forked from tokio-rs/prost
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlib.rs
691 lines (649 loc) · 24.7 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#![doc(html_root_url = "https://docs.rs/prost-build/0.5.0")]
//! `prost-build` compiles `.proto` files into Rust.
//!
//! `prost-build` is designed to be used for build-time code generation as part of a Cargo
//! build-script.
//!
//! ## Example
//!
//! Let's create a small crate, `snazzy`, that defines a collection of
//! snazzy new items in a protobuf file.
//!
//! ```bash
//! $ cargo new snazzy && cd snazzy
//! ```
//!
//! First, add `prost-build`, `prost` and its public dependencies to `Cargo.toml`
//! (see [crates.io](https://crates.io/crates/prost) for the current versions):
//!
//! ```toml
//! [dependencies]
//! bytes = <bytes-version>
//! prost = <prost-version>
//!
//! [build-dependencies]
//! prost-build = { version = <prost-version> }
//! ```
//!
//! Next, add `src/items.proto` to the project:
//!
//! ```proto
//! syntax = "proto3";
//!
//! package snazzy.items;
//!
//! // A snazzy new shirt!
//! message Shirt {
//! enum Size {
//! SMALL = 0;
//! MEDIUM = 1;
//! LARGE = 2;
//! }
//!
//! string color = 1;
//! Size size = 2;
//! }
//! ```
//!
//! To generate Rust code from `items.proto`, we use `prost-build` in the crate's
//! `build.rs` build-script:
//!
//! ```rust,no_run
//! fn main() {
//! prost_build::compile_protos(&["src/items.proto"],
//! &["src/"]).unwrap();
//! }
//! ```
//!
//! And finally, in `lib.rs`, include the generated code:
//!
//! ```rust,ignore
//! // Include the `items` module, which is generated from items.proto.
//! pub mod items {
//! include!(concat!(env!("OUT_DIR"), "/snazzy.items.rs"));
//! }
//!
//! pub fn create_large_shirt(color: String) -> items::Shirt {
//! let mut shirt = items::Shirt::default();
//! shirt.color = color;
//! shirt.set_size(items::shirt::Size::Large);
//! shirt
//! }
//! ```
//!
//! That's it! Run `cargo doc` to see documentation for the generated code. The full
//! example project can be found on [GitHub](https://github.com/danburkert/snazzy).
//!
//! ## Sourcing `protoc`
//!
//! `prost-build` depends on the Protocol Buffers compiler, `protoc`, to parse `.proto` files into
//! a representation that can be transformed into Rust. If set, `prost-build` uses the `PROTOC` and
//! `PROTOC_INCLUDE` environment variables for locating `protoc` and the Protobuf includes
//! directory. For example, on a macOS system where Protobuf is installed with Homebrew, set the
//! environment to:
//!
//! ```bash
//! PROTOC=/usr/local/bin/protoc
//! PROTOC_INCLUDE=/usr/local/include
//! ```
//!
//! and in a typical Linux installation:
//!
//! ```bash
//! PROTOC=/usr/bin/protoc
//! PROTOC_INCLUDE=/usr/include
//! ```
//!
//! If `PROTOC` is not found in the environment, then a pre-compiled `protoc` binary bundled in
//! the prost-build crate is used. Pre-compiled `protoc` binaries exist for Linux, macOS, and
//! Windows systems. If no pre-compiled `protoc` is available for the host platform, then the
//! `protoc` or `protoc.exe` binary on the `PATH` is used. If `protoc` is not available in any of
//! these fallback locations, then the build fails.
//!
