-
Notifications
You must be signed in to change notification settings - Fork 18
/
fs_unsup_rufs_single_func.m
71 lines (64 loc) · 2.29 KB
/
fs_unsup_rufs_single_func.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
function [FeaNumCandi,res_gs,res_aio, res_gs_ps] = fs_unsup_rufs_single_func(dataset, exp_settings, algo_settings)
%feature selection by RUFS
%======================setup===========================
FeaNumCandi = exp_settings.FeaNumCandi;
nKmeans = exp_settings.nKmeans;
prefix_mdcs = [];
if isfield(exp_settings, 'prefix_mdcs')
prefix_mdcs = exp_settings.prefix_mdcs;
end
%======================================================
disp(['dataset:',dataset]);
[X, Y] = extractXY(dataset);
[nSmp,nDim] = size(X);
nClass = length(unique(Y));
%===================setup=======================
knnCandi = 5;
rLamdaCandi = [0.1];
nuCandi = 10.^[-5:5];
alphaCandi = 10.^[-5:5];
betaCandi = 10.^[-5:5];
llkrrParamCell = buildParam_LLKRR(knnCandi, rLamdaCandi);
paramCell = fs_unsup_rufs_build_param(llkrrParamCell, alphaCandi, betaCandi, nuCandi);
%===============================================
t_start = clock;
disp('RUFS ...');
feaSubsets = cell(length(paramCell), 1);
rand('twister',5489); %#ok
label = litekmeans(X,nClass,'Replicates',10);
G0 = zeros(size(X,1),nClass);
for i = 1:size(X,1)
G0(i,label(i)) = 1;
end
%feature selection by RUFS
parfor i1 = 1:length(paramCell)
fprintf('RUFS parameter search %d out of %d...\n', i1, length(paramCell));
param = paramCell{i1};
L_init = localLearnMx_KRR(X, param.llkrrParam);
W = fs_unsup_rufs(X,L_init,G0, param);
[~, idx] = sort(sum(W.^2,2), 'descend');
feaSubsets{i1,1} = idx;
end
t_end = clock;
t1 = etime(t_end,t_start);
disp(['exe time: ',num2str(t1)]);
t_start = clock;
disp('evaluation ...');
res_aio = cell(length(paramCell), length(FeaNumCandi));
for i2 = 1:length(FeaNumCandi)
m = FeaNumCandi(i2);
parfor i1 = 1:length(paramCell)
fprintf('RUFS parameter evaluation %d outof %d ... %d out of %d...\n', i2, length(FeaNumCandi), i1, length(paramCell));
idx = feaSubsets{i1,1};
res_aio{i1, i2} = evalUnSupFS(X, Y, idx(1:m), struct('nKm', nKmeans));
end
end
[res_gs, res_gs_ps] = grid_search_fs(res_aio);
res_gs.feaset = FeaNumCandi;
t_end = clock;
t2 = etime(t_end,t_start);
disp(['exe time: ',num2str(t2)]);
res_gs.time = t1;
res_gs.time2 = t2;
save(fullfile(prefix_mdcs, [dataset, '_best_result_RUFS.mat']),'FeaNumCandi','res_gs','res_aio', 'res_gs_ps');
end