-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsm_counter_v2.py
1050 lines (914 loc) · 45.6 KB
/
sm_counter_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
# Chang Xu, 23Oct2017
import os
import sys
import datetime
import subprocess
import time
import operator
import multiprocessing
from collections import defaultdict
import random
import traceback
# 3rd party modules
import argparse
import pysam
import scipy.stats
import numpy
codePath = os.path.dirname(os.path.abspath(__file__))
homopolymerCode = os.path.join(codePath,'findhp.py')
pValCode = os.path.join(codePath,'get_pvalue_v2.R')
vcfCode = os.path.join(codePath,'make_vcf_v2.py')
atgc = ['A', 'T', 'G', 'C']
seed = 10262016
nsim = 5000
minTotalUMI = 5
mtTag = "MI"
tagSeparator = "-"
primerTag = "pr"
_num_cols_ = 38 ## Number of columns in out_long returned by the vc() function of smCounter
# wrapper function for "vc()" - because Python multiprocessing module does not pass stack trace
# from runone/smcounter.py by John Dicarlo
#------------------------------------------------------------------------------------------------
def vc_wrapper(*args):
try:
output = vc(*args)
except Exception as e:
print("Exception thrown in vc() function at genome location:", args[1], args[2])
output = ("Exception thrown!\n" + traceback.format_exc(),'no_bg')
print output[0]
raise Exception(e)
return output
#-------------------------------------------------------------------------------------
# set reference genome fasta and repeat BEDs
#-------------------------------------------------------------------------------------
def setReference(isRna):
refg = filePath + 'ucsc.hg19.fasta'
repBed = filePath + 'simpleRepeat.full.bed'
srBed = filePath + 'SR_LC_SL.full.bed'
return (refg, repBed, srBed)
#-------------------------------------------------------------------------------------
# calculate mean rpb
#-------------------------------------------------------------------------------------
def getMeanRpb(bamName):
samfile = pysam.AlignmentFile(bamName, 'rb')
allFragSet = set()
allBcSet = set()
# fetch all reads
for read in samfile.fetch():
# read ID
qname = read.query_name
# barcode sequence
BC = read.get_tag(mtTag)
allFragSet.add(qname)
allBcSet.add(BC)
# total fragment count
totalFrag = len(allFragSet)
# total MT count
totalMT = len(allBcSet)
# mean rpb
meanRpb = float(totalFrag) / totalMT
samfile.close()
return meanRpb
#-------------------------------------------------------------------------------------
# get reverse complement of bases
#-------------------------------------------------------------------------------------
def reverseBase(base):
if base == 'A':
revBase = 'T'
elif base == 'T':
revBase = 'A'
elif base == 'G':
revBase = 'C'
elif base == 'C':
revBase = 'G'
else:
revBase = 'N'
return revBase
#-------------------------------------------------------------------------------------
# model-based homopolymer filter for indels
#-------------------------------------------------------------------------------------
def hpIndelPredict(vafToVmfRatio, vmf, hqUmiEff, rpbEffectSize, altMeanRpb, hpLen8):
intercept = -1.65834
b_vafToVmfRatio = -1.52957
b_vmf = 0.04744
b_hqUmiEff = 3.01795
b_rpbEffectSize = -0.06622
b_altMeanRpb = 0.51300
b_hpLen8 = -0.86837
cutoffHP = 0.565415
predHP = intercept + b_vafToVmfRatio * vafToVmfRatio + b_vmf * vmf + b_hqUmiEff * hqUmiEff + b_rpbEffectSize * rpbEffectSize + b_altMeanRpb * altMeanRpb + b_hpLen8 * hpLen8
isRealIndelHP = True if predHP >= cutoffHP else False
return isRealIndelHP
#-------------------------------------------------------------------------------------
# model-based LowQ filter for SNP
#-------------------------------------------------------------------------------------
def lowQPredict(bqAlt, vafToVmfRatio):
intercept = 7.652256
bRatio = -1.254942
bPLowQ = -6.602585
cutoffLowQ = 1.068349
predLowQ = intercept + bRatio * vafToVmfRatio + bPLowQ * bqAlt
isLowQ = True if predLowQ < cutoffLowQ else False
return isLowQ
#-------------------------------------------------------------------------------------
# find the consensus nucleotide (including indel) in a UMI family with high quality reads only
#-------------------------------------------------------------------------------------
def consHqMT(oneBC, mtThreshold):
totalCnt = oneBC['all']
cons = ''
# find the majority base(s) whose proportion in the MT >= mtThreshold. NOTE: mtThreshold must be > 0.5 to ensure only one cons
for base in oneBC:
if base == 'all':
continue
pCons = 1.0 * oneBC[base] / totalCnt if totalCnt > 0 else 0.0
if pCons >= mtThreshold:
cons = base
break
# report the consensus base. If no consensus or lack of read support, output ''.
return cons
#-------------------------------------------------------------------------------------
# find the consensus nucleotide (including indel) in a UMI family with all reads
#-------------------------------------------------------------------------------------
def consAllMT(readList, mtThreshold):
totalCnt = readList['all']
cons = ''
# find the majority base(s) whose proportion in the MT >= mtThreshold. NOTE: mtThreshold must be > 0.5 to ensure only one cons
for base in readList:
if base == 'all': ## just a counter
continue
pCons = 1.0 * readList[base] / totalCnt if totalCnt > 0 else 0.0
if pCons >= mtThreshold:
