-
Notifications
You must be signed in to change notification settings - Fork 480
/
Copy pathscalar.rs
1141 lines (997 loc) · 38.4 KB
/
scalar.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// -*- mode: rust; -*-
//
// This file is part of curve25519-dalek.
// Copyright (c) 2016-2017 Isis Lovecruft, Henry de Valence
// Portions Copyright 2017 Brian Smith
// See LICENSE for licensing information.
//
// Authors:
// - Isis Agora Lovecruft <[email protected]>
// - Henry de Valence <[email protected]>
// - Brian Smith <[email protected]>
//! Arithmetic on scalars (integers mod the group order).
use core::fmt::Debug;
use core::ops::Neg;
use core::ops::{Add, AddAssign};
use core::ops::{Sub, SubAssign};
use core::ops::{Mul, MulAssign};
use core::ops::{Index};
use core::cmp::{Eq, PartialEq};
use core::iter::{Product, Sum};
use core::borrow::Borrow;
use rand::{Rng, CryptoRng};
use digest::Digest;
use generic_array::typenum::U64;
use subtle::Choice;
use subtle::ConditionallyAssignable;
use subtle::ConstantTimeEq;
use backend;
use constants;
/// An `UnpackedScalar` represents an element of the field GF(l), optimized for speed.
///
/// This is a type alias for one of the scalar types in the `backend`
/// module.
#[cfg(feature = "u64_backend")]
type UnpackedScalar = backend::u64::scalar::Scalar64;
/// An `UnpackedScalar` represents an element of the field GF(l), optimized for speed.
///
/// This is a type alias for one of the scalar types in the `backend`
/// module.
#[cfg(feature = "u32_backend")]
type UnpackedScalar = backend::u32::scalar::Scalar32;
/// The `Scalar` struct holds an integer \\(s < 2\^{255} \\) which
/// represents an element of \\(\mathbb Z / \ell\\).
///
/// Both the Ristretto group and the Ed25519 basepoint have prime order
/// \\( \ell = 2\^{252} + 27742317777372353535851937790883648493 \\).
///
/// The code is intended to be useful with both the Ristretto group
/// (where everything is done modulo \\( \ell \\)), and the X/Ed25519
/// setting, which mandates specific bit-twiddles that are not
/// well-defined modulo \\( \ell \\).
///
/// To create a `Scalar` from a supposedly canonical encoding, use
/// `Scalar::from_canonical_bytes`.
///
/// To create a `Scalar` by reducing a \\(256\\)-bit integer mod \\( \ell \\),
/// use `Scalar::from_bytes_mod_order`.
///
/// To create a `Scalar` by reducing a \\(512\\)-bit integer mod \\( \ell \\),
/// use `Scalar::from_bytes_mod_order_wide`.
///
/// To create a `Scalar` with a specific bit-pattern (e.g., for
/// compatibility with X25519 "clamping"), use `Scalar::from_bits`.
///
/// All arithmetic on `Scalars` is done modulo \\( \ell \\).
#[derive(Copy, Clone)]
pub struct Scalar {
/// `bytes` is a little-endian byte encoding of an integer representing a scalar modulo the group order.
///
/// # Invariant
///
/// The integer representing this scalar must be bounded above by \\(2\^{255}\\), or equivalently the high bit of `bytes[31]` must be zero.
///
/// This ensures that there is room for a carry bit when computing a NAF representation.
// XXX This is pub(crate) so we can write literal constants. If const fns were stable, we could make the Scalar constructors const fns and use those instead.
pub(crate) bytes: [u8; 32],
}
impl Scalar {
/// Construct a `Scalar` by reducing a 256-bit little-endian integer
/// modulo the group order \\( \ell \\).
pub fn from_bytes_mod_order(bytes: [u8; 32]) -> Scalar {
// Temporarily allow s_unreduced.bytes > 2^255 ...
let s_unreduced = Scalar{bytes: bytes};
// Then reduce mod the group order and return the reduced representative.
let s = s_unreduced.reduce();
debug_assert_eq!(0u8, s[31] >> 7);
s
}
/// Construct a `Scalar` by reducing a 512-bit little-endian integer
/// modulo the group order \\( \ell \\).
pub fn from_bytes_mod_order_wide(input: &[u8; 64]) -> Scalar {
UnpackedScalar::from_bytes_wide(input).pack()
}
/// Attempt to construct a `Scalar` from a canonical byte representation.
