-
Notifications
You must be signed in to change notification settings - Fork 0
/
bikeshare.py
225 lines (169 loc) · 7.43 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import time
import pandas as pd
import numpy as np
CITY_DATA = {'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv'}
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
cities_data = ('chicago', 'new york city', 'washington')
while True:
city = input(
'Which of these cities do you want to explore : chicago , new york city or washington? \n> ').lower()
if city in cities_data:
break
# get user input for month (all, january, february, ... , june)
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = input('Now you have to enter a month to get some months result \n> {} \n> '.format(months)).lower()
# get user input for day of week (all, monday, tuesday, ... sunday)
days = ['sunday', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday']
day = input('Now you have to enter a day to get some days result \n> {} \n> '.format(days)).lower()
print('-' * 40)
if month == '' and day == '':
return city, months, days
elif month == '' and day != '':
return city, months, day
elif month != '' and day == '':
return city, month, days
else:
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# this will read the data
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# TO DO: display the most common month
df['Start Time'] = pd.to_datetime(df['Start Time'])
month = df['Start Time'].dt.month.value_counts().idxmax()
print('The most common month is {}'.format(month))
# TO DO: display the most common day of week
day = df['Start Time'].dt.weekday_name.value_counts().idxmax()
print('The most common day of the week is {}'.format(day))
# TO DO: display the most common start hour
hour = df['Start Time'].dt.hour.value_counts().idxmax()
print('The most common hour is {}'.format(hour))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-' * 40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
start_station = df['Start Station'].value_counts().reset_index()['index'][0]
print('The most commonly used start station is: {}'.format(start_station))
# TO DO: display most commonly used end station
end_station = df['End Station'].value_counts().reset_index()['index'][0]
print('The most commonly used end station is {}'.format(end_station))
# TO DO: display most frequent combination of start station and end station trip
frequent_stations = df.groupby(['Start Station'])['End Station'].value_counts().mode
print('Most frequent start and end station: ', frequent_stations)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-' * 40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
travel_sum = np.sum(df['Trip Duration'])
total_travel_time = str(travel_sum).split()[0]
print('The total travel time is {}'.format(total_travel_time))
# TO DO: display mean travel time
travel_avg = np.mean(df['Trip Duration'])
avg_travel_time = str(travel_avg).split()[0]
print('The total travel mean is {}'.format(avg_travel_time))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-' * 40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
user_type = df['User Type'].value_counts()
print('counts of user types \n{}'.format(user_type))
# TO DO: Display counts of gender
try:
gender = df['Gender'].value_counts()
print('counts of gender \n{}'.format(gender))
except:
print('There is some error in data')
# TO DO: Display earliest, most recent, and most common year of birth
try:
df['Birth Year'] = pd.to_datetime(df['Birth Year'])
earliest = np.min(df['Birth Year'])
most_recent = np.max(df['Birth Year'])
birth = df['Birth Year'].dt.year.mode()
print(
' Ther earliest {}, \n most recent{},\n most common year of birth {}'.format(earliest, most_recent, birth))
except:
print('There is some error in data')
print("\nThis took %s seconds." % (time.time() - start_time))
print('-' * 40)
def display_raw_data(df):
"""
Displays the data used to compute the stats
Input:
the dataframe with all the bikeshare data
Returns:
none
"""
# omit auxiliary columns from visualization
df = df.drop(['month', 'day_of_week'], axis=1)
rowIndex = 0
seeData = input(
"\n Would you like to see rows of the data used to compute the stats? Please write 'yes' or 'no' \n").lower()
while True:
if seeData == 'no':
return
if seeData == 'yes':
print(df[rowIndex: rowIndex + 5])
rowIndex = rowIndex + 5
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
display_raw_data(df)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()