -49,"1,353,779 ","705,732 ","648,047 ","1,228,736 ","639,992 ","588,744 ","125,043 ","65,740 ","59,303 " -50,"1,312,221 ","684,777 ","627,444 ","1,192,381 ","620,899 ","571,482 ","119,840 ","63,878 ","55,962 " -51,"1,270,700 ","663,667 ","607,033 ","1,156,083 ","601,688 ","554,395 ","114,617 ","61,979 ","52,638 " -52,"1,230,260 ","642,910 ","587,350 ","1,120,446 ","582,637 ","537,809 ","109,814 ","60,273 ","49,541 " -53,"1,186,554 ","620,203 ","566,351 ","1,082,414 ","562,307 ","520,107 ","104,140 ","57,896 ","46,244 " -54,"1,136,234 ","593,699 ","542,535 ","1,039,519 ","539,494 ","500,025 ","96,715 ","54,205 ","42,510 " -55,"1,081,000 ","564,356 ","516,644 ","992,974 ","514,830 ","478,144 ","88,026 ","49,526 ","38,500 " -56,"1,025,437 ","534,745 ","490,692 ","946,220 ","490,030 ","456,190 ","79,217 ","44,715 ","34,502 " -57,"969,449 ","504,841 ","464,608 ","899,229 ","465,073 ","434,156 ","70,220 ","39,768 ","30,452 " -58,"918,022 ","477,318 ","440,704 ","855,346 ","441,760 ","413,586 ","62,676 ","35,558 ","27,118 " -59,"875,870 ","454,706 ","421,164 ","817,791 ","421,797 ","395,994 ","58,079 ","32,909 ","25,170 " -60,"841,186 ","436,064 ","405,122 ","785,313 ","404,533 ","380,780 ","55,873 ","31,531 ","24,342 " -61,"807,603 ","418,019 ","389,584 ","753,559 ","387,707 ","365,852 ","54,044 ","30,312 ","23,732 " -62,"774,927 ","400,375 ","374,552 ","722,490 ","371,206 ","351,284 ","52,437 ","29,169 ","23,268 " -63,"740,343 ","381,767 ","358,576 ","689,959 ","353,967 ","335,992 ","50,384 ","27,800 ","22,584 " -64,"700,937 ","360,627 ","340,310 ","653,847 ","334,804 ","319,043 ","47,090 ","25,823 ","21,267 " -65,"657,852 ","337,577 ","320,275 ","615,032 ","314,202 ","300,830 ","42,820 ","23,375 ","19,445 " -66,"615,103 ","314,720 ","300,383 ","576,410 ","293,709 ","282,701 ","38,693 ","21,011 ","17,682 " -67,"572,915 ","292,160 ","280,755 ","538,101 ","273,381 ","264,720 ","34,814 ","18,779 ","16,035 " -68,"532,994 ","270,952 ","262,042 ","501,698 ","254,193 ","247,505 ","31,296 ","16,759 ","14,537 " -69,"497,324 ","252,269 ","245,055 ","468,936 ","237,180 ","231,756 ","28,388 ","15,089 ","13,299 " -70,"465,200 ","235,670 ","229,530 ","439,200 ","221,952 ","217,248 ","26,000 ","13,718 ","12,282 " -71,"434,011 ","219,615 ","214,396 ","410,247 ","207,174 ","203,073 ","23,764 ","12,441 ","11,323 " -72,"403,826 ","204,124 ","199,702 ","382,192 ","192,895 ","189,297 ","21,634 ","11,229 ","10,405 " -73,"372,673 ","188,062 ","184,611 ","353,036 ","177,956 ","175,080 ","19,637 ","10,106 ","9,531 " -74,"338,502 ","170,251 ","168,251 ","320,756 ","161,186 ","159,570 ","17,746 ","9,065 ","8,681 " -75+,"2,038,279 ","974,742 ","1,063,537 ","1,905,891 ","912,031 ","993,860 ","132,388 ","62,711 ","69,677 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1932.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1932.csv deleted file mode 100644 index bf2b99d4fc..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1932.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1932",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"124,840,471 ","63,070,137 ","61,770,334 ","112,154,442 ","56,775,715 ","55,378,727 ","12,686,029 ","6,294,422 ","6,391,607 " -,,,,,,,,, -0,"2,040,919 ","1,035,926 ","1,004,993 ","1,807,639 ","920,290 ","887,349 ","233,280 ","115,636 ","117,644 " -1,"2,101,784 ","1,064,807 ","1,036,977 ","1,871,410 ","950,885 ","920,525 ","230,374 ","113,922 ","116,452 " -2,"2,208,897 ","1,114,949 ","1,093,948 ","1,956,804 ","990,267 ","966,537 ","252,093 ","124,682 ","127,411 " -3,"2,250,398 ","1,139,961 ","1,110,437 ","1,988,815 ","1,010,170 ","978,645 ","261,583 ","129,791 ","131,792 " -4,"2,301,105 ","1,179,068 ","1,122,037 ","2,026,343 ","1,042,274 ","984,069 ","274,762 ","136,794 ","137,968 " -5,"2,435,190 ","1,243,730 ","1,191,460 ","2,137,077 ","1,094,275 ","1,042,802 ","298,113 ","149,455 ","148,658 " -6,"2,436,210 ","1,242,711 ","1,193,499 ","2,144,426 ","1,095,684 ","1,048,742 ","291,784 ","147,027 ","144,757 " -7,"2,472,188 ","1,255,692 ","1,216,496 ","2,184,830 ","1,112,218 ","1,072,612 ","287,358 ","143,474 ","143,884 " -8,"2,497,622 ","1,262,298 ","1,235,324 ","2,206,213 ","1,118,208 ","1,088,005 ","291,409 ","144,090 ","147,319 " -9,"2,477,759 ","1,250,378 ","1,227,381 ","2,191,674 ","1,109,169 ","1,082,505 ","286,085 ","141,209 ","144,876 " -10,"2,544,521 ","1,281,712 ","1,262,809 ","2,255,171 ","1,138,853 ","1,116,318 ","289,350 ","142,859 ","146,491 " -11,"2,510,332 ","1,267,101 ","1,243,231 ","2,232,874 ","1,130,067 ","1,102,807 ","277,458 ","137,034 ","140,424 " -12,"2,453,347 ","1,236,510 ","1,216,837 ","2,183,333 ","1,103,364 ","1,079,969 ","270,014 ","133,146 ","136,868 " -13,"2,410,850 ","1,213,584 ","1,197,266 ","2,147,242 ","1,083,631 ","1,063,611 ","263,608 ","129,953 ","133,655 " -14,"2,376,177 ","1,194,937 ","1,181,240 ","2,118,163 ","1,067,890 ","1,050,273 ","258,014 ","127,047 ","130,967 " -15,"2,354,569 ","1,181,933 ","1,172,636 ","2,098,768 ","1,056,516 ","1,042,252 ","255,801 ","125,417 ","130,384 " -16,"2,343,380 ","1,173,408 ","1,169,972 ","2,087,080 ","1,048,595 ","1,038,485 ","256,300 ","124,813 ","131,487 " -17,"2,330,480 ","1,164,047 ","1,166,433 ","2,073,535 ","1,039,771 ","1,033,764 ","256,945 ","124,276 ","132,669 " -18,"2,314,809 ","1,153,548 ","1,161,261 ","2,057,270 ","1,029,800 ","1,027,470 ","257,539 ","123,748 ","133,791 " -19,"2,296,173 ","1,141,551 ","1,154,622 ","2,038,764 ","1,018,590 ","1,020,174 ","257,409 ","122,961 ","134,448 " -20,"2,272,673 ","1,126,994 ","1,145,679 ","2,017,059 ","1,005,435 ","1,011,624 ","255,614 ","121,559 ","134,055 " -21,"2,244,739 ","1,110,247 ","1,134,492 ","1,992,360 ","990,597 ","1,001,763 ","252,379 ","119,650 ","132,729 " -22,"2,215,865 ","1,093,232 ","1,122,633 ","1,966,976 ","975,557 ","991,419 ","248,889 ","117,675 ","131,214 " -23,"2,187,348 ","1,076,506 ","1,110,842 ","1,942,126 ","960,857 ","981,269 ","245,222 ","115,649 ","129,573 " -24,"2,155,910 ","1,059,304 ","1,096,606 ","1,914,281 ","945,503 ","968,778 ","241,629 ","113,801 ","127,828 " -25,"2,119,286 ","1,041,229 ","1,078,057 ","1,880,808 ","928,878 ","951,930 ","238,478 ","112,351 ","126,127 " -26,"2,078,713 ","1,022,607 ","1,056,106 ","1,843,202 ","911,457 ","931,745 ","235,511 ","111,150 ","124,361 " -27,"2,038,119 ","1,004,380 ","1,033,739 ","1,805,670 ","894,416 ","911,254 ","232,449 ","109,964 ","122,485 " -28,"1,998,540 ","986,942 ","1,011,598 ","1,768,839 ","877,991 ","890,848 ","229,701 ","108,951 ","120,750 " -29,"1,960,268 ","970,209 ","990,059 ","1,735,019 ","862,987 ","872,032 ","225,249 ","107,222 ","118,027 " -30,"1,924,044 ","954,224 ","969,820 ","1,706,653 ","850,218 ","856,435 ","217,391 ","104,006 ","113,385 " -31,"1,890,488 ","939,367 ","951,121 ","1,683,466 ","839,677 ","843,789 ","207,022 ","99,690 ","107,332 " -32,"1,857,301 ","924,892 ","932,409 ","1,661,032 ","829,669 ","831,363 ","196,269 ","95,223 ","101,046 " -33,"1,821,514 ","909,326 ","912,188 ","1,636,715 ","818,862 ","817,853 ","184,799 ","90,464 ","94,335 " -34,"1,796,148 ","899,168 ","896,980 ","1,619,961 ","812,271 ","807,690 ","176,187 ","86,897 ","89,290 " -35,"1,791,757 ","899,729 ","892,028 ","1,618,060 ","813,842 ","804,218 ","173,697 ","85,887 ","87,810 " -36,"1,802,901 ","908,230 ","894,671 ","1,626,944 ","821,380 ","805,564 ","175,957 ","86,850 ","89,107 " -37,"1,815,361 ","917,373 ","897,988 ","1,636,673 ","829,364 ","807,309 ","178,688 ","88,009 ","90,679 " -38,"1,829,430 ","927,213 ","902,217 ","1,647,571 ","837,842 ","809,729 ","181,859 ","89,371 ","92,488 " -39,"1,829,088 ","929,880 ","899,208 ","1,646,758 ","840,338 ","806,420 ","182,330 ","89,542 ","92,788 " -40,"1,799,179 ","917,897 ","881,282 ","1,622,269 ","830,768 ","791,501 ","176,910 ","87,129 ","89,781 " -41,"1,745,185 ","893,908 ","851,277 ","1,578,398 ","811,248 ","767,150 ","166,787 ","82,660 ","84,127 " -42,"1,687,721 ","868,043 ","819,678 ","1,531,405 ","790,006 ","741,399 ","156,316 ","78,037 ","78,279 " -43,"1,628,947 ","841,432 ","787,515 ","1,483,178 ","768,064 ","715,114 ","145,769 ","73,368 ","72,401 " -44,"1,573,576 ","815,866 ","757,710 ","1,436,545 ","746,320 ","690,225 ","137,031 ","69,546 ","67,485 " -45,"1,528,258 ","794,149 ","734,109 ","1,396,052 ","726,594 ","669,458 ","132,206 ","67,555 ","64,651 " -46,"1,491,096 ","775,520 ","715,576 ","1,360,623 ","708,516 ","652,107 ","130,473 ","67,004 ","63,469 " -47,"1,452,662 ","755,935 ","696,727 ","1,323,891 ","689,482 ","634,409 ","128,771 ","66,453 ","62,318 " -48,"1,411,618 ","734,781 ","676,837 ","1,284,895 ","669,084 ","615,811 ","126,723 ","65,697 ","61,026 " -49,"1,370,057 ","713,286 ","656,771 ","1,246,054 ","648,612 ","597,442 ","124,003 ","64,674 ","59,329 " -50,"1,328,538 ","691,958 ","636,580 ","1,208,554 ","628,800 ","579,754 ","119,984 ","63,158 ","56,826 " -51,"1,286,858 ","670,654 ","616,204 ","1,172,002 ","609,462 ","562,540 ","114,856 ","61,192 ","53,664 " -52,"1,245,344 ","649,249 ","596,095 ","1,135,591 ","590,039 ","545,552 ","109,753 ","59,210 ","50,543 " -53,"1,204,789 ","628,142 ","576,647 ","1,099,718 ","570,723 ","528,995 ","105,071 ","57,419 ","47,652 " -54,"1,161,653 ","605,493 ","556,160 ","1,061,979 ","550,416 ","511,563 ","99,674 ","55,077 ","44,597 " -55,"1,113,032 ","579,739 ","533,293 ","1,020,250 ","528,101 ","492,149 ","92,782 ","51,638 ","41,144 " -56,"1,060,360 ","551,692 ","508,668 ","975,556 ","504,319 ","471,237 ","84,804 ","47,373 ","37,431 " -57,"1,007,524 ","523,487 ","484,037 ","930,788 ","480,487 ","450,301 ","76,736 ","43,000 ","33,736 " -58,"954,404 ","495,073 ","459,331 ","885,881 ","456,552 ","429,329 ","68,523 ","38,521 ","30,002 " -59,"904,821 ","468,542 ","436,279 ","843,279 ","433,888 ","409,391 ","61,542 ","34,654 ","26,888 " -60,"862,443 ","445,900 ","416,543 ","805,379 ","413,808 ","391,571 ","57,064 ","32,092 ","24,972 " -61,"825,835 ","426,383 ","399,452 ","771,216 ","395,794 ","375,422 ","54,619 ","30,589 ","24,030 " -62,"790,060 ","407,356 ","382,704 ","737,555 ","378,134 ","359,421 ","52,505 ","29,222 ","23,283 " -63,"755,243 ","388,728 ","366,515 ","704,648 ","360,800 ","343,848 ","50,595 ","27,928 ","22,667 " -64,"718,847 ","369,302 ","349,545 ","670,514 ","342,843 ","327,671 ","48,333 ","26,459 ","21,874 " -65,"678,544 ","347,767 ","330,777 ","633,489 ","323,259 ","310,230 ","45,055 ","24,508 ","20,547 " -66,"635,272 ","324,639 ","310,633 ","594,288 ","302,450 ","291,838 ","40,984 ","22,189 ","18,795 " -67,"592,326 ","301,700 ","290,626 ","555,281 ","281,749 ","273,532 ","37,045 ","19,951 ","17,094 " -68,"549,842 ","279,022 ","270,820 ","516,520 ","261,193 ","255,327 ","33,322 ","17,829 ","15,493 " -69,"509,616 ","257,696 ","251,920 ","479,700 ","241,801 ","237,899 ","29,916 ","15,895 ","14,021 " -70,"473,635 ","238,870 ","234,765 ","446,598 ","224,607 ","221,991 ","27,037 ","14,263 ","12,774 " -71,"441,222 ","222,132 ","219,090 ","416,603 ","209,238 ","207,365 ","24,619 ","12,894 ","11,725 " -72,"409,821 ","205,976 ","203,845 ","387,470 ","194,360 ","193,110 ","22,351 ","11,616 ","10,735 " -73,"379,500 ","190,410 ","189,090 ","359,293 ","179,999 ","179,294 ","20,207 ","10,411 ","9,796 " -74,"348,459 ","174,425 ","174,034 ","330,233 ","165,119 ","165,114 ","18,226 ","9,306 ","8,920 " -75+,"2,127,981 ","1,016,082 ","1,111,899 ","1,991,143 ","951,422 ","1,039,721 ","136,838 ","64,660 ","72,178 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1933.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1933.csv deleted file mode 100644 index 190f146133..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1933.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1933",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"125,578,763 ","63,384,009 ","62,194,754 ","112,815,249 ","57,059,471 ","55,755,778 ","12,763,514 ","6,324,538 ","6,438,976 " -,,,,,,,,, -0,"1,937,890 ","984,905 ","952,985 ","1,712,055 ","872,963 ","839,092 ","225,835 ","111,942 ","113,893 " -1,"2,011,141 ","1,016,844 ","994,297 ","1,783,700 ","904,449 ","879,251 ","227,441 ","112,395 ","115,046 " -2,"2,183,375 ","1,103,441 ","1,079,934 ","1,934,733 ","980,699 ","954,034 ","248,642 ","122,742 ","125,900 " -3,"2,229,269 ","1,126,997 ","1,102,272 ","1,967,337 ","997,169 ","970,168 ","261,932 ","129,828 ","132,104 " -4,"2,250,477 ","1,139,660 ","1,110,817 ","1,985,857 ","1,008,448 ","977,409 ","264,620 ","131,212 ","133,408 " -5,"2,365,010 ","1,216,814 ","1,148,196 ","2,073,131 ","1,069,833 ","1,003,298 ","291,879 ","146,981 ","144,898 " -6,"2,424,948 ","1,237,243 ","1,187,705 ","2,129,601 ","1,089,309 ","1,040,292 ","295,347 ","147,934 ","147,413 " -7,"2,429,945 ","1,238,101 ","1,191,844 ","2,140,146 ","1,092,394 ","1,047,752 ","289,799 ","145,707 ","144,092 " -8,"2,465,138 ","1,250,991 ","1,214,147 ","2,179,221 ","1,108,490 ","1,070,731 ","285,917 ","142,501 ","143,416 " -9,"2,491,440 ","1,258,517 ","1,232,923 ","2,201,982 ","1,115,567 ","1,086,415 ","289,458 ","142,950 ","146,508 " -10,"2,476,490 ","1,248,903 ","1,227,587 ","2,191,780 ","1,108,635 ","1,083,145 ","284,710 ","140,268 ","144,442 " -11,"2,533,211 ","1,274,854 ","1,258,357 ","2,246,056 ","1,133,509 ","1,112,547 ","287,155 ","141,345 ","145,810 " -12,"2,499,260 ","1,259,303 ","1,239,957 ","2,223,067 ","1,123,507 ","1,099,560 ","276,193 ","135,796 ","140,397 " -13,"2,444,536 ","1,229,350 ","1,215,186 ","2,175,557 ","1,097,473 ","1,078,084 ","268,979 ","131,877 ","137,102 " -14,"2,401,537 ","1,205,629 ","1,195,908 ","2,139,010 ","1,077,129 ","1,061,881 ","262,527 ","128,500 ","134,027 " -15,"2,366,022 ","1,186,144 ","1,179,878 ","2,109,114 ","1,060,653 ","1,048,461 ","256,908 ","125,491 ","131,417 " -16,"2,344,056 ","1,172,979 ","1,171,077 ","2,089,463 ","1,049,117 ","1,040,346 ","254,593 ","123,862 ","130,731 " -17,"2,332,876 ","1,164,881 ","1,167,995 ","2,077,975 ","1,041,541 ","1,036,434 ","254,901 ","123,340 ","131,561 " -18,"2,320,061 ","1,156,045 ","1,164,016 ","2,064,711 ","1,033,151 ","1,031,560 ","255,350 ","122,894 ","132,456 " -19,"2,304,623 ","1,146,134 ","1,158,489 ","2,048,817 ","1,023,663 ","1,025,154 ","255,806 ","122,471 ","133,335 " -20,"2,285,833 ","1,134,579 ","1,151,254 ","2,030,450 ","1,012,868 ","1,017,582 ","255,383 ","121,711 ","133,672 " -21,"2,261,319 ","1,120,104 ","1,141,215 ","2,008,321 ","999,927 ","1,008,394 ","252,998 ","120,177 ","132,821 " -22,"2,231,855 ","1,103,206 ","1,128,649 ","1,982,869 ","985,188 ","997,681 ","248,986 ","118,018 ","130,968 " -23,"2,201,538 ","1,086,097 ","1,115,441 ","1,956,794 ","970,289 ","986,505 ","244,744 ","115,808 ","128,936 " -24,"2,171,599 ","1,069,344 ","1,102,255 ","1,931,286 ","955,782 ","975,504 ","240,313 ","113,562 ","126,751 " -25,"2,139,522 ","1,052,343 ","1,087,179 ","1,903,236 ","940,742 ","962,494 ","236,286 ","111,601 ","124,685 " -26,"2,103,838 ","1,034,887 ","1,068,951 ","1,870,483 ","924,638 ","945,845 ","233,355 ","110,249 ","123,106 " -27,"2,065,435 ","1,017,208 ","1,048,227 ","1,834,294 ","907,883 ","926,411 ","231,141 ","109,325 ","121,816 " -28,"2,027,095 ","999,908 ","1,027,187 ","1,798,189 ","891,468 ","906,721 ","228,906 ","108,440 ","120,466 " -29,"1,989,714 ","983,328 ","1,006,386 ","1,762,735 ","875,612 ","887,123 ","226,979 ","107,716 ","119,263 " -30,"1,953,259 ","967,307 ","985,952 ","1,729,987 ","861,041 ","868,946 ","223,272 ","106,266 ","117,006 " -31,"1,918,075 ","951,779 ","966,296 ","1,702,133 ","848,486 ","853,647 ","215,942 ","103,293 ","112,649 " -32,"1,884,798 ","937,109 ","947,689 ","1,678,931 ","837,949 ","840,982 ","205,867 ","99,160 ","106,707 " -33,"1,851,714 ","922,718 ","928,996 ","1,656,362 ","827,868 ","828,494 ","195,352 ","94,850 ","100,502 " -34,"1,816,121 ","907,267 ","908,854 ","1,631,963 ","817,004 ","814,959 ","184,158 ","90,263 ","93,895 " -35,"1,790,123 ","896,791 ","893,332 ","1,614,580 ","810,058 ","804,522 ","175,543 ","86,733 ","88,810 " -36,"1,783,399 ","896,154 ","887,245 ","1,610,891 ","810,663 ","800,228 ","172,508 ","85,491 ","87,017 " -37,"1,791,014 ","902,826 ","888,188 ","1,617,188 ","816,796 ","800,392 ","173,826 ","86,030 ","87,796 " -38,"1,799,795 ","910,063 ","889,732 ","1,624,227 ","823,323 ","800,904 ","175,568 ","86,740 ","88,828 " -39,"1,809,909 ","917,838 ","892,071 ","1,632,208 ","830,208 ","802,000 ","177,701 ","87,630 ","90,071 " -40,"1,806,959 ","919,114 ","887,845 ","1,629,483 ","831,629 ","797,854 ","177,476 ","87,485 ","89,991 " -41,"1,777,259 ","907,163 ","870,096 ","1,605,181 ","822,076 ","783,105 ","172,078 ","85,087 ","86,991 " -42,"1,725,671 ","884,317 ","841,354 ","1,563,110 ","803,417 ","759,693 ","162,561 ","80,900 ","81,661 " -43,"1,670,814 ","859,684 ","811,130 ","1,518,069 ","783,111 ","734,958 ","152,745 ","76,573 ","76,172 " -44,"1,614,775 ","834,380 ","780,395 ","1,471,875 ","762,165 ","709,710 ","142,900 ","72,215 ","70,685 " -45,"1,561,040 ","809,525 ","751,515 ","1,426,427 ","740,944 ","685,483 ","134,613 ","68,581 ","66,032 " -46,"1,514,915 ","787,279 ","727,636 ","1,385,254 ","720,789 ","664,465 ","129,661 ","66,490 ","63,171 " -47,"1,474,993 ","767,093 ","707,900 ","1,347,654 ","701,480 ","646,174 ","127,339 ","65,613 ","61,726 " -48,"1,433,674 ","745,877 ","687,797 ","1,308,658 ","681,162 ","627,496 ","125,016 ","64,715 ","60,301 " -49,"1,389,849 ","723,154 ","666,695 ","1,267,488 ","659,529 ","607,959 ","122,361 ","63,625 ","58,736 " -50,"1,346,036 ","700,323 ","645,713 ","1,226,858 ","638,008 ","588,850 ","119,178 ","62,315 ","56,863 " -51,"1,303,359 ","678,170 ","625,189 ","1,188,369 ","617,556 ","570,813 ","114,990 ","60,614 ","54,376 " -52,"1,261,557 ","656,516 ","605,041 ","1,151,598 ","597,953 ","553,645 ","109,959 ","58,563 ","51,396 " -53,"1,220,073 ","634,846 ","585,227 ","1,115,056 ","578,318 ","536,738 ","105,017 ","56,528 ","48,489 " -54,"1,179,452 ","613,429 ","566,023 ","1,078,966 ","558,755 ","520,211 ","100,486 ","54,674 ","45,812 " -55,"1,136,836 ","590,822 ","546,014 ","1,041,452 ","538,438 ","503,014 ","95,384 ","52,384 ","43,000 " -56,"1,089,838 ","565,787 ","524,051 ","1,000,829 ","516,596 ","484,233 ","89,009 ","49,191 ","39,818 " -57,"1,039,561 ","538,949 ","500,612 ","957,868 ","493,641 ","464,227 ","81,693 ","45,308 ","36,385 " -58,"989,167 ","512,001 ","477,166 ","914,854 ","470,659 ","444,195 ","74,313 ","41,342 ","32,971 " -59,"938,621 ","484,920 ","453,701 ","871,805 ","447,631 ","424,174 ","66,816 ","37,289 ","29,527 " -60,"890,694 ","459,286 ","431,408 ","830,339 ","425,546 ","404,793 ","60,355 ","33,740 ","26,615 " -61,"848,014 ","436,577 ","411,437 ","792,029 ","405,322 ","386,707 ","55,985 ","31,255 ","24,730 " -62,"809,506 ","416,198 ","393,308 ","756,189 ","386,564 ","369,625 ","53,317 ","29,634 ","23,683 " -63,"771,624 ","396,235 ","375,389 ","720,686 ","368,106 ","352,580 ","50,938 ","28,129 ","22,809 " -64,"734,772 ","376,677 ","358,095 ","686,018 ","349,978 ","336,040 ","48,754 ","26,699 ","22,055 " -65,"696,639 ","356,476 ","340,163 ","650,337 ","331,337 ","319,000 ","46,302 ","25,139 ","21,163 " -66,"655,393 ","334,525 ","320,868 ","612,355 ","311,313 ","301,042 ","43,038 ","23,212 ","19,826 " -67,"611,895 ","311,315 ","300,580 ","572,747 ","290,303 ","282,444 ","39,148 ","21,012 ","18,136 " -68,"568,744 ","288,313 ","280,431 ","533,365 ","269,423 ","263,942 ","35,379 ","18,890 ","16,489 " -69,"525,988 ","265,561 ","260,427 ","494,189 ","248,690 ","245,499 ","31,799 ","16,871 ","14,928 " -70,"485,519 ","244,160 ","241,359 ","457,020 ","229,142 ","227,878 ","28,499 ","15,018 ","13,481 " -71,"449,271 ","225,231 ","224,040 ","423,614 ","211,803 ","211,811 ","25,657 ","13,428 ","12,229 " -72,"416,612 ","208,393 ","208,219 ","393,388 ","196,325 ","197,063 ","23,224 ","12,068 ","11,156 " -73,"385,091 ","192,198 ","192,893 ","364,138 ","181,396 ","182,742 ","20,953 ","10,802 ","10,151 " -74,"354,694 ","176,599 ","178,095 ","335,878 ","166,986 ","168,892 ","18,816 ","9,613 ","9,203 " -75+,"2,212,598 ","1,054,325 ","1,158,273 ","2,071,663 ","987,888 ","1,083,775 ","140,935 ","66,437 ","74,498 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1934.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1934.csv deleted file mode 100644 index 46bc5b7deb..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1934.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1934",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"126,373,773 ","63,726,196 ","62,647,577 ","113,527,128 ","57,369,149 ","56,157,979 ","12,846,645 ","6,357,047 ","6,489,598 " -,,,,,,,,, -0,"1,874,566 ","953,093 ","921,473 ","1,655,616 ","844,869 ","810,747 ","218,950 ","108,224 ","110,726 " -1,"1,917,215 ","969,990 ","947,225 ","1,697,258 ","861,389 ","835,869 ","219,957 ","108,601 ","111,356 " -2,"2,107,742 ","1,063,573 ","1,044,169 ","1,858,959 ","940,780 ","918,179 ","248,783 ","122,793 ","125,990 " -3,"2,204,350 ","1,115,475 ","1,088,875 ","1,945,440 ","987,391 ","958,049 ","258,910 ","128,084 ","130,826 " -4,"2,226,918 ","1,125,710 ","1,101,208 ","1,962,570 ","994,819 ","967,751 ","264,348 ","130,891 ","133,457 " -5,"2,314,488 ","1,178,761 ","1,135,727 ","2,031,915 ","1,036,945 ","994,970 ","282,573 ","141,816 ","140,757 " -6,"2,360,580 ","1,212,036 ","1,148,544 ","2,070,720 ","1,066,260 ","1,004,460 ","289,860 ","145,776 ","144,084 " -7,"2,418,028 ","1,232,465 ","1,185,563 ","2,125,019 ","1,085,836 ","1,039,183 ","293,009 ","146,629 ","146,380 " -8,"2,426,895 ","1,235,121 ","1,191,774 ","2,138,677 ","1,090,530 ","1,048,147 ","288,218 ","144,591 ","143,627 " -9,"2,461,216 ","1,247,884 ","1,213,332 ","2,176,373 ","1,106,173 ","1,070,200 ","284,843 ","141,711 ","143,132 " -10,"2,488,388 ","1,256,323 ","1,232,065 ","2,200,529 ","1,114,339 ","1,086,190 ","287,859 ","141,984 ","145,875 " -11,"2,478,235 ","1,248,932 ","1,229,303 ","2,194,560 ","1,109,442 ","1,085,118 ","283,675 ","139,490 ","144,185 " -12,"2,524,902 ","1,269,522 ","1,255,380 ","2,239,634 ","1,129,532 ","1,110,102 ","285,268 ","139,990 ","145,278 " -13,"2,490,904 ","1,252,863 ","1,238,041 ","2,215,749 ","1,118,184 ","1,097,565 ","275,155 ","134,679 ","140,476 " -14,"2,438,135 ","1,223,412 ","1,214,723 ","2,170,037 ","1,092,711 ","1,077,326 ","268,098 ","130,701 ","137,397 " -15,"2,394,491 ","1,198,826 ","1,195,665 ","2,132,926 ","1,071,697 ","1,061,229 ","261,565 ","127,129 ","134,436 " -16,"2,358,069 ","1,178,448 ","1,179,621 ","2,102,153 ","1,054,440 ","1,047,713 ","255,916 ","124,008 ","131,908 " -17,"2,335,716 ","1,165,123 ","1,170,593 ","2,082,222 ","1,042,746 ","1,039,476 ","253,494 ","122,377 ","131,117 " -18,"2,324,571 ","1,157,466 ","1,167,105 ","2,070,947 ","1,035,531 ","1,035,416 ","253,624 ","121,935 ","131,689 " -19,"2,311,912 ","1,149,189 ","1,162,723 ","2,058,005 ","1,027,611 ","1,030,394 ","253,907 ","121,578 ","132,329 " -20,"2,296,708 ","1,139,860 ","1,156,848 ","2,042,476 ","1,018,599 ","1,023,877 ","254,232 ","121,261 ","132,971 " -21,"2,277,711 ","1,128,725 ","1,148,986 ","2,024,193 ","1,008,195 ","1,015,998 ","253,518 ","120,530 ","132,988 " -22,"2,252,239 ","1,114,355 ","1,137,884 ","2,001,669 ","995,484 ","1,006,185 ","250,570 ","118,871 ","131,699 " -23,"2,221,351 ","1,097,348 ","1,124,003 ","1,975,517 ","980,859 ","994,658 ","245,834 ","116,489 ","129,345 " -24,"2,189,700 ","1,080,202 ","1,109,498 ","1,948,818 ","966,132 ","982,686 ","240,882 ","114,070 ","126,812 " -25,"2,158,347 ","1,063,429 ","1,094,918 ","1,922,642 ","951,819 ","970,823 ","235,705 ","111,610 ","124,095 " -26,"2,125,615 ","1,046,599 ","1,079,016 ","1,894,363 ","937,065 ","957,298 ","231,252 ","109,534 ","121,718 " -27,"2,090,799 ","1,029,721 ","1,061,078 ","1,862,263 ","921,444 ","940,819 ","228,536 ","108,277 ","120,259 " -28,"2,054,477 ","1,012,933 ","1,041,544 ","1,827,411 ","905,303 ","922,108 ","227,066 ","107,630 ","119,436 " -29,"2,018,315 ","996,511 ","1,021,804 ","1,792,677 ","889,473 ","903,204 ","225,638 ","107,038 ","118,600 " -30,"1,983,039 ","980,745 ","1,002,294 ","1,758,521 ","874,147 ","884,374 ","224,518 ","106,598 ","117,920 " -31,"1,948,327 ","965,396 ","982,931 ","1,726,792 ","859,976 ","866,816 ","221,535 ","105,420 ","116,115 " -32,"1,914,096 ","950,280 ","963,816 ","1,699,399 ","847,610 ","851,789 ","214,697 ","102,670 ","112,027 " -33,"1,880,940 ","935,715 ","945,225 ","1,676,086 ","837,026 ","839,060 ","204,854 ","98,689 ","106,165 " -34,"1,847,771 ","921,325 ","926,446 ","1,653,250 ","826,813 ","826,437 ","194,521 ","94,512 ","100,009 " -35,"1,812,339 ","905,970 ","906,369 ","1,628,763 ","815,885 ","812,878 ","183,576 ","90,085 ","93,491 " -36,"1,785,632 ","895,137 ","890,495 ","1,610,687 ","808,555 ","802,132 ","174,945 ","86,582 ","88,363 " -37,"1,776,617 ","893,313 ","883,304 ","1,605,232 ","808,193 ","797,039 ","171,385 ","85,120 ","86,265 " -38,"1,780,802 ","898,212 ","882,590 ","1,608,986 ","812,952 ","796,034 ","171,816 ","85,260 ","86,556 " -39,"1,786,003 ","903,576 ","882,427 ","1,613,363 ","818,022 ","795,341 ","172,640 ","85,554 ","87,086 " -40,"1,792,212 ","909,310 ","882,902 ","1,618,443 ","823,322 ","795,121 ","173,769 ","85,988 ","87,781 " -41,"1,786,626 ","909,181 ","877,445 ","1,613,781 ","823,654 ","790,127 ","172,845 ","85,527 ","87,318 " -42,"1,757,015 ","897,206 ","859,809 ","1,589,564 ","814,071 ","775,493 ","167,451 ","83,135 ","84,316 " -43,"1,707,653 ","875,406 ","832,247 ","1,549,160 ","796,202 ","752,958 ","158,493 ","79,204 ","79,289 " -44,"1,655,208 ","851,922 ","803,286 ","1,505,901 ","776,764 ","729,137 ","149,307 ","75,158 ","74,149 " -45,"1,601,747 ","827,823 ","773,924 ","1,461,621 ","756,726 ","704,895 ","140,126 ","71,097 ","69,029 " -46,"1,549,502 ","803,629 ","745,873 ","1,417,253 ","736,001 ","681,252 ","132,249 ","67,628 ","64,621 " -47,"1,502,491 ","780,800 ","721,691 ","1,375,336 ","715,366 ","659,970 ","127,155 ","65,434 ","61,721 " -48,"1,459,762 ","759,034 ","700,728 ","1,335,515 ","694,802 ","640,713 ","124,247 ","64,232 ","60,015 " -49,"1,415,542 ","736,186 ","679,356 ","1,294,227 ","673,188 ","621,039 ","121,315 ","62,998 ","58,317 " -50,"1,368,941 ","711,899 ","657,042 ","1,250,853 ","650,306 ","600,547 ","118,088 ","61,593 ","56,495 " -51,"1,322,842 ","687,734 ","635,108 ","1,208,369 ","627,717 ","580,652 ","114,473 ","60,017 ","54,456 " -52,"1,279,010 ","664,754 ","614,256 ","1,168,862 ","606,600 ","562,262 ","110,148 ","58,154 ","51,994 " -53,"1,237,089 ","642,769 ","594,320 ","1,131,833 ","586,721 ","545,112 ","105,256 ","56,048 ","49,208 " -54,"1,195,651 ","620,856 ","574,795 ","1,095,151 ","566,877 ","528,274 ","100,500 ","53,979 ","46,521 " -55,"1,154,909 ","599,111 ","555,798 ","1,058,770 ","547,030 ","511,740 ","96,139 ","52,081 ","44,058 " -56,"1,112,756 ","576,532 ","536,224 ","1,021,429 ","526,685 ","494,744 ","91,327 ","49,847 ","41,480 " -57,"1,067,220 ","552,139 ","515,081 ","981,790 ","505,261 ","476,529 ","85,430 ","46,878 ","38,552 " -58,"1,019,038 ","526,355 ","492,683 ","940,314 ","483,008 ","457,306 ","78,724 ","43,347 ","35,377 " -59,"970,775 ","500,498 ","470,277 ","898,811 ","460,751 ","438,060 ","71,964 ","39,747 ","32,217 " -60,"922,554 ","474,623 ","447,931 ","857,428 ","438,536 ","418,892 ","65,126 ","36,087 ","29,039 " -61,"876,093 ","449,790 ","426,303 ","816,950 ","416,961 ","399,989 ","59,143 ","32,829 ","26,314 " -62,"833,032 ","426,970 ","406,062 ","778,158 ","396,557 ","381,601 ","54,874 ","30,413 ","24,461 " -63,"792,665 ","405,754 ","386,911 ","740,666 ","377,071 ","363,595 ","51,999 ","28,683 ","23,316 " -64,"752,753 ","384,892 ","367,861 ","703,372 ","357,839 ","345,533 ","49,381 ","27,053 ","22,328 " -65,"713,921 ","364,436 ","349,485 ","666,976 ","338,940 ","328,036 ","46,945 ","25,496 ","21,449 " -66,"674,017 ","343,445 ","330,572 ","629,705 ","319,594 ","310,111 ","44,312 ","23,851 ","20,461 " -67,"631,809 ","321,082 ","310,727 ","590,751 ","299,136 ","291,615 ","41,058 ","21,946 ","19,112 " -68,"588,043 ","297,790 ","290,253 ","550,718 ","277,937 ","272,781 ","37,325 ","19,853 ","17,472 " -69,"544,668 ","274,745 ","269,923 ","510,958 ","256,908 ","254,050 ","33,710 ","17,837 ","15,873 " -70,"501,675 ","251,946 ","249,729 ","471,414 ","236,033 ","235,381 ","30,261 ","15,913 ","14,348 " -71,"460,993 ","230,503 ","230,490 ","433,927 ","216,362 ","217,565 ","27,066 ","14,141 ","12,925 " -72,"424,519 ","211,508 ","213,011 ","400,247 ","198,912 ","201,335 ","24,272 ","12,596 ","11,676 " -73,"391,695 ","194,625 ","197,070 ","369,847 ","183,370 ","186,477 ","21,848 ","11,255 ","10,593 " -74,"360,103 ","178,425 ","181,678 ","340,510 ","168,415 ","172,095 ","19,593 ","10,010 ","9,583 " -75+,"2,291,095 ","1,088,954 ","1,202,141 ","2,146,101 ","1,020,749 ","1,125,352 ","144,994 ","68,205 ","76,789 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1935.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1935.csv deleted file mode 100644 index d89d196a18..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1935.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1935",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"127,250,232 ","64,109,888 ","63,140,344 ","114,309,177 ","57,714,338 ","56,594,839 ","12,941,055 ","6,395,550 ","6,545,505 " -,,,,,,,,, -0,"1,951,444 ","992,772 ","958,672 ","1,722,065 ","878,881 ","843,184 ","229,379 ","113,891 ","115,488 " -1,"1,862,375 ","942,268 ","920,107 ","1,648,616 ","837,099 ","811,517 ","213,759 ","105,169 ","108,590 " -2,"2,027,696 ","1,023,957 ","1,003,739 ","1,784,112 ","903,790 ","880,322 ","243,584 ","120,167 ","123,417 " -3,"2,127,788 ","1,075,048 ","1,052,740 ","1,868,707 ","946,921 ","921,786 ","259,081 ","128,127 ","130,954 " -4,"2,201,074 ","1,113,536 ","1,087,538 ","1,939,730 ","984,405 ","955,325 ","261,344 ","129,131 ","132,213 " -5,"2,285,507 ","1,161,841 ","1,123,666 ","2,004,150 ","1,020,892 ","983,258 ","281,357 ","140,949 ","140,408 " -6,"2,309,343 ","1,175,414 ","1,133,929 ","2,027,972 ","1,034,338 ","993,634 ","281,371 ","141,076 ","140,295 " -7,"2,357,112 ","1,207,767 ","1,149,345 ","2,069,135 ","1,063,126 ","1,006,009 ","287,977 ","144,641 ","143,336 " -8,"2,412,005 ","1,228,133 ","1,183,872 ","2,121,205 ","1,082,744 ","1,038,461 ","290,800 ","145,389 ","145,411 " -9,"2,424,601 ","1,232,533 ","1,192,068 ","2,137,870 ","1,089,011 ","1,048,859 ","286,731 ","143,522 ","143,209 " -10,"2,458,035 ","1,245,159 ","1,212,876 ","2,174,196 ","1,104,203 ","1,069,993 ","283,839 ","140,956 ","142,883 " -11,"2,486,000 ","1,254,450 ","1,231,550 ","2,199,672 ","1,113,403 ","1,086,269 ","286,328 ","141,047 ","145,281 " -12,"2,480,517 ","1,249,245 ","1,231,272 ","2,197,848 ","1,110,513 ","1,087,335 ","282,669 ","138,732 ","143,937 " -13,"2,516,918 ","1,264,337 ","1,252,581 ","2,233,571 ","1,125,711 ","1,107,860 ","283,347 ","138,626 ","144,721 " -14,"2,482,624 ","1,246,467 ","1,236,157 ","2,208,611 ","1,112,939 ","1,095,672 ","274,013 ","133,528 ","140,485 " -15,"2,431,698 ","1,217,465 ","1,214,233 ","2,164,615 ","1,087,983 ","1,076,632 ","267,083 ","129,482 ","137,601 " -16,"2,387,374 ","1,191,973 ","1,195,401 ","2,126,905 ","1,066,265 ","1,060,640 ","260,469 ","125,708 ","134,761 " -17,"2,350,041 ","1,170,719 ","1,179,322 ","2,095,252 ","1,048,244 ","1,047,008 ","254,789 ","122,475 ","132,314 " -18,"2,327,340 ","1,157,263 ","1,170,077 ","2,075,069 ","1,036,421 ","1,038,648 ","252,271 ","120,842 ","131,429 " -19,"2,316,318 ","1,150,093 ","1,166,225 ","2,064,062 ","1,029,612 ","1,034,450 ","252,256 ","120,481 ","131,775 " -20,"2,303,828 ","1,142,378 ","1,161,450 ","2,051,448 ","1,022,163 ","1,029,285 ","252,380 ","120,215 ","132,165 " -21,"2,288,818 ","1,133,616 ","1,155,202 ","2,036,248 ","1,013,613 ","1,022,635 ","252,570 ","120,003 ","132,567 " -22,"2,269,685 ","1,122,937 ","1,146,748 ","2,018,096 ","1,003,629 ","1,014,467 ","251,589 ","119,308 ","132,281 " -23,"2,243,381 ","1,108,725 ","1,134,656 ","1,995,252 ","991,176 ","1,004,076 ","248,129 ","117,549 ","130,580 " -24,"2,211,208 ","1,091,683 ","1,119,525 ","1,968,495 ","976,712 ","991,783 ","242,713 ","114,971 ","127,742 " -25,"2,178,258 ","1,074,527 ","1,103,731 ","1,941,184 ","962,173 ","979,011 ","237,074 ","112,354 ","124,720 " -26,"2,145,509 ","1,057,722 ","1,087,787 ","1,914,342 ","948,041 ","966,301 ","231,167 ","109,681 ","121,486 " -27,"2,112,105 ","1,041,043 ","1,071,062 ","1,885,806 ","933,551 ","952,255 ","226,299 ","107,492 ","118,807 " -28,"2,078,118 ","1,024,714 ","1,053,404 ","1,854,319 ","918,379 ","935,940 ","223,799 ","106,335 ","117,464 " -29,"2,043,844 ","1,008,788 ","1,035,056 ","1,820,785 ","902,830 ","917,955 ","223,059 ","105,958 ","117,101 " -30,"2,009,807 ","993,217 ","1,016,590 ","1,787,384 ","887,563 ","899,821 ","222,423 ","105,654 ","116,769 " -31,"1,976,593 ","978,237 ","998,356 ","1,754,499 ","872,745 ","881,754 ","222,094 ","105,492 ","116,602 " -32,"1,943,565 ","963,528 ","980,037 ","1,723,762 ","858,959 ","864,803 ","219,803 ","104,569 ","115,234 " -33,"1,910,146 ","948,751 ","961,395 ","1,696,749 ","846,738 ","850,011 ","213,397 ","102,013 ","111,384 " -34,"1,876,952 ","934,219 ","942,733 ","1,673,214 ","836,056 ","837,158 ","203,738 ","98,163 ","105,575 " -35,"1,843,703 ","919,828 ","923,875 ","1,650,130 ","825,716 ","824,414 ","193,573 ","94,112 ","99,461 " -36,"1,808,375 ","904,536 ","903,839 ","1,625,505 ","814,700 ","810,805 ","182,870 ","89,836 ","93,034 " -37,"1,780,985 ","893,348 ","887,637 ","1,606,749 ","806,979 ","799,770 ","174,236 ","86,369 ","87,867 " -38,"1,769,750 ","890,375 ","879,375 ","1,599,553 ","805,667 ","793,886 ","170,197 ","84,708 ","85,489 " -39,"1,770,586 ","893,521 ","877,065 ","1,600,783 ","809,045 ","791,738 ","169,803 ","84,476 ","85,327 " -40,"1,772,232 ","897,022 ","875,210 ","1,602,497 ","812,654 ","789,843 ","169,735 ","84,368 ","85,367 " -41,"1,774,524 ","900,706 ","873,818 ","1,604,659 ","816,356 ","788,303 ","169,865 ","84,350 ","85,515 " -42,"1,766,251 ","899,150 ","867,101 ","1,598,003 ","815,575 ","782,428 ","168,248 ","83,575 ","84,673 " -43,"1,736,632 ","887,093 ","849,539 ","1,573,793 ","805,916 ","767,877 ","162,839 ","81,177 ","81,662 " -44,"1,689,360 ","866,283 ","823,077 ","1,534,935 ","788,792 ","746,143 ","154,425 ","77,491 ","76,934 " -45,"1,639,233 ","843,875 ","795,358 ","1,493,389 ","770,157 ","723,232 ","145,844 ","73,718 ","72,126 " -46,"1,588,237 ","820,944 ","767,293 ","1,450,951 ","751,014 ","699,937 ","137,286 ","69,930 ","67,356 " -47,"1,537,402 ","797,351 ","740,051 ","1,407,611 ","730,736 ","676,875 ","129,791 ","66,615 ","63,176 " -48,"1,489,459 ","773,915 ","715,544 ","1,364,910 ","709,601 ","655,309 ","124,549 ","64,314 ","60,235 " -49,"1,443,929 ","750,578 ","693,351 ","1,322,866 ","687,782 ","635,084 ","121,063 ","62,796 ","58,267 " -50,"1,396,845 ","726,119 ","670,726 ","1,279,288 ","664,873 ","614,415 ","117,557 ","61,246 ","56,311 " -51,"1,347,485 ","700,295 ","647,190 ","1,233,688 ","640,746 ","592,942 ","113,797 ","59,549 ","54,248 " -52,"1,299,172 ","674,828 ","624,344 ","1,189,373 ","617,093 ","572,280 ","109,799 ","57,735 ","52,064 " -53,"1,254,256 ","651,075 ","603,181 ","1,148,865 ","595,331 ","553,534 ","105,391 ","55,744 ","49,647 " -54,"1,212,273 ","628,800 ","583,473 ","1,111,606 ","575,198 ","536,408 ","100,667 ","53,602 ","47,065 " -55,"1,170,864 ","606,644 ","564,220 ","1,074,743 ","555,126 ","519,617 ","96,121 ","51,518 ","44,603 " -56,"1,130,002 ","584,592 ","545,410 ","1,038,063 ","535,002 ","503,061 ","91,939 ","49,590 ","42,349 " -57,"1,088,230 ","562,011 ","526,219 ","1,000,836 ","514,610 ","486,226 ","87,394 ","47,401 ","39,993 " -58,"1,043,935 ","538,152 ","505,783 ","961,997 ","493,514 ","468,483 ","81,938 ","44,638 ","37,300 " -59,"997,598 ","513,291 ","484,307 ","921,813 ","471,866 ","449,947 ","75,785 ","41,425 ","34,360 " -60,"951,288 ","488,438 ","462,850 ","881,687 ","450,272 ","431,415 ","69,601 ","38,166 ","31,435 " -61,"905,222 ","463,684 ","441,538 ","841,843 ","428,813 ","413,030 ","63,379 ","34,871 ","28,508 " -62,"860,106 ","439,582 ","420,524 ","802,254 ","407,696 ","394,558 ","57,852 ","31,886 ","25,966 " -63,"816,660 ","416,653 ","400,007 ","762,980 ","387,116 ","375,864 ","53,680 ","29,537 ","24,143 " -64,"774,527 ","394,646 ","379,881 ","723,905 ","366,937 ","356,968 ","50,622 ","27,709 ","22,913 " -65,"732,667 ","372,933 ","359,734 ","684,882 ","346,968 ","337,914 ","47,785 ","25,965 ","21,820 " -66,"691,864 ","351,587 ","340,277 ","646,750 ","327,296 ","319,454 ","45,114 ","24,291 ","20,823 " -67,"650,248 ","329,848 ","320,400 ","607,936 ","307,280 ","300,656 ","42,312 ","22,568 ","19,744 " -68,"607,111 ","307,111 ","300,000 ","568,053 ","286,431 ","281,622 ","39,058 ","20,680 ","18,378 " -69,"563,102 ","283,781 ","279,321 ","527,628 ","265,091 ","262,537 ","35,474 ","18,690 ","16,784 " -70,"519,567 ","260,736 ","258,831 ","487,567 ","243,963 ","243,604 ","32,000 ","16,773 ","15,227 " -71,"476,412 ","237,945 ","238,467 ","447,727 ","222,999 ","224,728 ","28,685 ","14,946 ","13,739 " -72,"435,607 ","216,521 ","219,086 ","410,005 ","203,266 ","206,739 ","25,602 ","13,255 ","12,347 " -73,"399,041 ","197,542 ","201,499 ","376,164 ","185,778 ","190,386 ","22,877 ","11,764 ","11,113 " -74,"366,139 ","180,666 ","185,473 ","345,658 ","170,216 ","175,442 ","20,481 ","10,450 ","10,031 " -75+,"2,361,726 ","1,119,358 ","1,242,368 ","2,212,586 ","1,049,338 ","1,163,248 ","149,140 ","70,020 ","79,120 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1936.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1936.csv deleted file mode 100644 index f82581ae39..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1936.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1936",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"128,053,180 ","64,459,383 ","63,593,797 ","115,022,229 ","58,026,634 ","56,995,595 ","13,030,951 ","6,432,749 ","6,598,202 " -,,,,,,,,, -0,"1,944,835 ","992,701 ","952,134 ","1,713,452 ","876,851 ","836,601 ","231,383 ","115,850 ","115,533 " -1,"1,942,228 ","983,259 ","958,969 ","1,718,054 ","872,426 ","845,628 ","224,174 ","110,833 ","113,341 " -2,"1,987,308 ","1,004,007 ","983,301 ","1,746,833 ","885,688 ","861,145 ","240,475 ","118,319 ","122,156 " -3,"2,046,505 ","1,034,438 ","1,012,067 ","1,793,321 ","909,327 ","883,994 ","253,184 ","125,111 ","128,073 " -4,"2,122,916 ","1,072,338 ","1,050,578 ","1,861,680 ","943,335 ","918,345 ","261,236 ","129,003 ","132,233 " -5,"2,256,622 ","1,147,475 ","1,109,147 ","1,978,480 ","1,008,444 ","970,036 ","278,142 ","139,031 ","139,111 " -6,"2,275,046 ","1,156,088 ","1,118,958 ","1,995,738 ","1,016,319 ","979,419 ","279,308 ","139,769 ","139,539 " -7,"2,303,852 ","1,171,901 ","1,131,951 ","2,023,708 ","1,031,576 ","992,132 ","280,144 ","140,325 ","139,819 " -8,"2,353,194 ","1,203,261 ","1,149,933 ","2,067,133 ","1,059,771 ","1,007,362 ","286,061 ","143,490 ","142,571 " -9,"2,405,393 ","1,223,511 ","1,181,882 ","2,116,867 ","1,079,394 ","1,037,473 ","288,526 ","144,117 ","144,409 " -10,"2,421,680 ","1,229,632 ","1,192,048 ","2,136,525 ","1,087,223 ","1,049,302 ","285,155 ","142,409 ","142,746 " -11,"2,454,135 ","1,242,056 ","1,212,079 ","2,171,393 ","1,101,906 ","1,069,487 ","282,742 ","140,150 ","142,592 " -12,"2,482,768 ","1,252,162 ","1,230,606 ","2,198,100 ","1,112,112 ","1,085,988 ","284,668 ","140,050 ","144,618 " -13,"2,481,706 ","1,248,987 ","1,232,719 ","2,200,237 ","1,111,102 ","1,089,135 ","281,469 ","137,885 ","143,584 " -14,"2,507,599 ","1,258,487 ","1,249,112 ","2,226,436 ","1,121,337 ","1,105,099 ","281,163 ","137,150 ","144,013 " -15,"2,472,922 ","1,239,365 ","1,233,557 ","2,200,341 ","1,107,108 ","1,093,233 ","272,581 ","132,257 ","140,324 " -16,"2,423,825 ","1,210,780 ","1,213,045 ","2,158,044 ","1,082,642 ","1,075,402 ","265,781 ","128,138 ","137,643 " -17,"2,378,845 ","1,184,419 ","1,194,426 ","2,119,753 ","1,060,252 ","1,059,501 ","259,092 ","124,167 ","134,925 " -18,"2,340,668 ","1,162,337 ","1,178,331 ","2,087,271 ","1,041,511 ","1,045,760 ","253,397 ","120,826 ","132,571 " -19,"2,317,717 ","1,148,801 ","1,168,916 ","2,066,900 ","1,029,608 ","1,037,292 ","250,817 ","119,193 ","131,624 " -20,"2,306,833 ","1,142,124 ","1,164,709 ","2,056,173 ","1,023,211 ","1,032,962 ","250,660 ","118,913 ","131,747 " -21,"2,294,488 ","1,134,966 ","1,159,522 ","2,043,864 ","1,016,226 ","1,027,638 ","250,624 ","118,740 ","131,884 " -22,"2,279,746 ","1,126,810 ","1,152,936 ","2,029,044 ","1,008,171 ","1,020,873 ","250,702 ","118,639 ","132,063 " -23,"2,260,608 ","1,116,642 ","1,143,966 ","2,011,109 ","998,641 ","1,012,468 ","249,499 ","118,001 ","131,498 " -24,"2,233,621 ","1,102,669 ","1,130,952 ","1,988,050 ","986,499 ","1,001,551 ","245,571 ","116,170 ","129,401 " -25,"2,200,215 ","1,085,628 ","1,114,587 ","1,960,716 ","972,221 ","988,495 ","239,499 ","113,407 ","126,092 " -26,"2,166,000 ","1,068,458 ","1,097,542 ","1,932,810 ","957,865 ","974,945 ","233,190 ","110,593 ","122,597 " -27,"2,131,860 ","1,051,612 ","1,080,248 ","1,905,290 ","943,900 ","961,390 ","226,570 ","107,712 ","118,858 " -28,"2,097,780 ","1,035,069 ","1,062,711 ","1,876,479 ","929,650 ","946,829 ","221,301 ","105,419 ","115,882 " -29,"2,064,625 ","1,019,274 ","1,045,351 ","1,845,608 ","914,913 ","930,695 ","219,017 ","104,361 ","114,656 " -30,"2,032,364 ","1,004,190 ","1,028,174 ","1,813,370 ","899,940 ","913,430 ","218,994 ","104,250 ","114,744 " -31,"2,000,430 ","989,452 ","1,010,978 ","1,781,293 ","885,223 ","896,070 ","219,137 ","104,229 ","114,908 " -32,"1,969,238 ","975,236 ","994,002 ","1,749,671 ","870,907 ","878,764 ","219,567 ","104,329 ","115,238 " -33,"1,937,761 ","961,099 ","976,662 ","1,719,857 ","857,468 ","862,389 ","217,904 ","103,631 ","114,273 " -34,"1,905,006 ","946,595 ","958,411 ","1,693,126 ","845,347 ","847,779 ","211,880 ","101,248 ","110,632 " -35,"1,871,791 ","932,100 ","939,691 ","1,669,397 ","834,576 ","834,821 ","202,394 ","97,524 ","104,870 " -36,"1,838,425 ","917,682 ","920,743 ","1,646,029 ","824,090 ","821,939 ","192,396 ","93,592 ","98,804 " -37,"1,803,236 ","902,460 ","900,776 ","1,621,287 ","812,984 ","808,303 ","181,949 ","89,476 ","92,473 " -38,"1,775,230 ","890,948 ","884,282 ","1,601,879 ","804,888 ","796,991 ","173,351 ","86,060 ","87,291 " -39,"1,761,848 ","886,842 ","875,006 ","1,592,960 ","802,617 ","790,343 ","168,888 ","84,225 ","84,663 " -40,"1,759,353 ","888,239 ","871,114 ","1,591,659 ","804,604 ","787,055 ","167,694 ","83,635 ","84,059 " -41,"1,757,429 ","889,865 ","867,564 ","1,590,692 ","806,738 ","783,954 ","166,737 ","83,127 ","83,610 " -42,"1,755,769 ","891,485 ","864,284 ","1,589,887 ","808,822 ","781,065 ","165,882 ","82,663 ","83,219 " -43,"1,744,757 ","888,463 ","856,294 ","1,581,185 ","806,892 ","774,293 ","163,572 ","81,571 ","82,001 " -44,"1,715,040 ","876,292 ","838,748 ","1,556,889 ","797,128 ","759,761 ","158,151 ","79,164 ","78,987 " -45,"1,669,796 ","856,414 ","813,382 ","1,519,530 ","780,694 ","738,836 ","150,266 ","75,720 ","74,546 " -46,"1,621,905 ","835,060 ","786,845 ","1,479,652 ","762,862 ","716,790 ","142,253 ","72,198 ","70,055 " -47,"1,573,305 ","813,238 ","760,067 ","1,439,016 ","744,568 ","694,448 ","134,289 ","68,670 ","65,619 " -48,"1,523,814 ","790,208 ","733,606 ","1,396,659 ","724,711 ","671,948 ","127,155 ","65,497 ","61,658 " -49,"1,474,928 ","766,159 ","708,769 ","1,353,169 ","703,069 ","650,100 ","121,759 ","63,090 ","58,669 " -50,"1,426,659 ","741,285 ","685,374 ","1,308,925 ","680,008 ","628,917 ","117,734 ","61,277 ","56,457 " -51,"1,376,748 ","715,254 ","661,494 ","1,263,057 ","655,821 ","607,236 ","113,691 ","59,433 ","54,258 " -52,"1,324,738 ","687,944 ","636,794 ","1,215,285 ","630,469 ","584,816 ","109,453 ","57,475 ","51,978 " -53,"1,274,342 ","661,259 ","613,083 ","1,169,202 ","605,797 ","563,405 ","105,140 ","55,462 ","49,678 " -54,"1,228,457 ","636,803 ","591,654 ","1,127,763 ","583,436 ","544,327 ","100,694 ","53,367 ","47,327 " -55,"1,186,424 ","614,254 ","572,170 ","1,090,257 ","563,043 ","527,214 ","96,167 ","51,211 ","44,956 " -56,"1,145,057 ","591,880 ","553,177 ","1,053,220 ","542,757 ","510,463 ","91,837 ","49,123 ","42,714 " -57,"1,104,037 ","569,517 ","534,520 ","1,016,217 ","522,357 ","493,860 ","87,820 ","47,160 ","40,660 " -58,"1,062,488 ","546,867 ","515,621 ","978,967 ","501,855 ","477,112 ","83,521 ","45,012 ","38,509 " -59,"1,019,238 ","523,447 ","495,791 ","940,777 ","481,017 ","459,760 ","78,461 ","42,430 ","36,031 " -60,"974,602 ","499,441 ","475,161 ","901,780 ","459,928 ","441,852 ","72,822 ","39,513 ","33,309 " -61,"930,119 ","475,532 ","454,587 ","862,941 ","438,961 ","423,980 ","67,178 ","36,571 ","30,607 " -62,"886,084 ","451,828 ","434,256 ","824,538 ","418,207 ","406,331 ","61,546 ","33,621 ","27,925 " -63,"842,248 ","428,426 ","413,822 ","785,796 ","397,531 ","388,265 ","56,452 ","30,895 ","25,557 " -64,"798,451 ","405,402 ","393,049 ","746,068 ","376,789 ","369,279 ","52,383 ","28,613 ","23,770 " -65,"754,639 ","382,656 ","371,983 ","705,480 ","355,960 ","349,520 ","49,159 ","26,696 ","22,463 " -66,"710,859 ","360,107 ","350,752 ","664,739 ","335,259 ","329,480 ","46,120 ","24,848 ","21,272 " -67,"668,168 ","337,927 ","330,241 ","624,939 ","314,860 ","310,079 ","43,229 ","23,067 ","20,162 " -68,"624,947 ","315,516 ","309,431 ","584,681 ","294,244 ","290,437 ","40,266 ","21,272 ","18,994 " -69,"580,975 ","292,483 ","288,492 ","543,958 ","273,077 ","270,881 ","37,017 ","19,406 ","17,611 " -70,"536,807 ","269,166 ","267,641 ","503,236 ","251,654 ","251,582 ","33,571 ","17,512 ","16,059 " -71,"493,200 ","246,180 ","247,020 ","462,957 ","230,484 ","232,473 ","30,243 ","15,696 ","14,547 " -72,"449,999 ","223,471 ","226,528 ","422,932 ","209,506 ","213,426 ","27,067 ","13,965 ","13,102 " -73,"409,244 ","202,168 ","207,076 ","385,131 ","189,806 ","195,325 ","24,113 ","12,362 ","11,751 " -74,"372,712 ","183,276 ","189,436 ","351,240 ","172,346 ","178,894 ","21,472 ","10,930 ","10,542 " -75+,"2,424,973 ","1,146,010 ","1,278,963 ","2,271,527 ","1,074,105 ","1,197,422 ","153,446 ","71,905 ","81,541 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1937.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1937.csv deleted file mode 100644 index cc39254afa..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1937.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1937",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"128,824,829 ","64,789,797 ","64,035,032 ","115,706,360 ","58,322,024 ","57,384,336 ","13,118,469 ","6,467,773 ","6,650,696 " -,,,,,,,,, -0,"1,932,237 ","982,918 ","949,319 ","1,702,825 ","869,197 ","833,628 ","229,412 ","113,721 ","115,691 " -1,"1,948,567 ","989,772 ","958,795 ","1,720,299 ","875,848 ","844,451 ","228,268 ","113,924 ","114,344 " -2,"2,079,031 ","1,051,681 ","1,027,350 ","1,825,219 ","926,109 ","899,110 ","253,812 ","125,572 ","128,240 " -3,"2,007,264 ","1,014,946 ","992,318 ","1,756,877 ","891,554 ","865,323 ","250,387 ","123,392 ","126,995 " -4,"2,041,574 ","1,031,459 ","1,010,115 ","1,787,024 ","905,915 ","881,109 ","254,550 ","125,544 ","129,006 " -5,"2,176,641 ","1,104,920 ","1,071,721 ","1,898,889 ","966,216 ","932,673 ","277,752 ","138,704 ","139,048 " -6,"2,245,185 ","1,141,091 ","1,104,094 ","1,968,977 ","1,003,179 ","965,798 ","276,208 ","137,912 ","138,296 " -7,"2,264,960 ","1,150,536 ","1,114,424 ","1,987,638 ","1,011,915 ","975,723 ","277,322 ","138,621 ","138,701 " -8,"2,298,622 ","1,168,507 ","1,130,115 ","2,019,661 ","1,028,913 ","990,748 ","278,961 ","139,594 ","139,367 " -9,"2,349,413 ","1,198,837 ","1,150,576 ","2,065,248 ","1,056,489 ","1,008,759 ","284,165 ","142,348 ","141,817 " -10,"2,398,903 ","1,218,954 ","1,179,949 ","2,112,653 ","1,076,113 ","1,036,540 ","286,250 ","142,841 ","143,409 " -11,"2,418,789 ","1,226,734 ","1,192,055 ","2,135,215 ","1,085,445 ","1,049,770 ","283,574 ","141,289 ","142,285 " -12,"2,450,155 ","1,238,927 ","1,211,228 ","2,168,554 ","1,099,599 ","1,068,955 ","281,601 ","139,328 ","142,273 " -13,"2,479,212 ","1,249,694 ","1,229,518 ","2,196,313 ","1,110,685 ","1,085,628 ","282,899 ","139,009 ","143,890 " -14,"2,482,314 ","1,248,441 ","1,233,873 ","2,202,224 ","1,111,473 ","1,090,751 ","280,090 ","136,968 ","143,122 " -15,"2,497,614 ","1,252,304 ","1,245,310 ","2,218,840 ","1,116,709 ","1,102,131 ","278,774 ","135,595 ","143,179 " -16,"2,462,532 ","1,231,898 ","1,230,634 ","2,191,586 ","1,100,997 ","1,090,589 ","270,946 ","130,901 ","140,045 " -17,"2,415,265 ","1,203,756 ","1,211,509 ","2,150,988 ","1,077,045 ","1,073,943 ","264,277 ","126,711 ","137,566 " -18,"2,369,686 ","1,176,567 ","1,193,119 ","2,112,159 ","1,054,021 ","1,058,138 ","257,527 ","122,546 ","134,981 " -19,"2,330,760 ","1,153,709 ","1,177,051 ","2,078,908 ","1,034,608 ","1,044,300 ","251,852 ","119,101 ","132,751 " -20,"2,307,580 ","1,140,107 ","1,167,473 ","2,058,363 ","1,022,634 ","1,035,729 ","249,217 ","117,473 ","131,744 " -21,"2,296,809 ","1,133,915 ","1,162,894 ","2,047,893 ","1,016,640 ","1,031,253 ","248,916 ","117,275 ","131,641 " -22,"2,284,673 ","1,127,346 ","1,157,327 ","2,035,933 ","1,010,148 ","1,025,785 ","248,740 ","117,198 ","131,542 " -23,"2,270,319 ","1,119,847 ","1,150,472 ","2,021,570 ","1,002,618 ","1,018,952 ","248,749 ","117,229 ","131,520 " -24,"2,251,310 ","1,110,265 ","1,141,045 ","2,003,947 ","993,591 ","1,010,356 ","247,363 ","116,674 ","130,689 " -25,"2,223,677 ","1,096,557 ","1,127,120 ","1,980,694 ","981,779 ","998,915 ","242,983 ","114,778 ","128,205 " -26,"2,189,057 ","1,079,505 ","1,109,552 ","1,952,787 ","967,676 ","985,111 ","236,270 ","111,829 ","124,441 " -27,"2,153,576 ","1,062,308 ","1,091,268 ","1,924,267 ","953,485 ","970,782 ","229,309 ","108,823 ","120,486 " -28,"2,118,045 ","1,045,405 ","1,072,640 ","1,896,048 ","939,659 ","956,389 ","221,997 ","105,746 ","116,251 " -29,"2,083,292 ","1,028,984 ","1,054,308 ","1,866,956 ","925,632 ","941,324 ","216,336 ","103,352 ","112,984 " -30,"2,050,939 ","1,013,703 ","1,037,236 ","1,836,676 ","911,312 ","925,364 ","214,263 ","102,391 ","111,872 " -31,"2,020,656 ","999,436 ","1,021,220 ","1,805,712 ","896,895 ","908,817 ","214,944 ","102,541 ","112,403 " -32,"1,990,773 ","985,504 ","1,005,269 ","1,774,939 ","882,717 ","892,222 ","215,834 ","102,787 ","113,047 " -33,"1,961,453 ","971,975 ","989,478 ","1,744,500 ","868,859 ","875,641 ","216,953 ","103,116 ","113,837 " -34,"1,931,357 ","958,336 ","973,021 ","1,715,498 ","855,717 ","859,781 ","215,859 ","102,619 ","113,240 " -35,"1,899,263 ","944,102 ","955,161 ","1,689,066 ","843,701 ","845,365 ","210,197 ","100,401 ","109,796 " -36,"1,865,981 ","929,613 ","936,368 ","1,665,101 ","832,818 ","832,283 ","200,880 ","96,795 ","104,085 " -37,"1,832,529 ","915,175 ","917,354 ","1,641,466 ","822,183 ","819,283 ","191,063 ","92,992 ","98,071 " -38,"1,797,531 ","900,047 ","897,484 ","1,616,626 ","810,998 ","805,628 ","180,905 ","89,049 ","91,856 " -39,"1,768,960 ","888,216 ","880,744 ","1,596,572 ","802,513 ","794,059 ","172,388 ","85,703 ","86,685 " -40,"1,753,435 ","882,972 ","870,463 ","1,585,919 ","799,272 ","786,647 ","167,516 ","83,700 ","83,816 " -41,"1,747,594 ","882,610 ","864,984 ","1,582,072 ","799,857 ","782,215 ","165,522 ","82,753 ","82,769 " -42,"1,742,060 ","882,344 ","859,716 ","1,578,373 ","800,494 ","777,879 ","163,687 ","81,850 ","81,837 " -43,"1,736,411 ","881,870 ","854,541 ","1,574,556 ","800,929 ","773,627 ","161,855 ","80,941 ","80,914 " -44,"1,722,595 ","877,369 ","845,226 ","1,563,723 ","797,830 ","765,893 ","158,872 ","79,539 ","79,333 " -45,"1,692,734 ","865,035 ","827,699 ","1,539,299 ","787,910 ","751,389 ","153,435 ","77,125 ","76,310 " -46,"1,649,422 ","846,060 ","803,362 ","1,503,382 ","772,160 ","731,222 ","146,040 ","73,900 ","72,140 " -47,"1,603,688 ","825,699 ","777,989 ","1,465,120 ","755,081 ","710,039 ","138,568 ","70,618 ","67,950 " -48,"1,557,382 ","804,928 ","752,454 ","1,426,215 ","737,595 ","688,620 ","131,167 ","67,333 ","63,834 " -49,"1,509,160 ","782,418 ","726,742 ","1,384,791 ","718,125 ","666,666 ","124,369 ","64,293 ","60,076 " -50,"1,459,332 ","757,757 ","701,575 ","1,340,493 ","695,966 ","644,527 ","118,839 ","61,791 ","57,048 " -51,"1,408,340 ","731,372 ","676,968 ","1,294,030 ","671,668 ","622,362 ","114,310 ","59,704 ","54,606 " -52,"1,355,696 ","703,809 ","651,887 ","1,245,910 ","646,213 ","599,697 ","109,786 ","57,596 ","52,190 " -53,"1,301,164 ","675,094 ","626,070 ","1,196,024 ","619,679 ","576,345 ","105,140 ","55,415 ","49,725 " -54,"1,248,823 ","647,273 ","601,550 ","1,148,255 ","594,042 ","554,213 ","100,568 ","53,231 ","47,337 " -55,"1,201,999 ","622,138 ","579,861 ","1,105,878 ","571,081 ","534,797 ","96,121 ","51,057 ","45,064 " -56,"1,159,924 ","599,337 ","560,587 ","1,068,125 ","550,439 ","517,686 ","91,799 ","48,898 ","42,901 " -57,"1,118,544 ","576,733 ","541,811 ","1,030,875 ","529,932 ","500,943 ","87,669 ","46,801 ","40,868 " -58,"1,077,214 ","553,997 ","523,217 ","993,415 ","509,196 ","484,219 ","83,799 ","44,801 ","38,998 " -59,"1,035,710 ","531,199 ","504,511 ","956,003 ","488,523 ","467,480 ","79,707 ","42,676 ","37,031 " -60,"993,380 ","508,167 ","485,213 ","918,371 ","467,907 ","450,464 ","75,009 ","40,260 ","34,749 " -61,"950,324 ","484,959 ","465,365 ","880,470 ","447,340 ","433,130 ","69,854 ","37,619 ","32,235 " -62,"907,546 ","461,925 ","445,621 ","842,821 ","426,950 ","415,871 ","64,725 ","34,975 ","29,750 " -63,"865,428 ","439,215 ","426,213 ","805,778 ","406,865 ","398,913 ","59,650 ","32,350 ","27,300 " -64,"822,800 ","416,471 ","406,329 ","767,830 ","386,602 ","381,228 ","54,970 ","29,869 ","25,101 " -65,"778,645 ","393,352 ","385,293 ","727,642 ","365,701 ","361,941 ","51,003 ","27,651 ","23,352 " -66,"733,145 ","369,865 ","363,280 ","685,521 ","344,213 ","341,308 ","47,624 ","25,652 ","21,972 " -67,"687,512 ","346,526 ","340,986 ","643,119 ","322,819 ","320,300 ","44,393 ","23,707 ","20,686 " -68,"643,039 ","323,589 ","319,450 ","601,744 ","301,761 ","299,983 ","41,295 ","21,828 ","19,467 " -69,"598,334 ","300,595 ","297,739 ","560,148 ","280,623 ","279,525 ","38,186 ","19,972 ","18,214 " -70,"553,650 ","277,335 ","276,315 ","518,704 ","259,205 ","259,499 ","34,946 ","18,130 ","16,816 " -71,"509,397 ","254,083 ","255,314 ","477,756 ","237,749 ","240,007 ","31,641 ","16,334 ","15,307 " -72,"465,808 ","231,214 ","234,594 ","437,345 ","216,596 ","220,749 ","28,463 ","14,618 ","13,845 " -73,"422,728 ","208,684 ","214,044 ","397,288 ","195,696 ","201,592 ","25,440 ","12,988 ","12,452 " -74,"382,158 ","187,577 ","194,581 ","359,532 ","176,101 ","183,431 ","22,626 ","11,476 ","11,150 " -75+,"2,483,204 ","1,170,229 ","1,312,975 ","2,325,122 ","1,096,299 ","1,228,823 ","158,082 ","73,930 ","84,152 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1938.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1938.csv deleted file mode 100644 index f78249cc54..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1938.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1938",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"129,824,939 ","65,235,361 ","64,589,578 ","116,591,855 ","58,718,342 ","57,873,513 ","13,233,084 ","6,517,019 ","6,716,065 " -,,,,,,,,, -0,"2,018,652 ","1,027,603 ","991,049 ","1,777,547 ","907,076 ","870,471 ","241,105 ","120,527 ","120,578 " -1,"1,942,637 ","982,308 ","960,329 ","1,716,473 ","870,979 ","845,494 ","226,164 ","111,329 ","114,835 " -2,"2,108,385 ","1,070,684 ","1,037,701 ","1,845,392 ","939,265 ","906,127 ","262,993 ","131,419 ","131,574 " -3,"2,099,909 ","1,063,188 ","1,036,721 ","1,835,708 ","932,240 ","903,468 ","264,201 ","130,948 ","133,253 " -4,"2,006,846 ","1,014,102 ","992,744 ","1,754,638 ","890,089 ","864,549 ","252,208 ","124,013 ","128,195 " -5,"2,096,956 ","1,064,174 ","1,032,782 ","1,826,425 ","929,273 ","897,152 ","270,531 ","134,901 ","135,630 " -6,"2,167,475 ","1,099,770 ","1,067,705 ","1,891,339 ","962,028 ","929,311 ","276,136 ","137,742 ","138,394 " -7,"2,236,930 ","1,136,335 ","1,100,595 ","1,962,246 ","999,336 ","962,910 ","274,684 ","136,999 ","137,685 " -8,"2,257,979 ","1,146,549 ","1,111,430 ","1,982,246 ","1,008,877 ","973,369 ","275,733 ","137,672 ","138,061 " -9,"2,296,412 ","1,166,658 ","1,129,754 ","2,018,263 ","1,027,609 ","990,654 ","278,149 ","139,049 ","139,100 " -10,"2,348,694 ","1,195,979 ","1,152,715 ","2,066,069 ","1,054,596 ","1,011,473 ","282,625 ","141,383 ","141,242 " -11,"2,395,459 ","1,215,933 ","1,179,526 ","2,111,128 ","1,074,193 ","1,036,935 ","284,331 ","141,740 ","142,591 " -12,"2,418,852 ","1,225,348 ","1,193,504 ","2,136,544 ","1,085,015 ","1,051,529 ","282,308 ","140,333 ","141,975 " -13,"2,448,931 ","1,237,174 ","1,211,757 ","2,168,224 ","1,098,538 ","1,069,686 ","280,707 ","138,636 ","142,071 " -14,"2,478,197 ","1,248,507 ","1,229,690 ","2,196,889 ","1,110,438 ","1,086,451 ","281,308 ","138,069 ","143,239 " -15,"2,485,347 ","1,249,113 ","1,236,234 ","2,206,496 ","1,112,975 ","1,093,521 ","278,851 ","136,138 ","142,713 " -16,"2,490,059 ","1,247,314 ","1,242,745 ","2,213,529 ","1,113,193 ","1,100,336 ","276,530 ","134,121 ","142,409 " -17,"2,454,527 ","1,225,622 ","1,228,905 ","2,185,085 ","1,096,001 ","1,089,084 ","269,442 ","129,621 ","139,821 " -18,"2,409,083 ","1,197,926 ","1,211,157 ","2,146,173 ","1,072,569 ","1,073,604 ","262,910 ","125,357 ","137,553 " -19,"2,362,946 ","1,169,928 ","1,193,018 ","2,106,816 ","1,048,929 ","1,057,887 ","256,130 ","120,999 ","135,131 " -20,"2,323,249 ","1,146,285 ","1,176,964 ","2,072,776 ","1,028,834 ","1,043,942 ","250,473 ","117,451 ","133,022 " -21,"2,299,790 ","1,132,598 ","1,167,192 ","2,052,012 ","1,016,769 ","1,035,243 ","247,778 ","115,829 ","131,949 " -22,"2,289,185 ","1,126,920 ","1,162,265 ","2,041,829 ","1,011,200 ","1,030,629 ","247,356 ","115,720 ","131,636 " -23,"2,277,365 ","1,120,986 ","1,156,379 ","2,030,279 ","1,005,224 ","1,025,055 ","247,086 ","115,762 ","131,324 " -24,"2,263,509 ","1,114,205 ","1,149,304 ","2,016,453 ","998,259 ","1,018,194 ","247,056 ","115,946 ","131,110 " -25,"2,244,632 ","1,105,214 ","1,139,418 ","1,999,136 ","989,739 ","1,009,397 ","245,496 ","115,475 ","130,021 " -26,"2,216,331 ","1,091,743 ","1,124,588 ","1,975,660 ","978,233 ","997,427 ","240,671 ","113,510 ","127,161 " -27,"2,180,449 ","1,074,645 ","1,105,804 ","1,947,125 ","964,268 ","982,857 ","233,324 ","110,377 ","122,947 " -28,"2,143,653 ","1,057,383 ","1,086,270 ","1,917,935 ","950,198 ","967,737 ","225,718 ","107,185 ","118,533 " -29,"2,106,690 ","1,040,388 ","1,066,302 ","1,888,973 ","936,476 ","952,497 ","217,717 ","103,912 ","113,805 " -30,"2,071,210 ","1,024,052 ","1,047,158 ","1,859,545 ","922,636 ","936,909 ","211,665 ","101,416 ","110,249 " -31,"2,039,596 ","1,009,246 ","1,030,350 ","1,829,798 ","908,696 ","921,102 ","209,798 ","100,550 ","109,248 " -32,"2,011,214 ","995,758 ","1,015,456 ","1,800,058 ","894,811 ","905,247 ","211,156 ","100,947 ","110,209 " -33,"1,983,198 ","982,540 ","1,000,658 ","1,770,470 ","881,110 ","889,360 ","212,728 ","101,430 ","111,298 " -34,"1,955,539 ","969,605 ","985,934 ","1,741,060 ","867,640 ","873,420 ","214,479 ","101,965 ","112,514 " -35,"1,926,774 ","956,440 ","970,334 ","1,712,848 ","854,781 ","858,067 ","213,926 ","101,659 ","112,267 " -36,"1,895,241 ","942,420 ","952,821 ","1,686,637 ","842,829 ","843,808 ","208,604 ","99,591 ","109,013 " -37,"1,861,881 ","927,928 ","933,953 ","1,662,422 ","831,820 ","830,602 ","199,459 ","96,108 ","103,351 " -38,"1,828,355 ","913,475 ","914,880 ","1,638,509 ","821,032 ","817,477 ","189,846 ","92,443 ","97,403 " -39,"1,793,551 ","898,424 ","895,127 ","1,613,545 ","809,740 ","803,805 ","180,006 ","88,684 ","91,322 " -40,"1,764,365 ","886,245 ","878,120 ","1,592,801 ","800,839 ","791,962 ","171,564 ","85,406 ","86,158 " -41,"1,746,643 ","879,838 ","866,805 ","1,580,377 ","796,609 ","783,768 ","166,266 ","83,229 ","83,037 " -42,"1,737,401 ","877,694 ","859,707 ","1,573,922 ","795,768 ","778,154 ","163,479 ","81,926 ","81,553 " -43,"1,728,204 ","875,501 ","852,703 ","1,567,437 ","794,875 ","772,562 ","160,767 ","80,626 ","80,141 " -44,"1,718,503 ","872,923 ","845,580 ","1,560,522 ","793,643 ","766,879 ","157,981 ","79,280 ","78,701 " -45,"1,701,859 ","866,909 ","834,950 ","1,547,521 ","789,331 ","758,190 ","154,338 ","77,578 ","76,760 " -46,"1,671,754 ","854,387 ","817,367 ","1,522,897 ","779,246 ","743,651 ","148,857 ","75,141 ","73,716 " -47,"1,630,247 ","836,233 ","794,014 ","1,488,329 ","764,113 ","724,216 ","141,918 ","72,120 ","69,798 " -48,"1,586,517 ","816,784 ","769,733 ","1,451,570 ","747,727 ","703,843 ","134,947 ","69,057 ","65,890 " -49,"1,542,351 ","796,984 ","745,367 ","1,414,281 ","730,985 ","683,296 ","128,070 ","65,999 ","62,071 " -50,"1,495,284 ","774,934 ","720,350 ","1,373,683 ","711,845 ","661,838 ","121,601 ","63,089 ","58,512 " -51,"1,444,417 ","749,625 ","694,792 ","1,328,470 ","689,125 ","639,345 ","115,947 ","60,500 ","55,447 " -52,"1,390,721 ","721,731 ","668,990 ","1,279,761 ","663,566 ","616,195 ","110,960 ","58,165 ","52,795 " -53,"1,335,400 ","692,680 ","642,720 ","1,229,382 ","636,851 ","592,531 ","106,018 ","55,829 ","50,189 " -54,"1,278,432 ","662,612 ","615,820 ","1,177,411 ","609,160 ","568,251 ","101,021 ","53,452 ","47,569 " -55,"1,224,144 ","633,660 ","590,484 ","1,127,911 ","582,538 ","545,373 ","96,233 ","51,122 ","45,111 " -56,"1,176,369 ","607,856 ","568,513 ","1,084,569 ","558,975 ","525,594 ","91,800 ","48,881 ","42,919 " -57,"1,134,141 ","584,759 ","549,382 ","1,046,480 ","538,048 ","508,432 ","87,661 ","46,711 ","40,950 " -58,"1,092,535 ","561,829 ","530,706 ","1,008,831 ","517,231 ","491,600 ","83,704 ","44,598 ","39,106 " -59,"1,050,686 ","538,626 ","512,060 ","970,741 ","496,080 ","474,661 ","79,945 ","42,546 ","37,399 " -60,"1,009,094 ","515,631 ","493,463 ","933,061 ","475,194 ","457,867 ","76,033 ","40,437 ","35,596 " -61,"967,547 ","492,926 ","474,621 ","895,877 ","454,754 ","441,123 ","71,670 ","38,172 ","33,498 " -62,"925,906 ","470,427 ","455,479 ","858,937 ","434,641 ","424,296 ","66,969 ","35,786 ","31,183 " -63,"884,694 ","448,198 ","436,496 ","822,370 ","414,777 ","407,593 ","62,324 ","33,421 ","28,903 " -64,"844,342 ","426,398 ","417,944 ","786,567 ","395,298 ","391,269 ","57,775 ","31,100 ","26,675 " -65,"802,759 ","404,231 ","398,528 ","749,281 ","375,387 ","373,894 ","53,478 ","28,844 ","24,634 " -66,"758,083 ","380,935 ","377,148 ","708,485 ","354,252 ","354,233 ","49,598 ","26,683 ","22,915 " -67,"710,885 ","356,716 ","354,169 ","664,817 ","332,111 ","332,706 ","46,068 ","24,605 ","21,463 " -68,"663,756 ","332,629 ","331,127 ","621,105 ","310,060 ","311,045 ","42,651 ","22,569 ","20,082 " -69,"617,255 ","308,999 ","308,256 ","577,896 ","288,398 ","289,498 ","39,359 ","20,601 ","18,758 " -70,"571,186 ","285,487 ","285,699 ","535,068 ","266,795 ","268,273 ","36,118 ","18,692 ","17,426 " -71,"525,853 ","262,042 ","263,811 ","492,956 ","245,161 ","247,795 ","32,897 ","16,881 ","16,016 " -72,"481,552 ","238,884 ","242,668 ","451,817 ","223,703 ","228,114 ","29,735 ","15,181 ","14,554 " -73,"438,083 ","216,196 ","221,887 ","411,366 ","202,628 ","208,738 ","26,717 ","13,568 ","13,149 " -74,"395,210 ","193,891 ","201,319 ","371,357 ","181,852 ","189,505 ","23,853 ","12,039 ","11,814 " -75+,"2,543,073 ","1,195,491 ","1,347,582 ","2,379,699 ","1,119,262 ","1,260,437 ","163,374 ","76,229 ","87,145 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1939.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1939.csv deleted file mode 100644 index 812486543a..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1939.csv +++ /dev/null @@ -1,100 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population--Estimates by Age, Sex, and Race: July 1, 1939",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"130,879,718 ","65,713,339 ","65,166,379 ","117,524,368 ","59,142,657 ","58,381,711 ","13,355,350 ","6,570,682 ","6,784,668 " -,,,,,,,,, -0,"2,041,014 ","1,040,024 ","1,000,990 ","1,798,136 ","918,247 ","879,889 ","242,878 ","121,777 ","121,101 " -1,"2,025,350 ","1,029,246 ","996,104 ","1,787,127 ","910,719 ","876,408 ","238,223 ","118,527 ","119,696 " -2,"2,115,730 ","1,069,772 ","1,045,958 ","1,852,091 ","939,702 ","912,389 ","263,639 ","130,070 ","133,569 " -3,"2,136,944 ","1,086,351 ","1,050,593 ","1,861,464 ","948,356 ","913,108 ","275,480 ","137,995 ","137,485 " -4,"2,099,288 ","1,062,630 ","1,036,658 ","1,833,117 ","930,926 ","902,191 ","266,171 ","131,704 ","134,467 " -5,"2,064,071 ","1,047,272 ","1,016,799 ","1,795,684 ","913,867 ","881,817 ","268,387 ","133,405 ","134,982 " -6,"2,089,083 ","1,059,487 ","1,029,596 ","1,820,673 ","925,820 ","894,853 ","268,410 ","133,667 ","134,743 " -7,"2,159,685 ","1,095,329 ","1,064,356 ","1,884,976 ","958,454 ","926,522 ","274,709 ","136,875 ","137,834 " -8,"2,229,989 ","1,132,233 ","1,097,756 ","1,956,655 ","996,061 ","960,594 ","273,334 ","136,172 ","137,162 " -9,"2,252,207 ","1,143,183 ","1,109,024 ","1,977,914 ","1,006,387 ","971,527 ","274,293 ","136,796 ","137,497 " -10,"2,295,409 ","1,165,422 ","1,129,987 ","2,017,944 ","1,026,855 ","991,089 ","277,465 ","138,567 ","138,898 " -11,"2,349,128 ","1,193,693 ","1,155,435 ","2,067,915 ","1,053,215 ","1,014,700 ","281,213 ","140,478 ","140,735 " -12,"2,393,080 ","1,213,464 ","1,179,616 ","2,110,575 ","1,072,773 ","1,037,802 ","282,505 ","140,691 ","141,814 " -13,"2,419,751 ","1,224,364 ","1,195,387 ","2,138,684 ","1,084,970 ","1,053,714 ","281,067 ","139,394 ","141,673 " -14,"2,448,310 ","1,235,725 ","1,212,585 ","2,168,544 ","1,097,790 ","1,070,754 ","279,766 ","137,935 ","141,831 " -15,"2,477,691 ","1,247,576 ","1,230,115 ","2,198,049 ","1,110,464 ","1,087,585 ","279,642 ","137,112 ","142,530 " -16,"2,488,849 ","1,249,988 ","1,238,861 ","2,211,313 ","1,114,707 ","1,096,606 ","277,536 ","135,281 ","142,255 " -17,"2,482,975 ","1,242,552 ","1,240,423 ","2,208,765 ","1,109,930 ","1,098,835 ","274,210 ","132,622 ","141,588 " -18,"2,447,033 ","1,219,605 ","1,227,428 ","2,179,161 ","1,091,292 ","1,087,869 ","267,872 ","128,313 ","139,559 " -19,"2,403,479 ","1,192,387 ","1,211,092 ","2,141,971 ","1,068,410 ","1,073,561 ","261,508 ","123,977 ","137,531 " -20,"2,356,786 ","1,163,587 ","1,193,199 ","2,102,084 ","1,044,156 ","1,057,928 ","254,702 ","119,431 ","135,271 " -21,"2,316,287 ","1,139,153 ","1,177,134 ","2,067,224 ","1,023,366 ","1,043,858 ","249,063 ","115,787 ","133,276 " -22,"2,292,607 ","1,125,415 ","1,167,192 ","2,046,280 ","1,011,238 ","1,035,042 ","246,327 ","114,177 ","132,150 " -23,"2,282,282 ","1,120,301 ","1,161,981 ","2,036,454 ","1,006,123 ","1,030,331 ","245,828 ","114,178 ","131,650 " -24,"2,270,901 ","1,115,069 ","1,155,832 ","2,025,408 ","1,000,709 ","1,024,699 ","245,493 ","114,360 ","131,133 " -25,"2,257,566 ","1,109,025 ","1,148,541 ","2,012,130 ","994,324 ","1,017,806 ","245,436 ","114,701 ","130,735 " -26,"2,238,816 ","1,100,610 ","1,138,206 ","1,995,108 ","986,299 ","1,008,809 ","243,708 ","114,311 ","129,397 " -27,"2,209,819 ","1,087,348 ","1,122,471 ","1,971,375 ","975,072 ","996,303 ","238,444 ","112,276 ","126,168 " -28,"2,172,653 ","1,070,179 ","1,102,474 ","1,942,177 ","961,212 ","980,965 ","230,476 ","108,967 ","121,509 " -29,"2,134,523 ","1,052,829 ","1,081,694 ","1,912,291 ","947,237 ","965,054 ","222,232 ","105,592 ","116,640 " -30,"2,096,113 ","1,035,723 ","1,060,390 ","1,882,559 ","933,597 ","948,962 ","213,554 ","102,126 ","111,428 " -31,"2,059,880 ","1,019,452 ","1,040,428 ","1,852,764 ","919,921 ","932,843 ","207,116 ","99,531 ","107,585 " -32,"2,028,961 ","1,005,096 ","1,023,865 ","1,823,526 ","906,348 ","917,178 ","205,435 ","98,748 ","106,687 " -33,"2,002,319 ","992,304 ","1,010,015 ","1,794,913 ","892,942 ","901,971 ","207,406 ","99,362 ","108,044 " -34,"1,975,986 ","979,716 ","996,270 ","1,766,383 ","879,659 ","886,724 ","209,603 ","100,057 ","109,546 " -35,"1,949,961 ","967,364 ","982,597 ","1,738,003 ","866,575 ","871,428 ","211,958 ","100,789 ","111,169 " -36,"1,922,451 ","954,628 ","967,823 ","1,710,524 ","853,967 ","856,557 ","211,927 ","100,661 ","111,266 " -37,"1,891,487 ","940,826 ","950,661 ","1,684,534 ","842,074 ","842,460 ","206,953 ","98,752 ","108,201 " -38,"1,858,088 ","926,346 ","931,742 ","1,660,076 ","830,941 ","829,135 ","198,012 ","95,405 ","102,607 " -39,"1,823,847 ","911,200 ","912,647 ","1,635,203 ","819,306 ","815,897 ","188,644 ","91,894 ","96,750 " -40,"1,789,868 ","896,871 ","892,997 ","1,610,753 ","808,555 ","802,198 ","179,115 ","88,316 ","90,799 " -41,"1,760,001 ","884,309 ","875,692 ","1,589,280 ","799,216 ","790,064 ","170,721 ","85,093 ","85,628 " -42,"1,740,005 ","876,704 ","863,301 ","1,575,011 ","793,965 ","781,046 ","164,994 ","82,739 ","82,255 " -43,"1,727,301 ","872,736 ","854,565 ","1,565,891 ","791,660 ","774,231 ","161,410 ","81,076 ","80,334 " -44,"1,714,369 ","868,599 ","845,770 ","1,556,528 ","789,215 ","767,313 ","157,841 ","79,384 ","78,457 " -45,"1,700,614 ","863,894 ","836,720 ","1,546,491 ","786,278 ","760,213 ","154,123 ","77,616 ","76,507 " -46,"1,681,102 ","856,372 ","824,730 ","1,531,289 ","780,764 ","750,525 ","149,813 ","75,608 ","74,205 " -47,"1,650,699 ","843,616 ","807,083 ","1,506,421 ","770,471 ","735,950 ","144,278 ","73,145 ","71,133 " -48,"1,610,895 ","826,225 ","784,670 ","1,473,128 ","755,913 ","717,215 ","137,767 ","70,312 ","67,455 " -49,"1,569,058 ","807,628 ","761,430 ","1,437,793 ","740,173 ","697,620 ","131,265 ","67,455 ","63,810 " -50,"1,526,940 ","788,745 ","738,195 ","1,402,037 ","724,125 ","677,912 ","124,903 ","64,620 ","60,283 " -51,"1,480,916 ","767,108 ","713,808 ","1,362,157 ","705,267 ","656,890 ","118,759 ","61,841 ","56,918 " -52,"1,429,012 ","741,141 ","687,871 ","1,316,000 ","681,958 ","634,042 ","113,012 ","59,183 ","53,829 " -53,"1,372,699 ","711,796 ","660,903 ","1,265,066 ","655,160 ","609,906 ","107,633 ","56,636 ","50,997 " -54,"1,314,826 ","681,330 ","633,496 ","1,212,493 ","627,230 ","585,263 ","102,333 ","54,100 ","48,233 " -55,"1,255,463 ","649,937 ","605,526 ","1,158,428 ","598,382 ","560,046 ","97,035 ","51,555 ","45,480 " -56,"1,199,284 ","619,899 ","579,385 ","1,107,223 ","570,802 ","536,421 ","92,061 ","49,097 ","42,964 " -57,"1,150,514 ","593,417 ","557,097 ","1,062,880 ","546,631 ","516,249 ","87,634 ","46,786 ","40,848 " -58,"1,107,957 ","569,946 ","538,011 ","1,024,301 ","525,348 ","498,953 ","83,656 ","44,598 ","39,058 " -59,"1,065,941 ","546,609 ","519,332 ","986,101 ","504,153 ","481,948 ","79,840 ","42,456 ","37,384 " -60,"1,023,492 ","522,921 ","500,571 ","947,320 ","482,570 ","464,750 ","76,172 ","40,351 ","35,821 " -61,"981,752 ","499,715 ","482,037 ","909,324 ","461,461 ","447,863 ","72,428 ","38,254 ","34,174 " -62,"940,898 ","477,292 ","463,606 ","872,513 ","441,163 ","431,350 ","68,385 ","36,129 ","32,256 " -63,"900,591 ","455,466 ","445,125 ","836,476 ","421,480 ","414,996 ","64,115 ","33,986 ","30,129 " -64,"860,846 ","433,989 ","426,857 ","800,915 ","402,105 ","398,810 ","59,931 ","31,884 ","28,047 " -65,"822,091 ","413,014 ","409,077 ","766,220 ","383,171 ","383,049 ","55,871 ","29,843 ","26,028 " -66,"781,324 ","391,305 ","390,019 ","729,399 ","363,512 ","365,887 ","51,925 ","27,793 ","24,132 " -67,"736,053 ","367,807 ","368,246 ","687,937 ","342,127 ","345,810 ","48,116 ","25,680 ","22,436 " -68,"687,206 ","342,906 ","344,300 ","642,768 ","319,378 ","323,390 ","44,438 ","23,528 ","20,910 " -69,"638,391 ","318,151 ","320,240 ","597,542 ","296,740 ","300,802 ","40,849 ","21,411 ","19,438 " -70,"590,314 ","293,914 ","296,400 ","552,929 ","274,547 ","278,382 ","37,385 ","19,367 ","18,018 " -71,"543,033 ","269,971 ","273,062 ","508,994 ","252,548 ","256,446 ","34,039 ","17,423 ","16,616 " -72,"497,173 ","246,410 ","250,763 ","466,317 ","230,759 ","235,558 ","30,856 ","15,651 ","15,205 " -73,"452,961 ","223,426 ","229,535 ","425,111 ","209,375 ","215,736 ","27,850 ","14,051 ","13,799 " -74,"409,724 ","200,978 ","208,746 ","384,725 ","188,436 ","196,289 ","24,999 ","12,542 ","12,457 " -75+,"2,606,006 ","1,222,718 ","1,383,288 ","2,436,833 ","1,144,008 ","1,292,825 ","169,173 ","78,710 ","90,463 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1940.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1940.csv deleted file mode 100644 index 7059b1552b..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1940.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1940",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"132,122,446 ","66,352,363 ","65,770,083 ","118,628,858 ","59,718,338 ","58,910,520 ","13,493,588 ","6,634,025 ","6,859,563 " -,,,,,,,,, -0,"2,025,235 ","1,029,879 ","995,356 ","1,782,504 ","909,515 ","872,989 ","242,731 ","120,364 ","122,367 " -1,"2,057,692 ","1,047,079 ","1,010,613 ","1,815,484 ","926,250 ","889,234 ","242,208 ","120,829 ","121,379 " -2,"2,219,308 ","1,127,921 ","1,091,387 ","1,939,516 ","988,750 ","950,766 ","279,792 ","139,171 ","140,621 " -3,"2,137,535 ","1,080,958 ","1,056,577 ","1,862,116 ","944,799 ","917,317 ","275,419 ","136,159 ","139,260 " -4,"2,138,873 ","1,086,826 ","1,052,047 ","1,861,066 ","947,561 ","913,505 ","277,807 ","139,265 ","138,542 " -5,"2,106,522 ","1,068,719 ","1,037,803 ","1,830,665 ","931,362 ","899,303 ","275,857 ","137,357 ","138,500 " -6,"2,100,480 ","1,065,219 ","1,035,261 ","1,829,219 ","930,281 ","898,938 ","271,261 ","134,938 ","136,323 " -7,"2,114,510 ","1,072,537 ","1,041,973 ","1,845,415 ","938,668 ","906,747 ","269,095 ","133,869 ","135,226 " -8,"2,143,466 ","1,087,382 ","1,056,084 ","1,874,525 ","953,502 ","921,023 ","268,941 ","133,880 ","135,061 " -9,"2,183,319 ","1,107,680 ","1,075,639 ","1,913,260 ","973,101 ","940,159 ","270,059 ","134,579 ","135,480 " -10,"2,241,070 ","1,137,169 ","1,103,901 ","1,967,348 ","1,000,718 ","966,630 ","273,722 ","136,451 ","137,271 " -11,"2,298,723 ","1,166,716 ","1,132,007 ","2,021,241 ","1,028,223 ","993,018 ","277,482 ","138,493 ","138,989 " -12,"2,353,015 ","1,193,471 ","1,159,544 ","2,072,305 ","1,053,379 ","1,018,926 ","280,710 ","140,092 ","140,618 " -13,"2,395,435 ","1,213,238 ","1,182,197 ","2,113,668 ","1,073,022 ","1,040,646 ","281,767 ","140,216 ","141,551 " -14,"2,426,715 ","1,227,021 ","1,199,694 ","2,145,726 ","1,087,854 ","1,057,872 ","280,989 ","139,167 ","141,822 " -15,"2,448,196 ","1,234,921 ","1,213,275 ","2,169,771 ","1,097,936 ","1,071,835 ","278,425 ","136,985 ","141,440 " -16,"2,476,570 ","1,246,725 ","1,229,845 ","2,199,156 ","1,110,968 ","1,088,188 ","277,414 ","135,757 ","141,657 " -17,"2,491,660 ","1,251,890 ","1,239,770 ","2,216,311 ","1,117,986 ","1,098,325 ","275,349 ","133,904 ","141,445 " -18,"2,480,070 ","1,242,712 ","1,237,358 ","2,208,976 ","1,112,028 ","1,096,948 ","271,094 ","130,684 ","140,410 " -19,"2,446,141 ","1,221,319 ","1,224,822 ","2,180,993 ","1,094,883 ","1,086,110 ","265,148 ","126,436 ","138,712 " -20,"2,407,683 ","1,198,359 ","1,209,324 ","2,148,291 ","1,075,940 ","1,072,351 ","259,392 ","122,419 ","136,973 " -21,"2,364,954 ","1,172,693 ","1,192,261 ","2,112,076 ","1,054,821 ","1,057,255 ","252,878 ","117,872 ","135,006 " -22,"2,326,145 ","1,149,484 ","1,176,661 ","2,078,581 ","1,035,183 ","1,043,398 ","247,564 ","114,301 ","133,263 " -23,"2,301,974 ","1,135,140 ","1,166,834 ","2,056,886 ","1,022,299 ","1,034,587 ","245,088 ","112,841 ","132,247 " -24,"2,289,605 ","1,128,069 ","1,161,536 ","2,044,868 ","1,015,074 ","1,029,794 ","244,737 ","112,995 ","131,742 " -25,"2,277,467 ","1,120,776 ","1,156,691 ","2,032,646 ","1,007,115 ","1,025,531 ","244,821 ","113,661 ","131,160 " -26,"2,260,929 ","1,112,114 ","1,148,815 ","2,016,577 ","998,126 ","1,018,451 ","244,352 ","113,988 ","130,364 " -27,"2,239,393 ","1,101,546 ","1,137,847 ","1,997,260 ","988,051 ","1,009,209 ","242,133 ","113,495 ","128,638 " -28,"2,208,515 ","1,087,234 ","1,121,281 ","1,972,212 ","975,925 ","996,287 ","236,303 ","111,309 ","124,994 " -29,"2,169,957 ","1,069,761 ","1,100,196 ","1,942,271 ","961,975 ","980,296 ","227,686 ","107,786 ","119,900 " -30,"2,128,372 ","1,051,065 ","1,077,307 ","1,909,723 ","947,129 ","962,594 ","218,649 ","103,936 ","114,713 " -31,"2,089,068 ","1,033,794 ","1,055,274 ","1,879,230 ","933,324 ","945,906 ","209,838 ","100,470 ","109,368 " -32,"2,052,711 ","1,017,722 ","1,034,989 ","1,849,307 ","919,810 ","929,497 ","203,404 ","97,912 ","105,492 " -33,"2,022,480 ","1,003,687 ","1,018,793 ","1,820,458 ","906,431 ","914,027 ","202,022 ","97,256 ","104,766 " -34,"1,997,057 ","991,212 ","1,005,845 ","1,792,530 ","893,157 ","899,373 ","204,527 ","98,055 ","106,472 " -35,"1,975,136 ","980,626 ","994,510 ","1,766,983 ","881,204 ","885,779 ","208,153 ","99,422 ","108,731 " -36,"1,949,822 ","968,501 ","981,321 ","1,739,125 ","868,265 ","870,860 ","210,697 ","100,236 ","110,461 " -37,"1,922,654 ","955,806 ","966,848 ","1,711,823 ","855,627 ","856,196 ","210,831 ","100,179 ","110,652 " -38,"1,891,509 ","941,773 ","949,736 ","1,685,516 ","843,421 ","842,095 ","205,993 ","98,352 ","107,641 " -39,"1,857,554 ","926,898 ","930,656 ","1,660,408 ","831,818 ","828,590 ","197,146 ","95,080 ","102,066 " -40,"1,823,210 ","912,568 ","910,642 ","1,636,436 ","821,301 ","815,135 ","186,774 ","91,267 ","95,507 " -41,"1,788,406 ","897,202 ","891,204 ","1,610,822 ","809,375 ","801,447 ","177,584 ","87,827 ","89,757 " -42,"1,757,727 ","883,982 ","873,745 ","1,588,410 ","799,335 ","789,075 ","169,317 ","84,647 ","84,670 " -43,"1,735,689 ","875,157 ","860,532 ","1,572,403 ","793,009 ","779,394 ","163,286 ","82,148 ","81,138 " -44,"1,719,959 ","869,509 ","850,450 ","1,560,945 ","789,343 ","771,602 ","159,014 ","80,166 ","78,848 " -45,"1,701,919 ","862,678 ","839,241 ","1,546,473 ","784,285 ","762,188 ","155,446 ","78,393 ","77,053 " -46,"1,684,634 ","856,110 ","828,524 ","1,533,668 ","779,840 ","753,828 ","150,966 ","76,270 ","74,696 " -47,"1,662,540 ","847,189 ","815,351 ","1,516,433 ","773,178 ","743,255 ","146,107 ","74,011 ","72,096 " -48,"1,631,640 ","834,082 ","797,558 ","1,491,125 ","762,548 ","728,577 ","140,515 ","71,534 ","68,981 " -49,"1,592,999 ","817,160 ","775,839 ","1,458,668 ","748,299 ","710,369 ","134,331 ","68,861 ","65,470 " -50,"1,549,138 ","797,066 ","752,072 ","1,421,134 ","730,951 ","690,183 ","128,004 ","66,115 ","61,889 " -51,"1,508,129 ","778,565 ","729,564 ","1,386,147 ","715,118 ","671,029 ","121,982 ","63,447 ","58,535 " -52,"1,462,569 ","756,953 ","705,616 ","1,346,536 ","696,230 ","650,306 ","116,033 ","60,723 ","55,310 " -53,"1,409,733 ","730,239 ","679,494 ","1,299,546 ","672,349 ","627,197 ","110,187 ","57,890 ","52,297 " -54,"1,351,317 ","699,497 ","651,820 ","1,246,834 ","644,504 ","602,330 ","104,483 ","54,993 ","49,490 " -55,"1,292,752 ","668,143 ","624,609 ","1,193,736 ","615,982 ","577,754 ","99,016 ","52,161 ","46,855 " -56,"1,231,634 ","635,591 ","596,043 ","1,138,137 ","586,291 ","551,846 ","93,497 ","49,300 ","44,197 " -57,"1,174,016 ","604,628 ","569,388 ","1,085,712 ","558,031 ","527,681 ","88,304 ","46,597 ","41,707 " -58,"1,124,213 ","577,571 ","546,642 ","1,040,536 ","533,372 ","507,164 ","83,677 ","44,199 ","39,478 " -59,"1,080,883 ","553,772 ","527,111 ","1,001,363 ","511,719 ","489,644 ","79,520 ","42,053 ","37,467 " -60,"1,041,845 ","532,289 ","509,556 ","965,948 ","492,187 ","473,761 ","75,897 ","40,102 ","35,795 " -61,"998,690 ","508,316 ","490,374 ","926,652 ","470,253 ","456,399 ","72,038 ","38,063 ","33,975 " -62,"956,573 ","484,957 ","471,616 ","888,301 ","448,897 ","439,404 ","68,272 ","36,060 ","32,212 " -63,"916,269 ","462,728 ","453,541 ","851,553 ","428,582 ","422,971 ","64,716 ","34,146 ","30,570 " -64,"877,311 ","441,392 ","435,919 ","815,935 ","409,067 ","406,868 ","61,376 ","32,325 ","29,051 " -65,"838,519 ","420,269 ","418,250 ","780,500 ","389,780 ","390,720 ","58,019 ","30,489 ","27,530 " -66,"801,110 ","399,885 ","401,225 ","746,181 ","371,093 ","375,088 ","54,929 ","28,792 ","26,137 " -67,"761,108 ","378,583 ","382,525 ","709,342 ","351,510 ","357,832 ","51,766 ","27,073 ","24,693 " -68,"715,537 ","355,153 ","360,384 ","667,147 ","329,884 ","337,263 ","48,390 ","25,269 ","23,121 " -69,"665,506 ","330,022 ","335,484 ","620,675 ","306,632 ","314,043 ","44,831 ","23,390 ","21,441 " -70,"612,254 ","303,440 ","308,814 ","571,288 ","282,091 ","289,197 ","40,966 ","21,349 ","19,617 " -71,"563,229 ","279,065 ","284,164 ","525,716 ","259,533 ","266,183 ","37,513 ","19,532 ","17,981 " -72,"515,356 ","255,100 ","260,256 ","481,299 ","237,402 ","243,897 ","34,057 ","17,698 ","16,359 " -73,"469,160 ","231,500 ","237,660 ","438,684 ","215,741 ","222,943 ","30,476 ","15,759 ","14,717 " -74,"424,908 ","208,507 ","216,401 ","398,028 ","194,719 ","203,309 ","26,880 ","13,788 ","13,092 " -75,"381,099 ","185,615 ","195,484 ","357,960 ","173,867 ","184,093 ","23,139 ","11,748 ","11,391 " -76,"339,378 ","164,194 ","175,184 ","319,479 ","154,220 ","165,259 ","19,899 ","9,974 ","9,925 " -77,"300,292 ","144,177 ","156,115 ","283,335 ","135,806 ","147,529 ","16,957 ","8,371 ","8,586 " -78,"263,718 ","125,532 ","138,186 ","249,414 ","118,600 ","130,814 ","14,304 ","6,932 ","7,372 " -79,"229,989 ","108,459 ","121,530 ","217,998 ","102,770 ","115,228 ","11,991 ","5,689 ","6,302 " -80,"201,032 ","94,008 ","107,024 ","190,698 ","89,191 ","101,507 ","10,334 ","4,817 ","5,517 " -81,"174,420 ","80,819 ","93,601 ","165,541 ","76,743 ","88,798 ","8,879 ","4,076 ","4,803 " -82,"151,706 ","69,823 ","81,883 ","143,755 ","66,180 ","77,575 ","7,951 ","3,643 ","4,308 " -83,"133,226 ","61,210 ","72,016 ","125,625 ","57,660 ","67,965 ","7,601 ","3,550 ","4,051 " -84,"119,309 ","55,181 ","64,128 ","111,428 ","51,355 ","60,073 ","7,881 ","3,826 ","4,055 " -85+,"370,275 ","158,835 ","211,440 ","335,276 ","144,034 ","191,242 ","34,999 ","14,801 ","20,198 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1941.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1941.csv deleted file mode 100644 index 0ee935072c..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1941.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1941",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"133,402,471 ","66,920,133 ","66,482,338 ","119,731,465 ","60,196,094 ","59,535,371 ","13,671,006 ","6,724,039 ","6,946,967 " -,,,,,,,,, -0,"2,166,858 ","1,109,311 ","1,057,547 ","1,908,058 ","979,214 ","928,844 ","258,800 ","130,097 ","128,703 " -1,"2,082,260 ","1,057,000 ","1,025,260 ","1,834,332 ","934,598 ","899,734 ","247,928 ","122,402 ","125,526 " -2,"2,232,740 ","1,133,000 ","1,099,740 ","1,949,668 ","992,402 ","957,266 ","283,072 ","140,598 ","142,474 " -3,"2,231,007 ","1,130,896 ","1,100,111 ","1,942,686 ","987,716 ","954,970 ","288,321 ","143,180 ","145,141 " -4,"2,136,767 ","1,078,742 ","1,058,025 ","1,859,597 ","941,994 ","917,603 ","277,170 ","136,748 ","140,422 " -5,"2,172,236 ","1,106,155 ","1,066,081 ","1,883,579 ","960,726 ","922,853 ","288,657 ","145,429 ","143,228 " -6,"2,077,259 ","1,052,108 ","1,025,151 ","1,807,397 ","917,661 ","889,736 ","269,862 ","134,447 ","135,415 " -7,"2,069,053 ","1,047,870 ","1,021,183 ","1,803,430 ","915,732 ","887,698 ","265,623 ","132,138 ","133,485 " -8,"2,086,545 ","1,058,516 ","1,028,029 ","1,822,693 ","927,210 ","895,483 ","263,852 ","131,306 ","132,546 " -9,"2,117,947 ","1,075,143 ","1,042,804 ","1,853,661 ","943,477 ","910,184 ","264,286 ","131,666 ","132,620 " -10,"2,201,186 ","1,118,407 ","1,082,779 ","1,927,714 ","981,894 ","945,820 ","273,472 ","136,513 ","136,959 " -11,"2,261,364 ","1,148,732 ","1,112,632 ","1,984,203 ","1,010,457 ","973,746 ","277,161 ","138,275 ","138,886 " -12,"2,318,355 ","1,177,744 ","1,140,611 ","2,037,546 ","1,037,577 ","999,969 ","280,809 ","140,167 ","140,642 " -13,"2,370,687 ","1,201,298 ","1,169,389 ","2,086,408 ","1,059,462 ","1,026,946 ","284,279 ","141,836 ","142,443 " -14,"2,414,581 ","1,220,550 ","1,194,031 ","2,128,845 ","1,078,465 ","1,050,380 ","285,736 ","142,085 ","143,651 " -15,"2,426,872 ","1,223,607 ","1,203,265 ","2,146,177 ","1,084,978 ","1,061,199 ","280,695 ","138,629 ","142,066 " -16,"2,439,439 ","1,226,887 ","1,212,552 ","2,162,831 ","1,091,201 ","1,071,630 ","276,608 ","135,686 ","140,922 " -17,"2,461,490 ","1,235,202 ","1,226,288 ","2,187,347 ","1,101,609 ","1,085,738 ","274,143 ","133,593 ","140,550 " -18,"2,475,853 ","1,241,648 ","1,234,205 ","2,204,748 ","1,110,352 ","1,094,396 ","271,105 ","131,296 ","139,809 " -19,"2,463,655 ","1,233,231 ","1,230,424 ","2,197,672 ","1,105,540 ","1,092,132 ","265,983 ","127,691 ","138,292 " -20,"2,429,716 ","1,215,058 ","1,214,658 ","2,170,022 ","1,091,598 ","1,078,424 ","259,694 ","123,460 ","136,234 " -21,"2,398,194 ","1,195,779 ","1,202,415 ","2,142,236 ","1,075,202 ","1,067,034 ","255,958 ","120,577 ","135,381 " -22,"2,359,656 ","1,171,946 ","1,187,710 ","2,109,013 ","1,055,386 ","1,053,627 ","250,643 ","116,560 ","134,083 " -23,"2,321,684 ","1,147,977 ","1,173,707 ","2,075,209 ","1,034,433 ","1,040,776 ","246,475 ","113,544 ","132,931 " -24,"2,298,088 ","1,133,510 ","1,164,578 ","2,053,027 ","1,020,916 ","1,032,111 ","245,061 ","112,594 ","132,467 " -25,"2,295,320 ","1,129,376 ","1,165,944 ","2,048,365 ","1,014,845 ","1,033,520 ","246,955 ","114,531 ","132,424 " -26,"2,279,029 ","1,120,241 ","1,158,788 ","2,034,570 ","1,006,202 ","1,028,368 ","244,459 ","114,039 ","130,420 " -27,"2,260,266 ","1,111,010 ","1,149,256 ","2,017,723 ","997,124 ","1,020,599 ","242,543 ","113,886 ","128,657 " -28,"2,237,260 ","1,100,033 ","1,137,227 ","1,998,279 ","987,260 ","1,011,019 ","238,981 ","112,773 ","126,208 " -29,"2,205,642 ","1,085,491 ","1,120,151 ","1,973,288 ","975,255 ","998,033 ","232,354 ","110,236 ","122,118 " -30,"2,156,831 ","1,062,165 ","1,094,666 ","1,935,054 ","956,918 ","978,136 ","221,777 ","105,247 ","116,530 " -31,"2,116,650 ","1,043,961 ","1,072,689 ","1,901,921 ","941,806 ","960,115 ","214,729 ","102,155 ","112,574 " -32,"2,078,727 ","1,026,823 ","1,051,904 ","1,871,153 ","927,508 ","943,645 ","207,574 ","99,315 ","108,259 " -33,"2,044,786 ","1,011,868 ","1,032,918 ","1,842,340 ","914,624 ","927,716 ","202,446 ","97,244 ","105,202 " -34,"2,016,200 ","998,619 ","1,017,581 ","1,814,426 ","901,762 ","912,664 ","201,774 ","96,857 ","104,917 " -35,"2,002,209 ","991,572 ","1,010,637 ","1,793,664 ","891,927 ","901,737 ","208,545 ","99,645 ","108,900 " -36,"1,977,193 ","979,456 ","997,737 ","1,766,827 ","879,135 ","887,692 ","210,366 ","100,321 ","110,045 " -37,"1,950,120 ","966,899 ","983,221 ","1,738,414 ","866,114 ","872,300 ","211,706 ","100,785 ","110,921 " -38,"1,920,916 ","953,559 ","967,357 ","1,710,103 ","853,171 ","856,932 ","210,813 ","100,388 ","110,425 " -39,"1,888,269 ","938,941 ","949,328 ","1,682,815 ","840,548 ","842,267 ","205,454 ","98,393 ","107,061 " -40,"1,853,375 ","925,480 ","927,895 ","1,662,179 ","832,287 ","829,892 ","191,196 ","93,193 ","98,003 " -41,"1,821,509 ","912,038 ","909,471 ","1,639,814 ","822,461 ","817,353 ","181,695 ","89,577 ","92,118 " -42,"1,787,306 ","896,520 ","890,786 ","1,614,139 ","810,244 ","803,895 ","173,167 ","86,276 ","86,891 " -43,"1,756,818 ","883,032 ","873,786 ","1,591,387 ","799,829 ","791,558 ","165,431 ","83,203 ","82,228 " -44,"1,734,357 ","873,786 ","860,571 ","1,574,794 ","793,060 ","781,734 ","159,563 ","80,726 ","78,837 " -45,"1,717,046 ","867,292 ","849,754 ","1,559,227 ","787,747 ","771,480 ","157,819 ","79,545 ","78,274 " -46,"1,697,571 ","860,006 ","837,565 ","1,543,532 ","782,316 ","761,216 ","154,039 ","77,690 ","76,349 " -47,"1,678,541 ","852,702 ","825,839 ","1,529,150 ","777,191 ","751,959 ","149,391 ","75,511 ","73,880 " -48,"1,654,870 ","843,053 ","811,817 ","1,510,522 ","769,857 ","740,665 ","144,348 ","73,196 ","71,152 " -49,"1,623,007 ","829,445 ","793,562 ","1,484,325 ","758,750 ","725,575 ","138,682 ","70,695 ","67,987 " -50,"1,568,909 ","804,003 ","764,906 ","1,437,206 ","736,266 ","700,940 ","131,703 ","67,737 ","63,966 " -51,"1,523,449 ","782,551 ","740,898 ","1,398,146 ","717,672 ","680,474 ","125,303 ","64,879 ","60,424 " -52,"1,480,907 ","762,894 ","718,013 ","1,361,805 ","700,817 ","660,988 ","119,102 ","62,077 ","57,025 " -53,"1,434,188 ","740,419 ","693,769 ","1,321,204 ","681,184 ","640,020 ","112,984 ","59,235 ","53,749 " -54,"1,380,888 ","713,332 ","667,556 ","1,273,789 ","656,951 ","616,838 ","107,099 ","56,381 ","50,718 " -55,"1,322,947 ","681,518 ","641,429 ","1,220,749 ","627,812 ","592,937 ","102,198 ","53,706 ","48,492 " -56,"1,264,708 ","650,435 ","614,273 ","1,167,673 ","599,421 ","568,252 ","97,035 ","51,014 ","46,021 " -57,"1,204,243 ","618,367 ","585,876 ","1,112,662 ","570,174 ","542,488 ","91,581 ","48,193 ","43,388 " -58,"1,147,325 ","587,906 ","559,419 ","1,060,952 ","542,411 ","518,541 ","86,373 ","45,495 ","40,878 " -59,"1,097,534 ","560,973 ","536,561 ","1,015,819 ","517,879 ","497,940 ","81,715 ","43,094 ","38,621 " -60,"1,067,457 ","544,631 ","522,826 ","989,121 ","503,258 ","485,863 ","78,336 ","41,373 ","36,963 " -61,"1,028,621 ","523,107 ","505,514 ","953,500 ","483,506 ","469,994 ","75,121 ","39,601 ","35,520 " -62,"984,993 ","498,828 ","486,165 ","913,788 ","461,308 ","452,480 ","71,205 ","37,520 ","33,685 " -63,"941,576 ","474,768 ","466,808 ","874,522 ","439,442 ","435,080 ","67,054 ","35,326 ","31,728 " -64,"899,735 ","451,723 ","448,012 ","836,532 ","418,463 ","418,069 ","63,203 ","33,260 ","29,943 " -65,"858,629 ","429,616 ","429,013 ","799,268 ","398,509 ","400,759 ","59,361 ","31,107 ","28,254 " -66,"819,065 ","408,384 ","410,681 ","762,720 ","378,942 ","383,778 ","56,345 ","29,442 ","26,903 " -67,"780,071 ","387,461 ","392,610 ","726,798 ","359,677 ","367,121 ","53,273 ","27,784 ","25,489 " -68,"738,749 ","365,745 ","373,004 ","688,607 ","339,622 ","348,985 ","50,142 ","26,123 ","24,019 " -69,"692,428 ","342,111 ","350,317 ","645,490 ","317,686 ","327,804 ","46,938 ","24,425 ","22,513 " -70,"631,858 ","312,153 ","319,705 ","589,305 ","290,021 ","299,284 ","42,553 ","22,132 ","20,421 " -71,"577,512 ","284,874 ","292,638 ","539,128 ","264,982 ","274,146 ","38,384 ","19,892 ","18,492 " -72,"528,432 ","260,400 ","268,032 ","493,639 ","242,396 ","251,243 ","34,793 ","18,004 ","16,789 " -73,"481,695 ","236,977 ","244,718 ","450,318 ","220,775 ","229,543 ","31,377 ","16,202 ","15,175 " -74,"437,344 ","214,337 ","223,007 ","409,333 ","199,944 ","209,389 ","28,011 ","14,393 ","13,618 " -75,"395,207 ","191,579 ","203,628 ","371,019 ","179,249 ","191,770 ","24,188 ","12,330 ","11,858 " -76,"348,803 ","167,880 ","180,923 ","328,280 ","157,564 ","170,716 ","20,523 ","10,316 ","10,207 " -77,"307,707 ","147,078 ","160,629 ","290,180 ","138,400 ","151,780 ","17,527 ","8,678 ","8,849 " -78,"270,692 ","128,367 ","142,325 ","255,734 ","121,079 ","134,655 ","14,958 ","7,288 ","7,670 " -79,"235,879 ","110,901 ","124,978 ","223,259 ","104,875 ","118,384 ","12,620 ","6,026 ","6,594 " -80,"208,346 ","97,436 ","110,910 ","196,852 ","91,984 ","104,868 ","11,494 ","5,452 ","6,042 " -81,"181,087 ","83,888 ","97,199 ","171,216 ","79,284 ","91,932 ","9,871 ","4,604 ","5,267 " -82,"156,374 ","71,723 ","84,651 ","147,884 ","67,815 ","80,069 ","8,490 ","3,908 ","4,582 " -83,"135,132 ","61,486 ","73,646 ","127,534 ","57,987 ","69,547 ","7,598 ","3,499 ","4,099 " -84,"117,686 ","53,347 ","64,339 ","110,477 ","49,962 ","60,515 ","7,209 ","3,385 ","3,824 " -85+,"384,985 ","165,250 ","219,735 ","350,846 ","151,036 ","199,810 ","34,139 ","14,214 ","19,925 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1942.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1942.csv deleted file mode 100644 index 26a67e2fb3..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1942.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1942",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"134,859,553 ","67,596,729 ","67,262,824 ","120,991,519 ","60,774,953 ","60,216,566 ","13,868,034 ","6,821,776 ","7,046,258 " -,,,,,,,,, -0,"2,325,004 ","1,191,065 ","1,133,939 ","2,049,487 ","1,051,808 ","997,679 ","275,517 ","139,257 ","136,260 " -1,"2,198,704 ","1,117,633 ","1,081,071 ","1,938,667 ","988,553 ","950,114 ","260,037 ","129,080 ","130,957 " -2,"2,261,296 ","1,146,367 ","1,114,929 ","1,971,333 ","1,003,447 ","967,886 ","289,963 ","142,920 ","147,043 " -3,"2,271,410 ","1,152,688 ","1,118,722 ","1,976,659 ","1,005,842 ","970,817 ","294,751 ","146,846 ","147,905 " -4,"2,245,082 ","1,139,681 ","1,105,401 ","1,952,704 ","993,818 ","958,886 ","292,378 ","145,863 ","146,515 " -5,"2,149,276 ","1,087,372 ","1,061,904 ","1,866,239 ","946,875 ","919,364 ","283,037 ","140,497 ","142,540 " -6,"2,145,282 ","1,090,931 ","1,054,351 ","1,863,342 ","949,072 ","914,270 ","281,940 ","141,859 ","140,081 " -7,"2,039,242 ","1,030,132 ","1,009,110 ","1,776,740 ","899,669 ","877,071 ","262,502 ","130,463 ","132,039 " -8,"2,028,925 ","1,025,182 ","1,003,743 ","1,770,297 ","896,906 ","873,391 ","258,628 ","128,276 ","130,352 " -9,"2,049,676 ","1,039,035 ","1,010,641 ","1,792,437 ","911,356 ","881,081 ","257,239 ","127,679 ","129,560 " -10,"2,155,174 ","1,099,586 ","1,055,588 ","1,882,432 ","963,341 ","919,091 ","272,742 ","136,245 ","136,497 " -11,"2,226,745 ","1,133,190 ","1,093,555 ","1,948,082 ","993,815 ","954,267 ","278,663 ","139,375 ","139,288 " -12,"2,288,680 ","1,164,216 ","1,124,464 ","2,006,428 ","1,023,240 ","983,188 ","282,252 ","140,976 ","141,276 " -13,"2,345,055 ","1,192,717 ","1,152,338 ","2,059,279 ","1,050,006 ","1,009,273 ","285,776 ","142,711 ","143,065 " -14,"2,395,539 ","1,213,095 ","1,182,444 ","2,106,046 ","1,068,640 ","1,037,406 ","289,493 ","144,455 ","145,038 " -15,"2,408,479 ","1,207,976 ","1,200,503 ","2,123,879 ","1,067,464 ","1,056,415 ","284,600 ","140,512 ","144,088 " -16,"2,416,741 ","1,213,645 ","1,203,096 ","2,139,409 ","1,077,577 ","1,061,832 ","277,332 ","136,068 ","141,264 " -17,"2,422,415 ","1,213,182 ","1,209,233 ","2,150,073 ","1,080,476 ","1,069,597 ","272,342 ","132,706 ","139,636 " -18,"2,438,410 ","1,218,139 ","1,220,271 ","2,169,839 ","1,088,297 ","1,081,542 ","268,571 ","129,842 ","138,729 " -19,"2,452,135 ","1,225,883 ","1,226,252 ","2,187,453 ","1,098,717 ","1,088,736 ","264,682 ","127,166 ","137,516 " -20,"2,448,250 ","1,233,148 ","1,215,102 ","2,188,418 ","1,108,735 ","1,079,683 ","259,832 ","124,413 ","135,419 " -21,"2,422,754 ","1,217,145 ","1,205,609 ","2,165,596 ","1,094,986 ","1,070,610 ","257,158 ","122,159 ","134,999 " -22,"2,396,760 ","1,200,833 ","1,195,927 ","2,141,725 ","1,080,633 ","1,061,092 ","255,035 ","120,200 ","134,835 " -23,"2,362,383 ","1,178,722 ","1,183,661 ","2,111,411 ","1,062,000 ","1,049,411 ","250,972 ","116,722 ","134,250 " -24,"2,325,335 ","1,153,989 ","1,171,346 ","2,077,332 ","1,039,706 ","1,037,626 ","248,003 ","114,283 ","133,720 " -25,"2,308,977 ","1,135,845 ","1,173,132 ","2,058,490 ","1,019,857 ","1,038,633 ","250,487 ","115,988 ","134,499 " -26,"2,296,949 ","1,127,742 ","1,169,207 ","2,049,641 ","1,012,135 ","1,037,506 ","247,308 ","115,607 ","131,701 " -27,"2,277,664 ","1,117,267 ","1,160,397 ","2,034,569 ","1,002,977 ","1,031,592 ","243,095 ","114,290 ","128,805 " -28,"2,256,833 ","1,107,507 ","1,149,326 ","2,016,937 ","993,809 ","1,023,128 ","239,896 ","113,698 ","126,198 " -29,"2,232,555 ","1,096,186 ","1,136,369 ","1,997,419 ","984,173 ","1,013,246 ","235,136 ","112,013 ","123,123 " -30,"2,187,504 ","1,077,274 ","1,110,230 ","1,964,452 ","970,941 ","993,511 ","223,052 ","106,333 ","116,719 " -31,"2,143,157 ","1,055,596 ","1,087,561 ","1,926,560 ","952,634 ","973,926 ","216,597 ","102,962 ","113,635 " -32,"2,103,932 ","1,037,702 ","1,066,230 ","1,892,771 ","937,220 ","955,551 ","211,161 ","100,482 ","110,679 " -33,"2,067,585 ","1,020,757 ","1,046,828 ","1,861,821 ","922,467 ","939,354 ","205,764 ","98,290 ","107,474 " -34,"2,036,091 ","1,006,868 ","1,029,223 ","1,834,055 ","910,131 ","923,924 ","202,036 ","96,737 ","105,299 " -35,"2,022,690 ","999,686 ","1,023,004 ","1,813,390 ","899,972 ","913,418 ","209,300 ","99,714 ","109,586 " -36,"2,004,612 ","991,095 ","1,013,517 ","1,792,072 ","889,855 ","902,217 ","212,540 ","101,240 ","111,300 " -37,"1,977,025 ","977,572 ","999,453 ","1,763,990 ","876,205 ","887,785 ","213,035 ","101,367 ","111,668 " -38,"1,948,300 ","964,588 ","983,712 ","1,735,049 ","863,099 ","871,950 ","213,251 ","101,489 ","111,762 " -39,"1,917,114 ","950,594 ","966,520 ","1,705,724 ","849,832 ","855,892 ","211,390 ","100,762 ","110,628 " -40,"1,877,565 ","934,874 ","942,691 ","1,681,060 ","839,539 ","841,521 ","196,505 ","95,335 ","101,170 " -41,"1,847,385 ","923,138 ","924,247 ","1,663,130 ","832,482 ","830,648 ","184,255 ","90,656 ","93,599 " -42,"1,817,538 ","910,391 ","907,147 ","1,641,976 ","823,159 ","818,817 ","175,562 ","87,232 ","88,330 " -43,"1,783,919 ","894,691 ","889,228 ","1,616,186 ","810,604 ","805,582 ","167,733 ","84,087 ","83,646 " -44,"1,753,609 ","880,916 ","872,693 ","1,593,053 ","799,779 ","793,274 ","160,556 ","81,137 ","79,419 " -45,"1,737,691 ","874,287 ","863,404 ","1,578,293 ","794,047 ","784,246 ","159,398 ","80,240 ","79,158 " -46,"1,716,975 ","866,773 ","850,202 ","1,560,187 ","787,942 ","772,245 ","156,788 ","78,831 ","77,957 " -47,"1,696,246 ","859,027 ","837,219 ","1,543,473 ","782,152 ","761,321 ","152,773 ","76,875 ","75,898 " -48,"1,675,360 ","850,908 ","824,452 ","1,527,402 ","776,261 ","751,141 ","147,958 ","74,647 ","73,311 " -49,"1,650,057 ","840,491 ","809,566 ","1,507,331 ","768,219 ","739,112 ","142,726 ","72,272 ","70,454 " -50,"1,600,449 ","817,982 ","782,467 ","1,464,899 ","748,632 ","716,267 ","135,550 ","69,350 ","66,200 " -51,"1,543,708 ","790,257 ","753,451 ","1,415,177 ","724,005 ","691,172 ","128,531 ","66,252 ","62,279 " -52,"1,497,168 ","767,802 ","729,366 ","1,375,044 ","704,476 ","670,568 ","122,124 ","63,326 ","58,798 " -53,"1,453,105 ","746,982 ","706,123 ","1,337,349 ","686,594 ","650,755 ","115,756 ","60,388 ","55,368 " -54,"1,405,257 ","723,675 ","681,582 ","1,295,712 ","666,187 ","629,525 ","109,545 ","57,488 ","52,057 " -55,"1,348,512 ","693,048 ","655,464 ","1,244,107 ","638,284 ","605,823 ","104,405 ","54,764 ","49,641 " -56,"1,291,844 ","662,268 ","629,576 ","1,191,898 ","609,934 ","581,964 ","99,946 ","52,334 ","47,612 " -57,"1,233,745 ","631,311 ","602,434 ","1,138,718 ","581,555 ","557,163 ","95,027 ","49,756 ","45,271 " -58,"1,174,000 ","599,776 ","574,224 ","1,084,360 ","552,797 ","531,563 ","89,640 ","46,979 ","42,661 " -59,"1,117,877 ","569,857 ","548,020 ","1,033,456 ","525,564 ","507,892 ","84,421 ","44,293 ","40,128 " -60,"1,084,637 ","551,984 ","532,653 ","1,003,832 ","509,490 ","494,342 ","80,805 ","42,494 ","38,311 " -61,"1,055,074 ","535,665 ","519,409 ","977,987 ","495,046 ","482,941 ","77,087 ","40,619 ","36,468 " -62,"1,015,934 ","513,883 ","502,051 ","941,681 ","474,865 ","466,816 ","74,253 ","39,018 ","35,235 " -63,"971,728 ","489,255 ","482,473 ","901,450 ","452,361 ","449,089 ","70,278 ","36,894 ","33,384 " -64,"926,946 ","464,470 ","462,476 ","861,185 ","429,948 ","431,237 ","65,761 ","34,522 ","31,239 " -65,"883,894 ","441,009 ","442,885 ","822,517 ","408,858 ","413,659 ","61,377 ","32,151 ","29,226 " -66,"841,299 ","418,683 ","422,616 ","783,286 ","388,427 ","394,859 ","58,013 ","30,256 ","27,757 " -67,"800,873 ","397,198 ","403,675 ","745,604 ","368,478 ","377,126 ","55,269 ","28,720 ","26,549 " -68,"760,154 ","375,670 ","384,484 ","707,976 ","348,589 ","359,387 ","52,178 ","27,081 ","25,097 " -69,"717,359 ","353,469 ","363,890 ","668,315 ","328,012 ","340,303 ","49,044 ","25,457 ","23,587 " -70,"659,578 ","325,070 ","334,508 ","614,620 ","301,718 ","312,902 ","44,958 ","23,352 ","21,606 " -71,"597,503 ","293,985 ","303,518 ","557,551 ","273,308 ","284,243 ","39,952 ","20,677 ","19,275 " -72,"542,508 ","266,326 ","276,182 ","506,835 ","247,967 ","258,868 ","35,673 ","18,359 ","17,314 " -73,"493,565 ","241,871 ","251,694 ","461,549 ","225,430 ","236,119 ","32,016 ","16,441 ","15,575 " -74,"448,034 ","219,033 ","229,001 ","419,355 ","204,337 ","215,018 ","28,679 ","14,696 ","13,983 " -75,"406,344 ","196,676 ","209,668 ","381,400 ","183,981 ","197,419 ","24,944 ","12,695 ","12,249 " -76,"366,171 ","175,365 ","190,806 ","344,163 ","164,232 ","179,931 ","22,008 ","11,133 ","10,875 " -77,"318,218 ","151,331 ","166,887 ","299,815 ","142,183 ","157,632 ","18,403 ","9,148 ","9,255 " -78,"277,964 ","131,242 ","146,722 ","262,361 ","123,621 ","138,740 ","15,603 ","7,621 ","7,982 " -79,"243,004 ","113,814 ","129,190 ","229,660 ","107,406 ","122,254 ","13,344 ","6,408 ","6,936 " -80,"213,710 ","99,502 ","114,208 ","201,676 ","93,787 ","107,889 ","12,034 ","5,715 ","6,319 " -81,"188,671 ","87,210 ","101,461 ","177,740 ","82,040 ","95,700 ","10,931 ","5,170 ","5,761 " -82,"162,680 ","74,430 ","88,250 ","153,352 ","70,092 ","83,260 ","9,328 ","4,338 ","4,990 " -83,"139,760 ","63,244 ","76,516 ","131,726 ","59,548 ","72,178 ","8,034 ","3,696 ","4,338 " -84,"119,949 ","53,772 ","66,177 ","112,764 ","50,456 ","62,308 ","7,185 ","3,316 ","3,869 " -85+,"402,246 ","172,287 ","229,959 ","368,061 ","158,275 ","209,786 ","34,185 ","14,012 ","20,173 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1943.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1943.csv deleted file mode 100644 index 9b90160952..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1943.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1943",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"136,739,353 ","68,545,741 ","68,193,612 ","122,605,238 ","61,567,825 ","61,037,413 ","14,134,115 ","6,977,916 ","7,156,199 " -,,,,,,,,, -0,"2,692,725 ","1,379,259 ","1,313,466 ","2,399,773 ","1,231,336 ","1,168,437 ","292,952 ","147,923 ","145,029 " -1,"2,371,411 ","1,207,195 ","1,164,216 ","2,093,232 ","1,067,889 ","1,025,343 ","278,179 ","139,306 ","138,873 " -2,"2,388,589 ","1,211,805 ","1,176,784 ","2,082,768 ","1,060,111 ","1,022,657 ","305,821 ","151,694 ","154,127 " -3,"2,297,887 ","1,164,397 ","1,133,490 ","1,997,800 ","1,016,047 ","981,753 ","300,087 ","148,350 ","151,737 " -4,"2,265,745 ","1,151,098 ","1,114,647 ","1,971,098 ","1,003,520 ","967,578 ","294,647 ","147,578 ","147,069 " -5,"2,212,045 ","1,121,478 ","1,090,567 ","1,922,727 ","977,083 ","945,644 ","289,318 ","144,395 ","144,923 " -6,"2,115,201 ","1,067,372 ","1,047,829 ","1,839,893 ","931,170 ","908,723 ","275,308 ","136,202 ","139,106 " -7,"2,112,215 ","1,071,335 ","1,040,880 ","1,837,837 ","933,759 ","904,078 ","274,378 ","137,576 ","136,802 " -8,"2,005,936 ","1,009,125 ","996,811 ","1,749,553 ","882,276 ","867,277 ","256,383 ","126,849 ","129,534 " -9,"1,993,445 ","1,003,426 ","990,019 ","1,740,614 ","878,660 ","861,954 ","252,831 ","124,766 ","128,065 " -10,"2,107,267 ","1,076,736 ","1,030,531 ","1,836,440 ","941,742 ","894,698 ","270,827 ","134,994 ","135,833 " -11,"2,188,240 ","1,121,688 ","1,066,552 ","1,907,872 ","981,122 ","926,750 ","280,368 ","140,566 ","139,802 " -12,"2,260,275 ","1,154,342 ","1,105,933 ","1,974,594 ","1,010,761 ","963,833 ","285,681 ","143,581 ","142,100 " -13,"2,324,096 ","1,186,171 ","1,137,925 ","2,034,939 ","1,041,156 ","993,783 ","289,157 ","145,015 ","144,142 " -14,"2,379,939 ","1,214,241 ","1,165,698 ","2,087,382 ","1,067,642 ","1,019,740 ","292,557 ","146,599 ","145,958 " -15,"2,393,695 ","1,204,454 ","1,189,241 ","2,104,542 ","1,060,526 ","1,044,016 ","289,153 ","143,928 ","145,225 " -16,"2,391,050 ","1,192,840 ","1,198,210 ","2,110,411 ","1,054,978 ","1,055,433 ","280,639 ","137,862 ","142,777 " -17,"2,402,539 ","1,203,153 ","1,199,386 ","2,129,233 ","1,069,569 ","1,059,664 ","273,306 ","133,584 ","139,722 " -18,"2,401,595 ","1,199,099 ","1,202,496 ","2,134,105 ","1,069,264 ","1,064,841 ","267,490 ","129,835 ","137,655 " -19,"2,411,694 ","1,200,796 ","1,210,898 ","2,149,177 ","1,074,540 ","1,074,637 ","262,517 ","126,256 ","136,261 " -20,"2,430,035 ","1,221,893 ","1,208,142 ","2,169,697 ","1,096,191 ","1,073,506 ","260,338 ","125,702 ","134,636 " -21,"2,444,059 ","1,237,361 ","1,206,698 ","2,182,654 ","1,110,804 ","1,071,850 ","261,405 ","126,557 ","134,848 " -22,"2,420,307 ","1,220,594 ","1,199,713 ","2,160,395 ","1,095,647 ","1,064,748 ","259,912 ","124,947 ","134,965 " -23,"2,400,010 ","1,207,355 ","1,192,655 ","2,140,519 ","1,083,398 ","1,057,121 ","259,491 ","123,957 ","135,534 " -24,"2,369,981 ","1,187,081 ","1,182,900 ","2,113,318 ","1,066,113 ","1,047,205 ","256,663 ","120,968 ","135,695 " -25,"2,349,507 ","1,165,292 ","1,184,215 ","2,091,817 ","1,044,385 ","1,047,432 ","257,690 ","120,907 ","136,783 " -26,"2,318,735 ","1,141,992 ","1,176,743 ","2,066,727 ","1,023,301 ","1,043,426 ","252,008 ","118,691 ","133,317 " -27,"2,303,068 ","1,132,572 ","1,170,496 ","2,055,811 ","1,015,118 ","1,040,693 ","247,257 ","117,454 ","129,803 " -28,"2,280,889 ","1,120,735 ","1,160,154 ","2,039,394 ","1,005,374 ","1,034,020 ","241,495 ","115,361 ","126,134 " -29,"2,258,112 ","1,110,407 ","1,147,705 ","2,020,970 ","996,058 ","1,024,912 ","237,142 ","114,349 ","122,793 " -30,"2,214,556 ","1,091,923 ","1,122,633 ","1,989,898 ","983,631 ","1,006,267 ","224,658 ","108,292 ","116,366 " -31,"2,177,085 ","1,075,173 ","1,101,912 ","1,957,912 ","969,930 ","987,982 ","219,173 ","105,243 ","113,930 " -32,"2,134,629 ","1,054,041 ","1,080,588 ","1,920,176 ","951,480 ","968,696 ","214,453 ","102,561 ","111,892 " -33,"2,096,416 ","1,036,432 ","1,059,984 ","1,885,762 ","935,755 ","950,007 ","210,654 ","100,677 ","109,977 " -34,"2,061,587 ","1,019,575 ","1,042,012 ","1,854,522 ","920,438 ","934,084 ","207,065 ","99,137 ","107,928 " -35,"2,046,604 ","1,010,985 ","1,035,619 ","1,833,241 ","909,271 ","923,970 ","213,363 ","101,714 ","111,649 " -36,"2,028,151 ","1,001,962 ","1,026,189 ","1,812,950 ","899,200 ","913,750 ","215,201 ","102,762 ","112,439 " -37,"2,008,094 ","992,489 ","1,015,605 ","1,791,122 ","888,793 ","902,329 ","216,972 ","103,696 ","113,276 " -38,"1,977,974 ","977,545 ","1,000,429 ","1,761,769 ","874,260 ","887,509 ","216,205 ","103,285 ","112,920 " -39,"1,947,593 ","964,088 ","983,505 ","1,732,236 ","861,016 ","871,220 ","215,357 ","103,072 ","112,285 " -40,"1,905,258 ","947,425 ","957,833 ","1,704,126 ","849,679 ","854,447 ","201,132 ","97,746 ","103,386 " -41,"1,871,667 ","933,990 ","937,677 ","1,682,593 ","840,939 ","841,654 ","189,074 ","93,051 ","96,023 " -42,"1,843,370 ","922,747 ","920,623 ","1,665,193 ","834,029 ","831,164 ","178,177 ","88,718 ","89,459 " -43,"1,815,410 ","910,601 ","904,809 ","1,645,168 ","825,143 ","820,025 ","170,242 ","85,458 ","84,784 " -44,"1,782,250 ","894,628 ","887,622 ","1,619,188 ","812,186 ","807,002 ","163,062 ","82,442 ","80,620 " -45,"1,761,370 ","883,945 ","877,425 ","1,599,535 ","802,524 ","797,011 ","161,835 ","81,421 ","80,414 " -46,"1,740,563 ","875,635 ","864,928 ","1,580,860 ","795,342 ","785,518 ","159,703 ","80,293 ","79,410 " -47,"1,717,580 ","867,161 ","850,419 ","1,561,272 ","788,554 ","772,718 ","156,308 ","78,607 ","77,701 " -48,"1,695,500 ","858,867 ","836,633 ","1,543,449 ","782,326 ","761,123 ","152,051 ","76,541 ","75,510 " -49,"1,672,717 ","849,885 ","822,832 ","1,525,666 ","775,641 ","750,025 ","147,051 ","74,244 ","72,807 " -50,"1,628,248 ","830,185 ","798,063 ","1,488,829 ","759,090 ","729,739 ","139,419 ","71,095 ","68,324 " -51,"1,573,515 ","803,588 ","769,927 ","1,441,339 ","735,649 ","705,690 ","132,176 ","67,939 ","64,237 " -52,"1,516,728 ","775,395 ","741,333 ","1,391,479 ","710,593 ","680,886 ","125,249 ","64,802 ","60,447 " -53,"1,469,118 ","751,930 ","717,188 ","1,350,301 ","690,150 ","660,151 ","118,817 ","61,780 ","57,037 " -54,"1,423,621 ","730,023 ","693,598 ","1,311,255 ","671,247 ","640,008 ","112,366 ","58,776 ","53,590 " -55,"1,370,738 ","702,128 ","668,610 ","1,263,935 ","646,262 ","617,673 ","106,803 ","55,866 ","50,937 " -56,"1,315,647 ","673,051 ","642,596 ","1,213,336 ","619,539 ","593,797 ","102,311 ","53,512 ","48,799 " -57,"1,259,377 ","642,663 ","616,714 ","1,161,432 ","591,517 ","569,915 ","97,945 ","51,146 ","46,799 " -58,"1,201,443 ","611,851 ","589,592 ","1,108,188 ","563,182 ","545,006 ","93,255 ","48,669 ","44,586 " -59,"1,142,446 ","580,838 ","561,608 ","1,054,523 ","534,911 ","519,612 ","87,923 ","45,927 ","41,996 " -60,"1,103,475 ","560,257 ","543,218 ","1,019,754 ","516,411 ","503,343 ","83,721 ","43,846 ","39,875 " -61,"1,074,176 ","543,905 ","530,271 ","994,335 ","501,979 ","492,356 ","79,841 ","41,926 ","37,915 " -62,"1,042,807 ","526,554 ","516,253 ","966,984 ","486,644 ","480,340 ","75,823 ","39,910 ","35,913 " -63,"1,003,258 ","504,467 ","498,791 ","929,910 ","466,004 ","463,906 ","73,348 ","38,463 ","34,885 " -64,"958,399 ","479,448 ","478,951 ","889,089 ","443,155 ","445,934 ","69,310 ","36,293 ","33,017 " -65,"912,138 ","453,919 ","458,219 ","847,909 ","420,318 ","427,591 ","64,229 ","33,601 ","30,628 " -66,"865,398 ","429,509 ","435,889 ","805,368 ","398,153 ","407,215 ","60,030 ","31,356 ","28,674 " -67,"821,548 ","406,685 ","414,863 ","764,680 ","377,128 ","387,552 ","56,868 ","29,557 ","27,311 " -68,"780,239 ","384,945 ","395,294 ","725,869 ","356,810 ","369,059 ","54,370 ","28,135 ","26,235 " -69,"737,826 ","362,839 ","374,987 ","686,580 ","336,334 ","350,246 ","51,246 ","26,505 ","24,741 " -70,"682,583 ","335,630 ","346,953 ","635,474 ","311,200 ","324,274 ","47,109 ","24,430 ","22,679 " -71,"620,868 ","304,742 ","316,126 ","578,972 ","283,078 ","295,894 ","41,896 ","21,664 ","20,232 " -72,"559,747 ","274,072 ","285,675 ","522,732 ","255,029 ","267,703 ","37,015 ","19,043 ","17,972 " -73,"504,695 ","246,376 ","258,319 ","471,970 ","229,668 ","242,302 ","32,725 ","16,708 ","16,017 " -74,"456,364 ","222,212 ","234,152 ","427,282 ","207,405 ","219,877 ","29,082 ","14,807 ","14,275 " -75,"413,700 ","199,684 ","214,016 ","388,329 ","186,816 ","201,513 ","25,371 ","12,868 ","12,503 " -76,"374,923 ","179,234 ","195,689 ","352,309 ","167,816 ","184,493 ","22,614 ","11,418 ","11,196 " -77,"337,082 ","159,457 ","177,625 ","316,790 ","149,253 ","167,537 ","20,292 ","10,204 ","10,088 " -78,"288,282 ","135,427 ","152,855 ","271,574 ","127,203 ","144,371 ","16,708 ","8,224 ","8,484 " -79,"249,215 ","116,215 ","133,000 ","235,154 ","109,432 ","125,722 ","14,061 ","6,783 ","7,278 " -80,"218,364 ","101,227 ","117,137 ","205,648 ","95,152 ","110,496 ","12,716 ","6,075 ","6,641 " -81,"192,354 ","88,421 ","103,933 ","180,894 ","82,986 ","97,908 ","11,460 ","5,435 ","6,025 " -82,"168,431 ","76,789 ","91,642 ","158,117 ","71,924 ","86,193 ","10,314 ","4,865 ","5,449 " -83,"143,972 ","64,905 ","79,067 ","135,226 ","60,848 ","74,378 ","8,746 ","4,057 ","4,689 " -84,"123,002 ","54,782 ","68,220 ","115,459 ","51,312 ","64,147 ","7,543 ","3,470 ","4,073 " -85+,"416,960 ","177,999 ","238,961 ","382,283 ","163,950 ","218,333 ","34,677 ","14,049 ","20,628 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1944.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1944.csv deleted file mode 100644 index 64fb583f10..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1944.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1944",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"138,397,345 ","69,377,719 ","69,019,626 ","124,009,212 ","62,249,895 ","61,759,317 ","14,388,133 ","7,127,824 ","7,260,309 " -,,,,,,,,, -0,"2,515,859 ","1,287,770 ","1,228,089 ","2,226,018 ","1,141,404 ","1,084,614 ","289,841 ","146,366 ","143,475 " -1,"2,724,581 ","1,389,074 ","1,335,507 ","2,429,051 ","1,239,977 ","1,189,074 ","295,530 ","149,097 ","146,433 " -2,"2,573,419 ","1,306,926 ","1,266,493 ","2,247,949 ","1,144,023 ","1,103,926 ","325,470 ","162,903 ","162,567 " -3,"2,416,020 ","1,225,033 ","1,190,987 ","2,103,251 ","1,070,036 ","1,033,215 ","312,769 ","154,997 ","157,772 " -4,"2,293,935 ","1,164,754 ","1,129,181 ","1,993,555 ","1,015,521 ","978,034 ","300,380 ","149,233 ","151,147 " -5,"2,222,993 ","1,129,674 ","1,093,319 ","1,936,642 ","986,840 ","949,802 ","286,351 ","142,834 ","143,517 " -6,"2,195,216 ","1,114,678 ","1,080,538 ","1,913,342 ","974,464 ","938,878 ","281,874 ","140,214 ","141,660 " -7,"2,100,096 ","1,061,353 ","1,038,743 ","1,831,706 ","929,054 ","902,652 ","268,390 ","132,299 ","136,091 " -8,"2,095,447 ","1,064,311 ","1,031,136 ","1,828,206 ","930,834 ","897,372 ","267,241 ","133,477 ","133,764 " -9,"2,008,232 ","1,016,760 ","991,472 ","1,755,435 ","892,044 ","863,391 ","252,797 ","124,716 ","128,081 " -10,"2,062,006 ","1,043,028 ","1,018,978 ","1,790,159 ","908,164 ","881,995 ","271,847 ","134,864 ","136,983 " -11,"2,109,962 ","1,071,823 ","1,038,139 ","1,832,256 ","933,250 ","899,006 ","277,706 ","138,573 ","139,133 " -12,"2,190,510 ","1,115,889 ","1,074,621 ","1,903,536 ","971,773 ","931,763 ","286,974 ","144,116 ","142,858 " -13,"2,261,990 ","1,146,691 ","1,115,299 ","1,970,366 ","999,710 ","970,656 ","291,624 ","146,981 ","144,643 " -14,"2,326,690 ","1,178,418 ","1,148,272 ","2,031,737 ","1,030,188 ","1,001,549 ","294,953 ","148,230 ","146,723 " -15,"2,376,060 ","1,206,266 ","1,169,794 ","2,085,309 ","1,060,792 ","1,024,517 ","290,751 ","145,474 ","145,277 " -16,"2,387,381 ","1,203,530 ","1,183,851 ","2,103,330 ","1,062,682 ","1,040,648 ","284,051 ","140,848 ","143,203 " -17,"2,383,596 ","1,191,578 ","1,192,018 ","2,108,151 ","1,056,860 ","1,051,291 ","275,445 ","134,718 ","140,727 " -18,"2,398,635 ","1,206,774 ","1,191,861 ","2,130,531 ","1,076,152 ","1,054,379 ","268,104 ","130,622 ","137,482 " -19,"2,391,184 ","1,199,169 ","1,192,015 ","2,129,649 ","1,072,651 ","1,056,998 ","261,535 ","126,518 ","135,017 " -20,"2,386,866 ","1,193,405 ","1,193,461 ","2,129,127 ","1,069,360 ","1,059,767 ","257,739 ","124,045 ","133,694 " -21,"2,419,316 ","1,215,646 ","1,203,670 ","2,157,029 ","1,088,231 ","1,068,798 ","262,287 ","127,415 ","134,872 " -22,"2,437,959 ","1,232,953 ","1,205,006 ","2,173,238 ","1,103,787 ","1,069,451 ","264,721 ","129,166 ","135,555 " -23,"2,416,175 ","1,215,614 ","1,200,561 ","2,151,663 ","1,087,341 ","1,064,322 ","264,512 ","128,273 ","136,239 " -24,"2,401,925 ","1,205,748 ","1,196,177 ","2,136,000 ","1,077,397 ","1,058,603 ","265,925 ","128,351 ","137,574 " -25,"2,399,008 ","1,199,540 ","1,199,468 ","2,131,520 ","1,071,325 ","1,060,195 ","267,488 ","128,215 ","139,273 " -26,"2,360,761 ","1,173,882 ","1,186,879 ","2,102,682 ","1,050,541 ","1,052,141 ","258,079 ","123,341 ","134,738 " -27,"2,325,753 ","1,149,305 ","1,176,448 ","2,074,956 ","1,029,074 ","1,045,882 ","250,797 ","120,231 ","130,566 " -28,"2,306,564 ","1,138,566 ","1,167,998 ","2,061,948 ","1,020,390 ","1,041,558 ","244,616 ","118,176 ","126,440 " -29,"2,281,664 ","1,125,371 ","1,156,293 ","2,044,211 ","1,010,027 ","1,034,184 ","237,453 ","115,344 ","122,109 " -30,"2,237,658 ","1,106,782 ","1,130,876 ","2,012,075 ","996,647 ","1,015,428 ","225,583 ","110,135 ","115,448 " -31,"2,205,201 ","1,091,116 ","1,114,085 ","1,983,428 ","983,568 ","999,860 ","221,773 ","107,548 ","114,225 " -32,"2,170,932 ","1,075,279 ","1,095,653 ","1,952,471 ","969,855 ","982,616 ","218,461 ","105,424 ","113,037 " -33,"2,130,411 ","1,054,709 ","1,075,702 ","1,914,923 ","951,280 ","963,643 ","215,488 ","103,429 ","112,059 " -34,"2,093,144 ","1,037,322 ","1,055,822 ","1,879,790 ","935,167 ","944,623 ","213,354 ","102,155 ","111,199 " -35,"2,074,373 ","1,024,931 ","1,049,442 ","1,854,393 ","919,999 ","934,394 ","219,980 ","104,932 ","115,048 " -36,"2,054,639 ","1,015,126 ","1,039,513 ","1,835,581 ","910,201 ","925,380 ","219,058 ","104,925 ","114,133 " -37,"2,034,609 ","1,005,542 ","1,029,067 ","1,815,308 ","900,199 ","915,109 ","219,301 ","105,343 ","113,958 " -38,"2,012,539 ","995,147 ","1,017,392 ","1,792,914 ","889,470 ","903,444 ","219,625 ","105,677 ","113,948 " -39,"1,979,819 ","978,716 ","1,001,103 ","1,762,186 ","873,986 ","888,200 ","217,633 ","104,730 ","112,903 " -40,"1,935,379 ","960,493 ","974,886 ","1,731,436 ","860,908 ","870,528 ","203,943 ","99,585 ","104,358 " -41,"1,897,284 ","945,019 ","952,265 ","1,704,272 ","849,917 ","854,355 ","193,012 ","95,102 ","97,910 " -42,"1,865,135 ","931,900 ","933,235 ","1,682,568 ","841,016 ","841,552 ","182,567 ","90,884 ","91,683 " -43,"1,838,562 ","921,095 ","917,467 ","1,665,633 ","834,211 ","831,422 ","172,929 ","86,884 ","86,045 " -44,"1,812,377 ","909,509 ","902,868 ","1,646,697 ","825,734 ","820,963 ","165,680 ","83,775 ","81,905 " -45,"1,789,572 ","897,395 ","892,177 ","1,624,611 ","814,386 ","810,225 ","164,961 ","83,009 ","81,952 " -46,"1,763,704 ","885,301 ","878,403 ","1,600,852 ","803,457 ","797,395 ","162,852 ","81,844 ","81,008 " -47,"1,740,255 ","875,760 ","864,495 ","1,580,246 ","795,288 ","784,958 ","160,009 ","80,472 ","79,537 " -48,"1,714,974 ","866,265 ","848,709 ","1,559,128 ","787,756 ","771,372 ","155,846 ","78,509 ","77,337 " -49,"1,691,549 ","857,397 ","834,152 ","1,540,205 ","781,074 ","759,131 ","151,344 ","76,323 ","75,021 " -50,"1,650,563 ","839,722 ","810,841 ","1,507,241 ","766,729 ","740,512 ","143,322 ","72,993 ","70,329 " -51,"1,599,007 ","814,387 ","784,620 ","1,463,461 ","744,899 ","718,562 ","135,546 ","69,488 ","66,058 " -52,"1,544,016 ","787,171 ","756,845 ","1,415,557 ","720,858 ","694,699 ","128,459 ","66,313 ","62,146 " -53,"1,487,193 ","758,519 ","728,674 ","1,365,589 ","695,407 ","670,182 ","121,604 ","63,112 ","58,492 " -54,"1,438,636 ","734,168 ","704,468 ","1,323,379 ","674,071 ","649,308 ","115,257 ","60,097 ","55,160 " -55,"1,389,876 ","708,732 ","681,144 ","1,280,261 ","651,603 ","628,658 ","109,615 ","57,129 ","52,486 " -56,"1,338,704 ","682,862 ","655,842 ","1,233,852 ","628,177 ","605,675 ","104,852 ","54,685 ","50,167 " -57,"1,284,000 ","654,242 ","629,758 ","1,183,613 ","601,861 ","581,752 ","100,387 ","52,381 ","48,006 " -58,"1,228,022 ","624,181 ","603,841 ","1,131,916 ","574,109 ","557,807 ","96,106 ","50,072 ","46,034 " -59,"1,170,184 ","593,446 ","576,738 ","1,078,554 ","545,760 ","532,794 ","91,630 ","47,686 ","43,944 " -60,"1,126,025 ","570,624 ","555,401 ","1,038,816 ","525,117 ","513,699 ","87,209 ","45,507 ","41,702 " -61,"1,094,925 ","553,230 ","541,695 ","1,012,035 ","509,857 ","502,178 ","82,890 ","43,373 ","39,517 " -62,"1,064,449 ","536,094 ","528,355 ","985,682 ","494,764 ","490,918 ","78,767 ","41,330 ","37,437 " -63,"1,031,183 ","517,671 ","513,512 ","956,730 ","478,499 ","478,231 ","74,453 ","39,172 ","35,281 " -64,"991,120 ","495,212 ","495,908 ","918,794 ","457,338 ","461,456 ","72,326 ","37,874 ","34,452 " -65,"944,294 ","469,022 ","475,272 ","876,322 ","433,541 ","442,781 ","67,972 ","35,481 ","32,491 " -66,"891,344 ","441,340 ","450,004 ","828,656 ","408,635 ","420,021 ","62,688 ","32,705 ","29,983 " -67,"842,549 ","416,096 ","426,453 ","784,164 ","385,677 ","398,487 ","58,385 ","30,419 ","27,966 " -68,"797,542 ","392,832 ","404,710 ","742,118 ","364,114 ","378,004 ","55,424 ","28,718 ","26,706 " -69,"755,432 ","370,887 ","384,545 ","702,267 ","343,481 ","358,786 ","53,165 ","27,406 ","25,759 " -70,"701,525 ","344,243 ","357,282 ","652,366 ","318,877 ","333,489 ","49,159 ","25,366 ","23,793 " -71,"639,873 ","313,350 ","326,523 ","596,390 ","290,901 ","305,489 ","43,483 ","22,449 ","21,034 " -72,"579,248 ","282,954 ","296,294 ","540,809 ","263,182 ","277,627 ","38,439 ","19,772 ","18,667 " -73,"519,526 ","252,959 ","266,567 ","485,766 ","235,709 ","250,057 ","33,760 ","17,250 ","16,510 " -74,"465,006 ","225,558 ","239,448 ","435,453 ","210,601 ","224,852 ","29,553 ","14,957 ","14,596 " -75,"419,783 ","201,981 ","217,802 ","394,177 ","189,076 ","205,101 ","25,606 ","12,905 ","12,701 " -76,"381,690 ","182,161 ","199,529 ","358,678 ","170,568 ","188,110 ","23,012 ","11,593 ","11,419 " -77,"344,797 ","162,992 ","181,805 ","324,091 ","152,594 ","171,497 ","20,706 ","10,398 ","10,308 " -78,"309,167 ","144,648 ","164,519 ","290,260 ","135,170 ","155,090 ","18,907 ","9,478 ","9,429 " -79,"260,065 ","120,849 ","139,216 ","244,739 ","113,358 ","131,381 ","15,326 ","7,491 ","7,835 " -80,"223,119 ","103,220 ","119,899 ","209,724 ","96,783 ","112,941 ","13,395 ","6,437 ","6,958 " -81,"196,055 ","89,903 ","106,152 ","183,946 ","84,126 ","99,820 ","12,109 ","5,777 ","6,332 " -82,"171,428 ","77,874 ","93,554 ","160,584 ","72,741 ","87,843 ","10,844 ","5,133 ","5,711 " -83,"148,768 ","66,946 ","81,822 ","139,099 ","62,398 ","76,701 ","9,669 ","4,548 ","5,121 " -84,"125,987 ","55,998 ","69,989 ","117,840 ","52,230 ","65,610 ","8,147 ","3,768 ","4,379 " -85+,"430,325 ","183,312 ","247,013 ","395,013 ","169,073 ","225,940 ","35,312 ","14,239 ","21,073 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1945.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1945.csv deleted file mode 100644 index 8bcc5f6917..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1945.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1945",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"139,928,165 ","70,035,073 ","69,893,092 ","125,266,471 ","62,748,059 ","62,518,412 ","14,661,694 ","7,287,014 ","7,374,680 " -,,,,,,,,, -0,"2,463,569 ","1,261,331 ","1,202,238 ","2,168,900 ","1,113,908 ","1,054,992 ","294,669 ","147,423 ","147,246 " -1,"2,580,905 ","1,315,525 ","1,265,380 ","2,285,070 ","1,166,347 ","1,118,723 ","295,835 ","149,178 ","146,657 " -2,"2,922,095 ","1,485,475 ","1,436,620 ","2,580,930 ","1,314,653 ","1,266,277 ","341,165 ","170,822 ","170,343 " -3,"2,592,601 ","1,316,192 ","1,276,409 ","2,262,051 ","1,151,114 ","1,110,937 ","330,550 ","165,078 ","165,472 " -4,"2,419,641 ","1,230,340 ","1,189,301 ","2,105,893 ","1,073,117 ","1,032,776 ","313,748 ","157,223 ","156,525 " -5,"2,244,654 ","1,139,855 ","1,104,799 ","1,956,972 ","997,660 ","959,312 ","287,682 ","142,195 ","145,487 " -6,"2,212,753 ","1,124,692 ","1,088,061 ","1,931,577 ","984,635 ","946,942 ","281,176 ","140,057 ","141,119 " -7,"2,186,637 ","1,110,528 ","1,076,109 ","1,909,558 ","972,890 ","936,668 ","277,079 ","137,638 ","139,441 " -8,"2,089,735 ","1,056,230 ","1,033,505 ","1,826,193 ","926,541 ","899,652 ","263,542 ","129,689 ","133,853 " -9,"2,088,357 ","1,061,161 ","1,027,196 ","1,824,421 ","929,461 ","894,960 ","263,936 ","131,700 ","132,236 " -10,"2,102,685 ","1,071,335 ","1,031,350 ","1,824,111 ","932,433 ","891,678 ","278,574 ","138,902 ","139,672 " -11,"2,077,834 ","1,054,409 ","1,023,425 ","1,800,139 ","916,405 ","883,734 ","277,695 ","138,004 ","139,691 " -12,"2,121,420 ","1,079,979 ","1,041,441 ","1,839,105 ","938,895 ","900,210 ","282,315 ","141,084 ","141,231 " -13,"2,201,871 ","1,123,651 ","1,078,220 ","1,910,658 ","977,109 ","933,549 ","291,213 ","146,542 ","144,671 " -14,"2,272,984 ","1,152,971 ","1,120,013 ","1,977,832 ","1,003,742 ","974,090 ","295,152 ","149,229 ","145,923 " -15,"2,307,980 ","1,160,214 ","1,147,766 ","2,018,614 ","1,015,349 ","1,003,265 ","289,366 ","144,865 ","144,501 " -16,"2,328,526 ","1,167,754 ","1,160,772 ","2,046,452 ","1,028,307 ","1,018,145 ","282,074 ","139,447 ","142,627 " -17,"2,341,163 ","1,166,976 ","1,174,187 ","2,065,410 ","1,031,918 ","1,033,492 ","275,753 ","135,058 ","140,695 " -18,"2,336,638 ","1,155,052 ","1,181,586 ","2,069,422 ","1,026,057 ","1,043,365 ","267,216 ","128,995 ","138,221 " -19,"2,354,584 ","1,174,437 ","1,180,147 ","2,094,608 ","1,049,280 ","1,045,328 ","259,976 ","125,157 ","134,819 " -20,"2,354,270 ","1,177,855 ","1,176,415 ","2,097,198 ","1,053,991 ","1,043,207 ","257,072 ","123,864 ","133,208 " -21,"2,387,255 ","1,193,801 ","1,193,454 ","2,125,368 ","1,066,697 ","1,058,671 ","261,887 ","127,104 ","134,783 " -22,"2,422,464 ","1,216,218 ","1,206,246 ","2,155,148 ","1,085,232 ","1,069,916 ","267,316 ","130,986 ","136,330 " -23,"2,445,961 ","1,235,539 ","1,210,422 ","2,174,719 ","1,101,802 ","1,072,917 ","271,242 ","133,737 ","137,505 " -24,"2,426,252 ","1,217,703 ","1,208,549 ","2,153,863 ","1,084,087 ","1,069,776 ","272,389 ","133,616 ","138,773 " -25,"2,430,959 ","1,215,581 ","1,215,378 ","2,151,393 ","1,077,283 ","1,074,110 ","279,566 ","138,298 ","141,268 " -26,"2,398,786 ","1,197,161 ","1,201,625 ","2,128,490 ","1,063,597 ","1,064,893 ","270,296 ","133,564 ","136,732 " -27,"2,355,916 ","1,169,900 ","1,186,016 ","2,096,600 ","1,042,118 ","1,054,482 ","259,316 ","127,782 ","131,534 " -28,"2,316,982 ","1,144,263 ","1,172,719 ","2,066,539 ","1,020,550 ","1,045,989 ","250,443 ","123,713 ","126,730 " -29,"2,294,458 ","1,132,268 ","1,162,190 ","2,051,608 ","1,011,478 ","1,040,130 ","242,850 ","120,790 ","122,060 " -30,"2,247,258 ","1,109,111 ","1,138,147 ","2,020,153 ","997,037 ","1,023,116 ","227,105 ","112,074 ","115,031 " -31,"2,218,748 ","1,095,113 ","1,123,635 ","1,994,463 ","985,212 ","1,009,251 ","224,285 ","109,901 ","114,384 " -32,"2,190,296 ","1,080,756 ","1,109,540 ","1,967,716 ","972,549 ","995,167 ","222,580 ","108,207 ","114,373 " -33,"2,159,395 ","1,066,013 ","1,093,382 ","1,937,957 ","959,008 ","978,949 ","221,438 ","107,005 ","114,433 " -34,"2,120,909 ","1,046,156 ","1,074,753 ","1,900,696 ","940,457 ","960,239 ","220,213 ","105,699 ","114,514 " -35,"2,104,441 ","1,038,736 ","1,065,705 ","1,877,182 ","930,199 ","946,983 ","227,259 ","108,537 ","118,722 " -36,"2,084,507 ","1,029,302 ","1,055,205 ","1,859,230 ","921,044 ","938,186 ","225,277 ","108,258 ","117,019 " -37,"2,063,793 ","1,019,428 ","1,044,365 ","1,840,947 ","911,795 ","929,152 ","222,846 ","107,633 ","115,213 " -38,"2,042,126 ","1,009,251 ","1,032,875 ","1,820,637 ","901,848 ","918,789 ","221,489 ","107,403 ","114,086 " -39,"2,017,937 ","997,869 ","1,020,068 ","1,797,577 ","890,747 ","906,830 ","220,360 ","107,122 ","113,238 " -40,"1,968,557 ","974,454 ","994,103 ","1,762,784 ","873,647 ","889,137 ","205,773 ","100,807 ","104,966 " -41,"1,926,211 ","956,453 ","969,758 ","1,730,542 ","859,963 ","870,579 ","195,669 ","96,490 ","99,179 " -42,"1,888,708 ","940,946 ","947,762 ","1,702,408 ","848,434 ","853,974 ","186,300 ","92,512 ","93,788 " -43,"1,857,799 ","928,096 ","929,703 ","1,680,479 ","839,341 ","841,138 ","177,320 ","88,755 ","88,565 " -44,"1,832,763 ","917,678 ","915,085 ","1,663,960 ","832,607 ","831,353 ","168,803 ","85,071 ","83,732 " -45,"1,817,339 ","910,867 ","906,472 ","1,649,295 ","826,513 ","822,782 ","168,044 ","84,354 ","83,690 " -46,"1,789,432 ","897,336 ","892,096 ","1,623,109 ","813,922 ","809,187 ","166,323 ","83,414 ","82,909 " -47,"1,761,127 ","884,120 ","877,007 ","1,597,565 ","802,106 ","795,459 ","163,562 ","82,014 ","81,548 " -48,"1,735,030 ","873,313 ","861,717 ","1,575,008 ","792,910 ","782,098 ","160,022 ","80,403 ","79,619 " -49,"1,707,506 ","862,795 ","844,711 ","1,552,397 ","784,630 ","767,767 ","155,109 ","78,165 ","76,944 " -50,"1,669,385 ","847,052 ","822,333 ","1,522,368 ","772,341 ","750,027 ","147,017 ","74,711 ","72,306 " -51,"1,621,565 ","823,632 ","797,933 ","1,482,422 ","752,553 ","729,869 ","139,143 ","71,079 ","68,064 " -52,"1,569,608 ","797,610 ","771,998 ","1,438,035 ","730,033 ","708,002 ","131,573 ","67,577 ","63,996 " -53,"1,514,276 ","769,746 ","744,530 ","1,389,680 ","705,394 ","684,286 ","124,596 ","64,352 ","60,244 " -54,"1,457,458 ","740,737 ","716,721 ","1,339,525 ","679,519 ","660,006 ","117,933 ","61,218 ","56,715 " -55,"1,409,418 ","715,016 ","694,402 ","1,296,622 ","656,588 ","640,034 ","112,796 ","58,428 ","54,368 " -56,"1,363,387 ","692,502 ","670,885 ","1,255,394 ","636,506 ","618,888 ","107,993 ","55,996 ","51,997 " -57,"1,311,958 ","666,763 ","645,195 ","1,208,817 ","613,211 ","595,606 ","103,141 ","53,552 ","49,589 " -58,"1,257,363 ","638,444 ","618,919 ","1,158,670 ","587,150 ","571,520 ","98,693 ","51,294 ","47,399 " -59,"1,201,411 ","608,532 ","592,879 ","1,106,926 ","559,495 ","547,431 ","94,485 ","49,037 ","45,448 " -60,"1,154,747 ","584,099 ","570,648 ","1,063,960 ","536,945 ","527,015 ","90,787 ","47,154 ","43,633 " -61,"1,121,025 ","565,479 ","555,546 ","1,034,728 ","520,525 ","514,203 ","86,297 ","44,954 ","41,343 " -62,"1,089,202 ","547,468 ","541,734 ","1,007,430 ","504,756 ","502,674 ","81,772 ","42,712 ","39,060 " -63,"1,057,388 ","529,465 ","527,923 ","979,972 ","488,914 ","491,058 ","77,416 ","40,551 ","36,865 " -64,"1,022,098 ","509,889 ","512,209 ","949,271 ","471,625 ","477,646 ","72,827 ","38,264 ","34,563 " -65,"979,140 ","485,519 ","493,621 ","908,365 ","448,599 ","459,766 ","70,775 ","36,920 ","33,855 " -66,"923,398 ","456,159 ","467,239 ","856,782 ","421,596 ","435,186 ","66,616 ","34,563 ","32,053 " -67,"868,148 ","427,561 ","440,587 ","807,080 ","395,884 ","411,196 ","61,068 ","31,677 ","29,391 " -68,"817,345 ","401,529 ","415,816 ","760,679 ","372,169 ","388,510 ","56,666 ","29,360 ","27,306 " -69,"771,217 ","377,866 ","393,351 ","717,317 ","350,110 ","367,207 ","53,900 ","27,756 ","26,144 " -70,"720,954 ","352,830 ","368,124 ","669,706 ","326,569 ","343,137 ","51,248 ","26,261 ","24,987 " -71,"659,821 ","322,187 ","337,634 ","614,450 ","298,894 ","315,556 ","45,371 ","23,293 ","22,078 " -72,"598,829 ","291,659 ","307,170 ","558,990 ","271,191 ","287,799 ","39,839 ","20,468 ","19,371 " -73,"539,298 ","261,808 ","277,490 ","504,301 ","243,910 ","260,391 ","34,997 ","17,898 ","17,099 " -74,"481,011 ","232,555 ","248,456 ","450,465 ","217,061 ","233,404 ","30,546 ","15,494 ","15,052 " -75,"430,285 ","206,298 ","223,987 ","404,082 ","193,157 ","210,925 ","26,203 ","13,141 ","13,062 " -76,"391,918 ","186,475 ","205,443 ","368,309 ","174,636 ","193,673 ","23,609 ","11,839 ","11,770 " -77,"355,003 ","167,563 ","187,440 ","333,679 ","156,858 ","176,821 ","21,324 ","10,705 ","10,619 " -78,"319,547 ","149,428 ","170,119 ","300,166 ","139,714 ","160,452 ","19,381 ","9,714 ","9,667 " -79,"285,674 ","132,267 ","153,407 ","267,657 ","123,229 ","144,428 ","18,017 ","9,038 ","8,979 " -80,"237,366 ","109,541 ","127,825 ","222,417 ","102,234 ","120,183 ","14,949 ","7,307 ","7,642 " -81,"202,174 ","92,570 ","109,604 ","189,493 ","86,523 ","102,970 ","12,681 ","6,047 ","6,634 " -82,"176,558 ","80,045 ","96,513 ","165,153 ","74,649 ","90,504 ","11,405 ","5,396 ","6,009 " -83,"153,106 ","68,680 ","84,426 ","142,956 ","63,918 ","79,038 ","10,150 ","4,762 ","5,388 " -84,"131,586 ","58,393 ","73,193 ","122,616 ","54,216 ","68,400 ","8,970 ","4,177 ","4,793 " -85+,"451,681 ","191,517 ","260,164 ","415,041 ","176,762 ","238,279 ","36,640 ","14,755 ","21,885 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1946.