forked from dapengchen123/crf_affinity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrfjointlossfpn.py
215 lines (164 loc) · 8.87 KB
/
crfjointlossfpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
import os.path as osp
import numpy as np
import sys
import torch
from torch import nn
from torch.backends import cudnn
from reid.utils.logging import Logger
from reid.utils.serialization import load_checkpoint, save_checkpoint
from reid.data import get_data
from reid import models
from reid.loss import PairLoss
from reid.loss import MULOIMLoss
from reid.train import MULJOINT_MAN_Trainer
from reid.evaluator import MsEvaluator
from reid import datasets
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.benchmark = True
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
# Create model loaders
if args.height is None or args.width is None:
args.height, args.width = (144, 56) if args.a1 == 'inception' else \
(256, 128)
dataset, num_classes, train_loader, val_loader, test_loader, query_loader, multiquery_loader, gallery_loader = get_data(args.dataset,
args.split,
args.data_dir,
args.height,
args.width,
args.batch_size,
args.workers,
args.combine_trainval,
args.loss_mode,
args.instances_num)
# Create CNN model, generate 128 dimenional vector through 2 layer fully-connected network
cnnmodel = models.create(args.a1, num_features=args.features, dropout=args.dropout)
# Create the score computation model
classifiermodel = models.create(args.a2, input_num=args.features)
# Create the crf_mean_field model
crfmodel = models.create(args.a3, layer_num=args.layernum)
# Module cude accelaration
cnnmodel = nn.DataParallel(cnnmodel).cuda()
classifiermodel = classifiermodel.cuda()
crfmodel = crfmodel.cuda()
# Criterion1 Identiciation loss
criterion_oim = MULOIMLoss(args.features, num_classes, scalar=args.oim_scalar, momentum= args.oim_momentum)
# Criterion2 Verification loss
criterion_veri = PairLoss(args.sampling_rate)
## Criterion accerlation cuda
criterion_oim.cuda()
criterion_veri.cuda()
# Optimizer
base_param_ids = set(map(id, cnnmodel.module.base.parameters()))
new_params = [p for p in cnnmodel.parameters() if
id(p) not in base_param_ids]
param_groups = [
{'params': cnnmodel.module.base.parameters(), 'lr_mult': 1},
{'params': new_params, 'lr_mult': 1},
{'params': classifiermodel.parameters(), 'lr_mult': 1},
{'params': crfmodel.parameters(), 'lr_mult': 1}]
# Optimizer
optimizer = torch.optim.SGD(param_groups, lr=args.cnnlr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
# Schedule Learning rate
def adjust_lr(epoch):
# step_size = 60 if args.arch == 'inception' else 40
lr = args.cnnlr * (0.1 ** (epoch //20))
for g in optimizer.param_groups:
g['lr'] = lr * g.get('lr_mult', 1)
# Trainer
trainer = MULJOINT_MAN_Trainer(cnnmodel, classifiermodel, crfmodel, criterion_veri, criterion_oim, args.instances_num)
start_epoch = best_top1 = 0
# Evaluation
evaluator = MsEvaluator(cnnmodel, classifiermodel, crfmodel)
if args.evaluate == 1:
checkpoint = load_checkpoint(osp.join('../crf_affinity8_models/model101', 'cnncheckpoint.pth.tar'))
cnnmodel.load_state_dict(checkpoint['state_dict'])
checkpoint = load_checkpoint(osp.join('../crf_affinity8_models/model101', 'crfcheckpoint.pth.tar'))
crfmodel.load_state_dict(checkpoint['state_dict'])
checkpoint = load_checkpoint(osp.join('../crf_affinity8_models/model101', 'classifiercheckpoint.pth.tar'))
classifiermodel.load_state_dict(checkpoint['state_dict'])
top1 = evaluator.evaluate(query_loader, gallery_loader, dataset.query, dataset.gallery)
print(top1)
else:
for epoch in range(start_epoch, args.epochs):
adjust_lr(epoch)
trainer.train(epoch, train_loader, optimizer)
if epoch % 6 == 0:
top1 = evaluator.evaluate(query_loader, gallery_loader, dataset.query, dataset.gallery)
print(top1)
top1 = top1[0]
is_best = top1 > best_top1
best_top1 = max(top1, best_top1)
save_checkpoint({
'state_dict': cnnmodel.state_dict(),
'epoch': epoch + 1,
'best_top1': best_top1,
}, is_best, fpath=osp.join(args.logs_dir, 'cnncheckpoint.pth.tar'))
save_checkpoint({
'state_dict': classifiermodel.state_dict(),
'epoch': epoch + 1,
'best_top1': best_top1,
}, is_best, fpath=osp.join(args.logs_dir, 'classifiercheckpoint.pth.tar'))
save_checkpoint({
'state_dict': crfmodel.state_dict(),
'epoch': epoch + 1,
'best_top1': best_top1,
}, is_best, fpath=osp.join(args.logs_dir, 'crfcheckpoint.pth.tar'))
print('\n * Finished epoch {:3d} top1: {:5.1%} best: {:5.1%}{}\n'.
format(epoch, top1, best_top1, ' *' if is_best else ''))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="script")
# data
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=16)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--split', type=int, default=0)
parser.add_argument('--height', type=int,
help="input height, default: 256 for resnet*, "
"144 for inception")
parser.add_argument('--width', type=int,
help="input width, default: 128 for resnet*, "
"56 for inception")
parser.add_argument('--combine-trainval', default=True)
# model
parser.add_argument('--a1', '--arch_1', type=str, default='resfpnnet101',
choices=models.names())
parser.add_argument('--a2', '--arch_2', type=str, default='multiclassifier2',
choices=models.names())
parser.add_argument('--a3', '--arch_3', type=str, default='crf_mf_3_3')
parser.add_argument('--features', type=int, default=256)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--layernum', type=int, default=2)
parser.add_argument('--evaluate', type=int, default=0)
# loss
parser.add_argument('--oim-scalar', type=float, default=30,
help='reciprocal of the temperature in OIM loss')
parser.add_argument('--oim-momentum', type=float, default=0.5,
help='momentum for updating the LUT in OIM loss')
parser.add_argument('--loss-mode', type=str, default='crfloss')
parser.add_argument('--sampling-rate', type=int, default=5)
parser.add_argument('--instances_num', type=int, default=4)
# optimizer
parser.add_argument('--cnnlr', type=float, default=0.01,
help="learning rate of new parameters, for pretrained "
"parameters it is 10 times smaller than this")
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight-decay', type=float, default=5e-4)
# training configs
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=1)
# misc
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, '../datasets'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
main(parser.parse_args())