///
/// # Return
///
/// - `Some(s)`, where `s` is the `Scalar` corresponding to `bytes`,
/// if `bytes` is a canonical byte representation;
/// - `None` if `bytes` is not a canonical byte representation.
pub fn from_canonical_bytes(bytes: [u8; 32]) -> Option<Scalar> {
// Check that the high bit is not set
if (bytes[31] >> 7) != 0u8 { return None; }
let candidate = Scalar::from_bits(bytes);
if candidate.is_canonical() {
Some(candidate)
} else {
None
}
}
/// Construct a `Scalar` from the low 255 bits of a 256-bit integer.
///
/// This function is intended for applications like X25519 which
/// require specific bit-patterns when performing scalar
/// multiplication.
pub fn from_bits(bytes: [u8; 32]) -> Scalar {
let mut s = Scalar{bytes: bytes};
// Ensure that s < 2^255 by masking the high bit
s.bytes[31] &= 0b0111_1111;
s
}
}
impl Debug for Scalar {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "Scalar{{\n\tbytes: {:?},\n}}", &self.bytes)
}
}
impl Eq for Scalar {}
impl PartialEq for Scalar {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).unwrap_u8() == 1u8
}
}
impl ConstantTimeEq for Scalar {
fn ct_eq(&self, other: &Self) -> Choice {
self.bytes.ct_eq(&other.bytes)
}
}
impl Index<usize> for Scalar {
type Output = u8;
/// Index the bytes of the representative for this `Scalar`. Mutation is not permitted.
fn index(&self, _index: usize) -> &u8 {
&(self.bytes[_index])
}
}
impl<'b> MulAssign<&'b Scalar> for Scalar {
fn mul_assign(&mut self, _rhs: &'b Scalar) {
*self = UnpackedScalar::mul(&self.unpack(), &_rhs.unpack()).pack();
}
}
define_mul_assign_variants!(LHS = Scalar, RHS = Scalar);
impl<'a, 'b> Mul<&'b Scalar> for &'a Scalar {
type Output = Scalar;
fn mul(self, _rhs: &'b Scalar) -> Scalar {
UnpackedScalar::mul(&self.unpack(), &_rhs.unpack()).pack()
}
}
define_mul_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);
impl<'b> AddAssign<&'b Scalar> for Scalar {
fn add_assign(&mut self, _rhs: &'b Scalar) {
*self = UnpackedScalar::add(&self.unpack(), &_rhs.unpack()).pack();
}
}
define_add_assign_variants!(LHS = Scalar, RHS = Scalar);
impl<'a, 'b> Add<&'b Scalar> for &'a Scalar {
type Output = Scalar;
fn add(self, _rhs: &'b Scalar) -> Scalar {
UnpackedScalar::add(&self.unpack(), &_rhs.unpack()).pack()
}
}
define_add_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);
impl<'b> SubAssign<&'b Scalar> for Scalar {
fn sub_assign(&mut self, _rhs: &'b Scalar) {
*self = UnpackedScalar::sub(&self.unpack(), &_rhs.unpack()).pack();
}
}
define_sub_assign_variants!(LHS = Scalar, RHS = Scalar);
impl<'a, 'b> Sub<&'b Scalar> for &'a Scalar {
type Output = Scalar;
fn sub(self, _rhs: &'b Scalar) -> Scalar {
UnpackedScalar::sub(&self.unpack(), &_rhs.unpack()).pack()
}
}
define_sub_variants!(LHS = Scalar, RHS = Scalar, Output = Scalar);
impl<'a> Neg for &'a Scalar {
type Output = Scalar;
fn neg(self) -> Scalar {
&Scalar::zero() - self
}
}
impl<'a> Neg for Scalar {
type Output = Scalar;
fn neg(self) -> Scalar {
-&self
}
}
impl ConditionallyAssignable for Scalar {
fn conditional_assign(&mut self, other: &Scalar, choice: Choice) {
for i in 0..32 {
self.bytes[i].conditional_assign(&other.bytes[i], choice);
}
}
}
#[cfg(feature = "serde")]
use serde::{self, Serialize, Deserialize, Serializer, Deserializer};
#[cfg(feature = "serde")]
use serde::de::Visitor;
#[cfg(feature = "serde")]
impl Serialize for Scalar {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: Serializer
{
serializer.serialize_bytes(self.reduce().as_bytes())
}
}
#[cfg(feature = "serde")]
impl<'de> Deserialize<'de> for Scalar {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: Deserializer<'de>
{
struct ScalarVisitor;
impl<'de> Visitor<'de> for ScalarVisitor {
type Value = Scalar;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("a canonically-encoded 32-byte scalar value")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Scalar, E>
where E: serde::de::Error
{
if v.len() == 32 {
let mut bytes = [0u8;32];
bytes.copy_from_slice(v);
static ERRMSG: &'static str = "encoding was not canonical";
Scalar::from_canonical_bytes(bytes)
.ok_or(
serde::de::Error::invalid_value(
serde::de::Unexpected::Bytes(v),
&ERRMSG,
)
)
} else {
Err(serde::de::Error::invalid_length(v.len(), &self))
}
}
}
deserializer.deserialize_bytes(ScalarVisitor)
}
}
impl<T> Product<T> for Scalar
where
T: Borrow<Scalar>
{
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = T>
{
iter.fold(Scalar::one(), |acc, item| acc * item.borrow())
}
}
impl<T> Sum<T> for Scalar
where
T: Borrow<Scalar>
{
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = T>
{
iter.fold(Scalar::zero(), |acc, item| acc + item.borrow())
}
}
impl Scalar {
/// Return a `Scalar` chosen uniformly at random using a user-provided RNG.
///
/// # Inputs
///
/// * `rng`: any RNG which implements the `rand::CryptoRng` interface.
///
/// # Returns
///
/// A random scalar within ℤ/lℤ.
#[cfg(feature = "std")]
pub fn random<T: Rng + CryptoRng>(rng: &mut T) -> Self {
let mut scalar_bytes = [0u8; 64];
rng.fill(&mut scalar_bytes);
Scalar::from_bytes_mod_order_wide(&scalar_bytes)
}
/// Hash a slice of bytes into a scalar.
///
/// Takes a type parameter `D`, which is any `Digest` producing 64
/// bytes (512 bits) of output.
///
/// Convenience wrapper around `from_hash`.
///
/// # Example
///
/// ```
/// # extern crate curve25519_dalek;
/// # use curve25519_dalek::scalar::Scalar;
/// extern crate sha2;
/// use sha2::Sha512;
///
/// # // Need fn main() here in comment so the doctest compiles
/// # // See https://doc.rust-lang.org/book/documentation.html#documentation-as-tests
/// # fn main() {
/// let msg = "To really appreciate architecture, you may even need to commit a murder";
/// let s = Scalar::hash_from_bytes::<Sha512>(msg.as_bytes());
/// # }
/// ```
///
pub fn hash_from_bytes<D>(input: &[u8]) -> Scalar
where D: Digest<OutputSize = U64> + Default
{
let mut hash = D::default();
hash.input(input);
Scalar::from_hash(hash)
}
/// Construct a scalar from an existing `Digest` instance.
///
/// Use this instead of `hash_from_bytes` if it is more convenient
/// to stream data into the `Digest` than to pass a single byte
/// slice.
pub fn from_hash<D>(hash: D) -> Scalar
where D: Digest<OutputSize = U64> + Default
{
// XXX this seems clumsy
let mut output = [0u8; 64];
output.copy_from_slice(hash.result().as_slice());
Scalar::from_bytes_mod_order_wide(&output)
}
/// Convert this `Scalar` to its underlying sequence of bytes.
pub fn to_bytes(&self) -> [u8; 32] {
self.bytes
}
/// View this `Scalar` as a sequence of bytes.
pub fn as_bytes(&self) -> &[u8; 32] {
&self.bytes
}
/// Construct the scalar \\( 0 \\).
pub fn zero() -> Self {
Scalar { bytes: [0u8; 32]}
}
/// Construct the scalar \\( 1 \\).
pub fn one() -> Self {
Scalar {
bytes: [
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
],
}
}
/// Construct a scalar from the given `u64`.
pub fn from_u64(x: u64) -> Scalar {
let mut s_bytes = [0u8; 32];
for i in 0..8 {
s_bytes[i] = (x >> (i*8)) as u8;
}
Scalar{ bytes: s_bytes }
}
/// Compute the multiplicative inverse of this scalar.
pub fn invert(&self) -> Scalar {
self.unpack().invert().pack()
}
/// Given a slice of nonzero (possibly secret) `Scalar`s,
/// compute their inverses in a batch.
///
/// # Return
///
/// Each element of `inputs` is replaced by its inverse.
///
/// The product of all inverses is returned.
///
/// # Warning
///
/// All input `Scalars` **MUST** be nonzero. If you cannot
/// *prove* that this is the case, you **SHOULD NOT USE THIS
/// FUNCTION**.
///
/// This function is most efficient when the batch size (slice
/// length) is a power of 2.
