From e1e053ea2a824d59571391731696244cb84a21dc Mon Sep 17 00:00:00 2001 From: Haibin Lin Date: Tue, 22 Aug 2017 14:56:33 -0700 Subject: [PATCH] Sparse Tensor: request for reviews (#7082) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * [WIP] Sparse Tensor (#5800) * squash merge with 38f7c5584016e92ba1e0ee1b00ea6632740f67ce compiles on GPU update check alloc: Checkpoint. Pass elem-sum gpu test bug fix for copyfromto. sparse sgd test pass on gpu inefficient implementation for csr copy update submodule fix lint Simple bind with infer storage type (#32) * Symbol binding for sparse tensor development. (#31) * Initial checkin * Add init functions for simple bind in graph_executor * Add simple_bind c_api * Add simple bind c-api * Assign zeros to in_args, arg_grads, and aux_states * Add simple_bind2 python interface * Fix python interface bugs * Interface changes * Fix * Fix core dump * Add bind_ith_exec c_api * Change simple_bind2 * Fix seg fault * Finish simple_bind * Change _bind_ith_exec * Refactor simple_bind initialization flow for bind * Consolidate bind and simple_bind graph init flow * Fix bug * Clean up * Add comments * Clean up * Clean up * Minor correction * Rename APIs in graph executor * Refactor * Rebase * Delete deprecated functions * Move more front-end work to backend * Bug fix * Fix failed tests * Minor fix * Fix lint * Fix lint * Revert unnecessary changes * Revert * Revert * Clean up * Fix lint Conflicts: python/mxnet/symbol.py src/executor/graph_executor.cc * Add inferstorage to graph executor * re-enable tests for sparse embedding with simple_bind * type switch fix in sparse embedding" ; change `default` to `default_storage` for cast storage op (#33) * change default to default_storage * disable cpp test build temporarily attempt to fix windows build error, and fix lint (#34) update nnvm submodule (#37) Scipy build (#38) * update nnvm submodule * add scipy pip install for dockerfile Python3 unit tests (#39) * change xrange to range for python3 compatiblity" * remove more xrange from tests replace long with int for python3 (#40) fix the rest of TShape constructor errors (#41) fix lint (#42) fix wrong usage of mshadow::Shape1" (#43) implementation for Csr slice on cpu (#36) * CPU implementation for CSR remove seg_len from csr slice add some docs for slice csr change indptr, values, etc to be private member bug fix in sparse embedding update nnvm submoduel fix lint update unit test for sparse nd" * add const for SliceCsrIndPtr kernel Fix sparse dot according to the new RSP definition (#35) * Fix csr dot dns * Fix sparse dot * Add fallback and test cases for dot(csr, dns)=dns * Add int type switch * Fix * Fix * Fix update mshadow submodule (#44) Fix dns to rsp (#46) fix lint (#47) add runtime storage fallback detection" (#48) * add runtime storage fallback detection" * replace cast storage ex with cast storage impl Fm example (#45) * update csr slice logic to avoid confusion. add more exmaples. * add hint to module.update * more testcases(fallback) for sparse_nd * add to_csr() and to_rsp() method. More unit test (fallback now) * add fm test. fix lint * register sparse sgd under Optim.SGD * update dmlc-core submoduel * change indptr to _indptr temporarily. add const ref to fname fix lint fix lint; (#51) Guard gpu cast storage (#50) * Clean up * Fix typo Rearrange unit test files (#52) fix lint. add scipy for python_test. fix scipy.sparse import error. fix truediv for python3 fix travis test (#54) * remove pyc files * add verbose for travis nosetests cleanup some testing code and enums (#57) * update Makefile * refactor test_sparse_operator * change `default_storage` back to `default` * remove unused cpp tests port libsvm parser to mxnet as libsvm iter (#55) * copied csv iter to libsvm iter test libsvm iter draft handle round batch == false for csr batch loader code refactoring add get stype, shape interface to iiter separate class for sparse iter add missing file fix mem corruption' rename variables add comments also read label from libsvm add test. update docs. update submodule Conflicts: python/mxnet/sparse_ndarray.py * update submodule * fix lint * update test * revert naming change add benchmark scritp for dot (#59) * add benchmark scritp for dot add gpu option for bench add get_data funciton for benchmark print t_sparse, too; add comment change nnz to dnesity add backward * add comment update fm test (#62) introduce CSRNDarray and rowsparseNDarray to python frontend api (#58) * introduce CSRNDarray and rowsparseNDarray to python frontend api * temporarily disable fm_module test fix lint (#64) fix typo. disable libsvm io test (#65) Improve dot (#61) * Init checkin * Fix * Adjust dot parallelization methods * Set num_omp_threads for benchmark from command line * Fix omp thread number * Clean up * Add scipy as dot baseline * Fix format sparse_retain op (#66) * Initial checkin * Fix bugs * Add unit test for sparse_retain * Add example and modify test add storage cast for outputs that have non-default storage (#67) fix gpu build (#69) Fix test_sparse_retain python3 issue (#68) revert nnvm version * draft for sgd rsp rsp (#75) support sgd(rsp, rsp) support dot(csr, rsp) when rsp is full add ref to const ndarray params support sparse embedding with rsp weight' fix lint modify embedding backward to produce dense grad remove invalid_rid for rsp->dns remove previous embedding op changes pass sparse embedding test add STORAGE_TYPE_ASSIGN_CHECK remove backward storage infer * fix lint (#78) * fix lint (#79) * serial elemwise sum impl (#80) update module kvstore interface add other missing params and functions revert some interface changes revert some more changes reomve explicit casting for gradients on kvstore update Comm interface update fm example Conflicts: python/mxnet/model.py python/mxnet/ndarray.py * bug fix for initializing module with row_sparse weight (#81) * bug fix for initializing module with row_sparse weight * update log message * Sparse ndarray serialization and deserialization (#77) * Initial checkin * Add unit tests * Fix lint * Fix lint (#84) * Sgd with row_sparse weight, dns gradient (#83) * sgd rsp dns draft * support sgd_mom(rsp, dns, rsp) * update doc * remove cast storage for kv updater * code refactoring * update mshadow version (#88) * csr slice bug fix (#90) * benchmark dot code refactor (#87) * q^x6x add some code in benchmark * refactor * minor fixes * fix * lint fix * Add unit test (#91) * add unittest * minor fix * remove commented lines * change test func name * add test rsp * kvstore push row sparse (#93) * Add multi-thread cpu elemwise sum for rsps * Minor fix * Add flag to switch between serial and multi-thread kvstore push * Fix lint in sparse_ndarray.py * Revert "Fix lint in sparse_ndarray.py" This reverts commit d7225ec267a1e8c0c3c8074d25af5844ed39a14d. * Fix ndarray init in copy(ctx) * Add env var to control the flow of serial/parallel reduce * Refactor * Fix copy ndarray bug * Fix lint * Refactor * Fix windows openmp build failure (#94) * update mshadow submoduel (#95) * Revert "update mshadow submoduel (#95)" (#96) This reverts commit 1a129e4cc39514a6c7b3aa1189949969b818aec3. * Refactor sparse tensor code (#99) * Initial checkin test_sparse_ndarray passes * Fix test failure * Clean up * Clean up * Move init backend op to ndarray_utils * Fix lint * Eliminate circular dependency on headers * More refactor * Fix gpu build and consolidate Slice for dense and sparse * Clean up * More refactor * Clean up * Fix gpu build * Fix comment * fix pylint (#100) * Fix refactor sparse gpu test (#104) * Fix gpu build * Fix * Fix gpu test failure * change idx types from int32 to int64 (#101) Conflicts: python/mxnet/test_utils.py tests/python/unittest/test_sparse_operator.py update mshadow submodule fix extra quotes in test script change indptr type to int64 better err message for rsp" * revert LOG(DEBUG) change (#105) * fix undefined zeros in optimizer.py (#106) * move init dns zeros to init_op.h for kvstore to use (#107) * Refactor cast storage (#109) * Refactor cast_storage * Add cast_storage cc and cu files * Remove redundant comments * Replace std::accumulate with ParallelAccumulate * Clean up * Fix windows build * Rowsparse kv (#111) * update kvstore unit test Conflicts: tests/python/unittest/test_kvstore.py update model/module.py Conflicts: python/mxnet/model.py python/mxnet/module/module.py fix lint resolve conflict remove int keys in kvstore update cast to str function * fix failed dist_sync_kv test * bug fix in comm to ensure merged gradient is of the right type bug fix in comm * row sparse dist kvstore draft (push only) row_sparse pull * add ndarray row sparse shared mem constructor * code refactoring * add test for row_sparse weight bug fix for kv server slicing add async support rsolve race condition in kvstore * resolve error after reb ase * fix lint (#113) * rename some python funciton (#114) * _to_rsp * _to_csr. raise NotImplementedError * todense * fix lint (#115) enable libsvm uniit test (#6839) remove shared mem slice for csr add csr ndarray iter test make osx nose test verbose disable libsvm iter test Move InferAttr to mxnet from nnvm (#6830) * Move InferAttr to mxnet from nnvm Replace nnvm infer attr functions in c_api Initial checkin Clean up Remove nnvm namespace for FInferShape, FInferType, and FInferStorageType Add new interface for InferStorageType Revert "Remove nnvm namespace for FInferShape, FInferType, and FInferStorageType" This reverts commit 8aedf054bfe29b076c6fcb6f54d996fd2752e4de. Fix and clean up Fix lint Add nnvm changes Change infer function interface to accept only rvalue reference of graph Clean up Flush commits to show up in PR Add error handling for storage type inference failure Update nnvm * Fix pylint Change idx type switch for aux data (#6860) * Change idx type switch for aux data * Add mshadow commit Sparse dot enhancement (#6842) * Initial checkin Initial checkin Fix sparse dot test Fix unitest and add fallback for sparse dot * Add benchmark code * Revert "Add benchmark code" This reverts commit be009fe4c5a2a321aa92e99ac6e9cc511198c742. * Fix bug * Fix storage shape * Remove unnecessary test code * Use idx type switch Implement dot(csr, rsp)=dns and dot(csr.T, rsp)=rsp and refactor (#6902) * Initial checkin Add dot(csr.T, rsp)=rsp2 Add infer storage for dot(csr, rsp)=dns and dot(csr.T, rsp)=rsp2 * Fix comments * Replace std::lower_bound with own impl for gpu use too * Add time profiling * Revert "Add time profiling" This reverts commit 8f5bb982867731df0305148b1b150b05661f8529. * Move dot and batch_dot to a single file * Move dot gpu impl to a .cuh file * More refactor * Fix include error LibsvmIter fix (#6898) * fix bug in libsvm iter which causes mem corruption * add test for news dataset * fix wrong path in test * fix import error for urllib * update url * replace bz command with bz module Optimized gpu dot kernels (#6937) * pulled update to mshadow * mshadow update * added optimized gpu kernels for dot(csr,dns)=dns and dot(csr.T,dns)=dns, and unit test * added __syncwarp to vector kernel and reduced number of writes to shared memory Refactor sparse tensor code (#6955) * Save stype in frontend to avoid c-api call for stype * Change storage_type to stype * Revert "Change storage_type to stype" This reverts commit 90db7d18b624f3ee4ffd37bf5680205e77ca2763. * Revert "Revert "Change storage_type to stype"" This reverts commit 09328382e926b92a42ba5b3df6f169f825975d88. Move ndarray.py, sparse_ndarray.py, ndarray_utils.py, and _ndarray_internal to ndarrary folder More refactor Move elementwise sum for rsp to ndarray_function.cc Remove unnecessary import in ndarray module Fix pylint Remove redundant code Remove _stype from slots Fix cpp-package build error caused by the change to imperative invoke interface Use relative import Remove print line Rename _ndarray_internal.py to _internal.py * Relaunch test... minor bug fix in warp synchronous code (#7029) * move storage type vector from nnvm to mxnet (#7054) * move storage type vector from nnvm to mxnet * update nnvm * update nnvm * Improve copy sparse tensors (#7003) * Use cast_storage when copying ndarrays of different stypes on same context * Relaunch test * fix failed tests. add back 64bit support for dot fix lint * bug fix for IdentityComputeRsp * fix lint fix lint fix lint * add data partition for libsvm iter (#7027) * remove sparse embedding (#7165) * fix ndarray namespace * remove untested gpu operators (#7172) * skip sparse dot gpu tset. add sparse_nd_zeros gpu test * remove sparse_retain gpu Conflicts: tests/python/gpu/test_operator_gpu.py * Fix ndarray aux data issue (#7098) * Fix getting sparse ndarray data/aux_data issues * Add tests for func csr and row_sparse * Make get/set data/aux_data thread safe * Fix a bug * Fix typo and comment * More comments * Correct comment Conflicts: tests/python/gpu/test_operator_gpu.py * Support K-dimensional row-sparse tensor (#7179) * remove check for k dimensional rowsparse tensor * change var name for rsp sgd operator * add checks for sparse dot * bug fix for kdim rowsparse cast storage cpu * update IdentityLikeRhsComputeEx interface * remove set_storage_shape from ndarray. support elemwise_add with kdim row_sparse tensor * use get_with_shape instead of reshape * update according to comments Conflicts: src/operator/tensor/elemwise_unary_op.h * Improve sparse ndarray error message (#7181) * add test for broadcast_to * add comments Conflicts: python/mxnet/base.py * construct row_sparse ndarray for dist-async fix bug in rsp add rsp sync push race condition for push fix bug in rsp pull. refactor test cleanup comments refactor dist server fix lint fix storage shape issue with the new ndarray constructor data sharding draft; fix lint. add comment add support for zeros gradients use std::upper_bound/lower_bound remove special init function for rowsparse dist kvstore temporary support for inplace operators for sparse add test. fix return type store kRowSparseNDArray in kv server remove fcomp_ex sgd with dns weight and rsp gradient bug fix in sparse retain sparse pull c_api revise rowsparse pull api use engine to compute unique to ensure thread safety add rowsparse pull to dist-kv fix lint add example for rsp_pull remove name2idx; add sparse_pull_dict param to module fix unit test and c rowid conversion support str key type in kvstore (#6765) * update kvstore unit test * update model/module.py * fix lint * remove int keys in kvstore * update cast to str function * remove _cast_to_str_keys * fix lint * always cast to str Conflicts: include/mxnet/c_api.h include/mxnet/kvstore.h python/mxnet/kvstore.py python/mxnet/model.py python/mxnet/module/module.py src/c_api/c_api.cc src/kvstore/kvstore_local.h tests/python/unittest/test_kvstore.py update module API for other submodules update stypes in kvstore after refactoring change type of size from size_t to int64_t add sparse linear regression example remove sparse_pull_dict from module fix init_optim for seq_module. update sparse example resolve conflict for binary add rsp rsp Conflicts: python/mxnet/kvstore.py tests/python/unittest/test_kvstore.py * fix DotCsrRspRspImpl error message (#7191) * GPU implementation of cast_storage (dense to csr) (#7081) * Added gpu implementation for cast_storage dense to csr, unit tests, and benchmark. Additionally, cast_storage interface change to accommodate the need of temporary storage in cuda kernels. * fixed whitespace * minor unittest update * removed whitespace * add cast storage benchmark params info Conflicts: tests/python/gpu/test_operator_gpu.py * Sparse square sum (#7206) * Add square_sum op * Add unit test and fix check_numeric_gradient * Add .cu file and example * Fix lint * Remove gpu registration * Use square_sum in test_module_fm * Modify and Add documentation for mx.nd.zeros (#7197) * Modify and Add documentation for mx.nd.zeros * Change context to cpu * Change stype to optional * Change ordering and remove optional for _zeros_sparse_ndarray * Expose kWriteInplace for imperative execution (fcompute_ex and fstatefulcompute_ex) (#133) * expose kWriteInplace to FComputeEx and FStatefulComputeEx * refactor ccode * remove duplicated test * Operator add_n for row sparse ndarrays (#7244) * Add add_n op for row-sparse ndarrays and identity FComputeEx * Fix bug in square_sum * Remove test_cast_storage_ex from gpu test since it's not implemented yet * Fix according to the cr Conflicts: src/operator/tensor/elemwise_sum.cc src/operator/tensor/elemwise_unary_op.cc tests/python/gpu/test_operator_gpu.py resolve conflict * GPU implementation of cast_storage (dense to rsp) (#7223) * CastStorageDnsRsp GPU Implementation * updating function doc and some variable types and names * adding cuda_get_device_prop() util function * added rand_shape function for n-dimensional tensors * updated cast storage unit test * added dns_to_rsp to cast storage benchmark script * removing redundant unit test * fix lint * minor change in benchmark script * fix lint * correct function description * change storage_type to stype * changed scope of using namespaces * changed variable types from index_t to dim_t * resolve merge conflict in ndarray.load * Improve StatefulOp/FCompute storage fallback (#134) * test for fcomp fallback add storage fallback test and optimize fallback logic rename function, add comments use std size() * add autograd test with sparse inputs * update sparse ndarray api (#139) * support mx.nd.empty for sparse ndarray Change SparseNDArray to BaseSparseNDArray support mx.nd.array with BaseSparseNDArray inputs. Update documentation with explicit subclasses of NDArrays Conflicts: python/mxnet/ndarray/__init__.py python/mxnet/ndarray/ndarray.py python/mxnet/ndarray/sparse_ndarray.py tests/python/unittest/test_sparse_ndarray.py * fix print msg in test * Handle ograd_stype='row_sparse' for square_sum backward (#143) * Add one kernel for square_sum backward pass to take rsp ograd * Add kNullOp and change to use type_assign in infer stype fallback * Sparse retain improvement (#138) * Add one more kernel for sparse retain * Fix compile * Change STORAGE_TYPE_ASSIGN_CHECK to type_assign for fallback * Fix * Add gpu compile * ignoring variables in SimpleBind that is used on python's sparse branch for now. (#135) * add bias term to fm test (#145) * update ndarray.nd, remove `invoke` from excluded members (#137) remove __weakref__ from SparseNDArray add data indice to doc revert dlpack update revert mxdoc changes move methods from BaseSparseNDarray to csrndarray and rwosparse ndarray * support storage fallback with mutable inputs (#147) * include mutatable inputs in storage fallback. refactor executor add fallback test for rms prop and adam fix lint fix lint fix test in optimizer * update according to comments * fix unit tests * fix gpu compilation err * Code changes based on reviews (#144) * code changes according to review comments remove executor debug. add doc to optimizer update sparse sgd test add dtype option to rand_sparse_ndarray * overhauled reqs for sparse operators * patch FCompExFallback with mutable inputs. update test_optimizer with more fallback cases * change executor debug macro to env var * add comment * update doc * change ndarray.aux_shape() to return const reference * remove todense to_rsp to_csr. replace with tostype * replace manual calls to cast_storage with tostype * disable gpu fallback test for optimizer * fix lint * add backward pass for cast_storage. refactor cast_storage test * rand_sparse_ndarray bug fix * fix cast_storage for gpu * disable csr test for fp16 * update row sparse ndarray doc * update doc * small edits according to reviews (#151) * fix lint (#152) * add license to all new files in sparse brnach (#154) * Allocate temp data on the fly for some casting operations (#149) * fix utf8 encoding in sparse ndarray * Extending the GPU dot operator (#7226) * Added GPU DotCsrRspDnsImpl declaration and TODOs * cleaning up function doc, variable types, and code-style * minor bug fixes * enable GPU dot(csr,rsp)=dns unit test * extend sparse dot unit test * adding GPU impl of DotCsrRspDns and its kernels * add TODO * changed variable types from index_t to dim_t * fix function description * added DotCsrRspRspImpl and its kernels (baseline, functionality) * added DotCsrDnsRspImpl and its kernels (baseline, functionality); plus code documentation * refactored dot benchmark * optimized DotCsrTransDnsRsp GPU kernel * change of dot impl interface to include OpContext, for temp storage * removing __device__ flag from CPU kernels * minor fixes and changing variable data types * minor fixes based on code reviews Conflicts: benchmark/python/sparse_op.py tests/python/gpu/test_operator_gpu.py tests/python/unittest/test_sparse_operator.py * Add get_synthetic_dataset function to util (#146) * Add get_synthetic_datasets * Move to test_utils * Remove _get_uniform_dataset * Move validation to its own function * Refactor the validation code for csr generation * Make test_powerlaw a nested function * Change SparseNDArray to CSRNDArray * Merge with dtype specific changes in test_utils * temporary fix for batch norm storage fallback (#156) * support random_uniform/normal/gamma with row_sparse output (#155) * add support for initilazer with rowsparse output * add scalar assignment to row_sparse * add setitem test to gpu * Revert "add scalar assignment to row_sparse" This reverts commit 8aef7a56c44038f67bbec93811977ea2f9fa3c30. * Revert "add setitem test to gpu" This reverts commit 3b969ac0980e8d7166a1cf46878ed2bd457986ed. * Square sum backward support one more case (#161) * Add documentation for sparse ops (#148) * draft doc for sparse op * add more stype doc for operators * add doc for cast_storage * see also cast_storage. remove base sparse ndarray. fix aux_types comemtn * grammar / spelling fix * A few fixes (#163) * fix batch norm gpu kernel. register random operators on gpu * register sparse random op on gpu, too * Minor fixes sparse ops (#160) * change CPU kernel inline directives, data types, and function doc * update dot dtype switch to use 32 and 64bit floating point only * use type_assign instead of STORAGE_TYPE_ASSIGN_CHECK * added tensor_util-inl.cuh file for common tensor operator GPU kernels * sparse Adam optimizer (#164) * add sparse adam * register gpu op * add comments * cr comments * kvstore.row_sparse_pull for GPU and end-to-end benchmark: CPU vs. multi-GPUs (#150) * Add gpu support for BroadcastRowSparse * Fix bugs * Add benchmark script * Increase output dim size * Update weight on CPU using single GPU for sparse tensors * More fix * Optimize sparse_retain for special case * Change row sparse pull locations * Avoid sparse retain on cpu if possible * Use acc for metric * Fix misc * fix bug in adam update (#167) fix a bug in adam update * change sparse example from regression to classification (#165) * fix python import (#166) * Add waitall to sparse_end2end.py (#169) * Add waitall() * Add dummy metric option * Add header license * Dot script changes (#159) * Add get_synthetic_datasets * Move to test_utils * Remove _get_uniform_dataset * Move validation to its own function * Refactor the validation code for csr generation * Make test_powerlaw a nested function * Change SparseNDArray to CSRNDArray * Refactoring changes to dot.py * Fix mxnet test_utils changes * Remove pdb statement * Add distribution parameter * Refactor benchmarking script * Remove unused code * Make style changes and remove unused code * Change typo in comment * Add transpose support * Change typo * 4 decimal points needed for density * Add rsp support for real datasets * Correct variable name mini_file_name * Move wait_to_read outside if * Seperate out scipy and mxnet logic in bench_dot * Fix lhs_trans issue * Move transpose outside measure_cost * Compute transpose inside measure_cost * Remove unused variables * Transpose only if trans_lhs (#171) * fix default val for distribution (#172) * fix lint (#175) * avoid cast_storage in dist-kvstore-server (#174) * avoid cast_storage in dist-kvstore-server * add stream arg to mshadow;;copy * fix copy order * Add sparse namespace to ndarray and symbol (#177) * Register dot, cast_storage, and sparse_retain under mxnet.ndarray.sparse * Add sparse to symbol namespace * Delete commented code * mv sparse_ndarray.py sparse.py * Clean up * Change docstring * changes based on code reviews (#176) * remove scipy dependency * move kvstore checks to backned * add const to lambda * temp fix to ndarray.md (#178) * Fix sparse namespace pylint (#179) * add comments and error msg (#181) * add clarification for csr (#182) * add clarification for csr * cr comments * revert change in test util (#183) * fix amalgamation (#184) * fix lint --- benchmark/python/sparse/cast_storage.py | 99 ++ benchmark/python/sparse/dot.py | 445 ++++++++ benchmark/python/sparse/sparse_end2end.py | 249 ++++ benchmark/python/sparse/sparse_op.py | 245 ++++ benchmark/python/sparse/util.py | 50 + docs/api/python/ndarray.md | 63 +- example/sparse/get_data.py | 32 + example/sparse/linear_classification.py | 185 +++ include/mxnet/c_api.h | 240 +++- include/mxnet/executor.h | 1 + include/mxnet/graph_attr_types.h | 48 + include/mxnet/kvstore.h | 24 + include/mxnet/ndarray.h | 502 +++++++- include/mxnet/op_attr_types.h | 18 +- include/mxnet/storage.h | 4 +- perl-package/AI-MXNetCAPI/mxnet.i | 6 + perl-package/AI-MXNetCAPI/mxnet_typemaps.i | 11 + python/mxnet/__init__.py | 3 +- python/mxnet/_ctypes/ndarray.py | 39 +- python/mxnet/base.py | 14 + python/mxnet/contrib/autograd.py | 1 + python/mxnet/executor.py | 5 +- python/mxnet/image/detection.py | 2 +- python/mxnet/image/image.py | 6 +- python/mxnet/io.py | 5 +- python/mxnet/kvstore.py | 67 +- python/mxnet/model.py | 8 +- python/mxnet/module/base_module.py | 3 +- python/mxnet/module/module.py | 8 +- python/mxnet/ndarray/__init__.py | 25 + .../_internal.py} | 0 python/mxnet/{ => ndarray}/ndarray.py | 499 +++----- python/mxnet/ndarray/op.py | 209 ++++ python/mxnet/ndarray/sparse.py | 923 +++++++++++++++ python/mxnet/ndarray/utils.py | 240 ++++ python/mxnet/optimizer.py | 23 +- python/mxnet/random.py | 14 +- python/mxnet/symbol/__init__.py | 23 + .../_internal.py} | 0 python/mxnet/symbol/op.py | 242 ++++ python/mxnet/symbol/sparse.py | 18 + python/mxnet/{ => symbol}/symbol.py | 275 +---- python/mxnet/test_utils.py | 227 +++- src/c_api/c_api.cc | 116 ++ src/c_api/c_api_common.h | 2 + src/c_api/c_api_executor.cc | 32 +- src/c_api/c_api_ndarray.cc | 237 +++- src/c_api/c_api_symbolic.cc | 5 +- src/c_api/c_predict_api.cc | 3 +- src/common/utils.cc | 39 + src/common/utils.cu | 39 + src/common/utils.h | 167 ++- src/executor/attach_op_execs_pass.cc | 176 ++- src/executor/exec_pass.h | 52 +- src/executor/graph_executor.cc | 326 ++++-- src/executor/graph_executor.h | 9 +- src/executor/infer_graph_attr_pass.cc | 356 ++++++ src/executor/inplace_addto_detect_pass.cc | 2 + src/io/iter_batchloader.h | 17 +- src/io/iter_libsvm.cc | 288 +++++ src/io/iter_prefetcher.h | 32 +- src/io/iter_sparse.h | 45 + src/io/iter_sparse_batchloader.h | 203 ++++ src/io/iter_sparse_prefetcher.h | 153 +++ src/kvstore/comm.h | 304 ++++- src/kvstore/kvstore_dist.h | 252 ++++- src/kvstore/kvstore_dist_server.h | 249 +++- src/kvstore/kvstore_local.h | 151 ++- src/ndarray/ndarray.cc | 450 +++++++- src/ndarray/ndarray_function-inl.h | 61 +- src/ndarray/ndarray_function.cc | 134 +++ src/ndarray/ndarray_function.h | 9 + src/nnvm/legacy_op_util.cc | 34 +- src/operator/batch_norm.cc | 2 +- src/operator/batch_norm.cu | 4 +- src/operator/deconvolution-inl.h | 2 +- src/operator/elemwise_op_common.h | 48 + src/operator/leaky_relu-inl.h | 5 +- src/operator/mxnet_op.h | 24 +- src/operator/operator_common.h | 82 ++ src/operator/optimizer_op-inl.h | 493 ++++++++ src/operator/optimizer_op.cc | 9 + src/operator/optimizer_op.cu | 9 +- src/operator/random/sample_op.cc | 9 +- src/operator/random/sample_op.cu | 60 +- src/operator/random/sample_op.h | 109 +- src/operator/tensor/cast_storage-inl.cuh | 589 ++++++++++ src/operator/tensor/cast_storage-inl.h | 392 +++++++ src/operator/tensor/cast_storage.cc | 87 ++ src/operator/tensor/cast_storage.cu | 35 + src/operator/tensor/dot-inl.cuh | 883 +++++++++++++++ src/operator/tensor/dot-inl.h | 1007 +++++++++++++++++ src/operator/tensor/dot.cc | 141 +++ src/operator/tensor/dot.cu | 45 + .../elemwise_binary_broadcast_op_basic.cc | 1 + src/operator/tensor/elemwise_binary_op.h | 169 ++- .../tensor/elemwise_binary_op_basic.cc | 20 +- src/operator/tensor/elemwise_sum.cc | 66 +- src/operator/tensor/elemwise_unary_op.cc | 9 +- src/operator/tensor/elemwise_unary_op.cu | 7 +- src/operator/tensor/elemwise_unary_op.h | 113 +- src/operator/tensor/indexing_op.cc | 1 - src/operator/tensor/indexing_op.h | 3 + src/operator/tensor/init_op.cc | 1 + src/operator/tensor/init_op.cu | 3 +- src/operator/tensor/init_op.h | 88 +- src/operator/tensor/matrix_op-inl.h | 449 ++------ src/operator/tensor/matrix_op.cc | 94 +- src/operator/tensor/matrix_op.cu | 12 - src/operator/tensor/sparse_retain-inl.h | 396 +++++++ src/operator/tensor/sparse_retain.cc | 80 ++ src/operator/tensor/sparse_retain.cu | 36 + src/operator/tensor/square_sum-inl.h | 456 ++++++++ src/operator/tensor/square_sum.cc | 52 + src/operator/tensor/util/tensor_util-inl.cuh | 240 ++++ .../ci_build/install/ubuntu_install_python.sh | 4 +- tests/cpp/operator/batchnorm_test.cc | 6 +- tests/nightly/dist_sync_kvstore.py | 166 ++- tests/python/gpu/test_kvstore_gpu.py | 68 ++ tests/python/gpu/test_operator_gpu.py | 3 + tests/python/unittest/test_autograd.py | 75 +- tests/python/unittest/test_infer_shape.py | 20 +- tests/python/unittest/test_io.py | 106 ++ tests/python/unittest/test_kvstore.py | 134 ++- tests/python/unittest/test_module.py | 105 +- .../python/unittest/test_multi_device_exec.py | 27 + tests/python/unittest/test_ndarray.py | 1 + tests/python/unittest/test_operator.py | 113 +- tests/python/unittest/test_optimizer.py | 182 ++- tests/python/unittest/test_sparse_ndarray.py | 524 +++++++++ tests/python/unittest/test_sparse_operator.py | 373 ++++++ tests/travis/run_test.sh | 20 +- tests/travis/setup.sh | 4 +- 133 files changed, 15525 insertions(+), 1781 deletions(-) create mode 100644 benchmark/python/sparse/cast_storage.py create mode 100644 benchmark/python/sparse/dot.py create mode 100644 benchmark/python/sparse/sparse_end2end.py create mode 100644 benchmark/python/sparse/sparse_op.py create mode 100644 benchmark/python/sparse/util.py create mode 100644 example/sparse/get_data.py create mode 100644 example/sparse/linear_classification.py create mode 100644 include/mxnet/graph_attr_types.h create mode 100644 python/mxnet/ndarray/__init__.py rename python/mxnet/{_ndarray_internal.py => ndarray/_internal.py} (100%) rename python/mxnet/{ => ndarray}/ndarray.py (87%) create mode 100644 python/mxnet/ndarray/op.py create mode 100644 python/mxnet/ndarray/sparse.py create mode 100644 python/mxnet/ndarray/utils.py create mode 100644 python/mxnet/symbol/__init__.py rename python/mxnet/{_symbol_internal.py => symbol/_internal.py} (100%) create mode 100644 python/mxnet/symbol/op.py create mode 100644 python/mxnet/symbol/sparse.py rename python/mxnet/{ => symbol}/symbol.py (90%) create mode 100644 src/common/utils.cc create mode 100644 src/common/utils.cu create mode 100644 src/executor/infer_graph_attr_pass.cc create mode 100644 src/io/iter_libsvm.cc create mode 100644 src/io/iter_sparse.h create mode 100644 src/io/iter_sparse_batchloader.h create mode 100644 src/io/iter_sparse_prefetcher.h create mode 100644 src/operator/tensor/cast_storage-inl.cuh create mode 100644 src/operator/tensor/cast_storage-inl.h create mode 100644 src/operator/tensor/cast_storage.cc create mode 100644 src/operator/tensor/cast_storage.cu create mode 100644 src/operator/tensor/dot-inl.cuh create mode 100644 src/operator/tensor/dot-inl.h create mode 100644 src/operator/tensor/dot.cc create mode 100644 src/operator/tensor/dot.cu create mode 100644 src/operator/tensor/sparse_retain-inl.h create mode 100644 src/operator/tensor/sparse_retain.cc create mode 100644 src/operator/tensor/sparse_retain.cu create mode 100644 src/operator/tensor/square_sum-inl.h create mode 100644 src/operator/tensor/square_sum.cc create mode 100644 src/operator/tensor/util/tensor_util-inl.cuh create mode 100644 tests/python/gpu/test_kvstore_gpu.py create mode 100644 tests/python/unittest/test_sparse_ndarray.py create mode 100644 tests/python/unittest/test_sparse_operator.py diff --git a/benchmark/python/sparse/cast_storage.py b/benchmark/python/sparse/cast_storage.py new file mode 100644 index 000000000000..7ae537398c42 --- /dev/null +++ b/benchmark/python/sparse/cast_storage.py @@ -0,0 +1,99 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import ctypes + +from mxnet.test_utils import * +import os +import time +import argparse + +from mxnet.base import check_call, _LIB + +parser = argparse.ArgumentParser(description="Benchmark cast storage operators", + formatter_class=argparse.ArgumentDefaultsHelpFormatter) +parser.add_argument('--num-omp-threads', type=int, default=1, help='number of omp threads to set in MXNet') +args = parser.parse_args() + +def measure_cost(repeat, f, *args, **kwargs): + start = time.time() + results = [] + for i in range(repeat): + (f(*args, **kwargs)).wait_to_read() + end = time.time() + diff = end - start + return diff / repeat + + +def run_cast_storage_synthetic(): + def dense_to_sparse(m, n, density, ctx, repeat, stype): + set_default_context(ctx) + data_shape = (m, n) + dns_data = rand_ndarray(data_shape, stype, density).tostype('default') + dns_data.wait_to_read() + + # do one warm up run, verify correctness + assert same(mx.nd.cast_storage(dns_data, stype).asnumpy(), dns_data.asnumpy()) + + # start benchmarking + cost = measure_cost(repeat, mx.nd.cast_storage, dns_data, stype) + results = '{:10.1f} {:>10} {:8d} {:8d} {:10.2f}'.format(density*100, str(ctx), m, n, cost*1000) + print(results) + + check_call(_LIB.MXSetNumOMPThreads(ctypes.c_int(args.num_omp_threads))) + + # params + # m number of rows + # n number of columns + # density density of the matrix + # num_repeat number of benchmark runs to average over + # contexts mx.cpu(), mx.gpu() + # note: benchmark different contexts separately; to benchmark cpu, compile without CUDA + # benchmarks dns_to_csr, dns_to_rsp + m = [ 512, 512] + n = [50000, 100000] + density = [1.00, 0.80, 0.60, 0.40, 0.20, 0.10, 0.05, 0.02, 0.01] + num_repeat = 10 + contexts = [mx.gpu()] + benchmarks = ["dns_to_csr", "dns_to_rsp"] + + # run benchmark + for b in benchmarks: + stype = '' + print("==================================================") + if b is "dns_to_csr": + stype = 'csr' + print(" cast_storage benchmark: dense to csr, size m x n ") + elif b is "dns_to_rsp": + stype = 'row_sparse' + print(" cast_storage benchmark: dense to rsp, size m x n ") + else: + print("invalid benchmark: %s" %b) + continue + print("==================================================") + headline = '{:>10} {:>10} {:>8} {:>8} {:>10}'.format('density(%)', 'context', 'm', 'n', 'time(ms)') + print(headline) + for i in range(len(n)): + for ctx in contexts: + for den in density: + dense_to_sparse(m[i], n[i], den, ctx, num_repeat, stype) + print("") + print("") + + +if __name__ == "__main__": + run_cast_storage_synthetic() diff --git a/benchmark/python/sparse/dot.py b/benchmark/python/sparse/dot.py new file mode 100644 index 000000000000..fe322821a09f --- /dev/null +++ b/benchmark/python/sparse/dot.py @@ -0,0 +1,445 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import ctypes + +import os +import time +import argparse +import subprocess +import scipy.sparse as sp + +import mxnet as mx +import numpy as np +import numpy.random as rnd +from mxnet.test_utils import rand_ndarray, set_default_context, assert_almost_equal +from mxnet.base import check_call, _LIB +from util import get_data, estimate_density + +PARSER = argparse.ArgumentParser(description="Benchmark sparse operators", + formatter_class=argparse.ArgumentDefaultsHelpFormatter) +PARSER.add_argument('--num-omp-threads', type=int, + default=1, help='number of omp threads to set in MXNet') +PARSER.add_argument('--gpu', action='store_true', + help="to be run on gpu") +# TODO: Use logging later +PARSER.add_argument('--verbose', action='store_true', + help="Verbose output") +ARGS = PARSER.parse_args() + +# some data information +KDDA = { + 'data_mini': 'kdda.t.mini', + 'data_name': 'kdda.t', + 'data_origin_name': 'kdda.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", + 'feature_dim': 20216830, + 'm': [1, 8, 32], + 'batch_size': [64], + 'default_index': {'batch_size': 0, + 'output_dim': 2}, + 'num_batches': 10 +} + +AVAZU = { + 'data_mini': 'avazu-app.t.mini', + 'data_name': 'avazu-app.t', + 'data_origin_name': 'avazu-app.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", + 'feature_dim': 1000000, + 'm': [1, 1000, 2000], + 'batch_size': [128, 256], + 'default_index': {'batch_size': 0, + 'output_dim': 1}, + 'num_batches': 10 +} + +CRITEO = { + 'data_mini': 'criteo.t.mini', + 'data_name': 'criteo.t', + 'data_origin_name': 'criteo.t.bz2', + 'url' : "https://s3-us-west-2.amazonaws.com/sparse-dataset/criteo.t.bz2", + 'feature_dim': 8388621, + 'm': [1, 8, 16, 32, 64], + 'batch_size': [64, 128], + 'default_index': {'batch_size': 1, + 'output_dim': 3}, + 'num_batches': 10 +} + +SYNTHETIC1 = { + 'feature_dim': [1000000], + 'm': [256, 1000], + 'density': [0.001, 0.005, 0.01, 0.02, 0.05, + 0.1, 0.2, 0.5, 0.65], + 'batch_size': [64, 128], + 'default_index': {'batch_size': 1, + 'density': 2, + 'output_dim': 1, + 'feature_dim': 0}, + 'num_repeat': 10 +} + +SYNTHETIC2 = { + 'feature_dim': [8000000, 16000000], + 'm': [1, 32], + 'density': [0.001, 0.005, 0.01, 0.02, 0.05, + 0.1, 0.2, 0.5, 0.65], + 'batch_size': [64, 128], + 'default_index': {'batch_size': 1, + 'density': 2, + 'output_dim': 1, + 'feature_dim': 0}, + 'num_repeat': 10 +} + +def measure_cost(repeat, scipy_trans_lhs, scipy_dns_lhs, func_name, *args, **kwargs): + """Measure time cost of running a function + """ + mx.nd.waitall() + args_list = [] + for arg in args: + args_list.append(arg) + start = time.time() + if scipy_trans_lhs: + args_list[0] = np.transpose(args_list[0]) if scipy_dns_lhs else sp.spmatrix.transpose(args_list[0]) + for _ in range(repeat): + func_name(*args_list, **kwargs) + mx.nd.waitall() + end = time.time() + diff = end - start + return diff / repeat + + +def _get_iter(path, data_shape, batch_size): + data_train = mx.io.LibSVMIter(data_libsvm=path, + data_shape=data_shape, + batch_size=batch_size) + data_iter = iter(data_train) + return data_iter + + +def _line_count(path): + return int(subprocess.check_output('wc -l {}'.format(path), shell=True).split()[0]) + + +def _compare_sparse_dense(data_dir, file_name, mini_file_name, feature_dim, + output_dim, density, batch_size, num_batches=3, num_repeat=5, transpose=False, + rsp=False): + + def create_mini_path(mini_path, path, num_batches): + """Samples batches of size: batch_size, total number: num_batches + from the dataset files for running benchmarks""" + if not os.path.exists(mini_path): + last = _line_count(path) - num_batches * batch_size + last = last if last >= 1 else 1 + start = int(rnd.uniform(1, last)) + os.system("sed -n '%d,%dp' %r > %r" + %(start, start + num_batches * batch_size, path, mini_path)) + assert os.path.exists(mini_path) + + + def run_benchmark(mini_path): + """Run benchmarks + """ + data_shape = (feature_dim, ) + train_iter = _get_iter(mini_path, data_shape, batch_size) + weight_row_dim = batch_size if transpose else feature_dim + weight_shape = (weight_row_dim, output_dim) + if not rsp: + weight = mx.nd.random_uniform(low=0, high=1, shape=weight_shape) + else: + weight = rand_ndarray(weight_shape, "row_sparse", density=0.05, distribution="uniform") + total_cost = {} + average_cost = {} + count = 0 + total_cost["sparse"] = 0. + total_cost["dense"] = 0. + for _ in train_iter: + csr_data = train_iter.getdata() + dns_data = csr_data.tostype('default') + cost_sparse = measure_cost(num_repeat, False, False, mx.nd.dot, csr_data, weight, transpose_a=transpose) + cost_dense = measure_cost(num_repeat, False, False, mx.nd.dot, dns_data, weight, transpose_a=transpose) + total_cost["sparse"] += cost_sparse + total_cost["dense"] += cost_dense + count = count + 1 + average_cost["sparse"] = total_cost["sparse"] / count + average_cost["dense"] = total_cost["dense"] / count + return (average_cost["sparse"], average_cost["dense"]) + + + def print_result(average_cost_sparse, average_cost_dense): + """Print result of comparison between sparse and dense + """ + ratio = average_cost_dense / average_cost_sparse + fmt = '{:15.4f} {:10d} {:10d} {:10d} {:20.2f} {:15.2f} {:15.2f} {:10} {:10}' + print(fmt.format(density * 100, batch_size, output_dim, feature_dim, + ratio, average_cost_dense*1000, average_cost_sparse*1000, + transpose, rsp)) + + mini_path = os.path.join(data_dir, mini_file_name) + path = os.path.join(data_dir, file_name) + create_mini_path(mini_path, path, num_batches) + average_cost_sparse, average_cost_dense = run_benchmark(mini_path) + print_result(average_cost_sparse, average_cost_dense) + + +def test_dot_real(data_dict): + """Dot operator testing with real datasets""" + data_dir = os.path.join(os.getcwd(), 'data') + + path = os.path.join(data_dir, data_dict['data_name']) + if not os.path.exists(path): + get_data( + data_dir, + data_dict['data_name'], + data_dict['url'], + data_dict['data_origin_name'] + ) + assert os.path.exists(path) + + k = data_dict['feature_dim'] + m = data_dict['m'] + batch_size_list = data_dict['batch_size'] + + default_output_index = data_dict['default_index']['output_dim'] + default_batch_size_index = data_dict['default_index']['batch_size'] + density = estimate_density(path, data_dict['feature_dim']) + num_batches = data_dict['num_batches'] + + assert default_batch_size_index < len(batch_size_list) + assert default_output_index < len(m) + if ARGS.verbose: + print("Running Benchmarking on %r data") % data_dict['data_mini'] + print('{:>15} {:>10} {:>10} {:>10} {:>20} {:>15} {:>15} {:>10} {:>10}'.format('density(%)', + 'n', + 'm', + 'k', + 't_dense/t_sparse', + 't_dense(ms)', + 't_sparse(ms)', + 'is_transpose', + 'rhs_rsp')) + + + for output_dim in m: + _compare_sparse_dense(data_dir, data_dict['data_name'], data_dict['data_mini'], + k, output_dim, density, + batch_size_list[default_batch_size_index], num_batches) + _compare_sparse_dense(data_dir, data_dict['data_name'], data_dict['data_mini'], + k, output_dim, density, + batch_size_list[default_batch_size_index], num_batches, + transpose=True) + _compare_sparse_dense(data_dir, data_dict['data_name'], data_dict['data_mini'], + k, output_dim, density, + batch_size_list[default_batch_size_index], num_batches, rsp=True) + + for batch_size in batch_size_list: + _compare_sparse_dense(data_dir, data_dict['data_name'], data_dict['data_mini'], + k, m[default_output_index], density, batch_size, num_batches) + _compare_sparse_dense(data_dir, data_dict['data_name'], data_dict['data_mini'], + k, m[default_output_index], density, batch_size, num_batches, + transpose=True) + _compare_sparse_dense(data_dir, data_dict['data_name'], data_dict['data_mini'], + k, output_dim, density, + batch_size_list[default_batch_size_index], num_batches, rsp=True) + + +def test_dot_synthetic(data_dict): + """benchmark sparse mxnet dot and scipy dot operator with matrices of given density. + `t_sparse` is the runtime of the invoked sparse dot operator in ms, while `t_dense` is the + runtime of dot(dns, dns), with the same matrices except that they are in default storage type. + """ + # Benchmark MXNet and Scipys dot operator + def bench_dot(lhs_shape, rhs_shape, lhs_stype, rhs_stype, + lhs_den, rhs_den, trans_lhs, ctx, num_repeat=10, fw="mxnet", distribution="uniform"): + set_default_context(ctx) + assert fw == "mxnet" or fw == "scipy" + # Set funcs + dot_func_sparse = mx.nd.dot if fw == "mxnet" else sp.spmatrix.dot + dot_func_dense = mx.nd.dot if fw == "mxnet" else np.dot + # Create matrix instances + lhs_nd = rand_ndarray(lhs_shape, lhs_stype, density=lhs_den, distribution=distribution) + # only uniform distribution supported for rhs + rhs_nd = rand_ndarray(rhs_shape, rhs_stype, density=rhs_den, distribution="uniform") + lhs_dns = None + rhs_dns = None + dense_cost = None + sparse_cost = None + + if fw == "mxnet": + lhs_dns = lhs_nd if lhs_stype == 'default' else lhs_nd.tostype('default') + rhs_dns = rhs_nd if rhs_stype == 'default' else rhs_nd.tostype('default') + # One warm up run, verify correctness + out = dot_func_sparse(lhs_nd, rhs_dns, trans_lhs) + out_expected = dot_func_dense(lhs_dns, rhs_dns, trans_lhs) + assert_almost_equal(out.asnumpy(), out_expected.asnumpy(), rtol=1e-1, atol=1e-1) + sparse_cost = measure_cost(num_repeat, False, False, dot_func_sparse, lhs_nd, rhs_nd, trans_lhs) + dense_cost = measure_cost(num_repeat, False, False, dot_func_dense, lhs_dns, rhs_dns, trans_lhs) + else: + lhs_dns = lhs_nd.asnumpy() + rhs_dns = rhs_nd.asnumpy() + lhs_nd = sp.csr_matrix(lhs_nd.asnumpy()) + rhs_nd = rhs_nd.asnumpy() + # One warm up run, verify correctness + lhs_nd_copy = sp.spmatrix.transpose(lhs_nd) if trans_lhs else lhs_nd + out = dot_func_sparse(lhs_nd_copy, rhs_dns) + sparse_cost = measure_cost(num_repeat, trans_lhs, False, dot_func_sparse, lhs_nd, rhs_nd) + dense_cost = measure_cost(num_repeat, trans_lhs, True, dot_func_dense, lhs_dns, rhs_dns) + + speedup = dense_cost / sparse_cost + # Print results + m = lhs_shape[0] + k = lhs_shape[1] + n = rhs_shape[1] + result_pattern = '{:15.1f} {:15.1f} {:>10} {:8d} {:8d} {:8d} {:13.2f} {:13.2f} {:8.2f}' + results = result_pattern.format(lhs_den*100, + rhs_den*100, + str(ctx), + m, + k, + n, + sparse_cost*1000, + dense_cost*1000, + speedup) + print(results) + + def print_benchmark_info(lhs, rhs, lhs_trans, fw): + trans_str = "^T" if lhs_trans else "" + print("========================================================") + print(" %s sparse dot benchmark: dot(%s, %s) = %s ") % (fw, lhs, rhs, rhs) + print(" (matrix multiplication: (m x k)%s * (k x n) = m x n) ") % (trans_str) + print("========================================================") + headline_pattern = '{:>15} {:>15} {:>10} {:>8} {:>8} {:>8} {:>13} {:>13} {:>8}' + headline = headline_pattern.format('lhs_density(%)', + 'rhs_density(%)', + 'context', + 'm', 'k', 'n', + 't_sparse(ms)', + 't_dense(ms)', + 'speedup') + print(headline) + + + def run_benchmark(ctx=None, lhs="csr", lhs_trans=False, rhs="dns", fw="mxnet", rhs_density=1, + distribution="uniform"): + if lhs != "csr": + raise ValueError("Value other than csr for lhs not supported") + if rhs_density > 1 or rhs_density < 0: + raise ValueError("rhs_density has to be between 0 and 1") + + print_benchmark_info(lhs, rhs, lhs_trans, fw) + + + lhs_stype = "csr" + rhs_stype = "row_sparse" if rhs == "rsp" else "default" + + feature_dim_list = data_dict['feature_dim'] + output_dim_list = data_dict['m'] + batch_size_list = data_dict['batch_size'] + density_list = data_dict['density'] + + default_output_index = data_dict['default_index']['output_dim'] + default_batch_size_index = data_dict['default_index']['batch_size'] + default_feature_index = data_dict['default_index']['feature_dim'] + default_density_index = data_dict['default_index']['density'] + num_repeat = data_dict['num_repeat'] + + for output_dim in output_dim_list: + if lhs_trans: + output_row_dim = batch_size_list[default_batch_size_index] + else: + output_row_dim = feature_dim_list[default_feature_index] + bench_dot((batch_size_list[default_batch_size_index], + feature_dim_list[default_feature_index]), + (output_row_dim, output_dim), + lhs_stype, rhs_stype, + density_list[default_density_index], rhs_density, + lhs_trans, ctx, num_repeat=num_repeat, + fw=fw, distribution=distribution) + + for feature_dim in feature_dim_list: + if lhs_trans: + output_row_dim = batch_size_list[default_batch_size_index] + else: + output_row_dim = feature_dim + bench_dot((batch_size_list[default_batch_size_index], feature_dim), + (output_row_dim, output_dim_list[default_output_index]), + lhs_stype, rhs_stype, density_list[default_density_index], rhs_density, + lhs_trans, ctx, num_repeat=num_repeat, fw=fw, distribution=distribution) + + for batch_size in batch_size_list: + if lhs_trans: + output_row_dim = batch_size + else: + output_row_dim = feature_dim_list[default_feature_index] + bench_dot((batch_size, feature_dim_list[default_feature_index]), + (output_row_dim, + output_dim_list[default_output_index]), + lhs_stype, rhs_stype, density_list[default_density_index], + rhs_density, lhs_trans, ctx, num_repeat=num_repeat, + fw=fw, distribution=distribution) + + for density in density_list: + if lhs_trans: + output_row_dim = batch_size_list[default_batch_size_index] + else: + output_row_dim = feature_dim_list[default_feature_index] + bench_dot((batch_size_list[default_batch_size_index], + feature_dim_list[default_feature_index]), + (output_row_dim, + output_dim_list[default_output_index]), + lhs_stype, rhs_stype, density, rhs_density, lhs_trans, ctx, + num_repeat=num_repeat, fw=fw, distribution=distribution) + + check_call(_LIB.MXSetNumOMPThreads(ctypes.c_int(ARGS.num_omp_threads))) + context = mx.gpu() if ARGS.gpu else mx.cpu() + # TODO(anirudh): make the data dicts to config which can be passed at runtime + distributions = ["uniform", "powerlaw"] + for distribution in distributions: + run_benchmark(context, lhs="csr", + rhs="default", lhs_trans=False, + fw="mxnet", rhs_density=1, + distribution=distribution) + run_benchmark(context, lhs="csr", + rhs="default", lhs_trans=True, + fw="mxnet", rhs_density=1, + distribution=distribution) + run_benchmark(context, lhs="csr", + rhs="rsp", lhs_trans=False, + fw="mxnet", rhs_density=0.05, + distribution=distribution) + if not ARGS.gpu: + run_benchmark(context, lhs="csr", + rhs="default", lhs_trans=False, + fw="scipy", rhs_density=1, + distribution=distribution) + run_benchmark(context, lhs="csr", + rhs="default", lhs_trans=True, + fw="scipy", rhs_density=1, + distribution=distribution) + + +if __name__ == "__main__": + begin_time = time.time() + test_dot_real(KDDA) + test_dot_real(AVAZU) + test_dot_real(CRITEO) + test_dot_synthetic(SYNTHETIC1) + test_dot_synthetic(SYNTHETIC2) + total_time = time.time() - begin_time + print("total time is %f") % total_time diff --git a/benchmark/python/sparse/sparse_end2end.py b/benchmark/python/sparse/sparse_end2end.py new file mode 100644 index 000000000000..e9d8bf884713 --- /dev/null +++ b/benchmark/python/sparse/sparse_end2end.py @@ -0,0 +1,249 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +from mxnet.test_utils import * +import time +import argparse +import os + +parser = argparse.ArgumentParser(description="Run sparse linear regression " \ + "with distributed kvstore", + formatter_class=argparse.ArgumentDefaultsHelpFormatter) +parser.add_argument('--profiler', type=int, default=0, + help='whether to use profiler') +parser.add_argument('--num-epoch', type=int, default=1, + help='number of epochs to train') +parser.add_argument('--batch-size', type=int, default=512, + help='number of examples per batch') +parser.add_argument('--num-batch', type=int, default=99999999, + help='number of batches per epoch') +parser.add_argument('--dummy-iter', type=int, default=0, + help='whether to use dummy iterator to exclude io cost') +parser.add_argument('--kvstore', type=str, default='local', + help='what kvstore to use [local, dist_sync, etc]') +parser.add_argument('--log-level', type=str, default='debug', + help='logging level [debug, info, error]') +parser.add_argument('--dataset', type=str, default='avazu', + help='what test dataset to use') +parser.add_argument('--num-gpu', type=int, default=0, + help='number of gpus to use. 0 means using cpu(0);' + 'otherwise, use gpu(0),...,gpu(num_gpu-1)') +parser.add_argument('--output-dim', type=int, default=4, + help='number of columns of the forward output') +parser.add_argument('--dummy-metric', type=int, default=0, + help='whether to call update_metric') + + +def get_libsvm_data(data_dir, data_name, url, data_origin_name): + if not os.path.isdir(data_dir): + os.system("mkdir " + data_dir) + os.chdir(data_dir) + if (not os.path.exists(data_name)): + import urllib + zippath = os.path.join(data_dir, data_origin_name) + urllib.urlretrieve(url, zippath) + os.system("bzip2 -d %r" % data_origin_name) + os.chdir("..") + + +class DummyIter(mx.io.DataIter): + "A dummy iterator that always return the same batch, used for speed testing" + def __init__(self, real_iter): + super(DummyIter, self).__init__() + self.real_iter = real_iter + self.provide_data = real_iter.provide_data + self.provide_label = real_iter.provide_label + self.batch_size = real_iter.batch_size + + for batch in real_iter: + self.the_batch = batch + break + + def __iter__(self): + return self + + def next(self): + return self.the_batch + +# testing dataset sources +avazu = { + 'data_name': 'avazu-app.t', + 'data_origin_name': 'avazu-app.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", + 'feature_dim': 1000000, +} + +kdda = { + 'data_name': 'kdda.t', + 'data_origin_name': 'kdda.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", + 'feature_dim': 20216830, +} + +datasets = { 'kdda' : kdda, 'avazu' : avazu } + + +def get_sym(feature_dim): + x = mx.symbol.Variable("data", stype='csr') + norm_init = mx.initializer.Normal(sigma=0.01) + w = mx.symbol.Variable("w", shape=(feature_dim, args.output_dim), init=norm_init, stype='row_sparse') + embed = mx.symbol.dot(x, w) + y = mx.symbol.Variable("softmax_label") + model = mx.symbol.SoftmaxOutput(data=embed, label=y, name="out") + return model + + +def row_sparse_pull(kv, key, data, slices, weight_array, priority): + # if have kvstore, need to pull corresponding rows of + # the weights to each context + # column indices (NDArray type) of the csr data + # used as the row_idx of the weight row-sparse matrix + row_indices = data.indices + if len(slices) == 1: + kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_indices) + else: # more than one slices, multi-GPU training. Need to retain weight rows according to data slices + # TODO(junwu): + # the following line blocks, may need to pre-compute + # and cache it outside the for loop + indptr = data.indptr.asnumpy() + row_idx_array = [] + for s in slices: + row_idx_array.append(row_indices[indptr[s.start]:indptr[s.stop]]) + kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_idx_array) + + +if __name__ == '__main__': + + # arg parser + args = parser.parse_args() + num_epoch = args.num_epoch + num_batch = args.num_batch + kvstore = args.kvstore + profiler = args.profiler > 0 + batch_size = args.batch_size if args.num_gpu == 0 else args.num_gpu * args.batch_size + dummy_iter = args.dummy_iter + dataset = args.dataset + log_level = args.log_level + contexts = mx.context.cpu(0) if args.num_gpu < 1\ + else [mx.context.gpu(i) for i in range(args.num_gpu)] + + # create kvstore when there are gpus + kv = mx.kvstore.create(kvstore) if args.num_gpu >= 1 else None + rank = kv.rank if kv is not None else 0 + num_worker = kv.num_workers if kv is not None else 1 + + # only print log for rank 0 worker + import logging + if rank != 0: + log_level = logging.ERROR + elif log_level == 'DEBUG': + log_level = logging.DEBUG + else: + log_level = logging.INFO + head = '%(asctime)-15s %(message)s' + logging.basicConfig(level=log_level, format=head) + + # dataset + assert(dataset in datasets), "unknown dataset " + dataset + metadata = datasets[dataset] + feature_dim = metadata['feature_dim'] + if logging: + logging.debug('preparing data ... ') + data_dir = os.path.join(os.getcwd(), 'data') + path = os.path.join(data_dir, metadata['data_name']) + if not os.path.exists(path): + get_libsvm_data(data_dir, metadata['data_name'], metadata['url'], + metadata['data_origin_name']) + assert os.path.exists(path) + + # data iterator + train_data = mx.io.LibSVMIter(data_libsvm=path, data_shape=(feature_dim,), + batch_size=batch_size, num_parts=num_worker, + part_index=rank) + if dummy_iter: + train_data = DummyIter(train_data) + + # model + model = get_sym(feature_dim) + + # module + mod = mx.mod.Module(symbol=model, data_names=['data'], + label_names=['softmax_label'], context=contexts) + mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label) + mod.init_params(initializer=mx.init.Uniform(scale=.1)) + sgd = mx.optimizer.SGD(momentum=0.0, clip_gradient=5.0, + learning_rate=0.1, rescale_grad=1.0/batch_size/num_worker) + mod.init_optimizer(optimizer=sgd, kvstore=kv) + # use accuracy as the metric + metric = mx.metric.create('acc') + + index = mod._exec_group.param_names.index('w') + # weight_array bound to executors of the contexts + weight_array = mod._exec_group.param_arrays[index] + + mx.nd.waitall() # sync point for initialization + # start profiler + if profiler: + device = 'cpu' + if args.num_gpu > 0: + device = 'gpu' + str(args.num_gpu) + name = 'profile_' + args.dataset + '_' + device + '_nworker' + str(num_worker)\ + + '_batchsize' + str(args.batch_size) + '_outdim' + str(args.output_dim) + '.json' + mx.profiler.profiler_set_config(mode='all', filename=name) + mx.profiler.profiler_set_state('run') + + logging.debug('start training ...') + start = time.time() + data_iter = iter(train_data) + for epoch in range(num_epoch): + nbatch = 0 + end_of_batch = False + data_iter.reset() + metric.reset() + next_batch = next(data_iter) + if kv is not None: + row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) + while not end_of_batch: + nbatch += 1 + batch = next_batch + + mod.forward_backward(batch) + # update parameters + mod.update() + + try: + # pre fetch next batch + next_batch = next(data_iter) + if nbatch == num_batch: + raise StopIteration + if kv is not None: + row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) + except StopIteration: + end_of_batch = True + # accumulate prediction accuracy + if args.dummy_metric == 0: + mod.update_metric(metric, batch.label) + else: # call waitall to replace update_metric as sync point + mx.nd.waitall() # sync point for the current minibatch + logging.info('epoch %d, %s' % (epoch, metric.get())) + if epoch == 0: + print "num_batches = ", nbatch + if profiler: + mx.profiler.profiler_set_state('stop') + end = time.time() + time_cost = end - start + logging.info('num_worker = ' + str(num_worker) + ', time cost = ' + str(time_cost)) diff --git a/benchmark/python/sparse/sparse_op.py b/benchmark/python/sparse/sparse_op.py new file mode 100644 index 000000000000..0683aa84eacb --- /dev/null +++ b/benchmark/python/sparse/sparse_op.py @@ -0,0 +1,245 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import ctypes + +from mxnet.test_utils import * +import scipy.sparse as sp +import os +import time +import argparse + +from mxnet.base import check_call, _LIB +from util import get_data, estimate_density + +parser = argparse.ArgumentParser(description="Benchmark sparse operators", + formatter_class=argparse.ArgumentDefaultsHelpFormatter) +parser.add_argument('--num-omp-threads', type=int, default=1, help='number of omp threads to set in MXNet') +args = parser.parse_args() + +# some data information +kdda = { + 'data_mini': 'kdda.t.mini', + 'data_name': 'kdda.t', + 'data_origin_name': 'kdda.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", + 'feature_dim': 20216830, + 'm': 200, + 'batch_size': [64] +} + +avazu = { + 'data_mini': 'avazu-app.t.mini', + 'data_name': 'avazu-app.t', + 'data_origin_name': 'avazu-app.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", + 'feature_dim': 1000000, + 'm': 500, + 'batch_size': [64, 128] +} + + +def measure_cost(repeat, f, *args, **kwargs): + # start bench + start = time.time() + results = [] + for i in range(repeat): + results.append(f(*args, **kwargs)) + for result in results: + result.wait_to_read() + end = time.time() + diff = end - start + return diff / repeat + + +def test_dot_real(data_dict): + def get_iter(path, data_shape, batch_size): + data_train = mx.io.LibSVMIter(data_libsvm=path, + data_shape=data_shape, + batch_size=batch_size) + data_iter = iter(data_train) + return data_iter + + data_dir = os.path.join(os.getcwd(), 'data') + + path = os.path.join(data_dir, data_dict['data_name']) + if not os.path.exists(path): + get_data( + data_dir, + data_dict['data_name'], + data_dict['url'], + data_dict['data_origin_name'] + ) + assert os.path.exists(path) + + k = data_dict['feature_dim'] + m = data_dict['m'] + density = estimate_density(path, data_dict['feature_dim']) + + mini_path = os.path.join(data_dir, data_dict['data_mini']) + if not os.path.exists(mini_path): + os.system("head -n 2000 %r > %r" % (path, mini_path)) + assert os.path.exists(mini_path) + + print "Running Benchmarking on %r data" % data_dict['data_mini'] + for batch_size in data_dict['batch_size']: # iterator through different batch size of choice + print "batch_size is %d" % batch_size + # model + data_shape = (k, ) + train_iter = get_iter(mini_path, data_shape, batch_size) + weight = mx.nd.random_uniform(low=0, high=1, shape=(k, m)) + + csr_data = [] + dns_data = [] + num_batch = 0 + for batch in train_iter: + data = train_iter.getdata() + csr_data.append(data) + dns_data.append(data.tostype('default')) + num_batch += 1 + bag_of_data = [csr_data, dns_data] + num_repeat = 5 + costs = [] + for d in bag_of_data: + weight.wait_to_read() + cost = 0. + count = 0 + for d_batch in d: + d_batch.wait_to_read() + cost += measure_cost(num_repeat, mx.nd.dot, d_batch, weight) + count += 1 + costs.append(cost/count) + t_sparse = costs[0] + t_dense = costs[1] + ratio = t_dense / t_sparse + print('density(%)\tn\tm\tk\tt_dense/t_sparse\tt_dense\tt_sparse') + fmt = "%0.4f\t\t%d\t%d\t%d\t%0.2f\t\t\t%0.4f\t%0.6f" + print(fmt % (density * 100, batch_size, m, k, ratio, t_dense, t_sparse)) + + +def test_dot_synthetic(): + """benchmark mx.nd.dot(sparse_ndarray, dense_ndarray) with given density. + `t_sparse` is the time cost of dot(csr, dns), while `t_dense` is the time cost + of dot(dns, dns), with the same matrix except that it is in default storage type. + """ + def measure_cost_forward_baseline(repeat, dot, lhs, rhs): + start = time.time() + for i in range(repeat): + dot(lhs, rhs) + end = time.time() + diff = end - start + return diff / repeat + + def measure_cost_backward_baseline(repeat, dot, transpose, lhs, rhs): + start = time.time() + for i in range(repeat): + dot(transpose(lhs), rhs) + end = time.time() + diff = end - start + return diff / repeat + + def bench_dot_forward(m, k, n, density, ctx, repeat): + set_default_context(ctx) + dns = mx.nd.random_uniform(shape=(k, n)).copyto(ctx) + data_shape = (m, k) + csr_data = rand_ndarray(data_shape, 'csr', density) + dns_data = csr_data.tostype('default') + rhs_dns_np = dns.asnumpy() + lhs_csr_sp = sp.csr_matrix(dns_data.asnumpy()) # csr in scipy + lhs_dns_np = lhs_csr_sp.tostype('default') + + data = [dns_data, csr_data] + costs = [] + for d in data: + dns.wait_to_read() + d.wait_to_read() + cost = measure_cost(repeat, mx.nd.dot, d, dns) + costs.append(cost) + ratio = costs[0] / costs[1] + + costs_baseline = [] + cost = measure_cost_forward_baseline(repeat, np.dot, lhs_dns_np, rhs_dns_np) + costs_baseline.append(cost) + cost = measure_cost_forward_baseline(repeat, sp.spmatrix.dot, lhs_csr_sp, rhs_dns_np) + costs_baseline.append(cost) + ratio_baseline = costs_baseline[0] / costs_baseline[1] + fmt = "%0.1f\t\t%s\t%d\t%d\t%d\t%0.2f\t\t\t%0.2f\t%0.5f\t\t%0.2f\t\t\t\t%0.6f\t%0.5f" + print(fmt % (density * 100, str(ctx), n, m, k, ratio, costs[0], costs[1], + ratio_baseline, costs_baseline[0], costs_baseline[1])) + + def bench_dot_backward(m, k, n, density, ctx, repeat): + set_default_context(ctx) + dns = mx.nd.random_uniform(shape=(m, n)).copyto(ctx) + data_shape = (m, k) + csr_data = rand_ndarray(data_shape, 'csr', density) + dns_data = csr_data.tostype('default') + rhs_dns_np = dns.asnumpy() + lhs_csr_sp = sp.csr_matrix(dns_data.asnumpy()) + lhs_dns_np = lhs_csr_sp.tostype('default') + + data = [dns_data, csr_data] + costs = [] + for d in data: + dns.wait_to_read() + d.wait_to_read() + cost = measure_cost(repeat, mx.nd.dot, d, dns, transpose_a=True) + costs.append(cost) + ratio = costs[0] / costs[1] + + costs_baseline = [] + cost = measure_cost_backward_baseline(repeat, np.dot, np.transpose, lhs_dns_np, rhs_dns_np) + costs_baseline.append(cost) + cost = measure_cost_backward_baseline(repeat, sp.spmatrix.dot, sp.spmatrix.transpose, lhs_csr_sp, rhs_dns_np) + costs_baseline.append(cost) + ratio_baseline = costs_baseline[0] / costs_baseline[1] + fmt = "%0.1f\t\t%s\t%d\t%d\t%d\t%0.2f\t\t\t%0.2f\t%0.5f\t\t%0.2f\t\t\t\t%0.6f\t%0.5f" + print(fmt % (density * 100, str(ctx), n, m, k, ratio, costs[0], costs[1], + ratio_baseline, costs_baseline[0], costs_baseline[1])) + + print("A = sparse NDArray of shape(m, k)") + print("B = dense NDArray of shape(k, n)") + print("dot_forward\tdot(csr, dns)") + print('density(%)\tcontext\tn\tm\tk\tt_dense/t_sparse\tt_dense\tt_sparse' + '\tt_scipy_dense/t_scipy_sparse\tt_scipy_dense\tt_scipy_sparse') + + check_call(_LIB.MXSetNumOMPThreads(ctypes.c_int(args.num_omp_threads))) + # TODO(haibin) make these runtime options + m = 512 + k = [50000, 100000] + n = [64, 128] + density = [1.00, 0.90, 0.70, 0.50, 0.30, 0.20, 0.10, 0.07, 0.05, 0.02, 0.01, 0.005, 0.001] + num_repeat = 10 + # contexts = [mx.cpu(), mx.gpu(0)] + contexts = [mx.cpu()] + for i in range(2): + for ctx in contexts: + for den in density: + bench_dot_forward(m, k[i], n[i], den, ctx, num_repeat) + + print("dot_backward\tdot(csr.T, dns)") + print('density(%)\tcontext\tn\tm\tk\tt_dense/t_sparse\tt_dense\tt_sparse' + '\tt_scipy_dense/t_scipy_sparse\tt_scipy_dense\tt_scipy_sparse') + for i in range(2): + for ctx in contexts: + for den in density: + bench_dot_backward(m, k[i], n[i], den, ctx, num_repeat) + + +if __name__ == "__main__": + test_dot_real(avazu) + test_dot_real(kdda) + test_dot_synthetic() diff --git a/benchmark/python/sparse/util.py b/benchmark/python/sparse/util.py new file mode 100644 index 000000000000..947ff4a65037 --- /dev/null +++ b/benchmark/python/sparse/util.py @@ -0,0 +1,50 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import os +import random + + +def get_data(data_dir, data_name, url, data_origin_name): + if not os.path.isdir(data_dir): + os.system("mkdir " + data_dir) + os.chdir(data_dir) + if (not os.path.exists(data_name)): + import urllib + zippath = os.path.join(data_dir, data_origin_name) + urllib.urlretrieve(url, zippath) + os.system("bzip2 -d %r" % data_origin_name) + os.chdir("..") + + +def estimate_density(DATA_PATH, feature_size): + """sample 10 times of a size of 1000 for estimating the density of the sparse dataset""" + if not os.path.exists(DATA_PATH): + raise Exception("Data is not there!") + density = [] + P = 0.01 + for _ in xrange(10): + num_non_zero = 0 + num_sample = 0 + with open(DATA_PATH) as f: + for line in f: + if (random.random() < P): + num_non_zero += len(line.split(" ")) - 1 + num_sample += 1 + density.append(num_non_zero * 1.0 / (feature_size * num_sample)) + return sum(density) / len(density) + diff --git a/docs/api/python/ndarray.md b/docs/api/python/ndarray.md index 5e9f7e1a1184..3f2cef24a73a 100644 --- a/docs/api/python/ndarray.md +++ b/docs/api/python/ndarray.md @@ -64,9 +64,21 @@ A detailed tutorial is available at ``` In the rest of this document, we first overview the methods provided by the -`ndarray.NDArray` class, and then list other routines provided by the -`ndarray` package. +`ndarray.NDArray` class and its subclasses, and then list other routines +provided by the `ndarray` package. +The `ndarray` package provides several classes: + +```eval_rst +.. autosummary:: + :nosignatures: + + NDArray + sparse.CSRNDArray + sparse.RowSparseNDArray +``` + +We summarize the interface for each class in the following sections. ## The `NDArray` class @@ -80,6 +92,7 @@ In the rest of this document, we first overview the methods provided by the NDArray.size NDArray.context NDArray.dtype + NDArray.stype ``` ### Array conversion @@ -94,6 +107,7 @@ In the rest of this document, we first overview the methods provided by the NDArray.asnumpy NDArray.asscalar NDArray.astype + NDArray.tostype ``` ### Array change shape @@ -171,6 +185,35 @@ In the rest of this document, we first overview the methods provided by the NDArray.wait_to_read ``` +## The `sparse.RowSparseNDArray` Class + +```eval_rst +.. autosummary:: + :nosignatures: + + sparse.RowSparseNDArray.copyto + sparse.RowSparseNDArray.tostype + sparse.RowSparseNDArray.__setitem__ + sparse.RowSparseNDArray.__getitem__ + sparse.RowSparseNDArray.data + sparse.RowSparseNDArray.indices +``` + +## The `sparse.CSRNDArray` Class + +```eval_rst +.. autosummary:: + :nosignatures: + + sparse.CSRNDArray.copyto + sparse.CSRNDArray.tostype + sparse.CSRNDArray.__setitem__ + sparse.CSRNDArray.__getitem__ + sparse.CSRNDArray.data + sparse.CSRNDArray.indices + sparse.CSRNDArray.indptr +``` + ## Array creation routines ```eval_rst @@ -499,8 +542,24 @@ The `contrib.ndarray` module contains many useful experimental APIs for new feat ```eval_rst + +.. autoclass:: mxnet.ndarray.NDArray + :members: + :special-members: + +.. autoclass:: mxnet.ndarray.sparse.CSRNDArray + :members: + :special-members: + +.. autoclass:: mxnet.ndarray.sparse.RowSparseNDArray + :members: + :special-members: + .. automodule:: mxnet.ndarray :members: + :imported-members: + :special-members: + :exclude-members: CachedOp, BaseSparseNDArray, NDArray, CSRNDArray, RowSparseNDArray .. automodule:: mxnet.random :members: diff --git a/example/sparse/get_data.py b/example/sparse/get_data.py new file mode 100644 index 000000000000..578cf2ce5226 --- /dev/null +++ b/example/sparse/get_data.py @@ -0,0 +1,32 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +# pylint: skip-file +import os, gzip +import pickle as pickle +import sys + +def get_libsvm_data(data_dir, data_name, url, data_origin_name): + if not os.path.isdir(data_dir): + os.mkdir(data_dir) + os.chdir(data_dir) + if (not os.path.exists(data_name)): + import urllib + zippath = os.path.join(data_dir, data_origin_name) + urllib.urlretrieve(url, zippath) + os.system("bzip2 -d %r" % data_origin_name) + os.chdir("..") diff --git a/example/sparse/linear_classification.py b/example/sparse/linear_classification.py new file mode 100644 index 000000000000..567568c6eb80 --- /dev/null +++ b/example/sparse/linear_classification.py @@ -0,0 +1,185 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import mxnet as mx +from mxnet.test_utils import * +from get_data import get_libsvm_data +import time +import argparse +import os + +parser = argparse.ArgumentParser(description="Run sparse linear classification " \ + "with distributed kvstore", + formatter_class=argparse.ArgumentDefaultsHelpFormatter) +parser.add_argument('--profiler', type=int, default=0, + help='whether to use profiler') +parser.add_argument('--num-epoch', type=int, default=1, + help='number of epochs to train') +parser.add_argument('--batch-size', type=int, default=8192, + help='number of examples per batch') +parser.add_argument('--num-batch', type=int, default=99999999, + help='number of batches per epoch') +parser.add_argument('--dummy-iter', type=int, default=0, + help='whether to use dummy iterator to exclude io cost') +parser.add_argument('--kvstore', type=str, default='dist_sync', + help='what kvstore to use [local, dist_sync, etc]') +parser.add_argument('--log-level', type=str, default='DEBUG', + help='logging level [debug, info, error]') +parser.add_argument('--dataset', type=str, default='avazu', + help='what test dataset to use') + +class DummyIter(mx.io.DataIter): + "A dummy iterator that always return the same batch, used for speed testing" + def __init__(self, real_iter): + super(DummyIter, self).__init__() + self.real_iter = real_iter + self.provide_data = real_iter.provide_data + self.provide_label = real_iter.provide_label + self.batch_size = real_iter.batch_size + + for batch in real_iter: + self.the_batch = batch + break + + def __iter__(self): + return self + + def next(self): + return self.the_batch + +# testing dataset sources +avazu = { + 'data_name': 'avazu-app.t', + 'data_origin_name': 'avazu-app.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", + 'feature_dim': 1000000, +} + +kdda = { + 'data_name': 'kdda.t', + 'data_origin_name': 'kdda.t.bz2', + 'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", + 'feature_dim': 20216830, +} + +datasets = { 'kdda' : kdda, 'avazu' : avazu } + +def linear_model(feature_dim): + x = mx.symbol.Variable("data", stype='csr') + norm_init = mx.initializer.Normal(sigma=0.01) + weight = mx.symbol.Variable("weight", shape=(feature_dim, 1), init=norm_init, stype='row_sparse') + bias = mx.symbol.Variable("bias", shape=(1,), init=norm_init) + dot = mx.symbol.dot(x, weight) + pred = mx.symbol.broadcast_add(dot, bias) + y = mx.symbol.Variable("softmax_label") + model = mx.symbol.SoftmaxOutput(data=pred, label=y, name="out") + return model + +if __name__ == '__main__': + # arg parser + args = parser.parse_args() + num_epoch = args.num_epoch + num_batch = args.num_batch + kvstore = args.kvstore + profiler = args.profiler > 0 + batch_size = args.batch_size + dummy_iter = args.dummy_iter + dataset = args.dataset + log_level = args.log_level + + # create kvstore + kv = mx.kvstore.create(kvstore) + rank = kv.rank + num_worker = kv.num_workers + + # only print log for rank 0 worker + import logging + if rank != 0: + log_level = logging.ERROR + elif log_level == 'DEBUG': + log_level = logging.DEBUG + else: + log_level = logging.INFO + head = '%(asctime)-15s %(message)s' + logging.basicConfig(level=log_level, format=head) + + # dataset + assert(dataset in datasets), "unknown dataset " + dataset + metadata = datasets[dataset] + feature_dim = metadata['feature_dim'] + if logging: + logging.debug('preparing data ... ') + data_dir = os.path.join(os.getcwd(), 'data') + path = os.path.join(data_dir, metadata['data_name']) + if not os.path.exists(path): + get_libsvm_data(data_dir, metadata['data_name'], metadata['url'], + metadata['data_origin_name']) + assert os.path.exists(path) + + # data iterator + train_data = mx.io.LibSVMIter(data_libsvm=path, data_shape=(feature_dim,), + batch_size=batch_size, num_parts=num_worker, + part_index=rank) + if dummy_iter: + train_data = DummyIter(train_data) + + # model + model = linear_model(feature_dim) + + # module + mod = mx.mod.Module(symbol=model, data_names=['data'], label_names=['softmax_label']) + mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label) + mod.init_params(initializer=mx.init.Uniform(scale=.1)) + sgd = mx.optimizer.SGD(momentum=0.0, clip_gradient=5.0, + learning_rate=0.1, rescale_grad=1.0/batch_size/num_worker) + mod.init_optimizer(optimizer=sgd, kvstore=kv) + # use accuracy as the metric + metric = mx.metric.create('Accuracy') + + # start profiler + if profiler: + name = 'profile_output_' + str(num_worker) + '.json' + mx.profiler.profiler_set_config(mode='all', filename=name) + mx.profiler.profiler_set_state('run') + + logging.debug('start training ...') + start = time.time() + data_iter = iter(train_data) + for epoch in range(num_epoch): + nbatch = 0 + data_iter.reset() + metric.reset() + for batch in data_iter: + nbatch += 1 + row_ids = batch.data[0].indices + # pull sparse weight + index = mod._exec_group.param_names.index('weight') + kv.row_sparse_pull('weight', mod._exec_group.param_arrays[index], + priority=-index, row_ids=[row_ids]) + mod.forward_backward(batch) + # update parameters + mod.update() + # accumulate prediction accuracy + mod.update_metric(metric, batch.label) + if nbatch == num_batch: + break + logging.info('epoch %d, %s' % (epoch, metric.get())) + if profiler: + mx.profiler.profiler_set_state('stop') + end = time.time() + time_cost = end - start + logging.info('num_worker = ' + str(num_worker) + ', time cost = ' + str(time_cost)) diff --git a/include/mxnet/c_api.h b/include/mxnet/c_api.h index 2289354e8a5e..a43f73fe45ab 100644 --- a/include/mxnet/c_api.h +++ b/include/mxnet/c_api.h @@ -276,6 +276,38 @@ MXNET_DLL int MXNDArrayCreateEx(const mx_uint *shape, int delay_alloc, int dtype, NDArrayHandle *out); + + +/*! + * \brief create an empty sparse NDArray with specified shape and data type + * \param storage_type the storage type of the ndarray + * \param shape the pointer to the shape + * \param ndim the dimension of the shape + * \param dev_type device type, specify device we want to take + * \param dev_id the device id of the specific device + * \param delay_alloc whether to delay allocation until + * the narray is first mutated + * \param dtype data type of created array + * \param num_aux the number of aux data to support this ndarray + * \param aux_type data type of the aux data for the created array + * \param aux_ndims the dimension of the shapes of aux data + * \param aux_shape the shapes of aux data + * \param out the returning handle + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXNDArrayCreateSparseEx(int storage_type, + const mx_uint *shape, + mx_uint ndim, + int dev_type, + int dev_id, + int delay_alloc, + int dtype, + mx_uint num_aux, + int *aux_type, + mx_uint *aux_ndims, + const mx_uint *aux_shape, + NDArrayHandle *out); + /*! * \brief create a NDArray handle that is loaded from raw bytes. * \param buf the head of the raw bytes @@ -350,6 +382,17 @@ MXNET_DLL int MXNDArraySyncCopyFromCPU(NDArrayHandle handle, MXNET_DLL int MXNDArraySyncCopyToCPU(NDArrayHandle handle, void *data, size_t size); +/*! + * \brief Copy src.data() to dst.data() if i = -1, else dst.aux_data(i) if i >= 0 + * This function blocks. Do not use it in performance critical code. + * \param handle_dst handle of a dst ndarray whose data/aux_data has been allocated + * \param handle_src handle of a src ndarray which has default storage type + * \param i dst data blob indicator + */ +MXNET_DLL int MXNDArraySyncCopyFromNDArray(NDArrayHandle handle_dst, + const NDArrayHandle handle_src, + const int i); + /*! * \brief Wait until all the pending writes with respect NDArray are finished. * Always call this before read data out synchronizely. @@ -388,6 +431,7 @@ MXNET_DLL int MXNDArraySlice(NDArrayHandle handle, mx_uint slice_begin, mx_uint slice_end, NDArrayHandle *out); + /*! * \brief Index the NDArray along axis 0. * \param handle the handle to the NDArray @@ -398,6 +442,13 @@ MXNET_DLL int MXNDArraySlice(NDArrayHandle handle, MXNET_DLL int MXNDArrayAt(NDArrayHandle handle, mx_uint idx, NDArrayHandle *out); + +/*! + * \brief get the storage type of the array + */ +MXNET_DLL int MXNDArrayGetStorageType(NDArrayHandle handle, + int *out_storage_type); + /*! * \brief Reshape the NDArray. * \param handle the handle to the narray @@ -436,6 +487,34 @@ MXNET_DLL int MXNDArrayGetData(NDArrayHandle handle, */ MXNET_DLL int MXNDArrayGetDType(NDArrayHandle handle, int *out_dtype); + +/*! + * \brief get the type of the ith aux data in NDArray + * \param handle the handle to the narray + * \param i the index of the aux data + * \param out_type pointer holder to get type of aux data + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXNDArrayGetAuxType(NDArrayHandle handle, + mx_uint i, + int *out_type); + +/*! + * \brief Get a deep copy of the ith aux data blob + * in the form of an NDArray of default storage type. + * This function blocks. Do not use it in performance critical code. + */ +MXNET_DLL int MXNDArrayGetAuxNDArray(NDArrayHandle handle, + mx_uint i, + NDArrayHandle *out); + +/*! + * \brief Get a deep copy of the data blob + * in the form of an NDArray of default storage type. + * This function blocks. Do not use it in performance critical code. + */ +MXNET_DLL int MXNDArrayGetDataNDArray(NDArrayHandle handle, + NDArrayHandle *out); /*! * \brief get the context of the NDArray * \param handle the handle to the narray @@ -581,6 +660,28 @@ MXNET_DLL int MXImperativeInvoke(AtomicSymbolCreator creator, int num_params, const char **param_keys, const char **param_vals); +/*! + * \brief invoke a nnvm op and imperative function + * \param creator the op + * \param num_inputs number of input NDArrays + * \param inputs input NDArrays + * \param num_outputs number of output NDArrays + * \param outputs output NDArrays + * \param num_params number of keyword parameters + * \param param_keys keys for keyword parameters + * \param param_vals values for keyword parameters + * \param out_stypes output ndarrays' stypes + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXImperativeInvokeEx(AtomicSymbolCreator creator, + int num_inputs, + NDArrayHandle *inputs, + int *num_outputs, + NDArrayHandle **outputs, + int num_params, + const char **param_keys, + const char **param_vals, + const int **out_stypes); /*! * \brief set whether to record operator for autograd * \param is_recording 1 when recording, 0 when not recording. @@ -666,6 +767,30 @@ MXNET_DLL int MXCreateCachedOp(SymbolHandle handle, * \brief free cached operator */ MXNET_DLL int MXFreeCachedOp(CachedOpHandle handle); +/*! + * \brief invoke cached operator + */ +MXNET_DLL int MXInvokeCachedOp(CachedOpHandle handle, + int num_inputs, + NDArrayHandle *inputs, + int *num_outputs, + NDArrayHandle **outputs); +/*! + * \brief invoke a cached op + * \param handle the handle to the cached op + * \param num_inputs number of input NDArrays + * \param inputs input NDArrays + * \param num_outputs number of output NDArrays + * \param outputs output NDArrays + * \param out_stypes output ndarrays' stypes + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXInvokeCachedOpEx(CachedOpHandle handle, + int num_inputs, + NDArrayHandle *inputs, + int *num_outputs, + NDArrayHandle **outputs, + const int** out_stypes); /*! * \brief invoke cached operator */ @@ -1017,20 +1142,20 @@ MXNET_DLL int MXSymbolInferShape(SymbolHandle sym, * \return 0 when success, -1 when failure happens */ MXNET_DLL int MXSymbolInferShapePartial(SymbolHandle sym, - mx_uint num_args, - const char** keys, - const mx_uint *arg_ind_ptr, - const mx_uint *arg_shape_data, - mx_uint *in_shape_size, - const mx_uint **in_shape_ndim, - const mx_uint ***in_shape_data, - mx_uint *out_shape_size, - const mx_uint **out_shape_ndim, - const mx_uint ***out_shape_data, - mx_uint *aux_shape_size, - const mx_uint **aux_shape_ndim, - const mx_uint ***aux_shape_data, - int *complete); + mx_uint num_args, + const char** keys, + const mx_uint *arg_ind_ptr, + const mx_uint *arg_shape_data, + mx_uint *in_shape_size, + const mx_uint **in_shape_ndim, + const mx_uint ***in_shape_data, + mx_uint *out_shape_size, + const mx_uint **out_shape_ndim, + const mx_uint ***out_shape_data, + mx_uint *aux_shape_size, + const mx_uint **aux_shape_ndim, + const mx_uint ***aux_shape_data, + int *complete); /*! * \brief infer type of unknown input types given the known one. @@ -1061,6 +1186,10 @@ MXNET_DLL int MXSymbolInferType(SymbolHandle sym, mx_uint *aux_type_size, const int **aux_type_data, int *complete); + + + + //-------------------------------------------- // Part 4: Executor interface //-------------------------------------------- @@ -1222,36 +1351,39 @@ MXNET_DLL int MXExecutorBindEX(SymbolHandle symbol_handle, ExecutorHandle *out); MXNET_DLL int MXExecutorSimpleBind(SymbolHandle symbol_handle, - int dev_type, - int dev_id, - const mx_uint num_g2c_keys, - const char** g2c_keys, - const int* g2c_dev_types, - const int* g2c_dev_ids, - const mx_uint provided_grad_req_list_len, - const char** provided_grad_req_names, - const char** provided_grad_req_types, - const mx_uint num_provided_arg_shapes, - const char** provided_arg_shape_names, - const mx_uint* provided_arg_shape_data, - const mx_uint* provided_arg_shape_idx, - const mx_uint num_provided_arg_dtypes, - const char** provided_arg_dtype_names, - const int* provided_arg_dtypes, - const mx_uint num_shared_arg_names, - const char** shared_arg_name_list, - int* shared_buffer_len, - const char** shared_buffer_name_list, - NDArrayHandle* shared_buffer_handle_list, - const char*** updated_shared_buffer_name_list, - NDArrayHandle** updated_shared_buffer_handle_list, - mx_uint* num_in_args, - NDArrayHandle** in_args, - NDArrayHandle** arg_grads, - mx_uint* num_aux_states, - NDArrayHandle** aux_states, - ExecutorHandle shared_exec_handle, - ExecutorHandle* out); + int dev_type, + int dev_id, + const mx_uint num_g2c_keys, + const char** g2c_keys, + const int* g2c_dev_types, + const int* g2c_dev_ids, + const mx_uint provided_grad_req_list_len, + const char** provided_grad_req_names, + const char** provided_grad_req_types, + const mx_uint num_provided_arg_shapes, + const char** provided_arg_shape_names, + const mx_uint* provided_arg_shape_data, + const mx_uint* provided_arg_shape_idx, + const mx_uint num_provided_arg_dtypes, + const char** provided_arg_dtype_names, + const int* provided_arg_dtypes, + const mx_uint num_provided_arg_stypes, + const char** provided_arg_stype_names, + const int* provided_arg_stypes, + const mx_uint num_shared_arg_names, + const char** shared_arg_name_list, + int* shared_buffer_len, + const char** shared_buffer_name_list, + NDArrayHandle* shared_buffer_handle_list, + const char*** updated_shared_buffer_name_list, + NDArrayHandle** updated_shared_buffer_handle_list, + mx_uint* num_in_args, + NDArrayHandle** in_args, + NDArrayHandle** arg_grads, + mx_uint* num_aux_states, + NDArrayHandle** aux_states, + ExecutorHandle shared_exec_handle, + ExecutorHandle* out); /*! * \brief set a call back to notify the completion of operation */ @@ -1468,6 +1600,26 @@ MXNET_DLL int MXKVStorePullEx(KVStoreHandle handle, const char** keys, NDArrayHandle* vals, int priority); + +/*! + * \brief pull a list of (key, value) pairs from the kvstore, where each key is a string. + * The NDArray pulled back will be in row_sparse storage with only the specified + * row_ids present based row_ids (others rows are zeros). + * \param handle handle to the kvstore + * \param num the number of key-value pairs + * \param keys the list of keys + * \param vals the list of values + * \param row_ids the list of row_id NDArrays + * \param priority the priority of the action + * \return 0 when success, -1 when failure happens + */ +MXNET_DLL int MXKVStorePullRowSparse(KVStoreHandle handle, + mx_uint num, + const char** keys, + NDArrayHandle* vals, + const NDArrayHandle* row_ids, + int priority); + /*! * \brief user-defined updater for the kvstore * It's this updater's responsibility to delete \a recv and \a local diff --git a/include/mxnet/executor.h b/include/mxnet/executor.h index a74d3b07b5be..85d34778dd8c 100644 --- a/include/mxnet/executor.h +++ b/include/mxnet/executor.h @@ -133,6 +133,7 @@ class Executor { const std::vector& aux_state_ctxes, const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, const std::unordered_set& param_names, std::vector* in_args, diff --git a/include/mxnet/graph_attr_types.h b/include/mxnet/graph_attr_types.h new file mode 100644 index 000000000000..3aba0119d8ca --- /dev/null +++ b/include/mxnet/graph_attr_types.h @@ -0,0 +1,48 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file graph_attr_types.h + * \brief Data structures that can appear in graph attributes. + */ +#ifndef MXNET_GRAPH_ATTR_TYPES_H_ +#define MXNET_GRAPH_ATTR_TYPES_H_ + +#include + +namespace mxnet { + +/*! + * \brief The result holder of storage type of each NodeEntry in the graph. + * \note Stored under graph.attrs["storage_type"], provided by Pass "InferStorageType" + * + * \code + * Graph g = ApplyPass(src_graph, "InferStorageType"); + * const StorageVector& stypes = g.GetAttr("storage_type"); + * // get shape by entry id + * int entry_type = stypes[g.indexed_graph().entry_id(my_entry)]; + * \endcode + * + * \sa FInferStorageType + */ +using StorageTypeVector = std::vector; + +} // namespace mxnet + +#endif // MXNET_GRAPH_ATTR_TYPES_H_ diff --git a/include/mxnet/kvstore.h b/include/mxnet/kvstore.h index d2924ecea1b5..9ea63b4cec79 100644 --- a/include/mxnet/kvstore.h +++ b/include/mxnet/kvstore.h @@ -25,6 +25,7 @@ #define MXNET_KVSTORE_H_ #include #include +#include #include #include #include @@ -173,6 +174,29 @@ class KVStore { const std::vector& values, int priority = 0) = 0; + /*! + * \brief pull a list of key-value pairs from the store. + * The NDArray pulled back will be in row_sparse storage with only the + * specified row_ids present (others