-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0027euler_QuadraticPrimes.py
93 lines (82 loc) · 2.19 KB
/
0027euler_QuadraticPrimes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Euler discovered the remarkable quadratic formula:
#
# n^2 + n + 41
#
# It turns out that the formula will produce 40 primes for the consecutive
# values n = 0 to 39. However, when n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41
# is divisible by 41, and certainly when n = 41, 41^2 + 41 + 41 is clearly
# divisible by 41.
#
# The incredible formula n^2 - 79n + 1601 was discovered, which produces
# 80 primes for the consecutive values n = 0 to 79. The product of the
# coefficients, -79 and 1601, is -126479.
#
# Considering quadratics of the form:
#
# n^2 + an + b, where |a| < 1000 and |b| < 1000
#
# where |n| is the absolute value of n
# e.g. |11| = 11 and |-4| = 4
#
# Find the product of the coefficients, a and b, for the quadratic expression
# that produces the maximum number of primes for consecutive values of n,
# starting with n = 0.
def isPrime(n):
global primes
if n not in primes:
return False
else:
return True
def getPrimes(a, b):
primesList = []
if a == 1:
limit = abs(b) - 1
else:
limit = abs(a) + 1
for n in range(0, limit):
possiblePrime = (n*n)+(a*n)+b
if isPrime(possiblePrime):
primesList.append(possiblePrime)
else:
return
return sorted(primesList)
def sundaram3(max_n):
numbers = range(3, max_n+1, 2)
half = (max_n)//2
initial = 4
for step in xrange(3, max_n+1, 2):
for i in xrange(initial, half, step):
numbers[i-1] = 0
initial += 2*(step+1)
if initial > half:
return [2] + filter(None, numbers)
primes = sundaram3(1000000)
longest = 1
coefficients = sundaram3(1000)
coefficients.insert(0,1)
def getAandB():
global longest, coefficients
for a in coefficients:
for b in coefficients:
p = getPrimes(a,b)
if p == None:
continue
if len(p) > longest:
longest = len(p)
print a, b, a*b, "Length:" + str(len(p))
def getNegativeAandB():
global coefficients, longest
negatives = []
for x in coefficients:
x *= -1
negatives.append(x)
for a in negatives:
for b in coefficients:
p = getPrimes(a,b)
if p == None:
continue
else:
if len(p) > longest:
print a, b, a*b, "Length:" + str(len(p))
getAandB()
getNegativeAandB()