-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_TCVC_multisampling.py
executable file
·308 lines (232 loc) · 11.6 KB
/
test_TCVC_multisampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
Test Vid4 (SR) and REDS4 (SR-clean, SR-blur, deblur-clean, deblur-compression) datasets
"""
import os
import os.path as osp
import glob
import logging
import numpy as np
import cv2
import torch
import torch.nn.functional as F
import math
import utils.util as util
import data.util as data_util
import models.archs.TCVC_IDC_arch as TCVC_IDC_arch
from compute_hist import *
def calculate_psnr(img1, img2):
# img1 and img2 have range [0, 255]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def calculate_psnr_folders(input_path, GT_path, interval_length, logger):
input_folder_list = os.listdir(input_path)
input_folder_list.sort()
avg_psnr_l = []
key_avg_psnr_l = []
inter_avg_psnr_l = []
key_n_l = []
inter_n_l = []
for folder in input_folder_list:
if not os.path.isdir(os.path.join(input_path, folder)):
continue
GT_img_path_l = sorted(glob.glob(osp.join(GT_path, folder, "*")))
Input_img_path_l = sorted(glob.glob(osp.join(input_path, folder, "*")))
max_idx = len(GT_img_path_l)
keyframe_idx = list(range(0, max_idx, interval_length + 1))
print(keyframe_idx)
avg_psnr, N_im = 0, 0
key_avg_psnr, inter_avg_psnr = 0, 0
key_N_im, inter_N_im = 0, 0
count = 0
for img1_path, img2_path in zip(GT_img_path_l, Input_img_path_l):
img1 = cv2.imread(img1_path)
img2 = cv2.imread(img2_path)
img_name = img1_path.split('/')[-1]
psnr = calculate_psnr(img1, img2)
avg_psnr += psnr
if count in keyframe_idx or count == len(GT_img_path_l)-1:
key_avg_psnr += psnr
key_N_im += 1
key_flag = True
#print(img1_path)
else:
inter_avg_psnr += psnr
inter_N_im += 1
key_flag = False
count += 1
N_im += 1
logger.info(
"{:3d} - {:25} \tPSNR: {:.6f} dB key frame: {}".format(
count, img_name, psnr, key_flag
)
)
avg_psnr /= N_im
avg_psnr_l.append(avg_psnr)
key_avg_psnr /= key_N_im
key_avg_psnr_l.append(key_avg_psnr)
inter_avg_psnr /= inter_N_im
inter_avg_psnr_l.append(inter_avg_psnr)
key_n_l.append(key_N_im)
inter_n_l.append(inter_N_im)
message = "Folder {} - Average PSNR: {:.6f} dB for {} frames; AVG key PSNR: {:.6f} dB for {} key frames; AVG inter PSNR: {:.6f} dB for {} inter frames.".format(
folder, avg_psnr, N_im, key_avg_psnr, key_N_im, inter_avg_psnr, inter_N_im)
logger.info(message)
logger.info("################ Final Results ################")
logger.info('Inter: {}'.format(str(interval_length)))
message = "Total Average PSNR: {:.6f} dB for {} clips; AVG key PSNR: {:.6f} dB for {} key frames; AVG inter PSNR: {:.6f} dB for {} inter frames.".format(
sum(avg_psnr_l) / len(avg_psnr_l), len(input_folder_list),
sum(key_avg_psnr_l) / len(key_avg_psnr_l), sum(key_n_l),
sum(inter_avg_psnr_l) / len(inter_avg_psnr_l), sum(inter_n_l),
)
logger.info(message)
return avg_psnr_l
def save_imglist(k, end_k, output_dir, img_list, logger):
"""The color type of input img list is rgb"""
count = 0
for i in range(k, end_k):
imname = "%05d.png"%(i)
out_path = os.path.join(output_dir, imname)
#logger.info("save img: {}".format(out_path))
cv2.imwrite(out_path, img_list[count][:,:,::-1])
count += 1
def append_imglist(k, end_k, img_list, all_result_imgs_list):
"""The color type of input img list is rgb"""
count = 0
for i in range(k, end_k):
all_result_imgs_list[i] = img_list[count]
count += 1
return all_result_imgs_list
def main():
#################
# configurations
#################
device = torch.device("cuda")
os.environ["CUDA_VISIBLE_DEVICES"] = "6"
data_mode = "DAVIS30" # DAVIS30 | Videvo20
key_net = "IDC"
color_type = "LAB"
GT_size = 256
model_path = "../experiments/TCVC_IDC/models/80000_G.pth"