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1946.csv deleted file mode 100644 index ac134caf31..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1946.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1946",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"141,388,566 ","70,631,171 ","70,757,395 ","126,564,527 ","63,287,081 ","63,277,446 ","14,824,039 ","7,344,090 ","7,479,949 " -,,,,,,,,, -0,"2,401,211 ","1,227,476 ","1,173,735 ","2,120,318 ","1,087,205 ","1,033,113 ","280,893 ","140,271 ","140,622 " -1,"2,541,726 ","1,296,822 ","1,244,904 ","2,239,879 ","1,145,366 ","1,094,513 ","301,847 ","151,456 ","150,391 " -2,"2,748,274 ","1,395,178 ","1,353,096 ","2,409,121 ","1,225,634 ","1,183,487 ","339,153 ","169,544 ","169,609 " -3,"2,954,919 ","1,501,683 ","1,453,236 ","2,607,884 ","1,328,267 ","1,279,617 ","347,035 ","173,416 ","173,619 " -4,"2,597,793 ","1,322,867 ","1,274,926 ","2,266,977 ","1,156,164 ","1,110,813 ","330,816 ","166,703 ","164,113 " -5,"2,362,293 ","1,200,109 ","1,162,184 ","2,063,016 ","1,051,740 ","1,011,276 ","299,277 ","148,369 ","150,908 " -6,"2,243,741 ","1,138,986 ","1,104,755 ","1,956,732 ","997,273 ","959,459 ","287,009 ","141,713 ","145,296 " -7,"2,213,616 ","1,124,733 ","1,088,883 ","1,932,744 ","984,960 ","947,784 ","280,872 ","139,773 ","141,099 " -8,"2,184,746 ","1,109,064 ","1,075,682 ","1,908,326 ","971,924 ","936,402 ","276,420 ","137,140 ","139,280 " -9,"2,091,817 ","1,057,184 ","1,034,633 ","1,827,072 ","926,947 ","900,125 ","264,745 ","130,237 ","134,508 " -10,"2,160,697 ","1,102,542 ","1,058,155 ","1,879,363 ","960,346 ","919,017 ","281,334 ","142,196 ","139,138 " -11,"2,131,296 ","1,089,241 ","1,042,055 ","1,847,785 ","947,069 ","900,716 ","283,511 ","142,172 ","141,339 " -12,"2,098,889 ","1,069,128 ","1,029,761 ","1,818,432 ","929,088 ","889,344 ","280,457 ","140,040 ","140,417 " -13,"2,138,151 ","1,091,487 ","1,046,664 ","1,854,378 ","949,027 ","905,351 ","283,773 ","142,460 ","141,313 " -14,"2,218,667 ","1,134,853 ","1,083,814 ","1,926,471 ","987,068 ","939,403 ","292,196 ","147,785 ","144,411 " -15,"2,258,532 ","1,137,453 ","1,121,079 ","1,972,465 ","993,124 ","979,341 ","286,067 ","144,329 ","141,738 " -16,"2,263,381 ","1,126,775 ","1,136,606 ","1,983,491 ","988,470 ","995,021 ","279,890 ","138,305 ","141,585 " -17,"2,277,948 ","1,129,529 ","1,148,419 ","2,004,850 ","996,535 ","1,008,315 ","273,098 ","132,994 ","140,104 " -18,"2,291,901 ","1,130,707 ","1,161,194 ","2,024,710 ","1,001,848 ","1,022,862 ","267,191 ","128,859 ","138,332 " -19,"2,286,677 ","1,118,841 ","1,167,836 ","2,027,906 ","995,947 ","1,031,959 ","258,771 ","122,894 ","135,877 " -20,"2,327,077 ","1,158,736 ","1,168,341 ","2,071,949 ","1,037,680 ","1,034,269 ","255,128 ","121,056 ","134,072 " -21,"2,365,278 ","1,181,283 ","1,183,995 ","2,107,063 ","1,057,854 ","1,049,209 ","258,215 ","123,429 ","134,786 " -22,"2,402,338 ","1,199,560 ","1,202,778 ","2,138,922 ","1,072,637 ","1,066,285 ","263,416 ","126,923 ","136,493 " -23,"2,440,529 ","1,222,229 ","1,218,300 ","2,170,872 ","1,090,996 ","1,079,876 ","269,657 ","131,233 ","138,424 " -24,"2,469,090 ","1,243,701 ","1,225,389 ","2,194,072 ","1,108,779 ","1,085,293 ","275,018 ","134,922 ","140,096 " -25,"2,453,530 ","1,221,412 ","1,232,118 ","2,175,210 ","1,085,060 ","1,090,150 ","278,320 ","136,352 ","141,968 " -26,"2,421,315 ","1,202,858 ","1,218,457 ","2,148,808 ","1,068,886 ","1,079,922 ","272,507 ","133,972 ","138,535 " -27,"2,384,695 ","1,182,501 ","1,202,194 ","2,122,357 ","1,053,681 ","1,068,676 ","262,338 ","128,820 ","133,518 " -28,"2,337,710 ","1,154,109 ","1,183,601 ","2,087,453 ","1,031,546 ","1,055,907 ","250,257 ","122,563 ","127,694 " -29,"2,295,259 ","1,127,743 ","1,167,516 ","2,055,131 ","1,009,909 ","1,045,222 ","240,128 ","117,834 ","122,294 " -30,"2,256,960 ","1,112,779 ","1,144,181 ","2,029,673 ","1,000,992 ","1,028,681 ","227,287 ","111,787 ","115,500 " -31,"2,238,474 ","1,104,282 ","1,134,192 ","2,013,829 ","994,615 ","1,019,214 ","224,645 ","109,667 ","114,978 " -32,"2,214,200 ","1,091,832 ","1,122,368 ","1,990,504 ","983,465 ","1,007,039 ","223,696 ","108,367 ","115,329 " -33,"2,189,649 ","1,078,711 ","1,110,938 ","1,965,523 ","971,118 ","994,405 ","224,126 ","107,593 ","116,533 " -34,"2,161,885 ","1,064,905 ","1,096,980 ","1,936,697 ","957,562 ","979,135 ","225,188 ","107,343 ","117,845 " -35,"2,140,581 ","1,051,413 ","1,089,168 ","1,908,232 ","941,345 ","966,887 ","232,349 ","110,068 ","122,281 " -36,"2,112,115 ","1,040,003 ","1,072,112 ","1,883,028 ","930,783 ","952,245 ","229,087 ","109,220 ","119,867 " -37,"2,090,911 ","1,030,494 ","1,060,417 ","1,865,151 ","922,121 ","943,030 ","225,760 ","108,373 ","117,387 " -38,"2,069,196 ","1,020,544 ","1,048,652 ","1,847,356 ","913,411 ","933,945 ","221,840 ","107,133 ","114,707 " -39,"2,045,819 ","1,009,723 ","1,036,096 ","1,826,934 ","903,475 ","923,459 ","218,885 ","106,248 ","112,637 " -40,"2,007,292 ","994,020 ","1,013,272 ","1,800,185 ","892,184 ","908,001 ","207,107 ","101,836 ","105,271 " -41,"1,958,930 ","971,655 ","987,275 ","1,760,703 ","873,823 ","886,880 ","198,227 ","97,832 ","100,395 " -42,"1,917,372 ","953,832 ","963,540 ","1,727,658 ","859,738 ","867,920 ","189,714 ","94,094 ","95,620 " -43,"1,880,246 ","938,193 ","942,053 ","1,698,524 ","847,616 ","850,908 ","181,722 ","90,577 ","91,145 " -44,"1,850,355 ","925,506 ","924,849 ","1,676,338 ","838,274 ","838,064 ","174,017 ","87,232 ","86,785 " -45,"1,831,507 ","916,770 ","914,737 ","1,659,650 ","830,816 ","828,834 ","171,857 ","85,954 ","85,903 " -46,"1,809,678 ","906,441 ","903,237 ","1,640,490 ","821,778 ","818,712 ","169,188 ","84,663 ","84,525 " -47,"1,779,521 ","891,744 ","887,777 ","1,612,827 ","808,329 ","804,498 ","166,694 ","83,415 ","83,279 " -48,"1,748,874 ","877,436 ","871,438 ","1,585,567 ","795,646 ","789,921 ","163,307 ","81,790 ","81,517 " -49,"1,720,258 ","865,404 ","854,854 ","1,561,161 ","785,461 ","775,700 ","159,097 ","79,943 ","79,154 " -50,"1,680,399 ","849,246 ","831,153 ","1,530,475 ","773,013 ","757,462 ","149,924 ","76,233 ","73,691 " -51,"1,638,326 ","829,632 ","808,694 ","1,495,709 ","756,983 ","738,726 ","142,617 ","72,649 ","69,968 " -52,"1,590,526 ","805,794 ","784,732 ","1,455,347 ","736,689 ","718,658 ","135,179 ","69,105 ","66,074 " -53,"1,538,123 ","779,061 ","759,062 ","1,410,380 ","713,508 ","696,872 ","127,743 ","65,553 ","62,190 " -54,"1,482,580 ","750,702 ","731,878 ","1,361,576 ","688,277 ","673,299 ","121,004 ","62,425 ","58,579 " -55,"1,429,278 ","722,215 ","707,063 ","1,313,564 ","662,633 ","650,931 ","115,714 ","59,582 ","56,132 " -56,"1,385,649 ","700,688 ","684,961 ","1,274,505 ","643,424 ","631,081 ","111,144 ","57,264 ","53,880 " -57,"1,338,883 ","677,984 ","660,899 ","1,232,719 ","623,193 ","609,526 ","106,164 ","54,791 ","51,373 " -58,"1,287,077 ","652,296 ","634,781 ","1,185,840 ","599,946 ","585,894 ","101,237 ","52,350 ","48,887 " -59,"1,232,443 ","624,150 ","608,293 ","1,135,633 ","574,015 ","561,618 ","96,810 ","50,135 ","46,675 " -60,"1,184,138 ","598,934 ","585,204 ","1,091,291 ","550,775 ","540,516 ","92,847 ","48,159 ","44,688 " -61,"1,147,117 ","577,759 ","569,358 ","1,058,344 ","531,707 ","526,637 ","88,773 ","46,052 ","42,721 " -62,"1,112,601 ","558,459 ","554,142 ","1,028,409 ","514,669 ","513,740 ","84,192 ","43,790 ","40,402 " -63,"1,080,073 ","539,845 ","540,228 ","1,000,549 ","498,376 ","502,173 ","79,524 ","41,469 ","38,055 " -64,"1,046,984 ","520,990 ","525,994 ","971,978 ","481,764 ","490,214 ","75,006 ","39,226 ","35,780 " -65,"1,006,869 ","498,335 ","508,534 ","936,825 ","461,663 ","475,162 ","70,044 ","36,672 ","33,372 " -66,"952,025 ","469,511 ","482,514 ","882,497 ","433,554 ","448,943 ","69,528 ","35,957 ","33,571 " -67,"894,929 ","439,688 ","455,241 ","829,534 ","406,077 ","423,457 ","65,395 ","33,611 ","31,784 " -68,"837,744 ","410,379 ","427,365 ","778,174 ","379,759 ","398,415 ","59,570 ","30,620 ","28,950 " -69,"785,327 ","383,782 ","401,545 ","730,261 ","355,504 ","374,757 ","55,066 ","28,278 ","26,788 " -70,"733,015 ","357,883 ","375,132 ","680,945 ","331,272 ","349,673 ","52,070 ","26,611 ","25,459 " -71,"678,958 ","330,554 ","348,404 ","631,340 ","306,241 ","325,099 ","47,618 ","24,313 ","23,305 " -72,"618,502 ","300,311 ","318,191 ","576,638 ","278,886 ","297,752 ","41,864 ","21,425 ","20,439 " -73,"558,285 ","270,225 ","288,060 ","521,813 ","251,542 ","270,271 ","36,472 ","18,683 ","17,789 " -74,"499,995 ","241,017 ","258,978 ","468,173 ","224,806 ","243,367 ","31,822 ","16,211 ","15,611 " -75,"446,262 ","213,458 ","232,804 ","418,883 ","199,637 ","219,246 ","27,379 ","13,821 ","13,558 " -76,"405,263 ","192,262 ","213,001 ","380,573 ","179,892 ","200,681 ","24,690 ","12,370 ","12,320 " -77,"367,324 ","172,941 ","194,383 ","345,038 ","161,768 ","183,270 ","22,286 ","11,173 ","11,113 " -78,"331,365 ","154,812 ","176,553 ","311,124 ","144,635 ","166,489 ","20,241 ","10,177 ","10,064 " -79,"297,125 ","137,580 ","159,545 ","278,533 ","128,231 ","150,302 ","18,592 ","9,349 ","9,243 " -80,"266,323 ","122,493 ","143,830 ","248,212 ","113,350 ","134,862 ","18,111 ","9,143 ","8,968 " -81,"212,110 ","96,886 ","115,224 ","198,526 ","90,386 ","108,140 ","13,584 ","6,500 ","7,084 " -82,"178,620 ","80,869 ","97,751 ","167,255 ","75,578 ","91,677 ","11,365 ","5,291 ","6,074 " -83,"154,842 ","69,323 ","85,519 ","144,672 ","64,629 ","80,043 ","10,170 ","4,694 ","5,476 " -84,"133,035 ","58,849 ","74,186 ","124,039 ","54,736 ","69,303 ","8,996 ","4,113 ","4,883 " -85+,"469,532 ","197,781 ","271,751 ","431,366 ","182,381 ","248,985 ","38,166 ","15,400 ","22,766 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1947.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1947.csv deleted file mode 100644 index 863a95f94e..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1947.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1947",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"144,126,071 ","71,945,892 ","72,180,179 ","129,059,434 ","64,507,124 ","64,552,310 ","15,066,637 ","7,438,768 ","7,627,869 " -,,,,,,,,, -0,"3,452,304 ","1,767,141 ","1,685,163 ","3,086,636 ","1,583,831 ","1,502,805 ","365,668 ","183,310 ","182,358 " -1,"2,496,515 ","1,272,932 ","1,223,583 ","2,204,633 ","1,126,450 ","1,078,183 ","291,882 ","146,482 ","145,400 " -2,"2,695,485 ","1,369,068 ","1,326,417 ","2,352,367 ","1,198,550 ","1,153,817 ","343,118 ","170,518 ","172,600 " -3,"2,800,738 ","1,421,613 ","1,379,125 ","2,455,132 ","1,249,246 ","1,205,886 ","345,606 ","172,367 ","173,239 " -4,"2,960,693 ","1,509,434 ","1,451,259 ","2,615,117 ","1,334,943 ","1,280,174 ","345,576 ","174,491 ","171,085 " -5,"2,531,834 ","1,287,939 ","1,243,895 ","2,216,599 ","1,130,743 ","1,085,856 ","315,235 ","157,196 ","158,039 " -6,"2,365,076 ","1,201,732 ","1,163,344 ","2,065,525 ","1,053,070 ","1,012,455 ","299,551 ","148,662 ","150,889 " -7,"2,248,431 ","1,141,544 ","1,106,887 ","1,960,755 ","999,352 ","961,403 ","287,676 ","142,192 ","145,484 " -8,"2,214,936 ","1,125,432 ","1,089,504 ","1,933,858 ","985,467 ","948,391 ","281,078 ","139,965 ","141,113 " -9,"2,190,853 ","1,112,670 ","1,078,183 ","1,911,974 ","974,071 ","937,903 ","278,879 ","138,599 ","140,280 " -10,"2,160,278 ","1,096,823 ","1,063,455 ","1,879,709 ","957,019 ","922,690 ","280,569 ","139,804 ","140,765 " -11,"2,159,237 ","1,103,705 ","1,055,532 ","1,874,509 ","957,923 ","916,586 ","284,728 ","145,782 ","138,946 " -12,"2,143,975 ","1,093,590 ","1,050,385 ","1,859,893 ","951,408 ","908,485 ","284,082 ","142,182 ","141,900 " -13,"2,104,091 ","1,070,398 ","1,033,693 ","1,825,276 ","931,587 ","893,689 ","278,815 ","138,811 ","140,004 " -14,"2,138,538 ","1,089,135 ","1,049,403 ","1,857,826 ","948,646 ","909,180 ","280,712 ","140,489 ","140,223 " -15,"2,211,141 ","1,127,484 ","1,083,657 ","1,930,160 ","986,317 ","943,843 ","280,981 ","141,167 ","139,814 " -16,"2,261,286 ","1,147,897 ","1,113,389 ","1,984,350 ","1,009,122 ","975,228 ","276,936 ","138,775 ","138,161 " -17,"2,267,345 ","1,138,804 ","1,128,541 ","1,995,141 ","1,005,425 ","989,716 ","272,204 ","133,379 ","138,825 " -18,"2,276,399 ","1,137,171 ","1,139,228 ","2,010,530 ","1,009,043 ","1,001,487 ","265,869 ","128,128 ","137,741 " -19,"2,291,909 ","1,140,463 ","1,151,446 ","2,031,572 ","1,016,268 ","1,015,304 ","260,337 ","124,195 ","136,142 " -20,"2,285,142 ","1,124,666 ","1,160,476 ","2,030,237 ","1,005,273 ","1,024,964 ","254,905 ","119,393 ","135,512 " -21,"2,324,104 ","1,145,473 ","1,178,631 ","2,067,513 ","1,025,118 ","1,042,395 ","256,591 ","120,355 ","136,236 " -22,"2,360,731 ","1,165,448 ","1,195,283 ","2,101,543 ","1,043,033 ","1,058,510 ","259,188 ","122,415 ","136,773 " -23,"2,401,690 ","1,185,774 ","1,215,916 ","2,136,913 ","1,059,620 ","1,077,293 ","264,777 ","126,154 ","138,623 " -24,"2,442,687 ","1,208,430 ","1,234,257 ","2,170,871 ","1,077,558 ","1,093,313 ","271,816 ","130,872 ","140,944 " -25,"2,483,725 ","1,235,034 ","1,248,691 ","2,204,711 ","1,098,956 ","1,105,755 ","279,014 ","136,078 ","142,936 " -26,"2,448,449 ","1,213,787 ","1,234,662 ","2,177,286 ","1,081,942 ","1,095,344 ","271,163 ","131,845 ","139,318 " -27,"2,413,397 ","1,194,849 ","1,218,548 ","2,148,965 ","1,066,028 ","1,082,937 ","264,432 ","128,821 ","135,611 " -28,"2,372,286 ","1,172,514 ","1,199,772 ","2,118,869 ","1,049,217 ","1,069,652 ","253,417 ","123,297 ","130,120 " -29,"2,321,150 ","1,142,911 ","1,178,239 ","2,080,856 ","1,026,298 ","1,054,558 ","240,294 ","116,613 ","123,681 " -30,"2,265,564 ","1,114,396 ","1,151,168 ","2,039,285 ","1,004,696 ","1,034,589 ","226,279 ","109,700 ","116,579 " -31,"2,257,716 ","1,112,717 ","1,144,999 ","2,030,882 ","1,002,647 ","1,028,235 ","226,834 ","110,070 ","116,764 " -32,"2,244,971 ","1,106,957 ","1,138,014 ","2,018,604 ","997,657 ","1,020,947 ","226,367 ","109,300 ","117,067 " -33,"2,224,760 ","1,095,942 ","1,128,818 ","1,997,549 ","987,141 ","1,010,408 ","227,211 ","108,801 ","118,410 " -34,"2,203,857 ","1,083,880 ","1,119,977 ","1,974,128 ","974,992 ","999,136 ","229,729 ","108,888 ","120,841 " -35,"2,192,389 ","1,076,143 ","1,116,246 ","1,954,417 ","964,017 ","990,400 ","237,972 ","112,126 ","125,846 " -36,"2,158,369 ","1,060,488 ","1,097,881 ","1,924,595 ","949,581 ","975,014 ","233,774 ","110,907 ","122,867 " -37,"2,124,922 ","1,046,763 ","1,078,159 ","1,895,968 ","937,394 ","958,574 ","228,954 ","109,369 ","119,585 " -38,"2,102,332 ","1,037,106 ","1,065,226 ","1,878,073 ","929,168 ","948,905 ","224,259 ","107,938 ","116,321 " -39,"2,079,473 ","1,026,974 ","1,052,499 ","1,860,639 ","920,902 ","939,737 ","218,834 ","106,072 ","112,762 " -40,"2,041,998 ","1,011,251 ","1,030,747 ","1,834,902 ","909,644 ","925,258 ","207,096 ","101,607 ","105,489 " -41,"1,996,154 ","990,933 ","1,005,221 ","1,795,380 ","891,880 ","903,500 ","200,774 ","99,053 ","101,721 " -42,"1,948,218 ","968,371 ","979,847 ","1,754,465 ","872,551 ","881,914 ","193,753 ","95,820 ","97,933 " -43,"1,907,212 ","950,633 ","956,579 ","1,720,628 ","858,043 ","862,585 ","186,584 ","92,590 ","93,994 " -44,"1,870,240 ","934,762 ","935,478 ","1,690,510 ","845,299 ","845,211 ","179,730 ","89,463 ","90,267 " -45,"1,843,392 ","922,327 ","921,065 ","1,666,077 ","834,134 ","831,943 ","177,315 ","88,193 ","89,122 " -46,"1,818,398 ","910,030 ","908,368 ","1,645,048 ","823,574 ","821,474 ","173,350 ","86,456 ","86,894 " -47,"1,795,102 ","898,724 ","896,378 ","1,625,501 ","814,011 ","811,490 ","169,601 ","84,713 ","84,888 " -48,"1,762,738 ","882,868 ","879,870 ","1,596,411 ","799,711 ","796,700 ","166,327 ","83,157 ","83,170 " -49,"1,729,845 ","867,493 ","862,352 ","1,567,531 ","786,189 ","781,342 ","162,314 ","81,304 ","81,010 " -50,"1,692,642 ","851,433 ","841,209 ","1,538,317 ","773,300 ","765,017 ","154,325 ","78,133 ","76,192 " -51,"1,650,150 ","832,145 ","818,005 ","1,505,140 ","758,172 ","746,968 ","145,010 ","73,973 ","71,037 " -52,"1,609,055 ","812,700 ","796,355 ","1,470,685 ","742,156 ","728,529 ","138,370 ","70,544 ","67,826 " -53,"1,561,080 ","788,331 ","772,749 ","1,429,812 ","721,312 ","708,500 ","131,268 ","67,019 ","64,249 " -54,"1,508,265 ","760,996 ","747,269 ","1,384,145 ","697,403 ","686,742 ","124,120 ","63,593 ","60,527 " -55,"1,456,358 ","733,470 ","722,888 ","1,337,779 ","672,762 ","665,017 ","118,579 ","60,708 ","57,871 " -56,"1,411,558 ","711,588 ","699,970 ","1,297,735 ","653,270 ","644,465 ","113,823 ","58,318 ","55,505 " -57,"1,366,869 ","689,644 ","677,225 ","1,257,834 ","633,705 ","624,129 ","109,035 ","55,939 ","53,096 " -58,"1,319,167 ","666,634 ","652,533 ","1,215,259 ","613,200 ","602,059 ","103,908 ","53,434 ","50,474 " -59,"1,266,735 ","640,818 ","625,917 ","1,167,807 ","589,818 ","577,989 ","98,928 ","51,000 ","47,928 " -60,"1,216,288 ","615,606 ","600,682 ","1,121,863 ","566,703 ","555,160 ","94,425 ","48,903 ","45,522 " -61,"1,177,676 ","593,328 ","584,348 ","1,087,427 ","546,618 ","540,809 ","90,249 ","46,710 ","43,539 " -62,"1,138,912 ","570,845 ","568,067 ","1,052,715 ","526,276 ","526,439 ","86,197 ","44,569 ","41,628 " -63,"1,103,536 ","550,846 ","552,690 ","1,021,982 ","508,582 ","513,400 ","81,554 ","42,264 ","39,290 " -64,"1,070,273 ","531,592 ","538,681 ","993,496 ","491,705 ","501,791 ","76,777 ","39,887 ","36,890 " -65,"1,034,139 ","510,337 ","523,802 ","962,071 ","472,870 ","489,201 ","72,068 ","37,467 ","34,601 " -66,"976,989 ","480,713 ","496,276 ","909,431 ","445,635 ","463,796 ","67,558 ","35,078 ","32,480 " -67,"921,066 ","451,576 ","469,490 ","853,495 ","416,975 ","436,520 ","67,571 ","34,601 ","32,970 " -68,"862,752 ","421,385 ","441,367 ","799,253 ","389,095 ","410,158 ","63,499 ","32,290 ","31,209 " -69,"803,908 ","391,540 ","412,368 ","746,427 ","362,299 ","384,128 ","57,481 ","29,241 ","28,240 " -70,"746,032 ","363,039 ","382,993 ","693,413 ","336,249 ","357,164 ","52,619 ","26,790 ","25,829 " -71,"692,160 ","335,847 ","356,313 ","643,922 ","311,297 ","332,625 ","48,238 ","24,550 ","23,688 " -72,"639,320 ","309,163 ","330,157 ","595,281 ","286,776 ","308,505 ","44,039 ","22,387 ","21,652 " -73,"579,458 ","279,318 ","300,140 ","541,028 ","259,728 ","281,300 ","38,430 ","19,590 ","18,840 " -74,"520,019 ","249,721 ","270,298 ","486,817 ","232,776 ","254,041 ","33,202 ","16,945 ","16,257 " -75,"465,441 ","222,026 ","243,415 ","436,848 ","207,500 ","229,348 ","28,593 ","14,526 ","14,067 " -76,"421,680 ","199,739 ","221,941 ","396,091 ","186,807 ","209,284 ","25,589 ","12,932 ","12,657 " -77,"380,611 ","178,790 ","201,821 ","357,515 ","167,220 ","190,295 ","23,096 ","11,570 ","11,526 " -78,"343,142 ","159,989 ","183,153 ","322,263 ","149,515 ","172,748 ","20,879 ","10,474 ","10,405 " -79,"308,131 ","142,616 ","165,515 ","289,075 ","133,015 ","156,060 ","19,056 ","9,601 ","9,455 " -80,"276,510 ","127,127 ","149,383 ","258,438 ","118,016 ","140,422 ","18,072 ","9,111 ","8,961 " -81,"241,853 ","110,007 ","131,846 ","225,001 ","101,674 ","123,327 ","16,852 ","8,333 ","8,519 " -82,"188,433 ","85,072 ","103,361 ","176,135 ","79,342 ","96,793 ","12,298 ","5,730 ","6,568 " -83,"156,728 ","70,042 ","86,686 ","146,597 ","65,466 ","81,131 ","10,131 ","4,576 ","5,555 " -84,"134,778 ","59,469 ","75,309 ","125,759 ","55,435 ","70,324 ","9,019 ","4,034 ","4,985 " -85+,"492,282 ","205,781 ","286,501 ","452,659 ","189,697 ","262,962 ","39,623 ","16,084 ","23,539 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1948.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1948.csv deleted file mode 100644 index 45b993a961..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1948.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1948",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"146,631,302 ","73,129,684 ","73,501,618 ","131,308,208 ","65,582,129 ","65,726,079 ","15,323,094 ","7,547,555 ","7,775,539 " -,,,,,,,,, -0,"3,169,318 ","1,622,336 ","1,546,982 ","2,792,229 ","1,432,613 ","1,359,616 ","377,089 ","189,723 ","187,366 " -1,"3,514,716 ","1,795,136 ","1,719,580 ","3,145,712 ","1,608,945 ","1,536,767 ","369,004 ","186,191 ","182,813 " -2,"2,680,284 ","1,359,864 ","1,320,420 ","2,342,288 ","1,192,055 ","1,150,233 ","337,996 ","167,809 ","170,187 " -3,"2,759,307 ","1,401,297 ","1,358,010 ","2,408,481 ","1,227,469 ","1,181,012 ","350,826 ","173,828 ","176,998 " -4,"2,795,306 ","1,424,228 ","1,371,078 ","2,452,912 ","1,251,365 ","1,201,547 ","342,394 ","172,863 ","169,531 " -5,"2,885,424 ","1,469,383 ","1,416,041 ","2,556,024 ","1,304,817 ","1,251,207 ","329,400 ","164,566 ","164,834 " -6,"2,539,920 ","1,291,849 ","1,248,071 ","2,224,713 ","1,134,579 ","1,090,134 ","315,207 ","157,270 ","157,937 " -7,"2,375,063 ","1,206,605 ","1,168,458 ","2,075,066 ","1,057,650 ","1,017,416 ","299,997 ","148,955 ","151,042 " -8,"2,253,977 ","1,144,003 ","1,109,974 ","1,966,419 ","1,001,876 ","964,543 ","287,558 ","142,127 ","145,431 " -9,"2,225,928 ","1,131,221 ","1,094,707 ","1,942,325 ","989,831 ","952,494 ","283,603 ","141,390 ","142,213 " -10,"2,256,007 ","1,151,048 ","1,104,959 ","1,962,045 ","1,002,686 ","959,359 ","293,962 ","148,362 ","145,600 " -11,"2,155,505 ","1,094,383 ","1,061,122 ","1,874,472 ","953,790 ","920,682 ","281,033 ","140,593 ","140,440 " -12,"2,152,157 ","1,098,160 ","1,053,997 ","1,872,153 ","956,234 ","915,919 ","280,004 ","141,926 ","138,078 " -13,"2,146,282 ","1,091,974 ","1,054,308 ","1,864,346 ","950,788 ","913,558 ","281,936 ","141,186 ","140,750 " -14,"2,098,916 ","1,065,727 ","1,033,189 ","1,824,500 ","929,176 ","895,324 ","274,416 ","136,551 ","137,865 " -15,"2,119,785 ","1,073,340 ","1,046,445 ","1,852,089 ","940,551 ","911,538 ","267,696 ","132,789 ","134,907 " -16,"2,188,582 ","1,110,025 ","1,078,557 ","1,916,424 ","974,839 ","941,585 ","272,158 ","135,186 ","136,972 " -17,"2,248,389 ","1,137,613 ","1,110,776 ","1,978,798 ","1,003,702 ","975,096 ","269,591 ","133,911 ","135,680 " -18,"2,255,787 ","1,130,167 ","1,125,620 ","1,989,542 ","1,001,072 ","988,470 ","266,245 ","129,095 ","137,150 " -19,"2,259,307 ","1,124,056 ","1,135,251 ","1,998,966 ","1,000,168 ","998,798 ","260,341 ","123,888 ","136,453 " -20,"2,285,900 ","1,136,351 ","1,149,549 ","2,027,533 ","1,014,458 ","1,013,075 ","258,367 ","121,893 ","136,474 " -21,"2,319,466 ","1,146,391 ","1,173,075 ","2,059,003 ","1,024,000 ","1,035,003 ","260,463 ","122,391 ","138,072 " -22,"2,357,125 ","1,165,079 ","1,192,046 ","2,095,083 ","1,041,622 ","1,053,461 ","262,042 ","123,457 ","138,585 " -23,"2,392,841 ","1,183,062 ","1,209,779 ","2,128,605 ","1,057,773 ","1,070,832 ","264,236 ","125,289 ","138,947 " -24,"2,438,485 ","1,206,138 ","1,232,347 ","2,168,138 ","1,076,735 ","1,091,403 ","270,347 ","129,403 ","140,944 " -25,"2,482,261 ","1,226,459 ","1,255,802 ","2,204,583 ","1,092,096 ","1,112,487 ","277,678 ","134,363 ","143,315 " -26,"2,475,886 ","1,223,964 ","1,251,922 ","2,202,891 ","1,091,664 ","1,111,227 ","272,995 ","132,300 ","140,695 " -27,"2,439,451 ","1,203,563 ","1,235,888 ","2,174,651 ","1,075,647 ","1,099,004 ","264,800 ","127,916 ","136,884 " -28,"2,401,518 ","1,184,262 ","1,217,256 ","2,144,387 ","1,060,021 ","1,084,366 ","257,131 ","124,241 ","132,890 " -29,"2,355,928 ","1,159,978 ","1,195,950 ","2,110,697 ","1,041,656 ","1,069,041 ","245,231 ","118,322 ","126,909 " -30,"2,294,302 ","1,128,073 ","1,166,229 ","2,064,800 ","1,017,780 ","1,047,020 ","229,502 ","110,293 ","119,209 " -31,"2,271,774 ","1,116,998 ","1,154,776 ","2,044,337 ","1,007,817 ","1,036,520 ","227,437 ","109,181 ","118,256 " -32,"2,267,910 ","1,116,414 ","1,151,496 ","2,038,404 ","1,006,140 ","1,032,264 ","229,506 ","110,274 ","119,232 " -33,"2,260,742 ","1,113,294 ","1,147,448 ","2,029,670 ","1,002,551 ","1,027,119 ","231,072 ","110,743 ","120,329 " -34,"2,244,367 ","1,103,584 ","1,140,783 ","2,010,742 ","992,604 ","1,018,138 ","233,625 ","110,980 ","122,645 " -35,"2,236,444 ","1,096,285 ","1,140,159 ","1,995,212 ","982,811 ","1,012,401 ","241,232 ","113,474 ","127,758 " -36,"2,212,893 ","1,086,166 ","1,126,727 ","1,973,610 ","973,000 ","1,000,610 ","239,283 ","113,166 ","126,117 " -37,"2,174,615 ","1,069,044 ","1,105,571 ","1,941,202 ","957,867 ","983,335 ","233,413 ","111,177 ","122,236 " -38,"2,136,018 ","1,052,940 ","1,083,078 ","1,909,070 ","944,031 ","965,039 ","226,948 ","108,909 ","118,039 " -39,"2,111,912 ","1,043,067 ","1,068,845 ","1,891,090 ","936,203 ","954,887 ","220,822 ","106,864 ","113,958 " -40,"2,078,552 ","1,029,493 ","1,049,059 ","1,869,329 ","927,118 ","942,211 ","209,223 ","102,375 ","106,848 " -41,"2,029,377 ","1,007,516 ","1,021,861 ","1,827,402 ","908,112 ","919,290 ","201,975 ","99,404 ","102,571 " -42,"1,983,367 ","986,351 ","997,016 ","1,786,344 ","889,050 ","897,294 ","197,023 ","97,301 ","99,722 " -43,"1,935,626 ","963,512 ","972,114 ","1,744,023 ","868,764 ","875,259 ","191,603 ","94,748 ","96,855 " -44,"1,894,965 ","945,768 ","949,197 ","1,709,416 ","853,824 ","855,592 ","185,549 ","91,944 ","93,605 " -45,"1,858,794 ","929,296 ","929,498 ","1,676,377 ","839,015 ","837,362 ","182,417 ","90,281 ","92,136 " -46,"1,825,025 ","912,579 ","912,446 ","1,646,572 ","824,071 ","822,501 ","178,453 ","88,508 ","89,945 " -47,"1,798,981 ","899,653 ","899,328 ","1,625,470 ","813,302 ","812,168 ","173,511 ","86,351 ","87,160 " -48,"1,774,208 ","887,369 ","886,839 ","1,605,539 ","803,210 ","802,329 ","168,669 ","84,159 ","84,510 " -49,"1,739,720 ","870,393 ","869,327 ","1,575,106 ","788,095 ","787,011 ","164,614 ","82,298 ","82,316 " -50,"1,702,025 ","852,825 ","849,200 ","1,544,348 ","773,450 ","770,898 ","157,677 ","79,375 ","78,302 " -51,"1,665,894 ","835,848 ","830,046 ","1,516,783 ","760,244 ","756,539 ","149,111 ","75,604 ","73,507 " -52,"1,623,728 ","816,441 ","807,287 ","1,483,595 ","744,921 ","738,674 ","140,133 ","71,520 ","68,613 " -53,"1,583,310 ","797,000 ","786,310 ","1,449,274 ","728,830 ","720,444 ","134,036 ","68,170 ","65,866 " -54,"1,535,143 ","772,198 ","762,945 ","1,407,701 ","707,326 ","700,375 ","127,442 ","64,872 ","62,570 " -55,"1,484,755 ","745,341 ","739,414 ","1,363,556 ","683,742 ","679,814 ","121,199 ","61,599 ","59,600 " -56,"1,442,446 ","724,913 ","717,533 ","1,326,518 ","666,018 ","660,500 ","115,928 ","58,895 ","57,033 " -57,"1,396,999 ","702,809 ","694,190 ","1,286,066 ","646,361 ","639,705 ","110,933 ","56,448 ","54,485 " -58,"1,351,115 ","680,382 ","670,733 ","1,245,135 ","626,345 ","618,790 ","105,980 ","54,037 ","51,943 " -59,"1,302,307 ","656,951 ","645,356 ","1,201,549 ","605,423 ","596,126 ","100,758 ","51,528 ","49,230 " -60,"1,250,876 ","632,295 ","618,581 ","1,155,364 ","583,212 ","572,152 ","95,512 ","49,083 ","46,429 " -61,"1,208,191 ","609,100 ","599,091 ","1,117,229 ","562,313 ","554,916 ","90,962 ","46,787 ","44,175 " -62,"1,168,070 ","585,679 ","582,391 ","1,081,228 ","541,087 ","540,141 ","86,842 ","44,592 ","42,250 " -63,"1,127,595 ","561,945 ","565,650 ","1,044,745 ","519,493 ","525,252 ","82,850 ","42,452 ","40,398 " -64,"1,091,411 ","541,263 ","550,148 ","1,013,221 ","501,121 ","512,100 ","78,190 ","40,142 ","38,048 " -65,"1,056,568 ","520,363 ","536,205 ","983,199 ","482,679 ","500,520 ","73,369 ","37,684 ","35,685 " -66,"1,003,249 ","491,537 ","511,712 ","934,102 ","456,111 ","477,991 ","69,147 ","35,426 ","33,721 " -67,"943,896 ","461,142 ","482,754 ","879,301 ","428,072 ","451,229 ","64,595 ","33,070 ","31,525 " -68,"886,928 ","431,746 ","455,182 ","821,833 ","398,937 ","422,896 ","65,095 ","32,809 ","32,286 " -69,"827,581 ","401,346 ","426,235 ","766,464 ","370,781 ","395,683 ","61,117 ","30,565 ","30,552 " -70,"764,571 ","370,164 ","394,407 ","709,800 ","342,720 ","367,080 ","54,771 ","27,444 ","27,327 " -71,"703,972 ","340,093 ","363,879 ","656,086 ","315,848 ","340,238 ","47,886 ","24,245 ","23,641 " -72,"651,311 ","313,521 ","337,790 ","607,467 ","291,339 ","316,128 ","43,844 ","22,182 ","21,662 " -73,"599,664 ","287,510 ","312,154 ","559,717 ","267,329 ","292,388 ","39,947 ","20,181 ","19,766 " -74,"540,619 ","258,221 ","282,398 ","506,026 ","240,687 ","265,339 ","34,593 ","17,534 ","17,059 " -75,"483,946 ","229,914 ","254,032 ","454,425 ","214,899 ","239,526 ","29,521 ","15,015 ","14,506 " -76,"439,022 ","207,317 ","231,705 ","412,643 ","193,934 ","218,709 ","26,379 ","13,383 ","12,996 " -77,"395,622 ","185,486 ","210,136 ","371,980 ","173,567 ","198,413 ","23,642 ","11,919 ","11,723 " -78,"354,768 ","164,955 ","189,813 ","333,413 ","154,296 ","179,117 ","21,355 ","10,659 ","10,696 " -79,"317,994 ","146,787 ","171,207 ","298,665 ","137,120 ","161,545 ","19,329 ","9,667 ","9,662 " -80,"284,995 ","130,786 ","154,209 ","266,996 ","121,741 ","145,255 ","17,999 ","9,045 ","8,954 " -81,"249,961 ","113,520 ","136,441 ","233,235 ","105,283 ","127,952 ","16,726 ","8,237 ","8,489 " -82,"216,689 ","97,258 ","119,431 ","201,119 ","89,755 ","111,364 ","15,570 ","7,503 ","8,067 " -83,"164,938 ","73,408 ","91,530 ","153,911 ","68,440 ","85,471 ","11,027 ","4,968 ","6,059 " -84,"135,380 ","59,543 ","75,837 ","126,449 ","55,663 ","70,786 ","8,931 ","3,880 ","5,051 " -85+,"517,350 ","214,620 ","302,730 ","476,275 ","197,799 ","278,476 ","41,075 ","16,821 ","24,254 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1949.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1949.csv deleted file mode 100644 index 3b7ff39548..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1949.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1949",,,,,,,,, - (Excludes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"149,188,130 ","74,335,435 ","74,852,695 ","133,598,298 ","66,677,722 ","66,920,576 ","15,589,832 ","7,657,713 ","7,932,119 " -,,,,,,,,, -0,"3,169,644 ","1,619,499 ","1,550,145 ","2,766,342 ","1,416,977 ","1,349,365 ","403,302 ","202,522 ","200,780 " -1,"3,269,273 ","1,671,192 ","1,598,081 ","2,885,761 ","1,476,869 ","1,408,892 ","383,512 ","194,323 ","189,189 " -2,"3,706,727 ","1,884,808 ","1,821,919 ","3,286,239 ","1,675,131 ","1,611,108 ","420,488 ","209,677 ","210,811 " -3,"2,710,023 ","1,374,748 ","1,335,275 ","2,371,754 ","1,207,415 ","1,164,339 ","338,269 ","167,333 ","170,936 " -4,"2,751,429 ","1,403,439 ","1,347,990 ","2,405,452 ","1,229,606 ","1,175,846 ","345,977 ","173,833 ","172,144 " -5,"2,727,530 ","1,387,787 ","1,339,743 ","2,400,380 ","1,224,402 ","1,175,978 ","327,150 ","163,385 ","163,765 " -6,"2,889,816 ","1,471,481 ","1,418,335 ","2,560,557 ","1,306,843 ","1,253,714 ","329,259 ","164,638 ","164,621 " -7,"2,546,627 ","1,295,147 ","1,251,480 ","2,230,990 ","1,137,528 ","1,093,462 ","315,637 ","157,619 ","158,018 " -8,"2,376,632 ","1,207,108 ","1,169,524 ","2,076,885 ","1,058,231 ","1,018,654 ","299,747 ","148,877 ","150,870 " -9,"2,261,929 ","1,148,402 ","1,113,527 ","1,971,543 ","1,004,623 ","966,920 ","290,386 ","143,779 ","146,607 " -10,"2,280,422 ","1,163,486 ","1,116,936 ","1,985,263 ","1,014,299 ","970,964 ","295,159 ","149,187 ","145,972 " -11,"2,250,172 ","1,146,897 ","1,103,275 ","1,957,946 ","999,547 ","958,399 ","292,226 ","147,350 ","144,876 " -12,"2,151,902 ","1,091,467 ","1,060,435 ","1,873,884 ","952,560 ","921,324 ","278,018 ","138,907 ","139,111 " -13,"2,148,710 ","1,095,301 ","1,053,409 ","1,871,711 ","955,086 ","916,625 ","276,999 ","140,215 ","136,784 " -14,"2,136,172 ","1,082,610 ","1,053,562 ","1,862,032 ","946,322 ","915,710 ","274,140 ","136,288 ","137,852 " -15,"2,082,363 ","1,053,247 ","1,029,116 ","1,821,431 ","925,126 ","896,305 ","260,932 ","128,121 ","132,811 " -16,"2,106,021 ","1,064,815 ","1,041,206 ","1,846,031 ","936,982 ","909,049 ","259,990 ","127,833 ","132,157 " -17,"2,178,016 ","1,102,234 ","1,075,782 ","1,911,876 ","971,012 ","940,864 ","266,140 ","131,222 ","134,918 " -18,"2,247,525 ","1,136,987 ","1,110,538 ","1,982,611 ","1,006,044 ","976,567 ","264,914 ","130,943 ","133,971 " -19,"2,256,122 ","1,131,021 ","1,125,101 ","1,993,320 ","1,004,427 ","988,893 ","262,802 ","126,594 ","136,208 " -20,"2,257,371 ","1,122,125 ","1,135,246 ","1,998,679 ","1,000,044 ","998,635 ","258,692 ","122,081 ","136,611 " -21,"2,305,216 ","1,142,431 ","1,162,785 ","2,043,770 ","1,019,916 ","1,023,854 ","261,446 ","122,515 ","138,931 " -22,"2,343,412 ","1,156,669 ","1,186,743 ","2,080,035 ","1,033,517 ","1,046,518 ","263,377 ","123,152 ","140,225 " -23,"2,379,639 ","1,173,045 ","1,206,594 ","2,114,799 ","1,048,727 ","1,066,072 ","264,840 ","124,318 ","140,522 " -24,"2,414,353 ","1,188,898 ","1,225,455 ","2,147,744 ","1,062,995 ","1,084,749 ","266,609 ","125,903 ","140,706 " -25,"2,464,955 ","1,214,264 ","1,250,691 ","2,192,193 ","1,084,083 ","1,108,110 ","272,762 ","130,181 ","142,581 " -26,"2,483,764 ","1,221,624 ","1,262,140 ","2,211,470 ","1,091,061 ","1,120,409 ","272,294 ","130,563 ","141,731 " -27,"2,473,549 ","1,216,436 ","1,257,113 ","2,206,199 ","1,088,150 ","1,118,049 ","267,350 ","128,286 ","139,064 " -28,"2,435,782 ","1,196,821 ","1,238,961 ","2,176,987 ","1,073,062 ","1,103,925 ","258,795 ","123,759 ","135,036 " -29,"2,394,819 ","1,177,088 ","1,217,731 ","2,144,644 ","1,057,648 ","1,086,996 ","250,175 ","119,440 ","130,735 " -30,"2,341,457 ","1,149,992 ","1,191,465 ","2,104,715 ","1,037,264 ","1,067,451 ","236,742 ","112,728 ","124,014 " -31,"2,298,548 ","1,128,994 ","1,169,554 ","2,069,381 ","1,020,264 ","1,049,117 ","229,167 ","108,730 ","120,437 " -32,"2,279,142 ","1,119,329 ","1,159,813 ","2,051,245 ","1,011,313 ","1,039,932 ","227,897 ","108,016 ","119,881 " -33,"2,279,116 ","1,119,771 ","1,159,345 ","2,047,760 ","1,010,017 ","1,037,743 ","231,356 ","109,754 ","121,602 " -34,"2,277,263 ","1,119,129 ","1,158,134 ","2,042,458 ","1,007,776 ","1,034,682 ","234,805 ","111,353 ","123,452 " -35,"2,269,282 ","1,112,707 ","1,156,575 ","2,028,957 ","999,684 ","1,029,273 ","240,325 ","113,023 ","127,302 " -36,"2,260,055 ","1,108,762 ","1,151,293 ","2,017,321 ","994,315 ","1,023,006 ","242,734 ","114,447 ","128,287 " -37,"2,232,742 ","1,097,081 ","1,135,661 ","1,993,208 ","983,544 ","1,009,664 ","239,534 ","113,537 ","125,997 " -38,"2,189,973 ","1,078,400 ","1,111,573 ","1,958,122 ","967,679 ","990,443 ","231,851 ","110,721 ","121,130 " -39,"2,145,958 ","1,059,769 ","1,086,189 ","1,922,345 ","952,097 ","970,248 ","223,613 ","107,672 ","115,941 " -40,"2,115,385 ","1,047,816 ","1,067,569 ","1,901,448 ","943,719 ","957,729 ","213,937 ","104,097 ","109,840 " -41,"2,064,907 ","1,025,670 ","1,039,237 ","1,860,273 ","925,232 ","935,041 ","204,634 ","100,438 ","104,196 " -42,"2,016,513 ","1,003,536 ","1,012,977 ","1,818,051 ","905,647 ","912,404 ","198,462 ","97,889 ","100,573 " -43,"1,970,113 ","981,444 ","988,669 ","1,775,425 ","885,263 ","890,162 ","194,688 ","96,181 ","98,507 " -44,"1,922,326 ","958,208 ","964,118 ","1,731,688 ","863,989 ","867,699 ","190,638 ","94,219 ","96,419 " -45,"1,882,292 ","940,272 ","942,020 ","1,695,486 ","847,947 ","847,539 ","186,806 ","92,325 ","94,481 " -46,"1,838,111 ","918,578 ","919,533 ","1,654,873 ","827,974 ","826,899 ","183,238 ","90,604 ","92,634 " -47,"1,803,349 ","901,329 ","902,020 ","1,624,972 ","812,904 ","812,068 ","178,377 ","88,425 ","89,952 " -48,"1,776,211 ","887,745 ","888,466 ","1,603,768 ","801,902 ","801,866 ","172,443 ","85,843 ","86,600 " -49,"1,749,947 ","874,468 ","875,479 ","1,583,456 ","791,273 ","792,183 ","166,491 ","83,195 ","83,296 " -50,"1,712,727 ","856,090 ","856,637 ","1,552,191 ","775,480 ","776,711 ","160,536 ","80,610 ","79,926 " -51,"1,682,690 ","841,116 ","841,574 ","1,529,692 ","763,872 ","765,820 ","152,998 ","77,244 ","75,754 " -52,"1,646,371 ","823,806 ","822,565 ","1,501,503 ","750,211 ","751,292 ","144,868 ","73,595 ","71,273 " -53,"1,604,143 ","804,048 ","800,095 ","1,468,078 ","734,578 ","733,500 ","136,065 ","69,470 ","66,595 " -54,"1,564,272 ","784,648 ","779,624 ","1,433,626 ","718,250 ","715,376 ","130,646 ","66,398 ","64,248 " -55,"1,516,941 ","759,773 ","757,168 ","1,392,243 ","696,568 ","695,675 ","124,698 ","63,205 ","61,493 " -56,"1,475,948 ","739,838 ","736,110 ","1,357,273 ","679,832 ","677,441 ","118,675 ","60,006 ","58,669 " -57,"1,432,120 ","718,631 ","713,489 ","1,319,031 ","661,437 ","657,594 ","113,089 ","57,194 ","55,895 " -58,"1,385,852 ","696,208 ","689,644 ","1,277,975 ","641,517 ","636,458 ","107,877 ","54,691 ","53,186 " -59,"1,338,570 ","673,157 ","665,413 ","1,235,794 ","620,911 ","614,883 ","102,776 ","52,246 ","50,530 " -60,"1,288,833 ","649,619 ","639,214 ","1,191,526 ","599,921 ","591,605 ","97,307 ","49,698 ","47,609 " -61,"1,241,151 ","625,661 ","615,490 ","1,148,775 ","578,353 ","570,422 ","92,376 ","47,308 ","45,068 " -62,"1,197,006 ","601,406 ","595,600 ","1,109,086 ","556,383 ","552,703 ","87,920 ","45,023 ","42,897 " -63,"1,155,375 ","576,854 ","578,521 ","1,071,541 ","534,041 ","537,500 ","83,834 ","42,813 ","41,021 " -64,"1,113,252 ","551,866 ","561,386 ","1,033,368 ","511,203 ","522,165 ","79,884 ","40,663 ","39,221 " -65,"1,076,033 ","530,061 ","545,972 ","1,000,798 ","491,742 ","509,056 ","75,235 ","38,319 ","36,916 " -66,"1,028,685 ","502,744 ","525,941 ","957,343 ","466,560 ","490,783 ","71,342 ","36,184 ","35,158 " -67,"973,497 ","473,294 ","500,203 ","906,457 ","439,366 ","467,091 ","67,040 ","33,928 ","33,112 " -68,"911,770 ","442,076 ","469,694 ","849,368 ","410,503 ","438,865 ","62,402 ","31,573 ","30,829 " -69,"853,694 ","412,434 ","441,260 ","790,341 ","380,932 ","409,409 ","63,353 ","31,502 ","31,851 " -70,"792,016 ","381,411 ","410,605 ","732,684 ","352,139 ","380,545 ","59,332 ","29,272 ","30,060 " -71,"722,681 ","347,602 ","375,079 ","673,207 ","322,717 ","350,490 ","49,474 ","24,885 ","24,589 " -72,"662,917 ","317,989 ","344,928 ","619,972 ","296,148 ","323,824 ","42,945 ","21,841 ","21,104 " -73,"611,363 ","291,978 ","319,385 ","572,104 ","272,035 ","300,069 ","39,259 ","19,943 ","19,316 " -74,"560,892 ","266,628 ","294,264 ","525,200 ","248,526 ","276,674 ","35,692 ","18,102 ","17,590 " -75,"503,685 ","238,281 ","265,404 ","473,073 ","222,683 ","250,390 ","30,612 ","15,598 ","15,014 " -76,"456,761 ","214,902 ","241,859 ","429,497 ","201,016 ","228,481 ","27,264 ","13,886 ","13,378 " -77,"411,848 ","192,563 ","219,285 ","387,486 ","180,200 ","207,286 ","24,362 ","12,363 ","11,999 " -78,"368,991 ","171,294 ","197,697 ","347,128 ","160,280 ","186,848 ","21,863 ","11,014 ","10,849 " -79,"328,591 ","151,295 ","177,296 ","308,834 ","141,452 ","167,382 ","19,757 ","9,843 ","9,914 " -80,"293,069 ","134,049 ","159,020 ","275,044 ","125,054 ","149,990 ","18,025 ","8,995 ","9,030 " -81,"257,090 ","116,431 ","140,659 ","240,480 ","108,297 ","132,183 ","16,610 ","8,134 ","8,476 " -82,"223,357 ","100,015 ","123,342 ","207,979 ","92,648 ","115,331 ","15,378 ","7,367 ","8,011 " -83,"191,755 ","84,743 ","107,012 ","177,460 ","78,059 ","99,401 ","14,295 ","6,684 ","7,611 " -84,"142,408 ","62,313 ","80,095 ","132,605 ","58,072 ","74,533 ","9,803 ","4,241 ","5,562 " -85+,"549,171 ","226,534 ","322,637 ","506,056 ","208,700 ","297,356 ","43,115 ","17,834 ","25,281 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1950.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1950.csv deleted file mode 100644 index a858e02fb7..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1950.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1950",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"152,271,417 ","75,849,012 ","76,422,405 ","135,983,517 ","67,848,105 ","68,135,412 ","16,287,900 ","8,000,907 ","8,286,993 " -,,,,,,,,, -0,"3,162,567 ","1,610,341 ","1,552,226 ","2,740,809 ","1,400,021 ","1,340,788 ","421,758 ","210,320 ","211,438 " -1,"3,299,863 ","1,686,351 ","1,613,512 ","2,879,756 ","1,473,420 ","1,406,336 ","420,107 ","212,931 ","207,176 " -2,"3,450,042 ","1,754,498 ","1,695,544 ","3,005,301 ","1,531,870 ","1,473,431 ","444,741 ","222,628 ","222,113 " -3,"3,771,883 ","1,919,107 ","1,852,776 ","3,341,832 ","1,704,850 ","1,636,982 ","430,051 ","214,257 ","215,794 " -4,"2,725,600 ","1,391,679 ","1,333,921 ","2,379,978 ","1,217,498 ","1,162,480 ","345,622 ","174,181 ","171,441 " -5,"2,714,560 ","1,382,477 ","1,332,083 ","2,369,875 ","1,211,061 ","1,158,814 ","344,685 ","171,416 ","173,269 " -6,"2,755,636 ","1,401,978 ","1,353,658 ","2,416,269 ","1,232,218 ","1,184,051 ","339,367 ","169,760 ","169,607 " -7,"2,932,959 ","1,499,744 ","1,433,215 ","2,591,230 ","1,328,639 ","1,262,591 ","341,729 ","171,105 ","170,624 " -8,"2,569,056 ","1,306,316 ","1,262,740 ","2,242,443 ","1,143,028 ","1,099,415 ","326,613 ","163,288 ","163,325 " -9,"2,402,326 ","1,220,275 ","1,182,051 ","2,090,921 ","1,065,295 ","1,025,626 ","311,405 ","154,980 ","156,425 " -10,"2,325,360 ","1,184,464 ","1,140,896 ","2,017,361 ","1,030,259 ","987,102 ","307,999 ","154,205 ","153,794 " -11,"2,292,510 ","1,168,718 ","1,123,792 ","1,990,505 ","1,016,393 ","974,112 ","302,005 ","152,325 ","149,680 " -12,"2,265,018 ","1,153,672 ","1,111,346 ","1,968,124 ","1,004,367 ","963,757 ","296,894 ","149,305 ","147,589 " -13,"2,166,039 ","1,097,841 ","1,068,198 ","1,883,407 ","956,993 ","926,414 ","282,632 ","140,848 ","141,784 " -14,"2,163,732 ","1,101,978 ","1,061,754 ","1,882,014 ","959,795 ","922,219 ","281,718 ","142,183 ","139,535 " -15,"2,132,602 ","1,075,995 ","1,056,607 ","1,860,646 ","942,751 ","917,895 ","271,956 ","133,244 ","138,712 " -16,"2,055,407 ","1,036,231 ","1,019,176 ","1,798,583 ","911,106 ","887,477 ","256,824 ","125,125 ","131,699 " -17,"2,091,956 ","1,054,332 ","1,037,624 ","1,828,800 ","925,626 ","903,174 ","263,156 ","128,706 ","134,450 " -18,"2,164,344 ","1,090,240 ","1,074,104 ","1,893,151 ","957,163 ","935,988 ","271,193 ","133,077 ","138,116 " -19,"2,231,096 ","1,124,518 ","1,106,578 ","1,964,092 ","993,031 ","971,061 ","267,004 ","131,487 ","135,517 " -20,"2,258,243 ","1,128,444 ","1,129,799 ","1,990,533 ","1,001,412 ","989,121 ","267,710 ","127,032 ","140,678 " -21,"2,293,186 ","1,140,969 ","1,152,217 ","2,024,329 ","1,014,887 ","1,009,442 ","268,857 ","126,082 ","142,775 " -22,"2,324,914 ","1,151,428 ","1,173,486 ","2,054,483 ","1,025,448 ","1,029,035 ","270,431 ","125,980 ","144,451 " -23,"2,391,008 ","1,182,886 ","1,208,122 ","2,119,311 ","1,056,145 ","1,063,166 ","271,697 ","126,741 ","144,956 " -24,"2,413,041 ","1,190,651 ","1,222,390 ","2,140,338 ","1,062,692 ","1,077,646 ","272,703 ","127,959 ","144,744 " -25,"2,437,842 ","1,200,200 ","1,237,642 ","2,163,427 ","1,070,683 ","1,092,744 ","274,415 ","129,517 ","144,898 " -26,"2,494,150 ","1,225,572 ","1,268,578 ","2,217,552 ","1,094,115 ","1,123,437 ","276,598 ","131,457 ","145,141 " -27,"2,515,690 ","1,235,509 ","1,280,181 ","2,239,349 ","1,103,659 ","1,135,690 ","276,341 ","131,850 ","144,491 " -28,"2,455,939 ","1,203,248 ","1,252,691 ","2,184,828 ","1,074,045 ","1,110,783 ","271,111 ","129,203 ","141,908 " -29,"2,457,975 ","1,206,085 ","1,251,890 ","2,195,880 ","1,081,721 ","1,114,159 ","262,095 ","124,364 ","137,731 " -30,"2,416,372 ","1,186,220 ","1,230,152 ","2,163,888 ","1,066,729 ","1,097,159 ","252,484 ","119,491 ","132,993 " -31,"2,350,474 ","1,154,989 ","1,195,485 ","2,108,718 ","1,040,997 ","1,067,721 ","241,756 ","113,992 ","127,764 " -32,"2,296,579 ","1,126,484 ","1,170,095 ","2,061,687 ","1,015,894 ","1,045,793 ","234,892 ","110,590 ","124,302 " -33,"2,305,591 ","1,132,312 ","1,173,279 ","2,070,491 ","1,021,419 ","1,049,072 ","235,100 ","110,893 ","124,207 " -34,"2,305,161 ","1,132,542 ","1,172,619 ","2,065,201 ","1,018,994 ","1,046,207 ","239,960 ","113,548 ","126,412 " -35,"2,296,670 ","1,128,026 ","1,168,644 ","2,052,335 ","1,012,170 ","1,040,165 ","244,335 ","115,856 ","128,479 " -36,"2,302,269 ","1,131,319 ","1,170,950 ","2,053,255 ","1,013,028 ","1,040,227 ","249,014 ","118,291 ","130,723 " -37,"2,286,825 ","1,124,573 ","1,162,252 ","2,036,654 ","1,005,367 ","1,031,287 ","250,171 ","119,206 ","130,965 " -38,"2,257,573 ","1,112,142 ","1,145,431 ","2,012,749 ","994,876 ","1,017,873 ","244,824 ","117,266 ","127,558 " -39,"2,203,312 ","1,088,834 ","1,114,478 ","1,968,553 ","975,545 ","993,008 ","234,759 ","113,289 ","121,470 " -40,"2,146,026 ","1,062,922 ","1,083,104 ","1,921,218 ","953,476 ","967,742 ","224,808 ","109,446 ","115,362 " -41,"2,108,459 ","1,048,283 ","1,060,176 ","1,893,896 ","942,770 ","951,126 ","214,563 ","105,513 ","109,050 " -42,"2,061,284 ","1,026,924 ","1,034,360 ","1,855,819 ","925,126 ","930,693 ","205,465 ","101,798 ","103,667 " -43,"2,010,872 ","1,003,072 ","1,007,800 ","1,811,158 ","903,819 ","907,339 ","199,714 ","99,253 ","100,461 " -44,"1,963,179 ","979,327 ","983,852 ","1,766,572 ","881,660 ","884,912 ","196,607 ","97,667 ","98,940 " -45,"1,920,595 ","958,232 ","962,363 ","1,727,134 ","862,118 ","865,016 ","193,461 ","96,114 ","97,347 " -46,"1,861,858 ","929,587 ","932,271 ","1,671,950 ","835,265 ","836,685 ","189,908 ","94,322 ","95,586 " -47,"1,823,655 ","910,998 ","912,657 ","1,637,817 ","818,615 ","819,202 ","185,838 ","92,383 ","93,455 " -48,"1,792,824 ","896,270 ","896,554 ","1,612,405 ","806,291 ","806,114 ","180,419 ","89,979 ","90,440 " -49,"1,743,067 ","870,660 ","872,407 ","1,569,414 ","783,646 ","785,768 ","173,653 ","87,014 ","86,639 " -50,"1,730,428 ","863,972 ","866,456 ","1,563,843 ","780,169 ","783,674 ","166,585 ","83,803 ","82,782 " -51,"1,705,308 ","850,731 ","854,577 ","1,545,558 ","770,064 ","775,494 ","159,750 ","80,667 ","79,083 " -52,"1,668,072 ","832,246 ","835,826 ","1,515,801 ","755,046 ","760,755 ","152,271 ","77,200 ","75,071 " -53,"1,623,091 ","810,278 ","812,813 ","1,479,201 ","737,016 ","742,185 ","143,890 ","73,262 ","70,628 " -54,"1,584,046 ","791,911 ","792,135 ","1,448,966 ","722,828 ","726,138 ","135,080 ","69,083 ","65,997 " -55,"1,544,901 ","773,102 ","771,799 ","1,418,292 ","708,053 ","710,239 ","126,609 ","65,049 ","61,560 " -56,"1,499,706 ","751,306 ","748,400 ","1,381,312 ","690,197 ","691,115 ","118,394 ","61,109 ","57,285 " -57,"1,456,723 ","730,445 ","726,278 ","1,346,141 ","673,171 ","672,970 ","110,582 ","57,274 ","53,308 " -58,"1,419,461 ","712,369 ","707,092 ","1,316,001 ","658,687 ","657,314 ","103,460 ","53,682 ","49,778 " -59,"1,372,293 ","689,227 ","683,066 ","1,275,170 ","638,812 ","636,358 ","97,123 ","50,415 ","46,708 " -60,"1,308,533 ","657,759 ","650,774 ","1,217,654 ","610,552 ","607,102 ","90,879 ","47,207 ","43,672 " -61,"1,261,628 ","634,954 ","626,674 ","1,177,474 ","591,166 ","586,308 ","84,154 ","43,788 ","40,366 " -62,"1,219,039 ","612,700 ","606,339 ","1,138,624 ","571,030 ","567,594 ","80,415 ","41,670 ","38,745 " -63,"1,176,591 ","588,345 ","588,246 ","1,095,493 ","546,883 ","548,610 ","81,098 ","41,462 ","39,636 " -64,"1,137,232 ","564,192 ","573,040 ","1,052,904 ","521,850 ","531,054 ","84,328 ","42,342 ","41,986 " -65,"1,102,643 ","542,146 ","560,497 ","1,015,395 ","499,079 ","516,316 ","87,248 ","43,067 ","44,181 " -66,"1,068,359 ","519,906 ","548,453 ","977,372 ","475,758 ","501,614 ","90,987 ","44,148 ","46,839 " -67,"1,025,449 ","495,147 ","530,302 ","934,599 ","451,521 ","483,078 ","90,850 ","43,626 ","47,224 " -68,"959,546 ","461,084 ","498,462 ","875,240 ","420,601 ","454,639 ","84,306 ","40,483 ","43,823 " -69,"892,792 ","428,559 ","464,233 ","819,132 ","392,853 ","426,279 ","73,660 ","35,706 ","37,954 " -70,"820,399 ","393,060 ","427,339 ","756,652 ","361,779 ","394,873 ","63,747 ","31,281 ","32,466 " -71,"748,822 ","358,381 ","390,441 ","695,198 ","331,602 ","363,596 ","53,624 ","26,779 ","26,845 " -72,"678,081 ","324,064 ","354,017 ","633,012 ","301,125 ","331,887 ","45,069 ","22,939 ","22,130 " -73,"624,363 ","297,200 ","327,163 ","584,778 ","276,853 ","307,925 ","39,585 ","20,347 ","19,238 " -74,"572,323 ","270,943 ","301,380 ","536,084 ","252,337 ","283,747 ","36,239 ","18,606 ","17,633 " -75,"526,042 ","247,856 ","278,186 ","493,449 ","231,126 ","262,323 ","32,593 ","16,730 ","15,863 " -76,"475,302 ","222,753 ","252,549 ","446,334 ","207,873 ","238,461 ","28,968 ","14,880 ","14,088 " -77,"427,724 ","199,294 ","228,430 ","401,919 ","186,064 ","215,855 ","25,805 ","13,230 ","12,575 " -78,"384,529 ","177,961 ","206,568 ","361,451 ","166,196 ","195,255 ","23,078 ","11,765 ","11,313 " -79,"341,701 ","156,937 ","184,764 ","320,954 ","146,464 ","174,490 ","20,747 ","10,473 ","10,274 " -80,"301,331 ","137,185 ","164,146 ","282,559 ","127,843 ","154,716 ","18,772 ","9,342 ","9,430 " -81,"264,897 ","119,438 ","145,459 ","247,798 ","111,088 ","136,710 ","17,099 ","8,350 ","8,749 " -82,"228,777 ","101,931 ","126,846 ","213,082 ","94,446 ","118,636 ","15,695 ","7,485 ","8,210 " -83,"197,083 ","86,686 ","110,397 ","182,556 ","79,955 ","102,601 ","14,527 ","6,731 ","7,796 " -84,"167,401 ","72,450 ","94,951 ","153,816 ","66,378 ","87,438 ","13,585 ","6,072 ","7,513 " -85+,"589,612 ","243,031 ","346,581 ","543,662 ","223,644 ","320,018 ","45,950 ","19,387 ","26,563 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1951.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1951.csv deleted file mode 100644 index 832e2abf88..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1951.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1951",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"154,877,889 ","77,101,263 ","77,776,626 ","138,220,962 ","68,924,398 ","69,296,564 ","16,656,927 ","8,176,865 ","8,480,062 " -,,,,,,,,, -0,"3,315,027 ","1,684,949 ","1,630,078 ","2,861,706 ","1,459,601 ","1,402,105 ","453,321 ","225,348 ","227,973 " -1,"3,306,360 ","1,690,292 ","1,616,068 ","2,874,954 ","1,472,205 ","1,402,749 ","431,406 ","218,087 ","213,319 " -2,"3,458,209 ","1,756,869 ","1,701,340 ","2,990,748 ","1,523,213 ","1,467,535 ","467,461 ","233,656 ","233,805 " -3,"3,495,214 ","1,777,711 ","1,717,503 ","3,055,986 ","1,558,366 ","1,497,620 ","439,228 ","219,345 ","219,883 " -4,"3,758,637 ","1,921,043 ","1,837,594 ","3,335,120 ","1,707,018 ","1,628,102 ","423,517 ","214,025 ","209,492 " -5,"2,673,394 ","1,360,232 ","1,313,162 ","2,339,479 ","1,194,340 ","1,145,139 ","333,915 ","165,892 ","168,023 " -6,"2,720,557 ","1,385,225 ","1,335,332 ","2,374,536 ","1,213,068 ","1,161,468 ","346,021 ","172,157 ","173,864 " -7,"2,777,810 ","1,418,529 ","1,359,281 ","2,435,802 ","1,247,337 ","1,188,465 ","342,008 ","171,192 ","170,816 " -8,"2,919,475 ","1,486,158 ","1,433,317 ","2,577,116 ","1,314,669 ","1,262,447 ","342,359 ","171,489 ","170,870 " -9,"2,576,394 ","1,310,725 ","1,265,669 ","2,245,648 ","1,145,088 ","1,100,560 ","330,746 ","165,637 ","165,109 " -10,"2,447,996 ","1,247,365 ","1,200,631 ","2,127,865 ","1,086,518 ","1,041,347 ","320,131 ","160,847 ","159,284 " -11,"2,324,584 ","1,183,246 ","1,141,338 ","2,014,708 ","1,028,211 ","986,497 ","309,876 ","155,035 ","154,841 " -12,"2,294,245 ","1,168,930 ","1,125,315 ","1,991,805 ","1,016,530 ","975,275 ","302,440 ","152,400 ","150,040 " -13,"2,263,382 ","1,151,965 ","1,111,417 ","1,966,792 ","1,002,971 ","963,821 ","296,590 ","148,994 ","147,596 " -14,"2,169,776 ","1,098,835 ","1,070,941 ","1,886,878 ","957,985 ","928,893 ","282,898 ","140,850 ","142,048 " -15,"2,110,824 ","1,063,792 ","1,047,032 ","1,838,125 ","930,067 ","908,058 ","272,699 ","133,725 ","138,974 " -16,"2,155,565 ","1,087,809 ","1,067,756 ","1,895,450 ","960,456 ","934,994 ","260,115 ","127,353 ","132,762 " -17,"2,062,072 ","1,040,779 ","1,021,293 ","1,799,484 ","912,220 ","887,264 ","262,588 ","128,559 ","134,029 " -18,"2,085,366 ","1,048,971 ","1,036,395 ","1,814,769 ","915,971 ","898,798 ","270,597 ","133,000 ","137,597 " -19,"2,143,533 ","1,075,762 ","1,067,771 ","1,876,694 ","944,226 ","932,468 ","266,839 ","131,536 ","135,303 " -20,"2,226,752 ","1,117,969 ","1,108,783 ","1,962,044 ","992,066 ","969,978 ","264,708 ","125,903 ","138,805 " -21,"2,285,116 ","1,143,437 ","1,141,679 ","2,016,925 ","1,017,440 ","999,485 ","268,191 ","125,997 ","142,194 " -22,"2,258,475 ","1,119,371 ","1,139,104 ","1,990,735 ","994,418 ","996,317 ","267,740 ","124,953 ","142,787 " -23,"2,384,385 ","1,184,287 ","1,200,098 ","2,117,086 ","1,059,429 ","1,057,657 ","267,299 ","124,858 ","142,441 " -24,"2,397,456 ","1,187,607 ","1,209,849 ","2,130,602 ","1,062,548 ","1,068,054 ","266,854 ","125,059 ","141,795 " -25,"2,382,044 ","1,175,726 ","1,206,318 ","2,113,190 ","1,049,115 ","1,064,075 ","268,854 ","126,611 ","142,243 " -26,"2,485,281 ","1,223,698 ","1,261,583 ","2,214,632 ","1,095,340 ","1,119,292 ","270,649 ","128,358 ","142,291 " -27,"2,550,054 ","1,257,263 ","1,292,791 ","2,276,557 ","1,127,071 ","1,149,486 ","273,497 ","130,192 ","143,305 " -28,"2,388,417 ","1,168,375 ","1,220,042 ","2,114,611 ","1,038,220 ","1,076,391 ","273,806 ","130,155 ","143,651 " -29,"2,489,071 ","1,221,751 ","1,267,320 ","2,219,990 ","1,094,375 ","1,125,615 ","269,081 ","127,376 ","141,705 " -30,"2,501,511 ","1,227,377 ","1,274,134 ","2,241,245 ","1,104,473 ","1,136,772 ","260,266 ","122,904 ","137,362 " -31,"2,406,926 ","1,184,957 ","1,221,969 ","2,156,211 ","1,066,972 ","1,089,239 ","250,715 ","117,985 ","132,730 " -32,"2,296,222 ","1,123,390 ","1,172,832 ","2,053,063 ","1,008,844 ","1,044,219 ","243,159 ","114,546 ","128,613 " -33,"2,346,510 ","1,152,124 ","1,194,386 ","2,106,135 ","1,038,185 ","1,067,950 ","240,375 ","113,939 ","126,436 " -34,"2,343,344 ","1,153,914 ","1,189,430 ","2,101,063 ","1,038,350 ","1,062,713 ","242,281 ","115,564 ","126,717 " -35,"2,301,006 ","1,130,960 ","1,170,046 ","2,055,286 ","1,013,530 ","1,041,756 ","245,720 ","117,430 ","128,290 " -36,"2,318,955 ","1,140,525 ","1,178,430 ","2,069,604 ","1,021,163 ","1,048,441 ","249,351 ","119,362 ","129,989 " -37,"2,308,762 ","1,135,920 ","1,172,842 ","2,057,400 ","1,015,451 ","1,041,949 ","251,362 ","120,469 ","130,893 " -38,"2,294,968 ","1,129,561 ","1,165,407 ","2,046,003 ","1,010,071 ","1,035,932 ","248,965 ","119,490 ","129,475 " -39,"2,238,493 ","1,106,017 ","1,132,476 ","1,997,130 ","989,740 ","1,007,390 ","241,363 ","116,277 ","125,086 " -40,"2,152,206 ","1,063,770 ","1,088,436 ","1,920,645 ","951,400 ","969,245 ","231,561 ","112,370 ","119,191 " -41,"2,137,402 ","1,061,305 ","1,076,097 ","1,915,917 ","952,884 ","963,033 ","221,485 ","108,421 ","113,064 " -42,"2,107,882 ","1,048,557 ","1,059,325 ","1,897,365 ","944,837 ","952,528 ","210,517 ","103,720 ","106,797 " -43,"2,053,470 ","1,022,423 ","1,031,047 ","1,852,487 ","923,084 ","929,403 ","200,983 ","99,339 ","101,644 " -44,"2,000,532 ","995,596 ","1,004,936 ","1,805,467 ","899,136 ","906,331 ","195,065 ","96,460 ","98,605 " -45,"1,973,176 ","981,215 ","991,961 ","1,781,197 ","886,208 ","894,989 ","191,979 ","95,007 ","96,972 " -46,"1,896,650 ","944,258 ","952,392 ","1,707,867 ","850,799 ","857,068 ","188,783 ","93,459 ","95,324 " -47,"1,865,352 ","929,860 ","935,492 ","1,679,254 ","837,553 ","841,701 ","186,098 ","92,307 ","93,791 " -48,"1,846,607 ","923,472 ","923,135 ","1,663,448 ","832,248 ","831,200 ","183,159 ","91,224 ","91,935 " -49,"1,731,205 ","864,301 ","866,904 ","1,552,886 ","775,046 ","777,840 ","178,319 ","89,255 ","89,064 " -50,"1,739,683 ","867,856 ","871,827 ","1,568,334 ","781,786 ","786,548 ","171,349 ","86,070 ","85,279 " -51,"1,736,590 ","865,284 ","871,306 ","1,572,238 ","782,460 ","789,778 ","164,352 ","82,824 ","81,528 " -52,"1,685,405 ","840,135 ","845,270 ","1,528,583 ","760,833 ","767,750 ","156,822 ","79,302 ","77,520 " -53,"1,616,865 ","805,759 ","811,106 ","1,468,541 ","730,489 ","738,052 ","148,324 ","75,270 ","73,054 " -54,"1,585,288 ","790,477 ","794,811 ","1,445,791 ","719,431 ","726,360 ","139,497 ","71,046 ","68,451 " -55,"1,562,796 ","779,493 ","783,303 ","1,431,505 ","712,365 ","719,140 ","131,291 ","67,128 ","64,163 " -56,"1,513,994 ","755,898 ","758,096 ","1,390,619 ","692,560 ","698,059 ","123,375 ","63,338 ","60,037 " -57,"1,473,791 ","736,134 ","737,657 ","1,358,281 ","676,726 ","681,555 ","115,510 ","59,408 ","56,102 " -58,"1,466,950 ","732,750 ","734,200 ","1,358,974 ","677,248 ","681,726 ","107,976 ","55,502 ","52,474 " -59,"1,431,170 ","714,895 ","716,275 ","1,330,031 ","662,976 ","667,055 ","101,139 ","51,919 ","49,220 " -60,"1,327,936 ","663,697 ","664,239 ","1,233,365 ","615,130 ","618,235 ","94,571 ","48,567 ","46,004 " -61,"1,283,071 ","641,809 ","641,262 ","1,195,538 ","596,803 ","598,735 ","87,533 ","45,006 ","42,527 " -62,"1,259,031 ","628,881 ","630,150 ","1,175,569 ","586,070 ","589,499 ","83,462 ","42,811 ","40,651 " -63,"1,210,922 ","602,695 ","608,227 ","1,127,048 ","560,059 ","566,989 ","83,874 ","42,636 ","41,238 " -64,"1,155,186 ","572,049 ","583,137 ","1,068,356 ","528,523 ","539,833 ","86,830 ","43,526 ","43,304 " -65,"1,122,337 ","551,141 ","571,196 ","1,032,987 ","507,049 ","525,938 ","89,350 ","44,092 ","45,258 " -66,"1,094,587 ","531,749 ","562,838 ","1,001,963 ","486,755 ","515,208 ","92,624 ","44,994 ","47,630 " -67,"1,061,328 ","511,912 ","549,416 ","968,969 ","467,594 ","501,375 ","92,359 ","44,318 ","48,041 " -68,"984,827 ","471,755 ","513,072 ","898,700 ","430,646 ","468,054 ","86,127 ","41,109 ","45,018 " -69,"925,655 ","442,597 ","483,058 ","849,811 ","406,234 ","443,577 ","75,844 ","36,363 ","39,481 " -70,"849,494 ","405,108 ","444,386 ","783,410 ","373,078 ","410,332 ","66,084 ","32,030 ","34,054 " -71,"776,796 ","370,082 ","406,714 ","720,683 ","342,456 ","378,227 ","56,113 ","27,626 ","28,487 " -72,"694,919 ","331,014 ","363,905 ","647,574 ","307,214 ","340,360 ","47,345 ","23,800 ","23,545 " -73,"644,857 ","305,866 ","338,991 ","603,488 ","284,712 ","318,776 ","41,369 ","21,154 ","20,215 " -74,"586,650 ","276,559 ","310,091 ","549,052 ","257,218 ","291,834 ","37,598 ","19,341 ","18,257 " -75,"547,875 ","257,235 ","290,640 ","513,968 ","239,796 ","274,172 ","33,907 ","17,439 ","16,468 " -76,"495,619 ","231,422 ","264,197 ","465,341 ","215,858 ","249,483 ","30,278 ","15,564 ","14,714 " -77,"443,320 ","205,721 ","237,599 ","416,283 ","191,859 ","224,424 ","27,037 ","13,862 ","13,175 " -78,"401,306 ","184,773 ","216,533 ","377,083 ","172,446 ","204,637 ","24,223 ","12,327 ","11,896 " -79,"355,965 ","162,429 ","193,536 ","334,157 ","151,479 ","182,678 ","21,808 ","10,950 ","10,858 " -80,"310,899 ","140,301 ","170,598 ","291,149 ","130,571 ","160,578 ","19,750 ","9,730 ","10,020 " -81,"274,292 ","122,450 ","151,842 ","256,269 ","113,790 ","142,479 ","18,023 ","8,660 ","9,363 " -82,"233,122 ","102,536 ","130,586 ","216,543 ","94,815 ","121,728 ","16,579 ","7,721 ","8,858 " -83,"200,470 ","86,975 ","113,495 ","185,057 ","80,080 ","104,977 ","15,413 ","6,895 ","8,518 " -84,"170,539 ","72,652 ","97,887 ","155,878 ","66,467 ","89,411 ","14,661 ","6,185 ","8,476 " -85+,"627,704 ","261,001 ","366,703 ","580,114 ","240,766 ","339,348 ","47,590 ","20,235 ","27,355 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1952.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1952.csv deleted file mode 100644 index a13eed0fc1..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1952.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1952",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"157,552,740 ","78,372,190 ","79,180,550 ","140,526,418 ","70,023,125 ","70,503,293 ","17,026,322 ","8,349,065 ","8,677,257 " -,,,,,,,,, -0,"3,429,237 ","1,745,913 ","1,683,324 ","2,969,863 ","1,518,010 ","1,451,853 ","459,374 ","227,903 ","231,471 " -1,"3,450,008 ","1,759,790 ","1,690,218 ","2,988,456 ","1,527,518 ","1,460,938 ","461,552 ","232,272 ","229,280 " -2,"3,447,304 ","1,753,093 ","1,694,211 ","2,973,158 ","1,516,326 ","1,456,832 ","474,146 ","236,767 ","237,379 " -3,"3,497,803 ","1,777,002 ","1,720,801 ","3,035,941 ","1,546,692 ","1,489,249 ","461,862 ","230,310 ","231,552 " -4,"3,487,906 ","1,781,563 ","1,706,343 ","3,054,204 ","1,562,165 ","1,492,039 ","433,702 ","219,398 ","214,304 " -5,"3,697,873 ","1,884,204 ","1,813,669 ","3,286,431 ","1,678,901 ","1,607,530 ","411,442 ","205,303 ","206,139 " -6,"2,678,521 ","1,362,308 ","1,316,213 ","2,343,367 ","1,195,765 ","1,147,602 ","335,154 ","166,543 ","168,611 " -7,"2,743,435 ","1,401,399 ","1,342,036 ","2,394,211 ","1,227,512 ","1,166,699 ","349,224 ","173,887 ","175,337 " -8,"2,764,331 ","1,406,117 ","1,358,214 ","2,422,454 ","1,234,860 ","1,187,594 ","341,877 ","171,257 ","170,620 " -9,"2,926,644 ","1,490,590 ","1,436,054 ","2,580,308 ","1,316,835 ","1,263,473 ","346,336 ","173,755 ","172,581 " -10,"2,623,103 ","1,337,997 ","1,285,106 ","2,283,193 ","1,166,363 ","1,116,830 ","339,910 ","171,634 ","168,276 " -11,"2,448,869 ","1,246,907 ","1,201,962 ","2,127,164 ","1,085,403 ","1,041,761 ","321,705 ","161,504 ","160,201 " -12,"2,327,720 ","1,184,174 ","1,143,546 ","2,017,212 ","1,028,968 ","988,244 ","310,508 ","155,206 ","155,302 " -13,"2,290,686 ","1,166,052 ","1,124,634 ","1,989,227 ","1,014,350 ","974,877 ","301,459 ","151,702 ","149,757 " -14,"2,271,955 ","1,155,347 ","1,116,608 ","1,974,723 ","1,006,160 ","968,563 ","297,232 ","149,187 ","148,045 " -15,"2,121,429 ","1,064,170 ","1,057,259 ","1,847,309 ","931,187 ","916,122 ","274,120 ","132,983 ","141,137 " -16,"2,128,050 ","1,072,433 ","1,055,617 ","1,866,808 ","944,445 ","922,363 ","261,242 ","127,988 ","133,254 " -17,"2,163,113 ","1,092,240 ","1,070,873 ","1,897,588 ","961,729 ","935,859 ","265,525 ","130,511 ","135,014 " -18,"2,058,190 ","1,036,937 ","1,021,253 ","1,790,197 ","905,190 ","885,007 ","267,993 ","131,747 ","136,246 " -19,"2,064,397 ","1,034,521 ","1,029,876 ","1,798,424 ","903,438 ","894,986 ","265,973 ","131,083 ","134,890 " -20,"2,140,294 ","1,069,025 ","1,071,269 ","1,875,703 ","942,902 ","932,801 ","264,591 ","126,123 ","138,468 " -21,"2,252,033 ","1,130,597 ","1,121,436 ","1,986,455 ","1,005,810 ","980,645 ","265,578 ","124,787 ","140,791 " -22,"2,254,917 ","1,123,459 ","1,131,458 ","1,987,233 ","998,478 ","988,755 ","267,684 ","124,981 ","142,703 " -23,"2,313,831 ","1,149,133 ","1,164,698 ","2,048,004 ","1,024,877 ","1,023,127 ","265,827 ","124,256 ","141,571 " -24,"2,389,011 ","1,186,056 ","1,202,955 ","2,125,836 ","1,062,996 ","1,062,840 ","263,175 ","123,060 ","140,115 " -25,"2,368,562 ","1,171,752 ","1,196,810 ","2,104,707 ","1,048,034 ","1,056,673 ","263,855 ","123,718 ","140,137 " -26,"2,430,840 ","1,198,808 ","1,232,032 ","2,165,530 ","1,073,517 ","1,092,013 ","265,310 ","125,291 ","140,019 " -27,"2,539,590 ","1,253,323 ","1,286,267 ","2,270,939 ","1,125,853 ","1,145,086 ","268,651 ","127,470 ","141,181 " -28,"2,433,957 ","1,194,612 ","1,239,345 ","2,161,733 ","1,065,548 ","1,096,185 ","272,224 ","129,064 ","143,160 " -29,"2,414,400 ","1,181,464 ","1,232,936 ","2,141,711 ","1,052,707 ","1,089,004 ","272,689 ","128,757 ","143,932 " -30,"2,530,686 ","1,241,836 ","1,288,850 ","2,263,099 ","1,115,831 ","1,147,268 ","267,587 ","126,005 ","141,582 " -31,"2,498,967 ","1,229,446 ","1,269,521 ","2,239,588 ","1,107,649 ","1,131,939 ","259,379 ","121,797 ","137,582 " -32,"2,356,367 ","1,155,026 ","1,201,341 ","2,103,830 ","1,036,331 ","1,067,499 ","252,537 ","118,695 ","133,842 " -33,"2,345,235 ","1,148,192 ","1,197,043 ","2,096,935 ","1,030,553 ","1,066,382 ","248,300 ","117,639 ","130,661 " -34,"2,383,137 ","1,172,685 ","1,210,452 ","2,136,502 ","1,054,634 ","1,081,868 ","246,635 ","118,051 ","128,584 " -35,"2,336,914 ","1,150,886 ","1,186,028 ","2,089,842 ","1,032,005 ","1,057,837 ","247,072 ","118,881 ","128,191 " -36,"2,322,823 ","1,142,760 ","1,180,063 ","2,073,104 ","1,022,397 ","1,050,707 ","249,719 ","120,363 ","129,356 " -37,"2,329,787 ","1,147,138 ","1,182,649 ","2,078,879 ","1,026,091 ","1,052,788 ","250,908 ","121,047 ","129,861 " -38,"2,306,547 ","1,135,203 ","1,171,344 ","2,056,766 ","1,014,786 ","1,041,980 ","249,781 ","120,417 ","129,364 " -39,"2,276,059 ","1,123,125 ","1,152,934 ","2,030,668 ","1,004,863 ","1,025,805 ","245,391 ","118,262 ","127,129 " -40,"2,196,027 ","1,084,982 ","1,111,045 ","1,958,026 ","969,890 ","988,136 ","238,001 ","115,092 ","122,909 " -41,"2,145,206 ","1,062,761 ","1,082,445 ","1,917,155 ","951,706 ","965,449 ","228,051 ","111,055 ","116,996 " -42,"2,131,833 ","1,058,584 ","1,073,249 ","1,914,488 ","952,146 ","962,342 ","217,345 ","106,438 ","110,907 " -43,"2,101,458 ","1,044,559 ","1,056,899 ","1,895,366 ","943,308 ","952,058 ","206,092 ","101,251 ","104,841 " -44,"2,046,150 ","1,016,731 ","1,029,419 ","1,849,595 ","920,020 ","929,575 ","196,555 ","96,711 ","99,844 " -45,"2,008,515 ","996,729 ","1,011,786 ","1,817,753 ","902,703 ","915,050 ","190,762 ","94,026 ","96,736 " -46,"1,951,101 ","968,436 ","982,665 ","1,763,409 ","875,815 ","887,594 ","187,692 ","92,621 ","95,071 " -47,"1,899,084 ","944,174 ","954,910 ","1,713,769 ","852,510 ","861,259 ","185,315 ","91,664 ","93,651 " -48,"1,886,424 ","941,242 ","945,182 ","1,702,787 ","849,993 ","852,794 ","183,637 ","91,249 ","92,388 " -49,"1,788,803 ","893,545 ","895,258 ","1,607,615 ","803,024 ","804,591 ","181,188 ","90,521 ","90,667 " -50,"1,723,153 ","859,151 ","864,002 ","1,547,027 ","770,812 ","776,215 ","176,126 ","88,339 ","87,787 " -51,"1,741,462 ","867,131 ","874,331 ","1,572,275 ","782,021 ","790,254 ","169,187 ","85,110 ","84,077 " -52,"1,716,856 ","854,858 ","861,998 ","1,555,363 ","773,378 ","781,985 ","161,493 ","81,480 ","80,013 " -53,"1,637,802 ","815,505 ","822,297 ","1,484,837 ","738,100 ","746,737 ","152,965 ","77,405 ","75,560 " -54,"1,581,823 ","787,233 ","794,590 ","1,437,780 ","714,138 ","723,642 ","144,043 ","73,095 ","70,948 " -55,"1,566,919 ","779,304 ","787,615 ","1,431,101 ","710,179 ","720,922 ","135,818 ","69,125 ","66,693 " -56,"1,534,245 ","763,224 ","771,021 ","1,406,045 ","697,765 ","708,280 ","128,200 ","65,459 ","62,741 " -57,"1,490,847 ","741,837 ","749,010 ","1,370,260 ","680,179 ","690,081 ","120,587 ","61,658 ","58,929 " -58,"1,484,062 ","738,322 ","745,740 ","1,371,192 ","680,719 ","690,473 ","112,870 ","57,603 ","55,267 " -59,"1,470,910 ","731,043 ","739,867 ","1,365,422 ","677,396 ","688,026 ","105,488 ","53,647 ","51,841 " -60,"1,385,931 ","688,670 ","697,261 ","1,287,560 ","638,717 ","648,843 ","98,371 ","49,953 ","48,418 " -61,"1,302,807 ","647,593 ","655,214 ","1,211,825 ","601,361 ","610,464 ","90,982 ","46,232 ","44,750 " -62,"1,277,776 ","634,236 ","643,540 ","1,191,283 ","590,392 ","600,891 ","86,493 ","43,844 ","42,649 " -63,"1,247,344 ","617,044 ","630,300 ","1,160,805 ","573,460 ","587,345 ","86,539 ","43,584 ","42,955 " -64,"1,188,280 ","585,799 ","602,481 ","1,098,997 ","541,238 ","557,759 ","89,283 ","44,561 ","44,722 " -65,"1,139,636 ","558,728 ","580,908 ","1,048,056 ","513,542 ","534,514 ","91,580 ","45,186 ","46,394 " -66,"1,112,306 ","539,903 ","572,403 ","1,017,875 ","493,967 ","523,908 ","94,431 ","45,936 ","48,495 " -67,"1,084,556 ","522,241 ","562,315 ","990,724 ","477,098 ","513,626 ","93,832 ","45,143 ","48,689 " -68,"1,021,860 ","489,042 ","532,818 ","934,207 ","447,197 ","487,010 ","87,653 ","41,845 ","45,808 " -69,"952,558 ","453,961 ","498,597 ","874,825 ","416,914 ","457,911 ","77,733 ","37,047 ","40,686 " -70,"881,190 ","418,467 ","462,723 ","812,931 ","385,762 ","427,169 ","68,259 ","32,705 ","35,554 " -71,"804,974 ","381,562 ","423,412 ","746,514 ","353,167 ","393,347 ","58,460 ","28,395 ","30,065 " -72,"724,682 ","343,513 ","381,169 ","674,864 ","318,865 ","355,999 ","49,818 ","24,648 ","25,170 " -73,"661,775 ","312,840 ","348,935 ","618,157 ","290,836 ","327,321 ","43,618 ","22,004 ","21,614 " -74,"606,084 ","284,777 ","321,307 ","566,726 ","264,635 ","302,091 ","39,358 ","20,142 ","19,216 " -75,"559,772 ","261,673 ","298,099 ","524,497 ","243,488 ","281,009 ","35,275 ","18,185 ","17,090 " -76,"516,011 ","240,090 ","275,921 ","484,431 ","223,812 ","260,619 ","31,580 ","16,278 ","15,302 " -77,"463,196 ","214,207 ","248,989 ","434,894 ","199,676 ","235,218 ","28,302 ","14,531 ","13,771 " -78,"414,946 ","190,170 ","224,776 ","389,555 ","177,245 ","212,310 ","25,391 ","12,925 ","12,466 " -79,"371,448 ","168,544 ","202,904 ","348,586 ","157,087 ","191,499 ","22,862 ","11,457 ","11,405 " -80,"323,884 ","145,125 ","178,759 ","303,208 ","134,995 ","168,213 ","20,676 ","10,130 ","10,546 " -81,"282,444 ","124,878 ","157,566 ","263,620 ","115,927 ","147,693 ","18,824 ","8,951 ","9,873 " -82,"240,744 ","104,772 ","135,972 ","223,493 ","96,872 ","126,621 ","17,251 ","7,900 ","9,351 " -83,"203,506 ","87,081 ","116,425 ","187,560 ","80,127 ","107,433 ","15,946 ","6,954 ","8,992 " -84,"172,672 ","72,513 ","100,159 ","157,551 ","66,395 ","91,156 ","15,121 ","6,118 ","9,003 " -85+,"665,147 ","278,127 ","387,020 ","615,107 ","256,869 ","358,238 ","50,040 ","21,258 ","28,782 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1953.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1953.csv deleted file mode 100644 index 1f49f7762b..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1953.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1953",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"160,184,192 ","79,614,310 ","80,569,882 ","142,772,988 ","71,083,397 ","71,689,591 ","17,411,204 ","8,530,913 ","8,880,291 " -,,,,,,,,, -0,"3,546,301 ","1,804,555 ","1,741,746 ","3,063,820 ","1,563,963 ","1,499,857 ","482,481 ","240,592 ","241,889 " -1,"3,548,477 ","1,811,834 ","1,736,643 ","3,083,027 ","1,578,400 ","1,504,627 ","465,450 ","233,434 ","232,016 " -2,"3,574,323 ","1,814,632 ","1,759,691 ","3,073,131 ","1,565,114 ","1,508,017 ","501,192 ","249,518 ","251,674 " -3,"3,477,405 ","1,768,222 ","1,709,183 ","3,008,774 ","1,534,749 ","1,474,025 ","468,631 ","233,473 ","235,158 " -4,"3,491,830 ","1,781,037 ","1,710,793 ","3,034,606 ","1,550,353 ","1,484,253 ","457,224 ","230,684 ","226,540 " -5,"3,439,101 ","1,751,606 ","1,687,495 ","3,015,477 ","1,539,669 ","1,475,808 ","423,624 ","211,937 ","211,687 " -6,"3,699,058 ","1,883,949 ","1,815,109 ","3,286,067 ","1,677,876 ","1,608,191 ","412,991 ","206,073 ","206,918 " -7,"2,699,180 ","1,376,699 ","1,322,481 ","2,360,455 ","1,208,226 ","1,152,229 ","338,725 ","168,473 ","170,252 " -8,"2,726,494 ","1,388,107 ","1,338,387 ","2,378,196 ","1,214,482 ","1,163,714 ","348,298 ","173,625 ","174,673 " -9,"2,768,580 ","1,409,078 ","1,359,502 ","2,423,106 ","1,235,766 ","1,187,340 ","345,474 ","173,312 ","172,162 " -10,"2,974,006 ","1,517,918 ","1,456,088 ","2,618,206 ","1,338,160 ","1,280,046 ","355,800 ","179,758 ","176,042 " -11,"2,623,543 ","1,337,257 ","1,286,286 ","2,282,364 ","1,165,145 ","1,117,219 ","341,179 ","172,112 ","169,067 " -12,"2,451,326 ","1,247,516 ","1,203,810 ","2,128,776 ","1,085,732 ","1,043,044 ","322,550 ","161,784 ","160,766 " -13,"2,320,100 ","1,179,063 ","1,141,037 ","2,011,276 ","1,024,947 ","986,329 ","308,824 ","154,116 ","154,708 " -14,"2,302,026 ","1,170,784 ","1,131,242 ","1,999,532 ","1,018,680 ","980,852 ","302,494 ","152,104 ","150,390 " -15,"2,223,638 ","1,121,264 ","1,102,374 ","1,935,469 ","979,841 ","955,628 ","288,169 ","141,423 ","146,746 " -16,"2,131,213 ","1,068,939 ","1,062,274 ","1,868,130 ","941,449 ","926,681 ","263,083 ","127,490 ","135,593 " -17,"2,134,566 ","1,075,931 ","1,058,635 ","1,868,216 ","945,025 ","923,191 ","266,350 ","130,906 ","135,444 " -18,"2,159,585 ","1,088,845 ","1,070,740 ","1,890,526 ","956,106 ","934,420 ","269,059 ","132,739 ","136,320 " -19,"2,034,765 ","1,021,444 ","1,013,321 ","1,771,671 ","891,892 ","879,779 ","263,094 ","129,552 ","133,542 " -20,"2,059,911 ","1,026,919 ","1,032,992 ","1,796,452 ","900,982 ","895,470 ","263,459 ","125,937 ","137,522 " -21,"2,160,664 ","1,078,197 ","1,082,467 ","1,895,458 ","953,197 ","942,261 ","265,206 ","125,000 ","140,206 " -22,"2,223,594 ","1,111,858 ","1,111,736 ","1,958,773 ","987,885 ","970,888 ","264,821 ","123,973 ","140,848 " -23,"2,304,737 ","1,150,886 ","1,153,851 ","2,038,685 ","1,026,098 ","1,012,587 ","266,052 ","124,788 ","141,264 " -24,"2,313,239 ","1,147,713 ","1,165,526 ","2,051,670 ","1,025,307 ","1,026,363 ","261,569 ","122,406 ","139,163 " -25,"2,358,201 ","1,168,708 ","1,189,493 ","2,097,858 ","1,046,916 ","1,050,942 ","260,343 ","121,792 ","138,551 " -26,"2,414,901 ","1,193,850 ","1,221,051 ","2,154,861 ","1,071,539 ","1,083,322 ","260,040 ","122,311 ","137,729 " -27,"2,477,356 ","1,224,554 ","1,252,802 ","2,213,315 ","1,099,732 ","1,113,583 ","264,041 ","124,822 ","139,219 " -28,"2,432,040 ","1,195,255 ","1,236,785 ","2,163,672 ","1,068,310 ","1,095,362 ","268,368 ","126,945 ","141,423 " -29,"2,449,315 ","1,201,610 ","1,247,705 ","2,177,498 ","1,073,460 ","1,104,038 ","271,817 ","128,150 ","143,667 " -30,"2,447,966 ","1,197,829 ","1,250,137 ","2,176,603 ","1,070,305 ","1,106,298 ","271,363 ","127,524 ","143,839 " -31,"2,531,563 ","1,245,759 ","1,285,804 ","2,264,095 ","1,120,422 ","1,143,673 ","267,468 ","125,337 ","142,131 " -32,"2,448,242 ","1,199,492 ","1,248,750 ","2,186,724 ","1,076,811 ","1,109,913 ","261,518 ","122,681 ","138,837 " -33,"2,402,883 ","1,178,450 ","1,224,433 ","2,145,620 ","1,056,906 ","1,088,714 ","257,263 ","121,544 ","135,719 " -34,"2,377,540 ","1,166,139 ","1,211,401 ","2,123,902 ","1,044,914 ","1,078,988 ","253,638 ","121,225 ","132,413 " -35,"2,371,899 ","1,167,009 ","1,204,890 ","2,121,434 ","1,046,176 ","1,075,258 ","250,465 ","120,833 ","129,632 " -36,"2,356,096 ","1,160,910 ","1,195,186 ","2,106,044 ","1,039,656 ","1,066,388 ","250,052 ","121,254 ","128,798 " -37,"2,335,651 ","1,150,159 ","1,185,492 ","2,085,144 ","1,028,581 ","1,056,563 ","250,507 ","121,578 ","128,929 " -38,"2,314,771 ","1,139,401 ","1,175,370 ","2,065,786 ","1,018,725 ","1,047,061 ","248,985 ","120,676 ","128,309 " -39,"2,285,831 ","1,127,315 ","1,158,516 ","2,039,673 ","1,008,344 ","1,031,329 ","246,158 ","118,971 ","127,187 " -40,"2,240,392 ","1,105,114 ","1,135,278 ","1,998,484 ","988,295 ","1,010,189 ","241,908 ","116,819 ","125,089 " -41,"2,188,562 ","1,083,476 ","1,105,086 ","1,954,241 ","969,992 ","984,249 ","234,321 ","113,484 ","120,837 " -42,"2,132,547 ","1,055,886 ","1,076,661 ","1,908,707 ","946,996 ","961,711 ","223,840 ","108,890 ","114,950 " -43,"2,124,780 ","1,053,969 ","1,070,811 ","1,911,801 ","950,005 ","961,796 ","212,979 ","103,964 ","109,015 " -44,"2,095,250 ","1,039,591 ","1,055,659 ","1,893,398 ","940,815 ","952,583 ","201,852 ","98,776 ","103,076 " -45,"2,050,027 ","1,015,948 ","1,034,079 ","1,857,495 ","921,460 ","936,035 ","192,532 ","94,488 ","98,044 " -46,"1,986,586 ","984,149 ","1,002,437 ","1,799,747 ","892,240 ","907,507 ","186,839 ","91,909 ","94,930 " -47,"1,950,647 ","966,950 ","983,697 ","1,766,111 ","875,904 ","890,207 ","184,536 ","91,046 ","93,490 " -48,"1,916,269 ","953,290 ","962,979 ","1,733,212 ","862,578 ","870,634 ","183,057 ","90,712 ","92,345 " -49,"1,831,607 ","912,864 ","918,743 ","1,649,807 ","822,293 ","827,514 ","181,800 ","90,571 ","91,229 " -50,"1,774,906 ","885,314 ","889,592 ","1,595,761 ","795,669 ","800,092 ","179,145 ","89,645 ","89,500 " -51,"1,719,360 ","855,625 ","863,735 ","1,545,250 ","768,202 ","777,048 ","174,110 ","87,423 ","86,687 " -52,"1,721,237 ","856,353 ","864,884 ","1,554,745 ","772,535 ","782,210 ","166,492 ","83,818 ","82,674 " -53,"1,672,117 ","831,596 ","840,521 ","1,514,286 ","751,942 ","762,344 ","157,831 ","79,654 ","78,177 " -54,"1,604,742 ","797,806 ","806,936 ","1,455,850 ","722,495 ","733,355 ","148,892 ","75,311 ","73,581 " -55,"1,565,919 ","777,087 ","788,832 ","1,425,359 ","705,839 ","719,520 ","140,560 ","71,248 ","69,312 " -56,"1,540,543 ","763,929 ","776,614 ","1,407,588 ","696,384 ","711,204 ","132,955 ","67,545 ","65,410 " -57,"1,513,668 ","750,295 ","763,373 ","1,388,088 ","686,446 ","701,642 ","125,580 ","63,849 ","61,731 " -58,"1,500,969 ","743,941 ","757,028 ","1,383,008 ","684,082 ","698,926 ","117,961 ","59,859 ","58,102 " -59,"1,479,280 ","731,988 ","747,292 ","1,369,044 ","676,308 ","692,736 ","110,236 ","55,680 ","54,556 " -60,"1,424,970 ","704,209 ","720,761 ","1,322,457 ","652,632 ","669,825 ","102,513 ","51,577 ","50,936 " -61,"1,360,993 ","672,286 ","688,707 ","1,266,460 ","624,798 ","641,662 ","94,533 ","47,488 ","47,045 " -62,"1,294,512 ","638,275 ","656,237 ","1,204,942 ","593,394 ","611,548 ","89,570 ","44,881 ","44,689 " -63,"1,262,015 ","620,253 ","641,762 ","1,172,865 ","575,843 ","597,022 ","89,150 ","44,410 ","44,740 " -64,"1,223,318 ","599,409 ","623,909 ","1,131,725 ","554,061 ","577,664 ","91,593 ","45,348 ","46,245 " -65,"1,172,152 ","572,211 ","599,941 ","1,078,396 ","526,089 ","552,307 ","93,756 ","46,122 ","47,634 " -66,"1,127,640 ","546,711 ","580,929 ","1,031,235 ","499,746 ","531,489 ","96,405 ","46,965 ","49,440 " -67,"1,099,179 ","528,945 ","570,234 ","1,003,620 ","482,842 ","520,778 ","95,559 ","46,103 ","49,456 " -68,"1,046,629 ","500,185 ","546,444 ","957,391 ","457,430 ","499,961 ","89,238 ","42,755 ","46,483 " -69,"991,651 ","472,252 ","519,399 ","912,217 ","434,381 ","477,836 ","79,434 ","37,871 ","41,563 " -70,"906,930 ","429,225 ","477,705 ","836,711 ","395,796 ","440,915 ","70,219 ","33,429 ","36,790 " -71,"835,573 ","394,352 ","441,221 ","774,874 ","365,247 ","409,627 ","60,699 ","29,105 ","31,594 " -72,"754,659 ","355,837 ","398,822 ","702,468 ","330,409 ","372,059 ","52,191 ","25,428 ","26,763 " -73,"691,543 ","325,378 ","366,165 ","645,467 ","302,533 ","342,934 ","46,076 ","22,845 ","23,231 " -74,"621,918 ","291,324 ","330,594 ","580,316 ","270,328 ","309,988 ","41,602 ","20,996 ","20,606 " -75,"576,873 ","268,812 ","308,061 ","539,801 ","249,792 ","290,009 ","37,072 ","19,020 ","18,052 " -76,"526,573 ","243,876 ","282,697 ","493,596 ","226,820 ","266,776 ","32,977 ","17,056 ","15,921 " -77,"483,490 ","222,875 ","260,615 ","453,892 ","207,620 ","246,272 ","29,598 ","15,255 ","14,343 " -78,"433,207 ","197,803 ","235,404 ","406,586 ","184,226 ","222,360 ","26,621 ","13,577 ","13,044 " -79,"384,086 ","173,378 ","210,708 ","360,127 ","161,368 ","198,759 ","23,959 ","12,010 ","11,949 " -80,"338,508 ","150,762 ","187,746 ","316,886 ","140,184 ","176,702 ","21,622 ","10,578 ","11,044 " -81,"294,477 ","129,240 ","165,237 ","274,883 ","119,967 ","154,916 ","19,594 ","9,273 ","10,321 " -82,"247,375 ","106,571 ","140,804 ","229,576 ","98,494 ","131,082 ","17,799 ","8,077 ","9,722 " -83,"209,833 ","88,845 ","120,988 ","193,610 ","81,879 ","111,731 ","16,223 ","6,966 ","9,257 " -84,"174,145 ","72,070 ","102,075 ","159,050 ","66,139 ","92,911 ","15,095 ","5,931 ","9,164 " -85+,"700,618 ","293,362 ","407,256 ","647,763 ","271,058 ","376,705 ","52,855 ","22,304 ","30,551 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1954.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1954.csv deleted file mode 100644 index 8ac2d6c950..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1954.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1954",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"163,025,854 ","80,972,704 ","82,053,150 ","145,193,083 ","72,241,638 ","72,951,445 ","17,832,771 ","8,731,066 ","9,101,705 " -,,,,,,,,, -0,"3,670,654 ","1,866,924 ","1,803,730 ","3,158,300 ","1,611,889 ","1,546,411 ","512,354 ","255,035 ","257,319 " -1,"3,653,661 ","1,863,552 ","1,790,109 ","3,166,690 ","1,618,408 ","1,548,282 ","486,971 ","245,144 ","241,827 " -2,"3,656,495 ","1,859,470 ","1,797,025 ","3,157,004 ","1,611,247 ","1,545,757 ","499,491 ","248,223 ","251,268 " -3,"3,599,983 ","1,827,350 ","1,772,633 ","3,104,216 ","1,581,077 ","1,523,139 ","495,767 ","246,273 ","249,494 " -4,"3,476,664 ","1,774,315 ","1,702,349 ","3,011,342 ","1,540,039 ","1,471,303 ","465,322 ","234,276 ","231,046 " -5,"3,453,939 ","1,757,127 ","1,696,812 ","3,004,690 ","1,532,620 ","1,472,070 ","449,249 ","224,507 ","224,742 " -6,"3,439,355 ","1,750,731 ","1,688,624 ","3,014,000 ","1,537,980 ","1,476,020 ","425,355 ","212,751 ","212,604 " -7,"3,727,076 ","1,902,883 ","1,824,193 ","3,308,925 ","1,694,005 ","1,614,920 ","418,151 ","208,878 ","209,273 " -8,"2,681,218 ","1,363,750 ","1,317,468 ","2,344,056 ","1,195,794 ","1,148,262 ","337,162 ","167,956 ","169,206 " -9,"2,730,119 ","1,390,775 ","1,339,344 ","2,378,450 ","1,215,229 ","1,163,221 ","351,669 ","175,546 ","176,123 " -10,"2,811,166 ","1,433,130 ","1,378,036 ","2,456,306 ","1,254,074 ","1,202,232 ","354,860 ","179,056 ","175,804 " -11,"2,975,880 ","1,517,719 ","1,458,161 ","2,619,088 ","1,337,652 ","1,281,436 ","356,792 ","180,067 ","176,725 " -12,"2,627,071 ","1,338,342 ","1,288,729 ","2,284,716 ","1,165,785 ","1,118,931 ","342,355 ","172,557 ","169,798 " -13,"2,440,657 ","1,240,525 ","1,200,132 ","2,120,486 ","1,080,238 ","1,040,248 ","320,171 ","160,287 ","159,884 " -14,"2,335,904 ","1,185,917 ","1,149,987 ","2,025,559 ","1,031,153 ","994,406 ","310,345 ","154,764 ","155,581 " -15,"2,257,092 ","1,139,473 ","1,117,619 ","1,963,550 ","994,665 ","968,885 ","293,542 ","144,808 ","148,734 " -16,"2,227,465 ","1,123,044 ","1,104,421 ","1,950,305 ","987,162 ","963,143 ","277,160 ","135,882 ","141,278 " -17,"2,138,662 ","1,072,771 ","1,065,891 ","1,870,626 ","942,537 ","928,089 ","268,036 ","130,234 ","137,802 " -18,"2,135,040 ","1,075,298 ","1,059,742 ","1,866,887 ","943,063 ","923,824 ","268,153 ","132,235 ","135,918 " -19,"2,135,882 ","1,073,623 ","1,062,259 ","1,871,806 ","943,293 ","928,513 ","264,076 ","130,330 ","133,746 " -20,"2,033,130 ","1,015,588 ","1,017,542 ","1,772,429 ","890,791 ","881,638 ","260,701 ","124,797 ","135,904 " -21,"2,080,459 ","1,035,947 ","1,044,512 ","1,816,133 ","911,066 ","905,067 ","264,326 ","124,881 ","139,445 " -22,"2,140,366 ","1,064,936 ","1,075,430 ","1,875,563 ","940,487 ","935,076 ","264,803 ","124,449 ","140,354 " -23,"2,273,536 ","1,140,572 ","1,132,964 ","2,009,415 ","1,016,220 ","993,195 ","264,121 ","124,352 ","139,769 " -24,"2,304,924 ","1,149,925 ","1,154,999 ","2,042,711 ","1,026,977 ","1,015,734 ","262,213 ","122,948 ","139,265 " -25,"2,286,831 ","1,132,395 ","1,154,436 ","2,027,441 ","1,011,106 ","1,016,335 ","259,390 ","121,289 ","138,101 " -26,"2,407,547 ","1,192,710 ","1,214,837 ","2,150,866 ","1,072,319 ","1,078,547 ","256,681 ","120,391 ","136,290 " -27,"2,460,279 ","1,219,299 ","1,240,980 ","2,200,434 ","1,096,952 ","1,103,482 ","259,845 ","122,347 ","137,498 " -28,"2,386,122 ","1,175,162 ","1,210,960 ","2,121,076 ","1,050,179 ","1,070,897 ","265,046 ","124,983 ","140,063 " -29,"2,441,590 ","1,198,696 ","1,242,894 ","2,172,620 ","1,072,082 ","1,100,538 ","268,970 ","126,614 ","142,356 " -30,"2,481,660 ","1,218,020 ","1,263,640 ","2,210,677 ","1,090,840 ","1,119,837 ","270,983 ","127,180 ","143,803 " -31,"2,456,844 ","1,205,980 ","1,250,864 ","2,184,523 ","1,078,562 ","1,105,961 ","272,321 ","127,418 ","144,903 " -32,"2,486,547 ","1,219,153 ","1,267,394 ","2,216,339 ","1,092,643 ","1,123,696 ","270,208 ","126,510 ","143,698 " -33,"2,496,921 ","1,224,182 ","1,272,739 ","2,230,859 ","1,098,797 ","1,132,062 ","266,062 ","125,385 ","140,677 " -34,"2,435,687 ","1,196,684 ","1,239,003 ","2,173,782 ","1,071,977 ","1,101,805 ","261,905 ","124,707 ","137,198 " -35,"2,365,843 ","1,160,395 ","1,205,448 ","2,109,072 ","1,036,791 ","1,072,281 ","256,771 ","123,604 ","133,167 " -36,"2,392,378 ","1,177,547 ","1,214,831 ","2,139,695 ","1,054,764 ","1,084,931 ","252,683 ","122,783 ","129,900 " -37,"2,375,045 ","1,171,532 ","1,203,513 ","2,124,752 ","1,049,404 ","1,075,348 ","250,293 ","122,128 ","128,165 " -38,"2,311,547 ","1,137,618 ","1,173,929 ","2,063,087 ","1,016,592 ","1,046,495 ","248,460 ","121,026 ","127,434 " -39,"2,295,945 ","1,132,267 ","1,163,678 ","2,050,411 ","1,013,114 ","1,037,297 ","245,534 ","119,153 ","126,381 " -40,"2,261,167 ","1,114,766 ","1,146,401 ","2,018,391 ","997,364 ","1,021,027 ","242,776 ","117,402 ","125,374 " -41,"2,236,059 ","1,105,279 ","1,130,780 ","1,997,792 ","990,237 ","1,007,555 ","238,267 ","115,042 ","123,225 " -42,"2,172,140 ","1,074,487 ","1,097,653 ","1,941,915 ","963,231 ","978,684 ","230,225 ","111,256 ","118,969 " -43,"2,128,286 ","1,052,739 ","1,075,547 ","1,908,565 ","946,201 ","962,364 ","219,721 ","106,538 ","113,183 " -44,"2,123,055 ","1,051,782 ","1,071,273 ","1,913,960 ","950,024 ","963,936 ","209,095 ","101,758 ","107,337 " -45,"2,098,128 ","1,038,784 ","1,059,344 ","1,899,879 ","941,923 ","957,956 ","198,249 ","96,861 ","101,388 " -46,"2,031,448 ","1,005,465 ","1,025,983 ","1,842,335 ","912,734 ","929,601 ","189,113 ","92,731 ","96,382 " -47,"1,986,117 ","982,977 ","1,003,140 ","1,801,963 ","892,328 ","909,635 ","184,154 ","90,649 ","93,505 " -48,"1,967,095 ","975,646 ","991,449 ","1,784,454 ","885,350 ","899,104 ","182,641 ","90,296 ","92,345 " -49,"1,867,702 ","928,364 ","939,338 ","1,686,192 ","838,209 ","847,983 ","181,510 ","90,155 ","91,355 " -50,"1,814,252 ","903,013 ","911,239 ","1,634,182 ","813,175 ","821,007 ","180,070 ","89,838 ","90,232 " -51,"1,768,402 ","880,711 ","887,691 ","1,590,962 ","791,828 ","799,134 ","177,440 ","88,883 ","88,557 " -52,"1,701,137 ","846,002 ","855,135 ","1,529,379 ","759,696 ","769,683 ","171,758 ","86,306 ","85,452 " -53,"1,682,261 ","836,157 ","846,104 ","1,519,051 ","753,967 ","765,084 ","163,210 ","82,190 ","81,020 " -54,"1,643,274 ","816,115 ","827,159 ","1,489,119 ","738,349 ","750,770 ","154,155 ","77,766 ","76,389 " -55,"1,593,667 ","790,124 ","803,543 ","1,447,864 ","716,459 ","731,405 ","145,803 ","73,665 ","72,138 " -56,"1,544,001 ","763,972 ","780,029 ","1,405,881 ","694,090 ","711,791 ","138,120 ","69,882 ","68,238 " -57,"1,524,815 ","753,476 ","771,339 ","1,394,118 ","687,350 ","706,768 ","130,697 ","66,126 ","64,571 " -58,"1,526,042 ","753,742 ","772,300 ","1,402,888 ","691,569 ","711,319 ","123,154 ","62,173 ","60,981 " -59,"1,489,617 ","734,341 ","755,276 ","1,374,269 ","676,361 ","697,908 ","115,348 ","57,980 ","57,368 " -60,"1,435,218 ","706,083 ","729,135 ","1,328,020 ","652,474 ","675,546 ","107,198 ","53,609 ","53,589 " -61,"1,402,234 ","688,815 ","713,419 ","1,303,684 ","639,734 ","663,950 ","98,550 ","49,081 ","49,469 " -62,"1,351,998 ","662,660 ","689,338 ","1,259,142 ","616,616 ","642,526 ","92,856 ","46,044 ","46,812 " -63,"1,276,387 ","623,313 ","653,074 ","1,184,485 ","577,981 ","606,504 ","91,902 ","45,332 ","46,570 " -64,"1,238,339 ","603,018 ","635,321 ","1,144,399 ","556,925 ","587,474 ","93,940 ","46,093 ","47,847 " -65,"1,208,291 ","586,582 ","621,709 ","1,112,392 ","539,694 ","572,698 ","95,899 ","46,888 ","49,011 " -66,"1,159,956 ","560,411 ","599,545 ","1,061,489 ","512,484 ","549,005 ","98,467 ","47,927 ","50,540 " -67,"1,112,897 ","535,145 ","577,752 ","1,015,269 ","487,886 ","527,383 ","97,628 ","47,259 ","50,369 " -68,"1,064,430 ","508,560 ","555,870 ","973,167 ","464,653 ","508,514 ","91,263 ","43,907 ","47,356 " -69,"1,019,929 ","485,092 ","534,837 ","938,544 ","446,120 ","492,424 ","81,385 ","38,972 ","42,413 " -70,"946,111 ","447,496 ","498,615 ","873,931 ","413,110 ","460,821 ","72,180 ","34,386 ","37,794 " -71,"861,463 ","405,065 ","456,398 ","798,543 ","375,103 ","423,440 ","62,920 ","29,962 ","32,958 " -72,"788,354 ","369,997 ","418,357 ","733,726 ","343,752 ","389,974 ","54,628 ","26,245 ","28,383 " -73,"722,642 ","338,189 ","384,453 ","674,065 ","314,490 ","359,575 ","48,577 ","23,699 ","24,878 " -74,"651,585 ","303,865 ","347,720 ","607,412 ","281,958 ","325,454 ","44,173 ","21,907 ","22,266 " -75,"591,388 ","274,744 ","316,644 ","551,932 ","254,780 ","297,152 ","39,456 ","19,964 ","19,492 " -76,"543,531 ","250,960 ","292,571 ","508,648 ","232,991 ","275,657 ","34,883 ","17,969 ","16,914 " -77,"495,142 ","227,253 ","267,889 ","464,083 ","211,170 ","252,913 ","31,059 ","16,083 ","14,976 " -78,"453,080 ","206,268 ","246,812 ","425,135 ","191,948 ","233,187 ","27,945 ","14,320 ","13,625 " -79,"402,708 ","181,220 ","221,488 ","377,528 ","168,560 ","208,968 ","25,180 ","12,660 ","12,520 " -80,"351,569 ","155,857 ","195,712 ","328,905 ","144,744 ","184,161 ","22,664 ","11,113 ","11,551 " -81,"309,400 ","135,136 ","174,264 ","288,970 ","125,454 ","163,516 ","20,430 ","9,682 ","10,748 " -82,"258,980 ","110,936 ","148,044 ","240,616 ","102,603 ","138,013 ","18,364 ","8,333 ","10,031 " -83,"216,216 ","90,772 ","125,444 ","199,786 ","83,727 ","116,059 ","16,430 ","7,045 ","9,385 " -84,"179,705 ","73,737 ","105,968 ","164,829 ","67,930 ","96,899 ","14,876 ","5,807 ","9,069 " -85+,"738,452 ","308,261 ","430,191 ","682,337 ","284,733 ","397,604 ","56,115 ","23,528 ","32,587 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1955.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1955.csv deleted file mode 100644 index 09613df6e8..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1955.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1955",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"165,931,202 ","82,363,638 ","83,567,564 ","147,652,501 ","73,419,797 ","74,232,704 ","18,278,701 ","8,943,841 ","9,334,860 " -,,,,,,,,, -0,"3,777,404 ","1,923,184 ","1,854,220 ","3,237,773 ","1,654,220 ","1,583,553 ","539,631 ","268,964 ","270,667 " -1,"3,764,469 ","1,918,117 ","1,846,352 ","3,249,524 ","1,659,718 ","1,589,806 ","514,945 ","258,399 ","256,546 " -2,"3,744,444 ","1,903,425 ","1,841,019 ","3,228,153 ","1,645,480 ","1,582,673 ","516,291 ","257,945 ","258,346 " -3,"3,676,466 ","1,869,138 ","1,807,328 ","3,182,149 ","1,624,022 ","1,558,127 ","494,317 ","245,116 ","249,201 " -4,"3,603,530 ","1,835,232 ","1,768,298 ","3,109,883 ","1,587,718 ","1,522,165 ","493,647 ","247,514 ","246,133 " -5,"3,449,161 ","1,756,241 ","1,692,920 ","2,989,385 ","1,526,605 ","1,462,780 ","459,776 ","229,636 ","230,140 " -6,"3,452,324 ","1,755,105 ","1,697,219 ","3,001,197 ","1,529,766 ","1,471,431 ","451,127 ","225,339 ","225,788 " -7,"3,465,773 ","1,767,723 ","1,698,050 ","3,034,443 ","1,551,715 ","1,482,728 ","431,330 ","216,008 ","215,322 " -8,"3,698,230 ","1,883,933 ","1,814,297 ","3,282,869 ","1,676,044 ","1,606,825 ","415,361 ","207,889 ","207,472 " -9,"2,683,429 ","1,365,725 ","1,317,704 ","2,343,326 ","1,196,090 ","1,147,236 ","340,103 ","169,635 ","170,468 " -10,"2,769,205 ","1,412,355 ","1,356,850 ","2,408,084 ","1,231,258 ","1,176,826 ","361,121 ","181,097 ","180,024 " -11,"2,814,443 ","1,433,664 ","1,380,779 ","2,458,963 ","1,254,510 ","1,204,453 ","355,480 ","179,154 ","176,326 " -12,"2,980,158 ","1,519,124 ","1,461,034 ","2,621,875 ","1,338,453 ","1,283,422 ","358,283 ","180,671 ","177,612 " -13,"2,612,448 ","1,329,003 ","1,283,445 ","2,273,309 ","1,158,432 ","1,114,877 ","339,139 ","170,571 ","168,568 " -14,"2,461,584 ","1,249,862 ","1,211,722 ","2,139,385 ","1,088,660 ","1,050,725 ","322,199 ","161,202 ","160,997 " -15,"2,294,550 ","1,157,562 ","1,136,988 ","1,993,097 ","1,009,623 ","983,474 ","301,453 ","147,939 ","153,514 " -16,"2,254,733 ","1,138,024 ","1,116,709 ","1,971,866 ","998,635 ","973,231 ","282,867 ","139,389 ","143,478 " -17,"2,235,977 ","1,127,119 ","1,108,858 ","1,953,868 ","988,539 ","965,329 ","282,109 ","138,580 ","143,529 " -18,"2,142,406 ","1,074,316 ","1,068,090 ","1,874,444 ","943,722 ","930,722 ","267,962 ","130,594 ","137,368 " -19,"2,111,504 ","1,060,628 ","1,050,876 ","1,848,559 ","931,065 ","917,494 ","262,945 ","129,563 ","133,382 " -20,"2,135,741 ","1,068,742 ","1,066,999 ","1,874,178 ","942,920 ","931,258 ","261,563 ","125,822 ","135,741 " -21,"2,052,912 ","1,024,081 ","1,028,831 ","1,791,292 ","900,314 ","890,978 ","261,620 ","123,767 ","137,853 " -22,"2,065,719 ","1,026,589 ","1,039,130 ","1,801,663 ","902,041 ","899,622 ","264,056 ","124,548 ","139,508 " -23,"2,186,847 ","1,092,574 ","1,094,273 ","1,922,045 ","967,219 ","954,826 ","264,802 ","125,355 ","139,447 " -24,"2,272,449 ","1,138,905 ","1,133,544 ","2,011,930 ","1,016,427 ","995,503 ","260,519 ","122,478 ","138,041 " -25,"2,279,892 ","1,134,813 ","1,145,079 ","2,019,420 ","1,012,910 ","1,006,510 ","260,472 ","121,903 ","138,569 " -26,"2,335,789 ","1,156,365 ","1,179,424 ","2,080,128 ","1,036,563 ","1,043,565 ","255,661 ","119,802 ","135,859 " -27,"2,449,896 ","1,216,592 ","1,233,304 ","2,192,539 ","1,095,760 ","1,096,779 ","257,357 ","120,832 ","136,525 " -28,"2,381,075 ","1,175,987 ","1,205,088 ","2,119,141 ","1,052,906 ","1,066,235 ","261,934 ","123,081 ","138,853 " -29,"2,387,915 ","1,173,737 ","1,214,178 ","2,121,442 ","1,048,608 ","1,072,834 ","266,473 ","125,129 ","141,344 " -30,"2,470,040 ","1,213,404 ","1,256,636 ","2,201,557 ","1,087,574 ","1,113,983 ","268,483 ","125,830 ","142,653 " -31,"2,496,671 ","1,229,355 ","1,267,316 ","2,223,809 ","1,101,800 ","1,122,009 ","272,862 ","127,555 ","145,307 " -32,"2,417,837 ","1,182,768 ","1,235,069 ","2,142,317 ","1,053,966 ","1,088,351 ","275,520 ","128,802 ","146,718 " -33,"2,534,395 ","1,243,312 ","1,291,083 ","2,259,966 ","1,114,323 ","1,145,643 ","274,429 ","128,989 ","145,440 " -34,"2,528,720 ","1,241,616 ","1,287,104 ","2,258,896 ","1,113,592 ","1,145,304 ","269,824 ","128,024 ","141,800 " -35,"2,421,307 ","1,189,416 ","1,231,891 ","2,157,157 ","1,062,844 ","1,094,313 ","264,150 ","126,572 ","137,578 " -36,"2,385,690 ","1,170,227 ","1,215,463 ","2,127,653 ","1,045,205 ","1,082,448 ","258,037 ","125,022 ","133,015 " -37,"2,416,193 ","1,190,530 ","1,225,663 ","2,164,015 ","1,067,332 ","1,096,683 ","252,178 ","123,198 ","128,980 " -38,"2,339,986 ","1,153,015 ","1,186,971 ","2,092,065 ","1,031,746 ","1,060,319 ","247,921 ","121,269 ","126,652 " -39,"2,293,467 ","1,130,476 ","1,162,991 ","2,048,472 ","1,011,172 ","1,037,300 ","244,995 ","119,304 ","125,691 " -40,"2,281,314 ","1,124,535 ","1,156,779 ","2,039,211 ","1,007,184 ","1,032,027 ","242,103 ","117,351 ","124,752 " -41,"2,258,974 ","1,115,921 ","1,143,053 ","2,019,912 ","1,000,563 ","1,019,349 ","239,062 ","115,358 ","123,704 " -42,"2,214,696 ","1,093,436 ","1,121,260 ","1,980,496 ","980,771 ","999,725 ","234,200 ","112,665 ","121,535 " -43,"2,169,826 ","1,072,270 ","1,097,556 ","1,943,567 ","963,325 ","980,242 ","226,259 ","108,945 ","117,314 " -44,"2,130,086 ","1,052,769 ","1,077,317 ","1,913,990 ","948,242 ","965,748 ","216,096 ","104,527 ","111,569 " -45,"2,123,773 ","1,050,333 ","1,073,440 ","1,917,992 ","950,271 ","967,721 ","205,781 ","100,062 ","105,719 " -46,"2,082,012 ","1,029,926 ","1,052,086 ","1,886,849 ","934,571 ","952,278 ","195,163 ","95,355 ","99,808 " -47,"2,029,956 ","1,004,095 ","1,025,861 ","1,843,229 ","912,418 ","930,811 ","186,727 ","91,677 ","95,050 " -48,"2,000,462 ","990,532 ","1,009,930 ","1,817,993 ","900,530 ","917,463 ","182,469 ","90,002 ","92,467 " -49,"1,923,642 ","953,537 ","970,105 ","1,742,375 ","863,756 ","878,619 ","181,267 ","89,781 ","91,486 " -50,"1,845,729 ","916,196 ","929,533 ","1,665,723 ","826,692 ","839,031 ","180,006 ","89,504 ","90,502 " -51,"1,803,755 ","896,516 ","907,239 ","1,625,136 ","807,330 ","817,806 ","178,619 ","89,186 ","89,433 " -52,"1,750,976 ","871,491 ","879,485 ","1,575,556 ","783,566 ","791,990 ","175,420 ","87,925 ","87,495 " -53,"1,667,258 ","828,280 ","838,978 ","1,498,412 ","743,416 ","754,996 ","168,846 ","84,864 ","83,982 " -54,"1,656,852 ","822,238 ","834,614 ","1,496,974 ","741,761 ","755,213 ","159,878 ","80,477 ","79,401 " -55,"1,636,072 ","810,175 ","825,897 ","1,484,721 ","733,915 ","750,806 ","151,351 ","76,260 ","75,091 " -56,"1,574,959 ","778,403 ","796,556 ","1,431,332 ","705,979 ","725,353 ","143,627 ","72,424 ","71,203 " -57,"1,531,865 ","755,117 ","776,748 ","1,395,842 ","686,574 ","709,268 ","136,023 ","68,543 ","67,480 " -58,"1,537,925 ","757,286 ","780,639 ","1,409,668 ","692,828 ","716,840 ","128,257 ","64,458 ","63,799 " -59,"1,506,930 ","740,112 ","766,818 ","1,386,555 ","679,875 ","706,680 ","120,375 ","60,237 ","60,138 " -60,"1,446,324 ","708,656 ","737,668 ","1,334,223 ","652,827 ","681,396 ","112,101 ","55,829 ","56,272 " -61,"1,413,664 ","691,057 ","722,607 ","1,310,653 ","640,035 ","670,618 ","103,011 ","51,022 ","51,989 " -62,"1,391,249 ","678,197 ","713,052 ","1,294,705 ","630,689 ","664,016 ","96,544 ","47,508 ","49,036 " -63,"1,330,549 ","646,166 ","684,383 ","1,235,747 ","599,817 ","635,930 ","94,802 ","46,349 ","48,453 " -64,"1,252,105 ","605,954 ","646,151 ","1,155,758 ","559,060 ","596,698 ","96,347 ","46,894 ","49,453 " -65,"1,223,262 ","590,322 ","632,940 ","1,125,311 ","542,784 ","582,527 ","97,951 ","47,538 ","50,413 " -66,"1,194,738 ","574,334 ","620,404 ","1,094,437 ","525,734 ","568,703 ","100,301 ","48,600 ","51,701 " -67,"1,142,541 ","547,597 ","594,944 ","1,042,960 ","499,370 ","543,590 ","99,581 ","48,227 ","51,354 " -68,"1,080,208 ","515,755 ","564,453 ","986,767 ","470,605 ","516,162 ","93,441 ","45,150 ","48,291 " -69,"1,040,011 ","494,399 ","545,612 ","956,406 ","454,180 ","502,226 ","83,605 ","40,219 ","43,386 " -70,"973,290 ","459,542 ","513,748 ","899,026 ","424,001 ","475,025 ","74,264 ","35,541 ","38,723 " -71,"899,494 ","422,454 ","477,040 ","834,430 ","391,463 ","442,967 ","65,064 ","30,991 ","34,073 " -72,"816,386 ","381,355 ","435,031 ","759,389 ","354,190 ","405,199 ","56,997 ","27,165 ","29,832 " -73,"756,238 ","352,036 ","404,202 ","705,153 ","327,481 ","377,672 ","51,085 ","24,555 ","26,530 " -74,"681,157 ","315,824 ","365,333 ","634,444 ","293,033 ","341,411 ","46,713 ","22,791 ","23,922 " -75,"618,233 ","285,829 ","332,404 ","576,157 ","264,913 ","311,244 ","42,076 ","20,916 ","21,160 " -76,"556,252 ","255,927 ","300,325 ","518,986 ","236,991 ","281,995 ","37,266 ","18,936 ","18,330 " -77,"511,619 ","234,094 ","277,525 ","478,700 ","217,111 ","261,589 ","32,919 ","16,983 ","15,936 " -78,"462,459 ","209,473 ","252,986 ","433,135 ","194,373 ","238,762 ","29,324 ","15,100 ","14,224 " -79,"421,232 ","189,008 ","232,224 ","394,850 ","175,683 ","219,167 ","26,382 ","13,325 ","13,057 " -80,"368,972 ","163,123 ","205,849 ","345,257 ","151,460 ","193,797 ","23,715 ","11,663 ","12,052 " -81,"321,134 ","139,682 ","181,452 ","299,883 ","129,581 ","170,302 ","21,251 ","10,101 ","11,150 " -82,"271,953 ","116,074 ","155,879 ","253,064 ","107,471 ","145,593 ","18,889 ","8,603 ","10,286 " -83,"226,309 ","94,611 ","131,698 ","209,756 ","87,479 ","122,277 ","16,553 ","7,132 ","9,421 " -84,"184,365 ","75,034 ","109,331 ","169,869 ","69,345 ","100,524 ","14,496 ","5,689 ","8,807 " -85+,"775,617 ","321,983 ","453,634 ","716,065 ","297,057 ","419,008 ","59,552 ","24,926 ","34,626 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1956.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1956.csv deleted file mode 100644 index 3be7869a91..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1956.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1956",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"168,903,031 ","83,779,505 ","85,123,526 ","150,163,163 ","74,616,342 ","75,546,821 ","18,739,868 ","9,163,163 ","9,576,705 " -,,,,,,,,, -0,"3,860,003 ","1,963,108 ","1,896,895 ","3,297,745 ","1,682,630 ","1,615,115 ","562,258 ","280,478 ","281,780 " -1,"3,857,934 ","1,966,740 ","1,891,194 ","3,317,883 ","1,695,787 ","1,622,096 ","540,051 ","270,953 ","269,098 " -2,"3,839,092 ","1,950,751 ","1,888,341 ","3,299,590 ","1,681,655 ","1,617,935 ","539,502 ","269,096 ","270,406 " -3,"3,759,958 ","1,910,546 ","1,849,412 ","3,248,705 ","1,655,656 ","1,593,049 ","511,253 ","254,890 ","256,363 " -4,"3,686,410 ","1,879,642 ","1,806,768 ","3,192,810 ","1,632,892 ","1,559,918 ","493,600 ","246,750 ","246,850 " -5,"3,587,147 ","1,823,230 ","1,763,917 ","3,096,630 ","1,578,874 ","1,517,756 ","490,517 ","244,356 ","246,161 " -6,"3,447,168 ","1,753,791 ","1,693,377 ","2,985,408 ","1,523,327 ","1,462,081 ","461,760 ","230,464 ","231,296 " -7,"3,480,478 ","1,772,187 ","1,708,291 ","3,022,297 ","1,543,010 ","1,479,287 ","458,181 ","229,177 ","229,004 " -8,"3,438,169 ","1,750,772 ","1,687,397 ","3,010,578 ","1,536,141 ","1,474,437 ","427,591 ","214,631 ","212,960 " -9,"3,699,221 ","1,885,697 ","1,813,524 ","3,280,609 ","1,675,938 ","1,604,671 ","418,612 ","209,759 ","208,853 " -10,"2,719,985 ","1,385,294 ","1,334,691 ","2,370,821 ","1,210,544 ","1,160,277 ","349,164 ","174,750 ","174,414 " -11,"2,774,962 ","1,414,145 ","1,360,817 ","2,413,580 ","1,233,156 ","1,180,424 ","361,382 ","180,989 ","180,393 " -12,"2,820,730 ","1,436,176 ","1,384,554 ","2,463,511 ","1,256,286 ","1,207,225 ","357,219 ","179,890 ","177,329 " -13,"2,961,160 ","1,507,118 ","1,454,042 ","2,606,967 ","1,328,935 ","1,278,032 ","354,193 ","178,183 ","176,010 " -14,"2,640,702 ","1,341,995 ","1,298,707 ","2,298,927 ","1,170,184 ","1,128,743 ","341,775 ","171,811 ","169,964 " -15,"2,423,680 ","1,224,146 ","1,199,534 ","2,110,430 ","1,069,412 ","1,041,018 ","313,250 ","154,734 ","158,516 " -16,"2,287,083 ","1,153,355 ","1,133,728 ","1,996,015 ","1,010,692 ","985,323 ","291,068 ","142,663 ","148,405 " -17,"2,265,473 ","1,142,830 ","1,122,643 ","1,977,872 ","1,000,926 ","976,946 ","287,601 ","141,904 ","145,697 " -18,"2,244,273 ","1,131,577 ","1,112,696 ","1,964,232 ","993,662 ","970,570 ","280,041 ","137,915 ","142,126 " -19,"2,119,953 ","1,060,805 ","1,059,148 ","1,857,431 ","933,158 ","924,273 ","262,522 ","127,647 ","134,875 " -20,"2,114,781 ","1,057,652 ","1,057,129 ","1,854,409 ","932,326 ","922,083 ","260,372 ","125,326 ","135,046 " -21,"2,157,495 ","1,077,700 ","1,079,795 ","1,894,940 ","952,934 ","942,006 ","262,555 ","124,766 ","137,789 " -22,"2,044,985 ","1,018,651 ","1,026,334 ","1,783,465 ","895,030 ","888,435 ","261,520 ","123,621 ","137,899 " -23,"2,111,474 ","1,054,058 ","1,057,416 ","1,846,663 ","928,101 ","918,562 ","264,811 ","125,957 ","138,854 " -24,"2,187,004 ","1,090,978 ","1,096,026 ","1,925,527 ","967,563 ","957,964 ","261,477 ","123,415 ","138,062 " -25,"2,251,515 ","1,124,974 ","1,126,541 ","1,992,183 ","1,003,454 ","988,729 ","259,332 ","121,520 ","137,812 " -26,"2,332,479 ","1,160,584 ","1,171,895 ","2,075,711 ","1,040,237 ","1,035,474 ","256,768 ","120,347 ","136,421 " -27,"2,376,674 ","1,179,060 ","1,197,614 ","2,119,340 ","1,058,373 ","1,060,967 ","257,334 ","120,687 ","136,647 " -28,"2,384,752 ","1,180,170 ","1,204,582 ","2,124,116 ","1,058,008 ","1,066,108 ","260,636 ","122,162 ","138,474 " -29,"2,377,271 ","1,170,504 ","1,206,767 ","2,113,003 ","1,046,791 ","1,066,212 ","264,268 ","123,713 ","140,555 " -30,"2,413,901 ","1,187,212 ","1,226,689 ","2,147,494 ","1,062,672 ","1,084,822 ","266,407 ","124,540 ","141,867 " -31,"2,492,691 ","1,228,395 ","1,264,296 ","2,221,392 ","1,101,732 ","1,119,660 ","271,299 ","126,663 ","144,636 " -32,"2,462,517 ","1,208,497 ","1,254,020 ","2,186,023 ","1,079,389 ","1,106,634 ","276,494 ","129,108 ","147,386 " -33,"2,464,261 ","1,205,959 ","1,258,302 ","2,184,897 ","1,074,961 ","1,109,936 ","279,364 ","130,998 ","148,366 " -34,"2,565,674 ","1,260,139 ","1,305,535 ","2,288,408 ","1,129,080 ","1,159,328 ","277,266 ","131,059 ","146,207 " -35,"2,512,341 ","1,233,195 ","1,279,146 ","2,241,220 ","1,103,863 ","1,137,357 ","271,121 ","129,332 ","141,789 " -36,"2,441,990 ","1,199,367 ","1,242,623 ","2,177,593 ","1,071,948 ","1,105,645 ","264,397 ","127,419 ","136,978 " -37,"2,414,743 ","1,185,805 ","1,228,938 ","2,158,032 ","1,060,864 ","1,097,168 ","256,711 ","124,941 ","131,770 " -38,"2,370,532 ","1,166,330 ","1,204,202 ","2,121,123 ","1,044,332 ","1,076,791 ","249,409 ","121,998 ","127,411 " -39,"2,323,075 ","1,146,151 ","1,176,924 ","2,078,672 ","1,026,822 ","1,051,850 ","244,403 ","119,329 ","125,074 " -40,"2,289,541 ","1,127,908 ","1,161,633 ","2,048,055 ","1,010,655 ","1,037,400 ","241,486 ","117,253 ","124,233 " -41,"2,281,709 ","1,126,866 ","1,154,843 ","2,043,397 ","1,011,831 ","1,031,566 ","238,312 ","115,035 ","123,277 " -42,"2,233,007 ","1,101,297 ","1,131,710 ","1,997,963 ","988,457 ","1,009,506 ","235,044 ","112,840 ","122,204 " -43,"2,214,657 ","1,092,206 ","1,122,451 ","1,984,249 ","981,798 ","1,002,451 ","230,408 ","110,408 ","120,000 " -44,"2,175,605 ","1,074,669 ","1,100,936 ","1,952,715 ","967,531 ","985,184 ","222,890 ","107,138 ","115,752 " -45,"2,128,724 ","1,050,636 ","1,078,088 ","1,915,667 ","947,585 ","968,082 ","213,057 ","103,051 ","110,006 " -46,"2,110,423 ","1,043,172 ","1,067,251 ","1,907,447 ","944,382 ","963,065 ","202,976 ","98,790 ","104,186 " -47,"2,079,532 ","1,028,304 ","1,051,228 ","1,886,536 ","933,828 ","952,708 ","192,996 ","94,476 ","98,520 " -48,"2,042,257 ","1,010,480 ","1,031,777 ","1,857,080 ","919,381 ","937,699 ","185,177 ","91,099 ","94,078 " -49,"1,962,889 ","971,540 ","991,349 ","1,781,687 ","882,048 ","899,639 ","181,202 ","89,492 ","91,710 " -50,"1,896,811 ","938,921 ","957,890 ","1,716,865 ","849,742 ","867,123 ","179,946 ","89,179 ","90,767 " -51,"1,831,199 ","907,791 ","923,408 ","1,652,409 ","818,858 ","833,551 ","178,790 ","88,933 ","89,857 " -52,"1,787,340 ","887,811 ","899,529 ","1,610,419 ","799,455 ","810,964 ","176,921 ","88,356 ","88,565 " -53,"1,721,462 ","855,933 ","865,529 ","1,548,597 ","769,296 ","779,301 ","172,865 ","86,637 ","86,228 " -54,"1,645,282 ","815,888 ","829,394 ","1,479,481 ","732,611 ","746,870 ","165,801 ","83,277 ","82,524 " -55,"1,653,083 ","817,784 ","835,299 ","1,495,833 ","738,738 ","757,095 ","157,250 ","79,046 ","78,204 " -56,"1,620,064 ","799,549 ","820,515 ","1,470,784 ","724,489 ","746,295 ","149,280 ","75,060 ","74,220 " -57,"1,565,753 ","770,756 ","794,997 ","1,424,268 ","699,694 ","724,574 ","141,485 ","71,062 ","70,423 " -58,"1,544,679 ","758,685 ","785,994 ","1,411,335 ","691,915 ","719,420 ","133,344 ","66,770 ","66,574 " -59,"1,510,043 ","739,018 ","771,025 ","1,384,951 ","676,667 ","708,284 ","125,092 ","62,351 ","62,741 " -60,"1,463,365 ","713,965 ","749,400 ","1,346,639 ","656,066 ","690,573 ","116,726 ","57,899 ","58,827 " -61,"1,425,006 ","693,326 ","731,680 ","1,317,490 ","640,278 ","677,212 ","107,516 ","53,048 ","54,468 " -62,"1,399,337 ","678,585 ","720,752 ","1,298,834 ","629,368 ","669,466 ","100,503 ","49,217 ","51,286 " -63,"1,365,289 ","659,417 ","705,872 ","1,267,344 ","611,843 ","655,501 ","97,945 ","47,574 ","50,371 " -64,"1,304,579 ","627,960 ","676,619 ","1,205,851 ","580,273 ","625,578 ","98,728 ","47,687 ","51,041 " -65,"1,235,999 ","592,788 ","643,211 ","1,136,121 ","544,658 ","591,463 ","99,878 ","48,130 ","51,748 " -66,"1,207,122 ","576,972 ","630,150 ","1,105,273 ","527,948 ","577,325 ","101,849 ","49,024 ","52,825 " -67,"1,173,570 ","559,698 ","613,872 ","1,072,447 ","510,929 ","561,518 ","101,123 ","48,769 ","52,354 " -68,"1,111,188 ","528,839 ","582,349 ","1,015,830 ","482,741 ","533,089 ","95,358 ","46,098 ","49,260 " -69,"1,057,235 ","502,097 ","555,138 ","971,390 ","460,633 ","510,757 ","85,845 ","41,464 ","44,381 " -70,"991,438 ","467,634 ","523,804 ","914,957 ","430,872 ","484,085 ","76,481 ","36,762 ","39,719 " -71,"924,740 ","433,215 ","491,525 ","857,528 ","401,067 ","456,461 ","67,212 ","32,148 ","35,064 " -72,"855,929 ","399,087 ","456,842 ","796,738 ","370,886 ","425,852 ","59,191 ","28,201 ","30,990 " -73,"783,343 ","362,660 ","420,683 ","729,925 ","337,195 ","392,730 ","53,418 ","25,465 ","27,953 " -74,"712,341 ","328,378 ","383,963 ","663,200 ","304,754 ","358,446 ","49,141 ","23,624 ","25,517 " -75,"643,966 ","295,806 ","348,160 ","599,398 ","274,012 ","325,386 ","44,568 ","21,794 ","22,774 " -76,"580,409 ","265,575 ","314,834 ","540,610 ","245,707 ","294,903 ","39,799 ","19,868 ","19,931 " -77,"522,902 ","238,275 ","284,627 ","487,730 ","220,378 ","267,352 ","35,172 ","17,897 ","17,275 " -78,"475,657 ","214,584 ","261,073 ","444,636 ","198,673 ","245,963 ","31,021 ","15,911 ","15,110 " -79,"428,091 ","190,878 ","237,213 ","400,528 ","176,894 ","223,634 ","27,563 ","13,984 ","13,579 " -80,"385,155 ","169,711 ","215,444 ","360,483 ","157,526 ","202,957 ","24,672 ","12,185 ","12,487 " -81,"336,042 ","145,761 ","190,281 ","314,038 ","135,274 ","178,764 ","22,004 ","10,487 ","11,517 " -82,"280,499 ","119,207 ","161,292 ","261,186 ","110,382 ","150,804 ","19,313 ","8,825 ","10,488 " -83,"236,421 ","98,547 ","137,874 ","219,890 ","91,379 ","128,511 ","16,531 ","7,168 ","9,363 " -84,"191,237 ","77,547 ","113,690 ","177,340 ","72,039 ","105,301 ","13,897 ","5,508 ","8,389 " -85+,"804,375 ","330,493 ","473,882 ","741,767 ","304,261 ","437,506 ","62,608 ","26,232 ","36,376 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1957.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1957.csv deleted file mode 100644 index be722f7520..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1957.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1957",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"171,984,130 ","85,248,426 ","86,735,704 ","152,768,656 ","75,859,479 ","76,909,177 ","19,215,474 ","9,388,947 ","9,826,527 " -,,,,,,,,, -0,"4,035,155 ","2,053,879 ","1,981,276 ","3,443,933 ","1,758,628 ","1,685,305 ","591,222 ","295,251 ","295,971 " -1,"3,923,917 ","1,997,197 ","1,926,720 ","3,363,955 ","1,716,431 ","1,647,524 ","559,962 ","280,766 ","279,196 " -2,"3,912,759 ","1,990,517 ","1,922,242 ","3,353,999 ","1,711,429 ","1,642,570 ","558,760 ","279,088 ","279,672 " -3,"3,847,648 ","1,954,122 ","1,893,526 ","3,313,455 ","1,688,226 ","1,625,229 ","534,193 ","265,896 ","268,297 " -4,"3,774,329 ","1,922,689 ","1,851,640 ","3,262,682 ","1,665,872 ","1,596,810 ","511,647 ","256,817 ","254,830 " -5,"3,679,934 ","1,873,133 ","1,806,801 ","3,187,076 ","1,627,975 ","1,559,101 ","492,858 ","245,158 ","247,700 " -6,"3,582,421 ","1,819,059 ","1,763,362 ","3,090,062 ","1,574,016 ","1,516,046 ","492,359 ","245,043 ","247,316 " -7,"3,474,852 ","1,769,867 ","1,704,985 ","3,005,474 ","1,535,245 ","1,470,229 ","469,378 ","234,622 ","234,756 " -8,"3,449,670 ","1,754,686 ","1,694,984 ","2,996,671 ","1,527,486 ","1,469,185 ","452,999 ","227,200 ","225,799 " -9,"3,437,541 ","1,751,716 ","1,685,825 ","3,007,265 ","1,535,510 ","1,471,755 ","430,276 ","216,206 ","214,070 " -10,"3,742,297 ","1,908,105 ","1,834,192 ","3,312,894 ","1,692,463 ","1,620,431 ","429,403 ","215,642 ","213,761 " -11,"2,726,273 ","1,387,388 ","1,338,885 ","2,377,433 ","1,213,060 ","1,164,373 ","348,840 ","174,328 ","174,512 " -12,"2,781,183 ","1,416,698 ","1,364,485 ","2,417,981 ","1,234,941 ","1,183,040 ","363,202 ","181,757 ","181,445 " -13,"2,798,675 ","1,422,541 ","1,376,134 ","2,446,450 ","1,245,646 ","1,200,804 ","352,225 ","176,895 ","175,330 " -14,"2,996,847 ","1,523,677 ","1,473,170 ","2,639,602 ","1,344,037 ","1,295,565 ","357,245 ","179,640 ","177,605 " -15,"2,603,159 ","1,317,424 ","1,285,735 ","2,270,823 ","1,151,917 ","1,118,906 ","332,336 ","165,507 ","166,829 " -16,"2,407,100 ","1,215,361 ","1,191,739 ","2,104,317 ","1,065,948 ","1,038,369 ","302,783 ","149,413 ","153,370 " -17,"2,296,166 ","1,157,235 ","1,138,931 ","2,000,817 ","1,012,332 ","988,485 ","295,349 ","144,903 ","150,446 " -18,"2,274,288 ","1,148,494 ","1,125,794 ","1,991,120 ","1,008,426 ","982,694 ","283,168 ","140,068 ","143,100 " -19,"2,217,436 ","1,116,541 ","1,100,895 ","1,943,650 ","982,157 ","961,493 ","273,786 ","134,384 ","139,402 " -20,"2,122,410 ","1,057,727 ","1,064,683 ","1,862,723 ","934,106 ","928,617 ","259,687 ","123,621 ","136,066 " -21,"2,133,334 ","1,064,524 ","1,068,810 ","1,872,084 ","940,366 ","931,718 ","261,250 ","124,158 ","137,092 " -22,"2,151,036 ","1,073,606 ","1,077,430 ","1,888,578 ","948,900 ","939,678 ","262,458 ","124,706 ","137,752 " -23,"2,087,107 ","1,044,739 ","1,042,368 ","1,824,235 ","919,330 ","904,905 ","262,872 ","125,409 ","137,463 " -24,"2,109,080 ","1,050,718 ","1,058,362 ","1,847,457 ","926,879 ","920,578 ","261,623 ","123,839 ","137,784 " -25,"2,167,481 ","1,077,286 ","1,090,195 ","1,906,801 ","954,876 ","951,925 ","260,680 ","122,410 ","138,270 " -26,"2,303,937 ","1,150,705 ","1,153,232 ","2,048,391 ","1,030,935 ","1,017,456 ","255,546 ","119,770 ","135,776 " -27,"2,370,125 ","1,181,419 ","1,188,706 ","2,110,798 ","1,059,873 ","1,050,925 ","259,327 ","121,546 ","137,781 " -28,"2,325,111 ","1,149,469 ","1,175,642 ","2,063,412 ","1,026,982 ","1,036,430 ","261,699 ","122,487 ","139,212 " -29,"2,373,166 ","1,169,409 ","1,203,757 ","2,109,426 ","1,046,262 ","1,063,164 ","263,740 ","123,147 ","140,593 " -30,"2,399,249 ","1,181,828 ","1,217,421 ","2,134,780 ","1,058,629 ","1,076,151 ","264,469 ","123,199 ","141,270 " -31,"2,441,863 ","1,204,422 ","1,237,441 ","2,171,876 ","1,078,704 ","1,093,172 ","269,987 ","125,718 ","144,269 " -32,"2,462,482 ","1,209,360 ","1,253,122 ","2,187,314 ","1,081,074 ","1,106,240 ","275,168 ","128,286 ","146,882 " -33,"2,507,964 ","1,230,826 ","1,277,138 ","2,228,216 ","1,099,906 ","1,128,310 ","279,748 ","130,920 ","148,828 " -34,"2,492,400 ","1,220,591 ","1,271,809 ","2,211,319 ","1,088,185 ","1,123,134 ","281,081 ","132,406 ","148,675 " -35,"2,546,473 ","1,249,956 ","1,296,517 ","2,269,002 ","1,118,213 ","1,150,789 ","277,471 ","131,743 ","145,728 " -36,"2,533,176 ","1,242,678 ","1,290,498 ","2,262,947 ","1,113,129 ","1,149,818 ","270,229 ","129,549 ","140,680 " -37,"2,476,432 ","1,217,546 ","1,258,886 ","2,214,267 ","1,090,747 ","1,123,520 ","262,165 ","126,799 ","135,366 " -38,"2,358,489 ","1,155,848 ","1,202,641 ","2,105,006 ","1,032,478 ","1,072,528 ","253,483 ","123,370 ","130,113 " -39,"2,353,961 ","1,159,176 ","1,194,785 ","2,108,187 ","1,039,362 ","1,068,825 ","245,774 ","119,814 ","125,960 " -40,"2,329,121 ","1,148,222 ","1,180,899 ","2,088,370 ","1,031,215 ","1,057,155 ","240,751 ","117,007 ","123,744 " -41,"2,291,428 ","1,130,675 ","1,160,753 ","2,053,889 ","1,016,033 ","1,037,856 ","237,539 ","114,642 ","122,897 " -42,"2,249,872 ","1,108,645 ","1,141,227 ","2,015,594 ","996,281 ","1,019,313 ","234,278 ","112,364 ","121,914 " -43,"2,234,056 ","1,100,303 ","1,133,753 ","2,002,671 ","989,663 ","1,013,008 ","231,385 ","110,640 ","120,745 " -44,"2,223,462 ","1,096,366 ","1,127,096 ","1,996,195 ","987,554 ","1,008,641 ","227,267 ","108,812 ","118,455 " -45,"2,171,200 ","1,071,268 ","1,099,932 ","1,951,095 ","965,374 ","985,721 ","220,105 ","105,894 ","114,211 " -46,"2,117,289 ","1,044,672 ","1,072,617 ","1,906,748 ","942,635 ","964,113 ","210,541 ","102,037 ","108,504 " -47,"2,105,965 ","1,040,750 ","1,065,215 ","1,904,932 ","942,648 ","962,284 ","201,033 ","98,102 ","102,931 " -48,"2,088,827 ","1,032,994 ","1,055,833 ","1,897,254 ","939,024 ","958,230 ","191,573 ","93,970 ","97,603 " -49,"2,009,895 ","994,222 ","1,015,673 ","1,825,912 ","903,642 ","922,270 ","183,983 ","90,580 ","93,403 " -50,"1,930,233 ","953,938 ","976,295 ","1,750,253 ","865,039 ","885,214 ","179,980 ","88,899 ","91,081 " -51,"1,877,070 ","927,995 ","949,075 ","1,698,231 ","839,368 ","858,863 ","178,839 ","88,627 ","90,212 " -52,"1,814,963 ","899,128 ","915,835 ","1,637,703 ","810,976 ","826,727 ","177,260 ","88,152 ","89,108 " -53,"1,761,836 ","874,215 ","887,621 ","1,587,239 ","787,058 ","800,181 ","174,597 ","87,157 ","87,440 " -54,"1,702,245 ","844,769 ","857,476 ","1,532,194 ","759,620 ","772,574 ","170,051 ","85,149 ","84,902 " -55,"1,644,532 ","812,730 ","831,802 ","1,481,178 ","730,805 ","750,373 ","163,354 ","81,925 ","81,429 " -56,"1,639,945 ","808,366 ","831,579 ","1,484,587 ","730,441 ","754,146 ","155,358 ","77,925 ","77,433 " -57,"1,614,360 ","793,459 ","820,901 ","1,467,142 ","719,716 ","747,426 ","147,218 ","73,743 ","73,475 " -58,"1,579,415 ","774,780 ","804,635 ","1,440,721 ","705,527 ","735,194 ","138,694 ","69,253 ","69,441 " -59,"1,508,629 ","736,201 ","772,428 ","1,378,748 ","671,663 ","707,085 ","129,881 ","64,538 ","65,343 " -60,"1,466,903 ","712,867 ","754,036 ","1,345,814 ","653,020 ","692,794 ","121,089 ","59,847 ","61,242 " -61,"1,442,808 ","698,709 ","744,099 ","1,331,058 ","643,788 ","687,270 ","111,750 ","54,921 ","56,829 " -62,"1,407,798 ","679,373 ","728,425 ","1,303,330 ","628,392 ","674,938 ","104,468 ","50,981 ","53,487 " -63,"1,369,323 ","657,930 ","711,393 ","1,268,018 ","608,913 ","659,105 ","101,305 ","49,017 ","52,288 " -64,"1,338,209 ","640,788 ","697,421 ","1,236,896 ","592,109 ","644,787 ","101,313 ","48,679 ","52,634 " -65,"1,288,341 ","614,843 ","673,498 ","1,186,588 ","566,125 ","620,463 ","101,753 ","48,718 ","53,035 " -66,"1,217,874 ","578,707 ","639,167 ","1,114,617 ","529,291 ","585,326 ","103,257 ","49,416 ","53,841 " -67,"1,182,606 ","560,763 ","621,843 ","1,080,213 ","511,658 ","568,555 ","102,393 ","49,105 ","53,288 " -68,"1,144,535 ","542,093 ","602,442 ","1,047,606 ","495,405 ","552,201 ","96,929 ","46,688 ","50,241 " -69,"1,090,995 ","516,429 ","574,566 ","1,003,069 ","473,930 ","529,139 ","87,926 ","42,499 ","45,427 " -70,"1,007,696 ","474,719 ","532,977 ","928,886 ","436,676 ","492,210 ","78,810 ","38,043 ","40,767 " -71,"942,004 ","440,691 ","501,313 ","872,415 ","407,268 ","465,147 ","69,589 ","33,423 ","36,166 " -72,"883,994 ","410,993 ","473,001 ","822,509 ","381,588 ","440,921 ","61,485 ","29,405 ","32,080 " -73,"823,290 ","380,553 ","442,737 ","767,623 ","354,029 ","413,594 ","55,667 ","26,524 ","29,143 " -74,"738,330 ","338,557 ","399,773 ","686,859 ","314,019 ","372,840 ","51,471 ","24,538 ","26,933 " -75,"672,569 ","307,204 ","365,365 ","625,552 ","284,563 ","340,989 ","47,017 ","22,641 ","24,376 " -76,"604,925 ","275,014 ","329,911 ","562,670 ","254,277 ","308,393 ","42,255 ","20,737 ","21,518 " -77,"547,425 ","248,204 ","299,221 ","509,816 ","229,424 ","280,392 ","37,609 ","18,780 ","18,829 " -78,"485,321 ","217,990 ","267,331 ","452,181 ","201,254 ","250,927 ","33,140 ","16,736 ","16,404 " -79,"440,604 ","195,674 ","244,930 ","411,520 ","181,000 ","230,520 ","29,084 ","14,674 ","14,410 " -80,"391,499 ","171,372 ","220,127 ","365,868 ","158,663 ","207,205 ","25,631 ","12,709 ","12,922 " -81,"351,548 ","152,151 ","199,397 ","328,853 ","141,284 ","187,569 ","22,695 ","10,867 ","11,828 " -82,"293,837 ","124,775 ","169,062 ","274,123 ","115,719 ","158,404 ","19,714 ","9,056 ","10,658 " -83,"243,699 ","101,365 ","142,334 ","227,233 ","94,148 ","133,085 ","16,466 ","7,217 ","9,249 " -84,"199,435 ","80,913 ","118,522 ","186,219 ","75,560 ","110,659 ","13,216 ","5,353 ","7,863 " -85+,"837,293 ","339,889 ","497,404 ","771,986 ","312,413 ","459,573 ","65,307 ","27,476 ","37,831 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1958.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1958.csv deleted file mode 100644 index f7126f0fee..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1958.