-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaption.py
executable file
·233 lines (210 loc) · 10.5 KB
/
caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os, time
import torch
import torch.nn.functional as F
import numpy as np
import json
import torchvision.transforms as transforms
import argparse
import imageio
import cv2
from PIL import Image, ImageFile
from util.label_convert import LabelConvert
ImageFile.LOAD_TRUNCATED_IMAGES = True
def caption_image_beam_search(args, encoder, decoder, image_path, word_map):
"""
Reads an image and captions it with beam search.
:param encoder: encoder model
:param decoder: decoder model
:param image_path: path to image
:param word_map: word map
:param beam_size: number of sequences to consider at each decode-step
:return: caption, weights for visualization
"""
k = args.beam_size
Caption_End = False
vocab_size = len(word_map)
# vocab_size = 64000
# Read image and process
try:
img = imageio.imread(image_path)
except:
img = Image.open(image_path)
img = np.array(img)
# img = imread(image_path)
if len(img.shape) == 2:
img = img[:, :, np.newaxis]
img = np.concatenate([img, img, img], axis=2)
if img.shape[2] == 4:
print('bgra', image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
img = np.array(Image.fromarray(img).resize((256, 256)))
# img = imresize(img, (256, 256))
img = img.transpose(2, 0, 1)
img = img / 255.
img = torch.FloatTensor(img).to(device)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([normalize])
image = transform(img) # (3, 256, 256)
# Encode
image = image.unsqueeze(0) # (1, 3, 256, 256)
encoder_out = encoder(image) # (1, enc_image_size, enc_image_size, encoder_dim)
enc_image_size = encoder_out.size(1)
encoder_dim = encoder_out.size(-1)
# Flatten encoding
encoder_out = encoder_out.view(1, -1, encoder_dim) # [1, num_pixels=196, encoder_dim]
num_pixels = encoder_out.size(1)
# We'll treat the problem as having a batch size of k
encoder_out = encoder_out.expand(k, num_pixels, encoder_dim) # (k, num_pixels, encoder_dim)
# Tensor to store top k previous words at each step; now they're just <start>
if args.decoder_mode == "lstm":
# k_prev_words = torch.LongTensor([[word_map['<SOS>']]] * k).to(device) # (k, 1)
k_prev_words = torch.LongTensor([[0]] * k).to(device) # (k, 1)
elif args.decoder_mode == "transformer":
k_prev_words = torch.LongTensor([[word_map['<SOS>']] * 52] * k).to(device) # (k, 52)
# Tensor to store top k sequences; now they're just <start>
# seqs = torch.LongTensor([[word_map['<SOS>']]] * k).to(device) # (k, 1)
seqs = torch.LongTensor([[word_map['<SOS>']]] * k).to(device) # (k, 1)
# Tensor to store top k sequences' scores; now they're just 0
top_k_scores = torch.zeros(k, 1).to(device) # (k, 1)
# Tensor to store top k sequences' alphas; now they're just 1s
seqs_alpha = torch.ones(k, 1, enc_image_size, enc_image_size).to(device) # (k, 1, enc_image_size, enc_image_size)
# Lists to store completed sequences, their alphas and scores
complete_seqs = list()
complete_seqs_alpha = list()
complete_seqs_scores = list()
# Start decoding
step = 1
if args.decoder_mode == "lstm":
h, c = decoder.init_hidden_state(encoder_out)
# s is a number less than or equal to k, because sequences are removed from this process once they hit <end>
while True:
if args.decoder_mode == "lstm":
embeddings = decoder.embedding(k_prev_words).squeeze(1) # (s, embed_dim)
awe, alpha = decoder.attention(encoder_out, h) # (s, encoder_dim), (s, num_pixels)
alpha = alpha.view(-1, enc_image_size, enc_image_size).unsqueeze(1) # (s, 1, enc_image_size, enc_image_size)
gate = decoder.sigmoid(decoder.f_beta(h)) # gating scalar, (s, encoder_dim)
awe = gate * awe
h, c = decoder.lstm(torch.cat([embeddings, awe], dim=1), (h, c)) # (s, decoder_dim)
scores = decoder.fc(h) # (s, vocab_size)
elif args.decoder_mode == "transformer":
cap_len = torch.LongTensor([52]).repeat(k, 1) # [s, 1]
scores, _, _, alpha_dict, _ = decoder(encoder_out, k_prev_words, cap_len)
scores = scores[:, step - 1, :].squeeze(1) # [s, 1, vocab_size] -> [s, vocab_size]
