-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdist.py
211 lines (162 loc) · 5.51 KB
/
dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import datetime
import functools
import os
import sys
from typing import List
from typing import Union
import torch
import torch.distributed as tdist
import torch.multiprocessing as mp
__rank, __local_rank, __world_size, __device = 0, 0, 1, 'cuda' if torch.cuda.is_available() else 'cpu'
__initialized = False
def initialized():
return __initialized
def initialize(fork=False, backend='nccl', gpu_id_if_not_distibuted=0, timeout=30):
global __device
if not torch.cuda.is_available():
print(f'[dist initialize] cuda is not available, use cpu instead', file=sys.stderr)
return
elif 'RANK' not in os.environ:
torch.cuda.set_device(gpu_id_if_not_distibuted)
__device = torch.empty(1).cuda().device
print(f'[dist initialize] env variable "RANK" is not set, use {__device} as the device', file=sys.stderr)
return
# then 'RANK' must exist
global_rank, num_gpus = int(os.environ['RANK']), torch.cuda.device_count()
local_rank = global_rank % num_gpus
torch.cuda.set_device(local_rank)
# ref: https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py#L29
if mp.get_start_method(allow_none=True) is None:
method = 'fork' if fork else 'spawn'
print(f'[dist initialize] mp method={method}')
mp.set_start_method(method)
tdist.init_process_group(backend=backend, timeout=datetime.timedelta(seconds=timeout*60))
global __rank, __local_rank, __world_size, __initialized
__local_rank = local_rank
__rank, __world_size = tdist.get_rank(), tdist.get_world_size()
__device = torch.empty(1).cuda().device
__initialized = True
assert tdist.is_initialized(), 'torch.distributed is not initialized!'
print(f'[lrk={get_local_rank()}, rk={get_rank()}]')
def get_rank():
return __rank
def get_local_rank():
return __local_rank
def get_world_size():
return __world_size
def get_device():
return __device
def set_gpu_id(gpu_id: int):
if gpu_id is None: return
global __device
if isinstance(gpu_id, (str, int)):
torch.cuda.set_device(int(gpu_id))
__device = torch.empty(1).cuda().device
else:
raise NotImplementedError
def is_master():
return __rank == 0
def is_local_master():
return __local_rank == 0
def new_group(ranks: List[int]):
if __initialized:
return tdist.new_group(ranks=ranks)
return None
def barrier():
if __initialized:
tdist.barrier()
def allreduce(t: torch.Tensor, async_op=False):
if __initialized:
if not t.is_cuda:
cu = t.detach().cuda()
ret = tdist.all_reduce(cu, async_op=async_op)
t.copy_(cu.cpu())
else:
ret = tdist.all_reduce(t, async_op=async_op)
return ret
return None
def allgather(t: torch.Tensor, cat=True) -> Union[List[torch.Tensor], torch.Tensor]:
if __initialized:
if not t.is_cuda:
t = t.cuda()
ls = [torch.empty_like(t) for _ in range(__world_size)]
tdist.all_gather(ls, t)
else:
ls = [t]
if cat:
ls = torch.cat(ls, dim=0)
return ls
def allgather_diff_shape(t: torch.Tensor, cat=True) -> Union[List[torch.Tensor], torch.Tensor]:
if __initialized:
if not t.is_cuda:
t = t.cuda()
t_size = torch.tensor(t.size(), device=t.device)
ls_size = [torch.empty_like(t_size) for _ in range(__world_size)]
tdist.all_gather(ls_size, t_size)
max_B = max(size[0].item() for size in ls_size)
pad = max_B - t_size[0].item()
if pad:
pad_size = (pad, *t.size()[1:])
t = torch.cat((t, t.new_empty(pad_size)), dim=0)
ls_padded = [torch.empty_like(t) for _ in range(__world_size)]
tdist.all_gather(ls_padded, t)
ls = []
for t, size in zip(ls_padded, ls_size):
ls.append(t[:size[0].item()])
else:
ls = [t]
if cat:
ls = torch.cat(ls, dim=0)
return ls
def broadcast(t: torch.Tensor, src_rank) -> None:
if __initialized:
if not t.is_cuda:
cu = t.detach().cuda()
tdist.broadcast(cu, src=src_rank)
t.copy_(cu.cpu())
else:
tdist.broadcast(t, src=src_rank)
def dist_fmt_vals(val: float, fmt: Union[str, None] = '%.2f') -> Union[torch.Tensor, List]:
if not initialized():
return torch.tensor([val]) if fmt is None else [fmt % val]
ts = torch.zeros(__world_size)
ts[__rank] = val
allreduce(ts)
if fmt is None:
return ts
return [fmt % v for v in ts.cpu().numpy().tolist()]
def master_only(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
force = kwargs.pop('force', False)
if force or is_master():
ret = func(*args, **kwargs)
else:
ret = None
barrier()
return ret
return wrapper
def local_master_only(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
force = kwargs.pop('force', False)
if force or is_local_master():
ret = func(*args, **kwargs)
else:
ret = None
barrier()
return ret
return wrapper
def for_visualize(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
if is_master():
# with torch.no_grad():
ret = func(*args, **kwargs)
else:
ret = None
return ret
return wrapper
def finalize():
if __initialized:
tdist.destroy_process_group()