cons = base
break
# report the consensus base. If no consensus or lack of read support, output ''.
return cons
#-------------------------------------------------------------------------------------
# check if a locus is within or flanked by homopolymer region and/or low complexity region
#-------------------------------------------------------------------------------------
def isHPorLowComp(chrom, pos, length, refb, altb, refs):
# get reference base
#refs = pysam.FastaFile(refg)
# ref sequence of [pos-length, pos+length] interval
chromLength = refs.get_reference_length(chrom)
pos0 = int(pos) - 1
Lseq = refs.fetch(reference=chrom,start=max(0,pos0-length),end=pos0).upper()
Rseq_ref = refs.fetch(reference=chrom,start=pos0+len(refb),end=min(pos0+len(refb)+length,chromLength)).upper()
Rseq_alt = refs.fetch(reference=chrom,start=min(pos0+len(altb),chromLength), end=min(pos0+len(altb)+length,chromLength)).upper()
refSeq = Lseq + refb + Rseq_ref
altSeq = Lseq + altb + Rseq_alt
# check homopolymer
homoA = refSeq.find('A'*length) >= 0 or altSeq.find('A'*length) >= 0
homoT = refSeq.find('T'*length) >= 0 or altSeq.find('T'*length) >= 0
homoG = refSeq.find('G'*length) >= 0 or altSeq.find('G'*length) >= 0
homoC = refSeq.find('C'*length) >= 0 or altSeq.find('C'*length) >= 0
homop = homoA or homoT or homoG or homoC
# check low complexity -- window length is 2 * homopolymer region. If any 2 nucleotide >= 99%
len2 = 2 * length
LseqLC = refs.fetch(reference=chrom,start=max(0,pos0-len2),end=pos0).upper()
Rseq_refLC = refs.fetch(reference=chrom,start=pos0+len(refb),end=min(pos0+len(refb)+len2,chromLength)).upper()
Rseq_altLC = refs.fetch(reference=chrom,start=min(pos0+len(altb),chromLength),end=min(pos0+len(altb)+len2,chromLength)).upper()
# ref seq
refSeqLC = LseqLC + refb + Rseq_refLC
# alt seq
altSeqLC = LseqLC + altb + Rseq_altLC
lowcomp = False
# Ref seq
totalLen = len(refSeqLC)
for i in range(totalLen-len2):
subseq = refSeqLC[i:(i+len2)]
countA = subseq.count('A')
countT = subseq.count('T')
countG = subseq.count('G')
countC = subseq.count('C')
sortedCounts = sorted([countA, countT, countG, countC], reverse=True)
top2Freq = 1.0 * (sortedCounts[0] + sortedCounts[1]) / len2
if top2Freq >= 0.99:
lowcomp = True
break
# If ref seq is not LC, check alt seq
if not lowcomp:
totalLen = len(altSeqLC)
for i in range(totalLen-len2):
subseq = altSeqLC[i:(i+len2)]
countA = subseq.count('A')
countT = subseq.count('T')
countG = subseq.count('G')
countC = subseq.count('C')
sortedCounts = sorted([countA, countT, countG, countC], reverse=True)
top2Freq = 1.0 * (sortedCounts[0] + sortedCounts[1]) / len2
if top2Freq >= 0.99:
lowcomp = True
break
return [homop, lowcomp]
#-------------------------------------------------------------------------------------
# function to call variants
#-------------------------------------------------------------------------------------
def vc(bamName, chrom, pos, repType, hpInfo, srInfo, repInfo, minBQ, minMQ, hpLen, mismatchThr, primerDist, mtThreshold, rpb, primerSide, refg, minAltUMI, maxAltAllele):
samfile = pysam.AlignmentFile(bamName, 'rb')
mtSide = 'R1' if primerSide == 'R2' else 'R2'
cvg = 0
bcDictHq = defaultdict(lambda: defaultdict(list))
bcDictHqBase = defaultdict(lambda:defaultdict(int))
usedFrag = 0
bcDictAll = defaultdict(lambda:defaultdict(int))
allBcDict = defaultdict(set)
allFrag = 0
alleleCnt = defaultdict(int)
mtSideBcEndPos = defaultdict(list)
primerSideBcEndPos = defaultdict(list)
primerSidePrimerEndPos = defaultdict(list)
forwardCnt = defaultdict(int)
reverseCnt = defaultdict(int)
concordPairCnt = defaultdict(int)
discordPairCnt = defaultdict(int)
mismatchCnt = defaultdict(float)
lowQReads = defaultdict(int)
sMtCons = 0
sMtConsByBase = defaultdict(int)
sMtConsByDir = defaultdict(int)
sMtConsByDirByBase = defaultdict(lambda: defaultdict(int))
pairedMTs = set()
singleMTs = set()
strands = defaultdict(int)
subTypeCnt = defaultdict(int)
smtSNP = 0
repTypeSet0 = set() if repType == 'NA' else set(repType.strip().split(';'))
hqAgree = defaultdict(int)
hqDisagree = defaultdict(int)
allAgree = defaultdict(int)
allDisagree = defaultdict(int)
rpbCnt = defaultdict(list)
# output
out_long = ''
# get reference base
refseq = pysam.FastaFile(refg)
origRef = refseq.fetch(reference=chrom, start=int(pos)-1, end=int(pos))
origRef = origRef.upper()
# splitting hpInfo here to avoid splitting inside the loop below
hpInfoTmp = hpInfo.strip().split(';')
sMtConsByBase['A'] = 0
sMtConsByBase['T'] = 0
sMtConsByBase['G'] = 0
sMtConsByBase['C'] = 0
# pile up reads
for read in samfile.pileup(region = chrom + ':' + pos + ':' + pos, truncate=True, max_depth=1000000000, stepper='nofilter'):
for pileupRead in read.pileups:
# check if position not on a gap (N or intron in RNAseq)
dropRead = False
cigar = pileupRead.alignment.cigar
alignLen = int(pos) - pileupRead.alignment.pos
# first case: perhaps outside the whole read
if alignLen > sum([value if op in [0, 3] else 0 for (op, value) in cigar]):
continue
# second case: may lie on any segments
for (op, value) in cigar:
if op > 3:
continue
if alignLen <= value:
if op == 3:
dropRead = True
break
elif op in [0, 3]:
alignLen -= value
# check if should drop read
if dropRead:
continue
# read ID
qname = pileupRead.alignment.query_name
readid = qname
BC = pileupRead.alignment.get_tag(mtTag)