///
/// # Example
///
/// ```
/// # extern crate curve25519_dalek;
/// # use curve25519_dalek::scalar::Scalar;
/// # fn main() {
///
/// let mut scalars = [
/// Scalar::from_u64(3),
/// Scalar::from_u64(5),
/// Scalar::from_u64(7),
/// Scalar::from_u64(11),
/// ];
///
/// let allinv = Scalar::batch_invert(&mut scalars);
///
/// assert_eq!(allinv, Scalar::from_u64(3*5*7*11).invert());
/// assert_eq!(scalars[0], Scalar::from_u64(3).invert());
/// assert_eq!(scalars[1], Scalar::from_u64(5).invert());
/// assert_eq!(scalars[2], Scalar::from_u64(7).invert());
/// assert_eq!(scalars[3], Scalar::from_u64(11).invert());
/// # }
/// ```
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn batch_invert(inputs: &mut [Scalar]) -> Scalar {
// This code is essentially identical to the FieldElement
// implementation, and is documented there. Unfortunately,
// it's not easy to write it generically, since here we want
// to use `UnpackedScalar`s internally, and `Scalar`s
// externally, but there's no corresponding distinction for
// field elements.
use clear_on_drop::ClearOnDrop;
use clear_on_drop::clear::ZeroSafe;
// Mark UnpackedScalars as zeroable.
unsafe impl ZeroSafe for UnpackedScalar {}
let n = inputs.len().next_power_of_two();
let one: UnpackedScalar = Scalar::one().unpack().to_montgomery();
// Wrap the tree storage in a ClearOnDrop to wipe it when we
// pass out of scope.
let tree_vec = vec![one; 2*n];
let mut tree = ClearOnDrop::new(tree_vec);
for i in 0..inputs.len() {
tree[n+i] = inputs[i].unpack().to_montgomery();
}
for i in (1..n).rev() {
tree[i] = UnpackedScalar::montgomery_mul(&tree[2*i], &tree[2*i+1]);
}
// tree[1] is zero iff any of the inputs are zero.
debug_assert!(tree[1].from_montgomery().pack() != Scalar::zero());
let allinv = tree[1].montgomery_invert();
for i in 0..inputs.len() {
let mut inv = allinv;
let mut node = n + i;
while node > 1 {
inv = UnpackedScalar::montgomery_mul(&inv, &tree[node ^1]);
node = node >> 1;
}
inputs[i] = inv.from_montgomery().pack();
}
allinv.from_montgomery().pack()
}
/// Get the bits of the scalar.
pub(crate) fn bits(&self) -> [i8; 256] {
let mut bits = [0i8; 256];
for i in 0..256 {
// As i runs from 0..256, the bottom 3 bits index the bit,
// while the upper bits index the byte.
bits[i] = ((self.bytes[i>>3] >> (i&7)) & 1u8) as i8;
}
bits
}
/// Compute a width-\\(w\\) "Non-Adjacent Form" of this scalar.
///
/// A width-\\(w\\) NAF of a positive integer \\(k\\) is an expression
/// $$
/// k = \sum_{i=0}\^m n\_i 2\^i,
/// $$
/// where each nonzero
/// coefficient \\(n\_i\\) is odd and bounded by \\(|n\_i| < 2\^{w-1}\\),
/// \\(n\_{m-1}\\) is nonzero, and at most one of any \\(w\\) consecutive
/// coefficients is nonzero. (Hankerson, Menezes, Vanstone; def 3.32).
///
/// The length of the NAF is at most one more than the length of
/// the binary representation of \\(k\\). This is why the
/// `Scalar` type maintains an invariant that the top bit is
/// \\(0\\), so that the NAF of a scalar has at most 256 digits.
///
/// Intuitively, this is like a binary expansion, except that we
/// allow some coefficients to grow in magnitude up to
/// \\(2\^{w-1}\\) so that the nonzero coefficients are as sparse
/// as possible.
///
/// When doing scalar multiplication, we can then use a lookup
/// table of precomputed multiples of a point to add the nonzero
/// terms \\( k_i P \\). Using signed digits cuts the table size
/// in half, and using odd digits cuts the table size in half
/// again.
///
/// To compute a \\(w\\)-NAF, we use a modification of Algorithm 3.35 of HMV:
///
/// 1. \\( i \gets 0 \\)
/// 2. While \\( k \ge 1 \\):
/// 1. If \\(k\\) is odd, \\( n_i \gets k \operatorname{mods} 2^w \\), \\( k \gets k - n_i \\).
/// 2. If \\(k\\) is even, \\( n_i \gets 0 \\).
/// 3. \\( k \gets k / 2 \\), \\( i \gets i + 1 \\).
/// 3. Return \\( n_0, n_1, ... , \\)
///
/// Here \\( \bar x = x \operatorname{mods} 2^w \\) means the
/// \\( \bar x \\) with \\( \bar x \equiv x \pmod{2^w} \\) and
/// \\( -2^{w-1} \leq \bar x < 2^w \\).
