-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer_CoDe.py
144 lines (118 loc) · 5.93 KB
/
infer_CoDe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import os.path as osp
import torch, torchvision
import random
import numpy as np
import PIL.Image as PImage
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
from models import VQVAE, build_vae_var_ctf
import matplotlib.pyplot as plt
import gc
from contextlib import contextmanager
import argparse
@contextmanager
def measure_peak_memory():
torch.cuda.empty_cache()
gc.collect()
torch.cuda.reset_peak_memory_stats()
yield
peak_memory = torch.cuda.max_memory_allocated() / 1024 / 1024
print(f'memory consumption: {peak_memory:.2f} MB')
parser = argparse.ArgumentParser()
parser.add_argument("--drafter_depth", type=int, default=30)
parser.add_argument("--refiner_depth", type=int, default=16)
parser.add_argument("--draft_steps", type=int, default=8)
parser.add_argument("--cfg", type=int, default=4)
parser.add_argument("--training_free", action="store_true")
args = parser.parse_args()
MODEL_DEPTH_draft = args.drafter_depth
MODEL_DEPTH_refine = args.refiner_depth
draft_steps = args.draft_steps
assert MODEL_DEPTH_draft in {16, 20, 24, 30}
assert MODEL_DEPTH_refine in {16, 20, 24, 30}
assert draft_steps in {1, 2, 3, 4, 5, 6, 7, 8, 9}
################## 1. Download checkpoints and build models
# build vae, var
patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if 'vae' not in globals() or 'var' not in globals():
vae, var_draft, var_refine = build_vae_var_ctf(
V=4096, Cvae=32, ch=160, share_quant_resi=4, # hard-coded VQVAE hyperparameters
device=device, patch_nums=patch_nums,
num_classes=1000, depth_draft=MODEL_DEPTH_draft, depth_refine=MODEL_DEPTH_refine, shared_aln=False,
)
# load vae checkpoints
hf_home = 'https://huggingface.co/FoundationVision/var/resolve/main'
vae_ckpt = 'vae_ch160v4096z32.pth'
if not osp.exists(vae_ckpt): os.system(f'wget {hf_home}/{vae_ckpt}')
vae.load_state_dict(torch.load(vae_ckpt, map_location='cpu'), strict=True)
# load var checkpoints
print("start loading checkpoints.........")
if args.training_free:
hf_home = 'https://huggingface.co/FoundationVision/var/resolve/main'
var_draft_ckpt, var_refine_ckpt = f'var_d{MODEL_DEPTH_draft}.pth', f'var_d{MODEL_DEPTH_refine}.pth'
if not osp.exists(var_draft_ckpt): os.system(f'wget {hf_home}/{var_draft_ckpt}')
if not osp.exists(var_refine_ckpt): os.system(f'wget {hf_home}/{var_refine_ckpt}')
var_draft.load_state_dict(torch.load(var_draft_ckpt, map_location='cpu'), strict=True)
var_refine.load_state_dict(torch.load(var_refine_ckpt, map_location='cpu'), strict=True)
else:
hf_home = 'https://huggingface.co/Zigeng/VAR_CoDe/resolve/main'
var_draft_ckpt, var_refine_ckpt = f'drafter_{draft_steps}.pth', f'refiner_{draft_steps}.pth'
if not osp.exists(var_draft_ckpt): os.system(f'wget {hf_home}/{var_draft_ckpt}')
if not osp.exists(var_refine_ckpt): os.system(f'wget {hf_home}/{var_refine_ckpt}')
var_draft.load_state_dict(torch.load(var_draft_ckpt, map_location='cpu'),strict=True)
var_refine.load_state_dict(torch.load(var_refine_ckpt, map_location='cpu'),strict=True)
print("loading drafter from:",var_draft_ckpt, "loading refiner from:",var_refine_ckpt)
vae.eval(), var_draft.eval(), var_refine.eval()
for p in vae.parameters(): p.requires_grad_(False)
for p in var_draft.parameters(): p.requires_grad_(False)
for p in var_refine.parameters(): p.requires_grad_(False)
print(f'prepare finished.')
############################# 2. Sample with classifier-free guidance
# set args
seed = 42 #@param {type:"number"}
cfg = args.cfg #@param {type:"slider", min:1, max:10, step:0.1}
class_labels = (992, 992, 483, 483, 970, 970, 609, 609,
978, 978, 985, 985, 963, 963, 949, 949,)
more_smooth = False # True for more smooth output
# seed
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# run faster
tf32 = True
torch.backends.cudnn.allow_tf32 = bool(tf32)
torch.backends.cuda.matmul.allow_tf32 = bool(tf32)
torch.set_float32_matmul_precision('high' if tf32 else 'highest')
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
# sample
newk = [600]*10
temp = [1.1]*7+[1.0]*3
with torch.inference_mode():
B = len(class_labels)
label_B: torch.LongTensor = torch.tensor(class_labels, device=device)
with measure_peak_memory():
with torch.autocast('cuda', enabled=True, dtype=torch.float16, cache_enabled=True): # using bfloat16 can be faster
for i in range(3):
start_event.record()
# drafting stage
f_hat, token_hub= var_draft.autoregressive_infer_cfg_draft(B=B, label_B=label_B, cfg=cfg, top_k=newk, top_p=0.95, g_seed=seed, more_smooth=more_smooth,exit_num=draft_steps, temp=temp)
# refining stage
recon_B3HW = var_refine.autoregressive_infer_cfg_refine(B=B, label_B=label_B, cfg=cfg, top_k=newk, top_p=0.95, g_seed=seed, more_smooth=more_smooth,
draft=token_hub, f_hat=f_hat, entry_num=draft_steps, temp=temp)
end_event.record()
torch.cuda.synchronize()
# Calculation run time (milliseconds)
elapsed_time = start_event.elapsed_time(end_event)
print("running time:",int(elapsed_time),"ms", "batch size:",str(len(class_labels)))
# save the generated images
chw = torchvision.utils.make_grid(recon_B3HW, nrow=8, padding=0, pad_value=1.0)
chw = chw.permute(1, 2, 0).mul_(255).cpu().numpy()
chw = PImage.fromarray(chw.astype(np.uint8))
chw.save("output_code.png")
print("generate images are saved as --output_code.png-- ")