rows are zeros). + * \param keys the list of keys + * \param values the list of buffers - row_id pairs + * \param priority the priority of the action. + */ + virtual void PullRowSparse(const std::vector& str_keys, + const std::vector>& val_rowids, + const int priority = 0) = 0; + + /*! + * \brief pull a list of key-value pairs from the store, where each key is a string. + * The NDArray pulled back will be in row_sparse storage with only the + * specified row_ids present (others rows are zeros). + * \param keys the list of keys in string format + * \param values the list of buffers - row_id pairs + * \param priority the priority of the action. + */ + virtual void PullRowSparse(const std::vector& str_keys, + const std::vector>& val_rowids, + const int priority = 0) = 0; /** * \brief the prototype of user-defined updater diff --git a/include/mxnet/ndarray.h b/include/mxnet/ndarray.h index d7dff4098b27..754bc28e7bed 100644 --- a/include/mxnet/ndarray.h +++ b/include/mxnet/ndarray.h @@ -47,7 +47,6 @@ namespace mxnet { -// forward declaration namespace autograd { class AGNode; @@ -71,6 +70,23 @@ class AGNodeEntry { class AutogradRuntime; } // namespace autograd +// enum for storage types +namespace csr { +enum CSRAuxType {kIndPtr, kIdx}; +} + +namespace rowsparse { +enum RowSparseAuxType {kIdx}; +} + +enum NDArrayStorageType { + kUndefinedStorage = -1, // undefined storage + kDefaultStorage, // dense + kRowSparseStorage, // row sparse + kCSRStorage, // csr +}; + + /*! * \brief ndarray interface */ @@ -91,10 +107,55 @@ class NDArray { */ NDArray(const TShape &shape, Context ctx, bool delay_alloc = false, int dtype = mshadow::default_type_flag) - : ptr_(std::make_shared(shape.Size(), ctx, delay_alloc, dtype)), + : ptr_(std::make_shared(shape, ctx, delay_alloc, dtype)), shape_(shape), dtype_(dtype), entry_({nullptr, 0, 0}) { #if MKL_EXPERIMENTAL == 1 Mkl_mem_ = std::make_shared(); +#endif + } + /*! \brief constructor for NDArray with storage type + */ + NDArray(const NDArrayStorageType stype, const TShape &shape, Context ctx, + bool delay_alloc = true, int dtype = mshadow::default_type_flag, + std::vector aux_types = {}, std::vector aux_shapes = {}, + TShape storage_shape = TShape(mshadow::Shape1(0))) + : shape_(shape), dtype_(dtype), entry_({nullptr, 0, 0}) { + // Assign default aux types if not given + if (aux_types.size() == 0) { + if (stype == kRowSparseStorage) { + aux_types = {mshadow::kInt64}; + } else if (stype == kCSRStorage) { + aux_types = {mshadow::kInt64, mshadow::kInt64}; + } else { + LOG(FATAL) << "Unknown storage type " << stype; + } + } + // Assign default shapes if not given + // unknown shapes are intialized as {0} such that Size() would return 0 + if (aux_shapes.size() == 0) { + if (stype == kRowSparseStorage) { + aux_shapes = {TShape(mshadow::Shape1(0))}; + } else if (stype == kCSRStorage) { + // aux shapes for indptr and indices + aux_shapes = {TShape(mshadow::Shape1(0)), TShape(mshadow::Shape1(0))}; + } else { + LOG(FATAL) << "Unknown storage type " << stype; + } + } + if (storage_shape.Size() == 0) { + if (stype == kRowSparseStorage) { + storage_shape = shape; + storage_shape[0] = aux_shapes[rowsparse::kIdx][0]; + } else if (stype == kCSRStorage) { + storage_shape = aux_shapes[csr::kIdx]; + } else { + LOG(FATAL) << "Unknown storage type " << stype; + } + } + ptr_ = std::make_shared(stype, storage_shape, ctx, delay_alloc, + dtype, aux_types, aux_shapes); +#if MKL_EXPERIMENTAL == 1 + Mkl_mem_ = std::make_shared(); #endif } /*! @@ -111,17 +172,86 @@ class NDArray { Mkl_mem_ = std::make_shared(); #endif } + /*! - * \return the shape of current NDArray + * \brief constructing a static NDArray of non-default storage that shares data with TBlob + * Use with caution: allocate ONLY ONE NDArray for each TBlob, + * make sure the memory region is available through out the life of NDArray + * \param stype the storage type of NDArray + * \param shape the shape of NDArray + * \param data the memory content of static data + * \param aux_data the memory content of static aux data + * \param dev_id the device id this tensor sits at + */ + NDArray(const NDArrayStorageType stype, const TShape &shape, + const TBlob &data, const std::vector &aux_data, int dev_id) + : ptr_(std::make_shared(stype, data, aux_data, dev_id)), shape_(shape), + dtype_(data.type_flag_), entry_({nullptr, 0, 0}) { +#if MKL_EXPERIMENTAL == 1 + Mkl_mem_ = std::make_shared(); +#endif + } + + + /*! + * \return the shape of current NDArray. */ inline const TShape& shape() const { return shape_; } + /*! + * \return the shape of underlying chunk which stores the NDArray data/value. + * It is only intended for non-default storage. For row-sparse storage, it is the shape of + * the tensor which stores the non-zero values. + */ + inline const TShape &storage_shape() const { + CHECK(ptr_ != nullptr); + CHECK_NE(storage_type(), kDefaultStorage) + << "storage_shape() is not intended for kDefaultStorage."; + return ptr_->storage_shape; + } + + /*! + * \brief get the shape of aux_data(index) + * \param index the index of the aux data + * \return the shape of aux data at given index + */ + inline const TShape& aux_shape(size_t index) const { + CHECK_NE(storage_type(), kDefaultStorage) + << "aux_shape() is not intended for kDefaultStorage."; + return ptr_->aux_shapes[index]; + } + + /* \return the shapes of all aux data */ + const std::vector& aux_shapes() const { + CHECK_NE(storage_type(), kDefaultStorage) + << "aux_shapes() is not intended for kDefaultStorage."; + return ptr_->aux_shapes; + } + + /*! returns the dtypes of all aux data */ + const std::vector& aux_types() const { + CHECK_NE(storage_type(), kDefaultStorage) + << "aux_types() is not intended for kDefaultStorage."; + return ptr_->aux_types; + } + + /*! + * \brief For a sparse operation on a csr matrix for example, + * the size of the column index array + * is an estimated value in the beginning for allocating enough capacity + * for the final result. After the operation is done, the exact size of + * the shape is known and need to be reset using this function. + */ + inline void set_aux_shape(size_t index, const TShape& shape) const { + ptr_->set_aux_shape(index, shape); + } + /*! * \return the data TBlob */ inline const TBlob& data() const { - CheckAndAlloc(); + if (storage_type() == kDefaultStorage) CheckAndAlloc(); SetTBlob(); return tblob_; } @@ -129,6 +259,26 @@ class NDArray { * \return the gradient ndarray. */ NDArray grad() const; + + /*! + * \return the aux TBlob + */ + inline TBlob aux_data(size_t i) const { + auto stype = storage_type(); + TBlob res; + auto shape = aux_shape(i); + auto type = aux_type(i); + MSHADOW_TYPE_SWITCH(type, DType, { + auto dptr = static_cast(ptr_->aux_handles[i].dptr); + CHECK(stype == kRowSparseStorage || stype == kCSRStorage) + << "Unexpected storage type: " << stype; + res = TBlob(dptr, shape, ptr_->aux_handles[i].ctx.dev_mask(), type); + }); +#if MKL_EXPERIMENTAL == 1 + res.Mkl_mem_ = Mkl_mem_; +#endif + return res; + } /*! * \return the context of NDArray, this function is only valid when the NDArray is not empty */ @@ -141,6 +291,15 @@ class NDArray { inline int dtype() const { return dtype_; } + inline int aux_type(size_t i) const { + CHECK(!is_none()); + return ptr_->aux_types[i]; + } + + inline NDArrayStorageType storage_type() const { + if (is_none()) return kUndefinedStorage; + return ptr_->storage_type; + } /*! \return whether this ndarray is not initialized */ inline bool is_none() const { return ptr_.get() == nullptr; @@ -149,6 +308,27 @@ class NDArray { bool fresh_out_grad() const; /*! \return updated grad state in entry_ */ void set_fresh_out_grad(bool state) const; + // returns true if a sparse ndarray's aux_data and storage are initialized + inline bool storage_initialized() const { + if (is_none()) return false; + auto stype = storage_type(); + CHECK_NE(stype, kDefaultStorage) + << "storage_initialized() is not intended for kDefaultStorage."; + if (stype == kRowSparseStorage) { + CHECK_EQ(aux_shape(rowsparse::kIdx)[0], storage_shape()[0]) + << "inconsistent storage shape " << storage_shape() + << " vs. aux shape " << aux_shape(rowsparse::kIdx); + return aux_shape(0).Size() != 0; + } else if (stype == kCSRStorage) { + CHECK_EQ(aux_shape(csr::kIdx)[0], storage_shape()[0]) + << "inconsistent storage shape " << storage_shape() + << " vs. aux shape " << aux_shape(csr::kIdx); + return aux_shape(0).Size() != 0; + } else { + LOG(FATAL) << "Unknown storage type"; + } + return true; + } /*! * \brief Block until all the pending write operations with respect * to current NDArray are finished, and read can be performed. @@ -179,6 +359,12 @@ class NDArray { * \param strm the output stream */ void Save(dmlc::Stream *strm) const; + /*! + * \brief load ndarrays before supporting sparse ndarrays + * \param strm the output stream + * \param magic the magic number used for version control + */ + bool LegacyLoad(dmlc::Stream *strm, const uint32_t magic); /*! * \brief load the content from binary stream * \param strm the output stream @@ -269,6 +455,12 @@ class NDArray { * \param size the size of the source array, in sizeof(DType) not raw btyes. */ void SyncCopyFromCPU(const void *data, size_t size) const; + + /*! + * \brief Copy from src.data()/aux_data(i) to this->data()/aux_data(j) + */ + void SyncCopyFromNDArray(const NDArray &src, int i = -1, int j = -1); + /*! * \brief Do a synchronize copy to a continugous CPU memory region. * @@ -282,17 +474,31 @@ class NDArray { void SyncCopyToCPU(void *data, size_t size) const; /*! * \brief Slice a NDArray - * \param begin begin index in first dim - * \param end end index in first dim + * \param begin begin index in first dim (inclusive) + * \param end end index in first dim (exclusive) * \return sliced NDArray */ NDArray Slice(index_t begin, index_t end) const; + /*! * \brief Index a NDArray * \param idx the index * \return idx-th sub array NDArray */ NDArray At(index_t idx) const; + + /*! + * \brief Generate a deep copy of aux_data(i) returned as + * a default storage type NDArray + */ + NDArray aux_ndarray(size_t i) const; + + /*! + * \brief Generate a deep copy of data() returned as a + * default storage type NDArray + */ + NDArray data_ndarray() const; + /*! * \brief Create a NDArray that shares memory with current one * The new array must have smaller memory size than the current array. @@ -301,6 +507,8 @@ class NDArray { * \return NDArray in new shape and type. */ inline NDArray AsArray(const TShape &shape, int dtype) const { + CHECK_EQ(storage_type(), kDefaultStorage) + << "AsArray is intended only for kDefaultStorage."; CHECK_GE(shape_.Size() * mshadow::mshadow_sizeof(dtype_), shape.Size() * mshadow::mshadow_sizeof(dtype)) << "NDArray.AsArray: target memory size is bigger"; @@ -342,8 +550,45 @@ class NDArray { * This is an internal function used by system that normal user should not use */ inline void CheckAndAlloc() const { + CHECK_EQ(storage_type(), kDefaultStorage); ptr_->CheckAndAlloc(); } + + /*! + * \brief Allocate the space if the allocation has been delayed + * or the requested size is bigger than the available one. + * This function can only be called by ndarray of default + * storage type and effectively changes the ndarray's shape_. + * Note: This function is named as this to avoid overload conflict + * with CheckAndAlloc(const std::vector &aux_shapes), since + * TShape tmp = some_shape is equivalent to TShape tmp = {some_shape}. + */ + void ReshapeAndAlloc(const TShape& shape) { + CHECK_EQ(storage_type(), kDefaultStorage); + CHECK(!is_none()); + shape_ = shape; + ptr_->CheckAndAlloc(shape.Size() * mshadow::mshadow_sizeof(dtype_)); + } + + /* ! + * \brief Alloc memory for non-default storage + * aux_shape is only known at run time + */ + inline void CheckAndAlloc(const std::vector &aux_shapes) const { + CHECK_NE(storage_type(), kDefaultStorage) + << "CheckAndAlloc(aux_shapes) is not intended for kDefaultStorage"; + ptr_->CheckAndAlloc(shape_, aux_shapes, dtype_); + } + inline void CheckAndAllocData(const TShape &storage_shape) const { + CHECK_NE(storage_type(), kDefaultStorage) + << "CheckAndAllocData is not intended for kDefaultStorage"; + ptr_->CheckAndAllocData(storage_shape, dtype_); + } + inline void CheckAndAllocAuxData(size_t i, const TShape &aux_shape) const { + CHECK_NE(storage_type(), kDefaultStorage) + << "CheckAndAllocAuxData is not intended for kDefaultStorage"; + ptr_->CheckAndAllocAuxData(i, aux_shape); + } /*! * \brief Save list of ndarray into the Stream.x * \param fo The stream of output. @@ -366,44 +611,138 @@ class NDArray { private: friend class autograd::AutogradRuntime; /*! \brief the real data chunk that backs NDArray */ + // shandle is used to store the actual values in the NDArray + // aux_handles store the aux data(such as indices) if it's needed by non-default storage. struct Chunk { - /*! \brief storage handlefrom storage engine */ + /*! \brief storage handle from storage engine. + for non-default storage, shandle stores the data(value) array. + */ Storage::Handle shandle; + /*! \brief storage handles for aux data (e.g index) + for row_sparse, aux_handles[0] = indices + for csr, aux_handles[0] = indptr, aux_handles[1] = indices + */ + std::vector aux_handles; /*! \brief variable from engine */ Engine::VarHandle var; /*! * \brief if this is true, this means the data do not come * from Storage, and do not need to be freed */ + /*! \brief construct from static data */ bool static_data; - /*! \brief whether allocation is delayed */ + /*! \brief whether data allocation is delayed. This doesn't indicate whether aux data + allocation is delayed. */ bool delay_alloc; + // the type of the storage. The storage_type is never kUndefinedStorage once the chunk + // is constructed. + NDArrayStorageType storage_type = kDefaultStorage; + /*! \brief type of aux */ + std::vector aux_types; + // context of data + Context ctx; + // The shape of the chunk data. + // This might not be the same shape as the NDArray, since the storage may be sparse. + // The default value for storage_shape is {0} when an empty non-default NDArray is created. + TShape storage_shape; + // The shape of aux data. The default value for the shape depends on the type of storage. + // If aux_shapes[i].Size() is zero, aux data i is empty. + std::vector aux_shapes; + /*! \brief default cosntructor */ - Chunk() : static_data(true), delay_alloc(false) { - var = Engine::Get()->NewVariable(); + Chunk() : static_data(true), delay_alloc(false) {} + + /*! \brief construct a new chunk */ + Chunk(TShape shape, Context ctx_, bool delay_alloc_, int dtype) + : static_data(false), delay_alloc(true), ctx(ctx_) { + auto size = shape.Size(); + storage_shape = shape; + var = Engine::Get()->NewVariable(); + shandle.size = size * mshadow::mshadow_sizeof(dtype); + shandle.ctx = ctx_; + if (!delay_alloc_) this->CheckAndAlloc(); } - /*! \brief construct from static data */ + Chunk(const TBlob &data, int dev_id) - : static_data(true), - delay_alloc(false) { + : static_data(true), delay_alloc(false) { + CHECK(storage_type == kDefaultStorage); var = Engine::Get()->NewVariable(); if (data.dev_mask() == cpu::kDevMask) { - shandle.ctx = Context::CPU(); + ctx = Context::CPU(); } else { CHECK_EQ(data.dev_mask(), gpu::kDevMask); - shandle.ctx = Context::GPU(dev_id); + ctx = Context::GPU(dev_id); } + // init shandle + shandle.ctx = ctx; shandle.dptr = data.dptr_; shandle.size = data.shape_.Size() * mshadow::mshadow_sizeof(data.type_flag_); + storage_shape = data.shape_; } - /*! \brief construct a new chunk */ - Chunk(uint64_t size, Context ctx, bool delay_alloc_, int dtype) - : static_data(false), delay_alloc(true) { + // Constructor for a non-default storage chunk + Chunk(NDArrayStorageType storage_type_, const TShape &storage_shape_, Context ctx_, + bool delay_alloc_, int dtype, const std::vector &aux_types_, + const std::vector &aux_shapes_) + : static_data(false), delay_alloc(delay_alloc_), storage_type(storage_type_), + aux_types(aux_types_), ctx(ctx_), storage_shape(storage_shape_), + aux_shapes(aux_shapes_) { + shandle.ctx = ctx; var = Engine::Get()->NewVariable(); - shandle.size = size * mshadow::mshadow_sizeof(dtype); + // aux_handles always reflect the correct number of aux data + for (size_t i = 0; i < aux_shapes.size(); i++) { + CheckAndAllocAuxData(i, aux_shapes[i]); + // this line is needed in case when aux_shapes[i].Size() = 0 + // aux_handles[i] will not be updated and take only default value. + aux_handles[i].ctx = ctx; + } + if (!delay_alloc) { + CheckAndAllocData(storage_shape, dtype); + } + } + + Chunk(const NDArrayStorageType storage_type_, const TBlob &data, + const std::vector &aux_data, int dev_id) + : static_data(true), delay_alloc(false), storage_type(storage_type_) { + using namespace mshadow; + CHECK_NE(storage_type, kDefaultStorage); + // init var + var = Engine::Get()->NewVariable(); + // init ctx + if (data.dev_mask() == cpu::kDevMask) { + ctx = Context::CPU(); + } else { + CHECK_EQ(data.dev_mask(), gpu::kDevMask); + ctx = Context::GPU(dev_id); + } + // init shandle shandle.ctx = ctx; - if (!delay_alloc_) this->CheckAndAlloc(); + shandle.dptr = data.dptr_; + shandle.size = data.shape_.Size() * mshadow_sizeof(data.type_flag_); + storage_shape = data.shape_; + // init aux handles + for (const auto &aux : aux_data) { + Storage::Handle aux_handle; + aux_handle.ctx = ctx; + aux_handle.dptr = aux.dptr_; + aux_handle.size = aux.shape_.Size() * mshadow_sizeof(aux.type_flag_); + aux_handles.push_back(aux_handle); + aux_types.emplace_back(aux.type_flag_); + aux_shapes.emplace_back(aux.shape_); + } + } + + /*! \brief set the shape for ith aux data, and update storage shape if necessary */ + inline void set_aux_shape(const size_t i, const TShape& shape) { + aux_shapes[i] = shape; + if (storage_shape.ndim() > 0) { + if (storage_type == kRowSparseStorage && i == rowsparse::kIdx) { + storage_shape[0] = shape[0]; + } else if (storage_type == kCSRStorage && i == csr::kIdx) { + storage_shape[0] = shape[0]; + } + } } + /*! \brief check if delay alloc is on, do alloc if not yet done */ inline void CheckAndAlloc(void) { if (delay_alloc) { @@ -411,22 +750,113 @@ class NDArray { delay_alloc = false; } } - /*! \brief destructor */ - ~Chunk() { - if (static_data || delay_alloc) { - Engine::Get()->DeleteVariable([](RunContext s) {}, shandle.ctx, var); + + /*! \brief Check and alloc memory for a dense ndarray */ + // size is the number of bytes + void CheckAndAlloc(uint64_t dbytes) { + CHECK_EQ(kDefaultStorage, storage_type) + << "CheckAndAlloc(dbytes) is not intended for kDefaultStorage"; + if (delay_alloc) { + shandle = Storage::Get()->Alloc(dbytes, shandle.ctx); + delay_alloc = false; + } else if (shandle.size < dbytes) { + // free storage if necessary and alloc again + if (shandle.size > 0) Storage::Get()->Free(shandle); + // init storage + shandle = Storage::Get()->Alloc(dbytes, shandle.ctx); + } + } + + inline void CheckAndAlloc(const TShape &shape, const std::vector &aux_shapes, + int dtype) { + // calculate size, perform allocation + if (kRowSparseStorage == storage_type) { + // For row sparse, aux_shape indicates the number of rows to allocate + auto aux_shape = aux_shapes[rowsparse::kIdx]; + CheckAndAllocAuxData(rowsparse::kIdx, aux_shape); + TShape storage_shape(shape); + storage_shape[0] = aux_shape[0]; + CheckAndAllocData(storage_shape, dtype); + } else if (kCSRStorage == storage_type) { + CheckAndAllocAuxData(csr::kIndPtr, aux_shapes[csr::kIndPtr]); + CheckAndAllocAuxData(csr::kIdx, aux_shapes[csr::kIdx]); + CheckAndAllocData(aux_shapes[csr::kIdx], dtype); } else { - Storage::Handle h = this->shandle; - Engine::Get()->DeleteVariable([h](RunContext s) { - Storage::Get()->Free(h); - }, shandle.ctx, var); + LOG(FATAL) << "Storage type " << storage_type << " not implemented for CheckAndAlloc"; + } + } + // create storage handle for data based on shape and dtype, assuming ctx is set + // storage shape is also updated + // if data is already allocated, try reuse the storage. Otherwise, free the current one + // and allocate new storage + inline void CheckAndAllocData(const TShape &shape, int dtype) { + CHECK_NE(aux_shapes.size(), 0) << "data is expected to be allocated after aux_data"; + auto dbytes = shape.Size() * mshadow::mshadow_sizeof(dtype); + if (shandle.size < dbytes) { + // free storage if necessary and alloc again + if (shandle.size > 0) Storage::Get()->Free(shandle); + // init storage + shandle = Storage::Get()->Alloc(dbytes, ctx); } + // init shape + storage_shape = shape; + // delay_alloc is only set when data storage handle is present + delay_alloc = false; + } + // create storage handle for aux data based on shape + // this function assumes ctx, aux shapes and aux types are set + // aux shape is also updated + // if aux data is already allocated, try reuse the storage. Otherwise, free the current one + // and allocate new storage + inline void CheckAndAllocAuxData(size_t i, const TShape &shape) { + CHECK_EQ(shape.ndim(), 1) << "shape must be 1D in CheckAndAllocAuxData"; + CHECK_NE(storage_type, kUndefinedStorage) + << "storage type cannot be kUndefinedStorage in CheckAndAllocAuxData"; + CHECK_NE(storage_type, kDefaultStorage) + << "storage type cannot be kDefaultStorage in CheckAndAllocAuxData"; + if (aux_handles.size() <= i) { + aux_handles.resize(i + 1); + } + size_t aux_bytes = shape.Size() * mshadow::mshadow_sizeof(aux_types[i]); + if (aux_handles[i].size < aux_bytes) { + // free storage if necessary and alloc again + if (aux_handles[i].size > 0) Storage::Get()->Free(aux_handles[i]); + // init aux storage + aux_handles[i] = Storage::Get()->Alloc(aux_bytes, ctx); + } + // init shape + set_aux_shape(i, shape); + } + /*! \brief destructor */ + ~Chunk() { + bool skip_free = static_data || delay_alloc; + Storage::Handle h = this->shandle; + std::vector aux_h = this->aux_handles; + Engine::Get()->DeleteVariable([h, aux_h, skip_free](RunContext s) { + if (skip_free == false) { + Storage::Get()->Free(h); + for (size_t i = 0; i < aux_h.size(); i++) { + if (aux_h[i].size > 0) Storage::Get()->Free(aux_h[i]); + } + } + }, shandle.ctx, var); } - }; + }; // struct Chunk void SetTBlob() const { - tblob_.dptr_ = static_cast(ptr_->shandle.dptr) + byte_offset_; - tblob_.shape_ = shape_; + CHECK(ptr_ != nullptr); + TShape shape = shape_; + char *dptr = static_cast(ptr_->shandle.dptr); + auto stype = storage_type(); + if (stype == kDefaultStorage) { + dptr += byte_offset_; + } else if (stype == kCSRStorage || stype == kRowSparseStorage) { + shape = storage_shape(); + } else { + LOG(FATAL) << "unknown storage type " << stype; + } + tblob_.dptr_ = dptr; + tblob_.shape_ = shape; tblob_.type_flag_ = dtype_; tblob_.SetDLTensor(ptr_->shandle.ctx.dev_mask(), ptr_->shandle.ctx.dev_id); #if MKL_EXPERIMENTAL == 1 @@ -438,7 +868,7 @@ class NDArray { std::shared_ptr Mkl_mem_; #endif /*! \brief internal data of NDArray */ - std::shared_ptr ptr_; + std::shared_ptr ptr_{nullptr}; /*! \brief shape of current NDArray */ TShape shape_; /*! \brief byte offset in chunk */ @@ -455,7 +885,12 @@ class NDArray { * this situation. */ mutable TBlob tblob_; -}; +}; // class NDArray + +/*! + * \return the number of aux data used for given storage type + */ +size_t num_aux_data(NDArrayStorageType stype); /*! * \brief issue an copy operation from one NDArray to another @@ -470,7 +905,6 @@ class NDArray { */ void CopyFromTo(const NDArray &from, NDArray *to, int priority = 0); - /*! * \brief Perform elementwise sum over each data from source, store result into out. * \param source the ndarray we want to sum diff --git a/include/mxnet/op_attr_types.h b/include/mxnet/op_attr_types.h index 1bcae0d29348..f559a921c522 100644 --- a/include/mxnet/op_attr_types.h +++ b/include/mxnet/op_attr_types.h @@ -25,7 +25,6 @@ #ifndef MXNET_OP_ATTR_TYPES_H_ #define MXNET_OP_ATTR_TYPES_H_ - #include #include @@ -226,6 +225,23 @@ using FCompute = std::function& inputs, const std::vector& req, const std::vector& outputs)>; +/*! + * \brief Resiger an NDArray compute function for simple stateless forward only operator + * + * \note Register under "FComputeEx" and "FComputeEx" + * Dispatched only when operators process non-default storage inputs or outputs + */ +using FComputeEx = std::function& inputs, + const std::vector& req, + const std::vector& outputs)>; + +using FInferStorageType = std::function* in_attrs, + std::vector* out_attrs)>; + } // namespace mxnet #endif // MXNET_OP_ATTR_TYPES_H_ diff --git a/include/mxnet/storage.h b/include/mxnet/storage.h index bfb42de8771a..7e3af8eeca81 100644 --- a/include/mxnet/storage.h +++ b/include/mxnet/storage.h @@ -41,11 +41,11 @@ class Storage { /*! * \brief Pointer to the data. */ - void* dptr; + void* dptr{nullptr}; /*! * \brief Size of the storage. */ - size_t size; + size_t size{0}; /*! * \brief Context information about device and ID. */ diff --git a/perl-package/AI-MXNetCAPI/mxnet.i b/perl-package/AI-MXNetCAPI/mxnet.i index fd1a471bcf16..b4c1336de624 100644 --- a/perl-package/AI-MXNetCAPI/mxnet.i +++ b/perl-package/AI-MXNetCAPI/mxnet.i @@ -1203,6 +1203,12 @@ int MXExecutorSimpleBind(SymbolHandle symbol_handle, const mx_uint num_provided_arg_dtypes, const char** in, // provided_arg_dtype_names, const int* in, // provided_arg_dtypes, + +//--------------- sparse related variables, ignored for now + const mx_uint num_provided_arg_stypes, + const char** provided_arg_stype_names, + const int* provided_arg_stypes, +//--------------- const mx_uint num_shared_arg_names, const char** in, // shared_arg_name_list, //------------ diff --git a/perl-package/AI-MXNetCAPI/mxnet_typemaps.i b/perl-package/AI-MXNetCAPI/mxnet_typemaps.i index 640215fd7792..5d2fbd6880a1 100644 --- a/perl-package/AI-MXNetCAPI/mxnet_typemaps.i +++ b/perl-package/AI-MXNetCAPI/mxnet_typemaps.i @@ -820,6 +820,17 @@ } } +%typemap(in,numinputs=0) (const mx_uint num_provided_arg_stypes, const char** provided_arg_stype_names, + const int* provided_arg_stypes) + (mx_uint temp1, char* temp2, int temp3) +{ + $2 = &temp2; + $3 = &temp3; + $1 = 0; + *$2 = NULL; + *$3 = 0; +} + %typemap(in,numinputs=0) (mx_uint* num_aux_states, NDArrayHandle** aux_states) (mx_uint temp1, diff --git a/python/mxnet/__init__.py b/python/mxnet/__init__.py index 3c3ce76a9284..72dc2b2fec8d 100644 --- a/python/mxnet/__init__.py +++ b/python/mxnet/__init__.py @@ -26,6 +26,7 @@ from . import base from . import contrib from . import ndarray +from . import ndarray as nd from . import name # use mx.sym as short for symbol from . import symbol as sym @@ -34,8 +35,6 @@ from . import io from . import recordio from . import operator -# use mx.nd as short for mx.ndarray -from . import ndarray as nd # use mx.rnd as short for mx.random from . import random as rnd from . import random diff --git a/python/mxnet/_ctypes/ndarray.py b/python/mxnet/_ctypes/ndarray.py index 5a50f80498ec..c2e6fce40de8 100644 --- a/python/mxnet/_ctypes/ndarray.py +++ b/python/mxnet/_ctypes/ndarray.py @@ -32,10 +32,19 @@ from ..ndarray_doc import _build_doc +_STORAGE_TYPE_ID_TO_STR = { + -1 : 'undefined', + 0 : 'default', + 1 : 'row_sparse', + 2 : 'csr', +} + + class NDArrayBase(object): """Base data structure for ndarray""" __slots__ = ["handle", "writable"] # pylint: disable= no-member + def __init__(self, handle, writable=True): """initialize a new NDArray @@ -78,7 +87,11 @@ def _imperative_invoke(handle, ndargs, keys, vals, out): output_vars = ctypes.POINTER(NDArrayHandle)() num_output = ctypes.c_int(0) - check_call(_LIB.MXImperativeInvoke( + # return output stypes to avoid the c_api call for checking + # a handle's stype in _ndarray_cls + out_stypes = ctypes.POINTER(ctypes.c_int)() + + check_call(_LIB.MXImperativeInvokeEx( ctypes.c_void_p(handle), ctypes.c_int(len(ndargs)), c_array(NDArrayHandle, [arr.handle for arr in ndargs]), @@ -86,14 +99,17 @@ def _imperative_invoke(handle, ndargs, keys, vals, out): ctypes.byref(output_vars), ctypes.c_int(len(keys)), c_array(ctypes.c_char_p, [c_str(key) for key in keys]), - c_array(ctypes.c_char_p, [c_str(str(val)) for val in vals]))) + c_array(ctypes.c_char_p, [c_str(str(val)) for val in vals]), + ctypes.byref(out_stypes))) if original_output is not None: return original_output if num_output.value == 1: - return _ndarray_cls(ctypes.cast(output_vars[0], NDArrayHandle)) + return _ndarray_cls(ctypes.cast(output_vars[0], NDArrayHandle), + stype=_STORAGE_TYPE_ID_TO_STR[out_stypes[0]]) else: - return [_ndarray_cls(ctypes.cast(output_vars[i], NDArrayHandle)) + return [_ndarray_cls(ctypes.cast(output_vars[i], NDArrayHandle), + stype=_STORAGE_TYPE_ID_TO_STR[out_stypes[i]]) for i in range(num_output.value)] @@ -128,17 +144,24 @@ def __call__(self, *args, **kwargs): "CachedOp.__call__ got unexpected keyword argument(s): " + \ ', '.join(kwargs.keys())) - check_call(_LIB.MXInvokeCachedOp( + # return output stypes to avoid the c_api call for checking + # a handle's stype in _ndarray_cls + out_stypes = ctypes.POINTER(ctypes.c_int)() + + check_call(_LIB.MXInvokeCachedOpEx( self.handle, ctypes.c_int(len(args)), c_array(NDArrayHandle, [arr.handle for arr in args]), ctypes.byref(num_output), - ctypes.byref(output_vars))) + ctypes.byref(output_vars), + ctypes.byref(out_stypes))) if original_output is not None: return original_output if num_output.value == 1: - return _ndarray_cls(ctypes.cast(output_vars[0], NDArrayHandle)) + return _ndarray_cls(ctypes.cast(output_vars[0], NDArrayHandle), + stype=_STORAGE_TYPE_ID_TO_STR[out_stypes[0]]) else: - return [_ndarray_cls(ctypes.cast(output_vars[i], NDArrayHandle)) + return [_ndarray_cls(ctypes.cast(output_vars[i], NDArrayHandle), + stype=_STORAGE_TYPE_ID_TO_STR[out_stypes[i]]) for i in range(num_output.value)] diff --git a/python/mxnet/base.py b/python/mxnet/base.py index aad0580e7d07..d446355da0b5 100644 --- a/python/mxnet/base.py +++ b/python/mxnet/base.py @@ -72,6 +72,20 @@ def __str__(self): msg += ' is not implemented for Symbol and only available in NDArray.' return msg +class NotSupportedForSparseNDArray(MXNetError): + def __init__(self, function, alias, *args): + super(NotSupportedForSparseNDArray, self).__init__() + self.function = function.__name__ + self.alias = alias + self.args = [str(type(a)) for a in args] + def __str__(self): + msg = 'Function {}'.format(self.function) + if self.alias: + msg += ' (namely operator "{}")'.format(self.alias) + if self.args: + msg += ' with arguments ({})'.format(', '.join(self.args)) + msg += ' is not supported for SparseNDArray and only available in NDArray.' + return msg class MXCallbackList(ctypes.Structure): """Structure that holds Callback information. Passed to CustomOpProp.""" diff --git a/python/mxnet/contrib/autograd.py b/python/mxnet/contrib/autograd.py index c7fb6e17803a..2d2500e7a217 100644 --- a/python/mxnet/contrib/autograd.py +++ b/python/mxnet/contrib/autograd.py @@ -24,6 +24,7 @@ import functools from ..base import _LIB, check_call, string_types from ..base import mx_uint, NDArrayHandle, c_array +# pylint: disable= unused-import from ..ndarray import NDArray, zeros_like from ..symbol import _GRAD_REQ_MAP diff --git a/python/mxnet/executor.py b/python/mxnet/executor.py index baff834bb33a..5cc94a5e80ac 100644 --- a/python/mxnet/executor.py +++ b/python/mxnet/executor.py @@ -27,6 +27,7 @@ from .base import mx_uint, NDArrayHandle, ExecutorHandle from .base import check_call, c_array, py_str from .ndarray import NDArray +from .ndarray import _ndarray_cls from . import ndarray as nd # those functions are not used here, we just import them to keep backward compatibility @@ -105,7 +106,9 @@ def _get_outputs(self): handles = ctypes.POINTER(NDArrayHandle)() check_call(_LIB.MXExecutorOutputs(self.handle, ctypes.byref(out_size), ctypes.byref(handles))) - return [NDArray(NDArrayHandle(handles[i])) for i in range(out_size.value)] + num_output = out_size.value + outputs = [_ndarray_cls(NDArrayHandle(handles[i])) for i in range(num_output)] + return outputs def forward(self, is_train=False, **kwargs): """Calculate the outputs specified by the bound symbol. diff --git a/python/mxnet/image/detection.py b/python/mxnet/image/detection.py index 8ac1aebe72dd..f67b05de5de3 100644 --- a/python/mxnet/image/detection.py +++ b/python/mxnet/image/detection.py @@ -27,7 +27,7 @@ from ..base import numeric_types from .. import ndarray as nd -from .._ndarray_internal import _cvcopyMakeBorder as copyMakeBorder +from ..ndarray._internal import _cvcopyMakeBorder as copyMakeBorder from .. import io from .image import RandomOrderAug, ColorJitterAug, LightingAug, ColorNormalizeAug from .image import ResizeAug, ForceResizeAug, CastAug, HueJitterAug, RandomGrayAug diff --git a/python/mxnet/image/image.py b/python/mxnet/image/image.py index 2e40019971ac..d99db214222c 100644 --- a/python/mxnet/image/image.py +++ b/python/mxnet/image/image.py @@ -34,9 +34,9 @@ from ..base import numeric_types from .. import ndarray as nd -from .. import _ndarray_internal as _internal -from .._ndarray_internal import _cvimresize as imresize -from .._ndarray_internal import _cvcopyMakeBorder as copyMakeBorder +from ..ndarray import _internal +from ..ndarray._internal import _cvimresize as imresize +from ..ndarray._internal import _cvcopyMakeBorder as copyMakeBorder from .. import io from .. import recordio diff --git a/python/mxnet/io.py b/python/mxnet/io.py index 0404e34ea36c..4e69a8a801cb 100644 --- a/python/mxnet/io.py +++ b/python/mxnet/io.py @@ -34,6 +34,7 @@ from .base import mx_real_t from .base import check_call, build_param_doc as _build_param_doc from .ndarray import NDArray +from .ndarray import _ndarray_cls from .ndarray import array from .ndarray import concatenate @@ -801,12 +802,12 @@ def iter_next(self): def getdata(self): hdl = NDArrayHandle() check_call(_LIB.MXDataIterGetData(self.handle, ctypes.byref(hdl))) - return NDArray(hdl, False) + return _ndarray_cls(hdl, False) def getlabel(self): hdl = NDArrayHandle() check_call(_LIB.MXDataIterGetLabel(self.handle, ctypes.byref(hdl))) - return NDArray(hdl, False) + return _ndarray_cls(hdl, False) def getindex(self): index_size = ctypes.c_uint64(0) diff --git a/python/mxnet/kvstore.py b/python/mxnet/kvstore.py index fd0091182aea..2af70e36e60a 100644 --- a/python/mxnet/kvstore.py +++ b/python/mxnet/kvstore.py @@ -22,6 +22,7 @@ import ctypes import pickle from .ndarray import NDArray +from .ndarray import _ndarray_cls from .base import _LIB from .base import check_call, c_array, c_str, string_types, mx_uint, py_str from .base import NDArrayHandle, KVStoreHandle @@ -53,8 +54,8 @@ def _updater_wrapper(updater): """A wrapper for the user-defined handle.""" def updater_handle(key, lhs_handle, rhs_handle, _): """ ctypes function """ - lhs = NDArray(NDArrayHandle(lhs_handle)) - rhs = NDArray(NDArrayHandle(rhs_handle)) + lhs = _ndarray_cls(NDArrayHandle(lhs_handle)) + rhs = _ndarray_cls(NDArrayHandle(rhs_handle)) updater(key, lhs, rhs) return updater_handle @@ -186,6 +187,8 @@ def pull(self, key, out=None, priority=0): The returned values are gauranteed to be the latest values in the store. + For row_sparse values, please use `row_sparse_pull` instead. + Parameters ---------- key : int or list of int @@ -236,6 +239,66 @@ def pull(self, key, out=None, priority=0): self.handle, mx_uint(len(ckeys)), ckeys, cvals, ctypes.c_int(priority))) + def row_sparse_pull(self, key, out=None, priority=0, row_ids=None): + """ Pulls a single row_sparse value or a sequence of row_sparse values from the store + with specified row_ids. + + `row_sparse_pull` is executed asynchronously after all previous + `push`/`pull`/`row_sparse_pull` calls for the same input key(s) are finished. + + The returned values are guaranteed to be the latest values in the store. + + Parameters + ---------- + key : str or list of str + Keys. + + out: NDArray or list of NDArray or list of list of NDArray + Values corresponding to the keys. The stype is expected to be row_sparse + + priority : int, optional + The priority of the pull operation. + Higher priority pull operations are likely to be executed before + other pull actions. + + row_ids : NDArray or list of NDArray + The row_ids for which to pull for each value. Each row_id is an 1D-NDArray \ + whose values don't have to be unique nor sorted. + + Examples + -------- + >>> shape = (3, 3) + >>> kv.init('3', mx.nd.ones(shape).tostype('row_sparse')) + >>> a = mx.nd.zeros(shape, stype='row_sparse') + >>> row_ids = mx.nd.array([0, 2], dtype='int64') + >>> kv.row_sparse_pull('3', out=a, row_ids=row_ids) + >>> print a.asnumpy() + [[ 1. 1. 1.] + [ 0. 0. 0.] + [ 1. 1. 1.]] + >>> duplicate_row_ids = mx.nd.array([2, 2], dtype='int64') + >>> kv.row_sparse_pull('3', out=a, row_ids=duplicate_row_ids) + >>> print a.asnumpy() + [[ 0. 0. 0.] + [ 0. 0. 0.] + [ 1. 1. 1.]] + >>> unsorted_row_ids = mx.nd.array([1, 0], dtype='int64') + >>> kv.row_sparse_pull('3', out=a, row_ids=unsorted_row_ids) + >>> print a.asnumpy() + [[ 1. 1. 1.] + [ 1. 1. 1.] + [ 0. 0. 0.]] + """ + assert(out is not None) + assert(row_ids is not None) + ckeys, cvals = _ctype_key_value(key, out) + _, crow_ids = _ctype_key_value(key, row_ids) + assert(len(crow_ids) == len(cvals)), "number of row_ids doesn't match number of values" + + check_call(_LIB.MXKVStorePullRowSparse( + self.handle, mx_uint(len(ckeys)), ckeys, cvals, crow_ids, ctypes.c_int(priority))) + + def set_optimizer(self, optimizer): """ Registers an optimizer with the kvstore. diff --git a/python/mxnet/model.py b/python/mxnet/model.py index 01b3fa50e18f..2444ca0dc59e 100644 --- a/python/mxnet/model.py +++ b/python/mxnet/model.py @@ -93,8 +93,7 @@ def _create_kvstore(kvstore, num_device, arg_params): return (kv, update_on_kvstore) -def _initialize_kvstore(kvstore, param_arrays, arg_params, param_names, - update_on_kvstore): +def _initialize_kvstore(kvstore, param_arrays, arg_params, param_names, update_on_kvstore): """Initialize kvstore""" for idx, param_on_devs in enumerate(param_arrays): name = param_names[idx] @@ -118,10 +117,11 @@ def _update_params_on_kvstore(param_arrays, grad_arrays, kvstore, param_names): def _update_params(param_arrays, grad_arrays, updater, num_device, kvstore=None, param_names=None): """Perform update of param_arrays from grad_arrays not on kvstore.""" - for index, pair in enumerate(zip(param_arrays, grad_arrays)): + for i, pair in enumerate(zip(param_arrays, grad_arrays)): arg_list, grad_list = pair if grad_list[0] is None: continue + index = i if kvstore: name = param_names[index] # push gradient, priority is negative index @@ -131,7 +131,7 @@ def _update_params(param_arrays, grad_arrays, updater, num_device, for k, p in enumerate(zip(arg_list, grad_list)): # faked an index here, to make optimizer create diff # state for the same index but on diff devs, TODO(mli) - # use a better solution latter + # use a better solution later w, g = p updater(index*num_device+k, g, w) diff --git a/python/mxnet/module/base_module.py b/python/mxnet/module/base_module.py index 3123462f9c7c..bae166e3ffd8 100644 --- a/python/mxnet/module/base_module.py +++ b/python/mxnet/module/base_module.py @@ -957,7 +957,8 @@ def bind(self, data_shapes, label_shapes=None, for_training=True, def init_optimizer(self, kvstore='local', optimizer='sgd', optimizer_params=(('learning_rate', 0.01),), force_init=False): - """Installs and initializes optimizers. + """Installs and initializes optimizers, as well as initialize kvstore for + distributed training Parameters ---------- diff --git a/python/mxnet/module/module.py b/python/mxnet/module/module.py index 058edd57eb3d..d55b2117ebd3 100644 --- a/python/mxnet/module/module.py +++ b/python/mxnet/module/module.py @@ -25,7 +25,6 @@ import warnings from .. import context as ctx -from .. import ndarray as nd from .. import optimizer as opt from .executor_group import DataParallelExecutorGroup @@ -33,6 +32,7 @@ from ..model import load_checkpoint from ..initializer import Uniform, InitDesc from ..io import DataDesc +from ..ndarray import zeros from .base_module import BaseModule, _check_input_names, _parse_data_desc @@ -427,13 +427,13 @@ def bind(self, data_shapes, label_shapes=None, for_training=True, else: assert self._arg_params is None and self._aux_params is None param_arrays = [ - nd.zeros(x[0].shape, dtype=x[0].dtype) + zeros(shape=x[0].shape, dtype=x[0].dtype, stype=x[0].stype) for x in self._exec_group.param_arrays ] self._arg_params = {name:arr for name, arr in zip(self._param_names, param_arrays)} aux_arrays = [ - nd.zeros(x[0].shape, dtype=x[0].dtype) + zeros(x[0].shape, dtype=x[0].dtype) for x in self._exec_group.aux_arrays ] self._aux_params = {name:arr for name, arr in zip(self._aux_names, aux_arrays)} @@ -441,7 +441,6 @@ def bind(self, data_shapes, label_shapes=None, for_training=True, if shared_module is not None and shared_module.optimizer_initialized: self.borrow_optimizer(shared_module) - def reshape(self, data_shapes, label_shapes=None): """Reshapes the module for new input shapes. @@ -483,6 +482,7 @@ def init_optimizer(self, kvstore='local', optimizer='sgd', if self._params_dirty: self._sync_params_from_devices() + (kvstore, update_on_kvstore) = \ _create_kvstore(kvstore, len(self._context), self._arg_params) diff --git a/python/mxnet/ndarray/__init__.py b/python/mxnet/ndarray/__init__.py new file mode 100644 index 000000000000..63220787a43c --- /dev/null +++ b/python/mxnet/ndarray/__init__.py @@ -0,0 +1,25 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +"""NDArray API of MXNet.""" + +from . import _internal, sparse, op +from .op import CachedOp +# pylint: disable=wildcard-import, redefined-builtin +from .ndarray import * +from .utils import load, save, zeros, empty, array +from .sparse import _ndarray_cls diff --git a/python/mxnet/_ndarray_internal.py b/python/mxnet/ndarray/_internal.py similarity index 100% rename from python/mxnet/_ndarray_internal.py rename to python/mxnet/ndarray/_internal.py diff --git a/python/mxnet/ndarray.py b/python/mxnet/ndarray/ndarray.py similarity index 87% rename from python/mxnet/ndarray.py rename to python/mxnet/ndarray/ndarray.py index 42f0ff5e87cf..20ca2262f0cd 100644 --- a/python/mxnet/ndarray.py +++ b/python/mxnet/ndarray/ndarray.py @@ -21,6 +21,7 @@ """NDArray API of MXNet.""" from __future__ import absolute_import from __future__ import division + try: from __builtin__ import slice as py_slice except ImportError: @@ -28,40 +29,25 @@ import ctypes import warnings - -import os as _os -import sys as _sys - import operator import numpy as np -from .base import _LIB, string_types, numeric_types, integer_types -from .base import c_array, py_str, c_str, mx_real_t, _Null # pylint: disable=unused-import -from .base import mx_uint, NDArrayHandle, check_call, OpHandle -from .base import ctypes2buffer -from .context import Context -from . import _ndarray_internal as _internal -from .ndarray_doc import _build_doc - - -# Use different version of SymbolBase -# When possible, use cython to speedup part of computation. -# pylint: disable=unused-import -try: - if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: - from ._ctypes.ndarray import NDArrayBase, _set_ndarray_class - from ._ctypes.ndarray import CachedOp, _imperative_invoke - elif _sys.version_info >= (3, 0): - from ._cy3.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke - from ._cy3.ndarray import CachedOp, _imperative_invoke - else: - from ._cy2.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke - from ._cy2.ndarray import CachedOp, _imperative_invoke -except ImportError: - if int(_os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0: - raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1") - from ._ctypes.ndarray import NDArrayBase, _set_ndarray_class, _imperative_invoke - from ._ctypes.ndarray import CachedOp, _imperative_invoke -# pylint: enable=unused-import +from ..base import _LIB, numeric_types, integer_types +from ..base import c_array, mx_real_t +from ..base import mx_uint, NDArrayHandle, check_call +from ..base import ctypes2buffer +from ..context import Context +from . import _internal +from .op import NDArrayBase, _STORAGE_TYPE_ID_TO_STR +from . import broadcast_add, broadcast_mul, transpose, broadcast_not_equal, broadcast_power +from . import broadcast_sub, broadcast_div, broadcast_to, broadcast_equal, cast_storage +from . import broadcast_greater, broadcast_greater_equal, broadcast_lesser, broadcast_lesser_equal +from . import zeros_like, slice + +__all__ = ["NDArray", "concatenate", "_DTYPE_NP_TO_MX", "_DTYPE_MX_TO_NP", "_GRAD_REQ_MAP", + "ones", "add", "arange", "divide", "equal", "full", "greater", "greater_equal", + "imdecode", "lesser", "lesser_equal", "maximum", "minimum", "moveaxis", + "multiply", "negative", "not_equal", "onehot_encode", "power", "subtract", + "true_divide", "waitall", "_new_empty_handle"] # pylint: disable= no-member _DTYPE_NP_TO_MX = { @@ -74,7 +60,6 @@ np.int8 : 5, np.int64 : 6, } - _DTYPE_MX_TO_NP = { -1 : None, 0 : np.float32, @@ -85,7 +70,12 @@ 5 : np.int8, 6 : np.int64, } - +_STORAGE_TYPE_STR_TO_ID = { + 'undefined' : -1, + 'default' : 0, + 'row_sparse' : 1, + 'csr' : 2, +} _GRAD_REQ_MAP = { 'null': 0, 'write': 1, @@ -93,6 +83,7 @@ } # pylint: enable= no-member + def _new_empty_handle(): """Returns a new empty handle. @@ -107,6 +98,7 @@ def _new_empty_handle(): check_call(_LIB.MXNDArrayCreateNone(ctypes.byref(hdl))) return hdl + def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): """Return a new handle with specified shape and context. @@ -128,6 +120,7 @@ def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): ctypes.byref(hdl))) return hdl + def waitall(): """Wait for all async operations to finish in MXNet. @@ -135,6 +128,13 @@ def waitall(): """ check_call(_LIB.MXNDArrayWaitAll()) + +def _storage_type(handle): + storage_type = ctypes.c_int(0) + check_call(_LIB.MXNDArrayGetStorageType(handle, ctypes.byref(storage_type))) + return _STORAGE_TYPE_ID_TO_STR[storage_type.value] + + class NDArray(NDArrayBase): """An array object representing a multidimensional, homogeneous array of fixed-size items. @@ -144,6 +144,7 @@ class NDArray(NDArrayBase): # make numpy functions return NDArray instead of numpy object array __array_priority__ = 1000.0 # pylint: disable= no-member, undefined-variable + def __repr__(self): """Returns a string representation of the array.""" shape_info = 'x'.join(['%d' % x for x in self.shape]) @@ -151,6 +152,9 @@ def __repr__(self): self.__class__.__name__, shape_info, self.context) + def __reduce__(self): + return NDArray, (None,), self.__getstate__() + def __add__(self, other): """x.__add__(y) <=> x+y <=> mx.nd.add(x, y) """ return add(self, other) @@ -742,7 +746,6 @@ def wait_to_read(self): """ check_call(_LIB.MXNDArrayWaitToRead(self.handle)) - @property def ndim(self): """Returns the number of dimensions of this array @@ -777,6 +780,7 @@ def shape(self): self.handle, ctypes.byref(ndim), ctypes.byref(pdata))) return tuple(pdata[:ndim.value]) + @property def size(self): """Number of elements in the array. @@ -841,6 +845,12 @@ def dtype(self): self.handle, ctypes.byref(mx_dtype))) return _DTYPE_MX_TO_NP[mx_dtype.value] + @property + def stype(self): + """Storage-type of the array. + """ + return _storage_type(self.handle) + @property # pylint: disable= invalid-name, undefined-variable def T(self): @@ -964,7 +974,7 @@ def copyto(self, other): Returns ------- - NDArray + NDArray, CSRNDArray, RowSparseNDArray The copied array. If ``other`` is an ``NDArray``, then the return value and ``other`` will point to the same ``NDArray``. @@ -1101,6 +1111,20 @@ def backward(self, out_grad=None, retain_graph=False, train_mode=True): ctypes.c_int(retain_graph), ctypes.c_int(train_mode))) + def tostype(self, stype): + """Return a copy of the array with chosen storage type. + + See Also + ---------- + :meth:`mxnet.ndarray.cast_storage`. + + Returns + ------- + NDArray, CSRNDArray or RowSparseNDArray + A copy of the array with the chosen storage stype + """ + return cast_storage(self, stype=stype) + def onehot_encode(indices, out): """One-hot encoding indices into matrix out. @@ -1113,74 +1137,7 @@ def onehot_encode(indices, out): # pylint: enable= no-member, protected-access -def empty(shape, ctx=None, dtype=mx_real_t): - """Returns a new array of given shape and type, without initializing entries. - - Parameters - ---------- - shape : int or tuple of int - The shape of the empty array. - ctx : Context, optional - An optional device context (default is the current default context). - dtype : str or numpy.dtype, optional - An optional value type (default is `float32`). - - Returns - ------- - NDArray - A created array. - - Examples - -------- - >>> mx.nd.empty(1) - - >>> mx.nd.empty((1,2), mx.gpu(0)) - - >>> mx.nd.empty((1,2), mx.gpu(0), 'float16') - - """ - if isinstance(shape, integer_types): - shape = (shape, ) - if ctx is None: - ctx = Context.default_ctx - return NDArray(handle=_new_alloc_handle(shape, ctx, False, dtype)) - -def zeros(shape, ctx=None, dtype=mx_real_t, **kwargs): - """Returns a new array filled with all zeros, with the given shape and type. - - Parameters - ---------- - shape : int or tuple of int - The shape of the empty array. - ctx : Context, optional - An optional device context (default is the current default context). - dtype : str or numpy.dtype, optional - An optional value type (default is `float32`). - out : NDArray, optional - The output NDArray (default is `None`). - - Returns - ------- - NDArray - A created array - - Examples - -------- - >>> mx.nd.zeros(1).asnumpy() - array([ 0.], dtype=float32) - >>> mx.nd.zeros((1,2), mx.gpu(0)) - - >>> mx.nd.zeros((1,2), mx.gpu(0), 'float16').asnumpy() - array([[ 0., 0.]], dtype=float16) - """ - # pylint: disable= unused-argument - if ctx is None: - ctx = Context.default_ctx - # pylint: disable= no-member, protected-access - return _internal._zeros(shape=shape, ctx=ctx, dtype=dtype, **kwargs) - # pylint: enable= no-member, protected-access - -def ones(shape, ctx=None, dtype=mx_real_t, **kwargs): +def ones(shape, ctx=None, dtype=None, **kwargs): """Returns a new array filled with all ones, with the given shape and type. Parameters @@ -1212,10 +1169,12 @@ def ones(shape, ctx=None, dtype=mx_real_t, **kwargs): # pylint: disable= unused-argument if ctx is None: ctx = Context.default_ctx + dtype = mx_real_t if dtype is None else dtype # pylint: disable= no-member, protected-access return _internal._ones(shape=shape, ctx=ctx, dtype=dtype, **kwargs) # pylint: enable= no-member, protected-access + def full(shape, val, ctx=None, dtype=mx_real_t, out=None): """Returns a new array of given shape and type, filled with the given value `val`. @@ -1269,18 +1228,6 @@ def array(source_array, ctx=None, dtype=None): ------- NDArray An `NDArray` with the same contents as the `source_array`. - - Examples - -------- - >>> import numpy as np - >>> mx.nd.array([1, 2, 3]) - - >>> mx.nd.array([[1, 2], [3, 4]]) - - >>> mx.nd.array(np.zeros((3, 2))) - - >>> mx.nd.array(np.zeros((3, 2)), mx.gpu(0)) - """ if isinstance(source_array, NDArray): dtype = source_array.dtype if dtype is None else dtype @@ -1382,6 +1329,7 @@ def arange(start, stop=None, step=1.0, repeat=1, ctx=None, dtype=mx_real_t): dtype=dtype, ctx=str(ctx)) # pylint: enable= no-member, protected-access, too-many-arguments + #pylint: disable= too-many-arguments, no-member, protected-access def _ufunc_helper(lhs, rhs, fn_array, fn_scalar, lfn_scalar, rfn_scalar=None): """ Helper function for element-wise operation. @@ -1430,6 +1378,7 @@ def _ufunc_helper(lhs, rhs, fn_array, fn_scalar, lfn_scalar, rfn_scalar=None): raise TypeError('type %s not supported' % str(type(rhs))) #pylint: enable= too-many-arguments, no-member, protected-access + def add(lhs, rhs): """Returns element-wise sum of the input arrays with broadcasting. @@ -1491,6 +1440,7 @@ def add(lhs, rhs): None) # pylint: enable= no-member, protected-access + def subtract(lhs, rhs): """Returns element-wise difference of the input arrays with broadcasting. @@ -1552,6 +1502,7 @@ def subtract(lhs, rhs): _internal._rminus_scalar) # pylint: enable= no-member, protected-access + def multiply(lhs, rhs): """Returns element-wise product of the input arrays with broadcasting. @@ -1612,6 +1563,7 @@ def multiply(lhs, rhs): None) # pylint: enable= no-member, protected-access + def divide(lhs, rhs): """Returns element-wise division of the input arrays with broadcasting. @@ -1668,6 +1620,7 @@ def divide(lhs, rhs): _internal._rdiv_scalar) # pylint: enable= no-member, protected-access + def modulo(lhs, rhs): """Returns element-wise modulo of the input arrays with broadcasting. @@ -1724,6 +1677,7 @@ def modulo(lhs, rhs): _internal._rmod_scalar) # pylint: enable= no-member, protected-access + def power(base, exp): """Returns result of first array elements raised to powers from second array, element-wise with broadcasting. @@ -1785,6 +1739,7 @@ def power(base, exp): _internal._rpower_scalar) # pylint: enable= no-member, protected-access + def maximum(lhs, rhs): """Returns element-wise maximum of the input arrays with broadcasting. @@ -1841,6 +1796,7 @@ def maximum(lhs, rhs): None) # pylint: enable= no-member, protected-access + def minimum(lhs, rhs): """Returns element-wise minimum of the input arrays with broadcasting. @@ -1897,6 +1853,7 @@ def minimum(lhs, rhs): None) # pylint: enable= no-member, protected-access + def equal(lhs, rhs): """Returns the result of element-wise **equal to** (==) comparison operation with broadcasting. @@ -1960,6 +1917,7 @@ def equal(lhs, rhs): None) # pylint: enable= no-member, protected-access + def not_equal(lhs, rhs): """Returns the result of element-wise **not equal to** (!=) comparison operation with broadcasting. @@ -2026,6 +1984,7 @@ def not_equal(lhs, rhs): None) # pylint: enable= no-member, protected-access + def greater(lhs, rhs): """Returns the result of element-wise **greater than** (>) comparison operation with broadcasting. @@ -2089,6 +2048,7 @@ def greater(lhs, rhs): _internal._lesser_scalar) # pylint: enable= no-member, protected-access + def greater_equal(lhs, rhs): """Returns the result of element-wise **greater than or equal to** (>=) comparison operation with broadcasting. @@ -2152,6 +2112,7 @@ def greater_equal(lhs, rhs): _internal._lesser_equal_scalar) # pylint: enable= no-member, protected-access + def lesser(lhs, rhs): """Returns the result of element-wise **lesser than** (<) comparison operation with broadcasting. @@ -2279,12 +2240,14 @@ def lesser_equal(lhs, rhs): _internal._greater_equal_scalar) # pylint: enable= no-member, protected-access + def true_divide(lhs, rhs): """This function is similar to :meth:`divide`. """ return divide(lhs, rhs) + def negative(arr): """Numerical negative, element-wise. @@ -2310,95 +2273,6 @@ def negative(arr): return multiply(arr, -1.0) -def load(fname): - """Loads an array from file. - - See more details in ``save``. - - Parameters - ---------- - fname : str - The filename. - - Returns - ------- - list of NDArray or dict of str to NDArray - Loaded data. - """ - if not isinstance(fname, string_types): - raise TypeError('fname required to be a string') - out_size = mx_uint() - out_name_size = mx_uint() - handles = ctypes.POINTER(NDArrayHandle)() - names = ctypes.POINTER(ctypes.c_char_p)() - check_call(_LIB.MXNDArrayLoad(c_str(fname), - ctypes.byref(out_size), - ctypes.byref(handles), - ctypes.byref(out_name_size), - ctypes.byref(names))) - if out_name_size.value == 0: - return [NDArray(NDArrayHandle(handles[i])) for i in range(out_size.value)] - else: - assert out_name_size.value == out_size.value - return dict( - (py_str(names[i]), NDArray(NDArrayHandle(handles[i]))) for i in range(out_size.value)) - - -def save(fname, data): - """Saves a list of arrays or a dict of str->array to file. - - Examples of filenames: - - - ``/path/to/file`` - - ``s3://my-bucket/path/to/file`` (if compiled with AWS S3 supports) - - ``hdfs://path/to/file`` (if compiled with HDFS supports) - - Parameters - ---------- - fname : str - The filename. - data : ``NDArray``, list of ``NDArray` or dict of str to ``NDArray`` - The data to save. - - Examples - -------- - >>> x = mx.nd.zeros((2,3)) - >>> y = mx.nd.ones((1,4)) - >>> mx.nd.save('my_list', [x,y]) - >>> mx.nd.save('my_dict', {'x':x, 'y':y}) - >>> mx.nd.load('my_list') - [, ] - >>> mx.nd.load('my_dict') - {'y': , 'x': } - """ - if isinstance(data, NDArray): - data = [data] - handles = [] - if isinstance(data, dict): - keys = [] - for key, val in data.items(): - if not isinstance(key, string_types): - raise TypeError('save only accept dict str->NDArray or list of NDArray') - if not isinstance(val, NDArray): - raise TypeError('save only accept dict str->NDArray or list of NDArray') - keys.append(c_str(key)) - handles.append(val.handle) - keys = c_array(ctypes.c_char_p, keys) - elif isinstance(data, list): - for val in data: - if not isinstance(val, NDArray): - raise TypeError('save only accept dict str->NDArray or list of NDArray') - handles.append(val.handle) - keys = None - else: - raise ValueError("data needs to either be a NDArray, dict of str, NDArray pairs " - "or a list of NDarrays.") - check_call(_LIB.MXNDArraySave(c_str(fname), - mx_uint(len(handles)), - c_array(NDArrayHandle, handles), - keys)) - - def concatenate(arrays, axis=0, always_copy=True): """DEPRECATED, use ``concat`` instead @@ -2455,6 +2329,7 @@ def concatenate(arrays, axis=0, always_copy=True): return ret + def imdecode(str_img, clip_rect=(0, 0, 0, 0), out=None, index=0, channels=3, mean=None): """DEPRECATED, use mx.img instead @@ -2497,159 +2372,65 @@ def imdecode(str_img, clip_rect=(0, 0, 0, 0), out=None, index=0, channels=3, mea out=out) -# pylint: disable=too-many-locals, invalid-name -def _make_ndarray_function(handle, name): - """Create a NDArray function from the FunctionHandle.""" - real_name = ctypes.c_char_p() - desc = ctypes.c_char_p() - num_args = mx_uint() - arg_names = ctypes.POINTER(ctypes.c_char_p)() - arg_types = ctypes.POINTER(ctypes.c_char_p)() - arg_descs = ctypes.POINTER(ctypes.c_char_p)() - key_var_num_args = ctypes.c_char_p() - ret_type = ctypes.c_char_p() - - check_call(_LIB.MXSymbolGetAtomicSymbolInfo( - handle, ctypes.byref(real_name), ctypes.byref(desc), - ctypes.byref(num_args), - ctypes.byref(arg_names), - ctypes.byref(arg_types), - ctypes.byref(arg_descs), - ctypes.byref(key_var_num_args), - ctypes.byref(ret_type))) - narg = int(num_args.value) - arg_names = [py_str(arg_names[i]) for i in range(narg)] - arg_types = [py_str(arg_types[i]) for i in range(narg)] - func_name = name - key_var_num_args = py_str(key_var_num_args.value) - ret_type = py_str(ret_type.value) if ret_type.value is not None else '' - doc_str = _build_doc(func_name, - py_str(desc.value), - arg_names, - arg_types, - [py_str(arg_descs[i]) for i in range(narg)], - key_var_num_args, - ret_type) - - dtype_name = None - arr_name = None - ndsignature = [] - signature = [] - ndarg_names = [] - kwarg_names = [] - for i in range(narg): - name, atype = arg_names[i], arg_types[i] - if name == 'dtype': - dtype_name = name - signature.append('%s=_Null'%name) - elif atype.startswith('NDArray') or atype.startswith('Symbol'): - assert not arr_name, \ - "Op can only have one argument with variable " \ - "size and it must be the last argument." - if atype.endswith('[]'): - ndsignature.append('*%s'%name) - arr_name = name - else: - ndsignature.append('%s=None'%name) - ndarg_names.append(name) - else: - signature.append('%s=_Null'%name) - kwarg_names.append(name) - signature.append('out=None') - signature.append('name=None') - signature.append('**kwargs') - signature = ndsignature + signature - - code = [] - if arr_name: - code.append(""" -def %s(*%s, **kwargs):"""%(func_name, arr_name)) - code.append(""" - ndargs = [] - for i in {}: - assert isinstance(i, NDArrayBase), \\ - "Positional arguments must have NDArray type, " \\ - "but got %s"%str(i) - ndargs.append(i)""".format(arr_name)) - if dtype_name is not None: - code.append(""" - if '%s' in kwargs: - kwargs['%s'] = np.dtype(kwargs['%s']).name"""%( - dtype_name, dtype_name, dtype_name)) - code.append(""" - _ = kwargs.pop('name', None) - out = kwargs.pop('out', None) - keys = list(kwargs.keys()) - vals = list(kwargs.values())""") - else: - code.append(""" -def %s(%s): - ndargs = [] - keys = list(kwargs.keys()) - vals = list(kwargs.values())"""%(func_name, ', '.join(signature))) - # NDArray args - for name in ndarg_names: # pylint: disable=redefined-argument-from-local - code.append(""" - if {name} is not None: - assert isinstance({name}, NDArrayBase), \\ - "Argument {name} must have NDArray type, but got %s"%str({name}) - ndargs.append({name})""".format(name=name)) - # kwargs - for name in kwarg_names: # pylint: disable=redefined-argument-from-local - code.append(""" - if %s is not _Null: - keys.append('%s') - vals.append(%s)"""%(name, name, name)) - # dtype - if dtype_name is not None: - code.append(""" - if %s is not _Null: - keys.append('%s') - vals.append(np.dtype(%s).name)"""%(dtype_name, dtype_name, dtype_name)) - - code.append(""" - return _imperative_invoke(%d, ndargs, keys, vals, out)"""%( - handle.value)) - - local = {} - exec(''.join(code), None, local) # pylint: disable=exec-used - ndarray_function = local[func_name] - ndarray_function.__name__ = func_name - ndarray_function.__doc__ = doc_str - ndarray_function.__module__ = 'mxnet.ndarray' - return ndarray_function - - -# pylint: enable=too-many-locals, invalid-name -def _init_ndarray_module(ndarray_class, root_namespace): - """List and add all the ndarray functions to current module.""" - _set_ndarray_class(ndarray_class) - plist = ctypes.POINTER(ctypes.c_char_p)() - size = ctypes.c_uint() - - check_call(_LIB.MXListAllOpNames(ctypes.byref(size), - ctypes.byref(plist))) - op_names = [] - for i in range(size.value): - op_names.append(py_str(plist[i])) - - module_obj = _sys.modules["%s.ndarray" % root_namespace] - module_internal = _sys.modules["%s._ndarray_internal" % root_namespace] - module_contrib = _sys.modules["%s.contrib.ndarray" % root_namespace] - for name in op_names: - hdl = OpHandle() - check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) - function = _make_ndarray_function(hdl, name) - if function.__name__.startswith('_contrib_'): - function.__name__ = function.__name__[9:] - function.__module__ = 'mxnet.contrib.ndarray' - setattr(module_contrib, function.__name__, function) - elif function.__name__.startswith('_'): - setattr(module_internal, function.__name__, function) - else: - setattr(module_obj, function.__name__, function) +def zeros(shape, ctx=None, dtype=None, **kwargs): + """Returns a new array filled with all zeros, with the given shape and type. + + Parameters + ---------- + shape : int or tuple of int + The shape of the empty array. + ctx : Context, optional + An optional device context (default is the current default context). + dtype : str or numpy.dtype, optional + An optional value type (default is `float32`). + out : NDArray, optional + The output NDArray (default is `None`). + + Returns + ------- + NDArray + A created array + + Examples + -------- + >>> mx.nd.zeros(1).asnumpy() + array([ 0.], dtype=float32) + >>> mx.nd.zeros((1,2), mx.gpu(0)) + + >>> mx.nd.zeros((1,2), mx.gpu(0), 'float16').asnumpy() + array([[ 0., 0.]], dtype=float16) + """ + # pylint: disable= unused-argument + if ctx is None: + ctx = Context.default_ctx + dtype = mx_real_t if dtype is None else dtype + # pylint: disable= no-member, protected-access + return _internal._zeros(shape=shape, ctx=ctx, dtype=dtype, **kwargs) + # pylint: enable= no-member, protected-access + + +def empty(shape, ctx=None, dtype=None): + """Returns a new array of given shape and type, without initializing entries. + + Parameters + ---------- + shape : int or tuple of int + The shape of the empty array. + ctx : Context, optional + An optional device context (default is the current default context). + dtype : str or numpy.dtype, optional + An optional value type (default is `float32`). -_init_ndarray_module(NDArray, "mxnet") + Returns + ------- + NDArray + A created array. -# from .base import add_fileline_to_docstring -# add_fileline_to_docstring(__name__) + """ + if isinstance(shape, int): + shape = (shape, ) + if ctx is None: + ctx = Context.default_ctx + if dtype is None: + dtype = mx_real_t + return NDArray(handle=_new_alloc_handle(shape, ctx, False, dtype)) diff --git a/python/mxnet/ndarray/op.py b/python/mxnet/ndarray/op.py new file mode 100644 index 000000000000..e4a1ab0df48b --- /dev/null +++ b/python/mxnet/ndarray/op.py @@ -0,0 +1,209 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +"""Register backend ops in mxnet.ndarray namespace""" + +import sys as _sys +import os as _os +import ctypes +import numpy as np # pylint: disable=unused-import + +from ..ndarray_doc import _build_doc + +# Use different version of SymbolBase +# When possible, use cython to speedup part of computation. +# pylint: disable=unused-import +try: + if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: + from .._ctypes.ndarray import NDArrayBase, _STORAGE_TYPE_ID_TO_STR + from .._ctypes.ndarray import CachedOp, _imperative_invoke + elif _sys.version_info >= (3, 0): + from .._cy3.ndarray import NDArrayBase, _imperative_invoke, _STORAGE_TYPE_ID_TO_STR + from .._cy3.ndarray import CachedOp, _imperative_invoke + else: + from .._cy2.ndarray import NDArrayBase, _imperative_invoke, _STORAGE_TYPE_ID_TO_STR + from .._cy2.ndarray import CachedOp, _imperative_invoke +except ImportError: + if int(_os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0: + raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1") + from .._ctypes.ndarray import NDArrayBase, _imperative_invoke, _STORAGE_TYPE_ID_TO_STR + from .._ctypes.ndarray import CachedOp, _imperative_invoke + +from ..base import mx_uint, check_call, _LIB, py_str, OpHandle, c_str, _Null +# pylint: enable=unused-import + + +# pylint: disable=too-many-locals, invalid-name +def _make_ndarray_function(handle, name): + """Create a NDArray function from the FunctionHandle.""" + real_name = ctypes.c_char_p() + desc = ctypes.c_char_p() + num_args = mx_uint() + arg_names = ctypes.POINTER(ctypes.c_char_p)() + arg_types = ctypes.POINTER(ctypes.c_char_p)() + arg_descs = ctypes.POINTER(ctypes.c_char_p)() + key_var_num_args = ctypes.c_char_p() + ret_type = ctypes.c_char_p() + + check_call(_LIB.MXSymbolGetAtomicSymbolInfo( + handle, ctypes.byref(real_name), ctypes.byref(desc), + ctypes.byref(num_args), + ctypes.byref(arg_names), + ctypes.byref(arg_types), + ctypes.byref(arg_descs), + ctypes.byref(key_var_num_args), + ctypes.byref(ret_type))) + narg = int(num_args.value) + arg_names = [py_str(arg_names[i]) for i in range(narg)] + arg_types = [py_str(arg_types[i]) for i in range(narg)] + func_name = name + key_var_num_args = py_str(key_var_num_args.value) + ret_type = py_str(ret_type.value) if ret_type.value is not None else '' + doc_str = _build_doc(func_name, + py_str(desc.value), + arg_names, + arg_types, + [py_str(arg_descs[i]) for i in range(narg)], + key_var_num_args, + ret_type) + + dtype_name = None + arr_name = None + ndsignature = [] + signature = [] + ndarg_names = [] + kwarg_names = [] + for i in range(narg): + name, atype = arg_names[i], arg_types[i] + if name == 'dtype': + dtype_name = name + signature.append('%s=_Null'%name) + elif atype.startswith('NDArray') or atype.startswith('Symbol'): + assert not arr_name, \ + "Op can only have one argument with variable " \ + "size and it must be the last argument." + if atype.endswith('[]'): + ndsignature.append('*%s'%name) + arr_name = name + else: + ndsignature.append('%s=None'%name) + ndarg_names.append(name) + else: + signature.append('%s=_Null'%name) + kwarg_names.append(name) + signature.append('out=None') + signature.append('name=None') + signature.append('**kwargs') + signature = ndsignature + signature + + code = [] + if arr_name: + code.append(""" +def %s(*%s, **kwargs):"""%(func_name, arr_name)) + code.append(""" + ndargs = [] + for i in {}: + assert isinstance(i, NDArrayBase), \\ + "Positional arguments must have NDArray type, " \\ + "but got %s"%str(i) + ndargs.append(i)""".format(arr_name)) + if dtype_name is not None: + code.append(""" + if '%s' in kwargs: + kwargs['%s'] = np.dtype(kwargs['%s']).name"""%( + dtype_name, dtype_name, dtype_name)) + code.append(""" + _ = kwargs.pop('name', None) + out = kwargs.pop('out', None) + keys = list(kwargs.keys()) + vals = list(kwargs.values())""") + else: + code.append(""" +def %s(%s): + ndargs = [] + keys = list(kwargs.keys()) + vals = list(kwargs.values())"""%(func_name, ', '.join(signature))) + # NDArray args + for name in ndarg_names: # pylint: disable=redefined-argument-from-local + code.append(""" + if {name} is not None: + assert isinstance({name}, NDArrayBase), \\ + "Argument {name} must have NDArray type, but got %s"%str({name}) + ndargs.append({name})""".format(name=name)) + # kwargs + for name in kwarg_names: # pylint: disable=redefined-argument-from-local + code.append(""" + if %s is not _Null: + keys.append('%s') + vals.append(%s)"""%(name, name, name)) + # dtype + if dtype_name is not None: + code.append(""" + if %s is not _Null: + keys.append('%s') + vals.append(np.dtype(%s).name)"""%(dtype_name, dtype_name, dtype_name)) + + code.append(""" + return _imperative_invoke(%d, ndargs, keys, vals, out)"""%( + handle.value)) + + local = {} + exec(''.join(code), None, local) # pylint: disable=exec-used + ndarray_function = local[func_name] + ndarray_function.__name__ = func_name + ndarray_function.__doc__ = doc_str + ndarray_function.__module__ = 'mxnet.ndarray' + return ndarray_function + + +# pylint: enable=too-many-locals, invalid-name +def _init_ndarray_module(root_namespace): + """List and add all the ndarray functions to current module.""" + plist = ctypes.POINTER(ctypes.c_char_p)() + size = ctypes.c_uint() + + check_call(_LIB.MXListAllOpNames(ctypes.byref(size), + ctypes.byref(plist))) + op_names = [] + for i in range(size.value): + op_names.append(py_str(plist[i])) + + module_obj = _sys.modules["%s.ndarray" % root_namespace] + module_sparse = _sys.modules["%s.ndarray.sparse" % root_namespace] + module_internal = _sys.modules["%s.ndarray._internal" % root_namespace] + module_contrib = _sys.modules["%s.contrib.ndarray" % root_namespace] + for name in op_names: + hdl = OpHandle() + check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) + function = _make_ndarray_function(hdl, name) + if function.__name__.startswith('_contrib_'): + function.__name__ = function.__name__[9:] + function.__module__ = 'mxnet.contrib.ndarray' + setattr(module_contrib, function.__name__, function) + elif function.__name__.startswith('_'): + setattr(module_internal, function.__name__, function) + else: + setattr(module_obj, function.__name__, function) + + # register sparse ops under mxnet.ndarray.sparse + if function.__name__.startswith('_sparse_'): + function.__name__ = function.__name__[8:] + function.__module__ = 'mxnet.ndarray.sparse' + setattr(module_sparse, function.__name__, function) + +# register backend operators in mx.nd +_init_ndarray_module("mxnet") diff --git a/python/mxnet/ndarray/sparse.py b/python/mxnet/ndarray/sparse.py new file mode 100644 index 000000000000..97e43f5ebe79 --- /dev/null +++ b/python/mxnet/ndarray/sparse.py @@ -0,0 +1,923 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +# coding: utf-8 +"""Sparse NDArray API of MXNet.""" + +from __future__ import absolute_import +from __future__ import division +try: + from __builtin__ import slice as py_slice +except ImportError: + from builtins import slice as py_slice + +import ctypes +import warnings + +import os as _os +import sys as _sys + +# import operator +import numpy as np +from ..base import NotSupportedForSparseNDArray +from ..base import _LIB, numeric_types +from ..base import c_array, mx_real_t +from ..base import mx_uint, NDArrayHandle, check_call +from ..context import Context +from . import _internal +from .ndarray import _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP +from .ndarray import _STORAGE_TYPE_STR_TO_ID +from .ndarray import NDArray, _storage_type +from .ndarray import zeros as _zeros_ndarray +from .ndarray import array as _array +from . import cast_storage +from . import slice as nd_slice + +# Use different verison of SymbolBase +# When possible, use cython to speedup part of computation. +# pylint: disable=unused-import +try: + if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: + from .._ctypes.ndarray import _set_ndarray_class + elif _sys.version_info >= (3, 0): + from .._cy3.ndarray import _set_ndarray_class + else: + from .._cy2.ndarray import _set_ndarray_class +except ImportError: + if int(_os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0: + raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1") + from .._ctypes.ndarray import _set_ndarray_class +# pylint: enable=unused-import + + +__all__ = ["_ndarray_cls", "csr_matrix", "row_sparse_array", + "BaseSparseNDArray", "CSRNDArray", "RowSparseNDArray"] + + +_STORAGE_AUX_TYPES = { + 'row_sparse': [np.int64], + 'csr': [np.int64, np.int64] +} + + +def _new_alloc_handle(stype, shape, ctx, delay_alloc, dtype, aux_types, aux_shapes=None): + """Return a new handle with specified storage type, shape, dtype and context. + + Empty handle is only used to hold results + + Returns + ------- + handle + A new empty ndarray handle + """ + hdl = NDArrayHandle() + aux_type_ids = [int(_DTYPE_NP_TO_MX[np.dtype(aux_t).type]) for aux_t in aux_types] + aux_shapes = [(0,) for aux_t in aux_types] if aux_shapes is None else aux_shapes + aux_shape_lens = [len(aux_shape) for aux_shape in aux_shapes] + aux_shapes = sum(aux_shapes, ()) + num_aux = mx_uint(len(aux_types)) + check_call(_LIB.MXNDArrayCreateSparseEx( + ctypes.c_int(int(_STORAGE_TYPE_STR_TO_ID[stype])), + c_array(mx_uint, shape), + mx_uint(len(shape)), + ctypes.c_int(ctx.device_typeid), + ctypes.c_int(ctx.device_id), + ctypes.c_int(int(delay_alloc)), + ctypes.c_int(int(_DTYPE_NP_TO_MX[np.dtype(dtype).type])), + num_aux, + c_array(ctypes.c_int, aux_type_ids), + c_array(mx_uint, aux_shape_lens), + c_array(mx_uint, aux_shapes), + ctypes.byref(hdl))) + return hdl + + +class BaseSparseNDArray(NDArray): + """The base class of an NDArray stored in a sparse storage format. + + See CSRNDArray and RowSparseNDArray for more details. + """ + + def __iadd__(self, other): + raise NotImplementedError() + + def __isub__(self, other): + raise NotImplementedError() + + def __imul__(self, other): + raise NotImplementedError() + + def __idiv__(self, other): + raise NotImplementedError() + + def __itruediv__(self, other): + raise NotImplementedError() + + def _sync_copyfrom(self, source_array): + raise NotImplementedError() + + def _at(self, idx): + raise NotSupportedForSparseNDArray(self._at, '[idx]', idx) + + def _slice(self, start, stop): + raise NotSupportedForSparseNDArray(self._slice, None, start, stop) + + def reshape(self, shape): + raise NotSupportedForSparseNDArray(self.reshape, None, shape) + + def _aux_type(self, i): + """Data-type of the array's ith aux data. + + Returns + ------- + numpy.dtype + This BaseSparseNDArray's aux data type. + """ + aux_type = ctypes.c_int() + check_call(_LIB.MXNDArrayGetAuxType(self.handle, i, ctypes.byref(aux_type))) + return _DTYPE_MX_TO_NP[aux_type.value] + + @property + def _num_aux(self): + """The number of aux data used to help store the sparse ndarray. + """ + return len(_STORAGE_AUX_TYPES[self.stype]) + + @property + def _aux_types(self): + """The data types of the aux data for the BaseSparseNDArray. + """ + aux_types = [] + num_aux = self._num_aux + for i in range(num_aux): + aux_types.append(self._aux_type(i)) + return aux_types + + def asnumpy(self): + """Return a dense ``numpy.ndarray`` object with value copied from this array + """ + return self.tostype('default').asnumpy() + + def astype(self, dtype): + """Returns a copy of the array after casting to a specified type. + Parameters + ---------- + dtype : numpy.dtype or str + The type of the returned array. + Examples + -------- + >>> x = mx.nd.zeros('row_sparse', (2,3), dtype='float32') + >>> y = x.astype('int32') + >>> y.dtype + + """ + res = zeros(shape=self.shape, ctx=self.context, + dtype=dtype, stype=self.stype) + self.copyto(res) + return res + + def copyto(self, other): + """Copies the value of this array to another array. + + Parameters + ---------- + other : NDArray or CSRNDArray or RowSparseNDArray or Context + The destination array or context. + + Returns + ------- + NDArray or CSRNDArray or RowSparseNDArray + The copied array. + """ + if isinstance(other, NDArray): + if other.handle is self.handle: + warnings.warn('You are attempting to copy an array to itself', RuntimeWarning) + return + return _internal._copyto(self, out=other) + elif isinstance(other, Context): + hret = _ndarray_cls(_new_alloc_handle(self.stype, self.shape, other, + True, self.dtype, self._aux_types)) + return _internal._copyto(self, out=hret) + else: + raise TypeError('copyto does not support type ' + str(type(other))) + + def _data(self): + """A deep copy NDArray of the data array associated with the BaseSparseNDArray. + + This function blocks. Do not use it in performance critical code. + """ + self.wait_to_read() + hdl = NDArrayHandle() + check_call(_LIB.MXNDArrayGetDataNDArray(self.handle, ctypes.byref(hdl))) + return NDArray(hdl) + + + def _aux_data(self, i): + """ Get a deep copy NDArray of the i-th aux data array associated with the + BaseSparseNDArray. + + This function blocks. Do not use it in performance critical code. + """ + self.wait_to_read() + hdl = NDArrayHandle() + check_call(_LIB.MXNDArrayGetAuxNDArray(self.handle, i, ctypes.byref(hdl))) + return NDArray(hdl) + + +# pylint: disable=abstract-method +class CSRNDArray(BaseSparseNDArray): + """A sparse representation of 2D NDArray in the standard CSR format. + + A CSRNDArray represents an NDArray as three separate arrays: `data`, + `indptr` and `indices`. It uses the standard CSR representation where the column indices for + row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored + in values[indptr[i]:indptr[i+1]]. + + The column indices for a given row are expected to be sorted in ascending order. + Duplicate column entries for the same row are not allowed. + + Example + ------- + >>> a = mx.nd.array([[0, 1, 0], [2, 0, 0], [0, 0, 0], [0, 0, 3]]) + >>> a = a.tostype('csr') + >>> a.indices.asnumpy() + array([1, 0, 2]) + >>> a.indptr.asnumpy() + array([0, 1, 2, 2, 3]) + >>> a.data.asnumpy() + array([ 1., 2., 3.], dtype=float32) + """ + + def __reduce__(self): + return CSRNDArray, (None,), super(CSRNDArray, self).__getstate__() + + def __iadd__(self, other): + (self + other).copyto(self) + return self + + def __isub__(self, other): + (self - other).copyto(self) + return self + + def __imul__(self, other): + (self * other).copyto(self) + return self + + def __idiv__(self, other): + (self / other).copyto(self) + return self + + def __itruediv__(self, other): + (self / other).copyto(self) + return self + + def __getitem__(self, key): + """x.__getitem__(i) <=> x[i] + + Returns a sliced view of this array. + + Parameters + ---------- + key : slice + Indexing key. + + Examples + -------- + >>> indptr = np.array([0, 2, 3, 6]) + >>> indices = np.array([0, 2, 2, 0, 1, 2]) + >>> data = np.array([1, 2, 3, 4, 5, 6]) + >>> a = mx.nd.csr_matrix(data, indptr, indices, (3, 3)) + >>> a.asnumpy() + array([[1, 0, 2], + [0, 0, 3], + [4, 5, 6]]) + >>> a[1:2].asnumpy() + array([[0, 0, 3]], dtype=float32) + """ + if isinstance(key, int): + raise ValueError("__getitem__ with int key is not implemented for CSRNDArray") + if isinstance(key, py_slice): + if key.step is not None: + raise ValueError('CSRNDArray only supports continuous slicing on axis 0') + if key.start is not None or key.stop is not None: + begin = key.start if key.start else 0 + end = key.stop if key.stop else self.shape[0] + return nd_slice(self, begin=begin, end=end) + else: + return self + if isinstance(key, tuple): + raise ValueError('Multi-dimension indexing is not supported') + + def __setitem__(self, key, value): + """x.__setitem__(i, y) <=> x[i]=y + + Set self[key] to value. Only slice key [:] is supported. + + Parameters + ---------- + key : slice + The indexing key. + value : NDArray or CSRNDArray or numpy.ndarray + The value to set. + + Examples + -------- + >>> src = mx.nd.zeros((3,3), stype='csr') + >>> src.asnumpy() + array([[ 0., 0., 0.], + [ 0., 0., 0.], + [ 0., 0., 0.]], dtype=float32) + >>> # assign CSRNDArray with same storage type + >>> x = mx.nd.ones('row_sparse', (3,3)).tostype('csr') + >>> x[:] = src + >>> x.asnumpy() + array([[ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.]], dtype=float32) + >>> # assign NDArray to CSRNDArray + >>> x[:] = mx.nd.ones((3,3)) * 2 + >>> x.asnumpy() + array([[ 2., 2., 2.], + [ 2., 2., 2.], + [ 2., 2., 2.]], dtype=float32) + """ + if not self.writable: + raise ValueError('Failed to assign to a readonly CSRNDArray') + if isinstance(key, py_slice): + if key.step is not None or key.start is not None or key.stop is not None: + raise ValueError('Assignment with slice for CSRNDArray is not ' \ + 'implmented yet.') + if isinstance(value, NDArray): + # avoid copying to itself + if value.handle is not self.handle: + value.copyto(self) + elif isinstance(value, numeric_types): + raise ValueError("Assigning numeric types to CSRNDArray is " \ + "not implemented yet.") + elif isinstance(value, (np.ndarray, np.generic)): + # TODO(haibin/anisub) check scipy.sparse and use _sync_copy_from to + # avoid the temporary copy + warnings.warn('Assigning non-NDArray object to CSRNDArray is not efficient', + RuntimeWarning) + tmp = _array(value) + tmp.copyto(self) + else: + raise TypeError('type %s not supported' % str(type(value))) + else: + assert(isinstance(key, (int, tuple))) + raise Exception('CSRNDArray only supports [:] for assignment') + + @property + def indices(self): + """A deep copy NDArray of the indices array of the CSRNDArray. + This generates a deep copy of the column indices of the current `csr` matrix. + + Returns + ------- + NDArray + This CSRNDArray's indices array. + """ + return self._aux_data(1) + + @property + def indptr(self): + """A deep copy NDArray of the indptr array of the CSRNDArray. + This generates a deep copy of the `indptr` of the current `csr` matrix. + + Returns + ------- + NDArray + This CSRNDArray's indptr array. + """ + return self._aux_data(0) + + @property + def data(self): + """A deep copy NDArray of the data array of the CSRNDArray. + This generates a deep copy of the `data` of the current `csr` matrix. + + Returns + ------- + NDArray + This CSRNDArray's data array. + """ + return self._data() + + def tostype(self, stype): + """Return a copy of the array with chosen storage type. + + Returns + ------- + NDArray or CSRNDArray + A copy of the array with the chosen storage stype + """ + if stype == 'row_sparse': + raise ValueError("cast_storage from csr to row_sparse is not supported") + return cast_storage(self, stype=stype) + + def copyto(self, other): + """Copies the value of this array to another array. + + If ``other`` is a ``NDArray`` or ``CSRNDArray`` object, then ``other.shape`` and + ``self.shape`` should be the same. This function copies the value from + ``self`` to ``other``. + + If ``other`` is a context, a new ``CSRNDArray`` will be first created on + the target context, and the value of ``self`` is copied. + + Parameters + ---------- + other : NDArray or CSRNDArray or Context + The destination array or context. + + Returns + ------- + NDArray or CSRNDArray + The copied array. If ``other`` is an ``NDArray`` or ``CSRNDArray``, then the return + value and ``other`` will point to the same ``NDArray`` or ``CSRNDArray``. + """ + if isinstance(other, Context): + return super(CSRNDArray, self).copyto(other) + elif isinstance(other, NDArray): + stype = other.stype + if stype == 'default' or stype == 'csr': + return super(CSRNDArray, self).copyto(other) + else: + raise TypeError('copyto does not support destination NDArray stype ' + str(stype)) + else: + raise TypeError('copyto does not support type ' + str(type(other))) + + +# pylint: disable=abstract-method +class RowSparseNDArray(BaseSparseNDArray): + """A sparse representation of a set of NDArray row slices at given indices. + + A RowSparseNDArray represents a multidimensional NDArray using two separate arrays: `data` and + `indices`. + + - data: an NDArray of any dtype with shape [D0, D1, ..., Dn]. + - indices: a 1-D int64 NDArray with shape [D0]. + + The `indices` stores the indices of the row slices with non-zeros, + while the values are stored in `data`. The corresponding NDArray ``dense`` + represented by RowSparseNDArray ``rsp`` has + + ``dense[rsp.indices[i], :, :, :, ...] = rsp.data[i, :, :, :, ...]`` + + >>> dense.asnumpy() + array([[ 1., 2., 3.], + [ 0., 0., 0.], + [ 4., 0., 5.], + [ 0., 0., 0.], + [ 0., 0., 0.]], dtype=float32) + >>> rsp = dense.tostype('row_sparse') + >>> rsp.indices.asnumpy() + array([0, 2], dtype=int64) + >>> rsp.data.asnumpy() + array([[ 1., 2., 3.], + [ 4., 0., 5.]], dtype=float32) + + A RowSparseNDArray is typically used to represent non-zero row-slices of a large NDArray + of shape [LARGE0, D1, .. , Dn] where LARGE0 >> D0 and most row slices are zeros. + + The indices are expected to be sorted in ascending order. + + RowSparseNDArray is used principally in the definition of gradients for operations + that have sparse gradients (e.g. sparse dot and sparse embedding). + """ + def __reduce__(self): + return RowSparseNDArray, (None,), super(RowSparseNDArray, self).__getstate__() + + def __iadd__(self, other): + (self + other).copyto(self) + return self + + def __isub__(self, other): + (self - other).copyto(self) + return self + + def __imul__(self, other): + (self * other).copyto(self) + return self + + def __idiv__(self, other): + (self / other).copyto(self) + return self + + def __itruediv__(self, other): + (self / other).copyto(self) + return self + + def __getitem__(self, key): + """x.__getitem__(i) <=> x[i] + + Returns a sliced view of this array. + + Parameters + ---------- + key : slice + Indexing key. + + Examples + -------- + >>> x = mx.nd.zeros((2, 3), stype='row_sparse') + >>> x[:].asnumpy() + array([[ 0., 0., 0.], + [ 0., 0., 0.]], dtype=float32) + """ + if isinstance(key, int): + raise Exception("__getitem__ with int key is not implemented for RowSparseNDArray yet") + if isinstance(key, py_slice): + if key.step is not None or key.start is not None or key.stop is not None: + raise Exception('RowSparseNDArray only supports [:] for __getitem__') + else: + return self + if isinstance(key, tuple): + raise ValueError('Multi-dimension indexing is not supported') + + def __setitem__(self, key, value): + """x.