///
/// We implement this by scanning across the bits of \\(k\\) from
/// least-significant bit to most-significant-bit.
/// Write the bits of \\(k\\) as
/// $$
/// k = \sum\_{i=0}\^m k\_i 2^i,
/// $$
/// and split the sum as
/// $$
/// k = \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \sum\_{i=0} k\_{i+w} 2^i
/// $$
/// where the first part is \\( k \mod 2^w \\).
///
/// If \\( k \mod 2^w\\) is odd, and \\( k \mod 2^w < 2^{w-1} \\), then we emit
/// \\( n_0 = k \mod 2^w \\). Instead of computing
/// \\( k - n_0 \\), we just advance \\(w\\) bits and reindex.
///
/// If \\( k \mod 2^w\\) is odd, and \\( k \mod 2^w \ge 2^{w-1} \\), then
/// \\( n_0 = k \operatorname{mods} 2^w = k \mod 2^w - 2^w \\).
/// The quantity \\( k - n_0 \\) is
/// $$
/// \begin{aligned}
/// k - n_0 &= \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \sum\_{i=0} k\_{i+w} 2^i
/// - \sum\_{i=0}^{w-1} k\_i 2^i + 2^w \\\\
/// &= 2^w + 2^w \sum\_{i=0} k\_{i+w} 2^i
/// \end{aligned}
/// $$
/// so instead of computing the subtraction, we can set a carry
/// bit, advance \\(w\\) bits, and reindex.
///
/// If \\( k \mod 2^w\\) is even, we emit \\(0\\), advance 1 bit
/// and reindex. In fact, by setting all digits to \\(0\\)
/// initially, we don't need to emit anything.
pub(crate) fn non_adjacent_form(&self, w: usize) -> [i8; 256] {
// required by the NAF definition
debug_assert!( w >= 2 );
// required so that the NAF digits fit in i8
debug_assert!( w <= 8 );
use byteorder::{ByteOrder, LittleEndian};
let mut naf = [0i8; 256];
let mut x_u64 = [0u64; 5];
LittleEndian::read_u64_into(&self.bytes, &mut x_u64[0..4]);
let width = 1 << w;
let window_mask = width - 1;
let mut pos = 0;
let mut carry = 0;
while pos < 256 {
// Construct a buffer of bits of the scalar, starting at bit `pos`
let u64_idx = pos / 64;
let bit_idx = pos % 64;
let bit_buf: u64;
if bit_idx < 64 - w {
// This window's bits are contained in a single u64
bit_buf = x_u64[u64_idx] >> bit_idx;
} else {
// Combine the current u64's bits with the bits from the next u64
bit_buf = (x_u64[u64_idx] >> bit_idx) | (x_u64[1+u64_idx] << (64 - bit_idx));
}
// Add the carry into the current window
let window = carry + (bit_buf & window_mask);
if window & 1 == 0 {
// If the window value is even, preserve the carry and continue.
// Why is the carry preserved?
// If carry == 0 and window & 1 == 0, then the next carry should be 0
// If carry == 1 and window & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
pos += 1;
continue;
}
if window < width/2 {
carry = 0;
naf[pos] = window as i8;
} else {
carry = 1;
naf[pos] = (window as i8) - (width as i8);
}
pos += w;
}
naf
}
/// Write this scalar in radix 16, with coefficients in \\([-8,8)\\),
/// i.e., compute \\(a\_i\\) such that
/// $$
/// a = a\_0 + a\_1 16\^1 + \cdots + a_{63} 16\^{63},
/// $$
/// with \\(-8 \leq a_i < 8\\) for \\(0 \leq i < 63\\) and \\(-8 \leq a_{63} \leq 8\\).
pub(crate) fn to_radix_16(&self) -> [i8; 64] {
debug_assert!(self[31] <= 127);
let mut output = [0i8; 64];
// Step 1: change radix.
// Convert from radix 256 (bytes) to radix 16 (nibbles)
#[inline(always)]
fn bot_half(x: u8) -> u8 { (x >> 0) & 15 }
#[inline(always)]
fn top_half(x: u8) -> u8 { (x >> 4) & 15 }
for i in 0..32 {
output[2*i ] = bot_half(self[i]) as i8;
output[2*i+1] = top_half(self[i]) as i8;
}
// Precondition note: since self[31] <= 127, output[63] <= 7
// Step 2: recenter coefficients from [0,16) to [-8,8)
for i in 0..63 {
let carry = (output[i] + 8) >> 4;
output[i ] -= carry << 4;
output[i+1] += carry;
}
// Precondition note: output[63] is not recentered. It
// increases by carry <= 1. Thus output[63] <= 8.
output
}
/// Unpack this `Scalar` to an `UnpackedScalar` for faster arithmetic.
pub(crate) fn unpack(&self) -> UnpackedScalar {
UnpackedScalar::from_bytes(&self.bytes)
}
/// Reduce this `Scalar` modulo \\(\ell\\).