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1958",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"174,881,904 ","86,605,105 ","88,276,799 ","155,199,538 ","76,996,151 ","78,203,387 ","19,682,366 ","9,608,954 ","10,073,412 " -,,,,,,,,, -0,"4,073,113 ","2,072,535 ","2,000,578 ","3,476,688 ","1,774,228 ","1,702,460 ","596,425 ","298,307 ","298,118 " -1,"4,081,641 ","2,078,037 ","2,003,604 ","3,495,102 ","1,784,027 ","1,711,075 ","586,539 ","294,010 ","292,529 " -2,"3,955,569 ","2,010,345 ","1,945,224 ","3,382,926 ","1,724,074 ","1,658,852 ","572,643 ","286,271 ","286,372 " -3,"3,911,814 ","1,988,848 ","1,922,966 ","3,358,173 ","1,712,860 ","1,645,313 ","553,641 ","275,988 ","277,653 " -4,"3,864,465 ","1,966,943 ","1,897,522 ","3,328,235 ","1,698,544 ","1,629,691 ","536,230 ","268,399 ","267,831 " -5,"3,776,286 ","1,921,033 ","1,855,253 ","3,262,476 ","1,664,008 ","1,598,468 ","513,810 ","257,025 ","256,785 " -6,"3,670,427 ","1,866,260 ","1,804,167 ","3,175,574 ","1,620,400 ","1,555,174 ","494,853 ","245,860 ","248,993 " -7,"3,608,923 ","1,833,828 ","1,775,095 ","3,107,600 ","1,583,903 ","1,523,697 ","501,323 ","249,925 ","251,398 " -8,"3,439,532 ","1,751,074 ","1,688,458 ","2,976,318 ","1,518,806 ","1,457,512 ","463,214 ","232,268 ","230,946 " -9,"3,445,744 ","1,754,000 ","1,691,744 ","2,990,230 ","1,525,311 ","1,464,919 ","455,514 ","228,689 ","226,825 " -10,"3,473,006 ","1,769,366 ","1,703,640 ","3,031,653 ","1,547,367 ","1,484,286 ","441,353 ","221,999 ","219,354 " -11,"3,749,985 ","1,910,419 ","1,839,566 ","3,321,305 ","1,695,490 ","1,625,815 ","428,680 ","214,929 ","213,751 " -12,"2,731,853 ","1,389,563 ","1,342,290 ","2,380,915 ","1,214,332 ","1,166,583 ","350,938 ","175,231 ","175,707 " -13,"2,754,957 ","1,400,640 ","1,354,317 ","2,397,476 ","1,222,294 ","1,175,182 ","357,481 ","178,346 ","179,135 " -14,"2,836,085 ","1,439,869 ","1,396,216 ","2,480,286 ","1,261,253 ","1,219,033 ","355,799 ","178,616 ","177,183 " -15,"2,957,721 ","1,498,982 ","1,458,739 ","2,610,004 ","1,325,250 ","1,284,754 ","347,717 ","173,732 ","173,985 " -16,"2,576,464 ","1,302,960 ","1,273,504 ","2,254,585 ","1,142,896 ","1,111,689 ","321,879 ","160,064 ","161,815 " -17,"2,415,841 ","1,218,188 ","1,197,653 ","2,108,872 ","1,066,716 ","1,042,156 ","306,969 ","151,472 ","155,497 " -18,"2,306,640 ","1,163,791 ","1,142,849 ","2,017,840 ","1,021,838 ","996,002 ","288,800 ","141,953 ","146,847 " -19,"2,244,557 ","1,131,768 ","1,112,789 ","1,967,928 ","995,601 ","972,327 ","276,629 ","136,167 ","140,462 " -20,"2,218,649 ","1,112,037 ","1,106,612 ","1,947,955 ","981,620 ","966,335 ","270,694 ","130,417 ","140,277 " -21,"2,137,506 ","1,061,622 ","1,075,884 ","1,876,867 ","939,177 ","937,690 ","260,639 ","122,445 ","138,194 " -22,"2,128,631 ","1,061,238 ","1,067,393 ","1,867,374 ","936,958 ","930,416 ","261,257 ","124,280 ","136,977 " -23,"2,190,431 ","1,098,489 ","1,091,942 ","1,925,936 ","971,481 ","954,455 ","264,495 ","127,008 ","137,487 " -24,"2,080,581 ","1,038,279 ","1,042,302 ","1,820,693 ","915,050 ","905,643 ","259,888 ","123,229 ","136,659 " -25,"2,089,151 ","1,035,853 ","1,053,298 ","1,827,902 ","912,964 ","914,938 ","261,249 ","122,889 ","138,360 " -26,"2,216,196 ","1,100,568 ","1,115,628 ","1,959,435 ","980,022 ","979,413 ","256,761 ","120,546 ","136,215 " -27,"2,335,664 ","1,168,023 ","1,167,641 ","2,076,733 ","1,046,659 ","1,030,074 ","258,931 ","121,364 ","137,567 " -28,"2,327,219 ","1,155,841 ","1,171,378 ","2,062,444 ","1,031,919 ","1,030,525 ","264,775 ","123,922 ","140,853 " -29,"2,303,935 ","1,132,804 ","1,171,131 ","2,038,373 ","1,008,894 ","1,029,479 ","265,562 ","123,910 ","141,652 " -30,"2,388,297 ","1,177,294 ","1,211,003 ","2,124,094 ","1,054,517 ","1,069,577 ","264,203 ","122,777 ","141,426 " -31,"2,429,780 ","1,200,135 ","1,229,645 ","2,160,963 ","1,075,365 ","1,085,598 ","268,817 ","124,770 ","144,047 " -32,"2,413,401 ","1,186,301 ","1,227,100 ","2,139,264 ","1,058,841 ","1,080,423 ","274,137 ","127,460 ","146,677 " -33,"2,503,250 ","1,229,016 ","1,274,234 ","2,225,384 ","1,099,265 ","1,126,119 ","277,866 ","129,751 ","148,115 " -34,"2,531,425 ","1,242,619 ","1,288,806 ","2,251,076 ","1,110,948 ","1,140,128 ","280,349 ","131,671 ","148,678 " -35,"2,468,902 ","1,207,990 ","1,260,912 ","2,188,730 ","1,075,539 ","1,113,191 ","280,172 ","132,451 ","147,721 " -36,"2,564,641 ","1,257,557 ","1,307,084 ","2,289,249 ","1,126,254 ","1,162,995 ","275,392 ","131,303 ","144,089 " -37,"2,571,791 ","1,262,745 ","1,309,046 ","2,304,747 ","1,134,393 ","1,170,354 ","267,044 ","128,352 ","138,692 " -38,"2,405,883 ","1,179,693 ","1,226,190 ","2,147,455 ","1,054,885 ","1,092,570 ","258,428 ","124,808 ","133,620 " -39,"2,340,678 ","1,147,482 ","1,193,196 ","2,091,002 ","1,026,601 ","1,064,401 ","249,676 ","120,881 ","128,795 " -40,"2,368,515 ","1,165,051 ","1,203,464 ","2,126,582 ","1,047,889 ","1,078,693 ","241,933 ","117,162 ","124,771 " -41,"2,330,882 ","1,150,591 ","1,180,291 ","2,094,271 ","1,036,547 ","1,057,724 ","236,611 ","114,044 ","122,567 " -42,"2,252,125 ","1,108,001 ","1,144,124 ","2,018,677 ","996,242 ","1,022,435 ","233,448 ","111,759 ","121,689 " -43,"2,250,438 ","1,107,031 ","1,143,407 ","2,019,704 ","996,856 ","1,022,848 ","230,734 ","110,175 ","120,559 " -44,"2,244,353 ","1,105,381 ","1,138,972 ","2,015,868 ","996,150 ","1,019,718 ","228,485 ","109,231 ","119,254 " -45,"2,214,636 ","1,090,919 ","1,123,717 ","1,989,867 ","983,130 ","1,006,737 ","224,769 ","107,789 ","116,980 " -46,"2,160,534 ","1,065,835 ","1,094,699 ","1,942,614 ","960,697 ","981,917 ","217,920 ","105,138 ","112,782 " -47,"2,109,794 ","1,040,792 ","1,069,002 ","1,900,920 ","939,241 ","961,679 ","208,874 ","101,551 ","107,323 " -48,"2,110,924 ","1,042,918 ","1,068,006 ","1,911,148 ","945,242 ","965,906 ","199,776 ","97,676 ","102,100 " -49,"2,060,911 ","1,018,952 ","1,041,959 ","1,870,453 ","925,517 ","944,936 ","190,458 ","93,435 ","97,023 " -50,"1,970,024 ","972,787 ","997,237 ","1,787,207 ","882,820 ","904,387 ","182,817 ","89,967 ","92,850 " -51,"1,903,914 ","939,657 ","964,257 ","1,725,030 ","851,345 ","873,685 ","178,884 ","88,312 ","90,572 " -52,"1,859,706 ","918,582 ","941,124 ","1,682,358 ","830,753 ","851,605 ","177,348 ","87,829 ","89,519 " -53,"1,792,438 ","886,800 ","905,638 ","1,617,397 ","799,828 ","817,569 ","175,041 ","86,972 ","88,069 " -54,"1,744,354 ","863,575 ","880,779 ","1,572,431 ","777,871 ","794,560 ","171,923 ","85,704 ","86,219 " -55,"1,704,180 ","842,551 ","861,629 ","1,536,448 ","758,735 ","777,713 ","167,732 ","83,816 ","83,916 " -56,"1,633,094 ","803,724 ","829,370 ","1,471,464 ","722,887 ","748,577 ","161,630 ","80,837 ","80,793 " -57,"1,636,568 ","803,023 ","833,545 ","1,483,184 ","726,417 ","756,767 ","153,384 ","76,606 ","76,778 " -58,"1,628,208 ","797,404 ","830,804 ","1,483,888 ","725,550 ","758,338 ","144,320 ","71,854 ","72,466 " -59,"1,533,905 ","747,243 ","786,662 ","1,398,978 ","680,381 ","718,597 ","134,927 ","66,862 ","68,065 " -60,"1,465,009 ","709,443 ","755,566 ","1,339,506 ","647,596 ","691,910 ","125,503 ","61,847 ","63,656 " -61,"1,446,114 ","697,075 ","749,039 ","1,330,410 ","640,404 ","690,006 ","115,704 ","56,671 ","59,033 " -62,"1,421,798 ","682,717 ","739,081 ","1,313,681 ","630,124 ","683,557 ","108,117 ","52,593 ","55,524 " -63,"1,372,692 ","656,234 ","716,458 ","1,268,102 ","605,734 ","662,368 ","104,590 ","50,500 ","54,090 " -64,"1,340,078 ","638,245 ","701,833 ","1,236,055 ","588,381 ","647,674 ","104,023 ","49,864 ","54,159 " -65,"1,320,412 ","626,858 ","693,554 ","1,216,705 ","577,412 ","639,293 ","103,707 ","49,446 ","54,261 " -66,"1,266,948 ","599,174 ","667,774 ","1,162,528 ","549,492 ","613,036 ","104,420 ","49,682 ","54,738 " -67,"1,188,273 ","559,801 ","628,472 ","1,084,973 ","510,555 ","574,418 ","103,300 ","49,246 ","54,054 " -68,"1,154,064 ","543,071 ","610,993 ","1,056,046 ","496,170 ","559,876 ","98,018 ","46,901 ","51,117 " -69,"1,125,536 ","529,834 ","595,702 ","1,036,061 ","486,809 ","549,252 ","89,475 ","43,025 ","46,450 " -70,"1,038,546 ","487,248 ","551,298 ","957,748 ","448,274 ","509,474 ","80,798 ","38,974 ","41,824 " -71,"955,589 ","446,046 ","509,543 ","883,671 ","411,410 ","472,261 ","71,918 ","34,636 ","37,282 " -72,"902,398 ","418,552 ","483,846 ","838,537 ","387,936 ","450,601 ","63,861 ","30,616 ","33,245 " -73,"849,766 ","391,417 ","458,349 ","791,890 ","363,770 ","428,120 ","57,876 ","27,647 ","30,229 " -74,"774,993 ","354,766 ","420,227 ","721,430 ","329,266 ","392,164 ","53,563 ","25,500 ","28,063 " -75,"693,623 ","314,867 ","378,756 ","644,410 ","291,403 ","353,007 ","49,213 ","23,464 ","25,749 " -76,"629,920 ","284,500 ","345,420 ","585,402 ","263,027 ","322,375 ","44,518 ","21,473 ","23,045 " -77,"569,887 ","256,525 ","313,362 ","530,069 ","237,022 ","293,047 ","39,818 ","19,503 ","20,315 " -78,"505,659 ","225,705 ","279,954 ","470,357 ","208,263 ","262,094 ","35,302 ","17,442 ","17,860 " -79,"446,987 ","197,323 ","249,664 ","416,092 ","182,026 ","234,066 ","30,895 ","15,297 ","15,598 " -80,"400,988 ","174,597 ","226,391 ","374,182 ","161,410 ","212,772 ","26,806 ","13,187 ","13,619 " -81,"354,724 ","152,283 ","202,441 ","331,460 ","141,111 ","190,349 ","23,264 ","11,172 ","12,092 " -82,"305,632 ","129,552 ","176,080 ","285,696 ","120,341 ","165,355 ","19,936 ","9,211 ","10,725 " -83,"254,028 ","105,766 ","148,262 ","237,764 ","98,560 ","139,204 ","16,264 ","7,206 ","9,058 " -84,"203,622 ","82,631 ","120,991 ","191,245 ","77,490 ","113,755 ","12,377 ","5,141 ","7,236 " -85+,"864,481 ","346,023 ","518,458 ","797,167 ","317,517 ","479,650 ","67,314 ","28,506 ","38,808 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1959.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1959.csv deleted file mode 100644 index e719809456..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1959.csv +++ /dev/null @@ -1,110 +0,0 @@ -Table with row headers in column A and column headers in rows 5 through 6.,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1959",,,,,,,,, - (Includes Alaska and Hawaii),,,,,,,,, - -Age,All races,,,White,,,Nonwhite,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,, -All ages,"177,829,628 ","87,995,434 ","89,834,194 ","157,654,929 ","78,153,703 ","79,501,226 ","20,174,699 ","9,841,731 ","10,332,968 " -,,,,,,,,, -0,"4,097,383 ","2,081,769 ","2,015,614 ","3,480,334 ","1,773,963 ","1,706,371 ","617,049 ","307,806 ","309,243 " -1,"4,103,414 ","2,087,299 ","2,016,115 ","3,513,630 ","1,791,625 ","1,722,005 ","589,784 ","295,674 ","294,110 " -2,"4,092,616 ","2,081,824 ","2,010,792 ","3,499,692 ","1,785,083 ","1,714,609 ","592,924 ","296,741 ","296,183 " -3,"3,947,785 ","2,004,941 ","1,942,844 ","3,380,021 ","1,721,666 ","1,658,355 ","567,764 ","283,275 ","284,489 " -4,"3,933,920 ","2,003,669 ","1,930,251 ","3,376,509 ","1,724,621 ","1,651,888 ","557,411 ","279,048 ","278,363 " -5,"3,877,965 ","1,971,705 ","1,906,260 ","3,336,417 ","1,701,170 ","1,635,247 ","541,548 ","270,535 ","271,013 " -6,"3,764,441 ","1,912,702 ","1,851,739 ","3,248,423 ","1,654,939 ","1,593,484 ","516,018 ","257,763 ","258,255 " -7,"3,697,523 ","1,880,569 ","1,816,954 ","3,192,844 ","1,629,368 ","1,563,476 ","504,679 ","251,201 ","253,478 " -8,"3,569,753 ","1,814,139 ","1,755,614 ","3,075,930 ","1,567,076 ","1,508,854 ","493,823 ","247,063 ","246,760 " -9,"3,434,413 ","1,749,824 ","1,684,589 ","2,968,967 ","1,516,219 ","1,452,748 ","465,446 ","233,605 ","231,841 " -10,"3,478,283 ","1,769,305 ","1,708,978 ","3,011,070 ","1,534,766 ","1,476,304 ","467,213 ","234,539 ","232,674 " -11,"3,482,375 ","1,772,598 ","1,709,777 ","3,042,119 ","1,551,520 ","1,490,599 ","440,256 ","221,078 ","219,178 " -12,"3,758,204 ","1,913,782 ","1,844,422 ","3,326,538 ","1,697,503 ","1,629,035 ","431,666 ","216,279 ","215,387 " -13,"2,703,780 ","1,372,435 ","1,331,345 ","2,358,962 ","1,200,820 ","1,158,142 ","344,818 ","171,615 ","173,203 " -14,"2,797,368 ","1,420,545 ","1,376,823 ","2,435,667 ","1,240,136 ","1,195,531 ","361,701 ","180,409 ","181,292 " -15,"2,804,400 ","1,420,801 ","1,383,599 ","2,457,702 ","1,247,301 ","1,210,401 ","346,698 ","173,500 ","173,198 " -16,"2,919,823 ","1,478,901 ","1,440,922 ","2,582,306 ","1,310,514 ","1,271,792 ","337,517 ","168,387 ","169,130 " -17,"2,586,987 ","1,306,585 ","1,280,402 ","2,260,843 ","1,144,499 ","1,116,344 ","326,144 ","162,086 ","164,058 " -18,"2,431,016 ","1,228,295 ","1,202,721 ","2,132,812 ","1,080,915 ","1,051,897 ","298,204 ","147,380 ","150,824 " -19,"2,276,715 ","1,148,014 ","1,128,701 ","1,994,699 ","1,010,254 ","984,445 ","282,016 ","137,760 ","144,256 " -20,"2,247,873 ","1,128,958 ","1,118,915 ","1,974,397 ","996,456 ","977,941 ","273,476 ","132,502 ","140,974 " -21,"2,233,988 ","1,116,128 ","1,117,860 ","1,962,229 ","986,875 ","975,354 ","271,759 ","129,253 ","142,506 " -22,"2,137,920 ","1,062,267 ","1,075,653 ","1,877,141 ","939,434 ","937,707 ","260,779 ","122,833 ","137,946 " -23,"2,166,724 ","1,086,682 ","1,080,042 ","1,902,732 ","959,520 ","943,212 ","263,992 ","127,162 ","136,830 " -24,"2,182,455 ","1,091,535 ","1,090,920 ","1,920,760 ","966,716 ","954,044 ","261,695 ","124,819 ","136,876 " -25,"2,062,600 ","1,024,525 ","1,038,075 ","1,802,639 ","902,099 ","900,540 ","259,961 ","122,426 ","137,535 " -26,"2,137,130 ","1,059,343 ","1,077,787 ","1,879,887 ","938,342 ","941,545 ","257,243 ","121,001 ","136,242 " -27,"2,244,217 ","1,116,272 ","1,127,945 ","1,983,150 ","993,629 ","989,521 ","261,067 ","122,643 ","138,424 " -28,"2,304,454 ","1,148,868 ","1,155,586 ","2,038,962 ","1,024,488 ","1,014,474 ","265,492 ","124,380 ","141,112 " -29,"2,298,561 ","1,134,702 ","1,163,859 ","2,029,031 ","1,008,816 ","1,020,215 ","269,530 ","125,886 ","143,644 " -30,"2,314,904 ","1,139,007 ","1,175,897 ","2,048,498 ","1,015,242 ","1,033,256 ","266,406 ","123,765 ","142,641 " -31,"2,424,507 ","1,198,647 ","1,225,860 ","2,155,050 ","1,073,828 ","1,081,222 ","269,457 ","124,819 ","144,638 " -32,"2,405,564 ","1,184,448 ","1,221,116 ","2,132,179 ","1,057,747 ","1,074,432 ","273,385 ","126,701 ","146,684 " -33,"2,452,018 ","1,204,867 ","1,247,151 ","2,175,560 ","1,076,196 ","1,099,364 ","276,458 ","128,671 ","147,787 " -34,"2,524,791 ","1,239,579 ","1,285,212 ","2,247,257 ","1,109,636 ","1,137,621 ","277,534 ","129,943 ","147,591 " -35,"2,505,462 ","1,228,632 ","1,276,830 ","2,226,954 ","1,097,459 ","1,129,495 ","278,508 ","131,173 ","147,335 " -36,"2,486,313 ","1,214,901 ","1,271,412 ","2,209,243 ","1,083,461 ","1,125,782 ","277,070 ","131,440 ","145,630 " -37,"2,609,363 ","1,280,658 ","1,328,705 ","2,337,965 ","1,151,044 ","1,186,921 ","271,398 ","129,614 ","141,784 " -38,"2,487,881 ","1,217,659 ","1,270,222 ","2,224,914 ","1,091,622 ","1,133,292 ","262,967 ","126,037 ","136,930 " -39,"2,389,131 ","1,171,457 ","1,217,674 ","2,134,505 ","1,049,345 ","1,085,160 ","254,626 ","122,112 ","132,514 " -40,"2,366,032 ","1,158,474 ","1,207,558 ","2,120,225 ","1,040,484 ","1,079,741 ","245,807 ","117,990 ","127,817 " -41,"2,372,830 ","1,168,597 ","1,204,233 ","2,135,062 ","1,054,652 ","1,080,410 ","237,768 ","113,945 ","123,823 " -42,"2,286,160 ","1,124,708 ","1,161,452 ","2,053,509 ","1,013,645 ","1,039,864 ","232,651 ","111,063 ","121,588 " -43,"2,254,757 ","1,107,324 ","1,147,433 ","2,024,542 ","997,624 ","1,026,918 ","230,215 ","109,700 ","120,515 " -44,"2,264,838 ","1,114,612 ","1,150,226 ","2,036,543 ","1,005,529 ","1,031,014 ","228,295 ","109,083 ","119,212 " -45,"2,233,517 ","1,099,355 ","1,134,162 ","2,007,010 ","990,795 ","1,016,215 ","226,507 ","108,560 ","117,947 " -46,"2,207,227 ","1,087,516 ","1,119,711 ","1,984,065 ","980,082 ","1,003,983 ","223,162 ","107,434 ","115,728 " -47,"2,152,367 ","1,061,937 ","1,090,430 ","1,935,586 ","956,939 ","978,647 ","216,781 ","104,998 ","111,783 " -48,"2,112,595 ","1,041,743 ","1,070,852 ","1,904,559 ","940,401 ","964,158 ","208,036 ","101,342 ","106,694 " -49,"2,090,332 ","1,032,770 ","1,057,562 ","1,891,318 ","935,503 ","955,815 ","199,014 ","97,267 ","101,747 " -50,"2,016,087 ","995,077 ","1,021,010 ","1,826,432 ","902,117 ","924,315 ","189,655 ","92,960 ","96,695 " -51,"1,939,474 ","956,616 ","982,858 ","1,757,425 ","867,109 ","890,316 ","182,049 ","89,507 ","92,542 " -52,"1,888,124 ","931,125 ","956,999 ","1,710,384 ","843,474 ","866,910 ","177,740 ","87,651 ","90,089 " -53,"1,842,910 ","909,210 ","933,700 ","1,667,372 ","822,387 ","844,985 ","175,538 ","86,823 ","88,715 " -54,"1,779,285 ","878,269 ","901,016 ","1,606,480 ","792,556 ","813,924 ","172,805 ","85,713 ","87,092 " -55,"1,751,321 ","863,733 ","887,588 ","1,581,301 ","779,181 ","802,120 ","170,020 ","84,552 ","85,468 " -56,"1,696,982 ","835,526 ","861,456 ","1,530,523 ","752,601 ","777,922 ","166,459 ","82,925 ","83,534 " -57,"1,633,812 ","800,299 ","833,513 ","1,473,771 ","720,604 ","753,167 ","160,041 ","79,695 ","80,346 " -58,"1,652,113 ","807,931 ","844,182 ","1,501,438 ","733,110 ","768,328 ","150,675 ","74,821 ","75,854 " -59,"1,575,047 ","766,040 ","809,007 ","1,434,493 ","696,542 ","737,951 ","140,554 ","69,498 ","71,056 " -60,"1,491,951 ","721,265 ","770,686 ","1,361,455 ","657,075 ","704,380 ","130,496 ","64,190 ","66,306 " -61,"1,446,654 ","694,819 ","751,835 ","1,326,607 ","636,128 ","690,479 ","120,047 ","58,691 ","61,356 " -62,"1,424,132 ","680,867 ","743,265 ","1,312,303 ","626,561 ","685,742 ","111,829 ","54,306 ","57,523 " -63,"1,384,605 ","659,019 ","725,586 ","1,276,697 ","606,956 ","669,741 ","107,908 ","52,063 ","55,845 " -64,"1,344,533 ","637,572 ","706,961 ","1,237,484 ","586,220 ","651,264 ","107,049 ","51,352 ","55,697 " -65,"1,323,956 ","625,617 ","698,339 ","1,217,708 ","574,947 ","642,761 ","106,248 ","50,670 ","55,578 " -66,"1,299,233 ","611,899 ","687,334 ","1,193,044 ","561,471 ","631,573 ","106,189 ","50,428 ","55,761 " -67,"1,236,144 ","580,100 ","656,044 ","1,131,598 ","530,475 ","601,123 ","104,546 ","49,625 ","54,921 " -68,"1,164,286 ","544,573 ","619,713 ","1,064,936 ","497,285 ","567,651 ","99,350 ","47,288 ","52,062 " -69,"1,139,912 ","533,230 ","606,682 ","1,048,789 ","489,703 ","559,086 ","91,123 ","43,527 ","47,596 " -70,"1,074,172 ","501,317 ","572,855 ","991,398 ","461,599 ","529,799 ","82,774 ","39,718 ","43,056 " -71,"987,571 ","459,178 ","528,393 ","913,213 ","423,396 ","489,817 ","74,358 ","35,782 ","38,576 " -72,"921,036 ","426,277 ","494,759 ","854,466 ","394,272 ","460,194 ","66,570 ","32,005 ","34,565 " -73,"870,230 ","400,064 ","470,166 ","809,734 ","371,072 ","438,662 ","60,496 ","28,992 ","31,504 " -74,"801,837 ","366,052 ","435,785 ","745,908 ","339,316 ","406,592 ","55,929 ","26,736 ","29,193 " -75,"728,589 ","330,484 ","398,105 ","677,111 ","305,942 ","371,169 ","51,478 ","24,542 ","26,936 " -76,"650,616 ","292,109 ","358,507 ","603,805 ","269,730 ","334,075 ","46,811 ","22,379 ","24,432 " -77,"596,116 ","266,749 ","329,367 ","554,022 ","246,478 ","307,544 ","42,094 ","20,271 ","21,823 " -78,"526,970 ","233,514 ","293,456 ","489,497 ","215,360 ","274,137 ","37,473 ","18,154 ","19,319 " -79,"467,184 ","204,999 ","262,185 ","434,215 ","189,043 ","245,172 ","32,969 ","15,956 ","17,013 " -80,"407,389 ","176,292 ","231,097 ","378,924 ","162,557 ","216,367 ","28,465 ","13,735 ","14,730 " -81,"364,053 ","155,552 ","208,501 ","339,832 ","144,004 ","195,828 ","24,221 ","11,548 ","12,673 " -82,"308,239 ","129,665 ","178,574 ","288,053 ","120,283 ","167,770 ","20,186 ","9,382 ","10,804 " -83,"265,630 ","110,790 ","154,840 ","249,627 ","103,607 ","146,020 ","16,003 ","7,183 ","8,820 " -84,"213,541 ","87,272 ","126,269 ","202,072 ","82,376 ","119,696 ","11,469 ","4,896 ","6,573 " -85+,"901,219 ","356,460 ","544,759 ","831,855 ","326,599 ","505,256 ","69,364 ","29,861 ","39,503 " -,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,, -,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,, -,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,, -,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1960.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1960.csv deleted file mode 100644 index 972d212e41..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1960.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1960",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"180,671,158 ","89,319,511 ","91,351,647 ","160,022,673 ","79,256,987 ","80,765,686 ","19,006,281 ","9,199,339 ","9,806,942 ","1,642,204 ","863,185 ","779,019 " -,,,,,,,,,,,, -0,"4,093,802 ","2,079,726 ","2,014,076 ","3,481,117 ","1,775,207 ","1,705,910 ","561,153 ","278,897 ","282,256 ","51,532 ","25,622 ","25,910 " -1,"4,104,163 ","2,084,018 ","2,020,145 ","3,499,488 ","1,781,765 ","1,717,723 ","558,350 ","278,499 ","279,851 ","46,325 ","23,754 ","22,571 " -2,"4,080,463 ","2,075,083 ","2,005,380 ","3,492,250 ","1,780,255 ","1,711,995 ","542,633 ","271,563 ","271,070 ","45,580 ","23,265 ","22,315 " -3,"4,077,609 ","2,071,898 ","2,005,711 ","3,489,617 ","1,778,386 ","1,711,231 ","542,635 ","270,446 ","272,189 ","45,357 ","23,066 ","22,291 " -4,"3,985,212 ","2,028,055 ","1,957,157 ","3,410,248 ","1,739,951 ","1,670,297 ","530,812 ","265,554 ","265,258 ","44,152 ","22,550 ","21,602 " -5,"3,958,677 ","2,014,357 ","1,944,320 ","3,391,887 ","1,730,810 ","1,661,077 ","522,434 ","260,968 ","261,466 ","44,356 ","22,579 ","21,777 " -6,"3,852,247 ","1,955,472 ","1,896,775 ","3,310,204 ","1,685,301 ","1,624,903 ","500,349 ","249,009 ","251,340 ","41,694 ","21,162 ","20,532 " -7,"3,797,917 ","1,930,007 ","1,867,910 ","3,269,973 ","1,665,650 ","1,604,323 ","487,502 ","243,726 ","243,776 ","40,442 ","20,631 ","19,811 " -8,"3,635,589 ","1,850,932 ","1,784,657 ","3,144,687 ","1,605,525 ","1,539,162 ","453,317 ","226,261 ","227,056 ","37,585 ","19,146 ","18,439 " -9,"3,565,587 ","1,813,771 ","1,751,816 ","3,068,982 ","1,565,186 ","1,503,796 ","458,595 ","229,198 ","229,397 ","38,010 ","19,387 ","18,623 " -10,"3,473,252 ","1,767,568 ","1,705,684 ","2,994,724 ","1,527,747 ","1,466,977 ","441,987 ","221,208 ","220,779 ","36,541 ","18,613 ","17,928 " -11,"3,489,877 ","1,773,519 ","1,716,358 ","3,024,855 ","1,540,586 ","1,484,269 ","429,297 ","214,735 ","214,562 ","35,725 ","18,198 ","17,527 " -12,"3,491,706 ","1,777,025 ","1,714,681 ","3,047,785 ","1,554,190 ","1,493,595 ","409,929 ","205,482 ","204,447 ","33,992 ","17,353 ","16,639 " -13,"3,700,245 ","1,879,559 ","1,820,686 ","3,280,193 ","1,669,961 ","1,610,232 ","389,296 ","193,910 ","195,386 ","30,756 ","15,688 ","15,068 " -14,"2,770,401 ","1,404,778 ","1,365,623 ","2,419,174 ","1,229,904 ","1,189,270 ","322,622 ","160,281 ","162,341 ","28,605 ","14,593 ","14,012 " -15,"2,759,342 ","1,400,319 ","1,359,023 ","2,408,694 ","1,225,528 ","1,183,166 ","324,478 ","161,372 ","163,106 ","26,170 ","13,419 ","12,751 " -16,"2,750,756 ","1,392,108 ","1,358,648 ","2,415,765 ","1,225,007 ","1,190,758 ","309,805 ","154,084 ","155,721 ","25,186 ","13,017 ","12,169 " -17,"2,938,626 ","1,485,439 ","1,453,187 ","2,595,271 ","1,314,445 ","1,280,826 ","317,567 ","157,633 ","159,934 ","25,788 ","13,361 ","12,427 " -18,"2,612,578 ","1,323,334 ","1,289,244 ","2,300,805 ","1,168,272 ","1,132,533 ","287,825 ","142,602 ","145,223 ","23,948 ","12,460 ","11,488 " -19,"2,380,875 ","1,201,302 ","1,179,573 ","2,091,711 ","1,059,933 ","1,031,778 ","266,465 ","129,693 ","136,772 ","22,699 ","11,676 ","11,023 " -20,"2,295,794 ","1,152,255 ","1,143,539 ","2,012,884 ","1,016,251 ","996,633 ","260,154 ","124,242 ","135,912 ","22,756 ","11,762 ","10,994 " -21,"2,265,728 ","1,132,829 ","1,132,899 ","1,990,074 ","1,001,119 ","988,955 ","253,019 ","120,109 ","132,910 ","22,635 ","11,601 ","11,034 " -22,"2,238,646 ","1,118,618 ","1,120,028 ","1,965,806 ","988,430 ","977,376 ","249,998 ","118,456 ","131,542 ","22,842 ","11,732 ","11,110 " -23,"2,174,395 ","1,086,234 ","1,088,161 ","1,909,766 ","959,968 ","949,798 ","241,784 ","114,665 ","127,119 ","22,845 ","11,601 ","11,244 " -24,"2,159,614 ","1,078,705 ","1,080,909 ","1,897,705 ","953,674 ","944,031 ","238,644 ","113,333 ","125,311 ","23,265 ","11,698 ","11,567 " -25,"2,165,795 ","1,075,940 ","1,089,855 ","1,903,728 ","952,316 ","951,412 ","236,334 ","111,089 ","125,245 ","25,733 ","12,535 ","13,198 " -26,"2,111,395 ","1,047,375 ","1,064,020 ","1,855,452 ","927,057 ","928,395 ","233,595 ","109,612 ","123,983 ","22,348 ","10,706 ","11,642 " -27,"2,163,619 ","1,073,207 ","1,090,412 ","1,900,998 ","949,728 ","951,270 ","237,134 ","111,345 ","125,789 ","25,487 ","12,134 ","13,353 " -28,"2,224,932 ","1,102,932 ","1,122,000 ","1,956,354 ","976,895 ","979,459 ","242,043 ","113,410 ","128,633 ","26,535 ","12,627 ","13,908 " -29,"2,269,886 ","1,123,730 ","1,146,156 ","1,998,912 ","997,077 ","1,001,835 ","244,272 ","113,976 ","130,296 ","26,702 ","12,677 ","14,025 " -30,"2,310,669 ","1,141,621 ","1,169,048 ","2,039,339 ","1,015,519 ","1,023,820 ","244,973 ","113,721 ","131,252 ","26,357 ","12,381 ","13,976 " -31,"2,355,860 ","1,162,601 ","1,193,259 ","2,083,792 ","1,036,707 ","1,047,085 ","245,715 ","113,576 ","132,139 ","26,353 ","12,318 ","14,035 " -32,"2,403,565 ","1,184,698 ","1,218,867 ","2,129,617 ","1,058,072 ","1,071,545 ","247,740 ","114,362 ","133,378 ","26,208 ","12,264 ","13,944 " -33,"2,441,333 ","1,201,355 ","1,239,978 ","2,166,399 ","1,073,860 ","1,092,539 ","248,985 ","115,211 ","133,774 ","25,949 ","12,284 ","13,665 " -34,"2,471,476 ","1,213,952 ","1,257,524 ","2,196,040 ","1,085,443 ","1,110,597 ","249,865 ","116,159 ","133,706 ","25,571 ","12,350 ","13,221 " -35,"2,497,353 ","1,224,680 ","1,272,673 ","2,222,424 ","1,095,617 ","1,126,807 ","249,896 ","116,709 ","133,187 ","25,033 ","12,354 ","12,679 " -36,"2,523,550 ","1,235,567 ","1,287,983 ","2,248,835 ","1,105,740 ","1,143,095 ","250,196 ","117,434 ","132,762 ","24,519 ","12,393 ","12,126 " -37,"2,533,543 ","1,239,200 ","1,294,343 ","2,261,011 ","1,109,785 ","1,151,226 ","248,758 ","117,158 ","131,600 ","23,774 ","12,257 ","11,517 " -38,"2,514,885 ","1,230,019 ","1,284,866 ","2,247,858 ","1,103,054 ","1,144,804 ","244,363 ","115,158 ","129,205 ","22,664 ","11,807 ","10,857 " -39,"2,473,141 ","1,210,498 ","1,262,643 ","2,214,056 ","1,087,438 ","1,126,618 ","237,785 ","111,926 ","125,859 ","21,300 ","11,134 ","10,166 " -40,"2,424,758 ","1,187,874 ","1,236,884 ","2,174,084 ","1,068,884 ","1,105,200 ","230,781 ","108,551 ","122,230 ","19,893 ","10,439 ","9,454 " -41,"2,370,496 ","1,162,413 ","1,208,083 ","2,128,925 ","1,047,824 ","1,081,101 ","223,132 ","104,870 ","118,262 ","18,439 ","9,719 ","8,720 " -42,"2,321,952 ","1,139,801 ","1,182,151 ","2,087,992 ","1,028,771 ","1,059,221 ","216,740 ","101,875 ","114,865 ","17,220 ","9,155 ","8,065 " -43,"2,290,300 ","1,125,356 ","1,164,944 ","2,060,495 ","1,015,982 ","1,044,513 ","213,312 ","100,454 ","112,858 ","16,493 ","8,920 ","7,573 " -44,"2,271,385 ","1,117,010 ","1,154,375 ","2,043,129 ","1,007,871 ","1,035,258 ","212,089 ","100,193 ","111,896 ","16,167 ","8,946 ","7,221 " -45,"2,250,666 ","1,107,753 ","1,142,913 ","2,023,915 ","998,850 ","1,025,065 ","210,838 ","99,898 ","110,940 ","15,913 ","9,005 ","6,908 " -46,"2,227,858 ","1,097,507 ","1,130,351 ","2,002,487 ","988,794 ","1,013,693 ","209,644 ","99,633 ","110,011 ","15,727 ","9,080 ","6,647 " -47,"2,195,145 ","1,082,222 ","1,112,923 ","1,973,038 ","974,652 ","998,386 ","206,660 ","98,470 ","108,190 ","15,447 ","9,100 ","6,347 " -48,"2,148,220 ","1,059,630 ","1,088,590 ","1,932,676 ","954,889 ","977,787 ","200,582 ","95,746 ","104,836 ","14,962 ","8,995 ","5,967 " -49,"2,092,119 ","1,032,160 ","1,059,959 ","1,885,421 ","931,427 ","953,994 ","192,339 ","91,926 ","100,413 ","14,359 ","8,807 ","5,552 " -50,"2,036,229 ","1,004,503 ","1,031,726 ","1,838,417 ","907,822 ","930,595 ","184,024 ","88,059 ","95,965 ","13,788 ","8,622 ","5,166 " -51,"1,977,497 ","975,288 ","1,002,209 ","1,789,140 ","882,973 ","906,167 ","175,209 ","83,914 ","91,295 ","13,148 ","8,401 ","4,747 " -52,"1,926,119 ","949,439 ","976,680 ","1,745,010 ","860,423 ","884,587 ","168,235 ","80,705 ","87,530 ","12,874 ","8,311 ","4,563 " -53,"1,882,850 ","927,436 ","955,414 ","1,705,754 ","840,142 ","865,612 ","163,890 ","78,844 ","85,046 ","13,206 ","8,450 ","4,756 " -54,"1,841,419 ","906,203 ","935,216 ","1,666,618 ","819,821 ","846,797 ","160,890 ","77,671 ","83,219 ","13,911 ","8,711 ","5,200 " -55,"1,795,689 ","882,731 ","912,958 ","1,623,686 ","797,546 ","826,140 ","157,438 ","76,255 ","81,183 ","14,565 ","8,930 ","5,635 " -56,"1,751,551 ","860,099 ","891,452 ","1,581,663 ","775,783 ","805,880 ","154,561 ","75,125 ","79,436 ","15,327 ","9,191 ","6,136 " -57,"1,700,406 ","833,130 ","867,276 ","1,535,598 ","751,286 ","784,312 ","149,365 ","72,715 ","76,650 ","15,443 ","9,129 ","6,314 " -58,"1,641,590 ","801,193 ","840,397 ","1,485,968 ","724,044 ","761,924 ","141,136 ","68,601 ","72,535 ","14,486 ","8,548 ","5,938 " -59,"1,581,662 ","767,767 ","813,895 ","1,437,290 ","696,474 ","740,816 ","131,545 ","63,668 ","67,877 ","12,827 ","7,625 ","5,202 " -60,"1,525,828 ","736,335 ","789,493 ","1,391,809 ","670,470 ","721,339 ","122,797 ","59,145 ","63,652 ","11,222 ","6,720 ","4,502 " -61,"1,467,415 ","703,548 ","763,867 ","1,344,439 ","643,456 ","700,983 ","113,439 ","54,317 ","59,122 ","9,537 ","5,775 ","3,762 " -62,"1,417,997 ","675,637 ","742,360 ","1,302,857 ","619,741 ","683,116 ","106,913 ","50,890 ","56,023 ","8,227 ","5,006 ","3,221 " -63,"1,383,905 ","656,141 ","727,764 ","1,271,740 ","602,021 ","669,719 ","104,634 ","49,594 ","55,040 ","7,531 ","4,526 ","3,005 " -64,"1,358,968 ","641,930 ","717,038 ","1,247,014 ","588,180 ","658,834 ","104,711 ","49,502 ","55,209 ","7,243 ","4,248 ","2,995 " -65,"1,331,942 ","626,906 ","705,036 ","1,220,788 ","573,785 ","647,003 ","104,237 ","49,159 ","55,078 ","6,917 ","3,962 ","2,955 " -66,"1,304,419 ","611,555 ","692,864 ","1,194,036 ","559,117 ","634,919 ","103,848 ","48,795 ","55,053 ","6,535 ","3,643 ","2,892 " -67,"1,269,656 ","593,284 ","676,372 ","1,161,741 ","542,150 ","619,591 ","101,729 ","47,738 ","53,991 ","6,186 ","3,396 ","2,790 " -68,"1,218,968 ","567,929 ","651,039 ","1,117,222 ","519,720 ","597,502 ","95,912 ","44,976 ","50,936 ","5,834 ","3,233 ","2,601 " -69,"1,155,127 ","536,675 ","618,452 ","1,062,020 ","492,469 ","569,551 ","87,597 ","41,052 ","46,545 ","5,510 ","3,154 ","2,356 " -70,"1,089,339 ","504,693 ","584,646 ","1,004,556 ","464,333 ","540,223 ","79,523 ","37,242 ","42,281 ","5,260 ","3,118 ","2,142 " -71,"1,023,577 ","473,000 ","550,577 ","947,023 ","436,402 ","510,621 ","71,500 ","33,487 ","38,013 ","5,054 ","3,111 ","1,943 " -72,"955,657 ","440,155 ","515,502 ","886,568 ","407,005 ","479,563 ","64,268 ","30,090 ","34,178 ","4,821 ","3,060 ","1,761 " -73,"886,757 ","406,402 ","480,355 ","823,573 ","376,060 ","447,513 ","58,679 ","27,443 ","31,236 ","4,505 ","2,899 ","1,606 " -74,"818,031 ","372,420 ","445,611 ","759,596 ","344,408 ","415,188 ","54,326 ","25,372 ","28,954 ","4,109 ","2,640 ","1,469 " -75,"749,616 ","338,725 ","410,891 ","695,998 ","313,078 ","382,920 ","49,910 ","23,270 ","26,640 ","3,708 ","2,377 ","1,331 " -76,"681,648 ","305,594 ","376,054 ","632,952 ","282,327 ","350,625 ","45,384 ","21,143 ","24,241 ","3,312 ","2,124 ","1,188 " -77,"614,477 ","272,986 ","341,491 ","570,573 ","252,059 ","318,514 ","40,964 ","19,047 ","21,917 ","2,940 ","1,880 ","1,060 " -78,"548,964 ","241,388 ","307,576 ","509,753 ","222,757 ","286,996 ","36,636 ","16,996 ","19,640 ","2,575 ","1,635 ",940 -79,"485,738 ","211,165 ","274,573 ","451,157 ","194,802 ","256,355 ","32,359 ","14,962 ","17,397 ","2,222 ","1,401 ",821 -80,"425,557 ","182,694 ","242,863 ","395,644 ","168,618 ","227,026 ","28,027 ","12,900 ","15,127 ","1,886 ","1,176 ",710 -81,"368,485 ","156,121 ","212,364 ","343,155 ","144,300 ","198,855 ","23,754 ","10,845 ","12,909 ","1,576 ",976 ,600 -82,"315,562 ","131,909 ","183,653 ","294,964 ","122,412 ","172,552 ","19,301 ","8,699 ","10,602 ","1,297 ",798 ,499 -83,"267,285 ","110,403 ","156,882 ","251,557 ","103,287 ","148,270 ","14,671 ","6,460 ","8,211 ","1,057 ",656 ,401 -84,"224,172 ","91,863 ","132,309 ","213,511 ","87,212 ","126,299 ","9,806 ","4,101 ","5,705 ",855 ,550 ,305 -85+,"940,054 ","366,252 ","573,802 ","868,641 ","335,201 ","533,440 ","66,642 ","28,169 ","38,473 ","4,771 ","2,882 ","1,889 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1961.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1961.csv deleted file mode 100644 index 9353bd2d47..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1961.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1961",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"183,691,481 ","90,739,919 ","92,951,562 ","162,533,035 ","80,441,245 ","82,091,790 ","19,437,319 ","9,400,167 ","10,037,152 ","1,721,127 ","898,507 ","822,620 " -,,,,,,,,,,,, -0,"4,172,988 ","2,120,745 ","2,052,243 ","3,547,432 ","1,809,250 ","1,738,182 ","571,448 ","284,425 ","287,023 ","54,108 ","27,070 ","27,038 " -1,"4,084,896 ","2,076,112 ","2,008,784 ","3,484,227 ","1,776,586 ","1,707,641 ","552,029 ","274,800 ","277,229 ","48,640 ","24,726 ","23,914 " -2,"4,057,693 ","2,060,740 ","1,996,953 ","3,460,464 ","1,762,206 ","1,698,258 ","551,047 ","275,090 ","275,957 ","46,182 ","23,444 ","22,738 " -3,"4,080,156 ","2,072,791 ","2,007,365 ","3,494,499 ","1,779,975 ","1,714,524 ","539,983 ","269,648 ","270,335 ","45,674 ","23,168 ","22,506 " -4,"4,126,537 ","2,101,704 ","2,024,833 ","3,530,371 ","1,802,721 ","1,727,650 ","550,041 ","275,498 ","274,543 ","46,125 ","23,485 ","22,640 " -5,"3,998,349 ","2,033,241 ","1,965,108 ","3,415,990 ","1,741,624 ","1,674,366 ","534,355 ","267,244 ","267,111 ","48,004 ","24,373 ","23,631 " -6,"3,925,679 ","1,995,161 ","1,930,518 ","3,362,920 ","1,714,285 ","1,648,635 ","518,491 ","258,434 ","260,057 ","44,268 ","22,442 ","21,826 " -7,"3,890,068 ","1,976,010 ","1,914,058 ","3,339,237 ","1,700,822 ","1,638,415 ","508,296 ","253,584 ","254,712 ","42,535 ","21,604 ","20,931 " -8,"3,726,338 ","1,896,372 ","1,829,966 ","3,218,342 ","1,641,357 ","1,576,985 ","468,811 ","235,008 ","233,803 ","39,185 ","20,007 ","19,178 " -9,"3,655,512 ","1,862,350 ","1,793,162 ","3,158,330 ","1,613,956 ","1,544,374 ","458,865 ","228,943 ","229,922 ","38,317 ","19,451 ","18,866 " -10,"3,614,497 ","1,838,136 ","1,776,361 ","3,109,076 ","1,585,461 ","1,523,615 ","467,248 ","233,340 ","233,908 ","38,173 ","19,335 ","18,838 " -11,"3,476,571 ","1,767,977 ","1,708,594 ","2,999,354 ","1,529,301 ","1,470,053 ","440,380 ","219,995 ","220,385 ","36,837 ","18,681 ","18,156 " -12,"3,495,250 ","1,777,071 ","1,718,179 ","3,026,811 ","1,542,261 ","1,484,550 ","432,444 ","216,493 ","215,951 ","35,995 ","18,317 ","17,678 " -13,"3,434,732 ","1,744,484 ","1,690,248 ","3,003,946 ","1,528,911 ","1,475,035 ","397,864 ","198,796 ","199,068 ","32,922 ","16,777 ","16,145 " -14,"3,814,413 ","1,937,105 ","1,877,308 ","3,383,442 ","1,721,726 ","1,661,716 ","397,393 ","198,233 ","199,160 ","33,578 ","17,146 ","16,432 " -15,"2,734,077 ","1,388,842 ","1,345,235 ","2,390,245 ","1,217,562 ","1,172,683 ","316,742 ","157,576 ","159,166 ","27,090 ","13,704 ","13,386 " -16,"2,721,876 ","1,379,237 ","1,342,639 ","2,378,607 ","1,208,790 ","1,169,817 ","317,173 ","157,098 ","160,075 ","26,096 ","13,349 ","12,747 " -17,"2,781,674 ","1,404,804 ","1,376,870 ","2,438,281 ","1,233,616 ","1,204,665 ","316,926 ","157,490 ","159,436 ","26,467 ","13,698 ","12,769 " -18,"2,975,853 ","1,506,859 ","1,468,994 ","2,645,805 ","1,342,633 ","1,303,172 ","303,942 ","150,667 ","153,275 ","26,106 ","13,559 ","12,547 " -19,"2,545,669 ","1,284,281 ","1,261,388 ","2,242,450 ","1,135,489 ","1,106,961 ","278,543 ","136,087 ","142,456 ","24,676 ","12,705 ","11,971 " -20,"2,452,277 ","1,235,048 ","1,217,229 ","2,146,466 ","1,086,929 ","1,059,537 ","280,481 ","134,727 ","145,754 ","25,330 ","13,392 ","11,938 " -21,"2,315,777 ","1,159,685 ","1,156,092 ","2,030,110 ","1,022,718 ","1,007,392 ","261,387 ","124,485 ","136,902 ","24,280 ","12,482 ","11,798 " -22,"2,276,632 ","1,136,049 ","1,140,583 ","1,998,996 ","1,003,500 ","995,496 ","253,557 ","120,312 ","133,245 ","24,079 ","12,237 ","11,842 " -23,"2,246,879 ","1,120,539 ","1,126,340 ","1,972,732 ","989,927 ","982,805 ","249,524 ","118,280 ","131,244 ","24,623 ","12,332 ","12,291 " -24,"2,191,006 ","1,092,648 ","1,098,358 ","1,924,297 ","965,707 ","958,590 ","242,037 ","114,736 ","127,301 ","24,672 ","12,205 ","12,467 " -25,"2,170,374 ","1,078,971 ","1,091,403 ","1,908,975 ","955,894 ","953,081 ","239,206 ","112,300 ","126,906 ","22,193 ","10,777 ","11,416 " -26,"2,172,236 ","1,077,139 ","1,095,097 ","1,909,849 ","953,926 ","955,923 ","236,048 ","110,752 ","125,296 ","26,339 ","12,461 ","13,878 " -27,"2,121,018 ","1,051,014 ","1,070,004 ","1,862,894 ","930,207 ","932,687 ","234,834 ","109,928 ","124,906 ","23,290 ","10,879 ","12,411 " -28,"2,172,992 ","1,078,024 ","1,094,968 ","1,909,113 ","954,435 ","954,678 ","236,892 ","110,849 ","126,043 ","26,987 ","12,740 ","14,247 " -29,"2,233,120 ","1,108,125 ","1,124,995 ","1,961,810 ","981,009 ","980,801 ","242,948 ","113,615 ","129,333 ","28,362 ","13,501 ","14,861 " -30,"2,292,994 ","1,136,398 ","1,156,596 ","2,015,786 ","1,006,938 ","1,008,848 ","248,474 ","115,774 ","132,700 ","28,734 ","13,686 ","15,048 " -31,"2,313,524 ","1,144,174 ","1,169,350 ","2,041,519 ","1,017,952 ","1,023,567 ","244,294 ","113,171 ","131,123 ","27,711 ","13,051 ","14,660 " -32,"2,361,971 ","1,166,236 ","1,195,735 ","2,088,093 ","1,039,426 ","1,048,667 ","246,260 ","113,833 ","132,427 ","27,618 ","12,977 ","14,641 " -33,"2,404,988 ","1,185,442 ","1,219,546 ","2,129,502 ","1,057,684 ","1,071,818 ","248,106 ","114,869 ","133,237 ","27,380 ","12,889 ","14,491 " -34,"2,448,385 ","1,204,400 ","1,243,985 ","2,170,085 ","1,074,749 ","1,095,336 ","251,257 ","116,775 ","134,482 ","27,043 ","12,876 ","14,167 " -35,"2,475,014 ","1,215,320 ","1,259,694 ","2,198,301 ","1,085,720 ","1,112,581 ","250,536 ","116,908 ","133,628 ","26,177 ","12,692 ","13,485 " -36,"2,499,150 ","1,224,929 ","1,274,221 ","2,223,358 ","1,095,050 ","1,128,308 ","250,349 ","117,299 ","133,050 ","25,443 ","12,580 ","12,863 " -37,"2,523,272 ","1,234,711 ","1,288,561 ","2,248,867 ","1,104,925 ","1,143,942 ","249,707 ","117,312 ","132,395 ","24,698 ","12,474 ","12,224 " -38,"2,531,451 ","1,237,566 ","1,293,885 ","2,260,471 ","1,109,173 ","1,151,298 ","247,167 ","116,153 ","131,014 ","23,813 ","12,240 ","11,573 " -39,"2,511,597 ","1,227,907 ","1,283,690 ","2,246,784 ","1,102,482 ","1,144,302 ","242,140 ","113,660 ","128,480 ","22,673 ","11,765 ","10,908 " -40,"2,468,852 ","1,207,835 ","1,261,017 ","2,211,996 ","1,086,253 ","1,125,743 ","235,535 ","110,476 ","125,059 ","21,321 ","11,106 ","10,215 " -41,"2,419,281 ","1,184,514 ","1,234,767 ","2,170,905 ","1,067,021 ","1,103,884 ","228,439 ","107,070 ","121,369 ","19,937 ","10,423 ","9,514 " -42,"2,364,895 ","1,158,973 ","1,205,922 ","2,125,475 ","1,045,717 ","1,079,758 ","220,908 ","103,533 ","117,375 ","18,512 ","9,723 ","8,789 " -43,"2,316,082 ","1,136,238 ","1,179,844 ","2,084,049 ","1,026,276 ","1,057,773 ","214,719 ","100,783 ","113,936 ","17,314 ","9,179 ","8,135 " -44,"2,282,829 ","1,120,998 ","1,161,831 ","2,054,968 ","1,012,595 ","1,042,373 ","211,274 ","99,453 ","111,821 ","16,587 ","8,950 ","7,637 " -45,"2,262,392 ","1,111,777 ","1,150,615 ","2,036,240 ","1,003,689 ","1,032,551 ","209,888 ","99,113 ","110,775 ","16,264 ","8,975 ","7,289 " -46,"2,242,108 ","1,102,692 ","1,139,416 ","2,017,269 ","994,724 ","1,022,545 ","208,793 ","98,920 ","109,873 ","16,046 ","9,048 ","6,998 " -47,"2,210,739 ","1,088,248 ","1,122,491 ","1,988,309 ","980,962 ","1,007,347 ","206,653 ","98,199 ","108,454 ","15,777 ","9,087 ","6,690 " -48,"2,167,263 ","1,067,714 ","1,099,549 ","1,949,430 ","962,249 ","987,181 ","202,454 ","96,413 ","106,041 ","15,379 ","9,052 ","6,327 " -49,"2,116,663 ","1,043,122 ","1,073,541 ","1,905,764 ","940,715 ","965,049 ","196,030 ","93,477 ","102,553 ","14,869 ","8,930 ","5,939 " -50,"2,065,078 ","1,017,351 ","1,047,727 ","1,862,411 ","918,685 ","943,726 ","188,349 ","89,912 ","98,437 ","14,318 ","8,754 ","5,564 " -51,"2,007,327 ","988,489 ","1,018,838 ","1,813,959 ","894,149 ","919,810 ","179,651 ","85,787 ","93,864 ","13,717 ","8,553 ","5,164 " -52,"1,965,612 ","967,058 ","998,554 ","1,778,853 ","875,720 ","903,133 ","173,406 ","82,886 ","90,520 ","13,353 ","8,452 ","4,901 " -53,"1,936,516 ","951,447 ","985,069 ","1,753,391 ","861,651 ","891,740 ","169,676 ","81,269 ","88,407 ","13,449 ","8,527 ","4,922 " -54,"1,901,801 ","933,074 ","968,727 ","1,721,451 ","844,419 ","877,032 ","166,410 ","79,926 ","86,484 ","13,940 ","8,729 ","5,211 " -55,"1,851,867 ","907,316 ","944,551 ","1,675,211 ","820,296 ","854,915 ","162,126 ","78,096 ","84,030 ","14,530 ","8,924 ","5,606 " -56,"1,802,980 ","882,356 ","920,624 ","1,628,991 ","796,464 ","832,527 ","158,749 ","76,729 ","82,020 ","15,240 ","9,163 ","6,077 " -57,"1,739,316 ","849,533 ","889,783 ","1,571,905 ","766,792 ","805,113 ","151,915 ","73,561 ","78,354 ","15,496 ","9,180 ","6,316 " -58,"1,662,232 ","809,563 ","852,669 ","1,505,627 ","732,191 ","773,436 ","141,719 ","68,587 ","73,132 ","14,886 ","8,785 ","6,101 " -59,"1,590,101 ","770,996 ","819,105 ","1,445,204 ","699,576 ","745,628 ","131,319 ","63,368 ","67,951 ","13,578 ","8,052 ","5,526 " -60,"1,534,453 ","740,050 ","794,403 ","1,398,993 ","673,535 ","725,458 ","123,328 ","59,274 ","64,054 ","12,132 ","7,241 ","4,891 " -61,"1,478,537 ","708,734 ","769,803 ","1,353,336 ","647,534 ","705,802 ","114,667 ","54,855 ","59,812 ","10,534 ","6,345 ","4,189 " -62,"1,428,861 ","680,398 ","748,463 ","1,310,310 ","622,820 ","687,490 ","109,251 ","51,979 ","57,272 ","9,300 ","5,599 ","3,701 " -63,"1,392,847 ","658,889 ","733,958 ","1,276,142 ","602,662 ","673,480 ","108,180 ","51,164 ","57,016 ","8,525 ","5,063 ","3,462 " -64,"1,366,154 ","642,556 ","723,598 ","1,249,360 ","586,741 ","662,619 ","108,774 ","51,147 ","57,627 ","8,020 ","4,668 ","3,352 " -65,"1,339,135 ","627,005 ","712,130 ","1,223,149 ","571,894 ","651,255 ","108,367 ","50,758 ","57,609 ","7,619 ","4,353 ","3,266 " -66,"1,308,975 ","609,650 ","699,325 ","1,194,908 ","555,971 ","638,937 ","106,960 ","49,702 ","57,258 ","7,107 ","3,977 ","3,130 " -67,"1,280,469 ","593,854 ","686,615 ","1,168,952 ","541,546 ","627,406 ","104,946 ","48,693 ","56,253 ","6,571 ","3,615 ","2,956 " -68,"1,242,949 ","574,560 ","668,389 ","1,136,918 ","524,822 ","612,096 ","100,001 ","46,443 ","53,558 ","6,030 ","3,295 ","2,735 " -69,"1,188,701 ","547,863 ","640,838 ","1,090,859 ","501,898 ","588,961 ","92,275 ","42,887 ","49,388 ","5,567 ","3,078 ","2,489 " -70,"1,121,903 ","515,430 ","606,473 ","1,032,830 ","473,508 ","559,322 ","83,805 ","38,922 ","44,883 ","5,268 ","3,000 ","2,268 " -71,"1,054,360 ","482,912 ","571,448 ","973,752 ","444,803 ","528,949 ","75,585 ","35,153 ","40,432 ","5,023 ","2,956 ","2,067 " -72,"983,727 ","449,178 ","534,549 ","911,153 ","414,710 ","496,443 ","67,723 ","31,510 ","36,213 ","4,851 ","2,958 ","1,893 " -73,"910,453 ","414,103 ","496,350 ","844,841 ","382,873 ","461,968 ","60,938 ","28,302 ","32,636 ","4,674 ","2,928 ","1,746 " -74,"838,437 ","379,243 ","459,194 ","778,529 ","350,745 ","427,784 ","55,524 ","25,719 ","29,805 ","4,384 ","2,779 ","1,605 " -75,"769,465 ","345,430 ","424,035 ","714,554 ","319,404 ","395,150 ","50,923 ","23,507 ","27,416 ","3,988 ","2,519 ","1,469 " -76,"701,945 ","312,822 ","389,123 ","651,941 ","289,129 ","362,812 ","46,446 ","21,445 ","25,001 ","3,558 ","2,248 ","1,310 " -77,"634,491 ","280,347 ","354,144 ","589,301 ","258,971 ","330,330 ","42,015 ","19,371 ","22,644 ","3,175 ","2,005 ","1,170 " -78,"568,310 ","248,591 ","319,719 ","527,809 ","229,478 ","298,331 ","37,692 ","17,347 ","20,345 ","2,809 ","1,766 ","1,043 " -79,"504,365 ","218,143 ","286,222 ","468,415 ","201,229 ","267,186 ","33,507 ","15,388 ","18,119 ","2,443 ","1,526 ",917 -80,"443,979 ","189,582 ","254,397 ","412,667 ","174,900 ","237,767 ","29,235 ","13,390 ","15,845 ","2,077 ","1,292 ",785 -81,"385,537 ","162,428 ","223,109 ","358,415 ","149,805 ","208,610 ","25,380 ","11,555 ","13,825 ","1,742 ","1,068 ",674 -82,"331,045 ","137,435 ","193,610 ","308,232 ","126,922 ","181,310 ","21,372 ","9,636 ","11,736 ","1,441 ",877 ,564 -83,"281,045 ","115,046 ","165,999 ","262,694 ","106,713 ","155,981 ","17,183 ","7,625 ","9,558 ","1,168 ",708 ,460 -84,"235,686 ","95,320 ","140,366 ","221,969 ","89,217 ","132,752 ","12,795 ","5,534 ","7,261 ",922 ,569 ,353 -85+,"964,233 ","372,709 ","591,524 ","893,761 ","342,388 ","551,373 ","65,209 ","27,116 ","38,093 ","5,263 ","3,205 ","2,058 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1962.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1962.csv deleted file mode 100644 index d2ccc815eb..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1962.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1962",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"186,537,737 ","92,066,119 ","94,471,618 ","164,884,753 ","81,538,592 ","83,346,161 ","19,852,037 ","9,593,142 ","10,258,895 ","1,800,947 ","934,385 ","866,562 " -,,,,,,,,,,,, -0,"4,083,751 ","2,076,625 ","2,007,126 ","3,466,823 ","1,768,378 ","1,698,445 ","562,192 ","280,766 ","281,426 ","54,736 ","27,481 ","27,255 " -1,"4,160,703 ","2,115,331 ","2,045,372 ","3,545,717 ","1,808,246 ","1,737,471 ","563,653 ","280,893 ","282,760 ","51,333 ","26,192 ","25,141 " -2,"4,034,016 ","2,050,911 ","1,983,105 ","3,440,415 ","1,754,881 ","1,685,534 ","545,277 ","271,661 ","273,616 ","48,324 ","24,369 ","23,955 " -3,"4,060,410 ","2,060,153 ","2,000,257 ","3,465,143 ","1,763,248 ","1,701,895 ","549,080 ","273,603 ","275,477 ","46,187 ","23,302 ","22,885 " -4,"4,129,913 ","2,102,309 ","2,027,604 ","3,536,095 ","1,804,245 ","1,731,850 ","547,535 ","274,576 ","272,959 ","46,283 ","23,488 ","22,795 " -5,"4,137,071 ","2,105,883 ","2,031,188 ","3,534,219 ","1,803,696 ","1,730,523 ","552,691 ","276,755 ","275,936 ","50,161 ","25,432 ","24,729 " -6,"3,971,329 ","2,016,615 ","1,954,714 ","3,392,395 ","1,727,423 ","1,664,972 ","531,033 ","264,974 ","266,059 ","47,901 ","24,218 ","23,683 " -7,"3,962,111 ","2,015,113 ","1,946,998 ","3,391,352 ","1,729,648 ","1,661,704 ","525,771 ","262,646 ","263,125 ","44,988 ","22,819 ","22,169 " -8,"3,820,035 ","1,942,948 ","1,877,087 ","3,289,490 ","1,677,215 ","1,612,275 ","489,359 ","244,793 ","244,566 ","41,186 ","20,940 ","20,246 " -9,"3,750,578 ","1,909,927 ","1,840,651 ","3,236,129 ","1,651,782 ","1,584,347 ","474,567 ","237,867 ","236,700 ","39,882 ","20,278 ","19,604 " -10,"3,717,727 ","1,893,602 ","1,824,125 ","3,208,779 ","1,639,654 ","1,569,125 ","470,173 ","234,382 ","235,791 ","38,775 ","19,566 ","19,209 " -11,"3,606,125 ","1,832,643 ","1,773,482 ","3,105,131 ","1,582,643 ","1,522,488 ","462,763 ","230,719 ","232,044 ","38,231 ","19,281 ","18,950 " -12,"3,485,569 ","1,773,348 ","1,712,221 ","3,004,570 ","1,532,599 ","1,471,971 ","443,925 ","221,952 ","221,973 ","37,074 ","18,797 ","18,277 " -13,"3,446,619 ","1,748,933 ","1,697,686 ","2,990,597 ","1,521,045 ","1,469,552 ","421,048 ","210,127 ","210,921 ","34,974 ","17,761 ","17,213 " -14,"3,537,894 ","1,796,820 ","1,741,074 ","3,095,442 ","1,575,011 ","1,520,431 ","406,787 ","203,610 ","203,177 ","35,665 ","18,199 ","17,466 " -15,"3,769,670 ","1,918,224 ","1,851,446 ","3,346,674 ","1,706,634 ","1,640,040 ","390,702 ","195,194 ","195,508 ","32,294 ","16,396 ","15,898 " -16,"2,700,044 ","1,369,907 ","1,330,137 ","2,362,671 ","1,202,420 ","1,160,251 ","310,301 ","153,822 ","156,479 ","27,072 ","13,665 ","13,407 " -17,"2,751,782 ","1,391,957 ","1,359,825 ","2,400,314 ","1,217,493 ","1,182,821 ","323,957 ","160,348 ","163,609 ","27,511 ","14,116 ","13,395 " -18,"2,816,416 ","1,423,733 ","1,392,683 ","2,485,013 ","1,258,812 ","1,226,201 ","304,421 ","150,914 ","153,507 ","26,982 ","14,007 ","12,975 " -19,"2,912,447 ","1,469,619 ","1,442,828 ","2,589,802 ","1,311,081 ","1,278,721 ","295,463 ","144,547 ","150,916 ","27,182 ","13,991 ","13,191 " -20,"2,620,396 ","1,320,597 ","1,299,799 ","2,300,146 ","1,164,595 ","1,135,551 ","292,900 ","141,521 ","151,379 ","27,350 ","14,481 ","12,869 " -21,"2,464,576 ","1,238,925 ","1,225,651 ","2,157,188 ","1,090,489 ","1,066,699 ","280,283 ","134,232 ","146,051 ","27,105 ","14,204 ","12,901 " -22,"2,322,896 ","1,159,775 ","1,163,121 ","2,035,381 ","1,022,390 ","1,012,991 ","261,568 ","124,265 ","137,303 ","25,947 ","13,120 ","12,827 " -23,"2,281,132 ","1,135,223 ","1,145,909 ","2,002,560 ","1,002,593 ","999,967 ","252,441 ","119,729 ","132,712 ","26,131 ","12,901 ","13,230 " -24,"2,270,117 ","1,129,985 ","1,140,132 ","1,993,167 ","998,476 ","994,691 ","250,281 ","118,504 ","131,777 ","26,669 ","13,005 ","13,664 " -25,"2,197,507 ","1,091,744 ","1,105,763 ","1,931,537 ","966,641 ","964,896 ","242,443 ","113,771 ","128,672 ","23,527 ","11,332 ","12,195 " -26,"2,171,778 ","1,078,129 ","1,093,649 ","1,911,146 ","955,864 ","955,282 ","237,934 ","111,516 ","126,418 ","22,698 ","10,749 ","11,949 " -27,"2,182,297 ","1,081,287 ","1,101,010 ","1,917,044 ","957,175 ","959,869 ","238,015 ","111,409 ","126,606 ","27,238 ","12,703 ","14,535 " -28,"2,127,996 ","1,055,224 ","1,072,772 ","1,870,317 ","934,971 ","935,346 ","233,221 ","108,806 ","124,415 ","24,458 ","11,447 ","13,011 " -29,"2,177,651 ","1,082,223 ","1,095,428 ","1,910,920 ","957,242 ","953,678 ","238,147 ","111,393 ","126,754 ","28,584 ","13,588 ","14,996 " -30,"2,265,719 ","1,126,289 ","1,139,430 ","1,985,387 ","994,923 ","990,464 ","249,741 ","116,650 ","133,091 ","30,591 ","14,716 ","15,875 " -31,"2,280,054 ","1,131,675 ","1,148,379 ","2,005,998 ","1,003,904 ","1,002,094 ","244,436 ","113,605 ","130,831 ","29,620 ","14,166 ","15,454 " -32,"2,317,585 ","1,147,201 ","1,170,384 ","2,043,802 ","1,020,116 ","1,023,686 ","244,932 ","113,421 ","131,511 ","28,851 ","13,664 ","15,187 " -33,"2,358,428 ","1,164,983 ","1,193,445 ","2,083,414 ","1,037,320 ","1,046,094 ","246,207 ","114,066 ","132,141 ","28,807 ","13,597 ","15,210 " -34,"2,415,151 ","1,190,269 ","1,224,882 ","2,134,936 ","1,059,826 ","1,075,110 ","251,693 ","116,968 ","134,725 ","28,522 ","13,475 ","15,047 " -35,"2,449,621 ","1,204,685 ","1,244,936 ","2,171,364 ","1,074,668 ","1,096,696 ","250,941 ","117,004 ","133,937 ","27,316 ","13,013 ","14,303 " -36,"2,475,642 ","1,214,734 ","1,260,908 ","2,198,599 ","1,084,706 ","1,113,893 ","250,598 ","117,236 ","133,362 ","26,445 ","12,792 ","13,653 " -37,"2,498,551 ","1,223,523 ","1,275,028 ","2,223,429 ","1,093,964 ","1,129,465 ","249,556 ","116,981 ","132,575 ","25,566 ","12,578 ","12,988 " -38,"2,521,431 ","1,232,803 ","1,288,628 ","2,248,675 ","1,104,139 ","1,144,536 ","247,968 ","116,220 ","131,748 ","24,788 ","12,444 ","12,344 " -39,"2,528,331 ","1,235,188 ","1,293,143 ","2,259,520 ","1,108,331 ","1,151,189 ","244,886 ","114,627 ","130,259 ","23,925 ","12,230 ","11,695 " -40,"2,506,986 ","1,224,723 ","1,282,263 ","2,244,400 ","1,100,795 ","1,143,605 ","239,820 ","112,171 ","127,649 ","22,766 ","11,757 ","11,009 " -41,"2,462,691 ","1,203,774 ","1,258,917 ","2,208,145 ","1,083,712 ","1,124,433 ","233,132 ","108,952 ","124,180 ","21,414 ","11,110 ","10,304 " -42,"2,412,210 ","1,179,972 ","1,232,238 ","2,166,066 ","1,063,847 ","1,102,219 ","226,111 ","105,680 ","120,431 ","20,033 ","10,445 ","9,588 " -43,"2,356,871 ","1,153,983 ","1,202,888 ","2,119,536 ","1,041,847 ","1,077,689 ","218,730 ","102,383 ","116,347 ","18,605 ","9,753 ","8,852 " -44,"2,306,453 ","1,130,525 ","1,175,928 ","2,076,522 ","1,021,574 ","1,054,948 ","212,532 ","99,744 ","112,788 ","17,399 ","9,207 ","8,192 " -45,"2,272,120 ","1,114,769 ","1,157,351 ","2,046,449 ","1,007,416 ","1,039,033 ","208,984 ","98,373 ","110,611 ","16,687 ","8,980 ","7,707 " -46,"2,252,143 ","1,105,870 ","1,146,273 ","2,027,990 ","998,710 ","1,029,280 ","207,749 ","98,143 ","109,606 ","16,404 ","9,017 ","7,387 " -47,"2,224,855 ","1,093,445 ","1,131,410 ","2,002,836 ","986,809 ","1,016,027 ","205,899 ","97,577 ","108,322 ","16,120 ","9,059 ","7,061 " -48,"2,184,752 ","1,074,689 ","1,110,063 ","1,966,214 ","969,312 ","996,902 ","202,778 ","96,324 ","106,454 ","15,760 ","9,053 ","6,707 " -49,"2,138,487 ","1,052,405 ","1,086,082 ","1,924,834 ","949,055 ","975,779 ","198,305 ","94,346 ","103,959 ","15,348 ","9,004 ","6,344 " -50,"2,091,873 ","1,029,070 ","1,062,803 ","1,884,620 ","928,543 ","956,077 ","192,367 ","91,631 ","100,736 ","14,886 ","8,896 ","5,990 " -51,"2,038,684 ","1,001,992 ","1,036,692 ","1,840,019 ","905,456 ","934,563 ","184,347 ","87,825 ","96,522 ","14,318 ","8,711 ","5,607 " -52,"1,995,779 ","979,719 ","1,016,060 ","1,803,945 ","886,324 ","917,621 ","177,864 ","84,777 ","93,087 ","13,970 ","8,618 ","5,352 " -53,"1,973,331 ","967,051 ","1,006,280 ","1,785,018 ","875,147 ","909,871 ","174,394 ","83,249 ","91,145 ","13,919 ","8,655 ","5,264 " -54,"1,951,592 ","954,584 ","997,008 ","1,765,911 ","863,748 ","902,163 ","171,557 ","82,064 ","89,493 ","14,124 ","8,772 ","5,352 " -55,"1,909,268 ","932,216 ","977,052 ","1,727,639 ","843,194 ","884,445 ","167,145 ","80,119 ","87,026 ","14,484 ","8,903 ","5,581 " -56,"1,856,471 ","905,182 ","951,289 ","1,678,413 ","817,740 ","860,673 ","162,952 ","78,340 ","84,612 ","15,106 ","9,102 ","6,004 " -57,"1,789,519 ","870,919 ","918,600 ","1,618,221 ","786,704 ","831,517 ","155,936 ","75,096 ","80,840 ","15,362 ","9,119 ","6,243 " -58,"1,702,118 ","826,339 ","875,779 ","1,542,591 ","747,896 ","794,695 ","144,554 ","69,604 ","74,950 ","14,973 ","8,839 ","6,134 " -59,"1,613,346 ","780,629 ","832,717 ","1,466,796 ","708,625 ","758,171 ","132,505 ","63,693 ","68,812 ","14,045 ","8,311 ","5,734 " -60,"1,545,564 ","744,578 ","800,986 ","1,408,979 ","677,602 ","731,377 ","123,656 ","59,296 ","64,360 ","12,929 ","7,680 ","5,249 " -61,"1,489,646 ","713,745 ","775,901 ","1,362,564 ","651,622 ","710,942 ","115,589 ","55,240 ","60,349 ","11,493 ","6,883 ","4,610 " -62,"1,442,477 ","686,775 ","755,702 ","1,321,451 ","627,929 ","693,522 ","110,706 ","52,668 ","58,038 ","10,320 ","6,178 ","4,142 " -63,"1,405,947 ","664,487 ","741,460 ","1,285,787 ","606,563 ","679,224 ","110,562 ","52,271 ","58,291 ","9,598 ","5,653 ","3,945 " -64,"1,376,882 ","645,709 ","731,173 ","1,255,548 ","587,853 ","667,695 ","112,330 ","52,663 ","59,667 ","9,004 ","5,193 ","3,811 " -65,"1,347,530 ","627,693 ","719,837 ","1,226,736 ","570,619 ","656,117 ","112,421 ","52,320 ","60,101 ","8,373 ","4,754 ","3,619 " -66,"1,317,006 ","609,499 ","707,507 ","1,198,069 ","553,925 ","644,144 ","111,150 ","51,224 ","59,926 ","7,787 ","4,350 ","3,437 " -67,"1,284,509 ","591,091 ","693,418 ","1,169,602 ","537,797 ","631,805 ","107,791 ","49,368 ","58,423 ","7,116 ","3,926 ","3,190 " -68,"1,251,866 ","573,781 ","678,085 ","1,142,832 ","523,216 ","619,616 ","102,640 ","47,072 ","55,568 ","6,394 ","3,493 ","2,901 " -69,"1,210,170 ","553,022 ","657,148 ","1,108,803 ","505,903 ","602,900 ","95,613 ","43,995 ","51,618 ","5,754 ","3,124 ","2,630 " -70,"1,153,063 ","525,232 ","627,831 ","1,060,025 ","481,933 ","578,092 ","87,715 ","40,388 ","47,327 ","5,323 ","2,911 ","2,412 " -71,"1,084,817 ","492,478 ","592,339 ","1,000,589 ","453,126 ","547,463 ","79,205 ","36,529 ","42,676 ","5,023 ","2,823 ","2,200 " -72,"1,012,356 ","457,977 ","554,379 ","936,391 ","422,306 ","514,085 ","71,156 ","32,883 ","38,273 ","4,809 ","2,788 ","2,021 " -73,"936,221 ","421,965 ","514,256 ","867,691 ","389,706 ","477,985 ","63,833 ","29,445 ","34,388 ","4,697 ","2,814 ","1,883 " -74,"859,634 ","385,595 ","474,039 ","797,778 ","356,478 ","441,300 ","57,302 ","26,314 ","30,988 ","4,554 ","2,803 ","1,751 " -75,"787,457 ","350,844 ","436,613 ","731,456 ","324,561 ","406,895 ","51,732 ","23,627 ","28,105 ","4,269 ","2,656 ","1,613 " -76,"719,204 ","317,978 ","401,226 ","668,253 ","294,104 ","374,149 ","47,101 ","21,477 ","25,624 ","3,850 ","2,397 ","1,453 " -77,"652,199 ","285,974 ","366,225 ","605,986 ","264,340 ","341,646 ","42,778 ","19,494 ","23,284 ","3,435 ","2,140 ","1,295 " -78,"585,788 ","254,336 ","331,452 ","544,230 ","234,916 ","309,314 ","38,502 ","17,517 ","20,985 ","3,056 ","1,903 ","1,153 " -79,"521,276 ","223,758 ","297,518 ","484,212 ","206,478 ","277,734 ","34,372 ","15,608 ","18,764 ","2,692 ","1,672 ","1,020 " -80,"460,568 ","195,139 ","265,429 ","427,969 ","179,980 ","247,989 ","30,295 ","13,734 ","16,561 ","2,304 ","1,425 ",879 -81,"401,800 ","167,891 ","233,909 ","373,402 ","154,757 ","218,645 ","26,456 ","11,940 ","14,516 ","1,942 ","1,194 ",748 -82,"346,133 ","142,489 ","203,644 ","321,659 ","131,274 ","190,385 ","22,863 ","10,242 ","12,621 ","1,611 ",973 ,638 -83,"294,796 ","119,552 ","175,244 ","274,386 ","110,318 ","164,068 ","19,107 ","8,457 ","10,650 ","1,303 ",777 ,526 -84,"248,012 ","99,280 ","148,732 ","231,865 ","92,085 ","139,780 ","15,129 ","6,594 ","8,535 ","1,018 ",601 ,417 -85+,"982,198 ","374,332 ","607,866 ","911,024 ","344,260 ","566,764 ","65,483 ","26,612 ","38,871 ","5,691 ","3,460 ","2,231 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1963.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1963.csv deleted file mode 100644 index 9d22b516dd..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1963.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1963",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"189,241,798 ","93,302,933 ","95,938,865 ","167,104,323 ","82,552,723 ","84,551,600 ","20,255,067 ","9,779,461 ","10,475,606 ","1,882,408 ","970,749 ","911,659 " -,,,,,,,,,,,, -0,"4,012,510 ","2,041,991 ","1,970,519 ","3,402,929 ","1,736,935 ","1,665,994 ","554,774 ","277,570 ","277,204 ","54,807 ","27,486 ","27,321 " -1,"4,071,602 ","2,070,958 ","2,000,644 ","3,463,319 ","1,766,430 ","1,696,889 ","556,046 ","277,850 ","278,196 ","52,237 ","26,678 ","25,559 " -2,"4,105,855 ","2,088,512 ","2,017,343 ","3,497,467 ","1,784,587 ","1,712,880 ","557,518 ","278,118 ","279,400 ","50,870 ","25,807 ","25,063 " -3,"4,040,638 ","2,052,519 ","1,988,119 ","3,448,042 ","1,757,520 ","1,690,522 ","544,328 ","270,800 ","273,528 ","48,268 ","24,199 ","24,069 " -4,"4,110,926 ","2,089,397 ","2,021,529 ","3,507,061 ","1,787,217 ","1,719,844 ","557,194 ","278,631 ","278,563 ","46,671 ","23,549 ","23,122 " -5,"4,137,064 ","2,105,237 ","2,031,827 ","3,537,301 ","1,804,263 ","1,733,038 ","549,381 ","275,464 ","273,917 ","50,382 ","25,510 ","24,872 " -6,"4,114,451 ","2,091,034 ","2,023,417 ","3,514,143 ","1,790,873 ","1,723,270 ","550,217 ","274,870 ","275,347 ","50,091 ","25,291 ","24,800 " -7,"4,004,689 ","2,035,209 ","1,969,480 ","3,418,417 ","1,741,792 ","1,676,625 ","537,731 ","268,862 ","268,869 ","48,541 ","24,555 ","23,986 " -8,"3,892,608 ","1,982,145 ","1,910,463 ","3,342,048 ","1,706,066 ","1,635,982 ","506,974 ","253,941 ","253,033 ","43,586 ","22,138 ","21,448 " -9,"3,847,088 ","1,958,005 ","1,889,083 ","3,309,606 ","1,688,851 ","1,620,755 ","495,577 ","247,948 ","247,629 ","41,905 ","21,206 ","20,699 " -10,"3,825,073 ","1,947,671 ","1,877,402 ","3,295,194 ","1,682,113 ","1,613,081 ","489,168 ","244,961 ","244,207 ","40,711 ","20,597 ","20,114 " -11,"3,695,383 ","1,881,245 ","1,814,138 ","3,193,725 ","1,631,348 ","1,562,377 ","463,026 ","230,488 ","232,538 ","38,632 ","19,409 ","19,223 " -12,"3,617,270 ","1,839,304 ","1,777,966 ","3,111,849 ","1,586,893 ","1,524,956 ","466,942 ","232,996 ","233,946 ","38,479 ","19,415 ","19,064 " -13,"3,444,174 ","1,749,139 ","1,695,035 ","2,974,313 ","1,514,678 ","1,459,635 ","433,684 ","216,164 ","217,520 ","36,177 ","18,297 ","17,880 " -14,"3,545,889 ","1,799,610 ","1,746,279 ","3,077,038 ","1,564,834 ","1,512,204 ","431,221 ","215,645 ","215,576 ","37,630 ","19,131 ","18,499 " -15,"3,501,539 ","1,781,807 ","1,719,732 ","3,066,168 ","1,563,285 ","1,502,883 ","400,503 ","200,797 ","199,706 ","34,868 ","17,725 ","17,143 " -16,"3,724,202 ","1,893,178 ","1,831,024 ","3,308,272 ","1,685,734 ","1,622,538 ","383,585 ","191,075 ","192,510 ","32,345 ","16,369 ","15,976 " -17,"2,728,595 ","1,381,970 ","1,346,625 ","2,383,566 ","1,210,701 ","1,172,865 ","316,388 ","156,760 ","159,628 ","28,641 ","14,509 ","14,132 " -18,"2,785,555 ","1,408,979 ","1,376,576 ","2,445,113 ","1,240,452 ","1,204,661 ","312,216 ","154,005 ","158,211 ","28,226 ","14,522 ","13,704 " -19,"2,769,149 ","1,394,933 ","1,374,216 ","2,443,661 ","1,234,856 ","1,208,805 ","297,144 ","145,479 ","151,665 ","28,344 ","14,598 ","13,746 " -20,"2,993,742 ","1,510,299 ","1,483,443 ","2,653,580 ","1,344,052 ","1,309,528 ","310,303 ","150,415 ","159,888 ","29,859 ","15,832 ","14,027 " -21,"2,622,269 ","1,319,719 ","1,302,550 ","2,301,992 ","1,164,232 ","1,137,760 ","291,034 ","140,157 ","150,877 ","29,243 ","15,330 ","13,913 " -22,"2,465,430 ","1,234,779 ","1,230,651 ","2,156,525 ","1,086,459 ","1,070,066 ","279,975 ","133,470 ","146,505 ","28,930 ","14,850 ","14,080 " -23,"2,321,819 ","1,155,399 ","1,166,420 ","2,033,918 ","1,018,375 ","1,015,543 ","259,684 ","123,177 ","136,507 ","28,217 ","13,847 ","14,370 " -24,"2,310,253 ","1,147,072 ","1,163,181 ","2,028,236 ","1,013,421 ","1,014,815 ","253,649 ","120,027 ","133,622 ","28,368 ","13,624 ","14,744 " -25,"2,272,391 ","1,127,211 ","1,145,180 ","1,996,389 ","997,535 ","998,854 ","250,523 ","117,521 ","133,002 ","25,479 ","12,155 ","13,324 " -26,"2,195,043 ","1,088,288 ","1,106,755 ","1,930,735 ","964,492 ","966,243 ","240,195 ","112,465 ","127,730 ","24,113 ","11,331 ","12,782 " -27,"2,184,246 ","1,082,309 ","1,101,937 ","1,919,925 ","958,831 ","961,094 ","240,709 ","112,462 ","128,247 ","23,612 ","11,016 ","12,596 " -28,"2,190,051 ","1,084,743 ","1,105,308 ","1,926,415 ","961,766 ","964,649 ","235,080 ","109,586 ","125,494 ","28,556 ","13,391 ","15,165 " -29,"2,132,221 ","1,058,056 ","1,074,165 ","1,871,386 ","936,207 ","935,179 ","234,896 ","109,631 ","125,265 ","25,939 ","12,218 ","13,721 " -30,"2,222,398 ","1,105,180 ","1,117,218 ","1,943,839 ","974,661 ","969,178 ","247,430 ","115,545 ","131,885 ","31,129 ","14,974 ","16,155 " -31,"2,241,035 ","1,114,209 ","1,126,826 ","1,967,451 ","986,344 ","981,107 ","242,420 ","112,839 ","129,581 ","31,164 ","15,026 ","16,138 " -32,"2,285,911 ","1,133,943 ","1,151,968 ","2,009,886 ","1,005,323 ","1,004,563 ","245,208 ","113,822 ","131,386 ","30,817 ","14,798 ","16,019 " -33,"2,312,604 ","1,143,824 ","1,168,780 ","2,037,903 ","1,016,124 ","1,021,779 ","244,514 ","113,369 ","131,145 ","30,187 ","14,331 ","15,856 " -34,"2,374,082 ","1,171,310 ","1,202,772 ","2,092,802 ","1,040,377 ","1,052,425 ","251,175 ","116,703 ","134,472 ","30,105 ","14,230 ","15,875 " -35,"2,415,506 ","1,189,176 ","1,226,330 ","2,136,478 ","1,059,020 ","1,077,458 ","250,519 ","116,716 ","133,803 ","28,509 ","13,440 ","15,069 " -36,"2,449,378 ","1,202,885 ","1,246,493 ","2,171,128 ","1,072,732 ","1,098,396 ","250,788 ","117,141 ","133,647 ","27,462 ","13,012 ","14,450 " -37,"2,474,073 ","1,212,366 ","1,261,707 ","2,197,857 ","1,082,818 ","1,115,039 ","249,715 ","116,820 ","132,895 ","26,501 ","12,728 ","13,773 " -38,"2,496,093 ","1,221,111 ","1,274,982 ","2,222,494 ","1,092,634 ","1,129,860 ","247,909 ","115,923 ","131,986 ","25,690 ","12,554 ","13,136 " -39,"2,518,130 ","1,230,309 ","1,287,821 ","2,247,247 ","1,103,017 ","1,144,230 ","245,887 ","114,809 ","131,078 ","24,996 ","12,483 ","12,513 " -40,"2,523,791 ","1,232,075 ","1,291,716 ","2,256,937 ","1,106,568 ","1,150,369 ","242,754 ","113,249 ","129,505 ","24,100 ","12,258 ","11,842 " -41,"2,501,247 ","1,221,014 ","1,280,233 ","2,240,698 ","1,098,453 ","1,142,245 ","237,617 ","110,763 ","126,854 ","22,932 ","11,798 ","11,134 " -42,"2,455,815 ","1,199,506 ","1,256,309 ","2,203,298 ","1,080,675 ","1,122,623 ","230,953 ","107,671 ","123,282 ","21,564 ","11,160 ","10,404 " -43,"2,403,801 ","1,174,844 ","1,228,957 ","2,159,662 ","1,059,750 ","1,099,912 ","223,983 ","104,603 ","119,380 ","20,156 ","10,491 ","9,665 " -44,"2,346,512 ","1,147,721 ","1,198,791 ","2,111,271 ","1,036,544 ","1,074,727 ","216,529 ","101,383 ","115,146 ","18,712 ","9,794 ","8,918 " -45,"2,294,990 ","1,123,497 ","1,171,493 ","2,067,253 ","1,015,565 ","1,051,688 ","210,213 ","98,681 ","111,532 ","17,524 ","9,251 ","8,273 " -46,"2,260,709 ","1,107,588 ","1,153,121 ","2,037,123 ","1,001,185 ","1,035,938 ","206,737 ","97,365 ","109,372 ","16,849 ","9,038 ","7,811 " -47,"2,234,924 ","1,095,714 ","1,139,210 ","2,013,542 ","989,875 ","1,023,667 ","204,870 ","96,792 ","108,078 ","16,512 ","9,047 ","7,465 " -48,"2,200,770 ","1,079,858 ","1,120,912 ","1,982,370 ","975,051 ","1,007,319 ","202,249 ","95,761 ","106,488 ","16,151 ","9,046 ","7,105 " -49,"2,158,820 ","1,059,987 ","1,098,833 ","1,944,095 ","956,620 ","987,475 ","198,946 ","94,343 ","104,603 ","15,779 ","9,024 ","6,755 " -50,"2,116,081 ","1,039,005 ","1,077,076 ","1,905,791 ","937,464 ","968,327 ","194,890 ","92,556 ","102,334 ","15,400 ","8,985 ","6,415 " -51,"2,068,191 ","1,014,726 ","1,053,465 ","1,864,597 ","916,233 ","948,364 ","188,671 ","89,627 ","99,044 ","14,923 ","8,866 ","6,057 " -52,"2,027,582 ","993,352 ","1,034,230 ","1,830,500 ","897,852 ","932,648 ","182,512 ","86,731 ","95,781 ","14,570 ","8,769 ","5,801 " -53,"2,000,456 ","978,282 ","1,022,174 ","1,807,690 ","884,684 ","923,006 ","178,288 ","84,813 ","93,475 ","14,478 ","8,785 ","5,693 " -54,"1,983,376 ","967,811 ","1,015,565 ","1,793,411 ","875,362 ","918,049 ","175,463 ","83,598 ","91,865 ","14,502 ","8,851 ","5,651 " -55,"1,954,413 ","951,479 ","1,002,934 ","1,768,244 ","860,723 ","907,521 ","171,598 ","81,856 ","89,742 ","14,571 ","8,900 ","5,671 " -56,"1,909,068 ","927,695 ","981,373 ","1,726,857 ","838,716 ","888,141 ","167,270 ","79,951 ","87,319 ","14,941 ","9,028 ","5,913 " -57,"1,839,258 ","891,913 ","947,345 ","1,664,333 ","806,422 ","857,911 ","159,759 ","76,458 ","83,301 ","15,166 ","9,033 ","6,133 " -58,"1,750,475 ","846,839 ","903,636 ","1,586,965 ","766,927 ","820,038 ","148,646 ","71,119 ","77,527 ","14,864 ","8,793 ","6,071 " -59,"1,652,735 ","797,128 ","855,607 ","1,502,821 ","723,891 ","778,930 ","135,720 ","64,840 ","70,880 ","14,194 ","8,397 ","5,797 " -60,"1,568,398 ","753,833 ","814,565 ","1,429,717 ","686,116 ","743,601 ","125,252 ","59,759 ","65,493 ","13,429 ","7,958 ","5,471 " -61,"1,500,230 ","717,755 ","782,475 ","1,371,656 ","655,053 ","716,603 ","116,256 ","55,363 ","60,893 ","12,318 ","7,339 ","4,979 " -62,"1,453,083 ","691,043 ","762,040 ","1,329,989 ","631,277 ","698,712 ","111,827 ","53,053 ","58,774 ","11,267 ","6,713 ","4,554 " -63,"1,419,014 ","669,899 ","749,115 ","1,296,443 ","610,862 ","685,581 ","112,010 ","52,830 ","59,180 ","10,561 ","6,207 ","4,354 " -64,"1,389,467 ","650,341 ","739,126 ","1,264,832 ","590,998 ","673,834 ","114,628 ","53,595 ","61,033 ","10,007 ","5,748 ","4,259 " -65,"1,357,847 ","630,112 ","727,735 ","1,232,633 ","571,160 ","661,473 ","115,923 ","53,709 ","62,214 ","9,291 ","5,243 ","4,048 " -66,"1,325,285 ","609,716 ","715,569 ","1,201,560 ","552,267 ","649,293 ","115,258 ","52,740 ","62,518 ","8,467 ","4,709 ","3,758 " -67,"1,291,689 ","590,393 ","701,296 ","1,172,204 ","535,361 ","636,843 ","111,752 ","50,772 ","60,980 ","7,733 ","4,260 ","3,473 " -68,"1,253,728 ","570,071 ","683,657 ","1,141,965 ","518,785 ","623,180 ","104,873 ","47,519 ","57,354 ","6,890 ","3,767 ","3,123 " -69,"1,216,024 ","550,945 ","665,079 ","1,112,481 ","503,308 ","609,173 ","97,460 ","44,342 ","53,118 ","6,083 ","3,295 ","2,788 " -70,"1,171,256 ","528,875 ","642,381 ","1,075,542 ","484,771 ","590,771 ","90,223 ","41,163 ","49,060 ","5,491 ","2,941 ","2,550 " -71,"1,112,758 ","500,709 ","612,049 ","1,025,324 ","460,293 ","565,031 ","82,379 ","37,696 ","44,683 ","5,055 ","2,720 ","2,335 " -72,"1,039,311 ","465,799 ","573,512 ","960,482 ","429,212 ","531,270 ","74,031 ","33,938 ","40,093 ","4,798 ","2,649 ","2,149 " -73,"961,163 ","428,951 ","532,212 ","889,904 ","395,802 ","494,102 ","66,618 ","30,515 ","36,103 ","4,641 ","2,634 ","2,007 " -74,"881,718 ","391,660 ","490,058 ","817,515 ","361,788 ","455,727 ","59,637 ","27,193 ","32,444 ","4,566 ","2,679 ","1,887 " -75,"805,334 ","355,608 ","449,726 ","747,854 ","328,912 ","418,942 ","53,051 ","24,023 ","29,028 ","4,429 ","2,673 ","1,756 " -76,"733,920 ","321,864 ","412,056 ","682,303 ","297,892 ","384,411 ","47,490 ","21,442 ","26,048 ","4,127 ","2,530 ","1,597 " -77,"666,380 ","289,725 ","376,655 ","619,582 ","268,028 ","351,554 ","43,076 ","19,415 ","23,661 ","3,722 ","2,282 ","1,440 " -78,"600,660 ","258,702 ","341,958 ","558,383 ","239,106 ","319,277 ","38,968 ","17,568 ","21,400 ","3,309 ","2,028 ","1,281 " -79,"536,172 ","228,382 ","307,790 ","498,306 ","210,850 ","287,456 ","34,937 ","15,735 ","19,202 ","2,929 ","1,797 ","1,132 " -80,"475,454 ","199,884 ","275,570 ","441,887 ","184,365 ","257,522 ","31,033 ","13,963 ","17,070 ","2,534 ","1,556 ",978 -81,"416,316 ","172,577 ","243,739 ","386,823 ","159,004 ","227,819 ","27,341 ","12,260 ","15,081 ","2,152 ","1,313 ",839 -82,"360,573 ","147,192 ","213,381 ","335,003 ","135,518 ","199,485 ","23,778 ","10,587 ","13,191 ","1,792 ","1,087 ",705 -83,"308,280 ","123,932 ","184,348 ","286,396 ","114,076 ","172,320 ","20,432 ","8,993 ","11,439 ","1,452 ",863 ,589 -84,"260,371 ","103,189 ","157,182 ","242,370 ","95,216 ","147,154 ","16,873 ","7,312 ","9,561 ","1,128 ",661 ,467 -85+,"1,003,418 ","376,711 ","626,707 ","930,293 ","346,295 ","583,998 ","67,063 ","26,794 ","40,269 ","6,062 ","3,622 ","2,440 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1964.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1964.csv deleted file mode 100644 index b18fb961a1..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1964.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1964",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"191,888,791 ","94,517,752 ","97,371,039 ","169,256,724 ","83,539,369 ","85,717,355 ","20,671,914 ","9,972,854 ","10,699,060 ","1,960,153 ","1,005,529 ","954,624 " -,,,,,,,,,,,, -0,"3,946,853 ","2,011,685 ","1,935,168 ","3,343,925 ","1,709,194 ","1,634,731 ","551,381 ","276,653 ","274,728 ","51,547 ","25,838 ","25,709 " -1,"3,998,118 ","2,034,643 ","1,963,475 ","3,395,028 ","1,732,359 ","1,662,669 ","550,688 ","275,654 ","275,034 ","52,402 ","26,630 ","25,772 " -2,"4,013,585 ","2,042,873 ","1,970,712 ","3,411,144 ","1,741,069 ","1,670,075 ","551,122 ","275,731 ","275,391 ","51,319 ","26,073 ","25,246 " -3,"4,115,310 ","2,091,903 ","2,023,407 ","3,506,908 ","1,788,424 ","1,718,484 ","558,058 ","278,117 ","279,941 ","50,344 ","25,362 ","24,982 " -4,"4,090,999 ","2,081,351 ","2,009,648 ","3,489,516 ","1,781,179 ","1,708,337 ","553,300 ","276,062 ","277,238 ","48,183 ","24,110 ","24,073 " -5,"4,114,053 ","2,091,078 ","2,022,975 ","3,504,951 ","1,786,309 ","1,718,642 ","558,759 ","279,419 ","279,340 ","50,343 ","25,350 ","24,993 " -6,"4,119,428 ","2,092,928 ","2,026,500 ","3,521,189 ","1,793,513 ","1,727,676 ","548,410 ","274,326 ","274,084 ","49,829 ","25,089 ","24,740 " -7,"4,144,687 ","2,108,654 ","2,036,033 ","3,537,685 ","1,804,648 ","1,733,037 ","556,903 ","278,734 ","278,169 ","50,099 ","25,272 ","24,827 " -8,"3,935,856 ","2,002,719 ","1,933,137 ","3,369,459 ","1,718,524 ","1,650,935 ","519,834 ","260,635 ","259,199 ","46,563 ","23,560 ","23,003 " -9,"3,921,848 ","1,998,582 ","1,923,266 ","3,363,855 ","1,718,792 ","1,645,063 ","514,120 ","257,655 ","256,465 ","43,873 ","22,135 ","21,738 " -10,"3,933,774 ","2,002,242 ","1,931,532 ","3,376,726 ","1,723,645 ","1,653,081 ","514,331 ","257,097 ","257,234 ","42,717 ","21,500 ","21,217 " -11,"3,786,885 ","1,927,425 ","1,859,460 ","3,267,510 ","1,667,518 ","1,599,992 ","479,398 ","239,795 ","239,603 ","39,977 ","20,112 ","19,865 " -12,"3,707,388 ","1,888,335 ","1,819,053 ","3,200,809 ","1,635,779 ","1,565,030 ","468,003 ","233,175 ","234,828 ","38,576 ","19,381 ","19,195 " -13,"3,580,494 ","1,817,407 ","1,763,087 ","3,085,063 ","1,570,735 ","1,514,328 ","457,965 ","227,841 ","230,124 ","37,466 ","18,831 ","18,635 " -14,"3,538,419 ","1,797,575 ","1,740,844 ","3,054,818 ","1,555,716 ","1,499,102 ","445,113 ","222,389 ","222,724 ","38,488 ","19,470 ","19,018 " -15,"3,513,943 ","1,786,888 ","1,727,055 ","3,051,375 ","1,554,916 ","1,496,459 ","425,289 ","213,059 ","212,230 ","37,279 ","18,913 ","18,366 " -16,"3,462,482 ","1,760,388 ","1,702,094 ","3,033,387 ","1,545,567 ","1,487,820 ","394,105 ","197,108 ","196,997 ","34,990 ","17,713 ","17,277 " -17,"3,758,932 ","1,908,243 ","1,850,689 ","3,334,082 ","1,696,323 ","1,637,759 ","390,488 ","194,458 ","196,030 ","34,362 ","17,462 ","16,900 " -18,"2,762,842 ","1,398,204 ","1,364,638 ","2,427,290 ","1,232,268 ","1,195,022 ","305,909 ","150,872 ","155,037 ","29,643 ","15,064 ","14,579 " -19,"2,752,014 ","1,387,456 ","1,364,558 ","2,416,046 ","1,222,976 ","1,193,070 ","306,002 ","149,146 ","156,856 ","29,966 ","15,334 ","14,632 " -20,"2,846,740 ","1,434,533 ","1,412,207 ","2,504,080 ","1,266,593 ","1,237,487 ","311,714 ","151,473 ","160,241 ","30,946 ","16,467 ","14,479 " -21,"2,984,824 ","1,504,612 ","1,480,212 ","2,646,254 ","1,339,727 ","1,306,527 ","306,672 ","148,113 ","158,559 ","31,898 ","16,772 ","15,126 " -22,"2,618,388 ","1,311,881 ","1,306,507 ","2,296,936 ","1,157,044 ","1,139,892 ","290,283 ","138,848 ","151,435 ","31,169 ","15,989 ","15,180 " -23,"2,460,044 ","1,227,339 ","1,232,705 ","2,151,301 ","1,079,783 ","1,071,518 ","277,287 ","131,833 ","145,454 ","31,456 ","15,723 ","15,733 " -24,"2,358,554 ","1,170,731 ","1,187,823 ","2,066,395 ","1,032,431 ","1,033,964 ","261,490 ","123,609 ","137,881 ","30,669 ","14,691 ","15,978 " -25,"2,308,915 ","1,143,312 ","1,165,603 ","2,027,933 ","1,011,340 ","1,016,593 ","253,812 ","119,094 ","134,718 ","27,170 ","12,878 ","14,292 " -26,"2,265,698 ","1,121,690 ","1,144,008 ","1,992,192 ","993,731 ","998,461 ","247,318 ","115,710 ","131,608 ","26,188 ","12,249 ","13,939 " -27,"2,209,452 ","1,093,200 ","1,116,252 ","1,940,354 ","967,702 ","972,652 ","243,897 ","113,769 ","130,128 ","25,201 ","11,729 ","13,472 " -28,"2,191,294 ","1,085,371 ","1,105,923 ","1,929,887 ","963,644 ","966,243 ","236,535 ","109,999 ","126,536 ","24,872 ","11,728 ","13,144 " -29,"2,192,610 ","1,086,948 ","1,105,662 ","1,925,010 ","961,821 ","963,189 ","237,333 ","110,789 ","126,544 ","30,267 ","14,338 ","15,929 " -30,"2,187,051 ","1,086,010 ","1,101,041 ","1,911,693 ","957,395 ","954,298 ","246,774 ","114,944 ","131,830 ","28,584 ","13,671 ","14,913 " -31,"2,184,852 ","1,086,597 ","1,098,255 ","1,916,335 ","961,198 ","955,137 ","237,130 ","110,255 ","126,875 ","31,387 ","15,144 ","16,243 " -32,"2,246,695 ","1,116,145 ","1,130,550 ","1,970,858 ","987,376 ","983,482 ","243,439 ","113,081 ","130,358 ","32,398 ","15,688 ","16,710 " -33,"2,277,689 ","1,128,861 ","1,148,828 ","2,000,850 ","999,789 ","1,001,061 ","244,519 ","113,526 ","130,993 ","32,320 ","15,546 ","16,774 " -34,"2,332,045 ","1,151,905 ","1,180,140 ","2,049,504 ","1,020,327 ","1,029,177 ","250,907 ","116,551 ","134,356 ","31,634 ","15,027 ","16,607 " -35,"2,372,325 ","1,169,053 ","1,203,272 ","2,093,423 ","1,039,100 ","1,054,323 ","249,135 ","115,931 ","133,204 ","29,767 ","14,022 ","15,745 " -36,"2,413,578 ","1,186,315 ","1,227,263 ","2,134,998 ","1,056,397 ","1,078,601 ","250,078 ","116,581 ","133,497 ","28,502 ","13,337 ","15,165 " -37,"2,446,394 ","1,199,631 ","1,246,763 ","2,169,280 ","1,070,240 ","1,099,040 ","249,689 ","116,509 ","133,180 ","27,425 ","12,882 ","14,543 " -38,"2,470,780 ","1,209,440 ","1,261,340 ","2,196,129 ","1,081,078 ","1,115,051 ","248,000 ","115,650 ","132,350 ","26,651 ","12,712 ","13,939 " -39,"2,492,463 ","1,218,396 ","1,274,067 ","2,220,601 ","1,091,278 ","1,129,323 ","245,849 ","114,463 ","131,386 ","26,013 ","12,655 ","13,358 " -40,"2,513,549 ","1,227,073 ","1,286,476 ","2,244,497 ","1,101,136 ","1,143,361 ","243,759 ","113,366 ","130,393 ","25,293 ","12,571 ","12,722 " -41,"2,518,435 ","1,228,440 ","1,289,995 ","2,253,481 ","1,104,307 ","1,149,174 ","240,547 ","111,763 ","128,784 ","24,407 ","12,370 ","12,037 " -42,"2,494,560 ","1,216,687 ","1,277,873 ","2,235,961 ","1,095,380 ","1,140,581 ","235,373 ","109,387 ","125,986 ","23,226 ","11,920 ","11,306 " -43,"2,446,979 ","1,193,976 ","1,253,003 ","2,196,474 ","1,076,214 ","1,120,260 ","228,693 ","106,494 ","122,199 ","21,812 ","11,268 ","10,544 " -44,"2,392,579 ","1,167,959 ","1,224,620 ","2,150,563 ","1,053,847 ","1,096,716 ","221,643 ","103,528 ","118,115 ","20,373 ","10,584 ","9,789 " -45,"2,334,084 ","1,140,073 ","1,194,011 ","2,101,009 ","1,029,889 ","1,071,120 ","214,129 ","100,292 ","113,837 ","18,946 ","9,892 ","9,054 " -46,"2,282,131 ","1,115,483 ","1,166,648 ","2,056,458 ","1,008,460 ","1,047,998 ","207,894 ","97,668 ","110,226 ","17,779 ","9,355 ","8,424 " -47,"2,243,234 ","1,097,203 ","1,146,031 ","2,022,194 ","991,985 ","1,030,209 ","203,989 ","96,106 ","107,883 ","17,051 ","9,112 ","7,939 " -48,"2,212,608 ","1,082,908 ","1,129,700 ","1,994,343 ","978,644 ","1,015,699 ","201,614 ","95,182 ","106,432 ","16,651 ","9,082 ","7,569 " -49,"2,177,806 ","1,066,553 ","1,111,253 ","1,962,590 ","963,454 ","999,136 ","198,931 ","94,033 ","104,898 ","16,285 ","9,066 ","7,219 " -50,"2,139,217 ","1,047,970 ","1,091,247 ","1,927,282 ","946,126 ","981,156 ","196,000 ","92,791 ","103,209 ","15,935 ","9,053 ","6,882 " -51,"2,095,845 ","1,026,374 ","1,069,471 ","1,888,542 ","926,532 ","962,010 ","191,748 ","90,833 ","100,915 ","15,555 ","9,009 ","6,546 " -52,"2,058,466 ","1,006,851 ","1,051,615 ","1,856,185 ","909,246 ","946,939 ","187,028 ","88,645 ","98,383 ","15,253 ","8,960 ","6,293 " -53,"2,030,287 ","991,098 ","1,039,189 ","1,832,586 ","895,523 ","937,063 ","182,597 ","86,628 ","95,969 ","15,104 ","8,947 ","6,157 " -54,"2,006,453 ","977,227 ","1,029,226 ","1,812,666 ","883,368 ","929,298 ","178,734 ","84,883 ","93,851 ","15,053 ","8,976 ","6,077 " -55,"1,982,543 ","963,031 ","1,019,512 ","1,792,622 ","870,915 ","921,707 ","174,987 ","83,143 ","91,844 ","14,934 ","8,973 ","5,961 " -56,"1,950,542 ","945,189 ","1,005,353 ","1,764,359 ","854,761 ","909,598 ","171,190 ","81,417 ","89,773 ","14,993 ","9,011 ","5,982 " -57,"1,889,533 ","913,353 ","976,180 ","1,710,637 ","826,423 ","884,214 ","163,887 ","77,964 ","85,923 ","15,009 ","8,966 ","6,043 " -58,"1,800,029 ","867,880 ","932,149 ","1,632,498 ","786,497 ","846,001 ","152,770 ","72,624 ","80,146 ","14,761 ","8,759 ","6,002 " -59,"1,702,226 ","818,382 ","883,844 ","1,547,618 ","743,315 ","804,303 ","140,386 ","66,640 ","73,746 ","14,222 ","8,427 ","5,795 " -60,"1,608,903 ","771,059 ","837,844 ","1,466,170 ","701,752 ","764,418 ","129,045 ","61,196 ","67,849 ","13,688 ","8,111 ","5,577 " -61,"1,524,071 ","727,739 ","796,332 ","1,392,789 ","663,960 ","728,829 ","118,358 ","56,095 ","62,263 ","12,924 ","7,684 ","5,240 " -62,"1,464,853 ","695,727 ","769,126 ","1,339,802 ","635,138 ","704,664 ","112,909 ","53,374 ","59,535 ","12,142 ","7,215 ","4,927 " -63,"1,430,865 ","674,655 ","756,210 ","1,306,003 ","614,604 ","691,399 ","113,362 ","53,290 ","60,072 ","11,500 ","6,761 ","4,739 " -64,"1,403,994 ","656,218 ","747,776 ","1,276,825 ","595,733 ","681,092 ","116,234 ","54,178 ","62,056 ","10,935 ","6,307 ","4,628 " -65,"1,372,266 ","635,435 ","736,831 ","1,243,536 ","574,899 ","668,637 ","118,460 ","54,737 ","63,723 ","10,270 ","5,799 ","4,471 " -66,"1,338,071 ","613,111 ","724,960 ","1,209,473 ","553,557 ","655,916 ","119,235 ","54,355 ","64,880 ","9,363 ","5,199 ","4,164 " -67,"1,301,962 ","591,498 ","710,464 ","1,177,421 ","534,414 ","643,007 ","116,146 ","52,467 ","63,679 ","8,395 ","4,617 ","3,778 " -68,"1,261,738 ","569,880 ","691,858 ","1,145,439 ","516,755 ","628,684 ","108,791 ","49,020 ","59,771 ","7,508 ","4,105 ","3,403 " -69,"1,217,757 ","547,352 ","670,405 ","1,111,705 ","498,936 ","612,769 ","99,447 ","44,830 ","54,617 ","6,605 ","3,586 ","3,019 " -70,"1,176,674 ","526,665 ","650,009 ","1,079,025 ","482,010 ","597,015 ","91,784 ","41,511 ","50,273 ","5,865 ","3,144 ","2,721 " -71,"1,130,510 ","504,137 ","626,373 ","1,040,555 ","462,835 ","577,720 ","84,682 ","38,511 ","46,171 ","5,273 ","2,791 ","2,482 " -72,"1,066,546 ","473,670 ","592,876 ","984,686 ","435,949 ","548,737 ","76,970 ","35,126 ","41,844 ","4,890 ","2,595 ","2,295 " -73,"987,329 ","436,419 ","550,910 ","913,313 ","402,301 ","511,012 ","69,323 ","31,571 ","37,752 ","4,693 ","2,547 ","2,146 " -74,"906,079 ","398,441 ","507,638 ","839,213 ","367,657 ","471,556 ","62,304 ","28,243 ","34,061 ","4,562 ","2,541 ","2,021 " -75,"827,423 ","361,808 ","465,615 ","767,606 ","334,345 ","433,261 ","55,331 ","24,883 ","30,448 ","4,486 ","2,580 ","1,906 " -76,"752,004 ","326,925 ","425,079 ","698,922 ","302,543 ","396,379 ","48,754 ","21,804 ","26,950 ","4,328 ","2,578 ","1,750 " -77,"681,637 ","294,112 ","387,525 ","634,154 ","272,327 ","361,827 ","43,451 ","19,343 ","24,108 ","4,032 ","2,442 ","1,590 " -78,"615,677 ","263,130 ","352,547 ","572,774 ","243,492 ","329,282 ","39,281 ","17,446 ","21,835 ","3,622 ","2,192 ","1,430 " -79,"552,115 ","233,547 ","318,568 ","513,471 ","215,867 ","297,604 ","35,447 ","15,744 ","19,703 ","3,197 ","1,936 ","1,261 " -80,"491,897 ","205,489 ","286,408 ","457,374 ","189,714 ","267,660 ","31,746 ","14,087 ","17,659 ","2,777 ","1,688 ","1,089 " -81,"432,481 ","178,156 ","254,325 ","401,927 ","164,245 ","237,682 ","28,163 ","12,457 ","15,706 ","2,391 ","1,454 ",937 -82,"376,307 ","152,610 ","223,697 ","349,523 ","140,493 ","209,030 ","24,772 ","10,900 ","13,872 ","2,012 ","1,217 ",795 -83,"323,724 ","129,146 ","194,578 ","300,587 ","118,779 ","181,808 ","21,481 ","9,367 ","12,114 ","1,656 ","1,000 ",656 -84,"274,479 ","107,748 ","166,731 ","254,792 ","99,026 ","155,766 ","18,370 ","7,939 ","10,431 ","1,317 ",783 ,534 -85+,"1,040,022 ","386,816 ","653,206 ","962,295 ","354,568 ","607,727 ","71,130 ","28,339 ","42,791 ","6,597 ","3,909 ","2,688 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1965.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1965.csv deleted file mode 100644 index a43d7f2e54..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1965.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1965",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"194,302,963 ","95,608,501 ","98,694,462 ","171,204,758 ","84,417,662 ","86,787,096 ","21,063,732 ","10,152,077 ","10,911,655 ","2,034,473 ","1,038,762 ","995,711 " -,,,,,,,,,,,, -0,"3,770,049 ","1,916,766 ","1,853,283 ","3,183,569 ","1,623,198 ","1,560,371 ","535,872 ","268,149 ","267,723 ","50,608 ","25,419 ","25,189 " -1,"3,928,418 ","2,001,515 ","1,926,903 ","3,330,355 ","1,701,360 ","1,628,995 ","548,283 ","274,956 ","273,327 ","49,780 ","25,199 ","24,581 " -2,"3,935,365 ","2,004,312 ","1,931,053 ","3,337,804 ","1,704,534 ","1,633,270 ","545,921 ","273,620 ","272,301 ","51,640 ","26,158 ","25,482 " -3,"4,024,448 ","2,047,132 ","1,977,316 ","3,421,397 ","1,745,369 ","1,676,028 ","552,005 ","275,992 ","276,013 ","51,046 ","25,771 ","25,275 " -4,"4,165,561 ","2,120,072 ","2,045,489 ","3,548,148 ","1,811,553 ","1,736,595 ","566,943 ","283,131 ","283,812 ","50,470 ","25,388 ","25,082 " -5,"4,089,460 ","2,081,094 ","2,008,366 ","3,483,769 ","1,778,797 ","1,704,972 ","553,257 ","276,032 ","277,225 ","52,434 ","26,265 ","26,169 " -6,"4,101,067 ","2,080,795 ","2,020,272 ","3,492,867 ","1,777,312 ","1,715,555 ","557,964 ","278,298 ","279,666 ","50,236 ","25,185 ","25,051 " -7,"4,145,207 ","2,108,461 ","2,036,746 ","3,541,590 ","1,805,918 ","1,735,672 ","553,528 ","277,318 ","276,210 ","50,089 ","25,225 ","24,864 " -8,"4,074,807 ","2,075,430 ","1,999,377 ","3,487,853 ","1,780,700 ","1,707,153 ","538,494 ","270,243 ","268,251 ","48,460 ","24,487 ","23,973 " -9,"3,967,031 ","2,020,083 ","1,946,948 ","3,393,104 ","1,732,073 ","1,661,031 ","526,709 ","264,266 ","262,443 ","47,218 ","23,744 ","23,474 " -10,"4,020,780 ","2,049,184 ","1,971,596 ","3,439,248 ","1,757,965 ","1,681,283 ","536,090 ","268,371 ","267,719 ","45,442 ","22,848 ","22,594 " -11,"3,878,958 ","1,973,573 ","1,905,385 ","3,336,311 ","1,702,543 ","1,633,768 ","500,628 ","249,983 ","250,645 ","42,019 ","21,047 ","20,972 " -12,"3,800,029 ","1,935,008 ","1,865,021 ","3,275,361 ","1,672,243 ","1,603,118 ","484,514 ","242,536 ","241,978 ","40,154 ","20,229 ","19,925 " -13,"3,676,247 ","1,869,228 ","1,807,019 ","3,178,223 ","1,621,699 ","1,556,524 ","460,144 ","228,566 ","231,578 ","37,880 ","18,963 ","18,917 " -14,"3,672,861 ","1,865,141 ","1,807,720 ","3,162,686 ","1,610,498 ","1,552,188 ","470,484 ","234,674 ","235,810 ","39,691 ","19,969 ","19,722 " -15,"3,510,524 ","1,786,893 ","1,723,631 ","3,032,413 ","1,547,346 ","1,485,067 ","439,372 ","219,924 ","219,448 ","38,739 ","19,623 ","19,116 " -16,"3,476,677 ","1,766,658 ","1,710,019 ","3,020,008 ","1,538,114 ","1,481,894 ","419,246 ","209,620 ","209,626 ","37,423 ","18,924 ","18,499 " -17,"3,493,366 ","1,774,111 ","1,719,255 ","3,055,759 ","1,554,913 ","1,500,846 ","400,492 ","200,285 ","200,207 ","37,115 ","18,913 ","18,202 " -18,"3,804,349 ","1,928,843 ","1,875,506 ","3,390,068 ","1,723,089 ","1,666,979 ","378,817 ","187,623 ","191,194 ","35,464 ","18,131 ","17,333 " -19,"2,741,815 ","1,383,976 ","1,357,839 ","2,409,426 ","1,221,217 ","1,188,209 ","301,007 ","146,805 ","154,202 ","31,382 ","15,954 ","15,428 " -20,"2,828,397 ","1,428,339 ","1,400,058 ","2,475,700 ","1,255,843 ","1,219,857 ","320,637 ","155,421 ","165,216 ","32,060 ","17,075 ","14,985 " -21,"2,829,293 ","1,426,411 ","1,402,882 ","2,490,349 ","1,260,782 ","1,229,567 ","306,379 ","148,347 ","158,032 ","32,565 ","17,282 ","15,283 " -22,"2,974,287 ","1,493,370 ","1,480,917 ","2,635,564 ","1,329,890 ","1,305,674 ","305,331 ","146,229 ","159,102 ","33,392 ","17,251 ","16,141 " -23,"2,608,334 ","1,302,768 ","1,305,566 ","2,288,328 ","1,149,327 ","1,139,001 ","286,672 ","136,676 ","149,996 ","33,334 ","16,765 ","16,569 " -24,"2,506,128 ","1,248,401 ","1,257,727 ","2,192,878 ","1,099,478 ","1,093,400 ","279,663 ","132,436 ","147,227 ","33,587 ","16,487 ","17,100 " -25,"2,353,320 ","1,166,780 ","1,186,540 ","2,063,002 ","1,030,301 ","1,032,701 ","261,418 ","122,700 ","138,718 ","28,900 ","13,779 ","15,121 " -26,"2,297,761 ","1,136,166 ","1,161,595 ","2,020,746 ","1,006,589 ","1,014,157 ","249,502 ","116,756 ","132,746 ","27,513 ","12,821 ","14,692 " -27,"2,281,873 ","1,127,364 ","1,154,509 ","2,002,991 ","997,470 ","1,005,521 ","251,869 ","117,362 ","134,507 ","27,013 ","12,532 ","14,481 " -28,"2,215,580 ","1,095,698 ","1,119,882 ","1,951,161 ","972,787 ","978,374 ","238,261 ","110,592 ","127,669 ","26,158 ","12,319 ","13,839 " -29,"2,191,676 ","1,086,428 ","1,105,248 ","1,926,401 ","962,523 ","963,878 ","239,180 ","111,520 ","127,660 ","26,095 ","12,385 ","13,710 " -30,"2,260,151 ","1,121,099 ","1,139,052 ","1,975,042 ","987,815 ","987,227 ","251,908 ","117,348 ","134,560 ","33,201 ","15,936 ","17,265 " -31,"2,137,036 ","1,060,876 ","1,076,160 ","1,875,387 ","939,227 ","936,160 ","233,357 ","108,163 ","125,194 ","28,292 ","13,486 ","14,806 " -32,"2,190,392 ","1,087,881 ","1,102,511 ","1,919,837 ","961,840 ","957,997 ","238,217 ","110,472 ","127,745 ","32,338 ","15,569 ","16,769 " -33,"2,235,678 ","1,109,158 ","1,126,520 ","1,959,537 ","980,376 ","979,161 ","242,350 ","112,515 ","129,835 ","33,791 ","16,267 ","17,524 " -34,"2,301,530 ","1,138,552 ","1,162,978 ","2,015,534 ","1,005,171 ","1,010,363 ","252,291 ","117,278 ","135,013 ","33,705 ","16,103 ","17,602 " -35,"2,329,048 ","1,148,435 ","1,180,613 ","2,050,346 ","1,018,704 ","1,031,642 ","247,946 ","115,278 ","132,668 ","30,756 ","14,453 ","16,303 " -36,"2,369,898 ","1,165,227 ","1,204,671 ","2,092,085 ","1,036,009 ","1,056,076 ","248,381 ","115,558 ","132,823 ","29,432 ","13,660 ","15,772 " -37,"2,410,563 ","1,182,374 ","1,228,189 ","2,133,557 ","1,053,571 ","1,079,986 ","248,783 ","115,790 ","132,993 ","28,223 ","13,013 ","15,210 " -38,"2,443,529 ","1,196,367 ","1,247,162 ","2,168,111 ","1,068,303 ","1,099,808 ","247,954 ","115,302 ","132,652 ","27,464 ","12,762 ","14,702 " -39,"2,467,646 ","1,206,539 ","1,261,107 ","2,194,671 ","1,079,542 ","1,115,129 ","246,035 ","114,235 ","131,800 ","26,940 ","12,762 ","14,178 " -40,"2,488,120 ","1,214,897 ","1,273,223 ","2,218,037 ","1,089,142 ","1,128,895 ","243,820 ","113,069 ","130,751 ","26,263 ","12,686 ","13,577 " -41,"2,508,284 ","1,223,181 ","1,285,103 ","2,241,072 ","1,098,616 ","1,142,456 ","241,673 ","111,936 ","129,737 ","25,539 ","12,629 ","12,910 " -42,"2,511,192 ","1,223,584 ","1,287,608 ","2,248,186 ","1,100,712 ","1,147,474 ","238,375 ","110,432 ","127,943 ","24,631 ","12,440 ","12,191 " -43,"2,484,440 ","1,210,282 ","1,274,158 ","2,227,966 ","1,090,084 ","1,137,882 ","233,092 ","108,229 ","124,863 ","23,382 ","11,969 ","11,413 " -44,"2,434,326 ","1,186,160 ","1,248,166 ","2,186,108 ","1,069,434 ","1,116,674 ","226,287 ","105,425 ","120,862 ","21,931 ","11,301 ","10,630 " -45,"2,379,012 ","1,159,584 ","1,219,428 ","2,139,302 ","1,046,505 ","1,092,797 ","219,178 ","102,444 ","116,734 ","20,532 ","10,635 ","9,897 " -46,"2,319,988 ","1,131,323 ","1,188,665 ","2,089,162 ","1,022,109 ","1,067,053 ","211,692 ","99,260 ","112,432 ","19,134 ","9,954 ","9,180 " -47,"2,264,928 ","1,105,123 ","1,159,805 ","2,041,813 ","999,288 ","1,042,525 ","205,181 ","96,441 ","108,740 ","17,934 ","9,394 ","8,540 " -48,"2,223,279 ","1,085,431 ","1,137,848 ","2,005,093 ","981,690 ","1,023,403 ","201,026 ","94,623 ","106,403 ","17,160 ","9,118 ","8,042 " -49,"2,192,928 ","1,071,067 ","1,121,861 ","1,977,432 ","968,358 ","1,009,074 ","198,730 ","93,633 ","105,097 ","16,766 ","9,076 ","7,690 " -50,"2,160,922 ","1,055,734 ","1,105,188 ","1,948,093 ","954,001 ","994,092 ","196,409 ","92,660 ","103,749 ","16,420 ","9,073 ","7,347 " -51,"2,121,977 ","1,036,620 ","1,085,357 ","1,912,493 ","936,256 ","976,237 ","193,408 ","91,307 ","102,101 ","16,076 ","9,057 ","7,019 " -52,"2,086,683 ","1,018,596 ","1,068,087 ","1,880,552 ","919,609 ","960,943 ","190,296 ","89,920 ","100,376 ","15,835 ","9,067 ","6,768 " -53,"2,058,183 ","1,003,010 ","1,055,173 ","1,855,748 ","905,575 ","950,173 ","186,756 ","88,360 ","98,396 ","15,679 ","9,075 ","6,604 " -54,"2,031,279 ","987,524 ","1,043,755 ","1,833,376 ","892,091 ","941,285 ","182,363 ","86,370 ","95,993 ","15,540 ","9,063 ","6,477 " -55,"2,001,015 ","970,130 ","1,030,885 ","1,808,041 ","876,983 ","931,058 ","177,626 ","84,119 ","93,507 ","15,348 ","9,028 ","6,320 " -56,"1,974,040 ","954,380 ","1,019,660 ","1,784,965 ","863,014 ","921,951 ","173,872 ","82,359 ","91,513 ","15,203 ","9,007 ","6,196 " -57,"1,927,957 ","929,346 ","998,611 ","1,745,566 ","841,184 ","904,382 ","167,439 ","79,261 ","88,178 ","14,952 ","8,901 ","6,051 " -58,"1,849,577 ","889,021 ","960,556 ","1,677,948 ","806,109 ","871,839 ","157,045 ","74,225 ","82,820 ","14,584 ","8,687 ","5,897 " -59,"1,752,428 ","839,804 ","912,624 ","1,593,291 ","762,988 ","830,303 ","144,986 ","68,407 ","76,579 ","14,151 ","8,409 ","5,742 " -60,"1,658,851 ","792,523 ","866,328 ","1,510,937 ","721,123 ","789,814 ","134,186 ","63,257 ","70,929 ","13,728 ","8,143 ","5,585 " -61,"1,564,762 ","745,047 ","819,715 ","1,429,019 ","679,444 ","749,575 ","122,537 ","57,760 ","64,777 ","13,206 ","7,843 ","5,363 " -62,"1,489,103 ","705,705 ","783,398 ","1,361,024 ","643,885 ","717,139 ","115,364 ","54,283 ","61,081 ","12,715 ","7,537 ","5,178 " -63,"1,442,985 ","679,114 ","763,871 ","1,316,138 ","618,270 ","697,868 ","114,579 ","53,639 ","60,940 ","12,268 ","7,205 ","5,063 " -64,"1,416,172 ","660,692 ","755,480 ","1,286,854 ","599,341 ","687,513 ","117,574 ","54,558 ","63,016 ","11,744 ","6,793 ","4,951 " -65,"1,387,207 ","641,224 ","745,983 ","1,256,125 ","579,702 ","676,423 ","119,998 ","55,223 ","64,775 ","11,084 ","6,299 ","4,785 " -66,"1,353,251 ","618,587 ","734,664 ","1,221,173 ","557,534 ","663,639 ","121,828 ","55,347 ","66,481 ","10,250 ","5,706 ","4,544 " -67,"1,314,860 ","594,958 ","719,902 ","1,185,673 ","535,928 ","649,745 ","119,961 ","53,961 ","66,000 ","9,226 ","5,069 ","4,157 " -68,"1,270,969 ","570,736 ","700,233 ","1,150,155 ","515,812 ","634,343 ","112,681 ","50,486 ","62,195 ","8,133 ","4,438 ","3,695 " -69,"1,224,004 ","546,687 ","677,317 ","1,114,113 ","496,723 ","617,390 ","102,687 ","46,056 ","56,631 ","7,204 ","3,908 ","3,296 " -70,"1,176,625 ","522,526 ","654,099 ","1,077,113 ","477,377 ","599,736 ","93,128 ","41,720 ","51,408 ","6,384 ","3,429 ","2,955 " -71,"1,134,421 ","501,476 ","632,945 ","1,043,037 ","459,841 ","583,196 ","85,753 ","38,652 ","47,101 ","5,631 ","2,983 ","2,648 " -72,"1,082,762 ","476,634 ","606,128 ","998,872 ","438,234 ","560,638 ","78,793 ","35,742 ","43,051 ","5,097 ","2,658 ","2,439 " -73,"1,012,772 ","443,685 ","569,087 ","936,129 ","408,625 ","527,504 ","71,863 ","32,571 ","39,292 ","4,780 ","2,489 ","2,291 " -74,"930,126 ","405,039 ","525,087 ","860,842 ","373,466 ","487,376 ","64,670 ","29,119 ","35,551 ","4,614 ","2,454 ","2,160 " -75,"849,660 ","367,599 ","482,061 ","787,443 ","339,368 ","448,075 ","57,729 ","25,786 ","31,943 ","4,488 ","2,445 ","2,043 " -76,"771,665 ","331,906 ","439,759 ","716,501 ","306,879 ","409,622 ","50,765 ","22,535 ","28,230 ","4,399 ","2,492 ","1,907 " -77,"697,251 ","297,846 ","399,405 ","648,494 ","275,737 ","372,757 ","44,505 ","19,607 ","24,898 ","4,252 ","2,502 ","1,750 " -78,"628,482 ","266,124 ","362,358 ","585,020 ","246,448 ","338,572 ","39,505 ","17,305 ","22,200 ","3,957 ","2,371 ","1,586 " -79,"564,733 ","236,548 ","328,185 ","525,545 ","218,851 ","306,694 ","35,649 ","15,575 ","20,074 ","3,539 ","2,122 ","1,417 " -80,"505,885 ","209,365 ","296,520 ","470,555 ","193,416 ","277,139 ","32,268 ","14,106 ","18,162 ","3,062 ","1,843 ","1,219 " -81,"446,842 ","182,426 ","264,416 ","415,355 ","168,253 ","247,102 ","28,830 ","12,568 ","16,262 ","2,657 ","1,605 ","1,052 " -82,"390,716 ","157,038 ","233,678 ","362,870 ","144,563 ","218,307 ","25,575 ","11,100 ","14,475 ","2,271 ","1,375 ",896 -83,"338,150 ","133,691 ","204,459 ","313,767 ","122,843 ","190,924 ","22,496 ","9,706 ","12,790 ","1,887 ","1,142 ",745 -84,"289,252 ","112,518 ","176,734 ","268,226 ","103,213 ","165,013 ","19,497 ","8,374 ","11,123 ","1,529 ",931 ,598 -85+,"1,081,760 ","397,502 ","684,258 ","998,348 ","363,049 ","635,299 ","76,153 ","30,191 ","45,962 ","7,259 ","4,262 ","2,997 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1966.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1966.csv deleted file mode 100644 index c3ba750324..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1966.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1966",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"196,560,338 ","96,619,711 ","99,940,627 ","172,997,665 ","85,217,766 ","87,779,899 ","21,434,066 ","10,319,583 ","11,114,483 ","2,128,607 ","1,082,362 ","1,046,245 " -,,,,,,,,,,,, -0,"3,555,346 ","1,812,116 ","1,743,230 ","2,989,529 ","1,527,355 ","1,462,174 ","513,184 ","258,115 ","255,069 ","52,633 ","26,646 ","25,987 " -1,"3,754,179 ","1,907,281 ","1,846,898 ","3,170,068 ","1,614,916 ","1,555,152 ","534,746 ","267,382 ","267,364 ","49,365 ","24,983 ","24,382 " -2,"3,866,725 ","1,971,770 ","1,894,955 ","3,273,002 ","1,673,462 ","1,599,540 ","544,517 ","273,428 ","271,089 ","49,206 ","24,880 ","24,326 " -3,"3,953,247 ","2,012,338 ","1,940,909 ","3,353,661 ","1,711,785 ","1,641,876 ","547,973 ","274,557 ","273,416 ","51,613 ","25,996 ","25,617 " -4,"4,078,477 ","2,076,639 ","2,001,838 ","3,465,732 ","1,769,701 ","1,696,031 ","561,389 ","281,047 ","280,342 ","51,356 ","25,891 ","25,465 " -5,"4,164,778 ","2,120,868 ","2,043,910 ","3,543,211 ","1,810,135 ","1,733,076 ","566,230 ","282,792 ","283,438 ","55,337 ","27,941 ","27,396 " -6,"4,086,431 ","2,075,671 ","2,010,760 ","3,480,069 ","1,773,874 ","1,706,195 ","553,638 ","275,473 ","278,165 ","52,724 ","26,324 ","26,400 " -7,"4,127,481 ","2,096,908 ","2,030,573 ","3,514,233 ","1,790,512 ","1,723,721 ","562,534 ","280,933 ","281,601 ","50,714 ","25,463 ","25,251 " -8,"4,081,690 ","2,078,276 ","2,003,414 ","3,496,635 ","1,784,260 ","1,712,375 ","536,255 ","269,355 ","266,900 ","48,800 ","24,661 ","24,139 " -9,"4,113,116 ","2,096,455 ","2,016,661 ","3,517,671 ","1,797,356 ","1,720,315 ","546,021 ","274,257 ","271,764 ","49,424 ","24,842 ","24,582 " -10,"4,082,146 ","2,078,940 ","2,003,206 ","3,479,882 ","1,777,078 ","1,702,804 ","552,660 ","276,938 ","275,722 ","49,604 ","24,924 ","24,680 " -11,"3,952,738 ","2,013,664 ","1,939,074 ","3,388,996 ","1,731,662 ","1,657,334 ","519,034 ","259,595 ","259,439 ","44,708 ","22,407 ","22,301 " -12,"3,896,753 ","1,983,241 ","1,913,512 ","3,347,714 ","1,708,768 ","1,638,946 ","506,623 ","253,146 ","253,477 ","42,416 ","21,327 ","21,089 " -13,"3,777,761 ","1,920,198 ","1,857,563 ","3,259,866 ","1,661,597 ","1,598,269 ","478,101 ","238,602 ","239,499 ","39,794 ","19,999 ","19,795 " -14,"3,768,291 ","1,917,101 ","1,851,190 ","3,254,576 ","1,661,073 ","1,593,503 ","473,612 ","235,912 ","237,700 ","40,103 ","20,116 ","19,987 " -15,"3,650,609 ","1,857,610 ","1,792,999 ","3,144,663 ","1,604,551 ","1,540,112 ","465,119 ","232,434 ","232,685 ","40,827 ","20,625 ","20,202 " -16,"3,477,928 ","1,769,597 ","1,708,331 ","3,004,603 ","1,532,855 ","1,471,748 ","434,053 ","216,925 ","217,128 ","39,272 ","19,817 ","19,455 " -17,"3,507,925 ","1,781,387 ","1,726,538 ","3,042,448 ","1,548,280 ","1,494,168 ","425,344 ","212,676 ","212,668 ","40,133 ","20,431 ","19,702 " -18,"3,535,518 ","1,792,056 ","1,743,462 ","3,106,958 ","1,578,528 ","1,528,430 ","389,728 ","193,633 ","196,095 ","38,832 ","19,895 ","18,937 " -19,"3,789,819 ","1,917,488 ","1,872,331 ","3,377,581 ","1,714,606 ","1,662,975 ","374,150 ","183,379 ","190,771 ","38,088 ","19,503 ","18,585 " -20,"2,816,582 ","1,424,834 ","1,391,748 ","2,467,995 ","1,254,006 ","1,213,989 ","314,961 ","152,997 ","161,964 ","33,626 ","17,831 ","15,795 " -21,"2,800,665 ","1,415,031 ","1,385,634 ","2,453,297 ","1,245,687 ","1,207,610 ","313,387 ","151,297 ","162,090 ","33,981 ","18,047 ","15,934 " -22,"2,813,697 ","1,410,930 ","1,402,767 ","2,474,947 ","1,247,246 ","1,227,701 ","304,432 ","145,834 ","158,598 ","34,318 ","17,850 ","16,468 " -23,"2,955,441 ","1,477,725 ","1,477,716 ","2,618,791 ","1,316,123 ","1,302,668 ","300,635 ","143,338 ","157,297 ","36,015 ","18,264 ","17,751 " -24,"2,664,034 ","1,327,633 ","1,336,401 ","2,338,506 ","1,172,497 ","1,166,009 ","289,580 ","137,350 ","152,230 ","35,948 ","17,786 ","18,162 " -25,"2,496,628 ","1,242,619 ","1,254,009 ","2,185,239 ","1,095,405 ","1,089,834 ","279,375 ","131,471 ","147,904 ","32,014 ","15,743 ","16,271 " -26,"2,339,109 ","1,157,794 ","1,181,315 ","2,053,458 ","1,024,070 ","1,029,388 ","255,979 ","119,764 ","136,215 ","29,672 ","13,960 ","15,712 " -27,"2,318,338 ","1,143,538 ","1,174,800 ","2,034,520 ","1,011,396 ","1,023,124 ","254,965 ","118,748 ","136,217 ","28,853 ","13,394 ","15,459 " -28,"2,290,407 ","1,130,906 ","1,159,501 ","2,017,210 ","1,004,054 ","1,013,156 ","244,743 ","113,415 ","131,328 ","28,454 ","13,437 ","15,017 " -29,"2,217,275 ","1,097,500 ","1,119,775 ","1,947,982 ","971,768 ","976,214 ","241,418 ","112,467 ","128,951 ","27,875 ","13,265 ","14,610 " -30,"2,273,628 ","1,127,721 ","1,145,907 ","1,987,697 ","994,207 ","993,490 ","256,547 ","119,340 ","137,207 ","29,384 ","14,174 ","15,210 " -31,"2,198,383 ","1,090,170 ","1,108,213 ","1,930,339 ","965,434 ","964,905 ","235,104 ","108,920 ","126,184 ","32,940 ","15,816 ","17,124 " -32,"2,145,554 ","1,063,491 ","1,082,063 ","1,881,400 ","941,019 ","940,381 ","234,529 ","108,361 ","126,168 ","29,625 ","14,111 ","15,514 " -33,"2,179,608 ","1,081,028 ","1,098,580 ","1,908,610 ","954,974 ","953,636 ","236,750 ","109,647 ","127,103 ","34,248 ","16,407 ","17,841 " -34,"2,266,239 ","1,122,173 ","1,144,066 ","1,979,053 ","988,269 ","990,784 ","251,452 ","116,802 ","134,650 ","35,734 ","17,102 ","18,632 " -35,"2,299,308 ","1,135,444 ","1,163,864 ","2,018,068 ","1,004,424 ","1,013,644 ","248,441 ","115,502 ","132,939 ","32,799 ","15,518 ","17,281 " -36,"2,327,682 ","1,144,996 ","1,182,686 ","2,050,147 ","1,016,154 ","1,033,993 ","246,957 ","114,682 ","132,275 ","30,578 ","14,160 ","16,418 " -37,"2,367,995 ","1,161,721 ","1,206,274 ","2,091,668 ","1,033,666 ","1,058,002 ","246,980 ","114,624 ","132,356 ","29,347 ","13,431 ","15,916 " -38,"2,409,227 ","1,179,825 ","1,229,402 ","2,133,550 ","1,052,215 ","1,081,335 ","247,123 ","114,561 ","132,562 ","28,554 ","13,049 ","15,505 " -39,"2,442,344 ","1,194,440 ","1,247,904 ","2,168,074 ","1,067,501 ","1,100,573 ","246,165 ","113,937 ","132,228 ","28,105 ","13,002 ","15,103 " -40,"2,465,450 ","1,204,083 ","1,261,367 ","2,193,777 ","1,078,250 ","1,115,527 ","244,164 ","112,880 ","131,284 ","27,509 ","12,953 ","14,556 " -41,"2,485,314 ","1,212,198 ","1,273,116 ","2,216,616 ","1,087,635 ","1,128,981 ","241,898 ","111,676 ","130,222 ","26,800 ","12,887 ","13,913 " -42,"2,503,209 ","1,219,344 ","1,283,865 ","2,237,589 ","1,095,898 ","1,141,691 ","239,602 ","110,625 ","128,977 ","26,018 ","12,821 ","13,197 " -43,"2,502,460 ","1,217,756 ","1,284,704 ","2,241,381 ","1,095,912 ","1,145,469 ","236,081 ","109,258 ","126,823 ","24,998 ","12,586 ","12,412 " -44,"2,472,528 ","1,202,681 ","1,269,847 ","2,218,249 ","1,083,472 ","1,134,777 ","230,597 ","107,124 ","123,473 ","23,682 ","12,085 ","11,597 " -45,"2,421,211 ","1,177,869 ","1,243,342 ","2,175,227 ","1,062,125 ","1,113,102 ","223,711 ","104,303 ","119,408 ","22,273 ","11,441 ","10,832 " -46,"2,364,671 ","1,150,561 ","1,214,110 ","2,127,230 ","1,038,432 ","1,088,798 ","216,548 ","101,342 ","115,206 ","20,893 ","10,787 ","10,106 " -47,"2,303,584 ","1,121,184 ","1,182,400 ","2,075,204 ","1,013,093 ","1,062,111 ","208,918 ","98,011 ","110,907 ","19,462 ","10,080 ","9,382 " -48,"2,247,692 ","1,094,518 ","1,153,174 ","2,027,059 ","990,009 ","1,037,050 ","202,403 ","95,026 ","107,377 ","18,230 ","9,483 ","8,747 " -49,"2,207,371 ","1,075,328 ","1,132,043 ","1,991,429 ","972,947 ","1,018,482 ","198,483 ","93,193 ","105,290 ","17,459 ","9,188 ","8,271 " -50,"2,179,413 ","1,061,897 ","1,117,516 ","1,965,791 ","960,371 ","1,005,420 ","196,554 ","92,379 ","104,175 ","17,068 ","9,147 ","7,921 " -51,"2,147,484 ","1,046,300 ","1,101,184 ","1,936,444 ","945,806 ","990,638 ","194,302 ","91,354 ","102,948 ","16,738 ","9,140 ","7,598 " -52,"2,114,281 ","1,029,712 ","1,084,569 ","1,905,694 ","930,154 ","975,540 ","192,097 ","90,407 ","101,690 ","16,490 ","9,151 ","7,339 " -53,"2,084,320 ","1,013,969 ","1,070,351 ","1,878,366 ","915,386 ","962,980 ","189,621 ","89,393 ","100,228 ","16,333 ","9,190 ","7,143 " -54,"2,055,086 ","997,687 ","1,057,399 ","1,853,107 ","900,769 ","952,338 ","185,833 ","87,735 ","98,098 ","16,146 ","9,183 ","6,963 " -55,"2,022,247 ","978,858 ","1,043,389 ","1,825,718 ","884,463 ","941,255 ","180,662 ","85,284 ","95,378 ","15,867 ","9,111 ","6,756 " -56,"1,988,847 ","959,782 ","1,029,065 ","1,797,353 ","867,744 ","929,609 ","175,860 ","82,986 ","92,874 ","15,634 ","9,052 ","6,582 " -57,"1,949,482 ","937,693 ","1,011,789 ","1,764,387 ","848,715 ","915,672 ","169,882 ","80,068 ","89,814 ","15,213 ","8,910 ","6,303 " -58,"1,888,550 ","905,439 ","983,111 ","1,712,927 ","821,066 ","891,861 ","160,972 ","75,700 ","85,272 ","14,651 ","8,673 ","5,978 " -59,"1,803,853 ","862,033 ","941,820 ","1,639,684 ","783,247 ","856,437 ","150,027 ","70,377 ","79,650 ","14,142 ","8,409 ","5,733 " -60,"1,710,650 ","814,827 ","895,823 ","1,557,238 ","741,227 ","816,011 ","139,605 ","65,413 ","74,192 ","13,807 ","8,187 ","5,620 " -61,"1,615,843 ","767,185 ","848,658 ","1,474,020 ","699,065 ","774,955 ","128,428 ","60,186 ","68,242 ","13,395 ","7,934 ","5,461 " -62,"1,531,088 ","723,547 ","807,541 ","1,397,683 ","659,537 ","738,146 ","120,326 ","56,288 ","64,038 ","13,079 ","7,722 ","5,357 " -63,"1,468,413 ","689,283 ","779,130 ","1,337,972 ","627,035 ","710,937 ","117,605 ","54,737 ","62,868 ","12,836 ","7,511 ","5,325 " -64,"1,429,058 ","664,974 ","764,084 ","1,297,573 ","602,869 ","694,704 ","119,026 ","54,907 ","64,119 ","12,459 ","7,198 ","5,261 " -65,"1,399,910 ","645,418 ","754,492 ","1,266,715 ","583,154 ","683,561 ","121,352 ","55,516 ","65,836 ","11,843 ","6,748 ","5,095 " -66,"1,368,739 ","624,057 ","744,682 ","1,234,434 ","562,163 ","672,271 ","123,284 ","55,719 ","67,565 ","11,021 ","6,175 ","4,846 " -67,"1,329,669 ","599,793 ","729,876 ","1,197,494 ","539,558 ","657,936 ","122,093 ","54,689 ","67,404 ","10,082 ","5,546 ","4,536 " -68,"1,282,238 ","573,132 ","709,106 ","1,157,601 ","516,662 ","640,939 ","115,673 ","51,598 ","64,075 ","8,964 ","4,872 ","4,092 " -69,"1,230,866 ","546,248 ","684,618 ","1,117,407 ","494,908 ","622,499 ","105,611 ","47,110 ","58,501 ","7,848 ","4,230 ","3,618 " -70,"1,180,517 ","520,532 ","659,985 ","1,078,024 ","474,241 ","603,783 ","95,475 ","42,543 ","52,932 ","7,018 ","3,748 ","3,270 " -71,"1,132,308 ","496,128 ","636,180 ","1,039,702 ","454,308 ","585,394 ","86,430 ","38,558 ","47,872 ","6,176 ","3,262 ","2,914 " -72,"1,084,674 ","472,838 ","611,836 ","999,925 ","434,383 ","565,542 ","79,262 ","35,608 ","43,654 ","5,487 ","2,847 ","2,640 " -73,"1,026,983 ","445,622 ","581,361 ","948,793 ","410,137 ","538,656 ","73,170 ","32,934 ","40,236 ","5,020 ","2,551 ","2,469 " -74,"953,532 ","411,363 ","542,169 ","882,059 ","379,079 ","502,980 ","66,744 ","29,892 ","36,852 ","4,729 ","2,392 ","2,337 " -75,"872,070 ","373,548 ","498,522 ","807,794 ","344,700 ","463,094 ","59,710 ","26,494 ","33,216 ","4,566 ","2,354 ","2,212 " -76,"792,291 ","337,172 ","455,119 ","735,086 ","311,510 ","423,576 ","52,778 ","23,304 ","29,474 ","4,427 ","2,358 ","2,069 " -77,"715,539 ","302,488 ","413,051 ","664,995 ","279,819 ","385,176 ","46,194 ","20,250 ","25,944 ","4,350 ","2,419 ","1,931 " -78,"643,002 ","269,706 ","373,296 ","598,482 ","249,738 ","348,744 ","40,319 ","17,530 ","22,789 ","4,201 ","2,438 ","1,763 " -79,"576,689 ","239,528 ","337,161 ","537,086 ","221,782 ","315,304 ","35,704 ","15,435 ","20,269 ","3,899 ","2,311 ","1,588 " -80,"518,162 ","212,547 ","305,615 ","482,306 ","196,515 ","285,791 ","32,447 ","14,002 ","18,445 ","3,409 ","2,030 ","1,379 " -81,"460,261 ","186,351 ","273,910 ","428,037 ","171,967 ","256,070 ","29,275 ","12,621 ","16,654 ","2,949 ","1,763 ","1,186 " -82,"404,604 ","161,308 ","243,296 ","375,854 ","148,531 ","227,323 ","26,209 ","11,246 ","14,963 ","2,541 ","1,531 ","1,010 " -83,"352,128 ","137,984 ","214,144 ","326,656 ","126,738 ","199,918 ","23,319 ","9,941 ","13,378 ","2,153 ","1,305 ",848 -84,"303,252 ","116,722 ","186,530 ","280,884 ","106,903 ","173,981 ","20,604 ","8,745 ","11,859 ","1,764 ","1,074 ",690 -85+,"1,127,697 ","409,395 ","718,302 ","1,038,964 ","373,274 ","665,690 ","80,774 ","31,560 ","49,214 ","7,959 ","4,561 ","3,398 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1967.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1967.csv deleted file mode 100644 index 2dde7a2161..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1967.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1967",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"198,712,056 ","97,563,882 ","101,148,174 ","174,695,114 ","85,960,615 ","88,734,499 ","21,780,162 ","10,470,302 ","11,309,860 ","2,236,780 ","1,132,965 ","1,103,815 " -,,,,,,,,,,,, -0,"3,450,000 ","1,756,823 ","1,693,177 ","2,912,756 ","1,487,474 ","1,425,282 ","485,761 ","243,325 ","242,436 ","51,483 ","26,024 ","25,459 " -1,"3,535,546 ","1,800,459 ","1,735,087 ","2,970,372 ","1,516,384 ","1,453,988 ","513,238 ","257,683 ","255,555 ","51,936 ","26,392 ","25,544 " -2,"3,688,418 ","1,875,801 ","1,812,617 ","3,108,232 ","1,585,034 ","1,523,198 ","531,255 ","266,007 ","265,248 ","48,931 ","24,760 ","24,171 " -3,"3,884,351 ","1,979,730 ","1,904,621 ","3,287,922 ","1,680,215 ","1,607,707 ","547,046 ","274,706 ","272,340 ","49,383 ","24,809 ","24,574 " -4,"4,004,194 ","2,039,407 ","1,964,787 ","3,394,974 ","1,733,943 ","1,661,031 ","557,203 ","279,334 ","277,869 ","52,017 ","26,130 ","25,887 " -5,"4,072,240 ","2,074,905 ","1,997,335 ","3,456,271 ","1,766,152 ","1,690,119 ","559,357 ","280,071 ","279,286 ","56,612 ","28,682 ","27,930 " -6,"4,165,426 ","2,116,695 ","2,048,731 ","3,542,350 ","1,806,112 ","1,736,238 ","567,160 ","282,457 ","284,703 ","55,916 ","28,126 ","27,790 " -7,"4,107,922 ","2,089,332 ","2,018,590 ","3,497,671 ","1,785,294 ","1,712,377 ","556,937 ","277,390 ","279,547 ","53,314 ","26,648 ","26,666 " -8,"4,065,534 ","2,067,288 ","1,998,246 ","3,470,414 ","1,769,179 ","1,701,235 ","545,445 ","273,080 ","272,365 ","49,675 ","25,029 ","24,646 " -9,"4,121,978 ","2,100,317 ","2,021,661 ","3,528,367 ","1,801,870 ","1,726,497 ","543,617 ","273,337 ","270,280 ","49,994 ","25,110 ","24,884 " -10,"4,243,904 ","2,163,648 ","2,080,256 ","3,615,382 ","1,848,347 ","1,767,035 ","575,933 ","288,869 ","287,064 ","52,589 ","26,432 ","26,157 " -11,"3,998,066 ","2,035,667 ","1,962,399 ","3,417,572 ","1,745,018 ","1,672,554 ","531,715 ","266,227 ","265,488 ","48,779 ","24,422 ","24,357 " -12,"3,972,967 ","2,024,900 ","1,948,067 ","3,402,183 ","1,739,140 ","1,663,043 ","525,425 ","262,935 ","262,490 ","45,359 ","22,825 ","22,534 " -13,"3,881,399 ","1,972,164 ","1,909,235 ","3,337,712 ","1,701,206 ","1,636,506 ","501,286 ","249,710 ","251,576 ","42,401 ","21,248 ","21,153 " -14,"3,866,498 ","1,966,585 ","1,899,913 ","3,331,828 ","1,698,850 ","1,632,978 ","492,651 ","246,598 ","246,053 ","42,019 ","21,137 ","20,882 " -15,"3,748,478 ","1,910,343 ","1,838,135 ","3,237,850 ","1,655,280 ","1,582,570 ","468,632 ","233,885 ","234,747 ","41,996 ","21,178 ","20,818 " -16,"3,616,414 ","1,838,824 ","1,777,590 ","3,114,621 ","1,588,195 ","1,526,426 ","460,259 ","229,762 ","230,497 ","41,534 ","20,867 ","20,667 " -17,"3,503,826 ","1,780,730 ","1,723,096 ","3,022,050 ","1,539,569 ","1,482,481 ","439,519 ","219,713 ","219,806 ","42,257 ","21,448 ","20,809 " -18,"3,544,889 ","1,793,774 ","1,751,115 ","3,087,567 ","1,566,214 ","1,521,353 ","415,098 ","206,003 ","209,095 ","42,224 ","21,557 ","20,667 " -19,"3,534,168 ","1,786,500 ","1,747,668 ","3,105,877 ","1,574,970 ","1,530,907 ","386,206 ","190,004 ","196,202 ","42,085 ","21,526 ","20,559 " -20,"3,882,941 ","1,969,182 ","1,913,759 ","3,451,379 ","1,756,389 ","1,694,990 ","390,864 ","191,159 ","199,705 ","40,698 ","21,634 ","19,064 " -21,"2,776,018 ","1,404,395 ","1,371,623 ","2,434,081 ","1,237,591 ","1,196,490 ","305,971 ","147,975 ","157,996 ","35,966 ","18,829 ","17,137 " -22,"2,777,109 ","1,393,333 ","1,383,776 ","2,430,261 ","1,226,726 ","1,203,535 ","310,608 ","148,018 ","162,590 ","36,240 ","18,589 ","17,651 " -23,"2,788,578 ","1,390,644 ","1,397,934 ","2,452,320 ","1,229,433 ","1,222,887 ","298,657 ","142,240 ","156,417 ","37,601 ","18,971 ","18,630 " -24,"3,023,227 ","1,507,466 ","1,515,761 ","2,679,853 ","1,343,996 ","1,335,857 ","303,959 ","143,988 ","159,971 ","39,415 ","19,482 ","19,933 " -25,"2,646,286 ","1,318,100 ","1,328,186 ","2,322,610 ","1,164,660 ","1,157,950 ","288,862 ","136,232 ","152,630 ","34,814 ","17,208 ","17,606 " -26,"2,473,980 ","1,228,960 ","1,245,020 ","2,168,293 ","1,085,171 ","1,083,122 ","272,312 ","127,649 ","144,663 ","33,375 ","16,140 ","17,235 " -27,"2,359,639 ","1,164,534 ","1,195,105 ","2,065,666 ","1,027,681 ","1,037,985 ","262,293 ","122,006 ","140,287 ","31,680 ","14,847 ","16,833 " -28,"2,324,541 ","1,145,640 ","1,178,901 ","2,047,404 ","1,017,056 ","1,030,348 ","246,285 ","113,941 ","132,344 ","30,852 ","14,643 ","16,209 " -29,"2,288,828 ","1,131,050 ","1,157,778 ","2,009,696 ","1,000,764 ","1,008,932 ","248,416 ","115,561 ","132,855 ","30,716 ","14,725 ","15,991 " -30,"2,310,986 ","1,144,373 ","1,166,613 ","2,017,339 ","1,007,350 ","1,009,989 ","261,643 ","121,430 ","140,213 ","32,004 ","15,593 ","16,411 " -31,"2,197,971 ","1,089,568 ","1,108,403 ","1,932,235 ","966,163 ","966,072 ","236,394 ","109,136 ","127,258 ","29,342 ","14,269 ","15,073 " -32,"2,207,215 ","1,092,403 ","1,114,812 ","1,936,109 ","966,684 ","969,425 ","236,532 ","108,986 ","127,546 ","34,574 ","16,733 ","17,841 " -33,"2,132,456 ","1,055,161 ","1,077,295 ","1,867,845 ","932,812 ","935,033 ","232,845 ","107,167 ","125,678 ","31,766 ","15,182 ","16,584 " -34,"2,214,306 ","1,095,783 ","1,118,523 ","1,930,636 ","964,006 ","966,630 ","247,160 ","114,271 ","132,889 ","36,510 ","17,506 ","19,004 " -35,"2,262,957 ","1,118,330 ","1,144,627 ","1,981,515 ","987,398 ","994,117 ","246,855 ","114,447 ","132,408 ","34,587 ","16,485 ","18,102 " -36,"2,297,497 ","1,131,547 ","1,165,950 ","2,017,621 ","1,001,689 ","1,015,932 ","247,301 ","114,609 ","132,692 ","32,575 ","15,249 ","17,326 " -37,"2,325,766 ","1,141,370 ","1,184,396 ","2,049,710 ","1,013,821 ","1,035,889 ","245,518 ","113,553 ","131,965 ","30,538 ","13,996 ","16,542 " -38,"2,367,327 ","1,159,490 ","1,207,837 ","2,092,024 ","1,032,558 ","1,059,466 ","245,457 ","113,334 ","132,123 ","29,846 ","13,598 ","16,248 " -39,"2,409,301 ","1,178,518 ","1,230,783 ","2,134,283 ","1,051,846 ","1,082,437 ","245,584 ","113,214 ","132,370 ","29,434 ","13,458 ","15,976 " -40,"2,441,744 ","1,192,682 ","1,249,062 ","2,168,323 ","1,066,758 ","1,101,565 ","244,544 ","112,596 ","131,948 ","28,877 ","13,328 ","15,549 " -41,"2,464,690 ","1,202,239 ","1,262,451 ","2,193,955 ","1,077,464 ","1,116,491 ","242,509 ","111,505 ","131,004 ","28,226 ","13,270 ","14,956 " -42,"2,482,104 ","1,209,045 ","1,273,059 ","2,214,636 ","1,085,504 ","1,129,132 ","240,047 ","110,375 ","129,672 ","27,421 ","13,166 ","14,255 " -43,"2,495,653 ","1,213,826 ","1,281,827 ","2,231,737 ","1,091,361 ","1,140,376 ","237,425 ","109,436 ","127,989 ","26,491 ","13,029 ","13,462 " -44,"2,491,117 ","1,210,207 ","1,280,910 ","2,232,092 ","1,089,322 ","1,142,770 ","233,637 ","108,130 ","125,507 ","25,388 ","12,755 ","12,633 " -45,"2,459,682 ","1,194,410 ","1,265,272 ","2,207,486 ","1,076,128 ","1,131,358 ","228,064 ","105,993 ","122,071 ","24,132 ","12,289 ","11,843 " -46,"2,406,418 ","1,168,600 ","1,237,818 ","2,162,624 ","1,053,769 ","1,108,855 ","221,050 ","103,171 ","117,879 ","22,744 ","11,660 ","11,084 " -47,"2,348,920 ","1,140,770 ","1,208,150 ","2,113,680 ","1,029,658 ","1,084,022 ","213,889 ","100,126 ","113,763 ","21,351 ","10,986 ","10,365 " -48,"2,289,115 ","1,111,939 ","1,177,176 ","2,062,706 ","1,004,969 ","1,057,737 ","206,504 ","96,727 ","109,777 ","19,905 ","10,243 ","9,662 " -49,"2,235,902 ","1,086,366 ","1,149,536 ","2,016,870 ","982,963 ","1,033,907 ","200,358 ","93,780 ","106,578 ","18,674 ","9,623 ","9,051 " -50,"2,197,883 ","1,068,021 ","1,129,862 ","1,983,220 ","966,579 ","1,016,641 ","196,786 ","92,125 ","104,661 ","17,877 ","9,317 ","8,560 " -51,"2,170,768 ","1,054,600 ","1,116,168 ","1,958,222 ","954,008 ","1,004,214 ","195,045 ","91,323 ","103,722 ","17,501 ","9,269 ","8,232 " -52,"2,142,441 ","1,040,451 ","1,101,990 ","1,932,009 ","940,656 ","991,353 ","193,216 ","90,528 ","102,688 ","17,216 ","9,267 ","7,949 " -53,"2,110,896 ","1,024,383 ","1,086,513 ","1,902,864 ","925,440 ","977,424 ","191,050 ","89,668 ","101,382 ","16,982 ","9,275 ","7,707 " -54,"2,077,792 ","1,006,833 ","1,070,959 ","1,873,057 ","909,169 ","963,888 ","187,979 ","88,382 ","99,597 ","16,756 ","9,282 ","7,474 " -55,"2,042,681 ","987,255 ","1,055,426 ","1,842,778 ","891,771 ","951,007 ","183,471 ","86,267 ","97,204 ","16,432 ","9,217 ","7,215 " -56,"2,006,225 ","966,496 ","1,039,729 ","1,811,985 ","873,679 ","938,306 ","178,136 ","83,703 ","94,433 ","16,104 ","9,114 ","6,990 " -57,"1,961,818 ","941,856 ","1,019,962 ","1,774,682 ","852,468 ","922,214 ","171,492 ","80,428 ","91,064 ","15,644 ","8,960 ","6,684 " -58,"1,910,264 ","913,903 ","996,361 ","1,731,625 ","828,633 ","902,992 ","163,656 ","76,544 ","87,112 ","14,983 ","8,726 ","6,257 " -59,"1,844,667 ","879,364 ","965,303 ","1,675,774 ","798,831 ","876,943 ","154,570 ","72,075 ","82,495 ","14,323 ","8,458 ","5,865 " -60,"1,763,861 ","837,835 ","926,026 ","1,604,689 ","761,984 ","842,705 ","145,282 ","67,617 ","77,665 ","13,890 ","8,234 ","5,656 " -61,"1,669,258 ","790,179 ","879,079 ","1,521,310 ","719,612 ","801,698 ","134,373 ","62,537 ","71,836 ","13,575 ","8,030 ","5,545 " -62,"1,584,234 ","746,361 ","837,873 ","1,444,156 ","679,641 ","764,515 ","126,776 ","58,889 ","67,887 ","13,302 ","7,831 ","5,471 " -63,"1,512,742 ","707,720 ","805,022 ","1,376,543 ","643,201 ","733,342 ","123,061 ","56,849 ","66,212 ","13,138 ","7,670 ","5,468 " -64,"1,456,619 ","675,656 ","780,963 ","1,321,374 ","612,183 ","709,191 ","122,330 ","56,020 ","66,310 ","12,915 ","7,453 ","5,462 " -65,"1,414,629 ","650,330 ","764,299 ","1,279,285 ","587,359 ","691,926 ","122,890 ","55,867 ","67,023 ","12,454 ","7,104 ","5,350 " -66,"1,383,451 ","629,140 ","754,311 ","1,246,982 ","566,445 ","680,537 ","124,780 ","56,108 ","68,672 ","11,689 ","6,587 ","5,102 " -67,"1,346,416 ","606,110 ","740,306 ","1,212,196 ","545,007 ","667,189 ","123,432 ","55,117 ","68,315 ","10,788 ","5,986 ","4,802 " -68,"1,297,144 ","578,547 ","718,597 ","1,169,939 ","520,881 ","649,058 ","117,414 ","52,334 ","65,080 ","9,791 ","5,332 ","4,459 " -69,"1,241,462 ","548,982 ","692,480 ","1,124,743 ","496,140 ","628,603 ","108,040 ","48,182 ","59,858 ","8,679 ","4,660 ","4,019 " -70,"1,186,609 ","520,310 ","666,299 ","1,081,110 ","472,718 ","608,392 ","97,819 ","43,515 ","54,304 ","7,680 ","4,077 ","3,603 " -71,"1,135,613 ","494,400 ","641,213 ","1,040,462 ","451,463 ","588,999 ","88,335 ","39,353 ","48,982 ","6,816 ","3,584 ","3,232 " -72,"1,081,946 ","467,726 ","614,220 ","996,371 ","429,111 ","567,260 ","79,527 ","35,481 ","44,046 ","6,048 ","3,134 ","2,914 " -73,"1,028,250 ","442,026 ","586,224 ","949,515 ","406,523 ","542,992 ","73,306 ","32,753 ","40,553 ","5,429 ","2,750 ","2,679 " -74,"966,960 ","413,344 ","553,616 ","894,199 ","380,691 ","513,508 ","67,770 ","30,188 ","37,582 ","4,991 ","2,465 ","2,526 " -75,"894,893 ","379,902 ","514,991 ","828,598 ","350,388 ","478,210 ","61,595 ","27,214 ","34,381 ","4,700 ","2,300 ","2,400 " -76,"814,050 ","343,047 ","471,003 ","754,935 ","316,812 ","438,123 ","54,587 ","23,960 ","30,627 ","4,528 ","2,275 ","2,253 " -77,"735,659 ","307,661 ","427,998 ","683,164 ","284,400 ","398,764 ","48,102 ","20,974 ","27,128 ","4,393 ","2,287 ","2,106 " -78,"660,983 ","274,269 ","386,714 ","614,687 ","253,770 ","360,917 ","41,980 ","18,141 ","23,839 ","4,316 ","2,358 ","1,958 " -79,"591,131 ","243,071 ","348,060 ","550,388 ","225,033 ","325,355 ","36,580 ","15,651 ","20,929 ","4,163 ","2,387 ","1,776 " -80,"530,576 ","215,654 ","314,922 ","494,061 ","199,516 ","294,545 ","32,734 ","13,912 ","18,822 ","3,781 ","2,226 ","1,555 " -81,"472,767 ","189,563 ","283,204 ","439,826 ","175,062 ","264,764 ","29,625 ","12,538 ","17,087 ","3,316 ","1,963 ","1,353 " -82,"418,377 ","165,337 ","253,040 ","388,670 ","152,297 ","236,373 ","26,856 ","11,338 ","15,518 ","2,851 ","1,702 ","1,149 " -83,"366,464 ","142,449 ","224,015 ","339,836 ","130,815 ","209,021 ","24,186 ","10,156 ","14,030 ","2,442 ","1,478 ",964 -84,"317,793 ","121,379 ","196,414 ","294,038 ","111,012 ","183,026 ","21,705 ","9,104 ","12,601 ","2,050 ","1,263 ",787 -85+,"1,186,242 ","425,899 ","760,343 ","1,090,861 ","387,181 ","703,680 ","86,390 ","33,610 ","52,780 ","8,991 ","5,108 ","3,883 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1968.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1968.csv deleted file mode 100644 index 8d1e87b6c7..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1968.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1968",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"200,706,052 ","98,426,257 ","102,279,795 ","176,245,903 ","86,630,989 ","89,614,914 ","22,116,847 ","10,613,989 ","11,502,858 ","2,343,302 ","1,181,279 ","1,162,023 " -,,,,,,,,,,,, -0,"3,366,388 ","1,718,393 ","1,647,995 ","2,839,914 ","1,453,503 ","1,386,411 ","473,326 ","237,987 ","235,339 ","53,148 ","26,903 ","26,245 " -1,"3,430,838 ","1,745,280 ","1,685,558 ","2,892,097 ","1,475,686 ","1,416,411 ","487,478 ","243,687 ","243,791 ","51,263 ","25,907 ","25,356 " -2,"3,471,495 ","1,769,894 ","1,701,601 ","2,909,436 ","1,486,994 ","1,422,442 ","510,662 ","256,769 ","253,893 ","51,397 ","26,131 ","25,266 " -3,"3,709,110 ","1,885,448 ","1,823,662 ","3,125,323 ","1,592,951 ","1,532,372 ","534,744 ","267,857 ","266,887 ","49,043 ","24,640 ","24,403 " -4,"3,935,584 ","2,006,270 ","1,929,314 ","3,329,285 ","1,701,949 ","1,627,336 ","556,698 ","279,493 ","277,205 ","49,601 ","24,828 ","24,773 " -5,"3,995,171 ","2,036,629 ","1,958,542 ","3,383,530 ","1,729,705 ","1,653,825 ","554,352 ","277,953 ","276,399 ","57,289 ","28,971 ","28,318 " -6,"4,078,802 ","2,073,428 ","2,005,374 ","3,460,415 ","1,764,407 ","1,696,008 ","561,282 ","280,203 ","281,079 ","57,105 ","28,818 ","28,287 " -7,"4,183,649 ","2,128,908 ","2,054,741 ","3,557,739 ","1,816,677 ","1,741,062 ","569,705 ","283,940 ","285,765 ","56,205 ","28,291 ","27,914 " -8,"4,048,616 ","2,060,769 ","1,987,847 ","3,455,650 ","1,764,572 ","1,691,078 ","540,889 ","270,076 ","270,813 ","52,077 ","26,121 ","25,956 " -9,"4,108,108 ","2,090,420 ","2,017,688 ","3,504,198 ","1,787,718 ","1,716,480 ","553,184 ","277,323 ","275,861 ","50,726 ","25,379 ","25,347 " -10,"4,264,703 ","2,173,718 ","2,090,985 ","3,634,379 ","1,857,229 ","1,777,150 ","576,830 ","289,601 ","287,229 ","53,494 ","26,888 ","26,606 " -11,"4,140,607 ","2,110,651 ","2,029,956 ","3,538,259 ","1,808,750 ","1,729,509 ","551,033 ","276,214 ","274,819 ","51,315 ","25,687 ","25,628 " -12,"4,020,126 ","2,047,790 ","1,972,336 ","3,431,927 ","1,753,042 ","1,678,885 ","538,844 ","269,932 ","268,912 ","49,355 ","24,816 ","24,539 " -13,"3,964,708 ","2,017,400 ","1,947,308 ","3,397,624 ","1,734,384 ","1,663,240 ","521,678 ","260,263 ","261,415 ","45,406 ","22,753 ","22,653 " -14,"3,967,100 ","2,017,272 ","1,949,828 ","3,405,310 ","1,736,455 ","1,668,855 ","517,437 ","258,582 ","258,855 ","44,353 ","22,235 ","22,118 " -15,"3,850,540 ","1,961,778 ","1,888,762 ","3,317,868 ","1,694,400 ","1,623,468 ","488,178 ","244,834 ","243,344 ","44,494 ","22,544 ","21,950 " -16,"3,715,305 ","1,892,165 ","1,823,140 ","3,207,944 ","1,639,026 ","1,568,918 ","464,708 ","231,761 ","232,947 ","42,653 ","21,378 ","21,275 " -17,"3,640,360 ","1,849,105 ","1,791,255 ","3,130,403 ","1,594,174 ","1,536,229 ","465,353 ","232,376 ","232,977 ","44,604 ","22,555 ","22,049 " -18,"3,539,053 ","1,790,520 ","1,748,533 ","3,064,258 ","1,554,646 ","1,509,612 ","430,317 ","213,239 ","217,078 ","44,478 ","22,635 ","21,843 " -19,"3,558,084 ","1,795,467 ","1,762,617 ","3,099,289 ","1,569,115 ","1,530,174 ","412,945 ","202,973 ","209,972 ","45,850 ","23,379 ","22,471 " -20,"3,619,894 ","1,834,577 ","1,785,317 ","3,172,277 ","1,612,831 ","1,559,446 ","403,097 ","198,103 ","204,994 ","44,520 ","23,643 ","20,877 " -21,"3,811,492 ","1,934,170 ","1,877,322 ","3,390,341 ","1,727,609 ","1,662,732 ","377,913 ","183,902 ","194,011 ","43,238 ","22,659 ","20,579 " -22,"2,746,998 ","1,378,035 ","1,368,963 ","2,405,836 ","1,214,689 ","1,191,147 ","302,863 ","144,120 ","158,743 ","38,299 ","19,226 ","19,073 " -23,"2,747,093 ","1,369,037 ","1,378,056 ","2,403,302 ","1,205,610 ","1,197,692 ","304,047 ","143,751 ","160,296 ","39,744 ","19,676 ","20,068 " -24,"2,860,687 ","1,421,597 ","1,439,090 ","2,516,839 ","1,258,503 ","1,258,336 ","302,645 ","142,930 ","159,715 ","41,203 ","20,164 ","21,039 " -25,"2,997,171 ","1,494,715 ","1,502,456 ","2,655,820 ","1,333,013 ","1,322,807 ","303,198 ","142,861 ","160,337 ","38,153 ","18,841 ","19,312 " -26,"2,617,403 ","1,301,166 ","1,316,237 ","2,300,442 ","1,151,824 ","1,148,618 ","280,663 ","131,756 ","148,907 ","36,298 ","17,586 ","18,712 " -27,"2,497,786 ","1,236,931 ","1,260,855 ","2,181,988 ","1,089,349 ","1,092,639 ","280,183 ","130,488 ","149,695 ","35,615 ","17,094 ","18,521 " -28,"2,365,794 ","1,166,637 ","1,199,157 ","2,079,810 ","1,034,019 ","1,045,791 ","252,205 ","116,464 ","135,741 ","33,779 ","16,154 ","17,625 " -29,"2,321,733 ","1,145,383 ","1,176,350 ","2,037,864 ","1,012,919 ","1,024,945 ","250,712 ","116,544 ","134,168 ","33,157 ","15,920 ","17,237 " -30,"2,398,208 ","1,185,694 ","1,212,514 ","2,090,648 ","1,042,307 ","1,048,341 ","272,300 ","126,132 ","146,168 ","35,260 ","17,255 ","18,005 " -31,"2,221,421 ","1,099,319 ","1,122,102 ","1,951,753 ","974,299 ","977,454 ","238,260 ","109,644 ","128,616 ","31,408 ","15,376 ","16,032 " -32,"2,207,531 ","1,091,834 ","1,115,697 ","1,938,586 ","967,555 ","971,031 ","238,243 ","109,281 ","128,962 ","30,702 ","14,998 ","15,704 " -33,"2,191,378 ","1,082,514 ","1,108,864 ","1,919,989 ","957,198 ","962,791 ","234,725 ","107,599 ","127,126 ","36,664 ","17,717 ","18,947 " -34,"2,171,326 ","1,071,709 ","1,099,617 ","1,892,852 ","943,325 ","949,527 ","244,699 ","112,294 ","132,405 ","33,775 ","16,090 ","17,685 " -35,"2,210,160 ","1,091,306 ","1,118,854 ","1,933,455 ","963,279 ","970,176 ","241,961 ","111,510 ","130,451 ","34,744 ","16,517 ","18,227 " -36,"2,260,707 ","1,113,860 ","1,146,847 ","1,981,211 ","984,628 ","996,583 ","245,609 ","113,349 ","132,260 ","33,887 ","15,883 ","18,004 " -37,"2,295,439 ","1,127,516 ","1,167,923 ","2,017,458 ","999,384 ","1,018,074 ","245,830 ","113,330 ","132,500 ","32,151 ","14,802 ","17,349 " -38,"2,325,479 ","1,139,108 ","1,186,371 ","2,050,496 ","1,012,855 ","1,037,641 ","244,129 ","112,239 ","131,890 ","30,854 ","14,014 ","16,840 " -39,"2,368,059 ","1,158,380 ","1,209,679 ","2,093,230 ","1,032,384 ","1,060,846 ","244,160 ","112,053 ","132,107 ","30,669 ","13,943 ","16,726 " -40,"2,409,347 ","1,176,967 ","1,232,380 ","2,134,981 ","1,051,287 ","1,083,694 ","244,203 ","111,949 ","132,254 ","30,163 ","13,731 ","16,432 " -41,"2,441,740 ","1,191,140 ","1,250,600 ","2,169,017 ","1,066,208 ","1,102,809 ","243,146 ","111,313 ","131,833 ","29,577 ","13,619 ","15,958 " -42,"2,461,820 ","1,199,190 ","1,262,630 ","2,192,112 ","1,075,356 ","1,116,756 ","240,864 ","110,296 ","130,568 ","28,844 ","13,538 ","15,306 " -43,"2,474,241 ","1,203,280 ","1,270,961 ","2,208,392 ","1,080,675 ","1,127,717 ","237,978 ","109,246 ","128,732 ","27,871 ","13,359 ","14,512 " -44,"2,483,719 ","1,205,848 ","1,277,871 ","2,221,842 ","1,084,337 ","1,137,505 ","235,027 ","108,336 ","126,691 ","26,850 ","13,175 ","13,675 " -45,"2,477,718 ","1,201,533 ","1,276,185 ","2,220,763 ","1,081,584 ","1,139,179 ","231,138 ","107,008 ","124,130 ","25,817 ","12,941 ","12,876 " -46,"2,443,940 ","1,184,534 ","1,259,406 ","2,193,991 ","1,067,219 ","1,126,772 ","225,364 ","104,824 ","120,540 ","24,585 ","12,491 ","12,094 " -47,"2,391,176 ","1,158,893 ","1,232,283 ","2,149,467 ","1,045,091 ","1,104,376 ","218,506 ","101,960 ","116,546 ","23,203 ","11,842 ","11,361 " -48,"2,337,170 ","1,132,657 ","1,204,513 ","2,103,520 ","1,022,599 ","1,080,921 ","211,834 ","98,925 ","112,909 ","21,816 ","11,133 ","10,683 " -49,"2,281,190 ","1,105,470 ","1,175,720 ","2,055,879 ","999,504 ","1,056,375 ","204,935 ","95,600 ","109,335 ","20,376 ","10,366 ","10,010 " -50,"2,229,848 ","1,080,578 ","1,149,270 ","2,011,666 ","978,032 ","1,033,634 ","199,088 ","92,813 ","106,275 ","19,094 ","9,733 ","9,361 " -51,"2,193,100 ","1,062,431 ","1,130,669 ","1,979,003 ","961,804 ","1,017,199 ","195,783 ","91,206 ","104,577 ","18,314 ","9,421 ","8,893 " -52,"2,167,182 ","1,049,335 ","1,117,847 ","1,955,178 ","949,524 ","1,005,654 ","194,076 ","90,453 ","103,623 ","17,928 ","9,358 ","8,570 " -53,"2,136,803 ","1,033,994 ","1,102,809 ","1,927,523 ","935,187 ","992,336 ","191,691 ","89,480 ","102,211 ","17,589 ","9,327 ","8,262 " -54,"2,099,908 ","1,015,152 ","1,084,756 ","1,894,049 ","917,638 ","976,411 ","188,604 ","88,224 ","100,380 ","17,255 ","9,290 ","7,965 " -55,"2,061,296 ","994,545 ","1,066,751 ","1,859,483 ","898,750 ","960,733 ","184,910 ","86,547 ","98,363 ","16,903 ","9,248 ","7,655 " -56,"2,022,374 ","972,960 ","1,049,414 ","1,825,673 ","879,498 ","946,175 ","180,180 ","84,317 ","95,863 ","16,521 ","9,145 ","7,376 " -57,"1,976,557 ","947,571 ","1,028,986 ","1,787,108 ","857,577 ","929,531 ","173,431 ","81,018 ","92,413 ","16,018 ","8,976 ","7,042 " -58,"1,922,765 ","918,535 ","1,004,230 ","1,741,788 ","832,647 ","909,141 ","165,577 ","77,115 ","88,462 ","15,400 ","8,773 ","6,627 " -59,"1,868,127 ","889,103 ","979,024 ","1,695,521 ","807,271 ","888,250 ","157,920 ","73,300 ","84,620 ","14,686 ","8,532 ","6,154 " -60,"1,805,981 ","856,167 ","949,814 ","1,641,464 ","778,218 ","863,246 ","150,426 ","69,653 ","80,773 ","14,091 ","8,296 ","5,795 " -61,"1,723,215 ","813,957 ","909,258 ","1,569,054 ","740,868 ","828,186 ","140,472 ","64,995 ","75,477 ","13,689 ","8,094 ","5,595 " -62,"1,638,593 ","769,980 ","868,613 ","1,492,022 ","700,637 ","791,385 ","133,118 ","61,427 ","71,691 ","13,453 ","7,916 ","5,537 " -63,"1,567,038 ","730,887 ","836,151 ","1,423,933 ","663,620 ","760,313 ","129,868 ","59,546 ","70,322 ","13,237 ","7,721 ","5,516 " -64,"1,501,981 ","694,120 ","807,861 ","1,360,932 ","628,472 ","732,460 ","128,009 ","58,120 ","69,889 ","13,040 ","7,528 ","5,512 " -65,"1,442,779 ","660,800 ","781,979 ","1,303,863 ","596,640 ","707,223 ","126,176 ","56,883 ","69,293 ","12,740 ","7,277 ","5,463 " -66,"1,398,652 ","633,685 ","764,967 ","1,260,267 ","570,462 ","689,805 ","126,236 ","56,354 ","69,882 ","12,149 ","6,869 ","5,280 " -67,"1,360,788 ","610,486 ","750,302 ","1,224,871 ","548,847 ","676,024 ","124,582 ","55,305 ","69,277 ","11,335 ","6,334 ","5,001 " -68,"1,312,478 ","583,782 ","728,696 ","1,183,908 ","525,565 ","658,343 ","118,145 ","52,491 ","65,654 ","10,425 ","5,726 ","4,699 " -69,"1,254,376 ","553,129 ","701,247 ","1,135,854 ","499,421 ","636,433 ","109,052 ","48,620 ","60,432 ","9,470 ","5,088 ","4,382 " -70,"1,195,293 ","521,770 ","673,523 ","1,087,282 ","473,006 ","614,276 ","99,510 ","44,273 ","55,237 ","8,501 ","4,491 ","4,010 " -71,"1,140,178 ","493,069 ","647,109 ","1,042,625 ","449,079 ","593,546 ","90,096 ","40,094 ","50,002 ","7,457 ","3,896 ","3,561 " -72,"1,083,811 ","464,965 ","618,846 ","996,262 ","425,462 ","570,800 ","80,868 ","36,055 ","44,813 ","6,681 ","3,448 ","3,233 " -73,"1,024,028 ","435,941 ","588,087 ","944,933 ","400,487 ","544,446 ","73,100 ","32,417 ","40,683 ","5,995 ","3,037 ","2,958 " -74,"966,365 ","408,692 ","557,673 ","893,517 ","376,239 ","517,278 ","67,445 ","29,786 ","37,659 ","5,403 ","2,667 ","2,736 " -75,"906,225 ","380,807 ","525,418 ","839,078 ","351,133 ","487,945 ","62,182 ","27,299 ","34,883 ","4,965 ","2,375 ","2,590 " -76,"834,265 ","348,190 ","486,075 ","773,626 ","321,507 ","452,119 ","55,976 ","24,460 ","31,516 ","4,663 ","2,223 ","2,440 " -77,"754,708 ","312,353 ","442,355 ","700,773 ","288,721 ","412,052 ","49,444 ","21,427 ","28,017 ","4,491 ","2,205 ","2,286 " -78,"678,393 ","278,317 ","400,076 ","630,581 ","257,415 ","373,166 ","43,463 ","18,680 ","24,783 ","4,349 ","2,222 ","2,127 " -79,"606,491 ","246,589 ","359,902 ","564,350 ","228,183 ","336,167 ","37,878 ","16,102 ","21,776 ","4,263 ","2,304 ","1,959 " -80,"542,969 ","218,385 ","324,584 ","505,507 ","202,043 ","303,464 ","33,433 ","14,042 ","19,391 ","4,029 ","2,300 ","1,729 " -81,"482,999 ","191,831 ","291,168 ","449,619 ","177,316 ","272,303 ","29,700 ","12,351 ","17,349 ","3,680 ","2,164 ","1,516 " -82,"429,073 ","167,849 ","261,224 ","398,792 ","154,753 ","244,039 ","27,075 ","11,196 ","15,879 ","3,206 ","1,900 ","1,306 " -83,"378,951 ","145,946 ","233,005 ","351,408 ","134,066 ","217,342 ","24,814 ","10,242 ","14,572 ","2,729 ","1,638 ","1,091 " -84,"331,616 ","125,564 ","206,052 ","306,578 ","114,748 ","191,830 ","22,720 ","9,398 ","13,322 ","2,318 ","1,418 ",900 -85+,"1,240,679 ","440,487 ","800,192 ","1,138,803 ","399,330 ","739,473 ","91,719 ","35,430 ","56,289 ","10,157 ","5,727 ","4,430 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1969.