-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlowestCommonAncestorofaBinarySearchTree.cpp
57 lines (49 loc) · 1.61 KB
/
lowestCommonAncestorofaBinarySearchTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/*
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
*/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL || p == NULL || q == NULL){
return NULL;
}
int small = p -> val < q -> val ? p -> val : q -> val;
int big = p -> val > q -> val ? p -> val : q -> val;
TreeNode* mark = root;
while(!(mark -> left == NULL && mark -> right == NULL)){
if(mark -> val > big ){
mark = mark -> left;
} else if(mark -> val < small){
mark = mark -> right;
} else{
return mark;
}
}
return mark;
}
};