//! If `PROTOC_INCLUDE` is not found in the environment, then the Protobuf include directory bundled
//! in the prost-build crate is be used.
mod ast;
mod code_generator;
mod extern_paths;
mod ident;
mod message_graph;
use std::collections::HashMap;
use std::default;
use std::env;
use std::fs;
use std::io::{Error, ErrorKind, Read, Result, Write};
use std::path::{Path, PathBuf};
use std::process::Command;
use log::trace;
use prost::Message;
use prost_types::{FileDescriptorProto, FileDescriptorSet};
pub use crate::ast::{Comments, Method, Service};
use crate::code_generator::CodeGenerator;
use crate::extern_paths::ExternPaths;
use crate::ident::to_snake;
use crate::message_graph::MessageGraph;
type Module = Vec<String>;
/// A service generator takes a service descriptor and generates Rust code.
///
/// `ServiceGenerator` can be used to generate application-specific interfaces
/// or implementations for Protobuf service definitions.
///
/// Service generators are registered with a code generator using the
/// `Config::service_generator` method.
///
/// A viable scenario is that an RPC framework provides a service generator. It generates a trait
/// describing methods of the service and some glue code to call the methods of the trait, defining
/// details like how errors are handled or if it is asynchronous. Then the user provides an
/// implementation of the generated trait in the application code and plugs it into the framework.
///
/// Such framework isn't part of Prost at present.
pub trait ServiceGenerator {
/// Generates a Rust interface or implementation for a service, writing the
/// result to `buf`.
fn generate(&mut self, service: Service, buf: &mut String);
/// Finalizes the generation process.
///
/// In case there's something that needs to be output at the end of the generation process, it
/// goes here. Similar to [`generate`](#method.generate), the output should be appended to
/// `buf`.
///
/// An example can be a module or other thing that needs to appear just once, not for each
/// service generated.
///
/// This still can be called multiple times in a lifetime of the service generator, because it
/// is called once per `.proto` file.
///
/// The default implementation is empty and does nothing.
fn finalize(&mut self, _buf: &mut String) {}
}
/// Configuration options for Protobuf code generation.
///
/// This configuration builder can be used to set non-default code generation options.
pub struct Config {
service_generator: Option<Box<dyn ServiceGenerator>>,
btree_map: Vec<String>,
type_attributes: Vec<(String, String)>,
field_attributes: Vec<(String, String)>,
prost_types: bool,
strip_enum_prefix: bool,
out_dir: Option<PathBuf>,
extern_paths: Vec<(String, String)>,
}
impl Config {
/// Creates a new code generator configuration with default options.
pub fn new() -> Config {
Config::default()
}
/// Configure the code generator to generate Rust [`BTreeMap`][1] fields for Protobuf
/// [`map`][2] type fields.
///
/// # Arguments
///
/// **`paths`** - paths to specific fields, messages, or packages which should use a Rust
/// `BTreeMap` for Protobuf `map` fields. Paths are specified in terms of the Protobuf type
/// name (not the generated Rust type name). Paths with a leading `.` are treated as fully
/// qualified names. Paths without a leading `.` are treated as relative, and are suffix
/// matched on the fully qualified field name. If a Protobuf map field matches any of the
/// paths, a Rust `BTreeMap` field is generated instead of the default [`HashMap`][3].
///
/// The matching is done on the Protobuf names, before converting to Rust-friendly casing
/// standards.
///
/// # Examples
///
/// ```rust
/// # let mut config = prost_build::Config::new();
/// // Match a specific field in a message type.
/// config.btree_map(&[".my_messages.MyMessageType.my_map_field"]);
///
/// // Match all map fields in a message type.
/// config.btree_map(&[".my_messages.MyMessageType"]);
///
/// // Match all map fields in a package.
/// config.btree_map(&[".my_messages"]);
///
/// // Match all map fields.
/// config.btree_map(&["."]);
///
/// // Match all map fields in a nested message.
/// config.btree_map(&[".my_messages.MyMessageType.MyNestedMessageType"]);
///
/// // Match all fields named 'my_map_field'.
/// config.btree_map(&["my_map_field"]);
///
/// // Match all fields named 'my_map_field' in messages named 'MyMessageType', regardless of
/// // package or nesting.