# read start and end coordinates in reference genome
astart = pileupRead.alignment.reference_start
aend = pileupRead.alignment.reference_end
# get NM tag
NM = 0
allTags = pileupRead.alignment.tags
for (tag, value) in allTags:
if tag == 'NM':
NM = value
break
# count number of INDELs in the read sequence
nIndel = 0
cigar = pileupRead.alignment.cigar
cigarOrder = 1
leftSP = 0 # soft clipped bases on the left
rightSP = 0 # soft clipped bases on the right
for (op, value) in cigar:
# 1 for insertion
if op == 1 or op == 2:
nIndel += value
if cigarOrder == 1 and op == 4:
leftSP = value
if cigarOrder > 1 and op == 4:
rightSP += value
cigarOrder += 1
# Number of mismatches except INDEL, including softcilpped sequences
mismatch = max(0, NM - nIndel)
# read length, including softclip
readLen = pileupRead.alignment.query_length
# calculate mismatch per 100 bases
mismatchPer100b = 100.0 * mismatch / readLen if readLen > 0 else 0.0
# paired read
if pileupRead.alignment.is_read1:
pairOrder = 'R1'
if pileupRead.alignment.is_read2:
pairOrder = 'R2'
# +/- strand
strand = 'Reverse' if pileupRead.alignment.is_reverse else 'Forward'
# mapping quality filter
mq = pileupRead.alignment.mapping_quality
minMQPass = True
# get mapq of mate
try:
mateMq = pileupRead.alignment.get_tag("MQ")
minFragMQ = min(mq,mateMq)
if minFragMQ < minMQ:
minMQPass = False
except KeyError:
'''
bam has not been tagged with the mate mapq,
drop read pairs based on their respective mapqs only
To note :
warn user ? or make command line argument more descriptive
settling on a more descriptive argument for now
'''
if mq < minMQ:
minMQPass = False
# repetitive region information
if hpInfo == '.':
hpCovered = True
else:
(hpChrom, hpStart, hpEnd, totalHpLen) = hpInfoTmp
if astart < int(hpStart) - 1 and aend > int(hpEnd) + 1:
hpCovered = True
else:
hpCovered = False
# check if the site is the beginning of insertion
if pileupRead.indel > 0:
site = pileupRead.alignment.query_sequence[pileupRead.query_position]
inserted = pileupRead.alignment.query_sequence[(pileupRead.query_position + 1) : (pileupRead.query_position + 1 + pileupRead.indel)]
base = 'INS|' + site + '|' + site + inserted
bq = pileupRead.alignment.query_qualities[pileupRead.query_position]
# if base quality not included in BAM
if bq == None:
bq = minBQ
# check if the site is the beginning of deletion
elif pileupRead.indel < 0:
site = pileupRead.alignment.query_sequence[pileupRead.query_position]
deleted = refseq.fetch(reference=chrom, start=int(pos), end=int(pos)+abs(pileupRead.indel))
deleted = deleted.upper()
base = 'DEL|' + site + deleted + '|' + site
bq = pileupRead.alignment.query_qualities[pileupRead.query_position]
# if base quality not included in BAM
if bq == None:
bq = minBQ
# site is not beginning of any INDEL, but in the middle of a deletion
elif pileupRead.is_del:
base = 'DEL'
bq = minBQ
# if the site is a regular locus,
else:
base = pileupRead.alignment.query_sequence[pileupRead.query_position] # note: query_sequence includes soft clipped bases
bq = pileupRead.alignment.query_qualities[pileupRead.query_position]
incCond = bq >= minBQ and minMQPass and mismatchPer100b <= mismatchThr and hpCovered
# count the number of low quality reads (less than Q20 by default) for each base
if bq < 20: # why not minBQ???!!!
lowQReads[base] += 1
if pairOrder == mtSide:
# distance to the barcode end on MT side read
if pileupRead.alignment.is_reverse:
distToBcEnd = pileupRead.alignment.query_alignment_length - (pileupRead.query_position - leftSP)
else:
distToBcEnd = pileupRead.query_position - leftSP
if incCond:
mtSideBcEndPos[base].append(distToBcEnd)
if pairOrder == primerSide:
# distance to the barcode and/or primer end on primer side read. Different cases for forward and reverse strand
if pileupRead.alignment.is_reverse:
distToBcEnd = pileupRead.query_position - leftSP
distToPrimerEnd = pileupRead.alignment.query_alignment_length - (pileupRead.query_position - leftSP)
else:
distToBcEnd = pileupRead.alignment.query_alignment_length - (pileupRead.query_position - leftSP)
distToPrimerEnd = pileupRead.query_position - leftSP
if incCond:
primerSideBcEndPos[base].append(distToBcEnd)
primerSidePrimerEndPos[base].append(distToPrimerEnd)
# coverage -- read, not fragment
cvg += 1
if strand == 'Reverse':
reverseCnt[base] += 1
else:
forwardCnt[base] += 1
alleleCnt[base] += 1
mismatchCnt[base] += mismatchPer100b
# count total number of fragments and MTs
if readid not in allBcDict[BC]:
allFrag+=1 # total fragments
allBcDict[BC].add(readid)
# inclusion condition. NOTE: reads with duplex tag 'NN' are dropped from analysis
incCond = bq >= minBQ and minMQPass and mismatchPer100b <= mismatchThr and hpCovered
# constructing UMI family; this one with high quality reads only
if incCond:
if readid not in bcDictHq[BC]:
readinfo = [base, pairOrder]
bcDictHq[BC][readid] = readinfo
# store base level information to avoid looping over read ids again
bcDictHqBase[BC][base]+=1
bcDictHqBase[BC]['all']+=1
usedFrag+=1 # used fragments
elif base == bcDictHq[BC][readid][0] or base in ['N', '*']:
bcDictHq[BC][readid][1] = 'Paired'
if base == bcDictHq[BC][readid][0]:
concordPairCnt[base] += 1
else:
# decrement fragment and base count
usedFrag-=1
bcDictHqBase[BC][bcDictHq[BC][readid][0]]-=1
bcDictHqBase[BC]['all']-=1
del bcDictHq[BC][readid]
