diff --git a/chapter_convolutional-neural-networks/padding-and-strides_origin.md b/chapter_convolutional-neural-networks/padding-and-strides_origin.md index 9c75aa069..42e614d00 100644 --- a/chapter_convolutional-neural-networks/padding-and-strides_origin.md +++ b/chapter_convolutional-neural-networks/padding-and-strides_origin.md @@ -239,11 +239,11 @@ there is no output because the input element cannot fill the window In general, when the stride for the height is $s_h$ and the stride for the width is $s_w$, the output shape is -$$\lfloor(n_h-k_h+p_h+s_h)/s_h\rfloor \times \lfloor(n_w-k_w+p_w+s_w)/s_w\rfloor.$$ +$$\lceil(n_h-k_h+p_h+s_h)/s_h\rceil \times \lceil(n_w-k_w+p_w+s_w)/s_w\rceil.$$ If we set $p_h=k_h-1$ and $p_w=k_w-1$, then the output shape will be simplified to -$\lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor$. +$\lceil(n_h+s_h-1)/s_h\rceil \times \lceil(n_w+s_w-1)/s_w\rceil$. Going a step further, if the input height and width are divisible by the strides on the height and width, then the output shape will be $(n_h/s_h) \times (n_w/s_w)$.