/// config.btree_map(&["MyMessageType.my_map_field"]);
///
/// // Match all fields named 'my_map_field', and all fields in the 'foo.bar' package.
/// config.btree_map(&["my_map_field", ".foo.bar"]);
/// ```
///
/// [1]: https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
/// [2]: https://developers.google.com/protocol-buffers/docs/proto3#maps
/// [3]: https://doc.rust-lang.org/std/collections/struct.HashMap.html
pub fn btree_map<I, S>(&mut self, paths: I) -> &mut Self
where
I: IntoIterator<Item = S>,
S: AsRef<str>,
{
self.btree_map = paths.into_iter().map(|s| s.as_ref().to_string()).collect();
self
}
/// Add additional attribute to matched fields.
///
/// # Arguments
///
/// **`path`** - a patch matching any number of fields. These fields get the attribute.
/// For details about matching fields see [`btree_map`](#method.btree_map).
///
/// **`attribute`** - an arbitrary string that'll be placed before each matched field. The
/// expected usage are additional attributes, usually in concert with whole-type
/// attributes set with [`type_attribute`](method.type_attribute), but it is not
/// checked and anything can be put there.
///
/// Note that the calls to this method are cumulative ‒ if multiple paths from multiple calls
/// match the same field, the field gets all the corresponding attributes.
///
/// # Examples
///
/// ```rust
/// # let mut config = prost_build::Config::new();
/// // Prost renames fields named `in` to `in_`. But if serialized through serde,
/// // they should as `in`.
/// config.field_attribute("in", "#[serde(rename = \"in\")]");
/// ```
pub fn field_attribute<P, A>(&mut self, path: P, attribute: A) -> &mut Self
where
P: AsRef<str>,
A: AsRef<str>,
{
self.field_attributes
.push((path.as_ref().to_string(), attribute.as_ref().to_string()));
self
}
/// Add additional attribute to matched messages, enums and one-ofs.
///
/// # Arguments
///
/// **`paths`** - a path matching any number of types. It works the same way as in
/// [`btree_map`](#method.btree_map), just with the field name omitted.
///
/// **`attribute`** - an arbitrary string to be placed before each matched type. The
/// expected usage are additional attributes, but anything is allowed.
///
/// The calls to this method are cumulative. They don't overwrite previous calls and if a
/// type is matched by multiple calls of the method, all relevant attributes are added to
/// it.
///
/// For things like serde it might be needed to combine with [field
/// attributes](#method.field_attribute).
///
/// # Examples
///
/// ```rust
/// # let mut config = prost_build::Config::new();
/// // Nothing around uses floats, so we can derive real `Eq` in addition to `PartialEq`.
/// config.type_attribute(".", "#[derive(Eq)]");
/// // Some messages want to be serializable with serde as well.
/// config.type_attribute("my_messages.MyMessageType",
/// "#[derive(Serialize)] #[serde(rename-all = \"snake_case\")]");
/// config.type_attribute("my_messages.MyMessageType.MyNestedMessageType",
/// "#[derive(Serialize)] #[serde(rename-all = \"snake_case\")]");
/// ```
///
/// # Oneof fields
///
/// The `oneof` fields don't have a type name of their own inside Protobuf. Therefore, the
/// field name can be used both with `type_attribute` and `field_attribute` ‒ the first is
/// placed before the `enum` type definition, the other before the field inside corresponding
/// message `struct`.
///
/// In other words, to place an attribute on the `enum` implementing the `oneof`, the match
/// would look like `my_messages.MyMessageType.oneofname`.
pub fn type_attribute<P, A>(&mut self, path: P, attribute: A) -> &mut Self
where
P: AsRef<str>,
A: AsRef<str>,
{
self.type_attributes
.push((path.as_ref().to_string(), attribute.as_ref().to_string()));
self
}
/// Configures the code generator to use the provided service generator.
pub fn service_generator(&mut self, service_generator: Box<dyn ServiceGenerator>) -> &mut Self {
self.service_generator = Some(service_generator);
self
}
/// Configures the code generator to not use the `prost_types` crate for Protobuf well-known
/// types, and instead generate Protobuf well-known types from their `.proto` definitions.
pub fn compile_well_known_types(&mut self) -> &mut Self {
self.prost_types = false;
self
}
/// Declare an externally provided Protobuf package or type.