#[allow(non_snake_case)]
pub fn reduce(&self) -> Scalar {
let x = self.unpack();
let xR = UnpackedScalar::mul_internal(&x, &constants::R);
let x_mod_l = UnpackedScalar::montgomery_reduce(&xR);
x_mod_l.pack()
}
/// Check whether this `Scalar` is the canonical representative mod \\(\ell\\).
///
/// This is intended for uses like input validation, where variable-time code is acceptable.
///
/// ```
/// # extern crate curve25519_dalek;
/// # extern crate subtle;
/// # use curve25519_dalek::scalar::Scalar;
/// # use subtle::ConditionallyAssignable;
/// # fn main() {
/// // 2^255 - 1, since `from_bits` clears the high bit
/// let _2_255_minus_1 = Scalar::from_bits([0xff;32]);
/// assert!(!_2_255_minus_1.is_canonical());
///
/// let reduced = _2_255_minus_1.reduce();
/// assert!(reduced.is_canonical());
/// # }
/// ```
pub fn is_canonical(&self) -> bool {
*self == self.reduce()
}
}
impl UnpackedScalar {
/// Pack the limbs of this `UnpackedScalar` into a `Scalar`.
fn pack(&self) -> Scalar {
Scalar{ bytes: self.to_bytes() }
}
/// Inverts an UnpackedScalar in Montgomery form.
pub fn montgomery_invert(&self) -> UnpackedScalar {
// Uses the addition chain from
// https://briansmith.org/ecc-inversion-addition-chains-01#curve25519_scalar_inversion
let _1 = self;
let _10 = _1.montgomery_square();
let _100 = _10.montgomery_square();
let _11 = UnpackedScalar::montgomery_mul(&_10, &_1);
let _101 = UnpackedScalar::montgomery_mul(&_10, &_11);
let _111 = UnpackedScalar::montgomery_mul(&_10, &_101);
let _1001 = UnpackedScalar::montgomery_mul(&_10, &_111);
let _1011 = UnpackedScalar::montgomery_mul(&_10, &_1001);
let _1111 = UnpackedScalar::montgomery_mul(&_100, &_1011);
// _10000
let mut y = UnpackedScalar::montgomery_mul(&_1111, &_1);
#[inline]
fn square_multiply(y: &mut UnpackedScalar, squarings: usize, x: &UnpackedScalar) {
for _ in 0..squarings {
*y = y.montgomery_square();
}
*y = UnpackedScalar::montgomery_mul(y, x);
}
square_multiply(&mut y, 123 + 3, &_101);
square_multiply(&mut y, 2 + 2, &_11);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 4, &_1001);
square_multiply(&mut y, 2, &_11);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 1 + 3, &_101);
square_multiply(&mut y, 3 + 3, &_101);
square_multiply(&mut y, 3, &_111);
square_multiply(&mut y, 1 + 4, &_1111);
square_multiply(&mut y, 2 + 3, &_111);
square_multiply(&mut y, 2 + 2, &_11);
square_multiply(&mut y, 1 + 4, &_1011);
square_multiply(&mut y, 2 + 4, &_1011);
square_multiply(&mut y, 6 + 4, &_1001);
square_multiply(&mut y, 2 + 2, &_11);
square_multiply(&mut y, 3 + 2, &_11);
square_multiply(&mut y, 3 + 2, &_11);
square_multiply(&mut y, 1 + 4, &_1001);
square_multiply(&mut y, 1 + 3, &_111);
square_multiply(&mut y, 2 + 4, &_1111);
square_multiply(&mut y, 1 + 4, &_1011);
square_multiply(&mut y, 3, &_101);
square_multiply(&mut y, 2 + 4, &_1111);
square_multiply(&mut y, 3, &_101);
square_multiply(&mut y, 1 + 2, &_11);
y
}
/// Inverts an UnpackedScalar not in Montgomery form.