discordPairCnt[base] += 1
# in non-HP region, include all reads for consensus. In HP region, including only the reads covering the HP.
if hpCovered:
#bcDictAll[BC].append(base)
bcDictAll[BC][base]+=1
bcDictAll[BC]['all']+=1
##### end of looping through pileup reads ####
# total number of MT, fragments, reads, including those dropped from analysis
allMT = len(allBcDict)
# gradually drop 1 read MTs
bcToKeep = []
# rpb < 2: no MT is dropped
if rpb < 2.0:
bcToKeep = bcDictHq.keys()
# 2 <= rpb < 3: gradually and randomly drop 1 read MTs
elif rpb >= 2.0 and rpb < 3.0:
# set seed to be the genome position
random.seed(pos)
# count the numbers of paired and unpaired 1 read MTs;
pctToDrop = rpb - 2.0
for bc in bcDictHq:
readPairsInBc = len(bcDictHq[bc])
if readPairsInBc == 1:
readid = bcDictHq[bc].keys()[0]
if bcDictHq[bc][readid][1] == 'Paired':
pairedMTs.add(bc)
else:
singleMTs.add(bc)
# total 1 read MTs
pairedCnt = len(pairedMTs)
singleCnt = len(singleMTs)
oneReadMtCnt = pairedCnt + singleCnt
# number of 1 read MTs to drop
numToDrop = int(round(pctToDrop * oneReadMtCnt))
# Decide which 1 read MTs to drop -- paired reads are kept with priority
if numToDrop <= singleCnt:
oneReadMtToDrop = set(random.sample(singleMTs, numToDrop))
else:
pairsToDrop = set(random.sample(pairedMTs, numToDrop - singleCnt))
oneReadMtToDrop = singleMTs.union(pairsToDrop)
# drop 1 read MTs
bcToKeep = list(set(bcDictHq.keys()).difference(oneReadMtToDrop))
#rpb >= 3: drop all 1 read MTs;
else:
bcToKeep = [bc for bc in bcDictHq.iterkeys() if len(bcDictHq[bc]) >= 2]
if len(bcToKeep) <= minTotalUMI:
out_long = '\t'.join([chrom, pos, origRef] + ['0'] * (_num_cols_ - 4) + ['LM']) + '\n'
out_bkg = ''
else:
for bc in bcToKeep:
# primer ID and direction
bcSplit = bc.split(tagSeparator)
primerDirCode = bcSplit[1]
primerDirection = 'F' if primerDirCode == '0' else 'R' # 0 means the primer was priming the forward strand, 1 means priming the reverse strand
# get consensus call of the UMI family
consHq = consHqMT(bcDictHqBase[bc], mtThreshold)
consAll = consAllMT(bcDictAll[bc], mtThreshold)
cons = consHq if consHq == consAll else ''
# count number of reads in concordant/discordant with consensus
for base in bcDictHqBase[bc]:
if base == 'all': ## just a counter
continue
if base == cons:
hqAgree[base] += bcDictHqBase[bc][base]
else:
hqDisagree[base] += bcDictHqBase[bc][base]
for base in bcDictAll[bc]:
if base == 'all': ## just a counter
continue
if base == cons:
allAgree[base] += bcDictAll[bc][base]
else:
allDisagree[base] += bcDictAll[bc][base]
if cons != '':
sMtCons += 1
sMtConsByBase[cons] += 1
# MT counts from + and - strands
sMtConsByDir[primerDirection] += 1
sMtConsByDirByBase[cons][primerDirection] += 1
# read pairs in the UMI
rpbCnt[cons].append(bcDictAll[bc]['all'])
# base substitutions (snp only)
# Note: smtSNP and strands are usually NOT equal to sMtCons and sMtConsByDir. The former include only base substitutions MTs, and the latter include indel MTs.
if len(cons) == 1:
basePair = origRef + '/' + cons if primerDirCode == '0' else reverseBase(origRef) + '/' + reverseBase(cons)
subTypeCnt[basePair] += 1
smtSNP += 1
strands[primerDirection] += 1
# output the background error profile
bkgErrList = [chrom, pos, origRef, str(subTypeCnt['A/G']), str(subTypeCnt['G/A']), str(subTypeCnt['C/T']), str(subTypeCnt['T/C']), str(subTypeCnt['A/C']), str(subTypeCnt['C/A']), str(subTypeCnt['A/T']), str(subTypeCnt['T/A']), str(subTypeCnt['C/G']), str(subTypeCnt['G/C']), str(subTypeCnt['G/T']), str(subTypeCnt['T/G']), str(strands['F']), str(strands['R']), str(smtSNP)]
out_bkg = '\t'.join(bkgErrList) + '\n'
sortedList = sorted(sMtConsByBase.items(), key=operator.itemgetter(1), reverse=True)
firstAlt = True
altCnt = 0
# start multi-allelic loop
for alleleInd in range(len(sortedList)):
maxBase = sortedList[alleleInd][0]
maxVMT = sortedList[alleleInd][1]
if maxBase == origRef:
continue
if maxVMT < minAltUMI and not firstAlt:
break
# if the current allele has >= 3 UMIs and is not reference, treat as a candidate variant allele
origAlt = maxBase
# reset variant type, reference base, variant base
vtype = '.'
