-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path_torch_docs.py
14087 lines (11197 loc) · 402 KB
/
_torch_docs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Adds docstrings to functions defined in the torch._C"""
import re
import torch._C
from torch._C import _add_docstr as add_docstr
def parse_kwargs(desc):
"""Maps a description of args to a dictionary of {argname: description}.
Input:
(' weight (Tensor): a weight tensor\n' +
' Some optional description')
Output: {
'weight': \
'weight (Tensor): a weight tensor\n Some optional description'
}
"""
# Split on exactly 4 spaces after a newline
regx = re.compile(r"\n\s{4}(?!\s)")
kwargs = [section.strip() for section in regx.split(desc)]
kwargs = [section for section in kwargs if len(section) > 0]
return {desc.split(" ")[0]: desc for desc in kwargs}
def merge_dicts(*dicts):
return {x: d[x] for d in dicts for x in d}
common_args = parse_kwargs(
"""
input (Tensor): the input tensor.
generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling
out (Tensor, optional): the output tensor.
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
returned tensor. Default: ``torch.preserve_format``.
"""
)
reduceops_common_args = merge_dicts(
common_args,
parse_kwargs(
"""
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
keepdim (bool): whether the output tensor has :attr:`dim` retained or not.
"""
),
)
multi_dim_common = merge_dicts(
reduceops_common_args,
parse_kwargs(
"""
dim (int or tuple of ints): the dimension or dimensions to reduce.
"""
),
{
"keepdim_details": """
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the
output tensor having 1 (or ``len(dim)``) fewer dimension(s).
"""
},
{
"opt_dim": """
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
If ``None``, all dimensions are reduced.
"""
},
)
single_dim_common = merge_dicts(
reduceops_common_args,
parse_kwargs(
"""
dim (int): the dimension to reduce.
"""
),
{
"keepdim_details": """If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the output tensor having 1 fewer dimension than :attr:`input`."""
},
)
factory_common_args = merge_dicts(
common_args,
parse_kwargs(
"""
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
Default: ``torch.strided``.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
returned Tensor. Default: ``torch.contiguous_format``.
check_invariants (bool, optional): If sparse tensor invariants are checked.
Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`,
initially False.
"""
),
{
"sparse_factory_device_note": """\
.. note::
If the ``device`` argument is not specified the device of the given
:attr:`values` and indices tensor(s) must match. If, however, the
argument is specified the input Tensors will be converted to the
given device and in turn determine the device of the constructed
sparse tensor."""
},
)
factory_like_common_args = parse_kwargs(
"""
input (Tensor): the size of :attr:`input` will determine size of the output tensor.
layout (:class:`torch.layout`, optional): the desired layout of returned tensor.
Default: if ``None``, defaults to the layout of :attr:`input`.
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
Default: if ``None``, defaults to the dtype of :attr:`input`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, defaults to the device of :attr:`input`.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
memory_format (:class:`torch.memory_format`, optional): the desired memory format of
returned Tensor. Default: ``torch.preserve_format``.
"""
)
factory_data_common_args = parse_kwargs(
"""
data (array_like): Initial data for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, infers data type from :attr:`data`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
pin_memory (bool, optional): If set, returned tensor would be allocated in
the pinned memory. Works only for CPU tensors. Default: ``False``.
"""
)
tf32_notes = {
"tf32_note": """This operator supports :ref:`TensorFloat32<tf32_on_ampere>`."""
}
rocm_fp16_notes = {
"rocm_fp16_note": """On certain ROCm devices, when using float16 inputs this module will use \
:ref:`different precision<fp16_on_mi200>` for backward."""
}
reproducibility_notes = {
"forward_reproducibility_note": """This operation may behave nondeterministically when given tensors on \
a CUDA device. See :doc:`/notes/randomness` for more information.""",
"backward_reproducibility_note": """This operation may produce nondeterministic gradients when given tensors on \
a CUDA device. See :doc:`/notes/randomness` for more information.""",
"cudnn_reproducibility_note": """In some circumstances when given tensors on a CUDA device \
and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is \
undesirable, you can try to make the operation deterministic (potentially at \
a performance cost) by setting ``torch.backends.cudnn.deterministic = True``. \
See :doc:`/notes/randomness` for more information.""",
}
sparse_support_notes = {
"sparse_beta_warning": """
.. warning::
Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported,
or may not have autograd support. If you notice missing functionality please
open a feature request.""",
}
add_docstr(
torch.abs,
r"""
abs(input, *, out=None) -> Tensor
Computes the absolute value of each element in :attr:`input`.