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1969.csv deleted file mode 100644 index 623918e6cc..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1969.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1969",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"202,676,946 ","99,286,946 ","103,390,000 ","177,781,859 ","87,303,138 ","90,478,721 ","22,431,263 ","10,747,881 ","11,683,382 ","2,463,824 ","1,235,927 ","1,227,897 " -,,,,,,,,,,,, -0,"3,412,562 ","1,742,390 ","1,670,172 ","2,898,672 ","1,484,288 ","1,414,384 ","457,215 ","229,479 ","227,736 ","56,675 ","28,623 ","28,052 " -1,"3,345,777 ","1,705,750 ","1,640,027 ","2,815,796 ","1,439,825 ","1,375,971 ","476,514 ","238,946 ","237,568 ","53,467 ","26,979 ","26,488 " -2,"3,364,853 ","1,714,139 ","1,650,714 ","2,828,332 ","1,445,185 ","1,383,147 ","485,650 ","243,187 ","242,463 ","50,871 ","25,767 ","25,104 " -3,"3,493,737 ","1,780,761 ","1,712,976 ","2,927,134 ","1,495,517 ","1,431,617 ","514,931 ","259,153 ","255,778 ","51,672 ","26,091 ","25,581 " -4,"3,758,584 ","1,910,653 ","1,847,931 ","3,164,665 ","1,613,401 ","1,551,264 ","544,541 ","272,544 ","271,997 ","49,378 ","24,708 ","24,670 " -5,"3,923,088 ","2,002,391 ","1,920,697 ","3,315,172 ","1,696,926 ","1,618,246 ","552,937 ","277,707 ","275,230 ","54,979 ","27,758 ","27,221 " -6,"4,007,178 ","2,037,895 ","1,969,283 ","3,391,908 ","1,730,091 ","1,661,817 ","557,195 ","278,551 ","278,644 ","58,075 ","29,253 ","28,822 " -7,"4,093,268 ","2,084,045 ","2,009,223 ","3,472,895 ","1,773,841 ","1,699,054 ","562,919 ","281,195 ","281,724 ","57,454 ","29,009 ","28,445 " -8,"4,125,569 ","2,100,915 ","2,024,654 ","3,516,353 ","1,796,192 ","1,720,161 ","554,124 ","276,892 ","277,232 ","55,092 ","27,831 ","27,261 " -9,"4,093,622 ","2,085,244 ","2,008,378 ","3,491,554 ","1,784,253 ","1,707,301 ","548,756 ","274,459 ","274,297 ","53,312 ","26,532 ","26,780 " -10,"4,262,865 ","2,170,057 ","2,092,808 ","3,617,583 ","1,847,041 ","1,770,542 ","590,396 ","295,514 ","294,882 ","54,886 ","27,502 ","27,384 " -11,"4,145,705 ","2,112,957 ","2,032,748 ","3,544,876 ","1,811,511 ","1,733,365 ","548,745 ","275,389 ","273,356 ","52,084 ","26,057 ","26,027 " -12,"4,165,280 ","2,124,170 ","2,041,110 ","3,554,351 ","1,817,731 ","1,736,620 ","558,901 ","280,283 ","278,618 ","52,028 ","26,156 ","25,872 " -13,"4,019,792 ","2,044,415 ","1,975,377 ","3,433,390 ","1,751,510 ","1,681,880 ","536,729 ","268,056 ","268,673 ","49,673 ","24,849 ","24,824 " -14,"4,047,383 ","2,061,448 ","1,985,935 ","3,460,781 ","1,767,758 ","1,693,023 ","539,325 ","270,002 ","269,323 ","47,277 ","23,688 ","23,589 " -15,"3,955,996 ","2,015,112 ","1,940,884 ","3,394,872 ","1,733,854 ","1,661,018 ","513,397 ","257,103 ","256,294 ","47,727 ","24,155 ","23,572 " -16,"3,819,366 ","1,944,971 ","1,874,395 ","3,288,952 ","1,678,894 ","1,610,058 ","485,049 ","243,230 ","241,819 ","45,365 ","22,847 ","22,518 " -17,"3,737,682 ","1,902,111 ","1,835,571 ","3,222,549 ","1,644,751 ","1,577,798 ","469,109 ","234,108 ","235,001 ","46,024 ","23,252 ","22,772 " -18,"3,676,105 ","1,857,613 ","1,818,492 ","3,171,845 ","1,607,571 ","1,564,274 ","457,011 ","226,064 ","230,947 ","47,249 ","23,978 ","23,271 " -19,"3,567,070 ","1,800,516 ","1,766,554 ","3,088,795 ","1,564,669 ","1,524,126 ","429,584 ","211,055 ","218,529 ","48,691 ","24,792 ","23,899 " -20,"3,642,408 ","1,844,686 ","1,797,722 ","3,163,659 ","1,607,217 ","1,556,442 ","430,431 ","211,832 ","218,599 ","48,318 ","25,637 ","22,681 " -21,"3,540,175 ","1,796,637 ","1,743,538 ","3,105,202 ","1,582,148 ","1,523,054 ","387,599 ","189,685 ","197,914 ","47,374 ","24,804 ","22,570 " -22,"3,761,493 ","1,894,002 ","1,867,491 ","3,342,224 ","1,692,223 ","1,650,001 ","373,285 ","178,684 ","194,601 ","45,984 ","23,095 ","22,889 " -23,"2,711,237 ","1,351,152 ","1,360,085 ","2,373,520 ","1,191,199 ","1,182,321 ","295,445 ","139,500 ","155,945 ","42,272 ","20,453 ","21,819 " -24,"2,824,480 ","1,403,258 ","1,421,222 ","2,472,224 ","1,237,651 ","1,234,573 ","308,423 ","144,600 ","163,823 ","43,833 ","21,007 ","22,826 " -25,"2,829,895 ","1,408,115 ","1,421,780 ","2,488,268 ","1,246,598 ","1,241,670 ","301,465 ","141,860 ","159,605 ","40,162 ","19,657 ","20,505 " -26,"2,956,788 ","1,472,615 ","1,484,173 ","2,623,542 ","1,315,712 ","1,307,830 ","293,246 ","137,590 ","155,656 ","40,000 ","19,313 ","20,687 " -27,"2,642,288 ","1,309,613 ","1,332,675 ","2,313,754 ","1,155,886 ","1,157,868 ","289,523 ","135,029 ","154,494 ","39,011 ","18,698 ","20,313 " -28,"2,501,601 ","1,238,078 ","1,263,523 ","2,195,731 ","1,095,665 ","1,100,066 ","267,748 ","123,797 ","143,951 ","38,122 ","18,616 ","19,506 " -29,"2,359,906 ","1,165,212 ","1,194,694 ","2,066,381 ","1,028,150 ","1,038,231 ","257,075 ","119,477 ","137,598 ","36,450 ","17,585 ","18,865 " -30,"2,444,035 ","1,206,580 ","1,237,455 ","2,128,095 ","1,059,263 ","1,068,832 ","277,468 ","128,479 ","148,989 ","38,472 ","18,838 ","19,634 " -31,"2,291,001 ","1,132,115 ","1,158,886 ","2,011,922 ","1,002,788 ","1,009,134 ","244,658 ","112,399 ","132,259 ","34,421 ","16,928 ","17,493 " -32,"2,231,047 ","1,101,488 ","1,129,559 ","1,957,957 ","975,455 ","982,502 ","240,143 ","109,827 ","130,316 ","32,947 ","16,206 ","16,741 " -33,"2,188,598 ","1,080,464 ","1,108,134 ","1,919,741 ","956,731 ","963,010 ","235,935 ","107,674 ","128,261 ","32,922 ","16,059 ","16,863 " -34,"2,235,511 ","1,101,590 ","1,133,921 ","1,948,516 ","969,441 ","979,075 ","247,958 ","113,353 ","134,605 ","39,037 ","18,796 ","20,241 " -35,"2,165,933 ","1,066,748 ","1,099,185 ","1,895,331 ","942,489 ","952,842 ","238,555 ","109,114 ","129,441 ","32,047 ","15,145 ","16,902 " -36,"2,206,835 ","1,086,353 ","1,120,482 ","1,932,555 ","960,284 ","972,271 ","240,320 ","110,208 ","130,112 ","33,960 ","15,861 ","18,099 " -37,"2,257,746 ","1,109,477 ","1,148,269 ","1,980,534 ","982,182 ","998,352 ","243,832 ","111,920 ","131,912 ","33,380 ","15,375 ","18,005 " -38,"2,294,773 ","1,125,249 ","1,169,524 ","2,017,933 ","998,423 ","1,019,510 ","244,302 ","111,974 ","132,328 ","32,538 ","14,852 ","17,686 " -39,"2,326,226 ","1,138,225 ","1,188,001 ","2,051,560 ","1,012,770 ","1,038,790 ","242,815 ","111,001 ","131,814 ","31,851 ","14,454 ","17,397 " -40,"2,368,232 ","1,157,049 ","1,211,183 ","2,093,913 ","1,031,934 ","1,061,979 ","242,769 ","110,832 ","131,937 ","31,550 ","14,283 ","17,267 " -41,"2,409,687 ","1,175,720 ","1,233,967 ","2,135,866 ","1,050,929 ","1,084,937 ","242,815 ","110,713 ","132,102 ","31,006 ","14,078 ","16,928 " -42,"2,438,891 ","1,188,174 ","1,250,717 ","2,167,115 ","1,064,108 ","1,103,007 ","241,463 ","110,140 ","131,323 ","30,313 ","13,926 ","16,387 " -43,"2,453,350 ","1,193,138 ","1,260,212 ","2,185,310 ","1,070,213 ","1,115,097 ","238,663 ","109,178 ","129,485 ","29,377 ","13,747 ","15,630 " -44,"2,461,378 ","1,194,831 ","1,266,547 ","2,197,682 ","1,073,167 ","1,124,515 ","235,397 ","108,151 ","127,246 ","28,299 ","13,513 ","14,786 " -45,"2,469,363 ","1,196,720 ","1,272,643 ","2,209,651 ","1,076,106 ","1,133,545 ","232,343 ","107,230 ","125,113 ","27,369 ","13,384 ","13,985 " -46,"2,460,507 ","1,190,955 ","1,269,552 ","2,205,961 ","1,071,947 ","1,134,014 ","228,182 ","105,835 ","122,347 ","26,364 ","13,173 ","13,191 " -47,"2,428,585 ","1,174,775 ","1,253,810 ","2,180,696 ","1,058,388 ","1,122,308 ","222,725 ","103,677 ","119,048 ","25,164 ","12,710 ","12,454 " -48,"2,381,535 ","1,151,795 ","1,229,740 ","2,141,088 ","1,038,833 ","1,102,255 ","216,628 ","100,926 ","115,702 ","23,819 ","12,036 ","11,783 " -49,"2,332,481 ","1,127,764 ","1,204,717 ","2,099,451 ","1,018,441 ","1,081,010 ","210,595 ","98,022 ","112,573 ","22,435 ","11,301 ","11,134 " -50,"2,277,866 ","1,101,080 ","1,176,786 ","2,052,980 ","995,708 ","1,057,272 ","203,974 ","94,855 ","109,119 ","20,912 ","10,517 ","10,395 " -51,"2,228,111 ","1,076,541 ","1,151,570 ","2,009,980 ","974,501 ","1,035,479 ","198,496 ","92,165 ","106,331 ","19,635 ","9,875 ","9,760 " -52,"2,189,984 ","1,057,519 ","1,132,465 ","1,976,368 ","957,571 ","1,018,797 ","194,838 ","90,422 ","104,416 ","18,778 ","9,526 ","9,252 " -53,"2,158,263 ","1,041,451 ","1,116,812 ","1,948,005 ","942,836 ","1,005,169 ","191,998 ","89,211 ","102,787 ","18,260 ","9,404 ","8,856 " -54,"2,120,393 ","1,022,298 ","1,098,095 ","1,914,248 ","925,314 ","988,934 ","188,372 ","87,674 ","100,698 ","17,773 ","9,310 ","8,463 " -55,"2,078,471 ","1,000,565 ","1,077,906 ","1,876,404 ","905,301 ","971,103 ","184,752 ","86,041 ","98,711 ","17,315 ","9,223 ","8,092 " -56,"2,035,956 ","977,806 ","1,058,150 ","1,838,299 ","884,485 ","953,814 ","180,763 ","84,187 ","96,576 ","16,894 ","9,134 ","7,760 " -57,"1,989,460 ","952,489 ","1,036,971 ","1,798,010 ","862,073 ","935,937 ","175,058 ","81,424 ","93,634 ","16,392 ","8,992 ","7,400 " -58,"1,937,145 ","924,133 ","1,013,012 ","1,753,561 ","837,497 ","916,064 ","167,779 ","77,824 ","89,955 ","15,805 ","8,812 ","6,993 " -59,"1,881,960 ","894,427 ","987,533 ","1,706,280 ","811,626 ","894,654 ","160,507 ","74,181 ","86,326 ","15,173 ","8,620 ","6,553 " -60,"1,830,333 ","866,287 ","964,046 ","1,661,429 ","786,730 ","874,699 ","154,399 ","71,159 ","83,240 ","14,505 ","8,398 ","6,107 " -61,"1,765,604 ","832,384 ","933,220 ","1,605,579 ","756,958 ","848,621 ","146,081 ","67,243 ","78,838 ","13,944 ","8,183 ","5,761 " -62,"1,692,902 ","793,648 ","899,254 ","1,539,689 ","721,641 ","818,048 ","139,660 ","64,036 ","75,624 ","13,553 ","7,971 ","5,582 " -63,"1,621,868 ","754,131 ","867,737 ","1,472,015 ","684,259 ","787,756 ","136,574 ","62,124 ","74,450 ","13,279 ","7,748 ","5,531 " -64,"1,556,698 ","716,735 ","839,963 ","1,408,618 ","648,475 ","760,143 ","135,103 ","60,765 ","74,338 ","12,977 ","7,495 ","5,482 " -65,"1,488,120 ","678,637 ","809,483 ","1,343,495 ","612,516 ","730,979 ","131,916 ","58,852 ","73,064 ","12,709 ","7,269 ","5,440 " -66,"1,426,484 ","643,455 ","783,029 ","1,284,765 ","579,293 ","705,472 ","129,420 ","57,188 ","72,232 ","12,299 ","6,974 ","5,325 " -67,"1,374,516 ","614,039 ","760,477 ","1,237,327 ","552,267 ","685,060 ","125,498 ","55,216 ","70,282 ","11,691 ","6,556 ","5,135 " -68,"1,324,240 ","586,915 ","737,325 ","1,194,839 ","528,606 ","666,233 ","118,484 ","52,279 ","66,205 ","10,917 ","6,030 ","4,887 " -69,"1,266,546 ","557,079 ","709,467 ","1,147,569 ","503,250 ","644,319 ","108,895 ","48,378 ","60,517 ","10,082 ","5,451 ","4,631 " -70,"1,205,143 ","524,742 ","680,401 ","1,096,193 ","475,529 ","620,664 ","99,656 ","44,313 ","55,343 ","9,294 ","4,900 ","4,394 " -71,"1,146,136 ","493,613 ","652,523 ","1,046,815 ","448,794 ","598,021 ","91,063 ","40,539 ","50,524 ","8,258 ","4,280 ","3,978 " -72,"1,085,805 ","462,899 ","622,906 ","996,558 ","422,653 ","573,905 ","81,935 ","36,511 ","45,424 ","7,312 ","3,735 ","3,577 " -73,"1,023,647 ","432,637 ","591,010 ","943,145 ","396,562 ","546,583 ","73,871 ","32,739 ","41,132 ","6,631 ","3,336 ","3,295 " -74,"960,394 ","402,218 ","558,176 ","887,611 ","370,024 ","517,587 ","66,803 ","29,246 ","37,557 ","5,980 ","2,948 ","3,032 " -75,"904,503 ","375,963 ","528,540 ","837,555 ","346,626 ","490,929 ","61,551 ","26,759 ","34,792 ","5,397 ","2,578 ","2,819 " -76,"844,551 ","348,880 ","495,671 ","783,331 ","322,141 ","461,190 ","56,264 ","24,429 ","31,835 ","4,956 ","2,310 ","2,646 " -77,"774,174 ","317,343 ","456,831 ","718,930 ","293,335 ","425,595 ","50,591 ","21,841 ","28,750 ","4,653 ","2,167 ","2,486 " -78,"697,112 ","282,976 ","414,136 ","647,986 ","261,729 ","386,257 ","44,654 ","19,090 ","25,564 ","4,472 ","2,157 ","2,315 " -79,"623,926 ","250,690 ","373,236 ","580,317 ","231,874 ","348,443 ","39,283 ","16,628 ","22,655 ","4,326 ","2,188 ","2,138 " -80,"559,029 ","222,159 ","336,870 ","520,024 ","205,361 ","314,663 ","34,855 ","14,559 ","20,296 ","4,150 ","2,239 ","1,911 " -81,"495,767 ","194,665 ","301,102 ","461,367 ","179,890 ","281,477 ","30,442 ","12,508 ","17,934 ","3,958 ","2,267 ","1,691 " -82,"439,600 ","170,176 ","269,424 ","408,792 ","157,011 ","251,781 ","27,213 ","11,036 ","16,177 ","3,595 ","2,129 ","1,466 " -83,"389,645 ","148,393 ","241,252 ","361,464 ","136,429 ","225,035 ","25,092 ","10,118 ","14,974 ","3,089 ","1,846 ","1,243 " -84,"343,637 ","128,851 ","214,786 ","317,647 ","117,794 ","199,853 ","23,406 ","9,494 ","13,912 ","2,584 ","1,563 ","1,021 " -85+,"1,307,490 ","458,991 ","848,499 ","1,198,807 ","415,329 ","783,478 ","97,183 ","37,223 ","59,960 ","11,500 ","6,439 ","5,061 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1970.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1970.csv deleted file mode 100644 index 00ddae66d3..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1970.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1970",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"205,052,174 ","100,353,876 ","104,698,298 ","179,644,033 ","88,138,613 ","91,505,420 ","22,801,214 ","10,913,011 ","11,888,203 ","2,606,927 ","1,302,252 ","1,304,675 " -,,,,,,,,,,,, -0,"3,508,096 ","1,790,508 ","1,717,588 ","2,972,765 ","1,521,114 ","1,451,651 ","478,209 ","240,465 ","237,744 ","57,122 ","28,929 ","28,193 " -1,"3,401,442 ","1,732,276 ","1,669,166 ","2,868,582 ","1,465,650 ","1,402,932 ","479,130 ","239,581 ","239,549 ","53,730 ","27,045 ","26,685 " -2,"3,295,270 ","1,681,618 ","1,613,652 ","2,773,490 ","1,420,003 ","1,353,487 ","470,339 ","235,591 ","234,748 ","51,441 ","26,024 ","25,417 " -3,"3,406,502 ","1,735,078 ","1,671,424 ","2,870,336 ","1,466,270 ","1,404,066 ","484,416 ","242,790 ","241,626 ","51,750 ","26,018 ","25,732 " -4,"3,554,881 ","1,811,647 ","1,743,234 ","2,984,016 ","1,525,276 ","1,458,740 ","517,375 ","259,501 ","257,874 ","53,490 ","26,870 ","26,620 " -5,"3,756,969 ","1,913,750 ","1,843,219 ","3,164,412 ","1,616,431 ","1,547,981 ","535,833 ","268,628 ","267,205 ","56,724 ","28,691 ","28,033 " -6,"3,946,319 ","2,010,401 ","1,935,918 ","3,337,725 ","1,705,138 ","1,632,587 ","551,905 ","276,630 ","275,275 ","56,689 ","28,633 ","28,056 " -7,"4,019,585 ","2,048,658 ","1,970,927 ","3,406,682 ","1,741,288 ","1,665,394 ","556,499 ","278,887 ","277,612 ","56,404 ","28,483 ","27,921 " -8,"4,032,394 ","2,055,054 ","1,977,340 ","3,431,228 ","1,753,194 ","1,678,034 ","546,209 ","274,030 ","272,179 ","54,957 ","27,830 ","27,127 " -9,"4,164,170 ","2,123,832 ","2,040,338 ","3,548,323 ","1,814,711 ","1,733,612 ","559,783 ","280,995 ","278,788 ","56,064 ","28,126 ","27,938 " -10,"4,263,921 ","2,173,641 ","2,090,280 ","3,614,882 ","1,848,888 ","1,765,994 ","591,430 ","295,849 ","295,581 ","57,609 ","28,904 ","28,705 " -11,"4,138,932 ","2,106,867 ","2,032,065 ","3,523,543 ","1,799,041 ","1,724,502 ","560,853 ","280,588 ","280,265 ","54,536 ","27,238 ","27,298 " -12,"4,175,165 ","2,128,690 ","2,046,475 ","3,564,446 ","1,822,110 ","1,742,336 ","557,367 ","279,720 ","277,647 ","53,352 ","26,860 ","26,492 " -13,"4,174,574 ","2,125,671 ","2,048,903 ","3,563,380 ","1,820,200 ","1,743,180 ","557,947 ","278,833 ","279,114 ","53,247 ","26,638 ","26,609 " -14,"4,100,251 ","2,087,598 ","2,012,653 ","3,493,862 ","1,783,887 ","1,709,975 ","554,201 ","277,628 ","276,573 ","52,188 ","26,083 ","26,105 " -15,"4,043,855 ","2,061,974 ","1,981,881 ","3,456,222 ","1,767,217 ","1,689,005 ","535,279 ","268,267 ","267,012 ","52,354 ","26,490 ","25,864 " -16,"3,931,856 ","2,000,789 ","1,931,067 ","3,371,163 ","1,720,167 ","1,650,996 ","511,133 ","255,760 ","255,373 ","49,560 ","24,862 ","24,698 " -17,"3,847,703 ","1,957,587 ","1,890,116 ","3,308,579 ","1,686,973 ","1,621,606 ","489,459 ","245,468 ","243,991 ","49,665 ","25,146 ","24,519 " -18,"3,781,499 ","1,913,716 ","1,867,783 ","3,269,338 ","1,660,085 ","1,609,253 ","462,973 ","228,728 ","234,245 ","49,188 ","24,903 ","24,285 " -19,"3,728,184 ","1,881,903 ","1,846,281 ","3,217,042 ","1,629,777 ","1,587,265 ","459,509 ","225,765 ","233,744 ","51,633 ","26,361 ","25,272 " -20,"3,653,488 ","1,848,135 ","1,805,353 ","3,153,967 ","1,601,285 ","1,552,682 ","446,227 ","219,294 ","226,933 ","53,294 ","27,556 ","25,738 " -21,"3,556,227 ","1,800,203 ","1,756,024 ","3,091,659 ","1,571,913 ","1,519,746 ","411,370 ","201,069 ","210,301 ","53,198 ","27,221 ","25,977 " -22,"3,494,642 ","1,757,295 ","1,737,347 ","3,061,426 ","1,548,293 ","1,513,133 ","382,779 ","183,842 ","198,937 ","50,437 ","25,160 ","25,277 " -23,"3,716,091 ","1,860,521 ","1,855,570 ","3,301,619 ","1,662,686 ","1,638,933 ","363,670 ","172,860 ","190,810 ","50,802 ","24,975 ","25,827 " -24,"2,781,658 ","1,388,785 ","1,392,873 ","2,436,618 ","1,225,969 ","1,210,649 ","302,164 ","142,031 ","160,133 ","42,876 ","20,785 ","22,091 " -25,"2,802,151 ","1,396,499 ","1,405,652 ","2,450,089 ","1,230,925 ","1,219,164 ","308,121 ","144,257 ","163,864 ","43,941 ","21,317 ","22,624 " -26,"2,804,268 ","1,393,335 ","1,410,933 ","2,468,818 ","1,235,676 ","1,233,142 ","292,153 ","136,895 ","155,258 ","43,297 ","20,764 ","22,533 " -27,"3,000,699 ","1,488,871 ","1,511,828 ","2,652,253 ","1,325,985 ","1,326,268 ","304,627 ","141,929 ","162,698 ","43,819 ","20,957 ","22,862 " -28,"2,641,863 ","1,309,125 ","1,332,738 ","2,323,878 ","1,160,893 ","1,162,985 ","276,345 ","127,907 ","148,438 ","41,640 ","20,325 ","21,315 " -29,"2,487,167 ","1,233,264 ","1,253,903 ","2,172,173 ","1,085,654 ","1,086,519 ","274,446 ","127,750 ","146,696 ","40,548 ","19,860 ","20,688 " -30,"2,487,628 ","1,231,863 ","1,255,765 ","2,158,216 ","1,077,937 ","1,080,279 ","286,855 ","132,758 ","154,097 ","42,557 ","21,168 ","21,389 " -31,"2,320,918 ","1,147,209 ","1,173,709 ","2,036,088 ","1,015,053 ","1,021,035 ","247,148 ","113,484 ","133,664 ","37,682 ","18,672 ","19,010 " -32,"2,305,215 ","1,136,720 ","1,168,495 ","2,020,273 ","1,005,345 ","1,014,928 ","248,218 ","113,326 ","134,892 ","36,724 ","18,049 ","18,675 " -33,"2,218,979 ","1,092,276 ","1,126,703 ","1,943,466 ","965,833 ","977,633 ","239,495 ","109,002 ","130,493 ","36,018 ","17,441 ","18,577 " -34,"2,254,644 ","1,107,491 ","1,147,153 ","1,966,925 ","975,684 ","991,241 ","251,826 ","114,680 ","137,146 ","35,893 ","17,127 ","18,766 " -35,"2,225,239 ","1,096,039 ","1,129,200 ","1,945,109 ","967,070 ","978,039 ","245,638 ","112,489 ","133,149 ","34,492 ","16,480 ","18,012 " -36,"2,184,809 ","1,072,198 ","1,112,611 ","1,908,755 ","946,302 ","962,453 ","241,841 ","109,870 ","131,971 ","34,213 ","16,026 ","18,187 " -37,"2,222,057 ","1,086,916 ","1,135,141 ","1,940,646 ","958,462 ","982,184 ","246,821 ","112,582 ","134,239 ","34,590 ","15,872 ","18,718 " -38,"2,230,004 ","1,094,009 ","1,135,995 ","1,964,293 ","972,963 ","991,330 ","232,291 ","105,755 ","126,536 ","33,420 ","15,291 ","18,129 " -39,"2,292,567 ","1,125,722 ","1,166,845 ","2,021,644 ","1,001,874 ","1,019,770 ","237,273 ","108,561 ","128,712 ","33,650 ","15,287 ","18,363 " -40,"2,422,721 ","1,184,684 ","1,238,037 ","2,129,491 ","1,050,829 ","1,078,662 ","258,464 ","118,213 ","140,251 ","34,766 ","15,642 ","19,124 " -41,"2,363,323 ","1,154,549 ","1,208,774 ","2,092,134 ","1,031,250 ","1,060,884 ","238,413 ","108,466 ","129,947 ","32,776 ","14,833 ","17,943 " -42,"2,397,821 ","1,170,766 ","1,227,055 ","2,129,358 ","1,048,365 ","1,080,993 ","236,657 ","107,868 ","128,789 ","31,806 ","14,533 ","17,273 " -43,"2,392,199 ","1,164,194 ","1,228,005 ","2,130,165 ","1,044,691 ","1,085,474 ","231,114 ","105,256 ","125,858 ","30,920 ","14,247 ","16,673 " -44,"2,418,912 ","1,172,484 ","1,246,428 ","2,151,575 ","1,050,120 ","1,101,455 ","237,264 ","108,214 ","129,050 ","30,073 ","14,150 ","15,923 " -45,"2,465,964 ","1,192,280 ","1,273,684 ","2,199,427 ","1,068,542 ","1,130,885 ","236,785 ","109,398 ","127,387 ","29,752 ","14,340 ","15,412 " -46,"2,433,301 ","1,175,087 ","1,258,214 ","2,180,352 ","1,057,783 ","1,122,569 ","224,978 ","103,756 ","121,222 ","27,971 ","13,548 ","14,423 " -47,"2,415,765 ","1,165,018 ","1,250,747 ","2,159,042 ","1,045,430 ","1,113,612 ","229,323 ","106,028 ","123,295 ","27,400 ","13,560 ","13,840 " -48,"2,448,256 ","1,184,471 ","1,263,785 ","2,201,150 ","1,068,528 ","1,132,622 ","221,111 ","102,851 ","118,260 ","25,995 ","13,092 ","12,903 " -49,"2,387,341 ","1,156,408 ","1,230,933 ","2,146,605 ","1,043,494 ","1,103,111 ","216,502 ","100,814 ","115,688 ","24,234 ","12,100 ","12,134 " -50,"2,427,106 ","1,172,397 ","1,254,709 ","2,164,268 ","1,049,092 ","1,115,176 ","238,415 ","111,121 ","127,294 ","24,423 ","12,184 ","12,239 " -51,"2,299,963 ","1,105,995 ","1,193,968 ","2,067,400 ","996,969 ","1,070,431 ","210,931 ","98,194 ","112,737 ","21,632 ","10,832 ","10,800 " -52,"2,199,245 ","1,060,320 ","1,138,925 ","1,988,308 ","961,656 ","1,026,652 ","191,021 ","88,782 ","102,239 ","19,916 ","9,882 ","10,034 " -53,"2,130,839 ","1,026,314 ","1,104,525 ","1,931,096 ","933,774 ","997,322 ","181,160 ","83,194 ","97,966 ","18,583 ","9,346 ","9,237 " -54,"2,108,622 ","1,014,671 ","1,093,951 ","1,913,922 ","924,232 ","989,690 ","176,247 ","81,080 ","95,167 ","18,453 ","9,359 ","9,094 " -55,"2,105,906 ","1,011,813 ","1,094,093 ","1,906,919 ","918,544 ","988,375 ","180,903 ","83,955 ","96,948 ","18,084 ","9,314 ","8,770 " -56,"2,050,273 ","984,655 ","1,065,618 ","1,859,929 ","895,029 ","964,900 ","173,288 ","80,808 ","92,480 ","17,056 ","8,818 ","8,238 " -57,"2,010,442 ","959,529 ","1,050,913 ","1,819,056 ","870,369 ","948,687 ","174,518 ","80,195 ","94,323 ","16,868 ","8,965 ","7,903 " -58,"1,942,941 ","925,843 ","1,017,098 ","1,761,243 ","840,353 ","920,890 ","165,355 ","76,542 ","88,813 ","16,343 ","8,948 ","7,395 " -59,"1,896,914 ","899,382 ","997,532 ","1,704,840 ","809,005 ","895,835 ","175,842 ","81,129 ","94,713 ","16,232 ","9,248 ","6,984 " -60,"1,912,080 ","903,314 ","1,008,766 ","1,722,935 ","814,142 ","908,793 ","173,235 ","80,050 ","93,185 ","15,910 ","9,122 ","6,788 " -61,"1,791,616 ","841,000 ","950,616 ","1,628,276 ","764,663 ","863,613 ","148,717 ","67,949 ","80,768 ","14,623 ","8,388 ","6,235 " -62,"1,732,996 ","809,970 ","923,026 ","1,572,967 ","735,431 ","837,536 ","146,019 ","66,365 ","79,654 ","14,010 ","8,174 ","5,836 " -63,"1,640,281 ","761,967 ","878,314 ","1,491,156 ","693,075 ","798,081 ","135,863 ","61,196 ","74,667 ","13,262 ","7,696 ","5,566 " -64,"1,598,736 ","735,620 ","863,116 ","1,444,677 ","664,640 ","780,037 ","140,883 ","63,395 ","77,488 ","13,176 ","7,585 ","5,591 " -65,"1,550,071 ","706,601 ","843,470 ","1,393,676 ","634,916 ","758,760 ","143,332 ","64,167 ","79,165 ","13,063 ","7,518 ","5,545 " -66,"1,475,305 ","666,122 ","809,183 ","1,334,710 ","602,286 ","732,424 ","128,476 ","56,942 ","71,534 ","12,119 ","6,894 ","5,225 " -67,"1,408,965 ","629,797 ","779,168 ","1,273,835 ","568,538 ","705,297 ","123,338 ","54,707 ","68,631 ","11,792 ","6,552 ","5,240 " -68,"1,287,308 ","570,692 ","716,616 ","1,170,573 ","518,464 ","652,109 ","105,861 ","46,282 ","59,579 ","10,874 ","5,946 ","4,928 " -69,"1,304,600 ","565,585 ","739,015 ","1,169,362 ","505,186 ","664,176 ","123,849 ","54,127 ","69,722 ","11,389 ","6,272 ","5,117 " -70,"1,271,974 ","546,846 ","725,128 ","1,146,731 ","490,658 ","656,073 ","114,360 ","50,287 ","64,073 ","10,883 ","5,901 ","4,982 " -71,"1,146,673 ","489,228 ","657,445 ","1,051,371 ","446,848 ","604,523 ","86,076 ","37,556 ","48,520 ","9,226 ","4,824 ","4,402 " -72,"1,056,582 ","449,521 ","607,061 ","971,640 ","411,561 ","560,079 ","77,054 ","33,961 ","43,093 ","7,888 ","3,999 ","3,889 " -73,"1,013,178 ","428,927 ","584,251 ","932,332 ","392,249 ","540,083 ","73,611 ","33,032 ","40,579 ","7,235 ","3,646 ","3,589 " -74,"978,334 ","407,575 ","570,759 ","900,116 ","372,552 ","527,564 ","71,361 ","31,708 ","39,653 ","6,857 ","3,315 ","3,542 " -75,"919,310 ","380,169 ","539,141 ","847,198 ","348,285 ","498,913 ","65,744 ","28,903 ","36,841 ","6,368 ","2,981 ","3,387 " -76,"839,268 ","345,547 ","493,721 ","777,970 ","318,824 ","459,146 ","55,899 ","24,229 ","31,670 ","5,399 ","2,494 ","2,905 " -77,"787,600 ","320,291 ","467,309 ","729,895 ","295,093 ","434,802 ","52,730 ","22,899 ","29,831 ","4,975 ","2,299 ","2,676 " -78,"699,225 ","281,045 ","418,180 ","648,897 ","259,388 ","389,509 ","46,105 ","19,766 ","26,339 ","4,223 ","1,891 ","2,332 " -79,"625,561 ","245,642 ","379,919 ","581,085 ","226,967 ","354,118 ","40,431 ","16,717 ","23,714 ","4,045 ","1,958 ","2,087 " -80,"605,554 ","235,718 ","369,836 ","559,361 ","215,733 ","343,628 ","40,225 ","16,485 ","23,740 ","5,968 ","3,500 ","2,468 " -81,"539,114 ","208,358 ","330,756 ","500,155 ","191,682 ","308,473 ","34,660 ","14,245 ","20,415 ","4,299 ","2,431 ","1,868 " -82,"445,989 ","170,352 ","275,637 ","415,585 ","157,675 ","257,910 ","27,347 ","11,058 ","16,289 ","3,057 ","1,619 ","1,438 " -83,"382,693 ","143,516 ","239,177 ","356,504 ","132,744 ","223,760 ","23,578 ","9,440 ","14,138 ","2,611 ","1,332 ","1,279 " -84,"338,932 ","125,396 ","213,536 ","315,040 ","115,698 ","199,342 ","21,716 ","8,637 ","13,079 ","2,176 ","1,061 ","1,115 " -85+,"1,430,493 ","496,483 ","934,010 ","1,313,775 ","450,038 ","863,737 ","103,296 ","38,999 ","64,297 ","13,422 ","7,446 ","5,976 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1971.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1971.csv deleted file mode 100644 index 86b5e5390d..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1971.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1971",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"207,660,677 ","101,567,006 ","106,093,671 ","181,663,094 ","89,080,570 ","92,582,524 ","23,239,524 ","11,114,200 ","12,125,324 ","2,758,059 ","1,372,236 ","1,385,823 " -,,,,,,,,,,,, -0,"3,601,094 ","1,842,884 ","1,758,210 ","3,032,993 ","1,555,643 ","1,477,350 ","504,943 ","255,006 ","249,937 ","63,158 ","32,235 ","30,923 " -1,"3,489,276 ","1,778,185 ","1,711,091 ","2,945,610 ","1,505,785 ","1,439,825 ","486,123 ","243,472 ","242,651 ","57,543 ","28,928 ","28,615 " -2,"3,348,331 ","1,707,607 ","1,640,724 ","2,813,652 ","1,439,608 ","1,374,044 ","481,152 ","240,957 ","240,195 ","53,527 ","27,042 ","26,485 " -3,"3,337,236 ","1,702,135 ","1,635,101 ","2,807,310 ","1,436,485 ","1,370,825 ","477,666 ","239,390 ","238,276 ","52,260 ","26,260 ","26,000 " -4,"3,468,031 ","1,765,616 ","1,702,415 ","2,920,058 ","1,491,480 ","1,428,578 ","495,388 ","247,797 ","247,591 ","52,585 ","26,339 ","26,246 " -5,"3,556,777 ","1,814,863 ","1,741,914 ","2,981,915 ","1,526,124 ","1,455,791 ","515,712 ","258,770 ","256,942 ","59,150 ","29,969 ","29,181 " -6,"3,787,320 ","1,924,328 ","1,862,992 ","3,189,026 ","1,625,015 ","1,564,011 ","540,822 ","270,333 ","270,489 ","57,472 ","28,980 ","28,492 " -7,"3,977,564 ","2,029,736 ","1,947,828 ","3,365,653 ","1,722,538 ","1,643,115 ","554,709 ","278,301 ","276,408 ","57,202 ","28,897 ","28,305 " -8,"3,974,264 ","2,026,653 ","1,947,611 ","3,373,338 ","1,724,405 ","1,648,933 ","544,983 ","273,860 ","271,123 ","55,943 ","28,388 ","27,555 " -9,"4,099,362 ","2,090,131 ","2,009,231 ","3,481,498 ","1,779,570 ","1,701,928 ","560,437 ","281,658 ","278,779 ","57,427 ","28,903 ","28,524 " -10,"4,333,927 ","2,211,594 ","2,122,333 ","3,672,023 ","1,879,452 ","1,792,571 ","599,756 ","300,794 ","298,962 ","62,148 ","31,348 ","30,800 " -11,"4,139,134 ","2,109,649 ","2,029,485 ","3,519,087 ","1,799,428 ","1,719,659 ","563,400 ","281,844 ","281,556 ","56,647 ","28,377 ","28,270 " -12,"4,174,936 ","2,125,557 ","2,049,379 ","3,547,694 ","1,811,341 ","1,736,353 ","571,325 ","286,068 ","285,257 ","55,917 ","28,148 ","27,769 " -13,"4,192,739 ","2,134,607 ","2,058,132 ","3,579,030 ","1,827,259 ","1,751,771 ","559,170 ","279,945 ","279,225 ","54,539 ","27,403 ","27,136 " -14,"4,254,445 ","2,167,846 ","2,086,599 ","3,623,993 ","1,851,726 ","1,772,267 ","574,993 ","288,293 ","286,700 ","55,459 ","27,827 ","27,632 " -15,"4,100,796 ","2,090,576 ","2,010,220 ","3,493,207 ","1,785,438 ","1,707,769 ","550,086 ","276,016 ","274,070 ","57,503 ","29,122 ","28,381 " -16,"4,019,319 ","2,047,164 ","1,972,155 ","3,432,723 ","1,753,291 ","1,679,432 ","532,816 ","266,815 ","266,001 ","53,780 ","27,058 ","26,722 " -17,"3,953,863 ","2,009,499 ","1,944,364 ","3,386,582 ","1,725,595 ","1,660,987 ","513,818 ","256,884 ","256,934 ","53,463 ","27,020 ","26,443 " -18,"3,878,359 ","1,961,661 ","1,916,698 ","3,344,162 ","1,696,060 ","1,648,102 ","481,662 ","238,960 ","242,702 ","52,535 ","26,641 ","25,894 " -19,"3,836,171 ","1,939,069 ","1,897,102 ","3,318,147 ","1,684,123 ","1,634,024 ","464,345 ","227,797 ","236,548 ","53,679 ","27,149 ","26,530 " -20,"3,796,605 ","1,924,352 ","1,872,253 ","3,268,393 ","1,662,529 ","1,605,864 ","473,618 ","233,116 ","240,502 ","54,594 ","28,707 ","25,887 " -21,"3,553,466 ","1,798,547 ","1,754,919 ","3,072,562 ","1,562,839 ","1,509,723 ","424,821 ","207,374 ","217,447 ","56,083 ","28,334 ","27,749 " -22,"3,509,578 ","1,759,447 ","1,750,131 ","3,048,586 ","1,538,196 ","1,510,390 ","405,052 ","194,008 ","211,044 ","55,940 ","27,243 ","28,697 " -23,"3,459,578 ","1,728,507 ","1,731,071 ","3,031,672 ","1,524,440 ","1,507,232 ","373,261 ","177,753 ","195,508 ","54,645 ","26,314 ","28,331 " -24,"3,839,808 ","1,919,125 ","1,920,683 ","3,414,330 ","1,718,122 ","1,696,208 ","370,404 ","174,740 ","195,664 ","55,074 ","26,263 ","28,811 " -25,"2,756,978 ","1,379,621 ","1,377,357 ","2,412,000 ","1,217,040 ","1,194,960 ","301,614 ","141,632 ","159,982 ","43,364 ","20,949 ","22,415 " -26,"2,773,244 ","1,380,257 ","1,392,987 ","2,427,079 ","1,218,529 ","1,208,550 ","299,634 ","139,782 ","159,852 ","46,531 ","21,946 ","24,585 " -27,"2,847,814 ","1,410,743 ","1,437,071 ","2,496,087 ","1,246,485 ","1,249,602 ","304,678 ","142,062 ","162,616 ","47,049 ","22,196 ","24,853 " -28,"3,003,167 ","1,489,382 ","1,513,785 ","2,665,307 ","1,331,879 ","1,333,428 ","291,185 ","135,005 ","156,180 ","46,675 ","22,498 ","24,177 " -29,"2,660,149 ","1,319,618 ","1,340,531 ","2,330,148 ","1,164,742 ","1,165,406 ","285,038 ","133,050 ","151,988 ","44,963 ","21,826 ","23,137 " -30,"2,631,233 ","1,305,577 ","1,325,656 ","2,280,169 ","1,141,291 ","1,138,878 ","304,355 ","141,210 ","163,145 ","46,709 ","23,076 ","23,633 " -31,"2,367,317 ","1,171,201 ","1,196,116 ","2,071,207 ","1,033,820 ","1,037,387 ","255,216 ","117,267 ","137,949 ","40,894 ","20,114 ","20,780 " -32,"2,343,542 ","1,154,965 ","1,188,577 ","2,050,445 ","1,019,713 ","1,030,732 ","253,263 ","115,768 ","137,495 ","39,834 ","19,484 ","20,350 " -33,"2,293,383 ","1,128,265 ","1,165,118 ","2,003,349 ","995,112 ","1,008,237 ","250,254 ","113,924 ","136,330 ","39,780 ","19,229 ","20,551 " -34,"2,281,467 ","1,120,468 ","1,160,999 ","1,989,645 ","986,796 ","1,002,849 ","253,680 ","115,457 ","138,223 ","38,142 ","18,215 ","19,927 " -35,"2,252,836 ","1,105,625 ","1,147,211 ","1,973,701 ","977,851 ","995,850 ","244,864 ","111,513 ","133,351 ","34,271 ","16,261 ","18,010 " -36,"2,222,348 ","1,092,536 ","1,129,812 ","1,942,877 ","964,356 ","978,521 ","244,929 ","111,938 ","132,991 ","34,542 ","16,242 ","18,300 " -37,"2,184,977 ","1,070,786 ","1,114,191 ","1,907,478 ","944,589 ","962,889 ","242,481 ","109,985 ","132,496 ","35,018 ","16,212 ","18,806 " -38,"2,219,512 ","1,085,605 ","1,133,907 ","1,938,691 ","957,490 ","981,201 ","244,797 ","111,563 ","133,234 ","36,024 ","16,552 ","19,472 " -39,"2,240,196 ","1,099,596 ","1,140,600 ","1,972,578 ","977,534 ","995,044 ","231,870 ","105,574 ","126,296 ","35,748 ","16,488 ","19,260 " -40,"2,304,588 ","1,132,411 ","1,172,177 ","2,030,921 ","1,007,122 ","1,023,799 ","237,921 ","108,953 ","128,968 ","35,746 ","16,336 ","19,410 " -41,"2,422,420 ","1,185,216 ","1,237,204 ","2,127,362 ","1,050,254 ","1,077,108 ","258,272 ","118,221 ","140,051 ","36,786 ","16,741 ","20,045 " -42,"2,361,689 ","1,153,960 ","1,207,729 ","2,089,477 ","1,029,817 ","1,059,660 ","237,780 ","108,419 ","129,361 ","34,432 ","15,724 ","18,708 " -43,"2,386,965 ","1,165,284 ","1,221,681 ","2,118,583 ","1,042,343 ","1,076,240 ","235,251 ","107,671 ","127,580 ","33,131 ","15,270 ","17,861 " -44,"2,382,516 ","1,158,852 ","1,223,664 ","2,121,183 ","1,039,107 ","1,082,076 ","229,347 ","104,920 ","124,427 ","31,986 ","14,825 ","17,161 " -45,"2,405,799 ","1,164,862 ","1,240,937 ","2,140,389 ","1,042,973 ","1,097,416 ","234,550 ","107,319 ","127,231 ","30,860 ","14,570 ","16,290 " -46,"2,450,645 ","1,183,946 ","1,266,699 ","2,186,848 ","1,061,036 ","1,125,812 ","233,619 ","108,340 ","125,279 ","30,178 ","14,570 ","15,608 " -47,"2,423,579 ","1,169,314 ","1,254,265 ","2,173,218 ","1,053,214 ","1,120,004 ","222,070 ","102,404 ","119,666 ","28,291 ","13,696 ","14,595 " -48,"2,407,120 ","1,158,749 ","1,248,371 ","2,150,409 ","1,039,494 ","1,110,915 ","229,001 ","105,619 ","123,382 ","27,710 ","13,636 ","14,074 " -49,"2,454,763 ","1,185,351 ","1,269,412 ","2,207,606 ","1,070,067 ","1,137,539 ","220,735 ","102,063 ","118,672 ","26,422 ","13,221 ","13,201 " -50,"2,374,820 ","1,148,649 ","1,226,171 ","2,137,036 ","1,037,627 ","1,099,409 ","213,362 ","98,858 ","114,504 ","24,422 ","12,164 ","12,258 " -51,"2,426,681 ","1,169,835 ","1,256,846 ","2,162,646 ","1,046,581 ","1,116,065 ","239,149 ","110,897 ","128,252 ","24,886 ","12,357 ","12,529 " -52,"2,288,583 ","1,097,877 ","1,190,706 ","2,057,671 ","990,227 ","1,067,444 ","208,917 ","96,705 ","112,212 ","21,995 ","10,945 ","11,050 " -53,"2,180,835 ","1,049,095 ","1,131,740 ","1,972,705 ","952,057 ","1,020,648 ","188,177 ","87,128 ","101,049 ","19,953 ","9,910 ","10,043 " -54,"2,105,749 ","1,011,693 ","1,094,056 ","1,910,811 ","921,660 ","989,151 ","176,239 ","80,671 ","95,568 ","18,699 ","9,362 ","9,337 " -55,"2,082,108 ","998,805 ","1,083,303 ","1,891,323 ","910,606 ","980,717 ","172,428 ","78,880 ","93,548 ","18,357 ","9,319 ","9,038 " -56,"2,081,236 ","996,362 ","1,084,874 ","1,884,942 ","904,525 ","980,417 ","178,137 ","82,483 ","95,654 ","18,157 ","9,354 ","8,803 " -57,"2,024,298 ","968,525 ","1,055,773 ","1,838,125 ","881,097 ","957,028 ","169,118 ","78,588 ","90,530 ","17,055 ","8,840 ","8,215 " -58,"1,982,253 ","941,549 ","1,040,704 ","1,792,415 ","853,461 ","938,954 ","172,758 ","79,013 ","93,745 ","17,080 ","9,075 ","8,005 " -59,"1,919,926 ","910,284 ","1,009,642 ","1,740,456 ","826,183 ","914,273 ","163,006 ","75,036 ","87,970 ","16,464 ","9,065 ","7,399 " -60,"1,856,716 ","875,491 ","981,225 ","1,670,167 ","788,148 ","882,019 ","170,304 ","78,128 ","92,176 ","16,245 ","9,215 ","7,030 " -61,"1,885,972 ","886,880 ","999,092 ","1,698,717 ","798,908 ","899,809 ","171,129 ","78,753 ","92,376 ","16,126 ","9,219 ","6,907 " -62,"1,772,301 ","825,184 ","947,117 ","1,608,868 ","749,428 ","859,440 ","148,846 ","67,400 ","81,446 ","14,587 ","8,356 ","6,231 " -63,"1,724,388 ","797,520 ","926,868 ","1,560,673 ","722,123 ","838,550 ","149,880 ","67,368 ","82,512 ","13,835 ","8,029 ","5,806 " -64,"1,633,125 ","748,868 ","884,257 ","1,479,850 ","679,232 ","800,618 ","140,247 ","62,091 ","78,156 ","13,028 ","7,545 ","5,483 " -65,"1,585,875 ","720,541 ","865,334 ","1,429,992 ","649,758 ","780,234 ","142,899 ","63,356 ","79,543 ","12,984 ","7,427 ","5,557 " -66,"1,532,190 ","688,795 ","843,395 ","1,373,942 ","617,221 ","756,721 ","145,661 ","64,266 ","81,395 ","12,587 ","7,308 ","5,279 " -67,"1,445,724 ","645,396 ","800,328 ","1,308,891 ","583,640 ","725,251 ","124,654 ","54,867 ","69,787 ","12,179 ","6,889 ","5,290 " -68,"1,367,181 ","605,096 ","762,085 ","1,239,926 ","547,492 ","692,434 ","115,587 ","51,251 ","64,336 ","11,668 ","6,353 ","5,315 " -69,"1,238,556 ","544,330 ","694,226 ","1,132,989 ","496,933 ","636,056 ","93,916 ","41,196 ","52,720 ","11,651 ","6,201 ","5,450 " -70,"1,239,995 ","531,810 ","708,185 ","1,117,244 ","476,865 ","640,379 ","111,308 ","48,714 ","62,594 ","11,443 ","6,231 ","5,212 " -71,"1,223,707 ","521,292 ","702,415 ","1,106,606 ","468,316 ","638,290 ","106,229 ","47,151 ","59,078 ","10,872 ","5,825 ","5,047 " -72,"1,091,316 ","460,001 ","631,315 ","1,004,081 ","421,096 ","582,985 ","77,807 ","33,989 ","43,818 ","9,428 ","4,916 ","4,512 " -73,"1,002,799 ","421,251 ","581,548 ","922,674 ","385,650 ","537,024 ","72,303 ","31,683 ","40,620 ","7,822 ","3,918 ","3,904 " -74,"956,616 ","398,877 ","557,739 ","880,714 ","365,043 ","515,671 ","68,751 ","30,252 ","38,499 ","7,151 ","3,582 ","3,569 " -75,"924,315 ","378,506 ","545,809 ","850,090 ","346,007 ","504,083 ","67,614 ","29,358 ","38,256 ","6,611 ","3,141 ","3,470 " -76,"869,665 ","353,216 ","516,449 ","798,777 ","322,446 ","476,331 ","65,215 ","28,151 ","37,064 ","5,673 ","2,619 ","3,054 " -77,"791,081 ","319,364 ","471,717 ","731,827 ","294,202 ","437,625 ","54,481 ","22,953 ","31,528 ","4,773 ","2,209 ","2,564 " -78,"745,950 ","297,607 ","448,343 ","687,619 ","272,491 ","415,128 ","54,678 ","23,609 ","31,069 ","3,653 ","1,507 ","2,146 " -79,"655,410 ","257,870 ","397,540 ","608,743 ","238,333 ","370,410 ","42,575 ","17,650 ","24,925 ","4,092 ","1,887 ","2,205 " -80,"579,633 ","221,534 ","358,099 ","536,410 ","203,772 ","332,638 ","39,119 ","15,679 ","23,440 ","4,104 ","2,083 ","2,021 " -81,"567,154 ","215,780 ","351,374 ","521,183 ","196,178 ","325,005 ","41,158 ","16,838 ","24,320 ","4,813 ","2,764 ","2,049 " -82,"501,102 ","188,680 ","312,422 ","463,987 ","173,179 ","290,808 ","33,165 ","13,281 ","19,884 ","3,950 ","2,220 ","1,730 " -83,"409,310 ","151,984 ","257,326 ","380,960 ","140,526 ","240,434 ","25,612 ","10,045 ","15,567 ","2,738 ","1,413 ","1,325 " -84,"346,871 ","126,958 ","219,913 ","323,270 ","117,470 ","205,800 ","21,395 ","8,402 ","12,993 ","2,206 ","1,086 ","1,120 " -85+,"1,487,010 ","509,973 ","977,037 ","1,366,763 ","462,943 ","903,820 ","106,834 ","39,900 ","66,934 ","13,413 ","7,130 ","6,283 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1972.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1972.csv deleted file mode 100644 index 620b0247b7..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1972.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1972",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"209,896,021 ","102,590,732 ","107,305,289 ","183,325,614 ","89,843,389 ","93,482,225 ","23,646,177 ","11,297,893 ","12,348,284 ","2,924,230 ","1,449,450 ","1,474,780 " -,,,,,,,,,,,, -0,"3,305,565 ","1,688,622 ","1,616,943 ","2,764,132 ","1,415,447 ","1,348,685 ","477,122 ","240,609 ","236,513 ","64,311 ","32,566 ","31,745 " -1,"3,567,411 ","1,823,076 ","1,744,335 ","2,993,450 ","1,533,990 ","1,459,460 ","510,194 ","256,768 ","253,426 ","63,767 ","32,318 ","31,449 " -2,"3,439,449 ","1,754,942 ","1,684,507 ","2,892,476 ","1,480,501 ","1,411,975 ","488,776 ","245,115 ","243,661 ","58,197 ","29,326 ","28,871 " -3,"3,392,093 ","1,729,006 ","1,663,087 ","2,848,406 ","1,456,577 ","1,391,829 ","488,940 ","244,938 ","244,002 ","54,747 ","27,491 ","27,256 " -4,"3,396,835 ","1,732,055 ","1,664,780 ","2,854,977 ","1,460,904 ","1,394,073 ","488,555 ","244,453 ","244,102 ","53,303 ","26,698 ","26,605 " -5,"3,468,940 ","1,768,012 ","1,700,928 ","2,916,534 ","1,491,383 ","1,425,151 ","494,629 ","247,503 ","247,126 ","57,777 ","29,126 ","28,651 " -6,"3,582,479 ","1,823,972 ","1,758,507 ","3,003,274 ","1,533,800 ","1,469,474 ","519,330 ","259,865 ","259,465 ","59,875 ","30,307 ","29,568 " -7,"3,823,954 ","1,946,311 ","1,877,643 ","3,221,189 ","1,644,436 ","1,576,753 ","544,336 ","272,430 ","271,906 ","58,429 ","29,445 ","28,984 " -8,"3,922,524 ","2,002,702 ","1,919,822 ","3,321,686 ","1,700,278 ","1,621,408 ","543,746 ","273,432 ","270,314 ","57,092 ","28,992 ","28,100 " -9,"4,048,928 ","2,065,242 ","1,983,686 ","3,427,411 ","1,752,390 ","1,675,021 ","562,393 ","283,013 ","279,380 ","59,124 ","29,839 ","29,285 " -10,"4,256,429 ","2,171,946 ","2,084,483 ","3,596,770 ","1,840,230 ","1,756,540 ","595,862 ","299,436 ","296,426 ","63,797 ","32,280 ","31,517 " -11,"4,215,705 ","2,150,606 ","2,065,099 ","3,578,547 ","1,830,995 ","1,747,552 ","575,891 ","288,749 ","287,142 ","61,267 ","30,862 ","30,405 " -12,"4,166,881 ","2,124,100 ","2,042,781 ","3,537,635 ","1,808,786 ","1,728,849 ","571,343 ","286,099 ","285,244 ","57,903 ","29,215 ","28,688 " -13,"4,193,163 ","2,132,378 ","2,060,785 ","3,562,312 ","1,817,055 ","1,745,257 ","573,563 ","286,527 ","287,036 ","57,288 ","28,796 ","28,492 " -14,"4,266,512 ","2,173,042 ","2,093,470 ","3,636,047 ","1,856,470 ","1,779,577 ","573,686 ","287,956 ","285,730 ","56,779 ","28,616 ","28,163 " -15,"4,257,060 ","2,172,079 ","2,084,981 ","3,623,001 ","1,853,268 ","1,769,733 ","572,645 ","287,598 ","285,047 ","61,414 ","31,213 ","30,201 " -16,"4,077,625 ","2,075,960 ","2,001,665 ","3,469,534 ","1,770,949 ","1,698,585 ","548,896 ","275,152 ","273,744 ","59,195 ","29,859 ","29,336 " -17,"4,037,981 ","2,054,479 ","1,983,502 ","3,444,962 ","1,757,391 ","1,687,571 ","535,274 ","267,819 ","267,455 ","57,745 ","29,269 ","28,476 " -18,"3,975,748 ","2,010,225 ","1,965,523 ","3,413,108 ","1,730,984 ","1,682,124 ","506,116 ","250,607 ","255,509 ","56,524 ","28,634 ","27,890 " -19,"3,947,500 ","1,995,159 ","1,952,341 ","3,404,754 ","1,726,696 ","1,678,058 ","485,246 ","239,317 ","245,929 ","57,500 ","29,146 ","28,354 " -20,"3,895,789 ","1,977,039 ","1,918,750 ","3,362,924 ","1,713,760 ","1,649,164 ","475,779 ","233,691 ","242,088 ","57,086 ","29,588 ","27,498 " -21,"3,696,985 ","1,875,145 ","1,821,840 ","3,187,617 ","1,624,691 ","1,562,926 ","451,643 ","220,816 ","230,827 ","57,725 ","29,638 ","28,087 " -22,"3,510,975 ","1,761,503 ","1,749,472 ","3,033,415 ","1,532,782 ","1,500,633 ","418,331 ","200,165 ","218,166 ","59,229 ","28,556 ","30,673 " -23,"3,481,136 ","1,735,631 ","1,745,505 ","3,025,043 ","1,519,119 ","1,505,924 ","395,630 ","187,978 ","207,652 ","60,463 ","28,534 ","31,929 " -24,"3,568,208 ","1,780,631 ","1,787,577 ","3,128,893 ","1,573,098 ","1,555,795 ","379,904 ","179,724 ","200,180 ","59,411 ","27,809 ","31,602 " -25,"3,810,706 ","1,909,521 ","1,901,185 ","3,384,219 ","1,708,170 ","1,676,049 ","370,286 ","174,573 ","195,713 ","56,201 ","26,778 ","29,423 " -26,"2,730,854 ","1,365,035 ","1,365,819 ","2,389,712 ","1,205,338 ","1,184,374 ","294,591 ","137,825 ","156,766 ","46,551 ","21,872 ","24,679 " -27,"2,815,750 ","1,397,176 ","1,418,574 ","2,452,945 ","1,228,639 ","1,224,306 ","311,856 ","144,852 ","167,004 ","50,949 ","23,685 ","27,264 " -28,"2,837,491 ","1,404,443 ","1,433,048 ","2,496,452 ","1,245,642 ","1,250,810 ","290,995 ","135,047 ","155,948 ","50,044 ","23,754 ","26,290 " -29,"3,045,673 ","1,511,490 ","1,534,183 ","2,694,468 ","1,346,834 ","1,347,634 ","300,465 ","140,290 ","160,175 ","50,740 ","24,366 ","26,374 " -30,"2,795,484 ","1,388,021 ","1,407,463 ","2,431,553 ","1,217,336 ","1,214,217 ","312,684 ","145,550 ","167,134 ","51,247 ","25,135 ","26,112 " -31,"2,510,244 ","1,244,310 ","1,265,934 ","2,191,110 ","1,095,917 ","1,095,193 ","273,619 ","126,110 ","147,509 ","45,515 ","22,283 ","23,232 " -32,"2,389,361 ","1,178,649 ","1,210,712 ","2,082,677 ","1,037,035 ","1,045,642 ","262,837 ","120,270 ","142,567 ","43,847 ","21,344 ","22,503 " -33,"2,329,854 ","1,145,490 ","1,184,364 ","2,030,232 ","1,007,727 ","1,022,505 ","256,269 ","116,819 ","139,450 ","43,353 ","20,944 ","22,409 " -34,"2,358,520 ","1,158,172 ","1,200,348 ","2,056,441 ","1,019,701 ","1,036,740 ","260,573 ","118,600 ","141,973 ","41,506 ","19,871 ","21,635 " -35,"2,275,416 ","1,117,237 ","1,158,179 ","1,991,353 ","987,155 ","1,004,198 ","247,208 ","112,519 ","134,689 ","36,855 ","17,563 ","19,292 " -36,"2,245,082 ","1,099,674 ","1,145,408 ","1,965,871 ","972,403 ","993,468 ","244,388 ","110,979 ","133,409 ","34,823 ","16,292 ","18,531 " -37,"2,222,773 ","1,091,031 ","1,131,742 ","1,940,483 ","961,908 ","978,575 ","246,432 ","112,427 ","134,005 ","35,858 ","16,696 ","19,162 " -38,"2,177,719 ","1,067,160 ","1,110,559 ","1,903,446 ","942,498 ","960,948 ","238,023 ","107,868 ","130,155 ","36,250 ","16,794 ","19,456 " -39,"2,237,432 ","1,094,811 ","1,142,621 ","1,953,852 ","965,223 ","988,629 ","244,902 ","111,674 ","133,228 ","38,678 ","17,914 ","20,764 " -40,"2,255,241 ","1,107,944 ","1,147,297 ","1,983,757 ","983,880 ","999,877 ","233,501 ","106,439 ","127,062 ","37,983 ","17,625 ","20,358 " -41,"2,294,800 ","1,128,037 ","1,166,763 ","2,019,919 ","1,001,925 ","1,017,994 ","237,165 ","108,694 ","128,471 ","37,716 ","17,418 ","20,298 " -42,"2,421,323 ","1,184,801 ","1,236,522 ","2,125,044 ","1,048,851 ","1,076,193 ","257,644 ","118,197 ","139,447 ","38,635 ","17,753 ","20,882 " -43,"2,348,590 ","1,147,365 ","1,201,225 ","2,076,503 ","1,022,740 ","1,053,763 ","236,267 ","108,130 ","128,137 ","35,820 ","16,495 ","19,325 " -44,"2,381,131 ","1,161,746 ","1,219,385 ","2,113,269 ","1,038,569 ","1,074,700 ","233,512 ","107,269 ","126,243 ","34,350 ","15,908 ","18,442 " -45,"2,368,042 ","1,149,996 ","1,218,046 ","2,109,516 ","1,031,299 ","1,078,217 ","226,018 ","103,612 ","122,406 ","32,508 ","15,085 ","17,423 " -46,"2,390,643 ","1,156,878 ","1,233,765 ","2,128,405 ","1,036,026 ","1,092,379 ","231,148 ","106,173 ","124,975 ","31,090 ","14,679 ","16,411 " -47,"2,442,225 ","1,178,902 ","1,263,323 ","2,181,312 ","1,057,496 ","1,123,816 ","230,409 ","106,698 ","123,711 ","30,504 ","14,708 ","15,796 " -48,"2,410,240 ","1,160,148 ","1,250,092 ","2,158,628 ","1,043,790 ","1,114,838 ","223,010 ","102,594 ","120,416 ","28,602 ","13,764 ","14,838 " -49,"2,421,471 ","1,163,256 ","1,258,215 ","2,164,402 ","1,044,619 ","1,119,783 ","228,653 ","104,715 ","123,938 ","28,416 ","13,922 ","14,494 " -50,"2,430,489 ","1,172,460 ","1,258,029 ","2,188,309 ","1,059,958 ","1,128,351 ","215,521 ","99,203 ","116,318 ","26,659 ","13,299 ","13,360 " -51,"2,381,271 ","1,149,446 ","1,231,825 ","2,140,124 ","1,037,381 ","1,102,743 ","216,177 ","99,685 ","116,492 ","24,970 ","12,380 ","12,590 " -52,"2,414,096 ","1,161,083 ","1,253,013 ","2,151,936 ","1,039,337 ","1,112,599 ","236,699 ","109,186 ","127,513 ","25,461 ","12,560 ","12,901 " -53,"2,272,102 ","1,087,932 ","1,184,170 ","2,043,277 ","981,423 ","1,061,854 ","206,742 ","95,502 ","111,240 ","22,083 ","11,007 ","11,076 " -54,"2,155,553 ","1,034,551 ","1,121,002 ","1,952,958 ","940,300 ","1,012,658 ","182,380 ","84,267 ","98,113 ","20,215 ","9,984 ","10,231 " -55,"2,078,269 ","995,366 ","1,082,903 ","1,886,700 ","907,382 ","979,318 ","172,909 ","78,635 ","94,274 ","18,660 ","9,349 ","9,311 " -56,"2,058,659 ","983,869 ","1,074,790 ","1,869,782 ","896,562 ","973,220 ","170,347 ","77,874 ","92,473 ","18,530 ","9,433 ","9,097 " -57,"2,056,295 ","980,711 ","1,075,584 ","1,865,188 ","891,605 ","973,583 ","172,919 ","79,739 ","93,180 ","18,188 ","9,367 ","8,821 " -58,"1,996,197 ","949,895 ","1,046,302 ","1,809,883 ","862,832 ","947,051 ","168,913 ","78,068 ","90,845 ","17,401 ","8,995 ","8,406 " -59,"1,964,521 ","928,453 ","1,036,068 ","1,777,129 ","841,912 ","935,217 ","170,082 ","77,299 ","92,783 ","17,310 ","9,242 ","8,068 " -60,"1,866,721 ","880,448 ","986,273 ","1,695,716 ","800,842 ","894,874 ","154,645 ","70,667 ","83,978 ","16,360 ","8,939 ","7,421 " -61,"1,843,374 ","865,567 ","977,807 ","1,654,907 ","777,664 ","877,243 ","171,807 ","78,485 ","93,322 ","16,660 ","9,418 ","7,242 " -62,"1,868,900 ","871,486 ","997,414 ","1,680,718 ","783,712 ","897,006 ","172,067 ","78,562 ","93,505 ","16,115 ","9,212 ","6,903 " -63,"1,762,498 ","812,424 ","950,074 ","1,595,561 ","735,760 ","859,801 ","152,410 ","68,413 ","83,997 ","14,527 ","8,251 ","6,276 " -64,"1,715,315 ","783,125 ","932,190 ","1,547,470 ","707,113 ","840,357 ","154,285 ","68,142 ","86,143 ","13,560 ","7,870 ","5,690 " -65,"1,617,903 ","732,391 ","885,512 ","1,464,218 ","663,754 ","800,464 ","140,738 ","61,192 ","79,546 ","12,947 ","7,445 ","5,502 " -66,"1,565,388 ","701,209 ","864,179 ","1,407,571 ","630,537 ","777,034 ","145,196 ","63,386 ","81,810 ","12,621 ","7,286 ","5,335 " -67,"1,499,968 ","666,993 ","832,975 ","1,346,493 ","597,904 ","748,589 ","140,827 ","61,816 ","79,011 ","12,648 ","7,273 ","5,375 " -68,"1,403,814 ","619,979 ","783,835 ","1,274,004 ","561,670 ","712,334 ","117,701 ","51,597 ","66,104 ","12,109 ","6,712 ","5,397 " -69,"1,317,163 ","577,926 ","739,237 ","1,203,207 ","526,203 ","677,004 ","101,540 ","45,142 ","56,398 ","12,416 ","6,581 ","5,835 " -70,"1,165,820 ","505,837 ","659,983 ","1,071,008 ","463,373 ","607,635 ","83,327 ","36,388 ","46,939 ","11,485 ","6,076 ","5,409 " -71,"1,200,090 ","509,924 ","690,166 ","1,083,255 ","457,104 ","626,151 ","105,381 ","46,642 ","58,739 ","11,454 ","6,178 ","5,276 " -72,"1,164,701 ","489,586 ","675,115 ","1,057,347 ","440,912 ","616,435 ","96,231 ","42,746 ","53,485 ","11,123 ","5,928 ","5,195 " -73,"1,041,074 ","432,833 ","608,241 ","957,574 ","395,823 ","561,751 ","74,235 ","32,227 ","42,008 ","9,265 ","4,783 ","4,482 " -74,"946,418 ","390,529 ","555,889 ","872,137 ","358,373 ","513,764 ","66,596 ","28,334 ","38,262 ","7,685 ","3,822 ","3,863 " -75,"902,220 ","369,129 ","533,091 ","830,519 ","337,990 ","492,529 ","64,892 ","27,797 ","37,095 ","6,809 ","3,342 ","3,467 " -76,"877,299 ","352,107 ","525,192 ","802,269 ","319,910 ","482,359 ","69,430 ","29,585 ","39,845 ","5,600 ","2,612 ","2,988 " -77,"821,522 ","326,669 ","494,853 ","753,204 ","297,854 ","455,350 ","63,255 ","26,447 ","36,808 ","5,063 ","2,368 ","2,695 " -78,"751,913 ","297,834 ","454,079 ","690,770 ","272,091 ","418,679 ","58,126 ","24,641 ","33,485 ","3,017 ","1,102 ","1,915 " -79,"698,374 ","272,812 ","425,562 ","647,448 ","251,677 ","395,771 ","46,512 ","19,104 ","27,408 ","4,414 ","2,031 ","2,383 " -80,"600,143 ","229,560 ","370,583 ","554,885 ","211,026 ","343,859 ","41,206 ","16,584 ","24,622 ","4,052 ","1,950 ","2,102 " -81,"545,217 ","203,574 ","341,643 ","500,752 ","185,427 ","315,325 ","41,776 ","17,015 ","24,761 ","2,689 ","1,132 ","1,557 " -82,"526,766 ","194,666 ","332,100 ","484,064 ","176,980 ","307,084 ","37,918 ","14,915 ","23,003 ","4,784 ","2,771 ","2,013 " -83,"462,095 ","169,036 ","293,059 ","427,749 ","155,131 ","272,618 ","30,687 ","11,887 ","18,800 ","3,659 ","2,018 ","1,641 " -84,"369,492 ","134,037 ","235,455 ","344,696 ","124,213 ","220,483 ","22,462 ","8,649 ","13,813 ","2,334 ","1,175 ","1,159 " -85+,"1,542,441 ","522,129 ","1,020,312 ","1,419,120 ","474,953 ","944,167 ","109,953 ","40,388 ","69,565 ","13,368 ","6,788 ","6,580 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1973.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1973.csv deleted file mode 100644 index 0897b7b9bd..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1973.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1973",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"211,908,788 ","103,506,451 ","108,402,337 ","184,781,915 ","90,506,843 ","94,275,072 ","24,028,815 ","11,469,853 ","12,558,962 ","3,098,058 ","1,529,755 ","1,568,303 " -,,,,,,,,,,,, -0,"3,128,246 ","1,598,306 ","1,529,940 ","2,602,713 ","1,332,727 ","1,269,986 ","461,141 ","232,565 ","228,576 ","64,392 ","33,014 ","31,378 " -1,"3,262,329 ","1,664,339 ","1,597,990 ","2,718,255 ","1,390,818 ","1,327,437 ","478,696 ","240,641 ","238,055 ","65,378 ","32,880 ","32,498 " -2,"3,522,332 ","1,801,880 ","1,720,452 ","2,943,489 ","1,510,023 ","1,433,466 ","513,362 ","258,642 ","254,720 ","65,481 ","33,215 ","32,266 " -3,"3,485,898 ","1,777,555 ","1,708,343 ","2,929,176 ","1,498,345 ","1,430,831 ","496,748 ","249,147 ","247,601 ","59,974 ","30,063 ","29,911 " -4,"3,452,041 ","1,759,251 ","1,692,790 ","2,896,120 ","1,481,076 ","1,415,044 ","499,885 ","250,113 ","249,772 ","56,036 ","28,062 ","27,974 " -5,"3,396,993 ","1,733,648 ","1,663,345 ","2,850,453 ","1,459,936 ","1,390,517 ","488,345 ","244,440 ","243,905 ","58,195 ","29,272 ","28,923 " -6,"3,491,086 ","1,775,904 ","1,715,182 ","2,935,882 ","1,498,457 ","1,437,425 ","496,731 ","247,935 ","248,796 ","58,473 ","29,512 ","28,961 " -7,"3,623,683 ","1,848,116 ","1,775,567 ","3,039,128 ","1,554,872 ","1,484,256 ","523,257 ","262,257 ","261,000 ","61,298 ","30,987 ","30,311 " -8,"3,761,820 ","1,915,608 ","1,846,212 ","3,169,224 ","1,618,126 ","1,551,098 ","533,921 ","267,748 ","266,173 ","58,675 ","29,734 ","28,941 " -9,"4,005,252 ","2,044,981 ","1,960,271 ","3,380,074 ","1,730,110 ","1,649,964 ","564,150 ","284,029 ","280,121 ","61,028 ","30,842 ","30,186 " -10,"4,194,673 ","2,141,835 ","2,052,838 ","3,535,626 ","1,809,690 ","1,725,936 ","593,219 ","298,754 ","294,465 ","65,828 ","33,391 ","32,437 " -11,"4,149,643 ","2,116,561 ","2,033,082 ","3,509,889 ","1,795,055 ","1,714,834 ","576,555 ","289,571 ","286,984 ","63,199 ","31,935 ","31,264 " -12,"4,236,385 ","2,161,473 ","2,074,912 ","3,592,653 ","1,838,043 ","1,754,610 ","581,255 ","291,766 ","289,489 ","62,477 ","31,664 ","30,813 " -13,"4,186,826 ","2,132,423 ","2,054,403 ","3,553,424 ","1,815,701 ","1,737,723 ","573,870 ","286,726 ","287,144 ","59,532 ","29,996 ","29,536 " -14,"4,262,073 ","2,167,663 ","2,094,410 ","3,616,696 ","1,844,454 ","1,772,242 ","585,722 ","293,147 ","292,575 ","59,655 ","30,062 ","29,593 " -15,"4,273,105 ","2,179,318 ","2,093,787 ","3,636,611 ","1,858,875 ","1,777,736 ","573,237 ","288,198 ","285,039 ","63,257 ","32,245 ","31,012 " -16,"4,236,799 ","2,158,236 ","2,078,563 ","3,600,587 ","1,838,821 ","1,761,766 ","572,769 ","287,304 ","285,465 ","63,443 ","32,111 ","31,332 " -17,"4,095,001 ","2,082,759 ","2,012,242 ","3,480,705 ","1,774,719 ","1,705,986 ","551,087 ","275,973 ","275,114 ","63,209 ","32,067 ","31,142 " -18,"4,052,657 ","2,052,470 ","2,000,187 ","3,463,937 ","1,759,718 ","1,704,219 ","527,764 ","261,798 ","265,966 ","60,956 ","30,954 ","30,002 " -19,"4,061,281 ","2,052,366 ","2,008,915 ","3,487,157 ","1,768,635 ","1,718,522 ","512,190 ","252,351 ","259,839 ","61,934 ","31,380 ","30,554 " -20,"3,998,373 ","2,027,942 ","1,970,431 ","3,442,755 ","1,752,270 ","1,690,485 ","494,357 ","243,959 ","250,398 ","61,261 ","31,713 ","29,548 " -21,"3,797,654 ","1,927,896 ","1,869,758 ","3,283,008 ","1,675,618 ","1,607,390 ","454,497 ","221,729 ","232,768 ","60,149 ","30,549 ","29,600 " -22,"3,655,348 ","1,838,574 ","1,816,774 ","3,149,487 ","1,595,269 ","1,554,218 ","444,830 ","213,270 ","231,560 ","61,031 ","30,035 ","30,996 " -23,"3,487,642 ","1,740,925 ","1,746,717 ","3,014,652 ","1,516,662 ","1,497,990 ","409,271 ","194,359 ","214,912 ","63,719 ","29,904 ","33,815 " -24,"3,582,406 ","1,784,485 ","1,797,921 ","3,114,640 ","1,564,233 ","1,550,407 ","402,377 ","190,113 ","212,264 ","65,389 ","30,139 ","35,250 " -25,"3,547,445 ","1,774,212 ","1,773,233 ","3,106,035 ","1,565,823 ","1,540,212 ","380,186 ","179,766 ","200,420 ","61,224 ","28,623 ","32,601 " -26,"3,774,520 ","1,890,311 ","1,884,209 ","3,351,906 ","1,691,955 ","1,659,951 ","363,098 ","170,592 ","192,506 ","59,516 ","27,764 ","31,752 " -27,"2,771,417 ","1,381,412 ","1,390,005 ","2,414,576 ","1,215,257 ","1,199,319 ","305,789 ","142,530 ","163,259 ","51,052 ","23,625 ","27,427 " -28,"2,792,958 ","1,384,648 ","1,408,310 ","2,441,984 ","1,222,138 ","1,219,846 ","297,384 ","137,511 ","159,873 ","53,590 ","24,999 ","28,591 " -29,"2,899,904 ","1,435,995 ","1,463,909 ","2,545,456 ","1,270,273 ","1,275,183 ","300,133 ","140,065 ","160,068 ","54,315 ","25,657 ","28,658 " -30,"3,177,852 ","1,579,100 ","1,598,752 ","2,795,504 ","1,399,921 ","1,395,583 ","325,786 ","151,760 ","174,026 ","56,562 ","27,419 ","29,143 " -31,"2,673,715 ","1,326,084 ","1,347,631 ","2,339,888 ","1,170,527 ","1,169,361 ","283,787 ","131,276 ","152,511 ","50,040 ","24,281 ","25,759 " -32,"2,531,847 ","1,251,222 ","1,280,625 ","2,200,072 ","1,097,707 ","1,102,365 ","282,925 ","129,894 ","153,031 ","48,850 ","23,621 ","25,229 " -33,"2,373,292 ","1,167,651 ","1,205,641 ","2,059,205 ","1,023,186 ","1,036,019 ","266,688 ","121,695 ","144,993 ","47,399 ","22,770 ","24,629 " -34,"2,396,127 ","1,176,301 ","1,219,826 ","2,089,768 ","1,035,713 ","1,054,055 ","262,198 ","119,465 ","142,733 ","44,161 ","21,123 ","23,038 " -35,"2,347,687 ","1,153,346 ","1,194,341 ","2,053,155 ","1,018,397 ","1,034,758 ","254,403 ","115,788 ","138,615 ","40,129 ","19,161 ","20,968 " -36,"2,262,621 ","1,108,845 ","1,153,776 ","1,978,090 ","979,221 ","998,869 ","246,948 ","111,976 ","134,972 ","37,583 ","17,648 ","19,935 " -37,"2,245,782 ","1,098,268 ","1,147,514 ","1,962,610 ","969,578 ","993,032 ","246,769 ","111,825 ","134,944 ","36,403 ","16,865 ","19,538 " -38,"2,210,794 ","1,085,319 ","1,125,475 ","1,934,574 ","959,072 ","975,502 ","239,527 ","109,179 ","130,348 ","36,693 ","17,068 ","19,625 " -39,"2,203,108 ","1,080,055 ","1,123,053 ","1,925,505 ","953,679 ","971,826 ","238,670 ","108,233 ","130,437 ","38,933 ","18,143 ","20,790 " -40,"2,256,186 ","1,105,312 ","1,150,874 ","1,967,348 ","973,067 ","994,281 ","247,856 ","113,162 ","134,694 ","40,982 ","19,083 ","21,899 " -41,"2,236,841 ","1,099,258 ","1,137,583 ","1,964,656 ","974,665 ","989,991 ","232,332 ","105,951 ","126,381 ","39,853 ","18,642 ","21,211 " -42,"2,294,161 ","1,127,678 ","1,166,483 ","2,018,176 ","1,000,761 ","1,017,415 ","236,489 ","108,546 ","127,943 ","39,496 ","18,371 ","21,125 " -43,"2,406,060 ","1,177,194 ","1,228,866 ","2,109,920 ","1,040,845 ","1,069,075 ","256,067 ","117,823 ","138,244 ","40,073 ","18,526 ","21,547 " -44,"2,346,827 ","1,145,684 ","1,201,143 ","2,075,122 ","1,020,937 ","1,054,185 ","234,579 ","107,616 ","126,963 ","37,126 ","17,131 ","19,995 " -45,"2,365,456 ","1,151,659 ","1,213,797 ","2,101,404 ","1,030,198 ","1,071,206 ","229,491 ","105,498 ","123,993 ","34,561 ","15,963 ","18,598 " -46,"2,353,253 ","1,142,293 ","1,210,960 ","2,098,351 ","1,024,914 ","1,073,437 ","222,421 ","102,348 ","120,073 ","32,481 ","15,031 ","17,450 " -47,"2,383,629 ","1,152,399 ","1,231,230 ","2,124,638 ","1,033,417 ","1,091,221 ","227,638 ","104,223 ","123,415 ","31,353 ","14,759 ","16,594 " -48,"2,424,640 ","1,166,833 ","1,257,807 ","2,161,085 ","1,044,541 ","1,116,544 ","232,785 ","107,567 ","125,218 ","30,770 ","14,725 ","16,045 " -49,"2,433,195 ","1,168,489 ","1,264,706 ","2,181,164 ","1,052,843 ","1,128,321 ","222,496 ","101,483 ","121,013 ","29,535 ","14,163 ","15,372 " -50,"2,386,051 ","1,145,262 ","1,240,789 ","2,136,248 ","1,030,474 ","1,105,774 ","221,124 ","100,799 ","120,325 ","28,679 ","13,989 ","14,690 " -51,"2,445,651 ","1,177,183 ","1,268,468 ","2,197,478 ","1,062,447 ","1,135,031 ","220,797 ","101,158 ","119,639 ","27,376 ","13,578 ","13,798 " -52,"2,367,807 ","1,139,983 ","1,227,824 ","2,128,966 ","1,029,700 ","1,099,266 ","213,139 ","97,655 ","115,484 ","25,702 ","12,628 ","13,074 " -53,"2,400,538 ","1,152,729 ","1,247,809 ","2,139,615 ","1,031,641 ","1,107,974 ","235,290 ","108,438 ","126,852 ","25,633 ","12,650 ","12,983 " -54,"2,246,798 ","1,073,426 ","1,173,372 ","2,024,541 ","970,167 ","1,054,374 ","199,702 ","92,115 ","107,587 ","22,555 ","11,144 ","11,411 " -55,"2,127,097 ","1,017,679 ","1,109,418 ","1,927,363 ","925,345 ","1,002,018 ","179,469 ","82,345 ","97,124 ","20,265 ","9,989 ","10,276 " -56,"2,055,940 ","980,894 ","1,075,046 ","1,865,499 ","893,256 ","972,243 ","171,465 ","78,099 ","93,366 ","18,976 ","9,539 ","9,437 " -57,"2,034,584 ","968,657 ","1,065,927 ","1,851,749 ","884,509 ","967,240 ","164,213 ","74,717 ","89,496 ","18,622 ","9,431 ","9,191 " -58,"2,027,978 ","961,350 ","1,066,628 ","1,834,850 ","871,789 ","963,061 ","174,396 ","79,976 ","94,420 ","18,732 ","9,585 ","9,147 " -59,"1,983,358 ","939,178 ","1,044,180 ","1,799,715 ","853,776 ","945,939 ","165,869 ","76,195 ","89,674 ","17,774 ","9,207 ","8,567 " -60,"1,897,202 ","892,288 ","1,004,914 ","1,721,559 ","811,781 ","909,778 ","158,500 ","71,466 ","87,034 ","17,143 ","9,041 ","8,102 " -61,"1,865,564 ","876,908 ","988,656 ","1,689,411 ","795,238 ","894,173 ","159,120 ","72,422 ","86,698 ","17,033 ","9,248 ","7,785 " -62,"1,827,066 ","850,010 ","977,056 ","1,637,253 ","762,093 ","875,160 ","173,084 ","78,474 ","94,610 ","16,729 ","9,443 ","7,286 " -63,"1,859,114 ","859,139 ","999,975 ","1,666,395 ","769,748 ","896,647 ","176,553 ","80,263 ","96,290 ","16,166 ","9,128 ","7,038 " -64,"1,750,243 ","796,414 ","953,829 ","1,579,721 ","719,418 ","860,303 ","156,191 ","68,874 ","87,317 ","14,331 ","8,122 ","6,209 " -65,"1,698,598 ","765,768 ","932,830 ","1,531,170 ","691,284 ","839,886 ","153,803 ","66,653 ","87,150 ","13,625 ","7,831 ","5,794 " -66,"1,594,781 ","711,768 ","883,013 ","1,439,060 ","643,227 ","795,833 ","142,974 ","61,149 ","81,825 ","12,747 ","7,392 ","5,355 " -67,"1,530,467 ","678,635 ","851,832 ","1,378,600 ","610,918 ","767,682 ","139,142 ","60,487 ","78,655 ","12,725 ","7,230 ","5,495 " -68,"1,458,335 ","641,386 ","816,949 ","1,310,936 ","575,458 ","735,478 ","134,730 ","58,809 ","75,921 ","12,669 ","7,119 ","5,550 " -69,"1,353,465 ","592,750 ","760,715 ","1,238,633 ","541,129 ","697,504 ","102,059 ","44,758 ","57,301 ","12,773 ","6,863 ","5,910 " -70,"1,232,619 ","533,771 ","698,848 ","1,129,436 ","487,041 ","642,395 ","90,909 ","40,252 ","50,657 ","12,274 ","6,478 ","5,796 " -71,"1,134,140 ","487,698 ","646,442 ","1,043,228 ","446,593 ","596,635 ","79,335 ","34,998 ","44,337 ","11,577 ","6,107 ","5,470 " -72,"1,139,517 ","476,858 ","662,659 ","1,033,079 ","428,785 ","604,294 ","94,796 ","41,829 ","52,967 ","11,642 ","6,244 ","5,398 " -73,"1,119,838 ","464,833 ","655,005 ","1,014,118 ","416,954 ","597,164 ","94,874 ","42,143 ","52,731 ","10,846 ","5,736 ","5,110 " -74,"985,307 ","402,041 ","583,266 ","908,419 ","368,967 ","539,452 ","67,816 ","28,417 ","39,399 ","9,072 ","4,657 ","4,415 " -75,"892,135 ","360,766 ","531,369 ","822,210 ","331,376 ","490,834 ","62,665 ","25,852 ","36,813 ","7,260 ","3,538 ","3,722 " -76,"857,800 ","343,718 ","514,082 ","783,757 ","312,193 ","471,564 ","68,424 ","28,792 ","39,632 ","5,619 ","2,733 ","2,886 " -77,"829,257 ","325,651 ","503,606 ","757,655 ","295,856 ","461,799 ","66,581 ","27,394 ","39,187 ","5,021 ","2,401 ","2,620 " -78,"785,936 ","307,266 ","478,670 ","713,866 ","276,754 ","437,112 ","69,473 ","29,753 ","39,720 ","2,597 ",759 ,"1,838 " -79,"700,339 ","271,793 ","428,546 ","650,411 ","251,764 ","398,647 ","45,440 ","18,001 ","27,439 ","4,488 ","2,028 ","2,460 " -80,"632,789 ","240,281 ","392,508 ","583,699 ","220,294 ","363,405 ","44,862 ","17,974 ","26,888 ","4,228 ","2,013 ","2,215 " -81,"570,527 ","214,408 ","356,119 ","522,446 ","194,523 ","327,923 ","45,758 ","19,147 ","26,611 ","2,323 ",738 ,"1,585 " -82,"501,303 ","180,977 ","320,326 ","461,767 ","165,484 ","296,283 ","36,532 ","14,111 ","22,421 ","3,004 ","1,382 ","1,622 " -83,"483,987 ","173,413 ","310,574 ","445,174 ","157,862 ","287,312 ","34,312 ","13,002 ","21,310 ","4,501 ","2,549 ","1,952 " -84,"417,054 ","149,410 ","267,644 ","387,659 ","137,660 ","249,999 ","26,167 ","9,984 ","16,183 ","3,228 ","1,766 ","1,462 " -85+,"1,606,740 ","538,078 ","1,068,662 ","1,479,696 ","490,451 ","989,245 ","113,570 ","41,045 ","72,525 ","13,474 ","6,582 ","6,892 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1974.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1974.csv deleted file mode 100644 index 9712cc3459..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1974.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1974",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"213,853,928 ","104,391,110 ","109,462,818 ","186,169,616 ","91,137,841 ","95,031,775 ","24,402,325 ","11,638,204 ","12,764,121 ","3,281,987 ","1,615,065 ","1,666,922 " -,,,,,,,,,,,, -0,"3,065,474 ","1,569,498 ","1,495,976 ","2,552,926 ","1,310,131 ","1,242,795 ","446,808 ","226,136 ","220,672 ","65,740 ","33,231 ","32,509 " -1,"3,076,817 ","1,570,345 ","1,506,472 ","2,551,129 ","1,305,498 ","1,245,631 ","460,287 ","231,512 ","228,775 ","65,401 ","33,335 ","32,066 " -2,"3,227,239 ","1,647,899 ","1,579,340 ","2,676,922 ","1,370,957 ","1,305,965 ","482,432 ","242,779 ","239,653 ","67,885 ","34,163 ","33,722 " -3,"3,571,284 ","1,825,770 ","1,745,514 ","2,981,568 ","1,528,560 ","1,453,008 ","522,063 ","263,017 ","259,046 ","67,653 ","34,193 ","33,460 " -4,"3,545,915 ","1,808,096 ","1,737,819 ","2,976,682 ","1,522,888 ","1,453,794 ","507,772 ","254,439 ","253,333 ","61,461 ","30,769 ","30,692 " -5,"3,450,079 ","1,759,446 ","1,690,633 ","2,889,173 ","1,478,633 ","1,410,540 ","500,213 ","250,338 ","249,875 ","60,693 ","30,475 ","30,218 " -6,"3,414,384 ","1,739,690 ","1,674,694 ","2,866,546 ","1,465,808 ","1,400,738 ","489,004 ","244,183 ","244,821 ","58,834 ","29,699 ","29,135 " -7,"3,536,215 ","1,801,922 ","1,734,293 ","2,974,915 ","1,521,005 ","1,453,910 ","500,939 ","250,498 ","250,441 ","60,361 ","30,419 ","29,942 " -8,"3,555,210 ","1,813,938 ","1,741,272 ","2,979,775 ","1,524,687 ","1,455,088 ","513,529 ","257,772 ","255,757 ","61,906 ","31,479 ","30,427 " -9,"3,849,313 ","1,959,733 ","1,889,580 ","3,228,970 ","1,648,191 ","1,580,779 ","556,900 ","279,514 ","277,386 ","63,443 ","32,028 ","31,415 " -10,"4,139,447 ","2,116,231 ","2,023,216 ","3,480,933 ","1,783,912 ","1,697,021 ","590,418 ","297,729 ","292,689 ","68,096 ","34,590 ","33,506 " -11,"4,098,453 ","2,091,570 ","2,006,883 ","3,454,440 ","1,767,271 ","1,687,169 ","578,476 ","291,091 ","287,385 ","65,537 ","33,208 ","32,329 " -12,"4,162,888 ","2,123,640 ","2,039,248 ","3,519,192 ","1,799,566 ","1,719,626 ","579,372 ","291,388 ","287,984 ","64,324 ","32,686 ","31,638 " -13,"4,258,683 ","2,171,634 ","2,087,049 ","3,610,018 ","1,846,331 ","1,763,687 ","584,289 ","292,709 ","291,580 ","64,376 ","32,594 ","31,782 " -14,"4,251,081 ","2,164,826 ","2,086,255 ","3,605,547 ","1,841,580 ","1,763,967 ","583,532 ","291,931 ","291,601 ","62,002 ","31,315 ","30,687 " -15,"4,273,266 ","2,176,425 ","2,096,841 ","3,619,072 ","1,847,909 ","1,771,163 ","587,379 ","294,483 ","292,896 ","66,815 ","34,033 ","32,782 " -16,"4,257,208 ","2,167,279 ","2,089,929 ","3,616,631 ","1,845,283 ","1,771,348 ","574,938 ","288,649 ","286,289 ","65,639 ","33,347 ","32,292 " -17,"4,253,657 ","2,165,123 ","2,088,534 ","3,611,214 ","1,842,680 ","1,768,534 ","574,889 ","288,068 ","286,821 ","67,554 ","34,375 ","33,179 " -18,"4,102,644 ","2,078,357 ","2,024,287 ","3,492,041 ","1,774,104 ","1,717,937 ","544,046 ","270,407 ","273,639 ","66,557 ","33,846 ","32,711 " -19,"4,154,823 ","2,103,515 ","2,051,308 ","3,551,414 ","1,804,430 ","1,746,984 ","536,598 ","265,095 ","271,503 ","66,811 ","33,990 ","32,821 " -20,"4,102,553 ","2,079,336 ","2,023,217 ","3,517,643 ","1,789,594 ","1,728,049 ","518,937 ","255,659 ","263,278 ","65,973 ","34,083 ","31,890 " -21,"3,900,766 ","1,978,049 ","1,922,717 ","3,363,515 ","1,713,505 ","1,650,010 ","473,093 ","231,841 ","241,252 ","64,158 ","32,703 ","31,455 " -22,"3,756,547 ","1,891,536 ","1,865,011 ","3,245,405 ","1,646,273 ","1,599,132 ","447,738 ","214,191 ","233,547 ","63,404 ","31,072 ","32,332 " -23,"3,635,084 ","1,819,445 ","1,815,639 ","3,133,764 ","1,580,519 ","1,553,245 ","435,928 ","207,477 ","228,451 ","65,392 ","31,449 ","33,943 " -24,"3,580,457 ","1,785,697 ","1,794,760 ","3,095,842 ","1,557,519 ","1,538,323 ","416,005 ","196,576 ","219,429 ","68,610 ","31,602 ","37,008 " -25,"3,566,868 ","1,779,778 ","1,787,090 ","3,095,792 ","1,558,074 ","1,537,718 ","403,238 ","190,401 ","212,837 ","67,838 ","31,303 ","36,535 " -26,"3,515,744 ","1,757,251 ","1,758,493 ","3,076,663 ","1,551,124 ","1,525,539 ","374,411 ","176,383 ","198,028 ","64,670 ","29,744 ","34,926 " -27,"3,824,862 ","1,910,697 ","1,914,165 ","3,384,205 ","1,704,702 ","1,679,503 ","376,206 ","176,210 ","199,996 ","64,451 ","29,785 ","34,666 " -28,"2,737,606 ","1,363,026 ","1,374,580 ","2,392,727 ","1,202,995 ","1,189,732 ","291,379 ","135,225 ","156,154 ","53,500 ","24,806 ","28,694 " -29,"2,876,037 ","1,426,005 ","1,450,032 ","2,511,041 ","1,256,486 ","1,254,555 ","306,848 ","142,491 ","164,357 ","58,148 ","27,028 ","31,120 " -30,"3,007,714 ","1,491,520 ","1,516,194 ","2,626,244 ","1,313,114 ","1,313,130 ","321,938 ","149,990 ","171,948 ","59,532 ","28,416 ","31,116 " -31,"3,047,968 ","1,512,763 ","1,535,205 ","2,693,724 ","1,347,725 ","1,345,999 ","298,769 ","138,413 ","160,356 ","55,475 ","26,625 ","28,850 " -32,"2,694,785 ","1,332,434 ","1,362,351 ","2,346,004 ","1,170,608 ","1,175,396 ","294,865 ","135,974 ","158,891 ","53,916 ","25,852 ","28,064 " -33,"2,512,797 ","1,238,332 ","1,274,465 ","2,172,082 ","1,081,195 ","1,090,887 ","288,119 ","132,002 ","156,117 ","52,596 ","25,135 ","27,461 " -34,"2,441,019 ","1,199,576 ","1,241,443 ","2,125,359 ","1,054,586 ","1,070,773 ","268,403 ","122,477 ","145,926 ","47,257 ","22,513 ","24,744 " -35,"2,380,890 ","1,169,977 ","1,210,913 ","2,081,394 ","1,032,523 ","1,048,871 ","256,650 ","116,993 ","139,657 ","42,846 ","20,461 ","22,385 " -36,"2,329,766 ","1,142,265 ","1,187,501 ","2,034,140 ","1,007,543 ","1,026,597 ","254,522 ","115,372 ","139,150 ","41,104 ","19,350 ","21,754 " -37,"2,264,038 ","1,107,510 ","1,156,528 ","1,974,159 ","975,802 ","998,357 ","250,362 ","113,317 ","137,045 ","39,517 ","18,391 ","21,126 " -38,"2,229,425 ","1,090,421 ","1,139,004 ","1,954,960 ","965,746 ","989,214 ","237,564 ","107,607 ","129,957 ","36,901 ","17,068 ","19,833 " -39,"2,244,801 ","1,102,278 ","1,142,523 ","1,964,459 ","973,880 ","990,579 ","240,841 ","109,936 ","130,905 ","39,501 ","18,462 ","21,039 " -40,"2,225,105 ","1,092,267 ","1,132,838 ","1,941,125 ","962,688 ","978,437 ","242,736 ","110,274 ","132,462 ","41,244 ","19,305 ","21,939 " -41,"2,229,195 ","1,092,257 ","1,136,938 ","1,940,010 ","959,601 ","980,409 ","246,326 ","112,562 ","133,764 ","42,859 ","20,094 ","22,765 " -42,"2,236,552 ","1,098,833 ","1,137,719 ","1,963,179 ","973,428 ","989,751 ","231,714 ","105,826 ","125,888 ","41,659 ","19,579 ","22,080 " -43,"2,277,211 ","1,119,047 ","1,158,164 ","2,001,384 ","991,870 ","1,009,514 ","234,937 ","108,100 ","126,837 ","40,890 ","19,077 ","21,813 " -44,"2,408,506 ","1,177,409 ","1,231,097 ","2,112,402 ","1,040,890 ","1,071,512 ","254,526 ","117,315 ","137,211 ","41,578 ","19,204 ","22,374 " -45,"2,330,127 ","1,134,446 ","1,195,681 ","2,063,076 ","1,011,999 ","1,051,077 ","229,995 ","105,466 ","124,529 ","37,056 ","16,981 ","20,075 " -46,"2,351,167 ","1,144,326 ","1,206,841 ","2,091,077 ","1,024,388 ","1,066,689 ","225,753 ","104,180 ","121,573 ","34,337 ","15,758 ","18,579 " -47,"2,348,110 ","1,138,635 ","1,209,475 ","2,096,537 ","1,023,380 ","1,073,157 ","218,820 ","100,178 ","118,642 ","32,753 ","15,077 ","17,676 " -48,"2,362,543 ","1,137,849 ","1,224,694 ","2,099,447 ","1,017,378 ","1,082,069 ","231,436 ","105,712 ","125,724 ","31,660 ","14,759 ","16,901 " -49,"2,456,746 ","1,179,327 ","1,277,419 ","2,192,340 ","1,057,720 ","1,134,620 ","232,379 ","106,321 ","126,058 ","32,027 ","15,286 ","16,741 " -50,"2,386,889 ","1,145,685 ","1,241,204 ","2,143,999 ","1,034,762 ","1,109,237 ","213,096 ","96,706 ","116,390 ","29,794 ","14,217 ","15,577 " -51,"2,409,373 ","1,153,747 ","1,255,626 ","2,150,553 ","1,035,376 ","1,115,177 ","229,257 ","104,039 ","125,218 ","29,563 ","14,332 ","15,231 " -52,"2,431,597 ","1,167,346 ","1,264,251 ","2,186,042 ","1,054,626 ","1,131,416 ","217,297 ","98,837 ","118,460 ","28,258 ","13,883 ","14,375 " -53,"2,356,947 ","1,133,213 ","1,223,734 ","2,118,737 ","1,023,272 ","1,095,465 ","212,262 ","97,186 ","115,076 ","25,948 ","12,755 ","13,193 " -54,"2,375,247 ","1,138,497 ","1,236,750 ","2,122,297 ","1,021,264 ","1,101,033 ","226,670 ","104,379 ","122,291 ","26,280 ","12,854 ","13,426 " -55,"2,217,740 ","1,056,334 ","1,161,406 ","1,997,806 ","954,862 ","1,042,944 ","197,298 ","90,305 ","106,993 ","22,636 ","11,167 ","11,469 " -56,"2,106,654 ","1,004,156 ","1,102,498 ","1,907,203 ","911,552 ","995,651 ","178,767 ","82,336 ","96,431 ","20,684 ","10,268 ","10,416 " -57,"2,033,465 ","966,524 ","1,066,941 ","1,850,092 ","882,565 ","967,527 ","164,286 ","74,427 ","89,859 ","19,087 ","9,532 ","9,555 " -58,"2,006,778 ","948,945 ","1,057,833 ","1,820,516 ","863,790 ","956,726 ","166,938 ","75,443 ","91,495 ","19,324 ","9,712 ","9,612 " -59,"2,021,247 ","953,628 ","1,067,619 ","1,831,093 ","865,907 ","965,186 ","170,932 ","77,872 ","93,060 ","19,222 ","9,849 ","9,373 " -60,"1,903,449 ","897,373 ","1,006,076 ","1,734,473 ","819,473 ","915,000 ","151,496 ","68,974 ","82,522 ","17,480 ","8,926 ","8,554 " -61,"1,910,517 ","896,311 ","1,014,206 ","1,725,745 ","811,967 ","913,778 ","166,699 ","74,892 ","91,807 ","18,073 ","9,452 ","8,621 " -62,"1,851,218 ","861,881 ","989,337 ","1,673,881 ","780,286 ","893,595 ","160,140 ","72,294 ","87,846 ","17,197 ","9,301 ","7,896 " -63,"1,816,165 ","837,780 ","978,385 ","1,622,050 ","748,192 ","873,858 ","177,184 ","80,183 ","97,001 ","16,931 ","9,405 ","7,526 " -64,"1,846,090 ","842,754 ","1,003,336 ","1,649,353 ","752,916 ","896,437 ","180,783 ","80,854 ","99,929 ","15,954 ","8,984 ","6,970 " -65,"1,732,362 ","778,637 ","953,725 ","1,563,459 ","703,799 ","859,660 ","154,317 ","66,682 ","87,635 ","14,586 ","8,156 ","6,430 " -66,"1,675,017 ","744,987 ","930,030 ","1,504,470 ","670,086 ","834,384 ","157,008 ","67,057 ","89,951 ","13,539 ","7,844 ","5,695 " -67,"1,558,455 ","689,230 ","869,225 ","1,409,541 ","623,892 ","785,649 ","136,003 ","58,019 ","77,984 ","12,911 ","7,319 ","5,592 " -68,"1,490,560 ","653,640 ","836,920 ","1,343,307 ","588,542 ","754,765 ","134,420 ","57,984 ","76,436 ","12,833 ","7,114 ","5,719 " -69,"1,407,520 ","614,323 ","793,197 ","1,277,869 ","556,264 ","721,605 ","116,203 ","50,779 ","65,424 ","13,448 ","7,280 ","6,168 " -70,"1,258,581 ","543,806 ","714,775 ","1,153,959 ","496,926 ","657,033 ","91,980 ","40,116 ","51,864 ","12,642 ","6,764 ","5,878 " -71,"1,211,742 ","521,330 ","690,412 ","1,109,962 ","474,559 ","635,403 ","89,276 ","40,179 ","49,097 ","12,504 ","6,592 ","5,912 " -72,"1,074,128 ","454,388 ","619,740 ","992,917 ","417,930 ","574,987 ","69,686 ","30,408 ","39,278 ","11,525 ","6,050 ","5,475 " -73,"1,100,498 ","454,759 ","645,739 ","993,925 ","406,639 ","587,286 ","95,269 ","42,087 ","53,182 ","11,304 ","6,033 ","5,271 " -74,"1,065,364 ","434,255 ","631,109 ","967,353 ","391,112 ","576,241 ","87,374 ","37,522 ","49,852 ","10,637 ","5,621 ","5,016 " -75,"932,416 ","372,938 ","559,478 ","859,742 ","342,566 ","517,176 ","64,094 ","26,041 ","38,053 ","8,580 ","4,331 ","4,249 " -76,"851,913 ","337,013 ","514,900 ","777,844 ","306,494 ","471,350 ","68,040 ","27,589 ","40,451 ","6,029 ","2,930 ","3,099 " -77,"811,685 ","318,197 ","493,488 ","741,548 ","289,285 ","452,263 ","65,016 ","26,333 ","38,683 ","5,121 ","2,579 ","2,542 " -78,"798,790 ","308,946 ","489,844 ","721,611 ","276,350 ","445,261 ","75,093 ","32,142 ","42,951 ","2,086 ",454 ,"1,632 " -79,"731,586 ","280,268 ","451,318 ","675,407 ","257,680 ","417,727 ","51,098 ","20,290 ","30,808 ","5,081 ","2,298 ","2,783 " -80,"627,172 ","236,160 ","391,012 ","579,211 ","217,260 ","361,951 ","43,777 ","16,959 ","26,818 ","4,184 ","1,941 ","2,243 " -81,"611,424 ","229,348 ","382,076 ","556,940 ","206,480 ","350,460 ","52,326 ","22,338 ","29,988 ","2,158 ",530 ,"1,628 " -82,"525,655 ","191,234 ","334,421 ","483,955 ","174,644 ","309,311 ","38,666 ","15,305 ","23,361 ","3,034 ","1,285 ","1,749 " -83,"456,169 ","158,822 ","297,347 ","421,164 ","145,677 ","275,487 ","32,175 ","11,898 ","20,277 ","2,830 ","1,247 ","1,583 " -84,"434,142 ","152,316 ","281,826 ","401,827 ","139,466 ","262,361 ","28,311 ","10,576 ","17,735 ","4,004 ","2,274 ","1,730 " -85+,"1,706,304 ","565,110 ","1,141,194 ","1,570,958 ","515,101 ","1,055,857 ","120,766 ","42,966 ","77,800 ","14,580 ","7,043 ","7,537 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1975.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1975.csv deleted file mode 100644 index b038c1542d..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1975.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1975",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"215,973,199 ","105,365,965 ","110,607,234 ","187,628,887 ","91,806,171 ","95,822,716 ","24,777,554 ","11,805,791 ","12,971,763 ","3,566,758 ","1,754,003 ","1,812,755 " -,,,,,,,,,,,, -0,"3,152,345 ","1,613,362 ","1,538,983 ","2,627,274 ","1,347,742 ","1,279,532 ","456,293 ","230,396 ","225,897 ","68,778 ","35,224 ","33,554 " -1,"3,005,595 ","1,537,368 ","1,468,227 ","2,493,636 ","1,278,985 ","1,214,651 ","443,251 ","223,757 ","219,494 ","68,708 ","34,626 ","34,082 " -2,"3,051,605 ","1,558,624 ","1,492,981 ","2,516,252 ","1,288,651 ","1,227,601 ","464,485 ","233,841 ","230,644 ","70,868 ","36,132 ","34,736 " -3,"3,276,743 ","1,672,052 ","1,604,691 ","2,713,045 ","1,388,495 ","1,324,550 ","490,873 ","246,977 ","243,896 ","72,825 ","36,580 ","36,245 " -4,"3,635,195 ","1,858,627 ","1,776,568 ","3,029,800 ","1,553,662 ","1,476,138 ","533,598 ","268,698 ","264,900 ","71,797 ","36,267 ","35,530 " -5,"3,545,888 ","1,808,967 ","1,736,921 ","2,968,734 ","1,519,676 ","1,449,058 ","508,786 ","255,025 ","253,761 ","68,368 ","34,266 ","34,102 " -6,"3,467,501 ","1,765,972 ","1,701,529 ","2,904,198 ","1,484,293 ","1,419,905 ","499,597 ","249,505 ","250,092 ","63,706 ","32,174 ","31,532 " -7,"3,467,426 ","1,769,713 ","1,697,713 ","2,910,015 ","1,490,519 ","1,419,496 ","493,762 ","247,109 ","246,653 ","63,649 ","32,085 ","31,564 " -8,"3,463,857 ","1,765,690 ","1,698,167 ","2,908,016 ","1,486,969 ","1,421,047 ","492,071 ","246,354 ","245,717 ","63,770 ","32,367 ","31,403 " -9,"3,649,460 ","1,861,225 ","1,788,235 ","3,040,815 ","1,555,140 ","1,485,675 ","538,647 ","270,549 ","268,098 ","69,998 ","35,536 ","34,462 " -10,"3,972,391 ","2,025,616 ","1,946,775 ","3,320,683 ","1,697,318 ","1,623,365 ","578,452 ","291,051 ","287,401 ","73,256 ","37,247 ","36,009 " -11,"4,056,388 ","2,072,501 ","1,983,887 ","3,405,651 ","1,744,346 ","1,661,305 ","580,316 ","292,315 ","288,001 ","70,421 ","35,840 ","34,581 " -12,"4,106,910 ","2,096,340 ","2,010,570 ","3,459,335 ","1,769,478 ","1,689,857 ","578,825 ","291,729 ","287,096 ","68,750 ","35,133 ","33,617 " -13,"4,189,041 ","2,136,544 ","2,052,497 ","3,537,561 ","1,808,960 ","1,728,601 ","582,885 ","292,616 ","290,269 ","68,595 ","34,968 ","33,627 " -14,"4,321,156 ","2,202,701 ","2,118,455 ","3,660,547 ","1,871,005 ","1,789,542 ","591,551 ","296,526 ","295,025 ","69,058 ","35,170 ","33,888 " -15,"4,268,471 ","2,176,953 ","2,091,518 ","3,609,394 ","1,845,907 ","1,763,487 ","587,259 ","294,294 ","292,965 ","71,818 ","36,752 ","35,066 " -16,"4,263,489 ","2,167,141 ","2,096,348 ","3,601,241 ","1,835,028 ","1,766,213 ","590,614 ","295,610 ","295,004 ","71,634 ","36,503 ","35,131 " -17,"4,274,385 ","2,174,735 ","2,099,650 ","3,625,837 ","1,848,786 ","1,777,051 ","576,784 ","289,222 ","287,562 ","71,764 ","36,727 ","35,037 " -18,"4,255,537 ","2,158,921 ","2,096,616 ","3,614,307 ","1,838,711 ","1,775,596 ","568,116 ","282,816 ","285,300 ","73,114 ","37,394 ","35,720 " -19,"4,222,944 ","2,139,153 ","2,083,791 ","3,592,300 ","1,825,556 ","1,766,744 ","555,589 ","275,240 ","280,349 ","75,055 ","38,357 ","36,698 " -20,"4,187,886 ","2,125,555 ","2,062,331 ","3,573,855 ","1,820,630 ","1,753,225 ","540,609 ","266,877 ","273,732 ","73,422 ","38,048 ","35,374 " -21,"4,007,933 ","2,030,220 ","1,977,713 ","3,439,471 ","1,750,579 ","1,688,892 ","497,452 ","243,321 ","254,131 ","71,010 ","36,320 ","34,690 " -22,"3,862,914 ","1,943,597 ","1,919,317 ","3,327,131 ","1,685,021 ","1,642,110 ","466,065 ","224,013 ","242,052 ","69,718 ","34,563 ","35,155 " -23,"3,742,778 ","1,876,070 ","1,866,708 ","3,233,512 ","1,633,674 ","1,599,838 ","439,440 ","208,729 ","230,711 ","69,826 ","33,667 ","36,159 " -24,"3,725,325 ","1,863,415 ","1,861,910 ","3,210,050 ","1,619,185 ","1,590,865 ","442,761 ","209,841 ","232,920 ","72,514 ","34,389 ","38,125 " -25,"3,572,437 ","1,783,915 ","1,788,522 ","3,081,113 ","1,552,649 ","1,528,464 ","417,350 ","197,063 ","220,287 ","73,974 ","34,203 ","39,771 " -26,"3,538,718 ","1,764,628 ","1,774,090 ","3,066,522 ","1,543,566 ","1,522,956 ","398,662 ","187,499 ","211,163 ","73,534 ","33,563 ","39,971 " -27,"3,564,531 ","1,777,014 ","1,787,517 ","3,105,604 ","1,562,300 ","1,543,304 ","387,033 ","181,842 ","205,191 ","71,894 ","32,872 ","39,022 " -28,"3,762,889 ","1,877,464 ","1,885,425 ","3,336,583 ","1,678,805 ","1,657,778 ","358,060 ","167,016 ","191,044 ","68,246 ","31,643 ","36,603 " -29,"2,841,781 ","1,414,459 ","1,427,322 ","2,481,166 ","1,246,834 ","1,234,332 ","300,650 ","139,885 ","160,765 ","59,965 ","27,740 ","32,225 " -30,"2,966,547 ","1,473,201 ","1,493,346 ","2,576,699 ","1,291,933 ","1,284,766 ","325,521 ","150,949 ","174,572 ","64,327 ","30,319 ","34,008 " -31,"2,893,216 ","1,432,779 ","1,460,437 ","2,534,801 ","1,266,035 ","1,268,766 ","298,252 ","138,215 ","160,037 ","60,163 ","28,529 ","31,634 " -32,"3,070,791 ","1,519,489 ","1,551,302 ","2,697,608 ","1,346,237 ","1,351,371 ","311,903 ","144,059 ","167,844 ","61,280 ","29,193 ","32,087 " -33,"2,673,948 ","1,318,337 ","1,355,611 ","2,313,529 ","1,151,520 ","1,162,009 ","301,325 ","138,652 ","162,673 ","59,094 ","28,165 ","30,929 " -34,"2,586,404 ","1,273,737 ","1,312,667 ","2,248,587 ","1,118,006 ","1,130,581 ","285,306 ","130,697 ","154,609 ","52,511 ","25,034 ","27,477 " -35,"2,422,829 ","1,192,641 ","1,230,188 ","2,112,241 ","1,049,846 ","1,062,395 ","263,402 ","120,238 ","143,164 ","47,186 ","22,557 ","24,629 " -36,"2,359,517 ","1,157,233 ","1,202,284 ","2,057,045 ","1,019,160 ","1,037,885 ","257,142 ","116,637 ","140,505 ","45,330 ","21,436 ","23,894 " -37,"2,333,477 ","1,141,938 ","1,191,539 ","2,029,690 ","1,003,786 ","1,025,904 ","259,095 ","117,202 ","141,893 ","44,692 ","20,950 ","23,742 " -38,"2,244,458 ","1,098,271 ","1,146,187 ","1,964,991 ","971,274 ","993,717 ","238,745 ","108,018 ","130,727 ","40,722 ","18,979 ","21,743 " -39,"2,273,389 ","1,112,141 ","1,161,248 ","1,993,020 ","984,437 ","1,008,583 ","239,534 ","108,679 ","130,855 ","40,835 ","19,025 ","21,810 " -40,"2,272,232 ","1,117,514 ","1,154,718 ","1,983,259 ","984,795 ","998,464 ","246,223 ","112,605 ","133,618 ","42,750 ","20,114 ","22,636 " -41,"2,191,105 ","1,075,632 ","1,115,473 ","1,906,411 ","945,465 ","960,946 ","240,891 ","109,506 ","131,385 ","43,803 ","20,661 ","23,142 " -42,"2,230,660 ","1,092,573 ","1,138,087 ","1,939,396 ","958,695 ","980,701 ","245,857 ","112,472 ","133,385 ","45,407 ","21,406 ","24,001 " -43,"2,218,980 ","1,089,860 ","1,129,120 ","1,945,148 ","963,992 ","981,156 ","230,219 ","105,319 ","124,900 ","43,613 ","20,549 ","23,064 " -44,"2,284,183 ","1,121,388 ","1,162,795 ","2,007,624 ","993,833 ","1,013,791 ","233,591 ","107,535 ","126,056 ","42,968 ","20,020 ","22,948 " -45,"2,391,229 ","1,165,327 ","1,225,902 ","2,100,455 ","1,031,567 ","1,068,888 ","249,133 ","114,667 ","134,466 ","41,641 ","19,093 ","22,548 " -46,"2,317,277 ","1,128,140 ","1,189,137 ","2,054,030 ","1,007,093 ","1,046,937 ","226,176 ","104,140 ","122,036 ","37,071 ","16,907 ","20,164 " -47,"2,348,673 ","1,142,109 ","1,206,564 ","2,091,610 ","1,024,264 ","1,067,346 ","222,015 ","101,800 ","120,215 ","35,048 ","16,045 ","19,003 " -48,"2,324,153 ","1,122,162 ","1,201,991 ","2,066,673 ","1,004,497 ","1,062,176 ","223,896 ","102,306 ","121,590 ","33,584 ","15,359 ","18,225 " -49,"2,403,030 ","1,154,422 ","1,248,608 ","2,138,229 ","1,034,271 ","1,103,958 ","231,158 ","104,426 ","126,732 ","33,643 ","15,725 ","17,918 " -50,"2,399,716 ","1,151,923 ","1,247,793 ","2,146,350 ","1,035,848 ","1,110,502 ","220,666 ","100,510 ","120,156 ","32,700 ","15,565 ","17,135 " -51,"2,419,176 ","1,158,542 ","1,260,634 ","2,164,262 ","1,042,563 ","1,121,699 ","223,563 ","101,098 ","122,465 ","31,351 ","14,881 ","16,470 " -52,"2,395,310 ","1,143,879 ","1,251,431 ","2,138,813 ","1,027,389 ","1,111,424 ","225,408 ","101,557 ","123,851 ","31,089 ","14,933 ","16,156 " -53,"2,424,569 ","1,162,843 ","1,261,726 ","2,178,204 ","1,049,638 ","1,128,566 ","217,312 ","98,925 ","118,387 ","29,053 ","14,280 ","14,773 " -54,"2,333,508 ","1,120,060 ","1,213,448 ","2,102,993 ","1,013,798 ","1,089,195 ","203,432 ","93,085 ","110,347 ","27,083 ","13,177 ","13,906 " -55,"2,346,160 ","1,121,442 ","1,224,718 ","2,094,305 ","1,005,534 ","1,088,771 ","225,045 ","102,819 ","122,226 ","26,810 ","13,089 ","13,721 " -56,"2,200,058 ","1,044,258 ","1,155,800 ","1,978,810 ","941,458 ","1,037,352 ","197,656 ","91,059 ","106,597 ","23,592 ","11,741 ","11,851 " -57,"2,086,289 ","990,878 ","1,095,411 ","1,894,689 ","902,393 ","992,296 ","170,421 ","78,071 ","92,350 ","21,179 ","10,414 ","10,765 " -58,"2,006,936 ","946,856 ","1,060,080 ","1,818,019 ","861,008 ","957,011 ","168,598 ","75,815 ","92,783 ","20,319 ","10,033 ","10,286 " -59,"2,006,314 ","944,319 ","1,061,995 ","1,822,850 ","860,968 ","961,882 ","163,230 ","73,197 ","90,033 ","20,234 ","10,154 ","10,080 " -60,"1,928,253 ","906,129 ","1,022,124 ","1,755,814 ","827,366 ","928,448 ","153,407 ","69,183 ","84,224 ","19,032 ","9,580 ","9,452 " -61,"1,931,107 ","909,091 ","1,022,016 ","1,749,229 ","825,551 ","923,678 ","162,937 ","73,979 ","88,958 ","18,941 ","9,561 ","9,380 " -62,"1,899,484 ","882,401 ","1,017,083 ","1,712,432 ","797,644 ","914,788 ","168,524 ","75,116 ","93,408 ","18,528 ","9,641 ","8,887 " -63,"1,839,876 ","850,030 ","989,846 ","1,658,560 ","766,769 ","891,791 ","163,522 ","73,827 ","89,695 ","17,794 ","9,434 ","8,360 " -64,"1,800,531 ","820,393 ","980,138 ","1,602,779 ","730,581 ","872,198 ","180,773 ","80,427 ","100,346 ","16,979 ","9,385 ","7,594 " -65,"1,827,810 ","824,789 ","1,003,021 ","1,633,514 ","737,711 ","895,803 ","177,723 ","77,895 ","99,828 ","16,573 ","9,183 ","7,390 " -66,"1,707,370 ","757,324 ","950,046 ","1,534,900 ","681,885 ","853,015 ","157,625 ","67,109 ","90,516 ","14,845 ","8,330 ","6,515 " -67,"1,636,899 ","722,362 ","914,537 ","1,474,528 ","651,171 ","823,357 ","148,481 ","63,386 ","85,095 ","13,890 ","7,805 ","6,085 " -68,"1,519,930 ","664,590 ","855,340 ","1,374,479 ","601,590 ","772,889 ","132,239 ","55,706 ","76,533 ","13,212 ","7,294 ","5,918 " -69,"1,440,341 ","627,086 ","813,255 ","1,312,532 ","570,684 ","741,848 ","114,199 ","49,154 ","65,045 ","13,610 ","7,248 ","6,362 " -70,"1,300,705 ","559,832 ","740,873 ","1,181,404 ","506,638 ","674,766 ","105,863 ","45,954 ","59,909 ","13,438 ","7,240 ","6,198 " -71,"1,248,110 ","536,585 ","711,525 ","1,142,522 ","488,503 ","654,019 ","92,493 ","41,077 ","51,416 ","13,095 ","7,005 ","6,090 " -72,"1,149,406 ","486,414 ","662,992 ","1,058,301 ","444,918 ","613,383 ","78,578 ","34,941 ","43,637 ","12,527 ","6,555 ","5,972 " -73,"1,038,666 ","433,625 ","605,041 ","957,295 ","397,262 ","560,033 ","69,887 ","30,370 ","39,517 ","11,484 ","5,993 ","5,491 " -74,"1,047,781 ","424,518 ","623,263 ","949,591 ","381,657 ","567,934 ","87,087 ","36,957 ","50,130 ","11,103 ","5,904 ","5,199 " -75,"1,013,748 ","405,468 ","608,280 ","919,762 ","365,086 ","554,676 ","83,987 ","35,195 ","48,792 ","9,999 ","5,187 ","4,812 " -76,"896,927 ","350,924 ","546,003 ","817,871 ","318,465 ","499,406 ","71,615 ","28,665 ","42,950 ","7,441 ","3,794 ","3,647 " -77,"807,752 ","312,252 ","495,500 ","738,121 ","284,635 ","453,486 ","63,991 ","24,786 ","39,205 ","5,640 ","2,831 ","2,809 " -78,"785,263 ","303,543 ","481,720 ","708,628 ","271,239 ","437,389 ","74,497 ","31,727 ","42,770 ","2,138 ",577 ,"1,561 " -79,"742,366 ","281,212 ","461,154 ","685,213 ","258,498 ","426,715 ","51,805 ","20,283 ","31,522 ","5,348 ","2,431 ","2,917 " -80,"650,375 ","241,397 ","408,978 ","596,263 ","219,929 ","376,334 ","49,456 ","19,325 ","30,131 ","4,656 ","2,143 ","2,513 " -81,"612,719 ","228,547 ","384,172 ","557,774 ","205,926 ","351,848 ","52,819 ","22,174 ","30,645 ","2,126 ",447 ,"1,679 " -82,"566,180 ","205,654 ","360,526 ","519,960 ","187,003 ","332,957 ","42,872 ","17,231 ","25,641 ","3,348 ","1,420 ","1,928 " -83,"479,380 ","168,511 ","310,869 ","443,071 ","154,704 ","288,367 ","33,375 ","12,619 ","20,756 ","2,934 ","1,188 ","1,746 " -84,"403,527 ","137,075 ","266,452 ","375,667 ","126,787 ","248,880 ","25,334 ","9,171 ","16,163 ","2,526 ","1,117 ","1,409 " -85+,"1,821,040 ","593,777 ","1,227,263 ","1,674,688 ","540,196 ","1,134,492 ","129,914 ","45,560 ","84,354 ","16,438 ","8,021 ","8,417 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1976.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1976.csv deleted file mode 100644 index 45df95d870..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1976.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1976",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"218,035,164 ","106,308,604 ","111,726,560 ","189,074,304 ","92,466,252 ","96,608,052 ","25,157,029 ","11,975,906 ","13,181,123 ","3,803,831 ","1,866,446 ","1,937,385 " -,,,,,,,,,,,, -0,"3,115,391 ","1,592,844 ","1,522,547 ","2,587,709 ","1,326,564 ","1,261,145 ","455,155 ","229,325 ","225,830 ","72,527 ","36,955 ","35,572 " -1,"3,079,357 ","1,574,751 ","1,504,606 ","2,559,259 ","1,312,262 ","1,246,997 ","449,768 ","226,609 ","223,159 ","70,330 ","35,880 ","34,450 " -2,"2,986,220 ","1,528,249 ","1,457,971 ","2,464,943 ","1,265,028 ","1,199,915 ","447,756 ","226,185 ","221,571 ","73,521 ","37,036 ","36,485 " -3,"3,100,598 ","1,582,492 ","1,518,106 ","2,553,127 ","1,306,599 ","1,246,528 ","472,800 ","237,913 ","234,887 ","74,671 ","37,980 ","36,691 " -4,"3,335,549 ","1,702,437 ","1,633,112 ","2,758,240 ","1,412,104 ","1,346,136 ","501,655 ","252,348 ","249,307 ","75,654 ","37,985 ","37,669 " -5,"3,634,324 ","1,858,764 ","1,775,560 ","3,022,124 ","1,550,372 ","1,471,752 ","535,342 ","269,638 ","265,704 ","76,858 ","38,754 ","38,104 " -6,"3,560,219 ","1,814,421 ","1,745,798 ","2,983,876 ","1,525,804 ","1,458,072 ","506,812 ","253,546 ","253,266 ","69,531 ","35,071 ","34,460 " -7,"3,526,690 ","1,799,189 ","1,727,501 ","2,954,390 ","1,512,464 ","1,441,926 ","504,999 ","252,833 ","252,166 ","67,301 ","33,892 ","33,409 " -8,"3,387,656 ","1,729,528 ","1,658,128 ","2,836,597 ","1,453,128 ","1,383,469 ","485,345 ","243,075 ","242,270 ","65,714 ","33,325 ","32,389 " -9,"3,562,384 ","1,814,684 ","1,747,700 ","2,972,533 ","1,518,891 ","1,453,642 ","518,881 ","259,853 ","259,028 ","70,970 ","35,940 ","35,030 " -10,"3,756,460 ","1,919,281 ","1,837,179 ","3,122,919 ","1,599,535 ","1,523,384 ","555,146 ","279,745 ","275,401 ","78,395 ","40,001 ","38,394 " -11,"3,900,197 ","1,987,259 ","1,912,938 ","3,253,122 ","1,661,703 ","1,591,419 ","572,831 ","287,802 ","285,029 ","74,244 ","37,754 ","36,490 " -12,"4,055,659 ","2,072,455 ","1,983,204 ","3,405,794 ","1,744,026 ","1,661,768 ","577,950 ","291,620 ","286,330 ","71,915 ","36,809 ","35,106 " -13,"4,132,265 ","2,109,328 ","2,022,937 ","3,477,999 ","1,779,550 ","1,698,449 ","582,539 ","293,084 ","289,455 ","71,727 ","36,694 ","35,033 " -14,"4,243,008 ","2,162,627 ","2,080,381 ","3,583,919 ","1,831,109 ","1,752,810 ","587,312 ","294,808 ","292,504 ","71,777 ","36,710 ","35,067 " -15,"4,340,062 ","2,215,743 ","2,124,319 ","3,664,858 ","1,875,771 ","1,789,087 ","597,161 ","299,842 ","297,319 ","78,043 ","40,130 ","37,913 " -16,"4,259,631 ","2,167,686 ","2,091,945 ","3,592,446 ","1,833,133 ","1,759,313 ","591,746 ","295,983 ","295,763 ","75,439 ","38,570 ","36,869 " -17,"4,275,907 ","2,172,544 ","2,103,363 ","3,607,711 ","1,837,602 ","1,770,109 ","591,969 ","295,904 ","296,065 ","76,227 ","39,038 ","37,189 " -18,"4,265,516 ","2,164,399 ","2,101,117 ","3,619,273 ","1,841,003 ","1,778,270 ","570,363 ","284,432 ","285,931 ","75,880 ","38,964 ","36,916 " -19,"4,393,025 ","2,228,971 ","2,164,054 ","3,729,883 ","1,898,304 ","1,831,579 ","582,503 ","289,283 ","293,220 ","80,639 ","41,384 ","39,255 " -20,"4,243,079 ","2,153,490 ","2,089,589 ","3,606,169 ","1,836,565 ","1,769,604 ","556,478 ","275,306 ","281,172 ","80,432 ","41,619 ","38,813 " -21,"4,093,340 ","2,075,205 ","2,018,135 ","3,497,601 ","1,781,515 ","1,716,086 ","518,973 ","254,322 ","264,651 ","76,766 ","39,368 ","37,398 " -22,"3,970,413 ","1,995,727 ","1,974,686 ","3,405,180 ","1,723,168 ","1,682,012 ","490,063 ","235,133 ","254,930 ","75,170 ","37,426 ","37,744 " -23,"3,852,956 ","1,929,992 ","1,922,964 ","3,320,251 ","1,674,955 ","1,645,296 ","458,076 ","218,675 ","239,401 ","74,629 ","36,362 ","38,267 " -24,"3,826,361 ","1,916,771 ","1,909,590 ","3,304,719 ","1,669,749 ","1,634,970 ","445,955 ","211,072 ","234,883 ","75,687 ","35,950 ","39,737 " -25,"3,721,512 ","1,862,718 ","1,858,794 ","3,199,341 ","1,615,424 ","1,583,917 ","444,665 ","210,571 ","234,094 ","77,506 ","36,723 ","40,783 " -26,"3,545,226 ","1,768,962 ","1,776,264 ","3,052,258 ","1,538,190 ","1,514,068 ","414,189 ","194,753 ","219,436 ","78,779 ","36,019 ","42,760 " -27,"3,585,646 ","1,783,184 ","1,802,462 ","3,094,409 ","1,553,864 ","1,540,545 ","411,177 ","192,960 ","218,217 ","80,060 ","36,360 ","43,700 " -28,"3,490,185 ","1,737,125 ","1,753,060 ","3,047,967 ","1,530,949 ","1,517,018 ","367,942 ","172,170 ","195,772 ","74,276 ","34,006 ","40,270 " -29,"3,931,716 ","1,960,519 ","1,971,197 ","3,487,633 ","1,753,451 ","1,734,182 ","369,527 ","172,585 ","196,942 ","74,556 ","34,483 ","40,073 " -30,"2,912,673 ","1,451,995 ","1,460,678 ","2,532,592 ","1,275,119 ","1,257,473 ","315,474 ","146,628 ","168,846 ","64,607 ","30,248 ","34,359 " -31,"2,860,541 ","1,418,130 ","1,442,411 ","2,491,178 ","1,247,346 ","1,243,832 ","304,684 ","140,567 ","164,117 ","64,679 ","30,217 ","34,462 " -32,"2,914,670 ","1,438,603 ","1,476,067 ","2,535,738 ","1,263,017 ","1,272,721 ","312,818 ","144,544 ","168,274 ","66,114 ","31,042 ","35,072 " -33,"3,043,499 ","1,501,253 ","1,542,246 ","2,657,393 ","1,322,532 ","1,334,861 ","319,838 ","147,407 ","172,431 ","66,268 ","31,314 ","34,954 " -34,"2,753,188 ","1,356,780 ","1,396,408 ","2,402,354 ","1,194,537 ","1,207,817 ","293,614 ","135,079 ","158,535 ","57,220 ","27,164 ","30,056 " -35,"2,562,647 ","1,264,785 ","1,297,862 ","2,230,108 ","1,111,425 ","1,118,683 ","280,702 ","128,618 ","152,084 ","51,837 ","24,742 ","27,095 " -36,"2,396,170 ","1,177,075 ","1,219,095 ","2,082,579 ","1,033,869 ","1,048,710 ","264,247 ","119,906 ","144,341 ","49,344 ","23,300 ","26,044 " -37,"2,363,665 ","1,156,831 ","1,206,834 ","2,052,251 ","1,015,085 ","1,037,166 ","262,726 ","118,868 ","143,858 ","48,688 ","22,878 ","25,810 " -38,"2,308,235 ","1,129,991 ","1,178,244 ","2,018,873 ","998,453 ","1,020,420 ","244,657 ","110,613 ","134,044 ","44,705 ","20,925 ","23,780 " -39,"2,296,776 ","1,123,915 ","1,172,861 ","2,011,203 ","993,847 ","1,017,356 ","241,330 ","109,369 ","131,961 ","44,243 ","20,699 ","23,544 " -40,"2,304,558 ","1,129,362 ","1,175,196 ","2,014,904 ","997,114 ","1,017,790 ","246,071 ","111,840 ","134,231 ","43,583 ","20,408 ","23,175 " -41,"2,228,690 ","1,096,034 ","1,132,656 ","1,939,914 ","963,208 ","976,706 ","243,993 ","111,625 ","132,368 ","44,783 ","21,201 ","23,582 " -42,"2,192,835 ","1,075,874 ","1,116,961 ","1,906,426 ","944,761 ","961,665 ","240,472 ","109,363 ","131,109 ","45,937 ","21,750 ","24,187 " -43,"2,211,075 ","1,082,569 ","1,128,506 ","1,919,704 ","948,505 ","971,199 ","244,360 ","111,888 ","132,472 ","47,011 ","22,176 ","24,835 " -44,"2,229,200 ","1,093,594 ","1,135,606 ","1,954,793 ","967,625 ","987,168 ","229,000 ","104,675 ","124,325 ","45,407 ","21,294 ","24,113 " -45,"2,266,037 ","1,108,311 ","1,157,726 ","1,995,740 ","984,183 ","1,011,557 ","227,935 ","104,616 ","123,319 ","42,362 ","19,512 ","22,850 " -46,"2,378,001 ","1,159,010 ","1,218,991 ","2,092,128 ","1,027,205 ","1,064,923 ","244,942 ","113,218 ","131,724 ","40,931 ","18,587 ","22,344 " -47,"2,315,799 ","1,126,282 ","1,189,517 ","2,056,217 ","1,007,874 ","1,048,343 ","222,220 ","101,486 ","120,734 ","37,362 ","16,922 ","20,440 " -48,"2,320,528 ","1,122,750 ","1,197,778 ","2,056,363 ","1,001,999 ","1,054,364 ","228,618 ","104,653 ","123,965 ","35,547 ","16,098 ","19,449 " -49,"2,371,690 ","1,141,942 ","1,229,748 ","2,112,679 ","1,024,819 ","1,087,860 ","223,568 ","100,887 ","122,681 ","35,443 ","16,236 ","19,207 " -50,"2,335,316 ","1,122,078 ","1,213,238 ","2,084,018 ","1,008,575 ","1,075,443 ","217,407 ","97,725 ","119,682 ","33,891 ","15,778 ","18,113 " -51,"2,440,346 ","1,168,579 ","1,271,767 ","2,171,825 ","1,045,980 ","1,125,845 ","234,363 ","106,449 ","127,914 ","34,158 ","16,150 ","18,008 " -52,"2,403,540 ","1,147,631 ","1,255,909 ","2,151,550 ","1,033,892 ","1,117,658 ","219,343 ","98,389 ","120,954 ","32,647 ","15,350 ","17,297 " -53,"2,390,178 ","1,140,373 ","1,249,805 ","2,132,255 ","1,023,026 ","1,109,229 ","226,302 ","102,140 ","124,162 ","31,621 ","15,207 ","16,414 " -54,"2,400,661 ","1,149,527 ","1,251,134 ","2,163,271 ","1,040,553 ","1,122,718 ","207,443 ","94,406 ","113,037 ","29,947 ","14,568 ","15,379 " -55,"2,303,077 ","1,102,293 ","1,200,784 ","2,073,492 ","997,331 ","1,076,161 ","202,186 ","91,671 ","110,515 ","27,399 ","13,291 ","14,108 " -56,"2,329,991 ","1,110,195 ","1,219,796 ","2,075,705 ","991,977 ","1,083,728 ","226,650 ","104,548 ","122,102 ","27,636 ","13,670 ","13,966 " -57,"2,179,968 ","1,031,161 ","1,148,807 ","1,968,661 ","933,458 ","1,035,203 ","187,506 ","85,975 ","101,531 ","23,801 ","11,728 ","12,073 " -58,"2,059,645 ","970,546 ","1,089,099 ","1,860,751 ","879,335 ","981,416 ","176,508 ","80,330 ","96,178 ","22,386 ","10,881 ","11,505 " -59,"2,011,432 ","944,683 ","1,066,749 ","1,825,841 ","860,849 ","964,992 ","164,500 ","73,425 ","91,075 ","21,091 ","10,409 ","10,682 " -60,"1,901,134 ","891,513 ","1,009,621 ","1,737,961 ","818,202 ","919,759 ","143,572 ","63,651 ","79,921 ","19,601 ","9,660 ","9,941 " -61,"1,970,410 ","925,398 ","1,045,012 ","1,780,918 ","839,052 ","941,866 ","168,811 ","76,046 ","92,765 ","20,681 ","10,300 ","10,381 " -62,"1,921,812 ","895,572 ","1,026,240 ","1,737,480 ","811,443 ","926,037 ","165,030 ","74,427 ","90,603 ","19,302 ","9,702 ","9,600 " -63,"1,887,693 ","870,859 ","1,016,834 ","1,696,463 ","784,125 ","912,338 ","172,137 ","76,991 ","95,146 ","19,093 ","9,743 ","9,350 " -64,"1,820,831 ","831,159 ","989,672 ","1,637,195 ","748,211 ","888,984 ","165,828 ","73,553 ","92,275 ","17,808 ","9,395 ","8,413 " -65,"1,779,323 ","801,253 ","978,070 ","1,585,623 ","715,003 ","870,620 ","176,110 ","76,663 ","99,447 ","17,590 ","9,587 ","8,003 " -66,"1,801,871 ","803,146 ","998,725 ","1,602,608 ","714,767 ","887,841 ","182,503 ","79,015 ","103,488 ","16,760 ","9,364 ","7,396 " -67,"1,666,707 ","734,266 ","932,441 ","1,503,858 ","663,063 ","840,795 ","147,832 ","63,017 ","84,815 ","15,017 ","8,186 ","6,831 " -68,"1,599,695 ","698,043 ","901,652 ","1,439,420 ","628,788 ","810,632 ","146,219 ","61,529 ","84,690 ","14,056 ","7,726 ","6,330 " -69,"1,470,385 ","638,650 ","831,735 ","1,345,868 ","584,966 ","760,902 ","110,826 ","46,421 ","64,405 ","13,691 ","7,263 ","6,428 " -70,"1,322,033 ","567,126 ","754,907 ","1,203,848 ","515,314 ","688,534 ","104,731 ","44,652 ","60,079 ","13,454 ","7,160 ","6,294 " -71,"1,302,736 ","558,895 ","743,841 ","1,178,587 ","502,395 ","676,192 ","110,292 ","49,004 ","61,288 ","13,857 ","7,496 ","6,361 " -72,"1,184,467 ","500,451 ","684,016 ","1,089,925 ","457,919 ","632,006 ","81,557 ","35,642 ","45,915 ","12,985 ","6,890 ","6,095 " -73,"1,120,924 ","468,772 ","652,152 ","1,027,138 ","426,085 ","601,053 ","81,441 ","36,267 ","45,174 ","12,345 ","6,420 ","5,925 " -74,"988,452 ","404,333 ","584,119 ","915,081 ","372,941 ","542,140 ","62,265 ","25,659 ","36,606 ","11,106 ","5,733 ","5,373 " -75,"996,921 ","395,893 ","601,028 ","902,826 ","355,856 ","546,970 ","83,770 ","34,648 ","49,122 ","10,325 ","5,389 ","4,936 " -76,"985,573 ","386,492 ","599,081 ","879,797 ","341,458 ","538,339 ","97,701 ","40,789 ","56,912 ","8,075 ","4,245 ","3,830 " -77,"853,527 ","326,384 ","527,143 ","779,971 ","297,383 ","482,588 ","66,522 ","25,316 ","41,206 ","7,034 ","3,685 ","3,349 " -78,"783,383 ","298,591 ","484,792 ","707,154 ","267,556 ","439,598 ","73,487 ","30,126 ","43,361 ","2,742 ",909 ,"1,833 " -79,"725,770 ","274,785 ","450,985 ","672,532 ","253,948 ","418,584 ","47,686 ","18,243 ","29,443 ","5,552 ","2,594 ","2,958 " -80,"651,460 ","238,536 ","412,924 ","597,251 ","217,314 ","379,937 ","49,469 ","19,056 ","30,413 ","4,740 ","2,166 ","2,574 " -81,"643,468 ","237,745 ","405,723 ","579,615 ","210,870 ","368,745 ","61,677 ","26,579 ","35,098 ","2,176 ",296 ,"1,880 " -82,"565,230 ","203,857 ","361,373 ","520,413 ","186,289 ","334,124 ","41,319 ","16,105 ","25,214 ","3,498 ","1,463 ","2,035 " -83,"517,210 ","181,773 ","335,437 ","477,745 ","166,588 ","311,157 ","36,216 ","13,868 ","22,348 ","3,249 ","1,317 ","1,932 " -84,"422,671 ","145,796 ","276,875 ","394,717 ","135,294 ","259,423 ","25,353 ","9,426 ","15,927 ","2,601 ","1,076 ","1,525 " -85+,"1,896,295 ","605,819 ","1,290,476 ","1,743,554 ","551,141 ","1,192,413 ","136,120 ","46,930 ","89,190 ","16,621 ","7,748 ","8,873 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1977.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1977.csv deleted file mode 100644 index 60458b1ac2..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1977.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1977",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"220,239,425 ","107,334,548 ","112,904,877 ","190,648,946 ","93,202,287 ","97,446,659 ","25,559,193 ","12,158,361 ","13,400,832 ","4,031,286 ","1,973,900 ","2,057,386 " -,,,,,,,,,,,, -0,"3,278,804 ","1,679,661 ","1,599,143 ","2,717,720 ","1,395,724 ","1,321,996 ","485,192 ","245,367 ","239,825 ","75,892 ","38,570 ","37,322 " -1,"3,031,462 ","1,548,926 ","1,482,536 ","2,512,481 ","1,287,605 ","1,224,876 ","445,762 ","224,173 ","221,589 ","73,219 ","37,148 ","36,071 " -2,"3,063,419 ","1,567,180 ","1,496,239 ","2,533,546 ","1,299,702 ","1,233,844 ","454,693 ","229,218 ","225,475 ","75,180 ","38,260 ","36,920 " -3,"3,034,854 ","1,551,964 ","1,482,890 ","2,502,143 ","1,283,188 ","1,218,955 ","455,830 ","230,112 ","225,718 ","76,881 ","38,664 ","38,217 " -4,"3,155,120 ","1,610,944 ","1,544,176 ","2,595,291 ","1,328,778 ","1,266,513 ","482,981 ","243,078 ","239,903 ","76,848 ","39,088 ","37,760 " -5,"3,333,554 ","1,701,703 ","1,631,851 ","2,750,301 ","1,408,437 ","1,341,864 ","503,807 ","253,490 ","250,317 ","79,446 ","39,776 ","39,670 " -6,"3,644,207 ","1,862,542 ","1,781,665 ","3,035,641 ","1,556,125 ","1,479,516 ","531,662 ","267,333 ","264,329 ","76,904 ","39,084 ","37,820 " -7,"3,625,593 ","1,850,960 ","1,774,633 ","3,040,142 ","1,557,151 ","1,482,991 ","512,669 ","257,198 ","255,471 ","72,782 ","36,611 ","36,171 " -8,"3,435,855 ","1,753,341 ","1,682,514 ","2,870,436 ","1,469,746 ","1,400,690 ","496,534 ","248,681 ","247,853 ","68,885 ","34,914 ","33,971 " -9,"3,490,526 ","1,780,461 ","1,710,065 ","2,903,272 ","1,485,944 ","1,417,328 ","514,322 ","257,595 ","256,727 ","72,932 ","36,922 ","36,010 " -10,"3,656,833 ","1,866,707 ","1,790,126 ","3,047,754 ","1,559,939 ","1,487,815 ","530,521 ","266,781 ","263,740 ","78,558 ","39,987 ","38,571 " -11,"3,695,735 ","1,886,591 ","1,809,144 ","3,062,932 ","1,567,715 ","1,495,217 ","553,805 ","278,583 ","275,222 ","78,998 ","40,293 ","38,705 " -12,"3,891,370 ","1,983,142 ","1,908,228 ","3,248,698 ","1,659,068 ","1,589,630 ","567,822 ","285,840 ","281,982 ","74,850 ","38,234 ","36,616 " -13,"4,081,028 ","2,086,076 ","1,994,952 ","3,424,737 ","1,754,837 ","1,669,900 ","581,856 ","293,125 ","288,731 ","74,435 ","38,114 ","36,321 " -14,"4,178,966 ","2,131,155 ","2,047,811 ","3,520,581 ","1,799,425 ","1,721,156 ","584,167 ","293,686 ","290,481 ","74,218 ","38,044 ","36,174 " -15,"4,264,166 ","2,176,820 ","2,087,346 ","3,588,804 ","1,836,215 ","1,752,589 ","594,745 ","299,046 ","295,699 ","80,617 ","41,559 ","39,058 " -16,"4,333,169 ","2,206,848 ","2,126,321 ","3,648,812 ","1,862,935 ","1,785,877 ","603,013 ","302,144 ","300,869 ","81,344 ","41,769 ","39,575 " -17,"4,268,477 ","2,171,505 ","2,096,972 ","3,596,587 ","1,834,831 ","1,761,756 ","592,632 ","296,006 ","296,626 ","79,258 ","40,668 ","38,590 " -18,"4,257,434 ","2,158,589 ","2,098,845 ","3,591,823 ","1,826,098 ","1,765,725 ","585,826 ","291,513 ","294,313 ","79,785 ","40,978 ","38,807 " -19,"4,417,073 ","2,242,052 ","2,175,021 ","3,746,705 ","1,906,859 ","1,839,846 ","587,233 ","292,374 ","294,859 ","83,135 ","42,819 ","40,316 " -20,"4,400,497 ","2,236,042 ","2,164,455 ","3,734,634 ","1,904,120 ","1,830,514 ","580,165 ","287,550 ","292,615 ","85,698 ","44,372 ","41,326 " -21,"4,149,501 ","2,102,784 ","2,046,717 ","3,531,417 ","1,797,485 ","1,733,932 ","535,073 ","262,728 ","272,345 ","83,011 ","42,571 ","40,440 " -22,"4,056,115 ","2,041,230 ","2,014,885 ","3,464,293 ","1,755,089 ","1,709,204 ","511,341 ","245,838 ","265,503 ","80,481 ","40,303 ","40,178 " -23,"3,964,026 ","1,984,536 ","1,979,490 ","3,402,045 ","1,715,559 ","1,686,486 ","482,460 ","229,970 ","252,490 ","79,521 ","39,007 ","40,514 " -24,"3,929,083 ","1,967,682 ","1,961,401 ","3,384,348 ","1,707,947 ","1,676,401 ","464,591 ","221,173 ","243,418 ","80,144 ","38,562 ","41,582 " -25,"3,826,800 ","1,917,930 ","1,908,870 ","3,297,191 ","1,667,332 ","1,629,859 ","448,429 ","212,066 ","236,363 ","81,180 ","38,532 ","42,648 " -26,"3,693,845 ","1,848,204 ","1,845,641 ","3,168,564 ","1,600,651 ","1,567,913 ","443,045 ","208,927 ","234,118 ","82,236 ","38,626 ","43,610 " -27,"3,589,831 ","1,787,145 ","1,802,686 ","3,078,283 ","1,548,052 ","1,530,231 ","426,321 ","200,159 ","226,162 ","85,227 ","38,934 ","46,293 " -28,"3,494,422 ","1,735,305 ","1,759,117 ","3,022,259 ","1,515,513 ","1,506,746 ","390,526 ","182,600 ","207,926 ","81,637 ","37,192 ","44,445 " -29,"3,672,595 ","1,826,754 ","1,845,841 ","3,211,995 ","1,612,019 ","1,599,976 ","379,822 ","177,749 ","202,073 ","80,778 ","36,986 ","43,792 " -30,"4,000,734 ","1,999,444 ","2,001,290 ","3,538,947 ","1,783,587 ","1,755,360 ","383,643 ","179,157 ","204,486 ","78,144 ","36,700 ","41,444 " -31,"2,815,514 ","1,401,181 ","1,414,333 ","2,451,740 ","1,232,794 ","1,218,946 ","298,361 ","138,033 ","160,328 ","65,413 ","30,354 ","35,059 " -32,"2,880,847 ","1,423,372 ","1,457,475 ","2,488,511 ","1,242,659 ","1,245,852 ","321,100 ","147,767 ","173,333 ","71,236 ","32,946 ","38,290 " -33,"2,887,476 ","1,420,466 ","1,467,010 ","2,494,379 ","1,238,844 ","1,255,535 ","321,898 ","148,452 ","173,446 ","71,199 ","33,170 ","38,029 " -34,"3,136,162 ","1,546,988 ","1,589,174 ","2,766,663 ","1,376,030 ","1,390,633 ","306,785 ","141,415 ","165,370 ","62,714 ","29,543 ","33,171 " -35,"2,722,642 ","1,345,672 ","1,376,970 ","2,376,639 ","1,185,554 ","1,191,085 ","289,642 ","133,318 ","156,324 ","56,361 ","26,800 ","29,561 " -36,"2,528,601 ","1,245,611 ","1,282,990 ","2,192,552 ","1,091,726 ","1,100,826 ","282,023 ","128,402 ","153,621 ","54,026 ","25,483 ","28,543 " -37,"2,400,270 ","1,176,678 ","1,223,592 ","2,076,430 ","1,029,174 ","1,047,256 ","271,037 ","122,696 ","148,341 ","52,803 ","24,808 ","27,995 " -38,"2,332,394 ","1,142,294 ","1,190,100 ","2,038,948 ","1,008,705 ","1,030,243 ","245,687 ","111,160 ","134,527 ","47,759 ","22,429 ","25,330 " -39,"2,369,817 ","1,160,299 ","1,209,518 ","2,073,748 ","1,025,311 ","1,048,437 ","247,961 ","112,387 ","135,574 ","48,108 ","22,601 ","25,507 " -40,"2,331,327 ","1,143,244 ","1,188,083 ","2,035,396 ","1,008,044 ","1,027,352 ","249,115 ","113,177 ","135,938 ","46,816 ","22,023 ","24,793 " -41,"2,251,042 ","1,103,131 ","1,147,911 ","1,962,320 ","971,038 ","991,282 ","243,418 ","110,739 ","132,679 ","45,304 ","21,354 ","23,950 " -42,"2,230,600 ","1,096,365 ","1,134,235 ","1,940,256 ","962,612 ","977,644 ","243,586 ","111,533 ","132,053 ","46,758 ","22,220 ","24,538 " -43,"2,171,159 ","1,064,894 ","1,106,265 ","1,884,884 ","933,735 ","951,149 ","238,917 ","108,747 ","130,170 ","47,358 ","22,412 ","24,946 " -44,"2,224,619 ","1,087,887 ","1,136,732 ","1,932,588 ","953,784 ","978,804 ","243,223 ","111,225 ","131,998 ","48,808 ","22,878 ","25,930 " -45,"2,209,811 ","1,079,531 ","1,130,280 ","1,942,663 ","957,601 ","985,062 ","222,832 ","101,436 ","121,396 ","44,316 ","20,494 ","23,822 " -46,"2,253,199 ","1,102,380 ","1,150,819 ","1,988,067 ","980,417 ","1,007,650 ","223,792 ","103,142 ","120,650 ","41,340 ","18,821 ","22,519 " -47,"2,377,766 ","1,157,794 ","1,219,972 ","2,096,201 ","1,029,240 ","1,066,961 ","240,546 ","110,103 ","130,443 ","41,019 ","18,451 ","22,568 " -48,"2,284,194 ","1,104,687 ","1,179,507 ","2,016,099 ","982,788 ","1,033,311 ","230,283 ","104,998 ","125,285 ","37,812 ","16,901 ","20,911 " -49,"2,376,177 ","1,146,494 ","1,229,683 ","2,110,257 ","1,026,347 ","1,083,910 ","228,333 ","103,088 ","125,245 ","37,587 ","17,059 ","20,528 " -50,"2,294,077 ","1,105,292 ","1,188,785 ","2,050,456 ","995,683 ","1,054,773 ","208,175 ","93,437 ","114,738 ","35,446 ","16,172 ","19,274 " -51,"2,383,193 ","1,142,330 ","1,240,863 ","2,114,055 ","1,021,126 ","1,092,929 ","233,620 ","104,799 ","128,821 ","35,518 ","16,405 ","19,113 " -52,"2,424,062 ","1,157,446 ","1,266,616 ","2,158,898 ","1,037,353 ","1,121,545 ","229,603 ","103,443 ","126,160 ","35,561 ","16,650 ","18,911 " -53,"2,401,390 ","1,146,038 ","1,255,352 ","2,147,273 ","1,031,029 ","1,116,244 ","220,881 ","99,364 ","121,517 ","33,236 ","15,645 ","17,591 " -54,"2,366,486 ","1,127,439 ","1,239,047 ","2,118,669 ","1,014,782 ","1,103,887 ","215,222 ","97,148 ","118,074 ","32,595 ","15,509 ","17,086 " -55,"2,369,269 ","1,131,316 ","1,237,953 ","2,132,143 ","1,023,481 ","1,108,662 ","206,799 ","93,147 ","113,652 ","30,327 ","14,688 ","15,639 " -56,"2,287,932 ","1,091,284 ","1,196,648 ","2,055,463 ","983,802 ","1,071,661 ","204,090 ","93,531 ","110,559 ","28,379 ","13,951 ","14,428 " -57,"2,310,159 ","1,097,108 ","1,213,051 ","2,068,167 ","985,234 ","1,082,933 ","214,161 ","98,280 ","115,881 ","27,831 ","13,594 ","14,237 " -58,"2,154,049 ","1,010,201 ","1,143,848 ","1,932,425 ","908,542 ","1,023,883 ","196,300 ","89,365 ","106,935 ","25,324 ","12,294 ","13,030 " -59,"2,070,191 ","971,123 ","1,099,068 ","1,874,769 ","882,123 ","992,646 ","172,075 ","77,678 ","94,397 ","23,347 ","11,322 ","12,025 " -60,"1,893,305 ","886,044 ","1,007,261 ","1,730,941 ","813,705 ","917,236 ","142,019 ","62,514 ","79,505 ","20,345 ","9,825 ","10,520 " -61,"1,955,363 ","916,932 ","1,038,431 ","1,772,184 ","834,921 ","937,263 ","161,425 ","71,431 ","89,994 ","21,754 ","10,580 ","11,174 " -62,"1,963,589 ","912,479 ","1,051,110 ","1,770,744 ","825,222 ","945,522 ","171,572 ","76,718 ","94,854 ","21,273 ","10,539 ","10,734 " -63,"1,909,245 ","884,269 ","1,024,976 ","1,720,705 ","798,019 ","922,686 ","168,365 ","76,334 ","92,031 ","20,175 ","9,916 ","10,259 " -64,"1,866,559 ","851,027 ","1,015,532 ","1,673,098 ","764,777 ","908,321 ","174,153 ","76,463 ","97,690 ","19,308 ","9,787 ","9,521 " -65,"1,798,332 ","811,707 ","986,625 ","1,619,927 ","732,877 ","887,050 ","159,695 ","69,122 ","90,573 ","18,710 ","9,708 ","9,002 " -66,"1,751,748 ","779,215 ","972,533 ","1,552,637 ","691,421 ","861,216 ","180,945 ","77,847 ","103,098 ","18,166 ","9,947 ","8,219 " -67,"1,758,964 ","780,124 ","978,840 ","1,571,339 ","696,615 ","874,724 ","170,481 ","74,268 ","96,213 ","17,144 ","9,241 ","7,903 " -68,"1,631,626 ","710,755 ","920,871 ","1,469,377 ","640,959 ","828,418 ","146,819 ","61,581 ","85,238 ","15,430 ","8,215 ","7,215 " -69,"1,549,926 ","672,465 ","877,461 ","1,413,965 ","613,971 ","799,994 ","121,273 ","50,765 ","70,508 ","14,688 ","7,729 ","6,959 " -70,"1,340,517 ","573,232 ","767,285 ","1,224,838 ","523,787 ","701,051 ","102,051 ","42,216 ","59,835 ","13,628 ","7,229 ","6,399 " -71,"1,335,833 ","571,906 ","763,927 ","1,210,035 ","515,447 ","694,588 ","111,712 ","48,910 ","62,802 ","14,086 ","7,549 ","6,537 " -72,"1,236,501 ","520,873 ","715,628 ","1,124,906 ","470,752 ","654,154 ","97,706 ","42,673 ","55,033 ","13,889 ","7,448 ","6,441 " -73,"1,162,381 ","485,424 ","676,957 ","1,063,155 ","440,768 ","622,387 ","86,350 ","37,833 ","48,517 ","12,876 ","6,823 ","6,053 " -74,"1,072,264 ","439,415 ","632,849 ","987,414 ","402,433 ","584,981 ","72,861 ","30,797 ","42,064 ","11,989 ","6,185 ","5,804 " -75,"938,830 ","376,042 ","562,788 ","869,613 ","347,369 ","522,244 ","58,647 ","23,329 ","35,318 ","10,570 ","5,344 ","5,226 " -76,"973,432 ","378,492 ","594,940 ","865,121 ","332,715 ","532,406 ","99,879 ","41,291 ","58,588 ","8,432 ","4,486 ","3,946 " -77,"944,545 ","362,430 ","582,115 ","845,005 ","321,434 ","523,571 ","91,915 ","36,825 ","55,090 ","7,625 ","4,171 ","3,454 " -78,"834,999 ","315,332 ","519,667 ","753,119 ","281,887 ","471,232 ","77,651 ","31,619 ","46,032 ","4,229 ","1,826 ","2,403 " -79,"723,205 ","269,800 ","453,405 ","672,735 ","251,022 ","421,713 ","44,424 ","16,012 ","28,412 ","6,046 ","2,766 ","3,280 " -80,"628,694 ","229,347 ","399,347 ","578,665 ","210,078 ","368,587 ","45,158 ","16,994 ","28,164 ","4,871 ","2,275 ","2,596 " -81,"652,138 ","238,281 ","413,857 ","586,073 ","210,421 ","375,652 ","63,812 ","27,578 ","36,234 ","2,253 ",282 ,"1,971 " -82,"594,765 ","211,889 ","382,876 ","543,554 ","191,298 ","352,256 ","47,140 ","18,881 ","28,259 ","4,071 ","1,710 ","2,361 " -83,"515,163 ","179,350 ","335,813 ","477,719 ","165,461 ","312,258 ","34,052 ","12,534 ","21,518 ","3,392 ","1,355 ","2,037 " -84,"456,302 ","157,832 ","298,470 ","426,965 ","146,605 ","280,360 ","26,451 ","10,007 ","16,444 ","2,886 ","1,220 ","1,666 " -85+,"1,991,680 ","627,118 ","1,364,562 ","1,832,071 ","571,089 ","1,260,982 ","142,684 ","48,549 ","94,135 ","16,925 ","7,480 ","9,445 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1978.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1978.csv deleted file mode 100644 index e72fdeb141..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1978.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1978",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"222,584,545 ","108,423,580 ","114,160,965 ","192,334,700 ","93,985,772 ","98,348,928 ","25,983,680 ","12,351,427 ","13,632,253 ","4,266,165 ","2,086,381 ","2,179,784 " -,,,,,,,,,,,, -0,"3,326,388 ","1,702,179 ","1,624,209 ","2,755,263 ","1,413,533 ","1,341,730 ","490,878 ","247,794 ","243,084 ","80,247 ","40,852 ","39,395 " -1,"3,178,511 ","1,627,354 ","1,551,157 ","2,630,837 ","1,350,686 ","1,280,151 ","472,371 ","238,516 ","233,855 ","75,303 ","38,152 ","37,151 " -2,"3,022,264 ","1,544,519 ","1,477,745 ","2,492,730 ","1,277,858 ","1,214,872 ","451,369 ","227,088 ","224,281 ","78,165 ","39,573 ","38,592 " -3,"3,117,040 ","1,593,363 ","1,523,677 ","2,575,222 ","1,320,075 ","1,255,147 ","463,365 ","233,394 ","229,971 ","78,453 ","39,894 ","38,559 " -4,"3,090,801 ","1,581,422 ","1,509,379 ","2,545,879 ","1,306,311 ","1,239,568 ","465,894 ","235,319 ","230,575 ","79,028 ","39,792 ","39,236 " -5,"3,156,246 ","1,611,500 ","1,544,746 ","2,590,016 ","1,326,218 ","1,263,798 ","486,006 ","244,644 ","241,362 ","80,224 ","40,638 ","39,586 " -6,"3,343,315 ","1,706,027 ","1,637,288 ","2,764,517 ","1,415,005 ","1,349,512 ","499,389 ","250,887 ","248,502 ","79,409 ","40,135 ","39,274 " -7,"3,721,084 ","1,905,153 ","1,815,931 ","3,101,466 ","1,592,436 ","1,509,030 ","538,780 ","271,746 ","267,034 ","80,838 ","40,971 ","39,867 " -8,"3,527,457 ","1,801,291 ","1,726,166 ","2,947,851 ","1,510,171 ","1,437,680 ","504,800 ","253,232 ","251,568 ","74,806 ","37,888 ","36,918 " -9,"3,551,925 ","1,810,557 ","1,741,368 ","2,945,350 ","1,506,412 ","1,438,938 ","529,343 ","265,038 ","264,305 ","77,232 ","39,107 ","38,125 " -10,"3,578,599 ","1,829,660 ","1,748,939 ","2,975,623 ","1,525,706 ","1,449,917 ","522,263 ","262,860 ","259,403 ","80,713 ","41,094 ","39,619 " -11,"3,609,470 ","1,840,620 ","1,768,850 ","2,996,146 ","1,532,280 ","1,463,866 ","533,694 ","267,805 ","265,889 ","79,630 ","40,535 ","39,095 " -12,"3,684,367 ","1,881,078 ","1,803,289 ","3,058,054 ","1,564,721 ","1,493,333 ","546,983 ","275,721 ","271,262 ","79,330 ","40,636 ","38,694 " -13,"3,921,073 ","1,999,380 ","1,921,693 ","3,271,126 ","1,672,024 ","1,599,102 ","572,440 ","287,728 ","284,712 ","77,507 ","39,628 ","37,879 " -14,"4,126,053 ","2,106,467 ","2,019,586 ","3,467,925 ","1,774,633 ","1,693,292 ","581,299 ","292,422 ","288,877 ","76,829 ","39,412 ","37,417 " -15,"4,208,291 ","2,149,534 ","2,058,757 ","3,530,646 ","1,807,223 ","1,723,423 ","594,055 ","299,151 ","294,904 ","83,590 ","43,160 ","40,430 " -16,"4,266,046 ","2,172,026 ","2,094,020 ","3,579,265 ","1,826,398 ","1,752,867 ","602,541 ","302,255 ","300,286 ","84,240 ","43,373 ","40,867 " -17,"4,345,269 ","2,212,650 ","2,132,619 ","3,656,057 ","1,866,607 ","1,789,450 ","604,121 ","302,233 ","301,888 ","85,091 ","43,810 ","41,281 " -18,"4,247,327 ","2,157,421 ","2,089,906 ","3,576,901 ","1,822,351 ","1,754,550 ","587,618 ","292,459 ","295,159 ","82,808 ","42,611 ","40,197 " -19,"4,429,193 ","2,246,605 ","2,182,588 ","3,735,538 ","1,900,137 ","1,835,401 ","606,310 ","301,442 ","304,868 ","87,345 ","45,026 ","42,319 " -20,"4,417,809 ","2,244,121 ","2,173,688 ","3,747,429 ","1,909,342 ","1,838,087 ","582,288 ","289,130 ","293,158 ","88,092 ","45,649 ","42,443 " -21,"4,312,079 ","2,186,210 ","2,125,869 ","3,664,954 ","1,865,987 ","1,798,967 ","559,361 ","275,069 ","284,292 ","87,764 ","45,154 ","42,610 " -22,"4,118,791 ","2,071,583 ","2,047,208 ","3,504,631 ","1,773,899 ","1,730,732 ","527,856 ","254,269 ","273,587 ","86,304 ","43,415 ","42,889 " -23,"4,059,239 ","2,034,328 ","2,024,911 ","3,470,232 ","1,751,502 ","1,718,730 ","504,816 ","241,133 ","263,683 ","84,191 ","41,693 ","42,498 " -24,"4,038,042 ","2,020,740 ","2,017,302 ","3,463,788 ","1,746,719 ","1,717,069 ","489,691 ","232,912 ","256,779 ","84,563 ","41,109 ","43,454 " -25,"3,939,843 ","1,972,546 ","1,967,297 ","3,385,324 ","1,708,355 ","1,676,969 ","468,463 ","222,804 ","245,659 ","86,056 ","41,387 ","44,669 " -26,"3,804,556 ","1,905,656 ","1,898,900 ","3,269,628 ","1,653,703 ","1,615,925 ","449,311 ","211,551 ","237,760 ","85,617 ","40,402 ","45,215 " -27,"3,742,779 ","1,868,134 ","1,874,645 ","3,198,502 ","1,611,779 ","1,586,723 ","455,950 ","214,826 ","241,124 ","88,327 ","41,529 ","46,798 " -28,"3,487,909 ","1,733,155 ","1,754,754 ","2,996,643 ","1,504,123 ","1,492,520 ","405,316 ","189,654 ","215,662 ","85,950 ","39,378 ","46,572 " -29,"3,707,919 ","1,839,260 ","1,868,659 ","3,215,527 ","1,610,232 ","1,605,295 ","404,000 ","188,681 ","215,319 ","88,392 ","40,347 ","48,045 " -30,"3,720,727 ","1,854,972 ","1,865,755 ","3,246,570 ","1,633,151 ","1,613,419 ","390,846 ","182,983 ","207,863 ","83,311 ","38,838 ","44,473 " -31,"3,881,900 ","1,936,590 ","1,945,310 ","3,435,138 ","1,728,730 ","1,706,408 ","367,261 ","170,788 ","196,473 ","79,501 ","37,072 ","42,429 " -32,"2,839,749 ","1,408,170 ","1,431,579 ","2,450,382 ","1,228,558 ","1,221,824 ","316,513 ","146,070 ","170,443 ","72,854 ","33,542 ","39,312 " -33,"2,858,221 ","1,407,063 ","1,451,158 ","2,449,016 ","1,219,060 ","1,229,956 ","332,124 ","152,527 ","179,597 ","77,081 ","35,476 ","41,605 " -34,"2,979,500 ","1,466,213 ","1,513,287 ","2,608,373 ","1,294,724 ","1,313,649 ","304,471 ","140,430 ","164,041 ","66,656 ","31,059 ","35,597 " -35,"3,100,910 ","1,534,971 ","1,565,939 ","2,734,709 ","1,365,386 ","1,369,323 ","303,903 ","140,123 ","163,780 ","62,298 ","29,462 ","32,836 " -36,"2,685,064 ","1,324,431 ","1,360,633 ","2,333,932 ","1,163,189 ","1,170,743 ","291,851 ","133,341 ","158,510 ","59,281 ","27,901 ","31,380 " -37,"2,537,539 ","1,247,084 ","1,290,455 ","2,188,343 ","1,087,615 ","1,100,728 ","290,816 ","132,027 ","158,789 ","58,380 ","27,442 ","30,938 " -38,"2,366,745 ","1,160,936 ","1,205,809 ","2,063,840 ","1,022,941 ","1,040,899 ","251,378 ","113,769 ","137,609 ","51,527 ","24,226 ","27,301 " -39,"2,406,607 ","1,178,421 ","1,228,186 ","2,104,975 ","1,040,700 ","1,064,275 ","250,021 ","113,385 ","136,636 ","51,611 ","24,336 ","27,275 " -40,"2,412,529 ","1,183,724 ","1,228,805 ","2,103,856 ","1,042,568 ","1,061,288 ","257,595 ","117,003 ","140,592 ","51,078 ","24,153 ","26,925 " -41,"2,271,342 ","1,113,495 ","1,157,847 ","1,976,270 ","978,444 ","997,826 ","246,392 ","111,981 ","134,411 ","48,680 ","23,070 ","25,610 " -42,"2,256,218 ","1,104,651 ","1,151,567 ","1,965,353 ","971,448 ","993,905 ","243,387 ","110,716 ","132,671 ","47,478 ","22,487 ","24,991 " -43,"2,209,173 ","1,085,242 ","1,123,931 ","1,918,483 ","951,333 ","967,150 ","242,338 ","110,930 ","131,408 ","48,352 ","22,979 ","25,373 " -44,"2,190,694 ","1,072,835 ","1,117,859 ","1,903,072 ","941,485 ","961,587 ","238,208 ","108,118 ","130,090 ","49,414 ","23,232 ","26,182 " -45,"2,206,330 ","1,073,660 ","1,132,670 ","1,922,435 ","944,214 ","978,221 ","236,441 ","107,524 ","128,917 ","47,454 ","21,922 ","25,532 " -46,"2,200,002 ","1,075,138 ","1,124,864 ","1,937,907 ","955,322 ","982,585 ","218,862 ","100,030 ","118,832 ","43,233 ","19,786 ","23,447 " -47,"2,256,874 ","1,103,004 ","1,153,870 ","1,995,600 ","984,168 ","1,011,432 ","219,715 ","100,080 ","119,635 ","41,559 ","18,756 ","22,803 " -48,"2,345,248 ","1,134,845 ","1,210,403 ","2,052,317 ","1,001,436 ","1,050,881 ","251,291 ","114,905 ","136,386 ","41,640 ","18,504 ","23,136 " -49,"2,349,475 ","1,132,835 ","1,216,640 ","2,078,892 ","1,011,295 ","1,067,597 ","230,313 ","103,436 ","126,877 ","40,270 ","18,104 ","22,166 " -50,"2,289,787 ","1,105,763 ","1,184,024 ","2,041,393 ","994,090 ","1,047,303 ","210,856 ","94,660 ","116,196 ","37,538 ","17,013 ","20,525 " -51,"2,351,038 ","1,129,752 ","1,221,286 ","2,086,971 ","1,011,200 ","1,075,771 ","226,579 ","101,569 ","125,010 ","37,488 ","16,983 ","20,505 " -52,"2,368,039 ","1,131,416 ","1,236,623 ","2,102,262 ","1,012,757 ","1,089,505 ","228,702 ","101,678 ","127,024 ","37,075 ","16,981 ","20,094 " -53,"2,426,806 ","1,158,337 ","1,268,469 ","2,158,187 ","1,036,187 ","1,122,000 ","232,364 ","105,129 ","127,235 ","36,255 ","17,021 ","19,234 " -54,"2,380,002 ","1,134,181 ","1,245,821 ","2,136,477 ","1,024,024 ","1,112,453 ","209,261 ","94,169 ","115,092 ","34,264 ","15,988 ","18,276 " -55,"2,336,478 ","1,109,728 ","1,226,750 ","2,088,086 ","997,912 ","1,090,174 ","215,317 ","96,136 ","119,181 ","33,075 ","15,680 ","17,395 " -56,"2,357,458 ","1,121,799 ","1,235,659 ","2,116,348 ","1,010,598 ","1,105,750 ","209,569 ","95,664 ","113,905 ","31,541 ","15,537 ","16,004 " -57,"2,271,458 ","1,079,806 ","1,191,652 ","2,051,627 ","978,797 ","1,072,830 ","191,315 ","87,168 ","104,147 ","28,516 ","13,841 ","14,675 " -58,"2,287,211 ","1,076,559 ","1,210,652 ","2,030,912 ","958,903 ","1,072,009 ","226,530 ","103,326 ","123,204 ","29,769 ","14,330 ","15,439 " -59,"2,172,836 ","1,014,683 ","1,158,153 ","1,955,148 ","915,399 ","1,039,749 ","191,243 ","86,456 ","104,787 ","26,445 ","12,828 ","13,617 " -60,"1,937,220 ","905,800 ","1,031,420 ","1,769,254 ","830,339 ","938,915 ","145,750 ","64,900 ","80,850 ","22,216 ","10,561 ","11,655 " -61,"1,961,844 ","918,861 ","1,042,983 ","1,775,846 ","836,133 ","939,713 ","163,207 ","71,864 ","91,343 ","22,791 ","10,864 ","11,927 " -62,"1,950,836 ","904,679 ","1,046,157 ","1,764,349 ","821,721 ","942,628 ","164,153 ","72,139 ","92,014 ","22,334 ","10,819 ","11,515 " -63,"1,951,261 ","901,900 ","1,049,361 ","1,754,196 ","812,229 ","941,967 ","174,888 ","78,906 ","95,982 ","22,177 ","10,765 ","11,412 " -64,"1,885,688 ","863,458 ","1,022,230 ","1,695,931 ","778,069 ","917,862 ","169,412 ","75,454 ","93,958 ","20,345 ","9,935 ","10,410 " -65,"1,842,735 ","831,060 ","1,011,675 ","1,656,190 ","749,785 ","906,405 ","166,273 ","71,144 ","95,129 ","20,272 ","10,131 ","10,141 " -66,"1,768,230 ","788,633 ","979,597 ","1,585,171 ","708,578 ","876,593 ","163,583 ","69,916 ","93,667 ","19,476 ","10,139 ","9,337 " -67,"1,706,417 ","755,703 ","950,714 ","1,520,638 ","673,427 ","847,211 ","167,302 ","72,520 ","94,782 ","18,477 ","9,756 ","8,721 " -68,"1,726,241 ","757,283 ","968,958 ","1,537,257 ","674,612 ","862,645 ","171,453 ","73,428 ","98,025 ","17,531 ","9,243 ","8,288 " -69,"1,581,887 ","685,353 ","896,534 ","1,446,320 ","627,454 ","818,866 ","119,813 ","49,828 ","69,985 ","15,754 ","8,071 ","7,683 " -70,"1,403,978 ","599,359 ","804,619 ","1,276,925 ","545,260 ","731,665 ","112,520 ","46,428 ","66,092 ","14,533 ","7,671 ","6,862 " -71,"1,364,772 ","582,857 ","781,915 ","1,239,394 ","527,956 ","711,438 ","111,037 ","47,206 ","63,831 ","14,341 ","7,695 ","6,646 " -72,"1,266,367 ","531,577 ","734,790 ","1,154,096 ","482,127 ","671,969 ","98,260 ","42,024 ","56,236 ","14,011 ","7,426 ","6,585 " -73,"1,221,003 ","508,535 ","712,468 ","1,101,444 ","454,738 ","646,706 ","106,108 ","46,592 ","59,516 ","13,451 ","7,205 ","6,246 " -74,"1,113,647 ","455,364 ","658,283 ","1,024,460 ","417,164 ","607,296 ","76,791 ","31,699 ","45,092 ","12,396 ","6,501 ","5,895 " -75,"1,021,824 ","410,407 ","611,417 ","941,321 ","376,340 ","564,981 ","69,244 ","28,409 ","40,835 ","11,259 ","5,658 ","5,601 " -76,"911,426 ","356,556 ","554,870 ","832,055 ","324,068 ","507,987 ","69,288 ","27,336 ","41,952 ","10,083 ","5,152 ","4,931 " -77,"931,770 ","354,026 ","577,744 ","830,690 ","312,793 ","517,897 ","93,078 ","36,822 ","56,256 ","8,002 ","4,411 ","3,591 " -78,"935,241 ","356,824 ","578,417 ","821,109 ","307,394 ","513,715 ","111,265 ","48,581 ","62,684 ","2,867 ",849 ,"2,018 " -79,"770,914 ","285,253 ","485,661 ","719,150 ","266,090 ","453,060 ","44,447 ","15,705 ","28,742 ","7,317 ","3,458 ","3,859 " -80,"617,301 ","221,123 ","396,178 ","570,520 ","204,067 ","366,453 ","41,490 ","14,654 ","26,836 ","5,291 ","2,402 ","2,889 " -81,"632,018 ","230,671 ","401,347 ","569,809 ","204,515 ","365,294 ","59,338 ","25,417 ","33,921 ","2,871 ",739 ,"2,132 " -82,"600,711 ","211,198 ","389,513 ","549,214 ","190,502 ","358,712 ","47,130 ","18,841 ","28,289 ","4,367 ","1,855 ","2,512 " -83,"540,861 ","185,783 ","355,078 ","498,770 ","169,753 ","329,017 ","38,150 ","14,459 ","23,691 ","3,941 ","1,571 ","2,370 " -84,"449,750 ","154,337 ","295,413 ","423,380 ","144,666 ","278,714 ","23,457 ","8,465 ","14,992 ","2,913 ","1,206 ","1,707 " -85+,"2,094,958 ","652,137 ","1,442,821 ","1,927,267 ","593,932 ","1,333,335 ","150,210 ","50,806 ","99,404 ","17,481 ","7,399 ","10,082 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1979.