Skip to content

Latest commit

 

History

History
180 lines (144 loc) · 4.56 KB

acurracy_tests.md

File metadata and controls

180 lines (144 loc) · 4.56 KB

Training and testing results

Tested against http://www.cs.york.ac.uk/semeval-2013/semeval2013.tgz Task2 twitter-test-GOLD-A.csv and twitter-test-GOLD-B.csv (ie Gold-A Gold-B) ca. 4000 tweets per file

Gold-A and Gold-B are only used for testing and are not part of training set.

Test results for different Classifier/Tokenizer:

TrainedClassifier: maxEnt_20000
-------------------------------
ID: 52a5dbe2638dbf2aca991e0e
Date: 2013-12-09 15:04:02+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopTwitterProcessor
Sample_size : 40000
Training data size 1.82 (MB)

Gold-A: 0.694
Gold-B: 0.748


TrainedClassifier: maxEnt_POS_20000
-----------------------------------
ID: 52a611ca638dbf34c3168f48
Date: 2013-12-09 18:54:02+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopPosTwitterProcessor
Sample_size : 40000
Training data size 2.69 (MB)

Gold-A: 0.676
Gold-B: 0.751


TrainedClassifier: bayes_20000
------------------------------
ID: 52a61363638dbf35c63ea01e
Date: 2013-12-09 19:00:51+00:00
Cutoff : -0.02
Classifier : NaiveBayesClassifier
Tokenizer : StopTwitterProcessor
Sample_size : 40000
Training data size 10.93 (MB)

Gold-A: 0.684
Gold-B: 0.718


TrainedClassifier: bayes_POS_20000
----------------------------------
ID: 52a6160b638dbf365cea35c3
Date: 2013-12-09 19:12:11+00:00
Cutoff : -0.02
Classifier : NaiveBayesClassifier
Tokenizer : StopPosTwitterProcessor
Sample_size : 40000
Training data size 13.76 (MB)

Gold-A: 0.681
Gold-B: 0.714


TrainedClassifier: maxEnt_100000
--------------------------------
ID: 52a71b3e638dbf0a0ec69ea7
Date: 2013-12-10 13:46:38+00:00
Cutoff : 0.001
Classifier : MaxentClassifier
Tokenizer : StopTwitterProcessor
Sample_size : 200000
Training data size 5.84 (MB)

Gold-A: 0.687
Gold-B: 0.766


TrainedClassifier: maxEnt_swn
Trained from SentiWordNet_3.0.0 corpus
Sample site ca. 110,000
--------------------------------
ID: 52ab58a7638dbf682f166132
Date: 2013-12-13 18:57:43+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopTwitterProcessor
Sample_size : NA
Training data size 1.56 (MB)

Gold-A: 0.593
Gold-B: 0.612


TrainedClassifier: maxent_20000
-------------------------------
ID: 52ac628b638dbf56a51be635
Date: 2013-12-14 13:52:11+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopBigramTwitterProcessor
Sample_size : 40000
Training data size 11.13 (MB)

Gold-A: 0.662
Gold-B: 0.625


TrainedClassifier: maxent_100000
--------------------------------
ID: 52ac7369638dbf56dc3dc10f
Date: 2013-12-14 15:04:09+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopBigramTwitterProcessor
Sample_size : 200000
Training data size 47.49 (MB)

Gold-A: 0.620
Gold-B: 0.639

TrainedClassifier: maxent_stemm_100000
--------------------------------------
ID: 52aeaf62638dbf1336cbfe03
Date: 2013-12-16 07:44:34+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopStemmTwitterProcessor
Sample_size : 200000
Training data size 8.46 (MB)
Gold-A: 0.712
Gold-B: 0.785


TrainedClassifier: maxent_stemm_300000
--------------------------------------
ID: 52aec78c638dbf17e4e2c166
Date: 2013-12-16 09:27:40+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopStemmTwitterProcessor
Sample_size : 600000
Training data size 19.29 (MB)
Gold-A: 0.720
Gold-B: 0.784

TrainedClassifier: maxent_stemm_400000
--------------------------------------
ID: 52af0286638dbf19d4741616
Date: 2013-12-16 13:39:18+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopStemmTwitterProcessor
Sample_size : 800000
Training data size 23.97 (MB)
Gold-A: 0.721
Gold-B: 0.780

TrainedClassifier: maxent_stemm_500000
--------------------------------------
ID: 52af5e35638dbf1d5d25919f
Date: 2013-12-16 20:10:29+00:00
Cutoff : -0.02
Classifier : MaxentClassifier
Tokenizer : StopStemmTwitterProcessor
Sample_size : 1000000
Training data size 28.40 (MB)
Gold-A: 0.721
Gold-B: 0.784

Notes:

Switching to FreqDist for feature extraction yields structure like {feature: nCount} gives worse results then {feature : exists } - That is something that i find strange...