# choose the last layer, transformer decoder is comosed of a stack of 6 identical layers.
alpha = alpha_dict["dec_enc_attns"][-1] # [s, n_heads=8, len_q=52, len_k=196]
# TODO: AVG Attention to Visualize
# for i in range(len(alpha_dict["dec_enc_attns"])):
# n_heads = alpha_dict["dec_enc_attns"][i].size(1)
# for j in range(n_heads):
# pass
# the second dim corresponds to the Multi-head attention = 8, now 0
# the third dim corresponds to cur caption position
alpha = alpha[:, 0, step-1, :].view(k, 1, enc_image_size, enc_image_size) # [s, 1, enc_image_size, enc_image_size]
scores = F.log_softmax(scores, dim=1)
# Add
scores = top_k_scores.expand_as(scores) + scores # (s, vocab_size)
# For the first step, all k points will have the same scores (since same k previous words, h, c)
if step == 1:
top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
else:
# Unroll and find top scores, and their unrolled indices
top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # (s)
# Convert unrolled indices to actual indices of scores
prev_word_inds = top_k_words // vocab_size # (s)
next_word_inds = top_k_words % vocab_size # (s)
# Add new words to sequences, alphas
seqs = torch.cat([seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
seqs_alpha = torch.cat([seqs_alpha[prev_word_inds], alpha[prev_word_inds]], dim=1) # (s, step+1, enc_image_size, enc_image_size)
# Which sequences are incomplete (didn't reach <end>)?
incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
next_word != word_map['<EOS>']]
complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))
# Set aside complete sequences
if len(complete_inds) > 0:
Caption_End = True
complete_seqs.extend(seqs[complete_inds].tolist())
complete_seqs_alpha.extend(seqs_alpha[complete_inds].tolist())
complete_seqs_scores.extend(top_k_scores[complete_inds])
k -= len(complete_inds) # reduce beam length accordingly
# Proceed with incomplete sequences
if k == 0:
break
seqs = seqs[incomplete_inds]
seqs_alpha = seqs_alpha[incomplete_inds]
encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
if args.decoder_mode == "lstm":
h = h[prev_word_inds[incomplete_inds]]
c = c[prev_word_inds[incomplete_inds]]
k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)
elif args.decoder_mode == "transformer":
k_prev_words = k_prev_words[incomplete_inds]
k_prev_words[:, :step + 1] = seqs # [s, 52]
# k_prev_words[:, step] = next_word_inds[incomplete_inds] # [s, 52]
# Break if things have been going on too long
if step > 50:
break
step += 1
assert Caption_End
i = complete_seqs_scores.index(max(complete_seqs_scores))
seq = complete_seqs[i]
alphas = complete_seqs_alpha[i]
return seq, alphas
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Image_Captioning')
parser.add_argument('--img', '-i', default="./dataset/val2014/COCO_val2014_000000581886.jpg", help='path to image, file or folder')
parser.add_argument('--checkpoint', '-m', default="./BEST_checkpoint_coco_5_cap_per_img_5_min_word_freq.pth.tar", help='path to model')
parser.add_argument('--word_map', '-wm', default="./dataset/generated_data/WORDMAP_coco_5_cap_per_img_5_min_word_freq.json",
help='path to word map JSON')
parser.add_argument('--decoder_mode', default="lstm", help='which model does decoder use?') # lstm or transformer
parser.add_argument('--save_img_dir', '-p', default="./caption", help='path to save annotated img.')
parser.add_argument('--beam_size', '-b', type=int, default=3, help='beam size for beam search')
parser.add_argument('--dont_smooth', dest='smooth', action='store_false', help='do not smooth alpha overlay')
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# Load model
checkpoint = torch.load(args.checkpoint, map_location=str(device))
decoder = checkpoint['decoder']
decoder = decoder.to(device)
decoder.eval()
encoder = checkpoint['encoder']
encoder = encoder.to(device)
encoder.eval()
# print(encoder)
# print(decoder)
convert = LabelConvert(vocab_file='util/vocab_coco.txt')
word_map = convert.vocab_mapper
rev_word_map = convert.vocab_inverse_mapper
print('load word map success!!')
with open('dataset/vlsp_test/sample_submission.json', 'r') as f:
datas = json.load(f)
all_result = []
for idx, data in enumerate(datas):
each_result = dict()
imgname = data['id']
imgpath = os.path.join('dataset/vlsp_test/images_public_test', imgname)
print(imgpath)
with torch.no_grad():
seq, alphas = caption_image_beam_search(args, encoder, decoder, imgpath, word_map)
print(seq)
words = [rev_word_map[ind] for ind in seq]
print(words)
words = words[1:-1]
result = []
for word in words:
if word == '<UNK>':
continue
if '_' in word:
word = word.split('_')
else:
word = [word]
result += word
result = ' '.join(result)
print(result)
each_result['id'] = imgname
each_result['captions'] = result
all_result.append(each_result)
with open('dataset/vlsp_test/results.json', 'w', encoding='utf-8') as fp:
json.dump(all_result, fp, ensure_ascii=False)