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1979.csv deleted file mode 100644 index 1d97296092..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-11-1979.csv +++ /dev/null @@ -1,109 +0,0 @@ -Table with row headers in column A and column headers in rows 4 through 5.,,,,,,,,,,,, -"Resident Population plus Armed Forces Overseas--Estimates by Age, Sex, and Race: July 1, 1979",,,,,,,,,,,, - -Age,All races,,,White,,,Black,,,Other races,, -,Total,Male,Female,Total,Male,Female,Total,Male,Female,Total,Male,Female -,,,,,,,,,,,, -All ages,"225,055,487 ","109,583,961 ","115,471,526 ","194,097,556 ","94,817,729 ","99,279,827 ","26,417,364 ","12,546,873 ","13,870,491 ","4,540,567 ","2,219,359 ","2,321,208 " -,,,,,,,,,,,, -0,"3,426,309 ","1,752,964 ","1,673,345 ","2,825,299 ","1,449,782 ","1,375,517 ","515,241 ","259,703 ","255,538 ","85,769 ","43,479 ","42,290 " -1,"3,211,427 ","1,642,762 ","1,568,665 ","2,657,609 ","1,363,190 ","1,294,419 ","474,768 ","239,411 ","235,357 ","79,050 ","40,161 ","38,889 " -2,"3,173,548 ","1,624,899 ","1,548,649 ","2,613,543 ","1,341,983 ","1,271,560 ","478,730 ","241,827 ","236,903 ","81,275 ","41,089 ","40,186 " -3,"3,077,017 ","1,571,224 ","1,505,793 ","2,534,737 ","1,298,353 ","1,236,384 ","460,136 ","231,278 ","228,858 ","82,144 ","41,593 ","40,551 " -4,"3,174,581 ","1,623,880 ","1,550,701 ","2,619,804 ","1,343,747 ","1,276,057 ","473,514 ","238,725 ","234,789 ","81,263 ","41,408 ","39,855 " -5,"3,092,294 ","1,581,859 ","1,510,435 ","2,540,060 ","1,303,218 ","1,236,842 ","469,433 ","237,138 ","232,295 ","82,801 ","41,503 ","41,298 " -6,"3,163,905 ","1,615,247 ","1,548,658 ","2,602,546 ","1,332,293 ","1,270,253 ","480,521 ","241,567 ","238,954 ","80,838 ","41,387 ","39,451 " -7,"3,421,248 ","1,748,870 ","1,672,378 ","2,829,892 ","1,450,752 ","1,379,140 ","506,720 ","255,436 ","251,284 ","84,636 ","42,682 ","41,954 " -8,"3,613,454 ","1,850,438 ","1,763,016 ","2,998,486 ","1,539,896 ","1,458,590 ","530,915 ","267,661 ","263,254 ","84,053 ","42,881 ","41,172 " -9,"3,655,724 ","1,864,343 ","1,791,381 ","3,029,428 ","1,549,911 ","1,479,517 ","541,018 ","271,256 ","269,762 ","85,278 ","43,176 ","42,102 " -10,"3,634,230 ","1,857,389 ","1,776,841 ","3,014,641 ","1,544,864 ","1,469,777 ","533,463 ","268,649 ","264,814 ","86,126 ","43,876 ","42,250 " -11,"3,541,822 ","1,808,792 ","1,733,030 ","2,929,441 ","1,500,726 ","1,428,715 ","529,390 ","265,802 ","263,588 ","82,991 ","42,264 ","40,727 " -12,"3,593,400 ","1,832,769 ","1,760,631 ","2,988,093 ","1,527,663 ","1,460,430 ","524,869 ","263,986 ","260,883 ","80,438 ","41,120 ","39,318 " -13,"3,715,376 ","1,898,472 ","1,816,904 ","3,080,760 ","1,578,237 ","1,502,523 ","551,792 ","277,765 ","274,027 ","82,824 ","42,470 ","40,354 " -14,"3,960,321 ","2,016,268 ","1,944,053 ","3,310,559 ","1,689,520 ","1,621,039 ","569,324 ","285,564 ","283,760 ","80,438 ","41,184 ","39,254 " -15,"4,159,794 ","2,127,010 ","2,032,784 ","3,479,236 ","1,783,010 ","1,696,226 ","593,131 ","298,866 ","294,265 ","87,427 ","45,134 ","42,293 " -16,"4,214,501 ","2,146,324 ","2,068,177 ","3,523,030 ","1,797,844 ","1,725,186 ","603,259 ","303,000 ","300,259 ","88,212 ","45,480 ","42,732 " -17,"4,276,495 ","2,177,000 ","2,099,495 ","3,584,685 ","1,829,235 ","1,755,450 ","603,282 ","302,114 ","301,168 ","88,528 ","45,651 ","42,877 " -18,"4,316,231 ","2,195,653 ","2,120,578 ","3,627,348 ","1,850,384 ","1,776,964 ","599,523 ","299,149 ","300,374 ","89,360 ","46,120 ","43,240 " -19,"4,434,889 ","2,254,143 ","2,180,746 ","3,732,809 ","1,903,049 ","1,829,760 ","610,648 ","303,871 ","306,777 ","91,432 ","47,223 ","44,209 " -20,"4,419,481 ","2,242,660 ","2,176,821 ","3,728,468 ","1,898,230 ","1,830,238 ","597,870 ","296,252 ","301,618 ","93,143 ","48,178 ","44,965 " -21,"4,334,896 ","2,196,820 ","2,138,076 ","3,682,050 ","1,873,175 ","1,808,875 ","562,225 ","276,912 ","285,313 ","90,621 ","46,733 ","43,888 " -22,"4,284,816 ","2,157,740 ","2,127,076 ","3,641,379 ","1,845,087 ","1,796,292 ","551,750 ","266,210 ","285,540 ","91,687 ","46,443 ","45,244 " -23,"4,129,391 ","2,069,888 ","2,059,503 ","3,517,235 ","1,775,025 ","1,742,210 ","521,785 ","249,769 ","272,016 ","90,371 ","45,094 ","45,277 " -24,"4,127,989 ","2,069,298 ","2,058,691 ","3,526,322 ","1,780,973 ","1,745,349 ","511,897 ","244,146 ","267,751 ","89,770 ","44,179 ","45,591 " -25,"4,056,482 ","2,029,435 ","2,027,047 ","3,470,330 ","1,749,969 ","1,720,361 ","494,179 ","234,791 ","259,388 ","91,973 ","44,675 ","47,298 " -26,"3,919,839 ","1,962,220 ","1,957,619 ","3,357,666 ","1,695,574 ","1,662,092 ","470,987 ","222,962 ","248,025 ","91,186 ","43,684 ","47,502 " -27,"3,853,208 ","1,926,018 ","1,927,190 ","3,299,613 ","1,665,251 ","1,634,362 ","461,313 ","217,095 ","244,218 ","92,282 ","43,672 ","48,610 " -28,"3,621,118 ","1,804,088 ","1,817,030 ","3,099,192 ","1,558,894 ","1,540,298 ","432,870 ","203,279 ","229,591 ","89,056 ","41,915 ","47,141 " -29,"3,727,046 ","1,849,577 ","1,877,469 ","3,214,366 ","1,611,032 ","1,603,334 ","419,190 ","195,626 ","223,564 ","93,490 ","42,919 ","50,571 " -30,"3,733,982 ","1,857,067 ","1,876,915 ","3,232,829 ","1,623,003 ","1,609,826 ","411,046 ","192,125 ","218,921 ","90,107 ","41,939 ","48,168 " -31,"3,619,819 ","1,800,974 ","1,818,845 ","3,156,237 ","1,585,126 ","1,571,111 ","377,797 ","176,139 ","201,658 ","85,785 ","39,709 ","46,076 " -32,"3,907,187 ","1,942,365 ","1,964,822 ","3,427,096 ","1,719,764 ","1,707,332 ","391,050 ","181,423 ","209,627 ","89,041 ","41,178 ","47,863 " -33,"2,815,685 ","1,390,658 ","1,425,027 ","2,408,082 ","1,203,152 ","1,204,930 ","328,244 ","151,126 ","177,118 ","79,359 ","36,380 ","42,979 " -34,"2,948,258 ","1,452,454 ","1,495,804 ","2,567,787 ","1,277,577 ","1,290,210 ","309,137 ","141,982 ","167,155 ","71,334 ","32,895 ","38,439 " -35,"2,941,406 ","1,453,251 ","1,488,155 ","2,572,304 ","1,282,548 ","1,289,756 ","302,245 ","139,406 ","162,839 ","66,857 ","31,297 ","35,560 " -36,"3,050,832 ","1,507,329 ","1,543,503 ","2,678,228 ","1,336,219 ","1,342,009 ","306,530 ","140,170 ","166,360 ","66,074 ","30,940 ","35,134 " -37,"2,695,152 ","1,326,200 ","1,368,952 ","2,328,475 ","1,158,291 ","1,170,184 ","302,016 ","137,560 ","164,456 ","64,661 ","30,349 ","34,312 " -38,"2,496,870 ","1,228,092 ","1,268,778 ","2,173,073 ","1,080,141 ","1,092,932 ","267,073 ","121,249 ","145,824 ","56,724 ","26,702 ","30,022 " -39,"2,451,245 ","1,202,085 ","1,249,160 ","2,138,807 ","1,059,290 ","1,079,517 ","256,461 ","116,378 ","140,083 ","55,977 ","26,417 ","29,560 " -40,"2,454,323 ","1,204,620 ","1,249,703 ","2,138,255 ","1,059,853 ","1,078,402 ","260,982 ","118,620 ","142,362 ","55,086 ","26,147 ","28,939 " -41,"2,342,000 ","1,148,742 ","1,193,258 ","2,034,422 ","1,007,819 ","1,026,603 ","254,374 ","115,577 ","138,797 ","53,204 ","25,346 ","27,858 " -42,"2,277,691 ","1,115,452 ","1,162,239 ","1,980,084 ","979,141 ","1,000,943 ","246,394 ","111,926 ","134,468 ","51,213 ","24,385 ","26,828 " -43,"2,233,036 ","1,092,687 ","1,140,349 ","1,941,583 ","959,301 ","982,282 ","242,098 ","110,017 ","132,081 ","49,355 ","23,369 ","25,986 " -44,"2,233,444 ","1,095,405 ","1,138,039 ","1,940,931 ","961,223 ","979,708 ","241,720 ","110,228 ","131,492 ","50,793 ","23,954 ","26,839 " -45,"2,171,900 ","1,057,929 ","1,113,971 ","1,892,996 ","931,636 ","961,360 ","230,914 ","104,088 ","126,826 ","47,990 ","22,205 ","25,785 " -46,"2,196,871 ","1,069,720 ","1,127,151 ","1,918,594 ","942,625 ","975,969 ","232,074 ","105,998 ","126,076 ","46,203 ","21,097 ","25,106 " -47,"2,205,236 ","1,076,575 ","1,128,661 ","1,947,066 ","960,055 ","987,011 ","214,603 ","96,771 ","117,832 ","43,567 ","19,749 ","23,818 " -48,"2,222,041 ","1,078,546 ","1,143,495 ","1,948,672 ","954,479 ","994,193 ","230,806 ","105,067 ","125,739 ","42,563 ","19,000 ","23,563 " -49,"2,421,037 ","1,167,994 ","1,253,043 ","2,124,956 ","1,034,820 ","1,090,136 ","251,405 ","113,152 ","138,253 ","44,676 ","20,022 ","24,654 " -50,"2,253,574 ","1,088,029 ","1,165,545 ","2,002,906 ","975,983 ","1,026,923 ","210,555 ","94,013 ","116,542 ","40,113 ","18,033 ","22,080 " -51,"2,355,872 ","1,134,864 ","1,221,008 ","2,083,606 ","1,012,560 ","1,071,046 ","232,229 ","104,282 ","127,947 ","40,037 ","18,022 ","22,015 " -52,"2,335,726 ","1,118,888 ","1,216,838 ","2,075,276 ","1,002,988 ","1,072,288 ","221,234 ","98,258 ","122,976 ","39,216 ","17,642 ","21,574 " -53,"2,373,821 ","1,134,199 ","1,239,622 ","2,103,738 ","1,012,972 ","1,090,766 ","232,138 ","103,775 ","128,363 ","37,945 ","17,452 ","20,493 " -54,"2,405,947 ","1,147,016 ","1,258,931 ","2,149,196 ","1,030,254 ","1,118,942 ","219,316 ","99,321 ","119,995 ","37,435 ","17,441 ","19,994 " -55,"2,349,711 ","1,116,365 ","1,233,346 ","2,104,984 ","1,006,857 ","1,098,127 ","209,824 ","93,286 ","116,538 ","34,903 ","16,222 ","18,681 " -56,"2,327,033 ","1,101,401 ","1,225,632 ","2,073,383 ","985,346 ","1,088,037 ","219,119 ","99,344 ","119,775 ","34,531 ","16,711 ","17,820 " -57,"2,342,711 ","1,111,053 ","1,231,658 ","2,115,726 ","1,007,116 ","1,108,610 ","195,383 ","88,575 ","106,808 ","31,602 ","15,362 ","16,240 " -58,"2,247,848 ","1,058,112 ","1,189,736 ","2,013,213 ","951,245 ","1,061,968 ","203,826 ","92,140 ","111,686 ","30,809 ","14,727 ","16,082 " -59,"2,314,488 ","1,085,067 ","1,229,421 ","2,062,528 ","970,082 ","1,092,446 ","220,837 ","99,997 ","120,840 ","31,123 ","14,988 ","16,135 " -60,"2,020,358 ","940,496 ","1,079,862 ","1,836,213 ","857,784 ","978,429 ","159,213 ","70,869 ","88,344 ","24,932 ","11,843 ","13,089 " -61,"2,022,892 ","947,455 ","1,075,437 ","1,826,171 ","859,189 ","966,982 ","171,500 ","76,453 ","95,047 ","25,221 ","11,813 ","13,408 " -62,"1,959,688 ","907,038 ","1,052,650 ","1,769,869 ","823,227 ","946,642 ","166,377 ","72,683 ","93,694 ","23,442 ","11,128 ","12,314 " -63,"1,937,597 ","893,952 ","1,043,645 ","1,747,269 ","808,756 ","938,513 ","166,939 ","74,081 ","92,858 ","23,389 ","11,115 ","12,274 " -64,"1,925,630 ","880,029 ","1,045,601 ","1,727,719 ","791,495 ","936,224 ","175,545 ","77,742 ","97,803 ","22,366 ","10,792 ","11,574 " -65,"1,860,719 ","843,141 ","1,017,578 ","1,679,108 ","763,369 ","915,739 ","160,225 ","69,455 ","90,770 ","21,386 ","10,317 ","11,069 " -66,"1,811,718 ","807,738 ","1,003,980 ","1,619,644 ","724,845 ","894,799 ","170,879 ","72,258 ","98,621 ","21,195 ","10,635 ","10,560 " -67,"1,722,200 ","765,708 ","956,492 ","1,552,948 ","691,280 ","861,668 ","149,608 ","64,536 ","85,072 ","19,644 ","9,892 ","9,752 " -68,"1,675,949 ","733,811 ","942,138 ","1,487,057 ","651,760 ","835,297 ","169,977 ","72,272 ","97,705 ","18,915 ","9,779 ","9,136 " -69,"1,674,541 ","731,561 ","942,980 ","1,517,870 ","663,427 ","854,443 ","138,870 ","59,080 ","79,790 ","17,801 ","9,054 ","8,747 " -70,"1,423,281 ","606,474 ","816,807 ","1,295,752 ","552,624 ","743,128 ","112,012 ","45,858 ","66,154 ","15,517 ","7,992 ","7,525 " -71,"1,444,508 ","617,382 ","827,126 ","1,302,853 ","555,275 ","747,578 ","126,380 ","53,928 ","72,452 ","15,275 ","8,179 ","7,096 " -72,"1,293,962 ","541,572 ","752,390 ","1,182,298 ","493,802 ","688,496 ","97,483 ","40,266 ","57,217 ","14,181 ","7,504 ","6,677 " -73,"1,257,794 ","522,305 ","735,489 ","1,135,346 ","468,243 ","667,103 ","108,935 ","46,896 ","62,039 ","13,513 ","7,166 ","6,347 " -74,"1,173,380 ","478,352 ","695,028 ","1,065,281 ","432,131 ","633,150 ","95,191 ","39,346 ","55,845 ","12,908 ","6,875 ","6,033 " -75,"1,064,334 ","426,790 ","637,544 ","979,275 ","391,459 ","587,816 ","73,511 ","29,424 ","44,087 ","11,548 ","5,907 ","5,641 " -76,"1,001,631 ","393,999 ","607,632 ","906,398 ","353,863 ","552,535 ","84,886 ","34,939 ","49,947 ","10,347 ","5,197 ","5,150 " -77,"871,161 ","333,083 ","538,078 ","799,143 ","304,971 ","494,172 ","62,244 ","23,073 ","39,171 ","9,774 ","5,039 ","4,735 " -78,"926,320 ","350,445 ","575,875 ","809,237 ","299,911 ","509,326 ","113,892 ","49,491 ","64,401 ","3,191 ","1,043 ","2,148 " -79,"860,125 ","321,181 ","538,944 ","789,851 ","293,493 ","496,358 ","61,770 ","23,592 ","38,178 ","8,504 ","4,096 ","4,408 " -80,"653,467 ","232,063 ","421,404 ","605,740 ","214,744 ","390,996 ","41,277 ","14,288 ","26,989 ","6,450 ","3,031 ","3,419 " -81,"625,233 ","224,253 ","400,980 ","566,055 ","200,461 ","365,594 ","55,198 ","22,424 ","32,774 ","3,980 ","1,368 ","2,612 " -82,"580,415 ","203,570 ","376,845 ","533,475 ","184,878 ","348,597 ","42,168 ","16,541 ","25,627 ","4,772 ","2,151 ","2,621 " -83,"545,463 ","184,670 ","360,793 ","504,021 ","168,961 ","335,060 ","37,262 ","14,041 ","23,221 ","4,180 ","1,668 ","2,512 " -84,"470,622 ","159,741 ","310,881 ","442,110 ","148,898 ","293,212 ","25,173 ","9,454 ","15,719 ","3,339 ","1,389 ","1,950 " -85+,"2,196,921 ","675,963 ","1,520,958 ","2,023,193 ","616,550 ","1,406,643 ","155,676 ","52,080 ","103,596 ","18,052 ","7,333 ","10,719 " -,,,,,,,,,,,, -"Notes about the National Population Estimates by Age, Sex, and Race: 1900 to 1979",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1900-1929 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii. Unrounded data for these years is not available.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1930-1939 represent the resident population of the United States, by single year of age (0 to 75+), race (White, Nonwhite), and sex. Data for these years exclude the Armed Forces overseas and the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1940-1949 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years exclude the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1950-1959 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Nonwhite), and sex. Data for these years include the population residing in Alaska and Hawaii.",,,,,,,,,,,, -,,,,,,,,,,,, -"The worksheets for 1960-1979 represent the resident population plus Armed Forces overseas of the United States, by single year of age (0 to 85+), race (White, Black, and Other races), and sex.",,,,,,,,,,,, -,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,, -"Internet Release date: October 1, 2004",,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-19.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-19.csv index de0e5cce75..76e3938637 100644 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-19.csv +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/pe-19.csv @@ -1,66 +1,200 @@ -"Table with row headers in columns A, C, and D and column headers in row 6.",,,,,,,,,,,,,,,,,,,,, -"Estimates of the Population of States by Age, Sex, and Race: 1970-1979",,,,,,,,,,,,,,,,,,,,, -"Source: 1970-1979 Population Estimates by Age, Sex, and Race, PE-19",,,,,,,,,,,,,,,,,,,,, -"Internet Release Date: November 5, 2004",,,,,,,,,,,,,,,,,,,,, -,,,,,,,,,,,,,,,,,,,,, -Year of Estimate,FIPS State Code,State Name,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over -1970,1,Alabama,White male,"1,05,856","1,20,876","1,29,091","1,19,500","1,03,665","86,538","74,452","71,511","75,242","73,874","68,048","61,071","52,361","38,977","26,767","17,504","9,937","5,616" -1970,1,Alabama,White female,"1,00,613","1,15,194","1,22,352","1,16,107","1,08,513","88,359","77,595","74,941","78,908","78,589","72,481","67,699","61,065","49,685","37,227","27,163","16,470","10,445" -1970,1,Alabama,Black male,"47,403","55,443","60,427","52,921","29,948","19,535","17,196","16,654","17,564","18,186","17,618","18,118","16,456","14,498","9,541","6,030","3,485","2,448" -1970,1,Alabama,Black female,"47,079","54,851","60,065","55,144","35,165","23,662","22,021","22,248","24,249","23,028","22,104","21,909","20,068","19,364","12,509","8,291","5,031","4,035" -1970,1,Alabama,Other races male,244,255,253,281,413,239,236,161,127,108,95,88,69,54,70,31,37,76 -1970,1,Alabama,Other races female,250,251,245,254,331,302,284,279,253,148,100,93,94,73,66,52,30,29 -1971,1,Alabama,White male,"1,07,172","1,18,173","1,30,505","1,22,398","1,10,187","87,900","76,065","71,319","75,014","74,347","69,276","61,771","53,183","40,731","27,680","17,867","10,009","5,732" -1971,1,Alabama,White female,"1,01,948","1,12,522","1,23,603","1,18,525","1,13,665","89,635","78,846","74,608","78,233","79,180","73,924","68,517","62,197","51,877","38,754","28,086","17,367","11,077" -1971,1,Alabama,Black male,"47,263","53,859","59,863","53,656","33,097","19,945","17,495","16,379","17,180","17,857","17,576","17,701","16,485","14,913","9,771","6,290","3,503","2,467" -1971,1,Alabama,Black female,"46,948","53,218","59,415","55,530","38,498","24,061","22,094","21,763","23,611","23,038","22,136","21,665","20,266","19,823","12,869","8,747","5,241","4,224" -1971,1,Alabama,Other races male,293,314,320,333,451,269,270,201,158,136,110,99,81,62,70,33,35,73 -1971,1,Alabama,Other races female,307,307,307,299,390,346,342,318,284,190,126,108,104,86,72,56,31,28 -1972,1,Alabama,White male,"1,06,893","1,15,481","1,30,448","1,25,274","1,10,652","95,268","78,815","71,745","74,707","74,417","71,028","62,493","54,051","42,458","28,581","18,221","10,063","5,829" -1972,1,Alabama,White female,"1,01,791","1,09,875","1,23,549","1,21,201","1,12,154","96,796","81,078","74,820","77,531","79,155","75,989","69,378","63,376","54,055","40,251","28,999","18,264","11,689" -1972,1,Alabama,Black male,"47,322","52,190","59,136","55,052","35,248","21,323","18,060","16,360","16,976","17,479","17,714","17,315","16,540","15,331","9,995","6,547","3,517","2,476" -1972,1,Alabama,Black female,"47,038","51,576","58,581","56,607","40,763","25,542","22,417","21,516","23,160","22,910","22,386","21,453","20,483","20,280","13,201","9,197","5,428","4,408" -1972,1,Alabama,Other races male,352,367,385,386,482,314,313,242,193,164,129,112,95,66,74,34,34,65 -1972,1,Alabama,Other races female,356,367,373,349,442,400,391,357,314,231,160,129,120,99,84,61,33,28 -1973,1,Alabama,White male,"1,05,881","1,12,758","1,29,960","1,27,774","1,12,269","97,976","83,652","72,781","74,256","74,954","72,263","63,169","54,862","44,190","29,486","18,582","10,134","5,942" -1973,1,Alabama,White female,"1,01,036","1,07,133","1,23,034","1,23,512","1,13,436","99,384","85,523","75,649","76,926","79,470","77,603","70,195","64,502","56,229","41,754","29,906","19,151","12,309" -1973,1,Alabama,Black male,"47,368","50,599","58,618","56,208","37,232","22,645","18,771","16,282","16,947","17,158","17,895","16,933","16,617","15,727","10,218","6,803","3,525","2,506" -1973,1,Alabama,Black female,"47,043","50,043","57,952","57,548","43,269","27,020","22,945","21,301","23,019","22,799","22,844","21,251","20,721","20,711","13,543","9,645","5,629","4,589" -1973,1,Alabama,Other races male,407,420,449,441,508,354,352,281,223,186,143,127,108,78,77,35,34,59 -1973,1,Alabama,Other races female,413,420,435,398,502,461,456,390,347,267,191,149,130,120,95,71,35,32 -1974,1,Alabama,White male,"1,04,757","1,11,031","1,29,760","1,30,388","1,15,631","1,02,233","87,138","74,256","74,008","75,232","73,345","63,913","55,736","45,546","30,751","19,078","10,277","6,208" -1974,1,Alabama,White female,"1,00,056","1,05,444","1,22,659","1,25,895","1,16,106","1,03,560","88,745","77,188","76,542","79,590","78,891","71,065","65,697","57,853","43,971","30,824","19,864","13,360" -1974,1,Alabama,Black male,"46,976","49,225","57,848","57,257","39,158","24,278","19,355","16,309","16,745","16,925","17,640","16,577","16,684","15,838","10,504","7,074","3,623","2,573" -1974,1,Alabama,Black female,"46,585","48,759","56,980","58,400","45,757","28,910","23,404","21,196","22,702","22,825","22,809","21,077","20,961","20,913","14,186","10,044","5,874","4,912" -1974,1,Alabama,Other races male,449,467,510,498,560,415,403,330,256,212,161,131,120,87,79,39,34,56 -1974,1,Alabama,Other races female,462,463,489,445,565,535,518,428,377,307,219,158,142,127,106,79,39,31 -1975,1,Alabama,White male,"1,03,529","1,11,093","1,28,368","1,32,436","1,19,359","1,06,605","90,254","75,750","73,804","75,833","73,856","64,794","56,720","46,849","31,978","19,554","10,384","6,454" -1975,1,Alabama,White female,"98,987","1,05,300","1,21,366","1,27,853","1,19,391","1,07,951","91,520","78,719","76,237","80,007","79,681","72,104","67,033","59,452","46,156","31,680","20,554","14,383" -1975,1,Alabama,Black male,"46,860","48,686","57,330","58,352","41,513","26,213","20,103","16,538","16,400","16,958","17,322","16,268","16,827","15,916","10,758","7,313","3,694","2,619" -1975,1,Alabama,Black female,"46,406","48,184","56,312","59,260","48,736","31,118","24,059","21,373","22,212","23,212","22,601","20,955","21,288","21,050","14,809","10,402","6,070","5,204" -1975,1,Alabama,Other races male,505,519,581,568,627,483,447,379,287,243,175,138,128,93,83,44,32,43 -1975,1,Alabama,Other races female,519,520,544,500,647,618,589,479,410,358,255,177,158,147,116,85,45,38 -1976,1,Alabama,White male,"99,790","1,13,235","1,26,005","1,35,029","1,22,844","1,12,460","92,375","78,071","74,312","76,307","74,756","66,419","57,893","47,697","33,322","19,939","10,621","6,587" -1976,1,Alabama,White female,"95,553","1,07,296","1,19,021","1,30,345","1,22,757","1,13,750","93,521","80,734","76,930","80,122","80,928","74,155","68,355","60,962","48,213","32,496","20,944","14,820" -1976,1,Alabama,Black male,"46,115","49,574","56,499","58,899","42,644","29,155","20,956","16,992","16,398","16,798","17,338","16,408","16,603","15,662","11,285","7,294","3,902","2,623" -1976,1,Alabama,Black female,"45,739","48,953","55,456","60,092","50,112","34,498","24,977","21,802","22,183","22,895","22,980","21,253","21,252","20,875","15,630","10,425","6,203","5,162" -1976,1,Alabama,Other races male,543,603,634,625,663,560,496,437,321,270,193,150,135,98,88,49,27,35 -1976,1,Alabama,Other races female,565,594,600,556,709,735,663,531,445,397,288,195,165,159,129,96,46,42 -1977,1,Alabama,White male,"98,814","1,13,365","1,23,107","1,35,343","1,26,053","1,11,547","1,00,674","81,038","75,042","76,296","74,844","67,785","58,853","48,848","34,475","20,977","10,831","6,683" -1977,1,Alabama,White female,"94,595","1,07,395","1,16,182","1,30,433","1,25,352","1,12,471","1,01,543","83,369","77,793","79,753","81,079","75,905","69,406","62,430","50,075","34,027","21,483","15,729" -1977,1,Alabama,Black male,"46,201","50,097","54,925","58,468","43,898","31,014","22,528","17,473","16,446","16,578","17,117","16,437","16,276","15,837","11,450","7,601","3,896","2,667" -1977,1,Alabama,Black female,"45,784","49,329","53,955","59,926","51,433","36,648","26,694","22,213","22,146","22,576","23,028","21,435","21,075","21,126","16,028","10,825","6,272","5,426" -1977,1,Alabama,Other races male,590,672,677,674,722,638,571,498,356,295,206,166,145,107,90,53,25,33 -1977,1,Alabama,Other races female,621,660,653,605,773,835,766,586,479,432,326,213,174,173,138,106,49,41 -1978,1,Alabama,White male,"99,458","1,12,961","1,20,366","1,35,553","1,28,216","1,13,308","1,03,940","86,273","76,522","76,143","75,445","69,300","59,920","50,159","35,782","21,672","11,179","6,895" -1978,1,Alabama,White female,"95,240","1,07,058","1,13,443","1,30,369","1,27,880","1,14,140","1,04,759","88,428","79,427","79,535","81,612","77,830","70,607","64,076","51,951","35,334","22,046","16,647" -1978,1,Alabama,Black male,"46,686","50,530","53,281","58,171","44,567","33,088","24,053","18,083","16,440","16,541","16,911","16,504","15,976","15,831","11,762","7,872","3,911","2,657" -1978,1,Alabama,Black female,"46,324","49,607","52,445","59,839","52,529","38,898","28,340","22,821","22,101","22,506","23,008","21,644","20,945","21,532","16,270","11,298","6,399","5,575" -1978,1,Alabama,Other races male,655,744,727,728,773,726,652,562,392,322,218,183,151,117,98,54,22,27 -1978,1,Alabama,Other races female,685,729,702,652,844,947,876,651,517,479,359,238,184,188,148,112,52,38 -1979,1,Alabama,White male,"1,00,264","1,11,112","1,17,563","1,34,809","1,29,881","1,15,225","1,07,768","89,599","78,050","75,736","75,299","70,468","60,709","51,375","37,197","22,485","11,463","7,016" -1979,1,Alabama,White female,"96,122","1,05,264","1,10,729","1,29,175","1,28,838","1,15,673","1,08,496","91,434","81,106","78,952","81,319","79,379","71,481","65,579","53,968","37,123","22,523","17,448" -1979,1,Alabama,Black male,"47,587","50,250","51,631","57,385","45,076","34,978","25,818","18,555","16,501","16,284","16,728","16,466","15,594","16,014","11,960","8,220","3,826","2,726" -1979,1,Alabama,Black female,"47,297","49,104","50,942","59,084","53,107","40,890","30,225","23,286","22,069","22,158","23,009","21,743","20,703","21,807","16,736","11,914","6,345","5,755" -1979,1,Alabama,Other races male,722,808,764,771,821,809,744,627,429,349,238,199,159,126,97,60,21,21 -1979,1,Alabama,Other races female,759,785,741,697,905,"1,052","1,009",709,560,515,396,262,197,204,170,123,51,39 +"Table with row headers in columns A, C, and D and column headers in row 6.",,,,,,,,,,,,,,,,,,,,, +"Estimates of the Population of States by Age, Sex, and Race: 1970-1979",,,,,,,,,,,,,,,,,,,,, +"Source: 1970-1979 Population Estimates by Age, Sex, and Race, PE-19",,,,,,,,,,,,,,,,,,,,, +"Internet Release Date: November 5, 2004",,,,,,,,,,,,,,,,,,,,, +,,,,,,,,,,,,,,,,,,,,, +Year of Estimate,FIPS State Code,State Name,Race/Sex Indicator,Under 5 years,5 to 9 years,10 to 14 years,15 to 19 years,20 to 24 years,25 to 29 years,30 to 34 years,35 to 39 years,40 to 44 years,45 to 49 years,50 to 54 years,55 to 59 years,60 to 64 years,65 to 69 years,70 to 74 years,75 to 79 years,80 to 84 years,85 years and over +1970,1,Alabama,White male,105856,120876,129091,119500,103665,86538,74452,71511,75242,73874,68048,61071,52361,38977,26767,17504,9937,5616 +1970,1,Alabama,White female,100613,115194,122352,116107,108513,88359,77595,74941,78908,78589,72481,67699,61065,49685,37227,27163,16470,10445 +1970,1,Alabama,Black male,47403,55443,60427,52921,29948,19535,17196,16654,17564,18186,17618,18118,16456,14498,9541,6030,3485,2448 +1970,1,Alabama,Black female,47079,54851,60065,55144,35165,23662,22021,22248,24249,23028,22104,21909,20068,19364,12509,8291,5031,4035 +1970,1,Alabama,Other races male,244,255,253,281,413,239,236,161,127,108,95,88,69,54,70,31,37,76 +1970,1,Alabama,Other races female,250,251,245,254,331,302,284,279,253,148,100,93,94,73,66,52,30,29 +1970,2,Alaska,White male,12382,13888,13255,11179,20237,12538,10331,9548,8282,6995,5609,4029,2392,1292,602,326,211,143 +1970,2,Alaska,White female,11724,13257,12518,9504,10966,10735,8657,7510,6353,5820,4494,2986,1830,965,496,305,186,126 +1970,2,Alaska,Black male,531,525,414,406,1541,575,447,398,227,177,125,93,69,22,8,1,4,19 +1970,2,Alaska,Black female,514,545,438,273,412,369,325,239,168,142,93,62,46,24,9,5,5,4 +1970,2,Alaska,Other races male,3674,4384,4017,3119,2063,1699,1633,1494,1291,1138,812,804,562,496,248,160,89,208 +1970,2,Alaska,Other races female,3484,4169,3887,3031,2052,1726,1606,1498,1274,956,792,676,477,354,221,131,87,90 +1970,4,Arizona,White male,71528,83157,88434,78254,68185,54155,45632,44011,45053,45342,41487,35948,32380,27795,20882,13003,6289,3127 +1970,4,Arizona,White female,68828,80200,84922,77838,68616,55182,47599,45275,47264,49433,44618,40445,37448,31813,23730,15330,8282,4978 +1970,4,Arizona,Black male,2996,3641,3613,3126,2616,1507,1418,1457,1179,1112,1037,965,860,763,451,301,171,102 +1970,4,Arizona,Black female,3023,3518,3611,2798,1969,1600,1548,1381,1312,1220,1095,1012,826,680,488,296,153,140 +1970,4,Arizona,Other races male,7426,8226,7575,6232,4360,3389,2904,2527,2171,1817,1574,1366,1185,1046,668,415,264,259 +1970,4,Arizona,Other races female,7478,8097,7717,6504,4793,3675,3298,2984,2586,2120,1671,1405,1089,909,546,369,214,224 +1970,5,Arkansas,White male,61920,72654,76242,71323,58605,50308,42492,39862,42345,43481,42838,41283,38419,31910,23131,16427,9335,5481 +1970,5,Arkansas,White female,58748,69646,72860,70104,63159,51524,43937,43019,45165,46574,46063,44861,43845,37397,28121,21533,12750,8715 +1970,5,Arkansas,Black male,18960,22059,23821,20949,10723,6758,5682,5526,5927,6168,6638,7028,7035,6978,5208,3802,2130,1572 +1970,5,Arkansas,Black female,19012,21953,23680,21020,12265,8126,7389,7317,8149,8202,8264,8509,8392,8521,5993,4224,2482,1915 +1970,5,Arkansas,Other races male,164,177,204,190,188,146,147,119,101,108,75,93,72,68,63,27,30,42 +1970,5,Arkansas,Other races female,183,185,225,207,240,197,161,160,166,131,105,91,84,74,63,34,24,18 +1970,6,California,White male,729520,851641,883107,834056,790390,657335,544245,511004,533453,552188,488866,417372,336041,256909,189678,127667,73282,40974 +1970,6,California,White female,699843,819510,850036,793131,778060,652621,536951,504135,548210,580508,511190,448420,381704,321215,267770,199395,127263,84214 +1970,6,California,Black male,75183,86851,84167,71323,60625,50568,46429,40639,37705,35809,29891,24062,18023,12931,7778,4419,2313,1498 +1970,6,California,Black female,74283,85823,84466,69349,63936,55008,48585,43129,40630,38471,32657,26986,21078,16223,10414,6387,3621,2642 +1970,6,California,Other races male,32914,35795,34987,34530,35615,28578,25728,23329,22020,20006,14793,12912,12704,10311,6125,2960,3264,2068 +1970,6,California,Other races female,31656,34772,34392,32533,35701,30125,27830,27241,26454,20556,14267,10078,7462,6560,5060,3313,2100,1261 +1970,8,Colorado,White male,91006,108771,114468,107055,99640,75898,64220,60590,61044,59246,53009,44242,37075,27781,20871,14811,8951,5415 +1970,8,Colorado,White female,87351,104709,110125,103851,98057,78135,65638,61384,62962,62106,54044,47372,40722,33387,27764,21616,14110,9612 +1970,8,Colorado,Black male,3588,4169,4091,3507,4921,2577,2184,2123,1784,1514,1214,881,713,477,319,236,124,107 +1970,8,Colorado,Black female,3451,4128,4000,3238,2898,2476,2250,2045,1825,1587,1235,1030,773,678,531,316,199,159 +1970,8,Colorado,Other races male,1230,1311,1240,1199,1409,1015,831,641,608,593,428,293,220,189,151,82,81,89 +1970,8,Colorado,Other races female,1274,1282,1277,1258,1413,1099,926,888,864,630,427,243,195,162,171,119,69,47 +1970,9,Connecticut,White male,116032,137675,143864,125533,101845,94784,77149,76172,86747,90702,86588,73960,57748,40902,30786,22025,12499,6621 +1970,9,Connecticut,White female,111830,131782,138713,122953,112783,96177,79026,79410,90647,96420,92148,78556,65182,52999,45057,34206,21262,13708 +1970,9,Connecticut,Black male,11193,12296,11005,8355,7005,6614,5700,4777,4630,4149,3182,2476,1758,1298,852,414,258,150 +1970,9,Connecticut,Black female,11555,12249,10781,8774,9128,8128,6887,5687,5195,4641,3665,2870,2216,1776,1123,625,438,278 +1970,9,Connecticut,Other races male,707,577,441,443,571,593,597,423,302,250,171,138,127,102,83,49,113,92 +1970,9,Connecticut,Other races female,655,559,476,390,574,640,560,426,320,242,179,145,125,107,91,50,58,40 +1970,10,Delaware,White male,20259,24070,25248,21661,18134,16399,13728,13950,14281,14431,13171,10489,8337,5831,4350,2882,1614,864 +1970,10,Delaware,White female,19094,23050,24010,21926,19861,16946,14089,13744,14868,15218,13516,11168,9420,7487,6320,4647,2925,1957 +1970,10,Delaware,Black male,4402,5126,5061,4055,2842,2265,2028,1979,1913,1860,1651,1451,1157,875,601,361,165,147 +1970,10,Delaware,Black female,4437,5177,5026,4184,3493,2667,2357,2242,2162,2085,1733,1532,1252,1031,718,449,265,172 +1970,10,Delaware,Other races male,169,129,107,91,69,109,168,116,77,48,43,33,28,26,22,12,30,22 +1970,10,Delaware,Other races female,159,130,101,89,100,144,160,133,83,60,32,35,26,31,27,18,7,9 +1970,11,District of Columbia,White male,3738,3401,3419,6365,12784,10467,6767,5527,5226,5462,5819,6260,6253,4866,4027,2703,1505,844 +1970,11,District of Columbia,White female,3535,3219,3454,7688,14043,10060,5797,4547,5321,6682,7578,8620,9111,7887,7365,5446,3474,2253 +1970,11,District of Columbia,Black male,25714,28440,28610,24336,22147,20223,16485,14591,14685,14070,12182,10582,7926,5301,3336,1858,896,596 +1970,11,District of Columbia,Black female,25511,28362,28403,26929,29838,23378,18063,16842,16774,16546,14591,12268,9473,7112,4699,2816,1624,1270 +1970,11,District of Columbia,Other races male,281,249,203,254,454,437,372,299,222,217,127,135,141,117,93,35,24,15 +1970,11,District of Columbia,Other races female,271,228,212,268,491,475,400,302,273,211,184,149,115,67,71,40,22,22 +1970,12,Florida,White male,198290,241521,259695,240307,212038,169940,147024,146223,162356,165743,154036,138921,141792,149689,126769,84659,41034,19462 +1970,12,Florida,White female,188153,230498,248226,231247,212991,176080,154498,153621,174962,182709,172228,171908,187114,183481,148643,96141,51243,29370 +1970,12,Florida,Black male,58392,66420,68947,55801,36959,28778,27510,25417,24910,22565,21377,19142,16196,13373,7903,4237,2325,1699 +1970,12,Florida,Black female,58022,66383,69429,57074,42925,34009,32197,29700,29356,25832,23998,21686,18392,16056,9715,5822,3407,2532 +1970,12,Florida,Other races male,1185,1079,958,924,1405,1054,1037,787,680,498,364,326,332,360,333,204,152,182 +1970,12,Florida,Other races female,1149,1048,942,872,1147,1220,1124,1168,905,561,435,347,388,353,347,248,128,120 +1970,13,Georgia,White male,149122,165015,169607,158549,162614,130133,106615,99014,100604,97632,88973,76472,62229,43789,29826,19354,10389,5599 +1970,13,Georgia,White female,142109,157100,161437,152249,157357,129488,107343,100677,103502,102841,93555,83514,73313,58853,44995,32769,20181,12991 +1970,13,Georgia,Black male,65584,73958,76151,66584,46894,33831,27754,25004,24211,23177,22919,21583,18004,14590,9166,5494,3164,2161 +1970,13,Georgia,Black female,65125,73858,75591,68796,52975,38876,33371,31166,31407,29048,28428,26597,23187,21153,13897,8694,5613,4114 +1970,13,Georgia,Other races male,401,329,298,460,1034,550,456,301,231,152,140,102,77,54,36,26,30,70 +1970,13,Georgia,Other races female,432,391,345,343,538,592,499,493,394,187,120,94,105,68,73,38,40,45 +1970,15,Hawaii,White male,14894,16262,15346,14499,28613,14808,11118,10257,8549,7945,6697,4979,3705,2407,1484,919,453,232 +1970,15,Hawaii,White female,14190,15313,14461,11996,16268,13503,10047,8394,7640,7086,5799,4544,3547,2550,1898,1240,712,461 +1970,15,Hawaii,Black male,435,437,323,487,1711,497,430,285,173,125,82,59,36,18,5,12,3,2 +1970,15,Hawaii,Black female,464,396,278,203,330,323,253,153,80,62,39,21,18,14,6,3,4,3 +1970,15,Hawaii,Other races male,21118,24428,25438,22794,17071,15514,12747,12650,15070,15428,13124,12225,10322,7373,4376,2181,1933,1056 +1970,15,Hawaii,Other races female,20110,23243,24569,22816,18617,15654,13879,15060,17396,15936,12935,9081,6304,5528,4227,2773,1540,1075 +1970,16,Idaho,White male,32378,36461,40170,37016,26119,22229,19084,17821,18754,18892,18972,17639,15260,11133,8199,5975,3634,2171 +1970,16,Idaho,White female,30835,35251,38078,36129,27125,22126,19252,18377,18919,19782,19356,17303,14862,11454,9347,7316,4861,3103 +1970,16,Idaho,Black male,97,106,107,320,242,70,66,81,40,32,39,31,23,20,10,10,5,10 +1970,16,Idaho,Black female,115,104,117,86,64,46,58,39,48,36,31,28,29,17,8,5,2,0 +1970,16,Idaho,Other races male,631,642,702,608,472,383,318,268,258,286,203,169,113,85,69,54,38,33 +1970,16,Idaho,Other races female,656,651,701,590,455,381,295,311,265,235,204,150,88,87,74,85,25,37 +1970,17,Illinois,White male,394459,464269,483668,440851,346168,319003,270059,257004,283059,290354,273152,248939,206515,152571,113042,78838,44871,24198 +1970,17,Illinois,White female,376318,443593,464253,426038,387458,325132,272384,259633,290195,304250,293600,270383,231103,191596,159348,122353,75224,46888 +1970,17,Illinois,Black male,78253,90045,90458,70920,48433,44345,39604,37971,36837,33482,27703,22708,18430,15068,9725,5300,2565,1601 +1970,17,Illinois,Black female,79017,89441,91610,74827,63236,54673,49734,45680,43167,37763,31429,25844,22241,18180,12019,7139,3995,2959 +1970,17,Illinois,Other races male,3904,3383,2939,2930,3317,3767,3413,2553,2200,1974,1270,987,966,743,465,263,181,135 +1970,17,Illinois,Other races female,3845,3358,2951,2839,4114,4553,3493,2835,2469,1835,1211,873,677,609,490,316,164,123 +1970,18,Indiana,White male,212930,245608,255649,234053,184661,161551,135846,126752,138227,138874,125823,111936,93272,70357,52968,36528,21164,12220 +1970,18,Indiana,White female,203618,236652,243717,230474,205262,162883,138219,131542,143010,146928,134089,119287,104024,87337,73135,55730,35945,23944 +1970,18,Indiana,Black male,19167,21930,23282,20196,12766,10482,8957,8643,9285,8880,7259,6479,5210,4099,2948,1743,860,586 +1970,18,Indiana,Black female,19204,22200,23274,19992,15091,11925,10519,10503,10707,9698,8074,6957,5839,4935,3294,2163,1238,831 +1970,18,Indiana,Other races male,662,572,556,514,705,589,524,403,321,253,193,181,144,114,105,71,53,63 +1970,18,Indiana,Other races female,628,632,618,528,824,739,580,567,481,264,199,160,144,139,125,83,44,53 +1970,19,Iowa,White male,117032,139889,147777,136156,95317,82587,71759,67749,75365,76396,73583,67757,59974,48295,39545,29418,17698,10192 +1970,19,Iowa,White female,111479,134082,141478,134616,107586,83923,73582,71536,77263,80154,78062,71904,66402,58795,52693,42322,28077,19983 +1970,19,Iowa,Black male,1966,2145,1996,1847,1461,951,839,756,762,716,609,544,452,374,312,191,110,68 +1970,19,Iowa,Black female,1813,2085,2032,1902,1508,1001,944,869,808,776,666,591,512,396,361,249,135,103 +1970,19,Iowa,Other races male,453,404,330,339,418,390,303,185,161,127,88,78,72,53,46,32,33,26 +1970,19,Iowa,Other races female,529,461,355,356,447,418,334,262,190,134,103,105,71,56,52,36,25,29 +1970,20,Kansas,White male,83164,100409,108547,103829,91088,66811,55642,54584,59120,60663,55425,51023,45817,36028,28910,21040,12485,7691 +1970,20,Kansas,White female,79325,96598,103752,101698,86645,65506,56551,56183,60514,62160,58949,54953,51792,44816,38728,30549,20846,14325 +1970,20,Kansas,Black male,5554,6621,6695,5560,6071,3256,2522,2542,2374,2247,2048,1897,1620,1405,1141,807,481,290 +1970,20,Kansas,Black female,5744,6528,6597,5450,4449,3251,2836,2768,2690,2514,2236,2106,1907,1752,1407,900,648,437 +1970,20,Kansas,Other races male,706,707,681,791,1203,683,503,390,330,289,246,193,143,122,106,72,48,45 +1970,20,Kansas,Other races female,684,721,723,799,949,696,547,562,472,333,259,203,161,140,132,97,66,40 +1970,21,Kentucky,White male,128198,149140,157296,153350,123874,95690,81807,76792,82453,83196,75972,69604,61199,48961,36948,25278,14772,8577 +1970,21,Kentucky,White female,122161,142185,149781,140927,125990,98346,85309,81664,86612,87960,80904,76247,69291,59281,47582,35067,22119,14541 +1970,21,Kentucky,Black male,10977,12968,13802,14892,9474,5618,4685,4802,5157,5313,4960,4760,4406,3947,2819,1912,1044,701 +1970,21,Kentucky,Black female,10869,12695,13825,12171,9119,6579,5920,5894,6309,6302,5875,5590,5242,4756,3582,2447,1444,1089 +1970,21,Kentucky,Other races male,208,184,181,283,380,234,199,158,118,71,70,59,49,47,43,32,19,40 +1970,21,Kentucky,Other races female,246,205,167,204,314,291,231,256,213,124,83,76,75,86,57,44,26,29 +1970,22,Louisiana,White male,113997,131538,136095,129114,111017,87325,73091,68908,74633,72633,65204,58047,48510,36143,24658,15021,7969,4512 +1970,22,Louisiana,White female,109161,126533,130873,121128,108185,87813,74280,71765,77256,76236,68607,62439,55760,46345,34660,23973,14138,9261 +1970,22,Louisiana,Black male,62225,68967,72789,63267,38661,27306,23082,21366,22129,21338,19996,19148,17493,15485,10382,6483,3635,2518 +1970,22,Louisiana,Black female,61750,68887,71080,64728,45717,32766,28877,27454,28117,26070,24177,22317,20848,19630,12977,8586,5076,4075 +1970,22,Louisiana,Other races male,567,582,596,574,626,466,403,334,281,224,184,171,180,165,97,66,59,54 +1970,22,Louisiana,Other races female,560,617,537,516,548,503,459,427,338,225,183,175,149,101,79,46,32,37 +1970,23,Maine,White male,42811,50413,51955,47133,37858,29398,25278,25306,27292,27454,25831,23594,21273,16970,13222,8776,5323,3134 +1970,23,Maine,White female,41289,48084,49828,46713,38282,29590,25923,26618,28885,29137,27351,25552,24299,20824,17826,13430,8632,6184 +1970,23,Maine,Black male,144,172,125,202,521,158,114,108,68,49,40,30,22,16,21,12,5,8 +1970,23,Maine,Black female,142,174,175,114,113,93,92,60,48,41,23,24,19,28,17,8,10,4 +1970,23,Maine,Other races male,219,235,194,160,202,170,135,130,82,51,56,51,35,32,26,16,13,34 +1970,23,Maine,Other races female,224,221,183,131,151,160,160,142,109,81,54,50,43,32,33,24,16,12 +1970,24,Maryland,White male,136502,160170,164395,143235,131419,117558,97475,92842,100535,101714,91098,74918,58480,40929,28904,18099,9670,5080 +1970,24,Maryland,White female,130411,153637,157415,141630,137027,119749,97288,92394,102413,109050,94446,78702,65803,52512,42799,30332,18825,12025 +1970,24,Maryland,Black male,37054,44118,44251,36089,26765,22817,19904,18869,18844,17531,15090,12597,9823,7568,4941,2780,1426,895 +1970,24,Maryland,Black female,36763,43630,44222,37665,31913,26425,23147,21637,20757,19292,16147,13459,10614,8873,5742,3470,2090,1502 +1970,24,Maryland,Other races male,1476,1343,1057,893,1221,1164,1301,1008,794,631,396,295,288,191,126,77,70,69 +1970,24,Maryland,Other races female,1428,1274,1097,897,1166,1487,1410,1281,948,631,400,248,227,141,105,78,49,35 +1970,25,Massachusetts,White male,226540,262942,273308,247195,210674,176656,139638,139168,154897,159240,151361,132930,111596,85744,66284,46424,26290,14470 +1970,25,Massachusetts,White female,216697,251742,260720,251180,238023,180685,144064,144081,163544,173214,167550,152426,137469,118326,104473,78442,49755,32968 +1970,25,Massachusetts,Black male,10778,11446,10149,8419,7484,6390,5077,4571,4230,3965,3298,2278,1667,1358,1073,695,422,261 +1970,25,Massachusetts,Black female,10813,11511,10342,8974,9179,7845,6191,5371,5055,4560,3643,2869,2286,1906,1487,1008,633,486 +1970,25,Massachusetts,Other races male,1519,1384,1231,1289,1685,1472,1358,1101,832,774,557,442,406,343,306,202,182,110 +1970,25,Massachusetts,Other races female,1580,1369,1280,1259,1743,1555,1295,1127,942,673,517,435,412,353,342,250,156,117 +1970,26,Michigan,White male,351638,411114,436959,385919,291814,261799,215004,204003,230123,230289,209208,182542,147989,111912,81991,58059,31639,16315 +1970,26,Michigan,White female,336345,392328,419062,383756,328583,264751,219695,212013,236026,242455,222618,191319,159499,128223,105557,79964,49157,31016 +1970,26,Michigan,Black male,55879,57227,60692,51903,39623,31978,24364,24453,27242,26887,22879,19184,14568,11298,7295,3859,1868,1062 +1970,26,Michigan,Black female,55516,57099,60168,53965,46896,35332,29386,29196,30568,28402,24085,19493,15537,12270,8255,4840,2685,1843 +1970,26,Michigan,Other races male,2358,2148,2025,1847,1793,1899,1678,1200,1069,979,705,616,545,483,325,222,127,80 +1970,26,Michigan,Other races female,2349,2200,1992,1893,2206,2234,1691,1473,1295,991,728,571,470,354,326,247,126,118 +1970,27,Minnesota,White male,165062,200563,208135,183594,132795,122494,101518,93915,99059,99308,93818,85460,73820,59175,48480,35936,20656,11623 +1970,27,Minnesota,White female,157655,191162,199638,185704,156975,124016,102164,95003,100306,101099,98461,90224,80765,70072,61076,47095,30392,20256 +1970,27,Minnesota,Black male,2243,2181,2111,1906,1611,1345,1134,953,930,876,662,567,440,329,267,159,104,76 +1970,27,Minnesota,Black female,2131,2243,1980,1792,1666,1292,1022,928,869,828,626,555,441,394,289,196,111,87 +1970,27,Minnesota,Other races male,2163,2292,2030,1609,1312,1267,1062,791,722,590,479,435,373,263,185,132,104,98 +1970,27,Minnesota,Other races female,2201,2262,2007,1673,1702,1449,1121,915,680,630,497,417,317,276,195,155,100,59 +1970,28,Mississippi,White male,57991,66019,70731,68328,60149,45720,40580,37910,40166,38917,36241,34239,30961,23285,16396,10715,6058,3495 +1970,28,Mississippi,White female,54651,63281,66805,65046,58724,46398,41353,39738,42062,41344,39042,37553,34880,28789,21923,15913,9727,6465 +1970,28,Mississippi,Black male,48167,53957,58099,50168,25748,16462,14091,12981,13562,13558,14667,15232,14966,13961,9335,6334,3467,2538 +1970,28,Mississippi,Black female,48644,53798,56724,50485,30566,20261,18487,17506,18852,18123,18103,17825,17404,17042,11061,7224,4372,3518 +1970,28,Mississippi,Other races male,378,408,419,443,407,246,259,174,167,127,97,96,99,75,50,30,31,55 +1970,28,Mississippi,Other races female,391,421,401,394,361,309,284,239,222,136,107,112,88,85,62,26,33,23 +1970,29,Missouri,White male,163708,198115,209229,193679,153431,132439,111293,107753,115594,118578,109244,104440,95203,76733,58676,40787,24031,13932 +1970,29,Missouri,White female,156338,189480,199738,187710,166546,136813,114841,112345,121110,126173,120023,116068,110874,96212,79964,62041,40094,26604 +1970,29,Missouri,Black male,24942,29177,30627,24971,16666,13229,11303,10686,11087,10661,9295,8844,7724,6708,4876,2965,1723,1121 +1970,29,Missouri,Black female,25070,28702,30912,25652,20188,15872,14092,13922,13834,12993,11326,10506,9336,8485,5827,3783,2209,1523 +1970,29,Missouri,Other races male,709,725,601,644,932,866,746,484,366,338,243,197,211,175,125,87,189,119 +1970,29,Missouri,Other races female,762,726,659,606,906,910,780,665,515,364,263,197,199,163,153,122,104,61 +1970,30,Montana,White male,27242,34493,37596,33881,24699,20582,17974,17282,18740,18997,19150,17072,14322,10590,7569,6067,4317,2501 +1970,30,Montana,White female,26095,32890,36728,33321,25187,20369,18295,17470,18642,18628,19049,16958,13697,11015,8926,7637,5383,3323 +1970,30,Montana,Black male,114,103,79,238,279,99,80,75,40,34,20,15,21,14,17,8,4,7 +1970,30,Montana,Black female,112,89,85,79,76,68,54,43,19,20,21,17,17,17,12,8,1,3 +1970,30,Montana,Other races male,1938,2250,2125,1663,1031,849,778,609,626,532,487,421,321,274,169,117,72,59 +1970,30,Montana,Other races female,1898,2202,2144,1719,1183,910,836,777,666,533,485,390,279,233,172,104,69,69 +1970,31,Nebraska,White male,58706,71342,75390,69102,53958,43485,37469,36893,39213,39498,36359,33940,31152,25064,20917,15615,9444,5530 +1970,31,Nebraska,White female,56382,68928,71672,69629,58124,43569,38001,37898,39437,39592,38216,36473,34552,30325,27178,21959,14190,9792 +1970,31,Nebraska,Black male,2202,2730,2652,2325,1732,1146,1090,1051,948,814,624,566,506,413,291,182,117,66 +1970,31,Nebraska,Black female,2350,2725,2669,2185,1814,1392,1264,1179,1089,875,717,638,549,481,378,212,129,124 +1970,31,Nebraska,Other races male,595,606,579,484,525,320,327,230,236,193,175,141,108,97,66,72,45,45 +1970,31,Nebraska,Other races female,601,610,537,494,450,377,356,346,291,218,164,139,97,109,92,60,32,28 +1970,32,Nevada,White male,19857,23171,23050,18783,17961,17360,16217,15059,15028,14972,13865,11892,9085,6322,4025,2405,1199,651 +1970,32,Nevada,White female,19193,22215,22273,18538,18415,17510,15486,14123,14180,14497,13018,10966,8318,5927,4000,2610,1547,963 +1970,32,Nevada,Black male,1957,1949,1704,1339,1294,1206,968,793,727,562,549,390,343,206,120,57,15,18 +1970,32,Nevada,Black female,1858,2014,1782,1270,1292,1169,966,857,709,571,488,408,257,239,99,57,33,16 +1970,32,Nevada,Other races male,616,743,660,546,505,433,455,358,324,266,240,221,178,166,95,55,22,28 +1970,32,Nevada,Other races female,678,715,690,562,532,498,501,462,401,276,230,192,111,113,49,50,35,27 +1970,33,New Hampshire,White male,33358,38083,38104,34276,28587,24228,20509,19523,20494,20560,19342,16871,14848,11702,9119,5987,3286,1924 +1970,33,New Hampshire,White female,31646,36377,36111,33329,30158,24525,20575,19931,21046,21495,20129,18621,17133,14473,12521,9378,5869,4166 +1970,33,New Hampshire,Black male,149,160,115,215,254,126,103,97,57,52,34,25,14,13,12,6,3,2 +1970,33,New Hampshire,Black female,162,144,131,103,127,91,71,82,57,30,26,22,18,17,6,6,5,1 +1970,33,New Hampshire,Other races male,104,78,63,75,107,74,60,63,44,29,29,13,16,17,14,9,3,18 +1970,33,New Hampshire,Other races female,108,84,72,53,99,105,80,97,66,39,18,23,19,12,17,20,6,12 +1970,34,New Jersey,White male,253250,302986,315246,275147,215550,196703,171506,176885,203711,210841,196386,171756,138948,101338,75134,49386,26858,13643 +1970,34,New Jersey,White female,241642,287874,302941,265234,233648,209095,179796,185283,213522,226579,211735,184420,155587,127640,108147,77115,46376,27981 +1970,34,New Jersey,Black male,44667,48996,46562,36967,28025,24884,22548,21414,20718,18532,15058,11921,9532,7448,4670,2679,1391,863 +1970,34,New Jersey,Black female,44451,48222,46242,38274,34465,31631,28645,26076,24045,21183,17257,14343,11756,9609,6371,3681,2191,1488 +1970,34,New Jersey,Other races male,2127,1807,1566,1359,1427,1642,1795,1425,1096,839,551,445,384,315,233,130,123,98 +1970,34,New Jersey,Other races female,2143,1840,1503,1379,1853,2234,1964,1719,1321,855,551,491,382,315,252,170,104,78 +1970,35,New Mexico,White male,42815,53113,55754,48016,37626,29411,26267,26097,26314,25005,21987,19367,15844,11642,8160,5490,3217,1671 +1970,35,New Mexico,White female,41518,51119,54341,47484,38513,30642,28184,27215,27285,26480,22866,20211,17037,13166,9654,6860,4087,2607 +1970,35,New Mexico,Black male,1122,1377,1278,1128,1065,606,546,605,479,383,341,276,239,192,128,83,34,22 +1970,35,New Mexico,Black female,1146,1327,1316,1114,857,594,581,580,519,383,324,341,239,190,113,82,51,26 +1970,35,New Mexico,Other races male,5377,6028,5281,4253,2790,2345,2043,1730,1490,1302,1090,940,787,709,454,319,182,147 +1970,35,New Mexico,Other races female,5403,6195,5558,4579,3413,2707,2451,2215,1812,1395,1144,1001,845,644,364,231,166,148 +1970,36,New York,White male,630322,718099,748166,678838,557380,505076,424962,422552,471678,480059,451280,421114,369794,282769,211971,140561,76480,39267 +1970,36,New York,White female,602063,685549,714998,679001,644516,536918,445349,445010,504282,527058,504883,475866,426685,361919,302397,211567,126462,77292 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/sc-est2021-syasex-01%20..xlsx b/scripts/us_census/pep/us_pep_sex/test_data/datasets/sc-est2021-syasex-01%20..xlsx deleted file mode 100644 index ea9aa50287490a572c0759658d600e759fdc2b06..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 18015 zcmeHv1zTL%vUbzB25BU?1Zdn{f&`b~8r1Xe%y`<``cS*H^3^WV~00%$-003kFVXnY2TPOek1{MIo0w4gjMeS^z zO>CX@R6OiWoOBr7ZLCSNVSwOF01$Hj|GoYf_dtotfNdu;`Zx81*KbUT6(JBd z5o*8MgHLvk(|A?4{Sy4(Lv5<4T8Yp>sc1c>O?AnSSGqu@DI&CK&3LEz_LV+zK~$;Z zxxl037qP(H61Ax6*a(hHJk--uxXD_0*@gu}MoaQvqNTd!1 zCqS7xmF6#bMM;D#N}vjDSV>UWLJ-j_SwI)0X8v$Y6w6J64Xj9A3+~?fhZ1;A8JlHw zE_x4qf#b1}s+n)6tK1qbw_=blQ=Bf3*!%NJ!x#p&OpfGl5TD%fOuVn`=yNY|1IG49 zKeNQ1dwhG3;1q&xu?$#gI>z`x=u`^aLp=YX#)W%^d!K+7J;lu(lfD4>B|DSvQFZRj5HN7NG?rj${O310?!-xKx>E&2-5g9jO$!0PYUw^5k7qwA2 zuLzdgs0qD=G|{icJ&iqRoR@!qQdaABQLp! zp0RcN<(srNtVeGK`SgAza(2vH)-j1b%FHW2ts3_8p$w01F2t_l{>RBO?d+_c<5;e$PRs%~$ftbjSFDz#&%CT40u*^> zcDwmkSK6rxwq~VQTMonBsonB6W&qX4Q?Cp_7s{gRg7{jutK&)I?CxBU+ah^AaiNOr z8QBHnJ7Y!pH-op!=#Sr8YP|ZD@Gn8Tfs5ovrB8rYvRsUd15vflvCOSE(4h*txXeS=7*6 zo*5xMlM)s9n!pyAvi6HsS{w3kOj29T(H~`SVrs(KKZ$TLS9fBsXAU*A5!=w8J|jo@ zg~BMCWg&^@Dj1eB0TwJIzigj2M(+yHbX>Quz(DZS|QDlpNJBy&&;pC?ILqbg&olV+V8T4B+dhXsA4{%U0Y@-~BgjT#5 z?}7wxem<4qNIbB5>e$B9Q+ErOj%Q62COEz5p2T9IqP8u96} z_}mePdbah@Yani;Gh9X*uc5yQm>svypTe4F-r>)U0M?ZJsP?AVm^Wr~%Sa&9iErkt zNdNTI_T>zP%5)&z zNHukLclyId|K3_ea1svxSb<*vr{M!Y8cHDlKFSzP>1=^c-gv9Db-2@ldEd>unE*za z&wcgs$hY3h0)AP_YY90>cka|L*w`2kBY-aBSj;^00~pYgA*Zu`Y|!hJ6P_2t-r8_K z#Cc;jVsKI{HD_Hv8)-Y0^GG1Ft zavk40{srrIpU+`in=|u4t?jkFyuBaDcz}KH&aCrI={d>j1^^|HBt*R%WIKIpw(Y}| zBcCzu)Ia%<8LmKL=*r!YveE3)@q+s2-fM{a{kMY#2qt{Ggj{KYL@|5-0u;nS{|sb* zchi3dH7E$@gt+X@W*yTHtI`Kss^9MDzB&TLi96T^-OK1~F>HV*6cMPbD@s*p^~hBU+YZ&$?)MJE{#^9_WB_#Lnh6R}pMBPFoLr&3qVzjc& zxe>wT!WsdG!h0R*Mt^%KYTUgM{OY9DO%^4A=dr!&?PcSO_foH4walrncAsA%S)!vU z0CKu#PqYq8Np9ckAm&?nKyNizRstP)^Sk%2*%D5O5Ad;M!Rws^0{oj5>1DM}T0h;n ziO`y*bNocH*x#$@rkg!+-KsNj{R8+5K~SX z{-6x<4ELF4A`!NwRT-P;hZnIh?Ky`kX|E3C%$YjGYU+iV!=!vn=~LSMV5`IHKA5e@ z`*~C&9CR4n`s9!>r^)Vvi9U6MLZ1}9j$0qZj1yHbaOMhkNEW|tJ>{g!bDWnM#@%oW z|7=`;SXg?-VcAkcWw2h)+zWk~?6LrxwLQjf!RtoG7e=fdb1CsHk6)AKzBRTwF6KD+ z3%Bd0$rzs36@^dTm$!NUys&xraXi^~)AsAy&(8PPSzKGo&%5%szaA`qo!WU^U+jFc zBhd}77rVOHxom6my+5A48hZWYOUJh4cX2Vf+xB?s*ToViFGAo)+ z{0q6ax@igO+FNQ7wV{v8Ibx1AlJ8ZRVsIQNbLdju4ID}1s8=<`jU*mfgw=$msCo_@ z_naKF{JOp`|1wJK=$tU5v#ZuPJxhf;ot-5w$s8fDzzQ}Fjolbeg2)?6S;mPMr)+jj z#aRBOhdu9OH4Um4T3y>h!n6_Iie-J>5pm4w7fQ00YZi6ZrZ}1zWfJJdex%54o~M-- z&UiXaO?b~=J5PphWpc+$-agKYBd^=2n+&u`96lM-df9XnEPnVD`;Bu$GwwPKbNTem zoF55MjZ*g>MlE^%m#X2{CYrv3RZj^f_cTLK6gVvJP`e)OQ5yqn@+wvL#zSGL0jM);_iPK6+WWXipli+!@@o1=LPE*+Tl%`nnF` z)<@Ehsi|&_@KswqGx93($|}@^V>K17P_l? zso$C>j<}dpGwy4!Fw?$SS#f&ZdG#LzeiL~7win+1Q~a=;&Q`kSDSX**{O%IduTA>V zX7B7F?a4>G)4KU#MQuBtXNS}2*UuB*%<;4I6N(+{pS*NDF(^QU8G|#+96)%Pr9m1Z zNUT@zMR*7Z89YeHQIgruO<~zgFBZrp4ACA=%$^M$EFy$T2TnCc;~_*K z01x6nn(u1Ylt-j#`5RvK;cy41Y511=Dm^mO>SW%gSKGU3)3wc0$%T~RKM$C375p9ZSOo4w9unii1UDr;t+YNNT zekwe7Ap$pC5y0qID@1);2K#3p#+`c&1LBp8^YPcxpu~E8=78Zz)wf9DNjc`q;U$~4 z`n%c*W2RX$gIup&(lz`AD?%H~p`*S8E3x3Uln~{?RRca9Ac8nd=IQ-oxq{Pz-^AiW z-j#%Gmf!1=DS#5S;kP(O#xJe8JSWY+THW^rdc&` z+F}{IP#_QcX2q{r2t4_rVqeItEV5N;F3R3O+i8i~-usM-T%efxn|Wo)TyWjoeX{Kn zG~B=|Y+BGHRShMZ^1fHJL=ekVOBFgN637JY7)|VGCXkT%tMomc=Cxn-e=+cU+ z1N6jhIa;Ec%`Bw;_!b2siIHM`Rf*7b%5J9lZ zdTihpVt`oR$W9Tc^w`}6WRuBkhG9wu`~D(@oQ~0A0~!@s0ZU@o2Zxqh4i#eLzY5_& zv2M;UWitzDJj@hS-WB1(Ci|t*RVuOTVp*Y@V5h^%|LT}Wqx$)IKVTz{O7MFHfWx8t z4RQkZjYAN?77K74mjk>g%7i?1Qt^d9Ia37=LuR4XU2sD7fn;Ss_KsmKosb$^Mlj^z z+MqAh=n(0pKA|1g93Vp7!~|2We~Swp3(cN;nv`O80ImcSL7B8c`0R+tSMydEhcf6~ z$$aVBc1k(#A^c3(!Z3;*K{#poi6DT;I_F^y(3&d-^%N$2(85qbgC5n3Oi9HSC6ubH z1lfs55^5&qftM7pI3_qBwc@Dt)I!YtJvkVnf=Y|j*?9p4SV5-1LY(8@V)^nVAo!AD zEVCa^^qmj}uq!sR@Er&fc+VI4xQcu4>flyM@ZEtZl@wN zu5cuq3C^$sanz)X;s9uIKP!fRuZXZKB+D_gP;b8k+dD{Mk(g`vr*a#f;Fxm@qX7}} zZ}v0P{5_)ex1?x>FXiP>!jr7Vf#GZ9?CufKMV=I}B#!W6Ns-1n@XuYQ1e$^B^}Y}F z(C}Z67Y1Y%g1IDM=S)9`qk!a9$8y)0wT0G~W{Z`k_UV0TSp{=1<)Odx>x3~`7|P^1 z;@Dewf5j;&4$q1pQ^VvM3_h;KprB~)frn90=McM$#Mc_^4F)v%sO2#eOfuziBo{h( zkztQ`YyfAhJ7rSmE-KPt@u;Jd?{&d)DBPZ7qyPfwCDTX%NFFPw(@}mcg9^6(9vLv| zQcoKkrJOHej!I@k-hmd*xDRU?0O_?Pw*k%2=capQB`rP*13G?yXQ5!XY8R0MvJKx` ziKFU>u7YWncr!sJJN!=W5s~{ad{AMRVhr|DSnwp&rY|6XYyefaN(zX0fzC{u$vn%u z(Vc0&reF7Y&Yn%8U1R0(@r9PcD}cNJh(iJN9qOxi$Nbz zbXW!?1m@*^D*^kyB!^r%yvS7-QK6y7cb$!S(M%QT@`+761m9W)eiaOuc}om3_R1t;D;~(2WnGw) z8@9ynA~zC1Zx)T*Q|P~x7Y9M8IGf%|%`d`=PDSs8*5ee_@(_pwWC$!PBJqxbLHYw- zZ#ST~pBrKTWx4U}Fl_ClfcVSw9SPViBHV>A5TjiJ2(@WI1c~zuDLggX1X`@?xKlpd ztiWXOPZy7bK;trybIj_w{RW1%*bvE#%i(~|(rq^Il1GggRB#%tx>uI^$$gMJJmFw3wW}gh6MmpMHt0?_hW$F09ySjSV$d3I4=~8lKv^tx7{L{br1C zh1~vi9bG2E7)aCOPk3ZqyEd6md4Aq6QH8)JAJnZG_A;peuKs3~pFu>KfeIE+;mc~#ie61Qss^bF$ z(B^v7Tf{c6MKTMMacYCIC3~~9*5arbzft9@7yL0+qaU1zzAx=Z4sC%sG%U*_lma`a znXOP$hTJrT6wiL_NF(7=!-;KXCuAZ>1-AT4SRNg|fH78Z&C|V{)DF_z* zfj)PCK0vWf)2gDzgue@jRG+4I#W4IqUO)&*+{#VieSy*Q!+p||Mr08#VY#cG%myDG67C8WY_iiymt|*A4H9rFBy*Ce$JU3}{7gvB$OH*x zrF1OyFMS{kWlcT+6<9Ij1Rn;gkFzGi7m#f%GJ_J{Nyi#$I@qg9Q?N@bYQgcVZ(Q<>nKf)*Lsx)mjREn8p-+nSCYRC?H+ft!_)g~=>Kqp%F1dzO0 zE_#9w6=~O7H?h;0hchj0CbpR`#uawy+WRd%BwVQLVohE@*CT<*ZW<59erV3H>^;!- z$!b(2JFGY_7s6?bt<97@;T<1ySbOJ(Lb*o zDMIAowbTtm^dX~J-o2`5oGo!oO5#+I2gfHUG->-bjT6gdtqTxgWjg7k?3?Q>gj^m+S<8v@n*h+^oRZsz;AcHLn`V+{R z_T3kSK2rAu$5>dxi@E3b|4mpAo_-tCQwUJ+R7VJn1m-o>dn;|=f%0QGfPD952rTHN z|F{S=6ZA4`9RI<@mhW?xZ&IVS-ZS>%=%+tpFaD*^1n{eVt&{P)B8jgZAQrwo7$lkc zc3nv;@DhVEG8icOwOHwWc(%tRKC7EgZ?swA=N|aK)nGNsbxJwt8NEG*a)7jHg%!BK z;O*^kpy%AIs|=Eckb#5#5riV1yo;2zs>o%&6USCa3X9RX7PLBoL}zRu@D_ty3CXSe56scU=J_$#70Ts-LpJo=IV2cwk6BbnyO-|N8b-Zw4kA~f{#fnH<^8sHclbRFIKk0+;e zRd>%67Y~~MEg_2oiZf4+45Sge$$@?nPIDC5~+}N6o5sOPEHX# zG)E3gv_=O`w_g?dsJn-M<-cXOI07nSNJUE*APv=tS_-1owRO_>2ca_38kIhuB77gIqJQs?k?Fd-^3m!eE)8uzzAd z4+wc?=@2)Trh!t#FCbogL7oB2j`HrTf3FN= zk^-1|M#Ig`?v_PJP--?S+Xj%p=u^8i_D2CL&X9@L;*~V0V6HdV!1Tvx5c12=w~iD( zx*Zjmy{=SE7Yu9lr3Ctq>a)N-&k|~cOzOoanO*^g*bPWMK>o|VT`h}JfTYsS<0lj( zHw8;YqxHJ}A%YmQ%;AE41OttP7~8A5m3zYyJLR=_kaIcau3o8JH@5~8<$C5RJhQQ=+3p`F ze-KHo*hUvp>6j>Wv&?bd4&urgNYiJ72Yu7 z=DBdlKLq}m0rd8T#lJwvNNIj%q_fg&N=$$>QujBeDngs`-4MUllk6a54eHDbW<)Yy zK0Yp1N;u))&F4^Y6$I!a!p=?8z8(F@@jNiSyzP8-q&R z?eFtxz@!+QIZ#+ct<;bvPy;7}m+h7cdMBX{wFDyA?9Q}b>Cl04Nfj=~f#5qt_+{uR zgr`8cVeFCuhVWfhvlNBmSt^||{Y{MQxj3v)>uW>kDvbqa6ZOKBh3035H5Y`|UoDma zoX`Z%qw1cUFryi2=5Zg&!=V4Ipa;Z)(BA9cyeVkt>T2gJMC_CqeZ8`vvL$SVy!{?lxP`w!R;xX``^XRC;r8pc%_{yrt}!gEd1p}X zHLVJd*93b3V0>Fnb*MQh`cHIZfJ2ETxnraX@M8SY)%Bkf;mz*nF*&5)>;^XYtivu_ zsR-?Yj$x48vUX6AxWaLi6dX%3D=Y|`6_uFLYlFxIBJ%z)uSX*7A0;;!PWAqLa4 zC+-msDO9%4>l(D8?$93|^;W}!!_Jyftvp9ZXb zGhTADVrfTo6^mddpc!vX>crXWKfE;zr*P?(2u6QiME(W1{RbHPC3vY`%}k+z^g9sg z(_B5R*k;+@s?c~779moFt2<_v#h*`yEJMiFv@>+)Ih~REkCJ44Ts`KK8MaJsS8(Fv z3+nK}O+Yz0@iM81nA^jiz?ZH3P7M{#IX||~>n(**uZwZH4e`%oJ1)#Klz70fMc9+T z;AwqMC!P@&-tcyh2{-C@-(5mVJS|hXGH-ZdrTH_ogg1OIKij@x8d#qhGUzRXh>v`k zuP2y$RL+~fE3cAZB-Q*SAe@4$cuQSmJ zuVqGJivh91wAb|lylk~F-;IByL~9A-fb*%DHO%2g%28a&kghZJ?N^m`u)il6_dFMD)%azfNe!aH{*3H{Gxa1cHy0kt$ZefM)tH ziuH(~0D`s@&=NmGX2oRCLcO|z##~&6o;-N5Lx75gHkjs-8or@f2J=>EmHzBx^PcSi zQ|3ToU`<+FowYG;K9Ro6*o88UZhjK;*z!|?sapu44dSos_3guzSyZKitMR^$fLPj_1`{3APK2sv~b_{UXugMn;eP za7*EGm>+v&F^cLrb^M-gX6@P@n|y!vt=gHWopsq2xSE|^T!;NoH=3}qhsTzZi1xeD zV)vZdiZIoyxy_!&wP`hP!wp_^vba~^B(^aa^R9Fm#XCHn94Rjqm0A^3NUVvb!xyl; z5UXa=@*Y2k;MA*Gjfmct(Ebp2!c;fAKbhT;Ggf89(D7mLnn8YJM#i!KCFg zz7uinrMP>K20N=~ouRy8eyD)thLKSB4+>i+d8b7EDqZAZ9q-Zia!$8o9gmtr2jfRK z!^LA#y~mFtaP(^KvPW=_Z?cW9`991v|7|zq*I&CU)*lDtyO_~K^h~y(so$j41oyuB zxTKUMDH%$PE>WLCg%eH0gSI%yhFJWbDQV}I=})tC&OO?9IWt5@Hg?{<*~#1cF(_y+ zUSeS|k#qhm?`sK#zB3&y-+_Ac9F2%&G<`=8{8{|64Po2Pv?V$C;T5v(t1NkP9!f|2 z5*`XioL4gBL!?rnub@*NbeZ33Yp$0%C$bWm^MB_kpgs=_P*xRyL20ppcaYi`^|T}4 z3v^<=csR~ zs*Im)6k2eefCeX4zS_D0&UjdmruM7PEO)Ow`C5$O^Yo8rV7_IxeUpI<2NC)6dCouf zOP$S4Y)qK`c>iOo^his_j(`ij6?e~%^!l?#6=feQIeZd*kJLk8X>R{VEyd=V#vxd# z`SDW8XjmkWT!b#tj~UT%P9flrxF`I2ngvk5-d^lGDVd1y(q1t=SATbsRg~S4`7FB? z&je;?+4s5prSRK_d4P}XTLP)#S8KinJ~os>O6xTrUcQwQz{7mGq~-PNTbjFS&nq&7 zJ>|ymL*WvYx~2+JQTNDgm(L$TD_4z@6@l6q3_oB5p;{5OHRuzQa4}^k0eRd|b3C&@UOXesnng*pjIHf{7ScOfIpc*hj+*q!&{dxjX&$648mn6O z)=>L5ij{ArjlRvlb3KDIJ|9xPy^dON?CBv;7&iB051v7@sdqXtlKfIF$K(yWMwdq@ zC@jn#nIpqAzWX&5+X_)|D;pJnYOFC1`f4D4$Ne5`yOB!=MpFn;W?UDxsGMSC==gP~ z*Yi&G$Ax?18Zg5LH276Q3-gtzFq`U&6X0wnz~k~_k&Ed|4&*;W(AVMa_QNFgTX_;c zI}e`sY1~oa@5|eswr-eSziAWrb#OH~_TaAB{p(>_;`QV0R}zGu9OJ*HcgK7^&X1;X zNq*gpD8KO5S+m7h$wK^S{vkcn=d-_UFLT*eF5OPfUUxDth#PK&c!mL+uRVjzRPbF; zL$4QUX3edCJ^Y9068K6y@PXz}-E{7Dn^DamFF(7Ai-sp{Le{3$EaJTtCL5CwsgbZJdu1dlpJ z-88jV?1;z%hAe!XSY7az(~a%TY7mJ%@8t3eu)~s%FImG|3W;1P|2;0~_493;&Sh`H zDnY7N+GtW z_X(1FQO;~^8Tr~OykuTN<%(o`Rvc z<%+J9XJ8mNE1cPHczn%Ct)HIUiIDpIa0giWhq^p2G0ppz*cIlOtkcj;M}hJF`}*N^ z-rG2mgg0*`f3#Zm!|67)rqy6^32|+)^B~Ht&YUwNq47_itCaH+FIHt7yPK*ejj;KQ z(l51DG|#sOImfhzuC>$MASB2&f zniIQux!1zUj08pfULMo57;A`K=aPihsRc=5RJ?d4YhLI~7hKS1jnA7oot7LU*FKR_|Oqk8GCb8t#D zOwPTHkXT{hXUm#qpW$A;^J0i~c&T)`0OWcgM3uYH&RUmcpu0`huEZwKdBLRCQSvFz zzW`rHHarg-A*4+XsUqi4YvMFs0Xsv--Ee0gF7}g>pu!u%?r&IACeW2J9gn;!!e59J znWea}g;(3NV(aQWwsCg(_roPv;LN@lCG~JK)$@u;q*$-#lSY{^yQyhW5by0IE`zz+ zXsNcDq!JDBevPS&-y=rWeezs@CQFw>igeDOf@V}1&O$O_L0tr*8Ot8~n+F7mxuXih zQs?Z{llI-!kMIn2<#Nb^rv;;8Gb>2GYM@uan+&{Jbn^)FMmS>7iGB%R(*T3&9QG|Y=s2-RJ&gme$E+xt`|r?DoT0^{3e;F@B>*} zc%=Cz<+J5Gw3VvLvBv3zaE`ol!>dkh8#s87J>yqWDiK-{JoeNX+?J*Fdj)Nb^wh;` zBw-c3>L~aL*omY*Mt1q@EL5tIL04T5H?MsgPC*5L=&=0C`c2#uZub8e|YEnW!GEB;*vP|6d;qOSut!MB4I zeao>AGmRn6$Iqur|NE>G)m;-q86=P5ga&d3_0QPr;`Dq#X-P}lZi5@-t7q{` zG-1~y4qyO)%E@AwkgU%6xR7|A#YE-MUW7%_=d7=Gzj`x=CIyB;kV_rC5ZQRO>%F_- zR4H&*gZTA4(nD5*oipP_oyA(ekzg2((PjAu&0;(JN}-Q2;E1!irH#1<_MeaSiu84$ zRVEf3xY*E*%0`eOM@`9`_6B+n$sCfz*(-hiH$dB;o#E<)6t9y=f~PDOUB{3x!er$P z@H{`EBVzbzm1_|rt4qf6WWBM*W|&0yw*E=1n>$t6zsaGgpN&&KralUFl|?ZJ-dkkD z0jFBX8_kQyNnJc zBS&0$jrXYayek~at?(CUxrX5dg3r9zANpPsM=?CeT1l9lQn>x1AmE49t-*|rS8UIY zWZ{mQxICjVe4U-*4HF3!L`*<>X{JZ620ZHhl`mmBjtLh zz|FQ_PNf)D_@Q53vncoJPTk`53n@i+Y;u!1JpKrU)X|i(A4+)1k)$mM!#OXP@CL5B zTww+Ag?nvcOZ!yUJGj$NnBxH@dUZ4 z8BB~}ag{4J;>xDD1=c8W6-wpr=!i*l<8Np!;}_3i44H+n0(A?vd--pJSy$wQ7(SM- z3c^rrL#t2_=l{^fLGpvwlmc#dQuWtzem@@s>eY!~U`jV_DXEj(iK|h1Sf;v0Tlakn zFRMgUf)guT2rir`N3GEsFFmS`EAfG1AWi#J;jbq0vc@r_>gYwx;mND*u>|^TbgQ*^ zj2f@I84Xr>-$0?Nw?Ec+LePk3XkgAADJJOCGUqbIGL8LG!M=JfceX`E8Z;HHtI%IR zv^r5$Q2!`GOm2N;zX>l<4Bs+8Z{oPusHeosJhTmTsrsqDwT~t{?BnI5 z{lRJ2%+iLYdeRoCVlAc$H59$)nAH>{OM8}`!v=Qbd1P#Cqjak>uVz=IT~Y zkKOu>EOk7lv3cbTuXe9H1QSD$j^tTj@HMOR%k!zX_V>iZ_V6RzC@_ihGwgHDMNgn$8j}15_*GN{`g9Q z%UL@Wnayipqg|EBqFDySiCXT5y$?9(Epcg(hClU~J|+K}rW0G}#)<3U#g?bYQB_0) zJ15$2qjF@UoJ)Wf!jH+$**35(pE~sBk|QhdjYJ*TKfi5&Q(#J~Dz+Ll?5${s}U=DC4zRz5)e%&0soa$m-FnyfmTfBPMP?~aBW9PNJpTXzkG`CC_ zb2gu}x!2{7*}?~U)eTuU(LSb6Ac3XmI7TEZ$)GGb%G}xd=X1;TrFiUeFaW>-BLD#U z7qFWfIGPwMJ3Cs~n*D+A-Kjcui=3d4Q{*473HNBb3?us`SLjY) z8X?9?M&+hAwfTNcViGR~e;-D@-U49al7^n&XPw z@hRg6ebJlZ#1;g!3Aj@=yH)y9m+moIFN~?ts|awF2?L*j=(0?Yn{Dm>`%RhZ z2y46CLTiS+!v%1P{AD3l6jI?-kYl==77Tmg&KF@_!IJI{ON+GWiPH4By0{a3_4si& z6(=xbGJa1?y=Z~C+`F}|p6bPxMJ4GnPS3gNgka~Hi>@UC)rFr3s>(>z189pk;Lz1q6cO*FB=M-pNerUuy4T<43!>lZ=q5vDlvgT}FaW^L{=Xc8j6#4;k0lS06~u z5*uguM;wHc#cOph_DMDsqxSD#m0QNidT7^zs?mh7Vx%W^Ape0SXe=F z%}qIs+ija`ntqcUi-lQo%}XkqXen*|iBT2{Kj?K}Fb#TvA$p-9`d35rB180IL-Z0u z^io6gGDGxoOh}nJRVCG>{HKyfs{33DU&9EuNdH$!4RGgxKDUJ1m`1r8zz$VsLoYWa z)g2LP`SSuT^!Z;!)MpB9Lly3C1@iUpCHiiaG*q4E-vu^Q{r4hm3OFzNqgbMCOcQn& zLvD6LFW-SYvRaQNa8yE*Bk-H*jOZBJQMjOc!5D0tV!6(oZh|#!)oZJ~`62zQ0#jrc zVXmXhK?xdFJgLN`p`_)-aNDR8$?r*W3Yk{{#w@26y`bxP^3+1=pFiTTtx5;u8E6Sh>1hRV*DmvuCvuRid7i}Bn< zK04|~;%0`AOsBW%3Af|>>dbS?o%5AIKn7!`A|qOr_8i;9?fU8T z?M}4Xt|i}hVcu*&i7Vy;x{VeY=j$~0wAXvj2tGq~pDU(+W%w6Ypa>!aJEkVmHuFqV8VtGr=gL%3S0Ps=LsJcMEWfpJH!7 zk6zV;ChgnX_G8R??#xStc`y(Bj3D@4Qe5x3G4@`HCstoDTau?=?D)dpQ25a8`m>b}8ce>;@X+No;y*EK zeJvJ~Fi6YyAlY5ifA)Yq1bLlJ9F9_AJjD{ArNT&TplE#u|{l;Je1$|~i zW`H3D+y)c{GTR~%9I@%{4Qh!jN+e2o!v&9$Kl|%0L^yO3kvryG;0O~`oY<@6C>a_G z72q2-D3;Kt7chGVI{c3!iFlj zGDsSTf(+-Q4;iq3m?x0rqdA*FE_p%HU@#zQFvfO93XXR6PE1C2jwb)gxc<;mDKS1t^B77u}$sC6`MEU+~aN^FJ$Zf?DNW-&-cx{ zOYEt>*gSVIdDTk2$xX!Kq#iV^jWOr0)y~As6CqL^7fK?LZ!^!?8^49QV_ztBXeDBU z;{(K#Ub*xa#u6%k>7E!0tCg+0OPmPeah`L>oCdy~ZaMfXh$B27DU2MPu1_phGh zf)uc)AEyeHU*p%9#ziC`IA@%_t~RqJ>J7$7oBF8 z?+X=AG#=Ulc{VE4@gt?&Yp*c*w~&%)RI^jWB~WR}gAAS8(=Dp2>Q_uiiQf(^?Xb{p zng=Ttl8ucoTc4-fDp&bx=4>1Kl6+iMc2y=Q(S`?V78~FmO?aT1UXEZ=w@Q57{E3!F zz>6laY0vL#C#y5UHPbBOP*xUb~aYDN6U$1m!IlDz>ly5KQ{LZ}hX+Fl|^q}|C2C|F7A5kPP+w#Gt z%Jzxa44}WHI4S=^$n>=u_P$ARYjSfFtH;h&^(Fh7f;QHNcn1)ie!@u2eD}J~o#_u= zl-S$>V++)717y6F&`(UagY)==7VYiIc#&O!g`ZhMiu|QF<~~K0Z_TL2J&fBVk2saC z%@o*euEVMLAM(@MB$cVMe!N?XronHg2l`bXx0(V^BK(pLYse4LFk3mO55A3o%6nS1}4bZrL;= z1=(R{#bbSla@NAXsN&V|o9i=)+UhntB(4OIZVf}H9J` zlWb)Dx-xVWh-Rc{I}9Q;8~dg0{l`AmbM8G9kO9K<|M^EU{%rvN{``lZ%=lfw|4iTi zx8U<<0VJaREt&s!!QWGw{}LUB`%g05zZ0B)7yh5=mVb!?05(W}2>*YQFMrqbdk)@T znle%TQ;Gk|$opN(?>kd}Y55LWFN5Uu{k~82yMo`B*Zxu<%kqbUzZTnm7yW$#_m?Oo z*Po)lPv?Hu@H+?lOG7T-?|tx(jO=%Xzf+pO6z22)q3}0C^N$4QccuT6S^T9E0B{xn q0RD?-{4V}Kq5tpVm_mOO|5qSTkb#BRAOL^@`J;lEF@@;!xBmyS$ql;z diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/sc-est2023-agesex-50.xlsx b/scripts/us_census/pep/us_pep_sex/test_data/datasets/sc-est2023-agesex-50.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..3a2be200b619b3ac334e77fed488393dfcf3fc01 GIT binary patch literal 15645 zcmeHugL|aQws&kh6LxG*%#Mwjc*2Qo+xEn^HL-1HCbn&BzU+O@x%-?s`~C&ref#Np zyPxW{-mX2c6HZ zHiq_E3@(-y#JLb)RM{Y4@4x@Q>;Gd3lz$$!>S01@S3MFC=}-yH2`(*#!EeFWBs+jk zc8OCXYuLr5dhw(*QdF*i=_XgSnAD`W=EbR4qEH74Zd))ssmqh;!WTtW*j@6yN@R)p z<(I2Oevb+Nn2m#YehxKT4=vNQq|abR@{5EV>th`p>wfo@+##?mL_nCloo25T>~Z0k zZ@5PtOq$veN1xNhUy1&M)S7Brn<5LV3RzW}J%KVq!hIw)MvX#q-4l`I(Z~!&wpNV^ zF1Ij|plLa1u_X%;0&5T~N)0o{6|u1o6eHl3!2f{IZ35e>r=xqH|*7aT*6TWh-fYi!@i1L92Pm`m68 z02uoq6w_6ZwU$%V8+`i;umjl38x;=h3+(3vq^KX9oYCn^AW6=8*s+z|w+Ilv2q(gJ zCJT2F_>X1FNUIsSLPQ&hmq>VT?{@a<7dVK*f0${#G85^|yY9)n_rkxMsg9kYg*_v~ zAMO8{=l{nx`ENrnkCT<}WkLu#mv{*ty8pQvg94Ox7LsTMeD?B@TtTjn%p=2F?WDv< z`TW5jT->|e>t$qll{fNe2ynN>RvwOq!9&{MToIJ?Wa|h`Lt&RFW?R15hwAk6_UB!S zxRfiEQ+qT`SyOS2^zb^V*zBc94ay{g>IYc#0{kE>z7$`L0a^7m{fA1>pTJM26+zXF z9N9swo!{}IRXm9?yw*)cqcs(*E%LOrpF5+!~U3Hid=@V(gt z?(0U8mdd%%g=|SA-EX16 zsOX>fzLcZC>~D>5^-AE8*eOYMqrD8Vc?rBc7KKNCzIRqyBLzX>?ha&jJZVYADkpgo znUm?7kSYzsNiMA~Gw+wEgddPmZt>k0wGwUWA^?`J`2kdEeJYhA36+ag`6_=a&G;Nb}MAK7=VMZF812CIub51J+1T`VoVZ1t^g{!L|G{p;O z?~KuPFYjKC0jkzOTb*yB(_(s3mL0&-xjz@wTa5#;rQciRM=d#Ez_$pykDxu#PwDx%$cL(Qur&>iNW)9gPMhRpW^i zc@nkuQu0hRWP@jV=%6E`fbl1;h0#q`G)+e9tFFO-dTBns z7jIwCkA{bx5cjU`#H+-CK=Oe8&?R9ab9R%S4EC{9=E5<(08)`|vhYyfiBCgj_JrcX z&#OTdIDdV3zJn5Y63^E~nCp-M zANk_fR`&Fx6Jb)i`Z(0_+Q7(&2{uPTN6mSFdEp{Ej|2i&)INtnkOFNJe3)~o!+zCI zXxq&tGn41mH7D_HQ$o(#0m! z1uoKOudmDA3b4h{e_g?|<>e+z%_Qp^1K~3^Q1G4W9Az7x3D(2$G6iNIPEPrw_&Pq^ zx$9W;-r2hME{X{(|CF1)OAP;Fg?945ZV=5_l;(7uxL@c)G1&{ka5(2>?4bqnb=@2r zkeI0Mr^A%$5K+0Yy|4*Mdhet3tP5>+iW`b(radi%q!?i- z`f+p_qs1L%=mR!gBQwO1|00r0Grg!Ii|Uu;T^Maz_ML=;63=Ee17zg&SItZ3&Kt3I zua&g>o`W8~u2+p%NDkd2Yijg+vCcPaXk8Sq`nE!qCPVB@a+rGodc>u~Hr3={M861P zl=?{yPKOVRD5vY&z25JZ_usbZ%b$>R{od2^9>6|;z<|En=09TCzgy_P;u+|By7_M5 z|9@ZQO0v>@@97r&TQHMzniD4Kq5~tziSjWr%y1p`G6jIu>t-E~rbSC_PMQ(iI>_~W ze9-CsBhnT)`fWFDaTpqe8@k0g52W?@^*A_;{%HlFpEx8s+R4#z*(p3ysy%u$f7}pV zCI;u;0~I-La9$ya$W8N15S!TqlOv0n{S?8-yFVYT+wpk{_;ga?SJ&7`oJwu9`>R=a z`3@?}&y{HU8W&cQ7ts}D`rrqE_Muz!4(6)u#Yon5!n`~031Jt%Oq#ItBcDf*199+> zIFUDXoc(TYN~`kurUUSKgt~M2if;7g+-PTb@aOvbO#ipaIN`{h@L_;}$Qgrx;Jp9h zpYGh=#L&>ep7GBc^B;aaJz+U&i3ug>oc5N0Zauya)?hKDy0k^Zv7i)K5Ny6J6C#RV z)WB7L)aq=JIF*Q3N0r={>GAgK65)HWzu7QS#J3h&>ToovZ1k46)s}pnPTt7E1hv7| zu*MeuIKu9k;KyZ-@9pe(%OIS70TYRJwv~)q3t>qwI==Snr#}Z?%y7WEKhN{odejGC1%P98QC-%z&bV!Z zXW7zppSrDqaxu7<`^4qC7ClERwBAoOG=YBD=ou!UV=B+5Jxy2f;&TY@Em=Cqnu0{s zqh*|6{RRKV41*-LC3NB8)GQG04L9!3Rh+%IJm)$0j7&U_NMm5i)}8-UN>{o~s^)v@ zBbV#2^$}*31VTJF|J6`f!AbcP`LXWNCep;1tAf!T6b6p-)XkD-?0s`n1 zeCQ6VtC(3ZyNrwbmXvO=v*^HUQ#h@aDu3mjpB>2Q^6;Jt{QC8$YNe+i$E`HQ2I`1T zBNL;x%>rZt%ECmk)Z5zpfMsgW!F*BE3$0%6l;I~B6eH07JbIp$xpi-QcXKu>(E0jy zyuMWB{kjgxy7nvh<~m8>b+YrFi|6B$b8l|o{pcWLc!mID(24wPk@MY7TKBIf^0$Xg zolcLJ3&Xs0Z7L%69l9aW7>$@R;z;5OVh$m0Avd8jKLo!BKN-I<_Z|QGS83?J^7i1ALvtD>Ym>>Uyb`XS{Qu^5$@G~x{6c4B8CC?PQ+3ZXr|tyBS_ zYsScjm4|s9@8{+HpZ7$<8xPrPikw94j~R9o8ehtSm0P-S${Bae{ZSlhGkf1 z%)QSs)Ai7M*)HvTWrg4Q7N;WX`fmku&Aq*9bdRfm;WF#@24-oBizR_09xg!eyJRAS|ye0bb zFe|0LN>#Z9G5hTLi#K06K)&-~Uot|u^X|?O_R3pF?BLgcKs2~pqvPEunfQg>wRaZQ z!OH}n{0N-)I?uBx=Jq4Ox%fF=+bc;|qnNdTqJX^9*M&z}*CA^x_7|v@ zqHncNvS@?kYtL=ogjczJ>pCm;1oaqjq%O z-{lE*Uf!`j^>3UOVZL}d+zB&yZJ$!27LG42%R8;_zYH`WL90{*B6e<4cobN8#TRUG zJn!eofU6{gyK9R;X3np9p)qBBX@4c#^w`eaSC;Iwy_;p(^4LBVPnYMm?%eQLaeuZQ zP+0W##=Y>kxSPc|7vO%D6nllnp`Rn(#-O)O*w2F0YK&5cIDU z-~r-a1$1n~D)tEJeDcGpOwhgNNC?5b7*e&_%7NH!i9-9r;w~Z4WEU)=G95~cO5=t~ zCKV)uPR?@Ej}Yp@5z|gepHk)-bP>t6k$PYUK>kFiw`&oVkO=veP&{NiEPlTq9oS!- zS11y3_zV|XyTdCIilH+N1d@c~k%cA4vXUP_@sZ_X=-38}j1csJgvt;M--;?>B+FAu zkio9$1&O4#RramLCgQJvifepwnuxuyDyp_?=r12@R!b+)OR2%(bN6!v<+x3dXwFmw zf&rv#L@fY%<}@t4F;p~7`p}_aXzfWYU>hmDWH)$J-5yE?sUBHo&xos2zCm4iTkZW1VoskW2mD}L5%TOj~Mp;6#NNeq>90!hZFkkH9kQR1gI2x>#p zJ~ApoX)U#h^xr7$lhcF-xHBp)2D_=Y^#W7%XYd56&}2CC-p5BpE@r2r_^qH%!X1d; z-)cJhKA@mK1~fOrg{J*hhkv9gr)y6ZP9Vt11FT*Eo$c>OA7RlwEd#{b;%n*U=%f7f zi4nKypOfBU<~xOguN8F8RQSAta;r^3%i7jUfQFhh4~hn9A4uBi_kD{@2M|?vKCU3v zns^gcmrst&Ig{GI!h2)v_3^X`_mAl!hlb4d6JW7eaYLaso#VBOkQvLP(?Jw+7>la`yXPmaqUv_2 z|9HZjLsZ|G<3bU?<^3e_^$Covemwt#J|BSIg+f`FM3U*N4nVOw5KqEj1+`9_WRmM} zwJoq|gsIBOB{+Rn^qhRgZ}aJWApXUm0e&T=)6!(VhbzOHFt**i>@d5?Ne$$-u3fQn zyhZk8C6vqiz*#AFu>ESvKGRgvkro#q#iisaOgO~arW9<{ZV;M`X+unLa%_hX5ZH}` z1}mIRh(_%{%tLmPFdy9nipH#IcY|g)(RRN>Pv*)HwZl{PqzGi;Ph9kx@-#}r%bgu? zm6L#)pfnb*9%JVq#g-3YB@~>Gk!Yg&0sttQfQP12hs;SEFoUn+(Lpo_@56?kG`lgz zihtodkCDJVM2s0quE7VyGLIz_1HNw|gubFiYA$VkO*w@oco)*$fGfWiJQwS7lr9%B zp|K8ccP=v2a?FqmuWg`6&ktwt(BvYfiXySPVL==1uZb90FG|i6M(AcUYdFeJ%mIe7XP}-fp{8 zm*8n>49w^-3TpuD%EMU9!v1U>^R7(M`Ru!2~pO&rO&xYFhWxpb4`IoDdv_uYF`F^k^rIcyrGE4s4epet&gejo-bw%-0OH60<1s`h>D6%>Ppn<{RrIqn59W z%yew}{I^>$4YrBBpe74JQT2mU5^9T!g2GDB^lTQk-Agvt9~37}o%cUp`Po||N3JMo zaS~lnl!k3v`vjeN=EUwHEK!<35Q>gx>h2~BaMsq9k%`w*AwLySN;kbWfw*qJG=VLm zcBsB5R&&I{!0;G7p|TjEDHa39%M5MMhOw-X}HGkyXam)y8f}>li0HE44=@4{>$>W}U)XuHz zYxEADLuFZJ*Zb;tji#bYHQS37rh= zSwBdmZkglp_Eb&Vxf$M6vDZs%tNYb-n|D$|GKMaU)^A+DaE@^TSj~c!=%@%h0&j;L zZLSURLtANSNSGRD?C>MsAs}zMJfY4xmNgFDN$JfO3Ii#X}YUv zpug3)fDn`hyjd%Iz0dvLmPMf605vH4i%#P3&DW*D2W~~P%G=jMoA~d4p$0B+;&1QYrFwaa4 z+qqpq7A-;5XNz=8%B21px0#N<<{@|}Hf-Y_B;f_Wj~`i(p2|34lWOOL@?y}8Obk@O zc3ThkWD}G^)?EDvyqV4X#86q=I^5Bf`=km%839GBq-;{OHn;1{LZpV=_CW()$EWRw zYLy)7@yQHUTZiuhY8$S6u{Go88BjW%7=e?o&gr5Zo}xlCLaJN~pm(H#v&fD;P}(0! zfKOYzEa0&2DJ9*cBj9J#*JvGd4(J-`ZROD87p40mc)4m{Z{my87T0jaSL!64{4l_2uBpPbagY z>la9*Dm@`gnK5nBXeVf8FDvdu*oO5rK?)aPrxaZw2EQMEUm#5(Od*?LXJBXG?XV3{ z3@{AP4Aw|Hl%oy((8nQIt6Y{ik8$d`d*TGvZJZ)F8v~$tueWdm3$&WlgTheNsFA+$ zGVNGr>jRjjJ=&$rIE)`ZVJJ`+AQbtBk;`Sz2>0KawRMAilM4F+RlKABH6To@$!|mi zGX=${SncG#h0~>zI}u&3ZZ66BN$y<=w6xs@S{sYZ`lC#ev4zGv?4~_`sH@X-d>X!L zMA|pIra6TIgRxm)!N@KpjV@_vGQ~j`6+Bk(y>`DoC`H9tHEOxy>pYU~LO;Gb_}yvj zB67h{yUs$jCUY%J6MMa~zO#Mb^UoR#+uVZA6{bw~iNwY4Bigb*R{_uwi)tY!)LfQ3feRqdM5aEK6;e(vqk^r91aUu6$ z(4`V1Zuwz9shE^*U-gZ7U-ZD*f@LoR9!&jq)CL}ebo75F+3z7Piepc@P9)hIZT_#a zx2h`~oGJRlx0yH2#|y3R7Deg{U{t>(8-M6DPJ|D*$lU!&oPS>PVV?NH>Q)nMTode+ z2!2JxCosYq_6Eac5+SLM1l&7TkT!zE7uOaIRxMd{3%X<`p=4&)m@&!aZX-ID|75{> zAhmg3hjh2UPIYGVJeI~mu~_AxR3T5HY)UpqE=N1373dGl1I7ct`@duxja*Ix*fEJt zV?KsAtyFs-qU;&U9g4ZVW=wwvVh5T9R>FORtA|^~IKnu>Y@ubNVxwWBW)l#O)_J}m z=qX>7e`B&}q3}vfE2tvq30IoTUj-ITiRNhJlmR1w6+n(a?m)M|GdM)JNH|%z@yRJt zm$j_%m;r1DItM}piUm>x?inA{q*jvd^d3*1|APLXy$Oq0 z%|G_}0)LIfKxg%xHK@lfV3k&?Cgf&M+OjS~%~Ir-H0qq!X?M3l?C}hbaiz2guWvAa zVC@=+@}yd@>mPZ6_8+wDrs-fb>zIuDHKO!m6h~e(L+l|noRx5M|I3$w2TbgFX0P61 z1q&;RQsn?5!!0r=?~G9H@Y_v{2=RE^uz|0OG;-rEZOaB6M@dx@DFl?AtyK1ucx{Ot z)2|>G*nU#D_EA5i)}%q?ALO&t|xI^&2z&zYb2 zBP`uPvev5higD-9leK9ojfKuaN@KI_<9be|b@stm!0j>qc;U-Jm)}<;jwZH}fTF-vg-GWN(8`B@Vs648Uslc79j>b4eZ1Mu3 zcDhjT4HrJ>tiiV#BJ_ z*^pjPY11JDS6-4f84dT#y34P2a~G|CG62k7ksU#!pIV7U`{y_S-B;Id#$G zEX-Skv_3y{Y&PXi+tKjIWP^`sfL;(?_42zGgY{K^zR1Q*7^kGN{6f2V>w*4>@`V26 zI7PmLah(ZY6;U1)aZiS}UBlkdTy7mCS!2MlbycpBrN|hB6G6zFRyx+GqEW?k(gaKJ z?wI9Nu35XX`2p-xpwW*6`m8Mbg#`Jd`r4Bg00 z2cT-!`fAe{C8lCxoBanjgf^9)%JS4Y226B@wz=cU+25*;(#Q?*z`E_{xtq zIIJ`InW4!qGGR@85y&2GJe-bSmNN_#WQ~Om7dp_<#mBUQJ_VA-p#|Qs@>BHXt$Iok zw4O~V*bIxqtritWmdulRa@&BJ)|jSIY$TP)8{5=>P0MgE9#4@!rnlQ50RWh;Vb&?f zn70vm6*(_sPqqUv5xwBc7ASY#J_m??QKh+X5Wx{&1;oxY?ni-m!pn7r<~X^ocJvm8 zhGT?9d9qpSO@t58^Plx`4!5z)vN7lj#C(NOjBskc>UM5Q13Ym&fEH1fwaPO> zIGgT-)WM*<8j$dIvHCaJbuL#RXYy27J5KfEbhMU_XOMjp<(ho*u14Pz z?Mz24xAB5(l{^M>RQ!iwU`P2>w|56HD`6B{CkeX%r}QTGoL$Ssu8_h*1b12WlbDs{ zY_K$EL=c}ETd!XV;Xb$qR_}b;ijfxR%+4(@ZegXHi zMWq=gX)1M0l$rgv?yS+$?yZ&7sa@iO$gUAYoP+ukre|HTprtb>v8-m%?;Q%*!#K#2 zXQUPPwb3*KlHb)*0%Hfo-3od8#UZU^W$y@@GWsP&o$ApS#@p^0v{Mmh;296``4gk) z=qV_rr}bz}=E`nC0y)hgNpaFP&EtIM3#{mv!#BKWKKBH@mJD0;IBt#?3eeHo(CVLd z59w6+t20W0;vHH8`bR!M^sZAtE=)Vp<3>sphfOe) zC-b0y4@pyJQIXtjZvsA4hc5JPcoCFlPsT_!y)t16{qiyAv9!D%qMvY`!DJjon5g`k z*w4w>$SrD|VzEgPz0Z=YqoP4dc(C_vmCD&mS!P5hhNhqCEvqDV61^!(4c81gz$T53 zY36YWu1SG8m?oj0?F6<-gtZ<#7qZf8lNkbY#Wd}gAO68F_I*0U_&Fx!QoauWp-o<; z8e#+Nk+{%~Pa(=z-$&yNxB%#ikhX?K{e&^#Jx?uA>^F;q**L(}&+%;tI4hSA_TKxr zY#|Qu*Yc+x7A#qfd{e8wmNh4Dtal{!z-dN&NZIp6W4BUQE|=bJuZg@lm2&dPvRhW7 zdfYEGfLG`V0UDr~49+ol{p5Xi1BpwO-ZCwOqGvxlp#-*sCL#0`=b|W{OlpFq+SS=z z&oWih4~fTUah^|<@oCUV?>7LLXBh1>}~RgxI34yqdOD!A2@@_ z9OnJl+8!4m`0bEYC=@c1&qo`8FMyr|Jsk#XGojU4wjo$L%4~yubeu zt?V6KEe!4dI2BvbP_*9SMDY?hd=pOC&y(~~5bQED4X>M7Gb^~ucRvW1#IHW;qhi)t z`1yK|w+w)#_a!6G*U}EjFxX3*+`f$1o-T@%uQ$dQ3xNE(+QQ<92#sVfS&ei2i+4=J zQ!AVk?u&@J&)^f5_*2nvmUje6N5O+vDD%9a2ukEF`F>fBp2!5+GgXT|Eq)h4bRhrM z6auzb9UQYA>1CXJWP|A)0#U4>Dq2v-Cy|ioo}$~*T_*29&J=X12bGbTkL$Qz>JW4y z_HYUuD%f0014n_Dmgr{*Lu;yT9$Nu)`h=Ze%~038TO0E>&;wn9ax}1Hs__PkL5pkO zJ<(MXetZPJ$n;$t#w%9e8S_W81y_Lc&n-(P6`pz6>P5I~X?@DG>;1AZ9K4>l$NzR) zY`Iy4$HV2$xcJPNvO#^3jcT4A!Hbn2R^?0D{dPgEE8v&X1Q`Yz>0-tb=4Cb+0*od% z;EbqM*xvXEB6bHcGCo;@Sw#AJ67+|IBtmz;j9-eg#i_i*@&(=0YT0_G}W^)Mz zjtp*Uk_#IMG41ab@reXkn32kcfo|~yb5z#EO#P$a0Cp3ZeZ;7>BbeNCp z-1W4fvr_nDX~50G8Z?Ks5CCc;C`wR@)4xvz7I%hY%za$Qd7>Z<<3rLHu2l>3o=^e8 zZsP;D4R+A#bU|}_5?Apat$VgWkNed2r9-Y;n=?@`KY@KujX+)5!^XOaBnu(1!IIb)sh_YSmhxw#*6r3Wl7*np~8TVL-*W-di ztb8CI<0l=VMfy?%#jH?i3Ds@sZ|WsMLrt|a2`3Q?a#e9(EVs$wt`zF+70Ip5P3m(s z6;JxhoIury+0FH$%GFq^?SQq#7RdI_pRbIiuzaI2FNR^v7*@Z{Ieo;1&=o$>miFCX1_XlknfPc z*O$c25q{D*7A(u9A-=lZQGvkAnP+V>}qGdX=h3 z@ryAJq#|X|ZHx4B;=)dZSjT+6pp-5geIR<+gEP_uP(kFfq;x~sQNF0p0j4hkEn~o! z32A-1dX7?jg^wmru+im74@TmzeGtWq`^5bgRttE_UZ}y7`Cpac62TwcwJR&HDrd-p zhJv^2?U9K++W6vi5~w-tBBr#^tks~lZf6+B=C zly;KTuqTwR=DFjr%jBXh``Of2KemaYXPqdJ>r*73(8E^Y*Ghyw*sicegAXCi!sVbr z-<}UDXQc<0TRGWhuU(|=pN^9W?$;=v-S(b&?V1n@Y?Z~rWg?MskIeNAxV{L5= z{@rrzC5fx`J}BP(su+NAqvDLC$hnR^Ffg!jKHE`~X-f5Qb%4}0p-)ujzGuA5qWL|_ zw7!M!hxM&HLF>ow6?c|ZJni3&ouFE^E(5Ym)e^aBsk)Yhzcb?KK)LRksh4mgZLp8~VaH?bo#Hkq3EkA)zFMc0;<$ibw|Wrw&cmW)Ytgzj zn@b+8!B%Q0&xf{zpxa3Ofp=x=wyCl6<%64wqb3XZBrN-MToNxUZxQ6)HR|?UstOOA zw_{`HMWND+jHx0=ZvIZ{ldS+n-a!ey^Yd|cGw6`x^i9>9xND<~PTv|0Cp6?29hb?G z@B{Jk7sKOWHg5zm)v?8CY5~pqflB9v$l&w4>j>{BJWI9EqX>T!{@$x@mId`3eDviR z-kuDGfRBFP8crjX!Pc6*JeN_LKO4QN=OR&&t9}g5K`OZQmXJ7|X}>Qaw*488&~9eK zPNwa7;H0=-hU~d7{N94AB7;})Bc%V?W*`f{fBv)0p9ua@hFo$DxIO9}dStr#SG(}Y zba&MIkGAiT>GG)8z}v}oP&F{GHA`5=IZBFR4OwZp>zLZe1lfLgp)4r$=f*vCAkZgB zXOrxf_QlQpSHF!lM`jkvaPcxmhv5m4Vuzu_V9T$ULmM{3QuD;kdaNdqYolKOM{Gc3 z0lv#Nk-`K*UW=k@8mLHh5c;f!Ay@?9Tw$<1@}ZBcAX}3igi9?!WAo-CxQCPWms&Jh5lE8Xtr~`(;*79(>2t(Cs@m$%~cc ztRqW9rbmp}AX#I~9$IV>2Ep(LwYXI)4-HK9xeZQM9DMKFln%aNzwgu=?8*sW0IIJa zMI@a=XYm;VPmjkqxAzQJ@R)bg@bquyRA;7gfoz-`aMw=+FY4v!*IGO?bai}IN4 zuZE1O>gLy+zSF}fdY}+EGq7F$)CaNZ#6jfM`u08fY$13snVxZra6r-EIx1<6YyT43 zt{(g$Xh*$c>rSA5mOMJ%2$WOnfRTrOw!^q@)@k!>EHlIM?T2{3RG#VauWq0}Jbd_D zG}dkj6RYlGr!+l0)c9W(rMKZhT0UFGUmnUkvE04YAf5G#sXe&!*C)LW^q@mZW@;Rk zdb=Qm3;OJ@|81tqW62`j{qDnn@4ck|@MVAC{{9K&`Uep3FF@CyFu;K5?yw#v4AFb= zH(?j|__;s?;ZGbSP0IV=`cF$x%Skc!7_aW%@eR9ncWowj+0&kROYn@4V(EUgfCcV+ z#WtzFa9^VD6sqAoTET#&=Z(>uW#~u+my?qU9gI=Kgs%xyBzwi__3B%!iGnSO;on=7 z40UB1ehkN(Dlav&ywZWLW0b2ur`z#V_2=eOQhz&%@+9K5%IlnvxS9-*p9gZ(=&TTF_bZ0P&Q58gpZl>d-`&AS_SFtqz*=-}{& zKWF^yJ2Qj6sTG{j&{qiq3F9FHDm?{VCVeIleRQZTP*Ql-WdbNdqy2ltav6jOgsP@1 zE+ro}fnHcB6e8dgQ$E-@BWRo`S#qQ_HR)$C5mr#E*qQD zF>4Q%??U6CC7{jj7!hqK#N=}vApVpK9DVQ@QeX)1P@cN)6ZSXIyg+;dOQZKLw|6ur z>N}d#!1}9#owbcU<5z1t!++Kc{U3<)U33v~k5;?vObyd*JXeK27=&-3Zn$n-<9@d11SRv^CK`YjXKFdTyccTbwZ z83OZ6kd)kaU=NIH_9bUWd#D<2EwEb(lbniFkW@O3+h7;wJc3#n$hIsbS8t9v!`>J; zQc@%TEiSHBJ{1g>*ILkyDdCf_B%;GeREWI91h+x6syg^agdh}`L|*9m(~h{g;O^6; zZ=rq8SYU}%+M&UH+_?Jk$q#XQ?#)db8|3zZpxg8K`~K0E&?6Z2^)S#V(g|RpPb#oK z)vRtlo5W7B964Fh66`#x=Hu@b(<6p#2?R{0Y zIr};&lRizCp0Ao))_<#<<B8ULVd*Z**ZSut={@pfj9tt3mnk>o*5@H(2% zUN;dZXUGzbCCMEozHM@+7faV6ZvE<=j=&|RniQjIohXN=F^)f!lywxK!y8=stuAhj zXQ6U}JVX6*d3(R1v|usRAQ6HHF|H8NHyXn@80%O5I4l2LNqam*FfI?{RelT-i$LNa zE-%(YI}xL51KD-%>*|TmBv zd(Q{{Sls>3*4^)kxu2=7U zQA|}88dVpSF~c!xmVc@NL)#%a%kN-jJ5Ak2v;js(J#62q5FS_0B*q5~5tLbd$gG6@BeXaul(zJ{yES?F^cd=Mya2kK=?{slM2#Aq zEl)IxrxOcAg{F-T)L$Ge~X3BCnx9@sxLM9bvhkt`h)aWI!@9TVc`$C>u{NV zmZT|lqIXzGVOZy~o(`+`2~>~O8#tSJP-&VS$Q2Id3k+v}{vg6>{QqFus>@A(3(Gwf z*ncr$Fg5qIb@Afj{CoU=@cbW)$^YbfO{%K;5I0uzrNZx+v4^G2WIP#VKWT+eK%IA? zieGVC6N?!rH~W~W@N_655amO9-u<4~*c4AZ9RuF)@z=x?5Q)*Z`PD{eKE3flWn=P$ zyna)&JB;tUbhmV$Ew2>7;@k6qt-7P4NO^pl{`KOOTqE8rr#=NbVJTHKi9~jo(Wt87 zmetQX_$3+b@3qkl?Lvj8X|p*YE0D4iY^higmGgyc;xR8P`?b2DF&E(7BZaQEgNS2; zRlcVvU4XfbOaF~rP9NcO5Qkdsm=+yB!B5^<`Ol1ncOgbC{8y8C0mDM*L)BwH#>3-j zDz;#Z^?!l{k)-skJ0c7qFlxhvMaJKS%g^1@*~;DB`7e)^=w7++36ebrFT9}6%5<4S zm~ilxD?FeY{AG8MB+G7E3*Sc!FC26J7CkY2Xi zhEaD4%8UbwB41Q^YvU@x8|$osV0@bN7(jdA%W_ za2oU-JZiRq1;t7&?%D*S4ZhHO;|1pDw0`D;D5MQ-?5*f8Hv%C<7vz$S3-dxvarq5U zdv1atAqseB0kikg-R^Q{Qg1M?j;%N_-YpuD&R0FXQhq4GNWgG9*JT3DM*G9bw(ian z1}Au%nl3{_m$)gs(eLHeea#$@E{-^sc}c(dUV0_)_LlirW?KA^HB?Yp#T*&~hFXqB z9U5s(GAkMVIO^TLyt9gs7$+8{c^;5jmhnQP`ia9IN^i^4!-whQrE_K#TffggUir=N zZ3gIQW&cn&bt_VORW&mg!cr+rm`vx5E!SEI79}42p#}GbTcc}^tvXxa#5T%R7aq(vrI3;`FT@>dnS23(qZozIh7y zMDC6x%U0EbS)U%w@cb2!6tf!NWVXC7LWtlAO$}bk?pLA>jvno1hK(pwwR)xvNv?de zmpe(6zFGbD_rQJ5lYnQ#khwl8q+R~g;AlHA}_9&nJF%eK9V9$`l%|wVRzUoi=7?^AF ze2Cmo$?wOXDobRouQ}Vy6!ij+)WpOvYk~!T?a+d1=89>U&(V_XD-gXBhbdAF-ZSIG z5$P}X`=j@JQ$6oZIi(*7fB=c~1^-886(|Z>KSVXJgYV_BPXR7!i*%CmTe@-Ui6QvU ziq>|k_Y1{!hg32?l9gLXgm!fb=KQXN+k`s?kza9)`&+%$FE$zZ_p;{55Ybx^vw#T(t2P)(s{g-@DswO13Uj zgJoqdMEB@`%jwU)4+1!Qh=g|o>=khYNN)*UF2#`Dr*Eba(X77LQisbU6B3-Co>hOx z#QEq&*eRJh2FfQA{`QlFkvyijj85*hb0M1FX@=W}*U4)RFafLQlPw3KPm$W^wc#!8 z?X(|R?GFER%5L1F6od!R%-@isD~e+Wz|9|j0kZ!b0NE-?&V->>+Qw$&kvrzbv-wIBWax*FZz=G4glIt8%DRs*ITO7Gp(%B zD~)m9SLvrq(%#55`u@r9{8ix|3I_tSf3EvWi1^I;ZXsI}qIGGV*90_@pdyOXrf1^h z!{uxb599Jx*G@(quw1_3*7D_Q$fbUIv<{w1TE^9@%eO9jw2|0Z2*OR9ubQ!Q&cY8;ibJ_eF?fl5P}IodFsR%Ebrz81av1WA-wOz%J~?^tum z$)Br|9@f%Z03fClFqUyu8&USw%sqtNb<(0nY!ij7iKu4vjhB>gub(b}6_Sjn+wYmL z7`{R2H=p`2hn^b4@@^^prAsfUlgWHqcj7MN6*3l|u z-mFYPH%0g~ntA7-guzc=YySLMjQ5`|0fdOQYEq3S?8*c*=<3hu4ek05!&iq0Y<#M)q89n+7 zQ{$8?75{k!;E&WX%d>y!>xeQby!Sh^IHpMuyIXm%XP(_@nVJhpj$=z3zrY@az1 zrf9TDP1Lw!y;r@IiZH32$55uHK}!_nNK&^z&ZoMiDwQmsBWCJPVL91`TmAWaj-)cG z9CTV9F`rec(0FmIj#x)v98WBaj+V2))8Kn~#|v01*wSP+1v5h`C^w#Tyw~ORA&=LG4=*d*AwS57=)*C8+21bb-F;!^c=!BWJ>+HkWpZV^ z_qVF;_|f?ym(;VM?v1;)#FO%K-n%Q^kw3o~A5T7qyj(AS=$lTyz`ou$X+mcVW?73) zHDy_gNd=}S6dm9xB^4bIDa{le5Gd6Z9khWSHBJ94|5=lNHm~{qTuE}*yR~h6S$_OX zt`+k3>{(+WCe@W?Eh;sbg_A$!(J0?3t=Z%4e_n(l6xC zXY-I?gO_JSgJ(sR4460VnW;Zor)V2{dpf^vf3=G~aCfi6W!&hrd3;2ZrFyY+My5KmbaE)4kDOpOS~{N||GA83-$rS!^wrJk_R$r}B)T+L zXE~7_zt@Cv7DNw$#<}S(zHPT()-$AI)gYqqNB0RwrqZ8{edSl%<(erv7!mV%+tus(nIB$(`pOpYgXMIR zR^O%BKBz*Tg$$$Jn-aEdM1s-|f2u+jg$!r5Z8~AUJgGu9Xd1KdoeTu&e-AB9BP~;~ z7-nJh7G1zsUKG6Df&`?MhPptKTWZg$Tz?SXh3Ys$S{vB$7y}?4Cej?XdS1tCgsDW> zPUN{P91|r7Hn&C-Y^;-`G!JkJ#ZGfv^2|zcB}!L3dEF3b?QH>Jp0o}TD`hYbw5)cb z<&YZ%3awFkkr-swUi}+E_ZH>o?;3v&s&Prn#d&pR`M~v#?U-V6Vyg3 zcMjL~eZIIDcyrmGl++!ZZFgKztzF`S+&|5F9dz|38(+XV!2#hDzU9wj>ezDp6Xl_B zt7aq{!?ZGox9*`WiWuFywc12J%JiObMnh>KlY!+GlL@bFhyqecD=fV+By-9@ z#0$V z!oXoMAJLqyIOHeMloZDl=phF=cJ0ul$z$YNr-~&!9ZMw$e(M`aVT}0Z4Fps_?g<9y zY8NHt&=bgZ7^4S$;xQUi0h%=WV$AFZuUVU@3P|Um>nRZHj?%l4TrYp)OHuKMvrK#!1PRUpdRc|(0 zP9avDWBM;h7@i`e&4#w=h?p-Q`w%sWC4f;IzKEC~ z%^RN5wcI0-xbny?fgipWipoxKf%0QD zybV}03p$n`sjf;?hje$~K|X-Y^JQyZx4K?6ixlvV;;coA5#~*=zp>MI%nH}=Qk7K* zrQ!96{DGao`@(H^J>2mxQyAv{LdY}tP`T8U(g}lCg(z%HB6efzot)tMIQ|{`P4Ict8cR-n}3hu8LlbF?Wb;* ztV0+4k!vwP0Ye-QNg(uR(m?qNN|8P6Xci-mydPBb2G!N^ur@G>iG5m*)2LYLlF&}Ts43DP!B+*(~A5p6e(ul>>G4Mbh}_T zQWBS1TGDZJWPBQ*AmrxZdrZy}TZTkDn^=#{W_W3BDFRm3t$yiXINm zp~AqjV3kc@&HyPFcdCyHH8=!5Pt?HtGSpdPwe{uu=BP)J(9y;_Y@_#EG*CX>Q^0Fn z4HEAB-qd1OD?lAmn2c*N9zp1cq+FIk$1JT~cBp3`xquJynSOtZL?Xh}@A=xeED;ZK zKEsQBNhVNl;V2Lk2!NTXzk7NA)1g(#b{0A@W9ueloo|=XB49clo%~CQC(58n%qos9 z%+YNiRWN~ZJ*9M4t_wBZ*Me*orD3dQ(4kf57hk~pN>acWG*n$Jd{VRo5Q)}IxDL&G z!_6LuGh!48C(%;sCfsX20AR#L6CE;=ku3R%W=2ZCf%%AV}PU)EFsJH&H34@&i@88 z?k#$8MrG&QUH<8<(=j5_&N=yu=HD=0oaxz{IhzwEK=?8arDeQ49>4<&h#&)apg7YW zI%|LwUCXnO+ct+!g#(Ci1&lVJgi zcx!fE*UPGfs8ONHANZ`A0|ublD94S21_yitY5DUIxd{9fy^H7MeT0Hv#2^erjN*(y zsTRQiV9aUm28PIOQgr{TjNreKbw}X49mUIr9tnrtCC!1xr9&`DTnqY}5S5E}C&b?3 zk|?Sahph22;wI1Oh4Es*Ev2E!XHTTRCuun!19yH?u8ycFdLXNvFjR*Bk zQ6S!x1&<6J|0Io?yzJkkVRWUHikLFo(gY0)Zz&iXP|>k52)%wbSMyHL|lS4sfrL5&xu z%OXLsPpO!ysKfUO!Xw*910Xv2t6_oy#s#*}K|VvoU&%qGRy8~@;GOB#)y`R0s_j|0 zB16jjeGb%*5>~Qw6Ks#lx<9S_{N}Vw4vgM&$4aUEKo+wl24!=KOE9({Cq^Zhaw69* zSfVSMz=1eAhcbR@cCaT33J+Sq!wvC>+&dF4q8UhK()p!sG0!U3^$}2{0OV}vnxRwY z6B5xEcO-1nf`L!q$!a{m{%@sB&`Yo_;JI-q9YN`fgYj)yoS3xy7tted0j+`eeWvth z3s&B`oqLPd4$ zKQ4TXeuIs)T4xv-K8EXHE+}K-o%~P@*`%bkUGoCVz=@+Znrp&=$jJHxzGw}Bj&H;9 zF@x!}g{B+{USI=1dF$DLVF`0%()`(6^&aQNPORfZx%!+T5h6b1++PczZG(hpzzfEJ z(RJ1HItdFLDgxqZ#ZX0nSELm(X~C!ZT37)K&{-3C^oAAY>eu!}JV`ECMT7&=*%#PF zS2f>y?JyxwbOc0$7H$kX+liL^wBq3%P)3rJbvoIzq7Q#Iei^F#m+NIs93PTSzm8?` zBB_PAo_D^H(A3HX(_ApTviB#`s}f!_EOJ;hhyC$KGyfe;f5Xj$fUFFeQllDv z#i>`;$>>(*z1fs{=xz9Onc8QdqTz1H5dPhhQwam_i3~|;*<&o7F>jdmHHwJ}b`l|@ zb1wD`_J(vV@aP}wRTQT`jN;qN^JA>Q?d^eh-J%)IHDg|jKOq5%Qv4b%ZxlT;Ci3Mo z@_u!@jZWDyUON9kr=VN;La4SSEJHouQAG~Yt^!;h0}NWSaME_P_#k{-S+KBHGD+9S zzqVIwrMC2DSx-IghDe>v;}Pt%?3Nflra6Ie_9ct~MhxHNOme}_X1$s0rz{k8gziZi zJJ*B2Z+3qv!WtyT-0;_EX^^;hZ4-}Nz8#H9I7v1Kd20L#hXD~usHT@Z37{s7$_Y)i zmDNu@qM1cJ>>>{zqzdEz0emHPg2A7;;8STLGRQLz2W7`s$zqQ6!?`6Fw1D@r#&!N$ zwjtYINF5SBlcC_a34W=-wun2WG86A6HH)k4GRW#Kb0;2*@>kGTa{83Dak^~30NBk|pkE0Ar+T6$pN}1ZrB25I;-TOd8d3M$Qq3}@C!_)B zV|;N2{cY|*03t*%0j%FmI)dRj4oh|YphiN_zhx2|%+|*Y9afZ4G8s>YAIo=18vdGD zNCR}}DV{6_>Gjx)i_{`h|V;)#i+E2ln0XcspD_5=w<-fykLcgSD2 zNPq}1&Tk978R!jd0*>v6s2V<@`&HhNs=s=yCzef&z8OZc{Oqm`9X3L8Wjx`gb7C@2 zXys8H21vW90FdV;TqCOT6pn~+ycXfj>d~=}%8P1uO$2>Bd+aZ<~m5w?uyq)`Tie{m~ikA+^D8@naSejSX@ z&lYzYx5L5IDX_jQzRiM+@WF!B+o}I^N|SOMj@+^F>mTG`62_3!PZT0nIPA`N=H}m#jL(TkZS9Oliu93(E-1F(g@x z56Qiyizg_XtC_PNxbl?#p!jPr#(yNO4ft{%O}#k&=OHTUKO*@#^dE%Z0KSg7Ve#bE z6!UJ1$!Jo4)o{-P?>6QN`&!J0=fV=jTQA}-Eoq@VCfJ}WD&SbK4tY`Kfeou7s@Klu zfChE5GZy%vo-FGNEC3pL_IMrr{MzJLG>~Y_l~ViP1ktoDS6iIUTB~V+S|SQXYg7b| zp)ZL+bHyFEkc}G@%+b;cSqGI439gO9z-{DA1GWIsPP`e64`wk0`I;b+!d6lH$dqr# zu9_8G@|T1LE%4Ue#0IyGP$|wCD7~e4mnX7vF(oQ(OgK2HQy*dIUwIO<|JS>WFV`4P zL#|jr`)JSnHw3pPoQlGuy~vX#p@9IgCZv6s#~7mf2q^aR;uOr%HhJ@;ufhiK*Tr`U zMPO|S4lsP6K&P?kmNgepl+bc(W;RCPX3?1nmNw>Rmx|(M%&~p7-A4=f*qQT{LIxB4@x7&pzI9~!6uK}=KlfYw+B2gtGj81HgIsZM>45#p0y zQG%|2@`Q&;EJs(TXvFm5-G0uNAmQ)8G+00GmNqW?q4+W5p_2DakB2~Jwa&d5g&p`G z6jWh3R>JOGsAU30%3Cvv`= zC8EZ`)(oKcGOrxX?WZH_34#`qiN2qs+49&q+(b!`+~?@u8?2IV|D=km3utVEC1j?i?NNS7 z4v%`XmWCQPySA4ANmQYAwQO|em9EPGbWAn+sxhgdXbZ6j%l)Suihbn{lf}4TZKR4i>z~2(iRPS=U8|IyW+Ee{LXHR^Q3PdK2fmNO z$SVM<{MhC|%EK{8E0+b5s}b{CN@p#sB7JA#^Dw4?x3da2`&lDhWp>i_=#c>qS}!5Y zAj~)W4n-KBc~;~t_Spxnk;$OP$_^$_qkXRrH#EHW8|jLn?9zz&M&12G0?){e53-4; zMa!$kQM>}2v_77KkInkLdkng^jY{A#i@9xvwW1jk_1YL?r1taC=>xO+4J@ZomO-x^ zC<0pl9ZP$?@V`(KaJ7Mj4+|JzVyIJSEV37IKx5pXLzAGFpZOXUHylQ)CrC)WKL!lF z%UwE(FkRJ3qDE_$xnPKF+z#)3U{bQc&=!QuocbwR(~@rI>_vaA~T*kZ%r!eV1RwX zQh)5@Y6<(m5`wB}mj$uv;V>NVR-FeC!=xq#mZ&L(H~Z`t=)T|2cQ88GSPkcL#v}nm z4)b@)0^%(CD>_kS29l-QjU+46lS_a5(J;bVJn3<)Kv>G2dT_H_&tJu`#B^!7cjA7V zpTH*|o1-BOOk(W=e&{!yCoyfNdd=>S1tEW)s;T;`8NL@2)70hg%;s5?eiheP!{#~U zKk)d9SQO~>SNYQS;_M*NCyfioSv`3WWt?21=%TQUCf&N~CcuPEr4u304cjrgj1*%%{ zvo67KZvkV#geftnDvV#Hv(se_Azh3e0k%N??Kd}BmAYlxZajvhBl}GcJ3kQ84^#4bt=)+XXjr-pQwscdQ zn|)S?I%a?Cbk2@%vm7`)xpGfUBvAy-p2U3v-4pAb%q?57*!lZLwF^`d@^wuf3v1lkw#|sYf=V5cSFtWkxnlf1t@&~~1=RSmH*Sh#U-Pv=|19}ngT8oR5zG3)PeBfe#1ujT zIj=LVZv9f5Tk7cJjDm#Hpm2-{Q?5#=vKgC(>45xlxcV77#f-EoY&7&>SX&7*^-kWp zW$o9LyVft3X^uif|OO2Wozcq^|?M1;fYV*he#dV!zY=h%#2>k0W+)TKre; z#j%N@Zn%whe@Bufc!uSp0*+AS!z&#i{SgT$j%a|aK^8#Je$ovuvjsTSn^`!15h0t7 z74;^^Hd_vJRTSx^8Gzl+KXHP4|h*pxq1Vg;O1#hmWu>n#R09)KJetq1+?@~*S{|xJ{jz1gtHn3RaOG-EB>=yolBMH#sNlLJo z*Tfe83=gvHKs-i+WO3|8iY|Ca{~$+WL>N7K2OqzzXW7DwZF;umQOUWje0}=UvFC3( z2DexlJ^oXlM@BSkg(8Qccx($|GM2}=!fi9q9)^(_!08-H0&EH~W>>KYo6gF@aXBN! zQ>kJl0F`5-B*MXKHX`Uv96au5dNUh1ZycPyP;On50)XRiug(t-Y~T<~z{5R?-&G00--G4gR~@mY$l;~HhOxv^*bs#%+s$MM)-thTiPOPD zL=R*nQ^9M=jf6R7M-po)p{4;57z=f4crGV%>X~P{@F& zi8HnGM9O5zv;( ztOa+ZXK&Qb@)n*}V5Z?VHECa%ZCpVF6$Z)s1Xwp=Ym|bR;6;%OrgnEygGrHsP~ypf z4QO*4a8t^FpJ9++-6o|C88+r2vZQ!jZR;%XW5V%ObJNS*5%peeKNNZ9(^c2sLE;(N zErkTtbkX~LqVL=#VBl67=KR}Zi(2Tpd5#~}R^bJmiU?lP+%Kt6Ip4T7g7F05S5 zVPs$|5`X_4YacN_NQnDmF%TmUjCG~AWi9$+#7s&oUQ(ydfy-jttIAuy;dm7`X>U?^ z4nEWV4>!B~|7x#{LBUR~RWg}9KZSyIF_|tCg+gqST1FO_w8mHXQrpkVfw=htCYDQo z02g@-PCaIa;XxR&7Uqgo$f`6YVj|e1c%c>QDXb?%`I^VG9e}d&<6Zbn6&Sd zHRo7^k+%cevC_$_ZpTv&*Vv=FcykgHC}qHo{O-66+=3gTB0b{LJ}cH*B={o-6Acx$AsT zBJ0H-2m=E>^E4b>L|Dr1ZO_iZcF@7az9) zXa<6=Z-YW)Q8hVeU4@q$1*GH(@UAZ9&13UUn1EGG^al#+Jg^Mv=Vrn{6-?A5y?d%B zyvI)SerWtCtjfkiS_W!zZAEQ0*tl(8%tE1>Q)88(6$oBY< z0EP-9Ve5uv`yg?;U9^DifLj-Cx%|=LCD_`Jw;gQHKvLF>*BjSE*ZEG3 z4Y!zoiv;MQSEk@xVvL7M0l7oLh7$AZ_#mT3FIQxe@AVbN1}HT`v*QO%XE=f zB350*amv2#@!>%oIo)po6U@}!?D8x(H`U$e(|_eqv|$lu*Ix{#T6^ub^F+=NcM1;CTzsKJ}Zxw3v4RBuuopZrYQ$b;B!H z>3CCBLwr~U#i=-Y{EfXuWX8PCL2=Qz4_+cN@_uHU{);sWtCtRB#Pn35YRksu@#DAdh=fa>}zYE6T8~;d8LE6ws`u;;9D7 z`Hhz*;YbuQT4D#-DTfQbgMU9rOir-RkeIag*8Xd*9L*C{HdwP&$;=(vtv274!-E^2 z+Rjj-v`r?n+nG-Nw%$rqwI4vMK%^H*y(*&EtsaO=Faprj=Z*~eD4htvE=qR00OG1a zzZwk?qNS=7;FkB=2EDCr=J!Slmt&5pU<;Ky!i)fuzbDerd4u@A4lk&vMyNXdPK?5u zXn)0i%0+VmDs5_O9c#3!>0ss_swenfZ7W>1eR08bpGveD)oU$6*3yKkNF_T{P{!~4 zm}+8foXq+t`9owKg?o&e%A9KuZ)7;qakW$+aa`#>^anz!R&%t_9Y$)T?Ds?lPs@xgt;^Az+5_(EAY&&g3!ppu)v5UYKOBtK+3o=+w2 z#9Ih3I*v}xMTBO!^nPpaC`%3E+BiGD=Qy6r%&o0LzTIE8{x%b z$cVC*1HbNllIme?#8@DtDS6bt4jbKMrMpI4zOhEjQ{LlWqAYCV+Qom3jB|JhMJ1$>^Nd zx%A56m>x$|6Zb=_tVeU`!3G;}IGvn7ra#O8Bgz(6;ZhG+sR08(F0sUMk%O#a9+8-j z(vRaJL`oD0__@VcSEfQo$t*u#(%n?5ORfdWf_Jr`urYwOmJV52Od^mWLL=!MyRdqr zqStjCfB8|&gGk5wJ}e?o)Pv|>V2c!VJ#=5W9nnUN zPP_p+%nc5oM&9FqQa1;8TCng)Cp|3#3e->=SQLn7d7|4i+9mvrc^N&hm|BByOj+;< zEb{uHoVF^MfgtQP8|7|=vTyoqc2P6op@17*+$nc{ z=}0AeU^|3c?#|5bCL5}<^HRL-n^Y$`^zvZyYY2jMQ1_=|lfKgj|LDw@<|jjl!9$9A zIO8#T-;s)yd&%QeF?03X!>-fBuT-0yTlJJ20>^!0R5#bn5XQdem6h#3FDtu~A-{j= zl!gCMj5iPYwOH_{{m=DXJ6DLd;k8Jb<5o;$h%*hH9oyGW(u@07NVf4|)-RtPppwwG zMhDXP`$mUYur)|@7z#U#K)pa+!%$~XmtjgDzEj785L9(@;^7KUTsv{|@)B_}xh_w7 zWG^`K|8liN{6r=5?_dq2o)GM&^^D7X;7IA|*29BzYfql^-GAr$k3S_@=wIS5_lsgm zpBlEdQ6Yt$fx4f#&RN0k3PwR&TNg zZ%bgr;pO%is_iqX?FR0IFHQP)DHcje7D_1=u^Ei=w>{M*WzsEz8xI^}djQtgl?`nfKxRlSQ!ka7hMq2< z6E>W#j%D@s_96yzcJq7;JkJ*UdK=m{%E-1fFmtmq6$@WdW55D7%j_l;JKPH~7XShIH+a(Nn>+@iz7_`cK5D1N0l znhG1Vo-3@F!wJ3Z;khU;gqNMg?&?LhW^`iCY4EfkJYfX2xmO%hBRW4sD+juis!+5fS}e2#x8mkz>P!z;X52bTdl%&>bN#|g2K$(l@8VUvR5xMF$YRUM&2&WC{Il|ZNtyP zm*g`Z^`;?N+}^JuOT=A~GpY~aQuq&KKfbQraqIK5<#?sF>m5t3uE?H6KyI?_|EI^< z-*kilh<0D@31|;DsC4PkNd+%;IXozIzu$sLg!NaekJq-pjSkO{I^mj*tCKg}ukf%g0%5 z8!pRe)aTQtT03vKJ)AI>v@^SMid}8Hp5v?o$*cP_-tTIiW_6uE5uP&`vva=te%hL{ zZIr_vdsoY`yE2iuZnrc*nLM(R`J?sTu6)ts2a3&AB4dzy>sm#pKVlrY>Stw#?{j8c z<&rT8!W;L4D{#GfGrO2Xazo+^{PFneONM)#1GpW>@CNQy2J=Lfj;~(}M=D(I*wC^p zPyG-bh+_6-O;=X_$dy`DnC*m2V@K9xCw+Mre`((5A8pp>|MvFyalW`9iCRkX?QL=C zq084%N1d-fPd8>?em_~?er|R*lXx8bkO}@>FBNn>Ia}~6ELj!vz1h3R+x8=M^LKYA zm)jCo{X)ppM7zNs@!q?o$+mnZoSP;a&B(=bhqpVXem=cTiZ)i^ibqKym z^izKYyn=UEp%!ks_-qBOh`E^-eiJH|+bl?GhWPbMHwMXt`oh?(iAr3DL;`M5x0tYx z$wr=yhN`{v$!aelq5PC-w00DIDnZmOpCr?8@n*0R;M2vNhR3)(#%6g%V&w`$u&4)u zW20jZ(@tiky1hrMbxvMj#dNm%8HeW%9T3QUgSO2)#j}qst|@$#a=sr)jQtL?dX@R$ zMJEz$qR;ljTaHYA6PU8lev||kjH%Z5zQ{LVvv;WMeLPWIQZT=} z_p_fzO1~X0fl08OZa2+7*4v+PSMh?r_Mzzm+o)o*L3UKiXZg2f z;v@3NZmO#HfR4NoMX+xx;p%kv1E<+X>;+7&6Dmna5{QF|S$W=)-C?=<4lYXA8JV6e zXV*D3Y^Br<#1p^sj!kDU`nhu4Wzc7Lx=aeh?!j*Ly|<)68}g@=3u zZjYJQMi_D_!Bd{N14kw(kcPIIkXPq@ILH$fD&l51YqG@f5XY2R3s~sx_jiF54ewWn zcHRN13TKm*I-a?SrT>IFi@CbqjB(5aED&=|V$IZ9Lq>$T+C{It&*SsO7DtmHPYIUPNcr?)sEG@Zk|lF5djiv zBEPY<8=+1{9DM3R5xiZaE+muL)Jf~cBKvyv(<|hNoIln(?MD53kPB}?yTsgPm}}$t z3*S9mtIRwX6|(B(n*H0V01^M8fp;^-%X&48iPd*}G_B+&Y`|yK87VfI*D7RZh^?~^ zg>7{H^_Cm#NSeVTg47D63dYo^bHZz2N|lf4t_If^_k$ZO9al4An$rlJoE}40d;gclzoTXJd3wvZKhmRQiIeW8wdS*1NxkERBAimr#ydb6i z?vE?c6~_p!azZBxL%2f?mxwtwHoYfgReqkiZ4kcu%HWtDwpGwlt{RVCh=Atti$jjx z><@f&Z?NUDm~HG&mLRiwBb*!k*ff!%NOwjK)0@2A6>z@{e>t3wwNFa1YmM3JvY_Rl z-2KJX)qBFG*nr=Ja{^gM_^6jd05U{G5pu@DAZo@*!KwSC^PC?lN~ZL~Tyk0J1qtD; zQa1r5A})X*jazD;`0u_|V+vmQ_^28lLOKhXY2K-S{B`>|tu3m+jltVjvdK@1cR<^s z5Z@~|L7c=U!TpuI%&(!N&}S^WJz{PYeycAwM9&Lmcu~~Ka~@>2MWX}Ga0%z=$sd+t zjpfG08LYBmf@IpOK5>Ya6p!o&A=qVx62<5TG3brNAaQP4%niN5_~;l1wNDc+TZjw4pViVfV^iE!jV(c@^MIFeJpF14Th8Mlm!{eg#SnWe_buu5zajBMLp!7CTc zL=7}eq|vo2rJ&oN(AIA8vJs<;uU6CF@Mn#H)^9{rEYu6M7|qwR-0$grLgJv!$!rMK zQz38h3~#D%!9BZRIpj(QA<(ezq~U+bt*YcORCpKm3Toi9BN6S2vwCL}sJFHpN{RQ~Z-qGf&O|`C<~tpXer3&G(6sz%hdqoHgFl?U(T<$y z(<_ml1XRM)@E>Vf4)65n9ct)%xU-wPibFMY7BEf zbr|-SzW4DGdg?ArL*M?iqq&v$_qE}S8~izX_m;2YQ$ee7u-Ce~kJzdk_W6nFrrySUXO^GWoW%Vz)-)}F-$*xj zjhmAkTe~E_xZec=J_$6}-ka8o^|agj;(QAJmZ7}Z0P+dY4sDOg{h5_Y+o)?*6vRb_ z{!u=Xn?RXtZDf7?U(YZ8@81j(Ht!`(0xS0~TySti|1S3qmY%jY+TNayZub9F{o#+Q z?i<3eCuEVIXiy|eR}Bgv=O{^-%#JwlT`Z^GjS{>B)^C6*W+|ShFHga&ooy>8orFk= z3~78rz&qME`HwM|s;b6oMz*(iEI3enMbj*;le@d)v;Aj(LAtX@POxiBH}&@tK(Ik~ zFkkyJ{x_#UiK^TUlc*vNwly@$ti&(=hiff~9vv<#MVl>J>20YC0zO%Cn$&_aC-}r= zi#P%M4W5mR(m8A<33K+)t~TeE)+x^TX$H&Y9Qi zGjl%YbI$vm&zWcH$6IzHqnwcJ~jxm5MA9HuyM#K|7D*rJRxnt zJ*&{6cZIb7DJwcMg#?*jd0sZOM3oKO^6Wmfvb6k9GW$-OF6XVewtJBkB2`$XD~I{9 zE7{o#joW{f6qc=aiP^Q4B~LM(93I6rZW{)pJ4dkB+*1m-YR`6wDHf43)_9!wTcmGk zuGNoh#S`U>h9X60x6N;rkt&;^gkCpQj|&8%8G)!kAkJm@lB2{$3>)EpUC+>ASICiY zLm}E|i_@bmhG=Rij*YfF*l#-vuW12{ zf8=IGTb_WH`iUSXfC9k#!WJ6$Q&y(@f+ui#acF4)yykl%t?kK=EV%_w!22My)D0*H z5~*8c!Ksj>eAap09B<_NQQz&4>P9Km$l%&?9+M~Lk^P>ok5Y0Q9rRQ#WA2?WlZb*6 zJq!lfJK5fzOLk<_jV7EX>^wcyywut4P}^L+9B}l8)@ySrBMxV;iL2Z< za-^Vy99_+{)INjUjD+w<~3DtvKa827a*%dL0g_`m3gRyXxAUndO%wMZ6FFbVY5UU5CdypJPYy=O7|z2}Gx9%%!s?^G>6klgWB5 zNd)s5iI_(FOMwIHh}@H}=hnOb9H6GD^zRXK$UviBK`;f|e1e-3wEhXaLx)Pn-n7Ow z6r?b__N&afyr~%-w=x$H#_Su`sKa6~^w+l)X}u~AlsP>6XFzTxP%`j1%#jv?my$TJ z`hYL3U@9c*@soKWEn{*oqx+7|T5eo{qxS27v*#|$R0&D7Ft%5OAwSXAJqu3_Fz~{- zzk}v|VC9f$k5UWUOuz009(sEeR}W37hB#@ zOlUITEFNBX+M9c|E@;{N!N%IEa*KoRTgexdQ8gQl6|uK>f>=NFSYV8HLe4v^Byglh z2r%J4bnFoR5tZ27fXy?$o|D-I5HY{g22{M|^~pg0sR0Dlf?xa5&uEHow1Kazie2Ww z7g9xJ0{MEKESuIU&9-JxaB^Q1MAJ;^$bG~l4QgYEZa59M%C;3;ame+_#Ds6h#POS( zszp3*jEPb`52>TZojKj_%?A%jlhn(U-@Rm`msZ6&y*TAmQ%k0@hUIVUw9YI)`4DO2n1_wk|psy?}- zcAdqJNZk`S$J4iTPCV0^T?|L5&jhXzyh0gi3%uJ}msa*%=E7z88AJoWdcykNUX`Rg#uadYrzvpgA>6flBV$HWTgCJA2hF zjTElqAp56Je0}e+Z65bjd~T@f8nY5=q8QA5CVp^l$PA-`Ww zZaZFx3s7_s0FJN#z!4X;v#}rA_kxTw+RybH*6u&f2vBvANv($Uz+&^N&ZjFA>{6_v z(=?v>MKFFzhQuL;hW7H?-mv$uD*YkSQ{AC%2BB2Kg9~p*65n(o-%f#v%?!sHa`+u- zuX7#&5H?8Zvm=7qP4dE4NHMN48ZK2mA2bSSigecrFo~!-$ThChVvJ;5=o?C6MXhlN zDLgh4>$l^yk)I)4($s5G8>G`=qYXVmmM2RI9_y6sfQ7&qu-d6AcqI^-eq2D^T2n(! zNX-Uplc}~ZvpvexZN>N@{LG`YbL8Q-*0oB5)>eoVhX8J#_As51$&MJ2J84B57KeOU z!G;g$+`xD)x6bzP_-3uL(~j-2_(!&-3d}}VgBoL?&B|tmii7Fr7C2>)O(gA2%HB}O?0jtjickQ%r0IZ3b4hUvD{(Z zL=ISMQ_V8E&%KTaq85sqo5@ZJ*|V#`8-ru}fu<=;3j#6!+%%nhegA8jK$HCT$}+P@ z56QBHW)pXC6ZuADDhb8IZx~Dp42SmFbo&Hr5H8SIKvfoNVJ;*rBa7nQLbKJ2YVipP z33C%lo8|jGeG5x6qUzNT(K+6DP8@8j+x)2c@iYXN*X-hSpskKhwuS}$YCffcUAa5_ z@@-jVa5b#=hMc*rm@s3=@S35Iy?FC&pZaqIuRp3SX7ywnw9l(L-4m5P=wcFZ1ftU9 zVX&j0Y2Ev-{wlGk#*sXUK)4GxlT1VUTC9mD{%Ea@h^W9O2M5ptyNG+PrB`5Epu%9Q zAXH*2_2r7&)Fhh0%&MfJoY7+jUdAr=;TzS}vnL@~-AIdesk`|vx^Zc}bq~jxIoXq- zuS$X&q(O(z@^!K^Iq?rCELU>zflddp44e;56m}sic^se5lm!0H<$mlUdO0xr5zbQr zM0zVZJ>^hvC@&z@Um{tH2=6vg#-dYQ6NN zAV!3wM_k-a`_=}$D+3x<8|u`mm#HnZB(&y^Q=Hu&lBcXvwI=G#xA0hRwnRudegKmw zYCA2kWQO4;n_YgjKJBNaUp`QkeUn$NgJ)Jl)!$a;&t!Gg_^rFEo>`}6tJi+q3{=$8 zz+7c-1nKvS|NXcJkknZJSA$>Sh~I^ukGFwS{)9@T6jB1?cBO5=;~olp9HsbIqSdYx z1afEiBK|*oD@q?q%+apXO~{Wg@huG54L~SeD4$X7x(KQ4`NWFSfO6Sz*PvVdi^1+9 zBBhja3c4#LpZO}KoRCsFPzGPS4)g|;b+BhBMrlYH%j_D04Zj#tL^69uHk78nh7`M& sAkZLS`dffODgU+G|5@&D@{|1AAYiQj2havVAPDdl0h;k;^UtY&0aW9-`2YX_ literal 0 HcmV?d00001 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/st-est00int-02-01.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/st-est00int-02-01.csv deleted file mode 100644 index 5eddce6a68..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/st-est00int-02-01.csv +++ /dev/null @@ -1,119 +0,0 @@ -table with row headers in column A and column headers in rows 3 through 4. (leading dots indicate sub-parts),,,,,,,,,,,,, -"Table 2. Intercensal Estimates of the Resident Population by Sex and Age for Alabama: April 1, 2000 to July 1, 2010",,,,,,,,,,,,, -Sex and Age,"April 1, 20001",Intercensal Estimates (as of July 1),,,,,,,,,,"April 1, 20102","July 1, 20103" -,,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,, -BOTH SEXES,"4,447,207","4,452,173","4,467,634","4,480,089","4,503,491","4,530,729","4,569,805","4,628,981","4,672,840","4,718,206","4,757,938","4,779,736","4,785,298" -.Under 5 years,"296,000","295,185","296,624","296,046","295,204","295,970","296,441","297,222","300,300","304,842","305,412","304,957","304,840" -.5 to 9 years,"315,369","313,178","307,526","302,632","299,148","297,554","298,450","303,581","306,013","306,682","307,864","308,229","308,125" -.10 to 14 years,"320,266","321,372","323,615","325,008","326,642","326,228","323,028","321,867","320,407","319,503","319,072","319,655","319,314" -.15 to 19 years,"324,583","325,612","321,866","320,749","321,655","325,095","330,753","337,003","341,279","345,580","346,611","343,471","341,504" -.20 to 24 years,"306,876","309,170","318,741","322,812","326,983","326,749","326,727","326,239","327,293","328,751","332,117","335,322","336,601" -.25 to 29 years,"301,197","298,679","286,763","281,003","280,387","283,864","290,568","302,813","307,619","311,504","312,199","311,034","311,929" -.30 to 34 years,"301,842","301,179","302,186","302,668","302,722","299,896","295,263","288,248","286,033","287,272","293,352","297,888","300,120" -.35 to 39 years,"340,313","338,693","330,870","321,114","312,160","305,558","303,456","308,663","312,470","313,869","312,797","308,430","306,442" -.40 to 44 years,"345,218","345,820","347,133","345,023","343,191","342,253","339,299","334,043","326,486","318,765","313,852","311,071","310,756" -.45 to 49 years,"315,164","316,816","323,347","330,998","337,237","340,768","344,392","348,601","348,251","348,148","348,256","346,369","345,049" -.50 to 54 years,"285,027","287,948","300,108","298,908","302,120","307,605","314,839","323,309","332,544","340,006","344,478","347,485","348,347" -.55 to 59 years,"225,445","226,761","231,202","248,643","258,551","270,380","284,084","297,745","298,032","301,833","307,017","311,906","313,686" -.60 to 64 years,"190,093","190,880","193,822","198,880","207,119","214,983","220,403","226,567","244,043","254,507","265,870","276,127","278,763" -.65 to 69 years,"167,975","167,835","169,261","170,495","173,635","176,683","179,942","184,594","189,797","198,122","205,667","209,637","210,742" -.70 to 74 years,"148,785","148,805","149,001","147,964","147,332","147,028","149,085","151,454","152,814","156,112","159,088","160,864","161,514" -.75 to 79 years,"118,111","118,478","118,750","119,599","120,741","120,322","120,923","122,066","121,729","121,862","121,679","122,836","122,639" -.80 to 84 years,"77,644","78,201","79,883","81,123","83,097","84,290","84,762","85,688","86,812","88,254","88,283","88,771","88,754" -.85 years and over,"67,299","67,561","66,936","66,424","65,567","65,503","67,390","69,278","70,918","72,594","74,324","75,684","76,173" -.,,,,,,,,,,,,, -.Under 18 years,"1,123,467","1,122,273","1,120,409","1,116,590","1,113,083","1,113,662","1,117,229","1,126,798","1,132,296","1,134,927","1,134,192","1,132,459","1,130,946" -.Under 5 years,"296,000","295,185","296,624","296,046","295,204","295,970","296,441","297,222","300,300","304,842","305,412","304,957","304,840" -.5 to 13 years,"571,574","570,705","567,783","564,473","561,346","556,262","555,065","559,971","560,764","561,569","562,897","564,204","564,261" -.14 to 17 years,"255,893","256,383","256,002","256,071","256,533","261,430","265,723","269,605","271,232","268,516","265,883","263,298","261,845" -.18 to 64 years,"2,743,926","2,749,020","2,763,394","2,777,894","2,800,036","2,823,241","2,850,474","2,889,103","2,918,474","2,946,335","2,974,705","2,989,485","2,994,530" -.18 to 24 years,"439,627","442,244","447,963","450,657","456,549","457,934","458,170","459,114","462,996","470,431","476,884","479,175","479,438" -.25 to 44 years,"1,288,570","1,284,371","1,266,952","1,249,808","1,238,460","1,231,571","1,228,586","1,233,767","1,232,608","1,231,410","1,232,200","1,228,423","1,229,247" -.45 to 64 years,"1,015,729","1,022,405","1,048,479","1,077,429","1,105,027","1,133,736","1,163,718","1,196,222","1,222,870","1,244,494","1,265,621","1,281,887","1,285,845" -.65 years and over,"579,814","580,880","583,831","585,605","590,372","593,826","602,102","613,080","622,070","636,944","649,041","657,792","659,822" -.,,,,,,,,,,,,, -.16 years and over,"3,451,648","3,457,832","3,475,903","3,492,741","3,518,819","3,545,596","3,583,225","3,638,421","3,679,285","3,719,993","3,759,588","3,781,800","3,787,994" -.18 years and over,"3,323,740","3,329,900","3,347,225","3,363,499","3,390,408","3,417,067","3,452,576","3,502,183","3,540,544","3,583,279","3,623,746","3,647,277","3,654,352" -.15 to 44 years,"1,920,029","1,919,153","1,907,559","1,893,369","1,887,098","1,883,415","1,886,066","1,897,009","1,901,180","1,905,741","1,910,928","1,907,216","1,907,352" -.,,,,,,,,,,,,, -.Median age (years),35.8,35.9,36.2,36.5,36.7,36.9,37.0,37.1,37.3,37.5,37.7,37.9,37.9 -MALE,"2,146,560","2,149,338","2,158,138","2,165,719","2,179,422","2,192,872","2,213,382","2,243,501","2,265,565","2,287,949","2,309,779","2,320,188","2,323,317" -.Under 5 years,"151,071","150,609","151,410","150,856","150,594","150,699","150,960","151,442","153,128","155,061","155,463","155,265","155,196" -.5 to 9 years,"161,798","160,685","157,513","154,832","152,874","151,948","152,574","155,157","156,345","156,770","157,145","157,340","157,294" -.10 to 14 years,"164,637","165,170","166,253","166,796","167,376","167,198","165,333","164,608","163,819","163,445","163,165","163,417","163,222" -.15 to 19 years,"164,416","165,156","163,598","163,527","164,178","165,836","169,052","172,295","174,268","176,205","176,744","175,151","174,172" -.20 to 24 years,"151,811","152,937","157,924","160,193","163,064","163,013","163,055","163,368","163,868","164,488","165,830","167,520","168,170" -.25 to 29 years,"149,270","148,063","141,826","138,866","138,346","139,913","143,069","148,916","151,122","153,665","154,238","153,716","154,413" -.30 to 34 years,"148,685","148,363","148,924","149,479","149,716","147,796","145,535","141,715","140,442","140,890","144,437","146,424","147,553" -.35 to 39 years,"166,595","165,784","161,913","156,961","152,711","149,728","148,720","151,475","153,426","153,863","153,311","151,078","150,161" -.40 to 44 years,"168,344","168,611","169,104","168,292","167,519","167,409","165,646","163,182","159,582","155,950","154,308","152,707","152,560" -.45 to 49 years,"153,107","153,919","157,109","160,859","163,830","165,310","167,466","169,420","169,469","169,523","170,289","169,103","168,492" -.50 to 54 years,"138,645","140,119","146,275","145,177","146,758","149,053","152,630","156,757","161,263","164,801","167,065","168,725","169,131" -.55 to 59 years,"107,768","108,433","110,610","119,508","124,704","130,369","136,953","143,669","143,382","145,011","147,180","149,633","150,487" -.60 to 64 years,"88,924","89,347","90,875","93,485","97,551","101,698","104,324","107,124","115,910","121,294","126,713","131,603","132,857" -.65 to 69 years,"76,407","76,405","77,545","78,293","79,768","81,138","83,024","85,514","88,097","92,099","96,029","97,893","98,429" -.70 to 74 years,"63,611","63,735","64,104","64,017","64,399","64,697","66,081","67,593","68,202","69,592","71,027","72,143","72,478" -.75 to 79 years,"46,308","46,494","46,851","47,624","48,391","48,529","49,234","49,986","50,386","51,001","51,353","51,927","51,886" -.80 to 84 years,"27,182","27,438","28,251","28,910","29,601","30,226","30,560","31,258","32,112","32,880","33,316","33,684","33,756" -.85 years and over,"17,981","18,070","18,053","18,044","18,042","18,312","19,166","20,022","20,744","21,411","22,166","22,859","23,060" -.,,,,,,,,,,,,, -.Under 18 years,"575,691","575,038","573,644","571,288","569,488","569,445","571,420","576,054","578,801","579,747","579,373","578,649","577,881" -.Under 5 years,"151,071","150,609","151,410","150,856","150,594","150,699","150,960","151,442","153,128","155,061","155,463","155,265","155,196" -.5 to 13 years,"293,638","293,198","291,195","289,177","287,311","284,421","283,902","286,388","286,623","287,133","287,583","288,212","288,249" -.14 to 17 years,"130,982","131,231","131,039","131,255","131,583","134,325","136,558","138,224","139,050","137,553","136,327","135,172","134,436" -.18 to 64 years,"1,339,380","1,342,158","1,349,690","1,357,543","1,369,733","1,380,525","1,393,897","1,413,074","1,427,223","1,441,219","1,456,515","1,463,033","1,465,827" -.18 to 24 years,"218,042","219,519","223,054","224,916","228,598","229,249","229,554","230,816","232,627","236,222","238,974","240,044","240,173" -.25 to 44 years,"632,894","630,821","621,767","613,598","608,292","604,846","602,970","605,288","604,572","604,368","606,294","603,925","604,687" -.45 to 64 years,"488,444","491,818","504,869","519,029","532,843","546,430","561,373","576,970","590,024","600,629","611,247","619,064","620,967" -.65 years and over,"231,489","232,142","234,804","236,888","240,201","242,902","248,065","254,373","259,541","266,983","273,891","278,506","279,609" -.,,,,,,,,,,,,, -.16 years and over,"1,636,302","1,639,774","1,650,255","1,660,508","1,675,823","1,689,549","1,709,133","1,737,495","1,758,143","1,778,263","1,800,104","1,810,745","1,814,210" -.18 years and over,"1,570,869","1,574,300","1,584,494","1,594,431","1,609,934","1,623,427","1,641,962","1,667,447","1,686,764","1,708,202","1,730,406","1,741,539","1,745,436" -.15 to 44 years,"949,121","948,914","943,289","937,318","935,534","933,695","935,077","940,951","942,708","945,061","948,868","946,596","947,029" -.,,,,,,,,,,,,, -.Median age (years),34.4,34.5,34.7,34.9,35.1,35.3,35.5,35.8,36.0,36.1,36.3,36.4,36.4 -FEMALE,"2,300,647","2,302,835","2,309,496","2,314,370","2,324,069","2,337,857","2,356,423","2,385,480","2,407,275","2,430,257","2,448,159","2,459,548","2,461,981" -.Under 5 years,"144,929","144,576","145,214","145,190","144,610","145,271","145,481","145,780","147,172","149,781","149,949","149,692","149,644" -.5 to 9 years,"153,571","152,493","150,013","147,800","146,274","145,606","145,876","148,424","149,668","149,912","150,719","150,889","150,831" -.10 to 14 years,"155,629","156,202","157,362","158,212","159,266","159,030","157,695","157,259","156,588","156,058","155,907","156,238","156,092" -.15 to 19 years,"160,167","160,456","158,268","157,222","157,477","159,259","161,701","164,708","167,011","169,375","169,867","168,320","167,332" -.20 to 24 years,"155,065","156,233","160,817","162,619","163,919","163,736","163,672","162,871","163,425","164,263","166,287","167,802","168,431" -.25 to 29 years,"151,927","150,616","144,937","142,137","142,041","143,951","147,499","153,897","156,497","157,839","157,961","157,318","157,516" -.30 to 34 years,"153,157","152,816","153,262","153,189","153,006","152,100","149,728","146,533","145,591","146,382","148,915","151,464","152,567" -.35 to 39 years,"173,718","172,909","168,957","164,153","159,449","155,830","154,736","157,188","159,044","160,006","159,486","157,352","156,281" -.40 to 44 years,"176,874","177,209","178,029","176,731","175,672","174,844","173,653","170,861","166,904","162,815","159,544","158,364","158,196" -.45 to 49 years,"162,057","162,897","166,238","170,139","173,407","175,458","176,926","179,181","178,782","178,625","177,967","177,266","176,557" -.50 to 54 years,"146,382","147,829","153,833","153,731","155,362","158,552","162,209","166,552","171,281","175,205","177,413","178,760","179,216" -.55 to 59 years,"117,677","118,328","120,592","129,135","133,847","140,011","147,131","154,076","154,650","156,822","159,837","162,273","163,199" -.60 to 64 years,"101,169","101,533","102,947","105,395","109,568","113,285","116,079","119,443","128,133","133,213","139,157","144,524","145,906" -.65 to 69 years,"91,568","91,430","91,716","92,202","93,867","95,545","96,918","99,080","101,700","106,023","109,638","111,744","112,313" -.70 to 74 years,"85,174","85,070","84,897","83,947","82,933","82,331","83,004","83,861","84,612","86,520","88,061","88,721","89,036" -.75 to 79 years,"71,803","71,984","71,899","71,975","72,350","71,793","71,689","72,080","71,343","70,861","70,326","70,909","70,753" -.80 to 84 years,"50,462","50,763","51,632","52,213","53,496","54,064","54,202","54,430","54,700","55,374","54,967","55,087","54,998" -.85 years and over,"49,318","49,491","48,883","48,380","47,525","47,191","48,224","49,256","50,174","51,183","52,158","52,825","53,113" -.,,,,,,,,,,,,, -.Under 18 years,"547,776","547,235","546,765","545,302","543,595","544,217","545,809","550,744","553,495","555,180","554,819","553,810","553,065" -.Under 5 years,"144,929","144,576","145,214","145,190","144,610","145,271","145,481","145,780","147,172","149,781","149,949","149,692","149,644" -.5 to 13 years,"277,936","277,507","276,588","275,296","274,035","271,841","271,163","273,583","274,141","274,436","275,314","275,992","276,012" -.14 to 17 years,"124,911","125,152","124,963","124,816","124,950","127,105","129,165","131,381","132,182","130,963","129,556","128,126","127,409" -.18 to 64 years,"1,404,546","1,406,862","1,413,704","1,420,351","1,430,303","1,442,716","1,456,577","1,476,029","1,491,251","1,505,116","1,518,190","1,526,452","1,528,703" -.18 to 24 years,"221,585","222,725","224,909","225,741","227,951","228,685","228,616","228,298","230,369","234,209","237,910","239,131","239,265" -.25 to 44 years,"655,676","653,550","645,185","636,210","630,168","626,725","625,616","628,479","628,036","627,042","625,906","624,498","624,560" -.45 to 64 years,"527,285","530,587","543,610","558,400","572,184","587,306","602,345","619,252","632,846","643,865","654,374","662,823","664,878" -.65 years and over,"348,325","348,738","349,027","348,717","350,171","350,924","354,037","358,707","362,529","369,961","375,150","379,286","380,213" -.,,,,,,,,,,,,, -.16 years and over,"1,815,346","1,818,058","1,825,648","1,832,233","1,842,996","1,856,047","1,874,092","1,900,926","1,921,142","1,941,730","1,959,484","1,971,055","1,973,784" -.18 years and over,"1,752,871","1,755,600","1,762,731","1,769,068","1,780,474","1,793,640","1,810,614","1,834,736","1,853,780","1,875,077","1,893,340","1,905,738","1,908,916" -.15 to 44 years,"970,908","970,239","964,270","956,051","951,564","949,720","950,989","956,058","958,472","960,680","962,060","960,620","960,323" -.,,,,,,,,,,,,, -.Median age (years),37.2,37.3,37.6,37.9,38.1,38.3,38.5,38.6,38.6,38.8,39.0,39.1,39.2 -"1 The April 1, 2000 Population Estimates base reflects changes to the Census 2000 population from the Count Question Resolution program, legal boundary updates, and other geographic -program revisions.",,,,,,,,,,,,, -"2 The data source for April 1, 2010 is the 2010 Census count.",,,,,,,,,,,,, -"3 The values for July 1, 2010 were produced by applying estimates of change in the population between April 1 and July 1 of 2010 to the 2010 Census counts. Further details on this -methodology are available at http://www.census.gov/popest/methodology/2000-2010_Intercensal_Estimates_Methodology.pdf.",,,,,,,,,,,,, -Note: Median age is calculated based on single year of age.,,,,,,,,,,,,, -Suggested Citation:,,,,,,,,,,,,, -"Table 2. Intercensal Estimates of the Resident Population by Sex and Age for Alabama: April 1, 2000 to July 1, 2010 (ST-EST00INT-02-01)",,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,,, -Release Date: October 2012,,,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1990.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1990.txt deleted file mode 100644 index 141ddc562f..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1990.txt +++ /dev/null @@ -1,76 +0,0 @@ -90 01001 0 1 1 239 -90 01001 0 2 1 203 -90 01001 1 1 1 821 -90 01001 1 2 1 769 -90 01001 2 1 1 1089 -90 01001 2 2 1 961 -90 01001 3 1 1 1144 -90 01001 3 2 1 974 -90 01001 4 1 1 1046 -90 01001 4 2 1 1018 -90 01001 5 1 1 882 -90 01001 5 2 1 824 -90 01001 6 1 1 1059 -90 01001 6 2 1 1096 -90 01001 7 1 1 1148 -90 01001 7 2 1 1199 -90 01001 8 1 1 1059 -90 01001 8 2 1 1105 -90 01001 9 1 1 1051 -90 01001 9 2 1 1093 -90 01001 10 1 1 876 -90 01001 10 2 1 886 -90 01001 11 1 1 792 -90 01001 11 2 1 814 -90 01001 12 1 1 670 -90 01001 12 2 1 671 -90 01001 13 1 1 519 -90 01001 13 2 1 541 -90 01001 14 1 1 408 -90 01001 14 2 1 463 -90 01001 15 1 1 275 -90 01001 15 2 1 388 -90 01001 16 1 1 192 -90 01001 16 2 1 324 -90 01001 17 1 1 109 -90 01001 17 2 1 222 -90 01001 18 1 1 42 -90 01001 18 2 1 162 -90 01001 0 3 1 51 -90 01001 0 4 1 57 -90 01001 1 3 1 249 -90 01001 1 4 1 253 -90 01001 2 3 1 318 -90 01001 2 4 1 336 -90 01001 3 3 1 350 -90 01001 3 4 1 343 -90 01001 4 3 1 395 -90 01001 4 4 1 381 -90 01001 5 3 1 220 -90 01001 5 4 1 279 -90 01001 6 3 1 233 -90 01001 6 4 1 280 -90 01001 7 3 1 235 -90 01001 7 4 1 291 -90 01001 8 3 1 200 -90 01001 8 4 1 255 -90 01001 9 3 1 165 -90 01001 9 4 1 202 -90 01001 10 3 1 118 -90 01001 10 4 1 139 -90 01001 11 3 1 116 -90 01001 11 4 1 127 -90 01001 12 3 1 85 -90 01001 12 4 1 132 -90 01001 13 3 1 104 -90 01001 13 4 1 146 -90 01001 14 3 1 103 -90 01001 14 4 1 129 -90 01001 15 3 1 76 -90 01001 15 4 1 106 -90 01001 16 3 1 61 -90 01001 16 4 1 80 -90 01001 17 3 1 39 -90 01001 17 4 1 69 -90 01001 18 3 1 22 -90 01001 18 4 1 72 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1991.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1991.txt deleted file mode 100644 index d07f0927e7..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1991.txt +++ /dev/null @@ -1,76 +0,0 @@ -91 01001 0 1 1 236 -91 01001 0 2 1 206 -91 01001 1 1 1 835 -91 01001 1 2 1 791 -91 01001 2 1 1 1114 -91 01001 2 2 1 985 -91 01001 3 1 1 1184 -91 01001 3 2 1 1017 -91 01001 4 1 1 1023 -91 01001 4 2 1 991 -91 01001 5 1 1 907 -91 01001 5 2 1 856 -91 01001 6 1 1 1037 -91 01001 6 2 1 1082 -91 01001 7 1 1 1163 -91 01001 7 2 1 1220 -91 01001 8 1 1 1118 -91 01001 8 2 1 1162 -91 01001 9 1 1 1113 -91 01001 9 2 1 1150 -91 01001 10 1 1 884 -91 01001 10 2 1 899 -91 01001 11 1 1 802 -91 01001 11 2 1 825 -91 01001 12 1 1 680 -91 01001 12 2 1 688 -91 01001 13 1 1 539 -91 01001 13 2 1 560 -91 01001 14 1 1 420 -91 01001 14 2 1 481 -91 01001 15 1 1 292 -91 01001 15 2 1 404 -91 01001 16 1 1 199 -91 01001 16 2 1 333 -91 01001 17 1 1 111 -91 01001 17 2 1 230 -91 01001 18 1 1 46 -91 01001 18 2 1 173 -91 01001 0 3 1 51 -91 01001 0 4 1 59 -91 01001 1 3 1 251 -91 01001 1 4 1 253 -91 01001 2 3 1 312 -91 01001 2 4 1 324 -91 01001 3 3 1 356 -91 01001 3 4 1 346 -91 01001 4 3 1 387 -91 01001 4 4 1 373 -91 01001 5 3 1 222 -91 01001 5 4 1 278 -91 01001 6 3 1 227 -91 01001 6 4 1 274 -91 01001 7 3 1 227 -91 01001 7 4 1 286 -91 01001 8 3 1 209 -91 01001 8 4 1 265 -91 01001 9 3 1 177 -91 01001 9 4 1 219 -91 01001 10 3 1 122 -91 01001 10 4 1 142 -91 01001 11 3 1 115 -91 01001 11 4 1 129 -91 01001 12 3 1 89 -91 01001 12 4 1 131 -91 01001 13 3 1 103 -91 01001 13 4 1 140 -91 01001 14 3 1 99 -91 01001 14 4 1 130 -91 01001 15 3 1 74 -91 01001 15 4 1 107 -91 01001 16 3 1 60 -91 01001 16 4 1 81 -91 01001 17 3 1 38 -91 01001 17 4 1 70 -91 01001 18 3 1 24 -91 01001 18 4 1 73 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1992.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1992.txt deleted file mode 100644 index 3fdd6c25a2..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1992.txt +++ /dev/null @@ -1,76 +0,0 @@ -92 01001 0 1 1 235 -92 01001 0 2 1 210 -92 01001 1 1 1 858 -92 01001 1 2 1 817 -92 01001 2 1 1 1145 -92 01001 2 2 1 1018 -92 01001 3 1 1 1231 -92 01001 3 2 1 1058 -92 01001 4 1 1 1033 -92 01001 4 2 1 993 -92 01001 5 1 1 931 -92 01001 5 2 1 882 -92 01001 6 1 1 1023 -92 01001 6 2 1 1069 -92 01001 7 1 1 1192 -92 01001 7 2 1 1242 -92 01001 8 1 1 1195 -92 01001 8 2 1 1241 -92 01001 9 1 1 1119 -92 01001 9 2 1 1155 -92 01001 10 1 1 977 -92 01001 10 2 1 986 -92 01001 11 1 1 820 -92 01001 11 2 1 850 -92 01001 12 1 1 697 -92 01001 12 2 1 708 -92 01001 13 1 1 556 -92 01001 13 2 1 577 -92 01001 14 1 1 436 -92 01001 14 2 1 497 -92 01001 15 1 1 307 -92 01001 15 2 1 421 -92 01001 16 1 1 202 -92 01001 16 2 1 334 -92 01001 17 1 1 114 -92 01001 17 2 1 234 -92 01001 18 1 1 50 -92 01001 18 2 1 182 -92 01001 0 3 1 50 -92 01001 0 4 1 60 -92 01001 1 3 1 259 -92 01001 1 4 1 257 -92 01001 2 3 1 310 -92 01001 2 4 1 319 -92 01001 3 3 1 361 -92 01001 3 4 1 354 -92 01001 4 3 1 388 -92 01001 4 4 1 375 -92 01001 5 3 1 230 -92 01001 5 4 1 284 -92 01001 6 3 1 221 -92 01001 6 4 1 269 -92 01001 7 3 1 223 -92 01001 7 4 1 285 -92 01001 8 3 1 222 -92 01001 8 4 1 277 -92 01001 9 3 1 189 -92 01001 9 4 1 237 -92 01001 10 3 1 134 -92 01001 10 4 1 157 -92 01001 11 3 1 117 -92 01001 11 4 1 132 -92 01001 12 3 1 91 -92 01001 12 4 1 132 -92 01001 13 3 1 104 -92 01001 13 4 1 137 -92 01001 14 3 1 95 -92 01001 14 4 1 129 -92 01001 15 3 1 75 -92 01001 15 4 1 106 -92 01001 16 3 1 57 -92 01001 16 4 1 82 -92 01001 17 3 1 36 -92 01001 17 4 1 70 -92 01001 18 3 1 24 -92 01001 18 4 1 72 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1993.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1993.txt deleted file mode 100644 index f57c36c8fd..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1993.txt +++ /dev/null @@ -1,76 +0,0 @@ -93 01001 0 1 1 228 -93 01001 0 2 1 209 -93 01001 1 1 1 884 -93 01001 1 2 1 845 -93 01001 2 1 1 1173 -93 01001 2 2 1 1053 -93 01001 3 1 1 1274 -93 01001 3 2 1 1097 -93 01001 4 1 1 1061 -93 01001 4 2 1 1017 -93 01001 5 1 1 931 -93 01001 5 2 1 890 -93 01001 6 1 1 1008 -93 01001 6 2 1 1060 -93 01001 7 1 1 1212 -93 01001 7 2 1 1249 -93 01001 8 1 1 1265 -93 01001 8 2 1 1306 -93 01001 9 1 1 1148 -93 01001 9 2 1 1184 -93 01001 10 1 1 1016 -93 01001 10 2 1 1018 -93 01001 11 1 1 856 -93 01001 11 2 1 894 -93 01001 12 1 1 719 -93 01001 12 2 1 740 -93 01001 13 1 1 574 -93 01001 13 2 1 596 -93 01001 14 1 1 466 -93 01001 14 2 1 530 -93 01001 15 1 1 328 -93 01001 15 2 1 446 -93 01001 16 1 1 208 -93 01001 16 2 1 338 -93 01001 17 1 1 120 -93 01001 17 2 1 243 -93 01001 18 1 1 53 -93 01001 18 2 1 192 -93 01001 0 3 1 49 -93 01001 0 4 1 60 -93 01001 1 3 1 265 -93 01001 1 4 1 261 -93 01001 2 3 1 310 -93 01001 2 4 1 316 -93 01001 3 3 1 363 -93 01001 3 4 1 359 -93 01001 4 3 1 386 -93 01001 4 4 1 372 -93 01001 5 3 1 238 -93 01001 5 4 1 286 -93 01001 6 3 1 217 -93 01001 6 4 1 267 -93 01001 7 3 1 220 -93 01001 7 4 1 281 -93 01001 8 3 1 231 -93 01001 8 4 1 289 -93 01001 9 3 1 204 -93 01001 9 4 1 252 -93 01001 10 3 1 143 -93 01001 10 4 1 171 -93 01001 11 3 1 121 -93 01001 11 4 1 137 -93 01001 12 3 1 95 -93 01001 12 4 1 134 -93 01001 13 3 1 106 -93 01001 13 4 1 133 -93 01001 14 3 1 93 -93 01001 14 4 1 132 -93 01001 15 3 1 76 -93 01001 15 4 1 109 -93 01001 16 3 1 55 -93 01001 16 4 1 80 -93 01001 17 3 1 35 -93 01001 17 4 1 72 -93 01001 18 3 1 26 -93 01001 18 4 1 73 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1994.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1994.txt deleted file mode 100644 index aa3ced4918..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1994.txt +++ /dev/null @@ -1,76 +0,0 @@ -94 01001 0 1 1 224 -94 01001 0 2 1 212 -94 01001 1 1 1 906 -94 01001 1 2 1 871 -94 01001 2 1 1 1222 -94 01001 2 2 1 1100 -94 01001 3 1 1 1318 -94 01001 3 2 1 1143 -94 01001 4 1 1 1105 -94 01001 4 2 1 1052 -94 01001 5 1 1 929 -94 01001 5 2 1 893 -94 01001 6 1 1 1011 -94 01001 6 2 1 1073 -94 01001 7 1 1 1233 -94 01001 7 2 1 1275 -94 01001 8 1 1 1338 -94 01001 8 2 1 1380 -94 01001 9 1 1 1199 -94 01001 9 2 1 1234 -94 01001 10 1 1 1073 -94 01001 10 2 1 1075 -94 01001 11 1 1 885 -94 01001 11 2 1 928 -94 01001 12 1 1 750 -94 01001 12 2 1 779 -94 01001 13 1 1 599 -94 01001 13 2 1 620 -94 01001 14 1 1 487 -94 01001 14 2 1 551 -94 01001 15 1 1 347 -94 01001 15 2 1 461 -94 01001 16 1 1 216 -94 01001 16 2 1 347 -94 01001 17 1 1 122 -94 01001 17 2 1 246 -94 01001 18 1 1 58 -94 01001 18 2 1 202 -94 01001 0 3 1 48 -94 01001 0 4 1 59 -94 01001 1 3 1 271 -94 01001 1 4 1 263 -94 01001 2 3 1 318 -94 01001 2 4 1 320 -94 01001 3 3 1 365 -94 01001 3 4 1 362 -94 01001 4 3 1 389 -94 01001 4 4 1 379 -94 01001 5 3 1 248 -94 01001 5 4 1 290 -94 01001 6 3 1 213 -94 01001 6 4 1 265 -94 01001 7 3 1 218 -94 01001 7 4 1 282 -94 01001 8 3 1 240 -94 01001 8 4 1 297 -94 01001 9 3 1 217 -94 01001 9 4 1 271 -94 01001 10 3 1 158 -94 01001 10 4 1 187 -94 01001 11 3 1 125 -94 01001 11 4 1 144 -94 01001 12 3 1 100 -94 01001 12 4 1 137 -94 01001 13 3 1 105 -94 01001 13 4 1 131 -94 01001 14 3 1 93 -94 01001 14 4 1 132 -94 01001 15 3 1 73 -94 01001 15 4 1 110 -94 01001 16 3 1 56 -94 01001 16 4 1 80 -94 01001 17 3 1 34 -94 01001 17 4 1 75 -94 01001 18 3 1 27 -94 01001 18 4 1 73 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1995.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1995.txt deleted file mode 100644 index 19cc8f7cb0..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1995.txt +++ /dev/null @@ -1,76 +0,0 @@ -95 01001 0 1 1 223 -95 01001 0 2 1 214 -95 01001 1 1 1 920 -95 01001 1 2 1 884 -95 01001 2 1 1 1277 -95 01001 2 2 1 1155 -95 01001 3 1 1 1361 -95 01001 3 2 1 1184 -95 01001 4 1 1 1141 -95 01001 4 2 1 1081 -95 01001 5 1 1 906 -95 01001 5 2 1 874 -95 01001 6 1 1 1018 -95 01001 6 2 1 1089 -95 01001 7 1 1 1230 -95 01001 7 2 1 1273 -95 01001 8 1 1 1394 -95 01001 8 2 1 1430 -95 01001 9 1 1 1244 -95 01001 9 2 1 1277 -95 01001 10 1 1 1111 -95 01001 10 2 1 1119 -95 01001 11 1 1 902 -95 01001 11 2 1 949 -95 01001 12 1 1 762 -95 01001 12 2 1 801 -95 01001 13 1 1 630 -95 01001 13 2 1 652 -95 01001 14 1 1 512 -95 01001 14 2 1 574 -95 01001 15 1 1 360 -95 01001 15 2 1 477 -95 01001 16 1 1 225 -95 01001 16 2 1 353 -95 01001 17 1 1 126 -95 01001 17 2 1 257 -95 01001 18 1 1 62 -95 01001 18 2 1 209 -95 01001 0 3 1 46 -95 01001 0 4 1 59 -95 01001 1 3 1 274 -95 01001 1 4 1 264 -95 01001 2 3 1 326 -95 01001 2 4 1 323 -95 01001 3 3 1 362 -95 01001 3 4 1 361 -95 01001 4 3 1 393 -95 01001 4 4 1 384 -95 01001 5 3 1 251 -95 01001 5 4 1 290 -95 01001 6 3 1 211 -95 01001 6 4 1 266 -95 01001 7 3 1 216 -95 01001 7 4 1 277 -95 01001 8 3 1 244 -95 01001 8 4 1 303 -95 01001 9 3 1 227 -95 01001 9 4 1 284 -95 01001 10 3 1 173 -95 01001 10 4 1 203 -95 01001 11 3 1 127 -95 01001 11 4 1 149 -95 01001 12 3 1 106 -95 01001 12 4 1 139 -95 01001 13 3 1 104 -95 01001 13 4 1 129 -95 01001 14 3 1 91 -95 01001 14 4 1 132 -95 01001 15 3 1 70 -95 01001 15 4 1 110 -95 01001 16 3 1 56 -95 01001 16 4 1 82 -95 01001 17 3 1 33 -95 01001 17 4 1 77 -95 01001 18 3 1 28 -95 01001 18 4 1 72 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1996.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1996.txt deleted file mode 100644 index 10bb818728..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1996.txt +++ /dev/null @@ -1,76 +0,0 @@ -96 01001 0 1 1 221 -96 01001 0 2 1 219 -96 01001 1 1 1 924 -96 01001 1 2 1 891 -96 01001 2 1 1 1322 -96 01001 2 2 1 1209 -96 01001 3 1 1 1395 -96 01001 3 2 1 1220 -96 01001 4 1 1 1185 -96 01001 4 2 1 1118 -96 01001 5 1 1 873 -96 01001 5 2 1 846 -96 01001 6 1 1 1055 -96 01001 6 2 1 1134 -96 01001 7 1 1 1225 -96 01001 7 2 1 1257 -96 01001 8 1 1 1465 -96 01001 8 2 1 1503 -96 01001 9 1 1 1301 -96 01001 9 2 1 1335 -96 01001 10 1 1 1174 -96 01001 10 2 1 1173 -96 01001 11 1 1 912 -96 01001 11 2 1 967 -96 01001 12 1 1 789 -96 01001 12 2 1 837 -96 01001 13 1 1 660 -96 01001 13 2 1 682 -96 01001 14 1 1 543 -96 01001 14 2 1 608 -96 01001 15 1 1 374 -96 01001 15 2 1 493 -96 01001 16 1 1 240 -96 01001 16 2 1 369 -96 01001 17 1 1 131 -96 01001 17 2 1 264 -96 01001 18 1 1 67 -96 01001 18 2 1 217 -96 01001 0 3 1 43 -96 01001 0 4 1 57 -96 01001 1 3 1 269 -96 01001 1 4 1 257 -96 01001 2 3 1 335 -96 01001 2 4 1 327 -96 01001 3 3 1 360 -96 01001 3 4 1 360 -96 01001 4 3 1 393 -96 01001 4 4 1 387 -96 01001 5 3 1 249 -96 01001 5 4 1 282 -96 01001 6 3 1 212 -96 01001 6 4 1 276 -96 01001 7 3 1 213 -96 01001 7 4 1 277 -96 01001 8 3 1 244 -96 01001 8 4 1 305 -96 01001 9 3 1 240 -96 01001 9 4 1 299 -96 01001 10 3 1 191 -96 01001 10 4 1 220 -96 01001 11 3 1 129 -96 01001 11 4 1 155 -96 01001 12 3 1 110 -96 01001 12 4 1 142 -96 01001 13 3 1 107 -96 01001 13 4 1 126 -96 01001 14 3 1 88 -96 01001 14 4 1 133 -96 01001 15 3 1 71 -96 01001 15 4 1 111 -96 01001 16 3 1 58 -96 01001 16 4 1 85 -96 01001 17 3 1 31 -96 01001 17 4 1 76 -96 01001 18 3 1 28 -96 01001 18 4 1 73 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1997.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1997.txt deleted file mode 100644 index 1a74713838..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1997.txt +++ /dev/null @@ -1,76 +0,0 @@ -97 01001 0 1 1 222 -97 01001 0 2 1 227 -97 01001 1 1 1 934 -97 01001 1 2 1 902 -97 01001 2 1 1 1383 -97 01001 2 2 1 1272 -97 01001 3 1 1 1436 -97 01001 3 2 1 1262 -97 01001 4 1 1 1217 -97 01001 4 2 1 1146 -97 01001 5 1 1 863 -97 01001 5 2 1 838 -97 01001 6 1 1 1067 -97 01001 6 2 1 1157 -97 01001 7 1 1 1210 -97 01001 7 2 1 1236 -97 01001 8 1 1 1518 -97 01001 8 2 1 1559 -97 01001 9 1 1 1356 -97 01001 9 2 1 1387 -97 01001 10 1 1 1163 -97 01001 10 2 1 1160 -97 01001 11 1 1 986 -97 01001 11 2 1 1047 -97 01001 12 1 1 817 -97 01001 12 2 1 877 -97 01001 13 1 1 693 -97 01001 13 2 1 716 -97 01001 14 1 1 558 -97 01001 14 2 1 628 -97 01001 15 1 1 384 -97 01001 15 2 1 501 -97 01001 16 1 1 251 -97 01001 16 2 1 381 -97 01001 17 1 1 134 -97 01001 17 2 1 266 -97 01001 18 1 1 71 -97 01001 18 2 1 224 -97 01001 0 3 1 44 -97 01001 0 4 1 58 -97 01001 1 3 1 264 -97 01001 1 4 1 251 -97 01001 2 3 1 345 -97 01001 2 4 1 333 -97 01001 3 3 1 359 -97 01001 3 4 1 361 -97 01001 4 3 1 391 -97 01001 4 4 1 388 -97 01001 5 3 1 250 -97 01001 5 4 1 280 -97 01001 6 3 1 215 -97 01001 6 4 1 282 -97 01001 7 3 1 209 -97 01001 7 4 1 273 -97 01001 8 3 1 247 -97 01001 8 4 1 308 -97 01001 9 3 1 254 -97 01001 9 4 1 315 -97 01001 10 3 1 205 -97 01001 10 4 1 236 -97 01001 11 3 1 138 -97 01001 11 4 1 167 -97 01001 12 3 1 117 -97 01001 12 4 1 145 -97 01001 13 3 1 108 -97 01001 13 4 1 124 -97 01001 14 3 1 86 -97 01001 14 4 1 133 -97 01001 15 3 1 69 -97 01001 15 4 1 112 -97 01001 16 3 1 57 -97 01001 16 4 1 87 -97 01001 17 3 1 29 -97 01001 17 4 1 76 -97 01001 18 3 1 29 -97 01001 18 4 1 70 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1998.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1998.txt deleted file mode 100644 index 94510fd0f2..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1998.txt +++ /dev/null @@ -1,76 +0,0 @@ -98 01001 0 1 1 219 -98 01001 0 2 1 232 -98 01001 1 1 1 934 -98 01001 1 2 1 907 -98 01001 2 1 1 1419 -98 01001 2 2 1 1308 -98 01001 3 1 1 1455 -98 01001 3 2 1 1286 -98 01001 4 1 1 1240 -98 01001 4 2 1 1161 -98 01001 5 1 1 874 -98 01001 5 2 1 847 -98 01001 6 1 1 1063 -98 01001 6 2 1 1156 -98 01001 7 1 1 1198 -98 01001 7 2 1 1237 -98 01001 8 1 1 1572 -98 01001 8 2 1 1611 -98 01001 9 1 1 1401 -98 01001 9 2 1 1434 -98 01001 10 1 1 1184 -98 01001 10 2 1 1173 -98 01001 11 1 1 1009 -98 01001 11 2 1 1074 -98 01001 12 1 1 869 -98 01001 12 2 1 942 -98 01001 13 1 1 732 -98 01001 13 2 1 760 -98 01001 14 1 1 580 -98 01001 14 2 1 648 -98 01001 15 1 1 405 -98 01001 15 2 1 521 -98 01001 16 1 1 264 -98 01001 16 2 1 399 -98 01001 17 1 1 137 -98 01001 17 2 1 264 -98 01001 18 1 1 77 -98 01001 18 2 1 231 -98 01001 0 3 1 44 -98 01001 0 4 1 58 -98 01001 1 3 1 257 -98 01001 1 4 1 240 -98 01001 2 3 1 348 -98 01001 2 4 1 332 -98 01001 3 3 1 358 -98 01001 3 4 1 357 -98 01001 4 3 1 380 -98 01001 4 4 1 380 -98 01001 5 3 1 243 -98 01001 5 4 1 272 -98 01001 6 3 1 215 -98 01001 6 4 1 286 -98 01001 7 3 1 207 -98 01001 7 4 1 272 -98 01001 8 3 1 247 -98 01001 8 4 1 309 -98 01001 9 3 1 264 -98 01001 9 4 1 326 -98 01001 10 3 1 217 -98 01001 10 4 1 249 -98 01001 11 3 1 147 -98 01001 11 4 1 180 -98 01001 12 3 1 124 -98 01001 12 4 1 149 -98 01001 13 3 1 110 -98 01001 13 4 1 125 -98 01001 14 3 1 84 -98 01001 14 4 1 132 -98 01001 15 3 1 70 -98 01001 15 4 1 115 -98 01001 16 3 1 60 -98 01001 16 4 1 92 -98 01001 17 3 1 28 -98 01001 17 4 1 75 -98 01001 18 3 1 30 -98 01001 18 4 1 69 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1999.