We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi, thanks you for the great work! I retrain for high resolution with
python train.py --model dior --name $NAME --dataroot $DATAROOT --batch_size 8 --lr 1e-4 --init_type orthogonal --loss_coe_seg 0 --netG $NET_G --ngf $NGF --netD gfla --ndf 32 --n_layers_D 4 --n_epochs 22 --n_epochs_decay 0 --lr_update_unit 4 --print_freq 20 --display_freq 10 --save_epoch_freq 10 --save_latest_freq 2 --n_cpus 8 --gpu_ids 0 --flownet_path $PRETRAINED_FLOWNET_PATH --frozen_flownet --crop_size 512 --gpu_ids 0,1,2 --random_rate 0 --warmup --perturb
then it show that RuntimeError: CUDA out of memory. ......
but there are 3 RTX 2080 ti, and I only saw the first gpu was used.
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi, thanks you for the great work!
I retrain for high resolution with
python train.py --model dior
--name $NAME --dataroot $DATAROOT
--batch_size 8 --lr 1e-4 --init_type orthogonal
--loss_coe_seg 0
--netG $NET_G --ngf $NGF
--netD gfla --ndf 32 --n_layers_D 4
--n_epochs 22 --n_epochs_decay 0 --lr_update_unit 4
--print_freq 20 --display_freq 10 --save_epoch_freq 10 --save_latest_freq 2
--n_cpus 8 --gpu_ids 0
--flownet_path $PRETRAINED_FLOWNET_PATH --frozen_flownet
--crop_size 512 --gpu_ids 0,1,2 --random_rate 0 --warmup --perturb
then it show that
RuntimeError: CUDA out of memory. ......
but there are 3 RTX 2080 ti, and I only saw the first gpu was used.
The text was updated successfully, but these errors were encountered: