-
Notifications
You must be signed in to change notification settings - Fork 19
/
plmresid2cov.asv
116 lines (104 loc) · 3.67 KB
/
plmresid2cov.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
function varargout=plmresid2cov(ESTresid,L,imonths)
% [Clmlmlp,Clmlmpr,Clmlmpd,EL,EM]=PLMRESID2COV(ESTresid,L,imonths)
%
% Computes a spherical-harmonic covariance matrix from a matrix with time
% series of residuals determined for each of the harmonic coefficients.
%
% INPUT:
%
% ESTresid Residual time series for each pair of cos/sin coefficients
% as determined from PLMT2RESID [default is to compute it]
% L Bandwidth of the resulting covariance matrix [default: all]
% imonths Index of months to be considered for calculation [default: all]
% noting that all of the months were part of the fitting procedure
%
% OUTPUT:
%
% Clmlmp The spectral covariance matrix
% Clmlmpr The scaled spectral covariance matrix (the correlation)
% Clmlmpd The diagonal of the covariance matrix
% EL, EM The spherical harmonic degree and order listing
%
% EXAMPLE:
%
% plmresid2cov('demo1') % Also makes a plot
%
% Last modified by fjsimons-at-alum.mit.edu, 06/26/2011
% Last modified by charig-at-princeton.edu, 06/26/2011
defval('ESTresid',plmt2resid)
warning('off','MATLAB:divideByZero');
if ~isstr(ESTresid)
defval('L',ESTresid(1,end,1))
defval('imonths',1:size(ESTresid,1))
defval('xver',1)
if max(imonths)~=size(ESTresid,1)
warning(...
'You are using a subset of residuals determined from the full set')
end
% Unwrap the residual coefficients so they can be run through the cov() function
[~,~,~,~,~,~,~,~,~,ronm]=addmon(L);
% The target indexing is like the below
[EM,EL]=addmout(L);
Lup=addmup(L);
% Test that this is indeed the case for a random month
if xver==1
randm=ceil(rand*size(ESTresid,1));
difer(EL-indeks(repmat(ESTresid(1,1:Lup,1)',1,2),ronm),[],[],NaN);
difer(abs(EM)-indeks(repmat(ESTresid(1,1:Lup,2)',1,2),ronm),[],[],NaN);
end
% Initialize
ESTresid2=nan(length(imonths),addmoff(L));
% Reorder
for index=1:length(imonths)
ESTresid2(index,:)=indeks(ESTresid(imonths(index),1:Lup,3:4),ronm)';
end
% Spectral covariance of this "noise" as in, unfittable by PLMT2RESID
Clmlmp=cov(ESTresid2);
if nargout>=2
% Scaled version, note this is CORRCOEFF exactly
Clmlmpd=diag(sqrt(Clmlmp));
Clmlmpr=Clmlmp./[Clmlmpd*Clmlmpd'];
Clmlmpr(isnan(Clmlmpr))=0;
else
Clmlmpr=NaN;
Clmlmpd=NaN;
end
% Output
varns={Clmlmp,Clmlmpr,Clmlmpd,EL,EM};
varargout=varns(1:nargout);
elseif strcmp(ESTresid,'demo1')
% Get the default matrix
[Clmlmp,Clmlmpr,Clmlmpd,EL,EM]=plmresid2cov([],20);
% Overkill in a way, but get the dates also, make it fast
[~,thedates]=plmt2resid([]);
% Maximum degree of the expansion
L=addmoff(size(Clmlmpr,1),'r');
% Block sort the correlation matrix?
[EM2,EL2,mz,blkm,dblk]=addmout(L);
% Check this is what it is
difer(EM-EM2); difer(EL-EL2)
% Block sort if you want
% Clmlmpr=Clmlmpr(blkm,blkm);
clf
% Plot the matrix
crange=halverange(Clmlmpr,75);
imagefnan([0 0],[1 1],setnans(Clmlmpr,100),[],crange)
axis ij
degshow=sort([2 L/2 3/4*L L]);
tick=(addmoff(degshow-1)+1)/(L+1)^2;
set(gca,'XTick',tick, 'XTickLabel',degshow,'YTick',tick,'YTickLabel',degshow);
xl(1) = xlabel('spherical harmonic degree l''');
yl(1) = ylabel('spherical harmonic degree l');
longticks(gca,2)
[cb,xcb] = addcb('vert',crange,crange,'kelicol',0.5);
set(cb,'yaxisl','r')
watis='noise correlation matrix';
dateform='mmmm yyyy';
axes(cb)
set(xcb,'string',sprintf('%s from %i months\n between %s and %s',...
watis,length(thedates),...
datestr(datevec(thedates(1)),dateform),...
datestr(datevec(thedates(end)),dateform)));
shrink(cb,1.25,1)
figdisp
end