forked from shadowpa0327/Palu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_lm_eval.py
96 lines (84 loc) · 3.26 KB
/
run_lm_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Import necessary modules
from utils import load_model_and_tokenizer, add_common_args
import argparse
import torch
import lm_eval
from tqdm import tqdm
from lm_eval.models.huggingface import HFLM
from lm_eval.utils import make_table
from lm_eval.utils import eval_logger as logger
from palu.quant_utils import configure_latent_quantizer
import os
import json
def run_lm_eval_zero_shot(model, tokenizer, batch_size=64, max_length=4096, task_list=["arc_easy", "hellaswag"], limit=None):
model.seqlen = max_length
lm_obj = HFLM(pretrained=model, tokenizer=tokenizer, add_bos_token=False, batch_size=batch_size)
# indexes all tasks from the lm_eval/tasks subdirectory.
# Alternatively, you can set TaskManager(include_path="path/to/my/custom/task/configs")
# to include a set of tasks in a separate directory.
task_manager = lm_eval.tasks.TaskManager()
# Setting task_manager to the one above is optional and should generally be done
# if you want to include tasks from paths other than ones in lm_eval/tasks.
# simple_evaluate will instantiate its own task_manager is the it is set to None here.
logger.info(f"Evaluation, Task(s): {task_list}")
with torch.no_grad():
results = lm_eval.simple_evaluate( # call simple_evaluate
model=lm_obj,
#model_args= "add_bos_token=True" if model_type == "jamba" else "",
tasks=task_list,
task_manager=task_manager,
log_samples=False,
limit=limit
)
res = make_table(results)
print(res)
return results['results']
if __name__ == '__main__':
parser = argparse.ArgumentParser()
add_common_args(parser)
parser.add_argument(
'--tasks', type=lambda s: [item for item in s.split(',')], default=[],
help='Task to be evaled'
)
parser.add_argument(
'--batch_size',
default=8,
type=int,
help='batch size for lm_eval tasks'
)
parser.add_argument(
"--verbose",
action="store_true",
help="Whether to print verbose information or not."
)
parser.add_argument(
"--save_results",
type=int,
help="Whether to save the results or not."
)
parser.add_argument(
"--output_dir",
type=str,
help="Directory to save the .json results."
)
args = parser.parse_args()
logger.info("Loading model and tokenizer...")
model, tokenizer = load_model_and_tokenizer(args.model_name_or_path)
configure_latent_quantizer(
model, n_bits=args.lt_bits,
group_size=args.lt_group_size,
sym=args.lt_sym,
clip_ratio=args.lt_clip_ratio,
hadamard=args.lt_hadamard
)
logger.info("Start running lm_eval zero-shot evaluation...")
res = run_lm_eval_zero_shot(model, tokenizer, args.batch_size, task_list=args.tasks)
# Create directory if it doesn't exist
output_dir = "./results"
os.makedirs(output_dir, exist_ok=True)
# Save results to JSON file
model_name = args.model_name_or_path.split("/")[-1]
output_file = os.path.join(output_dir, f"{model_name}_{args.lt_bits}{'_had' if args.lt_hadamard else ''}.json")
with open(output_file, "w") as f:
json.dump(res, f, indent=4)
print(f"Results saved to {output_file}")