.. math::
\text{out}_{i} = |\text{input}_{i}|
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> torch.abs(torch.tensor([-1, -2, 3]))
tensor([ 1, 2, 3])
""".format(
**common_args
),
)
add_docstr(
torch.absolute,
r"""
absolute(input, *, out=None) -> Tensor
Alias for :func:`torch.abs`
""",
)
add_docstr(
torch.acos,
r"""
acos(input, *, out=None) -> Tensor
Computes the inverse cosine of each element in :attr:`input`.
.. math::
\text{out}_{i} = \cos^{-1}(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.3348, -0.5889, 0.2005, -0.1584])
>>> torch.acos(a)
tensor([ 1.2294, 2.2004, 1.3690, 1.7298])
""".format(
**common_args
),
)
add_docstr(
torch.arccos,
r"""
arccos(input, *, out=None) -> Tensor
Alias for :func:`torch.acos`.
""",
)
add_docstr(
torch.acosh,
r"""
acosh(input, *, out=None) -> Tensor
Returns a new tensor with the inverse hyperbolic cosine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \cosh^{-1}(\text{input}_{i})
Note:
The domain of the inverse hyperbolic cosine is `[1, inf)` and values outside this range
will be mapped to ``NaN``, except for `+ INF` for which the output is mapped to `+ INF`.
"""
+ r"""
Args:
{input}
Keyword arguments:
{out}
Example::
>>> a = torch.randn(4).uniform_(1, 2)
>>> a
tensor([ 1.3192, 1.9915, 1.9674, 1.7151 ])
>>> torch.acosh(a)
tensor([ 0.7791, 1.3120, 1.2979, 1.1341 ])
""".format(
**common_args
),
)
add_docstr(
torch.arccosh,
r"""
arccosh(input, *, out=None) -> Tensor
Alias for :func:`torch.acosh`.
""",
)
add_docstr(
torch.index_add,
r"""
index_add(input, dim, index, source, *, alpha=1, out=None) -> Tensor
See :meth:`~Tensor.index_add_` for function description.
""",
)
add_docstr(
torch.index_copy,
r"""
index_copy(input, dim, index, source, *, out=None) -> Tensor
See :meth:`~Tensor.index_add_` for function description.
""",
)
add_docstr(
torch.index_reduce,
r"""
index_reduce(input, dim, index, source, reduce, *, include_self=True, out=None) -> Tensor
See :meth:`~Tensor.index_reduce_` for function description.
""",
)
add_docstr(
torch.add,
r"""
add(input, other, *, alpha=1, out=None) -> Tensor
Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`.
.. math::
\text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i
"""
+ r"""
Supports :ref:`broadcasting to a common shape <broadcasting-semantics>`,
:ref:`type promotion <type-promotion-doc>`, and integer, float, and complex inputs.
Args:
{input}
other (Tensor or Number): the tensor or number to add to :attr:`input`.
Keyword arguments:
alpha (Number): the multiplier for :attr:`other`.
{out}
Examples::
>>> a = torch.randn(4)
>>> a
tensor([ 0.0202, 1.0985, 1.3506, -0.6056])
>>> torch.add(a, 20)
tensor([ 20.0202, 21.0985, 21.3506, 19.3944])
>>> b = torch.randn(4)
>>> b
tensor([-0.9732, -0.3497, 0.6245, 0.4022])
>>> c = torch.randn(4, 1)
>>> c
tensor([[ 0.3743],
[-1.7724],
[-0.5811],
[-0.8017]])
>>> torch.add(b, c, alpha=10)
tensor([[ 2.7695, 3.3930, 4.3672, 4.1450],
[-18.6971, -18.0736, -17.0994, -17.3216],
[ -6.7845, -6.1610, -5.1868, -5.4090],
[ -8.9902, -8.3667, -7.3925, -7.6147]])
""".format(
**common_args
),
)
add_docstr(
torch.addbmm,
r"""
addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices stored
in :attr:`batch1` and :attr:`batch2`,
with a reduced add step (all matrix multiplications get accumulated
along the first dimension).