__setitem__(i, y) <=> x[i]=y + + Set self[key] to value. Only slice key [:] is supported. + + Parameters + ---------- + key : slice + The indexing key. + value : NDArray or numpy.ndarray + The value to set. + + Examples + -------- + >>> src = mx.nd.row_sparse([[1, 0, 2], [4, 5, 6]], [0, 2], (3,3)) + >>> src.asnumpy() + array([[ 1., 0., 2.], + [ 0., 0., 0.], + [ 4., 5., 6.]], dtype=float32) + >>> # assign RowSparseNDArray with same storage type + >>> x = mx.nd.zeros('row_sparse', (3,3)) + >>> x[:] = src + >>> x.asnumpy() + array([[ 1., 0., 2.], + [ 0., 0., 0.], + [ 4., 5., 6.]], dtype=float32) + >>> # assign NDArray to RowSparseNDArray + >>> x[:] = mx.nd.ones((3,3)) + >>> x.asnumpy() + array([[ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.]], dtype=float32) + """ + if not self.writable: + raise ValueError('Failed to assign to a readonly RowSparseNDArray') + if isinstance(key, py_slice): + if key.step is not None or key.start is not None or key.stop is not None: + raise ValueError('Assignment with slice for RowSparseNDArray ' \ + 'is not implmented yet.') + if isinstance(value, NDArray): + # avoid copying to itself + if value.handle is not self.handle: + value.copyto(self) + elif isinstance(value, numeric_types): + raise ValueError("Assigning numeric types to RowSparseNDArray " \ + "is not implemented yet.") + elif isinstance(value, (np.ndarray, np.generic)): + warnings.warn('Assigning non-NDArray object to RowSparseNDArray is not efficient', + RuntimeWarning) + tmp = _array(value) + tmp.copyto(self) + else: + raise TypeError('type %s not supported' % str(type(value))) + else: + assert(isinstance(key, (int, tuple))) + raise TypeError('RowSparseNDArray only supports [:] for assignment') + + @property + def indices(self): + """A deep copy NDArray of the indices array of the RowSparseNDArray. + This generates a deep copy of the row indices of the current `row_sparse` matrix. + + Returns + ------- + NDArray + This RowSparseNDArray's indices array. + """ + return self._aux_data(0) + + @property + def data(self): + """A deep copy NDArray of the data array of the RowSparseNDArray. + This generates a deep copy of the `data` of the current `row_sparse` matrix. + + Returns + ------- + NDArray + This RowSparseNDArray's data array. + """ + return self._data() + + def tostype(self, stype): + """Return a copy of the array with chosen storage type. + + Returns + ------- + NDArray or RowSparseNDArray + A copy of the array with the chosen storage stype + """ + if stype == 'csr': + raise ValueError("cast_storage from row_sparse to csr is not supported") + return cast_storage(self, stype=stype) + + def copyto(self, other): + """Copies the value of this array to another array. + + If ``other`` is a ``NDArray`` or ``RowSparseNDArray`` object, then ``other.shape`` + and ``self.shape`` should be the same. This function copies the value from + ``self`` to ``other``. + + If ``other`` is a context, a new ``RowSparseNDArray`` will be first created on + the target context, and the value of ``self`` is copied. + + Parameters + ---------- + other : NDArray or RowSparseNDArray or Context + The destination array or context. + + Returns + ------- + NDArray or RowSparseNDArray + The copied array. If ``other`` is an ``NDArray`` or ``RowSparseNDArray``, then the + return value and ``other`` will point to the same ``NDArray`` or ``RowSparseNDArray``. + """ + if isinstance(other, Context): + return super(RowSparseNDArray, self).copyto(other) + elif isinstance(other, NDArray): + stype = other.stype + if stype == 'default' or stype == 'row_sparse': + return super(RowSparseNDArray, self).copyto(other) + else: + raise TypeError('copyto does not support destination NDArray stype ' + str(stype)) + else: + raise TypeError('copyto does not support type ' + str(type(other))) + + +def _prepare_src_array(src, dtype, default_dtype): + """Prepare `src` and its dtype so that they can be used to construct NDArray. + `src` is converted to a `np.ndarray` if it's neither an `NDArray` nor an `np.ndarray`. + """ + if isinstance(src, NDArray): + dtype = src.dtype if dtype is None else dtype + else: + dtype = default_dtype if dtype is None else dtype + if not isinstance(src, np.ndarray): + try: + src = np.array(src, dtype=dtype) + except: + raise TypeError('values must be array like object') + return src, dtype + + +def csr_matrix(data, indptr, indices, shape, ctx=None, dtype=None, indptr_type=None, + indices_type=None): + """Creates a 2D array with compressed sparse row(CSR) format. + + Parameters + ---------- + data: array_like + An object exposing the array interface, with shape [nnz], where D0 is the number of + non-zero entries. + indptr: array_like + An object exposing the array interface, with shape [D0 + 1]. The first element in indptr + should always be zero. + indices: array_like + An object exposing the array interface, with shape [nnz]. + ctx: Context, optional + Device context (default is the current default context). + dtype: str or numpy.dtype, optional + The data type of the output array. The default dtype is ``values.dtype`` + if `values` is an `NDArray`, `float32` otherwise. + indptr_type: str or numpy.dtype, optional + The data type of the indices array. The default dtype is ``indptr.dtype`` + if `indptr` is an `NDArray`, `int64` otherwise. + indices_type: str or numpy.dtype, optional + The data type of the indices array. The default dtype is ``indices.dtype`` + if `indicies` is an `NDArray`, `int64` otherwise. + + Returns + ------- + CSRNDArray + A `CSRNDArray` with the `csr` storage representation. + + Example + ------- + >>> import mxnet as mx + >>> a = mx.nd.csr_matrix([1, 2, 3], [0, 1, 2, 2, 3], [1, 0, 2], (4, 3)) + >>> a.asnumpy() + array([[ 0., 1., 0.], + [ 2., 0., 0.], + [ 0., 0., 0.], + [ 0., 0., 3.]], dtype=float32) + """ + storage_type = 'csr' + # context + if ctx is None: + ctx = Context.default_ctx + # prepare src array and types + data, dtype = _prepare_src_array(data, dtype, mx_real_t) + indptr, indptr_type = _prepare_src_array(indptr, indptr_type, + _STORAGE_AUX_TYPES[storage_type][0]) + indices, indices_type = _prepare_src_array(indices, indices_type, + _STORAGE_AUX_TYPES[storage_type][1]) + # verify types + assert('int64' in str(indptr_type)), "expected int64 for indptr" + assert('int64' in str(indices_type)), "expected int64 for indices" + # verify shapes + aux_shapes = [indptr.shape, indices.shape] + assert(data.ndim == 1) + assert(indptr.ndim == 1) + assert(indices.ndim == 1) + assert(len(shape) == 2) + result = CSRNDArray(_new_alloc_handle(storage_type, shape, ctx, False, dtype, + [indptr_type, indices_type], aux_shapes)) + # TODO(junwu): Convert data, indptr, and indices to mxnet NDArrays + # if they are not for now. In the future, we should provide a c-api + # to accept np.ndarray types to copy from to result.data and aux_data + if not isinstance(data, NDArray): + data = _array(data, ctx, dtype) + if not isinstance(indptr, NDArray): + indptr = _array(indptr, ctx, indptr_type) + if not isinstance(indices, NDArray): + indices = _array(indices, ctx, indices_type) + check_call(_LIB.MXNDArraySyncCopyFromNDArray(result.handle, data.handle, ctypes.c_int(-1))) + check_call(_LIB.MXNDArraySyncCopyFromNDArray(result.handle, indptr.handle, ctypes.c_int(0))) + check_call(_LIB.MXNDArraySyncCopyFromNDArray(result.handle, indices.handle, ctypes.c_int(1))) + return result + + +def row_sparse_array(data, indices, shape, ctx=None, dtype=None, indices_type=None): + """Creates a multidimensional row sparse array with a set of tensor slices at given indices. + + Parameters + ---------- + data: array_like + An object exposing the array interface, with shape [D0, D1, .. DK], where D0 is + the number of rows with non-zeros entries. + indices: array_like + An object exposing the array interface, with shape [D0]. + ctx : Context, optional + Device context (default is the current default context). + dtype : str or numpy.dtype, optional + The data type of the output array. The default dtype is ``data.dtype`` + if `data` is an `NDArray`, `float32` otherwise. + indices_type: str or numpy.dtype, optional + The data type of the indices array. The default dtype is ``indices.dtype`` + if `indicies` is an `NDArray`, `int64` otherwise. + + Returns + ------- + RowSparseNDArray + An `RowSparseNDArray` with the `row_sparse` storage representation. + + Example + ------- + >>> a = mx.nd.row_sparse_array([[1, 2], [3, 4]], [1, 4], (6, 2)) + >>> a.asnumpy() + array([[ 0., 0.], + [ 1., 2.], + [ 0., 0.], + [ 0., 0.], + [ 3., 4.], + [ 0., 0.]], dtype=float32) + """ + storage_type = 'row_sparse' + # context + if ctx is None: + ctx = Context.default_ctx + # prepare src array and types + data, dtype = _prepare_src_array(data, dtype, mx_real_t) + indices, indices_type = _prepare_src_array(indices, indices_type, + _STORAGE_AUX_TYPES[storage_type][0]) + # verify types + assert('int64' in str(indices_type)), "expected int64 for indices" + # verify shapes + assert(data.ndim == len(shape)) + assert(indices.ndim == 1) + result = RowSparseNDArray(_new_alloc_handle(storage_type, shape, ctx, False, dtype, + [indices_type], [indices.shape])) + + # TODO(junwu): Convert data, indptr, and indices to mxnet NDArrays + # if they are not for now. In the future, we should provide a c-api + # to accept np.ndarray types to copy from to result.data and aux_data + if not isinstance(data, NDArray): + data = _array(data, ctx, dtype) + if not isinstance(indices, NDArray): + indices = _array(indices, ctx, indices_type) + check_call(_LIB.MXNDArraySyncCopyFromNDArray(result.handle, data.handle, ctypes.c_int(-1))) + check_call(_LIB.MXNDArraySyncCopyFromNDArray(result.handle, indices.handle, ctypes.c_int(0))) + return result + + +def _ndarray_cls(handle, writable=True, stype=None): + if stype is None: + stype = _storage_type(handle) + if stype == 'default': + return NDArray(handle, writable=writable) + elif stype == 'csr': + return CSRNDArray(handle, writable=writable) + elif stype == 'row_sparse': + return RowSparseNDArray(handle, writable=writable) + else: + raise Exception("unknown storage type") + + +_set_ndarray_class(_ndarray_cls) + + +def zeros(stype, shape, ctx=None, dtype=None, aux_types=None, **kwargs): + """Return a new array of given shape and type, filled with zeros. + + Parameters + ---------- + stype: string + The storage type of the empty array, such as 'row_sparse', 'csr', etc + shape : int or tuple of int + The shape of the empty array + ctx : Context, optional + An optional device context (default is the current default context) + dtype : str or numpy.dtype, optional + An optional value type (default is `float32`) + aux_types: list of numpy.dtype, optional + An optional list of types of the aux data for RowSparseNDArray or CSRNDArray + (default values depends on the storage type) + + Returns + ------- + RowSparseNDArray or CSRNDArray + A created array + Examples + -------- + >>> mx.nd.zeros((1,2), mx.cpu(), stype='csr') + + >>> mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy() + array([[ 0., 0.]], dtype=float16) + """ + if stype == 'default': + return _zeros_ndarray(shape, ctx=ctx, dtype=dtype, **kwargs) + if ctx is None: + ctx = Context.default_ctx + dtype = mx_real_t if dtype is None else dtype + if aux_types is None: + if stype == 'row_sparse' or stype == 'csr': + aux_types = _STORAGE_AUX_TYPES[stype] + else: + raise Exception("unknown storage type") + assert(len(aux_types) == len(_STORAGE_AUX_TYPES[stype])) + out = _ndarray_cls(_new_alloc_handle(stype, shape, ctx, True, dtype, aux_types)) + return _internal._zeros(shape=shape, ctx=ctx, dtype=dtype, out=out, **kwargs) + + +def empty(stype, shape, ctx=None, dtype=None, aux_types=None): + """Returns a new array of given shape and type, without initializing entries. + """ + if isinstance(shape, int): + shape = (shape, ) + if ctx is None: + ctx = Context.default_ctx + if dtype is None: + dtype = mx_real_t + assert(stype is not None) + if stype == 'csr' or stype == 'row_sparse': + return zeros(stype, shape, ctx=ctx, dtype=dtype, aux_types=aux_types) + else: + raise Exception("unknown stype : " + str(stype)) + + +def array(source_array, ctx=None, dtype=None, aux_types=None): + """Creates a sparse array from any object exposing the array interface. + """ + if isinstance(source_array, NDArray): + assert(source_array.stype != 'default'), \ + "Please use `cast_storage` to create BaseSparseNDArray from an NDArray" + dtype = source_array.dtype if dtype is None else dtype + aux_types = source_array._aux_types if aux_types is None else aux_types + else: + # TODO(haibin/anisub) support creation from scipy object when `_sync_copy_from` is ready + raise NotImplementedError('creating BaseSparseNDArray from ' \ + ' a non-NDArray object is not implemented.') + arr = empty(source_array.stype, source_array.shape, ctx, dtype, aux_types) + arr[:] = source_array + return arr diff --git a/python/mxnet/ndarray/utils.py b/python/mxnet/ndarray/utils.py new file mode 100644 index 000000000000..a0dd83692b87 --- /dev/null +++ b/python/mxnet/ndarray/utils.py @@ -0,0 +1,240 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +# coding: utf-8 +"""Utility functions for NDArray and BaseSparseNDArray.""" +import ctypes + +from ..base import _LIB, check_call, py_str, c_str, string_types, mx_uint, NDArrayHandle, c_array +from .ndarray import NDArray +from .ndarray import array as _array +from .ndarray import empty as _empty_ndarray +from .ndarray import zeros as _zeros_ndarray +from .sparse import zeros as _zeros_sparse_ndarray +from .sparse import empty as _empty_sparse_ndarray +from .sparse import array as _sparse_array +from .sparse import _ndarray_cls + + +def zeros(shape, ctx=None, dtype=None, stype=None, aux_types=None, **kwargs): + """Return a new array of given shape and type, filled with zeros. + + Parameters + ---------- + shape : int or tuple of int + The shape of the empty array + ctx : Context, optional + An optional device context (default is the current default context) + dtype : str or numpy.dtype, optional + An optional value type (default is `float32`) + stype: string, optional + The storage type of the empty array, such as 'row_sparse', 'csr', etc. + aux_types: list of numpy.dtype, optional + An optional list of types of the aux data for RowSparseNDArray or CSRNDArray + (default values depend on the storage type) + + Returns + ------- + NDArray, CSRNDArray or RowSparseNDArray + A created array + Examples + -------- + >>> mx.nd.zeros((1,2), mx.cpu(), stype='csr') + + >>> mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy() + array([[ 0., 0.]], dtype=float16) + """ + + if stype is None or stype == 'default': + return _zeros_ndarray(shape, ctx, dtype, **kwargs) + else: + return _zeros_sparse_ndarray(stype, shape, ctx, dtype, aux_types, **kwargs) + + +def empty(shape, ctx=None, dtype=None, stype=None, aux_types=None): + """Returns a new array of given shape and type, without initializing entries. + + Parameters + ---------- + shape : int or tuple of int + The shape of the empty array. + ctx : Context, optional + An optional device context (default is the current default context). + dtype : str or numpy.dtype, optional + An optional value type (default is `float32`). + stype : str, optional + An optional storage type (default is `default`). + aux_types: list of numpy.dtype, optional + An optional list of types of the aux data for RowSparseNDArray or CSRNDArray + (default values depend on the storage type) + + Returns + ------- + NDArray, CSRNDArray or RowSparseNDArray + A created array. + + Examples + -------- + >>> mx.nd.empty(1) + + >>> mx.nd.empty((1,2), mx.gpu(0)) + + >>> mx.nd.empty((1,2), mx.gpu(0), 'float16') + + >>> mx.nd.empty((1,2), stype='csr') + + """ + if stype is None or stype == 'default': + return _empty_ndarray(shape, ctx, dtype) + else: + return _empty_sparse_ndarray(stype, shape, ctx, dtype, aux_types) + + +def array(source_array, ctx=None, dtype=None, aux_types=None): + """Creates an array from any object exposing the array interface. + + Parameters + ---------- + source_array : array_like + An object exposing the array interface, an object whose `__array__` + method returns an array, or any (nested) sequence. + ctx : Context, optional + Device context (default is the current default context). + dtype : str or numpy.dtype, optional + The data type of the output array. The default dtype is ``source_array.dtype`` + if `source_array` is an `NDArray`, `float32` otherwise. + aux_types: list of numpy.dtype, optional + An optional list of types of the aux data for RowSparseNDArray or CSRNDArray + (default values depend on the storage type) + + Returns + ------- + NDArray, RowSparseNDArray or CSRNDArray + An array with the same contents as the `source_array`. + + Examples + -------- + >>> import numpy as np + >>> mx.nd.array([1, 2, 3]) + + >>> mx.nd.array([[1, 2], [3, 4]]) + + >>> mx.nd.array(np.zeros((3, 2))) + + >>> mx.nd.array(np.zeros((3, 2)), mx.gpu(0)) + + >>> mx.nd.array(mx.nd.zeros((3, 2), stype='row_sparse')) + + """ + # TODO(haibin/anisub) Check if input is scipy.sparse object with `scipy.sparse.issparse` + if isinstance(source_array, NDArray) and source_array.stype != 'default': + return _sparse_array(source_array, ctx=ctx, dtype=dtype, aux_types=aux_types) + else: + return _array(source_array, ctx=ctx, dtype=dtype) + + +def load(fname): + """Loads an array from file. + + See more details in ``save``. + + Parameters + ---------- + fname : str + The filename. + + Returns + ------- + list of NDArray, RowSparseNDArray or CSRNDArray, or \ + dict of str to NDArray, RowSparseNDArray or CSRNDArray + Loaded data. + """ + if not isinstance(fname, string_types): + raise TypeError('fname required to be a string') + out_size = mx_uint() + out_name_size = mx_uint() + handles = ctypes.POINTER(NDArrayHandle)() + names = ctypes.POINTER(ctypes.c_char_p)() + check_call(_LIB.MXNDArrayLoad(c_str(fname), + ctypes.byref(out_size), + ctypes.byref(handles), + ctypes.byref(out_name_size), + ctypes.byref(names))) + if out_name_size.value == 0: + return [_ndarray_cls(NDArrayHandle(handles[i])) for i in range(out_size.value)] + else: + assert out_name_size.value == out_size.value + return dict( + (py_str(names[i]), _ndarray_cls(NDArrayHandle(handles[i]))) + for i in range(out_size.value)) + + +def save(fname, data): + """Saves a list of arrays or a dict of str->array to file. + + Examples of filenames: + + - ``/path/to/file`` + - ``s3://my-bucket/path/to/file`` (if compiled with AWS S3 supports) + - ``hdfs://path/to/file`` (if compiled with HDFS supports) + + Parameters + ---------- + fname : str + The filename. + data : NDArray, RowSparseNDArray or CSRNDArray, \ + or list of NDArray, RowSparseNDArray or CSRNDArray, \ + or dict of str to NDArray, RowSparseNDArray or CSRNDArray + The data to save. + + Examples + -------- + >>> x = mx.nd.zeros((2,3)) + >>> y = mx.nd.ones((1,4)) + >>> mx.nd.save('my_list', [x,y]) + >>> mx.nd.save('my_dict', {'x':x, 'y':y}) + >>> mx.nd.load('my_list') + [, ] + >>> mx.nd.load('my_dict') + {'y': , 'x': } + """ + if isinstance(data, NDArray): + data = [data] + handles = [] + if isinstance(data, dict): + keys = [] + for key, val in data.items(): + if not isinstance(key, string_types): + raise TypeError('save only accept dict str->NDArray or list of NDArray') + if not isinstance(val, NDArray): + raise TypeError('save only accept dict str->NDArray or list of NDArray') + keys.append(c_str(key)) + handles.append(val.handle) + keys = c_array(ctypes.c_char_p, keys) + elif isinstance(data, list): + for val in data: + if not isinstance(val, NDArray): + raise TypeError('save only accept dict str->NDArray or list of NDArray') + handles.append(val.handle) + keys = None + else: + raise ValueError("data needs to either be a NDArray, dict of str, NDArray pairs " + "or a list of NDarrays.") + check_call(_LIB.MXNDArraySave(c_str(fname), + mx_uint(len(handles)), + c_array(NDArrayHandle, handles), + keys)) diff --git a/python/mxnet/optimizer.py b/python/mxnet/optimizer.py index 1ef9cc845036..e7e283f88e43 100644 --- a/python/mxnet/optimizer.py +++ b/python/mxnet/optimizer.py @@ -339,8 +339,8 @@ class SGD(Optimizer): state = momentum * state + lr * rescale_grad * clip(grad, clip_gradient) + wd * weight weight = weight - state - For details of the update algorithm see :class:`~mxnet.ndarray.sgd_update` and - :class:`~mxnet.ndarray.sgd_mom_update`. + Sparse updating is supported. For details of the update algorithm see + :class:`~mxnet.ndarray.sgd_update` and :class:`~mxnet.ndarray.sgd_mom_update`. This optimizer accepts the following parameters in addition to those accepted by :class:`.Optimizer`. @@ -367,7 +367,8 @@ def create_state(self, index, weight): if self.multi_precision and weight.dtype == numpy.float16: weight_master_copy = array(weight, ctx=weight.context, dtype=numpy.float32) if self.momentum != 0.0: - momentum = zeros(weight.shape, weight.context, dtype=numpy.float32) + momentum = zeros(weight.shape, weight.context, dtype=numpy.float32, + stype=weight.stype) return (momentum, weight_master_copy) if weight.dtype == numpy.float16 and not self.multi_precision: warnings.warn("Accumulating with float16 in optimizer can lead to " @@ -375,7 +376,7 @@ def create_state(self, index, weight): "Consider using multi_precision=True option of the " "SGD optimizer") if self.momentum != 0.0: - momentum = zeros(weight.shape, weight.context, dtype=weight.dtype) + momentum = zeros(weight.shape, weight.context, dtype=weight.dtype, stype=weight.stype) return momentum def update(self, index, weight, grad, state): @@ -563,8 +564,10 @@ def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, self.epsilon = epsilon def create_state(self, index, weight): - return (zeros(weight.shape, weight.context, dtype=weight.dtype), # mean - zeros(weight.shape, weight.context, dtype=weight.dtype)) # variance + return (zeros(weight.shape, weight.context, dtype=weight.dtype, + stype=weight.stype), # mean + zeros(weight.shape, weight.context, dtype=weight.dtype, + stype=weight.stype)) # variance def update(self, index, weight, grad, state): assert(isinstance(weight, NDArray)) @@ -669,11 +672,11 @@ def __init__(self, learning_rate=0.001, gamma1=0.9, gamma2=0.9, def create_state(self, index, weight): if self.centered: return ( - zeros(weight.shape, weight.context), # n - zeros(weight.shape, weight.context), # g - zeros(weight.shape, weight.context)) # delta + zeros(weight.shape, weight.context, stype=weight.stype), # n + zeros(weight.shape, weight.context, stype=weight.stype), # g + zeros(weight.shape, weight.context, stype=weight.stype)) # delta else: - return (zeros(weight.shape, weight.context), ) # n + return (zeros(weight.shape, weight.context, stype=weight.stype),) # n def update(self, index, weight, grad, state): assert(isinstance(weight, NDArray)) diff --git a/python/mxnet/random.py b/python/mxnet/random.py index 29b250d980ce..14bfc2731bd6 100644 --- a/python/mxnet/random.py +++ b/python/mxnet/random.py @@ -22,13 +22,13 @@ import ctypes from .base import _LIB, check_call -from ._ndarray_internal import _sample_uniform as uniform -from ._ndarray_internal import _sample_normal as normal -from ._ndarray_internal import _sample_gamma as gamma -from ._ndarray_internal import _sample_exponential as exponential -from ._ndarray_internal import _sample_poisson as poisson -from ._ndarray_internal import _sample_negbinomial as negative_binomial -from ._ndarray_internal import _sample_gennegbinomial as generalized_negative_binomial +from .ndarray._internal import _sample_uniform as uniform +from .ndarray._internal import _sample_normal as normal +from .ndarray._internal import _sample_gamma as gamma +from .ndarray._internal import _sample_exponential as exponential +from .ndarray._internal import _sample_poisson as poisson +from .ndarray._internal import _sample_negbinomial as negative_binomial +from .ndarray._internal import _sample_gennegbinomial as generalized_negative_binomial def seed(seed_state): """Seeds the random number generators in MXNet. diff --git a/python/mxnet/symbol/__init__.py b/python/mxnet/symbol/__init__.py new file mode 100644 index 000000000000..d93a230f490d --- /dev/null +++ b/python/mxnet/symbol/__init__.py @@ -0,0 +1,23 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +"""Symbol API of MXNet.""" + +from . import _internal, sparse, op +# pylint: disable=wildcard-import, redefined-builtin +from .symbol import * +from ..ndarray import _GRAD_REQ_MAP diff --git a/python/mxnet/_symbol_internal.py b/python/mxnet/symbol/_internal.py similarity index 100% rename from python/mxnet/_symbol_internal.py rename to python/mxnet/symbol/_internal.py diff --git a/python/mxnet/symbol/op.py b/python/mxnet/symbol/op.py new file mode 100644 index 000000000000..82884a5cc6a2 --- /dev/null +++ b/python/mxnet/symbol/op.py @@ -0,0 +1,242 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +"""Register backend ops in mxnet.symbol namespace.""" + +import sys as _sys +import os as _os +import ctypes +import numpy as _numpy # pylint: disable=unused-import + +from mxnet.base import mx_uint, check_call, _LIB, py_str, OpHandle, c_str +from mxnet.symbol_doc import _build_doc + +# Use different version of SymbolBase +# When possible, use cython to speedup part of computation. +# pylint: disable=unused-import +try: + if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: + from .._ctypes.symbol import SymbolBase, _set_symbol_class + from .._ctypes.symbol import _symbol_creator + elif _sys.version_info >= (3, 0): + from .._cy3.symbol import SymbolBase, _set_symbol_class + from .._cy3.symbol import _symbol_creator + else: + from .._cy2.symbol import SymbolBase, _set_symbol_class + from .._cy2.symbol import _symbol_creator +except ImportError: + if int(_os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0: + raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1") + from .._ctypes.symbol import SymbolBase, _set_symbol_class + from .._ctypes.symbol import _symbol_creator + +from ..base import _Null +from ..name import NameManager +from ..attribute import AttrScope +# pylint: enable=unused-import + + +def _make_atomic_symbol_function(handle, name): + """Create an atomic symbol function by handle and function name.""" + real_name = ctypes.c_char_p() + desc = ctypes.c_char_p() + num_args = mx_uint() + arg_names = ctypes.POINTER(ctypes.c_char_p)() + arg_types = ctypes.POINTER(ctypes.c_char_p)() + arg_descs = ctypes.POINTER(ctypes.c_char_p)() + key_var_num_args = ctypes.c_char_p() + ret_type = ctypes.c_char_p() + + check_call(_LIB.MXSymbolGetAtomicSymbolInfo( + handle, ctypes.byref(real_name), ctypes.byref(desc), + ctypes.byref(num_args), + ctypes.byref(arg_names), + ctypes.byref(arg_types), + ctypes.byref(arg_descs), + ctypes.byref(key_var_num_args), + ctypes.byref(ret_type))) + narg = int(num_args.value) + arg_names = [py_str(arg_names[i]) for i in range(narg)] + arg_types = [py_str(arg_types[i]) for i in range(narg)] + func_name = name + key_var_num_args = py_str(key_var_num_args.value) + ret_type = py_str(ret_type.value) if ret_type.value is not None else '' + doc_str = _build_doc(func_name, + py_str(desc.value), + arg_names, + arg_types, + [py_str(arg_descs[i]) for i in range(narg)], + key_var_num_args, + ret_type) + + dtype_name = None + arr_name = None + ndsignature = [] + signature = [] + ndarg_names = [] + kwarg_names = [] + for i in range(narg): + name, atype = arg_names[i], arg_types[i] + if name == 'dtype': + dtype_name = name + signature.append('%s=_Null'%name) + elif atype.startswith('NDArray') or atype.startswith('Symbol'): + assert not arr_name, \ + "Op can only have one argument with variable " \ + "size and it must be the last argument." + if atype.endswith('[]'): + ndsignature.append('*%s'%name) + arr_name = name + else: + ndsignature.append('%s=None'%name) + ndarg_names.append(name) + else: + signature.append('%s=_Null'%name) + kwarg_names.append(name) + #signature.append('is_train=False') + signature.append('name=None') + signature.append('attr=None') + signature.append('out=None') + signature.append('**kwargs') + signature = ndsignature + signature + + code = [] + if arr_name: + code.append(""" +def %s(*%s, **kwargs):"""%(func_name, arr_name)) + code.append(""" + sym_args = [] + for i in {}: + assert isinstance(i, SymbolBase), \\ + "Positional arguments must be Symbol instances, " \\ + "but got %s"%str(i) + sym_args.append(i)""".format(arr_name)) + if dtype_name is not None: + code.append(""" + if '%s' in kwargs: + kwargs['%s'] = _numpy.dtype(kwargs['%s']).name"""%( + dtype_name, dtype_name, dtype_name)) + code.append(""" + attr = kwargs.pop('attr', None) + kwargs.update(AttrScope.current.get(attr)) + name = kwargs.pop('name', None) + name = NameManager.current.get(name, '%s') + _ = kwargs.pop('out', None) + keys = [] + vals = [] + sym_kwargs = dict() + for k, v in kwargs.items(): + if isinstance(v, SymbolBase): + sym_kwargs[k] = v + else: + keys.append(k) + vals.append(v)"""%(func_name.lower())) + if key_var_num_args: + code.append(""" + if '%s' not in kwargs: + keys.append('%s') + vals.append(len(sym_args) + len(sym_kwargs))"""%( + key_var_num_args, key_var_num_args)) + + code.append(""" + return _symbol_creator(%d, sym_args, sym_kwargs, keys, vals, name)"""%( + handle.value)) + else: + code.append(""" +def %s(%s): + kwargs.update(AttrScope.current.get(attr)) + sym_kwargs = dict() + keys = [] + vals = []"""%(func_name, ', '.join(signature))) + code.append(""" + for k, v in kwargs.items(): + if isinstance(v, SymbolBase): + sym_kwargs[k] = v + else: + keys.append(k) + vals.append(v)""") + # NDArray args + for name in ndarg_names: # pylint: disable=redefined-argument-from-local + code.append(""" + if {name} is not None: + assert isinstance({name}, SymbolBase), \\ + "Argument {name} must be Symbol instances, but got %s"%str({name}) + sym_kwargs['{name}'] = {name}""".format(name=name)) + # kwargs + for name in kwarg_names: # pylint: disable=redefined-argument-from-local + code.append(""" + if %s is not _Null: + keys.append('%s') + vals.append(%s)"""%(name, name, name)) + # dtype + if dtype_name is not None: + code.append(""" + if %s is not _Null: + keys.append('%s') + vals.append(_numpy.dtype(%s).name)"""%(dtype_name, dtype_name, dtype_name)) + + code.append(""" + name = NameManager.current.get(name, '%s') + return _symbol_creator(%d, None, sym_kwargs, keys, vals, name)"""%( + func_name.lower(), handle.value)) + + local = {} + exec(''.join(code), None, local) # pylint: disable=exec-used + symbol_function = local[func_name] + symbol_function.__name__ = func_name + symbol_function.__doc__ = doc_str + symbol_function.__module__ = 'mxnet.symbol' + return symbol_function + + +def _init_symbol_module(root_namespace): + """List and add all the atomic symbol functions to current module.""" + plist = ctypes.POINTER(ctypes.c_char_p)() + size = ctypes.c_uint() + + check_call(_LIB.MXListAllOpNames(ctypes.byref(size), + ctypes.byref(plist))) + op_names = [] + for i in range(size.value): + op_names.append(py_str(plist[i])) + + module_obj = _sys.modules["%s.symbol" % root_namespace] + module_sparse = _sys.modules["%s.symbol.sparse" % root_namespace] + module_internal = _sys.modules["%s.symbol._internal" % root_namespace] + module_contrib = _sys.modules["%s.contrib.symbol" % root_namespace] + for name in op_names: + hdl = OpHandle() + check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) + function = _make_atomic_symbol_function(hdl, name) + if function.__name__.startswith('_contrib_'): + function.__name__ = function.__name__[9:] + function.__module__ = 'mxnet.contrib.symbol' + setattr(module_contrib, function.__name__, function) + elif function.__name__.startswith('_'): + setattr(module_internal, function.__name__, function) + else: + setattr(module_obj, function.__name__, function) + + # register sparse ops under mxnet.symbol.sparse + if function.__name__.startswith('_sparse_'): + function.__name__ = function.__name__[8:] + function.__module__ = 'mxnet.symbol.sparse' + setattr(module_sparse, function.__name__, function) + + +# Initialize the atomic symbol in startups +_init_symbol_module("mxnet") diff --git a/python/mxnet/symbol/sparse.py b/python/mxnet/symbol/sparse.py new file mode 100644 index 000000000000..1d94f2b85bc7 --- /dev/null +++ b/python/mxnet/symbol/sparse.py @@ -0,0 +1,18 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +"""Sparse Symbol API of MXNet.""" diff --git a/python/mxnet/symbol.py b/python/mxnet/symbol/symbol.py similarity index 90% rename from python/mxnet/symbol.py rename to python/mxnet/symbol/symbol.py index 14cb3811deeb..aa8ca0b8dd53 100644 --- a/python/mxnet/symbol.py +++ b/python/mxnet/symbol/symbol.py @@ -29,39 +29,19 @@ import warnings from numbers import Number -import os as _os -import sys as _sys import numpy as _numpy -from .base import _LIB, numeric_types -from .base import c_array, c_str, mx_uint, py_str, string_types -from .base import NDArrayHandle, ExecutorHandle, SymbolHandle, OpHandle -from .base import check_call, MXNetError, NotImplementedForSymbol, _Null # pylint: disable=unused-import -from .context import Context -from .ndarray import NDArray, _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP, _GRAD_REQ_MAP -from .name import NameManager # pylint: disable=unused-import -from .executor import Executor -from . import _symbol_internal as _internal -from .attribute import AttrScope -from .symbol_doc import _build_doc - -# Use different version of SymbolBase -# When possible, use cython to speedup part of computation. -try: - if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0: - from ._ctypes.symbol import SymbolBase, _set_symbol_class - from ._ctypes.symbol import _symbol_creator # pylint: disable=unused-import - elif _sys.version_info >= (3, 0): - from ._cy3.symbol import SymbolBase, _set_symbol_class - from ._cy3.symbol import _symbol_creator # pylint: disable=unused-import - else: - from ._cy2.symbol import SymbolBase, _set_symbol_class - from ._cy2.symbol import _symbol_creator # pylint: disable=unused-import -except ImportError: - if int(_os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0: - raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1") - from ._ctypes.symbol import SymbolBase, _set_symbol_class - from ._ctypes.symbol import _symbol_creator # pylint: disable=unused-import +from ..base import _LIB, numeric_types +from ..base import c_array, c_str, mx_uint, py_str, string_types +from ..base import NDArrayHandle, ExecutorHandle, SymbolHandle +from ..base import check_call, MXNetError, NotImplementedForSymbol +from ..context import Context +from ..ndarray import NDArray, _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP, _GRAD_REQ_MAP +from ..ndarray.ndarray import _STORAGE_TYPE_STR_TO_ID +from ..ndarray import _ndarray_cls +from ..executor import Executor +from . import _internal, reshape +from .op import SymbolBase, _set_symbol_class, AttrScope, _Null # pylint: disable=unused-import class Symbol(SymbolBase): @@ -1263,8 +1243,9 @@ def _get_ndarray_inputs(arg_key, args, arg_names, allow_missing): raise TypeError('Only accept list of NDArrays or dict of str to NDArray') return c_array(NDArrayHandle, arg_handles), arg_arrays - def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, - shared_arg_names=None, shared_exec=None, shared_buffer=None, **kwargs): + def simple_bind(self, ctx, grad_req='write', type_dict=None, stype_dict=None, + group2ctx=None, shared_arg_names=None, shared_exec=None, + shared_buffer=None, **kwargs): """Bind current symbol to get an executor, allocate all the arguments needed. Allows specifying data types. @@ -1306,6 +1287,9 @@ def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, type_dict : Dict of str->numpy.dtype Input type dictionary, name->dtype + stype_dict : Dict of str->str + Input storage type dictionary, name->storage_type + group2ctx : Dict of string to mx.Context The dict mapping the `ctx_group` attribute to the context assignment. @@ -1320,7 +1304,8 @@ def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, shared_buffer : Dict of string to `NDArray` The dict mapping argument names to the `NDArray` that can be reused for initializing the current executor. This buffer will be checked for reuse if one argument name - of the current executor is not found in `shared_arg_names`. + of the current executor is not found in `shared_arg_names`. The `NDArray`s are + expected have default storage type. kwargs : Dict of str->shape Input shape dictionary, name->shape @@ -1330,6 +1315,7 @@ def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, executor : mxnet.Executor The generated executor """ + # data types num_provided_arg_types = 0 provided_arg_type_names = ctypes.POINTER(ctypes.c_char_p)() # provided type argument names provided_arg_type_data = ctypes.POINTER(mx_uint)() # provided types @@ -1345,6 +1331,22 @@ def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, provided_arg_type_names = c_array(ctypes.c_char_p, provided_arg_type_names) provided_arg_type_data = c_array(ctypes.c_int, provided_arg_type_data) + # storage types + num_provided_arg_stypes = 0 + # provided storage type argument names + provided_arg_stype_names = ctypes.POINTER(ctypes.c_char_p)() + provided_arg_stype_data = ctypes.POINTER(mx_uint)() # provided storage types + if stype_dict is not None: + provided_arg_stype_names = [] + provided_arg_stype_data = [] + for k, v in stype_dict.items(): + if v in _STORAGE_TYPE_STR_TO_ID: + provided_arg_stype_names.append(c_str(k)) + provided_arg_stype_data.append(ctypes.c_int(_STORAGE_TYPE_STR_TO_ID[v])) + num_provided_arg_stypes = mx_uint(len(provided_arg_stype_names)) + provided_arg_stype_names = c_array(ctypes.c_char_p, provided_arg_stype_names) + provided_arg_stype_data = c_array(ctypes.c_int, provided_arg_stype_data) + provided_arg_shape_data = [] # shape data # argument shape index in sdata, # e.g. [sdata[indptr[0]], sdata[indptr[1]]) is the shape of the first arg @@ -1418,6 +1420,8 @@ def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, shared_buffer_names = [] shared_buffer_handles = [] for k, v in shared_buffer.items(): + assert(v.stype == 'default'), \ + "shared_buffer is expected to only contain NDArrays with default storage" shared_buffer_names.append(c_str(k)) shared_buffer_handles.append(v.handle) shared_buffer_names = c_array(ctypes.c_char_p, shared_buffer_names) @@ -1457,6 +1461,9 @@ def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, num_provided_arg_types, provided_arg_type_names, provided_arg_type_data, + num_provided_arg_stypes, + provided_arg_stype_names, + provided_arg_stype_data, mx_uint(len(shared_arg_name_list)), c_array(ctypes.c_char_p, shared_arg_name_list), ctypes.byref(shared_buffer_len), @@ -1486,11 +1493,12 @@ def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, shared_buffer[k] = v # create in_args, arg_grads, and aux_states for the current executor - arg_arrays = [NDArray(NDArrayHandle(in_arg_handles[i])) for i in range(num_in_args.value)] - grad_arrays = [NDArray(NDArrayHandle(arg_grad_handles[i])) + arg_arrays = [_ndarray_cls(NDArrayHandle(in_arg_handles[i])) \ + for i in range(num_in_args.value)] + grad_arrays = [_ndarray_cls(NDArrayHandle(arg_grad_handles[i])) if arg_grad_handles[i] is not None else None for i in range(num_in_args.value)] - aux_arrays = [NDArray(NDArrayHandle(aux_state_handles[i])) + aux_arrays = [_ndarray_cls(NDArrayHandle(aux_state_handles[i])) for i in range(num_aux_states.value)] executor = Executor(exe_handle, self, ctx, grad_req, group2ctx) @@ -1767,7 +1775,8 @@ def detach(self): def backward(self): raise NotImplementedForSymbol(self.backward, None) -def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, init=None, **kwargs): +def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, + init=None, stype=None, **kwargs): """Creates a symbolic variable with specified name. Example usage: @@ -1794,6 +1803,8 @@ def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, ini The dtype for input variable. If not specified, this value will be inferred. init : initializer (mxnet.init.*) Initializer for this variable to (optionally) override the default initializer. + stype : str + The storage type of the variable. kwargs : Additional attribute variables Additional attributes must start and end with double underscores. @@ -1821,6 +1832,8 @@ def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, ini if not isinstance(init, string_types): init = init.dumps() attr['__init__'] = init + if stype is not None: + attr['__storage_type__'] = str(_STORAGE_TYPE_STR_TO_ID[stype]) for k, v in kwargs.items(): if k.startswith('__') and k.endswith('__'): attr[k] = str(v) @@ -2195,188 +2208,4 @@ def arange(start, stop=None, step=1.0, repeat=1, name=None, dtype=None): return _internal._arange(start=start, stop=stop, step=step, repeat=repeat, name=name, dtype=dtype) - -def _make_atomic_symbol_function(handle, name): - """Create an atomic symbol function by handle and function name.""" - real_name = ctypes.c_char_p() - desc = ctypes.c_char_p() - num_args = mx_uint() - arg_names = ctypes.POINTER(ctypes.c_char_p)() - arg_types = ctypes.POINTER(ctypes.c_char_p)() - arg_descs = ctypes.POINTER(ctypes.c_char_p)() - key_var_num_args = ctypes.c_char_p() - ret_type = ctypes.c_char_p() - - check_call(_LIB.MXSymbolGetAtomicSymbolInfo( - handle, ctypes.byref(real_name), ctypes.byref(desc), - ctypes.byref(num_args), - ctypes.byref(arg_names), - ctypes.byref(arg_types), - ctypes.byref(arg_descs), - ctypes.byref(key_var_num_args), - ctypes.byref(ret_type))) - narg = int(num_args.value) - arg_names = [py_str(arg_names[i]) for i in range(narg)] - arg_types = [py_str(arg_types[i]) for i in range(narg)] - func_name = name - key_var_num_args = py_str(key_var_num_args.value) - ret_type = py_str(ret_type.value) if ret_type.value is not None else '' - doc_str = _build_doc(func_name, - py_str(desc.value), - arg_names, - arg_types, - [py_str(arg_descs[i]) for i in range(narg)], - key_var_num_args, - ret_type) - - dtype_name = None - arr_name = None - ndsignature = [] - signature = [] - ndarg_names = [] - kwarg_names = [] - for i in range(narg): - name, atype = arg_names[i], arg_types[i] - if name == 'dtype': - dtype_name = name - signature.append('%s=_Null'%name) - elif atype.startswith('NDArray') or atype.startswith('Symbol'): - assert not arr_name, \ - "Op can only have one argument with variable " \ - "size and it must be the last argument." - if atype.endswith('[]'): - ndsignature.append('*%s'%name) - arr_name = name - else: - ndsignature.append('%s=None'%name) - ndarg_names.append(name) - else: - signature.append('%s=_Null'%name) - kwarg_names.append(name) - #signature.append('is_train=False') - signature.append('name=None') - signature.append('attr=None') - signature.append('out=None') - signature.append('**kwargs') - signature = ndsignature + signature - - code = [] - if arr_name: - code.append(""" -def %s(*%s, **kwargs):"""%(func_name, arr_name)) - code.append(""" - sym_args = [] - for i in {}: - assert isinstance(i, SymbolBase), \\ - "Positional arguments must be Symbol instances, " \\ - "but got %s"%str(i) - sym_args.append(i)""".format(arr_name)) - if dtype_name is not None: - code.append(""" - if '%s' in kwargs: - kwargs['%s'] = _numpy.dtype(kwargs['%s']).name"""%( - dtype_name, dtype_name, dtype_name)) - code.append(""" - attr = kwargs.pop('attr', None) - kwargs.update(AttrScope.current.get(attr)) - name = kwargs.pop('name', None) - name = NameManager.current.get(name, '%s') - _ = kwargs.pop('out', None) - keys = [] - vals = [] - sym_kwargs = dict() - for k, v in kwargs.items(): - if isinstance(v, SymbolBase): - sym_kwargs[k] = v - else: - keys.append(k) - vals.append(v)"""%(func_name.lower())) - if key_var_num_args: - code.append(""" - if '%s' not in kwargs: - keys.append('%s') - vals.append(len(sym_args) + len(sym_kwargs))"""%( - key_var_num_args, key_var_num_args)) - - code.append(""" - return _symbol_creator(%d, sym_args, sym_kwargs, keys, vals, name)"""%( - handle.value)) - else: - code.append(""" -def %s(%s): - kwargs.update(AttrScope.current.get(attr)) - sym_kwargs = dict() - keys = [] - vals = []"""%(func_name, ', '.join(signature))) - code.append(""" - for k, v in kwargs.items(): - if isinstance(v, SymbolBase): - sym_kwargs[k] = v - else: - keys.append(k) - vals.append(v)""") - # NDArray args - for name in ndarg_names: # pylint: disable=redefined-argument-from-local - code.append(""" - if {name} is not None: - assert isinstance({name}, SymbolBase), \\ - "Argument {name} must be Symbol instances, but got %s"%str({name}) - sym_kwargs['{name}'] = {name}""".format(name=name)) - # kwargs - for name in kwarg_names: # pylint: disable=redefined-argument-from-local - code.append(""" - if %s is not _Null: - keys.append('%s') - vals.append(%s)"""%(name, name, name)) - # dtype - if dtype_name is not None: - code.append(""" - if %s is not _Null: - keys.append('%s') - vals.append(_numpy.dtype(%s).name)"""%(dtype_name, dtype_name, dtype_name)) - - code.append(""" - name = NameManager.current.get(name, '%s') - return _symbol_creator(%d, None, sym_kwargs, keys, vals, name)"""%( - func_name.lower(), handle.value)) - - local = {} - exec(''.join(code), None, local) # pylint: disable=exec-used - symbol_function = local[func_name] - symbol_function.__name__ = func_name - symbol_function.__doc__ = doc_str - symbol_function.__module__ = 'mxnet.symbol' - return symbol_function - - -def _init_symbol_module(symbol_class, root_namespace): - """List and add all the atomic symbol functions to current module.""" - _set_symbol_class(symbol_class) - plist = ctypes.POINTER(ctypes.c_char_p)() - size = ctypes.c_uint() - - check_call(_LIB.MXListAllOpNames(ctypes.byref(size), - ctypes.byref(plist))) - op_names = [] - for i in range(size.value): - op_names.append(py_str(plist[i])) - - module_obj = _sys.modules["%s.symbol" % root_namespace] - module_internal = _sys.modules["%s._symbol_internal" % root_namespace] - module_contrib = _sys.modules["%s.contrib.symbol" % root_namespace] - for name in op_names: - hdl = OpHandle() - check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) - function = _make_atomic_symbol_function(hdl, name) - if function.__name__.startswith('_contrib_'): - function.__name__ = function.__name__[9:] - function.__module__ = 'mxnet.contrib.symbol' - setattr(module_contrib, function.__name__, function) - elif function.__name__.startswith('_'): - setattr(module_internal, function.__name__, function) - else: - setattr(module_obj, function.__name__, function) - - -# Initialize the atomic symbol in startups -_init_symbol_module(Symbol, "mxnet") +_set_symbol_class(Symbol) diff --git a/python/mxnet/test_utils.py b/python/mxnet/test_utils.py index c5587f8d80a8..e1210fbd3e6e 100644 --- a/python/mxnet/test_utils.py +++ b/python/mxnet/test_utils.py @@ -31,15 +31,17 @@ from contextlib import contextmanager import numpy as np import numpy.testing as npt -import mxnet as mx -from .context import Context -from .ndarray import array -from .symbol import Symbol +import numpy.random as rnd try: import requests except ImportError: # in rare cases requests may be not installed pass +import mxnet as mx +from .context import Context +from .ndarray.ndarray import _STORAGE_TYPE_STR_TO_ID +from .ndarray import array +from .symbol import Symbol _rng = np.random.RandomState(1234) @@ -85,6 +87,184 @@ def random_arrays(*shapes): return arrays +def random_sample(population, k): + """Return a k length list of the elements chosen from the population sequence.""" + assert 0 <= k <= len(population) + population_copy = population[:] + np.random.shuffle(population_copy) + return population_copy[0:k] + + +def _validate_csr_generation_inputs(num_rows, num_cols, density, + distribution="uniform"): + """Validates inputs for csr generation helper functions + """ + total_nnz = int(num_rows * num_cols * density) + if density < 0 or density > 1: + raise ValueError("density has to be between 0 and 1") + + if num_rows <= 0 or num_cols <= 0: + raise ValueError("num_rows or num_cols should be greater than 0") + + if distribution == "powerlaw": + if total_nnz < 2 * num_rows: + raise ValueError("not supported for this density: %s" + " for this shape (%s, %s)" + " Please keep :" + " num_rows * num_cols * density >= 2 * num_rows" + % (density, num_rows, num_cols)) + + +def _get_uniform_dataset_csr(num_rows, num_cols, density=0.1, dtype=None): + """Returns CSRNDArray with uniform distribution + This generates a csr matrix with totalnnz unique randomly chosen numbers + from num_rows*num_cols and arranges them in the 2d array in the + following way: row_index = (random_number_generated / num_rows) + col_index = random_number_generated - row_index * num_cols + """ + _validate_csr_generation_inputs(num_rows, num_cols, density, + distribution="uniform") + from scipy import sparse as sp + csr = sp.rand(num_rows, num_cols, density, dtype=dtype, format="csr") + result = mx.nd.sparse.csr_matrix(csr.data, csr.indptr, csr.indices, + (num_rows, num_cols), dtype=dtype) + return result + + +def _get_powerlaw_dataset_csr(num_rows, num_cols, density=0.1, dtype=None): + """Returns CSRNDArray with powerlaw distribution + with exponentially increasing number of non zeros in each row. + Not supported for cases where total_nnz < 2*num_rows. This is because + the algorithm first tries to ensure that there are rows with no zeros by + putting non zeros at beginning of each row. + """ + + _validate_csr_generation_inputs(num_rows, num_cols, density, + distribution="powerlaw") + + total_nnz = int(num_rows * num_cols * density) + + unused_nnz = total_nnz + output_arr = np.zeros((num_rows, num_cols), dtype=dtype) + # Start with ones on each row so that no row is empty + for row in range(num_rows): + output_arr[row][0] = 1 + rnd.uniform(0.001, 2) + unused_nnz = unused_nnz - 1 + if unused_nnz <= 0: + return mx.nd.array(output_arr).tostype("csr") + + # Populate rest of matrix with 2^i items in ith row. + # if we have used all total nnz return the sparse matrix + # else if we reached max column size then fill up full columns until we use all nnz + col_max = 2 + for row in range(num_rows): + col_limit = min(num_cols, col_max) + # In case col_limit reached assign same value to all elements, which is much faster + if col_limit == num_cols and unused_nnz > col_limit: + output_arr[row] = 1 + rnd.uniform(0.001, 2) + unused_nnz = unused_nnz - col_limit + 1 + if unused_nnz <= 0: + return mx.nd.array(output_arr).tostype("csr") + else: + continue + for col_index in range(1, col_limit): + output_arr[row][col_index] = 1 + rnd.uniform(0.001, 2) + unused_nnz = unused_nnz - 1 + if unused_nnz <= 0: + return mx.nd.array(output_arr).tostype("csr") + col_max = col_max * 2 + + if unused_nnz > 0: + raise ValueError("not supported for this density: %s" + " for this shape (%s,%s)" % (density, num_rows, num_cols)) + else: + return mx.nd.array(output_arr).tostype("csr") + + +def rand_sparse_ndarray(shape, stype, density=None, distribution=None, dtype=None): + """Generate a random sparse ndarray. Returns the ndarray, value(np) and indices(np) + Parameters + ---------- + shape: list or tuple + stype: str, valid values: "csr" or "row_sparse" + density, optional: float, should be between 0 and 1 + distribution, optional: str, valid values: "uniform" or "powerlaw" + dtype, optional: numpy.dtype, default value is None + Returns + ------- + Result of type CSRNDArray or RowSparseNDArray + Examples + -------- + Below is an example of the powerlaw distribution with csr as the stype. + It calculates the nnz using the shape and density. + It fills up the ndarray with exponentially increasing number of elements. + If there are enough unused_nnzs, n+1th row will have twice more nnzs compared to nth row. + else, remaining unused_nnzs will be used in n+1th row + If number of cols is too small and we have already reached column size it will fill up + all following columns in all followings rows until we reach the required density. + + >>> csr_arr, _ = rand_sparse_ndarray(shape=(5, 16), stype="csr", + density=0.50, distribution="powerlaw") + >>> indptr = csr_arr.indptr.asnumpy() + >>> indices = csr_arr.indices.asnumpy() + >>> data = csr_arr.data.asnumpy() + >>> row2nnz = len(data[indptr[1]:indptr[2]]) + >>> row3nnz = len(data[indptr[2]:indptr[3]]) + >>> assert(row3nnz == 2*row2nnz) + >>> row4nnz = len(data[indptr[3]:indptr[4]]) + >>> assert(row4nnz == 2*row3nnz) + """ + density = rnd.rand() if density is None else density + dtype = default_dtype() if dtype is None else dtype + distribution = "uniform" if distribution is None else distribution + if stype == 'row_sparse': + assert (distribution == "uniform"), \ + "Distribution %s not supported for row_sparse" % (distribution) + # sample index + idx_sample = rnd.rand(shape[0]) + indices = np.argwhere(idx_sample < density).flatten() + if indices.shape[0] == 0: + result = mx.nd.zeros(shape, stype='row_sparse', dtype=dtype) + return result, (np.array([], dtype=dtype), np.array([], dtype='int64')) + # generate random values + val = rnd.rand(indices.shape[0], *shape[1:]).astype(dtype) + arr = mx.nd.sparse.row_sparse_array(val, indices, shape, indices_type=np.int64, dtype=dtype) + return arr, (val, indices) + elif stype == 'csr': + assert len(shape) == 2 + if distribution == "uniform": + csr = _get_uniform_dataset_csr(shape[0], shape[1], density, dtype=dtype) + return csr, (csr.indptr, csr.indices, csr.data) + elif distribution == "powerlaw": + csr = _get_powerlaw_dataset_csr(shape[0], shape[1], density, dtype=dtype) + return csr, (csr.indptr, csr.indices, csr.data) + else: + assert(False), "Distribution not supported: %s" % (distribution) + else: + assert(False), "unknown storage type" + + +def rand_ndarray(shape, stype, density=None, dtype=None, distribution=None): + if stype == 'default': + arr = mx.nd.array(random_arrays(shape), dtype=dtype) + else: + arr, _ = rand_sparse_ndarray(shape, stype, density=density, dtype=dtype, + distribution=distribution) + return arr + + +def rand_shape_2d(dim0=10, dim1=10): + return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1) + + +def rand_shape_3d(dim0=10, dim1=10, dim2=10): + return rnd.randint(1, dim0 + 1), rnd.randint(1, dim1 + 1), rnd.randint(1, dim2 + 1) + + +def rand_shape_nd(n, dim=10): + return rnd.randint(1, dim+1, size=n) + + def np_reduce(dat, axis, keepdims, numpy_reduce_func): """Compatible reduce for old version of NumPy. @@ -316,7 +496,8 @@ def _parse_location(sym, location, ctx): % (str(set(sym.list_arguments())), str(set(location.keys())))) else: location = {k: v for k, v in zip(sym.list_arguments(), location)} - location = {k: mx.nd.array(v, ctx=ctx) for k, v in location.items()} + location = {k: mx.nd.array(v, ctx=ctx) if isinstance(v, np.ndarray) \ + else v for k, v in location.items()} return location @@ -437,7 +618,8 @@ def numeric_grad(executor, location, aux_states=None, eps=1e-4, use_forward_trai def check_numeric_gradient(sym, location, aux_states=None, numeric_eps=1e-3, rtol=1e-2, - atol=None, grad_nodes=None, use_forward_train=True, ctx=None): + atol=None, grad_nodes=None, use_forward_train=True, ctx=None, + grad_stype_dict=None): """Verify an operation by checking backward pass via finite difference method. Based on Theano's `theano.gradient.verify_grad` [1] @@ -454,7 +636,7 @@ def check_numeric_gradient(sym, location, aux_states=None, numeric_eps=1e-3, rto - if type is dict of str -> numpy.ndarray maps the name of arguments to the corresponding numpy.ndarray. *In either case, value of all the arguments must be provided.* - aux_states : ist or tuple or dict, optional + aux_states : list or tuple or dict, optional The auxiliary states required when generating the executor for the symbol. numeric_eps : float, optional Delta for the finite difference method that approximates the gradient. @@ -466,6 +648,8 @@ def check_numeric_gradient(sym, location, aux_states=None, numeric_eps=1e-3, rto Whether to use is_train=True when computing the finite-difference. ctx : Context, optional Check the gradient computation on the specified device. + grad_stype_dict : dict of str->str, optional + Storage type dictionary for gradient ndarrays. References --------- ..[1] https://github.com/Theano/Theano/blob/master/theano/gradient.py @@ -489,7 +673,7 @@ def random_projection(shape): location_npy = {k:v.asnumpy() for k, v in location.items()} aux_states = _parse_aux_states(sym=sym, aux_states=aux_states, ctx=ctx) if aux_states is not None: - aux_states_npy = {k:v.asnumpy() for k, v in aux_states.items()} + aux_states_npy = {k: v.asnumpy() for k, v in aux_states.items()} else: aux_states_npy = None if grad_nodes is None: @@ -516,6 +700,14 @@ def random_projection(shape): + [("__random_proj", _rng.normal(0, 0.01, size=out_shape[0]))]) args_grad = {k: mx.nd.array(v, ctx=ctx) for k, v in args_grad_npy.items()} + if grad_stype_dict is not None: + assert isinstance(grad_stype_dict, dict), "grad_stype_dict must be a dict" + for k, v in grad_stype_dict.items(): + if k in args_grad and v in _STORAGE_TYPE_STR_TO_ID and v != 'default': + # create an uninitialized sparse ndarray for executor + # if the symbolic grad is expected to be zero, it should not be initialized at all + args_grad[k] = mx.nd.zeros(args_grad[k].shape, args_grad[k].context, + args_grad[k].dtype, v) executor = out.bind(ctx, grad_req=grad_req, args=location, args_grad=args_grad, aux_states=aux_states) @@ -607,15 +799,15 @@ def check_symbolic_forward(sym, location, expected, rtol=1E-4, atol=None, g[:] = 0 executor.forward(is_train=False) - outputs = [x.asnumpy() for x in executor.outputs] + outputs = [x.asnumpy() for x in executor.outputs] for output_name, expect, output in zip(sym.list_outputs(), expected, outputs): assert_almost_equal(expect, output, rtol, atol, ("EXPECTED_%s"%output_name, "FORWARD_%s"%output_name)) def check_symbolic_backward(sym, location, out_grads, expected, rtol=1e-5, atol=None, - aux_states=None, grad_req='write', ctx=None): + aux_states=None, grad_req='write', ctx=None, grad_stypes=None): """Compares a symbol's backward results with the expected ones. Prints error messages if the backward results are not the same as the expected results. @@ -651,6 +843,8 @@ def check_symbolic_backward(sym, location, out_grads, expected, rtol=1e-5, atol= Gradient requirements. 'write', 'add' or 'null'. ctx : Context, optional Running context. + grad_stypes: dict of str->str + dictionary of mapping argument name to stype for the gradient Example ------- @@ -676,14 +870,23 @@ def check_symbolic_backward(sym, location, out_grads, expected, rtol=1e-5, atol= if isinstance(expected, (list, tuple)): expected = {k:v for k, v in zip(sym.list_arguments(), expected)} args_grad_npy = {k:_rng.normal(size=v.shape) for k, v in expected.items()} - args_grad_data = {k: mx.nd.array(v, ctx=ctx) for k, v in args_grad_npy.items()} + args_grad_data = {} + for k, v in args_grad_npy.items(): + nd = mx.nd.array(v, ctx=ctx) + if grad_stypes is not None and k in grad_stypes: + args_grad_data[k] = nd.tostype(grad_stypes[k]) + else: + args_grad_data[k] = nd + if isinstance(grad_req, str): grad_req = {k:grad_req for k in sym.list_arguments()} elif isinstance(grad_req, (list, tuple)): grad_req = {k:v for k, v in zip(sym.list_arguments(), grad_req)} - executor = sym.bind(ctx=ctx, args=location, args_grad=args_grad_data, aux_states=aux_states) + executor = sym.bind(ctx=ctx, args=location, args_grad=args_grad_data, + aux_states=aux_states, grad_req=grad_req) executor.forward(is_train=True) + if isinstance(out_grads, (tuple, list)): out_grads = [mx.nd.array(v, ctx=ctx) for v in out_grads] elif isinstance(out_grads, (dict)): diff --git a/src/c_api/c_api.cc b/src/c_api/c_api.cc index 93458d21ac5a..0fe3fe3e302e 100644 --- a/src/c_api/c_api.cc +++ b/src/c_api/c_api.cc @@ -172,6 +172,39 @@ int MXNDArrayCreateEx(const mx_uint *shape, API_END(); } +int MXNDArrayCreateSparseEx(int storage_type, + const mx_uint *shape, + mx_uint ndim, + int dev_type, + int dev_id, + int delay_alloc, + int dtype, + mx_uint num_aux, + int *aux_type, + mx_uint *aux_ndims, + const mx_uint *aux_shape, + NDArrayHandle *out) { + API_BEGIN(); + std::vector aux_types; + std::vector aux_shapes; + auto shape_start = aux_shape; + for (size_t i = 0; i < num_aux; i++) { + // types + aux_types.push_back(aux_type[i]); + // shapes + aux_shapes.emplace_back(shape_start, shape_start + aux_ndims[i]); + shape_start += aux_ndims[i]; + } + *out = new NDArray( + NDArrayStorageType(storage_type), + TShape(shape, shape + ndim), + Context::Create(static_cast(dev_type), dev_id), + delay_alloc != 0, + dtype, aux_types, aux_shapes); + API_END(); +} + + int MXNDArrayLoadFromRawBytes(const void *buf, size_t size, NDArrayHandle *out) { @@ -215,6 +248,23 @@ int MXNDArraySyncCopyToCPU(NDArrayHandle handle, API_END(); } +/*! + * \brief Copy src.data() to dst.data() if i = -1, else dst.aux_data(i) if i >= 0 + * This function blocks. Do not use it in performance critical code. + * \param handle_dst handle of a dst ndarray whose data/aux_data has been allocated + * \param handle_src handle of a src ndarray which has default storage type + * \param i dst data blob indicator + */ +int MXNDArraySyncCopyFromNDArray(NDArrayHandle handle_dst, + const NDArrayHandle handle_src, + const int i) { + API_BEGIN(); + NDArray* dst = static_cast(handle_dst); + NDArray* src = static_cast(handle_src); + dst->SyncCopyFromNDArray(*src, -1, i); + API_END(); +} + int MXNDArrayWaitToRead(NDArrayHandle handle) { API_BEGIN(); static_cast(handle)->WaitToRead(); @@ -351,6 +401,18 @@ MXNET_DLL int MXNDArrayReshape(NDArrayHandle handle, API_END_HANDLE_ERROR(delete ptr); } +int MXNDArrayGetStorageType(NDArrayHandle handle, + int *out_storage_type) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + if (!arr->is_none()) { + *out_storage_type = arr->storage_type(); + } else { + *out_storage_type = kUndefinedStorage; + } + API_END(); +} + int MXNDArrayGetShape(NDArrayHandle handle, mx_uint *out_dim, const mx_uint **out_pdata) { @@ -400,6 +462,42 @@ int MXNDArrayGetDType(NDArrayHandle handle, API_END(); } +int MXNDArrayGetAuxType(NDArrayHandle handle, + mx_uint i, + int *out_type) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + *out_type = arr->aux_type(i); + API_END(); +} + +/*! + * \brief Get a deep copy of the ith aux data blob + * in the form of an NDArray of default storage type. + * This function blocks. Do not use it in performance critical code. + */ +int MXNDArrayGetAuxNDArray(NDArrayHandle handle, + mx_uint i, + NDArrayHandle *out) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + *out = new NDArray(arr->aux_ndarray(i)); + API_END(); +} + +/*! + * \brief Get a deep copy of the data blob + * in the form of an NDArray of default storage type. + * This function blocks. Do not use it in performance critical code. + */ +int MXNDArrayGetDataNDArray(NDArrayHandle handle, + NDArrayHandle *out) { + API_BEGIN(); + NDArray *arr = static_cast(handle); + *out = new NDArray(arr->data_ndarray()); + API_END(); +} + int MXNDArrayGetContext(NDArrayHandle handle, int *out_dev_type, int *out_dev_id) { @@ -735,6 +833,24 @@ int MXKVStorePullEx(KVStoreHandle handle, API_END(); } +int MXKVStorePullRowSparse(KVStoreHandle handle, + mx_uint num, + const char** keys, + NDArrayHandle* vals, + const NDArrayHandle* row_ids, + int priority) { + API_BEGIN(); + std::vector v_keys(num); + std::vector> v_val_rowids(num); + for (mx_uint i = 0; i < num; ++i) { + v_keys[i] = keys[i]; + v_val_rowids[i] = std::make_pair(static_cast(vals[i]), + *static_cast(row_ids[i])); + } + static_cast(handle)->PullRowSparse(v_keys, v_val_rowids, priority); + API_END(); +} + int MXKVStoreSetUpdater(KVStoreHandle handle, MXKVStoreUpdater updater, void* updater_handle) { diff --git a/src/c_api/c_api_common.h b/src/c_api/c_api_common.h index 846b53973b07..fee3f03f6db0 100644 --- a/src/c_api/c_api_common.h +++ b/src/c_api/c_api_common.h @@ -76,6 +76,8 @@ struct MXAPIThreadLocalEntry { std::vector arg_shapes, out_shapes, aux_shapes; /*! \brief result holder for returning type flags */ std::vector arg_types, out_types, aux_types; + /*! \brief result holder for returning storage types */ + std::vector arg_storage_types, out_storage_types, aux_storage_types; /*! \brief result holder for returning shape dimensions */ std::vector arg_shape_ndim, out_shape_ndim, aux_shape_ndim; /*! \brief result holder for returning shape pointer */ diff --git a/src/c_api/c_api_executor.cc b/src/c_api/c_api_executor.cc index a4c48e426879..631c1a7d93eb 100644 --- a/src/c_api/c_api_executor.cc +++ b/src/c_api/c_api_executor.cc @@ -198,6 +198,9 @@ int MXExecutorBindEX(SymbolHandle symbol_handle, * \param num_provided_arg_dtypes number of user provided in_arg and axu_state dtypes * \param provided_arg_dtype_names argument name list of provided dtypes * \param provided_arg_dtypes data of provided dtypes + * \param num_provided_arg_stypes number of user provided in_arg and axu_state storage types + * \param provided_arg_stype_names argument name list of provided storage types + * \param provided_arg_stypes data of provided storage types * \param num_shared_arg_names number of parameter names passed from _bind_ith_exec * \param shared_arg_name_list parameter name list passed from _bind_ith_exec * \param shared_buffer_len number of shared data arrays passed from _bind_ith_exec @@ -230,6 +233,9 @@ int MXExecutorSimpleBind(SymbolHandle symbol_handle, const mx_uint num_provided_arg_dtypes, const char** provided_arg_dtype_names, const int* provided_arg_dtypes, + const mx_uint num_provided_arg_stypes, + const char** provided_arg_stype_names, + const int* provided_arg_stypes, const mx_uint num_shared_arg_names, const char** shared_arg_name_list, int* shared_buffer_len, @@ -254,7 +260,7 @@ int MXExecutorSimpleBind(SymbolHandle symbol_handle, // attr_dict for setting up type_dict and arg/aux ctx std::unordered_map> attr_dict; - if (nullptr == provided_arg_dtypes || nullptr != g2c_keys) { + if (nullptr == provided_arg_dtypes || nullptr != g2c_keys || nullptr == provided_arg_stypes) { std::vector> attrs = sym->ListAttrsRecursive(); attr_dict.reserve(attrs.size()); @@ -280,6 +286,23 @@ int MXExecutorSimpleBind(SymbolHandle symbol_handle, } } + // setup arg_stype_map + std::unordered_map arg_stype_map; + if (nullptr == provided_arg_stypes) { // use attr_dict + for (const auto& arg_name : in_arg_names) { + const auto it = attr_dict.find(arg_name); + if (it == attr_dict.end() || !it->second.count("__storage_type__")) { + arg_stype_map[arg_name] = kDefaultStorage; + } + } + } else { // use user input type_dict + // create stype map for in_args and aux_states + arg_stype_map.reserve(num_provided_arg_stypes); + for (mx_uint i = 0; i < num_provided_arg_stypes; ++i) { + arg_stype_map[provided_arg_stype_names[i]] = provided_arg_stypes[i]; + } + } + // create default ctx Context ctx = Context::Create(static_cast(dev_type), dev_id); // create ctx map @@ -420,9 +443,10 @@ int MXExecutorSimpleBind(SymbolHandle symbol_handle, std::vector aux_state_vec; *out = Executor::SimpleBind(*sym, ctx, ctx_map, in_arg_ctx_vec, arg_grad_ctx_vec, - aux_state_ctx_vec, arg_shape_map, arg_dtype_map, grad_req_type_vec, - shared_arg_name_set, &in_arg_vec, &arg_grad_vec, &aux_state_vec, - use_shared_buffer? &shared_buffer_map : nullptr, + aux_state_ctx_vec, arg_shape_map, arg_dtype_map, arg_stype_map, + grad_req_type_vec, shared_arg_name_set, &in_arg_vec, + &arg_grad_vec, &aux_state_vec, + use_shared_buffer ? &shared_buffer_map : nullptr, reinterpret_cast(shared_exec_handle)); // copy ndarray ptrs to ret->handles so that front end diff --git a/src/c_api/c_api_ndarray.cc b/src/c_api/c_api_ndarray.cc index 3202f55abea7..d392baf45d3e 100644 --- a/src/c_api/c_api_ndarray.cc +++ b/src/c_api/c_api_ndarray.cc @@ -18,7 +18,8 @@ */ /*! - * \file c_api_symbolic.cc + * Copyright (c) 2016 by Contributors + * \file c_api_ndarray.cc * \brief C API of mxnet */ @@ -150,14 +151,17 @@ void SetContext(Context* p_ctx, #endif // MXNET_USE_CUDA } +// Set the shape, dtype and storage type void SetShapeType(const nnvm::Op* op, const nnvm::NodeAttrs& attrs, const Context& ctx, const std::vector& ndinputs, - std::vector* p_ndoutputs) { + std::vector* p_ndoutputs, + int* dispatch_stype) { std::vector& ndoutputs = *p_ndoutputs; static auto& infershape = nnvm::Op::GetAttr("FInferShape"); static auto& infertype = nnvm::Op::GetAttr("FInferType"); + static auto& inferstorage = nnvm::Op::GetAttr("FInferStorageType"); MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); // infer shape std::vector& in_shapes = ret->arg_shapes; @@ -193,9 +197,35 @@ void SetShapeType(const nnvm::Op* op, CHECK(infertype[op](attrs, &in_types, &out_types)); CHECK_EQ(out_types.size(), ndoutputs.size()); + // infer storage type + auto& in_storage_types = ret->arg_storage_types; + auto& out_storage_types = ret->out_storage_types; + in_storage_types.clear(); + out_storage_types.clear(); + for (auto& i : ndinputs) { + in_storage_types.push_back(i.storage_type()); + } + for (auto& i : ndoutputs) { + out_storage_types.push_back(i.storage_type()); + } + if (inferstorage.count(op)) { + CHECK(inferstorage[op](attrs, ctx, &in_storage_types, &out_storage_types)); + CHECK_EQ(out_storage_types.size(), ndoutputs.size()); + } + + bool contains_non_default = common::ContainsNonDefaultStorage(in_storage_types); + contains_non_default |= common::ContainsNonDefaultStorage(out_storage_types); + int kNonDefaultStorage = -2; + *dispatch_stype = contains_non_default ? kNonDefaultStorage : kDefaultStorage; for (size_t i = 0; i < ndoutputs.size(); ++i) { + NDArrayStorageType storage_type = static_cast(out_storage_types[i]); if (ndoutputs[i].is_none()) { - ndoutputs[i] = NDArray(out_shapes[i], ctx, true, out_types[i]); + // if failed to infer the storage type, assume the output storage is dense + if (storage_type == kDefaultStorage || out_storage_types[i] == kUndefinedStorage) { + ndoutputs[i] = NDArray(out_shapes[i], ctx, true, out_types[i]); + } else { + ndoutputs[i] = NDArray(storage_type, out_shapes[i], ctx, true, out_types[i]); + } } else { CHECK_EQ(ndoutputs[i].shape(), out_shapes[i]) << i << "th output has invalid shape. " @@ -212,7 +242,7 @@ void SetShapeType(const nnvm::Op* op, void SetDependency(std::vector *p_read_vars, std::vector *p_write_vars, std::vector *p_requested, - std::vector *p_auxidx, + std::vector *p_mutate_idx, const nnvm::Op* op, const nnvm::NodeAttrs& attrs, const Context& ctx, @@ -224,7 +254,7 @@ void SetDependency(std::vector *p_read_vars, std::vector& read_vars = *p_read_vars; std::vector& write_vars = *p_write_vars; std::vector& requested = *p_requested; - std::vector& auxidx = *p_auxidx; + std::vector& mutate_idx = *p_mutate_idx; if (tmp_resource.count(op)) { int ntmp = 0; @@ -250,15 +280,30 @@ void SetDependency(std::vector *p_read_vars, write_vars.push_back(i.var()); } if (mutate.count(op)) { - auxidx = mutate[op](attrs); - std::sort(auxidx.begin(), auxidx.end()); - for (auto & i : auxidx) { + mutate_idx = mutate[op](attrs); + std::sort(mutate_idx.begin(), mutate_idx.end()); + for (auto & i : mutate_idx) { write_vars.push_back(ndinputs[i].var()); } } Engine::Get()->DeduplicateVarHandle(&read_vars, &write_vars); } +inline void SetWriteInplaceReq(const std::vector &ndinputs, + const std::vector &ndoutputs, + std::vector *req) { + std::unordered_set in_vars; + for (auto &nd : ndinputs) { + in_vars.insert(nd.var()); + } + for (size_t i = 0; i < ndoutputs.size(); i++) { + // output NDArray shares the memory with the input NDArray + if (in_vars.find(ndoutputs[i].var()) != in_vars.end()) { + req->at(i) = kWriteInplace; + } + } +} + void PushFCompute(const FCompute& fn, const nnvm::Op* op, const nnvm::NodeAttrs& attrs, @@ -267,24 +312,75 @@ void PushFCompute(const FCompute& fn, const std::vector& write_vars, const std::vector& requested, const std::vector& ndinputs, - const std::vector& ndoutputs) { + const std::vector& ndoutputs, + const std::vector& mutate_idx) { + using namespace common; bool is_train = AutogradRuntime::Get()->IsTraining(); Engine::Get()->PushAsync( - [ctx, attrs, fn, ndinputs, ndoutputs, requested, is_train]( + [ctx, attrs, fn, ndinputs, ndoutputs, requested, is_train, mutate_idx]( RunContext rctx, engine::CallbackOnComplete on_complete) { std::vector input_blobs, output_blobs; - for (auto& i : ndinputs) { - input_blobs.push_back(i.data()); - } - for (auto& i : ndoutputs) { - output_blobs.push_back(i.data()); + // pre-fcompute and post-fcompute storage fallback src NDArrays and dst NDArrays + std::vector pre_temp_src, pre_temp_dst, post_temp_dst, post_temp_src; + // mapping from index in input_blobs to index in pre_temp_dst + std::unordered_map in_temp_idx_map; + // populate input blobs and output blobs + SetupDefaultBlobs(ndinputs, &input_blobs, &pre_temp_src, &pre_temp_dst, &in_temp_idx_map); + SetupDefaultBlobs(ndoutputs, &output_blobs, &post_temp_dst, &post_temp_src); + // add mutable inputs to post temp list + for (const auto idx : mutate_idx) { + auto map_iter = in_temp_idx_map.find(idx); + if (map_iter != in_temp_idx_map.end()) { + post_temp_src.push_back(pre_temp_dst[map_iter->second]); + post_temp_dst.push_back(ndinputs[idx]); + } } OpContext opctx{is_train, rctx, engine::CallbackOnComplete(), requested}; std::vector req(output_blobs.size(), kWriteTo); - fn(attrs, opctx, input_blobs, req, output_blobs); + if (ctx.dev_mask() == gpu::kDevMask) { +#if MXNET_USE_CUDA + CastNonDefaultStorage(pre_temp_src, pre_temp_dst, opctx); + fn(attrs, opctx, input_blobs, req, output_blobs); + // cast to original storage type, if necessary + CastNonDefaultStorage(post_temp_src, post_temp_dst, opctx); + rctx.get_stream()->Wait(); +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } else { + CastNonDefaultStorage(pre_temp_src, pre_temp_dst, opctx); + fn(attrs, opctx, input_blobs, req, output_blobs); + // cast to original storage type, if necessary + CastNonDefaultStorage(post_temp_src, post_temp_dst, opctx); + } + on_complete(); + }, ctx, read_vars, write_vars, FnProperty::kNormal, + 0, PROFILER_MESSAGE(op->name.c_str())); +} + +void PushFComputeEx(const FComputeEx& fn, + const nnvm::Op* op, + const nnvm::NodeAttrs& attrs, + const Context& ctx, + const std::vector& read_vars, + const std::vector& write_vars, + const std::vector& requested, + const std::vector& ndinputs, + const std::vector& ndoutputs) { + Engine::Get()->PushAsync( + [ctx, attrs, fn, ndinputs, ndoutputs, requested]( + RunContext rctx, + engine::CallbackOnComplete on_complete) { + std::vector input_blobs, output_blobs; + OpContext opctx{false, rctx, + engine::CallbackOnComplete(), + requested}; + std::vector req(ndoutputs.size(), kWriteTo); + SetWriteInplaceReq(ndinputs, ndoutputs, &req); + fn(attrs, opctx, ndinputs, req, ndoutputs); if (ctx.dev_mask() == gpu::kDevMask) { rctx.get_stream()->Wait(); } @@ -301,7 +397,9 @@ void PushOperator(const OpStatePtr& state, const std::vector& write_vars, const std::vector& requested, const std::vector& ndinputs, - const std::vector& ndoutputs) { + const std::vector& ndoutputs, + const std::vector& mutate_idx) { + using namespace common; static auto& fexec_type = nnvm::Op::GetAttr("FExecType"); bool is_train = AutogradRuntime::Get()->IsTraining(); @@ -314,15 +412,40 @@ void PushOperator(const OpStatePtr& state, if (fcompute != nullptr) { CHECK(exec_type == ExecType::kSync || exec_type == ExecType::kAsync); Engine::Get()->PushAsync( - [state, fcompute, ndinputs, ndoutputs, requested, is_train, exec_type]( + [state, fcompute, ndinputs, ndoutputs, requested, is_train, exec_type, mutate_idx]( RunContext rctx, engine::CallbackOnComplete on_complete) { OpContext opctx{is_train, rctx, on_complete, requested}; + std::vector input_blobs, output_blobs; - for (const auto& i : ndinputs) input_blobs.push_back(i.data()); - for (const auto& i : ndoutputs) output_blobs.push_back(i.data()); + // pre-fcompute and post-fcompute storage fallback src NDArrays and dst NDArrays + std::vector pre_temp_src, pre_temp_dst, post_temp_dst, post_temp_src; + // mapping from index in input_blobs to index in pre_temp_dst + std::unordered_map in_temp_idx_map; + // populate input blobs and output blobs + SetupDefaultBlobs(ndinputs, &input_blobs, &pre_temp_src, &pre_temp_dst, &in_temp_idx_map); + SetupDefaultBlobs(ndoutputs, &output_blobs, &post_temp_dst, &post_temp_src); + // add mutable inputs to post temp list + for (const auto idx : mutate_idx) { + if (in_temp_idx_map.find(idx) != in_temp_idx_map.end()) { + post_temp_src.push_back(pre_temp_dst[in_temp_idx_map[idx]]); + post_temp_dst.push_back(ndinputs[idx]); + } + } std::vector req(output_blobs.size(), kWriteTo); - fcompute(state, opctx, input_blobs, req, output_blobs); + if (rctx.get_ctx().dev_mask() == gpu::kDevMask) { +#if MXNET_USE_CUDA + CastNonDefaultStorage(pre_temp_src, pre_temp_dst, opctx); + fcompute(state, opctx, input_blobs, req, output_blobs); + CastNonDefaultStorage(post_temp_src, post_temp_dst, opctx); +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } else { + CastNonDefaultStorage(pre_temp_src, pre_temp_dst, opctx); + fcompute(state, opctx, input_blobs, req, output_blobs); + CastNonDefaultStorage(post_temp_src, post_temp_dst, opctx); + } if (exec_type == ExecType::kSync) { if (rctx.get_ctx().dev_mask() == gpu::kDevMask) { rctx.get_stream()->Wait(); @@ -342,6 +465,7 @@ void PushOperator(const OpStatePtr& state, engine::CallbackOnComplete on_complete) { OpContext opctx{is_train, rctx, on_complete, requested}; std::vector req(ndoutputs.size(), kWriteTo); + SetWriteInplaceReq(ndinputs, ndoutputs, &req); fcompute_ex(state, opctx, ndinputs, req, ndoutputs); if (exec_type == ExecType::kSync) { if (rctx.get_ctx().dev_mask() == gpu::kDevMask) { @@ -363,8 +487,6 @@ void ImperativeInvokeImpl(const Context& default_ctx, const nnvm::NodeAttrs& attrs, std::vector* p_ndinputs, std::vector* p_ndoutputs) { - static auto& fcpu = nnvm::Op::GetAttr("FCompute"); - static auto& fgpu = nnvm::Op::GetAttr("FCompute"); static auto& ndfunc = nnvm::Op::GetAttr("FNDArrayFunction"); static auto& createop = nnvm::Op::GetAttr("FCreateOpState"); MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); @@ -379,29 +501,32 @@ void ImperativeInvokeImpl(const Context& default_ctx, } else { // TODO(piiswrong): infer ctx Context ctx; + int stype; SetContext(&ctx, attrs, ndinputs, ndoutputs, default_ctx); - SetShapeType(op, attrs, ctx, ndinputs, &ndoutputs); + SetShapeType(op, attrs, ctx, ndinputs, &ndoutputs, &stype); std::vector read_vars, write_vars; std::vector requested; - std::vector auxidx; - SetDependency(&read_vars, &write_vars, &requested, &auxidx, + std::vector mutate_idx; + SetDependency(&read_vars, &write_vars, &requested, &mutate_idx, op, attrs, ctx, ndinputs, ndoutputs); - FCompute fn; - if (ctx.dev_mask() == cpu::kDevMask && fcpu.count(op)) { - fn = fcpu[op]; - } else if (ctx.dev_mask() == gpu::kDevMask && fgpu.count(op)) { - fn = fgpu[op]; - } - - if (fn) { + FCompute fn = common::GetFCompute(op, "FCompute", ctx); + FComputeEx fn_ex = common::GetFCompute(op, "FComputeEx", ctx); + if (fn_ex && stype != kDefaultStorage) { if (AutogradRuntime::Get()->IsRecording()) { AutogradRuntime::Get()->RecordImperativeFCompute(op, attrs, &ndinputs, &ndoutputs); } - PushFCompute(fn, op, attrs, ctx, read_vars, write_vars, + PushFComputeEx(fn_ex, op, attrs, ctx, read_vars, write_vars, requested, ndinputs, ndoutputs); + } else if (fn) { + if (AutogradRuntime::Get()->IsRecording()) { + AutogradRuntime::Get()->RecordImperativeFCompute(op, + attrs, &ndinputs, &ndoutputs); + } + PushFCompute(fn, op, attrs, ctx, read_vars, write_vars, + requested, ndinputs, ndoutputs, mutate_idx); } else if (createop.count(op)) { auto state = createop[op](attrs, ctx, ret->arg_shapes, ret->arg_types); @@ -411,7 +536,7 @@ void ImperativeInvokeImpl(const Context& default_ctx, } write_vars.push_back(state.get_var()); PushOperator(state, op, attrs, ctx, read_vars, write_vars, - requested, ndinputs, ndoutputs); + requested, ndinputs, ndoutputs, mutate_idx); } else { LOG(FATAL) << "Operator " << op->name << " is not implemented for " @@ -461,6 +586,28 @@ int MXImperativeInvoke(AtomicSymbolCreator creator, API_END(); } +int MXImperativeInvokeEx(AtomicSymbolCreator creator, + int num_inputs, + NDArrayHandle *inputs, + int *num_outputs, + NDArrayHandle **outputs, + int num_params, + const char **param_keys, + const char **param_vals, + const int **out_stypes) { // outputs storage types + API_BEGIN(); + MXImperativeInvoke(creator, num_inputs, inputs, num_outputs, outputs, + num_params, param_keys, param_vals); + MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); + NDArray** output_nds = reinterpret_cast(*outputs); + ret->out_types.resize(*num_outputs); + for (int i = 0; i < *num_outputs; ++i) { + ret->out_types[i] = output_nds[i]->storage_type(); + } + *out_stypes = dmlc::BeginPtr(ret->out_types); + API_END(); +} + int MXCreateCachedOp(SymbolHandle handle, CachedOpHandle *out) { nnvm::Symbol* sym = static_cast(handle); @@ -540,6 +687,24 @@ int MXInvokeCachedOp(CachedOpHandle handle, API_END(); } +int MXInvokeCachedOpEx(CachedOpHandle handle, + int num_inputs, + NDArrayHandle *inputs, + int *num_outputs, + NDArrayHandle **outputs, + const int **out_stypes) { // outputs storage types + API_BEGIN(); + MXInvokeCachedOp(handle, num_inputs, inputs, num_outputs, outputs); + MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); + NDArray** output_nds = reinterpret_cast(*outputs); + ret->out_types.resize(*num_outputs); + for (int i = 0; i < *num_outputs; ++i) { + ret->out_types[i] = output_nds[i]->storage_type(); + } + *out_stypes = dmlc::BeginPtr(ret->out_types); + API_END(); +} + int MXAutogradIsTraining(bool* curr) { API_BEGIN(); *curr = AutogradRuntime::Get()->IsTraining(); diff --git a/src/c_api/c_api_symbolic.cc b/src/c_api/c_api_symbolic.cc index e2c29b888ada..d526aea0d35f 100644 --- a/src/c_api/c_api_symbolic.cc +++ b/src/c_api/c_api_symbolic.cc @@ -29,6 +29,7 @@ #include #include "./c_api_common.h" #include "../operator/operator_common.h" +#include "../executor/exec_pass.h" namespace mxnet { namespace op { @@ -459,7 +460,7 @@ int MXSymbolInferShape(SymbolHandle sym, } try { - g = nnvm::pass::InferShape(std::move(g), arg_shapes, "__shape__"); + g = mxnet::exec::InferShape(std::move(g), arg_shapes, "__shape__"); } catch (const mxnet::op::InferShapeError &err) { throw dmlc::Error(err.msg); } @@ -544,7 +545,7 @@ int MXSymbolInferType(SymbolHandle sym, mxnet::MatchArguments(g.indexed_graph(), kwargs, &arg_types, "InferType"); } - g = nnvm::pass::InferType(std::move(g), arg_types, "__dtype__"); + g = mxnet::exec::InferType(std::move(g), arg_types, "__dtype__"); // copy back CopyAttr(g.indexed_graph(), g.GetAttr("dtype"), &(ret->arg_types), &(ret->out_types), &(ret->aux_types)); diff --git a/src/c_api/c_predict_api.cc b/src/c_api/c_predict_api.cc index 5ca01492800e..dda4fda1ed8f 100644 --- a/src/c_api/c_predict_api.cc +++ b/src/c_api/c_predict_api.cc @@ -32,6 +32,7 @@ #include #include "./c_api_common.h" #include "../operator/operator_common.h" +#include "../executor/exec_pass.h" using namespace mxnet; @@ -194,7 +195,7 @@ int MXPredCreatePartialOut(const char* symbol_json_str, } } nnvm::Graph g; g.outputs = sym.outputs; - g = nnvm::pass::InferShape(std::move(g), in_shapes, "__shape__"); + g = mxnet::exec::InferShape(std::move(g), in_shapes, "__shape__"); bool infer_complete = (g.GetAttr("shape_num_unknown_nodes") == 0); CHECK(infer_complete) << "The shape information of is not enough to get the shapes"; diff --git a/src/common/utils.cc b/src/common/utils.cc new file mode 100644 index 000000000000..125e4e5dc7d7 --- /dev/null +++ b/src/common/utils.cc @@ -0,0 +1,39 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file utils.cc + * \brief cpu implementation of util functions + */ + +#include "./utils.h" +#include "../operator/tensor/cast_storage-inl.h" + +namespace mxnet { +namespace common { + +template<> +void CastStorageDispatch(const OpContext& ctx, + const NDArray& input, + const NDArray& output) { + mxnet::op::CastStorageComputeImpl(ctx, input, output); +} + +} // namespace common +} // namespace mxnet diff --git a/src/common/utils.cu b/src/common/utils.cu new file mode 100644 index 000000000000..093480a98907 --- /dev/null +++ b/src/common/utils.cu @@ -0,0 +1,39 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file utils.cu + * \brief gpu implementation of util functions + */ + +#include "./utils.h" +#include "../operator/tensor/cast_storage-inl.h" + +namespace mxnet { +namespace common { + +template<> +void CastStorageDispatch(const OpContext& ctx, + const NDArray& input, + const NDArray& output) { + mxnet::op::CastStorageComputeImpl(ctx, input, output); +} + +} // namespace common +} // namespace mxnet diff --git a/src/common/utils.h b/src/common/utils.h index 85e30970f1a0..92631a9b5c34 100644 --- a/src/common/utils.h +++ b/src/common/utils.h @@ -24,7 +24,14 @@ #ifndef MXNET_COMMON_UTILS_H_ #define MXNET_COMMON_UTILS_H_ -#if DMLC_USE_CXX11 +#include +#include +#include +#include +#include +#include +#include + #include #include #include @@ -33,15 +40,100 @@ #include #include #include -#endif // DMLC_USE_CXX11 - -#include -#include +#include namespace mxnet { namespace common { -#if DMLC_USE_CXX11 +template +void CastStorageDispatch(const OpContext& ctx, const NDArray& input, const NDArray& output); + +/* + * \brief setup default-storage tblobs from source NDArrays. If any source NDArray has non-default + * storage, it creates a temp NDArray with default storage and uses the temp tblob. The + * function also records the indices of non-default source NDArrays and the indices of + * their corresponding temporary NDArrays in the temp array. + * \param src list of source NDArray + * \param blobs list of tblobs to return + * \param temp_src list of source NDArrays which requires temporary default storage representation + * \param temp_dst list of temporary destination NDArrays for default storage representation + * \param idx_map mapping from indices in source NDArrays to indices in temp_dst. When not set, + indices are not recorded + * \return true if any source NDArray need to cast storage + */ +inline bool SetupDefaultBlobs(const std::vector& src, + std::vector *blobs, + std::vector *temp_src, + std::vector *temp_dst, + std::unordered_map *idx_map = nullptr) { + bool require_cast = false; + for (size_t i = 0; i < src.size(); i++) { + auto& nd = src[i]; + if (nd.storage_type() != kDefaultStorage) { + if (idx_map != nullptr) { + (*idx_map)[i] = temp_dst->size(); + } + NDArray temp(nd.shape(), nd.ctx(), false, nd.dtype()); + temp_src->emplace_back(nd); + temp_dst->emplace_back(temp); + blobs->emplace_back(temp.data()); + require_cast = true; + } else { + blobs->push_back(nd.data()); + } + } + return require_cast; +} + +/* + * \brief cast the NDArrays in `src` and store the result in NDArrays in `dst`. + * This is only used for storage fallback in executor. + * When storage_fallback is false, and `MXNET_EXEC_STORAGE_FALLBACK` == 0, + * storage fallback is disallowed. + * \param src list of source NDArray to cast + * \param dst list of destionation NDArray which hold the result of cast_storage operation + * \param ctx operator context for cast_storage operation + * \param storage_fallback whether storage_fallback is allowed. When set to false, + * its value depends on `MXNET_EXEC_STORAGE_FALLBACK`. + */ +template +inline void CastNonDefaultStorage(const std::vector& src, + const std::vector& dst, + const OpContext& ctx, + bool storage_fallback = false) { + CHECK_GE(dst.size(), src.size()); + if (src.size() == 0) return; + if (storage_fallback == false) { + storage_fallback = dmlc::GetEnv("MXNET_EXEC_STORAGE_FALLBACK", true); + } + if (storage_fallback == false) { + LOG(FATAL) << "Storage type conversion detected during execution. " + << "You are probably executing an operator which " + << "doesn't support NDArray inputs with non-default storage."; + } + for (size_t i = 0; i < src.size(); i++) { + CastStorageDispatch(ctx, src[i], dst[i]); + } +} + +// Check if any storage type is not default storage +inline bool ContainsNonDefaultStorage(const StorageTypeVector& vstorage) { + for (const auto& i : vstorage) { + if (i != kUndefinedStorage && i != kDefaultStorage) return true; + } + return false; +} + +// Check if any NDArray in the list has default storage +inline bool ContainsDefaultStorage(const std::vector& ndarrays) { + for (const auto &nd : ndarrays) { + if (nd.storage_type() == kDefaultStorage) { + return true; + } + } + return false; +} + // heuristic to dermine number of threads per GPU inline int GetNumThreadPerGPU() { // This is resource efficient option. @@ -56,6 +148,67 @@ inline int GetExecNumMatchColor() { return std::min(num_match_color, GetNumThreadPerGPU()); } +template +V ParallelAccumulate(const T* a, const int n, V start) { + V sum = start; +#pragma omp parallel for reduction(+:sum) + for (int i = 0; i < n; ++i) { + sum += a[i]; + } + return sum; +} + +/*! + * \brief + * Helper function for ParallelSort. + * DO NOT call this function directly. + * Use the interface ParallelSort instead. + * Ref: https://github.com/dmlc/difacto/blob/master/src/common/parallel_sort.h + */ +template +void ParallelSortHelper(RandomIt first, size_t len, + size_t grainsize, const Compare& comp) { + if (len < grainsize) { + std::sort(first, first+len, comp); + } else { + std::thread thr(ParallelSortHelper, first, len/2, grainsize, comp); + ParallelSortHelper(first+len/2, len - len/2, grainsize, comp); + thr.join(); + std::inplace_merge(first, first+len/2, first+len, comp); + } +} + +/*! + * \brief + * Sort the elements in the range [first, last) into the ascending order defined by + * the comparator comp. + * If the length of the range [first, last) is greater than a certain threshold, + * the range will be recursively divided into two and assign two threads + * to sort each half range. + * Ref: https://github.com/dmlc/difacto/blob/master/src/common/parallel_sort.h + */ +template +void ParallelSort(RandomIt first, RandomIt last, size_t num_threads, Compare comp) { + const auto num = std::distance(first, last); + size_t grainsize = std::max(num / num_threads + 5, static_cast(1024*16)); + ParallelSortHelper(first, num, grainsize, comp); +} + +/*! + * \brief + * Sort the elements in the range [first, last) into ascending order. + * The elements are compared using the default < operator. + * If the length of the range [first, last) is greater than a certain threshold, + * the range will be recursively divided into two and assign two threads + * to sort each half range. + * Ref: https://github.com/dmlc/difacto/blob/master/src/common/parallel_sort.h + */ +template +void ParallelSort(RandomIt first, RandomIt last, size_t num_threads) { + ParallelSort(first, last, num_threads, + std::less::value_type>()); +} + /*! * \brief Random Engine */ @@ -159,8 +312,6 @@ FCompType GetFCompute(const nnvm::Op* op, const std::string& name, } } -#endif // DMLC_USE_CXX11 - } // namespace common } // namespace mxnet #endif // MXNET_COMMON_UTILS_H_ diff --git a/src/executor/attach_op_execs_pass.cc b/src/executor/attach_op_execs_pass.cc index 47b74758d702..fe8cc653bbc3 100644 --- a/src/executor/attach_op_execs_pass.cc +++ b/src/executor/attach_op_execs_pass.cc @@ -24,6 +24,7 @@ #include #include #include +#include #include #include "../common/utils.h" #include "./exec_pass.h" @@ -40,33 +41,98 @@ const OperatorProperty* OpPropGetOpProperty(const NodeAttrs& attrs); namespace exec { -// forward executor -class StatefulComputeExecutor : public OpExecutor { +// abstract OpExecutor which provides storage fallback procedure on +// non-default inputs and outputs +// FComputeExecutor and FStatefulComputeExecutor inherit from this class +class StorageFallbackOpExecutor : public OpExecutor { public: - void Run(RunContext rctx) override { + explicit StorageFallbackOpExecutor(const std::vector &mutate_idx) + : mutate_idx_(mutate_idx) {} + + void Setup() override { + init_ = false; + } + + protected: + // initialize the data blobs + void InitBlobs() { + using namespace common; if (!init_) { - in_data_.clear(); - for (size_t i = 0; i < in_array.size(); ++i) { - in_data_.push_back(in_array[i].data()); - } - out_data_.clear(); - for (size_t i = 0; i < out_array.size(); ++i) { - out_data_.push_back(out_array[i].data()); + in_data_.clear(); out_data_.clear(); + pre_temp_src_.clear(); pre_temp_dst_.clear(); + post_temp_src_.clear(); post_temp_dst_.clear(); + in_temp_idx_map_.clear(); + SetupDefaultBlobs(in_array, &in_data_, &pre_temp_src_, &pre_temp_dst_, &in_temp_idx_map_); + SetupDefaultBlobs(out_array, &out_data_, &post_temp_dst_, &post_temp_src_); + for (const auto idx : mutate_idx_) { + auto map_iter = in_temp_idx_map_.find(idx); + if (map_iter != in_temp_idx_map_.end()) { + post_temp_src_.push_back(pre_temp_dst_[map_iter->second]); + post_temp_dst_.push_back(in_array[idx]); + } } init_ = true; } + } + + // storage fallback before fcompute is launched + void PreFCompute(bool is_gpu) { + using namespace common; + InitBlobs(); + if (is_gpu) { +#if MXNET_USE_CUDA + CastNonDefaultStorage(pre_temp_src_, pre_temp_dst_, op_ctx); +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } else { + CastNonDefaultStorage(pre_temp_src_, pre_temp_dst_, op_ctx); + } + } + + // storage fallback after fcompute is completed + void PostFCompute(bool is_gpu) { + using namespace common; + if (is_gpu) { +#if MXNET_USE_CUDA + CastNonDefaultStorage(post_temp_src_, post_temp_dst_, op_ctx); +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } else { + CastNonDefaultStorage(post_temp_src_, post_temp_dst_, op_ctx); + } + } + + // default storage tensor blobs for fcompute + std::vector in_data_, out_data_; + // source NDArray for cast storage + std::vector pre_temp_src_, post_temp_src_; + // destination NDArray for cast storage + std::vector pre_temp_dst_, post_temp_dst_; + // mapping from index in input_blobs to index in pre_temp_dst + std::unordered_map in_temp_idx_map_; + // indices of mutatable inputs + std::vector mutate_idx_; + // whether blobs are initialized + bool init_; +}; + + +// stateful compute executor +class StatefulComputeExecutor : public StorageFallbackOpExecutor { + public: + void Run(RunContext rctx, bool is_gpu) override { op_ctx.run_ctx = rctx; + PreFCompute(is_gpu); fcompute_(state_, op_ctx, in_data_, req, out_data_); + PostFCompute(is_gpu); #if MKL_EXPERIMENTAL == 1 mkl_tblobs_prv_to_cpu(in_data_); mkl_tblobs_prv_to_cpu(out_data_); #endif } - void Setup() override { - init_ = false; - } - ExecType exec_type() const override { return exec_type_; } @@ -77,23 +143,23 @@ class StatefulComputeExecutor : public OpExecutor { explicit StatefulComputeExecutor(const OpStatePtr& state, const FStatefulCompute& fcompute, - ExecType exec_type) - : state_(state), fcompute_(fcompute), exec_type_(exec_type) {} + ExecType exec_type, + const std::vector &mutate_idx) + : StorageFallbackOpExecutor(mutate_idx), + state_(state), fcompute_(fcompute), exec_type_(exec_type) {} private: friend Graph AttachOpExecs(Graph g); OpStatePtr state_; FStatefulCompute fcompute_; ExecType exec_type_; - bool init_; - std::vector in_data_, out_data_; }; -// forward executor +// stateful compute_ex executor class StatefulComputeExExecutor : public OpExecutor { public: - void Run(RunContext rctx) override { + void Run(RunContext rctx, bool is_gpu) override { op_ctx.run_ctx = rctx; fcompute_(state_, op_ctx, in_array, req, out_array); } @@ -121,47 +187,60 @@ class StatefulComputeExExecutor : public OpExecutor { }; -// fcompute executor executor -class FComputeExecutor : public OpExecutor { +// fcompute executor +class FComputeExecutor : public StorageFallbackOpExecutor { public: - void Run(RunContext rctx) override { - if (!init_) { - in_data_.resize(in_array.size()); - out_data_.resize(out_array.size()); - auto get_blob = [](const NDArray& nd) { - return nd.data(); - }; - std::transform(in_array.begin(), in_array.end(), in_data_.begin(), get_blob); - std::transform(out_array.begin(), out_array.end(), out_data_.begin(), get_blob); - init_ = true; - } + void Run(RunContext rctx, bool is_gpu) override { + using namespace common; op_ctx.run_ctx = rctx; + PreFCompute(is_gpu); fcompute_(attrs_, op_ctx, in_data_, req, out_data_); + PostFCompute(is_gpu); #if MKL_EXPERIMENTAL == 1 mkl_tblobs_prv_to_cpu(in_data_); mkl_tblobs_prv_to_cpu(out_data_); #endif } - void Setup() override { - init_ = false; + ExecType exec_type() const override { + return exec_type_; } + explicit FComputeExecutor(const NodeAttrs& attrs, FCompute fcompute, + ExecType exec_type, const std::vector &mutate_idx) + : StorageFallbackOpExecutor(mutate_idx), + attrs_(attrs), fcompute_(fcompute), exec_type_(exec_type) { + } + + private: + NodeAttrs attrs_; + FCompute fcompute_; + ExecType exec_type_; +}; + +// fcompute_ex executor +class FComputeExExecutor : public OpExecutor { + public: + void Run(RunContext rctx, bool is_gpu) override { + op_ctx.run_ctx = rctx; + fcompute_(attrs_, op_ctx, in_array, req, out_array); + } + + void Setup() override {} + ExecType exec_type() const override { return exec_type_; } - explicit FComputeExecutor(const NodeAttrs& attrs, FCompute fcompute, - ExecType exec_type) + explicit FComputeExExecutor(const NodeAttrs& attrs, FComputeEx fcompute, + ExecType exec_type) : attrs_(attrs), fcompute_(fcompute), exec_type_(exec_type) { } private: NodeAttrs attrs_; - FCompute fcompute_; + FComputeEx fcompute_; ExecType exec_type_; - bool init_; - std::vector in_data_, out_data_; }; // pass to attach operator executors @@ -180,6 +259,8 @@ Graph AttachOpExecs(Graph g) { const auto& vctx = g.GetAttr("context"); const auto& saved_states = g.GetAttr< std::unordered_map >("saved_states"); + const auto& dispatch_stypes = g.GetAttr("dispatch_stypes"); + // get the graph const auto& idx = g.indexed_graph(); @@ -217,7 +298,8 @@ Graph AttachOpExecs(Graph g) { FStatefulCompute fcompute = common::GetFCompute( op, "FStatefulCompute", vctx[i]); if (fcompute != nullptr) { - ret[i] = std::make_shared(state, fcompute, exec_type); + ret[i] = std::make_shared(state, fcompute, + exec_type, mutate_index); } else { FStatefulComputeEx fcompute_ex = common::GetFCompute( op, "FStatefulComputeEx", vctx[i]); @@ -236,7 +318,7 @@ Graph AttachOpExecs(Graph g) { if (fcompute != nullptr) { ret[i] = std::make_shared( dynamic_cast(ret[fwd_id].get())->state_, - fcompute, exec_type); + fcompute, exec_type, mutate_index); } else { FStatefulComputeEx fcompute_ex = common::GetFCompute( op, "FStatefulComputeEx", vctx[i]); @@ -249,11 +331,15 @@ Graph AttachOpExecs(Graph g) { } } else { FCompute fcompute = common::GetFCompute(op, "FCompute", vctx[i]); - if (fcompute != nullptr) { + FComputeEx fcomp_ex = common::GetFCompute(op, "FComputeEx", vctx[i]); + if (fcomp_ex != nullptr && dispatch_stypes[i] != kDefaultStorage) { + ret[i] = std::make_shared( + inode.source->attrs, fcomp_ex, exec_type); + } else if (fcompute != nullptr) { ret[i] = std::make_shared( - inode.source->attrs, fcompute, exec_type); + inode.source->attrs, fcompute, exec_type, mutate_index); } else { - LOG(FATAL) << "FCompute not registered " << op->name; + LOG(INFO) << "Neither FCompute nor FComputeEx registered " << op->name; } } } diff --git a/src/executor/exec_pass.h b/src/executor/exec_pass.h index 0eda71d98214..326262147b9f 100644 --- a/src/executor/exec_pass.h +++ b/src/executor/exec_pass.h @@ -27,9 +27,12 @@ #include #include #include +#include #include +#include #include #include +#include namespace mxnet { namespace exec { @@ -37,6 +40,12 @@ namespace exec { /*! \brief reuse graph definition */ using nnvm::Graph; +const int kBadStorageID = -1; +const int kExternalStorageID = -2; +const int kDynamicStorageID = -3; + +const int kNonDefaultStorage = -2; + /*! * \brief executor to execute an operator * This is a graph executor dependent interface @@ -44,7 +53,7 @@ using nnvm::Graph; */ class OpExecutor { public: - /*! \brief input arrays */ + /*! \brief input data arrays, which may be either input or aux */ std::vector in_array; /*! \brief output data arrays */ std::vector out_array; @@ -65,7 +74,7 @@ class OpExecutor { * This function call do not synchronize the stream. * \param rctx The runtime context passed in by environment. */ - virtual void Run(RunContext rctx) = 0; + virtual void Run(RunContext rctx, bool is_gpu) = 0; /*! \return the execution type */ virtual ExecType exec_type() const = 0; /*! \return return engine variable for operator states */ @@ -123,6 +132,45 @@ Graph AttachOpResources(Graph g); */ Graph DetectInplaceAddTo(Graph g); +/*! + * \brief Infer shapes in the graph given the information. + * \param graph The input graph. + * \param shape_inputs The shapes of input symbols to the graph. + * \param shape_attr_key The key to the node attribute that can indicate shape. This is + * the place where manual hint for shapes could be injected. + * \return A graph with new attribute "shape" containing inferred shape of each NodeEntry. + * The index of ShapeVector is given by graph.indexed_graph().entry_id. + */ +Graph InferShape(Graph graph, + nnvm::ShapeVector shape_inputs, + const std::string& shape_attr_key = ""); + +/*! + * \brief Infer types in the graph given the information. + * \param graph The input graph. + * \param dtype_inputs The types of input symbols to the graph. + * \param dtype_attr_key The key to the node attribute that can indicate types. This is + * the place where manual hint for types could be injected. + * \return A graph with new attribute "dtype" containing inferred type of each NodeEntry. + * The index of ShapeVector is given by graph.indexed_graph().entry_id. + */ +Graph InferType(Graph graph, + nnvm::DTypeVector dtype_inputs, + const std::string& dtype_attr_key = ""); + +/*! + * \brief Infer storage types in the graph given the information. + * \param graph The input graph. + * \param storage_type_inputs The storage types of input symbols to the graph. + * \param storage_type_attr_key The key to the node attribute that can indicate storage types. + This is the place where manual hint for types could be injected. + * \return A graph with new attribute "storage_type" containing inferred type of each NodeEntry. + * The index of StorageTypeVector is given by graph.indexed_graph().entry_id. + */ +Graph InferStorageType(Graph graph, + StorageTypeVector storage_type_inputs, + const std::string& storage_type_attr_key = ""); + } // namespace exec } // namespace mxnet diff --git a/src/executor/graph_executor.cc b/src/executor/graph_executor.cc index 6dc8cf39970e..9c4398343b1c 100644 --- a/src/executor/graph_executor.cc +++ b/src/executor/graph_executor.cc @@ -30,9 +30,15 @@ #include "./exec_pass.h" #include "./graph_executor.h" #include "../engine/profiler.h" +#include "../common/utils.h" namespace mxnet { namespace exec { + +GraphExecutor::GraphExecutor() { + log_verbose_ = dmlc::GetEnv("MXNET_EXEC_VERBOSE_LOGGING", false); +} + GraphExecutor::~GraphExecutor() { for (auto& n : op_nodes_) { if (n.cached_opr != nullptr) { @@ -47,6 +53,30 @@ GraphExecutor::~GraphExecutor() { } } +inline NDArray InitZeros(const NDArrayStorageType stype, const TShape &shape, + const Context &ctx, const int dtype) { + // NDArray with default storage + if (stype == kDefaultStorage) { + NDArray ret(shape, ctx, false, dtype); + ret = 0; + return ret; + } + // NDArray with non-default storage. Storage allocation is always delayed. + return NDArray(stype, shape, ctx, true, dtype); +} + +inline void EmplaceBackZeros(const NDArrayStorageType stype, const TShape &shape, + const Context &ctx, const int dtype, + std::vector *vec) { + // NDArray with default storage + if (stype == kDefaultStorage) { + vec->emplace_back(shape, ctx, false, dtype); + vec->back() = 0; + } else { + // NDArray with non-default storage. Storage allocation is always delayed. + vec->emplace_back(stype, shape, ctx, true, dtype); + } +} void GraphExecutor::Forward(bool is_train) { RunOps(is_train, 0, num_forward_nodes_); } @@ -438,6 +468,29 @@ void HandleInferTypeError(const size_t num_forward_inputs, << oss.str(); } +void HandleInferStorageTypeError(const size_t num_forward_inputs, + const nnvm::IndexedGraph& idx, + const StorageTypeVector& inferred_stypes) { + int cnt = 10; + std::ostringstream oss; + for (size_t i = 0; i < num_forward_inputs; ++i) { + const uint32_t nid = idx.input_nodes().at(i); + const uint32_t eid = idx.entry_id(nid, 0); + const int inferred_stype = inferred_stypes[eid]; + if (inferred_stype == -1) { + const std::string& arg_name = idx[nid].source->attrs.name; + oss << arg_name << ": " << inferred_stype << ", "; + if (--cnt == 0) { + oss << "..."; + break; + } + } + } + LOG(FATAL) << "InferStoragetType pass cannot decide storage type for the following arguments " + "(-1 means unknown stype). Please consider providing them as inputs:\n" + << oss.str(); +} + /*! * \brief GraphExecutor initializer for regular bind flow in which * input arguments and gradients are provided by users. This initializer @@ -475,21 +528,25 @@ void GraphExecutor::Init(nnvm::Symbol symbol, data_entry_.resize(idx.num_node_entries()); nnvm::ShapeVector arg_shapes; nnvm::DTypeVector arg_dtypes; + StorageTypeVector arg_stypes; for (size_t i = 0; i < num_forward_inputs_; ++i) { const uint32_t nid = idx.input_nodes().at(i); const std::string& arg_name = idx[nid].source->attrs.name; + size_t eid = idx.entry_id(nid, 0); if (mutable_nodes.count(nid)) { CHECK_LT(aux_top, aux_states.size()); - data_entry_[idx.entry_id(nid, 0)] = aux_states[aux_top]; + data_entry_[eid] = aux_states[aux_top]; arg_shapes.push_back(aux_states[aux_top].shape()); arg_dtypes.push_back(aux_states[aux_top].dtype()); + arg_stypes.push_back(aux_states[aux_top].storage_type()); aux_state_map_.emplace(arg_name, aux_states[aux_top]); ++aux_top; } else { CHECK_LT(arg_top, in_args.size()); - data_entry_[idx.entry_id(nid, 0)] = in_args[arg_top]; + data_entry_[eid] = in_args[arg_top]; arg_shapes.push_back(in_args[arg_top].shape()); arg_dtypes.push_back(in_args[arg_top].dtype()); + arg_stypes.push_back(in_args[arg_top].storage_type()); in_arg_map_.emplace(arg_name, in_args[arg_top]); if (kNullOp != grad_req_types[arg_top]) { grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_store[arg_top]); @@ -497,23 +554,33 @@ void GraphExecutor::Init(nnvm::Symbol symbol, } ++arg_top; } + if (log_verbose_) { + LOG(INFO) << "\tassign data entry\t" << eid << " as stype " + << data_entry_[eid].storage_type() << " (input)"; + } } // expand arg_shapes and arg_dtypes to contain backward inputs arg_shapes.resize(idx.input_nodes().size(), TShape()); - g = nnvm::pass::InferShape(g, arg_shapes, "__shape__"); + g = InferShape(std::move(g), arg_shapes, "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs_, g.indexed_graph(), g.GetAttr("shape")); } arg_dtypes.resize(idx.input_nodes().size(), -1); - g = nnvm::pass::InferType(g, arg_dtypes, "__dtype__"); + g = InferType(std::move(g), arg_dtypes, "__dtype__"); if (g.GetAttr("dtype_num_unknown_nodes") != 0U) { HandleInferTypeError(num_forward_inputs_, g.indexed_graph(), g.GetAttr("dtype")); } + g = InferStorageType(std::move(g), arg_stypes, "__storage_type__"); + if (g.GetAttr("storage_type_num_unknown_nodes") != 0U) { + HandleInferStorageTypeError(num_forward_inputs_, g.indexed_graph(), + g.GetAttr("storage_type")); + } + // Initialize the rest attributes of the graph. // This function can be called by regular bind // operation flow as well. @@ -529,6 +596,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, const nnvm::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, + const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, @@ -546,22 +614,37 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, const uint32_t eid = idx.entry_id(nid, 0); const TShape& inferred_shape = inferred_shapes[eid]; const int inferred_dtype = inferred_dtypes[eid]; + const NDArrayStorageType inferred_stype = (NDArrayStorageType) inferred_stypes[eid]; const std::string& arg_name = idx[nid].source->attrs.name; if (mutable_nodes.count(nid)) { // aux_states - aux_state_vec->emplace_back(inferred_shape, aux_state_ctxes[aux_top], false, inferred_dtype); - aux_state_vec->back() = 0; + EmplaceBackZeros(inferred_stype, inferred_shape, aux_state_ctxes[aux_top], + inferred_dtype, aux_state_vec); data_entry_[eid] = aux_state_vec->back(); aux_state_map_.emplace(arg_name, aux_state_vec->back()); ++aux_top; + if (log_verbose_) { + LOG(INFO) << "\tassign aux entry\t" << eid << "\t as stype " << inferred_stype; + } } else { // in_args - in_arg_vec->emplace_back(inferred_shape, in_arg_ctxes[arg_top], false, inferred_dtype); - in_arg_vec->back() = 0; + EmplaceBackZeros(inferred_stype, inferred_shape, in_arg_ctxes[arg_top], + inferred_dtype, in_arg_vec); data_entry_[eid] = in_arg_vec->back(); + if (log_verbose_) { + LOG(INFO) << "\tassign data entry\t" << eid << "\tas stype " << inferred_stype; + } + // Get the storage type for grad if (kNullOp == grad_req_types[arg_top]) { arg_grad_vec->emplace_back(); } else { - arg_grad_vec->emplace_back(inferred_shape, arg_grad_ctxes[arg_top], false, inferred_dtype); - arg_grad_vec->back() = 0; + // Init based on storage type + auto grad_oid = grad_store_.size() + num_forward_outputs_; + auto grad_eid = idx.entry_id(idx.outputs()[grad_oid]); + auto grad_stype = (NDArrayStorageType) inferred_stypes[grad_eid]; + EmplaceBackZeros(grad_stype, inferred_shape, arg_grad_ctxes[arg_top], + inferred_dtype, arg_grad_vec); + if (log_verbose_) { + LOG(INFO) << "\tassign grad entry\t" << grad_eid << "\tas stype " << grad_stype; + } grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); arg_grad_map_.emplace(arg_name, arg_grad_vec->back()); } @@ -573,33 +656,40 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, /*! * \brief If the requested ndarray's shape size is less than - * the corresponding shared_data_array's shape size, reuse - * the memory allocation; otherwise, create a zero ndarray. + * the corresponding shared_data_array's shape size and the + * storage type is default storage, reuse the memory allocation + * in shared_buffer; otherwise, create a zero ndarray. */ NDArray ReshapeOrCreate(const std::string& name, const TShape& dest_arg_shape, const int dest_arg_dtype, + const NDArrayStorageType dest_arg_stype, const Context& ctx, std::unordered_map* shared_buffer) { + if (dest_arg_dtype != kDefaultStorage) { + return InitZeros(dest_arg_stype, dest_arg_shape, ctx, dest_arg_dtype); + } auto it = shared_buffer->find(name); if (it != shared_buffer->end()) { if (it->second.shape().Size() >= dest_arg_shape.Size()) { // memory can be reused CHECK_EQ(it->second.dtype(), dest_arg_dtype) << "Requested arg array's dtype does not match the reusable ndarray"; + CHECK_EQ(it->second.storage_type(), kDefaultStorage) + << "shared_buffer should only contain NDArrays with default storage type."; return it->second.Reshape(dest_arg_shape); } else { LOG(WARNING) << "Bucketing: data " << name << " has a shape " << dest_arg_shape << ", which is larger than already allocated shape " << it->second.shape() << ". Need to re-allocate. Consider putting default bucket key to be " << "the bucket taking the largest input for better memory sharing."; - it->second = NDArray(dest_arg_shape, ctx, false, dest_arg_dtype); - it->second = 0; + // the NDArrays in shared_buffer are guaranteed to be of default storage + it->second = InitZeros(dest_arg_stype, dest_arg_shape, ctx, dest_arg_dtype); return it->second; } // arg_array.shape().Size() >= arg_shape.Size() } else { - auto p = shared_buffer->emplace(name, NDArray(dest_arg_shape, ctx, false, dest_arg_dtype)); - p.first->second = 0; - return p.first->second; + auto ret = InitZeros(dest_arg_stype, dest_arg_shape, ctx, dest_arg_dtype); + shared_buffer->emplace(name, ret); + return ret; } // if (it != shared_buffer->end()) } @@ -612,6 +702,7 @@ NDArray ReshapeOrCreate(const std::string& name, void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, const nnvm::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, + const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, @@ -631,9 +722,12 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, const uint32_t eid = idx.entry_id(nid, 0); const TShape& inferred_shape = inferred_shapes[eid]; const int inferred_dtype = inferred_dtypes[eid]; + const NDArrayStorageType inferred_stype = (NDArrayStorageType) inferred_stypes[eid]; const std::string& arg_name = idx[nid].source->attrs.name; - if (mutable_nodes.count(nid)) { // aux_states - if (nullptr != shared_exec) { + // aux_states + if (mutable_nodes.count(nid)) { + if (nullptr != shared_exec && inferred_stype == kDefaultStorage && + shared_exec->aux_state_map().at(arg_name).storage_type() == kDefaultStorage) { const NDArray& aux_nd = shared_exec->aux_state_map().at(arg_name); CHECK_EQ(inferred_shape, aux_nd.shape()) << "Inferred shape does not match shared_exec.aux_array's shape." @@ -647,16 +741,18 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, << arg_name << " for the current executor"; aux_state_vec->emplace_back(aux_nd); } else { - aux_state_vec->emplace_back(inferred_shape, aux_state_ctxes[aux_top], - false, inferred_dtype); - aux_state_vec->back() = 0; + EmplaceBackZeros(inferred_stype, inferred_shape, aux_state_ctxes[aux_top], + inferred_dtype, aux_state_vec); } // if (has_shared_exec) data_entry_[eid] = aux_state_vec->back(); aux_state_map_.emplace(arg_name, aux_state_vec->back()); ++aux_top; - } else { // in_args + } else { // in_args and grad for in_args if (shared_arg_names.count(arg_name)) { // model parameter - if (nullptr != shared_exec) { + // model parameter + if (nullptr != shared_exec && inferred_stype == kDefaultStorage && + shared_exec->in_arg_map().at(arg_name).storage_type() == kDefaultStorage) { + // try to reuse memory from shared_exec const NDArray& in_arg_nd = shared_exec->in_arg_map().at(arg_name); CHECK_EQ(inferred_shape, in_arg_nd.shape()) << "Inferred shape does not match shared_exec.arg_array's shape" @@ -669,33 +765,43 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, " be resued for creating NDArray of the argument" << arg_name << " for the current executor"; in_arg_vec->emplace_back(in_arg_nd); - if (kNullOp == grad_req_types[arg_top]) { - arg_grad_vec->emplace_back(); - } else { + } else { + // doesn't have shared_exec, or non-default storage + EmplaceBackZeros(inferred_stype, inferred_shape, in_arg_ctxes[arg_top], + inferred_dtype, in_arg_vec); + } + // gradient for model parameter + if (kNullOp == grad_req_types[arg_top]) { + arg_grad_vec->emplace_back(); + } else { + auto grad_oid = grad_store_.size() + num_forward_outputs_; + auto grad_eid = idx.entry_id(idx.outputs()[grad_oid]); + auto grad_stype = (NDArrayStorageType) inferred_stypes[grad_eid]; + if (nullptr != shared_exec && grad_stype == kDefaultStorage && + shared_exec->arg_grad_map().at(arg_name).storage_type() == kDefaultStorage) { + // try to reuse memory from shared_exec arg_grad_vec->emplace_back(shared_exec->arg_grad_map().at(arg_name)); - grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); - } // if (kNullOp == grad_req_types[arg_top]) - } else { // !has shared_exec - in_arg_vec->emplace_back(inferred_shape, in_arg_ctxes[arg_top], false, inferred_dtype); - in_arg_vec->back() = 0; - if (kNullOp == grad_req_types[arg_top]) { - arg_grad_vec->emplace_back(); } else { - arg_grad_vec->emplace_back(inferred_shape, arg_grad_ctxes[arg_top], - false, inferred_dtype); - arg_grad_vec->back() = 0; - grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); - } // if (kNullOp == grad_req_types[arg_top]) - } // if (has_shared_exec) + EmplaceBackZeros(grad_stype, inferred_shape, arg_grad_ctxes[arg_top], + inferred_dtype, arg_grad_vec); + } + grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); + } } else { // !shared_arg_names.count(arg_name) + // model parameter in_arg_vec->emplace_back(ReshapeOrCreate(arg_name, inferred_shape, inferred_dtype, - in_arg_ctxes[arg_top], shared_buffer)); + inferred_stype, in_arg_ctxes[arg_top], + shared_buffer)); + // gradient for model parameter if (kNullOp == grad_req_types[arg_top]) { arg_grad_vec->emplace_back(); } else { + auto grad_oid = grad_store_.size() + num_forward_outputs_; + auto grad_eid = idx.entry_id(idx.outputs()[grad_oid]); + auto grad_stype = (NDArrayStorageType) inferred_stypes[grad_eid]; arg_grad_vec->emplace_back(ReshapeOrCreate("grad of " + arg_name, inferred_shape, - inferred_dtype, arg_grad_ctxes[arg_top], - shared_buffer)); + inferred_dtype, grad_stype, + arg_grad_ctxes[arg_top], shared_buffer)); grad_store_.emplace_back(grad_req_types[arg_top], arg_grad_vec->back()); } // if (kNullOp == grad_req_types[arg_top]) } // if (shared_arg_names.count(arg_name)) @@ -718,14 +824,35 @@ void GraphExecutor::FinishInitGraph(nnvm::Symbol symbol, Executor* shared_exec, const nnvm::NodeEntryMap& feed_dict) { const auto& idx = g.indexed_graph(); + // dispatch based on stype per operator + const auto& vstorage_type = g.GetAttr("storage_type"); + StorageTypeVector dispatch_stypes(idx.num_nodes(), kUndefinedStorage); + for (size_t nid = 0; nid < idx.num_nodes(); nid++) { + const auto& inode = idx[nid]; + auto num_outputs = inode.source->num_outputs(); + auto num_inputs = inode.inputs.size(); + StorageTypeVector vs(num_inputs + num_outputs, kUndefinedStorage); + for (size_t i = 0; i < num_inputs; i++) { + auto e = inode.inputs[i]; + vs[i] = vstorage_type[idx.entry_id(e)]; + CHECK_NE(vs[i], kUndefinedStorage); + } + for (uint32_t i = 0; i < num_outputs; ++i) { + uint32_t eid = idx.entry_id(nid, i); + vs[i + num_inputs] = vstorage_type[eid]; + } + bool contains_non_default = common::ContainsNonDefaultStorage(vs); + dispatch_stypes[nid] = contains_non_default ? kNonDefaultStorage : kDefaultStorage; + } + g.attrs["dispatch_stypes"] = std::make_shared(std::move(dispatch_stypes)); + + // data entries for output gradients for (size_t j = num_forward_outputs_; j < idx.outputs().size(); ++j) { data_entry_[idx.entry_id(idx.outputs()[j])] = grad_store_[j - num_forward_outputs_].second; } { // memory allocator - const int kBadStorageID = -1; - const int kExternalStorageID = -2; nnvm::StorageVector arg_storage_id(idx.num_node_entries(), kBadStorageID); for (size_t j = num_forward_outputs_; j < idx.outputs().size(); ++j) { arg_storage_id[idx.entry_id(idx.outputs()[j])] = kExternalStorageID; @@ -735,6 +862,9 @@ void GraphExecutor::FinishInitGraph(nnvm::Symbol symbol, data_entry_[eid] = kv.second; arg_storage_id[eid] = kExternalStorageID; } + for (size_t i = 0; i < idx.num_node_entries(); i++) { + if (vstorage_type[i] != kDefaultStorage) arg_storage_id[i] = kDynamicStorageID; + } g.attrs["storage"] = std::make_shared(std::move(arg_storage_id)); g = nnvm::ApplyPass(g, "PlanMemory"); } @@ -792,6 +922,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, const std::vector& aux_state_ctxes, const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, const std::unordered_set& shared_arg_names, std::vector* in_arg_vec, @@ -811,6 +942,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, const nnvm::IndexedGraph& idx = g.indexed_graph(); nnvm::ShapeVector arg_shapes(idx.input_nodes().size(), TShape()); nnvm::DTypeVector arg_dtypes(idx.input_nodes().size(), -1); + StorageTypeVector arg_stypes(idx.input_nodes().size(), kUndefinedStorage); for (size_t i = 0; i < num_forward_inputs_; ++i) { const uint32_t nid = idx.input_nodes().at(i); const std::string& name = idx[nid].source->attrs.name; @@ -822,29 +954,41 @@ void GraphExecutor::Init(nnvm::Symbol symbol, if (arg_dtype_map.end() != it2) { arg_dtypes[i] = it2->second; } + auto it3 = arg_stype_map.find(name); + if (arg_stype_map.end() != it3) { + arg_stypes[i] = it3->second; + } } - g = nnvm::pass::InferShape(g, arg_shapes, "__shape__"); + g = InferShape(std::move(g), arg_shapes, "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs_, g.indexed_graph(), g.GetAttr("shape")); } - g = nnvm::pass::InferType(g, arg_dtypes, "__dtype__"); + g = InferType(std::move(g), arg_dtypes, "__dtype__"); if (g.GetAttr("dtype_num_unknown_nodes") != 0U) { HandleInferTypeError(num_forward_inputs_, g.indexed_graph(), g.GetAttr("dtype")); } + g = InferStorageType(std::move(g), arg_stypes, "__storage_type__"); + if (g.GetAttr("storage_type_num_unknown_nodes") != 0U) { + HandleInferStorageTypeError(num_forward_inputs_, g.indexed_graph(), + g.GetAttr("storage_type")); + } + // Create in_args, arg_grads, and aux_states using // the inferred shapes and dtypes. if (nullptr == shared_buffer) { // regular simple bind InitArguments(idx, g.GetAttr("shape"), g.GetAttr("dtype"), + g.GetAttr("storage_type"), in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, grad_req_types, in_arg_vec, arg_grad_vec, aux_state_vec); } else { // simple bind using shared data arrays and shared_exec InitArguments(idx, g.GetAttr("shape"), g.GetAttr("dtype"), + g.GetAttr("storage_type"), in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, grad_req_types, shared_arg_names, shared_exec, shared_buffer, in_arg_vec, arg_grad_vec, aux_state_vec); @@ -905,20 +1049,29 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { const auto& vdtype = graph_.GetAttr("dtype"); const auto& vshape = graph_.GetAttr("shape"); const auto& vstorage = graph_.GetAttr("storage_id"); + const auto& vstorage_type = graph_.GetAttr("storage_type"); const auto& vctx = graph_.GetAttr("context"); CHECK_EQ(idx.num_node_entries(), vshape.size()); CHECK_EQ(idx.num_node_entries(), vdtype.size()); CHECK_EQ(idx.num_node_entries(), vstorage.size()); CHECK_EQ(data_entry_.size(), vshape.size()); std::vector data_context(idx.num_node_entries()); + std::vector data_storage_type(idx.num_node_entries(), kUndefinedStorage); for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { for (uint32_t i = 0; i < idx[nid].source->num_outputs(); ++i) { - data_context[idx.entry_id(nid, i)] = vctx[nid]; + auto eid = idx.entry_id(nid, i); + data_context[eid] = vctx[nid]; + CHECK_NE(vstorage_type[nid], kUndefinedStorage); + data_storage_type[eid] = (NDArrayStorageType) vstorage_type[nid]; } } // information about the pool - using PoolEntry = std::pair; + struct PoolEntry { + Context ctx; + size_t bytes; + NDArrayStorageType stype; + }; std::vector pool_info; // assign array to head gradient @@ -926,26 +1079,36 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { uint32_t nid = idx.input_nodes().at(i); uint32_t oid = head_grad_map_.at(idx[nid].source); uint32_t eid = idx.entry_id(idx.outputs()[oid]); + NDArrayStorageType stype = (NDArrayStorageType) vstorage_type[eid]; CHECK_NE(vshape[eid].ndim(), 0U); CHECK_NE(vdtype[eid], -1); - data_entry_[idx.entry_id(nid, 0)] = - NDArray(vshape[eid], data_context[eid], false, vdtype[eid]); + auto data_eid = idx.entry_id(nid, 0); + // initialize based on storage_type + if (stype != kDefaultStorage) { + data_entry_[data_eid] = NDArray(stype, vshape[eid], data_context[eid], true, vdtype[eid]); + } else { + data_entry_[data_eid] = NDArray(vshape[eid], data_context[eid], false, vdtype[eid]); + } + if (log_verbose_) { + LOG(INFO) << "\tinit head_g entry\t" << data_eid << "\tas stype " << stype; + } } // get maximum bytes in each pool for (size_t i = 0; i < vshape.size(); ++i) { if (!data_entry_[i].is_none()) continue; size_t bytes = vshape[i].Size() * mshadow::mshadow_sizeof(vdtype[i]); int storage_id = vstorage[i]; + // skip pool allocation for kBadStorageID, kExternalStorageID and kDynamicStorageID if (storage_id < 0) continue; size_t sid = static_cast(storage_id); if (sid >= pool_info.size()) { - pool_info.resize(sid + 1, PoolEntry{Context::CPU(), size_t(0)}); + pool_info.resize(sid + 1, PoolEntry{Context::CPU(), size_t(0), kUndefinedStorage}); } PoolEntry& info = pool_info[sid]; - if (info.second == 0) { - info = PoolEntry{data_context[i], bytes}; + if (info.bytes == 0) { + info = PoolEntry{data_context[i], bytes, data_storage_type[i]}; } else { - info.second = std::max(info.second, bytes); + info.bytes = std::max(info.bytes, bytes); } } // construct the re-use pool, if needed @@ -966,13 +1129,14 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { sorted_pool_index.push_back(i); } auto pool_comparator = [&pool_info](int lhs, int rhs){ - return pool_info[lhs].second > pool_info[rhs].second; + return pool_info[lhs].bytes > pool_info[rhs].bytes; }; std::sort(sorted_pool_index.begin(), sorted_pool_index.end(), pool_comparator); for (size_t i : sorted_pool_index) { - const Context& ctx = pool_info[i].first; - size_t bytes = pool_info[i].second; + const Context& ctx = pool_info[i].ctx; + size_t bytes = pool_info[i].bytes; + NDArrayStorageType storage_type = pool_info[i].stype; bool allocated = false; for (auto it = free_pool.lower_bound(bytes); it != free_pool.end(); ++it) { if (it->second.ctx() == ctx && it->first >= bytes) { @@ -987,7 +1151,9 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { CHECK_LE(nword, std::numeric_limits::max()); // allocate float arrays TShape shape{static_cast(nword)}; - NDArray nd(shape, ctx); + // TODO(junwu): adding delay_alloc=true to create nd + // is a temporary solution. + NDArray nd(shape, ctx, true); data_pool_[i] = nd; // put the new allocated arrays to shared pool if (shared_pool != nullptr) { @@ -997,15 +1163,22 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { } CHECK_EQ(data_pool_.size(), pool_info.size()); // assign the data entries - for (size_t i = 0; i < data_entry_.size(); ++i) { // avoid pre-allocated arrays if (!data_entry_[i].is_none()) continue; // assign allocated array by storage id int storage_id = vstorage[i]; - CHECK_GE(storage_id, 0) << "Do not support runtime shape op yet"; - const NDArray& src = data_pool_.at(storage_id); - data_entry_[i] = src.AsArray(vshape[i], vdtype[i]); + auto storage_type = (NDArrayStorageType) vstorage_type[i]; + if (storage_type == kDefaultStorage) { + CHECK_GE(storage_id, 0) << "Do not support runtime shape op yet"; + const NDArray& src = data_pool_.at(storage_id); + data_entry_[i] = src.AsArray(vshape[i], vdtype[i]); + } else { + data_entry_[i] = NDArray(storage_type, vshape[i], data_context[i]); + } + if (log_verbose_) { + LOG(INFO) << "\tinit data entry\t" << i << "\tas stype " << storage_type; + } } } @@ -1020,11 +1193,28 @@ void GraphExecutor::InitCachedOps() { const auto& vctx = graph_.GetAttr("context"); const auto& addto_entry = graph_.GetAttr >("addto_entry"); const auto& skip_plus_node = graph_.GetAttr >("skip_plus_node"); + const auto& vstorage_type = graph_.GetAttr("storage_type"); op_nodes_.resize(idx.num_nodes()); // setup the array and requirements. for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { const auto& inode = idx[nid]; + if (log_verbose_) { + if (inode.source->is_variable()) { + LOG(INFO) << "node " << nid << " var"; + } else { + LOG(INFO) << "node " << nid << " " << inode.source->attrs.op->name; + auto exec = op_execs[nid]; + for (const auto& e : inode.inputs) { + auto eid = idx.entry_id(e); + LOG(INFO) << "\t\tinput " << eid << " stype: " << vstorage_type[eid]; + } + for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) { + uint32_t eid = idx.entry_id(nid, index); + LOG(INFO) << "\t\toutput " << eid << " stype: " << vstorage_type[eid]; + } + } + } if (inode.source->is_variable()) continue; #if MXNET_USE_PROFILER op_nodes_[nid].opr_name = inode.source->op()->name.c_str(); @@ -1104,7 +1294,7 @@ void GraphExecutor::InitCachedOps() { if (is_async) { exec->op_ctx.async_on_complete = on_complete; } - exec->Run(ctx); + exec->Run(ctx, is_gpu); // call on complete only if it is async op if (!is_async) { if (is_gpu) { @@ -1265,7 +1455,8 @@ void GraphExecutor::RunOps(bool is_train, size_t topo_start, size_t topo_end) { CHECK_EQ(opnode.exec->out_array.size(), 1U); CopyFromTo(opnode.exec->in_array[0], &(opnode.exec->out_array[0])); } else if (opnode.exec->exec_type() == ExecType::kLocal) { - opnode.exec->Run(RunContext{opnode.ctx, nullptr}); + bool is_gpu = opnode.ctx.dev_mask() == gpu::kDevMask; + opnode.exec->Run(RunContext{opnode.ctx, nullptr}, is_gpu); } else if (opnode.cached_opr != nullptr) { #if MXNET_USE_PROFILER bool profiling = engine::Profiler::Get()->GetState() == engine::Profiler::kRunning; @@ -1335,7 +1526,7 @@ GraphExecutor::CachedSegOpr GraphExecutor::CreateCachedSegOpr(size_t topo_start, RunContext ctx, Engine::CallbackOnComplete on_complete) { // Run all opr in the sub-graph for (auto &exec : exec_list) { - exec->Run(ctx); + exec->Run(ctx, is_gpu); } if (is_gpu) { #if MXNET_USE_CUDA @@ -1370,6 +1561,7 @@ Executor *Executor::SimpleBind(nnvm::Symbol symbol, const std::vector& aux_state_ctxes, const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, const std::unordered_set& shared_arg_names, std::vector* in_args, @@ -1380,7 +1572,7 @@ Executor *Executor::SimpleBind(nnvm::Symbol symbol, auto exec = new exec::GraphExecutor(); exec->Init(symbol, default_ctx, group2ctx, in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, - arg_shape_map, arg_dtype_map, + arg_shape_map, arg_dtype_map, arg_stype_map, grad_req_types, shared_arg_names, in_args, arg_grads, aux_states, shared_buffer, shared_exec); diff --git a/src/executor/graph_executor.h b/src/executor/graph_executor.h index dc50bef002ab..48222f05fae2 100644 --- a/src/executor/graph_executor.h +++ b/src/executor/graph_executor.h @@ -59,6 +59,7 @@ class GraphExecutor : public Executor { friend class autograd::AutogradRuntime; using Executor::MonitorCallback; + GraphExecutor(); virtual ~GraphExecutor(); void Forward(bool is_train) override; void PartialForward(bool is_train, int step, int *step_left) override; @@ -96,6 +97,7 @@ class GraphExecutor : public Executor { const std::vector& aux_state_ctxes, const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, + const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, const std::unordered_set& shared_arg_names, std::vector* in_arg_vec, @@ -141,6 +143,7 @@ class GraphExecutor : public Executor { void InitArguments(const nnvm::IndexedGraph& idx, const nnvm::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, + const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, @@ -153,6 +156,7 @@ class GraphExecutor : public Executor { void InitArguments(const nnvm::IndexedGraph& idx, const nnvm::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, + const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, @@ -201,7 +205,8 @@ class GraphExecutor : public Executor { std::vector op_nodes_; // internal data entry of each node std::vector data_entry_; - // internal data pool of allocated entries + // internal data pool of allocated entries. + // these allocated entries can be used for static memory sharing between executors. std::vector data_pool_; // output arrays std::vector output_arrays_; @@ -233,6 +238,8 @@ class GraphExecutor : public Executor { bool prefer_bulk_execution_; // cached segment operator std::vector cached_seg_opr_; + // verbose logging + bool log_verbose_ = false; }; } // namespace exec diff --git a/src/executor/infer_graph_attr_pass.cc b/src/executor/infer_graph_attr_pass.cc new file mode 100644 index 000000000000..144c3713e205 --- /dev/null +++ b/src/executor/infer_graph_attr_pass.cc @@ -0,0 +1,356 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file infer_graph_attr_pass.cc + * \brief infer graph shape, dtype, and storage type + */ + +#include +#include +#include "./exec_pass.h" + +namespace mxnet { +namespace exec { + +template +bool ApplyOpInferAttr(const nnvm::Graph& g, + const FInfer& finfer, + const NodeAttrs& attrs, + const uint32_t nid, + std::vector* in_attrs, + std::vector* out_attrs) { + return finfer(attrs, in_attrs, out_attrs); +} + +template<> +bool ApplyOpInferAttr(const nnvm::Graph& g, + const FInferStorageType& finfer, + const NodeAttrs& attrs, + const uint32_t nid, + std::vector* in_attrs, + std::vector* out_attrs) { + const ContextVector& ctxes = g.GetAttr("context"); + return finfer(attrs, ctxes[nid], in_attrs, out_attrs); +} + +/*!\brief + * This is a duplicate of the InferAttr function in nnvm with minor modification + * to support inferring storage type whose function signature is different from + * shape/type inference functions'. The nnvm InferAttr will be deprecated + * in the future. Please use interfaces InferShape, InferType, and InferStorageType + * to call this function. + */ +template +nnvm::Graph InferAttr(nnvm::Graph &&ret, + const AttrType empty_val, + const char* infer_name, + const char* input_name, + const char* attr_key_name, + const char* attr_name, + const char* unknown_name, + IsNone fis_none, + FDefault fdefault, + bool backward_identity_assign) { + using nnvm::IndexedGraph; + using nnvm::Op; + using AttrVector = std::vector; + using dmlc::any; + + const IndexedGraph& idx = ret.indexed_graph(); + static auto& finfer_shape = + Op::GetAttr(infer_name); + static auto& is_backward = + Op::GetAttr("TIsBackward"); + // gradient function, used to get node correspondence. + static auto& fgrad = + Op::GetAttr("FGradient"); + // reshape shape vector + AttrVector rshape; + if (ret.attrs.count(attr_name) != 0) { + rshape = ret.MoveCopyAttr(attr_name); + } else { + rshape.resize(idx.num_node_entries(), empty_val); + } + + if (ret.attrs.count(input_name) != 0) { + const AttrVector& shape_args = ret.GetAttr(input_name); + CHECK_LE(shape_args.size(), idx.input_nodes().size()) + << "More provided " << attr_name << "s than number of arguments."; + for (size_t i = 0; i < shape_args.size(); ++i) { + rshape[idx.entry_id(idx.input_nodes()[i], 0)] = shape_args[i]; + } + // erase the provided arguments + ret.attrs.erase(input_name); + } + + // get the shape hints + std::string shape_hints_key = std::string(attr_name) + "_hints"; + if (ret.attrs.count(shape_hints_key)) { + nnvm::NodeEntryMap shape_hints = + ret.GetAttr>(shape_hints_key); + for (const auto& kv : shape_hints) { + nnvm::NodeEntry e = kv.first; + if (idx.exist(e.node.get())) { + rshape[idx.entry_id(kv.first)] = kv.second; + } + } + } + + std::string shape_attr_key; + if (ret.attrs.count(attr_key_name) != 0) { + shape_attr_key = ret.GetAttr(attr_key_name); + // erase the provided arguments + ret.attrs.erase(attr_key_name); + } + // Temp space for shape inference. + std::vector ishape, oshape; + + // inference step function for nid + auto infer_step = [&](uint32_t nid, bool last_iter) { + const auto& inode = idx[nid]; + const uint32_t num_inputs = inode.inputs.size(); + const uint32_t num_outputs = inode.source->num_outputs(); + if (inode.source->is_variable()) { + // Variable node. No operator. Only one output entry. + CHECK(inode.source->op() == nullptr); + CHECK_EQ(num_outputs, 1U); + const uint32_t out_ent_id = idx.entry_id(nid, 0); + if (shape_attr_key.length() != 0 && fis_none(rshape[out_ent_id])) { + auto it = inode.source->attrs.dict.find(shape_attr_key); + if (it != inode.source->attrs.dict.end()) { + std::istringstream is(it->second); + CHECK(is >> rshape[out_ent_id]) << "Invalid attribute"; + } + } + } else if (is_backward.get(inode.source->op(), false) && + inode.control_deps.size() && backward_identity_assign) { + CHECK_GE(inode.control_deps.size(), 1U) + << "BackwardOp need to have control_deps to its forward op"; + const IndexedGraph::Node& fnode = idx[inode.control_deps[0]]; + nnvm::NodePtr fwd_ptr = inode.source->control_deps[0]; + CHECK(fwd_ptr->op() != nullptr) << "Forward op cannot be a variable"; + // use gradient function to find out the correspondence. + std::vector ograd(fwd_ptr->num_outputs()); + for (size_t i = 0; i < ograd.size(); ++i) { + ograd[i].index = static_cast(i); + } + // input gradient list + auto igrad = fgrad[fwd_ptr->op()](fwd_ptr, ograd); + const nnvm::Node* igrad_node = nullptr; + // Input gradient assignement + for (size_t i = 0; i < igrad.size(); ++i) { + if (igrad[i].node->op() == inode.source->op()) { + uint32_t eid = idx.entry_id(nid, igrad[i].index); + if (fis_none(rshape[eid])) { + rshape[eid] = rshape[idx.entry_id(fnode.inputs[i])]; + } else { + CHECK_EQ(rshape[eid], rshape[idx.entry_id(fnode.inputs[i])]) + << "Backward shape inconsistent with the forward shape"; + } + if (igrad_node == nullptr) { + igrad_node = igrad[i].node.get(); + } else { + CHECK(igrad_node == igrad[i].node.get()); + } + } + } + // out grad entries + CHECK(igrad_node != nullptr) + << "Cannot find matching backward op for " << inode.source->attrs.name; + for (size_t i = 0; i < igrad_node->inputs.size(); ++i) { + const nnvm::NodeEntry& e = igrad_node->inputs[i]; + if (e.node == nullptr) { + uint32_t eid = idx.entry_id(inode.inputs[i]); + if (fis_none(rshape[eid])) { + rshape[eid] = rshape[idx.entry_id(inode.control_deps[0], e.index)]; + } + } + } + } else { + bool forward_known = true; + // Forward operator inference. + ishape.resize(num_inputs, empty_val); + for (uint32_t i = 0; i < ishape.size(); ++i) { + ishape[i] = rshape[idx.entry_id(inode.inputs[i])]; + if (fis_none(ishape[i])) forward_known = false; + } + oshape.resize(num_outputs, empty_val); + for (uint32_t i = 0; i < oshape.size(); ++i) { + oshape[i] = rshape[idx.entry_id(nid, i)]; + if (fis_none(oshape[i])) forward_known = false; + } + auto finfer = finfer_shape.get(inode.source->op(), fdefault); + if (!forward_known) { + if (finfer != nullptr) { + // Call inference function of the operator. + try { + forward_known = ApplyOpInferAttr(ret, finfer, inode.source->attrs, + nid, &ishape, &oshape); + } catch (const std::exception& e) { + throw dmlc::Error("Error in operator " + inode.source->attrs.name + ": " + e.what()); + } + } else { + CHECK(!last_iter) + << "Attribute " << infer_name + << " is not registed by op " << inode.source->op()->name + << " we are not able to complete the inference because of this"; + } + } + // Save to the result map. + for (uint32_t i = 0; i < num_inputs; ++i) { + rshape[idx.entry_id(inode.inputs[i])] = ishape[i]; + } + for (uint32_t i = 0; i < num_outputs; ++i) { + rshape[idx.entry_id(nid, i)] = oshape[i]; + } + } + }; + + size_t last_num_unknown; + size_t num_unknown = rshape.size(); + int i = 0; + do { + if (i % 2 == 0) { + for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { + infer_step(nid, false); + } + } else { + // backward inference + for (uint32_t i = idx.num_nodes(); i != 0; --i) { + infer_step(i - 1, false); + } + } + last_num_unknown = num_unknown; + num_unknown = 0; + for (size_t j = 0; j < idx.num_node_entries(); ++j) { + if (fis_none(rshape[j])) { + ++num_unknown; + } + } + ++i; + } while (num_unknown > 0 && last_num_unknown > num_unknown); + // set the shapes + ret.attrs[attr_name] = std::make_shared(std::move(rshape)); + // number of nodes who knows the shape. + ret.attrs[unknown_name] = std::make_shared(num_unknown); + return ret; +} + +// inference fucntion for same type +inline bool SameType(const nnvm::NodeAttrs& attrs, + std::vector *iattr, + std::vector *oattr) { + int def_v = -1; + for (int v : *oattr) { + if (v != -1) { + def_v = v; break; + } + } + if (def_v == -1) { + for (int v : *iattr) { + if (v != -1) { + def_v = v; break; + } + } + } + if (def_v == -1) return false; + for (int& v : *oattr) { + v = def_v; + } + for (int& v : *iattr) { + v = def_v; + } + return true; +} + +// assigning default type N to both input and output attrs with value -1 +template +inline bool DefaultType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *iattr, + std::vector *oattr) { + // TODO(junwu): check whether need to use ctx + for (int& v : *oattr) { + if (v == none) v = default_val; + } + for (int& v : *iattr) { + if (v == none) v = default_val; + } + return true; +} + +nnvm::Graph InferShape(nnvm::Graph graph, + nnvm::ShapeVector shape_inputs, + const std::string& shape_attr_key) { + using dmlc::any; + if (shape_inputs.size() != 0) { + graph.attrs["shape_inputs"] = std::make_shared(std::move(shape_inputs)); + } + if (shape_attr_key.length() != 0) { + graph.attrs["shape_attr_key"] = std::make_shared(std::move(shape_attr_key)); + } + return InferAttr( + std::move(graph), nnvm::TShape(), + "FInferShape", "shape_inputs", "shape_attr_key", + "shape", "shape_num_unknown_nodes", + [](const nnvm::TShape& s) { return s.ndim() == 0 || s.Size() == 0; }, + nullptr, true); +} + +nnvm::Graph InferType(nnvm::Graph graph, + nnvm::DTypeVector dtype_inputs, + const std::string& dtype_attr_key) { + using dmlc::any; + if (dtype_inputs.size() != 0) { + graph.attrs["dtype_inputs"] = std::make_shared(std::move(dtype_inputs)); + } + if (dtype_attr_key.length() != 0) { + graph.attrs["dtype_attr_key"] = std::make_shared(std::move(dtype_attr_key)); + } + return InferAttr( + std::move(graph), -1, + "FInferType", "dtype_inputs", "dtype_attr_key", + "dtype", "dtype_num_unknown_nodes", + [](const int t) { return t == -1; }, + SameType, true); +} + +nnvm::Graph InferStorageType(nnvm::Graph graph, + StorageTypeVector storage_type_inputs, + const std::string& storage_type_attr_key) { + using dmlc::any; + if (storage_type_inputs.size() != 0) { + graph.attrs["storage_type_inputs"] = std::make_shared(std::move(storage_type_inputs)); + } + if (storage_type_attr_key.length() != 0) { + graph.attrs["storage_type_attr_key"] = std::make_shared(std::move(storage_type_attr_key)); + } + // for storage type, the backward attr is not necessarily the same as it's correspondence + const int kDefaultStorage = 0; + return InferAttr( + std::move(graph), -1, + "FInferStorageType", "storage_type_inputs", "storage_type_attr_key", + "storage_type", "storage_type_num_unknown_nodes", + [](const int t) { return t == -1; }, + DefaultType, false); +} + +} // namespace exec +} // namespace mxnet diff --git a/src/executor/inplace_addto_detect_pass.cc b/src/executor/inplace_addto_detect_pass.cc index 26a91e3f1b5e..9359d8863594 100644 --- a/src/executor/inplace_addto_detect_pass.cc +++ b/src/executor/inplace_addto_detect_pass.cc @@ -62,6 +62,8 @@ Graph DetectInplaceAddTo(Graph g) { uint32_t eid_rhs = idx.entry_id(inode.inputs[1]); if (ref_count[eid_rhs] != 1) continue; if (inode.inputs[0].node_id >= inode.inputs[1].node_id) continue; + // TODO(haibin) support inplace addto for Dynamic Storage + if (storage_id[eid_rhs] == kDynamicStorageID) continue; CHECK_NE(storage_id[eid_rhs], sid); storage_id[eid_rhs] = sid; addto_entry[eid_rhs] = 1; diff --git a/src/io/iter_batchloader.h b/src/io/iter_batchloader.h index c5ec10618080..ade7c1a53bd2 100644 --- a/src/io/iter_batchloader.h +++ b/src/io/iter_batchloader.h @@ -41,7 +41,7 @@ namespace io { class BatchLoader : public IIterator { public: explicit BatchLoader(IIterator *base): - base_(base), head_(1), num_overflow_(0) { + head_(1), num_overflow_(0), base_(base) { } virtual ~BatchLoader(void) { @@ -52,7 +52,7 @@ class BatchLoader : public IIterator { std::vector > kwargs_left; // init batch param, it could have similar param with kwargs_left = param_.InitAllowUnknown(kwargs); - // Init space for out_ + // Init space for out out_.inst_index = new unsigned[param_.batch_size]; out_.batch_size = param_.batch_size; out_.data.clear(); @@ -69,6 +69,7 @@ class BatchLoader : public IIterator { } head_ = 1; } + virtual bool Next(void) { out_.num_batch_padd = 0; out_.batch_size = param_.batch_size; @@ -128,23 +129,25 @@ class BatchLoader : public IIterator { return out_; } - private: + protected: /*! \brief batch parameters */ BatchParam param_; /*! \brief output data */ TBlobBatch out_; - /*! \brief base iterator */ - IIterator *base_; /*! \brief on first */ int head_; /*! \brief number of overflow instances that readed in round_batch mode */ int num_overflow_; + /*! \brief tensor to hold data */ + std::vector data_; + + private: + /*! \brief base iterator */ + IIterator *base_; /*! \brief data shape */ std::vector shape_; /*! \brief unit size */ std::vector unit_size_; - /*! \brief tensor to hold data */ - std::vector data_; // initialize the data holder by using from the first batch. inline void InitData(const DataInst& first_batch) { shape_.resize(first_batch.data.size()); diff --git a/src/io/iter_libsvm.cc b/src/io/iter_libsvm.cc new file mode 100644 index 000000000000..803d19e74481 --- /dev/null +++ b/src/io/iter_libsvm.cc @@ -0,0 +1,288 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file iter_libsvm.cc + * \brief define a LibSVM Reader to read in arrays + */ +#include +#include +#include +#include +#include +#include "./iter_sparse_prefetcher.h" +#include "./iter_sparse_batchloader.h" + +namespace mxnet { +namespace io { +// LibSVM parameters +struct LibSVMIterParam : public dmlc::Parameter { + /*! \brief path to data libsvm file */ + std::string data_libsvm; + /*! \brief data shape */ + TShape data_shape; + /*! \brief path to label libsvm file */ + std::string label_libsvm; + /*! \brief label shape */ + TShape label_shape; + /*! \brief partition the data into multiple parts */ + int num_parts; + /*! \brief the index of the part will read*/ + int part_index; + // declare parameters + DMLC_DECLARE_PARAMETER(LibSVMIterParam) { + DMLC_DECLARE_FIELD(data_libsvm) + .describe("The input LibSVM file or a directory path."); + DMLC_DECLARE_FIELD(data_shape) + .describe("The shape of one example."); + DMLC_DECLARE_FIELD(label_libsvm).set_default("NULL") + .describe("The input LibSVM file or a directory path. " + "If NULL, all labels will be read from ``data_libsvm``."); + index_t shape1[] = {1}; + DMLC_DECLARE_FIELD(label_shape).set_default(TShape(shape1, shape1 + 1)) + .describe("The shape of one label."); + DMLC_DECLARE_FIELD(num_parts).set_default(1) + .describe("partition the data into multiple parts"); + DMLC_DECLARE_FIELD(part_index).set_default(0) + .describe("the index of the part will read"); + } +}; + +class LibSVMIter: public SparseIIterator { + public: + LibSVMIter() {} + virtual ~LibSVMIter() {} + + // intialize iterator loads data in + virtual void Init(const std::vector >& kwargs) { + param_.InitAllowUnknown(kwargs); + CHECK_EQ(param_.data_shape.ndim(), 1) << "dimension of data_shape is expected to be 1"; + CHECK_GT(param_.num_parts, 0) << "number of parts should be positive"; + CHECK_GE(param_.part_index, 0) << "part index should be non-negative"; + data_parser_.reset(dmlc::Parser::Create(param_.data_libsvm.c_str(), + param_.part_index, + param_.num_parts, "libsvm")); + if (param_.label_libsvm != "NULL") { + label_parser_.reset(dmlc::Parser::Create(param_.label_libsvm.c_str(), + param_.part_index, + param_.num_parts, "libsvm")); + CHECK_GT(param_.label_shape.Size(), 1) + << "label_shape is not expected to be (1,) when param_.label_libsvm is set."; + } else { + CHECK_EQ(param_.label_shape.Size(), 1) + << "label_shape is expected to be (1,) when param_.label_libsvm is NULL"; + } + // both data and label are of CSRStorage in libsvm format + if (param_.label_shape.Size() > 1) { + out_.data.resize(6); + } else { + // only data is of CSRStorage in libsvm format. + out_.data.resize(4); + } + } + + virtual void BeforeFirst() { + data_parser_->BeforeFirst(); + if (label_parser_.get() != nullptr) { + label_parser_->BeforeFirst(); + } + data_ptr_ = label_ptr_ = 0; + data_size_ = label_size_ = 0; + inst_counter_ = 0; + end_ = false; + } + + virtual bool Next() { + if (end_) return false; + while (data_ptr_ >= data_size_) { + if (!data_parser_->Next()) { + end_ = true; return false; + } + data_ptr_ = 0; + data_size_ = data_parser_->Value().size; + } + out_.index = inst_counter_++; + CHECK_LT(data_ptr_, data_size_); + const auto data_row = data_parser_->Value()[data_ptr_++]; + // data, indices and indptr + out_.data[0] = AsDataBlob(data_row); + out_.data[1] = AsIdxBlob(data_row); + out_.data[2] = AsIndPtrPlaceholder(data_row); + + if (label_parser_.get() != nullptr) { + while (label_ptr_ >= label_size_) { + CHECK(label_parser_->Next()) + << "Data LibSVM's row is smaller than the number of rows in label_libsvm"; + label_ptr_ = 0; + label_size_ = label_parser_->Value().size; + } + CHECK_LT(label_ptr_, label_size_); + const auto label_row = label_parser_->Value()[label_ptr_++]; + // data, indices and indptr + out_.data[3] = AsDataBlob(label_row); + out_.data[4] = AsIdxBlob(label_row); + out_.data[5] = AsIndPtrPlaceholder(label_row); + } else { + out_.data[3] = AsScalarLabelBlob(data_row); + } + return true; + } + + virtual const DataInst &Value(void) const { + return out_; + } + + virtual const NDArrayStorageType GetStorageType(bool is_data) const { + if (is_data) return kCSRStorage; + return param_.label_shape.Size() > 1 ? kCSRStorage : kDefaultStorage; + } + + virtual const TShape GetShape(bool is_data) const { + if (is_data) return param_.data_shape; + return param_.label_shape; + } + + private: + inline TBlob AsDataBlob(const dmlc::Row& row) { + const real_t* ptr = row.value; + TShape shape(mshadow::Shape1(row.length)); + return TBlob((real_t*) ptr, shape, cpu::kDevMask); // NOLINT(*) + } + + inline TBlob AsIdxBlob(const dmlc::Row& row) { + const uint64_t* ptr = row.index; + TShape shape(mshadow::Shape1(row.length)); + return TBlob((int64_t*) ptr, shape, cpu::kDevMask, mshadow::kInt64); // NOLINT(*) + } + + inline TBlob AsIndPtrPlaceholder(const dmlc::Row& row) { + return TBlob(nullptr, mshadow::Shape1(0), cpu::kDevMask, mshadow::kInt64); + } + + inline TBlob AsScalarLabelBlob(const dmlc::Row& row) { + const real_t* ptr = row.label; + return TBlob((real_t*) ptr, mshadow::Shape1(1), cpu::kDevMask); // NOLINT(*) + } + + LibSVMIterParam param_; + // output instance + DataInst out_; + // internal instance counter + unsigned inst_counter_{0}; + // at end + bool end_{false}; + // label parser + size_t label_ptr_{0}, label_size_{0}; + size_t data_ptr_{0}, data_size_{0}; + std::unique_ptr > label_parser_; + std::unique_ptr > data_parser_; +}; + + +DMLC_REGISTER_PARAMETER(LibSVMIterParam); + +MXNET_REGISTER_IO_ITER(LibSVMIter) +.describe(R"code(Returns the LibSVM file iterator. This iterator is experimental and +should be used with care. + +The input data is similar to libsvm file format, except that the indices are expected to be +zero-based instead of one-based. Details of the libsvm format are available at +`https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/` + +In this function, the `data_shape` parameter is used to set the shape of each line of the data. +The dimension of both `data_shape` and `label_shape` are expected to be 1. + +When `label_libsvm` is set to ``NULL``, both data and label are read from the same file specified +by `data_libsvm`. Otherwise, data is read from `data_libsvm` and label from `label_libsvm`, +in this case, if `data_libsvm` contains label, it will ignored. + +The `LibSVMIter` only support `round_batch` parameter set to ``True`` for now. So, if `batch_size` +is 3 and there are 4 total rows in libsvm file, 2 more examples +are consumed at the first round. If `reset` function is called after first round, +the call is ignored and remaining examples are returned in the second round. + +If ``data_libsvm = 'data/'`` is set, then all the files in this directory will be read. + +Examples:: + + // Contents of libsvm file ``data.t``. + 1.0 0:0.5 2:1.2 + -2.0 + -3.0 0:0.6 1:2.4 2:1.2 + 4 2:-1.2 + + // Creates a `LibSVMIter` with `batch_size`=3. + LibSVMIter = mx.io.LibSVMIter(data_libsvm = 'data.t', data_shape = (3,), + batch_size = 3) + + // The first batch (data and label) + [[ 0.5 0. 1.2 ] + [ 0. 0. 0. ] + [ 0.6 2.4 1.2 ]] + + [ 1. -2. -3.] + + // The second batch (data and label) + [[ 0. 0. -1.2 ] + [ 0.5 0. 1.2 ] + [ 0. 0. 0. ]] + + [ 4. 1. -2.] + + // Contents of libsvm file ``label.t`` + 1.0 + -2.0 0:0.125 + -3.0 2:1.2 + 4 1:1.0 2:-1.2 + + // Creates a `LibSVMIter` with specified label file + LibSVMIter = mx.io.LibSVMIter(data_libsvm = 'data.t', data_shape = (3,), + label_libsvm = 'label.t', label_shape = (3,), batch_size = 3) + + // Two batches of data read from the above iterator are as follows(data and label): + // The first batch + [[ 0.5 0. 1.2 ] + [ 0. 0. 0. ] + [ 0.6 2.4 1.2 ]] + + [[ 0. 0. 0. ] + [ 0.125 0. 0. ] + [ 0. 0. 1.2 ]] + + // The second batch + [[ 0. 0. -1.2 ] + [ 0.5 0. 1.2 ] + [ 0. 0. 0. ]] + + [[ 0. 1. -1.2 ] + [ 0. 0. 0. ] + [ 0.125 0. 0. ]] + +)code" ADD_FILELINE) +.add_arguments(LibSVMIterParam::__FIELDS__()) +.add_arguments(BatchParam::__FIELDS__()) +.add_arguments(PrefetcherParam::__FIELDS__()) +.set_body([]() { + return new SparsePrefetcherIter( + new SparseBatchLoader( + new LibSVMIter())); + }); + +} // namespace io +} // namespace mxnet diff --git a/src/io/iter_prefetcher.h b/src/io/iter_prefetcher.h index 89960c71a12f..a743b5132821 100644 --- a/src/io/iter_prefetcher.h +++ b/src/io/iter_prefetcher.h @@ -46,8 +46,7 @@ namespace io { class PrefetcherIter : public IIterator { public: explicit PrefetcherIter(IIterator* base) - : loader_(base), out_(nullptr) { - } + : loader_(base), out_(nullptr) {} ~PrefetcherIter() { while (recycle_queue_.size() != 0) { @@ -56,21 +55,24 @@ class PrefetcherIter : public IIterator { delete batch; } delete out_; - iter_.Destroy(); + iter.Destroy(); } - virtual void Init(const std::vector >& kwargs) { + void InitParams(const std::vector >& kwargs) { std::vector > kwargs_left; // init image rec param kwargs_left = param_.InitAllowUnknown(kwargs); - // use the kwarg to init batch loader - loader_->Init(kwargs); // maximum prefetch threaded iter internal size const int kMaxPrefetchBuffer = 16; // init thread iter - iter_.set_max_capacity(kMaxPrefetchBuffer); + iter.set_max_capacity(kMaxPrefetchBuffer); + } - iter_.Init([this](DataBatch **dptr) { + virtual void Init(const std::vector >& kwargs) { + InitParams(kwargs); + // use the kwarg to init batch loader + loader_->Init(kwargs); + iter.Init([this](DataBatch **dptr) { if (!loader_->Next()) return false; const TBlobBatch& batch = loader_->Value(); if (*dptr == nullptr) { @@ -109,7 +111,7 @@ class PrefetcherIter : public IIterator { } virtual void BeforeFirst(void) { - iter_.BeforeFirst(); + iter.BeforeFirst(); } virtual bool Next(void) { @@ -124,9 +126,9 @@ class PrefetcherIter : public IIterator { arr.WaitToWrite(); } recycle_queue_.pop(); - iter_.Recycle(&old_batch); + iter.Recycle(&old_batch); } - return iter_.Next(&out_); + return iter.Next(&out_); } virtual const DataBatch &Value(void) const { return *out_; @@ -135,16 +137,16 @@ class PrefetcherIter : public IIterator { protected: /*! \brief prefetcher parameters */ PrefetcherParam param_; - /*! \brief internal batch loader */ - std::unique_ptr > loader_; + /*! \brief backend thread */ + dmlc::ThreadedIter iter; private: + /*! \brief internal batch loader */ + std::unique_ptr > loader_; /*! \brief output data */ DataBatch *out_; /*! \brief queue to be recycled */ std::queue recycle_queue_; - /*! \brief backend thread */ - dmlc::ThreadedIter iter_; }; } // namespace io } // namespace mxnet diff --git a/src/io/iter_sparse.h b/src/io/iter_sparse.h new file mode 100644 index 000000000000..beaf5c682998 --- /dev/null +++ b/src/io/iter_sparse.h @@ -0,0 +1,45 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file iter_sparse.h + * \brief mxnet sparse data iterator + */ +#ifndef MXNET_IO_ITER_SPARSE_H_ +#define MXNET_IO_ITER_SPARSE_H_ + +#include +#include + +namespace mxnet { +/*! + * \brief iterator type + * \param DType data type + */ +template +class SparseIIterator : public IIterator { + public: + /*! \brief storage type of the data or label */ + virtual const NDArrayStorageType GetStorageType(bool is_data) const = 0; + /*! \brief shape of the data or label */ + virtual const TShape GetShape(bool is_data) const = 0; +}; // class SparseIIterator + +} // namespace mxnet +#endif // MXNET_IO_ITER_SPARSE_H_ diff --git a/src/io/iter_sparse_batchloader.h b/src/io/iter_sparse_batchloader.h new file mode 100644 index 000000000000..d5c9bd2f4578 --- /dev/null +++ b/src/io/iter_sparse_batchloader.h @@ -0,0 +1,203 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file iter_sparse_batchloader.h + * \brief define a batch adapter to create sparse tblob batch + */ +#ifndef MXNET_IO_ITER_SPARSE_BATCHLOADER_H_ +#define MXNET_IO_ITER_SPARSE_BATCHLOADER_H_ + +#include +#include +#include +#include +#include +#include +#include +#include "./inst_vector.h" +#include "./image_iter_common.h" +#include "./iter_batchloader.h" +#include "./iter_sparse.h" + +namespace mxnet { +namespace io { + +/*! \brief create a batch iterator from single instance iterator */ +class SparseBatchLoader : public BatchLoader, public SparseIIterator { + public: + explicit SparseBatchLoader(SparseIIterator *base): + BatchLoader(base), sparse_base_(base) { + } + + virtual ~SparseBatchLoader(void) {} + + inline void Init(const std::vector >& kwargs) { + BatchLoader::Init(kwargs); + data_stype_ = sparse_base_->GetStorageType(true); + label_stype_ = sparse_base_->GetStorageType(false); + if (param_.round_batch == 0) { + LOG(FATAL) << "sparse batch loader doesn't support round_batch == false yet"; + } + } + + virtual void BeforeFirst(void) { + BatchLoader::BeforeFirst(); + } + + virtual bool Next(void) { + out_.num_batch_padd = 0; + out_.batch_size = param_.batch_size; + this->head_ = 0; + // if overflown from previous round, directly return false, until before first is called + if (num_overflow_ != 0) return false; + index_t top = 0; + inst_cache_.clear(); + while (sparse_base_->Next()) { + inst_cache_.emplace_back(sparse_base_->Value()); + if (inst_cache_.size() >= param_.batch_size) break; + } + // no more data instance + if (inst_cache_.size() == 0) { + return false; + } + if (inst_cache_.size() < param_.batch_size) { + CHECK_GT(param_.round_batch, 0); + num_overflow_ = 0; + sparse_base_->BeforeFirst(); + for (; inst_cache_.size() < param_.batch_size; ++num_overflow_) { + CHECK(sparse_base_->Next()) << "number of input must be bigger than batch size"; + inst_cache_.emplace_back(sparse_base_->Value()); + } + } + out_.num_batch_padd = num_overflow_; + CHECK_EQ(inst_cache_.size(), param_.batch_size); + this->InitDataFromBatch(); + for (size_t j = 0; j < inst_cache_.size(); j++) { + const auto& d = inst_cache_[j]; + out_.inst_index[top] = d.index; + // TODO(haibin) double check the type? + int64_t unit_size = 0; + for (size_t i = 0; i < d.data.size(); ++i) { + // indptr tensor + if (IsIndPtr(i)) { + auto indptr = data_[i].get(); + if (j == 0) indptr[0] = 0; + indptr[j + 1] = indptr[j] + unit_size; + offsets_[i] = j; + } else { + // indices and values tensor + unit_size = d.data[i].shape_.Size(); + MSHADOW_TYPE_SWITCH(data_[i].type_flag_, DType, { + const auto begin = offsets_[i]; + const auto end = offsets_[i] + unit_size; + mshadow::Copy(data_[i].get().Slice(begin, end), + d.data[i].get_with_shape(mshadow::Shape1(unit_size))); + }); + offsets_[i] += unit_size; + } + } + } + return true; + } + + virtual const TBlobBatch &Value(void) const { + return BatchLoader::Value(); + } + + virtual const NDArrayStorageType GetStorageType(bool is_data) const { + return sparse_base_->GetStorageType(is_data); + } + + virtual const TShape GetShape(bool is_data) const { + TShape inst_shape = sparse_base_->GetShape(is_data); + std::vector shape_vec; + shape_vec.push_back(param_.batch_size); + for (index_t dim = 0; dim < inst_shape.ndim(); ++dim) { + shape_vec.push_back(inst_shape[dim]); + } + return TShape(shape_vec.begin(), shape_vec.end()); + } + + private: + /*! \brief base sparse iterator */ + SparseIIterator *sparse_base_; + /*! \brief data instances */ + std::vector inst_cache_; + /*! \brief data storage type */ + NDArrayStorageType data_stype_; + /*! \brief data label type */ + NDArrayStorageType label_stype_; + /*! \brief tensor offset for slicing */ + std::vector offsets_; + + // check whether ith position is the indptr tensor for a CSR tensor + inline bool IsIndPtr(size_t i) { + auto data_num_aux = num_aux_data(data_stype_); + auto label_num_aux = num_aux_data(label_stype_); + auto label_indptr_offset = data_num_aux + 1 + label_num_aux; + // data indptr + if (i == data_num_aux && data_stype_ == kCSRStorage) { + return true; + } + // label indptr + if (i == label_indptr_offset && label_stype_ == kCSRStorage && data_stype_ == kCSRStorage) { + return true; + } + return false; + } + + // initialize the data holder by using from the batch + inline void InitDataFromBatch() { + CHECK(data_stype_ == kCSRStorage || label_stype_ == kCSRStorage); + CHECK_GT(inst_cache_.size(), 0); + out_.data.clear(); + data_.clear(); + offsets_.clear(); + + size_t total_size = inst_cache_[0].data.size(); + data_.resize(total_size); + offsets_.resize(total_size, 0); + std::vector vec_sizes(total_size, 0); + // accumulate the memory required for a batch + for (size_t i = 0; i < total_size; ++i) { + size_t size = 0; + // vec_size for indptr + if (IsIndPtr(i)) { + size = param_.batch_size + 1; + } else { + for (const auto &d : inst_cache_) size += d.data[i].shape_.Size(); + } + vec_sizes[i] = size; + } + + CHECK_EQ(vec_sizes[0], vec_sizes[1]); + for (size_t i = 0; i < total_size; ++i) { + int src_type_flag = inst_cache_[0].data[i].type_flag_; + // init object attributes + TShape dst_shape(mshadow::Shape1(vec_sizes[i])); + data_[i].resize(mshadow::Shape1(vec_sizes[i]), src_type_flag); + CHECK(data_[i].dptr_ != nullptr); + out_.data.push_back(TBlob(data_[i].dptr_, dst_shape, cpu::kDevMask, src_type_flag)); + } + } +}; // class BatchLoader +} // namespace io +} // namespace mxnet +#endif // MXNET_IO_ITER_SPARSE_BATCHLOADER_H_ diff --git a/src/io/iter_sparse_prefetcher.h b/src/io/iter_sparse_prefetcher.h new file mode 100644 index 000000000000..3908f9bd3826 --- /dev/null +++ b/src/io/iter_sparse_prefetcher.h @@ -0,0 +1,153 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file iter_sparse_prefetcher.h + * \brief define a prefetcher using threaditer to keep k batch fetched + */ +#ifndef MXNET_IO_ITER_SPARSE_PREFETCHER_H_ +#define MXNET_IO_ITER_SPARSE_PREFETCHER_H_ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "./inst_vector.h" +#include "./image_iter_common.h" +#include "./iter_prefetcher.h" +#include "./iter_sparse.h" + +namespace mxnet { +namespace io { +// iterator on sparse data +class SparsePrefetcherIter : public PrefetcherIter { + public: + explicit SparsePrefetcherIter(SparseIIterator* base) + : PrefetcherIter(base), sparse_loader_(base) {} + + ~SparsePrefetcherIter() {} + + virtual void Init(const std::vector >& kwargs) { + PrefetcherIter::InitParams(kwargs); + // use the kwarg to init batch loader + sparse_loader_->Init(kwargs); + iter.Init([this](DataBatch **dptr) { + if (!sparse_loader_->Next()) return false; + const TBlobBatch& batch = sparse_loader_->Value(); + if (*dptr == nullptr) { + // allocate databatch + *dptr = new DataBatch(); + (*dptr)->num_batch_padd = batch.num_batch_padd; + // (*dptr)->data.at(0) => data + // (*dptr)->data.at(1) => label + (*dptr)->data.resize(2); + (*dptr)->index.resize(batch.batch_size); + size_t data_iter = 0; + for (size_t i = 0; i < (*dptr)->data.size(); ++i) { + bool is_data = i == 0; + auto stype = this->GetStorageType(is_data); + auto dtype = param_.dtype ? param_.dtype.value() : batch.data[data_iter].type_flag_; + if (stype == kDefaultStorage) { + (*dptr)->data.at(i) = NDArray(batch.data[data_iter].shape_, + Context::CPU(), false, dtype); + } else { + (*dptr)->data.at(i) = NDArray(stype, this->GetShape(is_data), + Context::CPU(), false, dtype); + } + data_iter += num_aux_data(stype) + 1; + } + } + // copy data over + size_t data_iter = 0; + for (size_t i = 0; i < (*dptr)->data.size(); ++i) { + auto& nd = ((*dptr)->data)[i]; + auto stype = nd.storage_type(); + auto& data_i = ((*dptr)->data)[i]; + if (stype == kDefaultStorage) { + CopyFromTo(data_i.data(), batch.data[data_iter]); + } else if (stype == kCSRStorage) { + auto& values = batch.data[data_iter]; + auto& indices = batch.data[data_iter + 1]; + auto& indptr = batch.data[data_iter + 2]; + // allocate memory + CHECK_EQ(indices.shape_.Size(), values.shape_.Size()); + nd.CheckAndAllocAuxData(csr::kIdx, indices.shape_); + nd.CheckAndAllocData(values.shape_); + nd.CheckAndAllocAuxData(csr::kIndPtr, indptr.shape_); + // copy values, indices and indptr + CopyFromTo(data_i.data(), values); + CopyFromTo(data_i.aux_data(csr::kIdx), indices); + CopyFromTo(data_i.aux_data(csr::kIndPtr), indptr); + } else { + LOG(FATAL) << "Storage type not implemented: " << stype; + } + data_iter += num_aux_data(stype) + 1; + (*dptr)->num_batch_padd = batch.num_batch_padd; + } + if (batch.inst_index) { + std::copy(batch.inst_index, + batch.inst_index + batch.batch_size, + (*dptr)->index.begin()); + } + return true; + }, + [this]() { sparse_loader_->BeforeFirst(); }); + } + + virtual void BeforeFirst(void) { + PrefetcherIter::BeforeFirst(); + } + + virtual bool Next(void) { + return PrefetcherIter::Next(); + } + virtual const DataBatch &Value(void) const { + return PrefetcherIter::Value(); + } + + virtual const NDArrayStorageType GetStorageType(bool is_data) const { + return sparse_loader_->GetStorageType(is_data); + } + + virtual const TShape GetShape(bool is_data) const { + return sparse_loader_->GetShape(is_data); + } + + private: + /*! \brief internal sparse batch loader */ + SparseIIterator* sparse_loader_; + + inline void CopyFromTo(TBlob dst, const TBlob src) { + MSHADOW_TYPE_SWITCH(src.type_flag_, DType, { + mshadow::Copy(dst.FlatTo1D(), src.FlatTo1D()); + }); + } +}; +} // namespace io +} // namespace mxnet +#endif // MXNET_IO_ITER_SPARSE_PREFETCHER_H_ diff --git a/src/kvstore/comm.h b/src/kvstore/comm.h index ade9c95feda7..cd0d3ab02825 100644 --- a/src/kvstore/comm.h +++ b/src/kvstore/comm.h @@ -21,13 +21,17 @@ */ #ifndef MXNET_KVSTORE_COMM_H_ #define MXNET_KVSTORE_COMM_H_ +#include #include #include #include #include #include #include +#include #include "mxnet/ndarray.h" +#include "../ndarray/ndarray_function.h" +#include "../operator/tensor/sparse_retain-inl.h" namespace mxnet { namespace kvstore { /** @@ -40,9 +44,10 @@ class Comm { } virtual ~Comm() { } /** - * \brief init key with the data shape + * \brief init key with the data shape and storage shape */ - virtual void Init(int key, const TShape& shape, int dtype = mshadow::kFloat32) = 0; + virtual void Init(int key, const NDArrayStorageType stype, + const TShape& shape, int dtype = mshadow::kFloat32) = 0; /** * \brief returns src[0] + .. + src[src.size()-1] */ @@ -55,6 +60,18 @@ class Comm { int key, const NDArray& src, const std::vector dst, int priority) = 0; + /** + * \brief broadcast src to dst[i] with target row_ids for every i + * \param dst a list of destination row_sparse NDArray and its target row_ids to broadcast, + where the row_ids are expected to be unique and sorted + * \param use_copy if set to true, directly copy src to dst[i] without looking up the + provided row_ids + */ + virtual void BroadcastRowSparse(int key, const NDArray& src, + const std::vector>& dst, + const bool use_copy, + const int priority) = 0; + /** * \brief return a pinned contex */ @@ -75,43 +92,85 @@ class CommCPU : public Comm { CommCPU() { nthread_reduction_ = dmlc::GetEnv("MXNET_KVSTORE_REDUCTION_NTHREADS", 4); bigarray_bound_ = dmlc::GetEnv("MXNET_KVSTORE_BIGARRAY_BOUND", 1000 * 1000); + // TODO(junwu) delete the following data member, now for benchmark only + is_serial_push_ = dmlc::GetEnv("MXNET_KVSTORE_SERIAL_PUSH", 0); } virtual ~CommCPU() { } - void Init(int key, const TShape& shape, int type = mshadow::kFloat32) override { - merge_buf_[key].merged = NDArray(shape, pinned_ctx_, false, type); + void Init(int key, const NDArrayStorageType stype, const TShape& shape, + int type = mshadow::kFloat32) override { + if (stype == kDefaultStorage) { + merge_buf_[key].merged = NDArray(shape, pinned_ctx_, false, type); + } else { + merge_buf_[key].merged = NDArray(stype, shape, pinned_ctx_, true, type); + } } const NDArray& Reduce(int key, const std::vector& src, int priority) override { + auto& buf = merge_buf_[key]; // avoid extra copy for single device, but it may bring problems for // abnormal usage of kvstore if (src.size() == 1) { - return src[0]; + if (src[0].storage_type() == kDefaultStorage) { + return src[0]; + } else { // if sparse and only one GPU, always update weight on CPU + CopyFromTo(src[0], &buf.merged, priority); + return buf.merged; + } } - std::vector const_vars(src.size() - 1); - std::vector reduce(src.size()); - auto& buf = merge_buf_[key]; - CopyFromTo(src[0], &buf.merged, priority); - reduce[0] = buf.merged; - if (buf.copy_buf.empty()) { - buf.copy_buf.resize(src.size()-1); - for (size_t j = 0; j < src.size() - 1; ++j) { - buf.copy_buf[j] = NDArray( - src[0].shape(), pinned_ctx_, false, src[0].dtype()); + if (buf.merged.storage_type() == kDefaultStorage) { + std::vector const_vars(src.size() - 1); + std::vector reduce(src.size()); + CopyFromTo(src[0], &buf.merged, priority); + reduce[0] = buf.merged; + + if (buf.copy_buf.empty()) { + buf.copy_buf.resize(src.size()-1); + for (size_t j = 0; j < src.size() - 1; ++j) { + // allocate NDArray basd on storage type + buf.copy_buf[j] = NDArray( + src[0].shape(), pinned_ctx_, false, src[0].dtype()); + } } - } - for (size_t i = 1; i < src.size(); ++i) { - CopyFromTo(src[i], &(buf.copy_buf[i-1]), priority); - reduce[i] = buf.copy_buf[i-1]; - const_vars[i-1] = reduce[i].var(); - } + for (size_t i = 1; i < src.size(); ++i) { + CopyFromTo(src[i], &(buf.copy_buf[i-1]), priority); + reduce[i] = buf.copy_buf[i-1]; + const_vars[i-1] = reduce[i].var(); + } + + Engine::Get()->PushSync([reduce, this](RunContext rctx) { + ReduceSumCPU(reduce); + }, Context::CPU(), const_vars, {reduce[0].var()}, + FnProperty::kCPUPrioritized, priority, PROFILER_MESSAGE("KVStoreReduce")); - Engine::Get()->PushSync([reduce, this](RunContext rctx) { - ReduceSumCPU(reduce); - }, Context::CPU(), const_vars, {reduce[0].var()}, - FnProperty::kCPUPrioritized, priority, PROFILER_MESSAGE("KVStoreReduce")); + } else { + // buf.merged is a sparse ndarray. + std::vector const_vars(src.size()); + std::vector reduce(src.size()); + + if (buf.copy_buf.empty()) { + buf.copy_buf.resize(src.size()); + for (size_t j = 0; j < src.size(); ++j) { + buf.copy_buf[j] = NDArray( + src[0].storage_type(), src[0].shape(), pinned_ctx_, true, src[0].dtype()); + } + } + for (size_t i = 0; i < src.size(); ++i) { + CopyFromTo(src[i], &(buf.copy_buf[i]), priority); + reduce[i] = buf.copy_buf[i]; + const_vars[i] = reduce[i].var(); + } + auto result = buf.merged; + Engine::Get()->PushSync([reduce, result, this](RunContext rctx) { + NDArray out = result; + is_serial_push_? + ReduceSumCPUExSerial(reduce, &out) + : mxnet::ndarray::ElementwiseSum(rctx.get_stream(), reduce, &out); + }, Context::CPU(), const_vars, {result.var()}, + FnProperty::kCPUPrioritized, priority, PROFILER_MESSAGE("KVStoreReduce")); + } return buf.merged; } @@ -129,7 +188,113 @@ class CommCPU : public Comm { } } + void BroadcastRowSparse(int key, const NDArray& src, + const std::vector>& dst, + const bool use_copy, + const int priority) override { + using namespace mshadow; + CHECK_EQ(src.storage_type(), kRowSparseStorage) + << "BroadcastRowSparse expects row-sparse src NDArray"; + CHECK_EQ(src.ctx().dev_mask(), Context::kCPU) + << "BroadcastRowSparse with src on gpu context not supported"; + for (size_t i = 0; i < dst.size(); ++i) { + NDArray* out = dst[i].first; + NDArray row_id = dst[i].second; + if (use_copy) { + CopyFromTo(src, out, priority); + } else { + CHECK_EQ(out->storage_type(), kRowSparseStorage) + << "BroadcastRowSparse expects row_sparse dst NDArray"; + CHECK_EQ(row_id.ctx().dev_mask(), Context::kCPU) + << "BroadcastRowSparse with row_indices on gpu context not supported"; + // retain according to unique indices + const bool use_sparse_retain = (src.shape()[0] != src.storage_shape()[0]) + || (row_id.dtype() != out->aux_type(rowsparse::kIdx)) + || (out->ctx().dev_mask() != Context::kGPU); + if (use_sparse_retain) { // use sparse_retain op + const bool is_to_gpu = out->ctx().dev_mask() == Context::kGPU; + NDArray out_cpu = is_to_gpu? NDArray(kRowSparseStorage, src.shape(), + src.ctx(), true, src.dtype(), src.aux_types()) : *out; + Engine::Get()->PushSync([=](RunContext rctx) { + const TBlob& indices = row_id.data(); + NDArray temp = out_cpu; // get rid of const qualifier + op::SparseRetainOpForwardRspImpl(rctx.get_stream(), + src, indices, kWriteTo, + &temp); + }, Context::CPU(), {src.var(), row_id.var()}, {out_cpu.var()}, + FnProperty::kNormal, priority, PROFILER_MESSAGE("KVStoreSparseRetain")); + if (is_to_gpu) { + CopyFromTo(out_cpu, out, priority); + } + } else { // direct copy rows + Engine::Get()->PushSync([=](RunContext rctx) { + CopyRetainedRowsToGPU(rctx.get_stream(), rctx.get_stream(), + src, row_id, out); + }, out->ctx(), {src.var(), row_id.var()}, {out->var()}, + FnProperty::kCopyToGPU, priority, PROFILER_MESSAGE("KVStoreCopyRetainedRowsToGPU")); + } + } + } + } + private: + /*! + * \brief When src is a rsp with full rows, + * simply copy retained rows directly from cpu to gpu + * without invoking sparse_retain op. + */ + void CopyRetainedRowsToGPU(mshadow::Stream* cpu_stream, + mshadow::Stream* gpu_stream, + const NDArray& src, + const NDArray& indices, + NDArray* dst) { +#if MXNET_USE_CUDA == 1 + CHECK_EQ(src.storage_type(), kRowSparseStorage) + << "CopyRetainedRowsToGPU expects row-sparse src NDArray"; + CHECK_EQ(src.ctx().dev_mask(), Context::kCPU) + << "CopyRetainedRowsToGPU with src on gpu context not supported"; + CHECK_EQ(src.storage_shape()[0], src.shape()[0]) + << "CopyRetainedRowsToGPU only supports src rsp with full rows"; + CHECK_EQ(indices.storage_type(), kDefaultStorage); + CHECK_EQ(indices.ctx().dev_mask(), Context::kCPU); + CHECK_EQ(dst->storage_type(), kRowSparseStorage); + CHECK_EQ(dst->ctx().dev_mask(), Context::kGPU); + CHECK_EQ(indices.dtype(), dst->aux_type(rowsparse::kIdx)) + << "CopyRetainedRowsToGPU only supports same data type for idx array and dst aux_data(0)"; + if (!src.storage_initialized() || indices.data().Size() == 0U) { + op::FillZerosRspImpl(gpu_stream, dst); + return; + } + using namespace mshadow; + + const TBlob& src_data = src.data(); + const TBlob& idx_data = indices.data(); + const size_t row_length = src.shape().ProdShape(1, src.shape().ndim()); + const size_t num_rows_retained = idx_data.Size(); + dst->CheckAndAlloc({Shape1(num_rows_retained)}); + TBlob dst_data = dst->data(); + TBlob dst_idx_data = dst->aux_data(rowsparse::kIdx); + MSHADOW_TYPE_SWITCH(src.dtype(), DType, { + MSHADOW_IDX_TYPE_SWITCH(indices.dtype(), IType, { + // copy idx array + Tensor dst_idx_tensor = dst_idx_data.FlatTo1D(gpu_stream); + const Tensor idx_tensor = idx_data.FlatTo1D(cpu_stream); + Copy(dst_idx_tensor, idx_tensor, gpu_stream); + // copy src data + const Tensor src_data_tensor = src_data.get_with_shape( + Shape2(src_data.shape_[0], row_length), cpu_stream); + Tensor dst_data_tensor = dst_data.get_with_shape( + Shape2(dst_data.shape_[0], row_length), gpu_stream); + for (size_t i = 0; i < num_rows_retained; ++i) { + Copy(dst_data_tensor[i], src_data_tensor[idx_tensor[i]], gpu_stream); + } + }) + }) +#else + LOG(FATAL) << "GPU not enabled"; +#endif + } + // reduce sum into val[0] inline void ReduceSumCPU(const std::vector &in_data) { MSHADOW_TYPE_SWITCH(in_data[0].dtype(), DType, { @@ -144,6 +309,78 @@ class CommCPU : public Comm { }); } + // serial implementation of reduce sum for row sparse NDArray. + inline void ReduceSumCPUExSerial(const std::vector &in, NDArray *out) { + using namespace rowsparse; + using namespace mshadow; + auto stype = out->storage_type(); + CHECK_EQ(stype, kRowSparseStorage) << "Unexpected storage type " << stype; + size_t total_num_rows = 0; + size_t num_in = in.size(); + // skip the ones with empty indices and values + std::vector skip(num_in, false); + // the values tensor of the inputs + MSHADOW_TYPE_SWITCH(out->dtype(), DType, { + MSHADOW_IDX_TYPE_SWITCH(out->aux_type(kIdx), IType, { + std::vector> in_vals(num_in); + std::vector> in_indices(num_in); + // offset to the values tensor of all inputs + std::vector offsets(num_in, 0); + std::vector num_rows(num_in, 0); + for (size_t i = 0; i < num_in; i++) { + if (!in[i].storage_initialized()) { + skip[i] = true; + continue; + } + auto size = in[i].aux_shape(kIdx).Size(); + num_rows[i] = size; + total_num_rows += size; + in_vals[i] = in[i].data().FlatTo2D(); + in_indices[i] = in[i].aux_data(kIdx).FlatTo1D(); + } + std::vector indices; + indices.reserve(total_num_rows); + // gather indices from all inputs + for (size_t i = 0; i < num_in; i++) { + for (size_t j = 0; j < num_rows[i]; j++) { + indices.emplace_back(in_indices[i][j]); + } + } + CHECK_EQ(indices.size(), total_num_rows); + // dedup indices + std::sort(indices.begin(), indices.end()); + indices.resize(std::unique(indices.begin(), indices.end()) - indices.begin()); + // the one left are unique non-zero rows + size_t nnr = indices.size(); + // allocate memory for output + out->CheckAndAlloc({Shape1(nnr)}); + auto idx_data = out->aux_data(kIdx).FlatTo1D(); + auto val_data = out->data().FlatTo2D(); + + for (size_t i = 0; i < nnr; i++) { + // copy indices back + idx_data[i] = indices[i]; + bool zeros = true; + for (size_t j = 0; j < num_in; j++) { + if (skip[j]) continue; + size_t offset = offsets[j]; + if (offset < num_rows[j]) { + if (indices[i] == in_indices[j][offset]) { + if (zeros) { + Copy(val_data[i], in_vals[j][offset], nullptr); + zeros = false; + } else { + val_data[i] += in_vals[j][offset]; + } + offsets[j] += 1; + } + } + } + } + }); + }); + } + template inline static void ReduceSumCPU( const std::vector &dptr, size_t offset, index_t size) { @@ -209,6 +446,7 @@ class CommCPU : public Comm { std::unordered_map merge_buf_; size_t bigarray_bound_; int nthread_reduction_; + bool is_serial_push_; }; /** @@ -227,8 +465,13 @@ class CommDevice : public Comm { virtual ~CommDevice() { } - void Init(int key, const TShape& shape, int dtype = mshadow::kFloat32) override { - sorted_key_attrs_.push_back(std::make_tuple(key, shape, dtype)); + void Init(int key, const NDArrayStorageType stype, const TShape& shape, + int dtype = mshadow::kFloat32) override { + if (stype == kDefaultStorage) { + sorted_key_attrs_.push_back(std::make_tuple(key, shape, dtype)); + } else { + LOG(FATAL) << "storage type " << stype << " not implemented for device yet"; + } } const NDArray& Reduce(int key, const std::vector& src, @@ -296,6 +539,13 @@ class CommDevice : public Comm { } } + void BroadcastRowSparse(int key, const NDArray& src, + const std::vector>& dst, + const bool use_copy, + const int priority) override { + LOG(FATAL) << "Not implemented yet"; + } + private: void EnableP2P(const std::vector& devs) { #if MXNET_USE_CUDA diff --git a/src/kvstore/kvstore_dist.h b/src/kvstore/kvstore_dist.h index b64d7c6369bc..399754f5406d 100644 --- a/src/kvstore/kvstore_dist.h +++ b/src/kvstore/kvstore_dist.h @@ -25,6 +25,8 @@ #define MXNET_KVSTORE_KVSTORE_DIST_H_ #include #include +#include +#include #include "./kvstore_local.h" #include "mxnet/engine.h" #include "ps/ps.h" @@ -60,6 +62,7 @@ class KVStoreDist : public KVStoreLocal { } } bigarray_bound_ = dmlc::GetEnv("MXNET_KVSTORE_BIGARRAY_BOUND", 1000 * 1000); + log_verbose_ = dmlc::GetEnv("MXNET_KVSTORE_DIST_ROW_SPARSE_VERBOSE", false); } virtual ~KVStoreDist() { @@ -81,7 +84,7 @@ class KVStoreDist : public KVStoreLocal { const std::vector& values) override { CheckUnique(keys); for (size_t i = 0; i < keys.size(); ++i) { - comm_->Init(keys[i], values[i].shape(), values[i].dtype()); + comm_->Init(keys[i], values[i].storage_type(), values[i].shape(), values[i].dtype()); } if (get_rank() == 0) { Push_(keys, values, 0, false); @@ -108,17 +111,20 @@ class KVStoreDist : public KVStoreLocal { int priority) override { std::vector uniq_keys; std::vector > grouped_vals; - GroupKVPairs(keys, values, &uniq_keys, &grouped_vals); + GroupKVPairsPull(keys, values, &uniq_keys, &grouped_vals); for (size_t i = 0; i < uniq_keys.size(); ++i) { int key = uniq_keys[i]; // use the same array for merging to guarantee that pull always happens // after the previous push on this key auto& recv_buf = comm_buf_[key]; + const auto storage_type = grouped_vals[i][0]->storage_type(); + CHECK_EQ(storage_type, kDefaultStorage) + << "Expected stype of value to be kDefaultStorage"; if (recv_buf.is_none()) { // it may happen for the first time a no-rank-0 worker pull the weight. - recv_buf = NDArray( - grouped_vals[i][0]->shape(), pinned_ctx_, true, grouped_vals[i][0]->dtype()); + recv_buf = NDArray(grouped_vals[i][0]->shape(), pinned_ctx_, + true, grouped_vals[i][0]->dtype()); } auto pull_from_servers = [this, key, recv_buf]( RunContext rctx, Engine::CallbackOnComplete cb) { @@ -133,7 +139,7 @@ class KVStoreDist : public KVStoreLocal { auto vals = new ps::SArray(data, size, false); // issue pull CHECK_NOTNULL(ps_worker_)->ZPull( - pskv.keys, vals, &pskv.lens, 0, [vals, cb](){ delete vals; cb(); }); + pskv.keys, vals, &pskv.lens, kDefaultPushPull, [vals, cb](){ delete vals; cb(); }); }; CHECK_NOTNULL(Engine::Get())->PushAsync( @@ -143,12 +149,55 @@ class KVStoreDist : public KVStoreLocal { {recv_buf.var()}, FnProperty::kNormal, priority, - PROFILER_MESSAGE("KVStoreDistPull")); + PROFILER_MESSAGE("KVStoreDistDefaultPull")); comm_->Broadcast(key, recv_buf, grouped_vals[i], priority); } } + void PullRowSparse(const std::vector& keys, + const std::vector>& val_rowids, + const int priority = 0) { + std::vector uniq_keys; + std::vector>> grouped_val_rowids; + GroupKVPairsPullRsp(keys, val_rowids, &uniq_keys, &grouped_val_rowids); + + for (size_t i = 0; i < uniq_keys.size(); ++i) { + int key = uniq_keys[i]; + // use the same array for merging to guarantee that pull always happens + // after the previous push on this key + auto& recv_buf = comm_buf_[key]; + auto& grouped_val_rowid = grouped_val_rowids[i]; + const auto storage_type = grouped_val_rowid[0].first->storage_type(); + CHECK_EQ(storage_type, kRowSparseStorage) + << "expected kRowSparseStorage, but got " << storage_type; + if (recv_buf.is_none()) { + // it may happen for the first time a no-rank-0 worker pull the weight. + recv_buf = NDArray(storage_type, grouped_val_rowid[0].first->shape(), + pinned_ctx_, true, grouped_val_rowid[0].first->dtype()); + } + auto &target_val_rowids = grouped_val_rowids[i]; + const size_t num_vals = target_val_rowids.size(); + size_t num_rows = 0; + // TODO(haibin) refactor this for loop + for (size_t i = 0; i < num_vals; i++) { + auto &row_id = target_val_rowids[i].second; + NDArray indices = row_id.Copy(pinned_ctx_); + Unique(&indices, priority); + target_val_rowids[i].second = indices; + num_rows += indices.shape().Size(); + } + if (num_vals > 1) { + // TODO(haibin) aggregate over all unique indices + LOG(FATAL) << "RowSparsePull with multiple values is not implemented yet"; + } else { + auto& indices = target_val_rowids[0].second; + PullRowSparse_(key, &recv_buf, indices, priority); + comm_->BroadcastRowSparse(key, recv_buf, grouped_val_rowid, num_vals == 1, priority); + } + } + } + void set_updater(const Updater& updater) override { CHECK(updater) << "invalid updater"; if (IsServerNode()) { @@ -212,7 +261,7 @@ class KVStoreDist : public KVStoreLocal { // first aggregate the values over keys std::vector uniq_keys; std::vector > grouped_vals; - GroupKVPairs(keys, values, &uniq_keys, &grouped_vals); + GroupKVPairsPush(keys, values, &uniq_keys, &grouped_vals); for (size_t i = 0; i < uniq_keys.size(); ++i) { // merge over devcies @@ -221,42 +270,132 @@ class KVStoreDist : public KVStoreLocal { NDArray merged = do_merge ? comm_->Reduce(key, vals, priority) : vals[0]; auto& send_buf = comm_buf_[key]; + const auto storage_type = merged.storage_type(); if (merged.ctx().dev_mask() == cpu::kDevMask) { + // make sure the previous push/pull is completed + send_buf.WaitToWrite(); send_buf = merged; // avoid memory copy } else { if (send_buf.is_none()) { - send_buf = NDArray(merged.shape(), pinned_ctx_, true, merged.dtype()); + if (storage_type == kDefaultStorage) { + send_buf = NDArray(merged.shape(), pinned_ctx_, true, merged.dtype()); + } else { + send_buf = NDArray(storage_type, merged.shape(), pinned_ctx_, true, merged.dtype()); + } } CopyFromTo(merged, &send_buf); } // push to servers + if (storage_type == kDefaultStorage) { auto push_to_servers = [this, key, send_buf](RunContext rctx, Engine::CallbackOnComplete cb) { - // convert to ps keys - size_t size = send_buf.shape().Size(); - PSKV& pskv = EncodeKey(key, size); + // convert to ps keys + size_t size = send_buf.shape().Size(); + PSKV& pskv = EncodeKey(key, size); #if MKL_EXPERIMENTAL == 1 - mkl_set_tblob_eager_mode(send_buf.data()); + mkl_set_tblob_eager_mode(send_buf.data()); #endif - real_t* data = static_cast(send_buf.data().dptr_); - // do push. false means no delete - ps::SArray vals(data, size, false); - CHECK_NOTNULL(ps_worker_)->ZPush( - pskv.keys, vals, pskv.lens, 0, [cb]() { cb(); }); - }; - Engine::Get()->PushAsync( - push_to_servers, - pinned_ctx_, - {send_buf.var()}, - {}, - FnProperty::kNormal, - priority, - PROFILER_MESSAGE("KVStoreDistPush")); + real_t* data = static_cast(send_buf.data().dptr_); + // do push. false means no delete + ps::SArray vals(data, size, false); + CHECK_NOTNULL(ps_worker_)->ZPush( + pskv.keys, vals, pskv.lens, 0, [cb]() { cb(); }); + }; + Engine::Get()->PushAsync( + push_to_servers, + pinned_ctx_, + {send_buf.var()}, + {}, + FnProperty::kNormal, + priority, + PROFILER_MESSAGE("KVStoreDistDefaultPush")); + } else if (storage_type == kRowSparseStorage) { + PushRowSparse(key, send_buf, priority); + } else { + LOG(FATAL) << "unknown storage type"; + } } } + // pull row sparse weight into `recv_buf` based on indices given by `indices` + void PullRowSparse_(int key, NDArray *recv_buf, const NDArray& indices, int priority) { + using namespace rowsparse; + auto pull_from_servers = [this, key, recv_buf, indices] + (RunContext rctx, Engine::CallbackOnComplete cb) { + // allocate memory for the buffer + size_t num_rows = indices.shape().Size(); + recv_buf->CheckAndAlloc({mshadow::Shape1(num_rows)}); +#if MKL_EXPERIMENTAL == 1 + mkl_set_tblob_eager_mode(recv_buf->data()); +#endif + real_t* data = static_cast(recv_buf->data().dptr_); + auto indices_data = indices.data(); + const auto offsets = indices_data.dptr(); + const auto unit_len = recv_buf->shape().ProdShape(1, recv_buf->shape().ndim()); + const int64_t size = num_rows * unit_len; + // convert to ps keys in row sparse format + PSKV& pskv = EncodeRowSparseKey(key, size, num_rows, offsets, + unit_len, recv_buf->shape()[0]); + if (this->log_verbose_) { + LOG(INFO) << "worker " << get_rank() << " pull lens: " << pskv.lens << " keys: " + << pskv.keys << " size: " << size; + } + auto vals = new ps::SArray(data, size, false); + CHECK_NOTNULL(ps_worker_)->ZPull(pskv.keys, vals, &pskv.lens, kRowSparsePushPull, + [vals, cb]() { delete vals; cb(); }); + // copy indices to recv_buf + mshadow::Copy(recv_buf->aux_data(kIdx).FlatTo1D(), + indices_data.FlatTo1D()); + }; + CHECK_NOTNULL(Engine::Get())->PushAsync( + pull_from_servers, + pinned_ctx_, + {indices.var()}, + {recv_buf->var()}, + FnProperty::kNormal, + priority, + PROFILER_MESSAGE("KVStoreDistRowSparsePull")); + } + + // push row sparse gradient + void PushRowSparse(int key, const NDArray &send_buf, int priority) { + using namespace rowsparse; + auto push_to_servers = [this, key, &send_buf] + (RunContext rctx, Engine::CallbackOnComplete cb) { +#if MKL_EXPERIMENTAL == 1 + mkl_set_tblob_eager_mode(send_buf.data()); +#endif + real_t* data = static_cast(send_buf.data().dptr_); + bool init = send_buf.storage_initialized(); + const int64_t num_rows = init ? send_buf.aux_shape(kIdx)[0] : 0; + const auto offsets = init ? send_buf.aux_data(kIdx).dptr() : nullptr; + const auto unit_len = send_buf.shape().ProdShape(1, send_buf.shape().ndim()); + const int64_t size = num_rows * unit_len; + + // convert to ps keys in row sparse format + PSKV& pskv = EncodeRowSparseKey(key, size, num_rows, offsets, + unit_len, send_buf.shape()[0]); + if (this->log_verbose_) { + LOG(INFO) << "worker " << get_rank() << " push lens: " << pskv.lens << " keys: " + << pskv.keys << " size: " << size; + } + ps::SArray vals(data, size, false); + CHECK_NOTNULL(ps_worker_)->ZPush(pskv.keys, vals, pskv.lens, kRowSparsePushPull, [cb]() { + cb(); + }); + }; + Engine::Get()->PushAsync( + push_to_servers, + pinned_ctx_, + {send_buf.var()}, + {}, + FnProperty::kNormal, + priority, + PROFILER_MESSAGE("KVStoreDistRowSparsePush")); + } + /** * \brief check if the keys are all unique */ @@ -282,7 +421,7 @@ class KVStoreDist : public KVStoreLocal { std::unordered_map ps_kv_; /** - * \brief serizelize EncodeKey + * \brief serizelize EncodeRowSparseKey and EncodeKey */ std::mutex mu_; @@ -329,6 +468,64 @@ class KVStoreDist : public KVStoreLocal { return pskv; } + // TODO(haibin) this encoding method for row sparse keys doesn't allow cross-layer batching + inline PSKV& EncodeRowSparseKey(const int key, const int64_t size, const int64_t num_rows, + const int64_t *offsets, const size_t unit_len, + const int64_t total_num_rows) { + using namespace common; + mu_.lock(); + PSKV& pskv = ps_kv_[key]; + mu_.unlock(); + pskv.keys.clear(); + pskv.lens.clear(); + // TODO(haibin) cache this information + auto krs = ps::Postoffice::Get()->GetServerKeyRanges(); + int num_servers = krs.size(); + CHECK_GT(num_servers, 0); + + if (total_num_rows * unit_len >= bigarray_bound_) { + pskv.size = 0; + int64_t start_row = 0; + // parition it to all servers + for (int i = 0; i < num_servers; ++i) { + // calculate partition ranges + int64_t part_num_rows = + llround(static_cast(total_num_rows) / num_servers * (i + 1)) - + llround(static_cast(total_num_rows) / num_servers * i); + auto end_row = start_row + part_num_rows; + auto lb = std::lower_bound(offsets, offsets + num_rows, start_row); + auto ub = std::upper_bound(offsets, offsets + num_rows, end_row - 1); + ps::Key master_key = krs[i].begin() + key; + pskv.keys.push_back(master_key); + pskv.lens.push_back(0); + for (auto offset = lb; offset < ub; offset++) { + ps::Key ps_key = krs[i].begin() + key + (*offset - start_row); + CHECK_LT(ps_key, krs[i].end()); + pskv.keys.push_back(ps_key); + pskv.lens.push_back(unit_len); + pskv.size += unit_len; + } + start_row = end_row; + } + CHECK_EQ(static_cast(pskv.size), size); + } else { + // send it to a single random picked server + int server = (key * 9973) % num_servers; + ps::Key master_key = krs[server].begin() + key; + pskv.keys.push_back(master_key); + pskv.lens.push_back(0); + for (int64_t i = 0; i < num_rows; i++) { + ps::Key ps_key = krs[server].begin() + key + offsets[i]; + CHECK_LT(ps_key, krs[server].end()); + pskv.keys.push_back(ps_key); + pskv.lens.push_back(unit_len); + } + pskv.size = size; + } + return pskv; + } + + /** * \brief for worker to push and pull data */ @@ -343,6 +540,7 @@ class KVStoreDist : public KVStoreLocal { size_t bigarray_bound_; /// \brief send & recver buffer std::unordered_map comm_buf_; + bool log_verbose_; }; } // namespace kvstore diff --git a/src/kvstore/kvstore_dist_server.h b/src/kvstore/kvstore_dist_server.h index 4e9f887173c5..43a10b034ca6 100644 --- a/src/kvstore/kvstore_dist_server.h +++ b/src/kvstore/kvstore_dist_server.h @@ -33,10 +33,14 @@ #include #include "ps/ps.h" #include "mxnet/kvstore.h" +#include "../operator/tensor/elemwise_binary_op.h" +#include "../operator/tensor/init_op.h" namespace mxnet { namespace kvstore { +static const int kRowSparsePushPull = 1; +static const int kDefaultPushPull = 0; static const int kStopServer = -1; static const int kSyncMode = -2; @@ -110,8 +114,9 @@ class KVStoreDistServer { static_cast(ps_server_)->set_request_handle( std::bind(&KVStoreDistServer::CommandHandle, this, _1, _2)); ps_server_->set_request_handle( - std::bind(&KVStoreDistServer::DataHandle, this, _1, _2, _3)); + std::bind(&KVStoreDistServer::DataHandleEx, this, _1, _2, _3)); sync_mode_ = false; + log_verbose_ = dmlc::GetEnv("MXNET_KVSTORE_DIST_ROW_SPARSE_VERBOSE", false); } ~KVStoreDistServer() { @@ -136,6 +141,11 @@ class KVStoreDistServer { } private: + struct MergeBuf { + std::vector request; + NDArray array; + }; + void CommandHandle(const ps::SimpleData& recved, ps::SimpleApp* app) { if (recved.head == kStopServer) { exec_.Stop(); @@ -151,9 +161,205 @@ class KVStoreDistServer { app->Response(recved); } - void DataHandle(const ps::KVMeta& req_meta, - const ps::KVPairs& req_data, - ps::KVServer* server) { + void DataHandleEx(const ps::KVMeta& req_meta, + const ps::KVPairs& req_data, + ps::KVServer* server) { + if (req_meta.cmd == kRowSparsePushPull) { + DataHandleRowSparse(req_meta, req_data, server); + } else { + DataHandleDefault(req_meta, req_data, server); + } + return; + } + + inline void ApplyUpdates(const int key, MergeBuf *merged, NDArray *stored, + ps::KVServer* server) { + if (merged->request.size() == (size_t) ps::NumWorkers()) { + // let the main thread to execute updater_, which is necessary for python + if (updater_) { + exec_.Exec([this, key, merged, stored](){ + CHECK(updater_); + updater_(key, merged->array, stored); + }); + } else { + // if no updater, just copy + CopyFromTo(merged->array, stored); + } + if (log_verbose_) { + LOG(INFO) << "sync response to " << merged->request.size() << " workers"; + } + for (const auto& req : merged->request) { + server->Response(req); + } + merged->request.clear(); + stored->WaitToRead(); + } else { + merged->array.WaitToRead(); + } + } + + void DecodeRowIds(const ps::SArray &keys, int64_t *indices, + const int64_t master_key, const int64_t num_rows) { + indices[0] = 0; + for (int64_t i = 1; i <= num_rows; i++) { + int key = DecodeKey(keys[i]); + auto row_id = key - master_key; + indices[i - 1] = row_id; + } + } + + void DataHandleRowSparse(const ps::KVMeta& req_meta, + const ps::KVPairs& req_data, + ps::KVServer* server) { + int master_key = DecodeKey(req_data.keys[0]); + auto num_rows = req_data.keys.size() - 1; + auto& stored = store_[master_key]; + if (req_meta.push) { + CHECK_GT(req_data.lens.size(), 0) << "req_data.lens cannot be empty"; + CHECK_EQ(req_data.lens[0], 0); + real_t* data = req_data.vals.data(); + if (stored.is_none()) { + if (log_verbose_) LOG(INFO) << "initial push: " << master_key; + // initialization + CHECK_GT(num_rows, 0) << "init with empty data is not supported"; + auto unit_len = req_data.lens[1]; + CHECK_GT(unit_len, 0); + size_t ds[] = {num_rows, (size_t) unit_len}; + TShape dshape(ds, ds + 2); + CHECK_EQ(req_data.vals.size(), num_rows * unit_len); + TBlob recv_blob(data, dshape, cpu::kDevMask); // NOLINT(*) + NDArray recved = NDArray(recv_blob, 0); + stored = NDArray(kRowSparseStorage, dshape, Context()); + Engine::Get()->PushSync([recved, stored](RunContext ctx) { + NDArray rsp = stored; + stored.CheckAndAlloc({mshadow::Shape1(recved.shape()[0])}); + mshadow::Stream *s = ctx.get_stream(); + op::PopulateFullIdxRspImpl(s, &rsp); + mshadow::Copy(rsp.data().FlatTo1D(), + recved.data().FlatTo1D(), s); + }, recved.ctx(), {recved.var()}, {stored.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + stored.WaitToRead(); + server->Response(req_meta); + return; + } + // synced push + if (sync_mode_) { + if (log_verbose_) LOG(INFO) << "sync push: " << master_key << " " << req_data.keys; + auto& merged = merge_buf_[master_key]; + if (merged.array.is_none()) { + merged.array = NDArray(kRowSparseStorage, stored.shape(), Context()); + } + if (num_rows == 0) { + // reset to zeros + if (merged.request.size() == 0) { + merged.array = NDArray(kRowSparseStorage, stored.shape(), Context()); + } else { + // nothing to aggregate + } + merged.request.push_back(req_meta); + ApplyUpdates(master_key, &merged, &stored, server); + return; + } + auto unit_len = req_data.lens[1]; + CHECK_GT(unit_len, 0); + // indices + std::vector indices(num_rows); + DecodeRowIds(req_data.keys, indices.data(), master_key, num_rows); + // data + TBlob idx_blob(indices.data(), mshadow::Shape1(num_rows), cpu::kDevMask); + size_t ds[] = {(size_t) num_rows, (size_t) unit_len}; + TShape dshape(ds, ds + 2); + TBlob recv_blob(data, dshape, cpu::kDevMask); // NOLINT(*) + // row_sparse NDArray + NDArray recved(kRowSparseStorage, stored.shape(), recv_blob, {idx_blob}, 0); + + if (merged.request.size() == 0) { + CopyFromTo(recved, &merged.array, 0); + } else { + NDArray out(kRowSparseStorage, stored.shape(), Context()); + std::vector const_vars; + const_vars.push_back(recved.var()); + const_vars.push_back(merged.array.var()); + // accumulate row_sparse gradients + // TODO(haibin) override + operator for row_sparse NDArray + // instead of calling BinaryComputeRspRsp directly + using namespace mshadow; + Engine::Get()->PushSync([recved, merged, out](RunContext ctx) { + std::vector inputs, outputs; + inputs.push_back(recved); + inputs.push_back(merged.array); + outputs.push_back(out); + op::BinaryComputeRspRspImpl({}, {}, inputs, {kWriteTo}, outputs); + }, recved.ctx(), const_vars, {out.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + CopyFromTo(out, &merged.array, 0); + } + merged.request.push_back(req_meta); + ApplyUpdates(master_key, &merged, &stored, server); + } else { + // async push + if (log_verbose_) LOG(INFO) << "async push: " << master_key; + if (num_rows == 0) { + server->Response(req_meta); + return; + } + auto unit_len = req_data.lens[1]; + CHECK_GT(unit_len, 0); + // indices + std::vector indices(num_rows); + DecodeRowIds(req_data.keys, indices.data(), master_key, num_rows); + TBlob idx_blob(indices.data(), mshadow::Shape1(num_rows), cpu::kDevMask); + size_t ds[] = {(size_t) num_rows, (size_t) unit_len}; + TShape dshape(ds, ds + 2); + TBlob recv_blob(data, dshape, cpu::kDevMask); // NOLINT(*) + NDArray recved(kRowSparseStorage, stored.shape(), recv_blob, {idx_blob}, 0); + exec_.Exec([this, master_key, &recved, &stored](){ + CHECK(updater_); + updater_(master_key, recved, &stored); + }); + server->Response(req_meta); + stored.WaitToRead(); + } + } else { + // pull + if (log_verbose_) LOG(INFO) << "pull: " << master_key; + ps::KVPairs response; + if (num_rows == 0) { + std::vector lens(req_data.keys.size(), 0); + response.keys = req_data.keys; + response.lens.CopyFrom(lens.begin(), lens.end()); + server->Response(req_meta, response); + return; + } + CHECK(!stored.is_none()) << "init " << master_key << " first"; + auto shape = stored.shape(); + auto unit_len = shape.ProdShape(1, shape.ndim()); + const float* data = stored.data().dptr(); + auto len = unit_len * num_rows; + // concat values + response.vals.resize(len); + for (size_t i = 1; i <= num_rows; i++) { + int key = DecodeKey(req_data.keys[i]); + int64_t row_id = key - master_key; + const auto src = data + row_id * unit_len; + auto begin = (i - 1) * unit_len; + auto end = i * unit_len; + response.vals.segment(begin, end).CopyFrom(src, unit_len); + } + // setup response + response.keys = req_data.keys; + std::vector lens(req_data.keys.size(), unit_len); + lens[0] = 0; + response.lens.CopyFrom(lens.begin(), lens.end()); + server->Response(req_meta, response); + } + } + + void DataHandleDefault(const ps::KVMeta& req_meta, + const ps::KVPairs &req_data, + ps::KVServer* server) { + CHECK_EQ(req_meta.cmd, kDefaultPushPull); // do some check CHECK_EQ(req_data.keys.size(), (size_t)1); if (req_meta.push) { @@ -185,35 +391,13 @@ class KVStoreDistServer { if (merged.array.is_none()) { merged.array = NDArray(dshape, Context()); } - if (merged.request.size() == 0) { CopyFromTo(recved, &merged.array, 0); } else { merged.array += recved; } - merged.request.push_back(req_meta); - - if (merged.request.size() == (size_t)ps::NumWorkers()) { - // let the main thread to execute updater_, which is necessary for - // python - if (updater_) { - exec_.Exec([this, key, &merged, &stored](){ - CHECK(updater_); - updater_(key, merged.array, &stored); - }); - } else { - // if no updater, just copy - CopyFromTo(merged.array, &stored); - } - for (const auto& req : merged.request) { - server->Response(req); - } - merged.request.clear(); - stored.WaitToRead(); - } else { - merged.array.WaitToRead(); - } + ApplyUpdates(key, &merged, &stored, server); } else { // async push exec_.Exec([this, key, &recved, &stored](){ @@ -227,7 +411,7 @@ class KVStoreDistServer { // pull ps::KVPairs response; CHECK(!stored.is_none()) << "init " << key << " first"; - int len = stored.shape()[0]; + auto len = stored.shape().Size(); response.keys = req_data.keys; response.lens = {len}; // TODO(mli) try to remove this CopyFrom @@ -249,16 +433,13 @@ class KVStoreDistServer { KVStore::Updater updater_; std::unordered_map store_; - - struct MergeBuf { - std::vector request; - NDArray array; - }; std::unordered_map merge_buf_; Executor exec_; - ps::KVServer* ps_server_; + + // whether to LOG verbose information + bool log_verbose_; }; } // namespace kvstore diff --git a/src/kvstore/kvstore_local.h b/src/kvstore/kvstore_local.h index 536a89b46e13..11d4b644346e 100644 --- a/src/kvstore/kvstore_local.h +++ b/src/kvstore/kvstore_local.h @@ -30,6 +30,7 @@ #include #include #include +#include #include #include "./comm.h" @@ -62,7 +63,7 @@ class KVStoreLocal : public KVStore { CHECK(local_.find(keys[i]) == local_.end()) << "duplicate init of key " << keys[i]; local_[keys[i]] = values[i].Copy(pinned_ctx_); - comm_->Init(keys[i], values[i].shape(), values[i].dtype()); + comm_->Init(keys[i], values[i].storage_type(), values[i].shape(), values[i].dtype()); } } @@ -85,7 +86,7 @@ class KVStoreLocal : public KVStore { int priority) override { std::vector uniq_keys; std::vector > grouped_vals; - GroupKVPairs(keys, values, &uniq_keys, &grouped_vals); + GroupKVPairsPush(keys, values, &uniq_keys, &grouped_vals); for (size_t i = 0; i < uniq_keys.size(); ++i) { int key = uniq_keys[i]; @@ -100,7 +101,11 @@ class KVStoreLocal : public KVStore { } updater_(key, merged, &local); } else { - local = merged; + if (merged.storage_type() != local.storage_type()) { + local = merged.Copy(local.ctx()); + } else { + local = merged; + } } } } @@ -110,7 +115,7 @@ class KVStoreLocal : public KVStore { int priority) override { std::vector uniq_keys; std::vector > grouped_vals; - GroupKVPairs(keys, values, &uniq_keys, &grouped_vals); + GroupKVPairsPull(keys, values, &uniq_keys, &grouped_vals); for (size_t i = 0; i < uniq_keys.size(); ++i) { int key = uniq_keys[i]; @@ -120,6 +125,30 @@ class KVStoreLocal : public KVStore { } } + void PullRowSparse(const std::vector& keys, + const std::vector>& val_rowids, + int priority = 0) override { + std::vector uniq_keys; + std::vector>> grouped_val_rowids; + GroupKVPairsPullRsp(keys, val_rowids, &uniq_keys, &grouped_val_rowids); + for (size_t i = 0; i < uniq_keys.size(); ++i) { + int key = uniq_keys[i]; + const NDArray& local = local_[key]; + CHECK(!local.is_none()) << "key " << key << " has not been inited"; + CHECK_EQ(local.storage_type(), kRowSparseStorage) + << "PullRowSparse expects row_sparse src NDArray"; + auto &target_val_rowids = grouped_val_rowids[i]; + const size_t num_vals = target_val_rowids.size(); + for (size_t i = 0; i < num_vals; i++) { + auto &row_id = target_val_rowids[i].second; + NDArray indices = row_id.Copy(pinned_ctx_); + Unique(&indices, priority); + target_val_rowids[i].second = indices; + } + comm_->BroadcastRowSparse(key, local, grouped_val_rowids[i], false, priority); + } + } + void Push(const std::vector& str_keys, const std::vector& values, int priority) override { @@ -136,15 +165,85 @@ class KVStoreLocal : public KVStore { Pull(keys, values, priority); } + void PullRowSparse(const std::vector& str_keys, + const std::vector>& val_rowids, + const int priority = 0) override { + std::vector keys(str_keys.size()); + LookupKeys(str_keys, &keys); + PullRowSparse(keys, val_rowids, priority); + } + protected: /** - * \brief group values on keys + * \brief group values on keys for push */ - template + void GroupKVPairsPush(const std::vector& keys, + const std::vector& values, + std::vector *uniq_keys, + std::vector> *grouped_vals) { + // check if the storage type of a value is valid + auto validator = [this](const int key, const NDArray& nd) -> bool { + auto stype = nd.storage_type(); + // valid NDArray + if (stype == kDefaultStorage || stype == kRowSparseStorage) return true; + // invalid NDArray, abort + LOG(FATAL) << "Unexpected storage type detected during kvstore push: " << stype; + return false; + }; + GroupKVPairs(keys, values, uniq_keys, grouped_vals, validator); + } + /** + * \brief group values on keys for pull + */ + void GroupKVPairsPull(const std::vector& keys, + const std::vector& values, + std::vector *uniq_keys, + std::vector> *grouped_vals) { + // check if the storage type of a value is valid + auto validator = [this](const int key, const NDArray* nd) -> bool { + // valid + if (nd->storage_type() == kDefaultStorage) return true; + // invalid, print warning messages once + if (this->warnings_printed_.find(key) == this->warnings_printed_.end()) { + LOG(INFO) << "Warning: non-default weights detected during kvstore pull. " + << "Please make sure to use row_sparse_pull with row_ids instead."; + this->warnings_printed_.insert(key); + } + return false; + }; + GroupKVPairs(keys, values, uniq_keys, grouped_vals, validator); + } + /** + * \brief group values on keys for row_sparse_pull + */ + void GroupKVPairsPullRsp(const std::vector& keys, + const std::vector>& values, + std::vector *uniq_keys, + std::vector>> *grouped_vals) { + // check if the storage type of a value is valid + auto validator = [this](const int key, const std::pair& val_rowid) -> bool { + auto val_stype = val_rowid.first->storage_type(); + auto rowid_stype = val_rowid.second.storage_type(); + // check storage types + CHECK_EQ(val_stype, kRowSparseStorage) << "Expected row_sparse storage type for " + << "row_sparse_pull values, but detected storage type " << val_stype; + CHECK_EQ(rowid_stype, kDefaultStorage) << "Expected default storage type for " + << "row_sparse_pull rowids, but detected storage type " << rowid_stype; + return true; + }; + GroupKVPairs(keys, values, uniq_keys, grouped_vals, validator); + } + + /** + * \brief group values on keys with validation. + * A value `v` is not included in the result if is_valid(v) returns false. + */ + template void GroupKVPairs(const std::vector& keys, const std::vector& values, std::vector* uniq_keys, - std::vector >* grouped_vals) { + std::vector >* grouped_vals, + const FValidate& is_valid) { CHECK_EQ(keys.size(), values.size()); // TODO(mli) check if already sorted as an optimization using Idx = std::pair; @@ -158,12 +257,14 @@ class KVStoreLocal : public KVStore { int pre_key = idx[0].first - 1; for (auto i : idx) { - if (i.first != pre_key) { - uniq_keys->push_back(i.first); - grouped_vals->push_back({values[i.second]}); - pre_key = i.first;; - } else { - grouped_vals->back().push_back(values[i.second]); + if (is_valid(i.first, values[i.second])) { + if (i.first != pre_key) { + uniq_keys->push_back(i.first); + grouped_vals->push_back({values[i.second]}); + pre_key = i.first; + } else { + grouped_vals->back().push_back(values[i.second]); + } } } } @@ -178,6 +279,28 @@ class KVStoreLocal : public KVStore { } } + /** + * \brief sort and get unique values. Output is expected to be on cpu_pinned context + */ + void Unique(NDArray *out, int priority = 0) { + CHECK_EQ(out->ctx().dev_mask(), pinned_ctx_.dev_mask()) + << "Unique expects input with `pinned_ctx_`"; + Engine::Get()->PushSync([out](RunContext rctx) { + NDArray *output = out; + CHECK_EQ(out->shape().ndim(), 1) << "Unique expects 1D inputs"; + const auto size = out->shape()[0]; + auto out_data = output->data(); + MSHADOW_IDX_TYPE_SWITCH(out_data.type_flag_, IType, { + auto dptr = output->data().dptr(); + common::ParallelSort(dptr, dptr + size, omp_get_max_threads()); + auto num_unique_idx = std::unique(dptr, dptr + size) - dptr; + *output = output->Reshape(mshadow::Shape1(num_unique_idx)); + }); + }, pinned_ctx_, {}, {out->var()}, + FnProperty::kCPUPrioritized, priority, PROFILER_MESSAGE("KVStoreUnique")); + out->WaitToRead(); + } + /// reducer and broadcaster Comm* comm_; /// pinned context @@ -188,6 +311,8 @@ class KVStoreLocal : public KVStore { std::unordered_map str_key_dict_; /// the next available integer for string->int key mapping int next_str_key_ = 0; + /// whether printed warning due to mismatch stype in each key + std::unordered_set warnings_printed_; }; } // namespace kvstore } // namespace mxnet diff --git a/src/ndarray/ndarray.cc b/src/ndarray/ndarray.cc index 8e71df729b73..0d2968626d79 100644 --- a/src/ndarray/ndarray.cc +++ b/src/ndarray/ndarray.cc @@ -30,6 +30,9 @@ #include #include #include "./ndarray_function.h" +#include "../common/utils.h" +#include "../operator/tensor/matrix_op-inl.h" +#include "../operator/tensor/init_op.h" #include "./autograd.h" #if MXNET_USE_OPENCV @@ -52,6 +55,8 @@ NDArray NDArray::grad() const { NDArray NDArray::Reshape(const TShape &shape) const { using namespace autograd; + CHECK(storage_type() == kDefaultStorage) << "Reshape for storage type " << + storage_type() << " is not implemented yet"; if (AutogradRuntime::Get()->IsTraining()) { CHECK_GE(shape_.Size(), shape.Size()) << "NDArray.Reshape: target shape must have must have the same size as " @@ -82,13 +87,15 @@ NDArray NDArray::Reshape(const TShape &shape) const { } } - NDArray NDArray::Slice(index_t begin, index_t end) const { using namespace autograd; - NDArray ret = *this; + using namespace mshadow; CHECK(!is_none()) << "NDArray is not initialized"; CHECK_LT(begin, end) << "Invalid slicing range [" << begin << ", " << end << ")"; CHECK_GE(shape_[0], end) << "Slice end index out of range"; + CHECK_EQ(storage_type(), kDefaultStorage); + NDArray ret = *this; + auto stype = storage_type(); size_t length = shape_.ProdShape(1, shape_.ndim()); MSHADOW_TYPE_SWITCH(ret.dtype(), DType, { ret.byte_offset_ += begin * length * sizeof(DType); @@ -115,8 +122,9 @@ NDArray NDArray::Slice(index_t begin, index_t end) const { } } - NDArray NDArray::At(index_t idx) const { + CHECK(storage_type() == kDefaultStorage) << "Storage type " + << storage_type() << " doesn't support At()"; NDArray ret = this->Slice(idx, idx+1); if (shape_.ndim() > 1) { return ret.Reshape(TShape(shape_.data()+1, shape_.data()+shape_.ndim())); @@ -125,6 +133,24 @@ NDArray NDArray::At(index_t idx) const { } } +/*! + * \brief Return deep copy of the current ndarry's aux_data(i) + * as an NDArray of default storage type. This function blocks. + */ +NDArray NDArray::aux_ndarray(size_t i) const { + CHECK_NE(storage_type(), kDefaultStorage); + CHECK(i < ptr_->aux_shapes.size()); + // create a delay_alloc default ndarray as output + NDArray ret(TShape(), ctx(), true, aux_type(i)); + ret.SyncCopyFromNDArray(*this, i); + return ret; +} + +NDArray NDArray::data_ndarray() const { + NDArray ret(TShape(), ctx(), true, dtype_); + ret.SyncCopyFromNDArray(*this); + return ret; +} bool NDArray::fresh_out_grad() const { if (entry_.ag_node != nullptr) return entry_.ag_node->fresh_out_grad; @@ -239,11 +265,11 @@ void BinaryOp(const NDArray &lhs, // redirect everything to mshadow operations switch (lhs.ctx().dev_mask()) { case cpu::kDevMask: { - Engine::Get()->PushSync([lhs, rhs, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Eval(lhs.data(), rhs.data(), &tmp, ctx); - }, lhs.ctx(), const_vars, {ret.var()}, - FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); + Engine::Get()->PushSync([lhs, rhs, ret](RunContext ctx) { + TBlob tmp = ret.data(); + ndarray::Eval(lhs.data(), rhs.data(), &tmp, ctx); + }, lhs.ctx(), const_vars, {ret.var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE_FUNCNAME); break; } #if MXNET_USE_CUDA @@ -269,6 +295,7 @@ void SetValueOp(const real_t &rhs, NDArray *out) { switch (ret.ctx().dev_mask()) { case cpu::kDevMask: { Engine::Get()->PushSync([rhs, ret](RunContext ctx) { + CHECK(ret.storage_type() == kDefaultStorage); TBlob tmp = ret.data(); ndarray::Eval(rhs, &tmp, ctx); }, ret.ctx(), {}, {ret.var()}, @@ -340,6 +367,134 @@ void ScalarOp(const NDArray &lhs, } } +size_t num_aux_data(NDArrayStorageType stype) { + size_t num = 0; + switch (stype) { + case kDefaultStorage: num = 0; break; + case kCSRStorage: num = 2; break; + case kRowSparseStorage: num = 1; break; + default: LOG(FATAL) << "Unknown storage type" << stype; break; + } + return num; +} + +// Make a copy of a CSR NDArray +template +inline void CopyFromToCsrImpl(const NDArray from, NDArray *to, RunContext ctx) { + using namespace mshadow; + CHECK_EQ(from.storage_type(), to->storage_type()) << "Copying with different storage type"; + // if source storage is not initialized, fill destination with zeros + auto s = ctx.get_stream(); + if (!from.storage_initialized()) { + op::FillZerosCsrImpl(s, to); + return; + } + // Allocate storage + to->CheckAndAllocAuxData(csr::kIndPtr, from.aux_shape(csr::kIndPtr)); + to->CheckAndAllocAuxData(csr::kIdx, from.aux_shape(csr::kIdx)); + to->CheckAndAllocData(from.aux_shape(csr::kIdx)); + TBlob val = to->data(); + TBlob indptr = to->aux_data(csr::kIndPtr); + TBlob idx = to->aux_data(csr::kIdx); + ndarray::Copy(from.data(), &val, + from.ctx(), to->ctx(), ctx); + ndarray::Copy(from.aux_data(csr::kIndPtr), &indptr, + from.ctx(), to->ctx(), ctx); + ndarray::Copy(from.aux_data(csr::kIdx), &idx, + from.ctx(), to->ctx(), ctx); +} + +// Make a copy of a row-sparse NDArray +template +inline void CopyFromToRspImpl(const NDArray from, NDArray *to, RunContext ctx) { + using namespace mshadow; + CHECK_EQ(from.storage_type(), to->storage_type()) << "Copying with different storage type"; + // if source is zeros, fill destination with zeros, too + auto s = ctx.get_stream(); + if (!from.storage_initialized()) { + op::FillZerosRspImpl(s, to); + return; + } + auto aux_shape = from.aux_shape(rowsparse::kIdx); + to->CheckAndAlloc({aux_shape}); + TBlob val = to->data(); + TBlob idx = to->aux_data(rowsparse::kIdx); + ndarray::Copy(from.data(), &val, + from.ctx(), to->ctx(), ctx); + ndarray::Copy(from.aux_data(rowsparse::kIdx), &idx, + from.ctx(), to->ctx(), ctx); +} + +// Make a copy of a dense NDArray +template +inline void CopyFromToDnsImpl(const NDArray from, NDArray *to, RunContext ctx) { + using namespace mshadow; + CHECK_EQ(from.storage_type(), to->storage_type()) << "Copying with different storage type"; + TBlob tmp = to->data(); + ndarray::Copy(from.data(), &tmp, + from.ctx(), to->ctx(), ctx); +} + +// Make a copy of an NDArray based on storage type +template +void CopyFromToImpl(const NDArray from, NDArray *to, RunContext rctx) { + using namespace std; + using namespace mshadow; + // if storage type doesn't match, cast the storage first + auto from_stype = from.storage_type(); + auto to_stype = to->storage_type(); + CHECK(from_stype == kDefaultStorage + || to_stype == kDefaultStorage + || from_stype == to_stype) + << "Copying ndarray of stype = " << from_stype + << " to stype = " << to_stype << " is not supported"; + const auto from_ctx = from.ctx(); + const auto to_ctx = to->ctx(); + auto s = rctx.get_stream(); + bool is_train = mxnet::autograd::AutogradRuntime::Get()->IsTraining(); + std::vector requested; + if (is_same::value && from_stype != to_stype) { + requested.push_back(ResourceManager::Get()->Request(from_ctx, + ResourceRequest(ResourceRequest::kTempSpace))); + } + OpContext opctx{is_train, + rctx, + engine::CallbackOnComplete(), + requested}; + if (from_ctx == to_ctx && from_stype != to_stype) { + // same ctx, different stypes, use cast op directly without copying + common::CastStorageDispatch(opctx, from, *to); + } else { + NDArray casted_nd; // an intermediate result before copying from to to + if (from_stype == to_stype) { + casted_nd = from; // same stype, no need to cast from + } else { // different stypes on different ctx needs an temporary casted_nd + TShape shape = from.shape(); + if (to_stype == kDefaultStorage) { + casted_nd = NDArray(shape, from_ctx); + } else { + casted_nd = NDArray(to_stype, shape, from_ctx); + } + // convert from_nd to the same stype as to_nd + common::CastStorageDispatch(opctx, from, casted_nd); + } + + if (to_stype == kDefaultStorage) { + CopyFromToDnsImpl(casted_nd, to, rctx); + } else if (to_stype == kRowSparseStorage) { + CopyFromToRspImpl(casted_nd, to, rctx); + } else if (to_stype == kCSRStorage) { + CopyFromToCsrImpl(casted_nd, to, rctx); + } else { + LOG(FATAL) << "unknown storage type" << to_stype; + } + } + if (is_same::value || is_same::value) { + // Wait GPU kernel to complete + rctx.get_stream()->Wait(); + } +} + void CopyFromTo(const NDArray &from, NDArray *to, int priority) { if (from.var() == to->var()) { // skip to copy to itself @@ -354,44 +509,33 @@ void CopyFromTo(const NDArray &from, NDArray *to, int priority) { NDArray ret = *to; int a = from.ctx().dev_mask(); int b = to->ctx().dev_mask(); - std::vector const_vars; if (from.var() != ret.var()) const_vars.push_back(from.var()); if (a == cpu::kDevMask && b == cpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, from.ctx(), const_vars, {ret.var()}, FnProperty::kNormal, priority, PROFILER_MESSAGE("CopyCPU2CPU")); } else { #if MXNET_USE_CUDA if (a == cpu::kDevMask && b == gpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); - // Wait GPU kernel to complete - ctx.get_stream()->Wait(); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, ret.ctx(), const_vars, {ret.var()}, FnProperty::kCopyToGPU, priority, PROFILER_MESSAGE("CopyCPU2GPU")); } else if (a == gpu::kDevMask && b == cpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); - // Wait GPU kernel to complete - ctx.get_stream()->Wait(); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, from.ctx(), const_vars, {ret.var()}, FnProperty::kCopyFromGPU, priority, PROFILER_MESSAGE("CopyGPU2CPU")); } else if (a == gpu::kDevMask && b == gpu::kDevMask) { Engine::Get()->PushSync([from, ret](RunContext ctx) { - TBlob tmp = ret.data(); - ndarray::Copy(from.data(), &tmp, - from.ctx(), ret.ctx(), ctx); - // Wait GPU kernel to complete - ctx.get_stream()->Wait(); + NDArray nd(ret); + CopyFromToImpl(from, &nd, ctx); }, from.ctx(), const_vars, {ret.var()}, from.dtype() != ret.dtype() ? FnProperty::kNormal : FnProperty::kCopyFromGPU, priority, PROFILER_MESSAGE("CopyGPU2GPU")); @@ -665,34 +809,76 @@ NDArray &NDArray::operator/=(const real_t &src) { /* magic number for ndarray version 1, with int64_t TShape */ static const uint32_t NDARRAY_V1_MAGIC = 0xF993fac8; +/* magic number for ndarray version 2, with storage type */ +static const uint32_t NDARRAY_V2_MAGIC = 0xF993fac9; + void NDArray::Save(dmlc::Stream *strm) const { - strm->Write(NDARRAY_V1_MAGIC); + // write magic number to mark this version + // for storage type + strm->Write(NDARRAY_V2_MAGIC); + + // save storage type + int32_t stype = storage_type(); + strm->Write(&stype, sizeof(stype)); + + const int32_t nad = num_aux_data(storage_type()); + // save storage shape if ndarray is sparse + if (nad > 0) { + storage_shape().Save(strm); + } + + // save shape shape_.Save(strm); if (is_none()) return; + // save context Context ctx = this->ctx(); ctx.Save(strm); TBlob save_data; - NDArray temp; + NDArray nd_cpu; // a copy of *this on cpu if (ctx.dev_mask() != cpu::kDevMask) { - temp = this->Copy(Context::CPU()); - temp.WaitToRead(); - save_data = temp.data(); + nd_cpu = this->Copy(Context::CPU()); + nd_cpu.WaitToRead(); + save_data = nd_cpu.data(); } else { this->WaitToRead(); save_data = this->data(); + nd_cpu = *this; } + // save type flag int32_t type_flag = save_data.type_flag_; strm->Write(&type_flag, sizeof(type_flag)); + + // save aux_types and aux_shapes + if (nad > 0) { + for (int i = 0; i < nad; ++i) { + int32_t aux_type_flag = aux_type(i); + strm->Write(&aux_type_flag, sizeof(aux_type_flag)); + aux_shape(i).Save(strm); + } + } + + // save data CHECK(save_data.CheckContiguous()); size_t type_size = mshadow::mshadow_sizeof(type_flag); - strm->Write(save_data.dptr_, type_size * shape_.Size()); + // save data could be values of sparse tensors + // must use save_data.shape_ instead of this->shape_ + strm->Write(save_data.dptr_, type_size * save_data.shape_.Size()); + + // save aux data + if (nad > 0) { + for (int i = 0; i < nad; ++i) { + TBlob save_data = nd_cpu.aux_data(i); + // save aux_data + CHECK(save_data.CheckContiguous()); + size_t aux_type_size = mshadow::mshadow_sizeof(aux_type(i)); + strm->Write(save_data.dptr_, aux_type_size * save_data.Size()); + } + } } -bool LegacyTShapeLoad(dmlc::Stream *strm, TShape *shape) { - uint32_t magic; - if (strm->Read(&magic, sizeof(uint32_t)) != sizeof(uint32_t)) return false; +bool LegacyTShapeLoad(dmlc::Stream *strm, TShape *shape, const uint32_t magic) { switch (magic) { case NDARRAY_V1_MAGIC: return shape->Load(strm); @@ -708,10 +894,10 @@ bool LegacyTShapeLoad(dmlc::Stream *strm, TShape *shape) { } } -bool NDArray::Load(dmlc::Stream *strm) { +bool NDArray::LegacyLoad(dmlc::Stream *strm, const uint32_t magic) { // load shape TShape shape; - if (!LegacyTShapeLoad(strm, &shape)) return false; + if (!LegacyTShapeLoad(strm, &shape, magic)) return false; if (shape.ndim() == 0) { *this = NDArray(); return true; } @@ -739,6 +925,88 @@ bool NDArray::Load(dmlc::Stream *strm) { } } +bool NDArray::Load(dmlc::Stream *strm) { + uint32_t magic; + if (strm->Read(&magic, sizeof(uint32_t)) != sizeof(uint32_t)) return false; + if (magic != NDARRAY_V2_MAGIC) { + return LegacyLoad(strm, magic); + } + + // load storage type + int32_t stype; + if (strm->Read(&stype, sizeof(stype)) != sizeof(stype)) return false; + const int32_t nad = num_aux_data(static_cast(stype)); + + // load storage shape + TShape sshape; + if (nad > 0) { + if (!sshape.Load(strm)) return false; + } + + // load shape + TShape shape; + if (!shape.Load(strm)) return false; + if (shape.ndim() == 0) { + *this = NDArray(); return true; + } + + // load context + Context ctx; + if (!ctx.Load(strm)) return false; + + // load type flag + int32_t type_flag; + if (strm->Read(&type_flag, sizeof(type_flag)) != sizeof(type_flag)) return false; + + // load aux_types and aux_shapes + std::vector aux_types; + std::vector aux_shapes; + if (nad > 0) { + aux_types.resize(nad); + aux_shapes.resize(nad); + for (int i = 0; i < nad; ++i) { + // load aux_type(i) + if (strm->Read(&aux_types[i], sizeof(aux_types[i])) != sizeof(aux_types[i])) return false; + // load aux_shapes(i) + if (!aux_shapes[i].Load(strm)) return false; + } + } + + // load data into CPU + NDArray temp; + if (0 == nad) { + temp = NDArray(shape, Context::CPU(), false, type_flag); + } else { + temp = NDArray(static_cast(stype), shape, + Context::CPU(), false, type_flag, + aux_types, aux_shapes, sshape); + } + // load data + TBlob load_data = temp.data(); + size_t type_size = mshadow::mshadow_sizeof(type_flag); + size_t nread = type_size * load_data.Size(); + if (strm->Read(load_data.dptr_, nread) != nread) return false; + + // load aux_data + if (nad > 0) { + for (int i = 0; i < nad; ++i) { + load_data = temp.aux_data(i); + type_size = mshadow::mshadow_sizeof(load_data.type_flag_); + nread = type_size * load_data.Size(); + if (strm->Read(load_data.dptr_, nread) != nread) return false; + } + } + + if (ctx.dev_mask() == cpu::kDevMask) { + *this = std::move(temp); return true; + } else { +#if MXNET_USE_CUDA + *this = temp.Copy(ctx); return true; +#else + *this = std::move(temp); return true; +#endif + } +} const uint64_t kMXAPINDArrayListMagic = 0x112; @@ -771,7 +1039,16 @@ void NDArray::Load(dmlc::Stream* fi, } NDArray NDArray::Copy(Context ctx) const { - NDArray ret(shape(), ctx, true, dtype_); + NDArray ret; + if (kDefaultStorage == storage_type()) { + ret = NDArray(shape(), ctx, true, dtype_); + } else if (kUndefinedStorage != storage_type()) { + ret = NDArray(storage_type(), shape(), ctx, true, dtype_, + ptr_->aux_types, ptr_->aux_shapes, storage_shape()); + } else { + LOG(FATAL) << "NDArray::Copy cannot copy undefined storage-type ndarray to ctx.dev_type=" + << ctx.dev_type << ", ctx.dev_id=" << ctx.dev_id; + } CopyFromTo(*this, &ret); return ret; } @@ -804,6 +1081,101 @@ void NDArray::SyncCopyFromCPU(const void *data, size_t size) const { } } +/*! + * \brief Copy src.data()/aux_data(i) to dst->data()/aux_data(j). + */ +void NDArray::SyncCopyFromNDArray(const NDArray& src, int i, int j) { + if (i >= 0) { + CHECK_NE(src.storage_type(), kDefaultStorage); + } else { + CHECK(!src.is_none()) << "src dense ndarray must have been initialized"; + } + if (j >= 0) { + CHECK_NE(storage_type(), kDefaultStorage); + } else { + CHECK(!this->is_none()) << "dst dense ndarray must have been initialized"; + } + + if (src.var() == var()) { + // skip to copy to itself + LOG(WARNING) << "SyncCopyFromNDArray does not support copying to self"; + return; + } + const int src_dev_mask = src.ctx().dev_mask(); + const int dst_dev_mask = ctx().dev_mask(); + std::vector const_vars; + const_vars.push_back(src.var()); + + // get or create a dst tblob for copying src to it + // if dst is a dense format and has not been allocated, allocate memory for it + // else if dst is not initialized, allocate corresponding data blob for it + auto get_dst_data = [&](const TShape& src_shape) { + if (this->storage_type() == kDefaultStorage) { + this->ReshapeAndAlloc(src_shape); + } else if (!this->storage_initialized()) { + if (j < 0) { + this->CheckAndAllocData(src_shape); + } else { + this->CheckAndAllocAuxData(j, src_shape); + } + } + TBlob dst_data = (j >= 0? this->aux_data(j) : this->data()); + CHECK_LE(src_shape.Size(), dst_data.shape_.Size()); + return dst_data; + }; + + if (src_dev_mask == cpu::kDevMask && dst_dev_mask == cpu::kDevMask) { + Engine::Get()->PushSync([&](RunContext rctx) { + const TBlob src_data = (i >= 0? src.aux_data(i) : src.data()); + TBlob dst_data = get_dst_data(src_data.shape_); + ndarray::Copy(src_data, &dst_data, src.ctx(), this->ctx(), rctx); + }, this->ctx(), const_vars, {this->var()}, + FnProperty::kNormal, 0, PROFILER_MESSAGE("SyncCopyFromNDArrayCPU2CPU")); + } else { +#if MXNET_USE_CUDA + if (src_dev_mask == cpu::kDevMask && dst_dev_mask == gpu::kDevMask) { + Engine::Get()->PushSync([&](RunContext rctx) { + const TBlob src_data = (i >= 0? src.aux_data(i) : src.data()); + TBlob dst_data = get_dst_data(src_data.shape_); + ndarray::Copy(src_data, &dst_data, src.ctx(), this->ctx(), rctx); + rctx.get_stream()->Wait(); + }, this->ctx(), const_vars, {this->var()}, + FnProperty::kCopyToGPU, 0, PROFILER_MESSAGE("SyncCopyFromNDArrayCPU2GPU")); + } else if (src_dev_mask == gpu::kDevMask && dst_dev_mask == cpu::kDevMask) { + Engine::Get()->PushSync([&](RunContext rctx) { + const TBlob src_data = (i >= 0? src.aux_data(i) : src.data()); + TBlob dst_data = get_dst_data(src_data.shape_); + ndarray::Copy(src_data, &dst_data, src.ctx(), this->ctx(), rctx); + rctx.get_stream()->Wait(); + }, this->ctx(), const_vars, {this->var()}, + FnProperty::kCopyFromGPU, 0, PROFILER_MESSAGE("SyncCopyFromNDArrayGPU2CPU")); + } else if (src_dev_mask == gpu::kDevMask && dst_dev_mask == gpu::kDevMask) { + Engine::Get()->PushSync([&](RunContext rctx) { + const TBlob src_data = (i >= 0? src.aux_data(i) : src.data()); + TBlob dst_data = get_dst_data(src_data.shape_); + ndarray::Copy(src_data, &dst_data, src.ctx(), this->ctx(), rctx); + rctx.get_stream()->Wait(); + }, this->ctx(), const_vars, {this->var()}, + src.dtype() != this->dtype() ? FnProperty::kNormal : FnProperty::kCopyFromGPU, + 0, PROFILER_MESSAGE("SyncCopyFromNDArrayGPU2GPU")); + } else { + LOG(FATAL) << "unknown device mask"; + } +#else + LOG(FATAL) << MXNET_GPU_NOT_ENABLED_ERROR; +#endif + } + // The copy operation was pushed to engine to execute. + // Need to wait here for it being completed. + // The reason for pushing the copy operation to engine + // is because when copying data from a sparse tensor + // to the current one, that sparse ndarray's storage_shape/aux_shape + // may not be ready or changed and we need to ensure + // thread safty for reading the correct shape info to allocate + // memory for the current ndarray. + WaitToRead(); +} + void NDArray::SyncCopyToCPU(void *data, size_t size) const { TShape dshape = this->shape(); CHECK_EQ(dshape.Size(), size) diff --git a/src/ndarray/ndarray_function-inl.h b/src/ndarray/ndarray_function-inl.h index 2be55f50f934..b284e0378647 100644 --- a/src/ndarray/ndarray_function-inl.h +++ b/src/ndarray/ndarray_function-inl.h @@ -30,27 +30,28 @@ // macro to help specialize evaluation function #ifndef DECL_TERNARY -#define DECL_TERNARY(XPU, OP, FUN) \ - template<> \ - void Eval(const TBlob &lhs, const TBlob &mhs, \ - const TBlob &rhs, TBlob *ret, RunContext ctx) { \ - FUN(lhs, mhs, rhs, ret, ctx); \ +#define DECL_TERNARY(XPU, OP, FUN) \ + template<> \ + void Eval(const TBlob &lhs, const TBlob &mhs, \ + const TBlob &rhs, TBlob *ret, RunContext ctx) { \ + FUN(lhs, mhs, rhs, ret, ctx); \ } #endif #ifndef DECL_BINARY -#define DECL_BINARY(XPU, OP, FUN) \ - template<> \ +#define DECL_BINARY(XPU, OP, FUN) \ + template<> \ void Eval(const TBlob &lhs, const TBlob &rhs, TBlob *ret, RunContext ctx) { \ - FUN(lhs, rhs, ret, ctx); \ + FUN(lhs, rhs, ret, ctx); \ } #endif #ifndef DECL_SCALAR -#define DECL_SCALAR(XPU, OP, FUN, REVERSE) \ - template<> \ - void Eval(const TBlob &lhs, const real_t &rhs, TBlob *ret, RunContext ctx) { \ - FUN(lhs, rhs, ret, ctx); \ +#define DECL_SCALAR(XPU, OP, FUN, REVERSE) \ + template<> \ + void Eval(const TBlob &lhs, const real_t &rhs, \ + TBlob *ret, RunContext ctx) { \ + FUN(lhs, rhs, ret, ctx); \ } #endif @@ -62,10 +63,11 @@ namespace mxnet { namespace ndarray { + // true implementation template -inline void EvalBinary_(const TBlob &lhs, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalBinary_(const TBlob &lhs, const TBlob &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); CHECK_EQ(ret->type_flag_, lhs.type_flag_) @@ -79,10 +81,9 @@ inline void EvalBinary_(const TBlob &lhs, const TBlob &rhs, }); } - template -inline void EvalOneHot_(const TBlob &index, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalOneHot_(const TBlob &index, const TBlob &rhs, + TBlob *ret, RunContext ctx) { LOG(INFO) << "The operator onehot_encode is deprecated; use one_hot instead."; using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); @@ -99,8 +100,8 @@ inline void EvalOneHot_(const TBlob &index, const TBlob &rhs, } template -inline void EvalMatChooseRowElem_(const TBlob &lhs, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalMatChooseRowElem_(const TBlob &lhs, const TBlob &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); // TODO(eric): support mixed type choose, i.e. int index and float rhs. @@ -116,8 +117,8 @@ inline void EvalMatChooseRowElem_(const TBlob &lhs, const TBlob &rhs, } template -inline void EvalMatFillRowElem_(const TBlob &lhs, const TBlob &mhs, const TBlob &rhs, - TBlob *ret, RunContext ctx) { +void EvalMatFillRowElem_(const TBlob &lhs, const TBlob &mhs, const TBlob &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); ret->get(s) @@ -127,8 +128,8 @@ inline void EvalMatFillRowElem_(const TBlob &lhs, const TBlob &mhs, const TBlob } template -inline void EvalScalar_(const TBlob &lhs, const real_t &rhs, - TBlob *ret, RunContext ctx) { +void EvalScalar_(const TBlob &lhs, const real_t &rhs, + TBlob *ret, RunContext ctx) { using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); CHECK_EQ(ret->type_flag_, lhs.type_flag_) @@ -148,7 +149,7 @@ inline void EvalScalar_(const TBlob &lhs, const real_t &rhs, template<> void EvalClip(const TBlob &src, const real_t &a_min, const real_t &a_max, - TBlob *ret, RunContext ctx) { + TBlob *ret, RunContext ctx) { typedef DEVICE xpu; using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); @@ -163,12 +164,11 @@ void EvalClip(const TBlob &src, const real_t &a_min, const real_t &a_max } template<> -void EvalRandom( - const real_t &a, - const real_t &b, - const Resource &resource, - TBlob *ret, - RunContext ctx) { +void EvalRandom(const real_t &a, + const real_t &b, + const Resource &resource, + TBlob *ret, + RunContext ctx) { typedef DEVICE xpu; mshadow::Stream *s = ctx.get_stream(); switch (ret->type_flag_) { @@ -444,6 +444,7 @@ DECL_SCALAR(DEVICE, Plus, EvalScalar_, true) DECL_SCALAR(DEVICE, Minus, EvalScalar_, true) DECL_SCALAR(DEVICE, Mul, EvalScalar_, true) DECL_SCALAR(DEVICE, Div, EvalScalar_, true) + // for reverse seq DECL_SCALAR(DEVICE, Plus, EvalScalar_, false) DECL_SCALAR(DEVICE, Minus, EvalScalar_, false) diff --git a/src/ndarray/ndarray_function.cc b/src/ndarray/ndarray_function.cc index e4af86d2c824..5cea7942efa6 100644 --- a/src/ndarray/ndarray_function.cc +++ b/src/ndarray/ndarray_function.cc @@ -25,6 +25,7 @@ // this will be invoked by gcc and compile CPU version #include "./ndarray_function.h" #include "./ndarray_function-inl.h" +#include "../common/utils.h" namespace mxnet { namespace ndarray { @@ -44,5 +45,138 @@ void Copy(const TBlob &from, TBlob *to, } }) } + +template +void ElementwiseSumRspImpl(mshadow::Stream* s, + const std::vector& nds, + const std::vector& uniq_row_idx, + NDArray* out, + const int nthreads = 4) { +#pragma omp parallel num_threads(nthreads) + { + const size_t nnr = uniq_row_idx.size(); + const int num_threads = omp_get_num_threads(); + size_t row_block_len = (nnr + num_threads - 1) / num_threads; + const size_t row_block_start = omp_get_thread_num() * row_block_len; + if (row_block_start < nnr) { + const size_t row_block_end = std::min(row_block_start+row_block_len, nnr); + + const size_t row_length = out->data().shape_.ProdShape(1, out->data().shape_.ndim()); + auto out_values = out->data().get_with_shape( + mshadow::Shape2(out->storage_shape()[0], row_length), s); + auto out_indices = out->aux_data(rowsparse::kIdx).FlatTo1D(); + for (size_t i = row_block_start; i < row_block_end; ++i) { + out_indices[i] = uniq_row_idx[i]; + } + for (const auto& nd : nds) { + if (nd.storage_initialized()) { + const auto nd_indices = nd.aux_data(rowsparse::kIdx).FlatTo1D(); + const auto nd_values = nd.data().get_with_shape( + mshadow::Shape2(nd.storage_shape()[0], row_length), s); + const auto nd_num_rows = nd.aux_shape(rowsparse::kIdx).Size(); + const IType* nd_indices_start = &nd_indices[0]; + const IType* nd_indices_end = nd_indices_start + nd_num_rows; + const IType* row_idx_ptr = std::lower_bound(nd_indices_start, nd_indices_end, + out_indices[row_block_start]); + // skip this nd if all of its row indices are smaller than out_indices[row_block_start] + // or current row block is not covered by [*row_idx_ptr, nd_indices_end). + if (nd_indices_end == row_idx_ptr || *row_idx_ptr > out_indices[row_block_end-1]) { + continue; + } + for (size_t irow = row_block_start; + irow < row_block_end && row_idx_ptr != nd_indices_end;) { + if (out_indices[irow] == *row_idx_ptr) { + auto out_value_cur_row = out_values[irow]; + const auto offset = row_idx_ptr - nd_indices_start; + auto nd_value_cur_row = nd_values[offset]; + for (size_t j = 0; j < nd_value_cur_row.shape_[0]; ++j) { + out_value_cur_row[j] += nd_value_cur_row[j]; + } + ++irow; + ++row_idx_ptr; + } else if (out_indices[irow] < *row_idx_ptr) { + ++irow; + } else { + ++row_idx_ptr; + } + } + } + } + } + } +} + +/*! + * \brief Given a vector of ndarrays, generate a index vector containing + * all the unique row indices of the ndarrays. + */ +template +void GetUniqueRspRowIdx(const std::vector& nds, + std::vector* uniq_row_idx) { + using namespace rowsparse; + size_t total_num_rows = 0; + for (const auto& nd : nds) { + CHECK_EQ(nd.storage_type(), kRowSparseStorage); + if (nd.storage_initialized()) { + total_num_rows += nd.aux_shape(kIdx).Size(); + } + } + + uniq_row_idx->resize(total_num_rows); + int nthreads = omp_get_max_threads(); + int offset = 0; + for (const auto& nd : nds) { + if (nd.storage_initialized()) { + const IType* nd_row_idx = nd.aux_data(kIdx).dptr(); + const int num_rows = nd.aux_shape(kIdx).Size(); +#pragma omp parallel for num_threads(nthreads) + for (int i = 0; i < num_rows; ++i) { + (*uniq_row_idx)[offset+i] = nd_row_idx[i]; + } + offset += num_rows; + } + } + + common::ParallelSort(uniq_row_idx->begin(), uniq_row_idx->end(), nthreads); + auto it = std::unique(uniq_row_idx->begin(), uniq_row_idx->end()); + uniq_row_idx->resize(it - uniq_row_idx->begin()); +} + +void ElementwiseSumRsp(mshadow::Stream* s, const std::vector& nds, NDArray* out) { + if (nds.empty()) return; + using namespace rowsparse; + CHECK_EQ(out->storage_type(), kRowSparseStorage) + << "Expected row sparse storage type (" + << out->storage_type() << " given)"; + + MSHADOW_TYPE_SWITCH(out->dtype(), DType, { + MSHADOW_IDX_TYPE_SWITCH(out->aux_type(kIdx), IType, { + std::vector uniq_row_idx; + GetUniqueRspRowIdx(nds, &uniq_row_idx); + out->CheckAndAlloc({mshadow::Shape1(uniq_row_idx.size())}); + out->data().FlatTo2D() = static_cast(0); + ElementwiseSumRspImpl(s, nds, uniq_row_idx, out, omp_get_max_threads()); + }); + }); +} + +/*! + * \brief Parallel cpu impl of elemwise sum for sparse tensors. + * Currently only support row sparse sum. + */ +template<> +void ElementwiseSum(mshadow::Stream* s, + const std::vector& nds, + NDArray* out) { + if (nds.empty()) return; + + if (nds[0].storage_type() == kRowSparseStorage) { + ElementwiseSumRsp(s, nds, out); + } else { + LOG(FATAL) << "ElementwiseSum has not been implemented for storage_type = << " + << nds[0].storage_type(); + } +} + } // namespace ndarray } // namespace mxnet diff --git a/src/ndarray/ndarray_function.h b/src/ndarray/ndarray_function.h index b1ed58db3e74..65c59185f691 100644 --- a/src/ndarray/ndarray_function.h +++ b/src/ndarray/ndarray_function.h @@ -28,6 +28,7 @@ #include #include #include +#include #include #include "../operator/mshadow_op.h" @@ -168,6 +169,14 @@ void ElementwiseSum(const std::vector source, TBlob *out, RunContext ctx); +/*! + * \brief Interface for parallel impl of elemwise sum for sparse matrices + */ +template +void ElementwiseSum(mshadow::Stream* s, + const std::vector& nds, + NDArray* out); + // broadcasting template void EvalBroadcast(TBlob const& src, TBlob* ret, int size, RunContext ctx); diff --git a/src/nnvm/legacy_op_util.cc b/src/nnvm/legacy_op_util.cc index 2bba5f1c3655..6e601780080b 100644 --- a/src/nnvm/legacy_op_util.cc +++ b/src/nnvm/legacy_op_util.cc @@ -60,19 +60,20 @@ class OperatorState { opr_ = opr; fwd_init_ = bwd_init_ = false; - in_data_.resize(prop->ListArguments().size()); + in_data_fwd_.resize(prop->ListArguments().size()); + in_data_bwd_.resize(prop->ListArguments().size()); out_data_.resize(prop->NumOutputs()); aux_data_.resize(prop->ListAuxiliaryStates().size()); - in_grad_.resize(in_data_.size()); + in_grad_.resize(in_data_fwd_.size()); out_grad_.resize(prop->NumVisibleOutputs()); std::vector out_grad_ptr(out_grad_.size()); for (size_t i = 0; i < out_grad_.size(); ++i) { out_grad_ptr[i] = &out_grad_[i]; } - std::vector in_data_ptr(in_data_.size()); - for (size_t i = 0; i < in_data_.size(); ++i) { - in_data_ptr[i] = &in_data_[i]; + std::vector in_data_ptr(in_data_fwd_.size()); + for (size_t i = 0; i < in_data_fwd_.size(); ++i) { + in_data_ptr[i] = &in_data_bwd_[i]; } std::vector out_data_ptr(out_data_.size()); for (size_t i = 0; i < out_data_.size(); ++i) { @@ -89,16 +90,19 @@ class OperatorState { const std::vector& req, const std::vector& outputs) { if (!fwd_init_) { - CHECK_EQ(inputs.size(), in_data_.size() + aux_data_.size()); + CHECK_EQ(inputs.size(), in_data_fwd_.size() + aux_data_.size()); CHECK_EQ(outputs.size(), out_data_.size()); - for (size_t i = 0; i < in_data_.size(); ++i) in_data_[i] = inputs[i]; + // in_data_bwd_ has the same tblobs as the ones in in_data_fwd_, except that the ones + // referred by arg_data_ptr_ will be overriden + for (size_t i = 0; i < in_data_fwd_.size(); ++i) in_data_fwd_[i] = inputs[i]; + for (size_t i = 0; i < in_data_fwd_.size(); ++i) in_data_bwd_[i] = inputs[i]; for (size_t i = 0; i < aux_data_.size(); ++i) { - aux_data_[i] = inputs[i + in_data_.size()]; + aux_data_[i] = inputs[i + in_data_fwd_.size()]; } for (size_t i = 0; i < out_data_.size(); ++i) out_data_[i] = outputs[i]; fwd_init_ = true; } - opr_->Forward(ctx, in_data_, req, out_data_, aux_data_); + opr_->Forward(ctx, in_data_fwd_, req, out_data_, aux_data_); } void Backward(const OpContext &ctx, @@ -108,6 +112,8 @@ class OperatorState { if (!bwd_init_) { CHECK(fwd_init_); CHECK_EQ(arg_data_ptr_.size() + aux_data_.size(), inputs.size()); + // override tblobs pointed by arg_data_ptr_ since they might not contain + // initialized data during forward pass. for (size_t i = 0; i < arg_data_ptr_.size(); ++i) { *arg_data_ptr_[i] = inputs[i]; } @@ -118,13 +124,19 @@ class OperatorState { for (size_t i = 0; i < outputs.size(); ++i) in_grad_[i] = outputs[i]; bwd_init_ = true; } - opr_->Backward(ctx, out_grad_, in_data_, out_data_, req, in_grad_, aux_data_); + opr_->Backward(ctx, out_grad_, in_data_bwd_, out_data_, req, in_grad_, aux_data_); } private: Operator *opr_; bool fwd_init_, bwd_init_; - std::vector in_data_, aux_data_, out_data_, in_grad_, out_grad_; + // input data blobs for forward and backward + // in_data_fwd_ and in_data_bwd_ will hold different tblobs when StorageFallbackOpExecutor + // performs storage fallback on a non-default input NDArray. The one in in_data_fwd_ is + // generated when setting up forward executor, while the one in in_data_bwd_ is generated + // when setting up backward executor. + std::vector in_data_fwd_, in_data_bwd_; + std::vector aux_data_, out_data_, in_grad_, out_grad_; std::vector arg_data_ptr_; }; diff --git a/src/operator/batch_norm.cc b/src/operator/batch_norm.cc index 86f47dd6163f..866b7fe619cb 100644 --- a/src/operator/batch_norm.cc +++ b/src/operator/batch_norm.cc @@ -230,7 +230,7 @@ void BatchNormOp::DoBackward(mshadow::Stream *, #pragma omp parallel for for (int channel = 0; channel < static_cast(channelCount); ++channel) { const AccReal *weight = weights.dptr(); - const AccReal w = weight ? weight[channel] : AccReal(1); + const AccReal w = !param_.fix_gamma ? weight[channel] : AccReal(1); AccReal mean, invstd; if (is_train_and_not_global_stats) { mean = saveMeanDataPtr[channel]; diff --git a/src/operator/batch_norm.cu b/src/operator/batch_norm.cu index 64f7d9373823..9a8b576a16ee 100644 --- a/src/operator/batch_norm.cu +++ b/src/operator/batch_norm.cu @@ -283,7 +283,7 @@ __global__ void BatchNormalizationUpdateOutputKernel( } // Write normalized and update the output - const AccReal gamma = weight.numElements() > 0 + const AccReal gamma = ((flags & FIX_GAMMA_FLAG) == 0 && weight.numElements() > 0) ? ScalarConvert::to(weight[plane]) : ScalarConvert::to(1); const AccReal beta = bias.numElements() > 0 ? ScalarConvert::to(bias[plane]) @@ -332,7 +332,7 @@ static __global__ void BatchNormalizationBackwardKernel( invstd = VARIANCE_TO_INVSTD(tensors.runningVar[plane], eps); } - const AccReal weightVal = tensors.weight.numElements() > 0 ? + const AccReal weightVal = ((flags & FIX_GAMMA_FLAG) == 0 && tensors.weight.numElements() > 0) ? ScalarConvert::to(tensors.weight[plane]) : AccReal(1); const AccReal norm = AccReal(1) / N; diff --git a/src/operator/deconvolution-inl.h b/src/operator/deconvolution-inl.h index 43530138b8ea..9db94a8c5986 100644 --- a/src/operator/deconvolution-inl.h +++ b/src/operator/deconvolution-inl.h @@ -256,7 +256,7 @@ class DeconvolutionOp : public Operator { if (!param_.no_bias) { // add bias, broadcast bias to dim 1: channel Tensor bias = in_data[deconv::kBias].get(s); - out += broadcast<1>(bias, out.shape_); + out += mshadow::expr::broadcast<1>(bias, out.shape_); } } diff --git a/src/operator/elemwise_op_common.h b/src/operator/elemwise_op_common.h index 9b398f947e30..f60bb590a2e6 100644 --- a/src/operator/elemwise_op_common.h +++ b/src/operator/elemwise_op_common.h @@ -80,6 +80,42 @@ inline bool ElemwiseAttr(const nnvm::NodeAttrs& attrs, return true; } +// Only inferring output storage types from input for now +template +inline bool ElemwiseStorageAttr(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + auto deduce = [&](std::vector *vec, const char *name, AttrType& result, + bool fallback) { + auto &v = *vec; + for (size_t i = 0; i < vec->size(); ++i) { + if (v[i] == kUndefinedStorage) { + // if input type is unknown, assume it's default storage + CHECK(assign(&v[i], kDefaultStorage)); + } else if (assign(&result, v[i]) == false && fallback) { + result = kDefaultStorage; + } + } + }; + AttrType dattr = kUndefinedStorage; + deduce(in_attrs, "input", dattr, enable_fallback); + if (reverse_infer) { + LOG(FATAL) << "not implemented yet"; + } + auto write = [&](std::vector *vec, const char *name) { + for (size_t i = 0; i < vec->size(); ++i) { + CHECK(assign(&(*vec)[i], dattr)) + << "Incompatible attr in node " << attrs.name << " at " << i << "-th " + << name << ": " << "expected " << dattr << ", got " << (*vec)[i]; + } + }; + if (is_none(dattr)) dattr = kDefaultStorage; + write(out_attrs, "output"); + return true; +} + template inline bool ElemwiseShape(const nnvm::NodeAttrs& attrs, std::vector *in_attrs, @@ -108,6 +144,18 @@ inline bool ElemwiseType(const nnvm::NodeAttrs& attrs, attrs, in_attrs, out_attrs, -1); } +template +inline bool ElemwiseStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + // TODO(junwu): add ctx info into storage inference logic + CHECK_EQ(in_attrs->size(), static_cast(n_in)) << " in operator " << attrs.name; + CHECK_EQ(out_attrs->size(), static_cast(n_out)) << " in operator " << attrs.name; + return ElemwiseStorageAttr( + attrs, in_attrs, out_attrs); +} + // Transfer gradient and input to FGradient function struct ElemwiseGradUseIn { const char *op_name; diff --git a/src/operator/leaky_relu-inl.h b/src/operator/leaky_relu-inl.h index 828930a0e405..d228e3e67d03 100644 --- a/src/operator/leaky_relu-inl.h +++ b/src/operator/leaky_relu-inl.h @@ -111,7 +111,7 @@ class LeakyReLUOp : public Operator { case leakyrelu::kPReLU: { weight = in_data[leakyrelu::kGamma].get(s); Assign(out, req[leakyrelu::kOut], - F(data, broadcast<1>(weight, out.shape_))); + F(data, mshadow::expr::broadcast<1>(weight, out.shape_))); break; } case leakyrelu::kRReLU: { @@ -177,7 +177,8 @@ class LeakyReLUOp : public Operator { weight = in_data[leakyrelu::kGamma].get(s); grad_weight = in_grad[leakyrelu::kGamma].get(s); grad_weight = sumall_except_dim<1>(F(data) * grad); - gdata = F(data, broadcast<1>(weight, data.shape_)) * grad; + gdata = F(data, mshadow::expr::broadcast<1>(weight, data.shape_)) + * grad; break; } case leakyrelu::kRReLU: { diff --git a/src/operator/mxnet_op.h b/src/operator/mxnet_op.h index 0af7d026d9d5..3162ab6b7b16 100644 --- a/src/operator/mxnet_op.h +++ b/src/operator/mxnet_op.h @@ -25,8 +25,12 @@ #ifndef MXNET_OPERATOR_MXNET_OP_H_ #define MXNET_OPERATOR_MXNET_OP_H_ +#include #include #include +#ifdef __CUDACC__ +#include "../common/cuda_utils.h" +#endif // __CUDACC__ namespace mxnet { namespace op { @@ -40,6 +44,8 @@ const float PI = 3.14159265358979323846; using std::isnan; #endif +template +int get_num_threads(const int N); #ifdef __CUDACC__ #define CUDA_KERNEL_LOOP(i, n) \ @@ -47,6 +53,13 @@ using std::isnan; i < (n); \ i += blockDim.x * gridDim.x) +inline cudaDeviceProp cuda_get_device_prop() { + int device; + CUDA_CALL(cudaGetDevice(&device)); + cudaDeviceProp deviceProp; + CUDA_CALL(cudaGetDeviceProperties(&deviceProp, device)); + return deviceProp; +} /*! * \brief Get the number of blocks for cuda kernel given N @@ -55,8 +68,18 @@ inline int cuda_get_num_blocks(const int N) { using namespace mshadow::cuda; return std::min(kMaxGridNum, (N + kBaseThreadNum - 1) / kBaseThreadNum); } + +template<> +inline int get_num_threads(const int N) { + using namespace mshadow::cuda; + return kBaseThreadNum * cuda_get_num_blocks(N); +} #endif // __CUDACC__ +template<> +inline int get_num_threads(const int N) { + return omp_get_max_threads(); +} /*! \brief operator request type switch */ #define MXNET_ASSIGN_REQ_SWITCH(req, ReqType, ...) \ @@ -216,7 +239,6 @@ __global__ void mxnet_generic_kernel(int N, Args... args) { } } - template struct Kernel { template diff --git a/src/operator/operator_common.h b/src/operator/operator_common.h index 2d46bd3230ce..dc53e1a7d232 100644 --- a/src/operator/operator_common.h +++ b/src/operator/operator_common.h @@ -29,12 +29,15 @@ #include #include #include +#include +#include #include #include #include #include #include #include "../common/cuda_utils.h" +#include "../common/utils.h" namespace mxnet { namespace op { @@ -125,6 +128,19 @@ inline std::string type_string(const int& x) { return "unknown"; } +/*! \brief get string representation of storage_type */ +inline std::string stype_string(const int& x) { + switch (x) { + case kDefaultStorage: + return "default"; + case kCSRStorage: + return "csr"; + case kRowSparseStorage: + return "row_sparse"; + } + return "unknown"; +} + /*! * \brief Assign x to y. Checks for compatiblity when y is not empty. * Allow missing dim in both x and y (as 0). @@ -201,6 +217,24 @@ inline bool type_assign(int *y, const int& x) { } \ } +/*! + * \brief macro assign type to out if out is unknown (-1) otherwise check consistency + * Use macro so we can see the error file more clearly + * \param type_array the storage type array to store the result + * \param index the index of in the array + * \param type the inferred storage type + */ +#define STORAGE_TYPE_ASSIGN_CHECK(type_array, index, type) \ + { \ + if (!type_assign(&(type_array)[index], type)) { \ + std::ostringstream os; \ + os << "Storage type inconsistent, Provided=" \ + << stype_string((type_array)[index]) << ',' \ + << " inferred storage type=" << stype_string(type); \ + throw ::mxnet::op::InferTypeError(os.str(), index); \ + } \ + } + // helper macro to implement bind dispatch #if MXNET_USE_CUDA #define DO_BIND_DISPATCH(Method, ...) \ @@ -333,6 +367,54 @@ inline void ParamParser(nnvm::NodeAttrs* attrs) { attrs->parsed = std::move(param); } +/*! \brief Perform storage fallback to invoke fcompute. + * \param attrs attributes of the operator + * \param ctx operator context + * \param inputs inputs of fcompute + * \param req req of fcompute + * \param outputs outputs of fcompute + * \param fcompute + * \param fname name of the operator + * \param mutate_idx the indices of mutable inputs + */ +template +void FCompExFallback(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs, + FCompute fcompute, + const std::string& fname, + std::vector mutate_idx = {}) { + using namespace mxnet::common; + std::vector in_blobs, out_blobs; + std::vector pre_temp_src, pre_temp_dst, post_temp_dst, post_temp_src; + // mapping from index in input_blobs to index in pre_temp_dst + std::unordered_map in_temp_idx_map; + SetupDefaultBlobs(inputs, &in_blobs, &pre_temp_src, &pre_temp_dst, &in_temp_idx_map); + SetupDefaultBlobs(outputs, &out_blobs, &post_temp_dst, &post_temp_src); + for (const auto idx : mutate_idx) { + auto map_iter = in_temp_idx_map.find(idx); + if (map_iter != in_temp_idx_map.end()) { + post_temp_src.push_back(pre_temp_dst[map_iter->second]); + post_temp_dst.push_back(inputs[idx]); + } + } + CastNonDefaultStorage(pre_temp_src, pre_temp_dst, ctx, true); + fcompute(attrs, ctx, in_blobs, req, out_blobs); + CastNonDefaultStorage(post_temp_src, post_temp_dst, ctx, true); +} + +#define CHECK_RSP_ALL_ROWS_NON_ZERO(rsp, func, param) \ + { \ + CHECK(rsp.storage_shape()[0] == rsp.shape()[0]) << func \ + << " for RowSparse " << param << " is only implemented for " \ + << "RowSparse " << param << " with all rows containing non-zeros. " \ + << "Expects " << param << ".values.shape[0] (" << rsp.storage_shape()[0] \ + << ") == " << param << ".shape[0] (" << rsp.shape()[0] << ")."; \ + } + + } // namespace op } // namespace mxnet #endif // MXNET_OPERATOR_OPERATOR_COMMON_H_ diff --git a/src/operator/optimizer_op-inl.h b/src/operator/optimizer_op-inl.h index 70759b15251a..28707aae4ce8 100644 --- a/src/operator/optimizer_op-inl.h +++ b/src/operator/optimizer_op-inl.h @@ -36,6 +36,7 @@ #include "./mshadow_op.h" #include "./elemwise_op_common.h" #include "mxnet_op.h" +#include "./tensor/init_op.h" namespace mxnet { namespace op { @@ -102,6 +103,167 @@ inline void SGDUpdate(const nnvm::NodeAttrs& attrs, }); } +/*! \brief kernel for sparse sgd + */ +template +struct SGDDnsRspKernel { + // DType is the output data type + // IType is row sparse idx type + // i is the ith row in row sparse gradient + template + MSHADOW_XINLINE static void Map(int i, const index_t row_length, DType* out, const DType* weight, + const IType* grad_idx, const DType *grad_val, + const DType clip_gradient, const DType lr, + const DType wd, const DType rescale_grad) { + for (index_t j = 0; j < row_length; j++) { + index_t data_i = grad_idx[i] * row_length + j; + index_t grad_i = i * row_length + j; + if (clip_gradient >= 0.0f) { + KERNEL_ASSIGN(out[data_i], req, (1.f - lr * wd) * weight[data_i] - + (lr) * mshadow_op::clip::Map(rescale_grad * grad_val[grad_i], clip_gradient)); + } else { + KERNEL_ASSIGN(out[data_i], req, (1.f - lr * wd) * weight[data_i] - + (lr * rescale_grad) * grad_val[grad_i]); + } + } + } +}; + +template +inline void SGDUpdateDnsRspImpl(const SGDParam& param, + const OpContext &ctx, + const TBlob& weight, + const NDArray& grad, + const OpReqType& req, + TBlob *out) { + using namespace mshadow; + using namespace mshadow::expr; + using namespace mshadow_op; + using namespace mxnet_op; + Stream* s = ctx.get_stream(); + CHECK_EQ(grad.storage_type(), kRowSparseStorage); + // if gradients are zeros, no weights are updated + if (!grad.storage_initialized() || req == kNullOp) return; + CHECK_EQ(req, kWriteInplace) << "kWriteInplace is expected for sparse sgd_mom_update"; + CHECK_GT(weight.shape_.Size(), 0); + + MSHADOW_REAL_TYPE_SWITCH(weight.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(grad.aux_type(rowsparse::kIdx), IType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + DType* weight_data = weight.dptr(); + IType* grad_idx = grad.aux_data(rowsparse::kIdx).dptr(); + DType* grad_val = grad.data().dptr(); + index_t num_rows = grad.aux_shape(rowsparse::kIdx)[0]; + auto row_length = weight.shape_.ProdShape(1, weight.ndim()); + Kernel, xpu>::Launch(s, num_rows, row_length, + out->dptr(), weight_data, grad_idx, grad_val, + static_cast(param.clip_gradient), + static_cast(param.lr), static_cast(param.wd), + static_cast(param.rescale_grad)); + }); + }); + }); +} + +/*! \brief kernel for sparse sgd + */ +template +struct SGDRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, const index_t num_cols, DType* out, const DType* weight, + const DType *grad, const DType clip_gradient, const DType lr, + const DType wd, const DType rescale_grad) { + bool contains_non_zeros = false; + index_t j = 0; + index_t offset = i * num_cols; + for (; j < num_cols; ++j) { + if (grad[offset + j] != 0) { + contains_non_zeros = true; + break; + } + } + if (!contains_non_zeros) return; + const DType rate = 1.f - lr * wd; + for (index_t j = 0; j < num_cols; j++) { + auto index = offset + j; + if (clip_gradient >= 0.0f) { + KERNEL_ASSIGN(out[index], req, rate * weight[index] - + lr * mshadow_op::clip::Map(rescale_grad * grad[index], clip_gradient)); + } else { + KERNEL_ASSIGN(out[index], req, rate * weight[index] - + lr * rescale_grad * grad[index]); + } + } + } +}; + +template +inline void SGDUpdateRspDnsImpl(const SGDParam& param, + const OpContext &ctx, + const NDArray& weight, + const TBlob& grad, + const OpReqType req, + NDArray *out) { + using namespace mshadow; + using namespace mxnet_op; + using namespace rowsparse; + CHECK_RSP_ALL_ROWS_NON_ZERO(weight, "SGDUpdate", "weights"); + CHECK_EQ(weight.storage_type(), kRowSparseStorage); + if (req == kNullOp) return; + CHECK_EQ(req, kWriteInplace) << "kWriteInplace is expected for sparse sgd_update"; + CHECK(weight.storage_initialized()); + Stream* s = ctx.get_stream(); + MSHADOW_REAL_TYPE_SWITCH(weight.dtype(), DType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + DType* weight_data = weight.data().dptr(); + DType* grad_data = grad.dptr(); + index_t num_rows = weight.aux_shape(kIdx)[0]; + auto num_cols = weight.shape().ProdShape(1, weight.shape().ndim()); + Kernel, xpu>::Launch(s, num_rows, num_cols, + out->data().dptr(), weight_data, grad_data, + static_cast(param.clip_gradient), + static_cast(param.lr), static_cast(param.wd), + static_cast(param.rescale_grad)); + }); + }); +} + +template +inline void SGDUpdateRspRspImpl(const SGDParam& param, + const OpContext& ctx, + const NDArray& weight, + const NDArray& grad, + const OpReqType& req, + NDArray *out) { + CHECK_RSP_ALL_ROWS_NON_ZERO(weight, "SGDUpdate", "weights"); + // reuse dns rsp implementation when storage_shape == shape + TBlob out_blob = out->data(); + SGDUpdateDnsRspImpl(param, ctx, weight.data(), grad, req, &out_blob); +} + +template +inline void SGDUpdateEx(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mshadow; + using namespace mshadow::expr; + using namespace mshadow_op; + const SGDParam& param = nnvm::get(attrs.parsed); + auto weight_stype = inputs[0].storage_type(); + auto grad_stype = inputs[1].storage_type(); + if (weight_stype == kRowSparseStorage && grad_stype == kRowSparseStorage) { + NDArray out = outputs[0]; + SGDUpdateRspRspImpl(param, ctx, inputs[0], inputs[1], req[0], &out); + } else if (weight_stype == kRowSparseStorage && grad_stype == kDefaultStorage) { + NDArray out = outputs[0]; + SGDUpdateRspDnsImpl(param, ctx, inputs[0], inputs[1].data(), req[0], &out); + } else { + FCompExFallback(attrs, ctx, inputs, req, outputs, SGDUpdate, "SGDUpdate"); + } +} + struct SGDMomParam : public dmlc::Parameter { float lr; float momentum; @@ -275,6 +437,196 @@ inline void MP_SGDMomUpdate(const nnvm::NodeAttrs& attrs, }); } +template +struct SGDMomDnsRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, index_t row_length, DType* out_data, + DType* mom_data, const DType* weight_data, const IType* grad_idx, + const DType* grad_data, const DType clip_gradient, const DType momentum, + const DType lr, const DType wd, const DType rescale_grad) { + const DType rate = lr * wd; + for (index_t j = 0; j < row_length; j++) { + index_t data_i = grad_idx[i] * row_length + j; + index_t grad_i = i * row_length + j; + if (clip_gradient >= 0.0f) { + mom_data[data_i] = momentum * mom_data[data_i] + - rate * weight_data[data_i] + - lr * + mshadow_op::clip::Map(rescale_grad * grad_data[grad_i], + clip_gradient); + } else { + mom_data[data_i] = momentum * mom_data[data_i] + - rate * weight_data[data_i] + - lr * rescale_grad * grad_data[grad_i]; + } + KERNEL_ASSIGN(out_data[data_i], req, weight_data[data_i] + mom_data[data_i]); + } + } +}; + +template +inline void SGDMomUpdateDnsRspDnsImpl(const SGDMomParam& param, + const OpContext& ctx, + const TBlob& weight, + const NDArray& grad, + const TBlob& mom, + const OpReqType& req, + TBlob *out) { + using namespace mxnet_op; + using namespace rowsparse; + Stream* s = ctx.get_stream(); + if (!grad.storage_initialized() || req == kNullOp) return; + CHECK_EQ(req, kWriteInplace) << "kWriteInplace is expected for sparse sgd_mom_update"; + CHECK_GT(weight.shape_.Size(), 0); + CHECK_GT(mom.shape_.Size(), 0); + + MSHADOW_REAL_TYPE_SWITCH(weight.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(grad.aux_type(kIdx), IType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + DType* weight_data = weight.dptr(); + IType* grad_idx = grad.aux_data(kIdx).dptr(); + DType* grad_val = grad.data().dptr(); + DType* mom_data = mom.dptr(); + DType* out_data = out->dptr(); + index_t num_rows = grad.aux_shape(kIdx)[0]; + auto row_length = weight.shape_.ProdShape(1, weight.ndim()); + Kernel, xpu>::Launch(s, num_rows, row_length, + out_data, mom_data, weight_data, grad_idx, grad_val, + static_cast(param.clip_gradient), static_cast(param.momentum), + static_cast(param.lr), static_cast(param.wd), + static_cast(param.rescale_grad)); + }); + }); + }); +} + +template +struct SGDMomRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, index_t num_cols, DType* out, DType* mom, + const DType* weight, const DType *grad, + const DType clip_gradient, const DType momentum, + const DType lr, const DType wd, const DType rescale_grad) { + bool contains_non_zeros = false; + index_t j = 0; + index_t offset = i * num_cols; + for (; j < num_cols; ++j) { + if (grad[offset + j] != 0) { + contains_non_zeros = true; + break; + } + } + if (!contains_non_zeros) return; + const DType rate = lr * wd; + for (index_t j = 0; j < num_cols; j++) { + auto index = offset + j; + if (clip_gradient >= 0.0f) { + mom[index] = momentum * mom[index] - rate * weight[index] + - lr * mshadow_op::clip::Map(rescale_grad * grad[index], clip_gradient); + } else { + mom[index] = momentum * mom[index] - rate * weight[index] + - lr * rescale_grad * grad[index]; + } + KERNEL_ASSIGN(out[index], req, weight[index] + mom[index]); + } + } +}; + +template +inline void SGDMomUpdateRspDnsImpl(const SGDMomParam& param, + const OpContext &ctx, + const NDArray& weight, + const TBlob& grad, + const NDArray& mom, + const OpReqType req, + NDArray *out) { + using namespace mshadow; + using namespace mxnet_op; + using namespace rowsparse; + CHECK_RSP_ALL_ROWS_NON_ZERO(weight, "SGDMomUpdate", "weights"); + Stream* s = ctx.get_stream(); + CHECK_EQ(weight.storage_type(), kRowSparseStorage); + if (req == kNullOp) return; + CHECK_EQ(req, kWriteInplace) << "kWriteInplace is expected for sparse sgd_mom_update"; + CHECK(weight.storage_initialized()); + // fill mom with zero values if not initialized yet + if (!mom.storage_initialized()) { + NDArray mom_zeros = mom; + FillDnsZerosRspImpl(s, &mom_zeros); + } + MSHADOW_REAL_TYPE_SWITCH(weight.dtype(), DType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + DType* weight_data = weight.data().dptr(); + DType* grad_data = grad.dptr(); + DType* mom_data = mom.data().dptr(); + index_t num_rows = weight.aux_shape(kIdx)[0]; + auto num_cols = weight.shape().ProdShape(1, weight.shape().ndim()); + Kernel, xpu>::Launch(s, num_rows, num_cols, + out->data().dptr(), mom_data, weight_data, grad_data, + static_cast(param.clip_gradient), static_cast(param.momentum), + static_cast(param.lr), static_cast(param.wd), + static_cast(param.rescale_grad)); + }); + }); +} + + +template +inline void SGDMomUpdateRspRspRspImpl(const SGDMomParam& param, + const OpContext& ctx, + const NDArray& weight, + const NDArray& grad, + const NDArray& mom, + const OpReqType& req, + NDArray *out) { + using namespace mshadow; + using namespace mshadow::expr; + using namespace mxnet_op; + using namespace rowsparse; + CHECK_RSP_ALL_ROWS_NON_ZERO(weight, "SGDMomUpdate", "weights"); + Stream* s = ctx.get_stream(); + // fill mom with zero values in order to reuse the sgd mom dns impl + if (!mom.storage_initialized()) { + NDArray mom_zeros = mom; + FillDnsZerosRspImpl(s, &mom_zeros); + } + TBlob out_blob = out->data(); + // reuse dns rsp implementation when storage_shape == shape + SGDMomUpdateDnsRspDnsImpl(param, ctx, weight.data(), grad, + mom.data(), req, &out_blob); +} + +template +inline void SGDMomUpdateEx(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + using namespace mxnet_op; + const SGDMomParam& param = nnvm::get(attrs.parsed); + auto &weight = inputs[0]; + auto &grad = inputs[1]; + auto &mom = inputs[2]; + auto weight_stype = weight.storage_type(); + auto grad_stype = grad.storage_type(); + auto mom_stype = mom.storage_type(); + CHECK_EQ(weight_stype, mom_stype) << "Inconsistent storage type detected between mom.stype = " + << mom_stype << " and weight.stype = " << weight_stype; + if (weight_stype == kRowSparseStorage && grad_stype == kRowSparseStorage && + mom_stype == kRowSparseStorage) { + NDArray out = outputs[0]; + SGDMomUpdateRspRspRspImpl(param, ctx, weight, grad, mom, req[0], &out); + } else if (weight_stype == kRowSparseStorage && grad_stype == kDefaultStorage && + mom_stype == kRowSparseStorage) { + NDArray out = outputs[0]; + SGDMomUpdateRspDnsImpl(param, ctx, weight, grad.data(), mom, req[0], &out); + } else { + // inputs[2] is a mutable input + FCompExFallback(attrs, ctx, inputs, req, outputs, + SGDMomUpdate, "SGDMomUpdate", {2}); + } +} + struct AdamParam : public dmlc::Parameter { float lr; float beta1; @@ -348,6 +700,147 @@ inline void AdamUpdate(const nnvm::NodeAttrs& attrs, }); } +/*! + * Note: this kernel performs sparse adam update. For each row-slice in row_sparse + * gradient, it finds the corresponding elements in weight, mean and var and performs + * the update. + * The kernel assumes dense weight/mean/var, and row_sparse gradient + */ +template +struct AdamDnsRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, const nnvm::dim_t row_length, DType* out_data, + DType* mean_data, DType* var_data, const DType* weight_data, const IType* grad_idx, + const DType* grad_data, const DType clip_gradient, const DType beta1, const DType beta2, + const DType lr, const DType wd, const DType epsilon, const DType rescale_grad) { + using nnvm::dim_t; + using namespace mshadow_op; + const dim_t row_offset = grad_idx[i] * row_length; + for (dim_t j = 0; j < row_length; j++) { + // index in data/mean/var + const dim_t data_i = row_offset + j; + // index in grad + const dim_t grad_i = i * row_length + j; + const DType grad_rescaled = grad_data[grad_i] * rescale_grad + weight_data[data_i] * wd; + if (clip_gradient >= 0.0f) { + mean_data[data_i] = beta1 * mean_data[data_i] + (1.f - beta1) * + clip::Map(grad_rescaled, clip_gradient); + var_data[data_i] = beta2 * var_data[data_i] + (1.f - beta2) * square::Map( + clip::Map(grad_rescaled, clip_gradient)); + } else { + mean_data[data_i] = beta1 * mean_data[data_i] + (1.f - beta1) * grad_rescaled; + var_data[data_i] = beta2 * var_data[data_i] + + (1.f - beta2) * grad_rescaled * grad_rescaled; + } + KERNEL_ASSIGN(out_data[data_i], req, weight_data[data_i] - lr * mean_data[data_i] / + (square_root::Map(var_data[data_i]) + epsilon)); + } + } +}; + + +template +inline void AdamUpdateDnsRspDnsImpl(const AdamParam& param, + const OpContext& ctx, + const TBlob& weight, + const NDArray& grad, + const TBlob& mean, + const TBlob& var, + const OpReqType& req, + TBlob *out) { + using namespace mxnet_op; + using namespace rowsparse; + Stream* s = ctx.get_stream(); + if (!grad.storage_initialized() || req == kNullOp) return; + CHECK_EQ(req, kWriteInplace) << "kWriteInplace is expected for sparse adam_update"; + CHECK_GT(weight.shape_.Size(), 0); + CHECK_GT(mean.shape_.Size(), 0); + CHECK_GT(var.shape_.Size(), 0); + + MSHADOW_REAL_TYPE_SWITCH(weight.