#### interval length (support only uniform interval here) (0, N, 2N, 3N, ...)
interval_length = 17
interval_length2 = 19
#### dataset path and model
if data_mode == "DAVIS30":
GT_dataset_folder = "/data2/yhliu/DATA/DAVIS-2017-trainval-480p/DAVIS30_GT_mod32_new/"
elif data_mode == "Videvo20":
GT_dataset_folder = "/data2/yhliu/DATA/videvo20_mod32/"
save_folder = "../results/TCVC_{}_{}_ensemble{}_{}".format(key_net, data_mode, interval_length, interval_length2)
if key_net == "IDC":
model = TCVC_IDC_arch.TCVC_IDC(nf=64, N_RBs=3, key_net="sig17", dataset="DAVIS4")
else:
raise NotImplementedError('Backbone [{}] is not yet ready!'.format(key_net))
#### evaluation
crop_border = 0
# temporal padding mode
padding = "new_info"
save_imgs = True
util.mkdirs(save_folder)
util.setup_logger(
"base", save_folder, "test", level=logging.INFO, screen=True, tofile=True
)
logger = logging.getLogger("base")
#### log info
logger.info("Data: {} - {}".format(data_mode, GT_dataset_folder))
logger.info("Padding mode: {}".format(padding))
logger.info("Model path: {}".format(model_path))
logger.info("Save images: {}".format(save_imgs))
#### set up the models
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
model = model.to(device)
video_list = sorted(os.listdir(GT_dataset_folder))
video_list = [i for i in video_list if os.path.isdir(os.path.join(GT_dataset_folder, i))]
avg_psnr_l = []
for i in range(len(video_list)):
video = video_list[i]
## mkdir output dir
save_subfolder = osp.join(save_folder, video)
if save_imgs:
util.mkdirs(save_subfolder)
video_dir_path = os.path.join(GT_dataset_folder, video)
img_list = sorted(glob.glob(os.path.join(video_dir_path, "*.png")))
#print(img_list)
imgs = [data_util.read_img(None, img_list[i])/255. for i in range(len(img_list))]
all_result_imgs_list1 = [0]*len(imgs)
all_result_imgs_list2 = [0]*len(imgs)
def smpling_anchorframes_one(interval_length, all_result_imgs_list):
keyframe_idx = list(range(0, len(imgs), interval_length+1))
if keyframe_idx[-1] == (len(imgs)-1):
keyframe_idx = keyframe_idx[:-1]
print("Processing '{}'".format(video))
print("Total images: {} keyframe index: {}".format(len(imgs), keyframe_idx))
print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
count = 0
avg_psnr, N_im = 0, 0
for k in keyframe_idx:
img_paths = img_list[k:k+interval_length+2]
img_in = imgs[k:k+interval_length+2] # get input list
img_in = np.stack(img_in, 0) # [9, H, W, 3] rgb
img_tensor = torch.from_numpy(img_in.transpose(0,3,1,2)).float()
img_lab_tensor = data_util.rgb2lab(img_tensor) # [9, 3, H, W] lab (-1, 1)
img_l_tensor = img_lab_tensor[:,:1,:,:] # get l channel, original size (-0.5, 0.5)
img_l_rs_tensor = F.interpolate(img_l_tensor, size=[GT_size, GT_size], mode="bilinear") # resize l channel to 256*256\
img_l_rs_tensor_list = [img_l_rs_tensor[i:i+1,...].cuda() for i in range(img_l_rs_tensor.shape[0])] # generate input list
with torch.no_grad():
out_ab, _, _, _, _ = model(img_l_rs_tensor_list) # [1, 9, 3, H, W] rgb (0, 1)
# out_rgb = torch.cat((out_rgb[:,:1,:,:,:], w_rgb), 1)
out_ab = out_ab.detach().cpu()[0,...]
