-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata_utils.py
338 lines (297 loc) · 14.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import json
import logging
import numpy as np
import torch
from torch.utils.data import Dataset
from collections import defaultdict
from dep_parser import DepInstanceParser
def change_word(word):
if "-RRB-" in word:
return word.replace("-RRB-", ")")
if "-LRB-" in word:
return word.replace("-LRB-", "(")
return word
class REDataset(Dataset):
def __init__(self, features, max_seq_length):
self.data = features
self.max_seq_length = max_seq_length
def __getitem__(self, index):
input_ids = torch.tensor(self.data[index]["input_ids"], dtype=torch.long)
input_mask = torch.tensor(self.data[index]["input_mask"], dtype=torch.long)
valid_ids = torch.tensor(self.data[index]["valid_ids"], dtype=torch.long)
segment_ids = torch.tensor(self.data[index]["segment_ids"], dtype=torch.long)
e1_mask_ids = torch.tensor(self.data[index]["e1_mask"], dtype=torch.long)
e2_mask_ids = torch.tensor(self.data[index]["e2_mask"], dtype=torch.long)
label_ids = torch.tensor(self.data[index]["label_id"], dtype=torch.long)
def get_dep_matrix(ori_dep_type_matrix):
dep_type_matrix = np.zeros((self.max_seq_length, self.max_seq_length), dtype=np.int)
max_words_num = len(ori_dep_type_matrix)
for i in range(max_words_num):
dep_type_matrix[i][:max_words_num] = ori_dep_type_matrix[i]
return torch.tensor(dep_type_matrix, dtype=torch.long)
dep_type_matrix = get_dep_matrix(self.data[index]["dep_type_matrix"])
return input_ids,input_mask,valid_ids,segment_ids,label_ids,e1_mask_ids,e2_mask_ids, dep_type_matrix
def __len__(self):
return len(self.data)
class RE_Processor():
def __init__(self, direct=True, dep_type="first_order", types_dict={}, labels_dict={}):
self.direct = direct
self.dep_type = dep_type
self.types_dict = types_dict
self.labels_dict = labels_dict
def get_train_examples(self, data_dir):
return self._create_examples(
self.get_knowledge_feature(data_dir, flag="train"), "train")
def get_dev_examples(self, data_dir):
return self._create_examples(
self.get_knowledge_feature(data_dir, flag="dev"), "dev")
def get_test_examples(self, data_dir):
return self._create_examples(
self.get_knowledge_feature(data_dir, flag="test"), "test")
def get_knowledge_feature(self, data_dir, flag="train"):
return self.read_features(data_dir, flag=flag)
def get_labels(self, data_dir):
label_path = os.path.join(data_dir, "label.json")
with open(label_path, 'r') as f:
labels = json.load(f)
return labels
def get_dep_labels(self, data_dir):
dep_labels = ["self_loop"]
dep_type_path = os.path.join(data_dir, "dep_type.json")
with open(dep_type_path, 'r') as f:
dep_types = json.load(f)
for label in dep_types:
if self.direct:
dep_labels.append("{}_in".format(label))
dep_labels.append("{}_out".format(label))
else:
dep_labels.append(label)
return dep_labels
def get_key_list(self):
return self.keys_dict.keys()
def _create_examples(self, features, set_type):
examples = []
for i, feature in enumerate(features):
guid = "%s-%s" % (set_type, i)
feature["guid"] = guid
examples.append(feature)
return examples
def prepare_keys_dict(self, data_dir):
keys_frequency_dict = defaultdict(int)
for flag in ["train", "test", "dev"]:
datafile = os.path.join(data_dir, '{}.txt'.format(flag))
if os.path.exists(datafile) is False:
continue
all_data = self.load_textfile(datafile)
for data in all_data:
for word in data['words']:
keys_frequency_dict[change_word(word)] += 1
keys_dict = {"[UNK]":0}
for key, freq in sorted(keys_frequency_dict.items(), key=lambda x: x[1], reverse=True):
keys_dict[key] = len(keys_dict)
self.keys_dict = keys_dict
self.keys_frequency_dict = keys_frequency_dict
print(keys_dict)
def prepare_type_dict(self, data_dir):
dep_type_list = self.get_dep_labels(data_dir)
types_dict = {"none": 0}
for dep_type in dep_type_list:
types_dict[dep_type] = len(types_dict)
self.types_dict = types_dict
print(types_dict)
def prepare_labels_dict(self, data_dir):
label_list = self.get_labels(data_dir)
labels_dict = {}
for label in label_list:
labels_dict[label] = len(labels_dict)
self.labels_dict = labels_dict
print(labels_dict)
def read_features(self, data_dir, flag):
all_text_data = self.load_textfile(os.path.join(data_dir, '{}.txt'.format(flag)))
all_dep_info = self.load_depfile(os.path.join(data_dir, '{}.txt.dep'.format(flag)))
all_feature_data = []
for text_data,dep_info in zip(all_text_data, all_dep_info):
label = text_data["label"]
if label == "other":
label = "Other"
ori_sentence = text_data["ori_sentence"].split(" ")
tokens = text_data["words"]
e11_p = ori_sentence.index("<e1>") # the start position of entity1
e12_p = ori_sentence.index("</e1>") # the end position of entity1
e21_p = ori_sentence.index("<e2>") # the start position of entity2
e22_p = ori_sentence.index("</e2>") # the end position of entity2
if e11_p < e21_p:
start_range = list(range(e11_p, e12_p - 1))
end_range = list(range(e21_p - 2, e22_p - 3))
else:
start_range = list(range(e11_p - 2, e12_p - 3))
end_range = list(range(e21_p, e22_p - 1))
dep_instance_parser = DepInstanceParser(basicDependencies=dep_info, tokens=tokens)
if self.dep_type == "first_order" or self.dep_type == "full_graph":
dep_adj_matrix, dep_type_matrix = dep_instance_parser.get_first_order(direct=self.direct)
elif self.dep_type == "local_graph":
dep_adj_matrix, dep_type_matrix = dep_instance_parser.get_local_graph(start_range, end_range, direct=self.direct)
elif self.dep_type == "global_graph":
dep_adj_matrix, dep_type_matrix = dep_instance_parser.get_global_graph(start_range, end_range, direct=self.direct)
elif self.dep_type == "local_global_graph":
dep_adj_matrix, dep_type_matrix = dep_instance_parser.get_local_global_graph(start_range, end_range, direct=self.direct)
all_feature_data.append({
"words": dep_instance_parser.words,
"ori_sentence": ori_sentence,
"dep_adj_matrix": dep_adj_matrix,
"dep_type_matrix": dep_type_matrix,
"label": label,
"e1":text_data["e1"],
"e2":text_data["e2"],
})
return all_feature_data
def load_depfile(self, filename):
data = []
with open(filename, 'r') as f:
dep_info = []
for line in f:
line = line.strip()
if len(line) > 0:
items = line.split("\t")
dep_info.append({
"governor": int(items[0]),
"dependent": int(items[1]),
"dep": items[2],
})
else:
if len(dep_info) > 0:
data.append(dep_info)
dep_info = []
if len(dep_info) > 0:
data.append(dep_info)
dep_info = []
return data
def load_textfile(self, filename):
data = []
with open(filename, 'r') as f:
for line in f:
items = line.strip().split("\t")
if len(items) != 4:
continue
e1,e2,label,sentence = items
data.append({
"e1":e1,
"e2":e2,
"label":label,
"ori_sentence":sentence,
"words": [token for token in sentence.split(" ") if token not in ["<e1>", "</e1>", "<e2>", "</e2>"]]
})
return data
def convert_examples_to_features(self, examples, tokenizer, max_seq_length):
"""Loads a data file into a list of `InputBatch`s."""