pub fn invert(&self) -> UnpackedScalar {
self.to_montgomery().montgomery_invert().from_montgomery()
}
}
#[cfg(test)]
mod test {
use super::*;
use constants;
/// x = 2238329342913194256032495932344128051776374960164957527413114840482143558222
pub static X: Scalar = Scalar{
bytes: [
0x4e, 0x5a, 0xb4, 0x34, 0x5d, 0x47, 0x08, 0x84,
0x59, 0x13, 0xb4, 0x64, 0x1b, 0xc2, 0x7d, 0x52,
0x52, 0xa5, 0x85, 0x10, 0x1b, 0xcc, 0x42, 0x44,
0xd4, 0x49, 0xf4, 0xa8, 0x79, 0xd9, 0xf2, 0x04,
],
};
/// 1/x = 6859937278830797291664592131120606308688036382723378951768035303146619657244
pub static XINV: Scalar = Scalar{
bytes: [
0x1c, 0xdc, 0x17, 0xfc, 0xe0, 0xe9, 0xa5, 0xbb,
0xd9, 0x24, 0x7e, 0x56, 0xbb, 0x01, 0x63, 0x47,
0xbb, 0xba, 0x31, 0xed, 0xd5, 0xa9, 0xbb, 0x96,
0xd5, 0x0b, 0xcd, 0x7a, 0x3f, 0x96, 0x2a, 0x0f,
],
};
/// y = 2592331292931086675770238855846338635550719849568364935475441891787804997264
pub static Y: Scalar = Scalar{
bytes: [
0x90, 0x76, 0x33, 0xfe, 0x1c, 0x4b, 0x66, 0xa4,
0xa2, 0x8d, 0x2d, 0xd7, 0x67, 0x83, 0x86, 0xc3,
0x53, 0xd0, 0xde, 0x54, 0x55, 0xd4, 0xfc, 0x9d,
0xe8, 0xef, 0x7a, 0xc3, 0x1f, 0x35, 0xbb, 0x05,
],
};
/// x*y = 5690045403673944803228348699031245560686958845067437804563560795922180092780
static X_TIMES_Y: Scalar = Scalar{
bytes: [
0x6c, 0x33, 0x74, 0xa1, 0x89, 0x4f, 0x62, 0x21,
0x0a, 0xaa, 0x2f, 0xe1, 0x86, 0xa6, 0xf9, 0x2c,
0xe0, 0xaa, 0x75, 0xc2, 0x77, 0x95, 0x81, 0xc2,
0x95, 0xfc, 0x08, 0x17, 0x9a, 0x73, 0x94, 0x0c,
],
};
/// sage: l = 2^252 + 27742317777372353535851937790883648493
/// sage: big = 2^256 - 1
/// sage: repr((big % l).digits(256))
static CANONICAL_2_256_MINUS_1: Scalar = Scalar{
bytes: [
28, 149, 152, 141, 116, 49, 236, 214,
112, 207, 125, 115, 244, 91, 239, 198,
254, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 15,
],
};
static A_SCALAR: Scalar = Scalar{
bytes: [
0x1a, 0x0e, 0x97, 0x8a, 0x90, 0xf6, 0x62, 0x2d,
0x37, 0x47, 0x02, 0x3f, 0x8a, 0xd8, 0x26, 0x4d,
0xa7, 0x58, 0xaa, 0x1b, 0x88, 0xe0, 0x40, 0xd1,
0x58, 0x9e, 0x7b, 0x7f, 0x23, 0x76, 0xef, 0x09,
],
};
static A_NAF: [i8; 256] =
[0,13,0,0,0,0,0,0,0,7,0,0,0,0,0,0,-9,0,0,0,0,-11,0,0,0,0,3,0,0,0,0,1,
0,0,0,0,9,0,0,0,0,-5,0,0,0,0,0,0,3,0,0,0,0,11,0,0,0,0,11,0,0,0,0,0,
-9,0,0,0,0,0,-3,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,9,0,
0,0,0,-15,0,0,0,0,-7,0,0,0,0,-9,0,0,0,0,0,5,0,0,0,0,13,0,0,0,0,0,-3,0,
0,0,0,-11,0,0,0,0,-7,0,0,0,0,-13,0,0,0,0,11,0,0,0,0,-9,0,0,0,0,0,1,0,0,
0,0,0,-15,0,0,0,0,1,0,0,0,0,7,0,0,0,0,0,0,0,0,5,0,0,0,0,0,13,0,0,0,
0,0,0,11,0,0,0,0,0,15,0,0,0,0,0,-9,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,7,
0,0,0,0,0,-15,0,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,0,1,0,0,0,0];
#[test]
fn fuzzer_testcase_reduction() {
// LE bytes of 24519928653854221733733552434404946937899825954937634815
let a_bytes = [255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// LE bytes of 4975441334397345751130612518500927154628011511324180036903450236863266160640
let b_bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 210, 210, 210, 255, 255, 255, 255, 10];
// LE bytes of 6432735165214683820902750800207468552549813371247423777071615116673864412038
let c_bytes = [134, 171, 119, 216, 180, 128, 178, 62, 171, 132, 32, 62, 34, 119, 104, 193, 47, 215, 181, 250, 14, 207, 172, 93, 75, 207, 211, 103, 144, 204, 56, 14];