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1999.txt deleted file mode 100644 index 39de66c29c..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stch-icen1999.txt +++ /dev/null @@ -1,76 +0,0 @@ -99 01001 0 1 1 218 -99 01001 0 2 1 239 -99 01001 1 1 1 947 -99 01001 1 2 1 928 -99 01001 2 1 1 1460 -99 01001 2 2 1 1355 -99 01001 3 1 1 1500 -99 01001 3 2 1 1329 -99 01001 4 1 1 1256 -99 01001 4 2 1 1176 -99 01001 5 1 1 879 -99 01001 5 2 1 856 -99 01001 6 1 1 1037 -99 01001 6 2 1 1133 -99 01001 7 1 1 1210 -99 01001 7 2 1 1234 -99 01001 8 1 1 1611 -99 01001 8 2 1 1653 -99 01001 9 1 1 1436 -99 01001 9 2 1 1464 -99 01001 10 1 1 1208 -99 01001 10 2 1 1196 -99 01001 11 1 1 1035 -99 01001 11 2 1 1098 -99 01001 12 1 1 904 -99 01001 12 2 1 990 -99 01001 13 1 1 775 -99 01001 13 2 1 806 -99 01001 14 1 1 598 -99 01001 14 2 1 662 -99 01001 15 1 1 415 -99 01001 15 2 1 524 -99 01001 16 1 1 268 -99 01001 16 2 1 404 -99 01001 17 1 1 139 -99 01001 17 2 1 267 -99 01001 18 1 1 80 -99 01001 18 2 1 241 -99 01001 0 3 1 44 -99 01001 0 4 1 59 -99 01001 1 3 1 254 -99 01001 1 4 1 234 -99 01001 2 3 1 351 -99 01001 2 4 1 330 -99 01001 3 3 1 364 -99 01001 3 4 1 363 -99 01001 4 3 1 371 -99 01001 4 4 1 368 -99 01001 5 3 1 240 -99 01001 5 4 1 268 -99 01001 6 3 1 218 -99 01001 6 4 1 290 -99 01001 7 3 1 203 -99 01001 7 4 1 267 -99 01001 8 3 1 252 -99 01001 8 4 1 312 -99 01001 9 3 1 268 -99 01001 9 4 1 336 -99 01001 10 3 1 228 -99 01001 10 4 1 263 -99 01001 11 3 1 156 -99 01001 11 4 1 194 -99 01001 12 3 1 132 -99 01001 12 4 1 153 -99 01001 13 3 1 113 -99 01001 13 4 1 123 -99 01001 14 3 1 80 -99 01001 14 4 1 131 -99 01001 15 3 1 71 -99 01001 15 4 1 116 -99 01001 16 3 1 58 -99 01001 16 4 1 91 -99 01001 17 3 1 26 -99 01001 17 4 1 74 -99 01001 18 3 1 29 -99 01001 18 4 1 68 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag780.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag780.txt deleted file mode 100644 index 2fea78efd7..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag780.txt +++ /dev/null @@ -1,115 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ & sex): -JULY 1, 1980 estimates - Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1980 intercensal estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - ------------------------------------------------------------------------ -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/80 7/1/80 7/1/80 -Code Age Both sexes Male Female - -01 AL 0 62835 31917 30918 -01 AL 1 59468 30144 29324 -01 AL 2 58226 29489 28737 -01 AL 3 59077 30015 29062 -01 AL 4 57378 29108 28270 -01 AL 5 59166 30165 29001 -01 AL 6 59076 30103 28973 -01 AL 7 61957 31650 30307 -01 AL 8 62875 32196 30679 -01 AL 9 68758 35355 33403 -01 AL 10 67564 34505 33059 -01 AL 11 64693 33174 31519 -01 AL 12 62973 32092 30881 -01 AL 13 64724 33133 31591 -01 AL 14 67820 34786 33034 -01 AL 15 72550 36903 35647 -01 AL 16 74694 38255 36439 -01 AL 17 75062 38247 36815 -01 AL 18 75313 37985 37328 -01 AL 19 78602 38823 39779 -01 AL 20 75879 37484 38395 -01 AL 21 73590 35643 37947 -01 AL 22 72343 35475 36868 -01 AL 23 71636 35388 36248 -01 AL 24 69095 34274 34821 -01 AL 25 67682 33308 34374 -01 AL 26 65598 32156 33442 -01 AL 27 63393 31034 32359 -01 AL 28 59438 29101 30337 -01 AL 29 61520 30192 31328 -01 AL 30 59550 29305 30245 -01 AL 31 58778 28926 29852 -01 AL 32 58812 28774 30038 -01 AL 33 61671 30209 31462 -01 AL 34 46397 22696 23701 -01 AL 35 47118 22921 24197 -01 AL 36 47203 23094 24109 -01 AL 37 49906 24240 25666 -01 AL 38 42794 20709 22085 -01 AL 39 43073 20901 22172 -01 AL 40 42141 20464 21677 -01 AL 41 40381 19274 21107 -01 AL 42 40500 19323 21177 -01 AL 43 38827 18403 20424 -01 AL 44 39382 18809 20573 -01 AL 45 38631 18539 20092 -01 AL 46 38212 18275 19937 -01 AL 47 38666 18486 20180 -01 AL 48 37115 17630 19485 -01 AL 49 38889 18458 20431 -01 AL 50 39425 18651 20774 -01 AL 51 38235 17828 20407 -01 AL 52 39757 18662 21095 -01 AL 53 39788 18706 21082 -01 AL 54 39663 18375 21288 -01 AL 55 38837 17809 21028 -01 AL 56 37984 17596 20388 -01 AL 57 38487 17852 20635 -01 AL 58 37806 17556 20250 -01 AL 59 37188 17015 20173 -01 AL 60 37637 17242 20395 -01 AL 61 34985 16011 18974 -01 AL 62 31703 14366 17337 -01 AL 63 32923 14685 18238 -01 AL 64 32476 14543 17933 -01 AL 65 33301 14646 18655 -01 AL 66 31956 13920 18036 -01 AL 67 32312 14033 18279 -01 AL 68 29336 12775 16561 -01 AL 69 29369 12502 16867 -01 AL 70 28043 11943 16100 -01 AL 71 25466 10592 14874 -01 AL 72 24719 10292 14427 -01 AL 73 22661 9072 13589 -01 AL 74 21863 8662 13201 -01 AL 75 19896 7831 12065 -01 AL 76 18074 6861 11213 -01 AL 77 16503 6324 10179 -01 AL 78 14773 5571 9202 -01 AL 79 14249 5325 8924 -01 AL 80 11691 4189 7502 -01 AL 81 9985 3485 6500 -01 AL 82 8732 2999 5733 -01 AL 83 7785 2632 5153 -01 AL 84 7242 2424 4818 -01 AL 85 34487 10102 24385 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag781.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag781.txt deleted file mode 100644 index f26a4f4a25..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag781.txt +++ /dev/null @@ -1,114 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1981 estimates - Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1981 intercensal estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. ---------------------------------------------------------------------------- -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/81 7/1/81 7/1/81 -Code Age Both sexes Male Female - -01 AL 0 61945 31528 30417 -01 AL 1 60515 30699 29816 -01 AL 2 59134 29957 29177 -01 AL 3 58848 29917 28931 -01 AL 4 59437 30202 29235 -01 AL 5 57057 29066 27991 -01 AL 6 58873 30037 28836 -01 AL 7 59716 30545 29171 -01 AL 8 59559 30495 29064 -01 AL 9 64618 33175 31443 -01 AL 10 69702 35638 34064 -01 AL 11 66324 34033 32291 -01 AL 12 64221 32705 31516 -01 AL 13 63052 32291 30761 -01 AL 14 64768 33158 31610 -01 AL 15 68010 34633 33377 -01 AL 16 72073 36818 35255 -01 AL 17 74389 37954 36435 -01 AL 18 73325 36982 36343 -01 AL 19 77659 38339 39320 -01 AL 20 77591 38325 39266 -01 AL 21 74139 35980 38159 -01 AL 22 72795 35671 37124 -01 AL 23 71938 35550 36388 -01 AL 24 71712 35610 36102 -01 AL 25 68655 33777 34878 -01 AL 26 66474 32671 33803 -01 AL 27 65402 32066 33336 -01 AL 28 60034 29397 30637 -01 AL 29 62948 30952 31996 -01 AL 30 60337 29664 30673 -01 AL 31 57458 28269 29189 -01 AL 32 58571 28595 29976 -01 AL 33 57747 28218 29529 -01 AL 34 63035 30910 32125 -01 AL 35 45559 22130 23429 -01 AL 36 46215 22584 23631 -01 AL 37 47252 22892 24360 -01 AL 38 48374 23445 24929 -01 AL 39 44828 21777 23051 -01 AL 40 43004 20867 22137 -01 AL 41 40562 19406 21156 -01 AL 42 40539 19396 21143 -01 AL 43 40754 19373 21381 -01 AL 44 39196 18784 20412 -01 AL 45 38569 18504 20065 -01 AL 46 39343 18858 20485 -01 AL 47 38610 18515 20095 -01 AL 48 36477 17377 19100 -01 AL 49 38657 18382 20275 -01 AL 50 38914 18311 20603 -01 AL 51 38180 17910 20270 -01 AL 52 38141 17929 20212 -01 AL 53 40027 18913 21114 -01 AL 54 40164 18663 21501 -01 AL 55 38586 17712 20874 -01 AL 56 38389 17787 20602 -01 AL 57 38590 17907 20683 -01 AL 58 36802 17012 19790 -01 AL 59 38225 17443 20782 -01 AL 60 37071 17004 20067 -01 AL 61 36670 16824 19846 -01 AL 62 33657 15221 18436 -01 AL 63 31762 14265 17497 -01 AL 64 32983 14748 18235 -01 AL 65 32593 14397 18196 -01 AL 66 31384 13716 17668 -01 AL 67 32591 14015 18576 -01 AL 68 29749 12809 16940 -01 AL 69 29525 12530 16995 -01 AL 70 28307 12008 16299 -01 AL 71 26508 11028 15480 -01 AL 72 25490 10598 14892 -01 AL 73 22742 9175 13567 -01 AL 74 21968 8756 13212 -01 AL 75 20672 8099 12573 -01 AL 76 18817 7127 11690 -01 AL 77 17219 6565 10654 -01 AL 78 15364 5758 9606 -01 AL 79 14790 5482 9308 -01 AL 80 12063 4300 7763 -01 AL 81 10316 3580 6736 -01 AL 82 9061 3094 5967 -01 AL 83 8081 2708 5373 -01 AL 84 7510 2484 5026 -01 AL 85 35620 10351 25269 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag782.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag782.txt deleted file mode 100644 index 0570d54b2f..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag782.txt +++ /dev/null @@ -1,115 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1982 estimates -Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1982 intercensal estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - --------------------------------------------------------------------------------- -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/82 7/1/82 7/1/82 -Code Age Both sexes Male Female - -01 AL 0 60286 30713 29573 -01 AL 1 59467 30220 29247 -01 AL 2 59984 30409 29575 -01 AL 3 59441 30248 29193 -01 AL 4 58983 29962 29021 -01 AL 5 58839 30020 28819 -01 AL 6 56557 28835 27722 -01 AL 7 59194 30305 28889 -01 AL 8 57034 29229 27805 -01 AL 9 61213 31423 29790 -01 AL 10 65104 33250 31854 -01 AL 11 68078 34942 33136 -01 AL 12 65710 33498 32212 -01 AL 13 64043 32759 31284 -01 AL 14 62885 32217 30668 -01 AL 15 64749 32936 31813 -01 AL 16 67174 34357 32817 -01 AL 17 72026 36667 35359 -01 AL 18 72868 36791 36077 -01 AL 19 75683 37358 38325 -01 AL 20 76287 37627 38660 -01 AL 21 75505 36666 38839 -01 AL 22 72748 35661 37087 -01 AL 23 71901 35459 36442 -01 AL 24 71640 35550 36090 -01 AL 25 70768 34856 35912 -01 AL 26 67204 33020 34184 -01 AL 27 66017 32454 33563 -01 AL 28 61379 30055 31324 -01 AL 29 63549 31207 32342 -01 AL 30 61367 30205 31162 -01 AL 31 58172 28544 29628 -01 AL 32 57135 27885 29250 -01 AL 33 57478 28025 29453 -01 AL 34 58917 28840 30077 -01 AL 35 61825 30057 31768 -01 AL 36 44633 21781 22852 -01 AL 37 46211 22374 23837 -01 AL 38 45450 21977 23473 -01 AL 39 50948 24779 26169 -01 AL 40 44615 21658 22957 -01 AL 41 41390 19837 21553 -01 AL 42 40574 19460 21114 -01 AL 43 40710 19399 21311 -01 AL 44 41126 19757 21369 -01 AL 45 38398 18465 19933 -01 AL 46 38970 18682 20288 -01 AL 47 39650 19024 20626 -01 AL 48 36442 17419 19023 -01 AL 49 38038 18142 19896 -01 AL 50 38476 18140 20336 -01 AL 51 37662 17582 20080 -01 AL 52 37976 17927 20049 -01 AL 53 38432 18175 20257 -01 AL 54 40260 18833 21427 -01 AL 55 39022 17985 21037 -01 AL 56 38104 17655 20449 -01 AL 57 38993 18097 20896 -01 AL 58 36789 16990 19799 -01 AL 59 37257 16942 20315 -01 AL 60 37929 17322 20607 -01 AL 61 36186 16623 19563 -01 AL 62 35148 15936 19212 -01 AL 63 33681 15135 18546 -01 AL 64 31980 14365 17615 -01 AL 65 32800 14458 18342 -01 AL 66 30947 13538 17409 -01 AL 67 32287 13888 18399 -01 AL 68 29668 12745 16923 -01 AL 69 29966 12697 17269 -01 AL 70 28943 12255 16688 -01 AL 71 26823 11180 15643 -01 AL 72 25575 10631 14944 -01 AL 73 23450 9393 14057 -01 AL 74 22672 8956 13716 -01 AL 75 21244 8281 12963 -01 AL 76 19391 7327 12064 -01 AL 77 17808 6759 11049 -01 AL 78 15890 5924 9966 -01 AL 79 15220 5593 9627 -01 AL 80 12633 4528 8105 -01 AL 81 10809 3775 7034 -01 AL 82 9538 3269 6269 -01 AL 83 8541 2872 5669 -01 AL 84 7890 2612 5278 -01 AL 85 36874 10581 26293 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag783.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag783.txt deleted file mode 100644 index 6486383f85..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag783.txt +++ /dev/null @@ -1,115 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1983 estimates -Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1983 intercensal estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - --------------------------------------------------------------------------------- -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/83 7/1/83 7/1/83 -Code Age Both sexes Male Female - -01 AL 0 59118 30176 28942 -01 AL 1 58184 29595 28589 -01 AL 2 59131 30024 29107 -01 AL 3 60410 30783 29627 -01 AL 4 59808 30383 29425 -01 AL 5 58551 29857 28694 -01 AL 6 58485 29862 28623 -01 AL 7 56972 29135 27837 -01 AL 8 56652 29050 27602 -01 AL 9 59070 30352 28718 -01 AL 10 61766 31554 30212 -01 AL 11 63644 32598 31046 -01 AL 12 67743 34548 33195 -01 AL 13 65713 33635 32078 -01 AL 14 64073 32790 31283 -01 AL 15 63045 32116 30929 -01 AL 16 64028 32715 31313 -01 AL 17 67535 34436 33099 -01 AL 18 70747 35677 35070 -01 AL 19 75571 37507 38064 -01 AL 20 74512 36891 37621 -01 AL 21 74478 36342 38136 -01 AL 22 74017 36425 37592 -01 AL 23 71781 35493 36288 -01 AL 24 71596 35526 36070 -01 AL 25 70629 34854 35775 -01 AL 26 69411 34214 35197 -01 AL 27 66799 32911 33888 -01 AL 28 61768 30344 31424 -01 AL 29 65183 32026 33157 -01 AL 30 61916 30472 31444 -01 AL 31 59307 29138 30169 -01 AL 32 57939 28250 29689 -01 AL 33 56299 27492 28807 -01 AL 34 58706 28723 29983 -01 AL 35 58012 28196 29816 -01 AL 36 60535 29589 30946 -01 AL 37 44736 21680 23056 -01 AL 38 44227 21414 22813 -01 AL 39 48316 23479 24837 -01 AL 40 50513 24559 25954 -01 AL 41 43026 20703 22323 -01 AL 42 41353 19890 21463 -01 AL 43 40682 19442 21240 -01 AL 44 41162 19827 21335 -01 AL 45 40270 19403 20867 -01 AL 46 38583 18557 20026 -01 AL 47 39238 18811 20427 -01 AL 48 37472 17937 19535 -01 AL 49 38105 18244 19861 -01 AL 50 37701 17834 19867 -01 AL 51 37182 17406 19776 -01 AL 52 37396 17540 19856 -01 AL 53 38251 18160 20091 -01 AL 54 38568 18091 20477 -01 AL 55 39077 18151 20926 -01 AL 56 38538 17912 20626 -01 AL 57 38670 17946 20724 -01 AL 58 37024 17082 19942 -01 AL 59 37360 16998 20362 -01 AL 60 36796 16725 20071 -01 AL 61 36986 16919 20067 -01 AL 62 34753 15781 18972 -01 AL 63 35128 15865 19263 -01 AL 64 33913 15214 18699 -01 AL 65 32328 14444 17884 -01 AL 66 30524 13464 17060 -01 AL 67 31767 13735 18032 -01 AL 68 29300 12620 16680 -01 AL 69 30093 12616 17477 -01 AL 70 29284 12256 17028 -01 AL 71 27371 11365 16006 -01 AL 72 25860 10690 15170 -01 AL 73 24253 9747 14506 -01 AL 74 23462 9287 14175 -01 AL 75 21759 8488 13271 -01 AL 76 19916 7543 12373 -01 AL 77 18370 6977 11393 -01 AL 78 16410 6124 10286 -01 AL 79 15702 5763 9939 -01 AL 80 13026 4651 8375 -01 AL 81 11189 3900 7289 -01 AL 82 9910 3387 6523 -01 AL 83 8889 2964 5925 -01 AL 84 8211 2700 5511 -01 AL 85 38319 10952 27367 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag784.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag784.txt deleted file mode 100644 index f6ad9467b9..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag784.txt +++ /dev/null @@ -1,115 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1984 estimates -Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1984 intercensal estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - ---------------------------------------------------------------------------------File Layout -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/84 7/1/84 7/1/84 -Code Age Both sexes Male Female - -01 AL 0 57383 29314 28069 -01 AL 1 57329 29213 28116 -01 AL 2 57997 29470 28527 -01 AL 3 59590 30434 29156 -01 AL 4 60946 30972 29974 -01 AL 5 59484 30328 29156 -01 AL 6 58311 29757 28554 -01 AL 7 58954 30182 28772 -01 AL 8 54594 27950 26644 -01 AL 9 59086 30380 28706 -01 AL 10 59648 30514 29134 -01 AL 11 60406 30921 29485 -01 AL 12 63574 32369 31205 -01 AL 13 67883 34743 33140 -01 AL 14 65911 33755 32156 -01 AL 15 64388 32791 31597 -01 AL 16 62399 31931 30468 -01 AL 17 64872 33056 31816 -01 AL 18 66744 33664 33080 -01 AL 19 73830 36563 37267 -01 AL 20 74402 36924 37478 -01 AL 21 72737 35589 37148 -01 AL 22 72750 35852 36898 -01 AL 23 72777 36000 36777 -01 AL 24 71428 35441 35987 -01 AL 25 70561 34788 35773 -01 AL 26 69542 34311 35231 -01 AL 27 69166 34163 35003 -01 AL 28 62441 30672 31769 -01 AL 29 65994 32469 33525 -01 AL 30 63675 31317 32358 -01 AL 31 60160 29494 30666 -01 AL 32 59366 28970 30396 -01 AL 33 57508 28041 29467 -01 AL 34 57784 28308 29476 -01 AL 35 58171 28221 29950 -01 AL 36 57050 27866 29184 -01 AL 37 60952 29562 31390 -01 AL 38 42785 20727 22058 -01 AL 39 47607 23156 24451 -01 AL 40 47931 23255 24676 -01 AL 41 49004 23659 25345 -01 AL 42 43117 20815 22302 -01 AL 43 41582 19918 21664 -01 AL 44 41387 19978 21409 -01 AL 45 40470 19527 20943 -01 AL 46 40435 19493 20942 -01 AL 47 38983 18718 20265 -01 AL 48 37315 17857 19458 -01 AL 49 39517 18945 20572 -01 AL 50 37828 17965 19863 -01 AL 51 36588 17195 19393 -01 AL 52 37061 17398 19663 -01 AL 53 37867 17856 20011 -01 AL 54 38514 18166 20348 -01 AL 55 37597 17530 20067 -01 AL 56 38809 18162 20647 -01 AL 57 39296 18296 21000 -01 AL 58 36774 16946 19828 -01 AL 59 37948 17269 20679 -01 AL 60 36893 16753 20140 -01 AL 61 36022 16402 19620 -01 AL 62 35809 16196 19613 -01 AL 63 34860 15806 19054 -01 AL 64 35501 15969 19532 -01 AL 65 32603 14621 17982 -01 AL 66 31716 14128 17588 -01 AL 67 32000 13825 18175 -01 AL 68 28940 12467 16473 -01 AL 69 29602 12411 17191 -01 AL 70 29044 12128 16916 -01 AL 71 28119 11620 16499 -01 AL 72 26425 10861 15564 -01 AL 73 24324 9824 14500 -01 AL 74 23572 9364 14208 -01 AL 75 22387 8725 13662 -01 AL 76 20505 7766 12739 -01 AL 77 19009 7201 11808 -01 AL 78 17011 6335 10676 -01 AL 79 16277 5951 10326 -01 AL 80 13589 4808 8781 -01 AL 81 11628 4005 7623 -01 AL 82 10379 3507 6872 -01 AL 83 9318 3065 6253 -01 AL 84 8575 2766 5809 -01 AL 85 39510 11354 28156 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag785.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag785.txt deleted file mode 100644 index d8d5ec378e..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag785.txt +++ /dev/null @@ -1,115 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1985 estimates -Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1985 intercensals estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - --------------------------------------------------------------------------------- -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/85 7/1/85 7/1/85 -Code Age Both sexes Male Female - -01 AL 0 58476 29910 28566 -01 AL 1 56003 28556 27447 -01 AL 2 57389 29211 28178 -01 AL 3 58574 29956 28618 -01 AL 4 60368 30716 29652 -01 AL 5 60817 31013 29804 -01 AL 6 59434 30327 29107 -01 AL 7 58917 30136 28781 -01 AL 8 56656 29030 27626 -01 AL 9 57460 29498 27962 -01 AL 10 59789 30618 29171 -01 AL 11 58441 29928 28513 -01 AL 12 60657 30873 29784 -01 AL 13 63942 32660 31282 -01 AL 14 68335 35004 33331 -01 AL 15 66457 33895 32562 -01 AL 16 63849 32665 31184 -01 AL 17 63559 32438 31121 -01 AL 18 64306 32393 31913 -01 AL 19 69772 34533 35239 -01 AL 20 72426 35768 36658 -01 AL 21 72358 35439 36919 -01 AL 22 70616 34792 35824 -01 AL 23 71274 35230 36044 -01 AL 24 72262 35797 36465 -01 AL 25 70231 34597 35634 -01 AL 26 69582 34268 35314 -01 AL 27 69330 34260 35070 -01 AL 28 64452 31671 32781 -01 AL 29 66980 32889 34091 -01 AL 30 64444 31702 32742 -01 AL 31 62020 30323 31697 -01 AL 32 60358 29379 30979 -01 AL 33 59192 28866 30326 -01 AL 34 59084 28889 30195 -01 AL 35 57450 27881 29569 -01 AL 36 57245 27886 29359 -01 AL 37 57627 27941 29686 -01 AL 38 58030 28117 29913 -01 AL 39 46438 22586 23852 -01 AL 40 47127 22864 24263 -01 AL 41 46635 22519 24116 -01 AL 42 49100 23777 25323 -01 AL 43 43351 20828 22523 -01 AL 44 42435 20519 21916 -01 AL 45 40757 19683 21074 -01 AL 46 40474 19547 20927 -01 AL 47 40871 19638 21233 -01 AL 48 37199 17835 19364 -01 AL 49 39557 18959 20598 -01 AL 50 39096 18588 20508 -01 AL 51 36750 17348 19402 -01 AL 52 36471 17153 19318 -01 AL 53 37595 17727 19868 -01 AL 54 38122 17884 20238 -01 AL 55 37583 17636 19947 -01 AL 56 37405 17555 19850 -01 AL 57 39622 18570 21052 -01 AL 58 37303 17223 20080 -01 AL 59 37914 17251 20663 -01 AL 60 37366 16943 20423 -01 AL 61 36154 16446 19708 -01 AL 62 35048 15779 19269 -01 AL 63 35957 16275 19682 -01 AL 64 35226 15873 19353 -01 AL 65 34349 15359 18990 -01 AL 66 32443 14357 18086 -01 AL 67 31627 13875 17752 -01 AL 68 28715 12488 16227 -01 AL 69 29063 12294 16769 -01 AL 70 28647 12044 16603 -01 AL 71 28561 11667 16894 -01 AL 72 26680 10817 15863 -01 AL 73 24648 9911 14737 -01 AL 74 23929 9457 14472 -01 AL 75 22769 8897 13872 -01 AL 76 20876 7945 12931 -01 AL 77 19384 7350 12034 -01 AL 78 17395 6482 10913 -01 AL 79 16657 6088 10569 -01 AL 80 14317 5017 9300 -01 AL 81 12290 4193 8097 -01 AL 82 10949 3648 7301 -01 AL 83 9887 3201 6686 -01 AL 84 9044 2869 6175 -01 AL 85 40572 11593 28979 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag786.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag786.txt deleted file mode 100644 index f6fa7657c2..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag786.txt +++ /dev/null @@ -1,115 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1986 estimates -Source: Population Distribution Branch and Population Estimates Branch - U.S.Bureau of the Census -Release date: June 4, 1996 - -The July 1986 intercensals estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - ---------------------------------------------------------------------------------File Layout -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/86 7/1/86 7/1/86 -Code Age Both sexes Male Female - -01 AL 0 58268 29844 28424 -01 AL 1 57332 29267 28065 -01 AL 2 56212 28626 27586 -01 AL 3 58017 29742 28275 -01 AL 4 59512 30290 29222 -01 AL 5 60345 30804 29541 -01 AL 6 60855 31055 29800 -01 AL 7 60085 30718 29367 -01 AL 8 56664 28995 27669 -01 AL 9 60004 30827 29177 -01 AL 10 58153 29743 28410 -01 AL 11 58595 30007 28588 -01 AL 12 58917 30008 28909 -01 AL 13 61140 31202 29938 -01 AL 14 64550 33001 31549 -01 AL 15 69036 35241 33795 -01 AL 16 65922 33776 32146 -01 AL 17 64899 33115 31784 -01 AL 18 62932 31704 31228 -01 AL 19 67149 33225 33924 -01 AL 20 68259 33756 34503 -01 AL 21 70379 34484 35895 -01 AL 22 69898 34553 35345 -01 AL 23 68865 34087 34778 -01 AL 24 70543 34980 35563 -01 AL 25 70731 34861 35870 -01 AL 26 69227 34130 35097 -01 AL 27 69251 34234 35017 -01 AL 28 64236 31581 32655 -01 AL 29 69119 33962 35157 -01 AL 30 65172 32020 33152 -01 AL 31 62760 30685 32075 -01 AL 32 62188 30225 31963 -01 AL 33 60262 29352 30910 -01 AL 34 60739 29741 30998 -01 AL 35 58793 28488 30305 -01 AL 36 56423 27524 28899 -01 AL 37 57794 27986 29808 -01 AL 38 54447 26415 28032 -01 AL 39 63450 30900 32550 -01 AL 40 45852 22265 23587 -01 AL 41 45848 22215 23633 -01 AL 42 46592 22591 24001 -01 AL 43 49173 23705 25468 -01 AL 44 44230 21452 22778 -01 AL 45 41697 20161 21536 -01 AL 46 40448 19566 20882 -01 AL 47 40777 19601 21176 -01 AL 48 38985 18716 20269 -01 AL 49 39445 18942 20503 -01 AL 50 38901 18493 20408 -01 AL 51 37856 17903 19953 -01 AL 52 36500 17210 19290 -01 AL 53 36936 17442 19494 -01 AL 54 37718 17721 19997 -01 AL 55 37109 17335 19774 -01 AL 56 37338 17617 19721 -01 AL 57 38099 17906 20193 -01 AL 58 37408 17364 20044 -01 AL 59 38553 17596 20957 -01 AL 60 37114 16801 20313 -01 AL 61 36536 16597 19939 -01 AL 62 35214 15839 19375 -01 AL 63 35115 15858 19257 -01 AL 64 36257 16272 19985 -01 AL 65 35057 15679 19378 -01 AL 66 32515 14403 18112 -01 AL 67 31904 14037 17867 -01 AL 68 29869 13088 16781 -01 AL 69 29204 12351 16853 -01 AL 70 28261 11897 16364 -01 AL 71 28403 11605 16798 -01 AL 72 26383 10660 15723 -01 AL 73 25128 10106 15022 -01 AL 74 24523 9692 14831 -01 AL 75 23069 9027 14042 -01 AL 76 21216 8102 13114 -01 AL 77 19749 7494 12255 -01 AL 78 17696 6588 11108 -01 AL 79 16985 6191 10794 -01 AL 80 14896 5198 9698 -01 AL 81 12831 4357 8474 -01 AL 82 11503 3813 7690 -01 AL 83 10324 3298 7026 -01 AL 84 9454 2956 6498 -01 AL 85 41768 11836 29932 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag787.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag787.txt deleted file mode 100644 index a7ed24b0de..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag787.txt +++ /dev/null @@ -1,116 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1987 estimates -Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1987 intercensals estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - - ---------------------------------------------------------------------------------File Layout -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/87 7/1/87 7/1/87 -Code Age Both sexes Male Female - -01 AL 0 57822 29647 28175 -01 AL 1 57242 29259 27983 -01 AL 2 57542 29332 28210 -01 AL 3 56727 29116 27611 -01 AL 4 58961 30051 28910 -01 AL 5 59466 30359 29107 -01 AL 6 60342 30825 29517 -01 AL 7 61389 31374 30015 -01 AL 8 57706 29502 28204 -01 AL 9 60333 30953 29380 -01 AL 10 60653 31058 29595 -01 AL 11 56894 29074 27820 -01 AL 12 59146 30136 29010 -01 AL 13 59389 30315 29074 -01 AL 14 61751 31549 30202 -01 AL 15 65246 33269 31977 -01 AL 16 68348 35055 33293 -01 AL 17 66955 34220 32735 -01 AL 18 64613 32539 32074 -01 AL 19 66050 32724 33326 -01 AL 20 65725 32492 33233 -01 AL 21 66376 32623 33753 -01 AL 22 67734 33463 34271 -01 AL 23 67879 33654 34225 -01 AL 24 67935 33670 34265 -01 AL 25 68875 33975 34900 -01 AL 26 69803 34418 35385 -01 AL 27 68944 34119 34825 -01 AL 28 64023 31438 32585 -01 AL 29 69226 33988 35238 -01 AL 30 67361 33096 34265 -01 AL 31 63725 31073 32652 -01 AL 32 63166 30702 32464 -01 AL 33 62460 30380 32080 -01 AL 34 62055 30361 31694 -01 AL 35 60727 29452 31275 -01 AL 36 57884 28195 29689 -01 AL 37 57220 27770 29450 -01 AL 38 54479 26408 28071 -01 AL 39 60325 29425 30900 -01 AL 40 62397 30283 32114 -01 AL 41 44812 21792 23020 -01 AL 42 45893 22332 23561 -01 AL 43 46750 22559 24191 -01 AL 44 50444 24538 25906 -01 AL 45 43613 21137 22476 -01 AL 46 41296 20014 21282 -01 AL 47 40839 19634 21205 -01 AL 48 39088 18786 20302 -01 AL 49 41619 20018 21601 -01 AL 50 38790 18482 20308 -01 AL 51 37777 17871 19906 -01 AL 52 37713 17784 19929 -01 AL 53 37130 17568 19562 -01 AL 54 37143 17506 19637 -01 AL 55 36842 17256 19586 -01 AL 56 37019 17373 19646 -01 AL 57 38157 18030 20127 -01 AL 58 35965 16723 19242 -01 AL 59 38981 17910 21071 -01 AL 60 37710 17104 20606 -01 AL 61 36391 16507 19884 -01 AL 62 35816 16095 19721 -01 AL 63 35352 15989 19363 -01 AL 64 35490 15862 19628 -01 AL 65 35433 15827 19606 -01 AL 66 33652 14972 18680 -01 AL 67 33661 14749 18912 -01 AL 68 30669 13314 17355 -01 AL 69 28693 12335 16358 -01 AL 70 27989 11926 16063 -01 AL 71 28157 11575 16582 -01 AL 72 25902 10493 15409 -01 AL 73 25371 10142 15229 -01 AL 74 24874 9758 15116 -01 AL 75 23413 9132 14281 -01 AL 76 21599 8249 13350 -01 AL 77 20205 7648 12557 -01 AL 78 18107 6722 11385 -01 AL 79 17329 6276 11053 -01 AL 80 15369 5370 9999 -01 AL 81 13298 4530 8768 -01 AL 82 11998 3982 8016 -01 AL 83 10812 3450 7362 -01 AL 84 9765 3023 6742 -01 AL 85 43437 12283 31154 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag788.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag788.txt index 2d756a9f55..be4d8aa9d5 100644 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag788.txt +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag788.txt @@ -112,3 +112,89 @@ Code Age Both sexes Male Female 01 AL 83 11232 3593 7639 01 AL 84 10127 3139 6988 01 AL 85 44447 12399 32048 +02 AK 0 11499 5869 5630 +02 AK 1 11600 5981 5619 +02 AK 2 11921 6138 5783 +02 AK 3 12118 6202 5916 +02 AK 4 11394 5859 5535 +02 AK 5 11197 5764 5433 +02 AK 6 10427 5334 5093 +02 AK 7 9929 5131 4798 +02 AK 8 8876 4581 4295 +02 AK 9 9226 4745 4481 +02 AK 10 9197 4770 4427 +02 AK 11 8753 4603 4150 +02 AK 12 8246 4267 3979 +02 AK 13 8263 4286 3977 +02 AK 14 7839 4067 3772 +02 AK 15 8060 4220 3840 +02 AK 16 8211 4254 3957 +02 AK 17 8155 4259 3896 +02 AK 18 7515 4009 3506 +02 AK 19 7649 4225 3424 +02 AK 20 7895 4425 3470 +02 AK 21 8223 4637 3586 +02 AK 22 8400 4602 3798 +02 AK 23 9034 4864 4170 +02 AK 24 9735 5199 4536 +02 AK 25 9850 5231 4619 +02 AK 26 8646 4683 3963 +02 AK 27 8477 4625 3852 +02 AK 28 10198 5384 4814 +02 AK 29 12743 6646 6097 +02 AK 30 12449 6517 5932 +02 AK 31 12619 6461 6158 +02 AK 32 12872 6638 6234 +02 AK 33 12566 6449 6117 +02 AK 34 12759 6589 6170 +02 AK 35 12287 6379 5908 +02 AK 36 11169 5968 5201 +02 AK 37 10689 5730 4959 +02 AK 38 10191 5408 4783 +02 AK 39 10726 5851 4875 +02 AK 40 9734 5296 4438 +02 AK 41 9861 5362 4499 +02 AK 42 7091 3904 3187 +02 AK 43 7141 3849 3292 +02 AK 44 7325 3986 3339 +02 AK 45 7143 3899 3244 +02 AK 46 5872 3204 2668 +02 AK 47 5847 3174 2673 +02 AK 48 5110 2804 2306 +02 AK 49 5086 2799 2287 +02 AK 50 4710 2580 2130 +02 AK 51 4346 2331 2015 +02 AK 52 4073 2268 1805 +02 AK 53 3868 2137 1731 +02 AK 54 3875 2104 1771 +02 AK 55 3625 1966 1659 +02 AK 56 3347 1774 1573 +02 AK 57 3278 1769 1509 +02 AK 58 3103 1652 1451 +02 AK 59 3227 1707 1520 +02 AK 60 2925 1549 1376 +02 AK 61 2623 1407 1216 +02 AK 62 2454 1307 1147 +02 AK 63 2475 1320 1155 +02 AK 64 2447 1262 1185 +02 AK 65 1980 1033 947 +02 AK 66 1882 952 930 +02 AK 67 1814 894 920 +02 AK 68 1524 739 785 +02 AK 69 1403 691 712 +02 AK 70 1291 650 641 +02 AK 71 1153 539 614 +02 AK 72 1015 470 545 +02 AK 73 939 456 483 +02 AK 74 898 427 471 +02 AK 75 808 386 422 +02 AK 76 704 321 383 +02 AK 77 612 275 337 +02 AK 78 542 248 294 +02 AK 79 507 229 278 +02 AK 80 445 176 269 +02 AK 81 353 135 218 +02 AK 82 330 127 203 +02 AK 83 282 116 166 +02 AK 84 247 104 143 +02 AK 85 1064 378 686 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag789.txt b/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag789.txt deleted file mode 100644 index 1b86d8bc0b..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/stiag789.txt +++ /dev/null @@ -1,115 +0,0 @@ -RESIDENT POPULATION OF STATES (by single year to 85+ and sex): -July 1, 1989 estimates -Source: Population Distribution Branch and Population Estimates Branch - U.S. Bureau of the Census -Release date: June 4, 1996 - -The July 1989 intercensals estimates in this file are consistent -with and described in Current Population Reports, Series P25-1106. - ---------------------------------------------------------------------------------File Layout -File Layout - -Field -Location Length Field - -1-2 2 FIPS Code state -3-6 4 Blank -7-8 2 State postal abbreviation -9-10 3 Blank -11-12 2 Age (85 = 85+) -13-24 12 4/1/80 census both sexes population -25-36 12 4/1/80 census male population -37-48 12 4/1/80 census female population ------------------------------------------------------------------------- - - -FIPS 7/1/89 7/1/89 7/1/89 -Code Age Both sexes Male Female - -01 AL 0 59219 30415 28804 -01 AL 1 56961 29175 27786 -01 AL 2 56848 29038 27810 -01 AL 3 57454 29590 27864 -01 AL 4 58601 29890 28711 -01 AL 5 57248 29262 27986 -01 AL 6 58494 29923 28571 -01 AL 7 59412 30377 29035 -01 AL 8 57877 29580 28297 -01 AL 9 62895 32218 30677 -01 AL 10 61743 31570 30173 -01 AL 11 58913 30058 28855 -01 AL 12 59582 30321 29261 -01 AL 13 57642 29354 28288 -01 AL 14 59898 30622 29276 -01 AL 15 60362 30821 29541 -01 AL 16 61361 31456 29905 -01 AL 17 65047 33263 31784 -01 AL 18 68693 34644 34049 -01 AL 19 69787 34680 35107 -01 AL 20 65618 32481 33137 -01 AL 21 61848 30501 31347 -01 AL 22 60105 29790 30315 -01 AL 23 60563 30035 30528 -01 AL 24 63544 31445 32099 -01 AL 25 64014 31589 32425 -01 AL 26 64583 31851 32732 -01 AL 27 66871 33144 33727 -01 AL 28 62936 30848 32088 -01 AL 29 68048 33275 34773 -01 AL 30 66452 32503 33949 -01 AL 31 65290 31697 33593 -01 AL 32 65774 31841 33933 -01 AL 33 64236 31175 33061 -01 AL 34 64953 31755 33198 -01 AL 35 63976 30936 33040 -01 AL 36 60591 29496 31095 -01 AL 37 60184 29218 30966 -01 AL 38 54338 26392 27946 -01 AL 39 59941 29289 30652 -01 AL 40 58870 28573 30297 -01 AL 41 57448 28105 29343 -01 AL 42 60434 29563 30871 -01 AL 43 44518 21648 22870 -01 AL 44 46928 22915 24013 -01 AL 45 46919 22775 24144 -01 AL 46 48270 23513 24757 -01 AL 47 42881 20652 22229 -01 AL 48 39727 19119 20608 -01 AL 49 41767 20121 21646 -01 AL 50 40497 19354 21143 -01 AL 51 39232 18654 20578 -01 AL 52 37113 17489 19624 -01 AL 53 37990 17929 20061 -01 AL 54 38189 18084 20105 -01 AL 55 36130 17070 19060 -01 AL 56 35926 16940 18986 -01 AL 57 37271 17547 19724 -01 AL 58 35185 16321 18864 -01 AL 59 37441 17343 20098 -01 AL 60 36197 16527 19670 -01 AL 61 36914 16861 20053 -01 AL 62 36229 16288 19941 -01 AL 63 35655 16158 19497 -01 AL 64 35983 16054 19929 -01 AL 65 35019 15538 19481 -01 AL 66 33166 14611 18555 -01 AL 67 34985 15326 19659 -01 AL 68 32122 14003 18119 -01 AL 69 30341 13062 17279 -01 AL 70 29794 12726 17068 -01 AL 71 28557 11945 16612 -01 AL 72 25317 10388 14929 -01 AL 73 24709 9950 14759 -01 AL 74 24327 9554 14773 -01 AL 75 23891 9254 14637 -01 AL 76 22299 8499 13800 -01 AL 77 21149 7972 13177 -01 AL 78 19056 7059 11997 -01 AL 79 18253 6570 11683 -01 AL 80 16181 5716 10465 -01 AL 81 14073 4841 9232 -01 AL 82 12920 4332 8588 -01 AL 83 11737 3761 7976 -01 AL 84 10566 3270 7296 -01 AL 85 46146 12781 33365 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est00int-01.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est00int-01.csv index c2c8456251..43e7dcf4ba 100644 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est00int-01.csv +++ b/scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est00int-01.csv @@ -13,11 +13,25 @@ BOTH SEXES,"281,424,600","282,162,411","284,968,955","287,625,193","290,107,933" .35 to 39 years,"22,707,390","22,650,852","22,235,918","21,751,218","21,264,159","20,874,649","20,798,653","20,941,233","20,963,891","20,817,463","20,507,796","20,179,642","20,082,244" .40 to 44 years,"22,442,442","22,517,991","22,815,834","22,889,431","22,890,047","22,925,626","22,706,885","22,302,568","21,832,339","21,375,023","20,980,015","20,890,964","20,899,181" .45 to 49 years,"20,092,711","20,219,527","20,698,983","21,252,288","21,722,676","22,065,262","22,417,171","22,715,286","22,799,761","22,820,973","22,862,245","22,708,591","22,647,920" +.50 to 54 years,"17,585,824","17,779,447","18,687,285","18,739,906","19,097,278","19,564,668","20,078,733","20,570,873","21,140,178","21,639,474","22,004,843","22,298,125","22,365,329" +.55 to 59 years,"13,469,425","13,565,937","13,968,975","15,143,067","15,814,557","16,607,176","17,503,220","18,396,860","18,454,772","18,814,568","19,280,603","19,664,805","19,779,195" +.60 to 64 years,"10,805,575","10,863,129","11,136,320","11,560,265","12,194,388","12,698,128","13,138,277","13,533,253","14,673,662","15,342,495","16,124,997","16,817,924","16,987,190" +.65 to 69 years,"9,533,651","9,523,909","9,562,233","9,638,481","9,830,796","10,073,429","10,278,627","10,553,201","10,970,235","11,594,347","12,092,377","12,435,263","12,515,334" +.70 to 74 years,"8,857,533","8,860,028","8,821,946","8,750,054","8,670,119","8,594,104","8,603,070","8,649,826","8,728,492","8,911,332","9,140,722","9,278,166","9,326,038" +.75 to 79 years,"7,415,910","7,438,619","7,455,413","7,470,461","7,497,842","7,461,399","7,463,609","7,447,034","7,400,363","7,345,743","7,295,064","7,317,795","7,313,372" +.80 to 84 years,"4,945,426","4,984,540","5,138,205","5,294,403","5,398,596","5,528,504","5,611,193","5,648,117","5,687,076","5,730,359","5,727,711","5,743,327","5,750,081" +.85 to 89 years,"2,789,863","2,806,405","2,846,666","2,886,374","2,952,567","2,998,919","3,102,921","3,229,873","3,358,466","3,449,778","3,561,170","3,620,459","3,641,594" +.90 to 94 years,"1,112,563","1,118,191","1,132,118","1,149,716","1,175,910","1,207,286","1,242,587","1,275,975","1,307,782","1,355,592","1,397,519","1,448,366","1,463,685" .95 to 99 years,"286,794","287,595","285,256","285,775","291,094","293,507","301,368","313,089","325,440","340,954","357,910","371,244","375,778" .100 years and over,"50,454","50,281","48,454","46,943","46,605","46,171","46,423","46,992","47,857","49,516","50,702","53,364","51,699" ,,,,,,,,,,,,, .Under 18 years,"72,295,030","72,376,189","72,671,175","72,936,457","73,100,758","73,297,735","73,523,669","73,757,714","74,019,405","74,104,602","74,134,167","74,181,467","74,195,760" .Under 5 years,"19,176,154","19,178,293","19,298,217","19,429,192","19,592,446","19,785,885","19,917,400","19,938,883","20,125,962","20,271,127","20,244,518","20,201,362","20,200,529" +.5 to 13 years,"37,025,974","37,053,695","37,092,670","37,001,329","36,814,320","36,457,658","36,248,430","36,269,376","36,296,149","36,438,163","36,657,183","36,859,869","36,932,486" +.14 to 17 years,"16,092,902","16,144,201","16,280,288","16,505,936","16,693,992","17,054,192","17,357,839","17,549,455","17,597,294","17,395,312","17,232,466","17,120,236","17,062,745" +.18 to 64 years,"174,137,376","174,716,654","177,007,489","179,166,529","181,143,646","183,304,244","185,343,132","187,458,091","189,386,091","191,211,743","193,014,187","194,296,087","194,716,348" +.18 to 24 years,"27,141,150","27,315,274","27,992,652","28,480,708","28,916,746","29,302,179","29,441,546","29,602,839","29,808,025","30,194,274","30,530,346","30,672,088","30,708,214" +.25 to 44 years,"85,042,691","84,973,340","84,523,274","83,990,295","83,398,001","83,066,831","82,764,185","82,638,980","82,509,693","82,399,959","82,211,153","82,134,554","82,228,500" .45 to 64 years,"61,953,535","62,428,040","64,491,563","66,695,526","68,828,899","70,935,234","73,137,401","75,216,272","77,068,373","78,617,510","80,272,688","81,489,445","81,779,634" .65 years and over,"34,992,194","35,069,568","35,290,291","35,522,207","35,863,529","36,203,319","36,649,798","37,164,107","37,825,711","38,777,621","39,623,175","40,267,984","40,437,581" .85 years and over,"4,239,674","4,262,472","4,312,494","4,368,808","4,466,176","4,545,883","4,693,299","4,865,929","5,039,545","5,195,840","5,367,301","5,493,433","5,532,756" @@ -38,6 +52,13 @@ MALE,"138,056,128","138,443,407","139,891,492","141,230,559","142,428,897","143, .35 to 39 years,"11,319,210","11,293,101","11,094,408","10,847,772","10,604,058","10,421,329","10,387,033","10,451,785","10,461,052","10,379,654","10,215,627","10,042,022","9,996,641" .40 to 44 years,"11,129,514","11,166,435","11,314,915","11,353,422","11,343,445","11,363,212","11,253,162","11,064,405","10,833,176","10,617,099","10,430,574","10,393,977","10,399,409" .45 to 49 years,"9,889,711","9,953,393","10,193,034","10,466,497","10,705,411","10,880,756","11,060,083","11,209,831","11,257,548","11,263,990","11,285,671","11,209,085","11,182,579" +.50 to 54 years,"8,607,914","8,703,385","9,146,153","9,168,094","9,337,624","9,565,045","9,821,292","10,064,753","10,344,429","10,598,921","10,783,563","10,933,274","10,966,236" +.55 to 59 years,"6,508,835","6,557,328","6,759,579","7,341,077","7,672,601","8,059,227","8,495,361","8,923,795","8,945,299","9,112,330","9,334,386","9,523,648","9,580,184" +.60 to 64 years,"5,136,708","5,166,923","5,302,150","5,508,597","5,816,925","6,060,330","6,277,726","6,474,264","7,034,464","7,362,970","7,741,673","8,077,500","8,158,625" +.65 to 69 years,"4,400,429","4,398,477","4,427,615","4,474,667","4,577,090","4,703,011","4,809,127","4,943,999","5,145,430","5,446,439","5,684,499","5,852,547","5,892,007" +.70 to 74 years,"3,902,969","3,910,134","3,913,438","3,897,210","3,875,623","3,854,159","3,874,001","3,908,390","3,957,495","4,054,996","4,173,443","4,243,972","4,268,737" +.75 to 79 years,"3,044,493","3,056,882","3,077,254","3,101,769","3,131,860","3,140,080","3,164,353","3,177,898","3,175,139","3,167,246","3,159,284","3,182,388","3,183,507" +.80 to 84 years,"1,834,916","1,853,013","1,926,631","1,998,991","2,051,421","2,111,081","2,156,614","2,184,568","2,217,809","2,252,413","2,272,851","2,294,374","2,302,229" .85 to 89 years,"876,514","884,531","907,745","931,697","967,279","994,922","1,041,951","1,098,203","1,153,751","1,196,796","1,244,381","1,273,867","1,284,311" .90 to 94 years,"282,329","283,565","287,793","295,083","305,514","318,505","333,670","348,767","364,049","385,502","404,624","424,387","430,346" .95 to 99 years,"58,116","57,980","56,598","56,387","57,627","58,353","60,735","63,918","67,743","72,465","78,004","82,263","83,963" @@ -47,6 +68,10 @@ MALE,"138,056,128","138,443,407","139,891,492","141,230,559","142,428,897","143, .Under 5 years,"9,810,907","9,810,619","9,866,776","9,931,542","10,013,119","10,110,494","10,175,595","10,187,872","10,285,693","10,356,944","10,342,089","10,319,427","10,317,894" .5 to 13 years,"18,964,271","18,978,455","18,996,779","18,945,219","18,846,445","18,657,901","18,548,769","18,554,818","18,559,667","18,627,577","18,733,333","18,833,957","18,871,491" .14 to 17 years,"8,284,673","8,310,126","8,372,787","8,483,075","8,575,266","8,760,554","8,916,656","9,012,773","9,038,518","8,932,342","8,848,836","8,791,752","8,762,231" +.18 to 64 years,"86,586,454","86,889,790","88,049,148","89,106,724","90,019,872","91,111,433","92,108,119","93,158,557","94,091,867","94,989,180","95,857,772","96,473,230","96,702,729" +.18 to 24 years,"13,873,199","13,972,294","14,334,430","14,590,398","14,796,935","15,015,203","15,102,513","15,200,885","15,291,029","15,466,154","15,610,366","15,661,633","15,679,835" +.25 to 44 years,"42,570,087","42,536,467","42,313,802","42,032,061","41,690,376","41,530,872","41,351,144","41,285,029","41,219,098","41,184,815","41,102,113","41,068,090","41,135,270" +.45 to 64 years,"30,143,168","30,381,029","31,400,916","32,484,265","33,532,561","34,565,358","35,654,462","36,672,643","37,581,740","38,338,211","39,145,293","39,743,507","39,887,624" .65 years and over,"14,409,823","14,454,417","14,606,002","14,763,999","14,974,195","15,187,630","15,447,939","15,733,245","16,089,109","16,583,908","17,025,424","17,362,960","17,453,648" .85 years and over,"1,227,016","1,235,911","1,261,064","1,291,362","1,338,201","1,379,299","1,443,844","1,518,390","1,593,236","1,662,814","1,735,347","1,789,679","1,807,168" ,,,,,,,,,,,,, @@ -67,6 +92,13 @@ FEMALE,"143,368,472","143,719,004","145,077,463","146,394,634","147,679,036","14 .40 to 44 years,"11,312,928","11,351,556","11,500,919","11,536,009","11,546,602","11,562,414","11,453,723","11,238,163","10,999,163","10,757,924","10,549,441","10,496,987","10,499,772" .45 to 49 years,"10,203,000","10,266,134","10,505,949","10,785,791","11,017,265","11,184,506","11,357,088","11,505,455","11,542,213","11,556,983","11,576,574","11,499,506","11,465,341" .50 to 54 years,"8,977,910","9,076,062","9,541,132","9,571,812","9,759,654","9,999,623","10,257,441","10,506,120","10,795,749","11,040,553","11,221,280","11,364,851","11,399,093" +.55 to 59 years,"6,960,590","7,008,609","7,209,396","7,801,990","8,141,956","8,547,949","9,007,859","9,473,065","9,509,473","9,702,238","9,946,217","10,141,157","10,199,011" +.60 to 64 years,"5,668,867","5,696,206","5,834,170","6,051,668","6,377,463","6,637,798","6,860,551","7,058,989","7,639,198","7,979,525","8,383,324","8,740,424","8,828,565" +.65 to 69 years,"5,133,222","5,125,432","5,134,618","5,163,814","5,253,706","5,370,418","5,469,500","5,609,202","5,824,805","6,147,908","6,407,878","6,582,716","6,623,327" +.70 to 74 years,"4,954,564","4,949,894","4,908,508","4,852,844","4,794,496","4,739,945","4,729,069","4,741,436","4,770,997","4,856,336","4,967,279","5,034,194","5,057,301" +.75 to 79 years,"4,371,417","4,381,737","4,378,159","4,368,692","4,365,982","4,321,319","4,299,256","4,269,136","4,225,224","4,178,497","4,135,780","4,135,407","4,129,865" +.80 to 84 years,"3,110,510","3,131,527","3,211,574","3,295,412","3,347,175","3,417,423","3,454,579","3,463,549","3,469,267","3,477,946","3,454,860","3,448,953","3,447,852" +.85 to 89 years,"1,913,349","1,921,874","1,938,921","1,954,677","1,985,288","2,003,997","2,060,970","2,131,670","2,204,715","2,252,982","2,316,789","2,346,592","2,357,283" .90 to 94 years,"830,234","834,626","844,325","854,633","870,396","888,781","908,917","927,208","943,733","970,090","992,895","1,023,979","1,033,339" .95 to 99 years,"228,678","229,615","228,658","229,388","233,467","235,154","240,633","249,171","257,697","268,489","279,906","288,981","291,815" .100 years and over,"40,397","40,446","39,526","38,748","38,824","38,652","38,935","39,490","40,164","41,465","42,364","44,202","43,151" @@ -74,6 +106,11 @@ FEMALE,"143,368,472","143,719,004","145,077,463","146,394,634","147,679,036","14 .Under 18 years,"35,235,179","35,276,989","35,434,833","35,576,621","35,665,928","35,768,786","35,882,649","36,002,251","36,135,527","36,187,739","36,209,909","36,236,331","36,244,144" .Under 5 years,"9,365,247","9,367,674","9,431,441","9,497,650","9,579,327","9,675,391","9,741,805","9,751,011","9,840,269","9,914,183","9,902,429","9,881,935","9,882,635" .5 to 13 years,"18,061,703","18,075,240","18,095,891","18,056,110","17,967,875","17,799,757","17,699,661","17,714,558","17,736,482","17,810,586","17,923,850","18,025,912","18,060,995" +.14 to 17 years,"7,808,229","7,834,075","7,907,501","8,022,861","8,118,726","8,293,638","8,441,183","8,536,682","8,558,776","8,462,970","8,383,630","8,328,484","8,300,514" +.18 to 64 years,"87,550,922","87,826,864","88,958,341","90,059,805","91,123,774","92,192,811","93,235,013","94,299,534","95,294,224","96,222,563","97,156,415","97,822,857","98,013,619" +.18 to 24 years,"13,267,951","13,342,980","13,658,222","13,890,310","14,119,811","14,286,976","14,339,033","14,401,954","14,516,996","14,728,120","14,919,980","15,010,455","15,028,379" +.25 to 44 years,"42,472,604","42,436,873","42,209,472","41,958,234","41,707,625","41,535,959","41,413,041","41,353,951","41,290,595","41,215,144","41,109,040","41,066,464","41,093,230" +.45 to 64 years,"31,810,367","32,047,011","33,090,647","34,211,261","35,296,338","36,369,876","37,482,939","38,543,629","39,486,633","40,279,299","41,127,395","41,745,938","41,892,010" .65 years and over,"20,582,371","20,615,151","20,684,289","20,758,208","20,889,334","21,015,689","21,201,859","21,430,862","21,736,602","22,193,713","22,597,751","22,905,024","22,983,933" .85 years and over,"3,012,658","3,026,561","3,051,430","3,077,446","3,127,975","3,166,584","3,249,455","3,347,539","3,446,309","3,533,026","3,631,954","3,703,754","3,725,588" ,,,,,,,,,,,,, @@ -82,10 +119,10 @@ FEMALE,"143,368,472","143,719,004","145,077,463","146,394,634","147,679,036","14 .15 to 44 years,"61,576,078","61,641,619","61,795,319","61,856,358","61,887,915","61,969,393","62,070,636","62,190,028","62,292,084","62,359,858","62,373,024","62,374,964","62,401,146" ,,,,,,,,,,,,, .Median age (years),36.5,36.6,36.8,37.0,37.2,37.4,37.6,37.7,37.9,38.1,38.3,38.5,38.5 -"1 The April 1, 2000 Population Estimates base reflects changes to the Census 2000 population from the Count Question Resolution program, legal boundary updates, and other geographic +"1 The April 1, 2000 Population Estimates base reflects changes to the Census 2000 population from the Count Question Resolution program, legal boundary updates, and other geographic program revisions.",,,,,,,,,,,,, "2 The data source for April 1, 2010 is the 2010 Census count.",,,,,,,,,,,,, -"3 The values for July 1, 2010 were produced by applying estimates of change in the population between April 1 and July 1 of 2010 to the 2010 Census counts. Further details on this +"3 The values for July 1, 2010 were produced by applying estimates of change in the population between April 1 and July 1 of 2010 to the 2010 Census counts. Further details on this methodology are available at http://www.census.gov/popest/methodology/intercensal_nat_meth.pdf.",,,,,,,,,,,,, Note: Median age is calculated based on single year of age.,,,,,,,,,,,,, Suggested Citation:,,,,,,,,,,,,, diff --git a/scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est90int-08.csv b/scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est90int-08.csv deleted file mode 100644 index 7adb8d51ba..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/datasets/us-est90int-08.csv +++ /dev/null @@ -1,50 +0,0 @@ -Intercensal Estimates of the United States Resident Population plus Armed Forces Overseas by Age and Sex: 1990 - -"April 1, 1990","All Age",249305856,121738337,127567519 -"April 1, 1990","0",3947313,2019081,1928232 -"April 1, 1990","1",3769554,1928747,1840807 -"April 1, 1990","2",3702679,1894973,1807706 - -"July 1, 1990","All Age",250131894,122162221,127969673 -"July 1, 1990","0",3986488,2039510,1946978 -"July 1, 1990","1",3798100,1943327,1854773 -"July 1, 1990","2",3712522,1900277,1812245 -"July 1, 1990","3",3660016,1872647,1787369 - -"July 1, 1991","All Age",253492503,123868531,129623972 -"December 1, 1991","37",4203915,2089013,2114902 -"December 1, 1991","38",3839561,1901631,1937930 -"December 1, 1991","39",4221405,2100768,2120637 - -"July 1, 1992","All Age",256894189,125579972,131314217 -"July 1, 1992","0",3972775,2030390,1942385 -"July 1, 1992","1",3978057,2034530,1943527 - -"July 1, 1993","All Age",260255352,127265839,132989513 -"July 1, 1993","0",3894191,1995451,1898740 - -"July 1, 1994","All Age",263435673,128869259,134566414 -"July 1, 1994","0",3837113,1964865,1872248 -"July 1, 1994","1",3882132,1988155,1893977 - -"July 1, 1995","All Age",266557091,130459431,136097660 -"July 1, 1995","0",3791386,1941251,1850135 - -"July 1, 1996","All Age",269667391,132045951,137621440 -"July 1, 1996","0",3744999,1917647,1827352 - -"July 1, 1997","All Age",272911760,133702661,139209099 -"July 1, 1997","0",3751141,1920124,1831017 -"July 1, 1997","1",3755827,1920214,1835613 -"July 1, 1997","2",3811084,1949787,1861297 - -"July 1, 1998","All Age",276115288,135355375,140759913 -"July 1, 1998","0",3762809,1928364,1834445 -"July 1, 1998","1",3768112,1925454,1842658 - -"July 1, 1999","All Age",279294713,137022121,142272592 -"July 1, 1999","0",3795762,1943639,1852123 -"July 1, 1999","1",3784001,1935343,1848658 -"July 1, 1999","2",3783695,1933818,1849877 -"July 1, 1999","3",3826501,1957234,1869267 -"July 1, 1999","4",3945585,2019773,1925812 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.csv b/scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.csv deleted file mode 100644 index 60fbd99b74..0000000000 --- a/scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.csv +++ /dev/null @@ -1,1961 +0,0 @@ -Year,geo_ID,Measurement_Method,SV,Observation -1980,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1874613 -1980,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1874613 -1981,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1882346 -1981,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1882346 -1982,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1883973 -1982,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1883973 -1983,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1888922 -1983,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1888922 -1984,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1896984 -1984,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1896984 -1985,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1905613 -1985,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1905613 -1986,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1914700 -1986,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1914700 -1987,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1925968 -1987,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1925968 -1988,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1929913 -1988,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1929913 -1989,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1932279 -1989,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1932279 -1900,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,38867000 -1901,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,39649000 -1902,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,40483000 -1903,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,41262000 -1904,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,42089000 -1905,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,42965000 -1906,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,43841000 -1907,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,44682000 -1908,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,45594000 -1909,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,46545000 -1910,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,47554000 -1911,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,48290000 -1912,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,49025000 -1913,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,49957000 -1914,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,50883000 -1915,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,51573000 -1916,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,52234000 -1917,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,52788000 -1918,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,51974000 -1919,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,53103000 -1920,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,54291000 -1921,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,55292000 -1922,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,55886000 -1923,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,56861000 -1924,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,57985000 -1925,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,58813000 -1926,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,59588000 -1927,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,60397000 -1928,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,61101000 -1929,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,61680000 -1930,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,62296517 -1931,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,62725503 -1932,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,63070137 -1933,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,63384009 -1934,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,63726196 -1935,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,64109888 -1936,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,64459383 -1937,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,64789797 -1938,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,65235361 -1939,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,65713339 -1940,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,66352363 -1941,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,66920133 -1942,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,67596729 -1943,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,68545741 -1944,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,69377719 -1945,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,70035073 -1946,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,70631171 -1947,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,71945892 -1948,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,73129684 -1949,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,74335435 -1950,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,75849012 -1951,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,77101263 -1952,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,78372190 -1953,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,79614310 -1954,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,80972704 -1955,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,82363638 -1956,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,83779505 -1957,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,85248426 -1958,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,86605105 -1959,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,87995434 -1960,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,89319511 -1961,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,90739919 -1962,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,92066119 -1963,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,93302933 -1964,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,94517752 -1965,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,95608501 -1966,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,96619711 -1967,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,97563882 -1968,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,98426257 -1969,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,99286946 -1970,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,100353876 -1970,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1667194 -1970,geoId/01001,CensusPEPSurvey,Count_Person_Male,12050 -1971,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,101567006 -1971,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1687937 -1971,geoId/01001,CensusPEPSurvey,Count_Person_Male,12483 -1972,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,102590732 -1972,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1708812 -1972,geoId/01001,CensusPEPSurvey,Count_Person_Male,13317 -1973,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,103506451 -1973,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1727223 -1973,geoId/01001,CensusPEPSurvey,Count_Person_Male,13965 -1974,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,104391110 -1974,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1748684 -1974,geoId/01001,CensusPEPSurvey,Count_Person_Male,14379 -1975,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,105365965 -1975,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1772665 -1975,geoId/01001,CensusPEPSurvey,Count_Person_Male,14614 -1976,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,106308604 -1976,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1798734 -1976,geoId/01001,CensusPEPSurvey,Count_Person_Male,14714 -1977,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,107334548 -1977,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1820002 -1977,geoId/01001,CensusPEPSurvey,Count_Person_Male,14964 -1978,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,108423580 -1978,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1843107 -1978,geoId/01001,CensusPEPSurvey,Count_Person_Male,15173 -1979,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,109583961 -1979,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1859383 -1979,geoId/01001,CensusPEPSurvey,Count_Person_Male,15753 -1980.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,15825.0 -1980.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,38544.0 -1980.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11662.0 -1980.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7640.0 -1980.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18076.0 -1980.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,4889.0 -1980.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10141.0 -1980.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,58795.0 -1980.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,18484.0 -1980.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9309.0 -1980.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,14865.0 -1980.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,8089.0 -1980.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13392.0 -1980.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6639.0 -1980.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6209.0 -1980.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,18903.0 -1980.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,26279.0 -1980.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,7536.0 -1980.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5575.0 -1980.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17444.0 -1980.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6715.0 -1980.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,30116.0 -1980.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,24898.0 -1980.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,25050.0 -1980.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26077.0 -1980.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,21466.0 -1980.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18960.0 -1980.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,49244.0 -1980.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,9087.0 -1980.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13732.0 -1980.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11723.0 -1980.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,5077.0 -1980.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7349.0 -1980.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7250.0 -1980.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,35951.0 -1980.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,25156.0 -1980.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,314532.0 -1980.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,8017.0 -1980.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38767.0 -1980.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,14780.0 -1980.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,38394.0 -1980.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,22354.0 -1980.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,6210.0 -1980.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,12736.0 -1980.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,96746.0 -1980.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11858.0 -1980.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,14678.0 -1980.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,31891.0 -1980.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,175728.0 -1980.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,10858.0 -1980.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,92753.0 -1980.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,43865.0 -1980.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,7005.0 -1980.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10237.0 -1980.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13174.0 -1980.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9589.0 -1980.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22508.0 -1980.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,20337.0 -1980.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,32890.0 -1980.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,8014.0 -1980.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,35462.0 -1980.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18565.0 -1980.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,66864.0 -1980.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,33268.0 -1980.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8315.0 -1980.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6935.0 -1980.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10738.0 -1981.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,15687.0 -1981.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,39161.0 -1981.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11672.0 -1981.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7689.0 -1981.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18095.0 -1981.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,4945.0 -1981.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10332.0 -1981.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,59103.0 -1981.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,18555.0 -1981.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9509.0 -1981.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,14889.0 -1981.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,8011.0 -1981.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13549.0 -1981.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6693.0 -1981.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6282.0 -1981.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19351.0 -1981.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,26334.0 -1981.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,7434.0 -1981.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5608.0 -1981.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17454.0 -1981.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6720.0 -1981.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,30223.0 -1981.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,25169.0 -1981.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,24940.0 -1981.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26269.0 -1981.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,21646.0 -1981.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18605.0 -1981.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,49188.0 -1981.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,9137.0 -1981.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13633.0 -1981.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11568.0 -1981.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,5104.0 -1981.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7329.0 -1981.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7303.0 -1981.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,36502.0 -1981.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,25085.0 -1981.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,313037.0 -1981.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7984.0 -1981.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,39029.0 -1981.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,14800.0 -1981.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,38953.0 -1981.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,22351.0 -1981.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,6149.0 -1981.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,12624.0 -1981.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,97957.0 -1981.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11723.0 -1981.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,14783.0 -1981.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,32108.0 -1981.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,177583.0 -1981.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,10878.0 -1981.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,93756.0 -1981.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,43785.0 -1981.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6951.0 -1981.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10344.0 -1981.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13350.0 -1981.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9641.0 -1981.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22327.0 -1981.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,20576.0 -1981.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,34005.0 -1981.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,8059.0 -1981.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,35662.0 -1981.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18513.0 -1981.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,67276.0 -1981.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,33036.0 -1981.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8610.0 -1981.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6978.0 -1981.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10730.0 -1982.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,15694.0 -1982.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,40104.0 -1982.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11684.0 -1982.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7775.0 -1982.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,17921.0 -1982.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,4950.0 -1982.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10426.0 -1982.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,59622.0 -1982.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,18529.0 -1982.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9614.0 -1982.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,14713.0 -1982.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7859.0 -1982.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13436.0 -1982.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6638.0 -1982.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6320.0 -1982.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19417.0 -1982.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,25997.0 -1982.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,7378.0 -1982.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5550.0 -1982.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17368.0 -1982.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6639.0 -1982.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,30363.0 -1982.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,25030.0 -1982.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,24969.0 -1982.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26020.0 -1982.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,21999.0 -1982.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18535.0 -1982.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,48827.0 -1982.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,9214.0 -1982.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13639.0 -1982.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11496.0 -1982.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,5062.0 -1982.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7248.0 -1982.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7195.0 -1982.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,36837.0 -1982.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,24998.0 -1982.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,310201.0 -1982.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7991.0 -1982.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38835.0 -1982.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,14975.0 -1982.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,39510.0 -1982.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,22707.0 -1982.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,6002.0 -1982.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,12502.0 -1982.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,99359.0 -1982.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11697.0 -1982.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,14911.0 -1982.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,32276.0 -1982.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,179347.0 -1982.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,10862.0 -1982.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,93996.0 -1982.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,43962.0 -1982.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6883.0 -1982.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10284.0 -1982.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13088.0 -1982.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9671.0 -1982.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22229.0 -1982.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,20808.0 -1982.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,34803.0 -1982.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,8011.0 -1982.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,35864.0 -1982.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18321.0 -1982.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,66625.0 -1982.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,32858.0 -1982.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8599.0 -1982.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,7049.0 -1982.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10717.0 -1983.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,15696.0 -1983.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,40906.0 -1983.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11709.0 -1983.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7788.0 -1983.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,17942.0 -1983.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,4997.0 -1983.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10431.0 -1983.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,59166.0 -1983.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,18502.0 -1983.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9419.0 -1983.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,14905.0 -1983.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7956.0 -1983.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13392.0 -1983.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6636.0 -1983.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6255.0 -1983.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19636.0 -1983.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,25734.0 -1983.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,7272.0 -1983.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5516.0 -1983.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17416.0 -1983.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6618.0 -1983.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,30712.0 -1983.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,25104.0 -1983.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,24710.0 -1983.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26076.0 -1983.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,22154.0 -1983.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18515.0 -1983.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,48905.0 -1983.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,9131.0 -1983.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13675.0 -1983.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11459.0 -1983.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,5095.0 -1983.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7196.0 -1983.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7162.0 -1983.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,36842.0 -1983.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,24630.0 -1983.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,309540.0 -1983.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7926.0 -1983.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38591.0 -1983.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,15029.0 -1983.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,39578.0 -1983.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,23202.0 -1983.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,5955.0 -1983.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,12287.0 -1983.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,101412.0 -1983.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11658.0 -1983.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,15180.0 -1983.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,32474.0 -1983.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,180229.0 -1983.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,10815.0 -1983.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,94277.0 -1983.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,44361.0 -1983.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6949.0 -1983.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10289.0 -1983.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13051.0 -1983.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9553.0 -1983.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,21968.0 -1983.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,21056.0 -1983.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,35733.0 -1983.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,7988.0 -1983.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,36274.0 -1983.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18331.0 -1983.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,66916.0 -1983.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,32725.0 -1983.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8559.0 -1983.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,7096.0 -1983.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10637.0 -1984.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,15721.0 -1984.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,42234.0 -1984.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11790.0 -1984.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7835.0 -1984.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18094.0 -1984.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,5085.0 -1984.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10459.0 -1984.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,59328.0 -1984.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,18416.0 -1984.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9336.0 -1984.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,15072.0 -1984.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7954.0 -1984.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13274.0 -1984.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6587.0 -1984.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6213.0 -1984.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19636.0 -1984.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,25479.0 -1984.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,7183.0 -1984.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5508.0 -1984.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17484.0 -1984.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6590.0 -1984.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,31339.0 -1984.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,24875.0 -1984.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,24609.0 -1984.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26183.0 -1984.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,22450.0 -1984.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18538.0 -1984.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,48673.0 -1984.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,9198.0 -1984.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13831.0 -1984.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11552.0 -1984.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,5032.0 -1984.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7174.0 -1984.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7182.0 -1984.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,36931.0 -1984.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,24410.0 -1984.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,308839.0 -1984.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7896.0 -1984.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38543.0 -1984.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,15248.0 -1984.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,40131.0 -1984.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,23492.0 -1984.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,5954.0 -1984.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,12028.0 -1984.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,103519.0 -1984.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11556.0 -1984.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,15027.0 -1984.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,32886.0 -1984.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,179726.0 -1984.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,10996.0 -1984.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,95312.0 -1984.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,44932.0 -1984.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6862.0 -1984.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10254.0 -1984.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,12885.0 -1984.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9615.0 -1984.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22167.0 -1984.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,21944.0 -1984.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,37242.0 -1984.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,8045.0 -1984.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,36138.0 -1984.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18282.0 -1984.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,67293.0 -1984.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,32701.0 -1984.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8409.0 -1984.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6954.0 -1984.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10801.0 -1985.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,15760.0 -1985.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,43481.0 -1985.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11820.0 -1985.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7868.0 -1985.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18368.0 -1985.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,5091.0 -1985.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10450.0 -1985.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,57715.0 -1985.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,18195.0 -1985.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9288.0 -1985.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,15301.0 -1985.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7984.0 -1985.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13154.0 -1985.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6597.0 -1985.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6222.0 -1985.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19716.0 -1985.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,25409.0 -1985.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,7128.0 -1985.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5413.0 -1985.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17551.0 -1985.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6591.0 -1985.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,31629.0 -1985.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,24837.0 -1985.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,24355.0 -1985.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26054.0 -1985.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,22791.0 -1985.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18445.0 -1985.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,48605.0 -1985.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,9185.0 -1985.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13787.0 -1985.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11601.0 -1985.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,4963.0 -1985.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7040.0 -1985.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7208.0 -1985.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,37191.0 -1985.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,24036.0 -1985.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,308308.0 -1985.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7978.0 -1985.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38497.0 -1985.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,15271.0 -1985.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,40508.0 -1985.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,24370.0 -1985.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,5930.0 -1985.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,11925.0 -1985.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,105791.0 -1985.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11480.0 -1985.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,15037.0 -1985.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,33371.0 -1985.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,180691.0 -1985.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,10983.0 -1985.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,95961.0 -1985.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,45652.0 -1985.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6766.0 -1985.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10254.0 -1985.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13051.0 -1985.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9481.0 -1985.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22258.0 -1985.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,22564.0 -1985.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,39003.0 -1985.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,8010.0 -1985.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,36204.0 -1985.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18313.0 -1985.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,68354.0 -1985.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,32710.0 -1985.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8342.0 -1985.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6907.0 -1985.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10833.0 -1986.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,16061.0 -1986.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,44393.0 -1986.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11802.0 -1986.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7759.0 -1986.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18632.0 -1986.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,4961.0 -1986.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10420.0 -1986.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,57199.0 -1986.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,17901.0 -1986.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9335.0 -1986.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,15483.0 -1986.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7979.0 -1986.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13114.0 -1986.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6502.0 -1986.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6175.0 -1986.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19838.0 -1986.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,25228.0 -1986.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,7113.0 -1986.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5460.0 -1986.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17389.0 -1986.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6569.0 -1986.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,32007.0 -1986.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,25183.0 -1986.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,23946.0 -1986.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,25917.0 -1986.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,23107.0 -1986.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18450.0 -1986.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,48282.0 -1986.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,9086.0 -1986.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13694.0 -1986.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11540.0 -1986.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,4858.0 -1986.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7042.0 -1986.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7125.0 -1986.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,37444.0 -1986.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,23601.0 -1986.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,307759.0 -1986.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7954.0 -1986.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38321.0 -1986.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,15205.0 -1986.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,41266.0 -1986.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,24827.0 -1986.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,5912.0 -1986.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,11863.0 -1986.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,108304.0 -1986.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11322.0 -1986.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,14781.0 -1986.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,33513.0 -1986.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,181893.0 -1986.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,11018.0 -1986.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,97150.0 -1986.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,46457.0 -1986.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6571.0 -1986.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10177.0 -1986.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13084.0 -1986.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9449.0 -1986.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22611.0 -1986.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,22959.0 -1986.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,40765.0 -1986.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,7969.0 -1986.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,36289.0 -1986.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18261.0 -1986.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,69505.0 -1986.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,32999.0 -1986.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8277.0 -1986.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6830.0 -1986.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10787.0 -1987.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,16232.0 -1987.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,45316.0 -1987.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11895.0 -1987.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7896.0 -1987.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18624.0 -1987.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,5190.0 -1987.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10456.0 -1987.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,57318.0 -1987.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,17798.0 -1987.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9457.0 -1987.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,15524.0 -1987.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7889.0 -1987.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13185.0 -1987.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6413.0 -1987.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6266.0 -1987.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19739.0 -1987.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,24949.0 -1987.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,6999.0 -1987.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5487.0 -1987.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17363.0 -1987.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6565.0 -1987.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,32272.0 -1987.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,25284.0 -1987.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,23301.0 -1987.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26054.0 -1987.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,23908.0 -1987.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,18312.0 -1987.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,48078.0 -1987.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,8909.0 -1987.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13594.0 -1987.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11491.0 -1987.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,4762.0 -1987.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7064.0 -1987.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7154.0 -1987.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,38074.0 -1987.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,23530.0 -1987.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,307572.0 -1987.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7857.0 -1987.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38188.0 -1987.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,15228.0 -1987.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,41170.0 -1987.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,25496.0 -1987.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,5931.0 -1987.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,11961.0 -1987.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,110973.0 -1987.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11268.0 -1987.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,14827.0 -1987.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,33785.0 -1987.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,182635.0 -1987.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,11115.0 -1987.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,97947.0 -1987.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,47252.0 -1987.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6509.0 -1987.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,10020.0 -1987.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13040.0 -1987.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9420.0 -1987.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22695.0 -1987.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,23748.0 -1987.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,43346.0 -1987.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,7881.0 -1987.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,36008.0 -1987.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18312.0 -1987.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,70623.0 -1987.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,33054.0 -1987.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8342.0 -1987.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6763.0 -1987.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10652.0 -1988.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,16404.0 -1988.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,46002.0 -1988.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,11960.0 -1988.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7882.0 -1988.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18713.0 -1988.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,5353.0 -1988.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10374.0 -1988.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,56849.0 -1988.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,17627.0 -1988.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9592.0 -1988.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,15676.0 -1988.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7842.0 -1988.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,13053.0 -1988.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6383.0 -1988.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6279.0 -1988.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19899.0 -1988.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,24746.0 -1988.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,6834.0 -1988.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5433.0 -1988.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17308.0 -1988.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6554.0 -1988.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,32387.0 -1988.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,25748.0 -1988.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,22756.0 -1988.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26171.0 -1988.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,24237.0 -1988.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,17895.0 -1988.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,47772.0 -1988.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,8700.0 -1988.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13551.0 -1988.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11395.0 -1988.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,4737.0 -1988.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7142.0 -1988.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7166.0 -1988.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,38280.0 -1988.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,23434.0 -1988.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,306521.0 -1988.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7710.0 -1988.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,38024.0 -1988.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,15289.0 -1988.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,42081.0 -1988.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,26135.0 -1988.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,5829.0 -1988.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,11810.0 -1988.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,113980.0 -1988.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11168.0 -1988.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,14695.0 -1988.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,33887.0 -1988.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,181412.0 -1988.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,11188.0 -1988.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,98304.0 -1988.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,47652.0 -1988.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6317.0 -1988.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,9859.0 -1988.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,13009.0 -1988.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9544.0 -1988.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22615.0 -1988.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,24066.0 -1988.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,45337.0 -1988.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,7693.0 -1988.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,35876.0 -1988.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18298.0 -1988.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,71249.0 -1988.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,32786.0 -1988.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8290.0 -1988.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6561.0 -1988.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10608.0 -1989.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,16565.0 -1989.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,46734.0 -1989.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,12022.0 -1989.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7999.0 -1989.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18948.0 -1989.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,5370.0 -1989.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10293.0 -1989.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,56331.0 -1989.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,17546.0 -1989.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9566.0 -1989.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,15709.0 -1989.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7682.0 -1989.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,12996.0 -1989.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6336.0 -1989.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6282.0 -1989.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,19760.0 -1989.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Male,24685.0 -1989.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Male,6729.0 -1989.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Male,5436.0 -1989.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Male,17269.0 -1989.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Male,6527.0 -1989.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Male,32576.0 -1989.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Male,25328.0 -1989.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Male,22371.0 -1989.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Male,26298.0 -1989.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Male,24540.0 -1989.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Male,17586.0 -1989.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Male,47536.0 -1989.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Male,8590.0 -1989.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Male,13390.0 -1989.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Male,11300.0 -1989.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Male,4684.0 -1989.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Male,7182.0 -1989.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Male,7232.0 -1989.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Male,38344.0 -1989.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Male,23099.0 -1989.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Male,305320.0 -1989.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Male,7593.0 -1989.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Male,37877.0 -1989.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Male,15436.0 -1989.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Male,42633.0 -1989.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Male,26875.0 -1989.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Male,5902.0 -1989.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Male,11706.0 -1989.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Male,116211.0 -1989.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Male,11072.0 -1989.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Male,14661.0 -1989.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Male,33807.0 -1989.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Male,179933.0 -1989.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Male,11293.0 -1989.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Male,98909.0 -1989.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Male,48075.0 -1989.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Male,6095.0 -1989.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Male,9793.0 -1989.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Male,12973.0 -1989.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Male,9595.0 -1989.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Male,22278.0 -1989.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Male,24671.0 -1989.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Male,47278.0 -1989.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Male,7547.0 -1989.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Male,35814.0 -1989.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Male,18249.0 -1989.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Male,71937.0 -1989.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Male,32613.0 -1989.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Male,8187.0 -1989.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Male,6448.0 -1989.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Male,10665.0 -1990,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,122162221 -1990,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,16561 -1990,geoId/01001,CensusPEPSurvey,Count_Person_Male,16561 -1991,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,123868531 -1991,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,16846 -1991,geoId/01001,CensusPEPSurvey,Count_Person_Male,16846 -1992,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,125579972 -1992,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,17307 -1992,geoId/01001,CensusPEPSurvey,Count_Person_Male,17307 -1993,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,127265839 -1993,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,17757 -1993,geoId/01001,CensusPEPSurvey,Count_Person_Male,17757 -1994,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,128869259 -1994,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,18320 -1994,geoId/01001,CensusPEPSurvey,Count_Person_Male,18320 -1995,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,130459431 -1995,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,18742 -1995,geoId/01001,CensusPEPSurvey,Count_Person_Male,18742 -1996,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,132045951 -1996,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,19227 -1996,geoId/01001,CensusPEPSurvey,Count_Person_Male,19227 -1997,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,133702661 -1997,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,19679 -1997,geoId/01001,CensusPEPSurvey,Count_Person_Male,19679 -1998,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,135355375 -1998,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,20065 -1998,geoId/01001,CensusPEPSurvey,Count_Person_Male,20065 -1999,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,137022121 -1999,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,20434 -1999,geoId/01001,CensusPEPSurvey,Count_Person_Male,20434 -2000,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,138443407 -2000,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2149338 -2000,geoId/01001,CensusPEPSurvey,Count_Person_Male,21385 -2000,geoId/01003,CensusPEPSurvey,Count_Person_Male,69302 -2000,geoId/01005,CensusPEPSurvey,Count_Person_Male,14954 -2000,geoId/01007,CensusPEPSurvey,Count_Person_Male,9825 -2000,geoId/01009,CensusPEPSurvey,Count_Person_Male,25519 -2000,geoId/01011,CensusPEPSurvey,Count_Person_Male,6062 -2000,geoId/01013,CensusPEPSurvey,Count_Person_Male,9992 -2001,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,139891492 -2001,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2158138 -2001,geoId/01001,CensusPEPSurvey,Count_Person_Male,21813 -2001,geoId/01003,CensusPEPSurvey,Count_Person_Male,70911 -2001,geoId/01005,CensusPEPSurvey,Count_Person_Male,14893 -2001,geoId/01007,CensusPEPSurvey,Count_Person_Male,10715 -2001,geoId/01009,CensusPEPSurvey,Count_Person_Male,25923 -2001,geoId/01011,CensusPEPSurvey,Count_Person_Male,5985 -2001,geoId/01013,CensusPEPSurvey,Count_Person_Male,9913 -2002,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,141230559 -2002,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2165719 -2002,geoId/01001,CensusPEPSurvey,Count_Person_Male,22362 -2002,geoId/01003,CensusPEPSurvey,Count_Person_Male,72399 -2002,geoId/01005,CensusPEPSurvey,Count_Person_Male,14920 -2002,geoId/01007,CensusPEPSurvey,Count_Person_Male,10881 -2002,geoId/01009,CensusPEPSurvey,Count_Person_Male,26175 -2002,geoId/01011,CensusPEPSurvey,Count_Person_Male,5975 -2002,geoId/01013,CensusPEPSurvey,Count_Person_Male,9781 -2003,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,142428897 -2003,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2179422 -2003,geoId/01001,CensusPEPSurvey,Count_Person_Male,22760 -2003,geoId/01003,CensusPEPSurvey,Count_Person_Male,74202 -2003,geoId/01005,CensusPEPSurvey,Count_Person_Male,15021 -2003,geoId/01007,CensusPEPSurvey,Count_Person_Male,11065 -2003,geoId/01009,CensusPEPSurvey,Count_Person_Male,26608 -2003,geoId/01011,CensusPEPSurvey,Count_Person_Male,6087 -2003,geoId/01013,CensusPEPSurvey,Count_Person_Male,9789 -2004,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,143828012 -2004,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2192872 -2004,geoId/01001,CensusPEPSurvey,Count_Person_Male,23512 -2004,geoId/01003,CensusPEPSurvey,Count_Person_Male,76547 -2004,geoId/01005,CensusPEPSurvey,Count_Person_Male,14854 -2004,geoId/01007,CensusPEPSurvey,Count_Person_Male,11314 -2004,geoId/01009,CensusPEPSurvey,Count_Person_Male,26933 -2004,geoId/01011,CensusPEPSurvey,Count_Person_Male,5932 -2004,geoId/01013,CensusPEPSurvey,Count_Person_Male,9814 -2005,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,145197078 -2005,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2213382 -2005,geoId/01001,CensusPEPSurvey,Count_Person_Male,24200 -2005,geoId/01003,CensusPEPSurvey,Count_Person_Male,79416 -2005,geoId/01005,CensusPEPSurvey,Count_Person_Male,14713 -2005,geoId/01007,CensusPEPSurvey,Count_Person_Male,11548 -2005,geoId/01009,CensusPEPSurvey,Count_Person_Male,27152 -2005,geoId/01011,CensusPEPSurvey,Count_Person_Male,5901 -2005,geoId/01013,CensusPEPSurvey,Count_Person_Male,9801 -2006,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,146647265 -2006,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2243501 -2006,geoId/01001,CensusPEPSurvey,Count_Person_Male,24988 -2006,geoId/01003,CensusPEPSurvey,Count_Person_Male,82192 -2006,geoId/01005,CensusPEPSurvey,Count_Person_Male,14718 -2006,geoId/01007,CensusPEPSurvey,Count_Person_Male,11663 -2006,geoId/01009,CensusPEPSurvey,Count_Person_Male,27528 -2006,geoId/01011,CensusPEPSurvey,Count_Person_Male,5764 -2006,geoId/01013,CensusPEPSurvey,Count_Person_Male,9802 -2007,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,148064854 -2007,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2265565 -2007,geoId/01001,CensusPEPSurvey,Count_Person_Male,25468 -2007,geoId/01003,CensusPEPSurvey,Count_Person_Male,84173 -2007,geoId/01005,CensusPEPSurvey,Count_Person_Male,14621 -2007,geoId/01007,CensusPEPSurvey,Count_Person_Male,11849 -2007,geoId/01009,CensusPEPSurvey,Count_Person_Male,27941 -2007,geoId/01011,CensusPEPSurvey,Count_Person_Male,5958 -2007,geoId/01013,CensusPEPSurvey,Count_Person_Male,9854 -2008,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,149489951 -2008,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2287949 -2008,geoId/01001,CensusPEPSurvey,Count_Person_Male,25873 -2008,geoId/01003,CensusPEPSurvey,Count_Person_Male,85797 -2008,geoId/01005,CensusPEPSurvey,Count_Person_Male,14774 -2008,geoId/01007,CensusPEPSurvey,Count_Person_Male,12040 -2008,geoId/01009,CensusPEPSurvey,Count_Person_Male,28358 -2008,geoId/01011,CensusPEPSurvey,Count_Person_Male,5957 -2008,geoId/01013,CensusPEPSurvey,Count_Person_Male,9814 -2009,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,150807454 -2009,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2309779 -2009,geoId/01001,CensusPEPSurvey,Count_Person_Male,26364 -2009,geoId/01003,CensusPEPSurvey,Count_Person_Male,87701 -2009,geoId/01005,CensusPEPSurvey,Count_Person_Male,14688 -2009,geoId/01007,CensusPEPSurvey,Count_Person_Male,12333 -2009,geoId/01009,CensusPEPSurvey,Count_Person_Male,28395 -2009,geoId/01011,CensusPEPSurvey,Count_Person_Male,6007 -2009,geoId/01013,CensusPEPSurvey,Count_Person_Male,9757 -2010,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,152077478 -2010,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2323013 -2010,geoId/01001,CensusPEPSurvey,Count_Person_Male,26667 -2010,geoId/01003,CensusPEPSurvey,Count_Person_Male,89623 -2010,geoId/01005,CensusPEPSurvey,Count_Person_Male,14501 -2011,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,153212980 -2011,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2328518 -2011,geoId/01001,CensusPEPSurvey,Count_Person_Male,26980 -2011,geoId/01003,CensusPEPSurvey,Count_Person_Male,91199 -2011,geoId/01005,CensusPEPSurvey,Count_Person_Male,14656 -2012,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,154397027 -2012,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2336196 -2012,geoId/01001,CensusPEPSurvey,Count_Person_Male,26830 -2012,geoId/01003,CensusPEPSurvey,Count_Person_Male,92728 -2012,geoId/01005,CensusPEPSurvey,Count_Person_Male,14542 -2013,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,155514054 -2013,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2343135 -2013,geoId/01001,CensusPEPSurvey,Count_Person_Male,26588 -2013,geoId/01003,CensusPEPSurvey,Count_Person_Male,95140 -2013,geoId/01005,CensusPEPSurvey,Count_Person_Male,14382 -2014,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,156695810 -2014,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2348012 -2014,geoId/01001,CensusPEPSurvey,Count_Person_Male,26804 -2014,geoId/01003,CensusPEPSurvey,Count_Person_Male,97216 -2014,geoId/01005,CensusPEPSurvey,Count_Person_Male,14255 -2015,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,157906843 -2015,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2352806 -2015,geoId/01001,CensusPEPSurvey,Count_Person_Male,26752 -2015,geoId/01003,CensusPEPSurvey,Count_Person_Male,98977 -2015,geoId/01005,CensusPEPSurvey,Count_Person_Male,13985 -2016,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,159085693 -2016,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2357211 -2016,geoId/01001,CensusPEPSurvey,Count_Person_Male,26999 -2016,geoId/01003,CensusPEPSurvey,Count_Person_Male,101069 -2016,geoId/01005,CensusPEPSurvey,Count_Person_Male,13637 -2017,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,160113445 -2017,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2360503 -2017,geoId/01001,CensusPEPSurvey,Count_Person_Male,27041 -2017,geoId/01003,CensusPEPSurvey,Count_Person_Male,103324 -2017,geoId/01005,CensusPEPSurvey,Count_Person_Male,13228 -2018,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,160960513 -2018,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2365445 -2018,geoId/01001,CensusPEPSurvey,Count_Person_Male,27049 -2018,geoId/01003,CensusPEPSurvey,Count_Person_Male,105782 -2018,geoId/01005,CensusPEPSurvey,Count_Person_Male,13157 -2019,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,161692336 -2019,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2371832 -2019,geoId/01001,CensusPEPSurvey,Count_Person_Male,27078 -2019,geoId/01003,CensusPEPSurvey,Count_Person_Male,108396 -2019,geoId/01005,CensusPEPSurvey,Count_Person_Male,13030 -2020,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,162256202 -2020,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2376966 -2020,geoId/01001,CensusPEPSurvey,Count_Person_Male,27226 -2020,geoId/01003,CensusPEPSurvey,Count_Person_Male,111000 -2020,geoId/01005,CensusPEPSurvey,Count_Person_Male,12987 -2021,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,164384742 -2021,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2448099 -2021,geoId/01001,CensusPEPSurvey,Count_Person_Male,28733 -2021,geoId/01003,CensusPEPSurvey,Count_Person_Male,116422 -2021,geoId/01005,CensusPEPSurvey,Count_Person_Male,13305 -2021,geoId/01007,CensusPEPSurvey,Count_Person_Male,12134 -2021,geoId/01009,CensusPEPSurvey,Count_Person_Male,29407 -2021,geoId/01011,CensusPEPSurvey,Count_Person_Male,5717 -2021,geoId/01013,CensusPEPSurvey,Count_Person_Male,8805 -2021,geoId/01015,CensusPEPSurvey,Count_Person_Male,56089 -2021,geoId/01017,CensusPEPSurvey,Count_Person_Male,16558 -2021,geoId/01019,CensusPEPSurvey,Count_Person_Male,12438 -2021,geoId/01021,CensusPEPSurvey,Count_Person_Male,22307 -2021,geoId/01023,CensusPEPSurvey,Count_Person_Male,5965 -2021,geoId/01025,CensusPEPSurvey,Count_Person_Male,10826 -1980,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2025755 -1980,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2025755 -1981,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2036185 -1981,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2036185 -1982,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2041256 -1982,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2041256 -1983,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2045181 -1983,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2045181 -1984,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2054842 -1984,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2054842 -1985,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2066907 -1985,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2066907 -1986,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2076862 -1986,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2076862 -1987,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2089289 -1987,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2089289 -1988,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2093935 -1988,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2093935 -1989,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2097945 -1989,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2097945 -1900,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,37227000 -1901,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,37935000 -1902,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,38680000 -1903,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,39370000 -1904,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,40077000 -1905,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,40857000 -1906,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,41609000 -1907,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,42326000 -1908,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,43116000 -1909,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,43945000 -1910,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,44853000 -1911,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,45573000 -1912,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,46310000 -1913,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,47268000 -1914,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,48228000 -1915,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,48973000 -1916,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,49727000 -1917,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,50480000 -1918,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,51234000 -1919,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,51411000 -1920,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,52170000 -1921,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,53246000 -1922,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,54163000 -1923,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,55086000 -1924,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,56124000 -1925,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,57016000 -1926,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,57809000 -1927,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,58638000 -1928,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,59408000 -1929,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,60087000 -1930,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,60780224 -1931,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,61314145 -1932,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,61770334 -1933,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,62194754 -1934,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,62647577 -1935,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,63140344 -1936,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,63593797 -1937,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,64035032 -1938,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,64589578 -1939,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,65166379 -1940,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,65770083 -1941,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,66482338 -1942,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,67262824 -1943,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,68193612 -1944,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,69019626 -1945,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,69893092 -1946,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,70757395 -1947,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,72180179 -1948,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,73501618 -1949,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,74852695 -1950,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,76422405 -1951,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,77776626 -1952,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,79180550 -1953,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,80569882 -1954,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,82053150 -1955,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,83567564 -1956,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,85123526 -1957,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,86735704 -1958,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,88276799 -1959,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,89834194 -1960,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,91351647 -1961,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,92951562 -1962,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,94471618 -1963,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,95938865 -1964,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,97371039 -1965,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,98694462 -1966,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,99940627 -1967,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,101148174 -1968,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,102279795 -1969,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,103390000 -1970,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,104698298 -1970,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1787363 -1970,geoId/01001,CensusPEPSurvey,Count_Person_Female,12611 -1971,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,106093671 -1971,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1809412 -1971,geoId/01001,CensusPEPSurvey,Count_Person_Female,13020 -1972,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,107305289 -1972,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1831191 -1972,geoId/01001,CensusPEPSurvey,Count_Person_Female,13839 -1973,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,108402337 -1973,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1853536 -1973,geoId/01001,CensusPEPSurvey,Count_Person_Female,14488 -1974,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,109462818 -1974,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1879094 -1974,geoId/01001,CensusPEPSurvey,Count_Person_Female,14882 -1975,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,110607234 -1975,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1907830 -1975,geoId/01001,CensusPEPSurvey,Count_Person_Female,15102 -1976,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,111726560 -1976,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1938304 -1976,geoId/01001,CensusPEPSurvey,Count_Person_Female,15178 -1977,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,112904877 -1977,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1962569 -1977,geoId/01001,CensusPEPSurvey,Count_Person_Female,15493 -1978,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,114160965 -1978,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1990864 -1978,geoId/01001,CensusPEPSurvey,Count_Person_Female,15706 -1979,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,115471526 -1979,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2009957 -1979,geoId/01001,CensusPEPSurvey,Count_Person_Female,16297 -1980.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,16392.0 -1980.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,40405.0 -1980.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13077.0 -1980.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8105.0 -1980.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,18460.0 -1980.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5712.0 -1980.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11631.0 -1980.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,61230.0 -1980.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,20744.0 -1980.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9578.0 -1980.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,15782.0 -1980.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8711.0 -1980.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14381.0 -1980.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,7099.0 -1980.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6439.0 -1980.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,19878.0 -1980.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,28307.0 -1980.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,8295.0 -1980.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5813.0 -1980.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19447.0 -1980.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7405.0 -1980.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,31674.0 -1980.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,23105.0 -1980.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,28846.0 -1980.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27756.0 -1980.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,22006.0 -1980.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,19296.0 -1980.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53891.0 -1980.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9764.0 -1980.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14614.0 -1980.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12479.0 -1980.