forked from harvardnlp/struct-attn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess-entail.py
313 lines (278 loc) · 14.2 KB
/
preprocess-entail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Create the data for entailment
"""
import os
import sys
import argparse
import numpy as np
import h5py
import itertools
from collections import defaultdict
class Indexer:
def __init__(self, symbols = ["<blank>","<unk>","<s>","</s>"]):
self.vocab = defaultdict(int)
self.PAD = symbols[0]
self.UNK = symbols[1]
self.BOS = symbols[2]
self.EOS = symbols[3]
self.d = {self.PAD: 1, self.UNK: 2, self.BOS: 3, self.EOS: 4}
def add_w(self, ws):
for w in ws:
if w not in self.d:
self.d[w] = len(self.d) + 1
def convert(self, w):
return self.d[w] if w in self.d else self.d['<oov' + str(np.random.randint(1,100)) + '>']
def convert_sequence(self, ls):
return [self.convert(l) for l in ls]
def clean(self, s):
s = s.replace(self.PAD, "")
s = s.replace(self.BOS, "")
s = s.replace(self.EOS, "")
return s
def write(self, outfile):
out = open(outfile, "w")
items = [(v, k) for k, v in self.d.iteritems()]
items.sort()
for v, k in items:
print >>out, k, v
out.close()
def prune_vocab(self, k, cnt=False):
vocab_list = [(word, count) for word, count in self.vocab.iteritems()]
if cnt:
self.pruned_vocab = {pair[0]:pair[1] for pair in vocab_list if pair[1] > k}
else:
vocab_list.sort(key = lambda x: x[1], reverse=True)
k = min(k, len(vocab_list))
self.pruned_vocab = {pair[0]:pair[1] for pair in vocab_list[:k]}
for word in self.pruned_vocab:
if word not in self.d:
self.d[word] = len(self.d) + 1
def load_vocab(self, vocab_file):
self.d = {}
for line in open(vocab_file, 'r'):
v, k = line.strip().split()
self.d[v] = int(k)
def pad(ls, length, symbol, pad_back = True):
if len(ls) >= length:
return ls[:length]
if pad_back:
return ls + [symbol] * (length -len(ls))
else:
return [symbol] * (length -len(ls)) + ls
def get_glove_words(f):
glove_words = set()
for line in open(f, "r"):
word = line.split()[0].strip()
glove_words.add(word)
return glove_words
def get_data(args):
word_indexer = Indexer(["<blank>","<unk>","<s>","</s>"])
label_indexer = Indexer(["<blank>","<unk>","<s>","</s>"])
label_indexer.d = {}
glove_vocab = get_glove_words(args.glove)
for i in range(1,101): #hash oov words to one of 100 random embeddings, per Parikh et al. 2016
oov_word = '<oov'+ str(i) + '>'
word_indexer.vocab[oov_word] += 1
def make_vocab(srcfile, targetfile, labelfile, seqlength):
num_sents = 0
for _, (src_orig, targ_orig, label_orig) in \
enumerate(itertools.izip(open(srcfile,'r'),
open(targetfile,'r'), open(labelfile, 'r'))):
src_orig = word_indexer.clean(src_orig.strip())
targ_orig = word_indexer.clean(targ_orig.strip())
targ = targ_orig.strip().split()
src = src_orig.strip().split()
label = label_orig.strip().split()
if len(targ) > seqlength or len(src) > seqlength or len(targ) < 1 or len(src) < 1:
continue
num_sents += 1
for word in targ:
if word in glove_vocab:
word_indexer.vocab[word] += 1
for word in src:
if word in glove_vocab:
word_indexer.vocab[word] += 1
for word in label:
label_indexer.vocab[word] += 1
return num_sents
def convert(srcfile, targetfile, labelfile, batchsize, seqlength, outfile, num_sents,
max_sent_l=0, shuffle=0):
newseqlength = seqlength + 1 #add 1 for BOS
targets = np.zeros((num_sents, newseqlength), dtype=int)
sources = np.zeros((num_sents, newseqlength), dtype=int)
labels = np.zeros((num_sents,), dtype =int)
source_lengths = np.zeros((num_sents,), dtype=int)
