-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_streetlearn_interiornet.py
executable file
·244 lines (185 loc) · 9.54 KB
/
test_streetlearn_interiornet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import cv2
from tqdm import tqdm
import numpy as np
import torch
import lietorch
import os
import glob
import time
import yaml
import argparse
import torch
import torchvision
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
import json
from src.model import ViTEss
from collections import OrderedDict
import pickle
from scipy.spatial.transform import Rotation as R
from lietorch import SE3
def compute_angle_from_r_matrices(m):
batch = m.shape[0]
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2
cos = torch.min(cos, torch.autograd.Variable(torch.ones(batch).cuda()))
cos = torch.max(cos, torch.autograd.Variable(torch.ones(batch).cuda()) * -1)
theta = torch.acos(cos)
return theta
def compute_geodesic_distance_from_two_matrices(m1, m2):
batch = m1.shape[0]
m = torch.bmm(m1, m2.transpose(1, 2)) # batch*3*3
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2
cos = torch.min(cos, torch.autograd.Variable(torch.ones(batch).cuda()))
cos = torch.max(cos, torch.autograd.Variable(torch.ones(batch).cuda()) * -1)
theta = torch.acos(cos)
return theta
def compute_rotation_matrix_from_two_matrices(m1, m2):
batch = m1.shape[0]
m = torch.bmm(m1, m2.transpose(1, 2)) # batch*3*3
return m
def compute_rotation_matrix_from_viewpoint(rotation_x, rotation_y, batch):
rotax = rotation_x.view(batch, 1).type(torch.FloatTensor)
rotay = - rotation_y.view(batch, 1).type(torch.FloatTensor)
c1 = torch.cos(rotax).view(batch, 1) # batch*1
s1 = torch.sin(rotax).view(batch, 1) # batch*1
c2 = torch.cos(rotay).view(batch, 1) # batch*1
s2 = torch.sin(rotay).view(batch, 1) # batch*1
# pitch --> yaw
row1 = torch.cat((c2, s1 * s2, c1 * s2), 1).view(-1, 1, 3) # batch*1*3
row2 = torch.cat((torch.autograd.Variable(torch.zeros(s2.size())), c1, -s1), 1).view(-1, 1, 3) # batch*1*3
row3 = torch.cat((-s2, s1 * c2, c1 * c2), 1).view(-1, 1, 3) # batch*1*3
matrix = torch.cat((row1, row2, row3), 1) # batch*3*3
return matrix
def evaluation_metric_rotation(predict_rotation, gt_rotation, save_folder):
geodesic_loss = compute_geodesic_distance_from_two_matrices(predict_rotation.view(-1, 3, 3),
gt_rotation.view(-1, 3, 3)) / np.pi * 180
gt_distance = compute_angle_from_r_matrices(gt_rotation.view(-1, 3, 3))
geodesic_loss_overlap_large = geodesic_loss[gt_distance.view(-1) < (np.pi / 4)]
geodesic_loss_overlap_small = geodesic_loss[(gt_distance.view(-1) >= np.pi / 4) & (gt_distance.view(-1) < np.pi / 2)]
all_rotation_err = geodesic_loss[gt_distance.view(-1) < (np.pi / 2)]
all_rotation_mags_gt = gt_distance[gt_distance.view(-1) < (np.pi / 2)] / np.pi * 180
all_rotation_err = all_rotation_err.cpu().numpy().astype(np.float32)
all_rotation_err_name = os.path.join(save_folder, 'all_rotation_err_degrees.csv')
np.savetxt(all_rotation_err_name, all_rotation_err, delimiter=',', fmt='%1.5f')
all_rotation_mags_gt = all_rotation_mags_gt.cpu().numpy().astype(np.float32)
all_rotation_mags_gt_name = os.path.join(save_folder, 'all_gt_rot_degrees.csv')
np.savetxt(all_rotation_mags_gt_name, all_rotation_mags_gt, delimiter=',', fmt='%1.5f')
res_error = {
"rotation_geodesic_error_overlap_large": geodesic_loss_overlap_large,
"rotation_geodesic_error_overlap_small": geodesic_loss_overlap_small,
}
return res_error
def eval_camera(predictions, save_folder):
# convert pred & gt to quaternion
pred, gt = np.copy(predictions['camera']['preds']['rot']), np.copy(predictions['camera']['gts']['rot'])
r = R.from_quat(pred)
r_pred = r.as_matrix()
r = R.from_quat(gt)
r_gt = r.as_matrix()
res_error = evaluation_metric_rotation(torch.from_numpy(r_pred).cuda(), torch.from_numpy(r_gt).cuda(), save_folder)
all_res = {}
# mean, median, 10deg
for k, v in res_error.items():
v = v.view(-1).detach().cpu().numpy()
if v.size == 0:
continue
mean = np.mean(v)
median = np.median(v)
count_10 = (v <= 10).sum(axis=0)
percent_10 = np.true_divide(count_10, v.shape[0])
all_res.update({k + '/mean': mean, k + '/median': median, k + '/10deg': percent_10})
return all_res
def compute_gt_rmat(rotation_x1, rotation_y1, rotation_x2, rotation_y2, batch_size):
gt_mtx1 = compute_rotation_matrix_from_viewpoint(rotation_x1, rotation_y1, batch_size).view(batch_size, 3, 3)
gt_mtx2 = compute_rotation_matrix_from_viewpoint(rotation_x2, rotation_y2, batch_size).view(batch_size, 3, 3)
gt_rmat_matrix = compute_rotation_matrix_from_two_matrices(gt_mtx2, gt_mtx1).view(batch_size, 3, 3)
return gt_rmat_matrix
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# data
parser.add_argument("--datapath")
parser.add_argument("--weights")
parser.add_argument("--image_size", default=[384,512])
parser.add_argument("--exp")
parser.add_argument("--ckpt")
parser.add_argument('--dataset', default='interiornet', choices=("interiornet", 'streetlearn'))
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--streetlearn_interiornet_type', default='', choices=('',"nooverlap","T",'nooverlapT'))
# model
parser.add_argument('--no_pos_encoding', action='store_true')
parser.add_argument('--noess', action='store_true')
parser.add_argument('--cross_features', action='store_true')
parser.add_argument('--use_single_softmax', action='store_true')
parser.add_argument('--l1_pos_encoding', action='store_true')
parser.add_argument('--fusion_transformer', action="store_true", default=False)
parser.add_argument('--fc_hidden_size', type=int, default=512)
parser.add_argument('--pool_size', type=int, default=60)
parser.add_argument('--transformer_depth', type=int, default=6)
args = parser.parse_args()
torch.multiprocessing.set_start_method('spawn')
if args.dataset == 'interiornet':
if args.streetlearn_interiornet_type == 'T':
dset = np.load(os.path.join(args.datapath, 'metadata/interiornetT/test_pair_translation.npy'), allow_pickle=True)
output_folder = 'interiornetT_test'
else:
dset = np.load(os.path.join(args.datapath, 'metadata/interiornet/test_pair_rotation.npy'), allow_pickle=True)
output_folder = 'interiornet_test'
else:
if args.streetlearn_interiornet_type == 'T':
dset = np.load(os.path.join(args.datapath, 'metadata/streetlearnT/test_pair_translation.npy'), allow_pickle=True)
output_folder = 'streetlearnT_test'
args.dataset = 'streetlearn_2016'
else:
dset = np.load(os.path.join(args.datapath, 'metadata/streetlearn/test_pair_rotation.npy'), allow_pickle=True)
output_folder = 'streetlearn_test'
dset = np.array(dset, ndmin=1)[0]
print('performing evaluation on %s set using model %s' % (output_folder, args.ckpt))
try:
os.makedirs(os.path.join('output', args.exp, output_folder))
except:
pass
model = ViTEss(args)
state_dict = OrderedDict([
(k.replace("module.", ""), v) for (k, v) in torch.load(args.ckpt)['model'].items()])
model.load_state_dict(state_dict)
model = model.cuda().eval()
train_val = ''
predictions = {'camera': {'preds': {'tran': [], 'rot': []}, 'gts': {'tran': [], 'rot': []}}}
sorted(dset.keys())
for i, dset_i in tqdm(sorted(dset.items())[:1000]):
base_pose = np.array([0,0,0,0,0,0,1])
images = [cv2.imread(os.path.join(args.datapath, 'data', args.dataset, dset[i]['img1']['path'])),
cv2.imread(os.path.join(args.datapath, 'data', args.dataset, dset[i]['img2']['path']))]
x1, y1 = dset[i]['img1']['x'], dset[i]['img1']['y']
x2, y2 = dset[i]['img2']['x'], dset[i]['img2']['y']
# compute rotation matrix
gt_rmat = compute_gt_rmat(torch.tensor([[x1]]), torch.tensor([[y1]]), torch.tensor([[x2]]), torch.tensor([[y2]]), 1)
# get quaternions from rotation matrix
r = R.from_matrix(gt_rmat)
rotation = r.as_quat()[0]
rel_pose = np.concatenate([np.array([0,0,0]), rotation]) # translation is 0
images = np.stack(images).astype(np.float32)
images = torch.from_numpy(images).float()
images = images.permute(0, 3, 1, 2)
images = images.unsqueeze(0).cuda()
intrinsics = np.stack([np.array([[128,128,128,128], [128,128,128,128]])]).astype(np.float32)
intrinsics = torch.from_numpy(intrinsics).cuda()
poses = np.vstack([base_pose, rel_pose]).astype(np.float32)
poses = torch.from_numpy(poses).unsqueeze(0).cuda()
Ps = SE3(poses)
Gs = SE3.IdentityLike(Ps)
with torch.no_grad():
poses_est = model(images, Gs, intrinsics=intrinsics)
preds = poses_est[0][0][1].data.cpu().numpy()
predictions['camera']['gts']['tran'].append(np.array([0,0,0]))
predictions['camera']['gts']['rot'].append(rotation)
predictions['camera']['preds']['tran'].append(preds[:3])
predictions['camera']['preds']['rot'].append(preds[3:])
full_output_folder = os.path.join('output', args.exp, output_folder)
camera_metrics = eval_camera(predictions, full_output_folder)
for k in camera_metrics:
print(k, camera_metrics[k])
with open(os.path.join(full_output_folder, 'results.txt'), 'w') as f:
for k in camera_metrics:
print(k, camera_metrics[k], file=f)