N, C, H, W = img_tensor.size()
out_a_rs = F.interpolate(out_ab[:,:1,:,:], size=[H, W], mode="bilinear") # resize ab channel to original size
out_b_rs = F.interpolate(out_ab[:,1:2,:,:], size=[H, W], mode="bilinear")
# out_ab_rs = F.interpolate(out_ab, size=[H, W], mode="bilinear")
out_lab_origsize = torch.cat((img_l_tensor, out_a_rs, out_b_rs), 1) # concat
out_rgb_origsize = data_util.lab2rgb(out_lab_origsize) # lab to rgb [9, 3, H, W] (0, 1)
out_rgb_img_uint8 = [util.tensor2img(np.clip(out_rgb_origsize[i,...]*255., 0, 255), np.uint8) for i in range(out_rgb_origsize.size(0))] # (0, 255)
out_rgb_img = [util.tensor2img(out_rgb_origsize[i,...]*255., np.float64) for i in range(out_rgb_origsize.size(0))] # (0, 255)
#import matplotlib.pyplot as plt
#plt.imshow(out_rgb_img[0])
#plt.show()
append_imglist(k, k+len(out_rgb_img), out_rgb_img, all_result_imgs_list)
return all_result_imgs_list
all_result_imgs_list1 = smpling_anchorframes_one(interval_length, all_result_imgs_list1)
all_result_imgs_list2 = smpling_anchorframes_one(interval_length2, all_result_imgs_list2)
save_img_list = []
for i in range(len(all_result_imgs_list1)):
img_1 = all_result_imgs_list1[i]
img_2 = all_result_imgs_list2[i]
avg_img = (img_1+img_2)/2.0
avg_img = np.clip(avg_img, 0, 255).astype(np.uint8)
save_img_list.append(avg_img)
save_imglist(0, len(imgs), save_subfolder, save_img_list, logger)
avg_psnr_l = calculate_psnr_folders(save_folder, GT_dataset_folder, interval_length, logger)
dilation = [1,2,4]
weight = [1/3, 1/3, 1/3]
JS_b_mean_list, JS_g_mean_list, JS_r_mean_list, JS_b_dict, JS_g_dict, JS_r_dict, CDC = calculate_folders_multiple(save_folder, data_mode, dilation=dilation, weight=weight)
logger.info("################ Tidy Outputs ################")
for (
video,
psnr,
) in zip(video_list, avg_psnr_l):
logger.info("Folder {} - Average PSNR: {:.6f} dB.".format(video, psnr))
logger.info("################ Final Results ################")
logger.info("Data: {} - {}".format(data_mode, GT_dataset_folder))
logger.info("Padding mode: {}".format(padding))
logger.info("Model path: {}".format(model_path))
logger.info("Save images: {}".format(save_imgs))
logger.info(
"Total Average PSNR: {:.6f} dB for {} clips.".format(
sum(avg_psnr_l) / len(avg_psnr_l), len(video_list)
)
)
logger.info("JS_b_mean: {:.6f} JS_g_mean: {:.6f} JS_r_mean: {:.6f} CDC: {:.6f}".format(np.mean(JS_b_mean_list), np.mean(JS_g_mean_list), np.mean(JS_r_mean_list), CDC))
with open('{}/val_log.txt'.format(save_folder), 'a') as f:
f.write('AVG PSNR: {:.4f} AVG JS_b: {:.6f} AVG JS_g: {:.6f} AVG JS_r: {:.6f} CDC: {:.6f}'.format(sum(avg_psnr_l) / len(avg_psnr_l), np.mean(JS_b_mean_list), np.mean(JS_g_mean_list), np.mean(JS_r_mean_list), CDC))
f.write('\n')
return sum(avg_psnr_l) / len(avg_psnr_l), np.mean(JS_b_mean_list), np.mean(JS_g_mean_list), np.mean(JS_r_mean_list)
if __name__ == '__main__':
main()