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5940.0 -1980.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8235.0 -1980.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8069.0 -1980.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,39032.0 -1980.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,26293.0 -1980.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,356083.0 -1980.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8436.0 -1980.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,42004.0 -1980.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15421.0 -1980.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,38223.0 -1980.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,23642.0 -1980.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6994.0 -1980.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13998.0 -1980.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,100868.0 -1980.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,13100.0 -1980.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15452.0 -1980.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,33958.0 -1980.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,190330.0 -1980.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11779.0 -1980.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,104738.0 -1980.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,46411.0 -1980.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7964.0 -1980.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11293.0 -1980.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14960.0 -1980.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10517.0 -1980.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24733.0 -1980.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,20997.0 -1980.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,34047.0 -1980.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,8905.0 -1980.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,38462.0 -1980.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20203.0 -1980.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,70950.0 -1980.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35379.0 -1980.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8648.0 -1980.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7827.0 -1980.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11243.0 -1981.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,16298.0 -1981.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,41131.0 -1981.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13072.0 -1981.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8146.0 -1981.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,18547.0 -1981.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5735.0 -1981.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11851.0 -1981.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,61715.0 -1981.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,20831.0 -1981.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9800.0 -1981.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,15814.0 -1981.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8661.0 -1981.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14578.0 -1981.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,7171.0 -1981.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6515.0 -1981.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20343.0 -1981.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,28389.0 -1981.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,8195.0 -1981.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5840.0 -1981.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19483.0 -1981.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7423.0 -1981.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,31817.0 -1981.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,23454.0 -1981.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,28822.0 -1981.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27998.0 -1981.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,22085.0 -1981.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18958.0 -1981.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53951.0 -1981.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9838.0 -1981.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14557.0 -1981.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12334.0 -1981.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5977.0 -1981.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8242.0 -1981.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8132.0 -1981.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,39736.0 -1981.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,26296.0 -1981.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,354758.0 -1981.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8438.0 -1981.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,42351.0 -1981.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15437.0 -1981.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,38823.0 -1981.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,23494.0 -1981.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6949.0 -1981.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13945.0 -1981.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,101977.0 -1981.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12969.0 -1981.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15554.0 -1981.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,34291.0 -1981.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,192855.0 -1981.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11781.0 -1981.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,105809.0 -1981.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,46327.0 -1981.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7922.0 -1981.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11443.0 -1981.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,15153.0 -1981.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10555.0 -1981.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24523.0 -1981.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,21150.0 -1981.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,35269.0 -1981.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,8997.0 -1981.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,38673.0 -1981.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20224.0 -1981.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,71465.0 -1981.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35218.0 -1981.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8969.0 -1981.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7894.0 -1981.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11246.0 -1982.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,16344.0 -1982.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,42226.0 -1982.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13091.0 -1982.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8242.0 -1982.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,18435.0 -1982.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5689.0 -1982.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11973.0 -1982.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,62492.0 -1982.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,20808.0 -1982.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9915.0 -1982.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,15649.0 -1982.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8512.0 -1982.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14510.0 -1982.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,7127.0 -1982.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6555.0 -1982.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20420.0 -1982.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,28076.0 -1982.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,8148.0 -1982.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5782.0 -1982.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19409.0 -1982.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7357.0 -1982.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,32021.0 -1982.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,23471.0 -1982.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,28981.0 -1982.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27780.0 -1982.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,22342.0 -1982.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18930.0 -1982.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53697.0 -1982.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9967.0 -1982.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14617.0 -1982.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12275.0 -1982.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5943.0 -1982.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8169.0 -1982.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8027.0 -1982.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,40241.0 -1982.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,26292.0 -1982.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,352218.0 -1982.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8494.0 -1982.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,42235.0 -1982.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15617.0 -1982.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,39488.0 -1982.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,23725.0 -1982.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6808.0 -1982.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13900.0 -1982.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,103387.0 -1982.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12970.0 -1982.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15676.0 -1982.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,34593.0 -1982.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,195431.0 -1982.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11767.0 -1982.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,106103.0 -1982.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,46544.0 -1982.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7860.0 -1982.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11414.0 -1982.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14871.0 -1982.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10572.0 -1982.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24435.0 -1982.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,21313.0 -1982.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,36154.0 -1982.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,8991.0 -1982.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,38873.0 -1982.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20106.0 -1982.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,70916.0 -1982.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35121.0 -1982.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8970.0 -1982.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,8004.0 -1982.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11250.0 -1983.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,16361.0 -1983.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,43074.0 -1983.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13087.0 -1983.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8213.0 -1983.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,18485.0 -1983.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5689.0 -1983.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11955.0 -1983.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,62083.0 -1983.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,20759.0 -1983.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9717.0 -1983.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,15830.0 -1983.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8637.0 -1983.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14471.0 -1983.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,7124.0 -1983.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6470.0 -1983.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20614.0 -1983.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,27772.0 -1983.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,8037.0 -1983.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5741.0 -1983.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19445.0 -1983.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7326.0 -1983.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,32373.0 -1983.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,23626.0 -1983.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,28739.0 -1983.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27827.0 -1983.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,22354.0 -1983.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18891.0 -1983.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53802.0 -1983.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9869.0 -1983.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14684.0 -1983.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12238.0 -1983.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5991.0 -1983.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8123.0 -1983.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,7983.0 -1983.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,40283.0 -1983.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,25940.0 -1983.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,351300.0 -1983.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8431.0 -1983.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,41956.0 -1983.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15640.0 -1983.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,39543.0 -1983.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,24070.0 -1983.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6763.0 -1983.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13704.0 -1983.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,105184.0 -1983.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12927.0 -1983.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15935.0 -1983.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,34849.0 -1983.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,196615.0 -1983.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11682.0 -1983.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,106186.0 -1983.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,46894.0 -1983.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7925.0 -1983.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11449.0 -1983.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14795.0 -1983.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10405.0 -1983.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24085.0 -1983.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,21434.0 -1983.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,37115.0 -1983.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,8992.0 -1983.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,39235.0 -1983.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20152.0 -1983.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,71172.0 -1983.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35007.0 -1983.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8937.0 -1983.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,8049.0 -1983.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11159.0 -1984.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,16409.0 -1984.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,44519.0 -1984.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13164.0 -1984.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8255.0 -1984.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,18696.0 -1984.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5738.0 -1984.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11981.0 -1984.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,62410.0 -1984.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,20655.0 -1984.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9650.0 -1984.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,16006.0 -1984.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8664.0 -1984.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14362.0 -1984.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,7080.0 -1984.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6417.0 -1984.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20598.0 -1984.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,27511.0 -1984.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,7958.0 -1984.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5730.0 -1984.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19508.0 -1984.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7304.0 -1984.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,33050.0 -1984.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,23502.0 -1984.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,28721.0 -1984.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27961.0 -1984.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,22531.0 -1984.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18954.0 -1984.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53635.0 -1984.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9964.0 -1984.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14899.0 -1984.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12347.0 -1984.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5916.0 -1984.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8127.0 -1984.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8015.0 -1984.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,40466.0 -1984.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,25772.0 -1984.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,350733.0 -1984.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8434.0 -1984.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,41954.0 -1984.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15854.0 -1984.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,40154.0 -1984.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,24204.0 -1984.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6792.0 -1984.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13480.0 -1984.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,107187.0 -1984.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12830.0 -1984.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15757.0 -1984.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,35376.0 -1984.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,196483.0 -1984.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11866.0 -1984.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,107218.0 -1984.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,47491.0 -1984.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7832.0 -1984.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11436.0 -1984.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14602.0 -1984.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10448.0 -1984.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24302.0 -1984.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,22231.0 -1984.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,38709.0 -1984.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,9087.0 -1984.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,39031.0 -1984.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20178.0 -1984.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,71638.0 -1984.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35034.0 -1984.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8785.0 -1984.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7906.0 -1984.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11327.0 -1985.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,16488.0 -1985.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,45922.0 -1985.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13181.0 -1985.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8288.0 -1985.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,19049.0 -1985.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5688.0 -1985.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11975.0 -1985.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,60931.0 -1985.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,20418.0 -1985.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9603.0 -1985.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,16259.0 -1985.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8724.0 -1985.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14266.0 -1985.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,7104.0 -1985.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6437.0 -1985.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20670.0 -1985.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,27451.0 -1985.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,7901.0 -1985.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5620.0 -1985.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19600.0 -1985.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7311.0 -1985.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,33411.0 -1985.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,23617.0 -1985.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,28530.0 -1985.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27867.0 -1985.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,22779.0 -1985.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18898.0 -1985.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53682.0 -1985.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9964.0 -1985.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14911.0 -1985.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12425.0 -1985.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5834.0 -1985.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,7987.0 -1985.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8052.0 -1985.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,40847.0 -1985.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,25465.0 -1985.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,350678.0 -1985.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8550.0 -1985.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,41990.0 -1985.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15876.0 -1985.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,40665.0 -1985.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,24983.0 -1985.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6789.0 -1985.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13454.0 -1985.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,109449.0 -1985.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12756.0 -1985.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15772.0 -1985.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,36015.0 -1985.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,198156.0 -1985.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11833.0 -1985.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,107933.0 -1985.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,48281.0 -1985.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7731.0 -1985.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11478.0 -1985.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14788.0 -1985.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10296.0 -1985.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24400.0 -1985.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,22787.0 -1985.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,40598.0 -1985.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,9111.0 -1985.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,39071.0 -1985.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20293.0 -1985.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,72904.0 -1985.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35145.0 -1985.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8722.0 -1985.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7876.0 -1985.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11372.0 -1986.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,16834.0 -1986.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,46915.0 -1986.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13140.0 -1986.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8160.0 -1986.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,19364.0 -1986.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5497.0 -1986.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11920.0 -1986.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,60500.0 -1986.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,20081.0 -1986.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9650.0 -1986.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,16440.0 -1986.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8749.0 -1986.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14248.0 -1986.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,7003.0 -1986.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6381.0 -1986.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20794.0 -1986.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,27258.0 -1986.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,7894.0 -1986.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5670.0 -1986.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19407.0 -1986.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7292.0 -1986.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,33818.0 -1986.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,24071.0 -1986.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,28136.0 -1986.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27719.0 -1986.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,22972.0 -1986.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18932.0 -1986.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53383.0 -1986.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9882.0 -1986.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14839.0 -1986.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12367.0 -1986.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5720.0 -1986.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8009.0 -1986.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,7963.0 -1986.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,41187.0 -1986.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,25062.0 -1986.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,350149.0 -1986.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8557.0 -1986.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,41847.0 -1986.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15778.0 -1986.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,41511.0 -1986.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,25286.0 -1986.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6777.0 -1986.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13459.0 -1986.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,111821.0 -1986.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12600.0 -1986.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15470.0 -1986.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,36232.0 -1986.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,199835.0 -1986.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11858.0 -1986.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,109110.0 -1986.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,49090.0 -1986.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7512.0 -1986.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11428.0 -1986.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14822.0 -1986.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10227.0 -1986.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24744.0 -1986.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,23073.0 -1986.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,42447.0 -1986.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,9103.0 -1986.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,39089.0 -1986.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20296.0 -1986.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,74195.0 -1986.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35514.0 -1986.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8665.0 -1986.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7799.0 -1986.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11328.0 -1987.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,17034.0 -1987.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,47898.0 -1987.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13210.0 -1987.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8267.0 -1987.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,19393.0 -1987.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5703.0 -1987.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11950.0 -1987.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,60778.0 -1987.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,19954.0 -1987.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9772.0 -1987.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,16468.0 -1987.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8667.0 -1987.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14344.0 -1987.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,6917.0 -1987.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6463.0 -1987.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20653.0 -1987.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,26959.0 -1987.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,7773.0 -1987.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5697.0 -1987.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19377.0 -1987.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7298.0 -1987.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,34116.0 -1987.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,24306.0 -1987.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,27462.0 -1987.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27875.0 -1987.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,23653.0 -1987.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18814.0 -1987.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,53233.0 -1987.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9703.0 -1987.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14766.0 -1987.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12320.0 -1987.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5611.0 -1987.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8039.0 -1987.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8001.0 -1987.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,41941.0 -1987.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,25038.0 -1987.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,350093.0 -1987.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8470.0 -1987.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,41745.0 -1987.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15779.0 -1987.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,41511.0 -1987.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,25811.0 -1987.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6814.0 -1987.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13642.0 -1987.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,114414.0 -1987.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12552.0 -1987.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15493.0 -1987.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,36590.0 -1987.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,201052.0 -1987.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11926.0 -1987.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,109852.0 -1987.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,49891.0 -1987.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7441.0 -1987.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11278.0 -1987.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14756.0 -1987.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10156.0 -1987.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24810.0 -1987.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,23752.0 -1987.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,45129.0 -1987.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,9034.0 -1987.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,38730.0 -1987.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20426.0 -1987.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,75459.0 -1987.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35604.0 -1987.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8726.0 -1987.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7727.0 -1987.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11184.0 -1988.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,17233.0 -1988.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,48650.0 -1988.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13271.0 -1988.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8255.0 -1988.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,19535.0 -1988.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5827.0 -1988.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11836.0 -1988.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,60419.0 -1988.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,19756.0 -1988.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9926.0 -1988.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,16634.0 -1988.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8634.0 -1988.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14219.0 -1988.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,6884.0 -1988.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6465.0 -1988.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20804.0 -1988.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,26755.0 -1988.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,7607.0 -1988.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5637.0 -1988.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19294.0 -1988.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7280.0 -1988.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,34229.0 -1988.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,24904.0 -1988.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,26915.0 -1988.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,27997.0 -1988.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,23876.0 -1988.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18419.0 -1988.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,52954.0 -1988.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9488.0 -1988.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14746.0 -1988.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12231.0 -1988.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5593.0 -1988.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8153.0 -1988.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8010.0 -1988.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,42227.0 -1988.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,24986.0 -1988.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,349111.0 -1988.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8351.0 -1988.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,41606.0 -1988.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15820.0 -1988.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,42521.0 -1988.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,26308.0 -1988.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6713.0 -1988.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13550.0 -1988.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,117345.0 -1988.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12448.0 -1988.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15347.0 -1988.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,36775.0 -1988.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,200094.0 -1988.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,11984.0 -1988.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,110129.0 -1988.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,50266.0 -1988.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,7227.0 -1988.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11144.0 -1988.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14716.0 -1988.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10264.0 -1988.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24703.0 -1988.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,23973.0 -1988.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,47189.0 -1988.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,8872.0 -1988.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,38522.0 -1988.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20473.0 -1988.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,76202.0 -1988.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35363.0 -1988.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8676.0 -1988.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7503.0 -1988.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11131.0 -1989.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,17431.0 -1989.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,49469.0 -1989.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13315.0 -1989.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8359.0 -1989.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,19823.0 -1989.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5801.0 -1989.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11745.0 -1989.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,60047.0 -1989.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,19663.0 -1989.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9899.0 -1989.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,16659.0 -1989.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8483.0 -1989.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14170.0 -1989.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,6834.0 -1989.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6473.0 -1989.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,20649.0 -1989.0,geoId/1033.0,CensusPEPSurvey,Count_Person_Female,26695.0 -1989.0,geoId/1035.0,CensusPEPSurvey,Count_Person_Female,7493.0 -1989.0,geoId/1037.0,CensusPEPSurvey,Count_Person_Female,5637.0 -1989.0,geoId/1039.0,CensusPEPSurvey,Count_Person_Female,19258.0 -1989.0,geoId/1041.0,CensusPEPSurvey,Count_Person_Female,7255.0 -1989.0,geoId/1043.0,CensusPEPSurvey,Count_Person_Female,34465.0 -1989.0,geoId/1045.0,CensusPEPSurvey,Count_Person_Female,24660.0 -1989.0,geoId/1047.0,CensusPEPSurvey,Count_Person_Female,26558.0 -1989.0,geoId/1049.0,CensusPEPSurvey,Count_Person_Female,28157.0 -1989.0,geoId/1051.0,CensusPEPSurvey,Count_Person_Female,24094.0 -1989.0,geoId/1053.0,CensusPEPSurvey,Count_Person_Female,18152.0 -1989.0,geoId/1055.0,CensusPEPSurvey,Count_Person_Female,52791.0 -1989.0,geoId/1057.0,CensusPEPSurvey,Count_Person_Female,9388.0 -1989.0,geoId/1059.0,CensusPEPSurvey,Count_Person_Female,14613.0 -1989.0,geoId/1061.0,CensusPEPSurvey,Count_Person_Female,12133.0 -1989.0,geoId/1063.0,CensusPEPSurvey,Count_Person_Female,5523.0 -1989.0,geoId/1065.0,CensusPEPSurvey,Count_Person_Female,8206.0 -1989.0,geoId/1067.0,CensusPEPSurvey,Count_Person_Female,8084.0 -1989.0,geoId/1069.0,CensusPEPSurvey,Count_Person_Female,42364.0 -1989.0,geoId/1071.0,CensusPEPSurvey,Count_Person_Female,24697.0 -1989.0,geoId/1073.0,CensusPEPSurvey,Count_Person_Female,348082.0 -1989.0,geoId/1075.0,CensusPEPSurvey,Count_Person_Female,8248.0 -1989.0,geoId/1077.0,CensusPEPSurvey,Count_Person_Female,41501.0 -1989.0,geoId/1079.0,CensusPEPSurvey,Count_Person_Female,15960.0 -1989.0,geoId/1081.0,CensusPEPSurvey,Count_Person_Female,43221.0 -1989.0,geoId/1083.0,CensusPEPSurvey,Count_Person_Female,26932.0 -1989.0,geoId/1085.0,CensusPEPSurvey,Count_Person_Female,6824.0 -1989.0,geoId/1087.0,CensusPEPSurvey,Count_Person_Female,13508.0 -1989.0,geoId/1089.0,CensusPEPSurvey,Count_Person_Female,119574.0 -1989.0,geoId/1091.0,CensusPEPSurvey,Count_Person_Female,12356.0 -1989.0,geoId/1093.0,CensusPEPSurvey,Count_Person_Female,15296.0 -1989.0,geoId/1095.0,CensusPEPSurvey,Count_Person_Female,36758.0 -1989.0,geoId/1097.0,CensusPEPSurvey,Count_Person_Female,198938.0 -1989.0,geoId/1099.0,CensusPEPSurvey,Count_Person_Female,12076.0 -1989.0,geoId/1101.0,CensusPEPSurvey,Count_Person_Female,110739.0 -1989.0,geoId/1103.0,CensusPEPSurvey,Count_Person_Female,50699.0 -1989.0,geoId/1105.0,CensusPEPSurvey,Count_Person_Female,6973.0 -1989.0,geoId/1107.0,CensusPEPSurvey,Count_Person_Female,11104.0 -1989.0,geoId/1109.0,CensusPEPSurvey,Count_Person_Female,14674.0 -1989.0,geoId/1111.0,CensusPEPSurvey,Count_Person_Female,10295.0 -1989.0,geoId/1113.0,CensusPEPSurvey,Count_Person_Female,24327.0 -1989.0,geoId/1115.0,CensusPEPSurvey,Count_Person_Female,24492.0 -1989.0,geoId/1117.0,CensusPEPSurvey,Count_Person_Female,49223.0 -1989.0,geoId/1119.0,CensusPEPSurvey,Count_Person_Female,8746.0 -1989.0,geoId/1121.0,CensusPEPSurvey,Count_Person_Female,38412.0 -1989.0,geoId/1123.0,CensusPEPSurvey,Count_Person_Female,20499.0 -1989.0,geoId/1125.0,CensusPEPSurvey,Count_Person_Female,77046.0 -1989.0,geoId/1127.0,CensusPEPSurvey,Count_Person_Female,35251.0 -1989.0,geoId/1129.0,CensusPEPSurvey,Count_Person_Female,8578.0 -1989.0,geoId/1131.0,CensusPEPSurvey,Count_Person_Female,7380.0 -1989.0,geoId/1133.0,CensusPEPSurvey,Count_Person_Female,11197.0 -1990,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,127969673 -1990,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,17390 -1990,geoId/01001,CensusPEPSurvey,Count_Person_Female,17390 -1991,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,129623972 -1991,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,17733 -1991,geoId/01001,CensusPEPSurvey,Count_Person_Female,17733 -1992,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,131314217 -1992,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,18208 -1992,geoId/01001,CensusPEPSurvey,Count_Person_Female,18208 -1993,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,132989513 -1993,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,18691 -1993,geoId/01001,CensusPEPSurvey,Count_Person_Female,18691 -1994,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,134566414 -1994,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,19299 -1994,geoId/01001,CensusPEPSurvey,Count_Person_Female,19299 -1995,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,136097660 -1995,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,19756 -1995,geoId/01001,CensusPEPSurvey,Count_Person_Female,19756 -1996,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,137621440 -1996,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,20290 -1996,geoId/01001,CensusPEPSurvey,Count_Person_Female,20290 -1997,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,139209099 -1997,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,20785 -1997,geoId/01001,CensusPEPSurvey,Count_Person_Female,20785 -1998,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,140759913 -1998,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,21209 -1998,geoId/01001,CensusPEPSurvey,Count_Person_Female,21209 -1999,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,142272592 -1999,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,21595 -1999,geoId/01001,CensusPEPSurvey,Count_Person_Female,21595 -2000,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,143719004 -2000,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2302835 -2000,geoId/01001,CensusPEPSurvey,Count_Person_Female,22636 -2000,geoId/01003,CensusPEPSurvey,Count_Person_Female,72040 -2000,geoId/01005,CensusPEPSurvey,Count_Person_Female,14061 -2000,geoId/01007,CensusPEPSurvey,Count_Person_Female,10088 -2000,geoId/01009,CensusPEPSurvey,Count_Person_Female,25588 -2000,geoId/01011,CensusPEPSurvey,Count_Person_Female,5519 -2000,geoId/01013,CensusPEPSurvey,Count_Person_Female,11333 -2001,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,145077463 -2001,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2309496 -2001,geoId/01001,CensusPEPSurvey,Count_Person_Female,23076 -2001,geoId/01003,CensusPEPSurvey,Count_Person_Female,73964 -2001,geoId/01005,CensusPEPSurvey,Count_Person_Female,13970 -2001,geoId/01007,CensusPEPSurvey,Count_Person_Female,10313 -2001,geoId/01009,CensusPEPSurvey,Count_Person_Female,25922 -2001,geoId/01011,CensusPEPSurvey,Count_Person_Female,5373 -2001,geoId/01013,CensusPEPSurvey,Count_Person_Female,11226 -2002,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,146394634 -2002,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2314370 -2002,geoId/01001,CensusPEPSurvey,Count_Person_Female,23547 -2002,geoId/01003,CensusPEPSurvey,Count_Person_Female,75558 -2002,geoId/01005,CensusPEPSurvey,Count_Person_Female,13733 -2002,geoId/01007,CensusPEPSurvey,Count_Person_Female,10318 -2002,geoId/01009,CensusPEPSurvey,Count_Person_Female,26376 -2002,geoId/01011,CensusPEPSurvey,Count_Person_Female,5281 -2002,geoId/01013,CensusPEPSurvey,Count_Person_Female,11022 -2003,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,147679036 -2003,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2324069 -2003,geoId/01001,CensusPEPSurvey,Count_Person_Female,24040 -2003,geoId/01003,CensusPEPSurvey,Count_Person_Female,77307 -2003,geoId/01005,CensusPEPSurvey,Count_Person_Female,13573 -2003,geoId/01007,CensusPEPSurvey,Count_Person_Female,10334 -2003,geoId/01009,CensusPEPSurvey,Count_Person_Female,26849 -2003,geoId/01011,CensusPEPSurvey,Count_Person_Female,5229 -2003,geoId/01013,CensusPEPSurvey,Count_Person_Female,11044 -2004,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,148977286 -2004,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2337857 -2004,geoId/01001,CensusPEPSurvey,Count_Person_Female,24854 -2004,geoId/01003,CensusPEPSurvey,Count_Person_Female,79719 -2004,geoId/01005,CensusPEPSurvey,Count_Person_Female,13433 -2004,geoId/01007,CensusPEPSurvey,Count_Person_Female,10407 -2004,geoId/01009,CensusPEPSurvey,Count_Person_Female,27191 -2004,geoId/01011,CensusPEPSurvey,Count_Person_Female,5124 -2004,geoId/01013,CensusPEPSurvey,Count_Person_Female,11056 -2005,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,150319521 -2005,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2356423 -2005,geoId/01001,CensusPEPSurvey,Count_Person_Female,25476 -2005,geoId/01003,CensusPEPSurvey,Count_Person_Female,82767 -2005,geoId/01005,CensusPEPSurvey,Count_Person_Female,13314 -2005,geoId/01007,CensusPEPSurvey,Count_Person_Female,10494 -2005,geoId/01009,CensusPEPSurvey,Count_Person_Female,27472 -2005,geoId/01011,CensusPEPSurvey,Count_Person_Female,5110 -2005,geoId/01013,CensusPEPSurvey,Count_Person_Female,11029 -2006,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,151732647 -2006,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2385480 -2006,geoId/01001,CensusPEPSurvey,Count_Person_Female,26340 -2006,geoId/01003,CensusPEPSurvey,Count_Person_Female,85929 -2006,geoId/01005,CensusPEPSurvey,Count_Person_Female,13143 -2006,geoId/01007,CensusPEPSurvey,Count_Person_Female,10436 -2006,geoId/01009,CensusPEPSurvey,Count_Person_Female,27957 -2006,geoId/01011,CensusPEPSurvey,Count_Person_Female,5012 -2006,geoId/01013,CensusPEPSurvey,Count_Person_Female,11013 -2007,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,153166353 -2007,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2407275 -2007,geoId/01001,CensusPEPSurvey,Count_Person_Female,26937 -2007,geoId/01003,CensusPEPSurvey,Count_Person_Female,88231 -2007,geoId/01005,CensusPEPSurvey,Count_Person_Female,13136 -2007,geoId/01007,CensusPEPSurvey,Count_Person_Female,10589 -2007,geoId/01009,CensusPEPSurvey,Count_Person_Female,28299 -2007,geoId/01011,CensusPEPSurvey,Count_Person_Female,5053 -2007,geoId/01013,CensusPEPSurvey,Count_Person_Female,11040 -2008,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,154604015 -2008,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2430257 -2008,geoId/01001,CensusPEPSurvey,Count_Person_Female,27404 -2008,geoId/01003,CensusPEPSurvey,Count_Person_Female,90030 -2008,geoId/01005,CensusPEPSurvey,Count_Person_Female,13034 -2008,geoId/01007,CensusPEPSurvey,Count_Person_Female,10665 -2008,geoId/01009,CensusPEPSurvey,Count_Person_Female,28697 -2008,geoId/01011,CensusPEPSurvey,Count_Person_Female,4996 -2008,geoId/01013,CensusPEPSurvey,Count_Person_Female,11135 -2009,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,155964075 -2009,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2448159 -2009,geoId/01001,CensusPEPSurvey,Count_Person_Female,27771 -2009,geoId/01003,CensusPEPSurvey,Count_Person_Female,91705 -2009,geoId/01005,CensusPEPSurvey,Count_Person_Female,12969 -2009,geoId/01007,CensusPEPSurvey,Count_Person_Female,10608 -2009,geoId/01009,CensusPEPSurvey,Count_Person_Female,28946 -2009,geoId/01011,CensusPEPSurvey,Count_Person_Female,4980 -2009,geoId/01013,CensusPEPSurvey,Count_Person_Female,11110 -2010,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,157249665 -2010,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2462501 -2010,geoId/01001,CensusPEPSurvey,Count_Person_Female,28094 -2010,geoId/01003,CensusPEPSurvey,Count_Person_Female,93498 -2010,geoId/01005,CensusPEPSurvey,Count_Person_Female,12824 -2011,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,158370501 -2011,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2471124 -2011,geoId/01001,CensusPEPSurvey,Count_Person_Female,28249 -2011,geoId/01003,CensusPEPSurvey,Count_Person_Female,95380 -2011,geoId/01005,CensusPEPSurvey,Count_Person_Female,12688 -2012,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,159480635 -2012,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2480436 -2012,geoId/01001,CensusPEPSurvey,Count_Person_Female,28140 -2012,geoId/01003,CensusPEPSurvey,Count_Person_Female,97475 -2012,geoId/01005,CensusPEPSurvey,Count_Person_Female,12630 -2013,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,160545893 -2013,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2488451 -2013,geoId/01001,CensusPEPSurvey,Count_Person_Female,28159 -2013,geoId/01003,CensusPEPSurvey,Count_Person_Female,99838 -2013,geoId/01005,CensusPEPSurvey,Count_Person_Female,12564 -2014,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,161690519 -2014,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2495725 -2014,geoId/01001,CensusPEPSurvey,Count_Person_Female,28118 -2014,geoId/01003,CensusPEPSurvey,Count_Person_Female,102090 -2014,geoId/01005,CensusPEPSurvey,Count_Person_Female,12513 -2015,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,162832151 -2015,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2501997 -2015,geoId/01001,CensusPEPSurvey,Count_Person_Female,28151 -2015,geoId/01003,CensusPEPSurvey,Count_Person_Female,104124 -2015,geoId/01005,CensusPEPSurvey,Count_Person_Female,12315 -2016,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,163986062 -2016,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2509613 -2016,geoId/01001,CensusPEPSurvey,Count_Person_Female,28303 -2016,geoId/01003,CensusPEPSurvey,Count_Person_Female,106718 -2016,geoId/01005,CensusPEPSurvey,Count_Person_Female,12191 -2017,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,165008683 -2017,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2517486 -2017,geoId/01001,CensusPEPSurvey,Count_Person_Female,28407 -2017,geoId/01003,CensusPEPSurvey,Count_Person_Female,109413 -2017,geoId/01005,CensusPEPSurvey,Count_Person_Female,11941 -2018,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,165877686 -2018,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2526183 -2018,geoId/01001,CensusPEPSurvey,Count_Person_Female,28484 -2018,geoId/01003,CensusPEPSurvey,Count_Person_Female,112289 -2018,geoId/01005,CensusPEPSurvey,Count_Person_Female,11730 -2019,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,166637617 -2019,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2536133 -2019,geoId/01001,CensusPEPSurvey,Count_Person_Female,28691 -2019,geoId/01003,CensusPEPSurvey,Count_Person_Female,115169 -2019,geoId/01005,CensusPEPSurvey,Count_Person_Female,11627 -2020,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,167227921 -2020,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2544566 -2020,geoId/01001,CensusPEPSurvey,Count_Person_Female,28919 -2020,geoId/01003,CensusPEPSurvey,Count_Person_Female,118287 -2020,geoId/01005,CensusPEPSurvey,Count_Person_Female,11602 -2021,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,167509003 -2021,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2591778 -2021,geoId/01001,CensusPEPSurvey,Count_Person_Female,30362 -2021,geoId/01003,CensusPEPSurvey,Count_Person_Female,122872 -2021,geoId/01005,CensusPEPSurvey,Count_Person_Female,11659 -2021,geoId/01007,CensusPEPSurvey,Count_Person_Female,10343 -2021,geoId/01009,CensusPEPSurvey,Count_Person_Female,29634 -2021,geoId/01011,CensusPEPSurvey,Count_Person_Female,4603 -2021,geoId/01013,CensusPEPSurvey,Count_Person_Female,10079 -2021,geoId/01015,CensusPEPSurvey,Count_Person_Female,59883 -2021,geoId/01017,CensusPEPSurvey,Count_Person_Female,17983 -2021,geoId/01019,CensusPEPSurvey,Count_Person_Female,12558 -2021,geoId/01021,CensusPEPSurvey,Count_Person_Female,22967 -2021,geoId/01023,CensusPEPSurvey,Count_Person_Female,6568 -2021,geoId/01025,CensusPEPSurvey,Count_Person_Female,11934 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.csv b/scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.csv new file mode 100644 index 0000000000..0690373707 --- /dev/null +++ b/scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.csv @@ -0,0 +1,681 @@ +Year,geo_ID,Measurement_Method,SV,Observation +1988,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2215519 +1988,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1929913 +1988,geoId/02,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,285606 +1901,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,39649000 +1905,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,42965000 +1970,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1667194 +1970,geoId/02,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,166712 +1970,geoId/04,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,885381 +1970,geoId/05,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,937034 +1970,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,9866581 +1970,geoId/08,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1100232 +1970,geoId/09,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1473523 +1970,geoId/10,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,268937 +1970,geoId/11,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,351086 +1970,geoId/12,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,3313310 +1970,geoId/13,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2240512 +1970,geoId/15,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,403135 +1970,geoId/16,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,358548 +1970,geoId/17,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,5399858 +1970,geoId/18,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2537214 +1970,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1376126 +1970,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1102665 +1970,geoId/21,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1587719 +1970,geoId/22,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1780314 +1970,geoId/23,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,486677 +1970,geoId/24,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1926785 +1970,geoId/25,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2724111 +1970,geoId/26,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,4360677 +1970,geoId/27,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1869212 +1970,geoId/28,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1078755 +1970,geoId/29,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,2261227 +1970,geoId/30,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,348642 +1970,geoId/31,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,727376 +1970,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,251010 +1970,geoId/33,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,363054 +1970,geoId/34,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,3479511 +1970,geoId/35,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,504967 +1970,geoId/36,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,7630368 +1989.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Male,16565.0 +1989.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Male,46734.0 +1989.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Male,12022.0 +1989.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Male,7999.0 +1989.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Male,18948.0 +1989.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Male,5370.0 +1989.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Male,10293.0 +1989.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Male,56331.0 +1989.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Male,17546.0 +1989.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Male,9566.0 +1989.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Male,15709.0 +1989.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Male,7682.0 +1989.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Male,12996.0 +1989.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Male,6336.0 +1989.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Male,6282.0 +1989.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Male,16307.0 +2000,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,138443407 +2000,geoId/01001,CensusPEPSurvey,Count_Person_Male,21385 +2000,geoId/01003,CensusPEPSurvey,Count_Person_Male,69302 +2000,geoId/01005,CensusPEPSurvey,Count_Person_Male,14954 +2000,geoId/01007,CensusPEPSurvey,Count_Person_Male,9825 +2000,geoId/01009,CensusPEPSurvey,Count_Person_Male,25519 +2000,geoId/01011,CensusPEPSurvey,Count_Person_Male,6062 +2000,geoId/01013,CensusPEPSurvey,Count_Person_Male,9992 +2000,geoId/01015,CensusPEPSurvey,Count_Person_Male,53124 +2000,geoId/01017,CensusPEPSurvey,Count_Person_Male,17285 +2001,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,139891492 +2001,geoId/01001,CensusPEPSurvey,Count_Person_Male,21813 +2001,geoId/01003,CensusPEPSurvey,Count_Person_Male,70911 +2001,geoId/01005,CensusPEPSurvey,Count_Person_Male,14893 +2001,geoId/01007,CensusPEPSurvey,Count_Person_Male,10715 +2001,geoId/01009,CensusPEPSurvey,Count_Person_Male,25923 +2001,geoId/01011,CensusPEPSurvey,Count_Person_Male,5985 +2001,geoId/01013,CensusPEPSurvey,Count_Person_Male,9913 +2001,geoId/01015,CensusPEPSurvey,Count_Person_Male,53291 +2001,geoId/01017,CensusPEPSurvey,Count_Person_Male,17222 +2002,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,141230559 +2002,geoId/01001,CensusPEPSurvey,Count_Person_Male,22362 +2002,geoId/01003,CensusPEPSurvey,Count_Person_Male,72399 +2002,geoId/01005,CensusPEPSurvey,Count_Person_Male,14920 +2002,geoId/01007,CensusPEPSurvey,Count_Person_Male,10881 +2002,geoId/01009,CensusPEPSurvey,Count_Person_Male,26175 +2002,geoId/01011,CensusPEPSurvey,Count_Person_Male,5975 +2002,geoId/01013,CensusPEPSurvey,Count_Person_Male,9781 +2002,geoId/01015,CensusPEPSurvey,Count_Person_Male,53526 +2002,geoId/01017,CensusPEPSurvey,Count_Person_Male,17110 +2003,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,142428897 +2003,geoId/01001,CensusPEPSurvey,Count_Person_Male,22760 +2003,geoId/01003,CensusPEPSurvey,Count_Person_Male,74202 +2003,geoId/01005,CensusPEPSurvey,Count_Person_Male,15021 +2003,geoId/01007,CensusPEPSurvey,Count_Person_Male,11065 +2003,geoId/01009,CensusPEPSurvey,Count_Person_Male,26608 +2003,geoId/01011,CensusPEPSurvey,Count_Person_Male,6087 +2003,geoId/01013,CensusPEPSurvey,Count_Person_Male,9789 +2003,geoId/01015,CensusPEPSurvey,Count_Person_Male,54137 +2003,geoId/01017,CensusPEPSurvey,Count_Person_Male,16997 +2004,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,143828012 +2004,geoId/01001,CensusPEPSurvey,Count_Person_Male,23512 +2004,geoId/01003,CensusPEPSurvey,Count_Person_Male,76547 +2004,geoId/01005,CensusPEPSurvey,Count_Person_Male,14854 +2004,geoId/01007,CensusPEPSurvey,Count_Person_Male,11314 +2004,geoId/01009,CensusPEPSurvey,Count_Person_Male,26933 +2004,geoId/01011,CensusPEPSurvey,Count_Person_Male,5932 +2004,geoId/01013,CensusPEPSurvey,Count_Person_Male,9814 +2004,geoId/01015,CensusPEPSurvey,Count_Person_Male,54575 +2004,geoId/01017,CensusPEPSurvey,Count_Person_Male,16885 +2005,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,145197078 +2005,geoId/01001,CensusPEPSurvey,Count_Person_Male,24200 +2005,geoId/01003,CensusPEPSurvey,Count_Person_Male,79416 +2005,geoId/01005,CensusPEPSurvey,Count_Person_Male,14713 +2005,geoId/01007,CensusPEPSurvey,Count_Person_Male,11548 +2005,geoId/01009,CensusPEPSurvey,Count_Person_Male,27152 +2005,geoId/01011,CensusPEPSurvey,Count_Person_Male,5901 +2005,geoId/01013,CensusPEPSurvey,Count_Person_Male,9801 +2005,geoId/01015,CensusPEPSurvey,Count_Person_Male,55055 +2005,geoId/01017,CensusPEPSurvey,Count_Person_Male,16724 +2006,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,146647265 +2006,geoId/01001,CensusPEPSurvey,Count_Person_Male,24988 +2006,geoId/01003,CensusPEPSurvey,Count_Person_Male,82192 +2006,geoId/01005,CensusPEPSurvey,Count_Person_Male,14718 +2006,geoId/01007,CensusPEPSurvey,Count_Person_Male,11663 +2006,geoId/01009,CensusPEPSurvey,Count_Person_Male,27528 +2006,geoId/01011,CensusPEPSurvey,Count_Person_Male,5764 +2006,geoId/01013,CensusPEPSurvey,Count_Person_Male,9802 +2006,geoId/01015,CensusPEPSurvey,Count_Person_Male,55518 +2006,geoId/01017,CensusPEPSurvey,Count_Person_Male,16654 +2007,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,148064854 +2007,geoId/01001,CensusPEPSurvey,Count_Person_Male,25468 +2007,geoId/01003,CensusPEPSurvey,Count_Person_Male,84173 +2007,geoId/01005,CensusPEPSurvey,Count_Person_Male,14621 +2007,geoId/01007,CensusPEPSurvey,Count_Person_Male,11849 +2007,geoId/01009,CensusPEPSurvey,Count_Person_Male,27941 +2007,geoId/01011,CensusPEPSurvey,Count_Person_Male,5958 +2007,geoId/01013,CensusPEPSurvey,Count_Person_Male,9854 +2007,geoId/01015,CensusPEPSurvey,Count_Person_Male,55911 +2007,geoId/01017,CensusPEPSurvey,Count_Person_Male,16639 +2008,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,149489951 +2008,geoId/01001,CensusPEPSurvey,Count_Person_Male,25873 +2008,geoId/01003,CensusPEPSurvey,Count_Person_Male,85797 +2008,geoId/01005,CensusPEPSurvey,Count_Person_Male,14774 +2008,geoId/01007,CensusPEPSurvey,Count_Person_Male,12040 +2008,geoId/01009,CensusPEPSurvey,Count_Person_Male,28358 +2008,geoId/01011,CensusPEPSurvey,Count_Person_Male,5957 +2008,geoId/01013,CensusPEPSurvey,Count_Person_Male,9814 +2008,geoId/01015,CensusPEPSurvey,Count_Person_Male,56462 +2008,geoId/01017,CensusPEPSurvey,Count_Person_Male,16525 +2009,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,150807454 +2009,geoId/01001,CensusPEPSurvey,Count_Person_Male,26364 +2009,geoId/01003,CensusPEPSurvey,Count_Person_Male,87701 +2009,geoId/01005,CensusPEPSurvey,Count_Person_Male,14688 +2009,geoId/01007,CensusPEPSurvey,Count_Person_Male,12333 +2009,geoId/01009,CensusPEPSurvey,Count_Person_Male,28395 +2009,geoId/01011,CensusPEPSurvey,Count_Person_Male,6007 +2009,geoId/01013,CensusPEPSurvey,Count_Person_Male,9757 +2009,geoId/01015,CensusPEPSurvey,Count_Person_Male,57079 +2009,geoId/01017,CensusPEPSurvey,Count_Person_Male,16430 +2010,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,152077478 +2010,geoId/01001,CensusPEPSurvey,Count_Person_Male,26667 +2010,geoId/01003,CensusPEPSurvey,Count_Person_Male,89623 +2010,geoId/01005,CensusPEPSurvey,Count_Person_Male,14501 +2010,geoId/01007,CensusPEPSurvey,Count_Person_Male,12261 +2010,geoId/01009,CensusPEPSurvey,Count_Person_Male,28381 +2010,geoId/01011,CensusPEPSurvey,Count_Person_Male,5879 +2010,geoId/01013,CensusPEPSurvey,Count_Person_Male,9838 +2010,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1510958 +2010,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1418145 +2010,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1364152 +2011,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,153212980 +2011,geoId/01001,CensusPEPSurvey,Count_Person_Male,26980 +2011,geoId/01003,CensusPEPSurvey,Count_Person_Male,91199 +2011,geoId/01005,CensusPEPSurvey,Count_Person_Male,14656 +2011,geoId/01007,CensusPEPSurvey,Count_Person_Male,12270 +2011,geoId/01009,CensusPEPSurvey,Count_Person_Male,28446 +2011,geoId/01011,CensusPEPSurvey,Count_Person_Male,5766 +2011,geoId/01013,CensusPEPSurvey,Count_Person_Male,9810 +2011,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1520207 +2011,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1424226 +2011,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1367927 +2012,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,154397027 +2012,geoId/01001,CensusPEPSurvey,Count_Person_Male,26830 +2012,geoId/01003,CensusPEPSurvey,Count_Person_Male,92728 +2012,geoId/01005,CensusPEPSurvey,Count_Person_Male,14542 +2012,geoId/01007,CensusPEPSurvey,Count_Person_Male,12212 +2012,geoId/01009,CensusPEPSurvey,Count_Person_Male,28429 +2012,geoId/01011,CensusPEPSurvey,Count_Person_Male,5772 +2012,geoId/01013,CensusPEPSurvey,Count_Person_Male,9682 +2012,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1526008 +2012,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1434229 +2012,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1383037 +2013,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,155514054 +2013,geoId/01001,CensusPEPSurvey,Count_Person_Male,26588 +2013,geoId/01003,CensusPEPSurvey,Count_Person_Male,95140 +2013,geoId/01005,CensusPEPSurvey,Count_Person_Male,14382 +2013,geoId/01007,CensusPEPSurvey,Count_Person_Male,12108 +2013,geoId/01009,CensusPEPSurvey,Count_Person_Male,28443 +2013,geoId/01011,CensusPEPSurvey,Count_Person_Male,5743 +2013,geoId/01013,CensusPEPSurvey,Count_Person_Male,9480 +2013,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1535373 +2013,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1439885 +2013,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1397895 +2014,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,156695810 +2014,geoId/01001,CensusPEPSurvey,Count_Person_Male,26804 +2014,geoId/01003,CensusPEPSurvey,Count_Person_Male,97216 +2014,geoId/01005,CensusPEPSurvey,Count_Person_Male,14255 +2014,geoId/01007,CensusPEPSurvey,Count_Person_Male,12148 +2014,geoId/01009,CensusPEPSurvey,Count_Person_Male,28370 +2014,geoId/01011,CensusPEPSurvey,Count_Person_Male,5825 +2014,geoId/01013,CensusPEPSurvey,Count_Person_Male,9446 +2014,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1544749 +2014,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1445042 +2014,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1417645 +2015,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,157906843 +2015,geoId/01001,CensusPEPSurvey,Count_Person_Male,26752 +2015,geoId/01003,CensusPEPSurvey,Count_Person_Male,98977 +2015,geoId/01005,CensusPEPSurvey,Count_Person_Male,13985 +2015,geoId/01007,CensusPEPSurvey,Count_Person_Male,12112 +2015,geoId/01009,CensusPEPSurvey,Count_Person_Male,28351 +2015,geoId/01011,CensusPEPSurvey,Count_Person_Male,5639 +2015,geoId/01013,CensusPEPSurvey,Count_Person_Male,9402 +2015,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1552076 +2015,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1450195 +2015,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1441092 +2016,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,159085693 +2016,geoId/01001,CensusPEPSurvey,Count_Person_Male,26999 +2016,geoId/01003,CensusPEPSurvey,Count_Person_Male,101069 +2016,geoId/01005,CensusPEPSurvey,Count_Person_Male,13637 +2016,geoId/01007,CensusPEPSurvey,Count_Person_Male,12074 +2016,geoId/01009,CensusPEPSurvey,Count_Person_Male,28298 +2016,geoId/01011,CensusPEPSurvey,Count_Person_Male,5652 +2016,geoId/01013,CensusPEPSurvey,Count_Person_Male,9328 +2016,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1558017 +2016,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1451334 +2016,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1465784 +2017,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,160113445 +2017,geoId/01001,CensusPEPSurvey,Count_Person_Male,27041 +2017,geoId/01003,CensusPEPSurvey,Count_Person_Male,103324 +2017,geoId/01005,CensusPEPSurvey,Count_Person_Male,13228 +2017,geoId/01007,CensusPEPSurvey,Count_Person_Male,12047 +2017,geoId/01009,CensusPEPSurvey,Count_Person_Male,28526 +2017,geoId/01011,CensusPEPSurvey,Count_Person_Male,5519 +2017,geoId/01013,CensusPEPSurvey,Count_Person_Male,9302 +2017,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1563872 +2017,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1450416 +2017,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1491237 +2018,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,160960513 +2018,geoId/01001,CensusPEPSurvey,Count_Person_Male,27049 +2018,geoId/01003,CensusPEPSurvey,Count_Person_Male,105782 +2018,geoId/01005,CensusPEPSurvey,Count_Person_Male,13157 +2018,geoId/01007,CensusPEPSurvey,Count_Person_Male,11884 +2018,geoId/01009,CensusPEPSurvey,Count_Person_Male,28522 +2018,geoId/01011,CensusPEPSurvey,Count_Person_Male,5527 +2018,geoId/01013,CensusPEPSurvey,Count_Person_Male,9171 +2018,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1567300 +2018,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1451427 +2018,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1520265 +2019,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,161692336 +2019,geoId/01001,CensusPEPSurvey,Count_Person_Male,27078 +2019,geoId/01003,CensusPEPSurvey,Count_Person_Male,108396 +2019,geoId/01005,CensusPEPSurvey,Count_Person_Male,13030 +2019,geoId/01007,CensusPEPSurvey,Count_Person_Male,11878 +2019,geoId/01009,CensusPEPSurvey,Count_Person_Male,28554 +2019,geoId/01011,CensusPEPSurvey,Count_Person_Male,5547 +2019,geoId/01013,CensusPEPSurvey,Count_Person_Male,9076 +2019,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1572960 +2019,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1450555 +2019,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1549505 +2020,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,162256202 +2020,geoId/01001,CensusPEPSurvey,Count_Person_Male,27226 +2020,geoId/01003,CensusPEPSurvey,Count_Person_Male,111000 +2020,geoId/01005,CensusPEPSurvey,Count_Person_Male,12987 +2020,geoId/01007,CensusPEPSurvey,Count_Person_Male,11773 +2020,geoId/01009,CensusPEPSurvey,Count_Person_Male,28617 +2020,geoId/01011,CensusPEPSurvey,Count_Person_Male,5461 +2020,geoId/01013,CensusPEPSurvey,Count_Person_Male,9084 +2020,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1575695 +2020,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1451540 +2020,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,1572640 +2021,geoId/01001,CensusPEPSurvey,Count_Person_Male,28782 +2021,geoId/01003,CensusPEPSurvey,Count_Person_Male,116725 +2021,geoId/01005,CensusPEPSurvey,Count_Person_Male,12811 +2021,geoId/01007,CensusPEPSurvey,Count_Person_Male,11944 +2021,geoId/01009,CensusPEPSurvey,Count_Person_Male,29375 +2021,geoId/01011,CensusPEPSurvey,Count_Person_Male,5533 +2021,geoId/01013,CensusPEPSurvey,Count_Person_Male,8848 +2021,geoId/01015,CensusPEPSurvey,Count_Person_Male,56096 +2021,geoId/01017,CensusPEPSurvey,Count_Person_Male,16485 +2021,geoId/01019,CensusPEPSurvey,Count_Person_Male,12545 +2021,geoId/01021,CensusPEPSurvey,Count_Person_Male,22327 +2021,geoId/01023,CensusPEPSurvey,Count_Person_Male,5975 +2021,geoId/01025,CensusPEPSurvey,Count_Person_Male,10793 +2021,geoId/01027,CensusPEPSurvey,Count_Person_Male,6959 +2021,geoId/01029,CensusPEPSurvey,Count_Person_Male,7479 +2021,geoId/01031,CensusPEPSurvey,Count_Person_Male,26866 +2021,geoId/01033,CensusPEPSurvey,Count_Person_Male,27765 +2021,geoId/01035,CensusPEPSurvey,Count_Person_Male,5456 +2021,geoId/01037,CensusPEPSurvey,Count_Person_Male,5194 +2021,geoId/01039,CensusPEPSurvey,Count_Person_Male,18208 +2021,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,19560558.0 +2021,geoId/50,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,321586.0 +2022,geoId/01001,CensusPEPSurvey,Count_Person_Male,29030 +2022,geoId/01003,CensusPEPSurvey,Count_Person_Male,120079 +2022,geoId/01005,CensusPEPSurvey,Count_Person_Male,13093 +2022,geoId/01007,CensusPEPSurvey,Count_Person_Male,11729 +2022,geoId/01009,CensusPEPSurvey,Count_Person_Male,29548 +2022,geoId/01011,CensusPEPSurvey,Count_Person_Male,5596 +2022,geoId/01013,CensusPEPSurvey,Count_Person_Male,8772 +2022,geoId/01015,CensusPEPSurvey,Count_Person_Male,56176 +2022,geoId/01017,CensusPEPSurvey,Count_Person_Male,16225 +2022,geoId/01019,CensusPEPSurvey,Count_Person_Male,12718 +2022,geoId/01021,CensusPEPSurvey,Count_Person_Male,22553 +2022,geoId/01023,CensusPEPSurvey,Count_Person_Male,5914 +2022,geoId/01025,CensusPEPSurvey,Count_Person_Male,10707 +2022,geoId/01027,CensusPEPSurvey,Count_Person_Male,6929 +2022,geoId/01029,CensusPEPSurvey,Count_Person_Male,7614 +2022,geoId/01031,CensusPEPSurvey,Count_Person_Male,27235 +2022,geoId/01033,CensusPEPSurvey,Count_Person_Male,27892 +2022,geoId/01035,CensusPEPSurvey,Count_Person_Male,5397 +2022,geoId/01037,CensusPEPSurvey,Count_Person_Male,5234 +2022,geoId/01039,CensusPEPSurvey,Count_Person_Male,18240 +2022,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,19496496.0 +2022,geoId/50,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,321328.0 +2023,geoId/01001,CensusPEPSurvey,Count_Person_Male,29277 +2023,geoId/01003,CensusPEPSurvey,Count_Person_Male,123497 +2023,geoId/01005,CensusPEPSurvey,Count_Person_Male,13066 +2023,geoId/01007,CensusPEPSurvey,Count_Person_Male,11530 +2023,geoId/01009,CensusPEPSurvey,Count_Person_Male,29756 +2023,geoId/01011,CensusPEPSurvey,Count_Person_Male,5460 +2023,geoId/01013,CensusPEPSurvey,Count_Person_Male,8599 +2023,geoId/01015,CensusPEPSurvey,Count_Person_Male,56419 +2023,geoId/01017,CensusPEPSurvey,Count_Person_Male,16092 +2023,geoId/01019,CensusPEPSurvey,Count_Person_Male,12833 +2023,geoId/01021,CensusPEPSurvey,Count_Person_Male,22819 +2023,geoId/01023,CensusPEPSurvey,Count_Person_Male,5835 +2023,geoId/01025,CensusPEPSurvey,Count_Person_Male,10581 +2023,geoId/01027,CensusPEPSurvey,Count_Person_Male,6875 +2023,geoId/01029,CensusPEPSurvey,Count_Person_Male,7753 +2023,geoId/01031,CensusPEPSurvey,Count_Person_Male,27581 +2023,geoId/01033,CensusPEPSurvey,Count_Person_Male,27995 +2023,geoId/01035,CensusPEPSurvey,Count_Person_Male,5405 +2023,geoId/01037,CensusPEPSurvey,Count_Person_Male,5192 +2023,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,38965193.0 +2023,geoId/50,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Male,647464.0 +1988,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2350311 +1988,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2093935 +1988,geoId/02,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,256376 +1901,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,37935000 +1905,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,40857000 +1970,geoId/01,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1787363 +1970,geoId/02,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,138616 +1970,geoId/04,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,914150 +1970,geoId/05,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,995782 +1970,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,10179225 +1970,geoId/08,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1128108 +1970,geoId/09,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1564512 +1970,geoId/10,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,282572 +1970,geoId/11,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,404380 +1970,geoId/12,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,3552150 +1970,geoId/13,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2370967 +1970,geoId/15,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,373042 +1970,geoId/16,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,359599 +1970,geoId/17,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,5729458 +1970,geoId/18,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2669048 +1970,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1454651 +1970,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1145694 +1970,geoId/21,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1648402 +1970,geoId/22,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1877077 +1970,geoId/23,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,511458 +1970,geoId/24,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2016708 +1970,geoId/25,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2974923 +1970,geoId/26,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,4539167 +1970,geoId/27,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1946169 +1970,geoId/28,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1147383 +1970,geoId/29,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,2425361 +1970,geoId/30,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,349023 +1970,geoId/31,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,761688 +1970,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,243986 +1970,geoId/33,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,379512 +1970,geoId/34,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,3713699 +1970,geoId/35,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,519323 +1970,geoId/36,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,8271815 +1989.0,geoId/1001.0,CensusPEPSurvey,Count_Person_Female,17431.0 +1989.0,geoId/1003.0,CensusPEPSurvey,Count_Person_Female,49469.0 +1989.0,geoId/1005.0,CensusPEPSurvey,Count_Person_Female,13315.0 +1989.0,geoId/1007.0,CensusPEPSurvey,Count_Person_Female,8359.0 +1989.0,geoId/1009.0,CensusPEPSurvey,Count_Person_Female,19823.0 +1989.0,geoId/1011.0,CensusPEPSurvey,Count_Person_Female,5801.0 +1989.0,geoId/1013.0,CensusPEPSurvey,Count_Person_Female,11745.0 +1989.0,geoId/1015.0,CensusPEPSurvey,Count_Person_Female,60047.0 +1989.0,geoId/1017.0,CensusPEPSurvey,Count_Person_Female,19663.0 +1989.0,geoId/1019.0,CensusPEPSurvey,Count_Person_Female,9899.0 +1989.0,geoId/1021.0,CensusPEPSurvey,Count_Person_Female,16659.0 +1989.0,geoId/1023.0,CensusPEPSurvey,Count_Person_Female,8483.0 +1989.0,geoId/1025.0,CensusPEPSurvey,Count_Person_Female,14170.0 +1989.0,geoId/1027.0,CensusPEPSurvey,Count_Person_Female,6834.0 +1989.0,geoId/1029.0,CensusPEPSurvey,Count_Person_Female,6473.0 +1989.0,geoId/1031.0,CensusPEPSurvey,Count_Person_Female,16704.0 +2000,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,143719004 +2000,geoId/01001,CensusPEPSurvey,Count_Person_Female,22636 +2000,geoId/01003,CensusPEPSurvey,Count_Person_Female,72040 +2000,geoId/01005,CensusPEPSurvey,Count_Person_Female,14061 +2000,geoId/01007,CensusPEPSurvey,Count_Person_Female,10088 +2000,geoId/01009,CensusPEPSurvey,Count_Person_Female,25588 +2000,geoId/01011,CensusPEPSurvey,Count_Person_Female,5519 +2000,geoId/01013,CensusPEPSurvey,Count_Person_Female,11333 +2000,geoId/01015,CensusPEPSurvey,Count_Person_Female,57957 +2000,geoId/01017,CensusPEPSurvey,Count_Person_Female,19286 +2001,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,145077463 +2001,geoId/01001,CensusPEPSurvey,Count_Person_Female,23076 +2001,geoId/01003,CensusPEPSurvey,Count_Person_Female,73964 +2001,geoId/01005,CensusPEPSurvey,Count_Person_Female,13970 +2001,geoId/01007,CensusPEPSurvey,Count_Person_Female,10313 +2001,geoId/01009,CensusPEPSurvey,Count_Person_Female,25922 +2001,geoId/01011,CensusPEPSurvey,Count_Person_Female,5373 +2001,geoId/01013,CensusPEPSurvey,Count_Person_Female,11226 +2001,geoId/01015,CensusPEPSurvey,Count_Person_Female,57975 +2001,geoId/01017,CensusPEPSurvey,Count_Person_Female,19052 +2002,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,146394634 +2002,geoId/01001,CensusPEPSurvey,Count_Person_Female,23547 +2002,geoId/01003,CensusPEPSurvey,Count_Person_Female,75558 +2002,geoId/01005,CensusPEPSurvey,Count_Person_Female,13733 +2002,geoId/01007,CensusPEPSurvey,Count_Person_Female,10318 +2002,geoId/01009,CensusPEPSurvey,Count_Person_Female,26376 +2002,geoId/01011,CensusPEPSurvey,Count_Person_Female,5281 +2002,geoId/01013,CensusPEPSurvey,Count_Person_Female,11022 +2002,geoId/01015,CensusPEPSurvey,Count_Person_Female,58099 +2002,geoId/01017,CensusPEPSurvey,Count_Person_Female,18855 +2003,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,147679036 +2003,geoId/01001,CensusPEPSurvey,Count_Person_Female,24040 +2003,geoId/01003,CensusPEPSurvey,Count_Person_Female,77307 +2003,geoId/01005,CensusPEPSurvey,Count_Person_Female,13573 +2003,geoId/01007,CensusPEPSurvey,Count_Person_Female,10334 +2003,geoId/01009,CensusPEPSurvey,Count_Person_Female,26849 +2003,geoId/01011,CensusPEPSurvey,Count_Person_Female,5229 +2003,geoId/01013,CensusPEPSurvey,Count_Person_Female,11044 +2003,geoId/01015,CensusPEPSurvey,Count_Person_Female,58568 +2003,geoId/01017,CensusPEPSurvey,Count_Person_Female,18683 +2004,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,148977286 +2004,geoId/01001,CensusPEPSurvey,Count_Person_Female,24854 +2004,geoId/01003,CensusPEPSurvey,Count_Person_Female,79719 +2004,geoId/01005,CensusPEPSurvey,Count_Person_Female,13433 +2004,geoId/01007,CensusPEPSurvey,Count_Person_Female,10407 +2004,geoId/01009,CensusPEPSurvey,Count_Person_Female,27191 +2004,geoId/01011,CensusPEPSurvey,Count_Person_Female,5124 +2004,geoId/01013,CensusPEPSurvey,Count_Person_Female,11056 +2004,geoId/01015,CensusPEPSurvey,Count_Person_Female,58887 +2004,geoId/01017,CensusPEPSurvey,Count_Person_Female,18578 +2005,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,150319521 +2005,geoId/01001,CensusPEPSurvey,Count_Person_Female,25476 +2005,geoId/01003,CensusPEPSurvey,Count_Person_Female,82767 +2005,geoId/01005,CensusPEPSurvey,Count_Person_Female,13314 +2005,geoId/01007,CensusPEPSurvey,Count_Person_Female,10494 +2005,geoId/01009,CensusPEPSurvey,Count_Person_Female,27472 +2005,geoId/01011,CensusPEPSurvey,Count_Person_Female,5110 +2005,geoId/01013,CensusPEPSurvey,Count_Person_Female,11029 +2005,geoId/01015,CensusPEPSurvey,Count_Person_Female,59422 +2005,geoId/01017,CensusPEPSurvey,Count_Person_Female,18555 +2006,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,151732647 +2006,geoId/01001,CensusPEPSurvey,Count_Person_Female,26340 +2006,geoId/01003,CensusPEPSurvey,Count_Person_Female,85929 +2006,geoId/01005,CensusPEPSurvey,Count_Person_Female,13143 +2006,geoId/01007,CensusPEPSurvey,Count_Person_Female,10436 +2006,geoId/01009,CensusPEPSurvey,Count_Person_Female,27957 +2006,geoId/01011,CensusPEPSurvey,Count_Person_Female,5012 +2006,geoId/01013,CensusPEPSurvey,Count_Person_Female,11013 +2006,geoId/01015,CensusPEPSurvey,Count_Person_Female,59870 +2006,geoId/01017,CensusPEPSurvey,Count_Person_Female,18291 +2007,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,153166353 +2007,geoId/01001,CensusPEPSurvey,Count_Person_Female,26937 +2007,geoId/01003,CensusPEPSurvey,Count_Person_Female,88231 +2007,geoId/01005,CensusPEPSurvey,Count_Person_Female,13136 +2007,geoId/01007,CensusPEPSurvey,Count_Person_Female,10589 +2007,geoId/01009,CensusPEPSurvey,Count_Person_Female,28299 +2007,geoId/01011,CensusPEPSurvey,Count_Person_Female,5053 +2007,geoId/01013,CensusPEPSurvey,Count_Person_Female,11040 +2007,geoId/01015,CensusPEPSurvey,Count_Person_Female,60300 +2007,geoId/01017,CensusPEPSurvey,Count_Person_Female,18208 +2008,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,154604015 +2008,geoId/01001,CensusPEPSurvey,Count_Person_Female,27404 +2008,geoId/01003,CensusPEPSurvey,Count_Person_Female,90030 +2008,geoId/01005,CensusPEPSurvey,Count_Person_Female,13034 +2008,geoId/01007,CensusPEPSurvey,Count_Person_Female,10665 +2008,geoId/01009,CensusPEPSurvey,Count_Person_Female,28697 +2008,geoId/01011,CensusPEPSurvey,Count_Person_Female,4996 +2008,geoId/01013,CensusPEPSurvey,Count_Person_Female,11135 +2008,geoId/01015,CensusPEPSurvey,Count_Person_Female,60812 +2008,geoId/01017,CensusPEPSurvey,Count_Person_Female,18038 +2009,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,155964075 +2009,geoId/01001,CensusPEPSurvey,Count_Person_Female,27771 +2009,geoId/01003,CensusPEPSurvey,Count_Person_Female,91705 +2009,geoId/01005,CensusPEPSurvey,Count_Person_Female,12969 +2009,geoId/01007,CensusPEPSurvey,Count_Person_Female,10608 +2009,geoId/01009,CensusPEPSurvey,Count_Person_Female,28946 +2009,geoId/01011,CensusPEPSurvey,Count_Person_Female,4980 +2009,geoId/01013,CensusPEPSurvey,Count_Person_Female,11110 +2009,geoId/01015,CensusPEPSurvey,Count_Person_Female,61284 +2009,geoId/01017,CensusPEPSurvey,Count_Person_Female,17954 +2010,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,157249665 +2010,geoId/01001,CensusPEPSurvey,Count_Person_Female,28094 +2010,geoId/01003,CensusPEPSurvey,Count_Person_Female,93498 +2010,geoId/01005,CensusPEPSurvey,Count_Person_Female,12824 +2010,geoId/01007,CensusPEPSurvey,Count_Person_Female,10597 +2010,geoId/01009,CensusPEPSurvey,Count_Person_Female,28991 +2010,geoId/01011,CensusPEPSurvey,Count_Person_Female,4997 +2010,geoId/01013,CensusPEPSurvey,Count_Person_Female,11095 +2010,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1539861 +2010,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1440121 +2010,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1338331 +2011,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,158370501 +2011,geoId/01001,CensusPEPSurvey,Count_Person_Female,28249 +2011,geoId/01003,CensusPEPSurvey,Count_Person_Female,95380 +2011,geoId/01005,CensusPEPSurvey,Count_Person_Female,12688 +2011,geoId/01007,CensusPEPSurvey,Count_Person_Female,10466 +2011,geoId/01009,CensusPEPSurvey,Count_Person_Female,29115 +2011,geoId/01011,CensusPEPSurvey,Count_Person_Female,4914 +2011,geoId/01013,CensusPEPSurvey,Count_Person_Female,11057 +2011,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1546565 +2011,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1445451 +2011,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1345187 +2012,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,159480635 +2012,geoId/01001,CensusPEPSurvey,Count_Person_Female,28140 +2012,geoId/01003,CensusPEPSurvey,Count_Person_Female,97475 +2012,geoId/01005,CensusPEPSurvey,Count_Person_Female,12630 +2012,geoId/01007,CensusPEPSurvey,Count_Person_Female,10445 +2012,geoId/01009,CensusPEPSurvey,Count_Person_Female,29156 +2012,geoId/01011,CensusPEPSurvey,Count_Person_Female,4838 +2012,geoId/01013,CensusPEPSurvey,Count_Person_Female,10990 +2012,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1550836 +2012,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1451795 +2012,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1361633 +2013,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,160545893 +2013,geoId/01001,CensusPEPSurvey,Count_Person_Female,28159 +2013,geoId/01003,CensusPEPSurvey,Count_Person_Female,99838 +2013,geoId/01005,CensusPEPSurvey,Count_Person_Female,12564 +2013,geoId/01007,CensusPEPSurvey,Count_Person_Female,10402 +2013,geoId/01009,CensusPEPSurvey,Count_Person_Female,29187 +2013,geoId/01011,CensusPEPSurvey,Count_Person_Female,4814 +2013,geoId/01013,CensusPEPSurvey,Count_Person_Female,10879 +2013,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1558562 +2013,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1454421 +2013,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1379061 +2014,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,161690519 +2014,geoId/01001,CensusPEPSurvey,Count_Person_Female,28118 +2014,geoId/01003,CensusPEPSurvey,Count_Person_Female,102090 +2014,geoId/01005,CensusPEPSurvey,Count_Person_Female,12513 +2014,geoId/01007,CensusPEPSurvey,Count_Person_Female,10393 +2014,geoId/01009,CensusPEPSurvey,Count_Person_Female,29166 +2014,geoId/01011,CensusPEPSurvey,Count_Person_Female,4843 +2014,geoId/01013,CensusPEPSurvey,Count_Person_Female,10886 +2014,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1565894 +2014,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1456819 +2014,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1401290 +2015,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,162832151 +2015,geoId/01001,CensusPEPSurvey,Count_Person_Female,28151 +2015,geoId/01003,CensusPEPSurvey,Count_Person_Female,104124 +2015,geoId/01005,CensusPEPSurvey,Count_Person_Female,12315 +2015,geoId/01007,CensusPEPSurvey,Count_Person_Female,10441 +2015,geoId/01009,CensusPEPSurvey,Count_Person_Female,29184 +2015,geoId/01011,CensusPEPSurvey,Count_Person_Female,4765 +2015,geoId/01013,CensusPEPSurvey,Count_Person_Female,10766 +2015,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1570465 +2015,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1460522 +2015,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1427439 +2016,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,163986062 +2016,geoId/01001,CensusPEPSurvey,Count_Person_Female,28303 +2016,geoId/01003,CensusPEPSurvey,Count_Person_Female,106718 +2016,geoId/01005,CensusPEPSurvey,Count_Person_Female,12191 +2016,geoId/01007,CensusPEPSurvey,Count_Person_Female,10516 +2016,geoId/01009,CensusPEPSurvey,Count_Person_Female,29189 +2016,geoId/01011,CensusPEPSurvey,Count_Person_Female,4745 +2016,geoId/01013,CensusPEPSurvey,Count_Person_Female,10712 +2016,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1575193 +2016,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1461643 +2016,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1453771 +2017,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,165008683 +2017,geoId/01001,CensusPEPSurvey,Count_Person_Female,28407 +2017,geoId/01003,CensusPEPSurvey,Count_Person_Female,109413 +2017,geoId/01005,CensusPEPSurvey,Count_Person_Female,11941 +2017,geoId/01007,CensusPEPSurvey,Count_Person_Female,10485 +2017,geoId/01009,CensusPEPSurvey,Count_Person_Female,29275 +2017,geoId/01011,CensusPEPSurvey,Count_Person_Female,4662 +2017,geoId/01013,CensusPEPSurvey,Count_Person_Female,10609 +2017,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1579862 +2017,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1460476 +2017,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1480860 +2018,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,165877686 +2018,geoId/01001,CensusPEPSurvey,Count_Person_Female,28484 +2018,geoId/01003,CensusPEPSurvey,Count_Person_Female,112289 +2018,geoId/01005,CensusPEPSurvey,Count_Person_Female,11730 +2018,geoId/01007,CensusPEPSurvey,Count_Person_Female,10416 +2018,geoId/01009,CensusPEPSurvey,Count_Person_Female,29248 +2018,geoId/01011,CensusPEPSurvey,Count_Person_Female,4638 +2018,geoId/01013,CensusPEPSurvey,Count_Person_Female,10504 +2018,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1582600 +2018,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1461321 +2018,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1510460 +2019,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,166637617 +2019,geoId/01001,CensusPEPSurvey,Count_Person_Female,28691 +2019,geoId/01003,CensusPEPSurvey,Count_Person_Female,115169 +2019,geoId/01005,CensusPEPSurvey,Count_Person_Female,11627 +2019,geoId/01007,CensusPEPSurvey,Count_Person_Female,10435 +2019,geoId/01009,CensusPEPSurvey,Count_Person_Female,29286 +2019,geoId/01011,CensusPEPSurvey,Count_Person_Female,4597 +2019,geoId/01013,CensusPEPSurvey,Count_Person_Female,10425 +2019,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1586636 +2019,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1462080 +2019,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1541266 +2020,country/USA,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,167227921 +2020,geoId/01001,CensusPEPSurvey,Count_Person_Female,28919 +2020,geoId/01003,CensusPEPSurvey,Count_Person_Female,118287 +2020,geoId/01005,CensusPEPSurvey,Count_Person_Female,11602 +2020,geoId/01007,CensusPEPSurvey,Count_Person_Female,10363 +2020,geoId/01009,CensusPEPSurvey,Count_Person_Female,29262 +2020,geoId/01011,CensusPEPSurvey,Count_Person_Female,4515 +2020,geoId/01013,CensusPEPSurvey,Count_Person_Female,10420 +2020,geoId/19,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1587866 +2020,geoId/20,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1462265 +2020,geoId/32,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,1565619 +2021,geoId/01001,CensusPEPSurvey,Count_Person_Female,30421 +2021,geoId/01003,CensusPEPSurvey,Count_Person_Female,122714 +2021,geoId/01005,CensusPEPSurvey,Count_Person_Female,11722 +2021,geoId/01007,CensusPEPSurvey,Count_Person_Female,10415 +2021,geoId/01009,CensusPEPSurvey,Count_Person_Female,29704 +2021,geoId/01011,CensusPEPSurvey,Count_Person_Female,4610 +2021,geoId/01013,CensusPEPSurvey,Count_Person_Female,10042 +2021,geoId/01015,CensusPEPSurvey,Count_Person_Female,59582 +2021,geoId/01017,CensusPEPSurvey,Count_Person_Female,18003 +2021,geoId/01019,CensusPEPSurvey,Count_Person_Female,12529 +2021,geoId/01021,CensusPEPSurvey,Count_Person_Female,22932 +2021,geoId/01023,CensusPEPSurvey,Count_Person_Female,6573 +2021,geoId/01025,CensusPEPSurvey,Count_Person_Female,11947 +2021,geoId/01027,CensusPEPSurvey,Count_Person_Female,7211 +2021,geoId/01029,CensusPEPSurvey,Count_Person_Female,7677 +2021,geoId/01031,CensusPEPSurvey,Count_Person_Female,27333 +2021,geoId/01033,CensusPEPSurvey,Count_Person_Female,29879 +2021,geoId/01035,CensusPEPSurvey,Count_Person_Female,5864 +2021,geoId/01037,CensusPEPSurvey,Count_Person_Female,5120 +2021,geoId/01039,CensusPEPSurvey,Count_Person_Female,19362 +2021,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,19584502.0 +2021,geoId/50,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,325507.0 +2022,geoId/01001,CensusPEPSurvey,Count_Person_Female,30696 +2022,geoId/01003,CensusPEPSurvey,Count_Person_Female,126452 +2022,geoId/01005,CensusPEPSurvey,Count_Person_Female,11607 +2022,geoId/01007,CensusPEPSurvey,Count_Person_Female,10257 +2022,geoId/01009,CensusPEPSurvey,Count_Person_Female,29968 +2022,geoId/01011,CensusPEPSurvey,Count_Person_Female,4547 +2022,geoId/01013,CensusPEPSurvey,Count_Person_Female,9896 +2022,geoId/01015,CensusPEPSurvey,Count_Person_Female,59604 +2022,geoId/01017,CensusPEPSurvey,Count_Person_Female,17939 +2022,geoId/01019,CensusPEPSurvey,Count_Person_Female,12635 +2022,geoId/01021,CensusPEPSurvey,Count_Person_Female,23295 +2022,geoId/01023,CensusPEPSurvey,Count_Person_Female,6517 +2022,geoId/01025,CensusPEPSurvey,Count_Person_Female,11867 +2022,geoId/01027,CensusPEPSurvey,Count_Person_Female,7254 +2022,geoId/01029,CensusPEPSurvey,Count_Person_Female,7758 +2022,geoId/01031,CensusPEPSurvey,Count_Person_Female,27605 +2022,geoId/01033,CensusPEPSurvey,Count_Person_Female,30101 +2022,geoId/01035,CensusPEPSurvey,Count_Person_Female,5827 +2022,geoId/01037,CensusPEPSurvey,Count_Person_Female,5073 +2022,geoId/01039,CensusPEPSurvey,Count_Person_Female,19363 +2022,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,19544120.0 +2022,geoId/50,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,325782.0 +2023,geoId/01001,CensusPEPSurvey,Count_Person_Female,31065 +2023,geoId/01003,CensusPEPSurvey,Count_Person_Female,130010 +2023,geoId/01005,CensusPEPSurvey,Count_Person_Female,11519 +2023,geoId/01007,CensusPEPSurvey,Count_Person_Female,10338 +2023,geoId/01009,CensusPEPSurvey,Count_Person_Female,30060 +2023,geoId/01011,CensusPEPSurvey,Count_Person_Female,4437 +2023,geoId/01013,CensusPEPSurvey,Count_Person_Female,9783 +2023,geoId/01015,CensusPEPSurvey,Count_Person_Female,60010 +2023,geoId/01017,CensusPEPSurvey,Count_Person_Female,17987 +2023,geoId/01019,CensusPEPSurvey,Count_Person_Female,12833 +2023,geoId/01021,CensusPEPSurvey,Count_Person_Female,23612 +2023,geoId/01023,CensusPEPSurvey,Count_Person_Female,6417 +2023,geoId/01025,CensusPEPSurvey,Count_Person_Female,11756 +2023,geoId/01027,CensusPEPSurvey,Count_Person_Female,7236 +2023,geoId/01029,CensusPEPSurvey,Count_Person_Female,7886 +2023,geoId/01031,CensusPEPSurvey,Count_Person_Female,28062 +2023,geoId/01033,CensusPEPSurvey,Count_Person_Female,30366 +2023,geoId/01035,CensusPEPSurvey,Count_Person_Female,5769 +2023,geoId/01037,CensusPEPSurvey,Count_Person_Female,5076 +2023,geoId/06,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,19445653.0 +2023,geoId/50,dcAggregate/CensusPEPSurvey_PartialAggregate,Count_Person_Female,321436.0 diff --git a/scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.mcf b/scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.mcf similarity index 100% rename from scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.mcf rename to scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.mcf diff --git a/scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.tmcf b/scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.tmcf similarity index 100% rename from scripts/us_census/pep/us_pep_sex/test_data/expected_files/expected_population_estimate_sex.tmcf rename to scripts/us_census/pep/us_pep_sex/test_data/expected_files/population_estimate_sex.tmcf From 4bdde25bc69ecb3ad8a8c89c2e10f593393a6518 Mon Sep 17 00:00:00 2001 From: kurus21 <140687393+kurus21@users.noreply.github.com> Date: Mon, 9 Dec 2024 12:58:05 +0530 Subject: [PATCH 2/4] xlrd 20241209 changes (#1131) --- requirements.txt | 2 +- requirements_all.txt | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/requirements.txt b/requirements.txt index 70a46c0a38..f8ddfe17d7 100644 --- a/requirements.txt +++ b/requirements.txt @@ -25,7 +25,7 @@ retry==0.9.2 shapely==1.8.5 urllib3==1.26.8 xarray==0.19.0 -xlrd==1.2.0 +xlrd zipp beautifulsoup4 ratelimit diff --git a/requirements_all.txt b/requirements_all.txt index 67a75e15db..975edc670b 100644 --- a/requirements_all.txt +++ b/requirements_all.txt @@ -36,7 +36,7 @@ shapely==1.8.5 tabula-py urllib3==1.26.8 xarray==0.19.0 -xlrd==1.2.0 +xlrd yapf zipp beautifulsoup4 From 9a0994d444f7b119bc03283f52e50f43f2c1d84c Mon Sep 17 00:00:00 2001 From: shapateriya <149043076+shapateriya@users.noreply.github.com> Date: Mon, 9 Dec 2024 16:58:01 +0530 Subject: [PATCH 3/4] USCensusPEP_MonthlyPopulation-code changes for Autorefresh (#1122) * USCensusPEP_MonthlyPopulation-code changes for Autorefresh * SCHEDULES=scripts/us_census/pep/monthly_population_estimate:USCensusPEP_MonthlyPopulation * added download script * run format check * resolve pr comment v1 * added raw data * changes done * changes done.. --- .../pep/monthly_population_estimate/README.md | 24 +- .../monthly_population_estimate/download.py | 243 ---------- .../download_test.py | 51 -- .../file_urls.json | 6 - .../input_url.json | 12 + .../monthly_population_estimate/manifest.json | 22 + .../monthly_population_estimate/preprocess.py | 449 +++++++++++++++--- .../preprocess_test.py | 35 +- ...ownload_expected_USA_Population_Count.xlsx | Bin 12351 -> 0 bytes .../expected_USA_Population_Count.csv | 25 - .../expected_USA_Population_Count.mcf | 36 -- .../expected_USA_Population_Count.tmcf | 44 -- .../test_data/test_census_data.csv | 151 ------ .../test_data/test_census_data.xlsx | Bin 37888 -> 0 bytes 14 files changed, 440 insertions(+), 658 deletions(-) delete mode 100644 scripts/us_census/pep/monthly_population_estimate/download.py delete mode 100644 scripts/us_census/pep/monthly_population_estimate/download_test.py delete mode 100644 scripts/us_census/pep/monthly_population_estimate/file_urls.json create mode 100644 scripts/us_census/pep/monthly_population_estimate/input_url.json create mode 100644 scripts/us_census/pep/monthly_population_estimate/manifest.json delete mode 100644 scripts/us_census/pep/monthly_population_estimate/test_data/download_expected_USA_Population_Count.xlsx delete mode 100644 scripts/us_census/pep/monthly_population_estimate/test_data/expected_USA_Population_Count.csv delete mode 100644 scripts/us_census/pep/monthly_population_estimate/test_data/expected_USA_Population_Count.mcf delete mode 100644 scripts/us_census/pep/monthly_population_estimate/test_data/expected_USA_Population_Count.tmcf delete mode 100644 scripts/us_census/pep/monthly_population_estimate/test_data/test_census_data.csv delete mode 100644 scripts/us_census/pep/monthly_population_estimate/test_data/test_census_data.xlsx diff --git a/scripts/us_census/pep/monthly_population_estimate/README.md b/scripts/us_census/pep/monthly_population_estimate/README.md index f607a13e8c..e22b5690c7 100644 --- a/scripts/us_census/pep/monthly_population_estimate/README.md +++ b/scripts/us_census/pep/monthly_population_estimate/README.md @@ -1,12 +1,12 @@ # US Census PEP: National Population Count by Residential Status and Military Status ## About the Dataset -This dataset has Population Count Estimates for the United States from the year 1980 to 2022 on a monthly basis. +This dataset has Population Count Estimates for the United States from the year 1980 on a monthly basis till latest year. The population is categorized by residential status (resident,InArmedForcesOverseas), military status(Civilian,InArmedForces) and a combination of the same. ### Download URL -The data in txt/xls/xlsx formats are downloadable from within https://www2.census.gov/programs-surveys/popest/tables. The actual URLs are listed in file_urls.json. +The data in txt/xls/xlsx formats are downloadable from within https://www2.census.gov/programs-surveys/popest/tables. The actual URLs are listed in input_url.json. #### API Output These are the attributes that we will use @@ -44,12 +44,22 @@ Run the test cases ```/bin/python3 scripts/us_census/pep/monthly_population_estimate/preprocess_test.py ``` +### Import Procedure +[Updated the script on November 11, 2024] +Downloading input files is now integrated into preprocess.py, eliminating the need to run the separate download.sh script. +All source file URLs, including future URLs adhering to the same structure, are centrally managed in the input_url.json file. +All input files required for processing should be stored within the designated "input_files" folder. -### Import Procedure +### Downloading and Processing Data -The below script make a new folder named as input_data (if not already present) where the download.py script is present and will download the data into this folder. -`/bin/python3 scripts/us_census/pep/monthly_population_estimate/download.py` +To perform "download and process", run the below command: + python3 preprocess.py +Running this command generates input_fles and csv, mcf, tmcf files -The below script will generate csv and mcf files. -`/bin/python3 scripts/us_census/pep/monthly_population_estimate/preprocess.py` +If you want to perform "only process", run the below command: + python3 preprocess.py --mode=process + +If you want to perform "only download", run the below command: + python3 preprocess.py --mode=download + \ No newline at end of file diff --git a/scripts/us_census/pep/monthly_population_estimate/download.py b/scripts/us_census/pep/monthly_population_estimate/download.py deleted file mode 100644 index 3c478367a4..0000000000 --- a/scripts/us_census/pep/monthly_population_estimate/download.py +++ /dev/null @@ -1,243 +0,0 @@ -# Copyright 2022 Google LLC -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" A Script to download, perform some basic transformations to - USA Census PEP monthly population data from the URLS in - provided json file and save it as an xlsx file. -""" - -import os -import json -import pandas as pd -import numpy as np -from absl import app -from absl import flags - -_FLAGS = flags.FLAGS -_URLS_JSON_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), - "file_urls.json") - -_URLS_JSON = None -with open(_URLS_JSON_PATH, encoding="UTF-8") as file: - _URLS_JSON = json.load(file) - -# Flag names are globally defined! So in general, we need to be -# careful to pick names that are unlikely to be used by other libraries. -# If there is a conflict, we'll get an error at import time. -flags.DEFINE_list("us_census_pep_monthly_pop_estimate_url", \ - _URLS_JSON["urls"], "Import Data URL's List") - -_HEADER = 1 -_SCALING_FACTOR_TXT_FILE = 1000 - - -def _save_data(url: str, download_local_path: str) -> None: - """ - This method loads the Data from url to pandas Dataframe. - Writes the data to local path provided as one the parameter. - - Args: - url (str): Url of the dataset - download_local_path (str): LocalPath to save the datasets. - - Returns: - None - """ - df = None - file_name = url.split("/")[-1] - if ".xls" in url: - df = pd.read_excel(url, header=_HEADER) - df.to_excel(os.path.join(download_local_path, file_name), - index=False, - header=False, - engine='xlsxwriter') - elif ".csv" in url: - file_name = file_name.replace(".csv", ".xlsx") - df = pd.read_csv(url, header=None) - df = _clean_csv_file(df) - df.to_excel(os.path.join(download_local_path, file_name), - index=False, - engine='xlsxwriter') - elif ".txt" in url: - file_name = file_name.replace(".txt", ".xlsx") - cols = [ - "Year and Month", "Date", "Resident Population", - "Resident Population Plus Armed Forces Overseas", - "Civilian Population", "Civilian NonInstitutionalized Population" - ] - df = pd.read_table(url, - index_col=False, - delim_whitespace=True, - engine='python', - skiprows=17, - names=cols) - # Skipping 17 rows as the initial 17 rows contains the information about - # the file being used, heading files spread accross multiple lines and - # other irrelevant information like source/contact details. - df = _clean_txt_file(df) - # Multiplying the data with scaling factor 1000. - for col in df.columns: - if "year" not in col.lower(): - df[col] = df[col].apply(_mulitply_scaling_factor) - df.to_excel(os.path.join(download_local_path, file_name), - index=False, - engine='xlsxwriter') - - -def _concat_cols(col: pd.Series) -> pd.Series: - """ - This method concats two DataFrame column values - with space in-between. - - Args: - col[0] (Series) : DataFrame Column of dtype str - col[1] (Series) : DataFrame Column of dtype str - - Returns: - res (Series) : Concatenated DataFrame Columns - """ - # Looking at the data whenever col[0] has year, col[1] is None - # Thus concatinating Date with Month which is needed here - res = col[0] - if col[1] is None: - return res - res = col[0] + ' ' + col[1] - return res - - -def _mulitply_scaling_factor(col: pd.Series) -> pd.Series: - """ - This method multiply dataframe column with scaling factor. - - Args: - col (Series): DataFrame Column of dtype int - **kwargs (dict): Dict with key 'scaling_factor' and value type int - - Returns: - res (Series): DataFrame column values mulitplied by scaling_factor. - """ - res = col - if col not in [None, np.NAN]: - if col.isdigit(): - res = int(col) * _SCALING_FACTOR_TXT_FILE - return res - - -def _clean_csv_file(df: pd.DataFrame) -> pd.DataFrame: - """ - This method cleans the dataframe loaded from a csv file format. - Also, Performs transformations on the data. - - Args: - df (DataFrame) : DataFrame of csv dataset - - Returns: - df (DataFrame) : Transformed DataFrame for txt dataset. - """ - # Removal of file description and headers in the initial lines of the input - # - # Input Data: - # table with row headers in column A and column headers in rows 3 through 5 (leading dots indicate sub-parts) - # Table 1. Monthly Population Estimates for the United States: April 1, 2000 to December 1, 2010 - # Year and Month Resident Population Resident Population Plus Armed Forces Overseas Civilian Population Civilian Noninstitutionalized Population - # 2000 - # .April 1 28,14,24,602 28,16,52,670 28,02,00,922 27,61,62,490 - # .May 1 28,16,46,806 28,18,76,634 28,04,28,534 27,63,89,920 - # - # Output Data: - # (Made Headers) Year and Month Resident Population Resident Population Plus Armed Forces Overseas Civilian Population Civilian Noninstitutionalized Population - # 2000 - # .April 1 28,14,24,602 28,16,52,670 28,02,00,922 27,61,62,490 - # .May 1 28,16,46,806 28,18,76,634 28,04,28,534 27,63,89,920 - - idx = df[df[0] == "Year and Month"].index - df = df.iloc[idx.values[0] + 1:][:] - df = df.dropna(axis=1, how='all') - cols = [ - "Year and Month", "Resident Population", - "Resident Population Plus Armed Forces Overseas", "Civilian Population", - "Civilian NonInstitutionalized Population" - ] - df.columns = cols - for col in df.columns: - df[col] = df[col].str.replace(",", "") - return df - - -def _clean_txt_file(df: pd.DataFrame) -> pd.DataFrame: - """ - This method cleans the dataframe loaded from a txt file format. - Also, Performs transformations on the data. - - Args: - df (DataFrame) : DataFrame of txt dataset - scaling_factor_txt_file (int) : Scaling factor for text file - - Returns: - df (DataFrame) : Transformed DataFrame for txt dataset. - """ - # Month and Year are concatenated into a single column if they are not None - df['Year and Month'] = df[['Year and Month', 'Date']]\ - .apply(_concat_cols, axis=1) - df.drop(columns=['Date'], inplace=True) - for col in df.columns: - df[col] = df[col].str.replace(",", "") - - # The index numbers alotted as per where the columns are present to - # move the columns left - resident_population = 1 - resident_population_plus_armed_forces_overseas = 2 - civilian_population = 3 - civilian_noninstitutionalized_population = 4 - # Moving the row data left upto one index value. - # As the text file has (census) mentioned in some rows and it makes the - # other column's data shift by one place, we need to shift it back to the - # original place. - idx = df[df['Resident Population'] == "(census)"].index - df.iloc[idx, resident_population] = df.iloc[idx][ - "Resident Population Plus Armed Forces Overseas"] - df.iloc[idx, resident_population_plus_armed_forces_overseas] = df.iloc[idx][ - "Civilian Population"] - df.iloc[idx, civilian_population] = df.iloc[idx][ - "Civilian NonInstitutionalized Population"] - df.iloc[idx, civilian_noninstitutionalized_population] = np.NAN - return df - - -def download(download_path: str, file_urls: list) -> None: - """ - This method iterates on each url and calls the above defined - functions to download and clean the data. - - Args: - download_path (str) : Local Path to download datasets from URLS - file_urls (list) : List of dataset URLS. - - Returns: - df (DataFrame) : Transformed DataFrame for txt dataset. - """ - if not os.path.exists(download_path): - os.mkdir(download_path) - for url in file_urls: - _save_data(url, download_path) - - -def main(_): - file_urls = _FLAGS.us_census_pep_monthly_pop_estimate_url - path = os.path.join(os.path.dirname(os.path.abspath(__file__)), - "input_data") - download(path, file_urls) - - -if __name__ == "__main__": - app.run(main) diff --git a/scripts/us_census/pep/monthly_population_estimate/download_test.py b/scripts/us_census/pep/monthly_population_estimate/download_test.py deleted file mode 100644 index 8f097d3ffd..0000000000 --- a/scripts/us_census/pep/monthly_population_estimate/download_test.py +++ /dev/null @@ -1,51 +0,0 @@ -# Copyright 2022 Google LLC -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Script to automate the testing for USA Population preprocess script. -""" - -import os -import unittest -from os import path -from download import download -import pandas as pd -# module_dir_ is the path to where this test is running from. -module_dir_ = os.path.dirname(__file__) -_TEST_DATA_FOLDER = os.path.join(module_dir_, "test_data") -_OP_DATA_FOLDER = os.path.join(module_dir_, "test_output_data_download") - - -class TestPreprocess(unittest.TestCase): - """ - TestPreprocess is inherting unittest class - properties which further requried for unit testing - """ - - def test_create_xlsx(self): - """ - This method is required to test between output generated - preprocess script and excepted output files like XLSX - """ - ip_data_path = [os.path.join(_TEST_DATA_FOLDER, "test_census_data.csv")] - download(_OP_DATA_FOLDER, ip_data_path) - expected_xlsx_file_path = os.path.join( - _TEST_DATA_FOLDER, "download_expected_USA_Population_Count.xlsx") - - expected_df = pd.read_excel(expected_xlsx_file_path) - actual_df = pd.read_excel(_OP_DATA_FOLDER + "/test_census_data.xlsx") - - if path.exists(_OP_DATA_FOLDER): - os.remove(_OP_DATA_FOLDER) - - self.assertEqual(True, actual_df.equals(expected_df)) diff --git a/scripts/us_census/pep/monthly_population_estimate/file_urls.json b/scripts/us_census/pep/monthly_population_estimate/file_urls.json deleted file mode 100644 index 6316eae3bb..0000000000 --- a/scripts/us_census/pep/monthly_population_estimate/file_urls.json +++ /dev/null @@ -1,6 +0,0 @@ -{ - "urls" : ["https://www2.census.gov/programs-surveys/popest/tables/2000-2009/state/totals/na-est2009-01.csv", - "https://www2.census.gov/programs-surveys/popest/tables/2020-2021/national/totals/NA-EST2021-POP.xlsx", - "https://www2.census.gov/programs-surveys/popest/tables/2010-2019/national/totals/na-est2019-01.xlsx", - "https://www2.census.gov/programs-surveys/popest/tables/1990-2000/national/totals/nat-total.txt"] -} \ No newline at end of file diff --git a/scripts/us_census/pep/monthly_population_estimate/input_url.json b/scripts/us_census/pep/monthly_population_estimate/input_url.json new file mode 100644 index 0000000000..34acb3089d --- /dev/null +++ b/scripts/us_census/pep/monthly_population_estimate/input_url.json @@ -0,0 +1,12 @@ +[ + { + "download_path": "https://www2.census.gov/programs-surveys/popest/tables/1990-2000/national/totals/nat-total.txt" + }, + { + "download_path": "https://www2.census.gov/programs-surveys/popest/tables/2000-2009/state/totals/na-est2009-01.csv" + }, + { + "download_path": "https://www2.census.gov/programs-surveys/popest/tables/2010-2019/national/totals/na-est2019-01.xlsx" + } + +] \ No newline at end of file diff --git a/scripts/us_census/pep/monthly_population_estimate/manifest.json b/scripts/us_census/pep/monthly_population_estimate/manifest.json new file mode 100644 index 0000000000..78fd2eb75f --- /dev/null +++ b/scripts/us_census/pep/monthly_population_estimate/manifest.json @@ -0,0 +1,22 @@ +{ + "import_specifications": [ + { + "import_name": "USCensusPEP_MonthlyPopulation", + "curator_emails": [ + "mogalluru@google.com" + ], + "provenance_url": "https://www2.census.gov/programs-surveys/popest/tables/", + "provenance_description": "The Census Bureau's Population Estimates Program (PEP) produces estimates of the population for the United States.", + "scripts": [ + "preprocess.py" + ], + "import_inputs": [ + { + "template_mcf": "output/USA_Population_Count.tmcf", + "cleaned_csv": "output/USA_Population_Count.csv" + } + ], + "cron_schedule": "0 07 * * 1" + } + ] +} diff --git a/scripts/us_census/pep/monthly_population_estimate/preprocess.py b/scripts/us_census/pep/monthly_population_estimate/preprocess.py index 924eadc517..51ab2a1bca 100644 --- a/scripts/us_census/pep/monthly_population_estimate/preprocess.py +++ b/scripts/us_census/pep/monthly_population_estimate/preprocess.py @@ -15,22 +15,43 @@ from the datasets in the provided local path. Typical usage: 1. python3 preprocess.py - 2. python3 preprocess.py -i input_data + 2. python3 preprocess.py -mode='download' + 3. python3 preprocess.py -mode='process' """ from dataclasses import replace import os import re - +import warnings +import requests +import numpy as np +import time +import json +import sys +from datetime import datetime as dt + +warnings.filterwarnings('ignore') import pandas as pd from absl import app from absl import flags +from absl import logging pd.set_option("display.max_columns", None) FLAGS = flags.FLAGS +flags.DEFINE_string('mode', '', 'Options: download or process') +_MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) +_INPUT_FILE_PATH = os.path.join(_MODULE_DIR, 'input_files') default_input_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), - "input_data") + "input_files") flags.DEFINE_string("input_path", default_input_path, "Import Data File's List") +_HEADER = 1 +_SCALING_FACTOR_TXT_FILE = 1000 + +#Creating folder to store the raw data from source +raw_data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), + "raw_data") +if not os.path.exists(raw_data_path): + os.mkdir(raw_data_path) _MCF_TEMPLATE = ("Node: dcid:{dcid}\n" "typeOf: dcs:StatisticalVariable\n" @@ -174,9 +195,9 @@ class CensusUSACountryPopulation: Files using pre-defined templates. """ - def __init__(self, input_files: list, csv_file_path: str, - mcf_file_path: str, tmcf_file_path: str) -> None: - self._input_files = input_files + def __init__(self, input_path: str, csv_file_path: str, mcf_file_path: str, + tmcf_file_path: str) -> None: + self.input_path = input_path #added self._cleaned_csv_file_path = csv_file_path self._mcf_file_path = mcf_file_path self._tmcf_file_path = tmcf_file_path @@ -267,28 +288,37 @@ def _transform_data(self, df: pd.DataFrame) -> None: CSV file format. Arguments: - file (str) : Dataset File Path + df (DataFrame): Input DataFrame containing the raw data to be transformed. Returns: - df (DataFrame) : DataFrame. + bool: Returns True if the transformation and file saving are successful, + False if an error occurs during processing. """ - df = self._transform_df(df) + try: + df = self._transform_df(df) - if self._df is None: - self._df = df - else: - self._df = self._df.append(df, ignore_index=True) - - self._df.sort_values(by=['Date', 'date_range'], - ascending=False, - inplace=True) - self._df.drop_duplicates("Date", keep="first", inplace=True) - self._df.drop(['date_range'], axis=1, inplace=True) - float_col = self._df.select_dtypes(include=['float64']) - for col in float_col.columns.values: - self._df[col] = self._df[col].astype('int64') - self._df.to_csv(self._cleaned_csv_file_path, index=False) + if self._df is None: + self._df = df + else: + self._df = pd.concat([self._df, df], ignore_index=True) + + self._df.sort_values(by=['Date', 'date_range'], + ascending=False, + inplace=True) + # Data for 2020 exists in two sources, causing overlap. We'll eliminate duplicates + self._df.drop_duplicates("Date", keep="first", inplace=True) + self._df.drop(['date_range'], axis=1, inplace=True) + float_col = self._df.select_dtypes(include=['float64']) + for col in float_col.columns.values: + try: + self._df[col] = self._df[col].astype('int64') + except: + pass + self._df.to_csv(self._cleaned_csv_file_path, index=False) + except Exception as e: + logging.fatal(f'Error when processing file:-{e}') + return True def _generate_mcf(self, df_cols: list) -> None: """ @@ -301,47 +331,49 @@ def _generate_mcf(self, df_cols: list) -> None: Returns: None """ - - mcf_nodes = [] - for col in df_cols: - pvs = [] - residence = "" - status = "" - armedf = "" - if col.lower() in ["date", "location"]: - continue - if re.findall('Resident', col): - if re.findall('InUSArmedForcesOverseas', col): - status = "USResident__InUSArmedForcesOverseas" - else: - status = "USResident" - residence = "residentStatus: dcs:" + status - pvs.append(residence) - elif re.findall('ArmedForces', col): - residence = "residentStatus: dcs:" + "InUSArmedForcesOverseas" - pvs.append(residence) - if re.findall('Resides', col): - if re.findall('Household', col): - residence = "residenceType: dcs:" + "Household" + try: + mcf_nodes = [] + for col in df_cols: + pvs = [] + residence = "" + status = "" + armedf = "" + if col.lower() in ["date", "location"]: + continue + if re.findall('Resident', col): + if re.findall('InUSArmedForcesOverseas', col): + status = "USResident__InUSArmedForcesOverseas" + else: + status = "USResident" + residence = "residentStatus: dcs:" + status pvs.append(residence) - if re.findall('Civilian', col): - armedf = "armedForcesStatus: dcs:Civilian" - pvs.append(armedf) - if re.findall('NonInstitutionalized', col): - residence = ("institutionalization: dcs:" + - "USC_NonInstitutionalized") + elif re.findall('ArmedForces', col): + residence = "residentStatus: dcs:" + "InUSArmedForcesOverseas" pvs.append(residence) - if re.findall('Count_Person_InUSArmedForcesOverseas', col): - armedf = "armedForcesStatus: dcs:InArmedForces" - pvs.append(armedf) - node = _MCF_TEMPLATE.format(dcid=col, xtra_pvs='\n'.join(pvs)) - mcf_nodes.append(node) - - mcf = '\n'.join(mcf_nodes) - - # Writing Genereated MCF to local path. - with open(self._mcf_file_path, 'w+', encoding='utf-8') as f_out: - f_out.write(mcf.rstrip('\n')) + if re.findall('Resides', col): + if re.findall('Household', col): + residence = "residenceType: dcs:" + "Household" + pvs.append(residence) + if re.findall('Civilian', col): + armedf = "armedForcesStatus: dcs:Civilian" + pvs.append(armedf) + if re.findall('NonInstitutionalized', col): + residence = ("institutionalization: dcs:" + + "USC_NonInstitutionalized") + pvs.append(residence) + if re.findall('Count_Person_InUSArmedForcesOverseas', col): + armedf = "armedForcesStatus: dcs:InArmedForces" + pvs.append(armedf) + node = _MCF_TEMPLATE.format(dcid=col, xtra_pvs='\n'.join(pvs)) + mcf_nodes.append(node) + + mcf = '\n'.join(mcf_nodes) + + # Writing Genereated MCF to local path. + with open(self._mcf_file_path, 'w+', encoding='utf-8') as f_out: + f_out.write(mcf.rstrip('\n')) + except Exception as e: + logging.fatal(f'Error when Generating MCF file:-{e}') def _generate_tmcf(self, df_cols: list) -> None: """ @@ -378,30 +410,289 @@ def process(self): calls defined methods to clean, generate final cleaned CSV file, MCF file and TMCF file. """ - for file in self._input_files: + #input_path = FLAGS.input_path + ip_files = os.listdir(self.input_path) + self.input_files = [ + self.input_path + os.sep + file for file in ip_files + ] + if len(self.input_files) == 0: + logging.info("No files to process") + return + processed_count = 0 + total_files_to_process = len(self.input_files) + logging.info(f"No of files to be processed {len(self.input_files)}") + for file in self.input_files: df = self._load_data(file) - self._transform_data(df) - self._generate_mcf(self._df.columns) - self._generate_tmcf(self._df.columns) + result = self._transform_data(df) + if result: + processed_count += 1 + else: + logging.fatal(f'Failed to process {file}') + logging.info(f"No of files processed {processed_count}") + if total_files_to_process > 0 & (processed_count + == total_files_to_process): + self._generate_mcf(self._df.columns) + self._generate_tmcf(self._df.columns) + else: + logging.fatal( + "Aborting output files as no of files to process not matching processed files" + ) -def main(_): - input_path = FLAGS.input_path +def add_future_year_urls(): + """ + This method scans the download URLs for future years. + """ + global _FILES_TO_DOWNLOAD + with open(os.path.join(_MODULE_DIR, 'input_url.json'), 'r') as inpit_file: + _FILES_TO_DOWNLOAD = json.load(inpit_file) + urls_to_scan = [ + "https://www2.census.gov/programs-surveys/popest/tables/2020-{YEAR}/national/totals/NA-EST{YEAR}-POP.xlsx" + ] + # This method will generate URLs for the years 2021 to 2029 + # need to the latest avaibale year + for future_year in range(2030, 2021, -1): + if dt.now().year > future_year: + YEAR = future_year + for url in urls_to_scan: + url_to_check = url.format(YEAR=YEAR) + try: + check_url = requests.head(url_to_check) + if check_url.status_code == 200: + _FILES_TO_DOWNLOAD.append( + {"download_path": url_to_check}) + break + + except: + logging.error(f"URL is not accessable {url_to_check}") + + +def _clean_csv_file(df: pd.DataFrame) -> pd.DataFrame: + """ + This method cleans the dataframe loaded from a csv file format. + Also, Performs transformations on the data. - ip_files = os.listdir(input_path) - ip_files = [input_path + os.sep + file for file in ip_files] + Args: + df (DataFrame) : DataFrame of csv dataset - # Defining Output file names - data_file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), - "output") - cleaned_csv_path = os.path.join(data_file_path, "USA_Population_Count.csv") - mcf_path = os.path.join(data_file_path, "USA_Population_Count.mcf") - tmcf_path = os.path.join(data_file_path, "USA_Population_Count.tmcf") + Returns: + df (DataFrame) : Transformed DataFrame for txt dataset. + """ + # Removal of file description and headers in the initial lines of the input + # + # Input Data: + # table with row headers in column A and column headers in rows 3 through 5 (leading dots indicate sub-parts) + # Table 1. Monthly Population Estimates for the United States: April 1, 2000 to December 1, 2010 + # Year and Month Resident Population Resident Population Plus Armed Forces Overseas Civilian Population Civilian Noninstitutionalized Population + # 2000 + # .April 1 28,14,24,602 28,16,52,670 28,02,00,922 27,61,62,490 + # .May 1 28,16,46,806 28,18,76,634 28,04,28,534 27,63,89,920 + # + # Output Data: + # (Made Headers) Year and Month Resident Population Resident Population Plus Armed Forces Overseas Civilian Population Civilian Noninstitutionalized Population + # 2000 + # .April 1 28,14,24,602 28,16,52,670 28,02,00,922 27,61,62,490 + # .May 1 28,16,46,806 28,18,76,634 28,04,28,534 27,63,89,920 + + idx = df[df[0] == "Year and Month"].index + df = df.iloc[idx.values[0] + 1:][:] + df = df.dropna(axis=1, how='all') + cols = [ + "Year and Month", "Resident Population", + "Resident Population Plus Armed Forces Overseas", "Civilian Population", + "Civilian NonInstitutionalized Population" + ] + df.columns = cols + for col in df.columns: + df[col] = df[col].str.replace(",", "") + return df + + +def _clean_txt_file(df: pd.DataFrame) -> pd.DataFrame: + """ + This method cleans the dataframe loaded from a txt file format. + Also, Performs transformations on the data. - loader = CensusUSACountryPopulation(ip_files, cleaned_csv_path, mcf_path, - tmcf_path) + Arguments: + df (DataFrame): DataFrame representing the loaded TXT dataset. + + Returns: + DataFrame: Transformed DataFrame after cleaning operations. + """ + df['Year and Month'] = df[['Year and Month', 'Date']]\ + .apply(_concat_cols, axis=1) + df.drop(columns=['Date'], inplace=True) + for col in df.columns: + df[col] = df[col].str.replace(",", "") + + # The index numbers alotted as per where the columns are present to + # move the columns left + resident_population = 1 + resident_population_plus_armed_forces_overseas = 2 + civilian_population = 3 + civilian_noninstitutionalized_population = 4 + # Moving the row data left upto one index value. + # As the text file has (census) mentioned in some rows and it makes the + # other column's data shift by one place, we need to shift it back to the + # original place. + idx = df[df['Resident Population'] == "(census)"].index + df.iloc[idx, resident_population] = df.iloc[idx][ + "Resident Population Plus Armed Forces Overseas"] + df.iloc[idx, resident_population_plus_armed_forces_overseas] = df.iloc[idx][ + "Civilian Population"] + df.iloc[idx, civilian_population] = df.iloc[idx][ + "Civilian NonInstitutionalized Population"] + df.iloc[idx, civilian_noninstitutionalized_population] = np.NAN + return df + + +def _mulitply_scaling_factor(col: pd.Series) -> pd.Series: + """ + This method multiply dataframe column with scaling factor. + + Arguments: + col (Series): A DataFrame column of dtype int, containing the values to be scaled. + + Returns: + Series: A DataFrame column with values multiplied by the scaling factor. + """ + res = col + if col not in [None, np.NAN]: + if col.isdigit(): + res = int(col) * _SCALING_FACTOR_TXT_FILE + return res + + +def _concat_cols(col: pd.Series) -> pd.Series: + """ + This method concats two DataFrame column values + with space in-between. - loader.process() + Args: + col (Series): A pandas Series containing two values from the DataFrame. + + Returns: + res (Series) : Concatenated DataFrame Columns + """ + res = col[0] + if col[1] is None: + return res + res = col[0] + ' ' + col[1] + return res + + +def download_files(): + """ + This method allows to download the input files. + """ + global _FILES_TO_DOWNLOAD + session = requests.session() + max_retry = 5 + for file_to_dowload in _FILES_TO_DOWNLOAD: + file_name = None + url = file_to_dowload['download_path'] + if 'file_name' in file_to_dowload and len( + file_to_dowload['file_name'] > 5): + file_name = file_to_dowload['file_name'] + else: + file_name = url.split('/')[-1] + retry_number = 0 + + is_file_downloaded = False + while is_file_downloaded == False: + try: + df = None + file_name = url.split("/")[-1] + + if ".xls" in url: + df = pd.read_excel(url, header=_HEADER) + df.to_excel(os.path.join(raw_data_path, file_name), + index=False, + header=False, + engine='xlsxwriter') + df.to_excel(os.path.join(_INPUT_FILE_PATH, file_name), + index=False, + header=False, + engine='xlsxwriter') + elif ".csv" in url: + with requests.get(url, stream=True) as response: + response.raise_for_status() + if response.status_code == 200: + with open(os.path.join(raw_data_path, file_name), + 'wb') as f: + f.write(response.content) + file_name = file_name.replace(".csv", ".xlsx") + df = pd.read_csv(url, header=None) + df = _clean_csv_file(df) + df.to_excel(os.path.join(_INPUT_FILE_PATH, file_name), + index=False, + engine='xlsxwriter') + elif ".txt" in url: + with requests.get(url, stream=True) as response: + response.raise_for_status() + if response.status_code == 200: + with open(os.path.join(raw_data_path, file_name), + 'wb') as f: + f.write(response.content) + file_name = file_name.replace(".txt", ".xlsx") + cols = [ + "Year and Month", "Date", "Resident Population", + "Resident Population Plus Armed Forces Overseas", + "Civilian Population", + "Civilian NonInstitutionalized Population" + ] + df = pd.read_table(url, + index_col=False, + delim_whitespace=True, + engine='python', + skiprows=17, + names=cols) + # Skipping 17 rows as the initial 17 rows contains the information about + # the file being used, heading files spread accross multiple lines and + # other irrelevant information like source/contact details. + df = _clean_txt_file(df) + # Multiplying the data with scaling factor 1000. + for col in df.columns: + if "year" not in col.lower(): + df[col] = df[col].apply(_mulitply_scaling_factor) + df.to_excel(os.path.join(_INPUT_FILE_PATH, file_name), + index=False, + engine='xlsxwriter') + + is_file_downloaded = True + logging.info(f"Downloaded file : {url}") + + except Exception as e: + logging.error(f"Retry file download {url} - {e}") + time.sleep(5) + retry_number += 1 + if retry_number > max_retry: + logging.fatal(f"Error downloading {url}") + logging.error("Exit from script") + sys.exit(1) + return True + + +def main(_): + mode = FLAGS.mode + # Defining Output file names + output_path = os.path.join(_MODULE_DIR, "output") + input_path = os.path.join(_MODULE_DIR, "input_files") + if not os.path.exists(input_path): + os.mkdir(input_path) + if not os.path.exists(output_path): + os.mkdir(output_path) + cleaned_csv_path = os.path.join(output_path, "USA_Population_Count.csv") + mcf_path = os.path.join(output_path, "USA_Population_Count.mcf") + tmcf_path = os.path.join(output_path, "USA_Population_Count.tmcf") + download_status = True + if mode == "" or mode == "download": + add_future_year_urls() + download_status = download_files() + if download_status and (mode == "" or mode == "process"): + loader = CensusUSACountryPopulation(FLAGS.input_path, cleaned_csv_path, + mcf_path, tmcf_path) + loader.process() if __name__ == "__main__": diff --git a/scripts/us_census/pep/monthly_population_estimate/preprocess_test.py b/scripts/us_census/pep/monthly_population_estimate/preprocess_test.py index fbe7121dd7..23a821b0ff 100644 --- a/scripts/us_census/pep/monthly_population_estimate/preprocess_test.py +++ b/scripts/us_census/pep/monthly_population_estimate/preprocess_test.py @@ -14,15 +14,16 @@ """ Script to automate the testing for USA Population preprocess script. """ - import os import unittest from os import path from preprocess import CensusUSACountryPopulation +from absl import flags # module_dir_ is the path to where this test is running from. -module_dir_ = os.path.dirname(__file__) -test_data_folder = os.path.join(module_dir_, "test_data") -op_data_folder = os.path.join(module_dir_, "test_output_data") +_MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) +_INPUT_FILE_PATH = os.path.join(_MODULE_DIR, "test_data", "input_files") +test_output_folder = os.path.join(_MODULE_DIR, "test_data", "output_data") +expected_op_folder = os.path.join(_MODULE_DIR, "test_data", "expected_output") class TestPreprocess(unittest.TestCase): @@ -31,13 +32,11 @@ class TestPreprocess(unittest.TestCase): properties which further requried for unit testing """ - cleaned_csv_file_path = os.path.join(op_data_folder, "data.csv") - mcf_file_path = os.path.join(op_data_folder, "test_census.mcf") - tmcf_file_path = os.path.join(op_data_folder, "test_census.tmcf") - - ip_data_path = [os.path.join(test_data_folder, "test_census_data.xlsx")] + cleaned_csv_file_path = os.path.join(test_output_folder, "data.csv") + mcf_file_path = os.path.join(test_output_folder, "test_census.mcf") + tmcf_file_path = os.path.join(test_output_folder, "test_census.tmcf") - base = CensusUSACountryPopulation(ip_data_path, cleaned_csv_file_path, + base = CensusUSACountryPopulation(_INPUT_FILE_PATH, cleaned_csv_file_path, mcf_file_path, tmcf_file_path) base.process() @@ -46,11 +45,11 @@ def test_mcf_tmcf_files(self): This method is required to test between output generated preprocess script and excepted output files like MCF File """ - expected_mcf_file_path = os.path.join( - test_data_folder, "expected_USA_Population_Count.mcf") + expected_mcf_file_path = os.path.join(expected_op_folder, + "USA_Population_Count.mcf") - expected_tmcf_file_path = os.path.join( - test_data_folder, "expected_USA_Population_Count.tmcf") + expected_tmcf_file_path = os.path.join(expected_op_folder, + "USA_Population_Count.tmcf") with open(expected_mcf_file_path, encoding="UTF-8") as expected_mcf_file: @@ -79,8 +78,8 @@ def test_create_csv(self): This method is required to test between output generated preprocess script and excepted output files like CSV """ - expected_csv_file_path = os.path.join( - test_data_folder, "expected_USA_Population_Count.csv") + expected_csv_file_path = os.path.join(expected_op_folder, + "USA_Population_Count.csv") expected_csv_data = "" with open(expected_csv_file_path, @@ -94,3 +93,7 @@ def test_create_csv(self): os.remove(self.cleaned_csv_file_path) self.assertEqual(expected_csv_data.strip(), csv_data.strip()) + + +if __name__ == "__main__": + unittest.main() diff --git a/scripts/us_census/pep/monthly_population_estimate/test_data/download_expected_USA_Population_Count.xlsx b/scripts/us_census/pep/monthly_population_estimate/test_data/download_expected_USA_Population_Count.xlsx deleted file mode 100644 index 7249a321035ca4e7ee3458c765a94789d34436e5..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 12351 zcmZ{K1y~&0(k<=;8wl=h!3jZv1-HRng1fr}3GM_!aCdiif@^Ts;BG;~YtFgRod5l@gHGn#d=D* zjIbfuZEn=Vl4)0^Lz{!d3^2&u%9Y7D!)`fcjg>v}^GR(z+O&!SXwKr54#|Q7#0#gF z!8f(rl14q9B|M@d75M#=Nn>z${tU^Trat zMTZsv?dPFh5!RS8v(Nk|ZNqZ>2 z?)ou)#o_n#`+%dzXd?GA%x~OMUZ~oS+Z~>^jsqtGcs`H{|I+^=LvnE+&|Mk|0sp2)(Ilf_jIhMtB$@Q?H2%dU<*nUX1kwD1GYaz{Dq2>_iq_iQZi_GZ_I5`cC5k!eJ zhmW#9+BF?M9Oa8Vh*Z2GL}4t!2f+@H1&?(O|2DTrqeq4drhsR&%SB1qF?o`qkSZE% zi`KxF7=ZJLz0Gv4=a>D)5Cs~NA2t`J8=u|}ap{b@DlR{Dx*zo2`CL>#Cb-y4RrtjE zgVV}J%XUBZ*dUwKRP%9&)<}jZ)X#nTG&M+VCyQQTVpm6XuH})xAYEc2E3-b;3`40% zZgW_(!rKe9&beWDme^&ayNrISIF^eQ35!n%?8XobRn5<4mYiq^wAPK zx2#O?s4wJs@RjToo)_wlrQkR>{kE%wr$b1ph_gj3wl-s2K>@u3{lF4SIFG^G@lBEe z$@I|{lwlsckbZ$TS5Wq|zYf%DW_i;leC&qixbnU&cCcI=Y#vbjTc0t>+9N$Q2#9J! z2ngK2^?6ao(ahM`$??r!C)O8fe6DS6*|>)>;{f8Miy<>c%h z@X(()N0Oc{@X6Eh@^+_Zf9iOPdw0Cx0omQv=ho@L>F#3VX>@Bhco;r`4^;la-YeCEkv^yQ%%(`*YmxZ@pW+o8zBvH%>0Mu1j9qo-!ZZ zxs?;ko$Bg-%4k0>Vw~fy(Diy+eQxIUcISJ1IM~1G@5m5HU*$_%)fMnNEZG%#IQRO! zkN5lTLT~DFf`I!bxWf49dgI`Df8}_bB;&Ws?~8(|l?OEWMDC)FPYo^)P7ep)d+vs3 zdgi!4J$gMnn&;Ub=KbIvf4+OVeD*O;j2*vzzOeAHza0Ll)qc0ep!=Xk+5YiY#emm` z%L<6{@H9dPr9{)8o3N$nd61drOL4sGcJ)Ig+j{~IxLL>&sKkXJ{cVq>kd~&G@ z?AwghZFx|1a#ty8=&y068N{cM4rWN?gxcJ-ZHZ>J&_vXVehtV7Jho-)@+7N*D+pyP z3g`N+$9g<=dnRNL_}RXoead*bobqzW0NdJazUlEu+-jK7TcO~%yK;?41>*Vp|FpaJ z_Ycr(bXGs}c&vAza`*mBP4XNSTSF+P1+FBN(*vLJF}o4qv=VicJyLfFbd&$bx}*SD z`w4c9we6Do=C1Z{BY!5|ahloBIYj7e$KczoZhw2X##M+x92}RAzFP&Sy^vmVll&Kpd-3oAH!%Ap+ZW= zsiUowEe5wYz!J+EvgYMbEYm^x6-o(BWi!LpOBxUTs_)DS~1@emMV_egjX(|_X zautE^R&jL1`og5dwf0J3D+`qYfGPl}djXWVmlmPS>@CCA7HjgjfE%EeavflqappOr zITNz*)4F_B>lpgWE#_ooi*)?LVO>VMh%hv*>4%M<#MaIrp z;D|R-9JD>Jf{OUp^*orM5knCZb-7)(Ocm6@suFz6`74?Q_G1EEwrJEOgQh(i&ROLh zq8Q?f*uUeb=}*;ULMLJZ@%aws~cwp7}RcH4rcc`C^wUtD`PbX&RV$|_8!@8{nU#1c=KWS7Hb3+mQ7X=lLJx>Tr zBFEvZG*A(>E%YS_2!2dpM95WEk6Qykva8}LfFA&`7C{&HA zCi2_1LPJ@VMlpWaV()1p4oi|c$Q0&K*L5~{moh_n6=qxW1#!UArl?#Dv}beOIm+Ws)5A+NaxXI+nLX>Le$9UN48r< zW{Rr_r1K&&K;T9gAfWg{K!3p9Y5?ymvQOG>Rldmy(zHn5@z+J{7wtx`;(^R&^wZhZ zS0ZaLFk6^+EcAdKT@(i<yW!^2IxpZhwJB?8v-$l!E zk_2vyVVKDP>b+#6Y~tX<$P<~L-fmTq$ugVy%=~(m58&3EH zjPD`>K$7c)B)L00vt{O-@lnxFGvu^k^kN-=z0iN;v#gzREiHmgcJTDBvf1H!5LQ}* ze<8OFc=OXqtjfnRlX@BQ|9X4T+){rI$W~Zxhj)o&Gpc*-6ZS93kZ|%!dseVwSUnaQ zRP+T;(K_g)QzHdPSEsTT=tNGtZ8n!}DDeZUAmybjUb|TrAj5Tzfq6ouY=R*;BWvD! z$H6tz&2;QBlDR0o;#YH{2yoN{$ZP4(8y^)1roh$NtU4AM`qgkL0hW(1mi2jOtCEBi z)?6FK<9r}oOA!#Rt`$0wsq*OE%}f{-3ljmi&Y~>f&gBJU@dC2*s4z4r+hej=s7>;~ zd27iHXmcP;w5HKS)IBuAz6n#3*F z8ID7^^rx^-UuoBO)*Q~OF+}D%2hgvo-AnN!TQzS3w-k<>3(vg4sP>|q3NX}WcldIp^#yCjQdBub z!`K6Z<4z5N5W!H>Do>W-WSWy7t1^OzM;j+E`{NpRZ&hR zyVM zW08L(Z1h=)bn%6Pw-{3jm(n2XwjWV_-x)EwQ}5!cO3Uki6xN{hgBO{d0E4nX0q z#r8^NeSyhsIZ5nC^BqU+%LE0~0u%Jfbv+qsJfF_v0PmOWyBhFOx-{(gBDM8){_uKQ zYkp_FITEo?y8egf39iK1<*lN1jitQEWhb82FLNL_cG)iW39RM4^cCva@_o7VI_t#& z*~IU>?y`RTQy{)Tej&ffnna~DmaASfRM#Ub%I095u9_QNf~NgV51I-(7Q1AB(`*`n z`J>`pRnK1&3~sYHRutSihNs({US2*(#F6Q@>)%S!RUOef{7tQUxg4hQZsc^8*0(rd zqb20$c~8TFmum4^zL*~O0XEoQfKC4=2duo5{Cx6W*zR$1bdv8zE!7ghYUPDh3c!km z-(WYGAw7jaXCB6FcGUui=LN*`7-RczPAsut7wsv19~>U3|2ddT9U#gE5Sq< z8WW;Jj^*x>B(uGvm^5Hns~VR*fk7SIh!>~7t8sROnLIFR%n>_RND-HPgaH?F>qNl3 z#53-1`g#rsQ5o7A9OMWDL|u`;c=dK8fmX9Y9Y?RtA?4 z&j$*|n!bkqV8e_M)*1v>0CONf3#1-|coTx$Zrl}65YGJ+);VQ9BasVZ#=Tn(?E#^a zAi<`4(}NrZy%<645}VqEg3bencDtxGf?lmyZZ~&wGSKIc@-pOzSn2+aF`uVjxh}F` z^ak_!nPyz{%Ak{6_VUHC?9w5iN)DXZu~Y8&-xkuG9o3|NL)q*}r%a%%c0wnL`}VwH zB7w=Y$%vZny@LfU?6rs0BiTJ&Kq^GZD*U34_Z1LpL4N&v@O!^GmM6La7D*Ixdv?l? zB#;0-IM5dfhbe1?=tjz!jKb=yLyGxVe_IFt6*g0AadRQTfP||v3ZdPAXyUpJ7at2(F@*ve9iVDU1td7ZqKT;%{i1LC3Gh7u|9->xY!Y_ zw7p;~8~ge-*9YC4+9FVIG-a;u?Im2kV-^@l1~I@w09cj_L7!tNjr?w>;IbVj0gJIX zU?B!9SA`(aSV~I&Mm)?ZF>POf86v>!g9N}#gdWz9GPH=?CP?(iKNpzrIPy2lQemxP z8j5rSRFZvd^yMBNV;ad#)XdS|vN}lf;_8KW)1EiYHg8`N-U85Jmm{dK##mnk;6MhCAB;U|jy^izM2{*FC?UyQ-lENCA_$FsMNT@zT=PbTh;=|>|f*@iT zw@L7C(Q#J6+O4P%5OQxJAYLk(fas291`ftXN=^>uHl~h$RY8&^9SQp}0#AQq6TMx4 zhpKynf{BzIM}C9=u9hV7B7|c4NZ5(Ow<03>``TxrRy6c_a)V%kr_T82g{}$z!)8J7 z!~T<(=1qUkCGw|z=KMQ5$JP~+RsN3K-=lN#i{EQYTY8R9e!G3k(0k;2^IA{)d1Ilv z^h*%&*WK5yhxfNv2Nq3DDI_k#KhNz2BrbZ+uPU{!Pxn`5F5Hq`8-`c-D$stZbu~F$ zS1yq-=cjDlRSI;_=IP4p_Wah{z55ybhNmU`&~*6s{es6+w7Y9^ZNPrYmO-1ROP%if z7Pdk7{k2`=PrM|v`z>2rcRmdVgwOr*`KKr2!&jSEENgOlB=X#sY~Gfd-&}_aa`aBt zPEUWe^gOGt&tv{GugM>!5QNBZ`-Hq?~l;*wHv&k=ZucyO1 zmaSdS`|I$_mKtUoP-{BL+}*~p7t}%n_hBqmMbzng?!Do=9d>de{F@fuR9BkCi@D3C zDO1t4BROu@MnPX&jCQKquNzu^w%F~Qx3dNTKFWTd9J%GuOg5UEG`J{FV^!MI){fEO z-M6l`eA-fcnmPxmS5t+3ZnjRGc#q{SYnO@S55G7I@XJIOY`xzlU~m3;@g;A>HiJ33 zg`la1&@oB=bT|A^t>4+_-2$}$vyEf>3RAU#`^fNJ<$&pkNkgD(a7NwQ(i7T4%4p;D zrExR=YAVUL1%CB=nG%yFLXZ2U1(O-Zi|<=cJ4E&0T?(xB7Ja37MujDVh znQHd*d@p|!?DI$<{`(-OxOQrIU#YEKpu@AEt}ZL_!I|LVYAU03A^#?k1S(=WdP;h7 zX>pC@hHL3?rd=S-r{nzkt#|F?AhXB)R>^Dmc8{k%=A+QdPxv>kd<>6#Y3&_e-gn_q z&t9sne9tZfdi33lxQi#))jRvcX)CK0(n}u$W;ip1>DLKH6P59C-7m`u4#Z1ry42P# z_n??^w?*W1L!IyY zG96BByp{!|OM>P!TV=^n@;F{?ieVUQCw`N}Ib{5|I)|*HuwkYjs5o@S7&(THAYrRM& z(&sAr1RLKdmo%ho@V!usr=0%r%A6|svbb8S-C#8RzR*{6GPW!9FA+|)CFKxP+SwSR z40YWI$Fy?@;o|1>AcfHQlb?vB3XN8H`BIB- z8ktpDLGo2zFhn@=M`Q@Ua);3iM_e$B2d1n_twWw8?K(q9H+~*SgkHjdXd zoLf*S)T8EPh`$CU{xCbn?9D#oUe1L1keM}!AbpA9gpCc_LQtoi_}Ym}DY4Q3wHuO` zC!iS$lUxKhpRgWG2sxcTvb>iK!i(R75BMUeK|i6aVYxk-MupysNbwjWsNNmDKX#&0 z#pt_OqYa;+?&ZAr2H~TOx*=!NsUmY7%I{R>=?Kvy2&?G74nPrhHtet ztfG1=UO1(i?}FpCAO-JLr9(yWTjRKTb;?LT>q5H0mI-at;lbIB zyidg=I*%qq&!wl=n5OxSVT3a9{-bkDJvPP{a<<6`#%;bn%q^1Ul8DEgJ>J4zhtJTW z`O_-cKYhhRA7G?DY?9~0Mpp!j2w zJ3vEM)Iq^c?C0uZii&jG?aERzLotJYOiN-`AvQ(9t1~2TjBX2&ZZdk3a*_39A0vIj z9f7b}heherH|OZdWUmUff|I96CZ%^P^J8A?AJFFzDI&(rH4~GK!kMcu&hZ^6Wt&4N zhOH19pa!iY88niz_d*9X3rV2khGaX2@Y5qhAA}c)%CC==S71s+Hfs&M6=R1LAxFwcIemExLX*@MhN)4!G@>5`eFhI0WW(oL0 zU}>wM#a2&%#Z#b|*vYjVJTDIyMPajUr1{zPXBEEaqsU3B7#3&p#x@y*dTY%EL@bx6@zTQj2Up9dhWc{UX6;new5{J@*38ivbz0WLO>>Ybt4csxz4 zytY@YIhf%(AdK&rFe~OQRCur9bg&u7vINg4BAmg9BWQcuIBev2slsCLM-+YvlEgJN zlM%|8;Oa8W_d#koc)D)r^$es~&{fkW>#2nin@*6TCW4a8AyD5N#F`JJQUl9X$;K|2 z?4VZ+Ak?r%E3>EE97^8P21iIue-(Yzi3)@96G5RGJysz@xm-6bsv2d^a`1w~4c+_q;wH>Qnw852kf6v~guN6rgax3KG)RYYMeU~r=f%x+ zBfdPmEmEtFD;+GI3TK=PWKZ=G(MTp`jF=wNM$M zfzt@wbPCN8++pSp=6$Umn}x2!rbag zksg~Mx_h&_&XUkA-Yq^nuo*9ms+o>bedfd!gn+Aj1Qnt`_zW5DVZ0%yzZCw#Ss@fb z)e5heB<#y97zT;7b{ccSZVUVlIf5luqJq6Q=c7dD`1c$uJ&x{V1B!zhfv7Q76X?S& zP}Q4{ABOb2ORc11M%M*HyPI)7i3zC|i|f!8(V{A;Q6pDR;Ll>+h!%%SqbdZ|S%w*V zqEiat3ngX4xIo_zfvhkzaji?y* zAe*xuEPdeqes-zws|0JyIa+>-E_&5Se@8RsjDG)^I!hxvLwi9e&q|@*-fngLfCv~I zR{}fEih)(J9IobEb++P_y|`>dgST%?r3b=FW2JwZW%VO9vk_D2bC{SST112j7B7%b zvqgy0xlaz(EeH=N3e7QNEOC-=Y%QT}fxqu@A=GQWbvCZfMu`nFLdxosI9QNE&kFbTu-^VPvBmdsQDunN*+)mJyc3!x*5gT<*Yuv(Gg&SQAmnbH5 zO-<^bmvUiPHh%whh>^BX5eXZF{2+}}7g@%}B8Yuch5Tnv9wG}RJ|7>VWF z{1g>FneCWDe(?@8qHtr>1jtl^G)hXNO!GB2)Hn33vGi3)qHPx}(iJjmaudR`NQupt1iVYdl#{}UvpZH{Nx-L2{bnaB zv#e@C3P&e%ybcc8G^p~yMTqBRs8VK?fXA?5pw>LZgVDh6g8vk>7n?`_0q20@v%Usy zK2kOqL(6FfcF$3hhFNRH9i;B+%TwTn7>^a9xwBokOEpp;DkBPRsyWB%Qf6mL2i@UU z@mivhM`N}sW>T{i=Vh@Oq$=$P=r+*Ra(itj{oIeq>2^60MO6T&%2l|QVt+-{3w5No zjRV_8i6w;okUmlfX;@9`FZMGzASO1^Xwo9+X$bg1J_C`=W=d7Rf^vZ6Ju@ktucM)c zrpIw}eEte7eO?78YVS$@Ei-^>jE-15Tua|}KJ>C0!=uU=_RWBW7?X78u4FlK57@BR zGaR3Cezh$&b9?hFRKJGCX2*TLGAJA4B;n8%f+A zjS`m#Jq;nf2|_J&RcqK~B1KQ|?f%+2=)jJ_Xn(m~gtglcOe3m??RA!w%IQOnQA#R| zTjY&XN+D~drSKMZbJt{c9y1IFBXn!eOSJ$>s6IgHQziXE6p<@M&Ua$8D1Re)xv@KhFbpHn@I3!h#3E3_^RHTLrcxU zbUABgm&=tCcQ_sz zr4f*4%Ob4LGJho)7LHKaLSmKfd35;WVRj(ugYYBu(#-#<1=6T)7d|FZ|0Nv$(-2)S0d)Xp|b%eYh z3=iF8HpvZ*+Fh&pa6)8#!>q|x$MCGRuurhC|5bLLW#G*D9P-2G$eDiR?Ueay<&(X zH)XfB2-4BVZkJS3iOJbuBA`m09rd@lkzWk~d+UNbzAtq8FCLNnmdi)W3OL?ic>bfG z2KQb}xe~|_MS{QknSh#rlbNx#@!!Y48Y7N1WTTfvaoaB$#M&F8uy{wylgqdkas!X+ zOIB(N`$PGw3h+EjlLl=ZMUF8L5y9xMDQyVR6^arXO~)7o3?jZMcobkFqqu07gp z#*;3GA?JT}DVic4-e}30_9;PQCl0r^a8~T7p5s6FVfy4u?Yj|Rdl~wETgC!Req5Xd%!jSFGq47wqveRm{I;xX!7K&5DfJ)32O#G%z1 zF83DzmpCx>{c75SCPiabEWtocn&Rppc5#nF3?!8pfo@Y;9Z}a|J7_vUE@T zT>%4mpk()btH*Cpo5%0%?Twl*!S6HpJe)4hXrMPxQ$N4k7(NwvK1`9H$N;K$cem2) zx(BywK95&(dhIOG39r1)XTGdu@VlR1n||_oo`+b&aVzYB=b*-1A@ASw?blBcg1`&A z1f!74Fo51dc-At}^m0(X;*lMW%P{MO`@`M}QPV~0pou>>u`hzuiQN#psu zbXr0J&OX+uSnjGY87X49Kt20LW%T_RmM9O%*dL;fS~3g=Cm;7j`zlYX%(Xutedwp& zmK|w|THe^Q`Mfn<$SzAx^pHg;685onJOPZTTNY!5YTr3HWVeEw5BjI97 zK2)x=-@z(7X3-ZR%4dBs_&~z7O2j95gSdVF(EiYV+8*xhs=`#U zWc?a-c6N6&Rj<`Sf*9QQY9>B5h0S&pGyc_mWzrjm>^qrsF*}X0l67IfOH0be`)|d2 zEZuY=_6~?yj2gk1dD`8QotlHZ@8uL(1lBH1Oa%oE>-qyewq#|X?pj@_&^il6MsziI z*$(*4b4?9Eo>5JhV`sT&8L>fC1G{>%imUyR#ZwbqgPasI<^ zVSU&v1-}JKE?uaY4_Sua)pqUFI$1EFmWN0LD)Xv~!K(OJ-W*VB?CJel9zlC;=$l1Q zR`4O`=VQ3$e1V9x7{z7@HgCAGd$c?VBN%KK5oAUFie>K@X8~IQaXjMQiY!xjh3&jJ zK~J@7UyZ}qS^uk8J=K}kw;85Qhe#u-T^3{#t~5>W^QMl(wzM-2)bhtzo#4$J$Q3;755K~K+T+gs(| zyvB&paQv4qN65=(uj<6R`j(39#>A~xtn62`9>6Kx8_>pj6OBb@3m@Bw&Y(jClI7zO zFwYfB7(4EE(4B0|`;1F}FR)r*_|Jy9>204C@w8NRFPMgVI+}XI>3N#AEb20YwRi`% zOY+{Q-<}B!tojA~_)MqKD(e9uK6-NW272A_jYPw5xPLDLqJIabQv%BX1)$Q70W1TI zYz-A0Z0#K17}`1*zf^qF;)Y+k0)ci_q?|UUrK~KBdT8sxVn1Nd)Qt6m5~Ge-!XoX_ z`==@9K=JToo8!({=11>%*(>B(#4@RPD!MR1*3rPl#J#rFUNl;Vbb2|0vP@ALJ2RaX z>=E>QrdCbsP7g?CB+{P<>{RdEY!UjRhy)cAVSt)qxQW5&C_m1gt0@u>Wl*mlP54g7;gu2eS~-}mYMK3mq>Mtji2 zfe=O^ymTbt1-l*r#eAceZ*}?>ywl1D$Y~Z1N(kI%KEVyy4|IfL=?{26Ar`;?x1_qw z1yinor0CGV`@bbMu(SJH(Jr~e7e#?aRDNegvMXgCu|i+Tm0R;$?rW z=$D*{fnum`W_NVqYmQ~Nr&WInf$>Y}SG-Va zLe9i}f-Vx;PFHgiLx<^T8Qc#s7rBkEy70?rpK>2M*f~hdEgiqM(SIf`FiHy(anN7nuG3>OB4v_-9M*KfpNPE(DfX|DOikKmGjKy84fwY9RIg^UUo3YGnP> z%b(BM{_!FXbg=)&%l|YA{|Wx{nbAMsRzPV0{C_<``qRUo`;dP;6qEn$;eU4}e?tFU zoc;ryp!^H^=Th}g2Y>$f{o|mD{{Qh)_$U0&8~qE0 -typeOf: dcs:StatVarObservation -variableMeasured: dcs:Count_Person_InUSArmedForcesOverseas -measurementMethod: dcs:dcAggregate/CensusPEPSurvey -observationAbout: C:USA_Population_Count->Location -observationDate: C:USA_Population_Count->Date -observationPeriod: "P1M" -value: C:USA_Population_Count->Count_Person_InUSArmedForcesOverseas - -Node: E:USA_Population_Count->E1 -typeOf: dcs:StatVarObservation -variableMeasured: dcs:Count_Person_USResident -measurementMethod: dcs:CensusPEPSurvey -observationAbout: C:USA_Population_Count->Location -observationDate: C:USA_Population_Count->Date -observationPeriod: "P1M" -value: C:USA_Population_Count->Count_Person_USResident - -Node: E:USA_Population_Count->E2 -typeOf: dcs:StatVarObservation -variableMeasured: dcs:Count_Person_USResidentOrInUSArmedForcesOverseas -measurementMethod: dcs:CensusPEPSurvey -observationAbout: C:USA_Population_Count->Location -observationDate: C:USA_Population_Count->Date -observationPeriod: "P1M" -value: C:USA_Population_Count->Count_Person_USResidentOrInUSArmedForcesOverseas - -Node: E:USA_Population_Count->E3 -typeOf: dcs:StatVarObservation -variableMeasured: dcs:Count_Person_Civilian -measurementMethod: dcs:CensusPEPSurvey -observationAbout: C:USA_Population_Count->Location -observationDate: C:USA_Population_Count->Date -observationPeriod: "P1M" -value: C:USA_Population_Count->Count_Person_Civilian - -Node: E:USA_Population_Count->E4 -typeOf: dcs:StatVarObservation -variableMeasured: dcs:Count_Person_Civilian_NonInstitutionalized -measurementMethod: dcs:CensusPEPSurvey -observationAbout: C:USA_Population_Count->Location -observationDate: C:USA_Population_Count->Date -observationPeriod: "P1M" -value: C:USA_Population_Count->Count_Person_Civilian_NonInstitutionalized \ No newline at end of file diff --git a/scripts/us_census/pep/monthly_population_estimate/test_data/test_census_data.csv b/scripts/us_census/pep/monthly_population_estimate/test_data/test_census_data.csv deleted file mode 100644 index b92efb590e..0000000000 --- a/scripts/us_census/pep/monthly_population_estimate/test_data/test_census_data.csv +++ /dev/null @@ -1,151 +0,0 @@ -table with row headers in column A and column headers in rows 3 through 5 (leading dots indicate sub-parts),,,,,,,,,,,,,, -"Table 1. Monthly Population Estimates for the United States: April 1, 2000 to December 1, 2010",,,,,,,,,,,,,, -Year and Month,Resident Population,"Resident -Population Plus Armed Forces Overseas",Civilian Population,Civilian Noninstitutionalized Population,,,,,,,,,, -2000,,,,,,,,,,,,,, -.April 1,"281,424,602","281,652,670","280,200,922","276,162,490",,,,,,,,,, -.May 1,"281,646,806","281,876,634","280,428,534","276,389,920",,,,,,,,,, -.June 1,"281,894,718","282,126,112","280,675,165","276,636,370",,,,,,,,,, -.July 1,"282,171,957","282,384,579","280,927,342","276,888,367",,,,,,,,,, -.August 1,"282,441,258","282,652,794","281,192,111","277,151,151",,,,,,,,,, -.September 1,"282,721,654","282,932,017","281,467,352","277,424,407",,,,,,,,,, -.October 1,"282,995,517","283,200,677","281,732,198","277,687,268",,,,,,,,,, -.November 1,"283,243,960","283,452,914","281,985,624","277,938,709",,,,,,,,,, -.December 1,"283,493,503","283,695,587","282,230,629","278,181,729",,,,,,,,,, -2001,,,,,,,,,,,,,, -.January 1,"283,711,841","283,920,402","282,463,318","278,412,433",,,,,,,,,, -.February 1,"283,915,092","284,137,074","282,678,768","278,625,898",,,,,,,,,, -.March 1,"284,128,687","284,349,990","282,891,264","278,836,409",,,,,,,,,, -.April 1,"284,359,005","284,581,226","283,124,252","279,067,412",,,,,,,,,, -.May 1,"284,584,820","284,810,153","283,355,912","279,297,087",,,,,,,,,, -.June 1,"284,833,913","285,061,539","283,605,170","279,544,360",,,,,,,,,, -.July 1,"285,081,556","285,309,019","283,845,337","279,782,541",,,,,,,,,, -.August 1,"285,343,325","285,570,341","284,103,484","280,039,084",,,,,,,,,, -.September 1,"285,618,928","285,842,685","284,372,586","280,306,582",,,,,,,,,, -.October 1,"285,820,656","286,098,109","284,612,679","280,545,071",,,,,,,,,, -.November 1,"286,058,306","286,341,406","284,830,864","280,761,652",,,,,,,,,, -.December 1,"286,282,016","286,569,611","285,045,524","280,974,708",,,,,,,,,, -2002,,,,,,,,,,,,,, -.January 1,"286,489,300","286,787,560","285,262,691","281,190,271",,,,,,,,,, -.February 1,"286,697,229","286,993,929","285,457,925","281,383,901",,,,,,,,,, -.March 1,"286,883,155","287,190,110","285,649,734","281,574,106",,,,,,,,,, -.April 1,"287,094,280","287,396,849","285,852,274","281,775,042",,,,,,,,,, -.May 1,"287,321,472","287,623,092","286,069,517","281,990,681",,,,,,,,,, -.June 1,"287,568,123","287,863,778","286,304,596","282,224,156",,,,,,,,,, -.July 1,"287,803,914","288,104,818","286,537,347","282,455,312",,,,,,,,,, -.August 1,"288,053,796","288,359,547","286,787,459","282,702,455",,,,,,,,,, -.September 1,"288,317,604","288,618,301","287,047,113","282,959,140",,,,,,,,,, -.October 1,"288,571,092","288,869,942","287,302,206","283,211,264",,,,,,,,,, -.November 1,"288,806,336","289,106,144","287,545,147","283,451,236",,,,,,,,,, -.December 1,"289,003,868","289,312,821","287,750,919","283,654,039",,,,,,,,,, -2003,,,,,,,,,,,,,, -.January 1,"289,201,322","289,517,581","287,959,845","283,859,996",,,,,,,,,, -.February 1,"289,337,916","289,713,718","288,112,710","284,009,892",,,,,,,,,, -.March 1,"289,466,699","289,910,879","288,253,351","284,147,564",,,,,,,,,, -.April 1,"289,610,324","290,124,662","288,428,590","284,319,834",,,,,,,,,, -.May 1,"289,767,993","290,345,733","288,640,931","284,529,206",,,,,,,,,, -.June 1,"290,035,557","290,583,692","288,862,293","284,747,599",,,,,,,,,, -.July 1,"290,326,418","290,819,634","289,106,845","284,989,188",,,,,,,,,, -.August 1,"290,612,993","291,071,932","289,358,000","285,238,604",,,,,,,,,, -.September 1,"290,880,511","291,321,180","289,619,144","285,498,009",,,,,,,,,, -.October 1,"291,142,815","291,574,033","289,889,750","285,766,876",,,,,,,,,, -.November 1,"291,388,995","291,807,038","290,124,107","285,999,494",,,,,,,,,, -.December 1,"291,595,413","292,007,848","290,326,068","286,199,716",,,,,,,,,, -2004,,,,,,,,,,,,,, -.January 1,"291,786,304","292,191,890","290,503,644","286,375,553",,,,,,,,,, -.February 1,"291,950,419","292,367,612","290,674,712","286,544,882",,,,,,,,,, -.March 1,"292,123,354","292,560,692","290,872,867","286,741,298",,,,,,,,,, -.April 1,"292,344,890","292,778,691","291,097,274","286,963,966",,,,,,,,,, -.May 1,"292,588,044","292,997,480","291,326,299","287,191,252",,,,,,,,,, -.June 1,"292,811,010","293,222,756","291,555,947","287,419,161",,,,,,,,,, -.July 1,"293,045,739","293,463,185","291,784,900","287,646,373",,,,,,,,,, -.August 1,"293,299,261","293,718,707","292,038,514","287,898,986",,,,,,,,,, -.September 1,"293,551,697","293,971,409","292,289,303","288,148,774",,,,,,,,,, -.October 1,"293,816,859","294,229,581","292,548,449","288,406,919",,,,,,,,,, -.November 1,"294,044,976","294,466,162","292,779,083","288,636,552",,,,,,,,,, -.December 1,"294,258,671","294,694,170","293,005,004","288,861,472",,,,,,,,,, -2005,,,,,,,,,,,,,, -.January 1,"294,473,116","294,914,085","293,232,478","289,087,945",,,,,,,,,, -.February 1,"294,621,503","295,104,691","293,420,384","289,274,850",,,,,,,,,, -.March 1,"294,799,196","295,286,533","293,612,973","289,466,438",,,,,,,,,, -.April 1,"295,023,274","295,490,295","293,838,588","289,691,052",,,,,,,,,, -.May 1,"295,269,221","295,704,131","294,069,370","289,920,833",,,,,,,,,, -.June 1,"295,500,040","295,936,147","294,309,989","290,160,451",,,,,,,,,, -.July 1,"295,753,151","296,186,216","294,562,297","290,411,763",,,,,,,,,, -.August 1,"296,007,421","296,439,994","294,816,126","290,662,875",,,,,,,,,, -.September 1,"296,274,716","296,706,566","295,079,303","290,923,335",,,,,,,,,, -.October 1,"296,540,050","296,972,335","295,340,260","291,181,575",,,,,,,,,, -.November 1,"296,745,685","297,206,602","295,565,897","291,404,495",,,,,,,,,, -.December 1,"296,991,295","297,431,095","295,820,132","291,656,013",,,,,,,,,, -2006,,,,,,,,,,,,,, -.January 1,"297,213,401","297,646,557","296,048,518","291,881,682",,,,,,,,,, -.February 1,"297,442,801","297,854,109","296,263,090","292,093,537",,,,,,,,,, -.March 1,"297,645,240","298,059,587","296,474,308","292,302,038",,,,,,,,,, -.April 1,"297,869,107","298,281,380","296,699,593","292,524,606",,,,,,,,,, -.May 1,"298,087,150","298,496,496","296,920,413","292,742,709",,,,,,,,,, -.June 1,"298,333,748","298,738,764","297,162,428","292,982,007",,,,,,,,,, -.July 1,"298,593,212","298,995,825","297,413,314","293,230,183",,,,,,,,,, -.August 1,"298,855,875","299,263,434","297,674,257","293,488,861",,,,,,,,,, -.September 1,"299,145,336","299,554,491","297,958,769","293,771,108",,,,,,,,,, -.October 1,"299,408,794","299,835,212","298,241,553","294,051,627",,,,,,,,,, -.November 1,"299,656,685","300,094,448","298,505,133","294,312,942",,,,,,,,,, -.December 1,"299,931,461","300,339,839","298,755,324","294,560,868",,,,,,,,,, -2007,,,,,,,,,,,,,, -.January 1,"300,175,309","300,574,481","299,002,526","294,805,805",,,,,,,,,, -.February 1,"300,392,246","300,802,220","299,225,358","295,026,372",,,,,,,,,, -.March 1,"300,599,974","301,021,235","299,446,725","295,245,474",,,,,,,,,, -.April 1,"300,829,936","301,254,227","299,690,117","295,486,601",,,,,,,,,, -.May 1,"301,056,888","301,483,168","299,921,501","295,715,720",,,,,,,,,, -.June 1,"301,305,789","301,738,673","300,169,356","295,961,310",,,,,,,,,, -.July 1,"301,579,895","302,003,917","300,424,617","296,214,295",,,,,,,,,, -.August 1,"301,843,290","302,266,771","300,684,407","296,473,686",,,,,,,,,, -.September 1,"302,114,496","302,546,314","300,959,882","296,748,762",,,,,,,,,, -.October 1,"302,369,037","302,806,716","301,220,870","297,009,351",,,,,,,,,, -.November 1,"302,624,386","303,053,874","301,472,857","297,260,939",,,,,,,,,, -.December 1,"302,868,731","303,287,359","301,710,949","297,498,632",,,,,,,,,, -2008,,,,,,,,,,,,,, -.January 1,"303,088,358","303,506,469","301,934,471","297,721,755",,,,,,,,,, -.February 1,"303,290,150","303,710,955","302,123,393","297,910,278",,,,,,,,,, -.March 1,"303,491,865","303,907,397","302,317,725","298,104,211",,,,,,,,,, -.April 1,"303,684,948","304,116,991","302,528,079","298,314,166",,,,,,,,,, -.May 1,"303,901,726","304,323,167","302,733,464","298,519,152",,,,,,,,,, -.June 1,"304,127,454","304,555,519","302,966,162","298,751,451",,,,,,,,,, -.July 1,"304,374,846","304,797,761","303,202,282","298,987,171",,,,,,,,,, -.August 1,"304,628,302","305,045,094","303,446,271","299,231,160",,,,,,,,,, -.September 1,"304,892,254","305,308,941","303,699,448","299,484,337",,,,,,,,,, -.October 1,"305,127,551","305,554,049","303,938,005","299,722,894",,,,,,,,,, -.November 1,"305,359,225","305,785,716","304,163,876","299,948,765",,,,,,,,,, -.December 1,"305,583,122","306,003,990","304,379,842","300,164,731",,,,,,,,,, -20091,,,,,,,,,,,,,, -.January 1,"305,794,227","306,207,719","304,583,861","300,368,750",,,,,,,,,, -.February 1,"305,980,358","306,401,755","304,772,530","300,557,419",,,,,,,,,, -.March 1,"306,170,830","306,588,055","304,952,066","300,736,955",,,,,,,,,, -.April 1,"306,360,603","306,787,200","305,148,179","300,933,068",,,,,,,,,, -.May 1,"306,554,396","306,983,561","305,338,759","301,123,648",,,,,,,,,, -.June 1,"306,772,254","307,206,368","305,549,284","301,334,173",,,,,,,,,, -.July 1,"307,006,550","307,439,406","305,781,933","301,570,342",,,,,,,,,, -.August 1,"307,251,662","307,684,518","306,027,045","301,815,454",,,,,,,,,, -.September 1,"307,513,569","307,946,425","306,288,952","302,077,361",,,,,,,,,, -.October 1,"307,756,577","308,189,433","306,531,960","302,320,369",,,,,,,,,, -.November 1,"307,985,264","308,418,120","306,760,647","302,549,056",,,,,,,,,, -.December 1,"308,200,409","308,633,265","306,975,792","302,764,201",,,,,,,,,, -20101,,,,,,,,,,,,,, -.January 1,"308,400,408","308,833,264","307,175,791","302,964,200",,,,,,,,,, -.February 1,"308,593,755","309,026,611","307,369,138","303,157,547",,,,,,,,,, -.March 1,"308,779,455","309,212,311","307,554,838","303,343,247",,,,,,,,,, -.April 1,"308,977,944","309,410,800","307,753,327","303,541,736",,,,,,,,,, -.May 1,"309,173,793","309,606,649","307,949,176","303,737,585",,,,,,,,,, -.June 1,"309,396,380","309,829,236","308,171,763","303,960,172",,,,,,,,,, -.July 1,"309,629,415","310,062,271","308,404,798","304,193,207",,,,,,,,,, -.August 1,"309,874,567","310,307,423","308,649,950","304,438,359",,,,,,,,,, -.September 1,"310,136,722","310,569,578","308,912,105","304,700,514",,,,,,,,,, -.October 1,"310,379,841","310,812,697","309,155,224","304,943,633",,,,,,,,,, -.November 1,"310,608,332","311,041,188","309,383,715","305,172,124",,,,,,,,,, -.December 1,"310,823,152","311,256,008","309,598,535","305,386,944",,,,,,,,,, -"1The monthly estimates beginning with August 1, 2009 and forward are short-term projections.",,,,,,,,,,,,,, -"Note: The estimates are based on Census 2000 and any modifications as documented in the Count Question Resolution program. The April 1, 2000 population in this table is the Population Estimates base. ",,,,,,,,,,,,,, -Suggested Citation:,,,,,,,,,,,,,, -"Table 1. Monthly Population Estimates for the United States: April 1, 2000 to December 1, 2010 (NA-EST2009-01)",,,,,,,,,,,,,, -"Source: U.S. Census Bureau, Population Division",,,,,,,,,,,,,, -Release Date: December 2009,,,,,,,,,,,,,, -,,,,,,,,,,,,,, diff --git a/scripts/us_census/pep/monthly_population_estimate/test_data/test_census_data.xlsx b/scripts/us_census/pep/monthly_population_estimate/test_data/test_census_data.xlsx deleted file mode 100644 index 5a934f2b9d8875bc8c45535916e7f8c20fe3d7d1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 37888 zcmeG_2Ut{BvuBqD7L=|iV!0F*lqMi5igXpF*}J&FQlu;{i((WZibkWcU{|71V~@Qn z7Sw1^qG&8pWACvWON?dT%(+`H%Z9x7{`Y<@lyG}E1Uz!aQqu-z)T2+G%+TF;(j)*AbesX zB;*$S-y$f7oRHg)hL9X$K}ftvmMzK@F}=je$zzy*@exL45b;ok!{B&9aKCm{Dv{YAtB1G+0Y)A))&ITkJ;UJ1~mE zmVj-{6H&{FNG8}0?`m?^zT1@i24#iHTJTMI;ot$8VE05yqYYs(RQ0S8qu$@p;1Pdi zeQKb=18pj5TmuH5H251X1X>OCX+F_O!-K~o0eZOz{ubjm(5HSHsMF4RZK20N#cG$I2(K|Axn6ZBhv5OWp1>b}B86@@nu!q*p7 znhF{dW3VT2c6D~~aB=ZTaPK(8O?ffIy{W(ny6MJR_Xk6e9;%JxOiW1=HIkQ)HXXP| zQZ1ok&Ri@GH3e!rh>gC4B%mm*7^P&2%OP$QFvPv10^scF400#9g(LtMFX9d#D5_bm z6{A_G6{A%mn0SytZDwo@wE0odG*|`)tCby1H2}A=GTC~ zp$2$O^lQT3S_7SbwLE(%U(0ItI#>gIXASV(HNdym0B7r4oi8hoRW*4wQaUh3X8mfe zjm?5O3+fO7YZn_8JSF8&vqQ~@fR)D>LJe(?e*ywMSpPJJsHYq5Q3Je{PPi@5)YaZi zYk=D+;i`7Q`e!{Q{5*+=(`GQ%ruD6_4Yyaq;e_RT9vfd#!)kC&yu#U|E;*qyW8o@& zvi=4HmGprfoP!TwI2ce3{>OvWrx`s5tCiWe}r2+Y=n#D$O@TsYz|gpPahR3Q&NrEu_UMiUMlBm#;Nh6gJ@bbfGX@a3~` za|N7~@oYkkx3(b~dVo0{91J0U@~lJfM9`Z0p&CxG3F?4bTLV-D zuLDSgxDm2PTONe-5Z+!}9yPp1d3aDSqC*}Y)Jq548oDK2a2{f7;R7Ne`3QtVqrNO$ zVHXWJR-gPyv9<77xEg<)upSx5I*I~$FnO`%&By{_C@Ii_qe_inW?v6-I_)DcjKMKl zD@zz~@&)vUI7I+A*?}9wR40NVuogtHrPfRY<5?|;U^uCn2nM-Y5WyH(Gm(0=BZ7LY znFxl@T1bLXp=Kf&YyXx=Wwd_lV4$r95&hP|s9Xyo`mKW@ycR_CTL>2)+h_9c1>tHuh3nKchgR!|5MD$w+dbZjS(Qh55c0}}B$EkKi^jpVSiwIok zifj-?;YQ635V}(hozzG~zja(|M?}AMn%9nqe(SWT9TEN3X<0iW`mN)pBEpBWQeq;n z*6-jA`H9nVwRL85Ixly?Fr}Rr;{H`YbQ5{?>XnL!DRgLvTv%8rXB3A}2h2<)Cr4A>fX-KG z3M;QARP`<$$AD}^L2bb*r*;7x7vPQK&o%AC9bEXTh@dJkX>mopBT#=6^s5aKd9Z#W z{W#e0&jk6v$Y`mgujKwJ*?_Si+#+J** zuR5C+df2cLjj}Njr#yZ7R5u$tE*t;qY+C7I!^S+y##Edle^sfQO+7A~w$<5q>0yIW zQDGaQIOW>oce>fs=duZ?&c;^{n*cQ%GjYo8=T~&Iu}3!k`aP`~u<@^jr&UJpIQ~F4 zn+9AqIy}uq4;xKStBn5h)JENG8gkj_@U)hC*l2oMW%SjnS9P;-;Ih%-X|46J(e$*+ zX!-p`y4f`1veDsb-g?+*dRk@lflJSHvvK6I(cx)+de~@sT4nU{n>%!~X^d)f|E9=5Sv5F{o6ql$Ihp46(5%RR4 zjc%f@YNFsjT%yf6L^XYe5S$RvUY#pxb2U-$7A{eD4pB`Hfhr#+x{0<>69wPk67}Q| z)$|AW4tU80-9%feiGn9^iMHVo)wDh#IUBp`A}WLxYZ$JDiIPi%9keaabCesAFqoPp ztGY&G9I3&S8TE+gIImV%+#0@if~D?oQD#zJrbw19$u1FosZEe?FRw$`9W6;D5B9Z) zVCa=jBrpWS!7`2{kSLCcl?-ssO&OTLRv^5I19KiAYhDSpuFSNq=J2gx3jutG5S}JZ z%3#99nVBWRLXKPw8g18<-MX9~?OqR$AH z96GcqNXCZKIebgvr%4#<$oA>tl^tLh=|eY*%{(wMdazh5vCzTMBMjyi#2KZzCR$)q9(Y@9BE*BH8lSRjlwm4Y8)NMq+xG?K&W ziL$=9#G-0yq=OF9nsk}5m}5*Zqtv&doOKuMs&SqllM4{0rApx%|ChOMpg z3O&jOHZj6C;{8R^Y>aAb91qqOlwSwBg#N%m3Vy2$Y`Wq%juxnfX9x$785*lGv!Hf1 z@aY3Y5@~IFgUDm(Sq#)2<7FPWnJ;KDos6O$q{h(PC>cP8^Kc1i5=ebH7_|%@7wXey zv9KXotih3ox8Oj~O4yISQsW-Nr$ad&d^Yjue?bGlRF-Lo8}ooLev_{_kOeOB;r0vEoulmlAZ-z~{Ua@EKg z;P@RYY$zHi7D*XVb}|zq$(E(r5zz8PCSFEuY$#$wc^klx}PnK&y^EMu9L_9JteUvB@eN85zJhaQI-GPZzYYD2MNi_w;qB2TANGVG^mjO)y zLEs@3XM#V9y}%=T=cT5C@KB@hbQ!H_AbiKvTapK^8>r!XOa!=YF4WP3>Fd?oOR2B0 zJgHce2d%FcOOlBIs|7MDukiI{Ed?`=KD35y0@*eNM%GyqRz@+?H#;4L>J2i9a|0P| z9e`rgzDOB#VBBIuJtKSfLAUVqY2ywN!b|ORa)=*7(iLh3F_&2T5OM+juY>>D(2kOX z_K*OeIP4Yw`DDJZf8F^ScPys!Nqi3@K|O4GfaOFUUAH;};g>Xq;0Wp@gTujv!FUOM z#^i`|hkE5_W&SYxRP0e7>&SQAK2E&n*}ZgIh_Lyi2`6TpSTXMKPm5gbD}LR!rtgP$ z(dYVvt!3;pJudsbTiWrC^guJyoktgzuIaw{Rak4+$BtcxuDa1K?()WdQ@?D~u#;$& z)xy{N4wkvK`>H5v>f&Cj#@^3KjoubCW0thptnbhL)t-NLmih+eRB2Uz|691Gq%kb z7ci_cwp?Cs_?zH|cE3~>4lV?Z$YExyt*=!V*E~23dI|u&V-!ySU(EIP!n}CqnGr{Q z>VEZn(t(L*3woYA+OYX3?^UzHy;l~HTW*DE&W=|dA770-VPd{tSp5C-ck6;aZ<_Z0 z*4zh-{o?f|M{kD*pGvzmD(Fz*go;VuuW2qEoS!p!<=Cq`6UySxuI%)48^=}McKOV+ zwVHA{uB_Llu;jB9*5|rMUiD9OEnG8uWWuFp3zs_F42b^ajeW06?S^lfxwb;S{isjn z(zx=%%^vq61=;Q9MyKCRT)x)(PVWP=){57kZ(6l;&-;s?peofXnlWa+{Y0qX*N||7 z2{gnkvA0GZ19P}ku@pU|Ze@)5QN}vtR>AVovo5zw+V2*bxb4)Y{clNlX`|2+-QSZW%9u@;VN=+@k7XR!uW%rA59%~%eUg_5OM~}=~C+gpSl;5yo$2WF2 zqJGNlS>SSE)})O)uQ3;Qw!Yx>+~eA?y{;pIrgiQA@RxV)w<907Zeh-EuUq)ob6IE4 zz|e0Cv}|k*8e+3mXoF%u8Q4SO*v|T3gNKC!o*dYk{Mg1}w$bDIEw^U6^y+oDThw_k z&u7xmUZZ5KOL}`7n|~kaZT!XK<28DHu2~Wjy5#c|%f08k+>N4AY7YXlC z;PkCHnP2QW>>Jcz3Z`8`OAah4t8iRp)LDbd&VnGksNjo$!-mySLrt>Oacgy;bqT zsV(kZH(Qa{?5)GrUpkL(Q83fl>DE{K5~>P6A3y!A#g3o`E2Q82;B@J1Vea0&htsyL zdv~{-xw@lIs|Bt0FB)(0owWX?O}kn@?Y=tBs47R;GG_0ufg6_me6Ddu(Yei**EWvG z*pPP1;?v;PrK3;%o^-3N+l7Qd<)Z^*wycAQLf!^#&p?(A~v;^t8IgWD!-wjVWk z)%sNl6T`aSt}x#hzbUhAgEc=hNnPHRz8JLk{JQMZ^B%ZOne4IeynT}Wsl2WB%ae|G zB=I3%yG{-2(Bnlz3#YG_Oex{Dyx!R?OjsuPG5WAnw7tqbv%K()`y%3cyehs)~XF2e= zaap^dU3=b!b)I)@>mNsbwiOLMo;Gph8eY@&2kO>&w`Szc>!ooqzqu604jJ37XJ&^z zK{3n$+XW|6rg$#yTJJ|&>SN@8?Uf@RS@mzcRjrKRObaJJAb`4{Y8Om zc!P@T)2(8L4DR+qR^U3xVY|}QDYaJc6O|2zG#o^nalC$^yZPMn^gwcx%zFM2{!szQu`#zYJ&)vuj_npn&q5O5|c zSm?CjiKzeZppa2Ntbg3FPTHJ43ELMtzni)xY}Z#tyC%nt-ZeKr#chUl!kYJ_Ec;5C zMc>nlx?4TUN#t7zcNAKC$F6K_UL_K|8?>>j)3y-{_Srwn|90f5!UlU!+&tK6SK5%9 z2L%q}(jB@zSzT$G^-I_DR~V~>ohO(aotGVYOj_u*;`jCTO9Jm5e;c!8Kd+I?h8t76 zjm!RH`}wzX<=^f)F|yr|xTAOaWv=?6$F9J~y-r^5HF3M;yJndggVGu`6RmaK(Bbjw z4SOGr_$V*vzx~;;gO9`)^BT81Fx@KXc#OB-vLA-TdC%GHU3GbFde^{vXZ@C?J^d*) z+U;qD!;c@r;tB+v&Q1^9vi9!lJ$9)shh2*|udggOvG=;!?Nokg#hIyf$2xT%?%(J2 zypoX0zNSZdEG(Kjd)TPo`{f6IvoCXQY~ZxWwilvXZwT>C@SeLpZ(*;BdPCRU|7Cyl zffUDw?vE!Fl^m#RmgKkO*!+nRd0W>`|2}o!aDP*?f^8Y1p1E80Y&`EhWakn7TJf+i zyJlN8J^y(8UV$?sINCn#OxKff>ozpFe&KXkY}{tQ)%AH*iQdl4J6X)gp<_Gc?ejnH zbu)chu}yY>S(d}Kn^Ucu7C$(Kr(zVAXlk|H@E~c@&zny*}sngumSHGz* ze)QVbciiIErH4km+%R#T>yiok$KHB)-m%KPu$Vb^^1=$=n^T1OBjcktc5r^t!lOs> zn2(=4yJshOjqbjxYE$uLudY?rZ)9;L zt1LYC{ecgPRPVnn&dyr43+^~V?~Xg=G`m1{&_W>^y|`i!6JvhFr(W^938RG)$uIk? zXScXErE24OqvE@5EdqjFdp>z;vB^W|^_A%0qV)X>zOArJ^1a?BZG9tQ;G=mX7nf)4 zc`_rUmwoKi%N>)q44*JV((Y;f)Y(1UVp_QNa`S4lP-@w-`<&9Mulu|&+SGpK%zk&B zSFR5IX@6C>cXfOwK=;xlHxtAvyyRA50 zdDCUd`e?z)!Ta_dyP>K&kM9W^N@^O_0-DC5V~iW$Lz@71n5Qo71Nzh$^l=MvhfV5& z4lth7Gy+%sTuR(AjGEF#U6kmEhD(F%1Zo)~yBFp!@~B;-^Efp0SLx%aw|Clf1r zZUZ??dSJrxaox*vF^TcP2^8Ln!dugP0)-UONev}Qn!}0r2X%Rn>%3MtI7Al#mg7JY@_NWSW zQ=LByc2}Lh2#z5PgRj1bCk*LJ*VRVR1;kvslE(lXpZ~|rO3D?tc=%c-8nE$uKIOp^ z7@7P=WK6ic$Q1ScySYS|Of@uskJkhExHl^rD9hl33zYx!13d%}{ErrG0w?%YFv2vC zh^W}U&cw%jdfkV1RXqzqZ8aZ#wQlj~6c!#L2Po#%KU(Pj?F(g1SOUn6d!VNoj{h4C zXj?-+Pagq+Kz@Pzx2L6*Y@DRQei|QNS ztvSqE@=KpyE|0YfZEW&FGB|ungQ)h6?7Z?b6VElQzjEN!&_=DNubOImGvr~2&!mzS zQ3oECH-vSyq6H7nn!XrOX1nyTA?@a0V;Qh9`Us?Uuc=5yLhs&QH_sLm!`-9b+Cua}c>~neA zq1E0ed}dnsH?*8qcb)WdX!~E7g58QD$ zxUu}NNp^3nUd(E1@;u*SqVI#JpMM?l*=0dt*oGg<`-ROrbk275`^U@5J?=Mj_FdaO zz@uJk$+Yd>M@KmAShe47?3^2~KHNVwGht?z8_{KfzlgFPJh=4X(9duGEWdMY_QlZ| z3DJ{QC+;uXIfXsC-S|w-Y#dkopXBR?x*9ZK(11Y$1`QZAV93vMz@Q+wE!)Lg-FnsML7lv=KgWl|deGH3{-T`I!oQlp_KkQK$6r z0l!G{)&()ot*U@L@Y@{7EgO#kd>-Efq%ww`SST5`jR=|}Cwzc4k~n|FGX17sg1qUn z@sMBtI9b67+f4*`A<|^>9O-0}iGAbE9iX2Hyrr!sg zO*yY2|9$!r$R}@Hsldnf7D0E7p**p;GEqpboT zV~g6;Y$*P#w<5r4x?KkO!ABgS1DxNF&VW4jr8neDL)$6vF^(p@KoJD{${`3aOk2ps|?$xum0w3d?+P~~6eo5h4z> zF;MMa4JiJ>)IEUXeB>nLy?z@3`MGT)75Eq*)&A9x;xFBF0&rS9xeR%iPG3O&_Fj079iSn=8;>|h(_o+RG_5gMcj$dE z3Mt2KO`t8(!I0`fYETX~WBj8Davp-{MppzG(E z3u_d??wAJj|GeWfj7!;0Uc2t7@SBsCy?P&)X1!sykhE^O{jv|hzJr9mf%iioVfWn) z5~_6wBRLZE2iGBx zief%)5sj+g;W^24x_e`=;@mOo+ntfW@)VATcMXR@0|pHkG+@wxK?4R27&KtefI$NW z4Hz_F(11Y$1`TjDpl|-qzwq;gQZGmAISXL^@9};U&i_9`!nr=q|8d@ri-z%#aNa)v z63*X;L&Euf8YEnV%z=dK0Qrz`&R+&exemb2+pTGN0N41xDGq+Kz@Pzx1`Hbbx77endT}m}^IPTo8n?*d zclcDhZC5z+#_cw^eFo?IxK#zW#o(MD*9CBc5N`UxjXbzv z12=2nMh%=~<3jwOJa1+~4 kZTaKIB-(i3pD}oy1b&GGWnh2r^q Date: Tue, 10 Dec 2024 12:20:33 +0530 Subject: [PATCH 4/4] WorldDevelopmentIndicators Code Update (#964) * WDI Code Update * WDI Readme Update * Code modification and Auto Refresh * Auto refresh modification * Readme * Addressed PR Comments * Test Script * Lint * Code modification * Core team PR comment * Removed unwanted lines * Corn Schedule --- scripts/world_bank/wdi/README.md | 19 + scripts/world_bank/wdi/manifest.json | 22 + .../output/WorldBank_StatisticalVariables.mcf | 171 +++++++ .../schema_csvs/WorldBankIndicators_prod.csv | 69 +-- .../expected_ouput/expected_output.csv | 5 + .../expected_ouput/expected_output.tmcf | 40 ++ scripts/world_bank/wdi/worldbank.py | 434 +++++++++++++----- scripts/world_bank/wdi/worldbank_test.py | 82 ++++ 8 files changed, 690 insertions(+), 152 deletions(-) create mode 100644 scripts/world_bank/wdi/manifest.json create mode 100644 scripts/world_bank/wdi/test_data/expected_ouput/expected_output.csv create mode 100644 scripts/world_bank/wdi/test_data/expected_ouput/expected_output.tmcf create mode 100644 scripts/world_bank/wdi/worldbank_test.py diff --git a/scripts/world_bank/wdi/README.md b/scripts/world_bank/wdi/README.md index 7cda4df1b4..73e9154c2f 100644 --- a/scripts/world_bank/wdi/README.md +++ b/scripts/world_bank/wdi/README.md @@ -127,6 +127,25 @@ To generate `output/WorldBank_StatisticalVariables.mcf`, python3 worldbank.py --indicatorSchemaFile= --fetchFromSource= ``` +#### Processing Steps for Refreshing Data + +To generate `output/WorldBank_StatisticalVariables.mcf`, +`output/WorldBank.tmcf`, and `output/WorldBank.csv`, run: + +```bash +python3 worldbank.py +``` + +If you want to perform "only process", run the below command: +```bash +python3 preprocess.py --mode=process +``` + +If you want to perform "only download", run the below command: +```bash +python3 preprocess.py --mode=download +``` + We highly recommend the use of the import validation tool for this import which you can find in https://github.com/datacommonsorg/tools/tree/master/import-validation-helper. diff --git a/scripts/world_bank/wdi/manifest.json b/scripts/world_bank/wdi/manifest.json new file mode 100644 index 0000000000..0cb6090c93 --- /dev/null +++ b/scripts/world_bank/wdi/manifest.json @@ -0,0 +1,22 @@ +{ + "import_specifications": [ + { + "import_name": "WorldDevelopmentIndicators", + "curator_emails": [ + "sanikap@google.com" + ], + "provenance_url": "https://datacatalog.worldbank.org/dataset/world-development-indicators/", + "provenance_description": "Variables related to demographics, energy, health, labor, etc. from the World Bank", + "scripts": [ + "worldbank.py" + ], + "import_inputs": [ + { + "template_mcf": "output/WorldBank.tmcf", + "cleaned_csv": "output/WorldBank.csv" + } + ], + "cron_schedule": "0 11 * * 2" + } + ] +} \ No newline at end of file diff --git a/scripts/world_bank/wdi/output/WorldBank_StatisticalVariables.mcf b/scripts/world_bank/wdi/output/WorldBank_StatisticalVariables.mcf index 034f736164..8fde765741 100644 --- a/scripts/world_bank/wdi/output/WorldBank_StatisticalVariables.mcf +++ b/scripts/world_bank/wdi/output/WorldBank_StatisticalVariables.mcf @@ -634,3 +634,174 @@ statType: dcs:measuredValue measuredProperty: dcs:amount transferType: dcs:OutwardRemittance + +Node: dcid:WorldBank/VC_IHR_PSRC_P5 +name: "Intentional homicides (per 100,000 people)" +description: "Intentional homicides are estimates of unlawful homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded. UN Office on Drugs and Crime's International Homicide Statistics database." +typeOf: dcs:StatisticalVariable +populationType: dcs:CriminalActivities +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person +crimeType: dcs:MurderAndNonNegligentManslaughter + + +Node: dcid:WorldBank/SH_DYN_MORT +name: "Mortality rate, under-5 (per 1,000 live births)" +description: "Under-five mortality rate is the probability per 1,000 that a newborn baby will die before reaching age five, if subject to age-specific mortality rates of the specified year. Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:mortalityRate +measurementDenominator: dcs:Count_BirthEvent_LiveBirth +age: dcs:YearsUpto4 + + +Node: dcid:WorldBank/SH_PRV_SMOK +name: "Smoking prevalence, total (ages 15+)" +description: "Prevalence of smoking is the percentage of men and women ages 15 and over who currently smoke any tobacco product on a daily or non-daily basis. It excludes smokeless tobacco use. The rates are age-standardized. World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/)." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person_15OrMoreYears +healthBehavior: dcs:Smoking +age: dcs:Years15Onwards + + +Node: dcid:WorldBank/SH_PRV_SMOK_FE +name: "Smoking prevalence, females (% of adults)" +description: "Prevalence of smoking, female is the percentage of women ages 15 and over who currently smoke any tobacco product on a daily or non-daily basis. It excludes smokeless tobacco use. The rates are age-standardized. World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/)." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person_15OrMoreYears_Female +healthBehavior: dcs:Smoking +age: dcs:Years15Onwards +gender: dcs:Female + + +Node: dcid:WorldBank/SH_PRV_SMOK_MA +name: "Smoking prevalence, males (% of adults)" +description: "Prevalence of smoking, male is the percentage of men ages 15 and over who currently smoke any tobacco product on a daily or non-daily basis. It excludes smokeless tobacco use. The rates are age-standardized. World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/)." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person_15OrMoreYears_Male +healthBehavior: dcs:Smoking +age: dcs:Years15Onwards +gender: dcs:Male + + +Node: dcid:WorldBank/SH_STA_DIAB_ZS +name: "Diabetes prevalence (% of population ages 20 to 79)" +description: "Diabetes prevalence refers to the percentage of people ages 20-79 who have type 1 or type 2 diabetes. International Diabetes Federation, Diabetes Atlas." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person_20To79Years +healthOutcome: dcs:Diabetes +age: dcs:Years20To79 + + +Node: dcid:WorldBank/SP_DYN_CBRT_IN +name: "Birth rate, crude (per 1,000 people)" +description: "Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration. (1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme." +typeOf: dcs:StatisticalVariable +populationType: dcs:BirthEvent +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person +medicalStatus: dcs:LiveBirth + + +Node: dcid:WorldBank/SP_DYN_LE00_FE_IN +name: "Life expectancy at birth, female (years)" +description: "Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life. (1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:lifeExpectancy +gender: dcs:Female + + +Node: dcid:WorldBank/SP_DYN_LE00_MA_IN +name: "Life expectancy at birth, male (years)" +description: "Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life. (1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:lifeExpectancy +gender: dcs:Male + + +Node: dcid:WorldBank/EG_ELC_FOSL_ZS +name: "Electricity production from oil, gas and coal sources (% of total)" +description: "Sources of electricity refer to the inputs used to generate electricity. Oil refers to crude oil and petroleum products. Gas refers to natural gas but excludes natural gas liquids. Coal refers to all coal and brown coal, both primary (including hard coal and lignite-brown coal) and derived fuels (including patent fuel, coke oven coke, gas coke, coke oven gas, and blast furnace gas). Peat is also included in this category. IEA Statistics OECD/IEA 2014 (http://www.iea.org/stats/index.asp), subject to https://www.iea.org/t&c/termsandconditions/" +typeOf: dcs:StatisticalVariable +populationType: dcs:Production +statType: dcs:measuredValue +measuredProperty: dcs:amount +measurementDenominator: dcs:Amount_Production_Energy +producedThing: dcs:ElectricityFromOilGasOrCoalSources + + +Node: dcid:WorldBank/EG_ELC_NUCL_ZS +name: "Electricity production from nuclear sources (% of total)" +description: "Sources of electricity refer to the inputs used to generate electricity. Nuclear power refers to electricity produced by nuclear power plants. IEA Statistics OECD/IEA 2014 (http://www.iea.org/stats/index.asp), subject to https://www.iea.org/t&c/termsandconditions/" +typeOf: dcs:StatisticalVariable +populationType: dcs:Production +statType: dcs:measuredValue +measuredProperty: dcs:amount +measurementDenominator: dcs:Amount_Production_Energy +producedThing: dcs:ElectricityFromNuclearSources + + +Node: dcid:WorldBank/EG_FEC_RNEW_ZS +name: "Renewable energy consumption (% of total final energy consumption)" +description: "Renewable energy consumption is the share of renewables energy in total final energy consumption. World Bank, Sustainable Energy for All (SE4ALL) database from the SE4ALL Global Tracking Framework led jointly by the World Bank, International Energy Agency, and the Energy Sector Management Assistance Program." +typeOf: dcs:StatisticalVariable +populationType: dcs:Consumption +statType: dcs:measuredValue +measuredProperty: dcs:amount +measurementDenominator: dcs:Amount_Consumption_Energy +consumedThing: dcs:RenewableEnergy + + +Node: dcid:WorldBank/EN_POP_EL5M_ZS +name: "Population living in areas where elevation is below 5 meters (% of total population)" +description: "Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less. Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2." +typeOf: dcs:StatisticalVariable +populationType: dcs:Person +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person +residenceCharacteristic: dcs:LessThan5MetersAboveSeaLevel + + +Node: dcid:WorldBank/IT_CEL_SETS_P2 +name: "Mobile cellular subscriptions (per 100 people)" +description: "Mobile cellular telephone subscriptions are subscriptions to a public mobile telephone service that provide access to the PSTN using cellular technology. The indicator includes (and is split into) the number of postpaid subscriptions, and the number of active prepaid accounts (i.e. that have been used during the last three months). The indicator applies to all mobile cellular subscriptions that offer voice communications. It excludes subscriptions via data cards or USB modems, subscriptions to public mobile data services, private trunked mobile radio, telepoint, radio paging and telemetry services. International Telecommunication Union, World Telecommunication/ICT Development Report and database." +typeOf: dcs:StatisticalVariable +populationType: dcs:Product +statType: dcs:measuredValue +measuredProperty: dcs:count +measurementDenominator: dcs:Count_Person +productType: dcs:MobileCellularSubscription + + +Node: dcid:WorldBank/SE_XPD_TERT_ZS +name: "Expenditure on tertiary education (% of government expenditure on education)" +description: "Expenditure on tertiary education is expressed as a percentage of total general government expenditure on education. General government usually refers to local, regional and central governments. UNESCO Institute for Statistics (http://uis.unesco.org/)" +typeOf: dcs:StatisticalVariable +populationType: dcs:EconomicActivity +statType: dcs:measuredValue +measuredProperty: dcs:amount +measurementDenominator: dcs:Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government +activitySource: dcs:ExpenditureActivity +expenditureType: dcs:TertiaryEducationExpenditure +remunerator: dcs:Government + diff --git a/scripts/world_bank/wdi/schema_csvs/WorldBankIndicators_prod.csv b/scripts/world_bank/wdi/schema_csvs/WorldBankIndicators_prod.csv index 5012e41ec1..1b87010458 100644 --- a/scripts/world_bank/wdi/schema_csvs/WorldBankIndicators_prod.csv +++ b/scripts/world_bank/wdi/schema_csvs/WorldBankIndicators_prod.csv @@ -14,53 +14,53 @@ SE.TER.CUAT.ST.ZS,,,"Educational attainment, at least completed short-cycle tert SH.STA.OWGH.FE.ZS,,,"Prevalence of overweight, weight for height, female (% of children under 5)","Prevalence of overweight, female, is the percentage of girls under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,healthBehavior,Overweight,age,YearsUpto4,gender,Female,Count_Person_Upto4Years_Female,,100,, SH.STA.OWGH.MA.ZS,,,"Prevalence of overweight, weight for height, male (% of children under 5)","Prevalence of overweight, male, is the percentage of boys under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,healthBehavior,Overweight,age,YearsUpto4,gender,Male,Count_Person_Upto4Years_Male,,100,, SH.STA.OWGH.ZS,,,"Prevalence of overweight, weight for height (% of children under 5)",Prevalence of overweight children is the percentage of children under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.,"UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,healthBehavior,Overweight,age,YearsUpto4,,,Count_Person_Upto4Years,,100,, -SH.STA.SUIC.FE.P5,,,"Suicide mortality rate, female (per 100,000 female population)","Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",MortalityEvent,measuredValue,count,causeOfDeath,ICD10/X60-X84,gender,Female,,,Count_Person_Female,,100000,, -SH.STA.SUIC.MA.P5,,,"Suicide mortality rate, male (per 100,000 male population)","Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",MortalityEvent,measuredValue,count,causeOfDeath,ICD10/X60-X84,gender,Male,,,Count_Person_Male,,100000,, -SH.STA.SUIC.P5,,,"Suicide mortality rate (per 100,000 population)","Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",MortalityEvent,measuredValue,count,causeOfDeath,ICD10/X60-X84,,,,,Count_Person,,100000,, +SH.STA.SUIC.FE.P5,,,"Suicide mortality rate, female (per 100,000 female population)","Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",MortalityEvent,measuredValue,count,causeOfDeath,ICD10/X60-X84,gender,Female,,,Count_Person_Female,,,,Per100000Females +SH.STA.SUIC.MA.P5,,,"Suicide mortality rate, male (per 100,000 male population)","Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",MortalityEvent,measuredValue,count,causeOfDeath,ICD10/X60-X84,gender,Male,,,Count_Person_Male,,,,Per100000Males +SH.STA.SUIC.P5,,,"Suicide mortality rate (per 100,000 population)","Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",MortalityEvent,measuredValue,count,causeOfDeath,ICD10/X60-X84,,,,,Count_Person,,,,Per100000Persons SL.TLF.ACTI.FE.ZS,,,"Labor force participation rate, female (% of female population ages 15-64) (modeled ILO estimate)",Labor force participation rate is the proportion of the population ages 15-64 that is economically active: all people who supply labor for the production of goods and services during a specified period.,"International Labour Organization, ILOSTAT database. Data retrieved in March 1, 2020.",Person,measuredValue,count,age,Years15To64,employmentStatus,BLS_InLaborForce,gender,Female,Count_Person_15To64Years_Female,,100,, SL.TLF.ACTI.MA.ZS,,,"Labor force participation rate, male (% of male population ages 15-64) (modeled ILO estimate)",Labor force participation rate is the proportion of the population ages 15-64 that is economically active: all people who supply labor for the production of goods and services during a specified period.,"International Labour Organization, ILOSTAT database. Data retrieved in March 1, 2020.",Person,measuredValue,count,age,Years15To64,employmentStatus,BLS_InLaborForce,gender,Male,Count_Person_15To64Years_Male,,100,, SL.TLF.ACTI.ZS,,,"Labor force participation rate, total (% of total population ages 15-64) (modeled ILO estimate)",Labor force participation rate is the proportion of the population ages 15-64 that is economically active: all people who supply labor for the production of goods and services during a specified period.,"International Labour Organization, ILOSTAT database. Data retrieved in March 1, 2020.",Person,measuredValue,count,age,Years15To64,employmentStatus,BLS_InLaborForce,,,Count_Person_15To64Years,,100,, SL.TLF.TOTL.FE.ZS,,,"Labor force, female (% of total labor force)",Female labor force as a percentage of the total show the extent to which women are active in the labor force. Labor force comprises people ages 15 and older who supply labor for the production of goods and services during a specified period.,"Derived using data from International Labour Organization, ILOSTAT database. The data retrieved in March 1, 2020.",Person,measuredValue,count,age,Years15Onwards,gender,Female,employmentStatus,BLS_InLaborForce,Count_Person_InLaborForce,,100,, SL.TLF.TOTL.IN,TRUE,Count_Person_InLaborForce,"Labor force, total","Labor force comprises people ages 15 and older who supply labor for the production of goods and services during a specified period. It includes people who are currently employed and people who are unemployed but seeking work as well as first-time job-seekers. Not everyone who works is included, however. Unpaid workers, family workers, and students are often omitted, and some countries do not count members of the armed forces. Labor force size tends to vary during the year as seasonal workers enter and leave.","Derived using data from International Labour Organization, ILOSTAT database. The data retrieved in March 1, 2020.",Person,measuredValue,count,age,Years15Onwards,employmentStatus,BLS_InLaborForce,,,,,,dcs:InternationalLaborOrganization, -VC.IHR.PSRC.FE.P5,,,"Intentional homicides, female (per 100,000 female)","Intentional homicides, female are estimates of unlawful female homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",UN Office on Drugs and Crime's International Homicide Statistics database.,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,gender,Female,,,Count_Person_Female,,100000,, -VC.IHR.PSRC.MA.P5,,,"Intentional homicides, male (per 100,000 male)","Intentional homicides, male are estimates of unlawful male homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,gender,Male,,,Count_Person_Male,,100000,, -VC.IHR.PSRC.P5,,,"Intentional homicides (per 100,000 people)","Intentional homicides are estimates of unlawful homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",UN Office on Drugs and Crime's International Homicide Statistics database.,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,,,,,Count_Person,,100000,, +VC.IHR.PSRC.FE.P5,,,"Intentional homicides, female (per 100,000 female)","Intentional homicides, female are estimates of unlawful female homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",UN Office on Drugs and Crime's International Homicide Statistics database.,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,gender,Female,,,Count_Person_Female,,,,Per100000Females +VC.IHR.PSRC.MA.P5,,,"Intentional homicides, male (per 100,000 male)","Intentional homicides, male are estimates of unlawful male homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,gender,Male,,,Count_Person_Male,,,,Per100000Males +VC.IHR.PSRC.P5,,,"Intentional homicides (per 100,000 people)","Intentional homicides are estimates of unlawful homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",UN Office on Drugs and Crime's International Homicide Statistics database.,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,,,,,Count_Person,,,,Per100000Persons SP.RUR.TOTL,,,Rural population,Rural population refers to people living in rural areas as defined by national statistical offices. It is calculated as the difference between total population and urban population. Aggregation of urban and rural population may not add up to total population because of different country coverages.,World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.,Person,measuredValue,count,placeOfResidenceClassification,Rural,,,,,,,,WorldBankEstimate, SP.URB.TOTL,,,Urban population,Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects. Aggregation of urban and rural population may not add up to total population because of different country coverages.,World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.,Person,measuredValue,count,placeOfResidenceClassification,Urban,,,,,,,,WorldBankEstimate, -SP.DYN.IMRT.IN,,,"Mortality rate, infant (per 1,000 live births)","Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.","Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",MortalityEvent,measuredValue,count,age,Years0,,,,,Count_BirthEvent_LiveBirth,1000,,UnitedNationsIGMEEstimate, -SP.DYN.IMRT.MA.IN,,,"Mortality rate, infant, male (per 1,000 live births)","Infant mortality rate, male is the number of male infants dying before reaching one year of age, per 1,000 male live births in a given year.","Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",MortalityEvent,measuredValue,count,age,Years0,gender,Male,,,Count_BirthEvent_LiveBirth_Male,1000,,UnitedNationsIGMEEstimate, -SP.DYN.IMRT.FE.IN,,,"Mortality rate, infant, female (per 1,000 live births)","Infant mortality rate, female is the number of female infants dying before reaching one year of age, per 1,000 female live births in a given year.","Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",MortalityEvent,measuredValue,count,age,Years0,gender,Female,,,Count_BirthEvent_LiveBirth_Female,1000,,UnitedNationsIGMEEstimate, +SP.DYN.IMRT.IN,,,"Mortality rate, infant (per 1,000 live births)","Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.","Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",MortalityEvent,measuredValue,count,age,Years0,,,,,Count_BirthEvent_LiveBirth,,,UnitedNationsIGMEEstimate,Per1000LiveBirths +SP.DYN.IMRT.MA.IN,,,"Mortality rate, infant, male (per 1,000 live births)","Infant mortality rate, male is the number of male infants dying before reaching one year of age, per 1,000 male live births in a given year.","Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",MortalityEvent,measuredValue,count,age,Years0,gender,Male,,,Count_BirthEvent_LiveBirth_Male,,,UnitedNationsIGMEEstimate,Per1000MaleLiveBirths +SP.DYN.IMRT.FE.IN,,,"Mortality rate, infant, female (per 1,000 live births)","Infant mortality rate, female is the number of female infants dying before reaching one year of age, per 1,000 female live births in a given year.","Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",MortalityEvent,measuredValue,count,age,Years0,gender,Female,,,Count_BirthEvent_LiveBirth_Female,,,UnitedNationsIGMEEstimate,Per1000FemaleLiveBirths SH.DTH.IMRT,,,Number of infant deaths,Number of infants dying before reaching one year of age.,"Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",MortalityEvent,measuredValue,count,age,Years0,,,,,,,,UnitedNationsIGMEEstimate, -SL.TLF.0714.ZS,,,"Children in employment, total (% of children ages 7-14)",Children in employment refer to children involved in economic activity for at least one hour in the reference week of the survey.,"Understanding Children's Work project based on data from ILO, UNICEF and the World Bank.",Person,measuredValue,count,age,Years7To14,employment,Employed,,,Count_Person_7To14Years,100,,, -SL.TLF.0714.MA.ZS,,,"Children in employment, male (% of male children ages 7-14)",Children in employment refer to children involved in economic activity for at least one hour in the reference week of the survey.,"Understanding Children's Work project based on data from ILO, UNICEF and the World Bank.",Person,measuredValue,count,age,Years7To14,employment,Employed,gender,Male,Count_Person_7To14Years_Male,100,,, -SL.TLF.0714.FE.ZS,,,"Children in employment, female (% of female children ages 7-14)",Children in employment refer to children involved in economic activity for at least one hour in the reference week of the survey.,"Understanding Children's Work project based on data from ILO, UNICEF and the World Bank.",Person,measuredValue,count,age,Years7To14,employment,Employed,gender,Female,Count_Person_7To14Years_Female,100,,, -SH.SVR.WAST.ZS,,,"Prevalence of severe wasting, weight for height (% of children under 5)",Prevalence of severe wasting is the proportion of children under age 5 whose weight for height is more than three standard deviations below the median for the international reference population ages 0-59.,"UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,SevereWasting,,,Count_Person_Upto4Years,100,,JointChildMalnutritionEstimate, -SH.SVR.WAST.MA.ZS,,,"Prevalence of severe wasting, weight for height, male (% of children under 5)","Prevalence of severe wasting, male, is the proportion of boys under age 5 whose weight for height is more than three standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,SevereWasting,gender,Male,Count_Person_Upto4Years_Male,100,,JointChildMalnutritionEstimate, -SH.SVR.WAST.FE.ZS,,,"Prevalence of severe wasting, weight for height, female (% of children under 5)","Prevalence of severe wasting, female, is the proportion of girls under age 5 whose weight for height is more than three standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,SevereWasting,gender,Female,Count_Person_Upto4Years_Female,100,,JointChildMalnutritionEstimate, -SH.STA.WAST.ZS,,,"Prevalence of wasting, weight for height (% of children under 5)",Prevalence of wasting is the proportion of children under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.,"UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,Wasting,,,Count_Person_Upto4Years,100,,JointChildMalnutritionEstimate, -SH.STA.WAST.MA.ZS,,,"Prevalence of wasting, weight for height, male (% of children under 5)","Prevalence of wasting, male,is the proportion of boys under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,Wasting,gender,Male,Count_Person_Upto4Years_Male,100,,JointChildMalnutritionEstimate, -SH.STA.WAST.FE.ZS,,,"Prevalence of wasting, weight for height, female (% of children under 5)","Prevalence of wasting, female, is the proportion of girls under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,Wasting,gender,Female,Count_Person_Upto4Years_Female,100,,JointChildMalnutritionEstimate, +SL.TLF.0714.ZS,,,"Children in employment, total (% of children ages 7-14)",Children in employment refer to children involved in economic activity for at least one hour in the reference week of the survey.,"Understanding Children's Work project based on data from ILO, UNICEF and the World Bank.",Person,measuredValue,count,age,Years7To14,employment,Employed,,,Count_Person_7To14Years,100,,,Percent +SL.TLF.0714.MA.ZS,,,"Children in employment, male (% of male children ages 7-14)",Children in employment refer to children involved in economic activity for at least one hour in the reference week of the survey.,"Understanding Children's Work project based on data from ILO, UNICEF and the World Bank.",Person,measuredValue,count,age,Years7To14,employment,Employed,gender,Male,Count_Person_7To14Years_Male,100,,,Percent +SL.TLF.0714.FE.ZS,,,"Children in employment, female (% of female children ages 7-14)",Children in employment refer to children involved in economic activity for at least one hour in the reference week of the survey.,"Understanding Children's Work project based on data from ILO, UNICEF and the World Bank.",Person,measuredValue,count,age,Years7To14,employment,Employed,gender,Female,Count_Person_7To14Years_Female,100,,,Percent +SH.SVR.WAST.ZS,,,"Prevalence of severe wasting, weight for height (% of children under 5)",Prevalence of severe wasting is the proportion of children under age 5 whose weight for height is more than three standard deviations below the median for the international reference population ages 0-59.,"UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,SevereWasting,,,Count_Person_Upto4Years,100,,JointChildMalnutritionEstimate,Percent +SH.SVR.WAST.MA.ZS,,,"Prevalence of severe wasting, weight for height, male (% of children under 5)","Prevalence of severe wasting, male, is the proportion of boys under age 5 whose weight for height is more than three standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,SevereWasting,gender,Male,Count_Person_Upto4Years_Male,100,,JointChildMalnutritionEstimate,Percent +SH.SVR.WAST.FE.ZS,,,"Prevalence of severe wasting, weight for height, female (% of children under 5)","Prevalence of severe wasting, female, is the proportion of girls under age 5 whose weight for height is more than three standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,SevereWasting,gender,Female,Count_Person_Upto4Years_Female,100,,JointChildMalnutritionEstimate,Percent +SH.STA.WAST.ZS,,,"Prevalence of wasting, weight for height (% of children under 5)",Prevalence of wasting is the proportion of children under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.,"UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,Wasting,,,Count_Person_Upto4Years,100,,JointChildMalnutritionEstimate,Percent +SH.STA.WAST.MA.ZS,,,"Prevalence of wasting, weight for height, male (% of children under 5)","Prevalence of wasting, male,is the proportion of boys under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,Wasting,gender,Male,Count_Person_Upto4Years_Male,100,,JointChildMalnutritionEstimate,Percent +SH.STA.WAST.FE.ZS,,,"Prevalence of wasting, weight for height, female (% of children under 5)","Prevalence of wasting, female, is the proportion of girls under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.","UNICEF, WHO, World Bank: Joint child malnutrition estimates (JME). Aggregation is based on UNICEF, WHO, and the World Bank harmonized dataset (adjusted, comparable data) and methodology.",Person,measuredValue,count,age,YearsUpto4,medicalCondition,Wasting,gender,Female,Count_Person_Upto4Years_Female,100,,JointChildMalnutritionEstimate,Percent SH.XPD.CHEX.PP.CD,,,"Current health expenditure per capita, PPP (current international $)",Current expenditures on health per capita expressed in international dollars at purchasing power parity (PPP time series based on ICP2011 PPP).,World Health Organization Global Health Expenditure database (http://apps.who.int/nha/database).,EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,HealthcareExpenditure,,,Count_Person,,,,InternationalDollar SH.XPD.CHEX.PC.CD,,,Current health expenditure per capita (current US$),Current expenditures on health per capita in current US dollars. Estimates of current health expenditures include healthcare goods and services consumed during each year.,World Health Organization Global Health Expenditure database (http://apps.who.int/nha/database).,EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,HealthcareExpenditure,,,Count_Person,,,,USDollar SH.ALC.PCAP.LI,,,"Total alcohol consumption per capita (liters of pure alcohol, projected estimates, 15+ years of age)","Total alcohol per capita consumption is defined as the total (sum of recorded and unrecorded alcohol) amount of alcohol consumed per person (15 years of age or older) over a calendar year, in litres of pure alcohol, adjusted for tourist consumption.","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",Consumption,measuredValue,amount,consumedThing,Alcohol,consumerAge,Years15Onwards,,,Count_Person_15OrMoreYears,,,WorldHealthOrganizationEstimates,Liter SI.POV.GINI,,,GINI index (World Bank estimate),"Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household. The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.","World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).",EconomicActivity,measuredValue,giniIndex,,,,,,,,,,WorldBankEstimate, -SE.XPD.TOTL.GB.ZS,,,"Government expenditure on education, total (% of government expenditure)","General government expenditure on education (current, capital, and transfers) is expressed as a percentage of total general government expenditure on all sectors (including health, education, social services, etc.). It includes expenditure funded by transfers from international sources to government. General government usually refers to local, regional and central governments.",UNESCO Institute for Statistics (http://uis.unesco.org/),EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,EducationExpenditure,expensor,Government,Amount_EconomicActivity_ExpenditureActivity_Government,100,,, -SE.XPD.TOTL.GD.ZS,,,"Government expenditure on education, total (% of GDP)","General government expenditure on education (current, capital, and transfers) is expressed as a percentage of GDP. It includes expenditure funded by transfers from international sources to government. General government usually refers to local, regional and central governments.",UNESCO Institute for Statistics (http://uis.unesco.org/),EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,EducationExpenditure,expensor,Government,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,, +SE.XPD.TOTL.GB.ZS,,,"Government expenditure on education, total (% of government expenditure)","General government expenditure on education (current, capital, and transfers) is expressed as a percentage of total general government expenditure on all sectors (including health, education, social services, etc.). It includes expenditure funded by transfers from international sources to government. General government usually refers to local, regional and central governments.",UNESCO Institute for Statistics (http://uis.unesco.org/),EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,EducationExpenditure,expensor,Government,Amount_EconomicActivity_ExpenditureActivity_Government,100,,,Percent +SE.XPD.TOTL.GD.ZS,,,"Government expenditure on education, total (% of GDP)","General government expenditure on education (current, capital, and transfers) is expressed as a percentage of GDP. It includes expenditure funded by transfers from international sources to government. General government usually refers to local, regional and central governments.",UNESCO Institute for Statistics (http://uis.unesco.org/),EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,EducationExpenditure,expensor,Government,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,,Percent MS.MIL.XPND.CD,,,Military expenditure (current USD),"Military expenditures data from SIPRI are derived from the NATO definition, which includes all current and capital expenditures on the armed forces, including peacekeeping forces; defense ministries and other government agencies engaged in defense projects; paramilitary forces, if these are judged to be trained and equipped for military operations; and military space activities. Such expenditures include military and civil personnel, including retirement pensions of military personnel and social services for personnel; operation and maintenance; procurement; military research and development; and military aid (in the military expenditures of the donor country). Excluded are civil defense and current expenditures for previous military activities, such as for veterans' benefits, demobilization, conversion, and destruction of weapons. This definition cannot be applied for all countries, however, since that would require much more detailed information than is available about what is included in military budgets and off-budget military expenditure items. (For example, military budgets might or might not cover civil defense, reserves and auxiliary forces, police and paramilitary forces, dual-purpose forces such as military and civilian police, military grants in kind, pensions for military personnel, and social security contributions paid by one part of government to another).","Stockholm International Peace Research Institute (SIPRI), Yearbook: Armaments, Disarmament and International Security.",EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,MilitaryExpenditure,expensor,Government,,,,,USDollar -MS.MIL.XPND.GD.ZS,,,Military expenditure (% of GDP),"Military expenditures data from SIPRI are derived from the NATO definition, which includes all current and capital expenditures on the armed forces, including peacekeeping forces; defense ministries and other government agencies engaged in defense projects; paramilitary forces, if these are judged to be trained and equipped for military operations; and military space activities. Such expenditures include military and civil personnel, including retirement pensions of military personnel and social services for personnel; operation and maintenance; procurement; military research and development; and military aid (in the military expenditures of the donor country). Excluded are civil defense and current expenditures for previous military activities, such as for veterans' benefits, demobilization, conversion, and destruction of weapons. This definition cannot be applied for all countries, however, since that would require much more detailed information than is available about what is included in military budgets and off-budget military expenditure items. (For example, military budgets might or might not cover civil defense, reserves and auxiliary forces, police and paramilitary forces, dual-purpose forces such as military and civilian police, military grants in kind, pensions for military personnel, and social security contributions paid by one part of government to another.)","Stockholm International Peace Research Institute (SIPRI), Yearbook: Armaments, Disarmament and International Security.",EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,MilitaryExpenditure,expensor,Government,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,, -CM.MKT.LCAP.GD.ZS,,,Market capitalization of listed domestic companies (% of GDP),"Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values.",World Federation of Exchanges database.,Stock,measuredValue,amount,,,,,,,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,, +MS.MIL.XPND.GD.ZS,,,Military expenditure (% of GDP),"Military expenditures data from SIPRI are derived from the NATO definition, which includes all current and capital expenditures on the armed forces, including peacekeeping forces; defense ministries and other government agencies engaged in defense projects; paramilitary forces, if these are judged to be trained and equipped for military operations; and military space activities. Such expenditures include military and civil personnel, including retirement pensions of military personnel and social services for personnel; operation and maintenance; procurement; military research and development; and military aid (in the military expenditures of the donor country). Excluded are civil defense and current expenditures for previous military activities, such as for veterans' benefits, demobilization, conversion, and destruction of weapons. This definition cannot be applied for all countries, however, since that would require much more detailed information than is available about what is included in military budgets and off-budget military expenditure items. (For example, military budgets might or might not cover civil defense, reserves and auxiliary forces, police and paramilitary forces, dual-purpose forces such as military and civilian police, military grants in kind, pensions for military personnel, and social security contributions paid by one part of government to another.)","Stockholm International Peace Research Institute (SIPRI), Yearbook: Armaments, Disarmament and International Security.",EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,MilitaryExpenditure,expensor,Government,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,,Percent +CM.MKT.LCAP.GD.ZS,,,Market capitalization of listed domestic companies (% of GDP),"Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values.",World Federation of Exchanges database.,Stock,measuredValue,amount,,,,,,,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,,Percent CM.MKT.LCAP.CD,,,Market capitalization of listed domestic companies (current US$),"Market capitalization (also known as market value) is the share price times the number of shares outstanding (including their several classes) for listed domestic companies. Investment funds, unit trusts, and companies whose only business goal is to hold shares of other listed companies are excluded. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.",World Federation of Exchanges database.,Stock,measuredValue,amount,,,,,,,,,,,USDollar -BX.TRF.PWKR.DT.GD.ZS,,,"Personal remittances, received (% of GDP)","Personal remittances comprise personal transfers and compensation of employees. Personal transfers consist of all current transfers in cash or in kind made or received by resident households to or from nonresident households. Personal transfers thus include all current transfers between resident and nonresident individuals. Compensation of employees refers to the income of border, seasonal, and other short-term workers who are employed in an economy where they are not resident and of residents employed by nonresident entities. Data are the sum of two items defined in the sixth edition of the IMF's Balance of Payments Manual: personal transfers and compensation of employees.","World Bank staff estimates based on IMF balance of payments data, and World Bank and OECD GDP estimates.",Remittance,measuredValue,amount,transferType,InwardRemittance,,,,,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,WorldBankEstimate, +BX.TRF.PWKR.DT.GD.ZS,,,"Personal remittances, received (% of GDP)","Personal remittances comprise personal transfers and compensation of employees. Personal transfers consist of all current transfers in cash or in kind made or received by resident households to or from nonresident households. Personal transfers thus include all current transfers between resident and nonresident individuals. Compensation of employees refers to the income of border, seasonal, and other short-term workers who are employed in an economy where they are not resident and of residents employed by nonresident entities. Data are the sum of two items defined in the sixth edition of the IMF's Balance of Payments Manual: personal transfers and compensation of employees.","World Bank staff estimates based on IMF balance of payments data, and World Bank and OECD GDP estimates.",Remittance,measuredValue,amount,transferType,InwardRemittance,,,,,Amount_EconomicActivity_GrossDomesticProduction_Nominal,100,,WorldBankEstimate,Percent BX.TRF.PWKR.CD.DT,,,"Personal remittances, received (current US$)","Personal remittances comprise personal transfers and compensation of employees. Personal transfers consist of all current transfers in cash or in kind made or received by resident households to or from nonresident households. Personal transfers thus include all current transfers between resident and nonresident individuals. Compensation of employees refers to the income of border, seasonal, and other short-term workers who are employed in an economy where they are not resident and of residents employed by nonresident entities. Data are the sum of two items defined in the sixth edition of the IMF's Balance of Payments Manual: personal transfers and compensation of employees. Data are in current U.S. dollars.",World Bank staff estimates based on IMF balance of payments data.,Remittance,measuredValue,amount,transferType,InwardRemittance,,,,,,,,WorldBankEstimate,USDollar BM.TRF.PWKR.CD.DT,,,"Personal remittances, paid (current US$)","Personal remittances comprise personal transfers and compensation of employees. Personal transfers consist of all current transfers in cash or in kind made or received by resident households to or from nonresident households. Personal transfers thus include all current transfers between resident and nonresident individuals. Compensation of employees refers to the income of border, seasonal, and other short-term workers who are employed in an economy where they are not resident and of residents employed by nonresident entities. Data are the sum of two items defined in the sixth edition of the IMF's Balance of Payments Manual: personal transfers and compensation of employees. Data are in current U.S. dollars.","World Bank staff estimates based on IMF balance of payments data, and World Bank and OECD GDP estimates.",Remittance,measuredValue,amount,transferType,OutwardRemittance,,,,,,,,WorldBankEstimate,USDollar -VC.IHR.PSRC.P5,,,"Intentional homicides (per 100,000 people)","Intentional homicides are estimates of unlawful homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",UN Office on Drugs and Crime's International Homicide Statistics database.,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,,,,,Count_Person,,100000,, -SH.DYN.MORT,,,"Mortality rate, under-5 (per 1,000 live births)","Under-five mortality rate is the probability per 1,000 that a newborn baby will die before reaching age five, if subject to age-specific mortality rates of the specified year.","Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",Person,measuredValue,mortalityRate,age,YearsUpto4,,,,,Count_BirthEvent_LiveBirth,,1000,, +VC.IHR.PSRC.P5,,,"Intentional homicides (per 100,000 people)","Intentional homicides are estimates of unlawful homicides purposely inflicted as a result of domestic disputes, interpersonal violence, violent conflicts over land resources, intergang violence over turf or control, and predatory violence and killing by armed groups. Intentional homicide does not include all intentional killing; the difference is usually in the organization of the killing. Individuals or small groups usually commit homicide, whereas killing in armed conflict is usually committed by fairly cohesive groups of up to several hundred members and is thus usually excluded.",UN Office on Drugs and Crime's International Homicide Statistics database.,CriminalActivities,measuredValue,count,crimeType,MurderAndNonNegligentManslaughter,,,,,Count_Person,,,,Per100000Persons +SH.DYN.MORT,,,"Mortality rate, under-5 (per 1,000 live births)","Under-five mortality rate is the probability per 1,000 that a newborn baby will die before reaching age five, if subject to age-specific mortality rates of the specified year.","Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.",Person,measuredValue,mortalityRate,age,YearsUpto4,,,,,Count_BirthEvent_LiveBirth,,,,Per1000LiveBirths SH.PRV.SMOK,,,"Smoking prevalence, total (ages 15+)",Prevalence of smoking is the percentage of men and women ages 15 and over who currently smoke any tobacco product on a daily or non-daily basis. It excludes smokeless tobacco use. The rates are age-standardized.,"World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",Person,measuredValue,count,healthBehavior,Smoking,age,Years15Onwards,,,Count_Person_15OrMoreYears,,100,dcs:AgeAdjustedPrevalence, SH.PRV.SMOK.FE,,,"Smoking prevalence, females (% of adults)","Prevalence of smoking, female is the percentage of women ages 15 and over who currently smoke any tobacco product on a daily or non-daily basis. It excludes smokeless tobacco use. The rates are age-standardized.","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",Person,measuredValue,count,healthBehavior,Smoking,age,Years15Onwards,gender,Female,Count_Person_15OrMoreYears_Female,,100,dcs:AgeAdjustedPrevalence, SH.PRV.SMOK.MA,,,"Smoking prevalence, males (% of adults)","Prevalence of smoking, male is the percentage of men ages 15 and over who currently smoke any tobacco product on a daily or non-daily basis. It excludes smokeless tobacco use. The rates are age-standardized.","World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).",Person,measuredValue,count,healthBehavior,Smoking,age,Years15Onwards,gender,Male,Count_Person_15OrMoreYears_Male,,100,dcs:AgeAdjustedPrevalence, SH.STA.DIAB.ZS,,,Diabetes prevalence (% of population ages 20 to 79),Diabetes prevalence refers to the percentage of people ages 20-79 who have type 1 or type 2 diabetes.,"International Diabetes Federation, Diabetes Atlas.",Person,measuredValue,count,healthOutcome,Diabetes,age,Years20To79,,,Count_Person_20To79Years,,100,, -SP.DYN.CBRT.IN,,,"Birth rate, crude (per 1,000 people)","Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.","(1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.",BirthEvent,measuredValue,count,medicalStatus,LiveBirth,,,,,Count_Person,,1000,, -SP.DYN.CDRT.IN,,Count_Death_AsAFractionOfCount_Person,"Death rate, crude (per 1,000 people)","Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.","(1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.",MortalityEvent,measuredValue,count,,,,,,,Count_Person,,1000,dcs:WorldBankWeightedAverage, +SP.DYN.CBRT.IN,,,"Birth rate, crude (per 1,000 people)","Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.","(1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.",BirthEvent,measuredValue,count,medicalStatus,LiveBirth,,,,,Count_Person,,,,Per1000Persons +SP.DYN.CDRT.IN,,Count_Death_AsAFractionOfCount_Person,"Death rate, crude (per 1,000 people)","Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.","(1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.",MortalityEvent,measuredValue,count,,,,,,,Count_Person,,,dcs:WorldBankWeightedAverage,Per1000Persons SP.DYN.LE00.FE.IN,,,"Life expectancy at birth, female (years)",Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.,"(1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.",Person,measuredValue,lifeExpectancy,gender,Female,,,,,,,,,Year SP.DYN.LE00.MA.IN,,,"Life expectancy at birth, male (years)",Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.,"(1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Report (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.",Person,measuredValue,lifeExpectancy,gender,Male,,,,,,,,,Year EG.ELC.FOSL.ZS,,,"Electricity production from oil, gas and coal sources (% of total)","Sources of electricity refer to the inputs used to generate electricity. Oil refers to crude oil and petroleum products. Gas refers to natural gas but excludes natural gas liquids. Coal refers to all coal and brown coal, both primary (including hard coal and lignite-brown coal) and derived fuels (including patent fuel, coke oven coke, gas coke, coke oven gas, and blast furnace gas). Peat is also included in this category.","IEA Statistics OECD/IEA 2014 (http://www.iea.org/stats/index.asp), subject to https://www.iea.org/t&c/termsandconditions/",Production,measuredValue,amount,producedThing,ElectricityFromOilGasOrCoalSources,,,,,Amount_Production_Energy,,100,, @@ -68,4 +68,17 @@ EG.ELC.NUCL.ZS,,,Electricity production from nuclear sources (% of total),Source EG.FEC.RNEW.ZS,,,Renewable energy consumption (% of total final energy consumption),Renewable energy consumption is the share of renewables energy in total final energy consumption.,"World Bank, Sustainable Energy for All (SE4ALL) database from the SE4ALL Global Tracking Framework led jointly by the World Bank, International Energy Agency, and the Energy Sector Management Assistance Program.",Consumption,measuredValue,amount,consumedThing,RenewableEnergy,,,,,Amount_Consumption_Energy,,100,, EN.POP.EL5M.ZS,,,Population living in areas where elevation is below 5 meters (% of total population),Population below 5m is the percentage of the total population living in areas where the elevation is 5 meters or less.,"Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.",Person,measuredValue,count,residenceCharacteristic,LessThan5MetersAboveSeaLevel,,,,,Count_Person,,100,, IT.CEL.SETS.P2,,,Mobile cellular subscriptions (per 100 people),"Mobile cellular telephone subscriptions are subscriptions to a public mobile telephone service that provide access to the PSTN using cellular technology. The indicator includes (and is split into) the number of postpaid subscriptions, and the number of active prepaid accounts (i.e. that have been used during the last three months). The indicator applies to all mobile cellular subscriptions that offer voice communications. It excludes subscriptions via data cards or USB modems, subscriptions to public mobile data services, private trunked mobile radio, telepoint, radio paging and telemetry services.","International Telecommunication Union, World Telecommunication/ICT Development Report and database.",Product,measuredValue,count,productType,MobileCellularSubscription,,,,,Count_Person,,100,, -SE.XPD.TERT.ZS,,,Expenditure on tertiary education (% of government expenditure on education),"Expenditure on tertiary education is expressed as a percentage of total general government expenditure on education. General government usually refers to local, regional and central governments.",UNESCO Institute for Statistics (http://uis.unesco.org/),EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,TertiaryEducationExpenditure,remunerator,Government,Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government,,100,, \ No newline at end of file +SE.XPD.TERT.ZS,,,Expenditure on tertiary education (% of government expenditure on education),"Expenditure on tertiary education is expressed as a percentage of total general government expenditure on education. General government usually refers to local, regional and central governments.",UNESCO Institute for Statistics (http://uis.unesco.org/),EconomicActivity,measuredValue,amount,activitySource,ExpenditureActivity,expenditureType,TertiaryEducationExpenditure,remunerator,Government,Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government,,100,, +EG.USE.ELEC.KH.PC,,Amount_Consumption_Electricity_PerCapita,Electric power consumption (kWh per capita),,,Consumption,measuredValue,amount,consumedThing,Electricity,,,,,PerCapita,,,,KilowattHour +EG.USE.PCAP.KG.OE,,Amount_Consumption_Energy_PerCapita,Energy use (kg of oil equivalent per capita),,,Consumption,measuredValue,amount,consumedThing,Energy,,,,,PerCapita,,,,KilogramOfOilEquivalent +SP.DYN.TFRT.IN,,FertilityRate_Person_Female,"Fertility rate, total (births per woman)",,,Person,measuredValue,fertilityRate,gender,Female,,,,,,,,, +NY.GDP.MKTP.CD,,Amount_EconomicActivity_GrossDomesticProduction_Nominal,GDP (current US$),,,EconomicActivity,measuredValue,amount,activitySource,GrossDomesticProduction,measurementQualifier,Nominal,,,,,,,USDollar +NY.GDP.MKTP.KD.ZG,,GrowthRate_Amount_EconomicActivity_GrossDomesticProduction,GDP growth (annual %),,,EconomicActivity,growthRate,amount,activitySource,GrossDomesticProduction,,,,,,,,, +NY.GDP.PCAP.CD,,Amount_EconomicActivity_GrossDomesticProduction_Nominal_PerCapita,GDP per capita (current US$),,,EconomicActivity,measuredValue,amount,activitySource,GrossDomesticProduction,measurementQualifier,Nominal,,,PerCapita,,,,USDollar +NY.GNP.PCAP.PP.CD,,Amount_EconomicActivity_GrossNationalIncome_PurchasingPowerParity_PerCapita,"GNI per capita, PPP (current international $)",,,EconomicActivity,measuredValue,amount,activitySource,GrossNationalIncome,measurementQualifier,PurchasingPowerParity,,,PerCapita,,,,InternationalDollar +NY.GNP.MKTP.PP.CD,,Amount_EconomicActivity_GrossNationalIncome_PurchasingPowerParity,"GNI, PPP (current international $)",,,EconomicActivity,measuredValue,amount,activitySource,GrossNationalIncome,measurementQualifier,PurchasingPowerParity,,,,,,,InternationalDollar +IT.NET.USER.ZS,,Count_Person_IsInternetUser_PerCapita,Individuals using the Internet (% of population),,,Person,measuredValue,count,isInternetUser,TRUE,,,,,PerCapita,100,,, +SP.DYN.LE00.IN,,LifeExpectancy_Person,"Life expectancy at birth, total (years)",,,Person,measuredValue,lifeExpectancy,,,,,,,,,,,Year +SP.POP.GROW,,GrowthRate_Count_Person,Population growth (annual %),,,Person,growthRate,amount,,,,,,,,,,, +SP.POP.TOTL,,Count_Person,"Population, total",,,Person,measuredValue,count,,,,,,,,,,, +EN.GHG.CO2.PC.CE.AR5,,Amount_Emissions_CarbonDioxide_PerCapita,Carbon dioxide (CO2) emissions excluding LULUCF per capita (t CO2e/capita),,,Emissions,measuredValue,count,emittedThing,CarbonDioxide,,,,,PerCapita,,,,MetricTon diff --git a/scripts/world_bank/wdi/test_data/expected_ouput/expected_output.csv b/scripts/world_bank/wdi/test_data/expected_ouput/expected_output.csv new file mode 100644 index 0000000000..ec6035086d --- /dev/null +++ b/scripts/world_bank/wdi/test_data/expected_ouput/expected_output.csv @@ -0,0 +1,5 @@ +,StatisticalVariable,IndicatorCode,ISO3166Alpha3,Year,observationPeriod,Value0,Value1,Value2,Value3,unit,measurementMethod,scalingFactor +0,Amount_Consumption_RenewableEnergy_AsFractionOf_Amount_Consumption_Energy,EG.FEC.RNEW.ZS,dcid:country/MKD,2001,P1Y,0.152,,,,,, +1,LifeExpectancy_Person_Male,SP.DYN.LE00.MA.IN,dcid:country/UZB,1973,P1Y,58.621,,,,Year,, +2,Count_CriminalActivities_MurderAndNonNegligentManslaughter_AsFractionOf_Count_Person,VC.IHR.PSRC.P5,dcid:country/AFG,2009,P1Y,4.0715263102,,,,Per100000Persons,, +3,Count_CriminalActivities_MurderAndNonNegligentManslaughter_AsFractionOf_Count_Person,VC.IHR.PSRC.P5,dcid:country/AFG,2009,P1Y,4.0715263102,,,,Per100000Persons,, diff --git a/scripts/world_bank/wdi/test_data/expected_ouput/expected_output.tmcf b/scripts/world_bank/wdi/test_data/expected_ouput/expected_output.tmcf new file mode 100644 index 0000000000..ddecc67e34 --- /dev/null +++ b/scripts/world_bank/wdi/test_data/expected_ouput/expected_output.tmcf @@ -0,0 +1,40 @@ +Node: E:WorldBank->E0 +typeOf: dcs:StatVarObservation +variableMeasured: C:WorldBank->StatisticalVariable +observationDate: C:WorldBank->Year +observationPeriod: C:WorldBank->observationPeriod +observationAbout: C:WorldBank->ISO3166Alpha3 +value: C:WorldBank->Value0 +unit: C:WorldBank->unit + +Node: E:WorldBank->E1 +typeOf: dcs:StatVarObservation +variableMeasured: C:WorldBank->StatisticalVariable +observationDate: C:WorldBank->Year +observationPeriod: C:WorldBank->observationPeriod +observationAbout: C:WorldBank->ISO3166Alpha3 +value: C:WorldBank->Value1 +unit: C:WorldBank->unit +scalingFactor: C:WorldBank->scalingFactor + +Node: E:WorldBank->E2 +typeOf: dcs:StatVarObservation +variableMeasured: C:WorldBank->StatisticalVariable +observationDate: C:WorldBank->Year +observationPeriod: C:WorldBank->observationPeriod +observationAbout: C:WorldBank->ISO3166Alpha3 +value: C:WorldBank->Value2 +unit: C:WorldBank->unit +measurementMethod: C:WorldBank->measurementMethod + +Node: E:WorldBank->E3 +typeOf: dcs:StatVarObservation +variableMeasured: C:WorldBank->StatisticalVariable +observationDate: C:WorldBank->Year +observationPeriod: C:WorldBank->observationPeriod +observationAbout: C:WorldBank->ISO3166Alpha3 +value: C:WorldBank->Value3 +unit: C:WorldBank->unit +measurementMethod: C:WorldBank->measurementMethod +scalingFactor: C:WorldBank->scalingFactor + diff --git a/scripts/world_bank/wdi/worldbank.py b/scripts/world_bank/wdi/worldbank.py index ec85bf8150..ccef05d584 100644 --- a/scripts/world_bank/wdi/worldbank.py +++ b/scripts/world_bank/wdi/worldbank.py @@ -15,11 +15,6 @@ indicator codes provided by the indicatorSchemaFile flag for all years and for all countries provided in WorldBankCountries.csv. """ -from absl import app -from absl import flags -import pandas as pd -from retry.api import retry_call - import logging import itertools import requests @@ -27,12 +22,23 @@ import io import time import re +import os +import sys + +from absl import app +from absl import flags +from absl import logging +import pandas as pd +from retry.api import retry_call -FLAGS = flags.FLAGS -flags.DEFINE_boolean("fetchFromSource", False, +_MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) +_FLAGS = flags.FLAGS +flags.DEFINE_boolean("fetchFromSource", True, "Whether to bypass cached CSVs and fetch from source.") -flags.DEFINE_string("indicatorSchemaFile", None, - "Path to indicator schema CSV file.") +flags.DEFINE_string( + "indicatorSchemaFile", + os.path.join(_MODULE_DIR, "schema_csvs/WorldBankIndicators_prod.csv"), "") +flags.DEFINE_string('mode', '', 'Options: download or process') # Remaps the columns provided by World Bank API. WORLDBANK_COL_REMAP = { @@ -46,9 +52,10 @@ typeOf: dcs:StatVarObservation variableMeasured: C:WorldBank->StatisticalVariable observationDate: C:WorldBank->Year -observationPeriod: "P1Y" +observationPeriod: C:WorldBank->observationPeriod observationAbout: C:WorldBank->ISO3166Alpha3 value: C:WorldBank->Value{idx} +unit: C:WorldBank->unit """ TEMPLATE_STAT_VAR = """ @@ -63,8 +70,147 @@ {CONSTRAINTS} """ +RESOLUTION_TO_EXISTING_DCID = { + 'dcs:WorldBank/SE_TER_CUAT_BA_FE_ZS': + 'Count_Person_25OrMoreYears_Female_BachelorsDegreeOrHigher_AsFractionOf_Count_Person_25OrMoreYears_Female', + 'dcs:WorldBank/SE_TER_CUAT_BA_MA_ZS': + 'Count_Person_25OrMoreYears_Male_BachelorsDegreeOrHigher_AsFractionOf_Count_Person_25OrMoreYears_Male', + 'dcs:WorldBank/SE_TER_CUAT_BA_ZS': + 'Count_Person_25OrMoreYears_BachelorsDegreeOrHigher_AsFractionOf_Count_Person_25OrMoreYears', + 'dcs:WorldBank/SE_TER_CUAT_DO_FE_ZS': + 'Count_Person_25OrMoreYears_Female_DoctorateDegree_AsFractionOf_Count_Person_25OrMoreYears_Female', + 'dcs:WorldBank/SE_TER_CUAT_DO_MA_ZS': + 'Count_Person_25OrMoreYears_Male_DoctorateDegree_AsFractionOf_Count_Person_25OrMoreYears_Male', + 'dcs:WorldBank/SE_TER_CUAT_DO_ZS': + 'Count_Person_25OrMoreYears_DoctorateDegree_AsFractionOf_Count_Person_25OrMoreYears', + 'dcs:WorldBank/SE_TER_CUAT_MS_FE_ZS': + 'Count_Person_25OrMoreYears_Female_MastersDegreeOrHigher_AsFractionOf_Count_Person_25OrMoreYears_Female', + 'dcs:WorldBank/SE_TER_CUAT_MS_MA_ZS': + 'Count_Person_25OrMoreYears_Male_MastersDegreeOrHigher_AsFractionOf_Count_Person_25OrMoreYears_Male', + 'dcs:WorldBank/SE_TER_CUAT_MS_ZS': + 'Count_Person_25OrMoreYears_MastersDegreeOrHigher_AsFractionOf_Count_Person_25OrMoreYears', + 'dcs:WorldBank/SE_TER_CUAT_ST_FE_ZS': + 'Count_Person_25OrMoreYears_Female_TertiaryEducation_AsFractionOf_Count_Person_25OrMoreYears_Female', + 'dcs:WorldBank/SE_TER_CUAT_ST_MA_ZS': + 'Count_Person_25OrMoreYears_Male_TertiaryEducation_AsFractionOf_Count_Person_25OrMoreYears_Male', + 'dcs:WorldBank/SE_TER_CUAT_ST_ZS': + 'Count_Person_25OrMoreYears_TertiaryEducation_AsFractionOf_Count_Person_25OrMoreYears', + 'dcs:WorldBank/SH_STA_OWGH_FE_ZS': + 'Count_Person_Upto4Years_Female_Overweight_AsFractionOf_Count_Person_Upto4Years_Female', + 'dcs:WorldBank/SH_STA_OWGH_MA_ZS': + 'Count_Person_Upto4Years_Male_Overweight_AsFractionOf_Count_Person_Upto4Years_Male', + 'dcs:WorldBank/SH_STA_OWGH_ZS': + 'Count_Person_Upto4Years_Overweight_AsFractionOf_Count_Person_Upto4Years', + 'dcs:WorldBank/SH_STA_SUIC_FE_P5': + 'Count_Death_IntentionalSelfHarm_Female_AsFractionOf_Count_Person_Female', + 'dcs:WorldBank/SH_STA_SUIC_MA_P5': + 'Count_Death_IntentionalSelfHarm_Male_AsFractionOf_Count_Person_Male', + 'dcs:WorldBank/SH_STA_SUIC_P5': + 'Count_Death_IntentionalSelfHarm_AsFractionOf_Count_Person', + 'dcs:WorldBank/SL_TLF_ACTI_FE_ZS': + 'Count_Person_15To64Years_Female_InLaborForce_AsFractionOf_Count_Person_15To64Years_Female', + 'dcs:WorldBank/SL_TLF_ACTI_MA_ZS': + 'Count_Person_15To64Years_Male_InLaborForce_AsFractionOf_Count_Person_15To64Years_Male', + 'dcs:WorldBank/SL_TLF_ACTI_ZS': + 'Count_Person_15To64Years_InLaborForce_AsFractionOf_Count_Person_15To64Years', + 'dcs:WorldBank/SL_TLF_TOTL_FE_ZS': + 'Count_Person_15OrMoreYears_InLaborForce_Female_AsFractionOf_Count_Person_InLaborForce', + 'dcs:WorldBank/VC_IHR_PSRC_FE_P5': + 'Count_CriminalActivities_MurderAndNonNegligentManslaughter_Female_AsFractionOf_Count_Person_Female', + 'dcs:WorldBank/VC_IHR_PSRC_MA_P5': + 'Count_CriminalActivities_MurderAndNonNegligentManslaughter_Male_AsFractionOf_Count_Person_Male', + 'dcs:WorldBank/VC_IHR_PSRC_P5': + 'Count_CriminalActivities_MurderAndNonNegligentManslaughter_AsFractionOf_Count_Person', + 'dcs:WorldBank/SP_RUR_TOTL': + 'Count_Person_Rural', + 'dcs:WorldBank/SP_URB_TOTL': + 'Count_Person_Urban', + 'dcs:WorldBank/SP_DYN_IMRT_IN': + 'Count_Death_0Years_AsFractionOf_Count_BirthEvent_LiveBirth', + 'dcs:WorldBank/SP_DYN_IMRT_MA_IN': + 'Count_Death_0Years_Male_AsFractionOf_Count_BirthEvent_LiveBirth_Male', + 'dcs:WorldBank/SP_DYN_IMRT_FE_IN': + 'Count_Death_0Years_Female_AsFractionOf_Count_BirthEvent_LiveBirth_Female', + 'dcs:WorldBank/SH_DTH_IMRT': + 'Count_Death_0Years', + 'dcs:WorldBank/SL_TLF_0714_ZS': + 'Count_Person_7To14Years_Employed_AsFractionOf_Count_Person_7To14Years', + 'dcs:WorldBank/SL_TLF_0714_MA_ZS': + 'Count_Person_7To14Years_Male_Employed_AsFractionOf_Count_Person_7To14Years_Male', + 'dcs:WorldBank/SL_TLF_0714_FE_ZS': + 'Count_Person_7To14Years_Female_Employed_AsFractionOf_Count_Person_7To14Years_Female', + 'dcs:WorldBank/SH_SVR_WAST_ZS': + 'Count_Person_Upto4Years_SevereWasting_AsFractionOf_Count_Person_Upto4Years', + 'dcs:WorldBank/SH_SVR_WAST_MA_ZS': + 'Count_Person_Upto4Years_Male_SevereWasting_AsFractionOf_Count_Person_Upto4Years_Male', + 'dcs:WorldBank/SH_SVR_WAST_FE_ZS': + 'Count_Person_Upto4Years_Female_SevereWasting_AsFractionOf_Count_Person_Upto4Years_Female', + 'dcs:WorldBank/SH_STA_WAST_ZS': + 'Count_Person_Upto4Years_Wasting_AsFractionOf_Count_Person_Upto4Years', + 'dcs:WorldBank/SH_STA_WAST_MA_ZS': + 'Count_Person_Upto4Years_Male_Wasting_AsFractionOf_Count_Person_Upto4Years_Male', + 'dcs:WorldBank/SH_STA_WAST_FE_ZS': + 'Count_Person_Upto4Years_Female_Wasting_AsFractionOf_Count_Person_Upto4Years_Female', + 'dcs:WorldBank/SH_XPD_CHEX_PC_CD': + 'Amount_EconomicActivity_ExpenditureActivity_HealthcareExpenditure_AsFractionOf_Count_Person', + 'dcs:WorldBank/SH_ALC_PCAP_LI': + 'Amount_Consumption_Alcohol_15OrMoreYears_AsFractionOf_Count_Person_15OrMoreYears', + 'dcs:WorldBank/SI_POV_GINI': + 'GiniIndex_EconomicActivity', + 'dcs:WorldBank/SE_XPD_TOTL_GB_ZS': + 'Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government_AsFractionOf_Amount_EconomicActivity_ExpenditureActivity_Government', + 'dcs:WorldBank/SE_XPD_TOTL_GD_ZS': + 'Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government_AsFractionOf_Amount_EconomicActivity_GrossDomesticProduction_Nominal', + 'dcs:WorldBank/MS_MIL_XPND_CD': + 'Amount_EconomicActivity_ExpenditureActivity_MilitaryExpenditure_Government', + 'dcs:WorldBank/MS_MIL_XPND_GD_ZS': + 'Amount_EconomicActivity_ExpenditureActivity_MilitaryExpenditure_Government_AsFractionOf_Amount_EconomicActivity_GrossDomesticProduction_Nominal', + 'dcs:WorldBank/CM_MKT_LCAP_GD_ZS': + 'Amount_Stock_AsFractionOf_Amount_EconomicActivity_GrossDomesticProduction_Nominal', + 'dcs:WorldBank/CM_MKT_LCAP_CD': + 'Amount_Stock', + 'dcs:WorldBank/BX_TRF_PWKR_DT_GD_ZS': + 'Amount_Remittance_InwardRemittance_AsFractionOf_Amount_EconomicActivity_GrossDomesticProduction_Nominal', + 'dcs:WorldBank/BX_TRF_PWKR_CD_DT': + 'Amount_Remittance_InwardRemittance', + 'dcs:WorldBank/BM_TRF_PWKR_CD_DT': + 'Amount_Remittance_OutwardRemittance', + 'dcs:WorldBank/SH_DYN_MORT': + 'MortalityRate_Person_Upto4Years_AsFractionOf_Count_BirthEvent_LiveBirth', + 'dcs:WorldBank/SH_PRV_SMOK': + 'Count_Person_15OrMoreYears_Smoking_AsFractionOf_Count_Person_15OrMoreYears', + 'dcs:WorldBank/SH_PRV_SMOK_FE': + 'Count_Person_15OrMoreYears_Female_Smoking_AsFractionOf_Count_Person_15OrMoreYears_Female', + 'dcs:WorldBank/SH_PRV_SMOK_MA': + 'Count_Person_15OrMoreYears_Male_Smoking_AsFractionOf_Count_Person_15OrMoreYears_Male', + 'dcs:WorldBank/SH_STA_DIAB_ZS': + 'Count_Person_20To79Years_Diabetes_AsFractionOf_Count_Person_20To79Years', + 'dcs:WorldBank/SP_DYN_CBRT_IN': + 'Count_BirthEvent_LiveBirth_AsFractionOf_Count_Person', + 'dcs:WorldBank/SP_DYN_LE00_FE_IN': + 'LifeExpectancy_Person_Female', + 'dcs:WorldBank/SP_DYN_LE00_MA_IN': + 'LifeExpectancy_Person_Male', + 'dcs:WorldBank/EG_ELC_FOSL_ZS': + 'Amount_Production_ElectricityFromOilGasOrCoalSources_AsFractionOf_Amount_Production_Energy', + 'dcs:WorldBank/EG_ELC_NUCL_ZS': + 'Amount_Production_ElectricityFromNuclearSources_AsFractionOf_Amount_Production_Energy', + 'dcs:WorldBank/EG_FEC_RNEW_ZS': + 'Amount_Consumption_RenewableEnergy_AsFractionOf_Amount_Consumption_Energy', + 'dcs:WorldBank/EN_POP_EL5M_ZS': + 'Count_Person_ResidingLessThan5MetersAboveSeaLevel_AsFractionOf_Count_Person', + 'dcs:WorldBank/IT_CEL_SETS_P2': + 'Count_Product_MobileCellularSubscription_AsFractionOf_Count_Person', + 'dcs:WorldBank/SE_XPD_TERT_ZS': + 'Amount_EconomicActivity_ExpenditureActivity_TertiaryEducationExpenditure_Government_AsFractionOf_Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government', + 'dcs:WorldBank/SH_XPD_CHEX_PP_CD': + 'Amount_EconomicActivity_ExpenditureActivity_HealthcareExpenditure_AsFractionOf_Count_Person', + 'dcs:WorldBank/SH_XPD_CHEX_PC_CD': + 'Amount_EconomicActivity_ExpenditureActivity_HealthcareExpenditure_AsFractionOf_Count_Person' +} + -def read_worldbank(iso3166alpha3, fetchFromSource): +def read_worldbank(iso3166alpha3, mode): """ Fetches and tidies all ~1500 World Bank indicators for a given ISO 3166 alpha 3 code. @@ -85,8 +231,8 @@ def read_worldbank(iso3166alpha3, fetchFromSource): Takes approximately 10 seconds to download and tidy one country in a Jupyter notebook. """ - if fetchFromSource: - logging.info('Downloading %s', iso3166alpha3) + if mode in ["download", '']: + logging.info('Downloading input file for country %s', iso3166alpha3) country_zip = ("http://api.worldbank.org/v2/en/country/" + iso3166alpha3 + "?downloadformat=csv") r = retry_call(requests.get, @@ -95,7 +241,13 @@ def read_worldbank(iso3166alpha3, fetchFromSource): delay=20, backoff=1.5) if r.status_code != 200: - logging.info('Failed to retrieve %s', iso3166alpha3) + logging.fatal('Failed to retrieve %s', iso3166alpha3) + if not os.path.exists(os.path.join(_MODULE_DIR, 'source_data')): + os.mkdir(os.path.join(_MODULE_DIR, 'source_data')) + with open( + os.path.join(_MODULE_DIR, 'source_data', + iso3166alpha3 + '.zip'), 'wb') as f: + f.write(r.content) filebytes = io.BytesIO(r.content) myzipfile = zipfile.ZipFile(filebytes) @@ -124,8 +276,9 @@ def read_worldbank(iso3166alpha3, fetchFromSource): if df is None: df = pd.DataFrame(columns=cols) else: - df = df.append(pd.DataFrame([cols], columns=df.columns), - ignore_index=True) + df = pd.concat( + [df, pd.DataFrame([cols], columns=df.columns)], + ignore_index=True) df = df.rename(columns=WORLDBANK_COL_REMAP) @@ -140,6 +293,9 @@ def read_worldbank(iso3166alpha3, fetchFromSource): # Convert to numeric and drop empty values. df['Value'] = pd.to_numeric(df['Value']) df = df.dropna() + if not os.path.exists( + os.path.join(_MODULE_DIR, 'preprocessed_source_csv')): + os.mkdir(os.path.join(_MODULE_DIR, 'preprocessed_source_csv')) df.to_csv('preprocessed_source_csv/' + iso3166alpha3 + '.csv', index=False) else: @@ -207,8 +363,7 @@ def group_stat_vars_by_observation_properties(indicator_codes): """ # All the statistical observation properties that we included. properties_of_stat_var_observation = ([ - 'measurementMethod', 'measurementDenominator', 'scalingFactor', - 'sourceScalingFactor', 'unit' + 'measurementMethod', 'scalingFactor' ]) # List of tuples to return. tmcfs_for_stat_vars = [] @@ -221,7 +376,7 @@ def group_stat_vars_by_observation_properties(indicator_codes): repeat=len(properties_of_stat_var_observation))): codes_that_match = null_status.copy() base_template_mcf = TEMPLATE_TMCF - cols_to_include_in_csv = ['IndicatorCode'] + cols_to_include_in_csv = ['IndicatorCode', 'unit'] # Loop over each obs column and whether to include it. for include_col, column in (zip(permutation, @@ -241,8 +396,7 @@ def group_stat_vars_by_observation_properties(indicator_codes): return tmcfs_for_stat_vars -def download_indicator_data(worldbank_countries, indicator_codes, - fetchFromSource): +def download_indicator_data(worldbank_countries, indicator_codes, mode): """ Downloads World Bank country data for all countries and indicators provided. @@ -261,8 +415,9 @@ def download_indicator_data(worldbank_countries, indicator_codes, worldbank_dataframe = pd.DataFrame() indicators_to_keep = list(indicator_codes['IndicatorCode'].unique()) + country_df_list = [] for index, country_code in enumerate(worldbank_countries['ISO3166Alpha3']): - country_df = read_worldbank(country_code, fetchFromSource) + country_df = read_worldbank(country_code, mode) # Remove unneccessary indicators. country_df = country_df[country_df['IndicatorCode'].isin( @@ -272,8 +427,9 @@ def download_indicator_data(worldbank_countries, indicator_codes, country_df['ISO3166Alpha3'] = country_code # Add new row to main datframe. - worldbank_dataframe = worldbank_dataframe.append(country_df) + country_df_list.append(country_df) + worldbank_dataframe = pd.concat(country_df_list) # Map indicator codes to unique Statistical Variable. worldbank_dataframe['StatisticalVariable'] = ( worldbank_dataframe['IndicatorCode'].apply( @@ -281,8 +437,10 @@ def download_indicator_data(worldbank_countries, indicator_codes, return worldbank_dataframe.rename({'year': 'Year'}, axis=1) -def output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, - indicator_codes): +def output_csv_and_tmcf_by_grouping(worldbank_dataframe, + tmcfs_for_stat_vars, + indicator_codes, + saveOutput=True): """ Outputs TMCFs and CSVs for each grouping of stat vars. Args: @@ -294,44 +452,59 @@ def output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, indicator_codes -> Dataframe with INDICATOR_CODES to include. """ # Only include a subset of columns in the final csv - output_csv = worldbank_dataframe[[ - 'StatisticalVariable', 'IndicatorCode', 'ISO3166Alpha3', 'Year', 'Value' - ]] - - # Output tmcf and csv for each unique World Bank grouping. - df = pd.DataFrame(columns=[ - 'StatisticalVariable', - 'IndicatorCode', - 'ISO3166Alpha3', - 'Year', - ]) - with open('output/WorldBank.tmcf', 'w', newline='') as f_out: - for index, enum in enumerate(tmcfs_for_stat_vars): - tmcf, stat_var_obs_cols, stat_vars_in_group = enum - if len(stat_vars_in_group) == 0: - continue - f_out.write(tmcf.format_map({'idx': index}) + '\n') - - # Get only the indicator codes in that grouping. - matching_csv = output_csv[output_csv['IndicatorCode'].isin( - stat_vars_in_group)] - - # Format to decimals. - matching_csv = matching_csv.round(10) - df = df.merge( - matching_csv.rename(columns={'Value': f"Value{index}"}), - how='outer', - on=[ - 'StatisticalVariable', - 'IndicatorCode', - 'ISO3166Alpha3', - 'Year', - ]) - # Include the Stat Observation columns in the output CSV. - df = df.merge(indicator_codes[stat_var_obs_cols], on='IndicatorCode') - df.drop('IndicatorCode', axis=1).to_csv('output/WorldBank.csv', - float_format='%.10f', - index=False) + try: + output_csv = worldbank_dataframe[[ + 'StatisticalVariable', 'IndicatorCode', 'ISO3166Alpha3', 'Year', + 'Value', 'observationPeriod' + ]] + + # Output tmcf and csv for each unique World Bank grouping. + df = pd.DataFrame(columns=[ + 'StatisticalVariable', 'IndicatorCode', 'ISO3166Alpha3', 'Year', + 'observationPeriod' + ]) + if saveOutput: + TMCF_PATH = 'output/WorldBank.tmcf' + else: + TMCF_PATH = 'test_data/output/output_generated.tmcf' + with open(TMCF_PATH, 'w', newline='') as f_out: + for index, enum in enumerate(tmcfs_for_stat_vars): + tmcf, stat_var_obs_cols, stat_vars_in_group = enum + if len(stat_vars_in_group) == 0: + continue + f_out.write(tmcf.format_map({'idx': index}) + '\n') + + # Get only the indicator codes in that grouping. + matching_csv = output_csv[output_csv['IndicatorCode'].isin( + stat_vars_in_group)] + + # Format to decimals. + matching_csv = matching_csv.round(10) + df = df.merge( + matching_csv.rename(columns={'Value': f"Value{index}"}), + how='outer', + on=[ + 'StatisticalVariable', + 'IndicatorCode', + 'ISO3166Alpha3', + 'Year', + 'observationPeriod', + ]) + # Include the Stat Observation columns in the output CSV. + df = df.merge(indicator_codes[stat_var_obs_cols], on='IndicatorCode') + + # Coverting dcid to existing dcid + df['StatisticalVariable'] = df['StatisticalVariable'].astype(str) + df = df.replace({'StatisticalVariable': RESOLUTION_TO_EXISTING_DCID}) + if saveOutput: + logging.info("Writing output csv") + df.drop('IndicatorCode', axis=1).to_csv('output/WorldBank.csv', + float_format='%.10f', + index=False) + else: + return df + except Exception as e: + logging.fatal(f"Error generating output {e}") def source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup): @@ -361,72 +534,85 @@ def source_scaling_remap(row, scaling_factor_lookup, existing_stat_var_lookup): return row -def main(_): - # Load statistical variable configuration file. - indicator_codes = pd.read_csv(FLAGS.indicatorSchemaFile) +def process(indicator_codes, worldbank_dataframe, saveOutput=True): + logging.info("Processing the input files") + try: + # Add source description to note. + def add_source_to_description(row): + if not pd.isna(row['Source']): + return row['SourceNote'] + " " + str(row['Source']) + else: + return row['SourceNote'] + + indicator_codes['SourceNote'] = indicator_codes.apply( + add_source_to_description, axis=1) + + # Generate stat vars + with open("output/WorldBank_StatisticalVariables.mcf", "w+") as f_out: + # Generate StatVars for fields that don't exist. Some fields such as + # Count_Person_Unemployed are already statistical variables so we do + # not need to recreate them. + for _, row in indicator_codes[ + indicator_codes['ExistingStatVar'].isna()].iterrows(): + f_out.write(build_stat_vars_from_indicator_list(row)) + + # Create template MCFs for each grouping of stat vars. + tmcfs_for_stat_vars = ( + group_stat_vars_by_observation_properties(indicator_codes)) + + # Remap columns to match expected format. + worldbank_dataframe['Value'] = pd.to_numeric( + worldbank_dataframe['Value']) + worldbank_dataframe['ISO3166Alpha3'] = ( + worldbank_dataframe['ISO3166Alpha3'].apply( + lambda code: "dcid:Earth" + if code == "WLD" else "dcid:country/" + code)) + worldbank_dataframe['StatisticalVariable'] = \ + worldbank_dataframe['StatisticalVariable'].apply( + lambda code: "dcs:" + code) + + # Scale values by scaling factor and replace exisiting StatVars. + scaling_factor_lookup = (indicator_codes.set_index('IndicatorCode') + ['sourceScalingFactor'].dropna().to_dict()) + existing_stat_var_lookup = (indicator_codes.set_index('IndicatorCode') + ['ExistingStatVar'].dropna().to_dict()) + worldbank_dataframe = worldbank_dataframe.apply( + lambda row: source_scaling_remap(row, scaling_factor_lookup, + existing_stat_var_lookup), + axis=1) + + # Convert integer columns. + int_cols = (list(indicator_codes[indicator_codes['ConvertToInt'] == + True]['IndicatorCode'].unique())) + worldbank_subset = worldbank_dataframe[ + worldbank_dataframe['IndicatorCode'].isin(int_cols)].index + worldbank_dataframe.loc[worldbank_subset, "Value"] = (pd.to_numeric( + worldbank_dataframe.loc[worldbank_subset, "Value"], + downcast="integer")) + worldbank_dataframe['observationPeriod'] = worldbank_dataframe[ + 'StatisticalVariable'].apply(lambda x: '' if x in [ + 'dcid:FertilityRate_Person_Female', 'dcid:LifeExpectancy_Person' + ] else 'P1Y') + # Output final CSVs and variables. + df = output_csv_and_tmcf_by_grouping(worldbank_dataframe, + tmcfs_for_stat_vars, + indicator_codes, saveOutput) + if not saveOutput: + return df + except Exception as e: + logging.fatal(f"Error processing input file {e}") - # Add source description to note. - def add_source_to_description(row): - if not pd.isna(row['Source']): - return row['SourceNote'] + " " + str(row['Source']) - else: - return row['SourceNote'] - indicator_codes['SourceNote'] = indicator_codes.apply( - add_source_to_description, axis=1) - - # Generate stat vars - with open("output/WorldBank_StatisticalVariables.mcf", "w+") as f_out: - # Generate StatVars for fields that don't exist. Some fields such as - # Count_Person_Unemployed are already statistical variables so we do - # not need to recreate them. - for _, row in indicator_codes[ - indicator_codes['ExistingStatVar'].isna()].iterrows(): - f_out.write(build_stat_vars_from_indicator_list(row)) - - # Create template MCFs for each grouping of stat vars. - tmcfs_for_stat_vars = ( - group_stat_vars_by_observation_properties(indicator_codes)) - - # Download data for all countries. +def main(_): + mode = _FLAGS.mode + # Load statistical variable configuration file. + indicator_codes = pd.read_csv(_FLAGS.indicatorSchemaFile, dtype=str) worldbank_countries = pd.read_csv("WorldBankCountries.csv") worldbank_dataframe = download_indicator_data(worldbank_countries, - indicator_codes, - FLAGS.fetchFromSource) - - # Remap columns to match expected format. - worldbank_dataframe['Value'] = pd.to_numeric(worldbank_dataframe['Value']) - worldbank_dataframe['ISO3166Alpha3'] = ( - worldbank_dataframe['ISO3166Alpha3'].apply( - lambda code: "dcid:Earth" - if code == "WLD" else "dcid:country/" + code)) - worldbank_dataframe['StatisticalVariable'] = \ - worldbank_dataframe['StatisticalVariable'].apply( - lambda code: "dcs:" + code) - - # Scale values by scaling factor and replace exisiting StatVars. - scaling_factor_lookup = (indicator_codes.set_index('IndicatorCode') - ['sourceScalingFactor'].dropna().to_dict()) - existing_stat_var_lookup = (indicator_codes.set_index('IndicatorCode') - ['ExistingStatVar'].dropna().to_dict()) - worldbank_dataframe = worldbank_dataframe.apply( - lambda row: source_scaling_remap(row, scaling_factor_lookup, - existing_stat_var_lookup), - axis=1) - - # Convert integer columns. - int_cols = (list(indicator_codes[indicator_codes['ConvertToInt'] == True] - ['IndicatorCode'].unique())) - worldbank_subset = worldbank_dataframe[ - worldbank_dataframe['IndicatorCode'].isin(int_cols)].index - worldbank_dataframe.loc[worldbank_subset, "Value"] = (pd.to_numeric( - worldbank_dataframe.loc[worldbank_subset, "Value"], downcast="integer")) - - # Output final CSVs and variables. - output_csv_and_tmcf_by_grouping(worldbank_dataframe, tmcfs_for_stat_vars, - indicator_codes) + indicator_codes, _FLAGS.mode) + if mode == "" or mode == "process": + process(indicator_codes, worldbank_dataframe) if __name__ == '__main__': - flags.mark_flag_as_required('indicatorSchemaFile') app.run(main) diff --git a/scripts/world_bank/wdi/worldbank_test.py b/scripts/world_bank/wdi/worldbank_test.py new file mode 100644 index 0000000000..b76d1a3ea4 --- /dev/null +++ b/scripts/world_bank/wdi/worldbank_test.py @@ -0,0 +1,82 @@ +# Copyright 2024 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from worldbank import * +import numpy as np +import unittest + +_MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) +OUTPUT_PATH = "test_data/output" +if not os.path.exists( + os.path.join(_MODULE_DIR, OUTPUT_PATH, "output_generated.csv")): + os.mkdir(os.path.join(_MODULE_DIR, OUTPUT_PATH)) +GENERATED_CSV_PATH = os.path.join(_MODULE_DIR, OUTPUT_PATH, + "output_generated.csv") +GENERATED_TMCF_PATH = os.path.join(_MODULE_DIR, OUTPUT_PATH, + "output_generated.tmcf") +EXPECTED_CSV_PATH = os.path.join( + _MODULE_DIR, 'test_data/expected_ouput/expected_output.csv') +EXPECTED_TMCF_PATH = os.path.join( + _MODULE_DIR, 'test_data/expected_ouput/expected_output.tmcf') + +INPUT_ROWS = np.array([ + [ + 0, 'Afghanistan', 'AFG', "Intentional homicides (per 100,000 people)", + 'VC.IHR.PSRC.P5', 2009, 4.0715263102304, 'AFG', + 'WorldBank/VC_IHR_PSRC_P5' + ], + [ + 26621, 'North Macedonia', 'MKD', + 'Renewable energy consumption (% of total final energy consumption)', + 'EG.FEC.RNEW.ZS', 2001, 15.2, 'MKD', 'WorldBank/EG_FEC_RNEW_ZS' + ], + [ + 1632, 'Uzbekistan', 'UZB', "Life expectancy at birth, male (years)", + 'SP.DYN.LE00.MA.IN', 1973, 58.621, 'UZB', 'WorldBank/SP_DYN_LE00_MA_IN' + ], +]) + +EXPECTED_OUTPUT_CSV = pd.read_csv(EXPECTED_CSV_PATH) +worldbank_dataframe = pd.DataFrame(INPUT_ROWS, + columns=[ + '', 'CountryName', 'CountryCode', + 'IndicatorName', 'IndicatorCode', 'Year', + 'Value', 'ISO3166Alpha3', + 'StatisticalVariable' + ]) + + +class WDITest(unittest.TestCase): + + def test_WDI(self): + indicator_codes = pd.read_csv(os.path.join( + _MODULE_DIR, "schema_csvs", "WorldBankIndicators_prod.csv"), + dtype=str) + outputGenerated = process(indicator_codes, + worldbank_dataframe, + saveOutput=False) + outputGenerated.to_csv(GENERATED_CSV_PATH) + GENERATED_OUTPUT_CSV = pd.read_csv(GENERATED_CSV_PATH) + self.assertTrue(GENERATED_OUTPUT_CSV.equals(EXPECTED_OUTPUT_CSV)) + + with open(EXPECTED_TMCF_PATH, encoding="UTF-8") as expected_tmcf_file: + expected_tmcf_data = expected_tmcf_file.read() + with open(GENERATED_TMCF_PATH, encoding="UTF-8") as generated_tmcf_file: + generated_tmcf_data = generated_tmcf_file.read() + self.assertEqual(expected_tmcf_data.strip(), + generated_tmcf_data.strip()) + + +if __name__ == '__main__': + unittest.main()