ref = origRef
alt = origAlt
if len(origAlt) == 1:
vtype = 'SNP'
elif origAlt == 'DEL':
vtype = 'SDEL'
else:
vals = origAlt.split('|')
if vals[0] in ['DEL', 'INS']:
vtype = 'INDEL'
ref = vals[1]
alt = vals[2]
# initiate values for filters
refForPrimer = sMtConsByDirByBase[origRef]['F']
refRevPrimer = sMtConsByDirByBase[origRef]['R']
altForPrimer = sMtConsByDirByBase[origAlt]['F']
altRevPrimer = sMtConsByDirByBase[origAlt]['R']
primerBiasOR, bqAlt, oddsRatio, pvalue, hqUmiEff, allUmiEff, refRppUmiMean, altRppUmiMean, RppEffSize = 'NA', -1.0, 1.0, 1.0, 0.0, 0.0, -1.0, -1.0, -1.0
fltrs = set()
repTypeSet = repTypeSet0
# UMI efficiency metrics
hqRcAgree = hqAgree[origAlt]
hqRcTotal = hqRcAgree + hqDisagree[origAlt]
hqUmiEff = round(1.0 * hqRcAgree / hqRcTotal, 2) if hqRcTotal > 0 else 0.0
allRcAgree = allAgree[origAlt]
allRcTotal = allRcAgree + allDisagree[origAlt]
allUmiEff = round(1.0 * allRcAgree / allRcTotal, 3) if allRcTotal > 0 else 0.0
if sMtConsByBase[origRef] >= 3 and sMtConsByBase[origAlt] >= 3:
refRppUmiN = sMtConsByBase[origRef]
refRppUmiMean = numpy.mean(rpbCnt[origRef])
refRppUmiSd = numpy.std(rpbCnt[origRef])
altRppUmiN = sMtConsByBase[origAlt]
altRppUmiMean = numpy.mean(rpbCnt[origAlt])
altRppUmiSd = numpy.std(rpbCnt[origAlt])
sp = ( ((refRppUmiN-1) * refRppUmiSd**2 + (altRppUmiN-1) * altRppUmiSd**2) / (refRppUmiN + altRppUmiN-2) ) ** 0.5
RppEffSize = (refRppUmiMean - altRppUmiMean) / (sp * (1.0/refRppUmiN + 1.0/altRppUmiN) ** 0.5) if sp > 0 else 1000.0
else:
refRppUmiMean = -1.0
altRppUmiMean = -1.0
RppEffSize = -1.0
if vtype in ['SNP', 'INDEL'] and sMtCons > 0:
vaf_tmp = 100.0 * alleleCnt[origAlt] / cvg if cvg > 0 else 0.0
vmf_tmp = 100.0 * sMtConsByBase[origAlt] / sMtCons
vafToVmfRatio = 1.0 * vaf_tmp / vmf_tmp if vmf_tmp > 0 else -1.0
# low coverage filter
if sMtCons < 5:
fltrs.add('LM')
# repetative region filters
hpIndelFilter = False
(hp, lowc) = isHPorLowComp(chrom, pos, hpLen, ref, alt, refseq)
if hp and hpInfo == '.': # if REF is not HP but ALT is, count as HP and set length = 8
repTypeSet.add('HP')
hpInfo = 'chr0;100;108;8'
if lowc:
repTypeSet.add('LowC')
# update HP for indel
if 'HP' in repTypeSet and vtype == 'INDEL':
if rpb > 1.8:
(hpChrom, hpStart, hpEnd, totalHpLen) = hpInfo.strip().split(';')
hpLen8 = 1 if int(totalHpLen) >= 8 else 0
isReal = hpIndelPredict(vafToVmfRatio, vmf_tmp, hqUmiEff, RppEffSize, altRppUmiMean, hpLen8)
else:
isReal = False
if isReal and 'HP' in fltrs:
fltrs.remove('HP')
if not isReal:
fltrs.add('HP')
# update other repetitive region filters for SNP and indel, including HP for SNP
if len(repTypeSet) > 0 and (vtype == 'SNP' or (vtype == 'INDEL' and 'HP' not in repTypeSet)):
if rpb >= 4:
isReal = hqUmiEff > 0.1 and vafToVmfRatio < 3.0 and RppEffSize < 2.5
elif rpb >= 1.8:
isReal = hqUmiEff > 0.8 and vafToVmfRatio < 2.0 and RppEffSize < 1.5
else:
isReal = False
if isReal:
fltrs.difference_update(repTypeSet)
else:
fltrs.update(repTypeSet)
# strand bias and discordant pairs filter
pairs = discordPairCnt[origAlt] + concordPairCnt[origAlt] # total number of paired reads covering the pos
pDiscord = 1.0 * discordPairCnt[origAlt] / pairs if pairs > 0 else 0.0
if pairs >= 1000 and pDiscord >= 0.5:
fltrs.add('DP')
elif vaf_tmp <= 60.0:
refR = reverseCnt[origRef]
refF = forwardCnt[origRef]
altR = reverseCnt[origAlt]
altF = forwardCnt[origAlt]
fisher = scipy.stats.fisher_exact([[refR, refF], [altR, altF]])
oddsRatio = fisher[0]
pvalue = fisher[1]
if pvalue < 0.00001 and (oddsRatio >= 50 or oddsRatio <= 1.0/50):
fltrs.add('SB')
# primer bias filter
if sMtConsByDir['F'] >= 200 and sMtConsByDir['R'] >= 200:
oddsRatioPB = ((sMtConsByDirByBase[origAlt]['F']+0.5)/(sMtConsByDir['F']+0.5)) / ((sMtConsByDirByBase[origAlt]['R']+.5)/(sMtConsByDir['R']+.5))