///
/// `extern_path` allows `prost` types in external crates to be referenced in generated code.
///
/// When `prost` compiles a `.proto` which includes an import of another `.proto`, it will
/// automatically recursively compile the imported file as well. `extern_path` can be used
/// to instead substitute types from an external crate.
///
/// # Example
///
/// As an example, consider a crate, `uuid`, with a `prost`-generated `Uuid` type:
///
/// ```proto
/// // uuid.proto
///
/// syntax = "proto3";
/// package uuid;
///
/// message Uuid {
/// string uuid_str = 1;
/// }
/// ```
///
/// The `uuid` crate implements some traits for `Uuid`, and publicly exports it:
///
/// ```rust,ignore
/// // lib.rs in the uuid crate
///
/// include!(concat!(env!("OUT_DIR"), "/uuid.rs"));
///
/// pub trait DoSomething {
/// fn do_it(&self);
/// }
///
/// impl DoSomething for Uuid {
/// fn do_it(&self) {
/// println!("Done");
/// }
/// }
/// ```
///
/// A separate crate, `my_application`, uses `prost` to generate message types which reference
/// `Uuid`:
///
/// ```proto
/// // my_application.proto
///
/// syntax = "proto3";
/// package my_application;
///
/// import "uuid.proto";
///
/// message MyMessage {
/// uuid.Uuid message_id = 1;
/// string some_payload = 2;
/// }
/// ```
///
/// Additionally, `my_application` depends on the trait impls provided by the `uuid` crate:
///
/// ```rust,ignore
/// // `main.rs` of `my_application`
///
/// use uuid::{DoSomething, Uuid};
///
/// include!(concat!(env!("OUT_DIR"), "/my_application.rs"));
///
/// pub fn process_message(msg: MyMessage) {
/// if let Some(uuid) = msg.message_id {
/// uuid.do_it();
/// }
/// }
/// ```
///
/// Without configuring `uuid` as an external path in `my_application`'s `build.rs`, `prost`
/// would compile a completely separate version of the `Uuid` type, and `process_message` would
/// fail to compile. However, if `my_application` configures `uuid` as an extern path with a
/// call to `.extern_path(".uuid", "::uuid")`, `prost` will use the external type instead of
/// compiling a new version of `Uuid`. Note that the configuration could also be specified as
/// `.extern_path(".uuid.Uuid", "::uuid::Uuid")` if only the `Uuid` type were externally
/// provided, and not the whole `uuid` package.
///
/// # Usage
///
/// `extern_path` takes a fully-qualified Protobuf path, and the corresponding Rust path that
/// it will be substituted with in generated code. The Protobuf path can refer to a package or
/// a type, and the Rust path should correspondingly refer to a Rust module or type.
///
/// ```rust
/// # let mut config = prost_build::Config::new();
/// // Declare the `uuid` Protobuf package and all nested packages and types as externally
/// // provided by the `uuid` crate.
/// config.extern_path(".uuid", "::uuid");
///
/// // Declare the `foo.bar.baz` Protobuf package and all nested packages and types as
/// // externally provided by the `foo_bar_baz` crate.
/// config.extern_path(".foo.bar.baz", "::foo_bar_baz");
///
/// // Declare the `uuid.Uuid` Protobuf type (and all nested types) as externally provided
/// // by the `uuid` crate's `Uuid` type.
