-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathchamberlin.js
120 lines (100 loc) · 3.46 KB
/
chamberlin.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import {geoCentroid as centroid, geoProjection as projection, geoRotation as rotation} from "d3-geo";
import {abs, acos, asin, atan2, cos, epsilon, floor, pi, radians, sin, sqrt} from "./math.js";
import {solve2d} from "./newton.js";
// Azimuthal distance.
function distance(dPhi, c1, s1, c2, s2, dLambda) {
var cosdLambda = cos(dLambda), r;
if (abs(dPhi) > 1 || abs(dLambda) > 1) {
r = acos(s1 * s2 + c1 * c2 * cosdLambda);
} else {
var sindPhi = sin(dPhi / 2), sindLambda = sin(dLambda / 2);
r = 2 * asin(sqrt(sindPhi * sindPhi + c1 * c2 * sindLambda * sindLambda));
}
return abs(r) > epsilon ? [r, atan2(c2 * sin(dLambda), c1 * s2 - s1 * c2 * cosdLambda)] : [0, 0];
}
// Angle opposite a, and contained between sides of lengths b and c.
function angle(b, c, a) {
return acos((b * b + c * c - a * a) / (2 * b * c));
}
// Normalize longitude.
function longitude(lambda) {
return lambda - 2 * pi * floor((lambda + pi) / (2 * pi));
}
export function chamberlinRaw(p0, p1, p2) {
var points = [
[p0[0], p0[1], sin(p0[1]), cos(p0[1])],
[p1[0], p1[1], sin(p1[1]), cos(p1[1])],
[p2[0], p2[1], sin(p2[1]), cos(p2[1])]
];
for (var a = points[2], b, i = 0; i < 3; ++i, a = b) {
b = points[i];
a.v = distance(b[1] - a[1], a[3], a[2], b[3], b[2], b[0] - a[0]);
a.point = [0, 0];
}
var beta0 = angle(points[0].v[0], points[2].v[0], points[1].v[0]),
beta1 = angle(points[0].v[0], points[1].v[0], points[2].v[0]),
beta2 = pi - beta0;
points[2].point[1] = 0;
points[0].point[0] = -(points[1].point[0] = points[0].v[0] / 2);
var mean = [
points[2].point[0] = points[0].point[0] + points[2].v[0] * cos(beta0),
2 * (points[0].point[1] = points[1].point[1] = points[2].v[0] * sin(beta0))
];
function forward(lambda, phi) {
var sinPhi = sin(phi),
cosPhi = cos(phi),
v = new Array(3), i;
// Compute distance and azimuth from control points.
for (i = 0; i < 3; ++i) {
var p = points[i];
v[i] = distance(phi - p[1], p[3], p[2], cosPhi, sinPhi, lambda - p[0]);
if (!v[i][0]) return p.point;
v[i][1] = longitude(v[i][1] - p.v[1]);
}
// Arithmetic mean of interception points.
var point = mean.slice();
for (i = 0; i < 3; ++i) {
var j = i == 2 ? 0 : i + 1;
var a = angle(points[i].v[0], v[i][0], v[j][0]);
if (v[i][1] < 0) a = -a;
if (!i) {
point[0] += v[i][0] * cos(a);
point[1] -= v[i][0] * sin(a);
} else if (i == 1) {
a = beta1 - a;
point[0] -= v[i][0] * cos(a);
point[1] -= v[i][0] * sin(a);
} else {
a = beta2 - a;
point[0] += v[i][0] * cos(a);
point[1] += v[i][0] * sin(a);
}
}
point[0] /= 3, point[1] /= 3;
return point;
}
return forward;
}
function pointRadians(p) {
return p[0] *= radians, p[1] *= radians, p;
}
export function chamberlinAfrica() {
return chamberlin([0, 22], [45, 22], [22.5, -22])
.scale(380)
.center([22.5, 2]);
}
export default function chamberlin(p0, p1, p2) { // TODO order matters!
var c = centroid({type: "MultiPoint", coordinates: [p0, p1, p2]}),
R = [-c[0], -c[1]],
r = rotation(R),
f = chamberlinRaw(pointRadians(r(p0)), pointRadians(r(p1)), pointRadians(r(p2)));
f.invert = solve2d(f);
var p = projection(f).rotate(R),
center = p.center;
delete p.rotate;
p.center = function(_) {
return arguments.length ? center(r(_)) : r.invert(center());
};
return p
.clipAngle(90);
}