oddsRatioPB = round(oddsRatioPB, 2)
if oddsRatioPB > 10 or oddsRatioPB < 0.1:
fltrs.add('PB')
primerBiasOR = str(oddsRatioPB)
# low base quality filter
if vtype == 'SNP' and alt in alleleCnt and alt in lowQReads and alleleCnt[origAlt] > 0:
bqAlt = 1.0 * lowQReads[origAlt] / alleleCnt[origAlt]
if bqAlt > 0.4 and vafToVmfRatio >= 0:
if lowQPredict(bqAlt, vafToVmfRatio):
fltrs.add('LowQ')
# random end position filter
if vtype == 'SNP':
# distance to barcode end of the read
endBase = 20
# MT side
refLeEnd = sum(d <= endBase for d in mtSideBcEndPos[origRef]) # number of REF R2 reads with distance <= endBase
refGtEnd = len(mtSideBcEndPos[origRef]) - refLeEnd # number of REF R2 reads with distance > endBase
altLeEnd = sum(d <= endBase for d in mtSideBcEndPos[origAlt]) # number of ALT R2 reads with distance <= endBase
altGtEnd = len(mtSideBcEndPos[origAlt]) - altLeEnd # number of ALT R2 reads with distance > endBase
fisher = scipy.stats.fisher_exact([[refLeEnd, refGtEnd], [altLeEnd, altGtEnd]])
oddsRatio = fisher[0]
pvalue = fisher[1]
if pvalue < 0.001 and oddsRatio < 0.05 and vaf_tmp <= 60.0:
fltrs.add('RBCP')
# primer side
refLeEnd = sum(d <= endBase for d in primerSideBcEndPos[origRef]) # number of REF R2 reads with distance <= endBase
refGtEnd = len(primerSideBcEndPos[origRef]) - refLeEnd # number of REF R2 reads with distance > endBase
altLeEnd = sum(d <= endBase for d in primerSideBcEndPos[origAlt]) # number of ALT R2 reads with distance <= endBase
altGtEnd = len(primerSideBcEndPos[origAlt]) - altLeEnd # number of ALT R2 reads with distance > endBase
fisher = scipy.stats.fisher_exact([[refLeEnd, refGtEnd], [altLeEnd, altGtEnd]])
oddsRatio = fisher[0]
pvalue = fisher[1]
if pvalue < 0.001 and oddsRatio < 0.05 and vaf_tmp <= 60.0:
fltrs.add('RPCP')
# fixed end position filter
endBase = primerDist # distance to primer end of the read
refLeEnd = sum(d <= endBase for d in primerSidePrimerEndPos[origRef]) # number of REF R2 reads with distance <= endBase
refGtEnd = len(primerSidePrimerEndPos[origRef]) - refLeEnd # number of REF R2 reads with distance > endBase
altLeEnd = sum(d <= endBase for d in primerSidePrimerEndPos[origAlt]) # number of ALT R2 reads with distance <= endBase
altGtEnd = len(primerSidePrimerEndPos[origAlt]) - altLeEnd # number of ALT R2 reads with distance > endBase
fisher = scipy.stats.fisher_exact([[refLeEnd, refGtEnd], [altLeEnd, altGtEnd]])
oddsRatio = fisher[0]
pvalue = fisher[1]
# updated PrimerCP -- depend on UMI efficiency
if vmf_tmp < 40.0 and (altLeEnd + altGtEnd > 0) and (1.0 * altLeEnd / (altLeEnd + altGtEnd) >= 0.98 or (pvalue < 0.001 and oddsRatio < 0.05)):
if rpb >= 4:
isReal = hqUmiEff > 0.1 and vafToVmfRatio < 3.0 and RppEffSize < 2.5
elif rpb >= 1.8:
isReal = hqUmiEff > 0.8 and vafToVmfRatio < 2.0 and RppEffSize < 1.5
else:
isReal = False
if not isReal:
fltrs.add('PrimerCP')
firstAlt = False
# output metrics for each non-reference allele with >= 3 UMIs; If none, output the one with most UMI
# final FILTER to output
fltrFinal = 'PASS' if len(fltrs) == 0 else ';'.join(list(fltrs))
# read-based variant allele fraction (VAF)
frac_alt = str(round((100.0 * alleleCnt[origAlt] / cvg),3)) if cvg > 0 else '0.0' # based on all reads, including the excluded reads
# UMI-based variant allele fraction (VMF)
vmf = str(round((100.0 * sMtConsByBase[origAlt] / sMtCons),5)) if sMtCons > 0 else '.'
# UMI-based VMF for each strand
vmfForward = str(round((100.0 * sMtConsByDirByBase[origAlt]['F'] / sMtConsByDir['F']),3)) if sMtConsByDir['F'] > 0 else '.'
vmfReverse = str(round((100.0 * sMtConsByDirByBase[origAlt]['R'] / sMtConsByDir['R']),3)) if sMtConsByDir['R'] > 0 else '.'