label_map = self.labels_dict
dep_label_map = self.types_dict
features = []
b_use_valid_filter = False
for (ex_index, example) in enumerate(examples):
tokens = ["[CLS]"]
valid = [0]
e1_mask = []
e2_mask = []
e1_mask_val = 0
e2_mask_val = 0
entity_start_mark_position = [0, 0]
for i, word in enumerate(example["ori_sentence"]):
if len(tokens) >= max_seq_length - 1:
break
if word in ["<e1>", "</e1>", "<e2>", "</e2>"]:
tokens.append(word)
valid.append(0)
if word in ["<e1>"]:
e1_mask_val = 1
entity_start_mark_position[0] = len(tokens) - 1
elif word in ["</e1>"]:
e1_mask_val = 0
if word in ["<e2>"]:
e2_mask_val = 1
entity_start_mark_position[1] = len(tokens) - 1
elif word in ["</e2>"]:
e2_mask_val = 0
continue
token = tokenizer.tokenize(word)
if len(tokens) + len(token) > max_seq_length - 1:
break
tokens.extend(token)
e1_mask.append(e1_mask_val)
e2_mask.append(e2_mask_val)
for m in range(len(token)):
if m == 0:
valid.append(1)
else:
valid.append(0)
b_use_valid_filter = True
tokens.append("[SEP]")
valid.append(0)
e1_mask.append(0)
e2_mask.append(0)
segment_ids = [0] * len(tokens)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
valid += padding
e1_mask += [0] * (max_seq_length - len(e1_mask))
e2_mask += [0] * (max_seq_length - len(e2_mask))
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(valid) == max_seq_length
assert len(e1_mask) == max_seq_length
assert len(e2_mask) == max_seq_length
max_words_num = sum(valid)
def get_adj_with_value_matrix(dep_adj_matrix, dep_type_matrix):
final_dep_adj_matrix = np.zeros((max_words_num, max_words_num), dtype=np.int)
final_dep_type_matrix = np.zeros((max_words_num, max_words_num), dtype=np.int)
for pi in range(max_words_num):
for pj in range(max_words_num):
if dep_adj_matrix[pi][pj] == 0:
continue
if pi >= max_seq_length or pj >= max_seq_length:
continue
final_dep_adj_matrix[pi][pj] = dep_adj_matrix[pi][pj]
final_dep_type_matrix[pi][pj] = dep_label_map[dep_type_matrix[pi][pj]]
return final_dep_adj_matrix, final_dep_type_matrix
dep_adj_matrix, dep_type_matrix = get_adj_with_value_matrix(example["dep_adj_matrix"], example["dep_type_matrix"])
label_id = label_map[example["label"]]
if ex_index < 5:
logging.info("*** Example ***")
logging.info("guid: %s" % (example["guid"]))
logging.info("sentence: %s" % (example["ori_sentence"]))
logging.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logging.info("valid: %s" % " ".join([str(x) for x in valid]))
logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logging.info("e1_mask: %s" % " ".join([str(x) for x in e1_mask]))
logging.info("e2_mask: %s" % " ".join([str(x) for x in e2_mask]))
logging.info("dep_adj_matrix: %s" % " ".join([str(x) for x in dep_adj_matrix]))
logging.info("dep_type_matrix: %s" % " ".join([str(x) for x in dep_type_matrix]))
logging.info("label: %s (id = %d)" % (example["label"], label_id))
features.append({
"input_ids": input_ids,
"input_mask": input_mask,
"segment_ids": segment_ids,
"label_id": label_id,
"valid_ids": valid,
"e1_mask": e1_mask,
"e2_mask": e2_mask,
"dep_adj_matrix": dep_adj_matrix,
"dep_type_matrix": dep_type_matrix,
"b_use_valid_filter": b_use_valid_filter,
"entity_start_mark_position":entity_start_mark_position
})
return features
def build_dataset(self, examples, tokenizer, max_seq_length, mode, args):
features = self.convert_examples_to_features(examples, tokenizer, max_seq_length)
if args.local_rank != -1 and mode == "train":
features = features[args.rank::args.world_size]
return REDataset(features, max_seq_length)