Skip to content

Latest commit

 

History

History
222 lines (169 loc) · 8.15 KB

README.md

File metadata and controls

222 lines (169 loc) · 8.15 KB

ChatGPT Spring Boot Starter

Spring Boot ChatGPT starter with ChatGPT chat and functions support.

Features

  • Base on Spring Boot 3.0+
  • Async with Spring Webflux
  • Support ChatGPT Chat Stream
  • Support ChatGPT functions
  • No third-party library: base on Spring 6 HTTP interface
  • GraalVM native image support
  • Azure OpenAI support

Get Started

Add dependency

Add chatgpt-spring-boot-starter dependency in your pom.xml.

<dependency>
    <groupId>org.mvnsearch</groupId>
    <artifactId>chatgpt-spring-boot-starter</artifactId>
    <version>0.3.0</version>
</dependency>

Add configuration

Add openai.api.key in application.properties:

# OpenAI API Token, or you can set environment variable OPENAI_API_KEY
openai.api.key=sk-xxxx

If you want to use Azure OpenAI, you can add openai.api.url in application.properties:

openai.api.key=1138xxxx9037
openai.api.url=https://YOUR_RESOURCE_NAME.openai.azure.com/openai/deployments/YOUR_DEPLOYMENT_NAME/chat/completions?api-version=2023-05-15

Call ChatGPT Service

@RestController
public class ChatRobotController {
    @Autowired
    private ChatGPTService chatGPTService;

    @PostMapping("/chat")
    public Mono<String> chat(@RequestBody String content) {
        return chatGPTService.chat(ChatCompletionRequest.of(content))
                .map(ChatCompletionResponse::getReplyText);
    }

    @GetMapping("/stream-chat")
    public Flux<String> streamChat(@RequestParam String content) {
        return chatGPTService.stream(ChatCompletionRequest.of(content))
                .map(ChatCompletionResponse::getReplyText);
    }
}

ChatGPT Interface

ChatGPT service interface is almost like Spring 6 HTTP Interface. You can declare a ChatGPT service interface with @ChatGPTExchange annotation, and declare completion methods with @ChatCompletion annotation, then you just call service interface directly.

@GPTExchange
public interface GPTHelloService {

    @ChatCompletion("You are a language translator, please translate the below text to Chinese.\n")
    Mono<String> translateIntoChinese(String text);

    @ChatCompletion("You are a language translator, please translate the below text from {0} to {1}.\n {2}")
    Mono<String> translate(String sourceLanguage, String targetLanguage, String text);
}

Create ChatGPT interface service bean:

    @Bean
    public GPTHelloService gptHelloService(ChatGPTServiceProxyFactory proxyFactory) {
        return proxyFactory.createClient(GPTHelloService.class);
    }

ChatGPT functions

  • Create a Spring Bean with @Component and implement GPTFunctionsStub interface. Annotate GPT functions with @GPTFunction annotation, and annotate function parameters with @Parameter annotation. @Nonnull means that the parameter is required.
import jakarta.annotation.Nonnull;

@Component
public class GPTFunctions implements GPTFunctionsStub {

    public record SendEmailRequest(
            @Nonnull @Parameter("Recipients of email") List<String> recipients,
            @Nonnull @Parameter("Subject of email") String subject,
            @Parameter("Content of email") String content) {
    }

    @GPTFunction(name = "send_email", value = "Send email to receiver")
    public String sendEmail(SendEmailRequest request) {
        System.out.println("Recipients: " + String.join(",", request.recipients));
        System.out.println("Subject: " + request.subject);
        System.out.println("Content:\n" + request.content);
        return "Email sent to " + String.join(",", request.recipients) + " successfully!";
    }

    public record SQLQueryRequest(
            @Parameter(required = true, value = "SQL to query") String sql) {
    }

    @GPTFunction(name = "execute_sql_query", value = "Execute SQL query and return the result set")
    public String executeSQLQuery(SQLQueryRequest request) {
        System.out.println("Execute SQL: " + request.sql);
        return "id, name, salary\n1,Jackie,8000\n2,Libing,78000\n3,Sam,7500";
    }
}
  • Call GPT function by response.getReplyCombinedText() or chatMessage.getFunctionCall().getFunctionStub().call():
public class ChatGPTServiceImplTest {
    @Test
    public void testChatWithFunctions() throws Exception {
        final String prompt = "Hi Jackie, could you write an email to Libing([email protected]) and Sam([email protected]) and invite them to join Mike's birthday party at 4 pm tomorrow? Thanks!";
        final ChatCompletionRequest request = ChatCompletionRequest.functions(prompt, List.of("send_email"));
        final ChatCompletionResponse response = chatGPTService.chat(request).block();
        // display reply combined text with function call
        System.out.println(response.getReplyCombinedText());
        // call function manually
        for (ChatMessage chatMessage : response.getReply()) {
            final FunctionCall functionCall = chatMessage.getFunctionCall();
            if (functionCall != null) {
                final Object result = functionCall.getFunctionStub().call();
                System.out.println(result);
            }
        }
    }

    @Test
    public void testExecuteSQLQuery() {
        String context = "You are SQL developer. Write SQL according to requirements, and execute it in MySQL database.";
        final String prompt = "Query all employees whose salary is greater than the average.";
        final ChatCompletionRequest request = ChatCompletionRequest.functions(prompt, List.of("execute_sql_query"));
        // add prompt context as system message
        request.addMessage(ChatMessage.systemMessage(context));
        final ChatCompletionResponse response = chatGPTService.chat(request).block();
        System.out.println(response.getReplyCombinedText());
    }
}

Note: @GPTExchange and @ChatCompletion has functions built-in, so you just need to fill functions parameters.

ChatGPT Functions use cases:

  • Structure Output: such as SQL, JSON, CSV, YAML etc., then delegate functions to process them.
  • Commands: such as send_email, post on Twitter.
  • DevOps: such as generate K8S yaml file, then call K8S functions to deploy it.
  • Search Matching: bind search with functions, such as search for a book, then call function to show it.
  • Spam detection: email spam, advertisement spam etc
  • PipeLine: you can think function as a node in pipeline. After process by function, and you can pass it to ChatGPT again.

If you want to have a simple test for ChatGPT functions, you can install ChatGPT with Markdown JetBrains IDE Plugin, and take a look at chat.gpt file.

FAQ

OpenAI REST API proxy

Please refer OpenAIProxyController.

@RestController
public class OpenAIProxyController {
    @Autowired
    private OpenAIChatAPI openAIChatAPI;

    @PostMapping("/v1/chat/completions")
    public Publisher<ChatCompletionResponse> completions(@RequestBody ChatCompletionRequest request) {
        return openAIChatAPI.proxy(request);
    }
}

Of course, you can use standard URL http://localhost:8080/v1/chat/completions to call Azure OpenAI API.

Prompt templates

How to manage prompts in Java? Now my suggestion is to adopt properties file format, and use MessageFormat to format. Please take a look at PromptManager

References