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(grad.aux_type(kIdx), IType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + const DType* weight_data = weight.dptr(); + const IType* grad_idx = grad.aux_data(kIdx).dptr(); + const DType* grad_val = grad.data().dptr(); + DType* mean_data = mean.dptr(); + DType* var_data = var.dptr(); + DType* out_data = out->dptr(); + nnvm::dim_t num_rows = grad.aux_shape(kIdx)[0]; + const auto row_length = weight.shape_.ProdShape(1, weight.ndim()); + Kernel, xpu>::Launch(s, num_rows, row_length, + out_data, mean_data, var_data, weight_data, grad_idx, grad_val, + static_cast(param.clip_gradient), static_cast(param.beta1), + static_cast(param.beta2), static_cast(param.lr), + static_cast(param.wd), static_cast(param.epsilon), + static_cast(param.rescale_grad)); + }); + }); + }); +} + +template +inline void AdamUpdateRspRspRspImpl(const AdamParam& param, + const OpContext& ctx, + const NDArray& weight, + const NDArray& grad, + const NDArray& mean, + const NDArray& var, + const OpReqType& req, + NDArray *out) { + using namespace mshadow; + using namespace mshadow::expr; + using namespace mxnet_op; + using namespace rowsparse; + CHECK_RSP_ALL_ROWS_NON_ZERO(weight, "AdamUpdate", "weights"); + Stream* s = ctx.get_stream(); + // fill mean and variance with zero values in order to reuse the sgd mom dns impl + if (!mean.storage_initialized()) { + NDArray mean_zeros = mean; + FillDnsZerosRspImpl(s, &mean_zeros); + } + if (!var.storage_initialized()) { + NDArray var_zeros = var; + FillDnsZerosRspImpl(s, &var_zeros); + } + TBlob out_blob = out->data(); + // reuse dns rsp implementation when storage_shape == shape + AdamUpdateDnsRspDnsImpl(param, ctx, weight.data(), grad, mean.data(), + var.data(), req, &out_blob); +} + + +template +inline void AdamUpdateEx(const nnvm::NodeAttrs& attrs, + const OpContext &ctx, + const std::vector &inputs, + const std::vector &req, + const std::vector &outputs) { + const AdamParam& param = nnvm::get(attrs.parsed); + mshadow::Stream* s = ctx.get_stream(); + const auto weight_stype = inputs[0].storage_type(); + const auto grad_stype = inputs[1].storage_type(); + const auto mean_stype = inputs[2].storage_type(); + const auto var_stype = inputs[3].storage_type(); + + const auto out_stype = outputs[0].storage_type(); + CHECK_EQ(mean_stype, weight_stype) << "Inconsistent storage type detected between " + << " mean.stype = " << mean_stype << " and weight.stype = " << weight_stype; + CHECK_EQ(var_stype, weight_stype) << "Inconsistent storage type detected between " + << " var.stype = " << var_stype << " and weight.stype = " << weight_stype; + if (weight_stype == kRowSparseStorage && mean_stype == kRowSparseStorage && + var_stype == kRowSparseStorage && grad_stype == kRowSparseStorage && + out_stype == kRowSparseStorage) { + NDArray out = outputs[0]; + AdamUpdateRspRspRspImpl(param, ctx, inputs[0], inputs[1], inputs[2], + inputs[3], req[0], &out); + } else { + LOG(FATAL) << "Unexpected storage types: weight.stype = " << weight_stype + << ", var.stype = " << var_stype << ", mean.stype = " << mean_stype + << ", grad.stype = " << grad_stype; + } +} + // This RMSProp code follows the version in // http://arxiv.org/pdf/1308.0850v5.pdf Eq(38) - Eq(45) // by Alex Graves, 2013. diff --git a/src/operator/optimizer_op.cc b/src/operator/optimizer_op.cc index b26c333edaef..9b2b088c5095 100644 --- a/src/operator/optimizer_op.cc +++ b/src/operator/optimizer_op.cc @@ -40,6 +40,9 @@ It updates the weights using:: weight = weight - learning_rate * gradient +If weight is stored with `row_sparse` storage type, +only the row slices whose indices appear in grad.indices are updated. + )code" ADD_FILELINE) .set_num_inputs(2) .set_num_outputs(1) @@ -47,6 +50,7 @@ It updates the weights using:: .set_attr("FInferShape", ElemwiseShape<2, 1>) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FCompute", SGDUpdate) +.set_attr("FComputeEx", SGDUpdateEx) .add_argument("weight", "NDArray-or-Symbol", "Weight") .add_argument("grad", "NDArray-or-Symbol", "Gradient") .add_arguments(SGDParam::__FIELDS__()); @@ -70,6 +74,9 @@ It updates the weights using:: Where the parameter ``momentum`` is the decay rate of momentum estimates at each epoch. +If weights are stored with `row_sparse` storage type, +only the row slices whose indices appear in grad.indices are updated (for both weight and momentum). + )code" ADD_FILELINE) .set_num_inputs(3) .set_num_outputs(1) @@ -81,6 +88,7 @@ Where the parameter ``momentum`` is the decay rate of momentum estimates at each return std::vector{2}; }) .set_attr("FCompute", SGDMomUpdate) +.set_attr("FComputeEx", SGDMomUpdateEx) .add_argument("weight", "NDArray-or-Symbol", "Weight") .add_argument("grad", "NDArray-or-Symbol", "Gradient") .add_argument("mom", "NDArray-or-Symbol", "Momentum") @@ -152,6 +160,7 @@ It updates the weights using:: return std::vector{2, 3}; }) .set_attr("FCompute", AdamUpdate) +.set_attr("FComputeEx", AdamUpdateEx) .add_argument("weight", "NDArray-or-Symbol", "Weight") .add_argument("grad", "NDArray-or-Symbol", "Gradient") .add_argument("mean", "NDArray-or-Symbol", "Moving mean") diff --git a/src/operator/optimizer_op.cu b/src/operator/optimizer_op.cu index 0e74e303dbc9..fe45f4be8c66 100644 --- a/src/operator/optimizer_op.cu +++ b/src/operator/optimizer_op.cu @@ -28,10 +28,12 @@ namespace mxnet { namespace op { NNVM_REGISTER_OP(sgd_update) -.set_attr("FCompute", SGDUpdate); +.set_attr("FCompute", SGDUpdate) +.set_attr("FComputeEx", SGDUpdateEx); NNVM_REGISTER_OP(sgd_mom_update) -.set_attr("FCompute", SGDMomUpdate); +.set_attr("FCompute", SGDMomUpdate) +.set_attr("FComputeEx", SGDMomUpdateEx); NNVM_REGISTER_OP(mp_sgd_update) .set_attr("FCompute", MP_SGDUpdate); @@ -40,7 +42,8 @@ NNVM_REGISTER_OP(mp_sgd_mom_update) .set_attr("FCompute", MP_SGDMomUpdate); NNVM_REGISTER_OP(adam_update) -.set_attr("FCompute", AdamUpdate); +.set_attr("FCompute", AdamUpdate) +.set_attr("FComputeEx", AdamUpdateEx); NNVM_REGISTER_OP(rmsprop_update) .set_attr("FCompute", RMSPropUpdate); diff --git a/src/operator/random/sample_op.cc b/src/operator/random/sample_op.cc index 8d87d2b99d14..363163cbc697 100644 --- a/src/operator/random/sample_op.cc +++ b/src/operator/random/sample_op.cc @@ -61,7 +61,8 @@ Example:: [ 0.54488319, 0.84725171]] )code" ADD_FILELINE) -.set_attr("FCompute", SampleUniform_); +.set_attr("FCompute", SampleUniform_) +.set_attr("FComputeEx", SampleUniformEx_); // Add "normal" alias for backward compatibility MXNET_OPERATOR_REGISTER_SAMPLE(random_normal, SampleNormalParam) @@ -78,7 +79,8 @@ Example:: random_normal(loc=0, scale=1, shape=(2,2)) = [[ 1.89171135, -1.16881478], [-1.23474145, 1.55807114]] )code" ADD_FILELINE) -.set_attr("FCompute", SampleNormal_); +.set_attr("FCompute", SampleNormal_) +.set_attr("FComputeEx", SampleNormalEx_); MXNET_OPERATOR_REGISTER_SAMPLE(random_gamma, SampleGammaParam) .add_alias("_sample_gamma") @@ -91,7 +93,8 @@ Example:: random_gamma(alpha=9, beta=0.5, shape=(2,2)) = [[ 7.10486984, 3.37695289], [ 3.91697288, 3.65933681]] )code" ADD_FILELINE) -.set_attr("FCompute", SampleGamma_); +.set_attr("FCompute", SampleGamma_) +.set_attr("FComputeEx", SampleGammaEx_); MXNET_OPERATOR_REGISTER_SAMPLE(random_exponential, SampleExponentialParam) .add_alias("_sample_exponential") diff --git a/src/operator/random/sample_op.cu b/src/operator/random/sample_op.cu index 0d4b2e5a8270..7bdb9faf334e 100644 --- a/src/operator/random/sample_op.cu +++ b/src/operator/random/sample_op.cu @@ -28,21 +28,20 @@ namespace op { // GPU versions of uniform and normal distribution. template<> -void SampleUniform_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { +void SampleUniformDnsImpl(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const OpReqType& req, + TBlob* output) { using namespace mxnet::op; using namespace mshadow::expr; typedef gpu xpu; mshadow::Stream *s = ctx.get_stream(); const SampleUniformParam& param = nnvm::get(attrs.parsed); mshadow::Random *prnd = ctx.requested[0].get_random(s); - if (outputs[0].type_flag_ != mshadow::kFloat32) { - MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, { + if (output->type_flag_ != mshadow::kFloat32) { + MSHADOW_REAL_TYPE_SWITCH(output->type_flag_, DType, { // Not float32: use workspace and copy to output - mshadow::Tensor out = outputs[0].FlatTo2D(s); + mshadow::Tensor out = output->FlatTo2D(s); mshadow::Tensor workspace = ctx.requested[1].get_space_typed (mshadow::Shape1(out.shape_.Size()), s); @@ -51,27 +50,36 @@ void SampleUniform_(const nnvm::NodeAttrs& attrs, }); } else { // float32: write directly into output - mshadow::Tensor out = outputs[0].FlatTo2D(s); + mshadow::Tensor out = output->FlatTo2D(s); prnd->SampleUniform(&out, param.low, param.high); } } template<> -void SampleNormal_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { +void SampleUniform_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + TBlob out = outputs[0]; + SampleUniformDnsImpl(attrs, ctx, req[0], &out); +} + +template<> +void SampleNormalDnsImpl(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const OpReqType& req, + TBlob* output) { using namespace mxnet::op; using namespace mshadow::expr; typedef gpu xpu; mshadow::Stream *s = ctx.get_stream(); const SampleNormalParam& param = nnvm::get(attrs.parsed); mshadow::Random *prnd = ctx.requested[0].get_random(s); - if (outputs[0].type_flag_ != mshadow::kFloat32) { - MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, { + if (output->type_flag_ != mshadow::kFloat32) { + MSHADOW_REAL_TYPE_SWITCH(output->type_flag_, DType, { // Not float32: use workspace and copy to output - mshadow::Tensor out = outputs[0].FlatTo2D(s); + mshadow::Tensor out = output->FlatTo2D(s); mshadow::Tensor workspace = ctx.requested[1].get_space_typed (mshadow::Shape1(out.shape_.Size()), s); @@ -80,16 +88,28 @@ void SampleNormal_(const nnvm::NodeAttrs& attrs, }); } else { // float32: write directly into output - mshadow::Tensor out = outputs[0].FlatTo2D(s); + mshadow::Tensor out = output->FlatTo2D(s); prnd->SampleGaussian(&out, param.loc, param.scale); } } +template<> +void SampleNormal_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + TBlob out = outputs[0]; + SampleNormalDnsImpl(attrs, ctx, req[0], &out); +} + NNVM_REGISTER_OP(random_uniform) -.set_attr("FCompute", SampleUniform_); +.set_attr("FCompute", SampleUniform_) +.set_attr("FComputeEx", SampleUniformEx_); NNVM_REGISTER_OP(random_normal) -.set_attr("FCompute", SampleNormal_); +.set_attr("FCompute", SampleNormal_) +.set_attr("FComputeEx", SampleNormalEx_); } // namespace op } // namespace mxnet diff --git a/src/operator/random/sample_op.h b/src/operator/random/sample_op.h index a1a6a2345b1b..0cd3f6bc2efb 100644 --- a/src/operator/random/sample_op.h +++ b/src/operator/random/sample_op.h @@ -232,29 +232,75 @@ struct SampleGenNegBinomialParam : public dmlc::Parameter; + template -void SampleUniform_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { +void SampleComputeEx_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs, + FSampleCompute fcomp) { + NDArray output = outputs[0]; + mshadow::Stream *s = ctx.get_stream(); + if (output.storage_type() == kRowSparseStorage) { + // indices + nnvm::dim_t nnr = output.shape()[0]; + output.CheckAndAlloc({mshadow::Shape1(nnr)}); + PopulateFullIdxRspImpl(s, &output); + // data + TBlob out_blob = output.data(); + fcomp(attrs, ctx, req[0], &out_blob); + } else { + LOG(FATAL) << "Unexpected storage type for SampleComputeEx_: " + << output.storage_type(); + } +} + +template +void SampleUniformDnsImpl(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const OpReqType& req, + TBlob* output) { using namespace mxnet::op; using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); const SampleUniformParam& param = nnvm::get(attrs.parsed); - MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, { + MSHADOW_REAL_TYPE_SWITCH(output->type_flag_, DType, { mshadow::Random *prnd = ctx.requested[0].get_random(s); - mshadow::Tensor out = outputs[0].FlatTo2D(s); + mshadow::Tensor out = output->FlatTo2D(s); prnd->SampleUniform(&out, param.low, param.high); }); } template -void SampleNormal_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { +void SampleUniform_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + TBlob out = outputs[0]; + SampleUniformDnsImpl(attrs, ctx, req[0], &out); +} + + +template +void SampleUniformEx_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + SampleComputeEx_(attrs, ctx, inputs, req, outputs, SampleUniformDnsImpl); +} + +template +void SampleNormalDnsImpl(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const OpReqType& req, + TBlob* outputs) { using namespace mxnet::op; using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); @@ -268,11 +314,29 @@ void SampleNormal_(const nnvm::NodeAttrs& attrs, } template -void SampleGamma_(const nnvm::NodeAttrs& attrs, +void SampleNormal_(const nnvm::NodeAttrs& attrs, const OpContext& ctx, const std::vector& inputs, const std::vector& req, const std::vector& outputs) { + TBlob out = outputs[0]; + SampleNormalDnsImpl(attrs, ctx, req[0], &out); +} + +template +void SampleNormalEx_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + SampleComputeEx_(attrs, ctx, inputs, req, outputs, SampleNormalDnsImpl); +} + +template +void SampleGammaDnsImpl(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const OpReqType& req, + TBlob* outputs) { using namespace mxnet::op; using namespace mshadow::expr; mshadow::Stream *s = ctx.get_stream(); @@ -286,6 +350,25 @@ void SampleGamma_(const nnvm::NodeAttrs& attrs, }); } +template +void SampleGamma_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + TBlob out = outputs[0]; + SampleGammaDnsImpl(attrs, ctx, req[0], &out); +} + +template +void SampleGammaEx_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + SampleComputeEx_(attrs, ctx, inputs, req, outputs, SampleGammaDnsImpl); +} + template void SampleExponential_(const nnvm::NodeAttrs& attrs, const OpContext& ctx, diff --git a/src/operator/tensor/cast_storage-inl.cuh b/src/operator/tensor/cast_storage-inl.cuh new file mode 100644 index 000000000000..afef53e979ea --- /dev/null +++ b/src/operator/tensor/cast_storage-inl.cuh @@ -0,0 +1,589 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * Copyright (c) 2017 by Contributors + * \file cast_storage-inl.cuh + * \brief implementation of cast_storage op on GPU + */ +#ifndef MXNET_OPERATOR_TENSOR_CAST_STORAGE_INL_CUH_ +#define MXNET_OPERATOR_TENSOR_CAST_STORAGE_INL_CUH_ + +#include +#include +#include +#include +#include "./util/tensor_util-inl.cuh" + +namespace mxnet { +namespace op { + +/*! + * \brief GPU Kernel for filling the value array of the rsp tensor. + * Parallelized by rsp tensor elements: 1 thread/element + */ +struct CastDnsRspValsKernel { + /*! + * \brief + * \param tid global thread id + * \param rsp_val value array of rsp tensor to store data + * \param row_idx indices of non-zero rows + * \param dns dense matrix data + * \param nnr number of non-zero rows + * \param row_length number of elements per row + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* rsp_val, + const RType* row_idx, + const DType* dns, + const nnvm::dim_t nnr, + const nnvm::dim_t row_length) { + using nnvm::dim_t; + if (tid < nnr*row_length) { + const dim_t row_id = tid / row_length; + const dim_t row_el = tid % row_length; + const dim_t dns_idx = row_idx[row_id] * row_length + row_el; + rsp_val[tid] = dns[dns_idx]; + } + } +}; + +template +inline mshadow::Tensor AllocateTempDataForCast(const OpContext& op_ctx, + const mshadow::Shape& shape) { + Resource rsc = ResourceManager::Get()->Request(op_ctx.run_ctx.ctx, + ResourceRequest(ResourceRequest::kTempSpace)); + mshadow::Stream *stream = op_ctx.run_ctx.get_stream(); + return rsc.get_space_typed(shape, stream); +}; + +/*! + * \brief GPU implementation of casting a dns tensor to rsp type. + */ +inline void CastStorageDnsRspImpl(const OpContext& ctx, + const gpu& gpu_dev, + const TBlob& dns, + NDArray* rsp) { + CHECK(rsp != nullptr); + CHECK_EQ(rsp->storage_type(), kRowSparseStorage); + CHECK_EQ(dns.shape_, rsp->shape()); + using mshadow::Shape1; + using mxnet_op::Kernel; + using nnvm::dim_t; + mshadow::Stream* s = ctx.get_stream(); + MSHADOW_TYPE_SWITCH(dns.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(rsp->aux_type(rowsparse::kIdx), RType, { // row idx type + const dim_t num_rows = dns.shape_[0]; + const dim_t row_length = dns.shape_.ProdShape(1, dns.shape_.ndim()); + const dim_t threads_per_warp = mxnet_op::cuda_get_device_prop().warpSize; + const dim_t threads_per_block = mshadow::cuda::kBaseThreadNum; + const dim_t min_num_warps = 512; + dim_t num_threads; + // TODO: remove kernel dependency on warpSize=32 + if (threads_per_warp != 32) { + LOG(FATAL) << "CastStorageDnsRspImpl GPU kernels expect warpSize=32"; + } + // Determine temporary device storage requirements + dim_t* row_flg = NULL; + void* d_temp_storage = NULL; + size_t temp_storage_bytes = 0; + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + row_flg, + row_flg, + num_rows, + mshadow::Stream::GetStream(s)); + + // Allocate temp storage for marking non-zero rows and for cub's prefix sum + auto workspace = AllocateTempDataForCast(ctx, Shape1(num_rows*sizeof(dim_t) + + temp_storage_bytes)); + row_flg = reinterpret_cast(workspace.dptr_); + d_temp_storage = workspace.dptr_ + num_rows*sizeof(dim_t); + + // Mark non-zero rows as 'one' in row_flg + // Different kernel versions are optimized for different matrix instances + // (1) 'Thread kernel' (one thread computing one row) + // (2) 'Warp kernel' (one warp computing one row) + // (3) 'Block kernel' (one thread block computing one row) + const int kernel_version = 0; + switch (kernel_version) { + case 1: + num_threads = num_rows; + Kernel::Launch(s, num_threads, + row_flg, dns.dptr(), num_rows, row_length); + break; + case 2: + num_threads = num_rows * threads_per_warp; + Kernel::Launch(s, num_threads, + row_flg, dns.dptr(), num_rows, row_length); + break; + case 3: + num_threads = num_rows * threads_per_block; + Kernel::Launch(s, num_threads, + row_flg, dns.dptr(), num_rows, row_length); + break; + default: + if (row_length < threads_per_warp) { + num_threads = num_rows; + Kernel::Launch(s, num_threads, + row_flg, dns.dptr(), num_rows, row_length); + } else if (row_length < threads_per_block || num_rows > min_num_warps) { + num_threads = num_rows * threads_per_warp; + Kernel::Launch(s, num_threads, + row_flg, dns.dptr(), num_rows, row_length); + } else { + num_threads = num_rows * threads_per_block; + Kernel::Launch(s, num_threads, + row_flg, dns.dptr(), num_rows, row_length); + } + break; + } + // Compute non-zero row indices through inclusive prefix sum + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + row_flg, + row_flg, + num_rows, + mshadow::Stream::GetStream(s)); + + // Get total number of non-zero rows from device + dim_t nnr = 0; + CUDA_CALL(cudaMemcpy(&nnr, &row_flg[num_rows-1], sizeof(dim_t), cudaMemcpyDeviceToHost)); + + // Allocate rsp tensor row index array and fill + rsp->CheckAndAllocAuxData(rowsparse::kIdx, Shape1(nnr)); + if (0 == nnr) return; + RType* row_idx = rsp->aux_data(rowsparse::kIdx).dptr(); + num_threads = num_rows; + Kernel::Launch(s, num_threads, + row_idx, row_flg, num_rows); + + // Construct shape of rsp tensor data, allocate, and fill + auto storage_shape = dns.shape_; + storage_shape[0] = nnr; + rsp->CheckAndAllocData(storage_shape); + num_threads = nnr * row_length; + Kernel::Launch(s, num_threads, + rsp->data().dptr(), row_idx, dns.dptr(), nnr, row_length); + }); + }); +} + +/*! + * \brief Thread kernel for initializing the indptr in a csr matrix. + * Parallelized by matrix rows: 1 thread/row + */ +struct CastDnsCsrIndPtrThreadKernel { + /*! + * \brief + * \param tid global thread id + * \param indptr index pointer array of the csr matrix + * \param dns dense matrix + * \param num_rows number of rows of the dense matrix + * \param num_cols number of columns of the dense matrix + */ + template + __device__ __forceinline__ static void Map(int tid, + IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + if (tid == 0) { + indptr[tid] = 0; + } + if (tid < num_rows) { + dim_t nnz = 0; + const dim_t offset = tid * num_cols; + for (dim_t j = 0; j < num_cols; ++j) { + if (dns[offset+j] != 0) { + nnz++; + } + } + indptr[tid+1] = nnz; + } + } +}; + +/*! + * \brief Thread kernel for initializing the col_idx and value array of the csr matrix. + * Parallelized by matrix rows: 1 thread/row + */ +struct CastDnsCsrColIdxAndValsThreadKernel { + /*! + * \brief + * \param tid global thread id + * \param val data array of the csr matrix + * \param col_idx column index array of the csr matrix + * \param indptr index pointer array of the csr matrix + * \param dns dense matrix + * \param num_rows number of rows of the dense matrix + * \param num_cols number of columns of the dense matrix + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* val, + CType* col_idx, + const IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + if (tid < num_rows) { + const dim_t offset = tid * num_cols; + dim_t k = indptr[tid]; + for (dim_t j = 0; j < num_cols; ++j) { + if (dns[offset+j] != 0) { + val[k] = dns[offset+j]; + col_idx[k] = j; + ++k; + } + } + } + } +}; + +/*! + * \brief Warp kernel for initializing the indptr in a csr matrix. + * Parallelized by matrix rows: 1 warp/row + */ +struct CastDnsCsrIndPtrWarpKernel { + template + __device__ __forceinline__ static void Map(int tid, + IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + typedef cub::WarpReduce WarpReduce; + const dim_t warps_per_block = mshadow::cuda::kBaseThreadNum / 32; + __shared__ typename WarpReduce::TempStorage temp_storage[warps_per_block]; + + if (tid == 0) { + indptr[tid] = 0; + } + const dim_t warp_id = tid / 32; // global warp id + const dim_t warp_lane = threadIdx.x / 32; // local warp id within thread block + const dim_t lane = tid & (32-1); // local thread id within warp + if (warp_id < num_rows) { + dim_t lane_nnz = 0; + const dim_t offset = warp_id * num_cols; + for (dim_t j = lane; j < num_cols; j+=32) { + if (dns[offset+j] != 0) { + lane_nnz++; + } + } + dim_t aggr = WarpReduce(temp_storage[warp_lane]).Sum(lane_nnz); + if (lane == 0) { + indptr[warp_id+1] = aggr; + } + } + } +}; + +/*! + * \brief Warp kernel for initializing the col_idx and value array of the csr matrix. + * Parallelized by matrix rows: 1 warp/row + */ +struct CastDnsCsrColIdxAndValsWarpKernel { + template + __device__ __forceinline__ static void Map(int tid, + DType* val, + CType* col_idx, + const IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + typedef cub::WarpScan WarpScan; + const dim_t warps_per_block = mshadow::cuda::kBaseThreadNum / 32; + __shared__ typename WarpScan::TempStorage temp_storage[warps_per_block]; + __shared__ volatile dim_t warp_nnz[warps_per_block]; + + const dim_t warp_id = tid / 32; // global warp id + const dim_t warp_lane = threadIdx.x / 32; // local warp id within thread block + const dim_t lane = tid & (32-1); // local thread id within warp + if (warp_id < num_rows) { + const dim_t offset = warp_id * num_cols; + dim_t k = indptr[warp_id]; + dim_t nnz; + for (dim_t j = lane; j < num_cols+lane; j+=32) { + nnz = 0; + if (j < num_cols) { + if (dns[offset+j] != 0) { + nnz++; + } + } + if (lane == 31) { + warp_nnz[warp_lane] = nnz; + } + // Compute index each thread has to write to + WarpScan(temp_storage[warp_lane]).ExclusiveSum(nnz, nnz); + if (j < num_cols) { + if (dns[offset+j] != 0) { + val[k+nnz] = dns[offset+j]; + col_idx[k+nnz] = j; + } + } + if (lane == 31) { + warp_nnz[warp_lane] += nnz; + } + __syncwarp(); + k += warp_nnz[warp_lane]; + } + } + } +}; + +/*! + * \brief Block kernel for initializing the indptr in a csr matrix. + * Parallelized by matrix rows: 1 threadBlock/row + */ +struct CastDnsCsrIndPtrBlockKernel { + template + __device__ __forceinline__ static void Map(int tid, + IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using mshadow::cuda::kBaseThreadNum; + using nnvm::dim_t; + typedef cub::BlockReduce BlockReduce; + __shared__ typename BlockReduce::TempStorage temp_storage; + + if (tid == 0) { + indptr[tid] = 0; + } + if (blockIdx.x < num_rows) { + dim_t lane_nnz = 0; + const dim_t offset = blockIdx.x * num_cols; + for (dim_t j = threadIdx.x; j < num_cols; j+=kBaseThreadNum) { + if (dns[offset+j] != 0) { + lane_nnz++; + } + } + dim_t aggr = BlockReduce(temp_storage).Sum(lane_nnz); + if (threadIdx.x == 0) { + indptr[blockIdx.x+1] = aggr; + } + } + } +}; + +/*! + * \brief Block kernel for initializing the col_idx and value array of the csr matrix. + * Parallelized by matrix rows: 1 threadBlock/row + */ +struct CastDnsCsrColIdxAndValsBlockKernel { + template + __device__ __forceinline__ static void Map(int tid, + DType* val, + CType* col_idx, + const IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using mshadow::cuda::kBaseThreadNum; + using nnvm::dim_t; + typedef cub::BlockScan BlockScan; + __shared__ typename BlockScan::TempStorage temp_storage; + __shared__ volatile dim_t block_nnz; + + if (blockIdx.x < num_rows) { + const dim_t offset = blockIdx.x * num_cols; + dim_t k = indptr[blockIdx.x]; + dim_t nnz; + for (dim_t j = threadIdx.x; j < num_cols+threadIdx.x; j+=kBaseThreadNum) { + nnz = 0; + if (j < num_cols) { + if (dns[offset+j] != 0) { + nnz++; + } + } + if (threadIdx.x == kBaseThreadNum-1) { + block_nnz = nnz; + } + // Compute index each thread has to write to + BlockScan(temp_storage).ExclusiveSum(nnz, nnz); + if (j < num_cols) { + if (dns[offset+j] != 0) { + val[k+nnz] = dns[offset+j]; + col_idx[k+nnz] = j; + } + } + if (threadIdx.x == kBaseThreadNum-1) { + block_nnz += nnz; + } + __syncthreads(); + k += block_nnz; + } + } + } +}; + +/*! + * \brief GPU implementation of casting a dense matrix to csr type. + */ +inline void CastStorageDnsCsrImpl(const OpContext& ctx, + const gpu& gpu_dev, + const TBlob& dns, + NDArray* csr) { + CHECK(csr != nullptr); + CHECK_EQ(csr->storage_type(), kCSRStorage); + CHECK_EQ(dns.shape_.ndim(), 2); + CHECK_EQ(dns.shape_, csr->shape()); + using mshadow::Shape1; + using mxnet_op::Kernel; + using nnvm::dim_t; + mshadow::Stream* s = ctx.get_stream(); + MSHADOW_TYPE_SWITCH(dns.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(csr->aux_type(csr::kIndPtr), IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(csr->aux_type(csr::kIdx), CType, { // col_idx type + const dim_t num_rows = dns.shape_[0]; + const dim_t num_cols = dns.shape_[1]; + const dim_t threads_per_warp = mxnet_op::cuda_get_device_prop().warpSize; + const dim_t threads_per_block = mshadow::cuda::kBaseThreadNum; + const dim_t min_num_warps = 512; + dim_t num_threads; + // TODO: remove kernel dependency on warpSize=32 + if (threads_per_warp != 32) { + LOG(FATAL) << "CastStorageDnsCsrImpl GPU kernels expect warpSize=32"; + } + csr->CheckAndAllocAuxData(csr::kIndPtr, Shape1(num_rows+1)); + IType* indptr = csr->aux_data(csr::kIndPtr).dptr(); + DType* dns_data = dns.dptr(); + + // Different kernel versions are optimized for different matrix instances + // (1) 'Thread kernel' (one thread computing one row) + // (2) 'Warp kernel' (one warp computing one row) + // (3) 'Block kernel' (one thread block computing one row) + const int kernel_version = 0; + switch (kernel_version) { + case 1: + num_threads = num_rows; + Kernel::Launch(s, num_threads, + indptr, dns_data, num_rows, num_cols); + break; + case 2: + num_threads = num_rows * threads_per_warp; + Kernel::Launch(s, num_threads, + indptr, dns_data, num_rows, num_cols); + break; + case 3: + num_threads = num_rows * threads_per_block; + Kernel::Launch(s, num_threads, + indptr, dns_data, num_rows, num_cols); + break; + default: + if (num_cols < threads_per_warp) { + num_threads = num_rows; + Kernel::Launch(s, num_threads, + indptr, dns_data, num_rows, num_cols); + } else if (num_cols < threads_per_block || num_rows > min_num_warps) { + num_threads = num_rows * threads_per_warp; + Kernel::Launch(s, num_threads, + indptr, dns_data, num_rows, num_cols); + } else { + num_threads = num_rows * threads_per_block; + Kernel::Launch(s, num_threads, + indptr, dns_data, num_rows, num_cols); + } + break; + } + + // Determine temporary device storage requirements + void *d_temp_storage = NULL; + size_t temp_storage_bytes = 0; + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + indptr, + indptr, + num_rows+1, + mshadow::Stream::GetStream(s)); + + // Allocate temporary storage + auto workspace = AllocateTempDataForCast(ctx, Shape1(temp_storage_bytes)); + + d_temp_storage = workspace.dptr_; + + // Compute indptr through inclusive prefix sum + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + indptr, + indptr, + num_rows+1, + mshadow::Stream::GetStream(s)); + + // Receive total number of nnz values from device + IType nnz = 0; + CUDA_CALL(cudaMemcpy(&nnz, &(indptr[num_rows]), sizeof(IType), cudaMemcpyDeviceToHost)); + + // Allocate column index array and data array of the csr matrix + csr->CheckAndAllocAuxData(csr::kIdx, Shape1(static_cast(nnz))); + csr->CheckAndAllocData(Shape1(static_cast(nnz))); + + // Compute and fill column index array and data array of the csr matrix + switch (kernel_version) { + case 1: + num_threads = num_rows; + Kernel::Launch(s, num_threads, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + break; + case 2: + num_threads = num_rows * threads_per_warp; + Kernel::Launch(s, num_threads, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + break; + case 3: + num_threads = num_rows * threads_per_block; + Kernel::Launch(s, num_threads, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + break; + default: + if (num_cols < threads_per_warp) { + num_threads = num_rows; + Kernel::Launch(s, num_threads, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + } else if (num_cols < threads_per_block || num_rows > min_num_warps) { + num_threads = num_rows * threads_per_warp; + Kernel::Launch(s, num_threads, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + } else { + num_threads = num_rows * threads_per_block; + Kernel::Launch(s, num_threads, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + } + break; + } + }); + }); + }); +} + +} // namespace op +} // namespace mxnet + +#endif // MXNET_OPERATOR_TENSOR_CAST_STORAGE_INL_CUH_ diff --git a/src/operator/tensor/cast_storage-inl.h b/src/operator/tensor/cast_storage-inl.h new file mode 100644 index 000000000000..acb30a9eff2b --- /dev/null +++ b/src/operator/tensor/cast_storage-inl.h @@ -0,0 +1,392 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file cast_storage-inl.h + * \brief cast_storage implementation for dense and sparse tensors + */ +#ifndef MXNET_OPERATOR_TENSOR_CAST_STORAGE_INL_H_ +#define MXNET_OPERATOR_TENSOR_CAST_STORAGE_INL_H_ + +#include +#include +#include +#include "../mxnet_op.h" +#include "../operator_common.h" +#ifdef __CUDACC__ +#include "./cast_storage-inl.cuh" +#endif // __CUDACC__ + + +namespace mxnet { +namespace op { + +/*! + * \brief CPU Kernel for marking row_idx of a RSP tensor per row. + */ +struct MarkRspRowIdx { + // i represents the row index of the tensor data + template + MSHADOW_CINLINE static void Map(int i, + RType* row_idx, + const DType* data, + const nnvm::dim_t row_length) { + using nnvm::dim_t; + dim_t j = 0; + dim_t offset = i * row_length; + for (; j < row_length; ++j) { + if (data[offset+j] != 0) { + break; + } + } + if (row_length == j) { + row_idx[i] = 0; // mark as zero for zero row + } else { + row_idx[i] = 1; // mark as one for non-zero row + } + } +}; + +/*! + * \brief CPU implementation of casting a dns tensor to rsp type. + */ +inline void CastStorageDnsRspImpl(const OpContext& ctx, + const cpu& cpu_dev, + const TBlob& dns, + NDArray* rsp) { + using namespace rowsparse; + using namespace mshadow; + using nnvm::dim_t; + CHECK(rsp != nullptr); + CHECK_EQ(rsp->storage_type(), kRowSparseStorage); + CHECK_EQ(dns.shape_, rsp->shape()); + mshadow::Stream* s = ctx.get_stream(); + MSHADOW_TYPE_SWITCH(dns.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(rsp->aux_type(kIdx), RType, { // row idx type + const dim_t num_rows = dns.shape_[0]; + const dim_t row_length = dns.shape_.ProdShape(1, dns.shape_.ndim()); + rsp->CheckAndAllocAuxData(kIdx, Shape1(num_rows)); + TBlob row_idx_blob = rsp->aux_data(kIdx); + RType* row_idx = row_idx_blob.dptr(); + dim_t num_threads = num_rows; + mxnet_op::Kernel::Launch(s, num_threads, + row_idx, dns.dptr(), row_length); + dim_t nnr = 0; + nnr = common::ParallelAccumulate(row_idx, num_rows, nnr); + rsp->set_aux_shape(kIdx, Shape1(nnr)); + if (0 == nnr) return; + auto storage_shape = dns.shape_; + storage_shape[0] = nnr; + rsp->CheckAndAllocData(storage_shape); + auto dns_data = dns.get_with_shape(Shape2(num_rows, row_length), s); + auto rsp_data = rsp->data().get_with_shape(Shape2(nnr, row_length), s); + dim_t idx = 0; + for (dim_t i = 0; i < num_rows; ++i) { + if (row_idx[i] > 0) { + row_idx[idx] = i; + Copy(rsp_data[idx], dns_data[i], s); + ++idx; + } + } + }); + }); +} + +// TODO(haibin) Use memcopy instead will be much faster than assigning each individual element +struct CastStorageRspDnsKernel { + template + MSHADOW_XINLINE static void Map(int i, + const nnvm::dim_t row_length, + const IType* idx, + const DType *data, + DType* dns) { + using nnvm::dim_t; + IType rid = idx[i]; + dim_t dns_offset = rid * row_length; + dim_t rsp_offset = i * row_length; + for (dim_t col = 0; col < row_length; col++) { + dns[dns_offset + col] = data[rsp_offset + col]; + } + } +}; + +/*! + * \brief This function assumes that the memory for dns has been allocated already + * since the shape is known at binding stage. + */ +template +void CastStorageRspDnsImpl(const OpContext& ctx, + const NDArray& rsp, + TBlob* dns) { + mshadow::Stream* s = ctx.get_stream(); + CHECK_EQ(rsp.storage_type(), kRowSparseStorage); + using nnvm::dim_t; + MSHADOW_TYPE_SWITCH(dns->type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(rsp.aux_type(rowsparse::kIdx), IType, { + // assign zeros + mxnet_op::Kernel::Launch(s, dns->Size(), dns->dptr()); + if (rsp.storage_initialized()) { + // copy over row by row + auto in_idx = rsp.aux_data(rowsparse::kIdx).FlatTo1D(s).dptr_; + auto in_data = rsp.data().dptr(); + auto out_data = dns->dptr(); + auto shape = rsp.shape(); + const dim_t num_rows = rsp.aux_shape(rowsparse::kIdx).Size(); + const dim_t row_length = shape.ProdShape(1, shape.ndim()); + const dim_t num_threads = num_rows; + mxnet_op::Kernel::Launch(s, num_threads, + row_length, in_idx, in_data, out_data); + } + }); + }); +} + +/*! + * \brief CPU kernel for initializing the indptr in a csr matrix. + */ +struct FillCsrIndPtr { + /*! + * \brief + * \param i the i-th row of the dns tensor + * \param indptr the indptr of the csr tensor + * \param dns the dns tensor + * \param num_rows number of rows of the dns tensor + * \param num_cols number of columns of the dns tensor + */ + template + MSHADOW_CINLINE static void Map(int i, + IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + indptr[i+1] = 0; + const dim_t offset = i * num_cols; + for (dim_t j = 0; j < num_cols; ++j) { + if (dns[offset+j] != 0) { + ++indptr[i+1]; + } + } + } +}; + +/*! + * \brief CPU kernel for initializing the col_idx and value array of the csr matrix. + */ +struct FillCsrColIdxAndVals { + /*! + * \brief + * \param i the i-th row of the dns tensor + * \param val value array of the csr tensor + * \param col_idx column idx array of the csr tensor + * \param indptr indptr array of the csr tensor + * \param dns dns tensor + * \param num_rows number of rows of the dns tensor + * \param num_cols number of columns of the dns tensor + */ + template + MSHADOW_CINLINE static void Map(int i, + DType* val, + CType* col_idx, + const IType* indptr, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + const dim_t offset = i * num_cols; + IType k = indptr[i]; + for (dim_t j = 0; j < num_cols; ++j) { + if (dns[offset+j] != 0) { + val[k] = dns[offset+j]; + col_idx[k] = j; + ++k; + } + } + } +}; + +/*! + * \brief CPU implementation of casting a dns matrix to csr type. + */ +inline void CastStorageDnsCsrImpl(const OpContext& ctx, + const cpu& cpu_dev, + const TBlob& dns, + NDArray* csr) { + CHECK(csr != nullptr); + CHECK_EQ(csr->storage_type(), kCSRStorage); + CHECK_EQ(dns.shape_.ndim(), 2); + CHECK_EQ(dns.shape_, csr->shape()); + using mshadow::Shape1; + using nnvm::dim_t; + mshadow::Stream* s = ctx.get_stream(); + MSHADOW_TYPE_SWITCH(dns.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(csr->aux_type(csr::kIndPtr), IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(csr->aux_type(csr::kIdx), CType, { // col idx type + const dim_t num_rows = dns.shape_[0]; + const dim_t num_cols = dns.shape_[1]; + csr->CheckAndAllocAuxData(csr::kIndPtr, mshadow::Shape1(num_rows+1)); + IType* indptr = csr->aux_data(csr::kIndPtr).dptr(); + DType* dns_data = dns.dptr(); + dim_t num_threads = num_rows; + mxnet_op::Kernel::Launch(s, num_threads, + indptr, dns_data, num_rows, num_cols); + // single thread to accumulate indptr + // indptr[num_rows] indicates the number of non-zero elements + indptr[0] = 0; + for (dim_t i = 0; i < num_rows; ++i) { + indptr[i+1] += indptr[i]; + } + // allocate column idx array and value array + csr->CheckAndAllocAuxData(csr::kIdx, Shape1(static_cast(indptr[num_rows]))); + csr->CheckAndAllocData(Shape1(static_cast(indptr[num_rows]))); + // fill col_idx and value arrays of the csr + mxnet_op::Kernel::Launch(s, num_threads, + csr->data().dptr(), csr->aux_data(csr::kIdx).dptr(), + indptr, dns_data, num_rows, num_cols); + }); + }); + }); +} + +/*! + * \brief This is the kernel for copying csr.data to its corresponding dns matrix. + */ +struct CopyCsrDataToDns { + /*! + * \brief + * \param i the i-th row of the dns tensor + * \param dns_data data blob of the dns tensor + * \param col_idx column idx array of the csr tensor + * \param indptr indptr array of the csr tensor + * \param csr_data data blob of the csr tensor + * \param num_cols number of columns of the dns tensor + */ + template + MSHADOW_XINLINE static void Map(int i, + DType* dns_data, + const CType* col_idx, + const IType* indptr, + const DType* csr_data, + const nnvm::dim_t num_cols) { + const nnvm::dim_t offset = i * num_cols; + for (IType j = indptr[i]; j < indptr[i+1]; ++j) { + dns_data[offset+col_idx[j]] = csr_data[j]; + } + } +}; + +/*! + * \brief Casts a csr matrix to dns format. + */ +template +void CastStorageCsrDnsImpl(const OpContext& ctx, + const NDArray& csr, + TBlob* dns) { + CHECK(dns != nullptr); + CHECK_EQ(csr.storage_type(), kCSRStorage); + CHECK_EQ(dns->shape_.ndim(), 2); + CHECK_EQ(dns->shape_, csr.shape()); + using nnvm::dim_t; + mshadow::Stream* s = ctx.get_stream(); + MSHADOW_TYPE_SWITCH(dns->type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(csr.aux_type(csr::kIndPtr), IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(csr.aux_type(csr::kIdx), CType, { // col idx type + const dim_t num_rows = dns->shape_[0]; + const dim_t num_cols = dns->shape_[1]; + DType* dns_data = dns->dptr(); + dim_t num_threads = dns->shape_.Size(); + mxnet_op::Kernel::Launch(s, num_threads, dns_data); + if (!csr.storage_initialized()) return; + const IType* indptr = csr.aux_data(csr::kIndPtr).dptr(); + const CType* col_idx = csr.aux_data(csr::kIdx).dptr(); + const DType* csr_data = csr.data().dptr(); + num_threads = num_rows; + mxnet_op::Kernel::Launch(s, num_threads, + dns_data, col_idx, indptr, csr_data, num_cols); + }); + }); + }); +} + +template +void CastStorageComputeImpl(const OpContext& ctx, + const NDArray& input, + const NDArray& output) { + const auto src_stype = input.storage_type(); + const auto dst_stype = output.storage_type(); + if (src_stype == kRowSparseStorage && dst_stype == kDefaultStorage) { + TBlob ret = output.data(); + CastStorageRspDnsImpl(ctx, input, &ret); + } else if (src_stype == kDefaultStorage && dst_stype == kRowSparseStorage) { + NDArray ret = output; // get rid of the const qualifer + CastStorageDnsRspImpl(ctx, xpu(), input.data(), &ret); + } else if (src_stype == kDefaultStorage && dst_stype == kCSRStorage) { + NDArray ret = output; // get rid of the const qualifer + CastStorageDnsCsrImpl(ctx, xpu(), input.data(), &ret); + } else if (src_stype == kCSRStorage && dst_stype == kDefaultStorage) { + TBlob ret = output.data(); + CastStorageCsrDnsImpl(ctx, input, &ret); + } else { + LOG(FATAL) << "Not implemented"; + } +} + +struct CastStorageParam : public dmlc::Parameter { + int stype; + DMLC_DECLARE_PARAMETER(CastStorageParam) { + DMLC_DECLARE_FIELD(stype) + .add_enum("default", kDefaultStorage) + .add_enum("row_sparse", kRowSparseStorage) + .add_enum("csr", kCSRStorage) + .describe("Output storage type."); + } +}; + +inline bool CastStorageInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 1U); + CHECK_EQ(out_attrs->size(), 1U); + CHECK_NE(in_attrs->at(0), kUndefinedStorage) + << "src ndarray's storage type must be specified"; + const CastStorageParam& param = nnvm::get(attrs.parsed); + CHECK_NE(param.stype, kUndefinedStorage) + << "dst ndarray's storage type must be specified"; + TYPE_ASSIGN_CHECK(*out_attrs, 0, param.stype); + return true; +} + +template +void CastStorageComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 1); + CHECK_EQ(outputs.size(), 1); + if (req[0] == kNullOp) return; + CHECK_EQ(req[0], kWriteTo) << "CastStorageComputeEx expects req[0] == kWriteTo"; + CastStorageComputeImpl(ctx, inputs[0], outputs[0]); +} + +} // namespace op +} // namespace mxnet + +#endif // MXNET_OPERATOR_TENSOR_CAST_STORAGE_INL_H_ diff --git a/src/operator/tensor/cast_storage.cc b/src/operator/tensor/cast_storage.cc new file mode 100644 index 000000000000..b5de8d0f08bd --- /dev/null +++ b/src/operator/tensor/cast_storage.cc @@ -0,0 +1,87 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file cast_storage.cc + * \brief CPU Implementation of cast_storage operator. + */ + +#include "./cast_storage-inl.h" +#include "../elemwise_op_common.h" +#include "../tensor/elemwise_unary_op.h" + +namespace mxnet { +namespace op { + +DMLC_REGISTER_PARAMETER(CastStorageParam); +NNVM_REGISTER_OP(cast_storage) +.add_alias("_sparse_cast_storage") +.describe(R"code(Casts tensor storage type to the new type. + +When an NDArray with default storage type is cast to csr or row_sparse storage, +the result is compact, which means: + +- for csr, zero values will not be retained +- for row_sparse, row slices of all zeros will not be retained + +The storage type of ``cast_storage`` output depends on stype parameter: + +- cast_storage(csr, 'default') = default +- cast_storage(row_sparse, 'default') = default +- cast_storage(default, 'csr') = csr +- cast_storage(default, 'row_sparse') = row_sparse + +Example:: + + dense = [[ 0., 1., 0.], + [ 2., 0., 3.], + [ 0., 0., 0.], + [ 0., 0., 0.]] + + # cast to row_sparse storage type + rsp = cast_storage(default, 'default') + rsp.indices = [0, 1] + rsp.values = [[ 0., 1., 0.], + [ 2., 0., 3.]] + + # cast to row_sparse storage type + csr = cast_storage(default, 'default') + csr.indices = [1, 0, 2] + csr.values = [ 1., 2., 3.] + csr.indptr = [0, 1, 3, 3, 3] + +)code" ADD_FILELINE) +.set_num_inputs(1) +.set_num_outputs(1) +.set_attr_parser(ParamParser) +.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferType", ElemwiseType<1, 1>) +.set_attr("FInferStorageType", CastStorageInferStorageType) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("FCompute", IdentityCompute) +.set_attr("FComputeEx", CastStorageComputeEx) +.set_attr("FGradient", ElemwiseGradUseNone{"_copy"}) +.add_argument("data", "NDArray-or-Symbol", "The input.") +.add_arguments(CastStorageParam::__FIELDS__()); + +} // namespace op +} // namespace mxnet diff --git a/src/operator/tensor/cast_storage.cu b/src/operator/tensor/cast_storage.cu new file mode 100644 index 000000000000..1be5f79ae297 --- /dev/null +++ b/src/operator/tensor/cast_storage.cu @@ -0,0 +1,35 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file cast_storage.cu + * \brief GPU Implementation of cast_storage operator. + */ +#include "./cast_storage-inl.h" +#include "../tensor/elemwise_unary_op.h" + +namespace mxnet { +namespace op { + +NNVM_REGISTER_OP(cast_storage) +.set_attr("FCompute", IdentityCompute) +.set_attr("FComputeEx", CastStorageComputeEx); + +} // namespace op +} // namespace mxnet diff --git a/src/operator/tensor/dot-inl.cuh b/src/operator/tensor/dot-inl.cuh new file mode 100644 index 000000000000..41c3faaf419f --- /dev/null +++ b/src/operator/tensor/dot-inl.cuh @@ -0,0 +1,883 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * Copyright (c) 2017 by Contributors + * \file dot-inl.cuh + * \brief implementation of matrix dot op on GPU + */ +#ifndef MXNET_OPERATOR_TENSOR_DOT_INL_CUH_ +#define MXNET_OPERATOR_TENSOR_DOT_INL_CUH_ + +#include +#include +#include "./util/tensor_util-inl.cuh" + +namespace mxnet { +namespace op { + +/*! + * \brief GPU scalar kernel of dot(csr, dns1) = dns2 + * Parallelization by output matrix elements: 1 thread/element + */ +template +struct DotCsrDnsDnsScalarKernel { + /*! + * \brief This function represents performing an inner product between a row of lhs + * and a column of rhs and then assigning the value to out[tid]. + * \param tid global thread id + * \param out output matrix data + * \param data_l csr matrix data + * \param indptr_l csr matrix row index pointer + * \param col_idx_l csr matrix column indices + * \param data_r dns1 matrix data of rhs + * \param num_cols_r dns1 matrix number of columns + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t num_cols_r) { + const nnvm::dim_t irow = tid / num_cols_r; // row id of the lhs + const nnvm::dim_t icol = tid % num_cols_r; // col id of the rhs + DType sum = 0; + for (IType j = indptr_l[irow]; j < indptr_l[irow+1]; ++j) { + const CType cur_col = col_idx_l[j]; // corresponding row id of the rhs + sum += data_l[j] * data_r[cur_col*num_cols_r+icol]; + } + KERNEL_ASSIGN(out[tid], req, sum); + } +}; + +/*! + * \brief GPU vector kernel of dot(csr, dns1) = dns2 + * Parallelization by output matrix elements: 1 warp/element + */ +template +struct DotCsrDnsDnsVectorKernel { + /*! + * \brief see DotCsrDnsDnsScalarKernel Map for documentation. + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t num_cols_r) { + using nnvm::dim_t; + __shared__ volatile DType vals[mshadow::cuda::kBaseThreadNum]; + const dim_t warp_id = tid / 32; // global warp id + const dim_t lane = tid & (32-1); // local thread id within warp + const dim_t irow = warp_id / num_cols_r; // lhs row that this warp computes + const dim_t kcol = warp_id % num_cols_r; // rhs column that this warp computes + + // Range of nnz elements in this row + const dim_t low = static_cast(indptr_l[irow]); + const dim_t high = static_cast(indptr_l[irow+1]); + + // Compute running sum per thread + DType sum = 0; + for (dim_t j = low+lane; j < high; j+=32) { + sum += data_l[j] * data_r[col_idx_l[j]*num_cols_r + kcol]; + } + vals[threadIdx.x] = sum; __syncwarp(); + + // Parallel reduction in shared memory + if (lane < 16) {vals[threadIdx.x] += vals[threadIdx.x+16];} __syncwarp(); + if (lane < 8) {vals[threadIdx.x] += vals[threadIdx.x+ 8];} __syncwarp(); + if (lane < 4) {vals[threadIdx.x] += vals[threadIdx.x+ 4];} __syncwarp(); + if (lane < 2) {vals[threadIdx.x] += vals[threadIdx.x+ 2];} __syncwarp(); + if (lane < 1) {vals[threadIdx.x] += vals[threadIdx.x+ 1];} __syncwarp(); + + if (lane == 0) { + KERNEL_ASSIGN(out[irow*num_cols_r+kcol], req, vals[threadIdx.x]); + } + } +}; + +/*! + * \brief GPU scalar kernel of dot(csr.T, dns1) = dns2 + * Parallelization by output matrix elements: 1 thread/element + */ +template +struct DotCsrTransDnsDnsScalarKernel { + /*! + * \brief This function represents performing an inner product between a column of lhs + * and a column of rhs and then assigning the value to out[tid]. + * \param tid global thread id + * \param out output matrix + * \param data_l csr matrix data + * \param indptr_l csr matrix row index pointer + * \param col_idx_l csr matrix column indices + * \param data_r dns1 matrix data of rhs + * \param num_rows_l csr matrix number of rows (= number of columns of csr.T) + * \param num_cols_r dns1 matrix number of columns + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t num_rows_l, + const nnvm::dim_t num_cols_r) { + using nnvm::dim_t; + const dim_t irow = tid / num_cols_r; // col id of the lhs + const dim_t icol = tid % num_cols_r; // col id of the rhs + DType sum = 0; + + // Each thread scans each column with binary search to find nnz elements in its row + for (dim_t k = 0; k < num_rows_l; ++k) { + const dim_t low = static_cast(indptr_l[k]); + const dim_t high = static_cast(indptr_l[k+1]); + if (low == high || irow < col_idx_l[low] || irow > col_idx_l[high-1]) continue; + dim_t j = high, l = low, r = high - 1; + while (l <= r) { + dim_t m = l + (r - l) / 2; + if (col_idx_l[m] == irow) { + j = m; break; + } + if (col_idx_l[m] < irow) { + l = m + 1; + } else { + r = m - 1; + } + } + if (j < high) { + sum += data_l[j] * data_r[k*num_cols_r+icol]; + } + } + KERNEL_ASSIGN(out[tid], req, sum); + } +}; + +/*! + * \brief GPU warp kernel of dot(csr.T, dns1) = dns2 + * Parallelization by columns: 1 warp computes one lhs column for one rhs column + */ +struct DotCsrTransDnsDnsWarpKernel { + /*! + * \brief see DotCsrTransDnsDnsScalarKernel Map for documentation. + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t num_cols_r) { + using nnvm::dim_t; + const dim_t warp_id = tid / 32; // global warp id + const dim_t lane = tid & (32-1); // local thread id within warp + const dim_t icol = warp_id / num_cols_r; // lhs column that this warp computes + const dim_t kcol = warp_id % num_cols_r; // rhs column that this warp computes + + // Compute range of nnz elements in this column + const dim_t low = static_cast(indptr_l[icol]); + const dim_t high = static_cast(indptr_l[icol+1]); + + // Iterate through the nnz elements in this column + for (dim_t j = low+lane; j < high; j+=32) { + const dim_t irow = static_cast(col_idx_l[j]); + const DType val = data_l[j]*data_r[icol*num_cols_r+kcol]; + atomicAdd(static_cast(&(out[irow*num_cols_r+kcol])), val); + } + } +}; + +/*! + * \brief GPU thread block kernel of dot(csr.T, dns1) = dns2 + * Parallelization by columns: 1 thread block computes one lhs column for all rhs columns + */ +struct DotCsrTransDnsDnsThreadBlockKernel { + /*! + * \brief see DotCsrTransDnsDnsScalarKernel Map for documentation. + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t num_cols_r) { + using nnvm::dim_t; + const dim_t warps_per_block = blockDim.x / 32; // number of warps in this thread block + const dim_t warp_id = tid / 32; // global warp id + const dim_t lane = tid & (32-1); // local thread id within warp + const dim_t icol = blockIdx.x; // lhs column that this thread block computes + const dim_t kcol = warp_id % warps_per_block; // rhs column where warp starts computing (offset) + + // Compute range of nnz elements in this lhs column + const dim_t low = static_cast(indptr_l[icol]); + const dim_t high = static_cast(indptr_l[icol+1]); + + // Iterate through the nnz elements in this lhs column + for (dim_t j = low+lane; j < high; j+=32) { + const dim_t irow = static_cast(col_idx_l[j]); + const DType datum_l = data_l[j]; + // Iterate over rhs columns that this warp computes + for (dim_t k = kcol; k < num_cols_r; k+=warps_per_block) { + const DType val = datum_l*data_r[icol*num_cols_r+k]; + atomicAdd(static_cast(&(out[irow*num_cols_r+k])), val); + } + } + } +}; + +/*! + * \brief GPU warp block kernel of dot(csr.T, dns1) = dns2 + * Parallelization by columns: 1 warp computes one lhs column for all rhs columns + */ +struct DotCsrTransDnsDnsWarpBlockKernel { + /*! + * \brief see DotCsrTransDnsDnsScalarKernel Map for documentation. + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t num_cols_r) { + using nnvm::dim_t; + const dim_t warp_id = tid / 32; // global warp id + const dim_t lane = tid & (32-1); // local thread id within warp + const dim_t icol = warp_id; // lhs column that this warp computes + + // Compute range of nnz elements in this column + const dim_t low = static_cast(indptr_l[icol]); + const dim_t high = static_cast(indptr_l[icol+1]); + + // Iterate through the nnz elements in lhs column + for (dim_t j = low+lane; j < high; j+=32) { + const dim_t irow = static_cast(col_idx_l[j]); + const DType datum_l = data_l[j]; + // Iterate over all rhs columns + for (dim_t k = 0; k < num_cols_r; k++) { + const DType val = datum_l*data_r[icol*num_cols_r+k]; + atomicAdd(static_cast(&(out[irow*num_cols_r+k])), val); + } + } + } +}; + +/*! + * \brief GPU warp kernel of dot(csr.T, dns) = rsp + * Parallelization by columns: 1 warp computes one lhs column for one rhs column + */ +struct DotCsrTransDnsRspWarpKernel { + /*! + * \brief + * \param tid global thread id + * \param out output rsp matrix data + * \param row_flg_sum_out inclusive prefix sum array over 0/1 marked row flag array + * \param data_l csr matrix data + * \param indptr_l csr matrix row index pointer + * \param col_idx_l csr matrix column indices + * \param data_r dns matrix data + * \param num_cols_r dns matrix number of columns + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const nnvm::dim_t* row_flg_sum_out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t num_cols_r) { + using nnvm::dim_t; + const dim_t warp_id = tid / 32; // global warp id + const dim_t lane = tid & (32-1); // local thread id within warp + const dim_t icol = warp_id / num_cols_r; // lhs column that this warp computes + const dim_t kcol = warp_id % num_cols_r; // rhs column that this warp computes + + // Compute range of nnz elements in this column + const dim_t low = static_cast(indptr_l[icol]); + const dim_t high = static_cast(indptr_l[icol+1]); + + // Iterate through the nnz elements in this column + for (dim_t j = low+lane; j < high; j+=32) { + const dim_t irow = static_cast(col_idx_l[j]); + const dim_t rsp_row = row_flg_sum_out[irow]-1; + const DType val = data_l[j]*data_r[icol*num_cols_r+kcol]; + atomicAdd(static_cast(&(out[rsp_row*num_cols_r+kcol])), val); + } + } +}; + +/*! + * \brief GPU Kernel of dot(csr.T, rsp1) = rsp2 + * Parallelization by rows: 1 thread/row + * TODO: write a faster kernel optimized for GPU + */ +struct DotCsrTransRspRspByRowsKernel { + /*! + * \brief + * \param tid global thread id + * \param out output rsp matrix data + * \param row_idx_out output rsp matrix non-zero row indices + * \param data_l csr matrix data + * \param indptr_l csr matrix row index pointer + * \param col_idx_l csr matrix column indices + * \param data_r rsp1 matrix data + * \param row_idx_r rsp1 matrix non-zero row indices + * \param num_cols_r rsp1 matrix number of cols + * \param nnr_r rsp1 matrix number of non-zero rows + * \param nnr_out output rsp matrix number of non-zero rows + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const RType* row_idx_out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const RType* row_idx_r, + const nnvm::dim_t num_cols_r, + const nnvm::dim_t nnr_r, + const nnvm::dim_t nnr_out) { + using nnvm::dim_t; + // This thread computes non-zero row 'tid' of the output matrix + // The actual row id corresponding to the lhs row is row_idx_out[tid] + if (tid < nnr_out) { + const dim_t offset_out = tid * num_cols_r; + // Iterate over rhs matrix rows (or, equivalently, lhs columns worthy taking a look at) + for (dim_t i = 0; i < nnr_r; i++) { + const RType j = row_idx_r[i]; // j is the actual rhs row id (= lhs column id) + if (indptr_l[j] == indptr_l[j+1]) continue; + const dim_t offset_r = i * num_cols_r; + // Iterate over lhs column j to find possible non-zero value in this row + // TODO: remove sequential search, this is a bottleneck + for (IType k = indptr_l[j]; k < indptr_l[j+1]; k++) { + const CType col_idx = col_idx_l[k]; + if (col_idx == row_idx_out[tid]) { + for (dim_t l = 0; l < num_cols_r; l++) { + out[offset_out+l] += data_l[k] * data_r[offset_r+l]; + } + } else if (col_idx > row_idx_out[tid]) { + break; + } + } + } + } + } +}; + +/*! + * \brief GPU Kernel of dot(csr, rsp) = dns + * Parallelization by output elements: 1 thread/element + */ +struct DotCsrRspDnsScalarKernel { + /*! + * \brief + * \param tid global thread id + * \param out output dns matrix data + * \param data_l csr matrix data + * \param indptr_l csr matrix row index pointer + * \param col_idx_l csr matrix column indices + * \param data_r rsp matrix data + * \param row_idx_r rsp matrix non-zero row indices + * \param row_flg_r rsp matrix auxiliary array holding storage indices of non-zero rows + * \param nnr_r rsp matrix number of non-zero rows + * \param num_rows output dns matrix number of rows + * \param num_cols output dns matrix number of columns + */ + template + __device__ __forceinline__ static void Map(int tid, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const RType* row_idx_r, + const RType* row_flg_r, + const nnvm::dim_t nnr_r, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + if (tid < num_rows*num_cols) { + const dim_t i = static_cast(tid) / num_cols; // i = row this thread computes + const dim_t k = static_cast(tid) % num_cols; // k = col this thread computes + // Compute inner product of i-th row and k-th col + DType sum = 0; + for (IType j = indptr_l[i]; j < indptr_l[i+1]; j++) { + const dim_t csr_col = col_idx_l[j]; + const dim_t rsp_row_idx = row_flg_r[csr_col]; + if (rsp_row_idx > 0) { + sum += data_l[j] * data_r[(rsp_row_idx-1)*num_cols+k]; + } + } + if (sum != 0) { + out[i*num_cols+k] += sum; + } + } + } +}; + +/*! + * \brief GPU Impl of dot(csr, dns1) = dns2 and dot(csr.T, dns1) = dns2 + */ +inline void DotCsrDnsDnsImpl(const OpContext& ctx, + const gpu& gpu_dev, + const NDArray& lhs, + const TBlob& rhs, + const OpReqType req, + const bool trans_lhs, + TBlob* ret) { + if (kNullOp == req) return; + CHECK_EQ(lhs.storage_type(), kCSRStorage); + if (!lhs.storage_initialized()) return; + + using mshadow::cuda::kBaseThreadNum; + using mxnet_op::Kernel; + using mxnet_op::set_zero; + using nnvm::dim_t; + mshadow::Stream* s = ctx.get_stream(); + + const dim_t num_rows_l = lhs.shape()[0]; + const dim_t num_cols_r = rhs.shape_[1]; + const dim_t threads_per_warp = mxnet_op::cuda_get_device_prop().warpSize; + const dim_t threads_per_block = kBaseThreadNum; + dim_t num_threads; + // TODO: remove kernel dependency on warpSize=32 + if (threads_per_warp != 32) { + LOG(FATAL) << "DotCsrDnsDnsImpl GPU kernels expect warpSize=32"; + } + + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob& data_r = rhs; + const TBlob data_out = *ret; + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + if (kWriteTo == req) { + num_threads = data_out.Size(); + Kernel::Launch(s, num_threads, data_out.dptr()); + } + if (trans_lhs) { + // Different kernel versions are optimized for different matrix instances + // TODO: switch between kernel versions depending on input + // (1) 'Scalar kernel' (one thread computing one output element ) + // (2) 'Warp kernel' (one warp computing one lhs column for one rhs column ) + // (3) 'Thread block kernel' (one thread block computing one lhs column for all rhs columns) + // (4) 'Warp block kernel' (one warp computing one lhs column for all rhs columns) + const int kernel_version = 0; + switch (kernel_version) { + case 1: + num_threads = data_out.Size(); + MXNET_ASSIGN_REQ_SWITCH(req, ReqType, { + Kernel, gpu>::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_rows_l, num_cols_r); + }); + break; + case 2: + num_threads = threads_per_warp * num_rows_l * num_cols_r; + Kernel::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + break; + case 3: + num_threads = threads_per_block * num_rows_l; + Kernel::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + break; + case 4: + num_threads = threads_per_warp * num_rows_l; + Kernel::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + break; + default: + num_threads = threads_per_warp * num_rows_l * num_cols_r; + Kernel::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + break; + } + } else { + // Different kernel versions are optimized for different matrix instances + // (1) 'Scalar kernel' (one thread computing one output element) + // (2) 'Vector kernel' (one warp computing one output element) + const int kernel_version = 0; + switch (kernel_version) { + case 1: + num_threads = data_out.Size(); + MXNET_ASSIGN_REQ_SWITCH(req, ReqType, { + Kernel, gpu>::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + }); + break; + case 2: + num_threads = threads_per_warp * num_rows_l * num_cols_r; + MXNET_ASSIGN_REQ_SWITCH(req, ReqType, { + Kernel, gpu>::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + }); + break; + default: + if (num_cols_r > 4) { + num_threads = data_out.Size(); + MXNET_ASSIGN_REQ_SWITCH(req, ReqType, { + Kernel, gpu>::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + }); + } else { + num_threads = threads_per_warp * num_rows_l * num_cols_r; + MXNET_ASSIGN_REQ_SWITCH(req, ReqType, { + Kernel, gpu>::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), num_cols_r); + }); + } + break; + } + } + }); + }); + }); +} + +/*! + * \brief GPU Impl of dot(csr, dns) = rsp and dot(csr.T, dns) = rsp + */ +inline void DotCsrDnsRspImpl(const OpContext& ctx, + const gpu& gpu_dev, + const NDArray& lhs, + const TBlob& rhs, + const OpReqType req, + const bool trans_lhs, + NDArray* ret) { + if (kNullOp == req) return; + CHECK_EQ(lhs.storage_type(), kCSRStorage); + CHECK_EQ(ret->storage_type(), kRowSparseStorage); + CHECK_EQ(req, kWriteTo); + if (!lhs.storage_initialized()) return; + + using mshadow::Shape1; + using mxnet_op::Kernel; + using mxnet_op::set_zero; + using nnvm::dim_t; + mshadow::Stream* s = ctx.get_stream(); + + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob& data_r = rhs; + + const dim_t num_rows_l = lhs.shape()[0]; + const dim_t num_cols_l = lhs.shape()[1]; + const dim_t num_cols_r = rhs.shape_[1]; + const dim_t threads_per_warp = mxnet_op::cuda_get_device_prop().warpSize; + dim_t num_threads; + // TODO: remove kernel dependency on warpSize=32 + if (threads_per_warp != 32) { + LOG(FATAL) << "DotCsrDnsRspImpl GPU kernels expect warpSize=32"; + } + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + if (trans_lhs) { + // Compute number of non-zero rows (nnr) of output matrix + // - alloc temp storage for row_flg array and for cub's prefix sum + // - mark non-zero columns of csr matrix in row_flg + // - compute inclusive prefix sum over marked array + // - copy last value (nnr_out) from device to host + dim_t* row_flg_out = NULL; + void* d_temp_storage = NULL; + size_t temp_storage_bytes = 0; + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + row_flg_out, + row_flg_out, + num_cols_l, + mshadow::Stream::GetStream(s)); + mshadow::Tensor workspace = ctx.requested[0] + .get_space_typed(Shape1(num_cols_l * sizeof(dim_t) + + temp_storage_bytes), s); + row_flg_out = reinterpret_cast(workspace.dptr_); + d_temp_storage = workspace.dptr_ + num_cols_l*sizeof(dim_t); + num_threads = num_cols_l; + Kernel::Launch(s, num_threads, row_flg_out); + num_threads = num_rows_l * threads_per_warp; + Kernel::Launch(s, num_threads, + row_flg_out, col_idx_l.dptr(), indptr_l.dptr(), + num_rows_l, num_cols_l); + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + row_flg_out, + row_flg_out, + num_cols_l, + mshadow::Stream::GetStream(s)); + dim_t nnr_out = 0; + CUDA_CALL(cudaMemcpy(&nnr_out, &row_flg_out[num_cols_l-1], sizeof(dim_t), + cudaMemcpyDeviceToHost)); + + // Allocate output matrix space + ret->CheckAndAlloc({Shape1(nnr_out)}); + const TBlob data_out_blob = ret->data(); + const TBlob row_idx_out_blob = ret->aux_data(rowsparse::kIdx); + MSHADOW_IDX_TYPE_SWITCH(row_idx_out_blob.type_flag_, RType, { // row idx type + DType* data_out = data_out_blob.dptr(); + RType* row_idx_out = row_idx_out_blob.dptr(); + num_threads = nnr_out * num_cols_r; + Kernel::Launch(s, num_threads, data_out); + num_threads = nnr_out; + Kernel::Launch(s, num_threads, row_idx_out); + + // Fill row_idx array of output matrix, using the row_flg values + num_threads = num_cols_l; + Kernel::Launch(s, num_threads, + row_idx_out, row_flg_out, num_cols_l); + + // Perform matrix-matrix multiply + num_threads = threads_per_warp * num_rows_l * num_cols_r; + Kernel::Launch(s, num_threads, + data_out, row_flg_out, + data_l.dptr(), indptr_l.dptr(), col_idx_l.dptr(), + data_r.dptr(), num_cols_r); + }); + } else { + LOG(FATAL) << "DotCsrDnsRspImpl has not implemented dot(csr, dns) = rsp yet."; + } + }); + }); + }); +} + +/*! + * \brief GPU Impl of dot(csr, rsp1) = rsp2 and dot(csr.T, rsp1) = rsp2 + * TODO: Optimize for GPU; this is a baseline implementation providing + * the operator functionality, it is not yet fully optimized for GPU. + */ +inline void DotCsrRspRspImpl(const OpContext& ctx, + const gpu& gpu_dev, + const NDArray& lhs, + const NDArray& rhs, + const OpReqType req, + const bool trans_lhs, + NDArray* ret) { + if (kNullOp == req) return; + // Reuse dot(csr, dns) implementation if rhs rsp matrix is in fact dense + if (rhs.storage_shape()[0] == rhs.shape()[0]) { + DotCsrDnsRspImpl(ctx, gpu_dev, lhs, rhs.data(), req, trans_lhs, ret); + return; + } + CHECK_EQ(lhs.storage_type(), kCSRStorage); + CHECK_EQ(rhs.storage_type(), kRowSparseStorage); + CHECK_EQ(ret->storage_type(), kRowSparseStorage); + if (!lhs.storage_initialized() || !rhs.storage_initialized()) return; + CHECK_EQ(req, kWriteTo); + + using mshadow::Shape1; + using mxnet_op::Kernel; + using mxnet_op::set_zero; + using nnvm::dim_t; + mshadow::Stream* s = ctx.get_stream(); + + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob data_r = rhs.data(); + const TBlob row_idx_r = rhs.aux_data(rowsparse::kIdx); + + const dim_t num_rows_l = lhs.shape()[0]; + const dim_t num_cols_l = lhs.shape()[1]; + const dim_t num_cols_r = rhs.shape()[1]; + const dim_t nnr_r = rhs.storage_shape()[0]; + const dim_t threads_per_warp = mxnet_op::cuda_get_device_prop().warpSize; + dim_t num_threads; + // TODO: remove kernel dependency on warpSize=32 + if (threads_per_warp != 32) { + LOG(FATAL) << "DotCsrRspRspImpl GPU kernels expect warpSize=32"; + } + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + MSHADOW_IDX_TYPE_SWITCH(row_idx_r.type_flag_, RType, { // row idx type + if (trans_lhs) { + // Compute number of non-zero rows (nnr) of output matrix + // - alloc temp storage for row_flg array and for cub's prefix sum + // - mark non-zero columns of csr matrix in row_flg + // - compute inclusive prefix sum over marked array + // - copy last value (nnr_out) from device to host + dim_t* row_flg_out = NULL; + void* d_temp_storage = NULL; + size_t temp_storage_bytes = 0; + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + row_flg_out, + row_flg_out, + num_cols_l, + mshadow::Stream::GetStream(s)); + mshadow::Tensor workspace = ctx.requested[0] + .get_space_typed(Shape1(num_cols_l * sizeof(dim_t) + + temp_storage_bytes), s); + row_flg_out = reinterpret_cast(workspace.dptr_); + d_temp_storage = workspace.dptr_ + num_cols_l*sizeof(dim_t); + num_threads = num_cols_l; + Kernel::Launch(s, num_threads, row_flg_out); + num_threads = num_rows_l * threads_per_warp; + Kernel::Launch(s, num_threads, + row_flg_out, col_idx_l.dptr(), indptr_l.dptr(), + num_rows_l, num_cols_l); + cub::DeviceScan::InclusiveSum(d_temp_storage, + temp_storage_bytes, + row_flg_out, + row_flg_out, + num_cols_l, + mshadow::Stream::GetStream(s)); + dim_t nnr_out = 0; + CUDA_CALL(cudaMemcpy(&nnr_out, &row_flg_out[num_cols_l-1], sizeof(dim_t), + cudaMemcpyDeviceToHost)); + + // Allocate output matrix space + ret->CheckAndAlloc({mshadow::Shape1(nnr_out)}); + const TBlob data_out_blob = ret->data(); + const TBlob row_idx_out_blob = ret->aux_data(rowsparse::kIdx); + DType* data_out = data_out_blob.dptr(); + RType* row_idx_out = row_idx_out_blob.dptr(); + num_threads = nnr_out * num_cols_r; + Kernel::Launch(s, num_threads, data_out); + num_threads = nnr_out; + Kernel::Launch(s, num_threads, row_idx_out); + + // Fill row_idx array of output matrix, using the row_flg values + num_threads = num_cols_l; + Kernel::Launch(s, num_threads, + row_idx_out, row_flg_out, num_cols_l); + + // Perform matrix-matrix multiply + num_threads = nnr_out; + Kernel::Launch(s, num_threads, + data_out, row_idx_out, + data_l.dptr(), indptr_l.dptr(), col_idx_l.dptr(), + data_r.dptr(), row_idx_r.dptr(), + num_cols_r, nnr_r, nnr_out); + } else { + LOG(FATAL) << "DotCsrRspRspImpl has not implemented dot(csr, rsp1) = rsp2 yet."; + } + }); + }); + }); + }); +} + +/*! + * \brief GPU Impl of dot(csr, rsp) = dns and dot(csr.T, rsp) = dns + */ +inline void DotCsrRspDnsImpl(const OpContext& ctx, + const gpu& gpu_dev, + const NDArray& lhs, + const NDArray& rhs, + const OpReqType req, + const bool trans_lhs, + TBlob* ret) { + // Reuse dot(csr, dns) implementation if rhs rsp matrix is in fact dense + if (rhs.storage_shape()[0] == rhs.shape()[0]) { + DotCsrDnsDnsImpl(ctx, gpu_dev, lhs, rhs.data(), req, trans_lhs, ret); + return; + } + if (kNullOp == req) return; + CHECK_EQ(lhs.storage_type(), kCSRStorage); + CHECK_EQ(rhs.storage_type(), kRowSparseStorage); + + using mxnet_op::Kernel; + using mxnet_op::set_zero; + mshadow::Stream* s = ctx.get_stream(); + if (!lhs.storage_initialized() || !rhs.storage_initialized()) { + if (kWriteTo == req) { + MSHADOW_TYPE_SWITCH(ret->type_flag_, DType, { // data type + Kernel::Launch(s, ret->Size(), ret->dptr()); + }); + } + return; + } + + using nnvm::dim_t; + const dim_t num_rows = ret->shape_[0]; + const dim_t num_cols = ret->shape_[1]; + const dim_t nnr_r = rhs.storage_shape()[0]; + dim_t num_threads; + + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob data_r = rhs.data(); + const TBlob row_idx_r = rhs.aux_data(rowsparse::kIdx); + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + MSHADOW_IDX_TYPE_SWITCH(row_idx_r.type_flag_, RType, { // row idx type + if (kWriteTo == req) { + num_threads = num_rows*num_cols; + Kernel::Launch(s, num_threads, ret->dptr()); + } + if (trans_lhs) { + LOG(FATAL) << "DotCsrRspDnsImpl has not implemented dot(csr.T, rsp) = dns yet."; + } else { + // TODO: Consider implementing a vector kernel for SpMV (similar to DotCsrDnsDns) + // Alloc temp storage for row_flg array + RType* row_flg_r = ctx.requested[0] + .get_space_typed(mshadow::Shape1(rhs.shape()[0]), s).dptr_; + num_threads = rhs.shape()[0]; + Kernel::Launch(s, num_threads, row_flg_r); + // Set row_flg index array + num_threads = nnr_r; + Kernel::Launch(s, num_threads, + row_flg_r, row_idx_r.dptr(), nnr_r); + // Perform sparse matrix-matrix multiply + num_threads = num_rows*num_cols; + Kernel::Launch(s, num_threads, + ret->dptr(), + data_l.dptr(), indptr_l.dptr(), col_idx_l.dptr(), + data_r.dptr(), row_idx_r.dptr(), row_flg_r, rhs.storage_shape()[0], + num_rows, num_cols); + } + }); + }); + }); + }); +} + +} // namespace op +} // namespace mxnet + +#endif // MXNET_OPERATOR_TENSOR_DOT_INL_CUH_ diff --git a/src/operator/tensor/dot-inl.h b/src/operator/tensor/dot-inl.h new file mode 100644 index 000000000000..aaf242e26fe1 --- /dev/null +++ b/src/operator/tensor/dot-inl.h @@ -0,0 +1,1007 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file dot-inl.h + * \brief Function definition of matrix dot operator + */ + +#ifndef MXNET_OPERATOR_TENSOR_DOT_INL_H_ +#define MXNET_OPERATOR_TENSOR_DOT_INL_H_ + +#include +#include +#include +#include +#include +#include "../mshadow_op.h" +#include "../elemwise_op_common.h" +#include "../mxnet_op.h" +#ifdef __CUDACC__ +#include "./dot-inl.cuh" +#endif // __CUDACC__ + +namespace mxnet { +namespace op { + +struct DotParam : public dmlc::Parameter { + bool transpose_a; + bool transpose_b; + DMLC_DECLARE_PARAMETER(DotParam) { + DMLC_DECLARE_FIELD(transpose_a) + .describe("If true then transpose the first input before dot.") + .set_default(false); + DMLC_DECLARE_FIELD(transpose_b) + .describe("If true then transpose the second input before dot.") + .set_default(false); + } +}; + +template +void DotForward_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + const DotParam& param = nnvm::get(attrs.parsed); + Stream *s = ctx.get_stream(); + CHECK_EQ(outputs[0].type_flag_, inputs[0].type_flag_) + << "Binary function only support input/output with the same type"; + CHECK_EQ(outputs[0].type_flag_, inputs[1].type_flag_) + << "Binary function only support input/output with the same type"; + CHECK(outputs[0].type_flag_ == kFloat32 || outputs[0].type_flag_ == kFloat64) + << "dot only supports float32 and float64"; + MSHADOW_SGL_DBL_TYPE_SWITCH(outputs[0].type_flag_, DType, { + if (inputs[0].ndim() == 1 && inputs[1].ndim() == 1) { + CHECK_NE(req[0], kAddTo) << "AddTo not yet suported"; + Tensor out = outputs[0].get(s); + VectorDot(out, + inputs[0].get(s), + inputs[1].get(s)); + } else { + int ma, na, mb, nb, m, n; + if (param.transpose_a) { + ma = inputs[0].size(0); + na = inputs[0].Size()/ma; + m = na; + } else { + na = inputs[0].size(inputs[0].ndim()-1); + ma = inputs[0].Size()/na; + m = ma; + } + if (param.transpose_b) { + nb = inputs[1].size(inputs[1].ndim()-1); + mb = inputs[1].Size()/nb; + n = mb; + } else { + mb = inputs[1].size(0); + nb = inputs[1].Size()/mb; + n = nb; + } + Tensor input0 = + inputs[0].get_with_shape(Shape2(ma, na), s); + Tensor input1 = + inputs[1].get_with_shape(Shape2(mb, nb), s); + Tensor out = + outputs[0].get_with_shape(Shape2(m, n), s); + if (param.transpose_a && param.transpose_b) { + ASSIGN_DISPATCH(out, req[0], dot(input0.T(), input1.T())); + } else if (!param.transpose_a && param.transpose_b) { + ASSIGN_DISPATCH(out, req[0], dot(input0, input1.T())); + } else if (param.transpose_a && !param.transpose_b) { + ASSIGN_DISPATCH(out, req[0], dot(input0.T(), input1)); + } else { + ASSIGN_DISPATCH(out, req[0], dot(input0, input1)); + } + } + }); +} + +template +void DotBackward_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + const DotParam& param = nnvm::get(attrs.parsed); + Stream *s = ctx.get_stream(); + CHECK_NE(req[0], kWriteInplace); + CHECK_NE(req[1], kWriteInplace); + MSHADOW_SGL_DBL_TYPE_SWITCH(outputs[0].type_flag_, DType, { + if (inputs[1].ndim() == 1 && inputs[2].ndim() == 1) { + Tensor mout_grad = inputs[0].get(s); + Tensor mlhs_data = inputs[1].get(s); + Tensor mrhs_data = inputs[2].get(s); + Tensor mlhs_grad = outputs[0].get(s); + Tensor mrhs_grad = outputs[1].get(s); + ASSIGN_DISPATCH(mrhs_grad, req[1], + broadcast_scalar(mout_grad, mlhs_data.shape_) * mlhs_data); + ASSIGN_DISPATCH(mlhs_grad, req[0], + broadcast_scalar(mout_grad, mlhs_data.shape_) * mrhs_data); + } else { + int ma, na, mb, nb, m, n; + if (param.transpose_a) { + ma = outputs[0].size(0); + na = outputs[0].Size()/ma; + m = na; + } else { + na = outputs[0].size(outputs[0].ndim()-1); + ma = outputs[0].Size()/na; + m = ma; + } + if (param.transpose_b) { + nb = outputs[1].size(outputs[1].ndim()-1); + mb = outputs[1].Size()/nb; + n = mb; + } else { + mb = outputs[1].size(0); + nb = outputs[1].Size()/mb; + n = nb; + } + Tensor mout_grad = + inputs[0].get_with_shape(Shape2(m, n), s); + Tensor mlhs_data = + inputs[1].get_with_shape(Shape2(ma, na), s); + Tensor mrhs_data = + inputs[2].get_with_shape(Shape2(mb, nb), s); + Tensor mlhs_grad = + outputs[0].get_with_shape(Shape2(ma, na), s); + Tensor mrhs_grad = + outputs[1].get_with_shape(Shape2(mb, nb), s); + if (param.transpose_a && param.transpose_b) { + // Gradient of z = dot(x.T, y.T) + // dy = dot(x, dz).T = dot(dz.T, x.T) + // dx = dot(dz, y).T = dot(y.T, dz.T) + ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mout_grad.T(), mlhs_data.T())); + ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mrhs_data.T(), mout_grad.T())); + } else if (!param.transpose_a && param.transpose_b) { + // Gradient of z = dot(x, y.T) + // dy = dot(x.T, dz).T = dot(dz.T, x) + // dx = dot(dz, y) + ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mout_grad.T(), mlhs_data)); + ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mout_grad, mrhs_data)); + } else if (param.transpose_a && !param.transpose_b) { + // Gradient of z = dot(x.T, y) + // dy = dot(x, dz) + // dx = dot(dz, y.T).T = dot(y, dz.T) + ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mlhs_data, mout_grad)); + ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mrhs_data, mout_grad.T())); + } else { + // Gradient of z = dot(x, y) + // dy = dot(x.T, dz) + // dx = dot(dz, y.T) + ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mlhs_data.T(), mout_grad)); + ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mout_grad, mrhs_data.T())); + } + } + }); +} + +inline bool DotForwardInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 1U); + const DotParam& param = nnvm::get(attrs.parsed); + // csr has many zero columns, so the result of dot(csr.T, matrix) should be rsp + // TODO(stefan/haibin/jun): check type_assign return value + if (param.transpose_a && kCSRStorage == (*in_attrs)[0]) { + type_assign(&((*out_attrs)[0]), kRowSparseStorage); + } else { + type_assign(&((*out_attrs)[0]), kDefaultStorage); + } + return true; +} + +inline bool DotBackwardInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 3U); + CHECK_EQ(out_attrs->size(), 2U); + const DotParam& param = nnvm::get(attrs.parsed); + type_assign(&((*out_attrs)[0]), kDefaultStorage); + if (!param.transpose_a && kCSRStorage == (*in_attrs)[1]) { + type_assign(&((*out_attrs)[1]), kRowSparseStorage); + } else { + type_assign(&((*out_attrs)[1]), kDefaultStorage); + } + return true; +} + +/*! + * \brief CPU Kernel of dot(csr, dns1) = dns2 + * Parallelization by row blocks + */ +struct DotCsrDnsDnsByRowBlocks { + /*! + * \brief + * \param i the i-th thread + */ + template + MSHADOW_CINLINE static void Map(int i, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t seg_len, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + const dim_t seg_start = i * seg_len; + if (seg_start >= num_rows) return; + const dim_t seg_end = std::min(seg_start + seg_len, num_rows); + for (dim_t j = seg_start; j < seg_end; ++j) { + if (indptr_l[j] == indptr_l[j+1]) continue; + const dim_t offset_out = j * num_cols; + for (IType k = indptr_l[j]; k < indptr_l[j+1]; ++k) { + const DType val = data_l[k]; + const dim_t offset_r = col_idx_l[k] * num_cols; + for (dim_t l = 0; l < num_cols; ++l) { + out[offset_out+l] += data_r[offset_r+l] * val; + } + } + } + } +}; + +/*! + * \brief CPU Kernel of dot(csr.T(), dns1) = dns2 + * Parallelization by row blocks + */ +struct DotCsrTransDnsDnsByRowBlocks { + /*! + * \brief + * \param i the i-th thread + */ + template + MSHADOW_CINLINE static void Map(int i, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t seg_len, + const nnvm::dim_t num_rows_l, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + const dim_t seg_start = i * seg_len; + if (seg_start >= num_rows) return; + const dim_t seg_end = (i + 1) * seg_len; + for (dim_t j = 0; j < num_rows_l; ++j) { + if (indptr_l[j] == indptr_l[j+1]) continue; + const dim_t offset_r = j * num_cols; + for (IType k = indptr_l[j]; k < indptr_l[j+1]; ++k) { + const CType col_idx = col_idx_l[k]; + if (col_idx < seg_start || col_idx >= seg_end) continue; + const dim_t offset_out = col_idx * num_cols; + const DType val = data_l[k]; + for (dim_t l = 0; l < num_cols; ++l) { + out[offset_out+l] += data_r[offset_r+l] * val; + } + } + } + } +}; + +/*! + * \brief CPU Kernel of dot(csr.T(), dns) = rsp + * Parallelization by row blocks. + * This kernel fills up the row_idx array of the rsp + * with 1 for nonzero rows and 0 for zero rows. + * The matrix will be compacted after this kernel call. + */ +struct DotCsrTransDnsRspByRowBlocks { + /*! + * \brief + * \param i the i-th thread + */ + template + MSHADOW_CINLINE static void Map(int i, + DType* out, + RType* row_idx, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const nnvm::dim_t seg_len, + const nnvm::dim_t num_rows_l, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + using nnvm::dim_t; + const dim_t seg_start = i * seg_len; + if (seg_start >= num_rows) return; + const dim_t seg_end = (i + 1) * seg_len; + for (dim_t j = 0; j < num_rows_l; ++j) { + if (indptr_l[j] == indptr_l[j+1]) continue; + const dim_t offset_r = j * num_cols; + for (IType k = indptr_l[j]; k < indptr_l[j+1]; ++k) { + const CType col_idx = col_idx_l[k]; + if (col_idx < seg_start || col_idx >= seg_end) continue; + const dim_t offset_out = col_idx * num_cols; + row_idx[col_idx] = 1; + const DType val = data_l[k]; + for (dim_t l = 0; l < num_cols; ++l) { + out[offset_out+l] += data_r[offset_r+l] * val; + } + } + } + } +}; + +/*! + * \brief CPU Kernel of dot(csr, rsp) = dns + * Parallelization by row blocks + */ +struct DotCsrRspDnsByRowBlocks { + /*! + * \brief + * \param i the i-th thread + * \param nnr_r storage_shape[0] of the rsp + * \param num_rows dns.shape[0] + * \param num_cols dns.shape[1] + */ + template + MSHADOW_CINLINE static void Map(int i, + DType* out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const RType* row_idx_r, + const nnvm::dim_t nnr_r, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols, + const nnvm::dim_t seg_len) { + using nnvm::dim_t; + const dim_t seg_start = i * seg_len; + if (seg_start >= num_rows) return; + const dim_t seg_end = std::min(seg_start + seg_len, num_rows); + for (dim_t j = seg_start; j < seg_end; ++j) { + if (indptr_l[j] == indptr_l[j+1]) continue; + const dim_t offset_out = j * num_cols; + // Use binary search to find the lower_bound of val in row_idx array + const RType* first = row_idx_r; + const RType* last = row_idx_r + nnr_r; + const CType val = col_idx_l[indptr_l[j]]; + const RType* it; + int count = last - first, step; + while (count > 0) { + it = first; + step = count / 2; + it += step; + if (*it < val) { + first = ++it; + count -= step + 1; + } else { + count = step; + } + } + const RType* row_idx_ptr = first; + // end of binary search + if (row_idx_ptr == row_idx_r+nnr_r || *row_idx_ptr > col_idx_l[indptr_l[j+1]-1]) continue; + for (IType k = indptr_l[j]; k < indptr_l[j+1] && row_idx_ptr != row_idx_r+nnr_r;) { + if (col_idx_l[k] == *row_idx_ptr) { + const dim_t offset_r = (row_idx_ptr - row_idx_r) * num_cols; + for (dim_t l = 0; l < num_cols; ++l) { + out[offset_out+l] += data_l[k] * data_r[offset_r+l]; + } + ++k; + ++row_idx_ptr; + } else if (col_idx_l[k] < *row_idx_ptr) { + ++k; + } else { + ++row_idx_ptr; + } + } + } + } +}; + +/*! + * \brief CPU Kernel of dot(csr.T(), rsp1) = rsp2, with row_idx marked for non-zero rows + * Parallelization by row blocks + */ +struct DotCsrTransRspRspByRowBlocks { + /*! + * \brief + * \param i the i-th thread + * \param num_rows_l number of rows of lhs matrix + * \param nnr_r number of non-zero rows of rhs matrix + * \param num_rows number of rows of out matrix + * \param num_cols number of cols of out matrix + */ + template + MSHADOW_CINLINE static void Map(int i, + DType* out, + RType* row_idx_out, + const DType* data_l, + const IType* indptr_l, + const CType* col_idx_l, + const DType* data_r, + const RType* row_idx_r, + const nnvm::dim_t num_rows_l, + const nnvm::dim_t nnr_r, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols, + const nnvm::dim_t seg_len) { + using nnvm::dim_t; + const dim_t seg_start = i * seg_len; + if (seg_start >= num_rows) return; + const dim_t seg_end = (i + 1) * seg_len; + for (dim_t rid = 0; rid < nnr_r; ++rid) { + const RType j = row_idx_r[rid]; + if (indptr_l[j] == indptr_l[j+1]) continue; + const dim_t offset_r = rid * num_cols; + for (IType k = indptr_l[j]; k < indptr_l[j+1]; ++k) { + const CType col_idx = col_idx_l[k]; + if (col_idx < seg_start || col_idx >= seg_end) continue; + row_idx_out[col_idx] = 1; // mark nonzero row as 1 + const dim_t offset_out = col_idx * num_cols; + for (dim_t l = 0; l < num_cols; ++l) { + out[offset_out+l] += data_r[offset_r+l] * data_l[k]; + } + } + } + } +}; + +/*! + * \brief CPU Impl of dot(csr, dns1) = dns2 and dot(csr.T, dns1) = dns2 + */ +inline void DotCsrDnsDnsImpl(const OpContext& ctx, + const cpu& cpu_dev, + const NDArray& lhs, + const TBlob& rhs, + const OpReqType req, + const bool trans_lhs, + TBlob* ret) { + if (kNullOp == req) return; + CHECK_EQ(lhs.storage_type(), kCSRStorage); + if (!lhs.storage_initialized()) return; + + using nnvm::dim_t; + + mshadow::Stream* s = ctx.get_stream(); + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob& data_r = rhs; + const TBlob data_out = *ret; + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + dim_t num_threads; + if (kWriteTo == req) { + num_threads = data_out.Size(); + mxnet_op::Kernel::Launch( + s, num_threads, data_out.dptr()); + } + num_threads = mxnet_op::get_num_threads(data_out.shape_[0]); + dim_t seg_len = (data_out.shape_[0] + num_threads - 1) / num_threads; + if (trans_lhs) { + mxnet_op::Kernel::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), seg_len, + lhs.shape()[0], data_out.shape_[0], data_out.shape_[1]); + } else { + mxnet_op::Kernel::Launch(s, num_threads, + data_out.dptr(), data_l.dptr(), indptr_l.dptr(), + col_idx_l.dptr(), data_r.dptr(), seg_len, + data_out.shape_[0], data_out.shape_[1]); + } + }); + }); + }); +} + +/*! + * \brief CPU Impl of dot(csr.T, dns) = rsp + */ +inline void DotCsrDnsRspImpl(const OpContext& ctx, + const cpu& cpu_dev, + const NDArray& lhs, + const TBlob& rhs, + const OpReqType req, + const bool trans_lhs, + NDArray* ret) { + if (kNullOp == req) return; + CHECK_EQ(lhs.storage_type(), kCSRStorage); + CHECK_EQ(ret->storage_type(), kRowSparseStorage); + if (!lhs.storage_initialized()) return; + CHECK_EQ(req, kWriteTo); + + using mxnet_op::set_zero; + using nnvm::dim_t; + + mshadow::Stream* s = ctx.get_stream(); + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob& data_r = rhs; + + // pre-allocate spaces for ret using the dense dimension size + ret->CheckAndAlloc({mshadow::Shape1(lhs.shape()[1])}); + const TBlob data_out = ret->data(); + const TBlob row_idx_out = ret->aux_data(rowsparse::kIdx); + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + MSHADOW_IDX_TYPE_SWITCH(row_idx_out.type_flag_, RType, { // row idx type + dim_t num_threads = data_out.Size(); + mxnet_op::Kernel::Launch(s, num_threads, data_out.dptr()); + RType* row_idx = row_idx_out.dptr(); + num_threads = row_idx_out.Size(); + mxnet_op::Kernel::Launch(s, num_threads, row_idx); + num_threads = mxnet_op::get_num_threads(data_out.shape_[0]); + dim_t seg_len = (data_out.shape_[0] + num_threads - 1) / num_threads; + if (trans_lhs) { + mxnet_op::Kernel::Launch(s, num_threads, + data_out.dptr(), row_idx, data_l.dptr(), + indptr_l.dptr(), col_idx_l.dptr(), data_r.dptr(), + seg_len, lhs.shape()[0], data_out.shape_[0], data_out.shape_[1]); + dim_t nnr = 0; + nnr = mxnet::common::ParallelAccumulate(row_idx, ret->shape()[0], nnr); + ret->set_aux_shape(rowsparse::kIdx, mshadow::Shape1(nnr)); + if (0 == nnr) return; + mshadow::Tensor rsp_data = data_out.FlatTo2D(s); + dim_t idx = 0; + for (index_t i = 0; i < ret->shape()[0]; ++i) { + if (row_idx[i] > 0) { + row_idx[idx] = i; + mshadow::Copy(rsp_data[idx], rsp_data[i], s); + ++idx; + } + } + } else { + LOG(FATAL) << "DotCsrDnsRspImpl has not implemented dot(csr, dns)=rsp yet."; + } + }); + }); + }); + }); +} + +/*! + * \brief CPU Impl of dot(csr, rsp) = dns + */ +inline void DotCsrRspDnsImpl(const OpContext& ctx, + const cpu& cpu_dev, + const NDArray& lhs, + const NDArray& rhs, + const OpReqType req, + const bool trans_lhs, + TBlob* ret) { + if (kNullOp == req) return; + // reuse csr dns implementation when storage_shape == shape for rhs + if (rhs.storage_shape()[0] == rhs.shape()[0]) { // if rsp is actually dense + DotCsrDnsDnsImpl(ctx, cpu_dev, lhs, rhs.data(), req, trans_lhs, ret); + return; + } + + CHECK_EQ(lhs.storage_type(), kCSRStorage); + CHECK_EQ(rhs.storage_type(), kRowSparseStorage); + mshadow::Stream* s = ctx.get_stream(); + if (!lhs.storage_initialized() || !rhs.storage_initialized()) { + if (kWriteTo == req) { + MSHADOW_SGL_DBL_TYPE_SWITCH(ret->type_flag_, DType, { // data type + mxnet_op::Kernel::Launch( + s, ret->Size(), ret->dptr()); + }); + } + return; + } + using nnvm::dim_t; + + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob data_r = rhs.data(); + const TBlob row_idx_r = rhs.aux_data(rowsparse::kIdx); + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + MSHADOW_IDX_TYPE_SWITCH(row_idx_r.type_flag_, RType, { // row idx type + dim_t num_threads; + if (kWriteTo == req) { + num_threads = ret->Size(); + mxnet_op::Kernel::Launch(s, num_threads, + ret->dptr()); + } + num_threads = mxnet_op::get_num_threads(ret->shape_[0]); + dim_t seg_len = (ret->shape_[0] + num_threads - 1) / num_threads; + if (trans_lhs) { + LOG(FATAL) << "DotCsrRspDnsImpl has not implemented dot(csr.T, rsp) = dns yet"; + } else { + mxnet_op::Kernel::Launch(s, num_threads, + ret->dptr(), data_l.dptr(), + indptr_l.dptr(), col_idx_l.dptr(), data_r.dptr(), + row_idx_r.dptr(), rhs.storage_shape()[0], + ret->shape_[0], ret->shape_[1], seg_len); + } + }); + }); + }); + }); +} + +/*! + * \brief CPU Impl of dot(csr.T, rsp1) = rsp2 + */ +inline void DotCsrRspRspImpl(const OpContext& ctx, + const cpu& cpu_dev, + const NDArray& lhs, + const NDArray& rhs, + const OpReqType req, + const bool trans_lhs, + NDArray* ret) { + if (kNullOp == req) return; + // reuse csr dns implementation when storage_shape == shape for rhs + if (rhs.storage_shape()[0] == rhs.shape()[0]) { // if rsp is actually dense + DotCsrDnsRspImpl(ctx, cpu_dev, lhs, rhs.data(), req, trans_lhs, ret); + return; + } + + CHECK_EQ(lhs.storage_type(), kCSRStorage); + CHECK_EQ(rhs.storage_type(), kRowSparseStorage); + CHECK_EQ(ret->storage_type(), kRowSparseStorage); + if (!lhs.storage_initialized() || !rhs.storage_initialized()) return; + CHECK_EQ(req, kWriteTo); + + using mxnet_op::set_zero; + using