target_lengths = np.zeros((num_sents,), dtype=int)
both_lengths = np.zeros(num_sents, dtype = {'names': ['x','y'], 'formats': ['i4', 'i4']})
dropped = 0
sent_id = 0
for _, (src_orig, targ_orig, label_orig) in \
enumerate(itertools.izip(open(srcfile,'r'), open(targetfile,'r')
,open(labelfile,'r'))):
src_orig = word_indexer.clean(src_orig.strip())
targ_orig = word_indexer.clean(targ_orig.strip())
targ = [word_indexer.BOS] + targ_orig.strip().split()
src = [word_indexer.BOS] + src_orig.strip().split()
label = label_orig.strip().split()
max_sent_l = max(len(targ), len(src), max_sent_l)
if len(targ) > newseqlength or len(src) > newseqlength or len(targ) < 2 or len(src) < 2:
dropped += 1
continue
targ = pad(targ, newseqlength, word_indexer.PAD)
targ = word_indexer.convert_sequence(targ)
targ = np.array(targ, dtype=int)
src = pad(src, newseqlength, word_indexer.PAD)
src = word_indexer.convert_sequence(src)
src = np.array(src, dtype=int)
targets[sent_id] = np.array(targ,dtype=int)
target_lengths[sent_id] = (targets[sent_id] != 1).sum()
sources[sent_id] = np.array(src, dtype=int)
source_lengths[sent_id] = (sources[sent_id] != 1).sum()
labels[sent_id] = label_indexer.d[label[0]]
both_lengths[sent_id] = (source_lengths[sent_id], target_lengths[sent_id])
sent_id += 1
if sent_id % 100000 == 0:
print("{}/{} sentences processed".format(sent_id, num_sents))
print(sent_id, num_sents)
if shuffle == 1:
rand_idx = np.random.permutation(sent_id)
targets = targets[rand_idx]
sources = sources[rand_idx]
source_lengths = source_lengths[rand_idx]
target_lengths = target_lengths[rand_idx]
labels = labels[rand_idx]
both_lengths = both_lengths[rand_idx]
#break up batches based on source/target lengths
source_lengths = source_lengths[:sent_id]
source_sort = np.argsort(source_lengths)
both_lengths = both_lengths[:sent_id]
sorted_lengths = np.argsort(both_lengths, order = ('x', 'y'))
sources = sources[sorted_lengths]
targets = targets[sorted_lengths]
labels = labels[sorted_lengths]
target_l = target_lengths[sorted_lengths]
source_l = source_lengths[sorted_lengths]
curr_l_src = 0
curr_l_targ = 0
l_location = [] #idx where sent length changes
for j,i in enumerate(sorted_lengths):
if source_lengths[i] > curr_l_src or target_lengths[i] > curr_l_targ:
curr_l_src = source_lengths[i]
curr_l_targ = target_lengths[i]
l_location.append(j+1)
l_location.append(len(sources))
#get batch sizes
curr_idx = 1
batch_idx = [1]
batch_l = []
target_l_new = []
source_l_new = []
for i in range(len(l_location)-1):
while curr_idx < l_location[i+1]:
curr_idx = min(curr_idx + batchsize, l_location[i+1])
batch_idx.append(curr_idx)
for i in range(len(batch_idx)-1):
batch_l.append(batch_idx[i+1] - batch_idx[i])
source_l_new.append(source_l[batch_idx[i]-1])
target_l_new.append(target_l[batch_idx[i]-1])
# Write output
f = h5py.File(outfile, "w")
f["source"] = sources
f["target"] = targets
f["target_l"] = np.array(target_l_new, dtype=int)
f["source_l"] = np.array(source_l_new, dtype=int)
f["label"] = np.array(labels, dtype=int)
f["label_size"] = np.array([len(np.unique(np.array(labels, dtype=int)))])
f["batch_l"] = np.array(batch_l, dtype=int)
f["batch_idx"] = np.array(batch_idx[:-1], dtype=int)
f["source_size"] = np.array([len(word_indexer.d)])
f["target_size"] = np.array([len(word_indexer.d)])
print("Saved {} sentences (dropped {} due to length/unk filter)".format(
len(f["source"]), dropped))
f.close()
return max_sent_l
print("First pass through data to get vocab...")
