-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvis_pose.py
62 lines (53 loc) · 1.84 KB
/
vis_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import time
from collections import OrderedDict
from options.train_options import TrainOptions
from data.data_loader import CreatePoseConDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
import os
import numpy as np
import torch
from torch.autograd import Variable
import tensorboardX
import random
GAP = 10
def write_temp(opt, target_phase):
source_path = os.path.join(opt.dataroot, opt.phase + '_list.txt')
target_path = os.path.join(opt.dataroot, target_phase + '_list.txt')
f = open(source_path, 'r')
all_paths = f.readlines()
ans = []
last = ''
tot = 0
print(len(all_paths))
for path in all_paths:
path_ = path.split('&')[0]
if (path_ != last):
last = path_
tot = tot + 1
if tot % GAP == 0:
ans.append(path)
f_w = open(target_path, 'w')
f_w.writelines(ans)
opt = TrainOptions().parse()
opt.phase = 'val'
write_temp(opt, "temp")
opt.phase = "temp"
opt.serial_batches = True
data_loader = CreatePoseConDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
visualizer = Visualizer(opt)
total_steps = 0# (start_epoch-1) * dataset_size + epoch_iter
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
for i, data in enumerate(dataset):
if (i % 100 == 0):
print((i, dataset_size))
visuals = OrderedDict([('input_label', util.tensor2label(data['A'][0][3:6, :, :], 0)),
('real_image', util.tensor2im(data['A2'][0]))])
visualizer.display_current_results2(visuals, 0, i)