nnvm::dim_t; + + mshadow::Stream* s = ctx.get_stream(); + const TBlob data_l = lhs.data(); + const TBlob indptr_l = lhs.aux_data(csr::kIndPtr); + const TBlob col_idx_l = lhs.aux_data(csr::kIdx); + const TBlob data_r = rhs.data(); + const TBlob row_idx_r = rhs.aux_data(rowsparse::kIdx); + + // pre-allocate spaces for ret using the dense dimension size + if (ret->storage_type() == kRowSparseStorage) { + ret->CheckAndAlloc({mshadow::Shape1(lhs.shape()[1])}); + } + const TBlob data_out = ret->data(); + const TBlob row_idx_out = ret->aux_data(rowsparse::kIdx); + + MSHADOW_SGL_DBL_TYPE_SWITCH(data_l.type_flag_, DType, { // data type + MSHADOW_IDX_TYPE_SWITCH(indptr_l.type_flag_, IType, { // indptr type + MSHADOW_IDX_TYPE_SWITCH(col_idx_l.type_flag_, CType, { // col idx type + MSHADOW_IDX_TYPE_SWITCH(row_idx_r.type_flag_, RType, { // row idx type + dim_t num_threads = data_out.Size(); + mxnet_op::Kernel::Launch(s, num_threads, data_out.dptr()); + num_threads = mxnet_op::get_num_threads(data_out.shape_[0]); + dim_t seg_len = (data_out.shape_[0] + num_threads - 1) / num_threads; + if (trans_lhs) { + RType* row_idx = row_idx_out.dptr(); + num_threads = row_idx_out.Size(); + mxnet_op::Kernel::Launch(s, num_threads, row_idx); + mxnet_op::Kernel::Launch(s, num_threads, + data_out.dptr(), row_idx, data_l.dptr(), + indptr_l.dptr(), col_idx_l.dptr(), data_r.dptr(), + row_idx_r.dptr(), lhs.shape()[0], rhs.storage_shape()[0], + ret->shape()[0], ret->shape()[1], seg_len); + dim_t nnr = 0; + nnr = mxnet::common::ParallelAccumulate(row_idx, ret->shape()[0], nnr); + ret->set_aux_shape(rowsparse::kIdx, mshadow::Shape1(nnr)); + if (0 == nnr) return; + mshadow::Tensor rsp_data = data_out.FlatTo2D(s); + dim_t idx = 0; + for (index_t i = 0; i < ret->shape()[0]; ++i) { + if (row_idx[i] > 0) { + row_idx[idx] = i; + mshadow::Copy(rsp_data[idx], rsp_data[i], s); + ++idx; + } + } + } else { + LOG(FATAL) << "DotCsrRspRspImpl has not implemented dot(csr, rsp) = rsp2 yet"; + } + }); + }); + }); + }); +} + +inline bool DotShape(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + const DotParam& param = nnvm::get(attrs.parsed); + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 1U); + TShape& lshape = (*in_attrs)[0]; + TShape& rshape = (*in_attrs)[1]; + if (lshape.ndim() == 1 && rshape.ndim() == 1) { + CHECK(!param.transpose_a && !param.transpose_b) << "Cannot transpose vectors"; + CHECK_EQ(lshape[0], rshape[0]) << "dot shape error: " << lshape << " X " << rshape; + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::Shape1(1)); + } else { + bool Ta = param.transpose_a, Tb = param.transpose_b; + TShape L[2], R[2]; + if (Ta) { + L[0] = mshadow::Shape1(lshape[0]); + L[1] = lshape.ndim() > 1 ? TShape(&lshape[1], &lshape[lshape.ndim()]) : TShape(1); + } else { + L[0] = lshape.ndim() > 1 ? TShape(&lshape[0], &lshape[lshape.ndim()-1]) : TShape(1); + L[1] = mshadow::Shape1(lshape[lshape.ndim()-1]); + } + if (Tb) { + R[0] = rshape.ndim() > 1 ? TShape(&rshape[0], &rshape[rshape.ndim()-1]) : TShape(1); + R[1] = mshadow::Shape1(rshape[rshape.ndim()-1]); + } else { + R[0] = mshadow::Shape1(rshape[0]); + R[1] = rshape.ndim() > 1 ? TShape(&rshape[1], &rshape[rshape.ndim()]) : TShape(1); + } + + if (L[!Ta].Size() != 0 && R[Tb].Size() != 0) { + CHECK_EQ(L[!Ta].Size(), R[Tb].Size()) + << "dot shape error: " << lshape << " X " << rshape; + } + std::vector buf; + if (lshape.ndim() > 1) buf.insert(buf.end(), &L[Ta][0], &L[Ta][L[Ta].ndim()]); + if (rshape.ndim() > 1) buf.insert(buf.end(), &R[!Tb][0], &R[!Tb][R[!Tb].ndim()]); + TShape oshape(buf.begin(), buf.end()); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); + } + return true; +} + +template +void DotForwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 1U); + CHECK_EQ(req.size(), 1U); + const DotParam& param = nnvm::get(attrs.parsed); + CHECK(!param.transpose_b) << "transposing rhs of the sparse dot op is not supported"; + CHECK_EQ(inputs[0].shape().ndim(), 2) << "sparse dot only supports 2 dimensional lhs"; + CHECK_EQ(inputs[1].shape().ndim(), 2) << "sparse dot only supports 2 dimensional rhs"; + auto lhs_stype = inputs[0].storage_type(); + auto rhs_stype = inputs[1].storage_type(); + auto out_stype = outputs[0].storage_type(); + if (lhs_stype == kCSRStorage && rhs_stype == kDefaultStorage && out_stype == kDefaultStorage) { + TBlob ret = outputs[0].data(); + DotCsrDnsDnsImpl(ctx, xpu(), inputs[0], inputs[1].data(), req[0], param.transpose_a, &ret); + } else if (lhs_stype == kCSRStorage && rhs_stype == kRowSparseStorage + && out_stype == kDefaultStorage) { + TBlob ret = outputs[0].data(); + DotCsrRspDnsImpl(ctx, xpu(), inputs[0], inputs[1], req[0], param.transpose_a, &ret); + } else if (lhs_stype == kCSRStorage && rhs_stype == kDefaultStorage + && out_stype == kRowSparseStorage) { + NDArray out = outputs[0]; + DotCsrDnsRspImpl(ctx, xpu(), inputs[0], inputs[1].data(), req[0], param.transpose_a, &out); + } else if (lhs_stype == kCSRStorage && rhs_stype == kRowSparseStorage + && out_stype == kRowSparseStorage) { + NDArray ret = outputs[0]; + DotCsrRspRspImpl(ctx, xpu(), inputs[0], inputs[1], req[0], param.transpose_a, &ret); + } else { + FCompExFallback(attrs, ctx, inputs, req, outputs, DotForward_, "DotForward_"); + } +} + +template +void DotBackwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 3U); + CHECK_EQ(outputs.size(), 2U); + CHECK_EQ(req.size(), 2U); + CHECK_EQ(kNullOp, req[0]) + << "sparse dot does not support computing the gradient of the csr/lhs"; + CHECK_NE(req[1], kWriteInplace) << "DotBackwardEx does not support WriteInplace"; + + const DotParam& param = nnvm::get(attrs.parsed); + CHECK(!param.transpose_b) << "sparse dot only supports dot(A, X) and dot(A.T(), X)"; + CHECK_EQ(inputs[0].shape().ndim(), 2) << "sparse dot only supports 2 dimensional lhs"; + CHECK_EQ(inputs[1].shape().ndim(), 2) << "sparse dot only supports 2 dimensional rhs"; + const auto ograd_stype = inputs[0].storage_type(); + const auto lhs_stype = inputs[1].storage_type(); + const auto rhs_stype = inputs[2].storage_type(); + const auto grad_rhs_stype = outputs[1].storage_type(); + if (ograd_stype == kDefaultStorage // ograd dns format + && lhs_stype == kCSRStorage // csr input lhs of the op + && grad_rhs_stype == kDefaultStorage) { // grad(rhs) dns format + TBlob ret = outputs[1].data(); + DotCsrDnsDnsImpl(ctx, xpu(), inputs[1], inputs[0].data(), req[1], !param.transpose_a, &ret); + } else if (ograd_stype == kDefaultStorage + && lhs_stype == kCSRStorage + && grad_rhs_stype == kRowSparseStorage) { + NDArray ret = outputs[1]; + DotCsrDnsRspImpl(ctx, xpu(), inputs[1], inputs[0].data(), req[1], !param.transpose_a, &ret); + } else { + FCompExFallback(attrs, ctx, inputs, req, outputs, DotBackward_, "DotBackward_"); + } +} + +template +void BatchDotForward_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + mshadow::Stream *s = ctx.get_stream(); + const DotParam& param = nnvm::get(attrs.parsed); + CHECK_EQ(outputs[0].type_flag_, inputs[0].type_flag_) + << "Binary function only support input/output with the same type"; + CHECK_EQ(outputs[0].type_flag_, inputs[1].type_flag_) + << "Binary function only support input/output with the same type"; + CHECK(outputs[0].type_flag_ == kFloat32 || outputs[0].type_flag_ == kFloat64) + << "dot only supports float32 and float64"; + MSHADOW_SGL_DBL_TYPE_SWITCH(outputs[0].type_flag_, DType, { + mshadow::Tensor out = outputs[0].get(s); + mshadow::Tensor mlhs = inputs[0].get(s); + mshadow::Tensor mrhs = inputs[1].get(s); + mshadow::Tensor workspace = + ctx.requested[0].get_space_typed(mshadow::Shape1(3 * out.size(0)), s); + if (kNullOp != req[0]) { + if (param.transpose_a && param.transpose_b) { + mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + workspace); + } else if (!param.transpose_a && param.transpose_b) { + mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + workspace); + } else if (param.transpose_a && !param.transpose_b) { + mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + workspace); + } else { + mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + workspace); + } + } + }); +} + +template +void BatchDotBackward_(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + mshadow::Stream *s = ctx.get_stream(); + const DotParam& param = nnvm::get(attrs.parsed); + CHECK_NE(req[1], kWriteInplace); + CHECK_NE(req[0], kWriteInplace); + CHECK(outputs[0].type_flag_ == kFloat32 || outputs[0].type_flag_ == kFloat64) + << "dot only supports float32 and float64"; + MSHADOW_SGL_DBL_TYPE_SWITCH(outputs[0].type_flag_, DType, { + mshadow::Tensor mout_grad = inputs[0].get(s); + mshadow::Tensor mlhs_data = inputs[1].get(s); + mshadow::Tensor mrhs_data = inputs[2].get(s); + mshadow::Tensor mlhs_grad = outputs[0].get(s); + mshadow::Tensor mrhs_grad = outputs[1].get(s); + mshadow::Tensor workspace = + ctx.requested[0].get_space_typed( + mshadow::Shape2(2, 3 * mout_grad.size(0)), s); + mshadow::Tensor rhs_workspace = workspace[0]; + mshadow::Tensor lhs_workspace = workspace[1]; + if (param.transpose_a && param.transpose_b) { + // Gradient of z = dot(x.T, y.T) + // dy = dot(x, dz).T = dot(dz.T, x.T) + // dx = dot(dz, y).T = dot(y.T, dz.T) + if (kNullOp != req[1]) { + mshadow::BatchGEMM(mrhs_grad, mout_grad, mlhs_data, (DType)1.0f, + (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, + rhs_workspace); + } + if (kNullOp != req[0]) { + mshadow::BatchGEMM(mlhs_grad, mrhs_data, mout_grad, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + lhs_workspace); + } + } else if (!param.transpose_a && param.transpose_b) { + // Gradient of z = dot(x, y.T) + // dy = dot(x.T, dz).T = dot(dz.T, x) + // dx = dot(dz, y) + if (kNullOp != req[1]) { + mshadow::BatchGEMM(mrhs_grad, mout_grad, mlhs_data, (DType)1.0f, + (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, + rhs_workspace); + } + if (kNullOp != req[0]) { + mshadow::BatchGEMM(mlhs_grad, mout_grad, mrhs_data, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + lhs_workspace); + } + } else if (param.transpose_a && !param.transpose_b) { + // Gradient of z = dot(x.T, y) + // dy = dot(x, dz) + // dx = dot(dz, y.T).T = dot(y, dz.T) + if (kNullOp != req[1]) { + mshadow::BatchGEMM(mrhs_grad, mlhs_data, mout_grad, (DType)1.0f, + (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, + rhs_workspace); + } + if (kNullOp != req[0]) { + mshadow::BatchGEMM(mlhs_grad, mrhs_data, mout_grad, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + lhs_workspace); + } + } else { + // Gradient of z = dot(x, y) + // dy = dot(x.T, dz) + // dx = dot(dz, y.T) + if (kNullOp != req[1]) { + mshadow::BatchGEMM(mrhs_grad, mlhs_data, mout_grad, (DType)1.0f, + (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, + rhs_workspace); + } + if (kNullOp != req[0]) { + mshadow::BatchGEMM(mlhs_grad, mout_grad, mrhs_data, (DType)1.0f, + (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, + lhs_workspace); + } + } + }); +} + +inline bool BatchDotShape(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 1U); + const DotParam& param = nnvm::get(attrs.parsed); + TShape& lshape = (*in_attrs)[0]; + TShape& rshape = (*in_attrs)[1]; + if (lshape.ndim() == 3 && rshape.ndim() == 3) { + CHECK(lshape[0] == rshape[0]) + << "batch_dot shape error(batch_size must be equal): " << lshape << " X " << rshape + << " trans_a=" << param.transpose_a << " trans_b=" << param.transpose_b; + index_t out_m = param.transpose_a ? lshape[2] : lshape[1]; + index_t lshape_k = param.transpose_a ? lshape[1] : lshape[2]; + index_t out_n = param.transpose_b ? rshape[1] : rshape[2]; + index_t rshape_k = param.transpose_b ? rshape[2] : rshape[1]; + CHECK(lshape_k == rshape_k) + << "batch_dot shape error(shape mismatch): " << lshape << " X " << rshape + << " trans_a=" << param.transpose_a << " trans_b=" << param.transpose_b; + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::Shape3(lshape[0], out_m, out_n)); + } else { + LOG(FATAL) << "batch_dot currently only support 3D*3D array" + << lshape << " v.s. " << rshape; + } + return true; +} + +} // namespace op +} // namespace mxnet + +#endif // MXNET_OPERATOR_TENSOR_DOT_INL_H_ diff --git a/src/operator/tensor/dot.cc b/src/operator/tensor/dot.cc new file mode 100644 index 000000000000..a7fa2c7933a5 --- /dev/null +++ b/src/operator/tensor/dot.cc @@ -0,0 +1,141 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file dot.cc + * \brief CPU Implementation of matrix dot + */ + +#include "./dot-inl.h" + +namespace mxnet { +namespace op { +DMLC_REGISTER_PARAMETER(DotParam); + +NNVM_REGISTER_OP(dot) +.add_alias("_sparse_dot") // alias for op registration under mxnet.ndarray.sparse +.describe(R"doc(Dot product of two arrays. + +``dot``'s behavior depends on the input array dimensions: + +- 1-D arrays: inner product of vectors +- 2-D arrays: matrix multiplication +- N-D arrays: a sum product over the last axis of the first input and the first + axis of the second input + + For example, given 3-D ``x`` with shape `(n,m,k)` and ``y`` with shape `(k,r,s)`, the + result array will have shape `(n,m,r,s)`. It is computed by:: + + dot(x,y)[i,j,a,b] = sum(x[i,j,:]*y[:,a,b]) + + Example:: + + x = reshape([0,1,2,3,4,5,6,7], shape=(2,2,2)) + y = reshape([7,6,5,4,3,2,1,0], shape=(2,2,2)) + dot(x,y)[0,0,1,1] = 0 + sum(x[0,0,:]*y[:,1,1]) = 0 + +The storage type of ``dot`` output depends on storage types of inputs and transpose options: + +- dot(csr, default) = default +- dot(csr.T, default) = row_sparse +- dot(csr, row_sparse) = default +- otherwise, ``dot`` generates output with default storage + +)doc" ADD_FILELINE) +.set_num_inputs(2) +.set_num_outputs(1) +.set_attr_parser(ParamParser) +.set_attr("FListInputNames", + [](const NodeAttrs& attrs) { + return std::vector{"lhs", "rhs"}; + }) +.set_attr("FInferShape", DotShape) +.set_attr("FInferType", ElemwiseType<2, 1>) +.set_attr("FInferStorageType", DotForwardInferStorageType) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("FCompute", DotForward_) +.set_attr("FComputeEx", DotForwardEx) +.set_attr("FGradient", ElemwiseGradUseIn{"_backward_dot"}) +.add_argument("lhs", "NDArray-or-Symbol", "The first input") +.add_argument("rhs", "NDArray-or-Symbol", "The second input") +.add_arguments(DotParam::__FIELDS__()); + +NNVM_REGISTER_OP(_backward_dot) +.set_num_inputs(3) +.set_num_outputs(2) +.set_attr_parser(ParamParser) +.set_attr("TIsBackward", true) +.set_attr("FInferStorageType", DotBackwardInferStorageType) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("FCompute", DotBackward_) +.set_attr("FComputeEx", DotBackwardEx) +.add_arguments(DotParam::__FIELDS__()); + +NNVM_REGISTER_OP(batch_dot) +.describe(R"doc(Batchwise dot product. + +``batch_dot`` is used to compute dot product of ``x`` and ``y`` when ``x`` and +``y`` are data in batch, namely 3D arrays in shape of `(batch_size, :, :)`. + +For example, given ``x`` with shape `(batch_size, n, m)` and ``y`` with shape +`(batch_size, m, k)`, the result array will have shape `(batch_size, n, k)`, +which is computed by:: + + batch_dot(x,y)[i,:,:] = dot(x[i,:,:], y[i,:,:]) + +)doc" ADD_FILELINE) +.set_num_inputs(2) +.set_num_outputs(1) +.set_attr_parser(ParamParser) +.set_attr("FListInputNames", + [](const NodeAttrs& attrs) { + return std::vector{"lhs", "rhs"}; + }) +.set_attr("FInferShape", BatchDotShape) +.set_attr("FInferType", ElemwiseType<2, 1>) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("FCompute", BatchDotForward_) +.set_attr("FGradient", ElemwiseGradUseIn{"_backward_batch_dot"}) +.add_argument("lhs", "NDArray-or-Symbol", "The first input") +.add_argument("rhs", "NDArray-or-Symbol", "The second input") +.add_arguments(DotParam::__FIELDS__()); + +NNVM_REGISTER_OP(_backward_batch_dot) +.set_num_inputs(3) +.set_num_outputs(2) +.set_attr_parser(ParamParser) +.set_attr("FResourceRequest", + [](const NodeAttrs& attrs) { + return std::vector{ResourceRequest::kTempSpace}; + }) +.set_attr("TIsBackward", true) +.set_attr("FCompute", BatchDotBackward_); + +} // namespace op +} // namespace mxnet diff --git a/src/operator/tensor/dot.cu b/src/operator/tensor/dot.cu new file mode 100644 index 000000000000..8ee2e2832fbb --- /dev/null +++ b/src/operator/tensor/dot.cu @@ -0,0 +1,45 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file dot.cu + * \brief GPU Implementation of matrix dot + */ + +#include "./dot-inl.h" + +namespace mxnet { +namespace op { + +NNVM_REGISTER_OP(dot) +.set_attr("FCompute", DotForward_) +.set_attr("FComputeEx", DotForwardEx); + +NNVM_REGISTER_OP(_backward_dot) +.set_attr("FCompute", DotBackward_) +.set_attr("FComputeEx", DotBackwardEx); + +NNVM_REGISTER_OP(batch_dot) +.set_attr("FCompute", BatchDotForward_); + +NNVM_REGISTER_OP(_backward_batch_dot) +.set_attr("FCompute", BatchDotBackward_); + +} // namespace op +} // namespace mxnet diff --git a/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc b/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc index c80d46a883ea..8c97849e20dc 100644 --- a/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc +++ b/src/operator/tensor/elemwise_binary_broadcast_op_basic.cc @@ -123,6 +123,7 @@ Example:: .set_attr("FCompute", BinaryBroadcastCompute) .set_attr("FGradient", ElemwiseGradUseIn{"_backward_broadcast_mul"}); + NNVM_REGISTER_OP(_backward_broadcast_mul) .set_num_inputs(3) .set_num_outputs(2) diff --git a/src/operator/tensor/elemwise_binary_op.h b/src/operator/tensor/elemwise_binary_op.h index 87b0d46a63c9..ddcad5e61ba0 100644 --- a/src/operator/tensor/elemwise_binary_op.h +++ b/src/operator/tensor/elemwise_binary_op.h @@ -28,10 +28,12 @@ #include #include #include +#include #include "../mxnet_op.h" #include "../mshadow_op.h" #include "../elemwise_op_common.h" -#include "../mxnet_op.h" +#include "./init_op.h" +#include "../../common/utils.h" namespace mxnet { namespace op { @@ -141,6 +143,120 @@ void BinaryBackwardUseNone_(const nnvm::NodeAttrs& attrs, } } +// TODO(haibin) This is a single-thread inefficient implementation +// This implementation only works on CPU +template +void BinaryComputeRspRspImpl(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + if (req[0] == kNullOp) return; + CHECK(req[0] == kWriteTo) << "only kWriteTo is supported for rowsparse elemwise_add"; + using namespace rowsparse; + using namespace mshadow; + auto &lhs = inputs[0]; + auto &rhs = inputs[1]; + auto &output = outputs[0]; + + bool init_l = lhs.storage_initialized(); + bool init_r = rhs.storage_initialized(); + Stream *s = ctx.get_stream(); + // both inputs are zeros + if (!init_l && !init_r) { + NDArray out = output; + FillZerosRspImpl(s, &out); + return; + } + // Memory Estimation: This is (roughly) the number of result rows. We still + // need to subtract the number of common rows + unsigned int num_rows_l = lhs.aux_shape(kIdx)[0]; + unsigned int num_rows_r = rhs.aux_shape(kIdx)[0]; + unsigned int num_rows_total = num_rows_l + num_rows_r; + auto row_len = output.shape().ProdShape(1, output.shape().ndim()); + output.CheckAndAlloc({Shape1(num_rows_total)}); + CHECK_GT(row_len, 0); + MSHADOW_TYPE_SWITCH(output.dtype(), DType, { + MSHADOW_TYPE_SWITCH(lhs.aux_type(kIdx), IType, { + // Indices + auto indices_l = lhs.aux_data(kIdx).dptr(); + auto indices_r = rhs.aux_data(kIdx).dptr(); + auto indices_out = output.aux_data(kIdx).dptr(); + // Data + auto data_l = lhs.data().get_with_shape(Shape2(num_rows_l, row_len), s); + auto data_r = rhs.data().get_with_shape(Shape2(num_rows_r, row_len), s); + auto out = output.data().get_with_shape(Shape2(num_rows_total, row_len), s); + + // TODO(haibin) A more appropriate way: Copy to output, then apply ops + size_t iter_l = 0; + size_t iter_r = 0; + size_t iter_out = 0; + int32_t num_common_rows = 0; + while (iter_l < num_rows_l && iter_r < num_rows_r) { + auto idx_l = indices_l[iter_l]; + auto idx_r = indices_r[iter_r]; + if (idx_l == idx_r) { + // Same row + indices_out[iter_out] = idx_l; + Copy(out[iter_out], data_l[iter_l++], s); + out[iter_out] += data_r[iter_r++]; + num_common_rows++; + } else if (idx_l < idx_r) { + // Left only + indices_out[iter_out] = idx_l; + Copy(out[iter_out], data_l[iter_l++], s); + } else { + // Right only + indices_out[iter_out] = idx_r; + Copy(out[iter_out], data_r[iter_r++], s); + } + iter_out++; + } + // Copying over the rest of the rows + while (iter_l < num_rows_l) { + indices_out[iter_out] = indices_l[iter_l]; + Copy(out[iter_out++], data_l[iter_l++], s); + } + while (iter_r < num_rows_r) { + indices_out[iter_out] = indices_r[iter_r]; + Copy(out[iter_out++], data_r[iter_r++], s); + } + auto new_sshape = TShape(output.aux_shape(rowsparse::kIdx)); + CHECK_GT(new_sshape[0], num_common_rows); + new_sshape[0] -= num_common_rows; + output.set_aux_shape(rowsparse::kIdx, new_sshape); + }); + }); +} + +template +void BinaryComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + CHECK_EQ(inputs.size(), 2); + CHECK_EQ(outputs.size(), 1); + if (typeid(OP) == typeid(mshadow::op::plus)) { + // If any input is dense, fallback to FCompute + // TODO(haibin) implement dns + rsp in a separate kernel + if (common::ContainsDefaultStorage(inputs)) { + FCompExFallback(attrs, ctx, inputs, req, outputs, + BinaryCompute, "BinaryCompute"); + return; + } + CHECK_EQ(inputs[0].storage_type(), kRowSparseStorage) << "Sparse type not supported yet"; + CHECK_EQ(inputs[1].storage_type(), kRowSparseStorage) << "Sparse type not supported yet"; + BinaryComputeRspRspImpl(attrs, ctx, inputs, req, outputs); + return; + } else { + LOG(FATAL) << "Not implemented"; + } +} + template void BinaryBackwardUseNone(const nnvm::NodeAttrs& attrs, const OpContext& ctx, @@ -152,6 +268,55 @@ void BinaryBackwardUseNone(const nnvm::NodeAttrs& attrs, }); } +// Only implemented for _backward_add for now +template +void BinaryBackwardUseNoneRsp(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + CHECK_EQ(inputs[0].storage_type(), kRowSparseStorage); + CHECK_EQ(outputs[0].storage_type(), kRowSparseStorage); + CHECK_EQ(outputs[1].storage_type(), kRowSparseStorage); + CHECK(typeid(LOP) == typeid(mshadow_op::identity)); + CHECK(typeid(ROP) == typeid(mshadow_op::identity)); + TShape shape = inputs[0].aux_shape(rowsparse::kIdx); + outputs[0].CheckAndAlloc({shape}); + outputs[1].CheckAndAlloc({shape}); + MSHADOW_TYPE_SWITCH(outputs[0].dtype(), DType, { + MSHADOW_TYPE_SWITCH(outputs[0].aux_type(rowsparse::kIdx), IType, { + auto lgrad_idx = outputs[0].aux_data(rowsparse::kIdx).FlatTo1D(s); + auto rgrad_idx = outputs[1].aux_data(rowsparse::kIdx).FlatTo1D(s); + auto ograd_idx = inputs[0].aux_data(rowsparse::kIdx).FlatTo1D(s); + auto lgrad = outputs[0].data().FlatTo1D(s); + Tensor rgrad = outputs[1].data().FlatTo1D(s); + Tensor ograd = inputs[0].data().FlatTo1D(s); + ASSIGN_DISPATCH(lgrad, req[0], F(ograd)); + ASSIGN_DISPATCH(rgrad, req[1], F(ograd)); + ASSIGN_DISPATCH(lgrad_idx, req[0], F(ograd_idx)); + ASSIGN_DISPATCH(rgrad_idx, req[1], F(ograd_idx)); + }); + }); +} +// Only implemented for _backward_add for now +template +void BinaryBackwardUseNoneEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + auto stype = inputs[0].storage_type(); + CHECK_EQ(stype, kRowSparseStorage) << "Not implemented yet"; + BinaryBackwardUseNoneRsp(attrs, ctx, inputs, req, outputs); + // TODO(haibin) fallback for kDefaultStorage +} + template void BinaryBackwardUseNoneWithHalf2(const nnvm::NodeAttrs& attrs, const OpContext& ctx, @@ -232,7 +397,7 @@ void BinaryBackwardUseInWithHalf2(const nnvm::NodeAttrs& attrs, [](const NodeAttrs& attrs){ \ return std::vector >{{0, 0}, {1, 0}}; \ }) \ - .add_argument("lhs", "NDArray-or-Symbol", "first input") \ + .add_argument("lhs", "NDArray-or-Symbol", "first input") \ .add_argument("rhs", "NDArray-or-Symbol", "second input") } // namespace op diff --git a/src/operator/tensor/elemwise_binary_op_basic.cc b/src/operator/tensor/elemwise_binary_op_basic.cc index 65d4ca9aadd6..a40d86fdfcd6 100644 --- a/src/operator/tensor/elemwise_binary_op_basic.cc +++ b/src/operator/tensor/elemwise_binary_op_basic.cc @@ -27,10 +27,19 @@ namespace mxnet { namespace op { MXNET_OPERATOR_REGISTER_BINARY(elemwise_add) -.add_alias("_add").add_alias("_plus").add_alias("_Plus") -.describe("Adds arguments element-wise.") +.add_alias("_add").add_alias("_plus").add_alias("_Plus").add_alias("_sparse_elemwise_add") +.describe(R"code(Adds arguments element-wise. + +The storage type of ``elemwise_add`` output depends on storage types of inputs + +- elemwise_add(row_sparse, row_sparse) = row_sparse +- otherwise, ``elemwise_add`` generates output with default storage + +)code") .set_attr("FCompute", BinaryCompute) -.set_attr("FGradient", CloneGradient{"_backward_add"}); +.set_attr("FGradient", CloneGradient{"_backward_add"}) +.set_attr("FComputeEx", BinaryComputeEx) +.set_attr("FInferStorageType", ElemwiseStorageType<2, 1>); // specialized gradient add function to do add to optimization // this must differ from elemwise_add to prevent add to optimization in forward pass. @@ -46,7 +55,10 @@ NNVM_REGISTER_OP(_backward_add) return std::vector >{{0, 0}, {0, 1}}; }) .set_attr("FCompute", BinaryBackwardUseNone); + mshadow_op::identity>) +.set_attr("FComputeEx", + BinaryBackwardUseNoneEx) +.set_attr("FInferStorageType", ElemwiseStorageType<1, 2>); MXNET_OPERATOR_REGISTER_BINARY(_sub) .add_alias("_minus").add_alias("_Minus") diff --git a/src/operator/tensor/elemwise_sum.cc b/src/operator/tensor/elemwise_sum.cc index 652be72f3fab..f6b6859505f8 100644 --- a/src/operator/tensor/elemwise_sum.cc +++ b/src/operator/tensor/elemwise_sum.cc @@ -22,6 +22,7 @@ * \brief elementwise sum operator */ #include "./elemwise_sum.h" +#include "../../ndarray/ndarray_function.h" namespace mxnet { namespace op { @@ -54,14 +55,69 @@ std::vector ElementWiseSumGrad( return ret; } +bool ElementWiseSumShape(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(out_attrs->size(), 1); + return ElemwiseAttr( + attrs, in_attrs, out_attrs, TShape()); +} + +bool ElementWiseSumType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(out_attrs->size(), 1); + return ElemwiseAttr( + attrs, in_attrs, out_attrs, -1); +} + +bool ElementWiseSumForwardInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK(!in_attrs->empty()); + CHECK_EQ(out_attrs->size(), 1U); + return ElemwiseStorageAttr( + attrs, in_attrs, out_attrs); +} + +void ElementWiseSumComputeExCPU(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK(!inputs.empty()); + CHECK_EQ(outputs.size(), 1U); + CHECK_EQ(req.size(), 1U); + if (req[0] == kNullOp) return; + CHECK_EQ(req[0], kWriteTo) << "ElementWiseSumComputeExCPU only supports req = kWriteTo"; + using namespace mshadow; + Stream* s = ctx.get_stream(); + NDArray out_nd = outputs[0]; + if (inputs[0].storage_type() == kRowSparseStorage) { + mxnet::ndarray::ElementwiseSum(s, inputs, &out_nd); + } else { + FCompExFallback(attrs, ctx, inputs, req, outputs, + ElementWiseSumCompute, "ElementWiseSumCompute"); + } +} + NNVM_REGISTER_OP(add_n) .add_alias("ElementWiseSum") +.add_alias("_sparse_add_n") +.add_alias("_sparse_ElementWiseSum") .describe(R"doc(Adds all input arguments element-wise. .. math:: add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n ``add_n`` is potentially more efficient than calling ``add`` by `n` times. + +The storage type of ``add_n`` output depends on storage types of inputs + +- add_n(row_sparse, row_sparse, ..) = row_sparse +- otherwise, ``add_n`` generates output with default storage + )doc" ADD_FILELINE) .set_attr_parser(ParamParser) .set_num_inputs([](const nnvm::NodeAttrs& attrs) { @@ -79,16 +135,16 @@ NNVM_REGISTER_OP(add_n) }) .set_attr("key_var_num_args", "num_args") .set_attr("FCompute", ElementWiseSumCompute) +.set_attr("FComputeEx", ElementWiseSumComputeExCPU) .set_attr( "FInplaceOption", [](const NodeAttrs& attrs) { return std::vector >{{0, 0}}; }) -.set_attr("FInferShape", ElemwiseShape<-1, 1>) -.set_attr("FInferType", ElemwiseType<-1, 1>) -.set_attr("FGradient", CloneGradient{"_backward_add_n"}) +.set_attr("FInferShape", ElementWiseSumShape) +.set_attr("FInferType", ElementWiseSumType) +.set_attr("FInferStorageType", ElementWiseSumForwardInferStorageType) +.set_attr("FGradient", ElementWiseSumGrad) .add_argument("args", "NDArray-or-Symbol[]", "Positional input arguments"); - - } // namespace op } // namespace mxnet diff --git a/src/operator/tensor/elemwise_unary_op.cc b/src/operator/tensor/elemwise_unary_op.cc index defe72d3738c..e94b8bfb9fea 100644 --- a/src/operator/tensor/elemwise_unary_op.cc +++ b/src/operator/tensor/elemwise_unary_op.cc @@ -70,7 +70,9 @@ MXNET_OPERATOR_REGISTER_UNARY(_copy) [](const NodeAttrs& attrs){ return std::vector{true}; }) +.set_attr("FInferStorageType", ElemwiseStorageType<1, 1>) .set_attr("FCompute", IdentityCompute) +.set_attr("FComputeEx", IdentityComputeEx) .set_attr("FGradient", ElemwiseGradUseNone{"_copy"}); NNVM_REGISTER_OP(_backward_copy) @@ -85,7 +87,9 @@ NNVM_REGISTER_OP(_backward_copy) [](const NodeAttrs& attrs){ return std::vector{true}; }) -.set_attr("FCompute", IdentityCompute); +.set_attr("FInferStorageType", ElemwiseStorageType<1, 1>) +.set_attr("FCompute", IdentityCompute) +.set_attr("FComputeEx", IdentityComputeEx); MXNET_OPERATOR_REGISTER_UNARY(BlockGrad) .add_alias("stop_gradient") @@ -162,7 +166,9 @@ NNVM_REGISTER_OP(_identity_with_attr_like_rhs) .set_attr("FIgnoreInputs", [](const NodeAttrs& attrs) { return std::vector(1, 1); }) .set_attr("FCompute", IdentityCompute) +.set_attr("FComputeEx", IdentityLikeRhsComputeEx) .set_attr("FInferShape", ElemwiseShape<2, 1>) +.set_attr("FInferStorageType", IdentityAttrLikeRhsStorageType) .set_attr( "FGradient", [](const nnvm::NodePtr& n, const std::vector& ograds) { @@ -219,6 +225,7 @@ NNVM_REGISTER_OP(_backward_cast) }) .set_attr("FCompute", CastCompute); + // negative MXNET_OPERATOR_REGISTER_UNARY(negative) .MXNET_DESCRIBE("Numerical negative of the argument, element-wise.") diff --git a/src/operator/tensor/elemwise_unary_op.cu b/src/operator/tensor/elemwise_unary_op.cu index 4211ea305b4e..f5d711c01a29 100644 --- a/src/operator/tensor/elemwise_unary_op.cu +++ b/src/operator/tensor/elemwise_unary_op.cu @@ -40,7 +40,8 @@ NNVM_REGISTER_OP(_backward_sigmoid) // copy NNVM_REGISTER_OP(_copy) -.set_attr("FCompute", IdentityCompute); +.set_attr("FCompute", IdentityCompute) +.set_attr("FComputeEx", IdentityComputeEx); NNVM_REGISTER_OP(_backward_copy) .set_attr("FCompute", IdentityCompute); @@ -53,7 +54,9 @@ NNVM_REGISTER_OP(make_loss) // identity output as first input, but attributes are constrainted to be like rhs NNVM_REGISTER_OP(_identity_with_attr_like_rhs) -.set_attr("FCompute", IdentityCompute); +.set_attr("FCompute", IdentityCompute) +.set_attr("FComputeEx", IdentityLikeRhsComputeEx); + NNVM_REGISTER_OP(Cast) .set_attr("FCompute", CastCompute); diff --git a/src/operator/tensor/elemwise_unary_op.h b/src/operator/tensor/elemwise_unary_op.h index b6994844e0fe..16477b1973d3 100644 --- a/src/operator/tensor/elemwise_unary_op.h +++ b/src/operator/tensor/elemwise_unary_op.h @@ -31,15 +31,17 @@ #include "../mshadow_op.h" #include "../elemwise_op_common.h" #include "../special_functions-inl.h" +#include "./broadcast_reduce-inl.h" +#include "./init_op.h" namespace mxnet { namespace op { template void UnaryLaunch(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { using namespace mshadow; using namespace mxnet_op; Stream *s = ctx.get_stream(); @@ -95,6 +97,108 @@ void IdentityCompute(const nnvm::NodeAttrs& attrs, }); } +template +void IdentityComputeRspRspImpl(const nnvm::NodeAttrs& attrs, + mshadow::Stream *s, + const NDArray& input, + const OpReqType req, + NDArray* output) { + using namespace mshadow; + using namespace mshadow::expr; + using namespace rowsparse; + if (req == kNullOp) return; + CHECK_EQ(req, kWriteTo) << "kWriteTo is expected for IdentityComputeRspRspImpl"; + if (!input.storage_initialized()) { + FillZerosRspImpl(s, output); + return; + } + TShape shape = input.aux_shape(kIdx); + output->CheckAndAlloc({shape}); + MSHADOW_TYPE_SWITCH(output->dtype(), DType, { + MSHADOW_TYPE_SWITCH(output->aux_type(kIdx), AuxType, { + auto out_d = output->data().FlatTo1D(s); + auto out_aux = output->aux_data(kIdx).FlatTo1D(s); + auto in_aux = input.aux_data(kIdx).FlatTo1D(s); + ASSIGN_DISPATCH(out_d, req, + F(input.data().FlatTo1D(s))); + ASSIGN_DISPATCH(out_aux, req, F(in_aux)); + }); + }); +} + +template +void IdentityComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 1U); + CHECK_EQ(outputs.size(), 1U); + CHECK_EQ(req.size(), 1U); + const auto in_stype = inputs[0].storage_type(); + const auto out_stype = outputs[0].storage_type(); + mshadow::Stream *s = ctx.get_stream(); + if (req[0] == kNullOp) return; + if (in_stype == out_stype) { + if (in_stype == kDefaultStorage) { // dense ndarray + IdentityCompute(attrs, ctx, {inputs[0].data()}, req, {outputs[0].data()}); + } else if (in_stype == kRowSparseStorage || in_stype == kCSRStorage) { // sparse ndarray + if (!inputs[0].storage_initialized()) { + FillComputeZerosEx(attrs, ctx, inputs, req, outputs); + return; + } + CHECK_NE(req[0], kAddTo) << "kAddTo is not supported for IdentityComputeEx"; + const size_t n = mxnet::num_aux_data(out_stype); + outputs[0].CheckAndAlloc(inputs[0].aux_shapes()); + IdentityCompute(attrs, ctx, {inputs[0].data()}, req, {outputs[0].data()}); + for (size_t i = 0; i < n; ++i) { + IdentityCompute(attrs, ctx, {inputs[0].aux_data(i)}, req, {outputs[0].aux_data(i)}); + } + } else { + LOG(FATAL) << "IdentityComputeEx does not support input stype = " << in_stype; + } + } else { + FCompExFallback(attrs, ctx, inputs, req, outputs, IdentityCompute, "IdentityCompute"); + } +} + +inline bool IdentityAttrLikeRhsStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + // TODO(junwu): add ctx info into storage inference logic + CHECK_EQ(in_attrs->size(), static_cast(2)) << " in operator " << attrs.name; + CHECK_EQ(out_attrs->size(), static_cast(1)) << " in operator " << attrs.name; + auto &in = *in_attrs; + auto &out = *out_attrs; + CHECK_NE(in[1], kUndefinedStorage) << "rhs storage type must be known"; + if (in[0] == kUndefinedStorage) STORAGE_TYPE_ASSIGN_CHECK(in, 0, in[1]); + if (out[0] == kUndefinedStorage) STORAGE_TYPE_ASSIGN_CHECK(out, 0, in[1]); + return true; +} + +template +void IdentityLikeRhsComputeEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + CHECK_EQ(inputs.size(), 2); + CHECK_EQ(outputs.size(), 1); + Stream *s = ctx.get_stream(); + const auto in_stype = inputs[0].storage_type(); + const auto out_stype = outputs[0].storage_type(); + if (in_stype == out_stype) { + std::vector in{inputs[0]}; + IdentityComputeEx(attrs, ctx, in, req, outputs); + } else { + LOG(FATAL) << "IdentityLikeRhsComputeEx not implemented for in_stype = " << in_stype + << " out_stype = " << out_stype; + } +} + struct CastParam : public dmlc::Parameter { // use int for enumeration int dtype; @@ -186,4 +290,5 @@ struct relu_grad { } // namespace op } // namespace mxnet + #endif // MXNET_OPERATOR_TENSOR_ELEMWISE_UNARY_OP_H_ diff --git a/src/operator/tensor/indexing_op.cc b/src/operator/tensor/indexing_op.cc index e5cb41088e22..8c5d4f5411f8 100644 --- a/src/operator/tensor/indexing_op.cc +++ b/src/operator/tensor/indexing_op.cc @@ -104,7 +104,6 @@ NNVM_REGISTER_OP(_backward_Embedding) .set_attr("TIsBackward", true) .set_attr("FCompute", EmbeddingOpBackward); - NNVM_REGISTER_OP(take) .describe(R"code(Takes elements from an input array along the given axis. diff --git a/src/operator/tensor/indexing_op.h b/src/operator/tensor/indexing_op.h index ef42b01fb5b6..a9ee408082d4 100644 --- a/src/operator/tensor/indexing_op.h +++ b/src/operator/tensor/indexing_op.h @@ -40,6 +40,9 @@ #include "../elemwise_op_common.h" #include "../mxnet_op.h" #include "./sort_op.h" +#include "./dot-inl.h" +#include "./init_op.h" +#include "./matrix_op-inl.h" namespace mxnet { namespace op { diff --git a/src/operator/tensor/init_op.cc b/src/operator/tensor/init_op.cc index 8dac22a64966..9f333d2d5efe 100644 --- a/src/operator/tensor/init_op.cc +++ b/src/operator/tensor/init_op.cc @@ -39,6 +39,7 @@ NNVM_REGISTER_OP(_zeros) .set_attr("FInferShape", InitShape) .set_attr("FInferType", InitType) .set_attr("FCompute", FillCompute) +.set_attr("FComputeEx", FillComputeZerosEx) .add_arguments(InitOpParam::__FIELDS__()); NNVM_REGISTER_OP(_ones) diff --git a/src/operator/tensor/init_op.cu b/src/operator/tensor/init_op.cu index 6e2b65cc8519..cbee203c2b31 100644 --- a/src/operator/tensor/init_op.cu +++ b/src/operator/tensor/init_op.cu @@ -27,7 +27,8 @@ namespace mxnet { namespace op { NNVM_REGISTER_OP(_zeros) -.set_attr("FCompute", FillCompute); +.set_attr("FCompute", FillCompute) +.set_attr("FComputeEx", FillComputeZerosEx); NNVM_REGISTER_OP(_ones) .set_attr("FCompute", FillCompute); diff --git a/src/operator/tensor/init_op.h b/src/operator/tensor/init_op.h index 30a5a3a3af1b..12999b943be4 100644 --- a/src/operator/tensor/init_op.h +++ b/src/operator/tensor/init_op.h @@ -33,6 +33,8 @@ #include #include #include "../elemwise_op_common.h" +#include "../mxnet_op.h" + namespace mxnet { namespace op { @@ -129,7 +131,6 @@ inline bool InitType(const nnvm::NodeAttrs& attrs, return true; } - template void FillCompute(const nnvm::NodeAttrs& attrs, const OpContext& ctx, @@ -145,6 +146,91 @@ void FillCompute(const nnvm::NodeAttrs& attrs, }); } +// Fill in the indices and values of a RowSparse NDArray to represent a zeros NDArray, +// instead of the usual compact representation. +template +inline void FillDnsZerosRspImpl(mshadow::Stream *s, NDArray *dst) { + using namespace rowsparse; + using namespace mshadow::expr; + using namespace mshadow; + using namespace mxnet_op; + CHECK_EQ(dst->storage_type(), kRowSparseStorage); + MSHADOW_REAL_TYPE_SWITCH(dst->dtype(), DType, { + MSHADOW_IDX_TYPE_SWITCH(dst->aux_type(kIdx), IType, { + auto num_rows = dst->shape()[0]; + dst->CheckAndAlloc({Shape1(num_rows)}); + auto idx = dst->aux_data(kIdx).FlatTo1D(s); + auto val = dst->data(); + Kernel::Launch(s, val.Size(), val.dptr()); + ASSIGN_DISPATCH(idx, kWriteTo, range(0, num_rows, 1, 1)); + }); + }); +} + +struct PopulateFullIdxRspKernel { + template + MSHADOW_XINLINE static void Map(int i, IType* out) { + KERNEL_ASSIGN(out[i], kWriteTo, i); + } +}; + +// Fill full indices NDArray with zeros by updating the aux shape. +template +void PopulateFullIdxRspImpl(mshadow::Stream *s, NDArray *dst) { + using namespace rowsparse; + CHECK_EQ(dst->storage_type(), kRowSparseStorage); + nnvm::dim_t nnr = dst->shape()[0]; + dst->CheckAndAllocAuxData(kIdx, mshadow::Shape1(nnr)); + MSHADOW_IDX_TYPE_SWITCH(dst->aux_type(kIdx), IType, { + IType* idx = dst->aux_data(kIdx).dptr(); + mxnet_op::Kernel::Launch(s, nnr, idx); + }); +} + +// Fill a rsp NDArray with zeros by updating the aux shape. +template +void FillZerosRspImpl(mshadow::Stream *s, NDArray *dst) { + if (!dst->storage_initialized()) return; + // reset the shapes if it's not zeros + auto storage_shape = dst->storage_shape(); + storage_shape[0] = 0; + dst->set_aux_shape(rowsparse::kIdx, TShape(mshadow::Shape1(0))); +} + +// Fill a CSR NDArray with zeros by updating the aux shape. +template +void FillZerosCsrImpl(mshadow::Stream *s, NDArray *dst) { + if (!dst->storage_initialized()) return; + // reset the shapes if it's not zeros + TShape new_shape(mshadow::Shape1(0)); + dst->set_aux_shape(csr::kIndPtr, new_shape); + dst->set_aux_shape(csr::kIdx, new_shape); +} + +template +void FillComputeZerosEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + using namespace mshadow; + using namespace mshadow::expr; + Stream *s = ctx.get_stream(); + CHECK_EQ(outputs.size(), 1); + auto stype = outputs[0].storage_type(); + if (req[0] == kNullOp) return; + CHECK_EQ(req[0], kWriteTo) << "kWriteTo is expected for FillComputeZerosEx"; + if (stype == kRowSparseStorage) { + NDArray nd(outputs[0]); + FillZerosRspImpl(s, &nd); + } else if (stype == kCSRStorage) { + NDArray nd(outputs[0]); + FillZerosCsrImpl(s, &nd); + } else { + // no fallback is required since the output doesn't depend on input + LOG(FATAL) << "storage type " << stype << " not implemented."; + } +} template void RangeCompute(const nnvm::NodeAttrs& attrs, diff --git a/src/operator/tensor/matrix_op-inl.h b/src/operator/tensor/matrix_op-inl.h index af0de593c1be..4654b37ab2bc 100644 --- a/src/operator/tensor/matrix_op-inl.h +++ b/src/operator/tensor/matrix_op-inl.h @@ -28,6 +28,7 @@ #include #include #include +#include #include "../mshadow_op.h" #include "../elemwise_op_common.h" #include "../channel_op_common.h" @@ -368,364 +369,6 @@ inline bool ExpandDimShape(const nnvm::NodeAttrs& attrs, return true; } -struct DotParam : public dmlc::Parameter { - bool transpose_a; - bool transpose_b; - DMLC_DECLARE_PARAMETER(DotParam) { - DMLC_DECLARE_FIELD(transpose_a) - .describe("If true then transpose the first input before dot.") - .set_default(false); - DMLC_DECLARE_FIELD(transpose_b) - .describe("If true then transpose the second input before dot.") - .set_default(false); - } -}; - -template -void DotForward_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { - using namespace mshadow; - using namespace mshadow::expr; - const DotParam& param = nnvm::get(attrs.parsed); - Stream *s = ctx.get_stream(); - CHECK_EQ(outputs[0].type_flag_, inputs[0].type_flag_) - << "Binary function only support input/output with the same type"; - CHECK_EQ(outputs[0].type_flag_, inputs[1].type_flag_) - << "Binary function only support input/output with the same type"; - CHECK(outputs[0].type_flag_ == kFloat32 || outputs[0].type_flag_ == kFloat64) - << "dot only supports float32 and float64"; - MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { - if (inputs[0].ndim() == 1 && inputs[1].ndim() == 1) { - CHECK_NE(req[0], kAddTo) << "AddTo not yet suported"; - Tensor out = outputs[0].get(s); - VectorDot(out, - inputs[0].get(s), - inputs[1].get(s)); - } else { - int ma, na, mb, nb, m, n; - if (param.transpose_a) { - ma = inputs[0].size(0); - na = inputs[0].Size()/ma; - m = na; - } else { - na = inputs[0].size(inputs[0].ndim()-1); - ma = inputs[0].Size()/na; - m = ma; - } - if (param.transpose_b) { - nb = inputs[1].size(inputs[1].ndim()-1); - mb = inputs[1].Size()/nb; - n = mb; - } else { - mb = inputs[1].size(0); - nb = inputs[1].Size()/mb; - n = nb; - } - Tensor input0 = - inputs[0].get_with_shape(Shape2(ma, na), s); - Tensor input1 = - inputs[1].get_with_shape(Shape2(mb, nb), s); - Tensor out = - outputs[0].get_with_shape(Shape2(m, n), s); - if (param.transpose_a && param.transpose_b) { - ASSIGN_DISPATCH(out, req[0], dot(input0.T(), input1.T())); - } else if (!param.transpose_a && param.transpose_b) { - ASSIGN_DISPATCH(out, req[0], dot(input0, input1.T())); - } else if (param.transpose_a && !param.transpose_b) { - ASSIGN_DISPATCH(out, req[0], dot(input0.T(), input1)); - } else { - ASSIGN_DISPATCH(out, req[0], dot(input0, input1)); - } - } - }); -} - -template -void DotBackward_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { - using namespace mshadow; - using namespace mshadow::expr; - const DotParam& param = nnvm::get(attrs.parsed); - Stream *s = ctx.get_stream(); - CHECK_NE(req[0], kWriteInplace); - CHECK_NE(req[1], kWriteInplace); - CHECK(outputs[0].type_flag_ == kFloat32 || outputs[0].type_flag_ == kFloat64) - << "dot only supports float32 and float64"; - MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { - if (inputs[1].ndim() == 1 && inputs[2].ndim() == 1) { - Tensor mout_grad = inputs[0].get(s); - Tensor mlhs_data = inputs[1].get(s); - Tensor mrhs_data = inputs[2].get(s); - Tensor mlhs_grad = outputs[0].get(s); - Tensor mrhs_grad = outputs[1].get(s); - ASSIGN_DISPATCH(mrhs_grad, req[1], - broadcast_scalar(mout_grad, mlhs_data.shape_) * mlhs_data); - ASSIGN_DISPATCH(mlhs_grad, req[0], - broadcast_scalar(mout_grad, mlhs_data.shape_) * mrhs_data); - } else { - int ma, na, mb, nb, m, n; - if (param.transpose_a) { - ma = outputs[0].size(0); - na = outputs[0].Size()/ma; - m = na; - } else { - na = outputs[0].size(outputs[0].ndim()-1); - ma = outputs[0].Size()/na; - m = ma; - } - if (param.transpose_b) { - nb = outputs[1].size(outputs[1].ndim()-1); - mb = outputs[1].Size()/nb; - n = mb; - } else { - mb = outputs[1].size(0); - nb = outputs[1].Size()/mb; - n = nb; - } - Tensor mout_grad = - inputs[0].get_with_shape(Shape2(m, n), s); - Tensor mlhs_data = - inputs[1].get_with_shape(Shape2(ma, na), s); - Tensor mrhs_data = - inputs[2].get_with_shape(Shape2(mb, nb), s); - Tensor mlhs_grad = - outputs[0].get_with_shape(Shape2(ma, na), s); - Tensor mrhs_grad = - outputs[1].get_with_shape(Shape2(mb, nb), s); - if (param.transpose_a && param.transpose_b) { - // Gradient of z = dot(x.T, y.T) - // dy = dot(x, dz).T = dot(dz.T, x.T) - // dx = dot(dz, y).T = dot(y.T, dz.T) - ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mout_grad.T(), mlhs_data.T())); - ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mrhs_data.T(), mout_grad.T())); - } else if (!param.transpose_a && param.transpose_b) { - // Gradient of z = dot(x, y.T) - // dy = dot(x.T, dz).T = dot(dz.T, x) - // dx = dot(dz, y) - ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mout_grad.T(), mlhs_data)); - ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mout_grad, mrhs_data)); - } else if (param.transpose_a && !param.transpose_b) { - // Gradient of z = dot(x.T, y) - // dy = dot(x, dz) - // dx = dot(dz, y.T).T = dot(y, dz.T) - ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mlhs_data, mout_grad)); - ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mrhs_data, mout_grad.T())); - } else { - // Gradient of z = dot(x, y) - // dy = dot(x.T, dz) - // dx = dot(dz, y.T) - ASSIGN_DISPATCH(mrhs_grad, req[1], dot(mlhs_data.T(), mout_grad)); - ASSIGN_DISPATCH(mlhs_grad, req[0], dot(mout_grad, mrhs_data.T())); - } - } - }); -} - -inline bool DotShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - const DotParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - TShape& lshape = (*in_attrs)[0]; - TShape& rshape = (*in_attrs)[1]; - if (lshape.ndim() == 1 && rshape.ndim() == 1) { - CHECK(!param.transpose_a && !param.transpose_b) << "Cannot transpose vectors"; - CHECK_EQ(lshape[0], rshape[0]) << "dot shape error: " << lshape << " X " << rshape; - SHAPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::Shape1(1)); - } else { - bool Ta = param.transpose_a, Tb = param.transpose_b; - TShape L[2], R[2]; - if (Ta) { - L[0] = mshadow::Shape1(lshape[0]); - L[1] = lshape.ndim() > 1 ? TShape(&lshape[1], &lshape[lshape.ndim()]) : TShape(1); - } else { - L[0] = lshape.ndim() > 1 ? TShape(&lshape[0], &lshape[lshape.ndim()-1]) : TShape(1); - L[1] = mshadow::Shape1(lshape[lshape.ndim()-1]); - } - if (Tb) { - R[0] = rshape.ndim() > 1 ? TShape(&rshape[0], &rshape[rshape.ndim()-1]) : TShape(1); - R[1] = mshadow::Shape1(rshape[rshape.ndim()-1]); - } else { - R[0] = mshadow::Shape1(rshape[0]); - R[1] = rshape.ndim() > 1 ? TShape(&rshape[1], &rshape[rshape.ndim()]) : TShape(1); - } - - if (L[!Ta].Size() != 0 && R[Tb].Size() != 0) { - CHECK_EQ(L[!Ta].Size(), R[Tb].Size()) - << "dot shape error: " << lshape << " X " << rshape; - } - std::vector buf; - if (lshape.ndim() > 1) buf.insert(buf.end(), &L[Ta][0], &L[Ta][L[Ta].ndim()]); - if (rshape.ndim() > 1) buf.insert(buf.end(), &R[!Tb][0], &R[!Tb][R[!Tb].ndim()]); - TShape oshape(buf.begin(), buf.end()); - SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); - } - return true; -} - -template -void BatchDotForward_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { - using namespace mshadow; - using namespace mshadow::expr; - mshadow::Stream *s = ctx.get_stream(); - const DotParam& param = nnvm::get(attrs.parsed); - CHECK_EQ(outputs[0].type_flag_, inputs[0].type_flag_) - << "Binary function only support input/output with the same type"; - CHECK_EQ(outputs[0].type_flag_, inputs[1].type_flag_) - << "Binary function only support input/output with the same type"; - CHECK(outputs[0].type_flag_ == kFloat32 || outputs[0].type_flag_ == kFloat64) - << "dot only supports float32 and float64"; - MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { - mshadow::Tensor out = outputs[0].get(s); - mshadow::Tensor mlhs = inputs[0].get(s); - mshadow::Tensor mrhs = inputs[1].get(s); - mshadow::Tensor workspace = - ctx.requested[0].get_space_typed(mshadow::Shape1(3 * out.size(0)), s); - if (kNullOp != req[0]) { - if (param.transpose_a && param.transpose_b) { - mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - workspace); - } else if (!param.transpose_a && param.transpose_b) { - mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - workspace); - } else if (param.transpose_a && !param.transpose_b) { - mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - workspace); - } else { - mshadow::BatchGEMM(out, mlhs, mrhs, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - workspace); - } - } - }); -} - -template -void BatchDotBackward_(const nnvm::NodeAttrs& attrs, - const OpContext& ctx, - const std::vector& inputs, - const std::vector& req, - const std::vector& outputs) { - using namespace mshadow; - using namespace mshadow::expr; - mshadow::Stream *s = ctx.get_stream(); - const DotParam& param = nnvm::get(attrs.parsed); - CHECK_NE(req[1], kWriteInplace); - CHECK_NE(req[0], kWriteInplace); - CHECK(outputs[0].type_flag_ == kFloat32 || outputs[0].type_flag_ == kFloat64) - << "dot only supports float32 and float64"; - MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { - mshadow::Tensor mout_grad = inputs[0].get(s); - mshadow::Tensor mlhs_data = inputs[1].get(s); - mshadow::Tensor mrhs_data = inputs[2].get(s); - mshadow::Tensor mlhs_grad = outputs[0].get(s); - mshadow::Tensor mrhs_grad = outputs[1].get(s); - mshadow::Tensor workspace = - ctx.requested[0].get_space_typed( - mshadow::Shape2(2, 3 * mout_grad.size(0)), s); - mshadow::Tensor rhs_workspace = workspace[0]; - mshadow::Tensor lhs_workspace = workspace[1]; - if (param.transpose_a && param.transpose_b) { - // Gradient of z = dot(x.T, y.T) - // dy = dot(x, dz).T = dot(dz.T, x.T) - // dx = dot(dz, y).T = dot(y.T, dz.T) - if (kNullOp != req[1]) { - mshadow::BatchGEMM(mrhs_grad, mout_grad, mlhs_data, (DType)1.0f, - (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, - rhs_workspace); - } - if (kNullOp != req[0]) { - mshadow::BatchGEMM(mlhs_grad, mrhs_data, mout_grad, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - lhs_workspace); - } - } else if (!param.transpose_a && param.transpose_b) { - // Gradient of z = dot(x, y.T) - // dy = dot(x.T, dz).T = dot(dz.T, x) - // dx = dot(dz, y) - if (kNullOp != req[1]) { - mshadow::BatchGEMM(mrhs_grad, mout_grad, mlhs_data, (DType)1.0f, - (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, - rhs_workspace); - } - if (kNullOp != req[0]) { - mshadow::BatchGEMM(mlhs_grad, mout_grad, mrhs_data, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - lhs_workspace); - } - } else if (param.transpose_a && !param.transpose_b) { - // Gradient of z = dot(x.T, y) - // dy = dot(x, dz) - // dx = dot(dz, y.T).T = dot(y, dz.T) - if (kNullOp != req[1]) { - mshadow::BatchGEMM(mrhs_grad, mlhs_data, mout_grad, (DType)1.0f, - (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, - rhs_workspace); - } - if (kNullOp != req[0]) { - mshadow::BatchGEMM(mlhs_grad, mrhs_data, mout_grad, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - lhs_workspace); - } - } else { - // Gradient of z = dot(x, y) - // dy = dot(x.T, dz) - // dx = dot(dz, y.T) - if (kNullOp != req[1]) { - mshadow::BatchGEMM(mrhs_grad, mlhs_data, mout_grad, (DType)1.0f, - (kAddTo == req[1]) ? (DType)1.0f : (DType)0.0f, - rhs_workspace); - } - if (kNullOp != req[0]) { - mshadow::BatchGEMM(mlhs_grad, mout_grad, mrhs_data, (DType)1.0f, - (kAddTo == req[0]) ? (DType)1.0f : (DType)0.0f, - lhs_workspace); - } - } - }); -} - -inline bool BatchDotShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - CHECK_EQ(in_attrs->size(), 2U); - CHECK_EQ(out_attrs->size(), 1U); - const DotParam& param = nnvm::get(attrs.parsed); - TShape& lshape = (*in_attrs)[0]; - TShape& rshape = (*in_attrs)[1]; - if (lshape.ndim() == 3 && rshape.ndim() == 3) { - CHECK(lshape[0] == rshape[0]) - << "batch_dot shape error(batch_size must be equal): " << lshape << " X " << rshape - << " trans_a=" << param.transpose_a << " trans_b=" << param.transpose_b; - index_t out_m = param.transpose_a ? lshape[2] : lshape[1]; - index_t lshape_k = param.transpose_a ? lshape[1] : lshape[2]; - index_t out_n = param.transpose_b ? rshape[1] : rshape[2]; - index_t rshape_k = param.transpose_b ? rshape[2] : rshape[1]; - CHECK(lshape_k == rshape_k) - << "batch_dot shape error(shape mismatch): " << lshape << " X " << rshape - << " trans_a=" << param.transpose_a << " trans_b=" << param.transpose_b; - SHAPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::Shape3(lshape[0], out_m, out_n)); - } else { - LOG(FATAL) << "batch_dot currently only support 3D*3D array" - << lshape << " v.s. " << rshape; - } - return true; -} - struct SliceParam : public dmlc::Parameter { nnvm::Tuple > begin, end; DMLC_DECLARE_PARAMETER(SliceParam) { @@ -845,6 +488,96 @@ void Slice(const nnvm::NodeAttrs& attrs, }); } +// slice the indptr of a csr +struct SliceCsrIndPtr { + template + MSHADOW_XINLINE static void Map(int i, IType* out, const IType* in, const IType* base) { + KERNEL_ASSIGN(out[i], kWriteTo, in[i] - *base); + } +}; + +/* + * a wrapper to launch SliceCsrIndPtr kernel. + * slice [src[begin] .. src[end]) and store in dst[0, end - begin) + */ +template +void SliceCsrIndPtrImpl(const int begin, const int end, RunContext ctx, + const IType* src, IType* dst) { + using namespace mshadow; + using namespace mxnet_op; + Stream *s = ctx.get_stream(); + int indptr_len = end - begin + 1; + Kernel::Launch(s, indptr_len, dst, src + begin, src + begin); +} + +/* + * Slice a CSR NDArray + * Only implemented for CPU + */ +template +void SliceCsrImpl(const SliceParam ¶m, const OpContext& ctx, + const NDArray &in, OpReqType req, const NDArray &out) { + using namespace mshadow; + using namespace mxnet_op; + using namespace csr; + CHECK((std::is_same::value)) << "Slice for CSR input only implemented for CPU"; + if (req == kNullOp) return; + CHECK_NE(req, kAddTo) << "kAddTo for Slice on CSR input is not supported"; + CHECK_NE(req, kWriteInplace) << "kWriteInplace for Slice on CSR input is not supported"; + Stream *s = ctx.get_stream(); + int begin = *param.begin[0]; + int end = *param.end[0]; + int indptr_len = end - begin + 1; + out.CheckAndAllocAuxData(kIndPtr, Shape1(indptr_len)); + if (!in.storage_initialized()) { + out.set_aux_shape(kIndPtr, Shape1(0)); + return; + } + // assume idx indptr share the same type + MSHADOW_IDX_TYPE_SWITCH(in.aux_type(kIndPtr), RType, { + MSHADOW_IDX_TYPE_SWITCH(in.aux_type(kIdx), IType, { + MSHADOW_TYPE_SWITCH(in.dtype(), DType, { + auto in_indptr = in.aux_data(kIndPtr).dptr(); + auto out_indptr = out.aux_data(kIndPtr).dptr(); + SliceCsrIndPtrImpl(begin, end, ctx.run_ctx, in_indptr, out_indptr); + + // retrieve nnz (CPU implementation) + int nnz = out_indptr[indptr_len - 1]; + // copy indices and values + out.CheckAndAllocAuxData(kIdx, Shape1(nnz)); + out.CheckAndAllocData(Shape1(nnz)); + auto in_idx = in.aux_data(kIdx).dptr(); + auto out_idx = out.aux_data(kIdx).dptr(); + auto in_data = in.data().dptr(); + auto out_data = out.data().dptr(); + int offset = in_indptr[begin]; + // this is also a CPU-only implementation + memcpy(out_idx, in_idx + offset, nnz * sizeof(IType)); + memcpy(out_data, in_data + offset, nnz * sizeof(DType)); + }); + }); + }); +} + +template +void SliceEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 1); + CHECK_EQ(outputs.size(), 1); + const SliceParam& param = nnvm::get(attrs.parsed); + auto in_stype = inputs[0].storage_type(); + CHECK_NE(in_stype, kDefaultStorage) + << "SliceEx is not expected to execute for input with default storage type"; + if (in_stype == kCSRStorage) { + SliceCsrImpl(param, ctx, inputs[0], req[0], outputs[0]); + } else { + LOG(FATAL) << "Slice not implemented for storage type" << in_stype; + } +} + inline bool SliceAssignShape(const nnvm::NodeAttrs& attrs, std::vector *in_attrs, std::vector *out_attrs) { diff --git a/src/operator/tensor/matrix_op.cc b/src/operator/tensor/matrix_op.cc index e7e8f5548a1c..d409b9ec6056 100644 --- a/src/operator/tensor/matrix_op.cc +++ b/src/operator/tensor/matrix_op.cc @@ -34,7 +34,6 @@ DMLC_REGISTER_PARAMETER(ClipParam); DMLC_REGISTER_PARAMETER(SimpleCropAssignScalarParam); DMLC_REGISTER_PARAMETER(SliceParam); DMLC_REGISTER_PARAMETER(SliceAxisParam); -DMLC_REGISTER_PARAMETER(DotParam); DMLC_REGISTER_PARAMETER(RepeatParam); DMLC_REGISTER_PARAMETER(TileParam); DMLC_REGISTER_PARAMETER(ReverseParam); @@ -263,6 +262,9 @@ and ``end=(e_1, e_2, ... e_n)`` indices will result in an array with the shape The resulting array's *k*-th dimension contains elements from the *k*-th dimension of the input array with the open range ``[b_k, e_k)``. +For an input array of non-default storage type(e.g. `csr` or `row_sparse`), it only supports +slicing on the first dimension. + Example:: x = [[ 1., 2., 3., 4.], @@ -276,8 +278,10 @@ Example:: .set_attr_parser(ParamParser) .set_attr("FInferShape", SliceShape) .set_attr("FInferType", ElemwiseType<1, 1>) +.set_attr("FInferStorageType", ElemwiseStorageType<1, 1>) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_slice"}) .set_attr("FCompute", Slice) +.set_attr("FComputeEx", SliceEx) .add_argument("data", "NDArray-or-Symbol", "Source input") .add_arguments(SliceParam::__FIELDS__()); @@ -370,94 +374,6 @@ NNVM_REGISTER_OP(_backward_slice_axis) .set_attr("TIsBackward", true) .set_attr("FCompute", SliceAxisGrad_); -NNVM_REGISTER_OP(dot) -.describe(R"doc(Dot product of two arrays. - -``dot``'s behavior depends on the input array dimensions: - -- 1-D arrays: inner product of vectors -- 2-D arrays: matrix multiplication -- N-D arrays: a sum product over the last axis of the first input and the first - axis of the second input - - For example, given 3-D ``x`` with shape `(n,m,k)` and ``y`` with shape `(k,r,s)`, the - result array will have shape `(n,m,r,s)`. It is computed by:: - - dot(x,y)[i,j,a,b] = sum(x[i,j,:]*y[:,a,b]) - - Example:: - - x = reshape([0,1,2,3,4,5,6,7], shape=(2,2,2)) - y = reshape([7,6,5,4,3,2,1,0], shape=(2,2,2)) - dot(x,y)[0,0,1,1] = 0 - sum(x[0,0,:]*y[:,1,1]) = 0 -)doc" ADD_FILELINE) -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr_parser(ParamParser) -.set_attr("FListInputNames", - [](const NodeAttrs& attrs) { - return std::vector{"lhs", "rhs"}; - }) -.set_attr("FInferShape", DotShape) -.set_attr("FInferType", ElemwiseType<2, 1>) -.set_attr("FCompute", DotForward_) -.set_attr("FGradient", ElemwiseGradUseIn{"_backward_dot"}) -.add_argument("lhs", "NDArray-or-Symbol", "The first input") -.add_argument("rhs", "NDArray-or-Symbol", "The second input") -.add_arguments(DotParam::__FIELDS__()); - -NNVM_REGISTER_OP(_backward_dot) -.set_num_inputs(3) -.set_num_outputs(2) -.set_attr_parser(ParamParser) -.set_attr("TIsBackward", true) -.set_attr("FCompute", DotBackward_) -.add_arguments(DotParam::__FIELDS__()); - -NNVM_REGISTER_OP(batch_dot) -.describe(R"doc(Batchwise dot product. - -``batch_dot`` is used to compute dot product of ``x`` and ``y`` when ``x`` and -``y`` are data in batch, namely 3D arrays in shape of `(batch_size, :, :)`. - -For example, given ``x`` with shape `(batch_size, n, m)` and ``y`` with shape -`(batch_size, m, k)`, the result array will have shape `(batch_size, n, k)`, -which is computed by:: - - batch_dot(x,y)[i,:,:] = dot(x[i,:,:], y[i,:,:]) - -)doc" ADD_FILELINE) -.set_num_inputs(2) -.set_num_outputs(1) -.set_attr_parser(ParamParser) -.set_attr("FListInputNames", - [](const NodeAttrs& attrs) { - return std::vector{"lhs", "rhs"}; - }) -.set_attr("FInferShape", BatchDotShape) -.set_attr("FInferType", ElemwiseType<2, 1>) -.set_attr("FResourceRequest", - [](const NodeAttrs& attrs) { - return std::vector{ResourceRequest::kTempSpace}; - }) -.set_attr("FCompute", BatchDotForward_) -.set_attr("FGradient", ElemwiseGradUseIn{"_backward_batch_dot"}) -.add_argument("lhs", "NDArray-or-Symbol", "The first input") -.add_argument("rhs", "NDArray-or-Symbol", "The second input") -.add_arguments(DotParam::__FIELDS__()); - -NNVM_REGISTER_OP(_backward_batch_dot) -.set_num_inputs(3) -.set_num_outputs(2) -.set_attr_parser(ParamParser) -.set_attr("FResourceRequest", - [](const NodeAttrs& attrs) { - return std::vector{ResourceRequest::kTempSpace}; - }) -.set_attr("TIsBackward", true) -.set_attr("FCompute", BatchDotBackward_); - NNVM_REGISTER_OP(clip) .describe(R"code(Clips (limits) the values in an array. diff --git a/src/operator/tensor/matrix_op.cu b/src/operator/tensor/matrix_op.cu index ca40419a9367..3cf2a7a753d0 100644 --- a/src/operator/tensor/matrix_op.cu +++ b/src/operator/tensor/matrix_op.cu @@ -57,18 +57,6 @@ NNVM_REGISTER_OP(slice_axis) NNVM_REGISTER_OP(_backward_slice_axis) .set_attr("FCompute", SliceAxisGrad_); -NNVM_REGISTER_OP(dot) -.set_attr("FCompute", DotForward_); - -NNVM_REGISTER_OP(_backward_dot) -.set_attr("FCompute", DotBackward_); - -NNVM_REGISTER_OP(batch_dot) -.set_attr("FCompute", BatchDotForward_); - -NNVM_REGISTER_OP(_backward_batch_dot) -.set_attr("FCompute", BatchDotBackward_); - NNVM_REGISTER_OP(clip) .set_attr("FCompute", Clip); diff --git a/src/operator/tensor/sparse_retain-inl.h b/src/operator/tensor/sparse_retain-inl.h new file mode 100644 index 000000000000..5add57c83b24 --- /dev/null +++ b/src/operator/tensor/sparse_retain-inl.h @@ -0,0 +1,396 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file sparse_retain-inl.h + * \brief +*/ +#ifndef MXNET_OPERATOR_TENSOR_SPARSE_RETAIN_INL_H_ +#define MXNET_OPERATOR_TENSOR_SPARSE_RETAIN_INL_H_ + +#include +#include +#include +#include "./init_op.h" +#include "../mshadow_op.h" +#include "../elemwise_op_common.h" +#include "../mxnet_op.h" + +namespace mxnet { +namespace op { + +/*! + * \brief sparse retain namespace + */ +namespace sr { +enum SparseRetainOpInputs {kArr, kIdx}; +enum SparseRetainOpOutputs {kOut}; +} // namespace sr + +inline bool SparseRetainOpShape(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 2U) + << "sparse_retain operator takes 2 arguments (" << in_attrs->size() << " given)"; + CHECK_EQ(out_attrs->size(), 1U); + + TShape tshape((*in_attrs)[sr::kArr]); + shape_assign(&tshape, (*out_attrs)[sr::kOut]); + SHAPE_ASSIGN_CHECK(*in_attrs, sr::kArr, tshape); + SHAPE_ASSIGN_CHECK(*out_attrs, sr::kOut, tshape); + return true; +} + +inline bool SparseRetainOpType(const nnvm::NodeAttrs& attrs, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 1U); + CHECK_NE((*in_attrs)[sr::kIdx], -1) << "Index type must be set for sparse_retain operator"; + + TYPE_ASSIGN_CHECK(*out_attrs, 0, (*in_attrs)[sr::kArr]); + TYPE_ASSIGN_CHECK(*in_attrs, 0, (*out_attrs)[sr::kOut]); + return (*in_attrs)[0] != -1; +} + +inline bool SparseRetainForwardInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 1U); + type_assign(&(in_attrs->at(sr::kArr)), kRowSparseStorage); + type_assign(&(in_attrs->at(sr::kIdx)), kDefaultStorage); + type_assign(&(out_attrs->at(sr::kOut)), kRowSparseStorage); + return true; +} + +inline bool SparseRetainBackwardInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector *in_attrs, + std::vector *out_attrs) { + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 2U); + + type_assign(&(in_attrs->at(sr::kOut)), kDefaultStorage); + type_assign(&(in_attrs->at(sr::kIdx)), kDefaultStorage); + type_assign(&(out_attrs->at(sr::kArr)), kRowSparseStorage); + type_assign(&(out_attrs->at(sr::kIdx)), kDefaultStorage); + return true; +} + +/*! + * \brief Each thread searches for a user input index in the input + * row sparse ndarray alternatively. This ensures each thread + * has the almost the same workload. The overhead is the binary + * search. If all the indices of the idx array are contained + * in the in_idx, one should use SparseRetainRspRowBlockKernel instead, + * where each thread only perform binary search once. + */ +struct SparseRetainRspThreadKernel { + template + MSHADOW_XINLINE static void Map(int i, DType* out_data, RType* out_idx, + const DType* in_data, const RType* in_idx, + const IType* idx, const size_t nnr, + const size_t row_length) { + const RType irow = idx[i]; + int j = -1, left = 0, right = nnr - 1; + while (left <= right) { + int m = left + (right - left) / 2; + const auto in_idx_m = in_idx[m]; + if (in_idx_m == irow) { + j = m; + break; + } else if (in_idx_m < irow) { + left = m + 1; + } else { + right = m - 1; + } + } + out_idx[i] = idx[i]; + if (j >= 0) { + const size_t in_offset = j * row_length; + const size_t out_offset = i * row_length; + for (size_t k = 0; k < row_length; ++k) { + out_data[out_offset+k] = in_data[in_offset+k]; + } + } + } +}; + +/*! + * \brief This kernel should be invoked when the row indices + * to be retained are all in the input rsp. + * Each thread searches for a subarray of indices of + * the user-input idx array for retain. The first index + * in the subarray will be searched for using binary search. + * The rest of the indices will be searched for starting from + * the lower bound of the binary search. This kernel assumes + * that idx has been sorted in ascending order. + */ +struct SparseRetainRspRowBlockKernel { + template + MSHADOW_XINLINE static void Map(int i, DType* out_data, RType* out_idx, + const DType* in_data, const RType* in_idx, + const IType* idx, const size_t num_indices, + const size_t nnr, const size_t row_length, + const size_t seg_len) { + const size_t seg_start = i * seg_len; + if (seg_start >= num_indices) return; + const size_t seg_end = (seg_start+seg_len < num_indices? seg_start+seg_len : num_indices); + for (size_t j = seg_start; j < seg_end; ++j) { + out_idx[j] = idx[j]; + } + // use binary search to find the lower bound of idx[seg_start] in in_idx + const RType* first = in_idx; + const RType* last = in_idx + nnr; + const auto val = idx[seg_start]; + const RType* it; + int count = last - first, step; + while (count > 0) { + it = first; + step = count / 2; + it += step; + if (*it < val) { + first = ++it; + count -= step + 1; + } else { + count = step; + } + } + size_t cur_row_idx = first - in_idx; + // end of binary search + if (cur_row_idx == nnr || in_idx[cur_row_idx] > idx[seg_end-1]) { + return; + } + size_t cur_idx = seg_start; + while (cur_row_idx < nnr && cur_idx < seg_end) { + if (in_idx[cur_row_idx] == idx[cur_idx]) { + const size_t in_offset = cur_row_idx * row_length; + const size_t out_offset = cur_idx * row_length; + for (size_t k = 0; k < row_length; ++k) { + out_data[out_offset+k] = in_data[in_offset+k]; + } + ++cur_row_idx; + ++cur_idx; + } else if (in_idx[cur_row_idx] < idx[cur_idx]) { + ++cur_row_idx; + } else { + ++cur_idx; + } + } + } +}; + +/*! + * Copy input indices to output indices. + * Only used when input rsp is dense. + */ +struct SparseRetainCopyIndices { + template + MSHADOW_XINLINE static void Map(int i, RType* out_idx, IType* idx) { + out_idx[i] = idx[i]; + } +}; + +/*! + * Copy input retained rows to output rows. + * Only used when input rsp is dense. + * This kernel is only used when ctx is on GPU. + * So it's parallelized by out_rows' elements, + * instead of rows. + * For CPU ctx, we simply call mshadow::Copy. + */ +struct SparseRetainCopyRetainedRowsFromDns { + template + MSHADOW_XINLINE static void Map(int i, DType* out_rows, const DType* in_rows, + const RType* in_row_idx, const IType* idx, + const size_t row_length) { + const size_t irow = i / row_length; + const size_t icol = i % row_length; + out_rows[i] = in_rows[static_cast(idx[irow]) * row_length + icol]; + } +}; + +template +void SparseRetainOpForwardRspImpl(mshadow::Stream *s, + const NDArray& input_nd, + const TBlob& idx_data, + const OpReqType req, + NDArray* output_nd) { + if (req == kNullOp) return; + CHECK_EQ(req, kWriteTo) << "SparseRetainOpForwardRspImpl only support req = kWriteTo now"; + CHECK_EQ(input_nd.storage_type(), kRowSparseStorage) + << "SparseRetainOpForwardRspImpl operator only takes row sparse NDArray as input"; + CHECK_EQ(output_nd->storage_type(), kRowSparseStorage) + << "SparseRetainOpForwardRspImpl operator only outputs row sparse NDArray"; + + if (!input_nd.storage_initialized() + || idx_data.Size() == 0U + || input_nd.shape()[0] == 0) { + FillZerosRspImpl(s, output_nd); + return; + } + + const TBlob input_data = input_nd.data(); + const TBlob input_idx = input_nd.aux_data(rowsparse::kIdx); + + output_nd->CheckAndAlloc({mshadow::Shape1(idx_data.Size())}); + TBlob output_data = output_nd->data(); + TBlob output_idx = output_nd->aux_data(rowsparse::kIdx); + const auto row_length = input_data.shape_.ProdShape(1, input_data.shape_.ndim()); + + using namespace mxnet_op; + MSHADOW_TYPE_SWITCH(output_data.type_flag_, DType, { // output data type + Kernel::Launch(s, output_data.Size(), output_data.dptr()); + MSHADOW_IDX_TYPE_SWITCH(output_idx.type_flag_, RType, { // row index data type + MSHADOW_TYPE_SWITCH(idx_data.type_flag_, IType, { // index array data type + if (input_idx.Size() == input_nd.shape()[0]) { // input rsp is dense + using namespace mshadow; + // copy indices + Tensor output_idx_tensor = output_idx.FlatTo1D(s); + const size_t num_rows_retained = output_idx.Size(); + if (output_idx.type_flag_ == idx_data.type_flag_) { // same type, use Copy + const Tensor idx_tensor = idx_data.FlatTo1D(s); + Copy(output_idx_tensor, idx_tensor, s); + } else { // different index types, use Kernel::Launch + Kernel::Launch(s, num_rows_retained, + output_idx.dptr(), idx_data.dptr()); + } + // copy data + if (std::is_same::value) { // For cpu, we can access output_idx_tensor[i] + const Tensor input_tensor = + input_data.get_with_shape(Shape2(input_data.shape_[0], row_length), s); + Tensor output_tensor = + output_data.get_with_shape(Shape2(output_data.shape_[0], row_length), + s); + for (size_t i = 0; i < num_rows_retained; ++i) { + Copy(output_tensor[i], input_tensor[output_idx_tensor[i]], s); + } + } else { // For gpu, have to kernel launch + Kernel::Launch(s, output_data.Size(), + output_data.dptr(), input_data.dptr(), input_idx.dptr(), + idx_data.dptr(), row_length); + } + } else { // input rsp is not dense + Kernel::Launch(s, idx_data.Size(), + output_data.dptr(), output_idx.dptr(), input_data.dptr(), + input_idx.dptr(), idx_data.dptr(), input_data.shape_[0], row_length); + } + }); + }); + }); +} + +template +void SparseRetainOpForwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 1U); + CHECK_EQ(req.size(), 1U); + if (req[sr::kOut] == kNullOp) return; + CHECK_EQ(req[sr::kOut], kWriteTo) << "sparse_retain only supports req=\'write\'"; + CHECK_EQ(inputs[sr::kIdx].storage_type(), kDefaultStorage) + << "sparse_retain operator only takes default NDArray as its index array"; + if (inputs[sr::kArr].storage_type() == kRowSparseStorage) { + NDArray output_nd = outputs[sr::kOut]; + SparseRetainOpForwardRspImpl(ctx.get_stream(), inputs[sr::kArr], + inputs[sr::kIdx].data(), req[sr::kOut], &output_nd); + } else { + LOG(FATAL) << "sparse_retain op only supports row-sparse ndarrays as input"; + } +} + +template +struct SparseRetainRspGradKernel { + template + MSHADOW_XINLINE static void Map(int i, DType* in_grad, RType* in_grad_idx, + const DType* out_grad, const IType* idx, + const size_t row_length) { + const RType irow = idx[i]; + in_grad_idx[i] = irow; + const size_t out_offset = irow * row_length; + const size_t in_offset = i * row_length; + for (size_t j = 0; j < row_length; ++j) { + KERNEL_ASSIGN(in_grad[in_offset+j], req, out_grad[out_offset+j]); + } + } +}; + +template +void SparseRetainOpBackwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(req.size(), 2U); + CHECK_EQ(req[sr::kIdx], kNullOp); + if (req[sr::kArr] == kNullOp) return; + CHECK_EQ(req[sr::kArr], kWriteTo); + + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 2U) + << "sparse_retain does not support calculating gradients of indices"; + + CHECK_EQ(inputs[sr::kOut].storage_type(), kDefaultStorage) + << "sparse_retain backward only takes default NDArray as ograd"; + CHECK_EQ(inputs[sr::kIdx].storage_type(), kDefaultStorage) + << "sparse_retain backward only takes default NDArray as its index array"; + CHECK_EQ(outputs[sr::kArr].storage_type(), kRowSparseStorage) + << "sparse_retain backward only outputs row sparse NDArray as grad of input"; + + using namespace mxnet_op; + using namespace mshadow; + Stream *s = ctx.get_stream(); + const TBlob idx_data = inputs[sr::kIdx].data(); + if (idx_data.Size() == 0U) { + NDArray output = outputs[sr::kArr]; + FillZerosRspImpl(s, &output); + return; + } + + const TBlob out_grad_data = inputs[sr::kOut].data(); + + NDArray in_grad_nd = outputs[sr::kArr]; + in_grad_nd.CheckAndAlloc({mshadow::Shape1(idx_data.Size())}); + TBlob in_grad_data = in_grad_nd.data(); + TBlob in_grad_idx = in_grad_nd.aux_data(rowsparse::kIdx); + const auto row_length = out_grad_data.shape_.ProdShape(1, out_grad_data.shape_.ndim()); + + MSHADOW_TYPE_SWITCH(out_grad_data.type_flag_, DType, { // output data type + MSHADOW_IDX_TYPE_SWITCH(in_grad_idx.type_flag_, RType, { // row index data type + MSHADOW_TYPE_SWITCH(idx_data.type_flag_, IType, { // index array data type + MXNET_ASSIGN_REQ_SWITCH(req[sr::kArr], req_type, { + Kernel, xpu>::Launch( + s, in_grad_idx.Size(), in_grad_data.dptr(), in_grad_idx.dptr(), + out_grad_data.dptr(), idx_data.dptr(), row_length); + }); + }); + }); + }); +} + + +} // namespace op +} // namespace mxnet + +#endif // MXNET_OPERATOR_TENSOR_SPARSE_RETAIN_INL_H_ diff --git a/src/operator/tensor/sparse_retain.cc b/src/operator/tensor/sparse_retain.cc new file mode 100644 index 000000000000..f8fc325c0534 --- /dev/null +++ b/src/operator/tensor/sparse_retain.cc @@ -0,0 +1,80 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file sparse_retain.cc + * \brief +*/ + +#include "./sparse_retain-inl.h" +namespace mxnet { +namespace op { + +// Add prefix "_sparse_" to prevent it from being registered +// under mxnet.ndarray in python frontend as this op only +// accepts row-sparse format ndarrays. It will be registered +// under mxnet.ndarray.sparse with name retain. +NNVM_REGISTER_OP(_sparse_retain) +.describe(R"code(pick rows specified by user input index array from a row sparse matrix +and save them in the output sparse matrix. + +Example:: + + data = [[1, 2], [3, 4], [5, 6]] + indices = [0, 1, 3] + shape = (4, 2) + rsp_in = row_sparse(data, indices) + to_retain = [0, 3] + rsp_out = retain(rsp_in, to_retain) + rsp_out.values = [[1, 2], [5, 6]] + rsp_out.indices = [0, 3] + +The storage type of ``retain`` output depends on storage types of inputs + +- retain(row_sparse, default) = row_sparse +- otherwise, ``retain`` is not supported + +)code" ADD_FILELINE) +.set_num_inputs(2) +.set_num_outputs(1) +.set_attr("FListInputNames", + [](const NodeAttrs& attrs) { + return std::vector{"data", "indices"}; + }) +.set_attr("FInferShape", SparseRetainOpShape) +.set_attr("FInferType", SparseRetainOpType) +.set_attr("FInferStorageType", SparseRetainForwardInferStorageType) +.set_attr("FComputeEx", SparseRetainOpForwardEx) +.set_attr("FGradient", + [](const nnvm::NodePtr& n, const std::vector& ograds) { + return MakeNonlossGradNode("_backward_sparse_retain", n, ograds, + {n->inputs[sr::kIdx]}, n->attrs.dict); + }) +.add_argument("data", "NDArray-or-Symbol", "The input array for sparse_retain operator.") +.add_argument("indices", "NDArray-or-Symbol", "The index array of rows ids that will be retained."); + +NNVM_REGISTER_OP(_backward_sparse_retain) +.set_num_inputs(2) +.set_num_outputs(2) +.set_attr("TIsBackward", true) +.set_attr("FInferStorageType", SparseRetainBackwardInferStorageType) +.set_attr("FComputeEx", SparseRetainOpBackwardEx); + +} // namespace op +} // namespace mxnet diff --git a/src/operator/tensor/sparse_retain.cu b/src/operator/tensor/sparse_retain.cu new file mode 100644 index 000000000000..6b4ac1bdf1a1 --- /dev/null +++ b/src/operator/tensor/sparse_retain.cu @@ -0,0 +1,36 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file sparse_retain.cu + * \brief +*/ + +#include "./sparse_retain-inl.h" +namespace mxnet { +namespace op { + +NNVM_REGISTER_OP(_sparse_retain) +.set_attr("FComputeEx", SparseRetainOpForwardEx); + +NNVM_REGISTER_OP(_backward_sparse_retain) +.set_attr("FComputeEx", SparseRetainOpBackwardEx); + +} // namespace op +} // namespace mxnet diff --git a/src/operator/tensor/square_sum-inl.h b/src/operator/tensor/square_sum-inl.h new file mode 100644 index 000000000000..beb77c37b8d2 --- /dev/null +++ b/src/operator/tensor/square_sum-inl.h @@ -0,0 +1,456 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file square_sum-inl.h + * \brief This is a temporary solution for fusing operators + * square and sum together as a composite op for row sparse tensors. + * The purpose for fusing square and sum for row sparse tensors + * is that the gradient of the fused operator depends on the input + * ndarray and thus its gradient is a row-sparse ndarray too. + * This fused op will become deprecated after the functionality + * of fusing operators is finished in the future. + */ + +#ifndef MXNET_OPERATOR_TENSOR_SQUARE_SUM_INL_H_ +#define MXNET_OPERATOR_TENSOR_SQUARE_SUM_INL_H_ + +#include +#include +#include +#include "../mxnet_op.h" +#include "./broadcast_reduce_op.h" + +namespace mxnet { +namespace op { + +inline bool SquareSumForwardInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector* in_attrs, + std::vector* out_attrs) { + CHECK_EQ(in_attrs->size(), 1U); + CHECK_EQ(out_attrs->size(), 1U); + const ReduceAxesParam& param = nnvm::get(attrs.parsed); + if (in_attrs->at(0) == kRowSparseStorage) { // current impl + if (param.axis[0] == 1 && param.keepdims) { // sum per row and keep dims + STORAGE_TYPE_ASSIGN_CHECK(*out_attrs, 0, kRowSparseStorage); + } else { + STORAGE_TYPE_ASSIGN_CHECK(*out_attrs, 0, kDefaultStorage); + } + } else { // fallback + type_assign(&((*in_attrs)[0]), kDefaultStorage); + type_assign(&((*out_attrs)[0]), kDefaultStorage); + } + return true; +} + +inline bool SquareSumBackwardInferStorageType(const nnvm::NodeAttrs& attrs, + const Context& ctx, + std::vector* in_attrs, + std::vector* out_attrs) { + CHECK_EQ(in_attrs->size(), 2U); + CHECK_EQ(out_attrs->size(), 1U); + const ReduceAxesParam& param = nnvm::get(attrs.parsed); + if (in_attrs->at(0) == kDefaultStorage || in_attrs->at(0) == kRowSparseStorage) { + STORAGE_TYPE_ASSIGN_CHECK(*in_attrs, 1, kRowSparseStorage); + STORAGE_TYPE_ASSIGN_CHECK(*out_attrs, 0, kRowSparseStorage); + } else { // fallback + type_assign(&((*in_attrs)[0]), kDefaultStorage); + type_assign(&((*in_attrs)[1]), kDefaultStorage); + type_assign(&((*out_attrs)[0]), kDefaultStorage); + } + return true; +} + +/*! + * \brief square sum of a rsp + * if axis = -1, same as mx.nd.sum(tensor*tensor) + * if axis = 0, same as mx.nd.sum(tensor*tensor, axis=0) + * if axis = 1, same as mx.nd.sum(tensor*tensor, axis=1) + * where tensor*tensor is elemwise multiplication of two ndarrays. + */ +template +struct SquareSumRspKernel; + +/*! + * \brief square sum of a rsp on axis=0 without keeping the dim + */ +template +struct SquareSumRspKernel { + /*! + * \param j the element index in out_data and column id of in_data + */ + template + MSHADOW_XINLINE static void Map(int j, DType* out_data, const DType* in_data, + const int64_t nnr, const int64_t num_cols) { + DType sum = 0; + for (int64_t i = 0; i < nnr; ++i) { + const DType val = in_data[i*num_cols+j]; + sum += val * val; + } + KERNEL_ASSIGN(out_data[j], req, sum); + } +}; + +/*! + * \brief square sum of a rsp on axis=1 without keeping the dim + */ +template +struct SquareSumRspKernel { + /*! + * \param i the i-th non-zero row of in_data + */ + template + MSHADOW_XINLINE static void Map(int i, DType* out_data, const IType* in_row_idx, + const DType* in_data, const int64_t num_cols) { + DType sum = 0; + const int64_t offset = i * num_cols; + for (int64_t j = 0; j < num_cols; ++j) { + const DType val = in_data[offset+j]; + sum += val * val; + } + KERNEL_ASSIGN(out_data[in_row_idx[i]], req, sum); + } +}; + +/*! + * \brief square sum of a rsp on axis=1 keeping the dim + */ +template +struct SquareSumRspKernel { + /*! + * \param i the i-th non-zero row of in_data + */ + template + MSHADOW_XINLINE static void Map(int i, IType* out_row_idx, DType* out_data, + const IType* in_row_idx, const DType* in_data, + const int64_t num_cols) { + DType sum = 0; + out_row_idx[i] = in_row_idx[i]; + const int64_t offset = i * num_cols; + for (int64_t j = 0; j < num_cols; ++j) { + const DType val = in_data[offset+j]; + sum += val * val; + } + KERNEL_ASSIGN(out_data[i], req, sum); + } +}; + +template +struct SquareSumRspGradKernel; + +template +struct SquareSumRspGradKernel { + /*! + * \param i element index in in_grad and in_data + * \param in_grad_row_idx row_idx of the gradient of the op's input + * \param in_grad gradient of the op's input + * \param out_grad gradient of the op's output + * \param in_row_idx row idx of the op's input + * \param in_data op's input + */ + template + MSHADOW_XINLINE static void Map(int i, IType* in_grad_row_idx, DType* in_grad, + const DType* out_grad, const IType* in_row_idx, + const DType* in_data, const int64_t num_cols) { + const int64_t row = i / num_cols; + in_grad_row_idx[row] = in_row_idx[row]; + KERNEL_ASSIGN(in_grad[i], req, 2*in_data[i]*out_grad[i%num_cols]); + } +}; + +template +struct SquareSumRspGradKernel { + /*! + * \param i element index in in_grad and in_data + * \param in_grad_row_idx row_idx of the gradient of the op's input + * \param in_grad gradient of the op's input + * \param out_grad gradient of the op's output + * \param in_row_idx row idx of the op's input + * \param in_data op's input + */ + template + MSHADOW_XINLINE static void Map(int i, IType* in_grad_row_idx, DType* in_grad, + const DType* out_grad, const IType* in_row_idx, + const DType* in_data, const int64_t num_cols) { + const int64_t row = i / num_cols; + in_grad_row_idx[row] = in_row_idx[row]; + KERNEL_ASSIGN(in_grad[i], req, 2*in_data[i]*out_grad[in_row_idx[row]]); + } +}; + +/*! + * Note: This kernel assumes that the ograd and in_data + * are all rsp and have equal row_idx array, or + * in_data is a full rsp. + */ +template +struct SquareSumRspGradKernel { + /*! + * \param i index of igrad.data() + * \param in_grad_row_idx row_idx of the gradient of the op's input + * \param in_grad gradient of the op's input + * \param out_grad_row_idx row_idx of the gradient of the op's output + * \param out_grad gradient of the op's output + * \param in_data op's input + */ + template + MSHADOW_XINLINE static void Map(int i, IType* in_grad_row_idx, DType* in_grad, + const IType* out_grad_row_idx, const DType* out_grad, + const DType* in_data, const int64_t num_cols) { + const int64_t row = i / num_cols; + in_grad_row_idx[row] = out_grad_row_idx[row]; + KERNEL_ASSIGN(in_grad[i], req, 2*in_data[i]*out_grad[row]); + } +}; + +template +void SquareSumRspImpl(const nnvm::NodeAttrs& attrs, + mshadow::Stream* s, + const NDArray& input, + const OpReqType req, + NDArray* output) { + if (req == kNullOp) return; + const ReduceAxesParam& param = nnvm::get(attrs.parsed); + CHECK_EQ(param.axis.ndim(), 1U) << "_square_sum(row_sparse_matrix) only supports axis=0 or 1"; + CHECK(param.axis[0] == 0 || param.axis[0] == 1) + << "_square_sum(row_sparse_matrix) only supports axis=0 or 1"; + CHECK_EQ(input.storage_type(), kRowSparseStorage) + << "_square_sum op only supports row-sparse matrix as input"; + int64_t out_data_size = 0; + if (param.axis[0] == 0) { // axis = 0 + CHECK_EQ(output->storage_type(), kDefaultStorage); + out_data_size = input.storage_shape()[1]; + } else if (param.keepdims) { // axis = 1, keepdims = true + CHECK_EQ(output->storage_type(), kRowSparseStorage); + out_data_size = input.storage_shape()[0]; + } else { // axis = 1, keepdims = false + CHECK_EQ(output->storage_type(), kDefaultStorage); + out_data_size = input.shape()[0]; + } + CHECK_NE(req, kWriteInplace); + + using namespace mxnet_op; + if (!input.storage_initialized()) { + if (req == kWriteTo) { + if (output->storage_type() == kDefaultStorage) { + MSHADOW_TYPE_SWITCH(output->data().type_flag_, DType, { + Kernel::Launch(s, out_data_size, output->data().dptr()); + }) + } else if (output->storage_type() == kRowSparseStorage) { + FillZerosRspImpl(s, output); + } else { + LOG(FATAL) << "SquareSumRspImpl only supports row-sparse/dense output storage type"; + } + } + return; + } + + if (output->storage_type() == kRowSparseStorage) { + output->CheckAndAlloc({input.aux_shape(rowsparse::kIdx)}); + } + const TBlob& out_data = output->data(); + const int64_t nnr = input.storage_shape()[0]; + const int64_t num_cols = input.storage_shape()[1]; + const TBlob& in_data = input.data(); + if (0 == param.axis[0]) { // axis = 0, output is dense + MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + Kernel, xpu>::Launch(s, num_cols, + out_data.dptr(), input.data().dptr(), nnr, num_cols); + }) + }) + } else { // axis = 1 + const TBlob in_row_idx = input.aux_data(rowsparse::kIdx); + if (param.keepdims) { // output is rsp + const TBlob out_row_idx = output->aux_data(rowsparse::kIdx); + MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(in_row_idx.type_flag_, IType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + Kernel, xpu>::Launch(s, nnr, + out_row_idx.dptr(), out_data.dptr(), in_row_idx.dptr(), + in_data.dptr(), num_cols); + }) + }) + }) + } else { // output is dense + if (req == kWriteTo) { + MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { + Kernel::Launch(s, out_data_size, out_data.dptr()); + }) + } + MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(in_row_idx.type_flag_, IType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + Kernel, xpu>::Launch(s, nnr, + out_data.dptr(), in_row_idx.dptr(), in_data.dptr(), num_cols); + }) + }) + }) + } + } +} + +template +void SquareSumRspGradImpl(const nnvm::NodeAttrs& attrs, + mshadow::Stream* s, + const NDArray& ograd, + const NDArray& input, + const OpReqType req, + NDArray* igrad) { + if (req == kNullOp) return; + const ReduceAxesParam& param = nnvm::get(attrs.parsed); + CHECK_EQ(param.axis.ndim(), 1U) << "_square_sum(row_sparse_matrix) only supports axis=0/1"; + CHECK(param.axis[0] == 0 || param.axis[0] == 1) + << "_square_sum(row_sparse_matrix) only supports axis=0 or 1"; + CHECK(ograd.storage_type() == kDefaultStorage || ograd.storage_type() == kRowSparseStorage); + CHECK_EQ(input.storage_type(), kRowSparseStorage); + CHECK_EQ(igrad->storage_type(), kRowSparseStorage); + CHECK_EQ(req, kWriteTo); + if (!input.storage_initialized()) { + FillZerosRspImpl(s, igrad); + return; + } + + using namespace mxnet_op; + // TODO(junwu) change the input of CheckAndAlloc + // if we want to support differen row idx arrays + // for ograd and input when they are both row-sparse ndarrays + igrad->CheckAndAlloc({input.aux_shape(rowsparse::kIdx)}); + const int64_t num_cols = input.storage_shape()[1]; + const TBlob& igrad_data = igrad->data(); + const TBlob igrad_row_idx = igrad->aux_data(rowsparse::kIdx); + const TBlob& ograd_data = ograd.data(); + const TBlob& in_data = input.data(); + const TBlob in_row_idx = input.aux_data(rowsparse::kIdx); + if (ograd.storage_type() == kDefaultStorage) { + if (0 == param.axis[0]) { // forward is sum per column + MSHADOW_TYPE_SWITCH(igrad_data.