/// config.extern_path(".uuid.Uuid", "::uuid::Uuid");
/// ```
pub fn extern_path<P1, P2>(&mut self, proto_path: P1, rust_path: P2) -> &mut Self
where
P1: Into<String>,
P2: Into<String>,
{
self.extern_paths
.push((proto_path.into(), rust_path.into()));
self
}
/// Configures the code generator to not strip the enum name from variant names.
///
/// Protobuf enum definitions commonly include the enum name as a prefix of every variant name.
/// This style is non-idiomatic in Rust, so by default `prost` strips the enum name prefix from
/// variants which include it. Configuring this option prevents `prost` from stripping the
/// prefix.
pub fn retain_enum_prefix(&mut self) -> &mut Self {
self.strip_enum_prefix = false;
self
}
/// Configures the output directory where generated Rust files will be written.
///
/// If unset, defaults to the `OUT_DIR` environment variable. `OUT_DIR` is set by Cargo when
/// executing build scripts, so `out_dir` typically does not need to be configured.
pub fn out_dir<P>(&mut self, path: P) -> &mut Self
where
P: Into<PathBuf>,
{
self.out_dir = Some(path.into());
self
}
/// Compile `.proto` files into Rust files during a Cargo build with additional code generator
/// configuration options.
///
/// This method is like the `prost_build::compile_protos` function, with the added ability to
/// specify non-default code generation options. See that function for more information about
/// the arguments and generated outputs.
///
/// # Example `build.rs`
///
/// ```rust,no_run
/// fn main() {
/// let mut prost_build = prost_build::Config::new();
/// prost_build.btree_map(&["."]);
/// prost_build.compile_protos(&["src/frontend.proto", "src/backend.proto"],
/// &["src"]).unwrap();
/// }
/// ```
pub fn compile_protos<P>(&mut self, protos: &[P], includes: &[P]) -> Result<()>
where
P: AsRef<Path>,
{
let target: PathBuf = self.out_dir.clone().map(Ok).unwrap_or_else(|| {
env::var_os("OUT_DIR")
.ok_or_else(|| {
Error::new(ErrorKind::Other, "OUT_DIR environment variable is not set")
})
.map(Into::into)
})?;
// TODO: This should probably emit 'rerun-if-changed=PATH' directives for cargo, however
// according to [1] if any are output then those paths replace the default crate root,
// which is undesirable. Figure out how to do it in an additive way; perhaps gcc-rs has
// this figured out.
// [1]: http://doc.crates.io/build-script.html#outputs-of-the-build-script
let tmp = tempfile::Builder::new().prefix("prost-build").tempdir()?;
let descriptor_set = tmp.path().join("prost-descriptor-set");
let mut cmd = Command::new(protoc());
cmd.arg("--include_imports")
.arg("--include_source_info")
.arg("-o")
.arg(&descriptor_set);
for include in includes {
cmd.arg("-I").arg(include.as_ref());
}
// Set the protoc include after the user includes in case the user wants to
// override one of the built-in .protos.
cmd.arg("-I").arg(protoc_include());
for proto in protos {
cmd.arg(proto.as_ref());
}
let output = cmd.output()?;
if !output.status.success() {
return Err(Error::new(
ErrorKind::Other,
format!("protoc failed: {}", String::from_utf8_lossy(&output.stderr)),
));
}
let mut buf = Vec::new();
fs::File::open(descriptor_set)?.read_to_end(&mut buf)?;
let descriptor_set = FileDescriptorSet::decode(&buf)?;
let modules = self.generate(descriptor_set.file)?;
for (module, content) in modules {
let mut filename = module.join(".");
filename.push_str(".rs");
trace!("writing: {:?}", filename);
let mut file = fs::File::create(target.join(filename))?;
file.write_all(content.as_bytes())?;
file.flush()?;
}
Ok(())
}
fn generate(&mut self, files: Vec<FileDescriptorProto>) -> Result<HashMap<Module, String>> {
let mut modules = HashMap::new();
let message_graph = MessageGraph::new(&files);
let extern_paths = ExternPaths::new(&self.extern_paths, self.prost_types)
.map_err(|error| Error::new(ErrorKind::InvalidInput, error))?;
for file in files {
let module = self.module(&file);
let mut buf = modules.entry(module).or_insert_with(String::new);
CodeGenerator::generate(self, &message_graph, &extern_paths, file, &mut buf);
}
Ok(modules)
}
fn module(&self, file: &FileDescriptorProto) -> Module {
file.package()
.split('.')
