-
Notifications
You must be signed in to change notification settings - Fork 33
Bundle myelin fraction (BMF) mapping with MySD
Simona edited this page Apr 8, 2022
·
5 revisions
Assuming you have a tractogram called tractogram.tck
, a co-registered myelin volume fraction map myelin_map.nii.gz
and a white matter mask WM_mask.nii.gz
in the same directory, with the following code you can perform Myelin Streamline Decomposition (MySD) to reproduce results in
import commit
# commit.setup() # NB: this is required only the first time you run COMMIT
from commit import trk2dictionary
trk2dictionary.run(
filename_tractogram = 'tractogram.tck',
filename_mask = 'WM_mask.nii.gz',
fiber_shift = 0.5,
ndirs = 1
)
# Setting parameters
mit = commit.Evaluation()
mit.set_config('doNormalizeSignal', False)
mit.load_data( 'myelin_map.nii.gz' )
Now the data are loaded and you are ready to perform MySD
# Set model and generate the kernel
mit.set_model( 'VolumeFractions' )
mit.model.set()
mit.generate_kernels( ndirs=1, regenerate=True )
mit.load_kernels()
# Load dictionary and buid the operator
mit.load_dictionary( 'COMMIT' )
mit.set_threads()
mit.build_operator()
# fitting
mit.fit( tol_fun=1e-3, max_iter=1000, verbose=True )
mit.save_results()
Once the fitting has reached convergence, you find the estimated myelin contribution of each streamline in the file streamline_weights.txt
inside COMMIT/Results_VolumeFraction/
.
Now you can group streamlines and their weights according to your bundles definition.
Diffusion Imaging and Connectivity Estimation (DICE) lab