num_sents_train = make_vocab(args.srcfile, args.targetfile, args.labelfile,
args.seqlength)
print("Number of sentences in training: {}".format(num_sents_train))
num_sents_valid = make_vocab(args.srcvalfile, args.targetvalfile, args.labelvalfile,
args.seqlength)
print("Number of sentences in valid: {}".format(num_sents_valid))
num_sents_test = make_vocab(args.srctestfile, args.targettestfile, args.labeltestfile,
args.seqlength)
print("Number of sentences in test: {}".format(num_sents_test))
#prune and write vocab
word_indexer.prune_vocab(0, True)
label_indexer.prune_vocab(1000)
if args.vocabfile != '':
print('Loading pre-specified source vocab from ' + args.vocabfile)
word_indexer.load_vocab(args.vocabfile)
word_indexer.write(args.outputfile + ".word.dict")
label_indexer.write(args.outputfile + ".label.dict")
print("Source vocab size: Original = {}, Pruned = {}".format(len(word_indexer.vocab),
len(word_indexer.d)))
print("Target vocab size: Original = {}, Pruned = {}".format(len(word_indexer.vocab),
len(word_indexer.d)))
max_sent_l = 0
max_sent_l = convert(args.srcvalfile, args.targetvalfile, args.labelvalfile,
args.batchsize, args.seqlength,
args.outputfile + "-val.hdf5", num_sents_valid,
max_sent_l, args.shuffle)
max_sent_l = convert(args.srcfile, args.targetfile, args.labelfile,
args.batchsize, args.seqlength,
args.outputfile + "-train.hdf5", num_sents_train,
max_sent_l, args.shuffle)
max_sent_l = convert(args.srctestfile, args.targettestfile, args.labeltestfile,
args.batchsize, args.seqlength,
args.outputfile + "-test.hdf5", num_sents_test,
max_sent_l, args.shuffle)
print("Max sent length (before dropping): {}".format(max_sent_l))
def main(arguments):
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--vocabsize', help="Size of source vocabulary, constructed "
"by taking the top X most frequent words. "
" Rest are replaced with special UNK tokens.",
type=int, default=50000)
parser.add_argument('--srcfile', help="Path to source training data, "
"where each line represents a single "
"source/target sequence.",
default = "data/entail/src-train.txt")
parser.add_argument('--targetfile', help="Path to target training data, "
"where each line represents a single "
"source/target sequence.",
default = "data/entail/targ-train.txt")
parser.add_argument('--labelfile', help="Path to target label data, "
"where each line represents a single "
"source/target sequence.",
default = "data/entail/label-train.txt")
parser.add_argument('--srcvalfile', help="Path to source validation data.",
default = "data/entail/src-dev.txt")
parser.add_argument('--targetvalfile', help="Path to target validation data.",
default = "data/entail/targ-dev.txt")
parser.add_argument('--labelvalfile', help="Path to target validation data.",
default = "data/entail/label-dev.txt")
parser.add_argument('--srctestfile', help="Path to source validation data.",
default = "data/entail/src-test.txt")
parser.add_argument('--targettestfile', help="Path to target validation data.",
default = "data/entail/targ-test.txt")
parser.add_argument('--labeltestfile', help="Path to target validation data.",
default = "data/entail/label-test.txt")
parser.add_argument('--batchsize', help="Size of each minibatch.", type=int, default=32)
parser.add_argument('--seqlength', help="Maximum sequence length. Sequences longer "
"than this are dropped.", type=int, default=100)
parser.add_argument('--outputfile', help="Prefix of the output file names. ",
type=str, default = "data/entail")
parser.add_argument('--vocabfile', help="If working with a preset vocab, "
"then including this will ignore vocabsize and use the"
"vocab provided here.",
type = str, default='')
parser.add_argument('--shuffle', help="If = 1, shuffle sentences before sorting (based on "
"source length).", type = int, default = 1)
parser.add_argument('--glove', type = str, default = '')
args = parser.parse_args(arguments)
get_data(args)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))