:attr:`input` is added to the final result.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the
same number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
.. math::
out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i)
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha`
must be real numbers, otherwise they should be integers.
{tf32_note}
{rocm_fp16_note}
Args:
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
input (Tensor): matrix to be added
alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`)
{out}
Example::
>>> M = torch.randn(3, 5)
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> torch.addbmm(M, batch1, batch2)
tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653],
[ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743],
[ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes
),
)
add_docstr(
torch.addcdiv,
r"""
addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor
Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`,
multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`.
.. warning::
Integer division with addcdiv is no longer supported, and in a future
release addcdiv will perform a true division of tensor1 and tensor2.
The historic addcdiv behavior can be implemented as
(input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype)
for integer inputs and as (input + value * tensor1 / tensor2) for float inputs.
The future addcdiv behavior is just the latter implementation:
(input + value * tensor1 / tensor2), for all dtypes.
.. math::
\text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i}
"""
+ r"""
The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
input (Tensor): the tensor to be added
tensor1 (Tensor): the numerator tensor
tensor2 (Tensor): the denominator tensor
Keyword args:
value (Number, optional): multiplier for :math:`\text{{tensor1}} / \text{{tensor2}}`
{out}
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcdiv(t, t1, t2, value=0.1)
tensor([[-0.2312, -3.6496, 0.1312],
[-1.0428, 3.4292, -0.1030],
[-0.5369, -0.9829, 0.0430]])
""".format(
**common_args
),
)
add_docstr(
torch.addcmul,
r"""
addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor
Performs the element-wise multiplication of :attr:`tensor1`
by :attr:`tensor2`, multiplies the result by the scalar :attr:`value`
and adds it to :attr:`input`.
.. math::
\text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i
"""
+ r"""
The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
input (Tensor): the tensor to be added
tensor1 (Tensor): the tensor to be multiplied
tensor2 (Tensor): the tensor to be multiplied
Keyword args:
value (Number, optional): multiplier for :math:`tensor1 .* tensor2`
{out}
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcmul(t, t1, t2, value=0.1)
tensor([[-0.8635, -0.6391, 1.6174],
[-0.7617, -0.5879, 1.7388],
[-0.8353, -0.6249, 1.6511]])
""".format(
**common_args
),
)
add_docstr(
torch.addmm,
r"""
addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor
Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
The matrix :attr:`input` is added to the final result.
If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
:math:`(m \times p)` tensor, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i)
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
This operation has support for arguments with :ref:`sparse layouts<sparse-docs>`. If
:attr:`input` is sparse the result will have the same layout and if :attr:`out`
is provided it must have the same layout as :attr:`input`.
{sparse_beta_warning}
{tf32_note}
{rocm_fp16_note}
Args:
input (Tensor): matrix to be added
mat1 (Tensor): the first matrix to be matrix multiplied
mat2 (Tensor): the second matrix to be matrix multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
{out}
Example::
>>> M = torch.randn(2, 3)
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.addmm(M, mat1, mat2)
tensor([[-4.8716, 1.4671, -1.3746],
[ 0.7573, -3.9555, -2.8681]])
""".format(
**common_args, **tf32_notes, **rocm_fp16_notes, **sparse_support_notes
),
)
add_docstr(
torch.adjoint,
r"""
adjoint(Tensor) -> Tensor
Returns a view of the tensor conjugated and with the last two dimensions transposed.
``x.adjoint()`` is equivalent to ``x.transpose(-2, -1).conj()`` for complex tensors and
to ``x.transpose(-2, -1)`` for real tensors.
Example::
>>> x = torch.arange(4, dtype=torch.float)
>>> A = torch.complex(x, x).reshape(2, 2)
>>> A
tensor([[0.+0.j, 1.+1.j],
[2.+2.j, 3.+3.j]])
>>> A.adjoint()
tensor([[0.-0.j, 2.-2.j],
[1.-1.j, 3.-3.j]])
>>> (A.adjoint() == A.mH).all()
tensor(True)
""",
)
add_docstr(
torch.sspaddmm,
r"""
sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor
Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor
:attr:`mat2`, then adds the sparse tensor :attr:`input` to the result.
Note: This function is equivalent to :func:`torch.addmm`, except
:attr:`input` and :attr:`mat1` are sparse.