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(igrad_row_idx.type_flag_, IType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + Kernel, xpu>::Launch( + s, igrad_data.Size(), igrad_row_idx.dptr(), + igrad_data.dptr(), ograd_data.dptr(), + in_row_idx.dptr(), in_data.dptr(), num_cols); + }) + }) + }) + } else { // forward is sum per row + MSHADOW_TYPE_SWITCH(igrad_data.type_flag_, DType, { + MSHADOW_IDX_TYPE_SWITCH(igrad_row_idx.type_flag_, IType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + Kernel, xpu>::Launch( + s, igrad_data.Size(), igrad_row_idx.dptr(), + igrad_data.dptr(), ograd_data.dptr(), + in_row_idx.dptr(), in_data.dptr(), num_cols); + }) + }) + }) + } + } else if (ograd.storage_type() == kRowSparseStorage) { + CHECK_EQ(1, param.axis[0]) << "SquareSumRspGradImpl only supports axis = 1" + " when ograd_stype = kRowSparseStorage"; + CHECK_EQ(ograd.shape().ndim(), 2U); + const TBlob ograd_row_idx = ograd.aux_data(rowsparse::kIdx); + CHECK(ograd_row_idx.Size() == in_row_idx.Size() || in_row_idx.Size() == in_data.shape_[0]); + MSHADOW_IDX_TYPE_SWITCH(igrad_row_idx.type_flag_, IType, { + if (std::is_same::value) { + const IType* first1 = ograd_row_idx.dptr(); + const IType* last1 = first1 + ograd_row_idx.Size(); + const IType* first2 = in_row_idx.dptr(); + // when ograd_row_idx and in_row_idx have the same size and input is not a full rsp + // ograd_row_idx and in_row_idx are expected to have the same elements + if (ograd_row_idx.Size() == in_row_idx.Size() && in_row_idx.Size() != in_data.shape_[0]) { + CHECK(std::equal(first1, last1, first2)) << "SquareSumRspGradImpl only supports" + " equal ograd_row_idx and input_row_idx" + " when ograd and input are both" + " row-sparse"; + } + } else { + LOG(FATAL) << "SquareSumRspGradImpl has not implemented GPU version when" + " ograd and input are both row-sparse"; + } + MSHADOW_TYPE_SWITCH(igrad_data.type_flag_, DType, { + MXNET_ASSIGN_REQ_SWITCH(req, req_type, { + Kernel, xpu>::Launch( + s, igrad_data.Size(), igrad_row_idx.dptr(), + igrad_data.dptr(), ograd_row_idx.dptr(), + ograd_data.dptr(), in_data.dptr(), num_cols); + }) + }) + }) + } else { + LOG(FATAL) << "SquareSumRspGradImpl only supports ograd_stype" + << " = kDefaultStorage/kRowSparseStorage"; + } +} + +template +void SquareSumOpForwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 1U); + CHECK_EQ(outputs.size(), 1U); + CHECK_EQ(req.size(), 1U); + mshadow::Stream* s = ctx.get_stream(); + const NDArrayStorageType istype = inputs[0].storage_type(); + if (istype == kRowSparseStorage) { + CHECK_EQ(inputs[0].shape().ndim(), 2U) << "_square_sum op only supports" + " 2D ndarray as input"; + NDArray output = outputs[0]; + SquareSumRspImpl(attrs, s, inputs[0], req[0], &output); + } else { + LOG(FATAL) << "_square_sum op only supports row-sparse ndarray" + " as input, while input stype = " + << istype; + } +} + +template +void SquareSumOpBackwardEx(const nnvm::NodeAttrs& attrs, + const OpContext& ctx, + const std::vector& inputs, + const std::vector& req, + const std::vector& outputs) { + CHECK_EQ(inputs.size(), 2U); + CHECK_EQ(outputs.size(), 1U); + CHECK_EQ(req.size(), 1U); + mshadow::Stream* s = ctx.get_stream(); + const NDArrayStorageType ograd_stype = inputs[0].storage_type(); + const NDArrayStorageType input_stype = inputs[1].storage_type(); + if (input_stype == kRowSparseStorage + && (ograd_stype == kDefaultStorage || ograd_stype == kRowSparseStorage)) { + CHECK_EQ(inputs[1].shape().ndim(), 2U) << "_square_sum op only supports" + " 2D ndarray as input"; + NDArray output = outputs[0]; + SquareSumRspGradImpl(attrs, s, inputs[0], inputs[1], req[0], &output); + } else { + LOG(FATAL) << "_square_sum op backward only supports dense ndarray as ograd," + " row-sparse ndarray as input and row-sparse ndarray as igrad," + " while ograd_stype = " << ograd_stype + << " input_stype = " << input_stype; + } +} + +} // namespace op +} // namespace mxnet + +#endif // MXNET_OPERATOR_TENSOR_SQUARE_SUM_INL_H_ diff --git a/src/operator/tensor/square_sum.cc b/src/operator/tensor/square_sum.cc new file mode 100644 index 000000000000..e4b49d7f7fcb --- /dev/null +++ b/src/operator/tensor/square_sum.cc @@ -0,0 +1,52 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * \file square_sum.cc + * \brief CPU Implementation of square_sum op. + */ +#include "./square_sum-inl.h" + +namespace mxnet { +namespace op { +MXNET_OPERATOR_REGISTER_REDUCE(_square_sum) +.describe(R"code(Computes the square sum of array elements over a given axis +for row-sparse matrix. This is a temporary solution for fusing ops square and +sum together for row-sparse matrix to save memory for storing gradients. +It will become deprecated once the functionality of fusing operators is finished +in the future. + +Example:: + + dns = mx.nd.array([[0, 0], [1, 2], [0, 0], [3, 4], [0, 0]]) + rsp = dns.tostype('row_sparse') + sum = mx.nd._internal._square_sum(rsp, axis=1) + sum = [0, 5, 0, 25, 0] +)code" ADD_FILELINE) +.set_attr("FInferStorageType", SquareSumForwardInferStorageType) +.set_attr("FComputeEx", SquareSumOpForwardEx) +.set_attr("FGradient", ElemwiseGradUseIn{"_backward_square_sum"}); + +MXNET_OPERATOR_REGISTER_REDUCE_BACKWARD(_backward_square_sum) +.set_num_inputs(2) +.set_attr("FInferStorageType", SquareSumBackwardInferStorageType) +.set_attr("FComputeEx", SquareSumOpBackwardEx); + +} // namespace op +} // namespace mxnet diff --git a/src/operator/tensor/util/tensor_util-inl.cuh b/src/operator/tensor/util/tensor_util-inl.cuh new file mode 100644 index 000000000000..cf268e7ae9fc --- /dev/null +++ b/src/operator/tensor/util/tensor_util-inl.cuh @@ -0,0 +1,240 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * Copyright (c) 2017 by Contributors + * \file tensor_util-inl.cuh + * \brief commonly utilized tensor operator GPU kernels + */ +#ifndef MXNET_OPERATOR_TENSOR_UTIL_TENSOR_UTIL_INL_CUH_ +#define MXNET_OPERATOR_TENSOR_UTIL_TENSOR_UTIL_INL_CUH_ + +#include +#include +#include + +namespace mxnet { +namespace op { + +/*! + * \brief Thread kernel for marking non-zero rows of a tensor. + * Parallelized by tensor rows: 1 thread/row + */ +struct MarkRspRowThreadKernel { + /*! + * \brief + * \param tid global thread id + * \param row_flg row flag array to mark non-zero rows + * \param dns dense matrix data + * \param num_rows number of rows (size of first dimension of tensor) + * \param row_length number of elements per row + */ + template + __device__ __forceinline__ static void Map(int tid, + nnvm::dim_t* row_flg, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t row_length) { + using nnvm::dim_t; + if (tid < num_rows) { + dim_t j = 0; + dim_t offset = tid * row_length; + for (; j < row_length; ++j) { + if (dns[offset+j] != 0) { + break; + } + } + if (j < row_length) { + row_flg[tid] = 1; // mark as one for non-zero row + } else { + row_flg[tid] = 0; // mark as zero for zero row + } + } + } +}; + +/*! + * \brief Warp kernel for marking non-zero rows of a tensor. + * Parallelized by tensor rows: 1 warp/row + */ +struct MarkRspRowWarpKernel { + template + __device__ __forceinline__ static void Map(int tid, + nnvm::dim_t* row_flg, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t row_length) { + using nnvm::dim_t; + typedef cub::WarpReduce WarpReduce; + const dim_t warps_per_block = mshadow::cuda::kBaseThreadNum / 32; + __shared__ typename WarpReduce::TempStorage temp_storage[warps_per_block]; + + const dim_t warp_id = tid / 32; // global warp id + const dim_t warp_lane = threadIdx.x / 32; // local warp id within thread block + const dim_t lane = tid & (32-1); // local thread id within warp + + if (warp_id < num_rows) { + dim_t flg = 0; + dim_t offset = warp_id * row_length; + for (dim_t j = lane; j < row_length; j+=32) { + if (dns[offset+j] != 0) { + // avoid break: causes slower performance on sparse tensors (<20% density), + // due to thread divergence + flg++; + } + } + dim_t aggr = WarpReduce(temp_storage[warp_lane]).Sum(flg); + if (lane == 0) { + if (aggr > 0) { + row_flg[warp_id] = 1; // mark as one for non-zero row + } else { + row_flg[warp_id] = 0; // mark as zero for zero row + } + } + } + } +}; + +/*! + * \brief Block kernel for marking non-zero rows of a tensor. + * Parallelized by tensor rows: 1 threadBlock/row + */ +struct MarkRspRowBlockKernel { + template + __device__ __forceinline__ static void Map(int tid, + nnvm::dim_t* row_flg, + const DType* dns, + const nnvm::dim_t num_rows, + const nnvm::dim_t row_length) { + using nnvm::dim_t; + using mshadow::cuda::kBaseThreadNum; + typedef cub::BlockReduce BlockReduce; + __shared__ typename BlockReduce::TempStorage temp_storage; + if (blockIdx.x < num_rows) { + dim_t flg = 0; + dim_t offset = blockIdx.x * row_length; + for (dim_t j = threadIdx.x; j < row_length; j+=kBaseThreadNum) { + if (dns[offset+j] != 0) { + // avoid break: causes slower performance on sparse tensors (<20% density), + // due to thread divergence + flg++; + } + } + dim_t aggr = BlockReduce(temp_storage).Sum(flg); + if (threadIdx.x == 0) { + if (aggr > 0) { + row_flg[blockIdx.x] = 1; // mark as one for non-zero row + } else { + row_flg[blockIdx.x] = 0; // mark as zero for zero row + } + } + } + } +}; + +/*! + * \brief GPU kernel to flag non-zero rows of an rsp tensor with indices. + * Parallelized by matrix rows: 1 thread/row + */ +struct SetRspRowFlgKernel { + /*! + * \brief + * \param tid global thread id + * \param row_flg array to flag storage indices of non-zero rows + * \param row_idx rsp matrix row index array storing indices of non-zero rows + * \param nnr rsp matrix number of non-zero rows (storage shape) + */ + template + __device__ __forceinline__ static void Map(int tid, + RType* row_flg, + const RType* row_idx, + const nnvm::dim_t nnr) { + if (tid < nnr) { + row_flg[row_idx[tid]] = tid+1; + } + } +}; + +/*! + * \brief GPU kernel for filling the row index array of an rsp tensor. + * Parallelized by tensor rows: 1 thread/row + */ +struct FillRspRowIdxKernel { + /*! + * \brief + * \param tid global thread id + * \param row_idx row index array to store indices of non-zero rows + * \param row_flg_sum inclusive prefix sum array over 0/1 marked row flag array + * \param num_rows rsp tensor number of rows (shape) + */ + template + __device__ __forceinline__ static void Map(int tid, + RType* row_idx, + const nnvm::dim_t* row_flg_sum, + const nnvm::dim_t num_rows) { + if (tid < num_rows) { + nnvm::dim_t prev = (tid == 0)? 0 : row_flg_sum[tid-1]; + if (row_flg_sum[tid] > prev) { + row_idx[prev] = static_cast(tid); + } + } + } +}; + +/*! + * \brief GPU kernel for marking non-zero columns of a csr matrix. + * Parallelized by matrix rows: 1 warp/row + */ +struct MarkCsrColWarpKernel { + /*! + * \brief + * \param tid global thread id + * \param flg flg array to mark non-zero columns + * \param col_idx csr matrix column indices + * \param indptr csr matrix row index pointer + * \param num_rows csr matrix number of rows + * \param num_cols csr matrix number of columns + */ + template + __device__ __forceinline__ static void Map(int tid, + nnvm::dim_t* flg, + const CType* col_idx, + const IType* indptr, + const nnvm::dim_t num_rows, + const nnvm::dim_t num_cols) { + typedef unsigned long long int uint64_cu; + static_assert(sizeof(uint64_cu) == sizeof(nnvm::dim_t), "unexpected sizeof dim_t"); + + const nnvm::dim_t warp_id = tid / 32; // global warp id + const nnvm::dim_t lane = tid & (32-1); // local thread id within warp + + if (warp_id < num_rows) { + uint64_cu zero = 0; + uint64_cu one = 1; + for (IType j = indptr[warp_id]+lane; j < indptr[warp_id+1]; j+=32) { + atomicCAS(reinterpret_cast(flg+col_idx[j]), zero, one); + } + } + } +}; + +} // namespace op +} // namespace mxnet + +#endif // MXNET_OPERATOR_TENSOR_UTIL_TENSOR_UTIL_INL_CUH_ diff --git a/tests/ci_build/install/ubuntu_install_python.sh b/tests/ci_build/install/ubuntu_install_python.sh index bb67e3401a89..db4e9c4e0c94 100755 --- a/tests/ci_build/install/ubuntu_install_python.sh +++ b/tests/ci_build/install/ubuntu_install_python.sh @@ -24,5 +24,5 @@ apt-get update && apt-get install -y python-dev python3-dev # the version of the pip shipped with ubuntu may be too lower, install a recent version here cd /tmp && wget https://bootstrap.pypa.io/get-pip.py && python3 get-pip.py && python2 get-pip.py -pip2 install nose pylint numpy nose-timer requests h5py -pip3 install nose pylint numpy nose-timer requests h5py +pip2 install nose pylint numpy nose-timer requests h5py scipy +pip3 install nose pylint numpy nose-timer requests h5py scipy diff --git a/tests/cpp/operator/batchnorm_test.cc b/tests/cpp/operator/batchnorm_test.cc index 3fef28f79a0a..cd202ace1686 100644 --- a/tests/cpp/operator/batchnorm_test.cc +++ b/tests/cpp/operator/batchnorm_test.cc @@ -19,7 +19,7 @@ /*! * \file batchnorm_test.cc - * \brief operator unit test utility functions + * \brief batchnorm operator unit test utility functions * \author Chris Olivier */ @@ -892,8 +892,8 @@ TEST(BATCH_NORM, TestIterAll) { kwargs.push_back({ "cudnn_off", "True" }); } for (TShape shape : shapes) { - for (int g1 = 0; g1 < 2U; ++g1) { - for (int g2 = 0; g2 < 2U; ++g2) { + for (int g1 = 0; g1 < 2; ++g1) { + for (int g2 = 0; g2 < 2; ++g2) { for (int type : v2_types) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, diff --git a/tests/nightly/dist_sync_kvstore.py b/tests/nightly/dist_sync_kvstore.py index 3fbf9f910879..af1ecfc5036f 100644 --- a/tests/nightly/dist_sync_kvstore.py +++ b/tests/nightly/dist_sync_kvstore.py @@ -22,45 +22,155 @@ sys.path.insert(0, "../../python/") import mxnet as mx import numpy as np +import numpy.random as rnd import time -def check_diff_to_scalar(A, x): +def check_diff_to_scalar(A, x, rank=None): """ assert A == x""" - assert(np.sum(np.abs((A - x).asnumpy())) == 0), A.asnumpy() + assert(np.sum(np.abs((A - x).asnumpy())) == 0), (rank, A.asnumpy(), x) # setup -keys = [3, 5, 7] +keys = ['3', '5', '7'] +rsp_keys = ['9', '11', '13'] + rate = 2 -shape = (2, 2) -big_shape = (1200, 1200) # big than BIGARRAY_BOUND +shape = (2, 3) +big_shape = (1200, 1200) # bigger than BIGARRAY_BOUND -kv = mx.kv.create('dist_sync') +def init_kv(): + kv = mx.kv.create('dist_sync') + # init kv dns keys + kv.init(keys, [mx.nd.ones(shape)] * len(keys)) + kv.init('99', mx.nd.ones(big_shape)) + # init kv row_sparse keys + kv.init(rsp_keys, [mx.nd.ones(shape).tostype('row_sparse')] * len(rsp_keys)) + kv.init('100', mx.nd.ones(big_shape).tostype('row_sparse')) + # worker info + my_rank = kv.rank + nworker = kv.num_workers + # init updater on servers + kv.set_optimizer(mx.optimizer.create('test', rescale_grad=rate)) + return kv, my_rank, nworker -# init kv -kv.init(keys, [mx.nd.ones(shape)] * len(keys)) -kv.init(99, mx.nd.ones(big_shape)) -# init updater on servers -kv.set_optimizer(mx.optimizer.create('test', rate)) +def test_sync_push_pull(): + kv, my_rank, nworker = init_kv() + def check_default_keys(kv, my_rank, nworker): + nrepeat = 3 + for i in range(nrepeat): + kv.push('3', mx.nd.ones(shape)*(my_rank+1)) + kv.push('99', mx.nd.ones(big_shape)*(my_rank+1)) -my_rank = kv.rank -nworker = kv.num_workers + num = (nworker + 1) * nworker * rate / 2 * nrepeat + 1 + val = mx.nd.zeros(shape) + kv.pull('3', out=val) + check_diff_to_scalar(val, num) -def test_sync_push_pull(): - nrepeat = 3 - for i in range(nrepeat): - kv.push(3, mx.nd.ones(shape)*(my_rank+1)) - kv.push(99, mx.nd.ones(big_shape)*(my_rank+1)) - - num = (nworker + 1 ) * nworker * rate / 2 * nrepeat + 1 - val = mx.nd.zeros(shape) - kv.pull(3, out = val) - check_diff_to_scalar(val, num) - # print val.asnumpy() - - val2 = mx.nd.zeros(big_shape) - kv.pull(99, out = val2) - check_diff_to_scalar(val2, num) + val2 = mx.nd.zeros(big_shape) + kv.pull('99', out=val2) + check_diff_to_scalar(val2, num) + + def check_row_sparse_keys(kv, my_rank, nworker): + nrepeat = 3 + # prepare gradient + v = mx.nd.zeros(shape) + my_row = my_rank % shape[0] + v[my_row] = my_rank + 1 + # push + for i in range(nrepeat): + kv.push('9', v.tostype('row_sparse')) + # select a random subset of rows this worker is interested in + num_rows = shape[0] + row_ids_np = np.random.randint(num_rows, size=num_rows) + row_ids = mx.nd.array(row_ids_np, dtype='int64') + # perform pull + val = mx.nd.zeros(shape, stype='row_sparse') + kv.row_sparse_pull('9', out=val, row_ids=row_ids) + # prepare updated values + updated_val = mx.nd.ones(shape) + for rank in range(nworker): + row = rank % shape[0] + updated_val[row] += (rank + 1) * rate * nrepeat + # verify subset of updated values + expected = mx.nd.zeros(shape) + for row in row_ids_np: + expected[row] = updated_val[row] + check_diff_to_scalar(val, expected) + + def check_row_sparse_keys_with_zeros(kv, my_rank, nworker): + nrepeat = 3 + # prepare gradient + v = mx.nd.zeros(shape) + big_v = mx.nd.zeros(big_shape) + # push + for i in range(nrepeat): + kv.push('11', v.tostype('row_sparse')) + kv.push('100', big_v.tostype('row_sparse')) + + # pull a subset of rows this worker is interested in + all_row_ids = np.arange(shape[0]) + val = mx.nd.ones(shape).tostype('row_sparse') + big_val = mx.nd.ones(big_shape).tostype('row_sparse') + kv.row_sparse_pull('11', out=val, row_ids=mx.nd.array(all_row_ids, dtype='int64')) + big_num_rows = shape[0] + big_all_row_ids = np.arange(big_shape[0]) + kv.row_sparse_pull('100', out=big_val, row_ids=mx.nd.array(big_all_row_ids, dtype='int64')) + # verify results + check_diff_to_scalar(val, mx.nd.ones(shape)) + check_diff_to_scalar(big_val, mx.nd.ones(big_shape)) + + def check_big_row_sparse_keys(kv, my_rank, nworker): + mx.random.seed(123) + rnd.seed(123) + density = 0.3 + nrepeat = 3 + # prepare gradient + v = mx.nd.zeros(big_shape) + idx_sample = rnd.rand(big_shape[0]) + indices = np.argwhere(idx_sample < density).flatten() + # each worker chooses a subset of the indices to update + update_rows = [] + for rank in range(nworker): + rows = [] + i = 0 + step = (rank + 1) * 2 + while i < len(indices): + rows.append(indices[i]) + i += step + update_rows.append(np.array(rows)) + # rows to update for this worker + for row in update_rows[my_rank]: + v[row] = my_rank + 1 + # push + for i in range(nrepeat): + kv.push('100', v.tostype('row_sparse')) + + # select a random subset of rows this worker is interested in + mx.random.seed(my_rank) + rnd.seed(my_rank) + num_rows = big_shape[0] + row_ids_np = np.random.randint(num_rows, size=num_rows) + row_ids = mx.nd.array(row_ids_np, dtype='int64') + # perform pull + val = mx.nd.zeros(big_shape, stype='row_sparse') + kv.row_sparse_pull('100', out=val, row_ids=row_ids) + # prepare expected result + updated_val = mx.nd.ones(big_shape) + # apply updates from each worker + for rank in range(nworker): + for row in update_rows[rank]: + updated_val[row] += (rank + 1) * rate * nrepeat + + expected = mx.nd.zeros(big_shape) + for row in row_ids_np: + expected[row] = updated_val[row] + check_diff_to_scalar(val, expected, rank=my_rank) + + check_default_keys(kv, my_rank, nworker) + check_row_sparse_keys(kv, my_rank, nworker) + check_row_sparse_keys_with_zeros(kv, my_rank, nworker) + check_big_row_sparse_keys(kv, my_rank, nworker) + print('worker ' + str(my_rank) + ' is done') if __name__ == "__main__": test_sync_push_pull() diff --git a/tests/python/gpu/test_kvstore_gpu.py b/tests/python/gpu/test_kvstore_gpu.py new file mode 100644 index 000000000000..ffc0cc1f93e0 --- /dev/null +++ b/tests/python/gpu/test_kvstore_gpu.py @@ -0,0 +1,68 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +# pylint: skip-file +import mxnet as mx +import numpy as np +from mxnet.test_utils import assert_almost_equal, default_context + +shape = (4, 4) +keys = [5, 7, 11] +str_keys = ['b', 'c', 'd'] + + +def init_kv_with_str(stype='default'): + """init kv """ + kv = mx.kv.create() + # single + kv.init('a', mx.nd.zeros(shape, stype=stype)) + # list + kv.init(str_keys, [mx.nd.zeros(shape=shape, stype=stype)] * len(keys)) + return kv + + +def test_row_sparse_pull(): + kv = init_kv_with_str('row_sparse') + kv.init('e', mx.nd.ones(shape).tostype('row_sparse')) + + def check_row_sparse_pull(kv, count, ctx=default_context()): + num_rows = shape[0] + vals = [] + row_ids = [] + all_row_ids = np.arange(num_rows) + for i in range(count): + vals.append(mx.nd.zeros(shape, ctx=ctx).tostype('row_sparse')) + row_id = np.random.randint(num_rows, size=num_rows) + row_ids.append(mx.nd.array(row_id, dtype='int64')) + row_ids_to_pull = row_ids[0] if len(row_ids) == 1 else row_ids + vals_to_pull = vals[0] if len(vals) == 1 else vals + + kv.row_sparse_pull('e', out=vals_to_pull, row_ids=row_ids_to_pull) + for val, row_id in zip(vals, row_ids): + retained = val.asnumpy() + excluded_row_ids = np.setdiff1d(all_row_ids, row_id.asnumpy()) + for row in range(num_rows): + expected_val = np.zeros_like(retained[row]) + expected_val += 0 if row in excluded_row_ids else 1 + assert_almost_equal(retained[row], expected_val) + + check_row_sparse_pull(kv, 1, mx.gpu(0)) + check_row_sparse_pull(kv, 4, mx.gpu(0)) + + +if __name__ == '__main__': + test_row_sparse_pull() diff --git a/tests/python/gpu/test_operator_gpu.py b/tests/python/gpu/test_operator_gpu.py index 81492fe6bbdb..35a20f935573 100644 --- a/tests/python/gpu/test_operator_gpu.py +++ b/tests/python/gpu/test_operator_gpu.py @@ -31,6 +31,9 @@ from test_gluon import * #from test_rnn import * from test_gluon_rnn import * +from test_sparse_operator import test_cast_storage_ex, test_sparse_dot +from test_sparse_operator import test_sparse_nd_zeros, test_sparse_retain +from test_sparse_ndarray import test_create_csr, test_create_row_sparse set_default_context(mx.gpu(0)) del test_support_vector_machine_l1_svm diff --git a/tests/python/unittest/test_autograd.py b/tests/python/unittest/test_autograd.py index 30dd662ff1cc..37bb5626f765 100644 --- a/tests/python/unittest/test_autograd.py +++ b/tests/python/unittest/test_autograd.py @@ -106,29 +106,41 @@ def autograd_assert(*args, **kwargs): assert same(a.asnumpy(), b.asnumpy()) def test_unary_func(): - x = nd.uniform(shape=(4, 5)) - f_exp = lambda x: nd.exp(x) - f_exp_grad = lambda x: [nd.exp(x)] - autograd_assert(x, func=f_exp, grad_func=f_exp_grad) - f_half = lambda x: x/2 - f_half_grad = lambda x: [nd.ones(x.shape) * 0.5] - autograd_assert(x, func=f_half, grad_func=f_half_grad) - f_square = lambda x: x**2 - f_square_grad = lambda x: [2*x] - autograd_assert(x, func=f_square, grad_func=f_square_grad) + def check_unary_func(x): + f_exp = lambda x: nd.exp(x) + f_exp_grad = lambda x: [nd.exp(x)] + autograd_assert(x, func=f_exp, grad_func=f_exp_grad) + f_half = lambda x: x/2 + f_half_grad = lambda x: [nd.ones(x.shape) * 0.5] + autograd_assert(x, func=f_half, grad_func=f_half_grad) + f_square = lambda x: x**2 + f_square_grad = lambda x: [2*x] + autograd_assert(x, func=f_square, grad_func=f_square_grad) + uniform = nd.uniform(shape=(4, 5)) + stypes = ['row_sparse', 'csr', 'default'] + for stype in stypes: + check_unary_func(uniform.tostype(stype)) def test_binary_func(): - x = nd.uniform(shape=(4, 5)) - y = nd.uniform(shape=(4, 5)) - f_add = lambda x, y: x+y - f_add_grad = lambda x, y: [nd.ones(x.shape), nd.ones(y.shape)] - autograd_assert(x, y, func=f_add, grad_func=f_add_grad) - f_mul = lambda x, y: x*y - f_mul_grad = lambda x, y: [y, x] - autograd_assert(x, y, func=f_mul, grad_func=f_mul_grad) - f_compose = lambda x, y: x+x*y - f_compose_grad = lambda x, y: [nd.ones(x.shape) + y, x] - autograd_assert(x, y, func=f_compose, grad_func=f_compose_grad) + def check_binary_func(x, y): + f_add = lambda x, y: x+y + f_add_grad = lambda x, y: [nd.ones(x.shape), nd.ones(y.shape)] + autograd_assert(x, y, func=f_add, grad_func=f_add_grad) + f_mul = lambda x, y: x*y + f_mul_grad = lambda x, y: [y, x] + autograd_assert(x, y, func=f_mul, grad_func=f_mul_grad) + f_compose = lambda x, y: x+x*y + f_compose_grad = lambda x, y: [nd.ones(x.shape) + y, x] + autograd_assert(x, y, func=f_compose, grad_func=f_compose_grad) + uniform_x = nd.uniform(shape=(4, 5)) + uniform_y = nd.uniform(shape=(4, 5)) + stypes = ['row_sparse', 'csr', 'default'] + for stype_x in stypes: + for stype_y in stypes: + x = uniform_x.tostype(stype_x) + y = uniform_y.tostype(stype_y) + check_binary_func(x, y) + def test_operator_with_state(): def f_fc(a, b, weight, bias): @@ -255,14 +267,19 @@ def test_retain_grad(): def test_attach_grad(): - x = mx.nd.zeros((10,)) - assert x.grad is None - x.attach_grad() - with record(): - y = x * 2 - assert y.grad is None - y.backward() - assert (x.grad.asnumpy() == 2).all() + def check_attach_grad(x): + assert x.grad is None + x.attach_grad() + with record(): + y = x * 2 + assert y.grad is None + y.backward() + assert (x.grad.asnumpy() == 2).all() + zeros = mx.nd.zeros((10, 10)) + stypes = ['default', 'row_sparse', 'csr'] + for stype in stypes: + x = zeros.tostype(stype) + check_attach_grad(x) def test_is_train(): diff --git a/tests/python/unittest/test_infer_shape.py b/tests/python/unittest/test_infer_shape.py index d7f52e216659..73654a604135 100644 --- a/tests/python/unittest/test_infer_shape.py +++ b/tests/python/unittest/test_infer_shape.py @@ -52,7 +52,7 @@ def test_backward_infer(): # broadcast add here, not being able to deduce shape correctly wt = mx.sym.broadcast_add(w, wshift) # shape constraint, this is what enables backward shape inference - wt = mx._symbol_internal._identity_with_attr_like_rhs(wt, w) + wt = mx.symbol._internal._identity_with_attr_like_rhs(wt, w) net = mx.sym.FullyConnected(data=data, weight=wt, num_hidden=11, no_bias=True) data_shape = (7, 100) arg_shapes, out_shapes, aux_shapes = net.infer_shape(data=data_shape) @@ -129,6 +129,24 @@ def test_incomplete_infer_concat(): assert arg_shapes['b'] == (2, 5) assert arg_shapes['d'] == (2, 15) +def test_fc_infer_type(): + mx_real_t = mx.base.mx_real_t + data = mx.symbol.Variable('data') + out = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=1000) + + # infer type + data_type = mx_real_t + arg_types, out_types, aux_types = out.infer_type(data=data_type) + arg_type_dict = dict(zip(out.list_arguments(), arg_types)) + assert len(out_types) == 1 + assert out_types[0] == mx_real_t + true_types = { + 'fc1_bias' : mx_real_t, + 'fc1_weight' : mx_real_t } + for k, v in true_types.items(): + assert arg_type_dict[k] == v + + if __name__ == "__main__": test_mlp2_infer_shape() test_mlp2_infer_error() diff --git a/tests/python/unittest/test_io.py b/tests/python/unittest/test_io.py index c0f2acd4ed47..a543463f3663 100644 --- a/tests/python/unittest/test_io.py +++ b/tests/python/unittest/test_io.py @@ -17,6 +17,7 @@ # pylint: skip-file import mxnet as mx +from mxnet.test_utils import * import numpy as np import os, gzip import pickle as pickle @@ -152,6 +153,109 @@ def test_NDArrayIter_h5py(): else: assert(labelcount[i] == 100) +def test_NDArrayIter_csr(): + import scipy.sparse as sp + # creating toy data + num_rows = rnd.randint(5, 15) + num_cols = rnd.randint(1, 20) + batch_size = rnd.randint(1, num_rows) + shape = (num_rows, num_cols) + csr, _ = rand_sparse_ndarray(shape, 'csr') + dns = csr.asnumpy() + + # make iterators + csr_iter = iter(mx.io.NDArrayIter(csr, csr, batch_size)) + begin = 0 + for batch in csr_iter: + expected = np.zeros((batch_size, num_cols)) + end = begin + batch_size + expected[:num_rows - begin] = dns[begin:end] + if end > num_rows: + expected[num_rows - begin:] = dns[0:end - num_rows] + assert_almost_equal(batch.data[0].asnumpy(), expected) + begin += batch_size + +def test_LibSVMIter(): + def get_data(data_dir, data_name, url, data_origin_name): + if not os.path.isdir(data_dir): + os.system("mkdir " + data_dir) + os.chdir(data_dir) + if (not os.path.exists(data_name)): + if sys.version_info[0] >= 3: + from urllib.request import urlretrieve + else: + from urllib import urlretrieve + zippath = os.path.join(data_dir, data_origin_name) + urlretrieve(url, zippath) + import bz2 + bz_file = bz2.BZ2File(data_origin_name, 'rb') + with open(data_name, 'wb') as fout: + try: + content = bz_file.read() + fout.write(content) + finally: + bz_file.close() + os.chdir("..") + + def check_libSVMIter_synthetic(): + cwd = os.getcwd() + data_path = os.path.join(cwd, 'data.t') + label_path = os.path.join(cwd, 'label.t') + with open(data_path, 'w') as fout: + fout.write('1.0 0:0.5 2:1.2\n') + fout.write('-2.0\n') + fout.write('-3.0 0:0.6 1:2.4 2:1.2\n') + fout.write('4 2:-1.2\n') + + with open(label_path, 'w') as fout: + fout.write('1.0\n') + fout.write('-2.0 0:0.125\n') + fout.write('-3.0 2:1.2\n') + fout.write('4 1:1.0 2:-1.2\n') + + data_dir = os.path.join(cwd, 'data') + data_train = mx.io.LibSVMIter(data_libsvm=data_path, label_libsvm=label_path, + data_shape=(3, ), label_shape=(3, ), batch_size=3) + + first = mx.nd.array([[ 0.5, 0., 1.2], [ 0., 0., 0.], [ 0.6, 2.4, 1.2]]) + second = mx.nd.array([[ 0., 0., -1.2], [ 0.5, 0., 1.2], [ 0., 0., 0.]]) + i = 0 + for batch in iter(data_train): + expected = first.asnumpy() if i == 0 else second.asnumpy() + assert_almost_equal(data_train.getdata().asnumpy(), expected) + i += 1 + + def check_libSVMIter_news_data(): + news_metadata = { + 'name': 'news20.t', + 'origin_name': 'news20.t.bz2', + 'url': "http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/news20.t.bz2", + 'feature_dim': 62060, + 'num_classes': 20, + 'num_examples': 3993, + } + num_parts = 3 + batch_size = 128 + num_examples = news_metadata['num_examples'] + data_dir = os.path.join(os.getcwd(), 'data') + get_data(data_dir, news_metadata['name'], news_metadata['url'], + news_metadata['origin_name']) + path = os.path.join(data_dir, news_metadata['name']) + data_train = mx.io.LibSVMIter(data_libsvm=path, data_shape=(news_metadata['feature_dim'],), + batch_size=batch_size, num_parts=num_parts, part_index=0) + num_batches = 0 + iterator = iter(data_train) + for batch in iterator: + # check the range of labels + assert(np.sum(batch.label[0].asnumpy() > 20) == 0) + assert(np.sum(batch.label[0].asnumpy() <= 0) == 0) + num_batches += 1 + import math + expected_num_batches = math.ceil(num_examples * 1.0 / batch_size / num_parts) + assert(num_batches == int(expected_num_batches)), (num_batches, expected_num_batches) + + check_libSVMIter_synthetic() + check_libSVMIter_news_data() if __name__ == "__main__": test_NDArrayIter() @@ -159,3 +263,5 @@ def test_NDArrayIter_h5py(): test_NDArrayIter_h5py() test_MNISTIter() test_Cifar10Rec() + test_LibSVMIter() + test_NDArrayIter_csr() diff --git a/tests/python/unittest/test_kvstore.py b/tests/python/unittest/test_kvstore.py index f1e10c757fad..a43b98a635fb 100644 --- a/tests/python/unittest/test_kvstore.py +++ b/tests/python/unittest/test_kvstore.py @@ -18,44 +18,74 @@ # pylint: skip-file import mxnet as mx import numpy as np +from mxnet.test_utils import rand_ndarray, assert_almost_equal shape = (4, 4) keys = [5, 7, 11] str_keys = ['b', 'c', 'd'] -def init_kv(): +def init_kv(stype='default'): """init kv """ kv = mx.kv.create() # single - kv.init(3, mx.nd.zeros(shape)) + kv.init(3, mx.nd.zeros(shape=shape, stype=stype)) # list - kv.init(keys, [mx.nd.zeros(shape)] * len(keys)) + kv.init(keys, [mx.nd.zeros(shape=shape, stype=stype)] * len(keys)) return kv -def init_kv_with_str(): +def init_kv_with_str(stype='default'): """init kv """ kv = mx.kv.create() # single - kv.init('a', mx.nd.zeros(shape)) + kv.init('a', mx.nd.zeros(shape, stype=stype)) # list - kv.init(str_keys, [mx.nd.zeros(shape)] * len(keys)) + kv.init(str_keys, [mx.nd.zeros(shape=shape, stype=stype)] * len(keys)) return kv def check_diff_to_scalar(A, x): """ assert A == x""" assert(np.sum(np.abs((A - x).asnumpy())) == 0) + def test_single_kv_pair(): """single key-value pair push & pull""" def check_single_kv_pair(kv, key): kv.push(key, mx.nd.ones(shape)) val = mx.nd.empty(shape) - kv.pull(key, out = val) + kv.pull(key, out=val) check_diff_to_scalar(val, 1) check_single_kv_pair(init_kv(), 3) check_single_kv_pair(init_kv_with_str(), 'a') +def test_row_sparse_pull(): + kv = init_kv_with_str('row_sparse') + kv.init('e', mx.nd.ones(shape).tostype('row_sparse')) + + def check_row_sparse_pull(kv, count): + num_rows = shape[0] + vals = [] + row_ids = [] + all_row_ids = np.arange(num_rows) + for i in range(count): + vals.append(mx.nd.zeros(shape).tostype('row_sparse')) + row_id = np.random.randint(num_rows, size=num_rows) + row_ids.append(mx.nd.array(row_id, dtype='int64')) + row_ids_to_pull = row_ids[0] if len(row_ids) == 1 else row_ids + vals_to_pull = vals[0] if len(vals) == 1 else vals + + kv.row_sparse_pull('e', out=vals_to_pull, row_ids=row_ids_to_pull) + for val, row_id in zip(vals, row_ids): + retained = val.asnumpy() + excluded_row_ids = np.setdiff1d(all_row_ids, row_id.asnumpy()) + for row in range(num_rows): + expected_val = np.zeros_like(retained[row]) + expected_val += 0 if row in excluded_row_ids else 1 + assert_almost_equal(retained[row], expected_val) + + check_row_sparse_pull(kv, 1) + check_row_sparse_pull(kv, 4) + def test_init(): """test init""" def check_init(kv, key): @@ -72,7 +102,7 @@ def test_list_kv_pair(): def check_list_kv_pair(kv, key): kv.push(key, [mx.nd.ones(shape)*4] * len(key)) val = [mx.nd.empty(shape)] * len(key) - kv.pull(key, out = val) + kv.pull(key, out=val) for v in val: check_diff_to_scalar(v, 4) @@ -92,7 +122,7 @@ def check_aggregator(kv, key, key_list): vals = [mx.nd.ones(shape, d) for d in devs] kv.push(key, vals) - kv.pull(key, out = vals) + kv.pull(key, out=vals) for v in vals: check_diff_to_scalar(v, num_devs) @@ -100,7 +130,7 @@ def check_aggregator(kv, key, key_list): # list vals = [[mx.nd.ones(shape, d)*2.0 for d in devs]] * len(key_list) kv.push(key_list, vals) - kv.pull(key_list, out = vals) + kv.pull(key_list, out=vals) for vv in vals: for v in vv: @@ -110,10 +140,50 @@ def check_aggregator(kv, key, key_list): check_aggregator(init_kv_with_str(), 'a', str_keys) +def test_sparse_aggregator(): + """aggregate sparse ndarray on muliple devices""" + + stype = 'row_sparse' + kv = init_kv_with_str(stype) + + # devices + num_devs = 4 + devs = [mx.Context('cpu', i) for i in range(num_devs)] + + # single + vals = [rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)] + expected_sum = np.zeros(shape) + for v in vals: + expected_sum += v.asnumpy() + + # prepare row_ids + all_rows = mx.nd.array(np.arange(shape[0]), dtype='int64') + kv.push('a', vals) + kv.row_sparse_pull('a', out=vals, row_ids=[all_rows] * len(vals)) + result_sum = np.zeros(shape) + for v in vals: + result_sum += v.asnumpy() + assert_almost_equal(result_sum, expected_sum * num_devs) + + # list + vals = [[rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)]] * len(keys) + expected_sum = np.zeros(shape) + for v in vals[0]: + expected_sum += v.asnumpy() + + kv.push(str_keys, vals) + kv.row_sparse_pull(str_keys, out=vals, row_ids=[[all_rows] * num_devs] * len(vals)) + for vv in vals: + result_sum = np.zeros(shape) + for v in vv: + result_sum += v.asnumpy() + assert_almost_equal(result_sum, expected_sum * num_devs) + def updater(key, recv, local): """use updater: +=""" local += recv + def test_updater(dev = 'cpu'): """updater""" @@ -126,7 +196,7 @@ def check_updater(kv, key, key_list): vals = [mx.nd.ones(shape, d) for d in devs] kv.push(key, vals) - kv.pull(key, out = vals) + kv.pull(key, out=vals) for v in vals: check_diff_to_scalar(v, num_devs) @@ -138,7 +208,7 @@ def check_updater(kv, key, key_list): for i in range(num_push): kv.push(key_list, vals) - kv.pull(key_list, out = vals) + kv.pull(key_list, out=vals) for vv in vals: for v in vv: @@ -152,16 +222,54 @@ def check_updater(kv, key, key_list): str_kv._set_updater(updater) check_updater(str_kv, 'a', str_keys) - def test_get_type(): kvtype = 'local_allreduce_cpu' kv = mx.kv.create(kvtype) assert kv.type == kvtype +def test_invalid_pull(): + def check_invalid_single_kv_pair(kv, key): + dns_val = mx.nd.ones(shape) * 2 + rsp_val = dns_val.tostype('row_sparse') + kv.pull(key, out=rsp_val) + # pull should be ignored with no values updated + check_diff_to_scalar(rsp_val, 2) + try: + # row_sparse_pull should be aborted when vals.stype != row_sparse + kv.row_sparse_pull(key, out=dns_val, rowids=mx.nd.array([1])) + assert(False) + except: + pass + + def check_invalid_list_kv_pair(kv, key): + dns_val = [mx.nd.ones(shape) * 2] * len(key) + rsp_val = [val.tostype('row_sparse') for val in dns_val] + kv.pull(key, out=rsp_val) + for v in rsp_val: + # pull should be ignored with no values updated + check_diff_to_scalar(v, 2) + try: + # row_sparse_pull should be aborted when vals.stype != row_sparse + kv.row_sparse_pull(key, out=dns_val, rowids=[mx.nd.array([1])] * len(key)) + assert(False) + except: + pass + + int_kv = init_kv() + str_kv = init_kv_with_str() + + check_invalid_single_kv_pair(int_kv, 3) + check_invalid_single_kv_pair(str_kv, 'a') + + check_invalid_list_kv_pair(int_kv, keys) + check_invalid_list_kv_pair(str_kv, str_keys) + if __name__ == '__main__': test_init() test_get_type() test_single_kv_pair() test_list_kv_pair() + test_sparse_aggregator() test_aggregator() test_updater() + test_row_sparse_pull() diff --git a/tests/python/unittest/test_module.py b/tests/python/unittest/test_module.py index f522f29dae39..9d8d76f5aa92 100644 --- a/tests/python/unittest/test_module.py +++ b/tests/python/unittest/test_module.py @@ -17,12 +17,15 @@ import mxnet as mx import mxnet.ndarray as nd +from mxnet.test_utils import * import numpy as np from functools import reduce from mxnet.module.executor_group import DataParallelExecutorGroup from common import assertRaises from collections import namedtuple +import numpy.random as rnd + def test_module_dtype(): dtype = np.float16 @@ -345,7 +348,6 @@ def mean_abs(x): break assert(mon_result_counts == [2, 2, 1, 6, 6, 4]) - def test_executor_group(): def get_rnn_sym(num_layers, num_words, num_hidden, num_embed, seq_len): stack = mx.rnn.SequentialRNNCell() @@ -458,6 +460,107 @@ def test_shared_exec_group(exec_grp_shared, exec_grp_created, shared_arg_names=N shared_arg_names=shared_arg_names, extra_args=extra_args) +def test_factorization_machine_module(): + """ Test factorization machine model with sparse operators """ + mx.random.seed(11) + rnd.seed(11) + + def fm(factor_size, feature_dim, init): + x = mx.symbol.Variable("data", stype='csr') + v = mx.symbol.Variable("v", shape=(feature_dim, factor_size), + init=init, stype='row_sparse') + + w1_weight = mx.symbol.var('w1_weight', shape=(feature_dim, 1), + init=init, stype='row_sparse') + w1_bias = mx.symbol.var('w1_bias', shape=(1)) + w1 = mx.symbol.broadcast_add(mx.symbol.dot(x, w1_weight), w1_bias) + + v_s = mx.symbol._internal._square_sum(data=v, axis=1, keepdims=True) + x_s = mx.symbol.square(data=x) + bd_sum = mx.sym.dot(x_s, v_s) + + w2 = mx.symbol.dot(x, v) + w2_squared = 0.5 * mx.symbol.square(data=w2) + + w_all = mx.symbol.Concat(w1, w2_squared, dim=1) + sum1 = mx.symbol.sum(data=w_all, axis=1, keepdims=True) + sum2 = 0.5 * mx.symbol.negative(bd_sum) + model = mx.sym.elemwise_add(sum1, sum2) + + y = mx.symbol.Variable("label") + model = mx.symbol.LinearRegressionOutput(data=model, label=y) + return model + + # model + ctx = default_context() + init = mx.initializer.Normal(sigma=0.01) + factor_size = 4 + feature_dim = 10000 + model = fm(factor_size, feature_dim, init) + + # data iter + num_batches = 5 + batch_size = 64 + num_samples = batch_size * num_batches + import scipy.sparse as sp + # generate some random scipy csr data + csr_sp = sp.rand(num_samples, feature_dim, density=0.1, format='csr') + csr_nd = mx.nd.sparse.csr_matrix(csr_sp.data, csr_sp.indptr, csr_sp.indices, + (num_samples, feature_dim)) + label = mx.nd.ones((num_samples,1)) + # the alternative is to use LibSVMIter + train_iter = mx.io.NDArrayIter(data=csr_nd, + label={'label':label}, + batch_size=batch_size) + # create module + mod = mx.mod.Module(symbol=model, data_names=['data'], label_names=['label']) + # allocate memory by given the input data and lable shapes + mod.bind(data_shapes=train_iter.provide_data, label_shapes=train_iter.provide_label) + # initialize parameters by uniform random numbers + mod.init_params(initializer=init) + # use Sparse SGD with learning rate 0.1 to train + adam = mx.optimizer.Adam(clip_gradient=5.0, learning_rate=0.001, rescale_grad=1.0/batch_size) + mod.init_optimizer(optimizer=adam) + # use accuracy as the metric + metric = mx.metric.create('MSE') + # train 10 epoch + for epoch in range(10): + train_iter.reset() + metric.reset() + for batch in train_iter: + mod.forward(batch, is_train=True) # compute predictions + mod.update_metric(metric, batch.label) # accumulate prediction accuracy + mod.backward() # compute gradients + mod.update() # update parameters + # print('Epoch %d, Training %s' % (epoch, metric.get())) + assert(metric.get()[1] < 0.05), metric.get()[1] + + +def test_module_initializer(): + def regression_model(m): + x = mx.symbol.var("data", stype='csr') + v = mx.symbol.var("v", shape=(m, 1), init=mx.init.Uniform(scale=.1), + stype='row_sparse') + model = mx.symbol.dot(lhs=x, rhs=v) + y = mx.symbol.Variable("label") + model = mx.symbol.LinearRegressionOutput(data=model, label=y, name="out") + return model + + n, m = 128, 100 + model = regression_model(m) + + data = mx.nd.zeros(shape=(n, m), stype='csr') + label = mx.nd.zeros((n, 1)) + iterator = mx.io.NDArrayIter(data=data, label={'label':label}, batch_size=n) + + # create module + mod = mx.mod.Module(symbol=model, data_names=['data'], label_names=['label']) + mod.bind(data_shapes=iterator.provide_data, label_shapes=iterator.provide_label) + mod.init_params() + v = mod._arg_params['v'] + assert(v.stype == 'row_sparse') + assert(np.sum(v.asnumpy()) != 0) + def test_forward_reshape(): num_class=10 data1 = mx.sym.Variable('data1') diff --git a/tests/python/unittest/test_multi_device_exec.py b/tests/python/unittest/test_multi_device_exec.py index 6f8eb17ff34e..0a2739d9bb4e 100644 --- a/tests/python/unittest/test_multi_device_exec.py +++ b/tests/python/unittest/test_multi_device_exec.py @@ -16,6 +16,7 @@ # under the License. import os +import numpy as np import mxnet as mx def test_ctx_group(): @@ -49,5 +50,31 @@ def test_ctx_group(): else: assert arr.context == group2ctx['stage2'] +def test_ctx_group_sparse(): + with mx.AttrScope(ctx_group='stage1'): + lhs = mx.symbol.Variable('lhs', stype='csr') + rhs = mx.symbol.Variable('rhs', stype='row_sparse') + dot = mx.symbol.dot(lhs, rhs, name='dot') + + set_stage1 = set(dot.list_arguments()) + with mx.AttrScope(ctx_group='stage2'): + softmax = mx.symbol.SoftmaxOutput(data = dot, name = 'softmax') + + set_stage2 = set(softmax.list_arguments()) - set_stage1 + + group2ctx = { + 'stage1' : mx.cpu(1), + 'stage2' : mx.cpu(2) + } + texec = softmax.simple_bind(mx.cpu(0), group2ctx=group2ctx, + lhs=(32,200), rhs=(200, 5)) + + for arr, name in zip(texec.arg_arrays, softmax.list_arguments()): + if name in set_stage1: + assert arr.context == group2ctx['stage1'] + else: + assert arr.context == group2ctx['stage2'] + if __name__ == '__main__': test_ctx_group() + test_ctx_group_sparse() diff --git a/tests/python/unittest/test_ndarray.py b/tests/python/unittest/test_ndarray.py index eae364eeaecf..3e0ac66c168d 100644 --- a/tests/python/unittest/test_ndarray.py +++ b/tests/python/unittest/test_ndarray.py @@ -373,6 +373,7 @@ def test_dot(): assert_almost_equal(c, C.asnumpy()) + def test_reduce(): sample_num = 200 def test_reduce_inner(numpy_reduce_func, nd_reduce_func, multi_axes): diff --git a/tests/python/unittest/test_operator.py b/tests/python/unittest/test_operator.py index a33cb039c849..11d0ea22319a 100644 --- a/tests/python/unittest/test_operator.py +++ b/tests/python/unittest/test_operator.py @@ -855,75 +855,88 @@ def test_nearest_upsampling(): check_nearest_upsampling_with_shape(shapes, scale, root_scale) def test_batchnorm_training(): - for shape in [(2, 3), (2, 3, 2, 2)]: - data_tmp = np.random.normal(-0.1, 0.1, size=shape) - s = shape[1], - gamma = np.ones(s) - beta = np.ones(s) - gamma[1] = 3 - beta[0] = 3 + def check_batchnorm_training(stype): + for shape in [(2, 3), (2, 3, 2, 2)]: + data_tmp = np.random.normal(-0.1, 0.1, size=shape) + s = shape[1], + gamma = np.ones(s) + beta = np.ones(s) + gamma[1] = 3 + beta[0] = 3 - rolling_mean = np.random.uniform(size=s) - rolling_std = np.random.uniform(size=s) + rolling_mean = np.random.uniform(size=s) + rolling_std = np.random.uniform(size=s) - data = mx.symbol.Variable('data') + data = mx.symbol.Variable('data', stype=stype) + in_location = [mx.nd.array(data_tmp).tostype(stype), mx.nd.array(gamma).tostype(stype), + mx.nd.array(beta).tostype(stype)] + mean_std = [mx.nd.array(rolling_mean).tostype(stype), mx.nd.array(rolling_std).tostype(stype)] - test = mx.symbol.BatchNorm_v1(data, fix_gamma=True) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm_v1(data, fix_gamma=True) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - test = mx.symbol.BatchNorm(data, fix_gamma=True) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm(data, fix_gamma=True) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - test = mx.symbol.BatchNorm_v1(data, fix_gamma=True, use_global_stats=True) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm_v1(data, fix_gamma=True, use_global_stats=True) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - test = mx.symbol.BatchNorm(data, fix_gamma=True, use_global_stats=True) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm(data, fix_gamma=True, use_global_stats=True) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - test = mx.symbol.BatchNorm_v1(data, fix_gamma=False) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm_v1(data, fix_gamma=False) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - test = mx.symbol.BatchNorm(data, fix_gamma=False) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm(data, fix_gamma=False) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - test = mx.symbol.BatchNorm_v1(data, fix_gamma=False, use_global_stats=True) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm_v1(data, fix_gamma=False, use_global_stats=True) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - test = mx.symbol.BatchNorm(data, fix_gamma=False, use_global_stats=True) - check_numeric_gradient(test, [data_tmp, gamma, beta], [rolling_mean, rolling_std], numeric_eps=1e-2, rtol=0.16) + test = mx.symbol.BatchNorm(data, fix_gamma=False, use_global_stats=True) + check_numeric_gradient(test, in_location, mean_std, numeric_eps=1e-2, rtol=0.16) - # Test varying channel axis - dim = len(shape) - for chaxis in range(-dim, dim): - chaxis_true = chaxis - if chaxis < 0: - chaxis_true = dim + chaxis + # Test varying channel axis + dim = len(shape) + for chaxis in range(-dim, dim): + chaxis_true = chaxis + if chaxis < 0: + chaxis_true = dim + chaxis - shapex = shape + shapex = shape - channel_count = shapex[chaxis_true] - data_tmp = np.random.normal(-0.1, 0.1, size=shapex) + channel_count = shapex[chaxis_true] + data_tmp = np.random.normal(-0.1, 0.1, size=shapex) - gamma = np.ones(channel_count) - beta = np.ones(channel_count) - if channel_count > 1: - gamma[1] = 3 - beta[0] = 3 + gamma = np.ones(channel_count) + beta = np.ones(channel_count) + if channel_count > 1: + gamma[1] = 3 + beta[0] = 3 + + in_location = [mx.nd.array(data_tmp).tostype(stype), mx.nd.array(gamma).tostype(stype), + mx.nd.array(beta).tostype(stype)] + + xrolling_mean = np.random.uniform(size=channel_count) + xrolling_std = np.random.uniform(size=channel_count) + xmean_std = [mx.nd.array(xrolling_mean).tostype(stype), + mx.nd.array(xrolling_std).tostype(stype)] - xrolling_mean = np.random.uniform(size=channel_count) - xrolling_std = np.random.uniform(size=channel_count) + test = mx.symbol.BatchNorm(data, fix_gamma=True, axis=chaxis) + check_numeric_gradient(test, in_location, xmean_std, numeric_eps=1e-2, rtol=0.2, atol=0.01) - test = mx.symbol.BatchNorm(data, fix_gamma=True, axis=chaxis) - check_numeric_gradient(test, [data_tmp, gamma, beta], [xrolling_mean, xrolling_std], numeric_eps=1e-2, rtol=0.2, atol=0.01) + test = mx.symbol.BatchNorm(data, fix_gamma=True, use_global_stats=True, axis=chaxis) + check_numeric_gradient(test, in_location, xmean_std, numeric_eps=1e-2, rtol=0.2, atol=0.01) - test = mx.symbol.BatchNorm(data, fix_gamma=True, use_global_stats=True, axis=chaxis) - check_numeric_gradient(test, [data_tmp, gamma, beta], [xrolling_mean, xrolling_std], numeric_eps=1e-2, rtol=0.2, atol=0.01) + test = mx.symbol.BatchNorm(data, fix_gamma=False, axis=chaxis) + check_numeric_gradient(test, in_location, xmean_std, numeric_eps=1e-2, rtol=0.2, atol=0.01) - test = mx.symbol.BatchNorm(data, fix_gamma=False, axis=chaxis) - check_numeric_gradient(test, [data_tmp, gamma, beta], [xrolling_mean, xrolling_std], numeric_eps=1e-2, rtol=0.2, atol=0.01) + test = mx.symbol.BatchNorm(data, fix_gamma=False, use_global_stats=True, axis=chaxis) + check_numeric_gradient(test, in_location, xmean_std, numeric_eps=1e-2, rtol=0.2, atol=0.01) - test = mx.symbol.BatchNorm(data, fix_gamma=False, use_global_stats=True, axis=chaxis) - check_numeric_gradient(test, [data_tmp, gamma, beta], [xrolling_mean, xrolling_std], numeric_eps=1e-2, rtol=0.2, atol=0.01) + stypes = ['row_sparse', 'default'] + for stype in stypes: + check_batchnorm_training(stype) def test_convolution_grouping(): num_filter = 4 diff --git a/tests/python/unittest/test_optimizer.py b/tests/python/unittest/test_optimizer.py index 3b3b92b372d8..055f6464f0ef 100644 --- a/tests/python/unittest/test_optimizer.py +++ b/tests/python/unittest/test_optimizer.py @@ -47,26 +47,43 @@ def test_lr_wd_mult(): assert not mx.test_utils.almost_equal(args1['fc2_weight'], args2['fc2_weight'], 1e-1) -def compare_optimizer(opt1, opt2, shape, dtype): - w1 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype) - g1 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype) - - w2 = w1.copyto(default_context()) - g2 = g1.copyto(default_context()) +def compare_optimizer(opt1, opt2, shape, dtype, w_stype='default', g_stype='default'): + if w_stype == 'default': + w2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype) + w1 = w2.copyto(default_context()) + elif w_stype == 'row_sparse' or w_stype == 'csr': + w2 = rand_ndarray(shape, w_stype, density=1, dtype=dtype) + w1 = w2.copyto(default_context()).tostype('default') + else: + raise Exception("type not supported yet") + if g_stype == 'default': + g2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype) + g1 = g2.copyto(default_context()) + elif g_stype == 'row_sparse' or g_stype == 'csr': + g2 = rand_ndarray(shape, g_stype, dtype=dtype) + g1 = g2.copyto(default_context()).tostype('default') + else: + raise Exception("type not supported yet") state1 = opt1.create_state(0, w1) state2 = opt2.create_state(0, w2) if state1 is not None and state2 is not None: - for s1, s2, in zip(state1, state2): - if s1 is not None or s2 is not None: - assert(same(s1.asnumpy(), s2.asnumpy())) + if isinstance(state1, tuple): + for s1, s2, in zip(state1, state2): + if s1 is not None or s2 is not None: + assert(same(s1.asnumpy(), s2.asnumpy())) + else: + assert_almost_equal(state1.asnumpy(), state2.asnumpy()) opt1.update(0, w1, g1, state1) opt2.update(0, w2, g2, state2) if state1 is not None and state2 is not None: - for s1, s2, in zip(state1, state2): - if s1 is not None or s2 is not None: - assert_almost_equal(s1.asnumpy(), s2.asnumpy(), rtol=1e-4, atol=1e-5) + if isinstance(state1, tuple): + for s1, s2, in zip(state1, state2): + if s1 is not None or s2 is not None: + assert_almost_equal(s1.asnumpy(), s2.asnumpy(), rtol=1e-4, atol=1e-5) + else: + assert_almost_equal(state1.asnumpy(), state2.asnumpy()) assert_almost_equal(w1.asnumpy(), w2.asnumpy(), rtol=1e-4, atol=1e-5) # SGD @@ -186,18 +203,122 @@ def test_sgd(): not kwarg['multi_precision'])): continue compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, dtype) + # test operator fallback on cpu + if (default_context() == mx.cpu()): + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, dtype, + g_stype='row_sparse') + if dtype != np.float16: + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape[:2], + dtype, w_stype='csr', g_stype='csr') + +class PySparseSGD(mx.optimizer.Optimizer): + """python reference implemenation of sgd""" + def __init__(self, learning_rate=0.01, momentum=0.0, **kwargs): + super(PySparseSGD, self).__init__(learning_rate=learning_rate, **kwargs) + self.momentum = momentum + + def create_state(self, index, weight): + """Create additional optimizer state: momentum + + Parameters + ---------- + weight : NDArray + The weight data + + """ + if self.momentum == 0.0: + return None + else: + return mx.nd.zeros(weight.shape, weight.context, dtype=weight.dtype) + + def update(self, index, weight, grad, state): + """Update the parameters. + + Parameters + ---------- + index : int + An unique integer key used to index the parameters + + weight : NDArray + weight ndarray + + grad : NDArray + grad ndarray + + state : NDArray or other objects returned by init_state + The auxiliary state used in optimization. + """ + lr = self._get_lr(index) + wd = self._get_wd(index) + self._update_count(index) + num_rows = weight.shape[0] + if self.momentum == 0.0: + # Update on a per row basis, skip all-zero rows + for row in range(num_rows): + grad_row = grad[row].asnumpy() + all_zeros = mx.test_utils.almost_equal(grad_row, np.zeros_like(grad_row)) + if all_zeros: + continue + if self.clip_gradient is not None: + weight[row] = ((1 - lr*wd)*weight[row] - + lr*mx.nd.clip(grad[row]*self.rescale_grad, + -self.clip_gradient, self.clip_gradient)) + else: + weight[row] = (1 - lr*wd)*weight[row] - lr*self.rescale_grad*grad[row] + else: + mom = state + for row in range(num_rows): + grad_row = grad[row].asnumpy() + all_zeros = mx.test_utils.almost_equal(grad_row, np.zeros_like(grad_row)) + if all_zeros: + continue + if self.clip_gradient is not None: + mom[row] = (self.momentum*mom[row] - lr*wd*weight[row] - + lr*mx.nd.clip(grad[row]*self.rescale_grad, -self.clip_gradient, self.clip_gradient)) + weight[row] += mom[row] + else: + mom[row] = self.momentum*mom[row] - lr*wd*weight[row] - lr*self.rescale_grad*grad[row] + weight[row] += mom[row] + +def test_sparse_sgd(): + mx.random.seed(0) + opt1 = PySparseSGD + opt2 = mx.optimizer.SGD + shape = (3, 4, 5) + mom_options = [{}, {'momentum': 0.9}] + cg_options = [{}, {'clip_gradient': 0.4}, {'clip_gradient': 0.5}] + rg_options = [{}, {'rescale_grad': 0.14}, {'rescale_grad': 0.8}] + wd_options = [{}, {'wd': 0.03}, {'wd': 0.05}, {'wd': 0.07}] + mp_options = [{}] + for dtype in [np.float32]: + for mom_option in mom_options: + for cg_option in cg_options: + for rg_option in rg_options: + for wd_option in wd_options: + for mp_option in mp_options: + kwarg = {} + kwarg.update(mom_option) + kwarg.update(cg_option) + kwarg.update(rg_option) + kwarg.update(wd_option) + kwarg.update(mp_option) + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, dtype, + w_stype='row_sparse', g_stype='row_sparse') + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, dtype, + w_stype='row_sparse', g_stype='default') # ADAM class PyAdam(mx.optimizer.Optimizer): """python reference implemenation of adam""" def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, - decay_factor=(1 - 1e-8), **kwargs): + decay_factor=(1 - 1e-8), sparse_update=False, **kwargs): super(PyAdam, self).__init__(learning_rate=learning_rate, **kwargs) self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.decay_factor = decay_factor + self.sparse_update = sparse_update def create_state(self, index, weight): """Create additional optimizer state: mean, variance @@ -235,21 +356,28 @@ def update(self, index, weight, grad, state): mean, variance = state wd = self._get_wd(index) - grad = grad * self.rescale_grad + wd * weight - if self.clip_gradient is not None: - mx.nd.clip(grad, -self.clip_gradient, self.clip_gradient, out=grad) - - mean *= self.beta1 - mean += grad * (1. - self.beta1) - - variance *= self.beta2 - variance += (1 - self.beta2) * mx.nd.square(grad, out=grad) - + num_rows = weight.shape[0] coef1 = 1. - self.beta1**t coef2 = 1. - self.beta2**t lr *= math.sqrt(coef2)/coef1 - - weight -= lr*mean/(mx.nd.sqrt(variance) + self.epsilon) + for row in range(num_rows): + # check row slices of all zeros + all_zeros = mx.test_utils.almost_equal(grad[row].asnumpy(), np.zeros_like(grad[row].asnumpy())) + # skip zeros during sparse update + if all_zeros and self.sparse_update: + continue + grad[row] = grad[row] * self.rescale_grad + wd * weight[row] + # clip gradients + if self.clip_gradient is not None: + mx.nd.clip(grad[row], -self.clip_gradient, self.clip_gradient, out=grad[row]) + # update mean + mean[row] *= self.beta1 + mean[row] += grad[row] * (1. - self.beta1) + # update variance + variance[row] *= self.beta2 + variance[row] += (1 - self.beta2) * mx.nd.square(grad[row], out=grad[row]) + # update weight + weight[row] -= lr*mean[row]/(mx.nd.sqrt(variance[row]) + self.epsilon) def test_adam(): @@ -266,6 +394,8 @@ def test_adam(): {'rescale_grad': 0.8, 'wd': 0.05}] for kwarg in kwargs: compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, np.float32) + compare_optimizer(opt1(sparse_update=True, **kwarg), opt2(**kwarg), shape, + np.float32, w_stype='row_sparse', g_stype='row_sparse') # RMSProp class PyRMSProp(mx.optimizer.Optimizer): @@ -406,8 +536,10 @@ def test_rms(): {'rescale_grad': 0.8, 'wd': 0.05, 'centered': True, 'clip_weights': 0.01}] for kwarg in kwargs: compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, np.float32) + compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, np.float32, g_stype='row_sparse') if __name__ == '__main__': test_adam() test_rms() test_sgd() + test_sparse_sgd() diff --git a/tests/python/unittest/test_sparse_ndarray.py b/tests/python/unittest/test_sparse_ndarray.py new file mode 100644 index 000000000000..a77343436945 --- /dev/null +++ b/tests/python/unittest/test_sparse_ndarray.py @@ -0,0 +1,524 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import pickle as pkl + +from mxnet.ndarray import NDArray +from mxnet.test_utils import * +from numpy.testing import assert_allclose +import numpy.random as rnd + +from mxnet.ndarray.sparse import RowSparseNDArray, CSRNDArray + + +def assert_fcompex(f, *args, **kwargs): + prev_val = mx.test_utils.set_env_var("MXNET_EXEC_STORAGE_FALLBACK", "0", "1") + f(*args, **kwargs) + mx.test_utils.set_env_var("MXNET_EXEC_STORAGE_FALLBACK", prev_val) + + +def sparse_nd_ones(shape, stype): + return mx.nd.ones(shape).tostype(stype) + + +def check_sparse_nd_elemwise_binary(shapes, stypes, f, g): + # generate inputs + nds = [] + for i, stype in enumerate(stypes): + if stype == 'row_sparse': + nd, _ = rand_sparse_ndarray(shapes[i], stype) + elif stype == 'default': + nd = mx.nd.array(random_arrays(shapes[i]), dtype = np.float32) + else: + assert(False) + nds.append(nd) + # check result + test = f(nds[0], nds[1]) + assert_almost_equal(test.asnumpy(), g(nds[0].asnumpy(), nds[1].asnumpy())) + + +def test_sparse_nd_elemwise_add(): + num_repeats = 10 + g = lambda x,y: x + y + op = mx.nd.elemwise_add + for i in range(num_repeats): + shape = [rand_shape_2d()] * 2 + assert_fcompex(check_sparse_nd_elemwise_binary, + shape, ['default'] * 2, op, g) + assert_fcompex(check_sparse_nd_elemwise_binary, + shape, ['default', 'row_sparse'], op, g) + assert_fcompex(check_sparse_nd_elemwise_binary, + shape, ['row_sparse', 'row_sparse'], op, g) + + +def test_sparse_nd_copy(): + def check_sparse_nd_copy(from_stype, to_stype, shape): + from_nd = rand_ndarray(shape, from_stype) + # copy to ctx + to_ctx = from_nd.copyto(default_context()) + # copy to stype + to_nd = rand_ndarray(shape, to_stype) + to_nd = from_nd.copyto(to_nd) + assert np.sum(np.abs(from_nd.asnumpy() != to_ctx.asnumpy())) == 0.0 + assert np.sum(np.abs(from_nd.asnumpy() != to_nd.asnumpy())) == 0.0 + + shape = rand_shape_2d() + shape_3d = rand_shape_3d() + stypes = ['row_sparse', 'csr'] + for stype in stypes: + check_sparse_nd_copy(stype, 'default', shape) + check_sparse_nd_copy('default', stype, shape) + check_sparse_nd_copy('row_sparse', 'row_sparse', shape_3d) + check_sparse_nd_copy('row_sparse', 'default', shape_3d) + check_sparse_nd_copy('default', 'row_sparse', shape_3d) + +def test_sparse_nd_basic(): + def check_sparse_nd_basic_rsp(): + storage_type = 'row_sparse' + shape = rand_shape_2d() + nd, (v, idx) = rand_sparse_ndarray(shape, storage_type) + assert(nd._num_aux == 1) + assert(nd.indices.dtype == np.int64) + assert(nd.stype == 'row_sparse') + + check_sparse_nd_basic_rsp() + + +def test_sparse_nd_setitem(): + def check_sparse_nd_setitem(stype, shape, dst): + x = mx.nd.zeros(shape=shape, stype=stype) + x[:] = dst + dst_nd = mx.nd.array(dst) if isinstance(dst, (np.ndarray, np.generic)) else dst + assert same(x.asnumpy(), dst_nd.asnumpy()) + + shape = rand_shape_2d() + for stype in ['row_sparse', 'csr']: + # ndarray assignment + check_sparse_nd_setitem(stype, shape, rand_ndarray(shape, 'default')) + check_sparse_nd_setitem(stype, shape, rand_ndarray(shape, stype)) + # numpy assignment + check_sparse_nd_setitem(stype, shape, np.ones(shape)) + + +def test_sparse_nd_slice(): + def check_sparse_nd_csr_slice(shape): + stype = 'csr' + A, _ = rand_sparse_ndarray(shape, stype) + A2 = A.asnumpy() + start = rnd.randint(0, shape[0] - 1) + end = rnd.randint(start + 1, shape[0]) + assert same(A[start:end].asnumpy(), A2[start:end]) + assert same(A[start:].asnumpy(), A2[start:]) + assert same(A[:end].asnumpy(), A2[:end]) + + shape = (rnd.randint(2, 10), rnd.randint(1, 10)) + check_sparse_nd_csr_slice(shape) + + +def test_sparse_nd_equal(): + for stype in ['row_sparse', 'csr']: + shape = rand_shape_2d() + x = mx.nd.zeros(shape=shape, stype=stype) + y = sparse_nd_ones(shape, stype) + z = x == y + assert (z.asnumpy() == np.zeros(shape)).all() + z = 0 == x + assert (z.asnumpy() == np.ones(shape)).all() + + +def test_sparse_nd_not_equal(): + for stype in ['row_sparse', 'csr']: + shape = rand_shape_2d() + x = mx.nd.zeros(shape=shape, stype=stype) + y = sparse_nd_ones(shape, stype) + z = x != y + assert (z.asnumpy() == np.ones(shape)).all() + z = 0 != x + assert (z.asnumpy() == np.zeros(shape)).all() + + +def test_sparse_nd_greater(): + for stype in ['row_sparse', 'csr']: + shape = rand_shape_2d() + x = mx.nd.zeros(shape=shape, stype=stype) + y = sparse_nd_ones(shape, stype) + z = x > y + assert (z.asnumpy() == np.zeros(shape)).all() + z = y > 0 + assert (z.asnumpy() == np.ones(shape)).all() + z = 0 > y + assert (z.asnumpy() == np.zeros(shape)).all() + + +def test_sparse_nd_greater_equal(): + for stype in ['row_sparse', 'csr']: + shape = rand_shape_2d() + x = mx.nd.zeros(shape=shape, stype=stype) + y = sparse_nd_ones(shape, stype) + z = x >= y + assert (z.asnumpy() == np.zeros(shape)).all() + z = y >= 0 + assert (z.asnumpy() == np.ones(shape)).all() + z = 0 >= y + assert (z.asnumpy() == np.zeros(shape)).all() + z = y >= 1 + assert (z.asnumpy() == np.ones(shape)).all() + + +def test_sparse_nd_lesser(): + for stype in ['row_sparse', 'csr']: + shape = rand_shape_2d() + x = mx.nd.zeros(shape=shape, stype=stype) + y = sparse_nd_ones(shape, stype) + z = y < x + assert (z.asnumpy() == np.zeros(shape)).all() + z = 0 < y + assert (z.asnumpy() == np.ones(shape)).all() + z = y < 0 + assert (z.asnumpy() == np.zeros(shape)).all() + + +def test_sparse_nd_lesser_equal(): + for stype in ['row_sparse', 'csr']: + shape = rand_shape_2d() + x = mx.nd.zeros(shape=shape, stype=stype) + y = sparse_nd_ones(shape, stype) + z = y <= x + assert (z.asnumpy() == np.zeros(shape)).all() + z = 0 <= y + assert (z.asnumpy() == np.ones(shape)).all() + z = y <= 0 + assert (z.asnumpy() == np.zeros(shape)).all() + z = 1 <= y + assert (z.asnumpy() == np.ones(shape)).all() + + +def test_sparse_nd_binary(): + N = 10 + def check_binary(fn, stype): + for _ in range(N): + ndim = 2 + oshape = np.random.randint(1, 6, size=(ndim,)) + bdim = 2 + lshape = list(oshape) + rshape = list(oshape[ndim-bdim:]) + for i in range(bdim): + sep = np.random.uniform(0, 1) + if sep < 0.33: + lshape[ndim-i-1] = 1 + elif sep < 0.66: + rshape[bdim-i-1] = 1 + lhs = np.random.uniform(0, 1, size=lshape) + rhs = np.random.uniform(0, 1, size=rshape) + lhs_nd = mx.nd.array(lhs).tostype(stype) + rhs_nd = mx.nd.array(rhs).tostype(stype) + assert_allclose(fn(lhs, rhs), fn(lhs_nd, rhs_nd).asnumpy(), rtol=1e-4, atol=1e-4) + + stypes = ['row_sparse', 'csr'] + for stype in stypes: + check_binary(lambda x, y: x + y, stype) + check_binary(lambda x, y: x - y, stype) + check_binary(lambda x, y: x * y, stype) + check_binary(lambda x, y: x / y, stype) + check_binary(lambda x, y: x ** y, stype) + check_binary(lambda x, y: x > y, stype) + check_binary(lambda x, y: x < y, stype) + check_binary(lambda x, y: x >= y, stype) + check_binary(lambda x, y: x <= y, stype) + check_binary(lambda x, y: x == y, stype) + + +def test_sparse_nd_binary_rop(): + N = 10 + def check(fn, stype): + for _ in range(N): + ndim = 2 + shape = np.random.randint(1, 6, size=(ndim,)) + npy = np.random.normal(0, 1, size=shape) + nd = mx.nd.array(npy).tostype(stype) + assert_allclose(fn(npy), fn(nd).asnumpy(), rtol=1e-4, atol=1e-4) + + stypes = ['row_sparse', 'csr'] + for stype in stypes: + check(lambda x: 1 + x, stype) + check(lambda x: 1 - x, stype) + check(lambda x: 1 * x, stype) + check(lambda x: 1 / x, stype) + check(lambda x: 2 ** x, stype) + check(lambda x: 1 > x, stype) + check(lambda x: 0.5 > x, stype) + check(lambda x: 0.5 < x, stype) + check(lambda x: 0.5 >= x, stype) + check(lambda x: 0.5 <= x, stype) + check(lambda x: 0.5 == x, stype) + +def test_sparse_nd_binary_iop(): + N = 10 + def check_binary(fn, stype): + for _ in range(N): + ndim = 2 + oshape = np.random.randint(1, 6, size=(ndim,)) + lshape = list(oshape) + rshape = list(oshape) + lhs = np.random.uniform(0, 1, size=lshape) + rhs = np.random.uniform(0, 1, size=rshape) + lhs_nd = mx.nd.array(lhs).tostype(stype) + rhs_nd = mx.nd.array(rhs).tostype(stype) + assert_allclose(fn(lhs, rhs), + fn(lhs_nd, rhs_nd).asnumpy(), + rtol=1e-4, atol=1e-4) + + def inplace_add(x, y): + x += y + return x + def inplace_mul(x, y): + x *= y + return x + stypes = ['csr', 'row_sparse'] + fns = [inplace_add, inplace_mul] + for stype in stypes: + for fn in fns: + check_binary(fn, stype) + +def test_sparse_nd_negate(): + def check_sparse_nd_negate(shape, stype): + npy = np.random.uniform(-10, 10, rand_shape_2d()) + arr = mx.nd.array(npy).tostype(stype) + assert_almost_equal(npy, arr.asnumpy()) + assert_almost_equal(-npy, (-arr).asnumpy()) + + # a final check to make sure the negation (-) is not implemented + # as inplace operation, so the contents of arr does not change after + # we compute (-arr) + assert_almost_equal(npy, arr.asnumpy()) + + shape = rand_shape_2d() + stypes = ['csr', 'row_sparse'] + for stype in stypes: + check_sparse_nd_negate(shape, stype) + +def test_sparse_nd_broadcast(): + sample_num = 1000 + # TODO(haibin) test with more than 2 dimensions + def test_broadcast_to(stype): + for i in range(sample_num): + ndim = 2 + target_shape = np.random.randint(1, 11, size=ndim) + shape = target_shape.copy() + axis_flags = np.random.randint(0, 2, size=ndim) + axes = [] + for (axis, flag) in enumerate(axis_flags): + if flag: + shape[axis] = 1 + dat = np.random.rand(*shape) - 0.5 + numpy_ret = dat + ndarray = mx.nd.array(dat).tostype(stype) + ndarray_ret = ndarray.broadcast_to(shape=target_shape) + if type(ndarray_ret) is mx.ndarray.NDArray: + ndarray_ret = ndarray_ret.asnumpy() + assert (ndarray_ret.shape == target_shape).all() + err = np.square(ndarray_ret - numpy_ret).mean() + assert err < 1E-8 + stypes = ['csr', 'row_sparse'] + for stype in stypes: + test_broadcast_to(stype) + + +def test_sparse_nd_transpose(): + npy = np.random.uniform(-10, 10, rand_shape_2d()) + stypes = ['csr', 'row_sparse'] + for stype in stypes: + nd = mx.nd.array(npy).tostype(stype) + assert_almost_equal(npy.T, (nd.T).asnumpy()) + +def test_sparse_nd_output_fallback(): + shape = (10, 10) + out = mx.nd.zeros(shape=shape, stype='row_sparse') + mx.nd.random_normal(shape=shape, out=out) + assert(np.sum(out.asnumpy()) != 0) + +def test_sparse_nd_random(): + """ test sparse random operator on cpu """ + # gpu random operator doesn't use fixed seed + if default_context().device_type is 'gpu': + return + shape = (100, 100) + fns = [mx.nd.random_uniform, mx.nd.random_normal, mx.nd.random_gamma] + for fn in fns: + rsp_out = mx.nd.zeros(shape=shape, stype='row_sparse') + dns_out = mx.nd.zeros(shape=shape, stype='default') + mx.random.seed(0) + np.random.seed(0) + fn(shape=shape, out=dns_out) + mx.random.seed(0) + np.random.seed(0) + fn(shape=shape, out=rsp_out) + assert_almost_equal(dns_out.asnumpy(), rsp_out.asnumpy()) + + +def test_sparse_nd_astype(): + stypes = ['row_sparse', 'csr'] + for stype in stypes: + x = mx.nd.zeros(shape=rand_shape_2d(), stype=stype, dtype='float32') + y = x.astype('int32') + assert(y.dtype == np.int32), y.dtype + + +def test_sparse_nd_pickle(): + np.random.seed(0) + repeat = 10 + dim0 = 40 + dim1 = 40 + stypes = ['row_sparse', 'csr'] + densities = [0, 0.01, 0.1, 0.2, 0.5] + stype_dict = {'row_sparse': RowSparseNDArray, 'csr': CSRNDArray} + for _ in range(repeat): + shape = rand_shape_2d(dim0, dim1) + for stype in stypes: + for density in densities: + a, _ = rand_sparse_ndarray(shape, stype, density) + assert isinstance(a, stype_dict[stype]) + data = pkl.dumps(a) + b = pkl.loads(data) + assert isinstance(b, stype_dict[stype]) + assert same(a.asnumpy(), b.asnumpy()) + + +def test_sparse_nd_save_load(): + np.random.seed(0) + repeat = 1 + stypes = ['default', 'row_sparse', 'csr'] + stype_dict = {'default': NDArray, 'row_sparse': RowSparseNDArray, 'csr': CSRNDArray} + num_data = 20 + densities = [0, 0.01, 0.1, 0.2, 0.5] + fname = 'tmp_list.bin' + for _ in range(repeat): + data_list1 = [] + for i in range(num_data): + stype = stypes[np.random.randint(0, len(stypes))] + shape = rand_shape_2d(dim0=40, dim1=40) + density = densities[np.random.randint(0, len(densities))] + data_list1.append(rand_ndarray(shape, stype, density)) + assert isinstance(data_list1[-1], stype_dict[stype]) + mx.nd.save(fname, data_list1) + + data_list2 = mx.nd.load(fname) + assert len(data_list1) == len(data_list2) + for x, y in zip(data_list1, data_list2): + assert same(x.asnumpy(), y.asnumpy()) + + data_map1 = {'ndarray xx %s' % i: x for i, x in enumerate(data_list1)} + mx.nd.save(fname, data_map1) + data_map2 = mx.nd.load(fname) + assert len(data_map1) == len(data_map2) + for k, x in data_map1.items(): + y = data_map2[k] + assert same(x.asnumpy(), y.asnumpy()) + os.remove(fname) + +def test_sparse_nd_unsupported(): + nd = mx.nd.zeros((2,2), stype='row_sparse') + fn_slice = lambda x: x._slice(None, None) + fn_at = lambda x: x._at(None) + fn_reshape = lambda x: x.reshape(None) + fns = [fn_slice, fn_at, fn_reshape] + for fn in fns: + try: + fn(nd) + assert(False) + except: + pass + +def test_create_csr(): + dim0 = 50 + dim1 = 50 + densities = [0, 0.01, 0.1, 0.2, 0.5] + for density in densities: + shape = rand_shape_2d(dim0, dim1) + matrix = rand_ndarray(shape, 'csr', density) + data = matrix.data + indptr = matrix.indptr + indices = matrix.indices + csr_created = mx.nd.sparse.csr_matrix(data=data, indptr=indptr, + indices=indices, shape=shape) + assert csr_created.stype == 'csr' + assert same(csr_created.data.asnumpy(), data.asnumpy()) + assert same(csr_created.indptr.asnumpy(), indptr.asnumpy()) + assert same(csr_created.indices.asnumpy(), indices.asnumpy()) + csr_copy = mx.nd.array(csr_created) + assert(same(csr_copy.asnumpy(), csr_created.asnumpy())) + + +def test_create_row_sparse(): + dim0 = 50 + dim1 = 50 + densities = [0, 0.01, 0.1, 0.2, 0.5] + for density in densities: + shape = rand_shape_2d(dim0, dim1) + matrix = rand_ndarray(shape, 'row_sparse', density) + data = matrix.data + indices = matrix.indices + rsp_created = mx.nd.sparse.row_sparse_array(data=data, indices=indices, shape=shape) + assert rsp_created.stype == 'row_sparse' + assert same(rsp_created.data.asnumpy(), data.asnumpy()) + assert same(rsp_created.indices.asnumpy(), indices.asnumpy()) + rsp_copy = mx.nd.array(rsp_created) + assert(same(rsp_copy.asnumpy(), rsp_created.asnumpy())) + +def test_sparse_nd_empty(): + stypes = ['csr', 'row_sparse', 'default'] + for stype in stypes: + nd = mx.nd.empty((2,2), stype=stype) + assert(nd.stype == stype) + + +def test_synthetic_dataset_generator(): + def test_powerlaw_generator(csr_arr, final_row=1): + """Test power law distribution + Total Elements: 32000, Number of zeros: 3200 + Every row has 2 * non zero elements of the previous row. + Also since (2047 < 3200 < 4095) this will be true till 10th row""" + indices = csr_arr.indices.asnumpy() + indptr = csr_arr.indptr.asnumpy() + for row in range(1, final_row + 1): + nextrow = row + 1 + current_row_nnz = indices[indptr[row] - 1] + 1 + next_row_nnz = indices[indptr[nextrow] - 1] + 1 + assert next_row_nnz == 2 * current_row_nnz + + # Test if density is preserved + csr_arr_cols, _ = rand_sparse_ndarray(shape=(32, 10000), stype="csr", + density=0.01, distribution="powerlaw") + + csr_arr_small, _ = rand_sparse_ndarray(shape=(5, 5), stype="csr", + density=0.5, distribution="powerlaw") + + csr_arr_big, _ = rand_sparse_ndarray(shape=(32, 1000000), stype="csr", + density=0.4, distribution="powerlaw") + + csr_arr_square, _ = rand_sparse_ndarray(shape=(1600, 1600), stype="csr", + density=0.5, distribution="powerlaw") + assert len(csr_arr_cols.data) == 3200 + test_powerlaw_generator(csr_arr_cols, final_row=9) + test_powerlaw_generator(csr_arr_small, final_row=1) + test_powerlaw_generator(csr_arr_big, final_row=4) + test_powerlaw_generator(csr_arr_square, final_row=6) + + +if __name__ == '__main__': + import nose + nose.runmodule() diff --git a/tests/python/unittest/test_sparse_operator.py b/tests/python/unittest/test_sparse_operator.py new file mode 100644 index 000000000000..2875d7b4b645 --- /dev/null +++ b/tests/python/unittest/test_sparse_operator.py @@ -0,0 +1,373 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +from mxnet.test_utils import * + + +def check_elemwise_add_ex(lhs_stype, rhs_stype, shape, lhs_grad_stype=None, rhs_grad_stype=None): + lhs = mx.symbol.Variable('lhs', stype=lhs_stype) + rhs = mx.symbol.Variable('rhs', stype=rhs_stype) + lhs_nd = rand_ndarray(shape, lhs_stype) + rhs_nd = rand_ndarray(shape, rhs_stype) + lhs_np = lhs_nd.asnumpy() + rhs_np = rhs_nd.asnumpy() + + out_np = lhs_np + rhs_np + test = mx.symbol.sparse.elemwise_add(lhs, rhs) + location = {'lhs': lhs_nd, 'rhs': rhs_nd} + check_symbolic_forward(test, location, [out_np]) + check_numeric_gradient(test, location) + grad_stypes = {} + if lhs_grad_stype is not None and lhs_grad_stype != 'default': + grad_stypes['lhs'] = lhs_grad_stype + if rhs_grad_stype is not None and rhs_grad_stype != 'default': + grad_stypes['rhs'] = rhs_grad_stype + check_symbolic_backward(test, location, [out_np], [out_np, out_np], + grad_stypes=grad_stypes) + + +def test_elemwise_add_ex(): + shapes = [rand_shape_2d(), rand_shape_3d()] + for shape in shapes: + check_elemwise_add_ex('default', 'default', shape) + check_elemwise_add_ex('default', 'row_sparse', shape) + check_elemwise_add_ex('row_sparse', 'default', shape) + check_elemwise_add_ex('row_sparse', 'row_sparse', shape, + lhs_grad_stype='row_sparse', rhs_grad_stype='row_sparse') + + +# TODO(haibin) randomize this test +def test_elemwise_add_ex_multiple_stages(): + # prep data + shape = (4, 2) + ds_np = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) + sp_np1 = np.array([[5, 10], [0, 0], [0, 0], [0, 0]]) + sp_np2 = np.array([[0, 0], [5, 10], [0, 0], [0, 0]]) + + val1 = mx.nd.array([[5, 10]]); + val2 = mx.nd.array([[5, 10]]); + idx1 = mx.nd.array([0], dtype=np.int64); + idx2 = mx.nd.array([1], dtype=np.int64); + sp_nd1 = mx.nd.sparse.row_sparse_array(val1, idx1, shape) + sp_nd2 = mx.nd.sparse.row_sparse_array(val2, idx2, shape) + ds_nd = mx.nd.array(ds_np) + + # sparse + sparse = sparse + sp_data1 = mx.symbol.Variable('sp_data1', stype='row_sparse') + sp_data2 = mx.symbol.Variable('sp_data2', stype='row_sparse') + ds_data = mx.symbol.Variable('ds_data') + plus = mx.symbol.sparse.elemwise_add(sp_data1, sp_data2, name='plus') + # sparse + dense = dense + test = mx.symbol.sparse.elemwise_add(plus, ds_data) + check_symbolic_forward(test, {'sp_data1': sp_nd1, 'sp_data2': sp_nd2, + 'ds_data': ds_nd}, [sp_np1 + sp_np2 + ds_np]) + + arr_grads = [mx.nd.zeros(shape) for i in range(3)] + exec_test = test.bind(default_context(), args={'sp_data1': sp_nd1, 'sp_data2': sp_nd2, + 'ds_data': ds_nd}, args_grad=arr_grads) + exec_test.forward(is_train=True) + assert_almost_equal(exec_test.outputs[0].asnumpy(), sp_np1 + sp_np2 + ds_np) + exec_test.backward(out_grads=exec_test.outputs) + assert_almost_equal(arr_grads[0].asnumpy(), arr_grads[1].asnumpy()) + +def test_cast_storage_ex(): + def check_cast_storage(shape, density, from_stype, to_stype, check_numeric_grad=True): + x = mx.symbol.Variable('x', stype=from_stype) + x_nd = rand_ndarray(shape, from_stype, density=density) + x_np = x_nd.asnumpy() + out_np = x_np + test = mx.symbol.cast_storage(x, stype=to_stype) + location = {'x': x_nd} + check_symbolic_forward(test, location, [out_np]) + # consider disable the numeric grad check for gpu block kernel since the input is large + if check_numeric_grad: + check_numeric_gradient(test, location) + grad_stypes = {'x': to_stype} + check_symbolic_backward(test, location, [out_np], [out_np], grad_stypes=grad_stypes) + + density = [1.00, 0.50, 0.10, 0.05, 0.01] + for d in density: + shape_2d = rand_shape_2d() + shape_3d = rand_shape_3d() + check_cast_storage(shape_2d, d, 'csr', 'default') + check_cast_storage(shape_2d, d, 'default', 'csr') + check_cast_storage(shape_2d, d, 'row_sparse', 'default') + check_cast_storage(shape_2d, d, 'default', 'row_sparse') + check_cast_storage(shape_3d, d, 'row_sparse', 'default') + check_cast_storage(shape_3d, d, 'default', 'row_sparse') + for i in range(4, 6): + shape = rand_shape_nd(i, 5) + check_cast_storage(shape, d, 'default', 'row_sparse') + check_cast_storage(shape, d, 'row_sparse', 'default') + # Test specific gpu kernels + if default_context().device_type is 'gpu': + dim0 = rnd.randint(1, 10) + # test gpu thread kernel + check_cast_storage((dim0, rnd.randint( 1, 32)), d, 'default', 'csr') + # test gpu warp kernel + check_cast_storage((dim0, rnd.randint( 32, 512)), d, 'default', 'csr') + # test gpu block kernel + check_cast_storage((dim0, rnd.randint(512, 1024)), d, 'default', 'csr', + check_numeric_grad=False) + # test gpu thread kernel + check_cast_storage((dim0, rnd.randint( 1, 32)), d, 'default', 'row_sparse') + # test gpu warp kernel + check_cast_storage((dim0, rnd.randint( 32, 512)), d, 'default', 'row_sparse') + # test gpu block kernel + check_cast_storage((dim0, rnd.randint(512, 1024)), d, 'default', 'row_sparse', + check_numeric_grad=False) + +def test_sparse_dot(): + def test_dot_csr(lhs_shape, rhs_shape, rhs_stype, trans_lhs, lhs_density, rhs_density): + lhs_nd = rand_ndarray(lhs_shape, 'csr', density=lhs_density) + lhs_dns = lhs_nd.tostype('default') + rhs_nd = rand_ndarray(rhs_shape, rhs_stype, density=rhs_density) + rhs_dns = rhs_nd if rhs_stype == 'default' else rhs_nd.tostype('default') + + out = mx.nd.dot(lhs_nd, rhs_nd, transpose_a=trans_lhs) + out_dns = mx.nd.dot(lhs_dns, rhs_dns, transpose_a=trans_lhs) + out_np = out_dns.asnumpy() + assert_almost_equal(out.asnumpy(), out_np, rtol=1e-4, atol=1e-5) + + # test symbolic forward + lhs = mx.symbol.Variable('lhs', stype='csr') + rhs = mx.symbol.Variable('rhs', stype=rhs_stype) + out = mx.symbol.sparse.dot(lhs, rhs, transpose_a=trans_lhs) + location = {'lhs': lhs_nd, 'rhs': rhs_nd} + check_symbolic_forward(out, location, [out_np], rtol=1e-3, atol=1e-4) + + # test symbolic backward + backward_trans = not trans_lhs + rhs_backward_grad = mx.nd.dot(lhs_dns, out_dns, transpose_a=backward_trans).asnumpy() + expected = {'rhs': rhs_backward_grad} + check_symbolic_backward(out, location, [out_np], expected, + grad_req={'lhs': 'null', 'rhs': 'write'}, + rtol=1e-3, atol=1e-4) + + density = [1.00, 0.50, 0.10, 0.05, 0.01] + for lhs_d in density: + lhs_shape = rand_shape_2d(50, 200) + rhs_d = 1 + test_dot_csr(lhs_shape, (lhs_shape[1], 1), 'default', False, lhs_d, rhs_d) # test gpu SpMV + test_dot_csr(lhs_shape, (lhs_shape[0], 1), 'default', True , lhs_d, rhs_d) # (vector kernel) + test_dot_csr(lhs_shape, (lhs_shape[1], rnd.randint(5, 10)), 'default', False, lhs_d, rhs_d) # test gpu SpMM + test_dot_csr(lhs_shape, (lhs_shape[0], rnd.randint(5, 10)), 'default', True , lhs_d, rhs_d) # (scalar kernel) + for rhs_d in density: + test_dot_csr(lhs_shape, (lhs_shape[1], rnd.randint(1, 10)), 'row_sparse', False, lhs_d, rhs_d) + test_dot_csr(lhs_shape, (lhs_shape[0], rnd.randint(1, 10)), 'row_sparse', True, lhs_d, rhs_d) + + +def test_sparse_slice(): + def check_csr_slice(shape, slice_input): + storage_type = 'csr' + B, _ = rand_sparse_ndarray(shape, storage_type) + np = B.asnumpy() + begin = rnd.randint(0, B.shape[0] - 1) + end = rnd.randint(begin + 1, B.shape[0]) + nd_slice = mx.nd.crop(B, begin=begin, end=end) + assert same(nd_slice.asnumpy(), np[begin:end]), (nd_slice.asnumpy(), np[begin:end]) + + shape = (rnd.randint(7, 15), rnd.randint(1, 10)) + check_csr_slice(shape, True) + check_csr_slice(shape, False) + + +def test_sparse_retain(): + def check_sparse_retain(shape, density, index_type=np.int64): + num_rows = shape[0] + rsp, _ = rand_sparse_ndarray(shape=shape, stype='row_sparse', density=density) + length = np.random.randint(1, num_rows + 1) + idx = random_sample(list(range(0, num_rows)), length) + idx.sort() + dns = rsp.asnumpy() + tensor_retained_expected = np.zeros(shape) + for i in idx: + tensor_retained_expected[i][:] = dns[i] + indices = mx.nd.array(idx, dtype=index_type) + rsp_retained = mx.nd.sparse.retain(rsp, indices=indices) + assert same(tensor_retained_expected, rsp_retained.asnumpy()) + + # check numeric gradient + data = mx.symbol.Variable('data') + idx = mx.symbol.Variable('indices') + sym = mx.sym.sparse.retain(data=data, indices=idx) + check_numeric_gradient(sym, [rsp, indices], grad_nodes=['data'], + grad_stype_dict={'data': 'row_sparse'}) + + shape = rand_shape_2d() + shape_3d = rand_shape_3d() + densities = [0.01, 0.1, 0.2, 0.5, 0.8, 1.0] + index_types = [np.float32, np.int32, np.int64] + for density in densities: + for itype in index_types: + check_sparse_retain(shape, density, itype) + check_sparse_retain(shape_3d, density, itype) + + +def test_sparse_nd_zeros(): + def check_sparse_nd_zeros(stype, shape): + zero = mx.nd.zeros(shape) + sparse_zero = mx.nd.zeros(shape=shape, stype=stype) + assert_almost_equal(sparse_zero.asnumpy(), zero.asnumpy()) + + shape = rand_shape_2d() + check_sparse_nd_zeros('row_sparse', shape) + check_sparse_nd_zeros('csr', shape) + check_sparse_nd_zeros('default', shape) + + +def test_sparse_square_sum(): + dim0 = 30 + dim1 = 30 + axes = [0, 1] + keepdims = [False, True] + densities = [0, 0.01, 0.1, 0.2, 0.5] + for density in densities: + shape = rand_shape_2d(dim0, dim1) + rsp = rand_ndarray(shape, 'row_sparse', density) + dns = rsp.tostype('default') + for axis in axes: + for keepdim in keepdims: + ret = mx.nd._internal._square_sum(rsp, axis=axis, keepdims=keepdim) + if axis == 1 and keepdim: + assert ret.stype == 'row_sparse' + else: + assert ret.stype == 'default' + ret_expected = mx.nd.sum(dns*dns, axis=axis, keepdims=keepdim) + # check forward result + assert same(ret.asnumpy(), ret_expected.asnumpy()) + + rsp_data = mx.sym.Variable('data', stype='row_sparse') + test = mx.symbol._internal._square_sum(rsp_data, axis=axis, keepdims=keepdim) + + # check symbolic backward since ograd can be a rsp + # and cannot be checked through check_numeric_gradient + # because it will add a loss layer as the output layer + # which makes ograd of the square_sum dense + if axis == 1 and keepdims: + dns_data = mx.sym.Variable('data') + baseline = mx.sym.sum(mx.sym.square(dns_data), axis=axis, keepdims=keepdim) + igrad_expected = mx.nd.empty(dns.shape) + baseline_exec = baseline.bind(default_context(), args=[dns], + args_grad=[igrad_expected]) + baseline_exec.forward(is_train=True) + baseline_exec.backward([ret_expected]) + check_symbolic_backward(test, [rsp], [ret], [igrad_expected.asnumpy()], + grad_stypes={'data': 'row_sparse'}) + + # check numeric gradient + check_numeric_gradient(test, [rsp], grad_stype_dict={'data': 'row_sparse'}, + atol=1e-2, rtol=0.1) + +def test_sparse_storage_fallback(): + """ test operators which don't implement FComputeEx or FStatefulComputeEx """ + def check_broadcast_add(shape, lhs_stype, rhs_stype): + lhs = mx.symbol.Variable('lhs', stype=lhs_stype) + rhs = mx.symbol.Variable('rhs', stype=rhs_stype) + lhs_nd = rand_ndarray(shape, lhs_stype) + rhs_nd = rand_ndarray(shape, rhs_stype) + lhs_dns = mx.nd.cast_storage(lhs_nd, stype='default') + rhs_dns = mx.nd.cast_storage(rhs_nd, stype='default') + + out_dns = (lhs_dns + rhs_dns).asnumpy() + test = mx.symbol.broadcast_add(lhs, rhs) + location = {'lhs': lhs_nd, 'rhs': rhs_nd} + check_symbolic_forward(test, location, [out_dns]) + check_numeric_gradient(test, location) + check_symbolic_backward(test, location, [out_dns], [out_dns, out_dns]) + + def np_softmax(x, axis=-1): + # fix for old numpy on Travis not supporting keepdims + # x = x - np.max(x, axis=-1, keepdims=True) + x = x - np.max(x, axis=axis, keepdims=True) + x = np.exp(x) + # x /= np.sum(x, axis=-1, keepdims=True) + x /= np.sum(x, axis=axis, keepdims=True) + return x + + def check_softmax_with_shape(lhs_stype, rhs_stype, shape, preserve_shape=False): + # bind with label + ctx = default_context() + X = mx.symbol.Variable('X', stype=lhs_stype) + L = mx.symbol.Variable('L', stype=rhs_stype) + Y = mx.symbol.SoftmaxOutput(data=X, label=L, preserve_shape=preserve_shape) + x = rand_ndarray(shape, lhs_stype) + l = rand_ndarray(shape, rhs_stype) + l[:] = np_softmax(l.asnumpy()) + grad = mx.nd.empty(shape, ctx=ctx) + exec1 = Y.bind(ctx, args = [x, l], args_grad = {'X': grad}) + exec1.forward(is_train=True) + out = exec1.outputs[0].asnumpy() + assert_almost_equal(out, np_softmax(x.asnumpy()), rtol=1e-4) + exec1.backward() + assert_almost_equal(grad.asnumpy(), np_softmax(x.asnumpy()) - l.asnumpy(), + rtol=1e-3, atol=1e-4) + + def check_concat(shape, lhs_stype, rhs_stype): + x = mx.symbol.Variable('x', stype=lhs_stype) + w = mx.symbol.Variable('w', stype=rhs_stype) + test = mx.sym.Concat(x, w) + x_nd = rand_ndarray(shape, lhs_stype) + w_nd = rand_ndarray(shape, rhs_stype) + location = {'x': x_nd, 'w': w_nd} + check_numeric_gradient(test, location) + + shape = rand_shape_2d() + stypes = ['default', 'csr', 'row_sparse'] + for lhs in stypes: + for rhs in stypes: + check_broadcast_add(shape, lhs, rhs) + check_concat(shape, lhs, rhs) + check_softmax_with_shape(lhs, rhs, shape, preserve_shape=False) + check_softmax_with_shape(rhs, rhs, shape, preserve_shape=True) + + +def test_sparse_elementwise_sum(): + def check_sparse_elementwise_sum_with_shape(stype, shape, n): + # forward + inputs = [mx.symbol.Variable('arg%d' % i) for i in range(n)] + out = mx.symbol.sparse.add_n(*inputs, name='esum') + arr = [] + arr_grad = [mx.nd.empty(shape) for _ in range(n)] + densities = [0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5] + for i in range(n): + arr.append(rand_ndarray(shape, stype, np.random.randint(0, len(densities)))) + + exec1 = out.bind(default_context(), + args=arr, + args_grad=arr_grad) + exec1.forward(is_train=True) + out1 = exec1.outputs[0].asnumpy() + out = sum(a.asnumpy() for a in arr) + assert_almost_equal(out, out1) + + out_grad = mx.nd.empty(shape) + out_grad[:] = np.random.uniform(-10, 10, shape) + # backward + exec1.backward([out_grad]) + for a in arr_grad: + assert_almost_equal(a.asnumpy(), out_grad.asnumpy()) + + maxdim = 5 + for dim in range(2, maxdim): + shape = tuple(np.random.randint(5, 10, size=dim)) + check_sparse_elementwise_sum_with_shape('row_sparse', shape, np.random.randint(1, 9)) + + +if __name__ == '__main__': + import nose + nose.runmodule() diff --git a/tests/travis/run_test.sh b/tests/travis/run_test.sh index fb1869f842b1..fd23f0e82b24 100755 --- a/tests/travis/run_test.sh +++ b/tests/travis/run_test.sh @@ -117,21 +117,21 @@ if [ ${TASK} == "python_test" ]; then mkdir -p ${PWD}/data if [ ${TRAVIS_OS_NAME} == "osx" ]; then - python -m nose tests/python/unittest || exit -1 - python3 -m nose tests/python/unittest || exit -1 + python -m nose -v tests/python/unittest || exit -1 + python3 -m nose -v tests/python/unittest || exit -1 # make cython3 # cython tests # export MXNET_ENFORCE_CYTHON=1 # python3 -m nose tests/python/unittest || exit -1 - python3 -m nose tests/python/train || exit -1 - python -m nose tests/python/doctest || exit -1 - python3 -m nose tests/python/doctest || exit -1 + python3 -m nose -v tests/python/train || exit -1 + python -m nose -v tests/python/doctest || exit -1 + python3 -m nose -v tests/python/doctest || exit -1 else - nosetests tests/python/unittest || exit -1 - nosetests3 tests/python/unittest || exit -1 - nosetests3 tests/python/train || exit -1 - nosetests tests/python/doctest || exit -1 - nosetests3 tests/python/doctest || exit -1 + nosetests -v tests/python/unittest || exit -1 + nosetests3 -v tests/python/unittest || exit -1 + nosetests3 -v tests/python/train || exit -1 + nosetests -v tests/python/doctest || exit -1 + nosetests3 -v tests/python/doctest || exit -1 fi exit 0 fi diff --git a/tests/travis/setup.sh b/tests/travis/setup.sh index 94d674f3943e..f479306a31a8 100755 --- a/tests/travis/setup.sh +++ b/tests/travis/setup.sh @@ -33,8 +33,8 @@ if [ ${TRAVIS_OS_NAME} == "osx" ]; then brew install ImageMagick brew install swig if [ ${TASK} == "python_test" ]; then - python -m pip install --user nose numpy cython - python3 -m pip install --user nose numpy cython + python -m pip install --user nose numpy cython scipy + python3 -m pip install --user nose numpy cython scipy fi fi