# UMI count for A,C,G,T
sMTs = [str(sMtConsByBase['A']), str(sMtConsByBase['T']), str(sMtConsByBase['G']), str(sMtConsByBase['C'])]
# proportion of <Q20 reads
pLowQ = str(round(bqAlt,2)) if bqAlt >= 0 else 'NA'
# type of repetitive region
repTypeFinal = ';'.join(list(repTypeSet)) if len(repTypeSet) >= 1 else 'NA'
out_long_list = [chrom, pos, ref, alt, vtype, str(sMtCons), str(sMtConsByDir['F']), str(sMtConsByDir['R']), str(sMtConsByBase[origAlt]), str(sMtConsByDirByBase[origAlt]['F']), str(sMtConsByDirByBase[origAlt]['R']), vmf, vmfForward, vmfReverse, str(alleleCnt[origAlt]), frac_alt, str(refForPrimer), str(refRevPrimer), primerBiasOR, pLowQ, str(hqUmiEff), str(allUmiEff), str(refRppUmiMean), str(altRppUmiMean), str(RppEffSize), repTypeFinal, hpInfo, srInfo, repInfo, str(cvg), str(allFrag), str(allMT), str(usedFrag)] + sMTs + [fltrFinal]
out_long_allele = '\t'.join(out_long_list) + '\n'
out_long += out_long_allele
altCnt += 1
if altCnt >= maxAltAllele:
break
samfile.close()
refseq.close()
return (out_long, out_bkg)
#----------------------------------------------------------------------------------------------
# global for argument parsing (hack that works when calling from either command line or pipeline)
#------------------------------------------------------------------------------------------------
parser = None
def argParseInit(): # this is done inside a function because multiprocessing module imports the script
global parser
parser = argparse.ArgumentParser(description='Variant calling using molecular barcodes')
parser.add_argument('--runPath', default=None, help='path to working directory')
parser.add_argument('--bedTarget', default=None, help='BED file')
parser.add_argument('--bamFile', default=None, help='BAM file')
parser.add_argument('--outPrefix', default=None, help='file name prefix')
parser.add_argument('--nCPU', type=int, default=1, help='number of CPU to use in parallel')
parser.add_argument('--minBQ', type=int, default=25, help='minimum base quality allowed for analysis')
parser.add_argument('--minMQ', type=int, default=50, help="minimum mapping quality allowed for analysis. If the bam is tagged with its mate's mapq, then the minimum of the R1 and R2 mapq will be used for comparison, if not each read is compared independently.")
parser.add_argument('--hpLen', type=int, default=10, help='Minimum length for homopolymers')
parser.add_argument('--mismatchThr', type=float, default=6.0, help='average number of mismatches per 100 bases allowed')
parser.add_argument('--primerDist', type=int, default=2, help='filter variants that are within X bases to primer')
parser.add_argument('--mtThreshold', type=float, default=0.8, help='threshold on read proportion to determine MT level consensus')
parser.add_argument('--rpb', type=float, default=0.0, help='mean read pairs per UMI; default at 0 and will be calculated')
parser.add_argument('--isRna', action = 'store_true', help='RNAseq varinat calling only; default is DNAseq')
parser.add_argument('--primerSide', type=int, default=1, help='read end that includes the primer; default is 1')
parser.add_argument('--minAltUMI', type=int, default=3, help='minimum requirement of ALT UMIs; default is 3')
parser.add_argument('--maxAltAllele', type=int, default=2, help='maximum ALT alleles that meet minAltUMI to be reported; default is 2 (tri-allelic variants)')
parser.add_argument('--refGenome',type=str, help='Path to the reference fasta file')
parser.add_argument('--repBed',type=str,help='Path to the simpleRepeat bed file')
parser.add_argument('--srBed',type=str,help='Path to the full repeat bed file')
#--------------------------------------------------------------------------------------
# main function
#--------------------------------------------------------------------------------------
def main(args):
# log run start
timeStart = datetime.datetime.now()
print("started at " + str(timeStart))
# if argument parser global not assigned yet, initialize it
if parser == None:
argParseInit()
# get arguments passed in via a lambda object (e.g. from upstream pipeline)
if type(args) is not argparse.Namespace:
argsList = []
for argName, argVal in args.iteritems():
argsList.append("--{0}={1}".format(argName, argVal))
args = parser.parse_args(argsList)
for argName, argVal in vars(args).iteritems():
print(argName, argVal)
# change working directory to runDir and make output directories
if args.runPath != None:
os.chdir(args.runPath)
# make /intermediate directory to keep the long output
if not os.path.exists('intermediate'):
os.makedirs('intermediate')
# intersect repeats and target regions
subprocess.check_call('/u/creggian/programmi/python-2.7.2/bin/python ' + homopolymerCode + ' ' + args.bedTarget + ' hp.roi.bed 6' + ' ' + args.refGenome , shell=True)
subprocess.check_call('/u/creggian/programmi/bedtools2/bin/bedtools intersect -a ' + args.repBed + ' -b ' + args.bedTarget + ' | bedtools sort -i > rep.roi.bed', shell=True)