let a = Scalar::from_bytes_mod_order(a_bytes);
let b = Scalar::from_bytes_mod_order(b_bytes);
let c = Scalar::from_bytes_mod_order(c_bytes);
let mut tmp = [0u8; 64];
// also_a = (a mod l)
tmp[0..32].copy_from_slice(&a_bytes[..]);
let also_a = Scalar::from_bytes_mod_order_wide(&tmp);
// also_b = (b mod l)
tmp[0..32].copy_from_slice(&b_bytes[..]);
let also_b = Scalar::from_bytes_mod_order_wide(&tmp);
let expected_c = &a * &b;
let also_expected_c = &also_a * &also_b;
assert_eq!(c, expected_c);
assert_eq!(c, also_expected_c);
}
#[test]
fn non_adjacent_form() {
let naf = A_SCALAR.non_adjacent_form(5);
for i in 0..256 {
assert_eq!(naf[i], A_NAF[i]);
}
}
#[test]
fn from_unsigned() {
let val = 0xdeadbeefdeadbeef;
let s = Scalar::from_u64(val);
assert_eq!(s[7], 0xde);
assert_eq!(s[6], 0xad);
assert_eq!(s[5], 0xbe);
assert_eq!(s[4], 0xef);
assert_eq!(s[3], 0xde);
assert_eq!(s[2], 0xad);
assert_eq!(s[1], 0xbe);
assert_eq!(s[0], 0xef);
}
#[test]
fn scalar_mul_by_one() {
let test_scalar = &X * &Scalar::one();
for i in 0..32 {
assert!(test_scalar[i] == X[i]);
}
}
#[test]
fn impl_add() {
let two = Scalar::from_u64(2);
let one = Scalar::one();
let should_be_two = &one + &one;
assert_eq!(should_be_two, two);
}
#[allow(non_snake_case)]
#[test]
fn impl_mul() {
let should_be_X_times_Y = &X * &Y;
assert_eq!(should_be_X_times_Y, X_TIMES_Y);
}
#[allow(non_snake_case)]
#[test]
fn impl_product() {
// Test that product works for non-empty iterators
let X_Y_vector = vec![X, Y];
let should_be_X_times_Y: Scalar = X_Y_vector.iter().product();
assert_eq!(should_be_X_times_Y, X_TIMES_Y);
// Test that product works for the empty iterator
let one = Scalar::one();
let empty_vector = vec![];
let should_be_one: Scalar = empty_vector.iter().product();
assert_eq!(should_be_one, one);
// Test that product works for iterators where Item = Scalar
let xs = [Scalar::from_u64(2); 10];
let ys = [Scalar::from_u64(3); 10];
// now zs is an iterator with Item = Scalar
let zs = xs.iter().zip(ys.iter()).map(|(x,y)| x * y);
let x_prod: Scalar = xs.iter().product();
let y_prod: Scalar = ys.iter().product();
let z_prod: Scalar = zs.product();
assert_eq!(x_prod, Scalar::from_u64(1024));
assert_eq!(y_prod, Scalar::from_u64(59049));
assert_eq!(z_prod, Scalar::from_u64(60466176));
assert_eq!(x_prod * y_prod, z_prod);
}
#[test]
fn impl_sum() {
// Test that sum works for non-empty iterators
let two = Scalar::from_u64(2);
let one_vector = vec![Scalar::one(), Scalar::one()];
let should_be_two: Scalar = one_vector.iter().sum();
assert_eq!(should_be_two, two);
// Test that sum works for the empty iterator
let zero = Scalar::zero();
let empty_vector = vec![];
let should_be_zero: Scalar = empty_vector.iter().sum();
assert_eq!(should_be_zero, zero);
// Test that sum works for owned types
let xs = [Scalar::from_u64(1); 10];
let ys = [Scalar::from_u64(2); 10];
// now zs is an iterator with Item = Scalar
let zs = xs.iter().zip(ys.iter()).map(|(x,y)| x + y);
let x_sum: Scalar = xs.iter().sum();
let y_sum: Scalar = ys.iter().sum();
let z_sum: Scalar = zs.sum();
assert_eq!(x_sum, Scalar::from_u64(10));
assert_eq!(y_sum, Scalar::from_u64(20));
assert_eq!(z_sum, Scalar::from_u64(30));
assert_eq!(x_sum + y_sum, z_sum);
}