Args:
input (Tensor): a sparse matrix to be added
mat1 (Tensor): a sparse matrix to be matrix multiplied
mat2 (Tensor): a dense matrix to be matrix multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
{out}
""".format(
**common_args
),
)
add_docstr(
torch.smm,
r"""
smm(input, mat) -> Tensor
Performs a matrix multiplication of the sparse matrix :attr:`input`
with the dense matrix :attr:`mat`.
Args:
input (Tensor): a sparse matrix to be matrix multiplied
mat (Tensor): a dense matrix to be matrix multiplied
""",
)
add_docstr(
torch.addmv,
r"""
addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor
Performs a matrix-vector product of the matrix :attr:`mat` and
the vector :attr:`vec`.
The vector :attr:`input` is added to the final result.
If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
size `m`, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and
:attr:`out` will be 1-D tensor of size `n`.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec})
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
Args:
input (Tensor): vector to be added
mat (Tensor): matrix to be matrix multiplied
vec (Tensor): vector to be matrix multiplied
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`)
{out}
Example::
>>> M = torch.randn(2)
>>> mat = torch.randn(2, 3)
>>> vec = torch.randn(3)
>>> torch.addmv(M, mat, vec)
tensor([-0.3768, -5.5565])
""".format(
**common_args
),
)
add_docstr(
torch.addr,
r"""
addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor
Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2`
and adds it to the matrix :attr:`input`.
Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the
outer product between :attr:`vec1` and :attr:`vec2` and the added matrix
:attr:`input` respectively.
.. math::
\text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2})
If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in
it will not be propagated.
"""
+ r"""
If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector
of size `m`, then :attr:`input` must be
:ref:`broadcastable <broadcasting-semantics>` with a matrix of size
:math:`(n \times m)` and :attr:`out` will be a matrix of size
:math:`(n \times m)`.
Args:
input (Tensor): matrix to be added
vec1 (Tensor): the first vector of the outer product
vec2 (Tensor): the second vector of the outer product
Keyword args:
beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`)
alpha (Number, optional): multiplier for :math:`\text{{vec1}} \otimes \text{{vec2}}` (:math:`\alpha`)
{out}
Example::
>>> vec1 = torch.arange(1., 4.)
>>> vec2 = torch.arange(1., 3.)
>>> M = torch.zeros(3, 2)
>>> torch.addr(M, vec1, vec2)
tensor([[ 1., 2.],
[ 2., 4.],
[ 3., 6.]])
""".format(
**common_args
),
)
add_docstr(
torch.allclose,
r"""
allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool
This function checks if :attr:`input` and :attr:`other` satisfy the condition:
.. math::
\lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert
"""
+ r"""
elementwise, for all elements of :attr:`input` and :attr:`other`. The behaviour of this function is analogous to
`numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_
Args:
input (Tensor): first tensor to compare
other (Tensor): second tensor to compare
atol (float, optional): absolute tolerance. Default: 1e-08
rtol (float, optional): relative tolerance. Default: 1e-05
equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False``
Example::
>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
False
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
True
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
False
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
True
""",
)
add_docstr(
torch.all,
r"""
all(input) -> Tensor
Tests if all elements in :attr:`input` evaluate to `True`.
.. note:: This function matches the behaviour of NumPy in returning
output of dtype `bool` for all supported dtypes except `uint8`.
For `uint8` the dtype of output is `uint8` itself.
Example::
>>> a = torch.rand(1, 2).bool()
>>> a
tensor([[False, True]], dtype=torch.bool)
>>> torch.all(a)
tensor(False, dtype=torch.bool)
>>> a = torch.arange(0, 3)
>>> a
tensor([0, 1, 2])
>>> torch.all(a)
tensor(False)
.. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor
:noindex:
For each row of :attr:`input` in the given dimension :attr:`dim`,
returns `True` if all elements in the row evaluate to `True` and `False` otherwise.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{out}
Example::
>>> a = torch.rand(4, 2).bool()
>>> a
tensor([[True, True],
[True, False],
[True, True],
[True, True]], dtype=torch.bool)
>>> torch.all(a, dim=1)
tensor([ True, False, True, True], dtype=torch.bool)
>>> torch.all(a, dim=0)
tensor([ True, False], dtype=torch.bool)
""".format(
**single_dim_common
),
)
add_docstr(
torch.any,
r"""
any(input) -> Tensor
Tests if any element in :attr:`input` evaluates to `True`.