subprocess.check_call('/u/creggian/programmi/bedtools2/bin/bedtools intersect -a ' + args.srBed + ' -b ' + args.bedTarget + ' | bedtools sort -i > sr.roi.bed', shell=True)
# homopolymer
hpRegion = defaultdict(list)
with open('hp.roi.bed','r') as IN:
for line in IN:
[chrom, regionStart, regionEnd, repType, totalLen, unitLen, repLen, repBase] = line.strip().split()
hpRegion[chrom].append([regionStart, regionEnd, repType, totalLen, unitLen, repLen])
# tandem repeat
repRegion = defaultdict(list)
with open('rep.roi.bed','r') as IN:
for line in IN:
lineList = line.strip().split()
chrom = lineList[0]
regionStart = lineList[1]
regionEnd = lineList[2]
unitLen = lineList[4]
repLen = lineList[5]
try:
unitLen_num = float(unitLen)
except ValueError:
continue
try:
repLen_num = float(repLen)
except ValueError:
continue
totalLen = str(unitLen_num * repLen_num)
repBase = lineList[-1]
repType = 'RepT'
repRegion[chrom].append([regionStart, regionEnd, repType, totalLen, unitLen, repLen])
# simple repeat, low complexity, satelite
srRegion = defaultdict(list)
with open('sr.roi.bed','r') as IN:
for line in IN:
[chrom, regionStart, regionEnd, repType, totalLen, unitLen, repLen, repBase] = line.strip().split()
if repType == 'Simple_repeat':
repType = 'RepS'
elif repType == 'Low_complexity':
repType = 'LowC'
elif repType == 'Satellite':
repType = 'SL'
else:
repType = 'Other_Repeat'
srRegion[chrom].append([regionStart, regionEnd, repType, totalLen, unitLen, repLen])
# read in bed file and create a list of positions, annotated with repetitive region
locList = []
with open(args.bedTarget,'r') as IN:
for line in IN:
if line.startswith('track name='):
continue
lineList = line.strip().split('\t')
chrom = lineList[0]
regionStart = int(lineList[1]) + 1 # target region starts from 1-base after
regionEnd = lineList[2]
pos = regionStart
lineEnd = False
while not lineEnd:
(hpInfo, srInfo, repInfo) = ('.', '.', '.')
repTypeSet = set()
# check if the site is in homopolymer region (not including 1 base before)
for (regionStart_tmp, regionEnd_tmp, repType_tmp, totalLen_tmp, unitLen_tmp, repLen_tmp) in hpRegion[chrom]:
if pos >= int(regionStart_tmp) - 0 and pos <= int(regionEnd_tmp):
repTypeSet.add(repType_tmp)
hpInfo = ';'.join([chrom, regionStart_tmp, regionEnd_tmp, totalLen_tmp])
break
# check if the site is in other repeats region (including 1 base before)
for (regionStart_tmp, regionEnd_tmp, repType_tmp, totalLen_tmp, unitLen_tmp, repLen_tmp) in srRegion[chrom]:
if pos >= int(regionStart_tmp) - 1 and pos <= int(regionEnd_tmp):
repTypeSet.add(repType_tmp)
srInfo = ';'.join([chrom, regionStart_tmp, regionEnd_tmp, totalLen_tmp, unitLen_tmp, repLen_tmp])
break
for [regionStart_tmp, regionEnd_tmp, repType_tmp, totalLen_tmp, unitLen_tmp, repLen_tmp] in repRegion[chrom]:
if pos >= int(regionStart_tmp) - 1 and pos <= int(regionEnd_tmp):
repTypeSet.add(repType_tmp)
repInfo = ';'.join([chrom, regionStart_tmp, regionEnd_tmp, totalLen_tmp, unitLen_tmp, repLen_tmp])
break
repType = 'NA' if len(repTypeSet) == 0 else ';'.join(list(repTypeSet))
locList.append((chrom, str(pos), repType, hpInfo, srInfo, repInfo))
if str(pos) == regionEnd:
lineEnd = True
else:
pos += 1
# calculate rpb if args.rpb = 0
if args.isRna:
rpb = -1
else:
if args.rpb == 0.0:
rpb = getMeanRpb(args.bamFile)
print("rpb = " + str(round(rpb,1)) + ", computed by smCounter")
else:
rpb = args.rpb
print("rpb = " + str(round(rpb,1)) + ", given by user")
# set primer side
primerSide = 'R1' if args.primerSide == 1 else 'R2'
# run Python multiprocessing module
pool = multiprocessing.Pool(processes=args.nCPU)
results = [pool.apply_async(vc_wrapper, args=(args.bamFile, x[0], x[1], x[2], x[3], x[4], x[5], args.minBQ, args.minMQ, args.hpLen, args.mismatchThr, args.primerDist, args.mtThreshold, rpb, primerSide, args.refGenome, args.minAltUMI, args.maxAltAllele)) for x in locList]
# clear finished pool
pool.close()
pool.join()
# get results - a list of tuples of 2 strings
output = [p.get() for p in results]
# check for exceptions thrown by vc()
for idx in range(len(output)):
line,bg = output[idx]
if line.startswith("Exception thrown!"):
print(line)
raise Exception("Exception thrown in vc() at location: " + str(locList[idx]))
outfile_long = open('intermediate/nopval.' + args.outPrefix + '.VariantList.long.txt', 'w')
bkgFileName = 'intermediate/bkg.' + args.outPrefix + '.txt'
outfile_bkg = open(bkgFileName, 'w')
header_1 = ['CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'sUMT', 'sForUMT', 'sRevUMT', 'sVMT', 'sForVMT', 'sRevVMT', 'sVMF', 'sForVMF', 'sRevVMF', 'VDP', 'VAF', 'RefForPrimer', 'RefRevPrimer', 'primerOR', 'pLowQ', 'hqUmiEff', 'allUmiEff', 'refMeanRpb', 'altMeanRpb', 'rpbEffectSize', 'repType', 'hpInfo', 'simpleRepeatInfo', 'tandemRepeatInfo', 'DP', 'FR', 'MT', 'UFR', 'sUMT_A', 'sUMT_T', 'sUMT_G', 'sUMT_C', 'FILTER']