diff --git a/utils/flask_rest_api/restapi.py b/utils/flask_rest_api/restapi.py index 08036dd64490..8482435c861e 100644 --- a/utils/flask_rest_api/restapi.py +++ b/utils/flask_rest_api/restapi.py @@ -1,6 +1,6 @@ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ -Run a Flask REST API exposing a YOLOv5s model +Run a Flask REST API exposing one or more YOLOv5s models """ import argparse @@ -11,12 +11,13 @@ from PIL import Image app = Flask(__name__) +models = {} -DETECTION_URL = "/v1/object-detection/yolov5s" +DETECTION_URL = "/v1/object-detection/" @app.route(DETECTION_URL, methods=["POST"]) -def predict(): +def predict(model): if request.method != "POST": return @@ -30,17 +31,18 @@ def predict(): im_bytes = im_file.read() im = Image.open(io.BytesIO(im_bytes)) - results = model(im, size=640) # reduce size=320 for faster inference - return results.pandas().xyxy[0].to_json(orient="records") + if model in models: + results = models[model](im, size=640) # reduce size=320 for faster inference + return results.pandas().xyxy[0].to_json(orient="records") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model") parser.add_argument("--port", default=5000, type=int, help="port number") + parser.add_argument('--model', nargs='+', default=['yolov5s'], help='model(s) to run, i.e. --model yolov5n yolov5s') opt = parser.parse_args() - # Fix known issue urllib.error.HTTPError 403: rate limit exceeded https://github.com/ultralytics/yolov5/pull/7210 - torch.hub._validate_not_a_forked_repo = lambda a, b, c: True + for m in opt.model: + models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True) - model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache app.run(host="0.0.0.0", port=opt.port) # debug=True causes Restarting with stat