-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtransform.py
104 lines (86 loc) · 3.15 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import random
import os
import numpy as np
import cv2
import torch
from torchvision.transforms import functional as F
from utils import (
generate_shiftscalerotate_matrix,
)
class Compose:
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, target):
for t in self.transforms:
img, target = t(img, target)
return img, target
def __repr__(self):
format_str = self.__class__.__name__ + '('
for t in self.transforms:
format_str += '\n'
format_str += f' {t}'
format_str += '\n)'
return format_str
class Resize:
def __init__(self, dst_width, dst_height, dst_K):
self.dst_width = dst_width
self.dst_height = dst_height
self.dst_K = dst_K
def __call__(self, img, target):
M = np.matmul(self.dst_K, np.linalg.inv(target.K))
#
img = cv2.warpAffine(img, M[:2], (self.dst_width, self.dst_height), flags=cv2.INTER_LINEAR, borderValue=(128, 128, 128))
target = target.transform(M, self.dst_K, self.dst_width, self.dst_height)
return img, target
class RandomShiftScaleRotate:
def __init__(self, shift_limit, scale_limit, rotate_limit, dst_width, dst_height, dst_K):
self.shift_limit = shift_limit
self.scale_limit = scale_limit
self.rotate_limit = rotate_limit
#
self.dst_width = dst_width
self.dst_height = dst_height
self.dst_K = dst_K
def __call__(self, img, target):
M = generate_shiftscalerotate_matrix(
self.shift_limit, self.scale_limit, self.rotate_limit,
self.dst_width, self.dst_height
)
img = cv2.warpAffine(img, M[:2], (self.dst_width, self.dst_height), flags=cv2.INTER_LINEAR, borderValue=(128, 128, 128))
target = target.transform(M, self.dst_K, self.dst_width, self.dst_height)
return img, target
class RandomHSV:
def __init__(self, h_ratio, s_ratio, v_ratio):
self.h_ratio = h_ratio
self.s_ratio = s_ratio
self.v_ratio = v_ratio
def __call__(self, img, target):
img = distort_hsv(img, self.h_ratio, self.s_ratio, self.v_ratio)
return img, target
class RandomNoise:
def __init__(self, noise_ratio):
self.noise_ratio = noise_ratio
def __call__(self, img, target):
img = distort_noise(img, self.noise_ratio)
return img, target
class RandomSmooth:
def __init__(self, smooth_ratio):
self.smooth_ratio = smooth_ratio
def __call__(self, img, target):
img = distort_smooth(img, self.smooth_ratio)
return img, target
class ToTensor:
def __call__(self, img, target):
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).float()
target = target.to_tensor()
return img, target
class Normalize:
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, img, target):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255
img = img - np.array(self.mean).reshape(1,1,3)
img = img / np.array(self.std).reshape(1,1,3)
return img, target