.filter(|s| !s.is_empty())
.map(to_snake)
.collect()
}
}
impl default::Default for Config {
fn default() -> Config {
Config {
service_generator: None,
btree_map: Vec::new(),
type_attributes: Vec::new(),
field_attributes: Vec::new(),
prost_types: true,
strip_enum_prefix: true,
out_dir: None,
extern_paths: Vec::new(),
}
}
}
/// Compile `.proto` files into Rust files during a Cargo build.
///
/// The generated `.rs` files are written to the Cargo `OUT_DIR` directory, suitable for use with
/// the [include!][1] macro. See the [Cargo `build.rs` code generation][2] example for more info.
///
/// This function should be called in a project's `build.rs`.
///
/// # Arguments
///
/// **`protos`** - Paths to `.proto` files to compile. Any transitively [imported][3] `.proto`
/// files are automatically be included.
///
/// **`includes`** - Paths to directories in which to search for imports. Directories are searched
/// in order. The `.proto` files passed in **`protos`** must be found in one of the provided
/// include directories.
///
/// # Errors
///
/// This function can fail for a number of reasons:
///
/// - Failure to locate or download `protoc`.
/// - Failure to parse the `.proto`s.
/// - Failure to locate an imported `.proto`.
///
/// It's expected that this function call be `unwrap`ed in a `build.rs`; there is typically no
/// reason to gracefully recover from errors during a build.
///
/// # Example `build.rs`
///
/// ```rust,no_run
/// fn main() {
/// prost_build::compile_protos(&["src/frontend.proto", "src/backend.proto"],
/// &["src"]).unwrap();
/// }
/// ```
///
/// [1]: https://doc.rust-lang.org/std/macro.include.html
/// [2]: http://doc.crates.io/build-script.html#case-study-code-generation
/// [3]: https://developers.google.com/protocol-buffers/docs/proto3#importing-definitions
pub fn compile_protos<P>(protos: &[P], includes: &[P]) -> Result<()>
where
P: AsRef<Path>,
{
Config::new().compile_protos(protos, includes)
}
/// Returns the path to the `protoc` binary.
pub fn protoc() -> &'static Path {
Path::new(env!("PROTOC"))
}
/// Returns the path to the Protobuf include directory.
pub fn protoc_include() -> &'static Path {
Path::new(env!("PROTOC_INCLUDE"))
}
#[cfg(test)]
mod tests {
use super::*;
use env_logger;
/// An example service generator that generates a trait with methods corresponding to the
/// service methods.
struct ServiceTraitGenerator;
impl ServiceGenerator for ServiceTraitGenerator {
fn generate(&mut self, service: Service, buf: &mut String) {
// Generate a trait for the service.
service.comments.append_with_indent(0, buf);
buf.push_str(&format!("trait {} {{\n", &service.name));
// Generate the service methods.
for method in service.methods {
method.comments.append_with_indent(1, buf);
buf.push_str(&format!(
" fn {}({}) -> {};\n",
method.name, method.input_type, method.output_type
));
}
// Close out the trait.
buf.push_str("}\n");
}
fn finalize(&mut self, buf: &mut String) {
// Needs to be present only once, no matter how many services there are
buf.push_str("pub mod utils { }\n");
}
}
#[test]
fn smoke_test() {
let _ = env_logger::init();
Config::new()
.service_generator(Box::new(ServiceTraitGenerator))
.compile_protos(&["src/smoke_test.proto"], &["src"])
.unwrap();
}
}