.. note:: This function matches the behaviour of NumPy in returning
output of dtype `bool` for all supported dtypes except `uint8`.
For `uint8` the dtype of output is `uint8` itself.
Example::
>>> a = torch.rand(1, 2).bool()
>>> a
tensor([[False, True]], dtype=torch.bool)
>>> torch.any(a)
tensor(True, dtype=torch.bool)
>>> a = torch.arange(0, 3)
>>> a
tensor([0, 1, 2])
>>> torch.any(a)
tensor(True)
.. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor
:noindex:
For each row of :attr:`input` in the given dimension :attr:`dim`,
returns `True` if any element in the row evaluate to `True` and `False` otherwise.
{keepdim_details}
Args:
{input}
{dim}
{keepdim}
Keyword args:
{out}
Example::
>>> a = torch.randn(4, 2) < 0
>>> a
tensor([[ True, True],
[False, True],
[ True, True],
[False, False]])
>>> torch.any(a, 1)
tensor([ True, True, True, False])
>>> torch.any(a, 0)
tensor([True, True])
""".format(
**single_dim_common
),
)
add_docstr(
torch.angle,
r"""
angle(input, *, out=None) -> Tensor
Computes the element-wise angle (in radians) of the given :attr:`input` tensor.
.. math::
\text{out}_{i} = angle(\text{input}_{i})
"""
+ r"""
Args:
{input}
Keyword args:
{out}
.. note:: Starting in PyTorch 1.8, angle returns pi for negative real numbers,
zero for non-negative real numbers, and propagates NaNs. Previously
the function would return zero for all real numbers and not propagate
floating-point NaNs.
Example::
>>> torch.angle(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))*180/3.14159
tensor([ 135., 135, -45])
""".format(
**common_args
),
)
add_docstr(
torch.as_strided,
r"""
as_strided(input, size, stride, storage_offset=None) -> Tensor
Create a view of an existing `torch.Tensor` :attr:`input` with specified
:attr:`size`, :attr:`stride` and :attr:`storage_offset`.
.. warning::
Prefer using other view functions, like :meth:`torch.Tensor.expand`,
to setting a view's strides manually with `as_strided`, as this
function's behavior depends on the implementation of a tensor's storage.
The constructed view of the storage must only refer to elements within
the storage or a runtime error will be thrown, and if the view is
"overlapped" (with multiple indices referring to the same element in
memory) its behavior is undefined.
Args:
{input}
size (tuple or ints): the shape of the output tensor
stride (tuple or ints): the stride of the output tensor
storage_offset (int, optional): the offset in the underlying storage of the output tensor.
If ``None``, the storage_offset of the output tensor will match the input tensor.
Example::
>>> x = torch.randn(3, 3)
>>> x
tensor([[ 0.9039, 0.6291, 1.0795],
[ 0.1586, 2.1939, -0.4900],
[-0.1909, -0.7503, 1.9355]])
>>> t = torch.as_strided(x, (2, 2), (1, 2))
>>> t
tensor([[0.9039, 1.0795],
[0.6291, 0.1586]])
>>> t = torch.as_strided(x, (2, 2), (1, 2), 1)
tensor([[0.6291, 0.1586],
[1.0795, 2.1939]])
""".format(
**common_args
),
)
add_docstr(
torch.as_tensor,
r"""
as_tensor(data, dtype=None, device=None) -> Tensor
Converts :attr:`data` into a tensor, sharing data and preserving autograd
history if possible.
If :attr:`data` is already a tensor with the requested dtype and device
then :attr:`data` itself is returned, but if :attr:`data` is a
tensor with a different dtype or device then it's copied as if using
`data.to(dtype=dtype, device=device)`.
If :attr:`data` is a NumPy array (an ndarray) with the same dtype and device then a
tensor is constructed using :func:`torch.from_numpy`.
.. seealso::
:func:`torch.tensor` never shares its data and creates a new "leaf tensor" (see :doc:`/notes/autograd`).
Args:
{data}
{dtype}
device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor
then the device of data is used. If None and data is not a tensor then
the result tensor is constructed on the current device.