forked from localminimum/QANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepro.py
306 lines (260 loc) · 12.8 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import tensorflow as tf
import random
from tqdm import tqdm
import spacy
import ujson as json
from collections import Counter
import numpy as np
from codecs import open
'''
This file is taken and modified from R-Net by HKUST-KnowComp
https://github.com/HKUST-KnowComp/R-Net
'''
nlp = spacy.blank("en")
def word_tokenize(sent):
doc = nlp(sent)
return [token.text for token in doc]
def convert_idx(text, tokens):
current = 0
spans = []
for token in tokens:
current = text.find(token, current)
if current < 0:
print("Token {} cannot be found".format(token))
raise Exception()
spans.append((current, current + len(token)))
current += len(token)
return spans
def process_file(filename, data_type, word_counter, char_counter):
print("Generating {} examples...".format(data_type))
examples = []
eval_examples = {}
total = 0
with open(filename, "r") as fh:
source = json.load(fh)
for article in tqdm(source["data"]):
for para in article["paragraphs"]:
context = para["context"].replace(
"''", '" ').replace("``", '" ')
context_tokens = word_tokenize(context)
context_chars = [list(token) for token in context_tokens]
spans = convert_idx(context, context_tokens)
for token in context_tokens:
word_counter[token] += len(para["qas"])
for char in token:
char_counter[char] += len(para["qas"])
for qa in para["qas"]:
total += 1
ques = qa["question"].replace(
"''", '" ').replace("``", '" ')
ques_tokens = word_tokenize(ques)
ques_chars = [list(token) for token in ques_tokens]
for token in ques_tokens:
word_counter[token] += 1
for char in token:
char_counter[char] += 1
y1s, y2s = [], []
answer_texts = []
for answer in qa["answers"]:
answer_text = answer["text"]
answer_start = answer['answer_start']
answer_end = answer_start + len(answer_text)
answer_texts.append(answer_text)
answer_span = []
for idx, span in enumerate(spans):
if not (answer_end <= span[0] or answer_start >= span[1]):
answer_span.append(idx)
y1, y2 = answer_span[0], answer_span[-1]
y1s.append(y1)
y2s.append(y2)
example = {"context_tokens": context_tokens, "context_chars": context_chars, "ques_tokens": ques_tokens,
"ques_chars": ques_chars, "y1s": y1s, "y2s": y2s, "id": total}
examples.append(example)
eval_examples[str(total)] = {
"context": context, "spans": spans, "answers": answer_texts, "uuid": qa["id"]}
random.shuffle(examples)
print("{} questions in total".format(len(examples)))
return examples, eval_examples
def get_embedding(counter, data_type, limit=-1, emb_file=None, size=None, vec_size=None):
print("Generating {} embedding...".format(data_type))
embedding_dict = {}
filtered_elements = [k for k, v in counter.items() if v > limit]
if emb_file is not None:
assert size is not None
assert vec_size is not None
with open(emb_file, "r", encoding="utf-8") as fh:
for line in tqdm(fh, total=size):
array = line.split()
word = "".join(array[0:-vec_size])
vector = list(map(float, array[-vec_size:]))
if word in counter and counter[word] > limit:
embedding_dict[word] = vector
print("{} / {} tokens have corresponding {} embedding vector".format(
len(embedding_dict), len(filtered_elements), data_type))
else:
assert vec_size is not None
for token in filtered_elements:
embedding_dict[token] = [np.random.normal(
scale=0.1) for _ in range(vec_size)]
print("{} tokens have corresponding embedding vector".format(
len(filtered_elements)))
NULL = "--NULL--"
OOV = "--OOV--"
token2idx_dict = {token: idx for idx,
token in enumerate(embedding_dict.keys(), 2)}
token2idx_dict[NULL] = 0
token2idx_dict[OOV] = 1
embedding_dict[NULL] = [0. for _ in range(vec_size)]
embedding_dict[OOV] = [0. for _ in range(vec_size)]
idx2emb_dict = {idx: embedding_dict[token]
for token, idx in token2idx_dict.items()}
emb_mat = [idx2emb_dict[idx] for idx in range(len(idx2emb_dict))]
return emb_mat, token2idx_dict
def convert_to_features(config, data, word2idx_dict, char2idx_dict):
example = {}
context, question = data
context = context.replace("''", '" ').replace("``", '" ')
question = question.replace("''", '" ').replace("``", '" ')
example['context_tokens'] = word_tokenize(context)
example['ques_tokens'] = word_tokenize(question)
example['context_chars'] = [list(token) for token in example['context_tokens']]
example['ques_chars'] = [list(token) for token in example['ques_tokens']]
para_limit = config.test_para_limit
ques_limit = config.test_ques_limit
ans_limit = 100
char_limit = config.char_limit
def filter_func(example):
return len(example["context_tokens"]) > para_limit or \
len(example["ques_tokens"]) > ques_limit
if filter_func(example):
raise ValueError("Context/Questions lengths are over the limit")
context_idxs = np.zeros([para_limit], dtype=np.int32)
context_char_idxs = np.zeros([para_limit, char_limit], dtype=np.int32)
ques_idxs = np.zeros([ques_limit], dtype=np.int32)
ques_char_idxs = np.zeros([ques_limit, char_limit], dtype=np.int32)
y1 = np.zeros([para_limit], dtype=np.float32)
y2 = np.zeros([para_limit], dtype=np.float32)
def _get_word(word):
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in word2idx_dict:
return word2idx_dict[each]
return 1
def _get_char(char):
if char in char2idx_dict:
return char2idx_dict[char]
return 1
for i, token in enumerate(example["context_tokens"]):
context_idxs[i] = _get_word(token)
for i, token in enumerate(example["ques_tokens"]):
ques_idxs[i] = _get_word(token)
for i, token in enumerate(example["context_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
context_char_idxs[i, j] = _get_char(char)
for i, token in enumerate(example["ques_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
ques_char_idxs[i, j] = _get_char(char)
return context_idxs, context_char_idxs, ques_idxs, ques_char_idxs
def build_features(config, examples, data_type, out_file, word2idx_dict, char2idx_dict, is_test=False):
para_limit = config.test_para_limit if is_test else config.para_limit
ques_limit = config.test_ques_limit if is_test else config.ques_limit
ans_limit = 100 if is_test else config.ans_limit
char_limit = config.char_limit
def filter_func(example, is_test=False):
return len(example["context_tokens"]) > para_limit or \
len(example["ques_tokens"]) > ques_limit or \
(example["y2s"][0] - example["y1s"][0]) > ans_limit
print("Processing {} examples...".format(data_type))
writer = tf.python_io.TFRecordWriter(out_file)
total = 0
total_ = 0
meta = {}
for example in tqdm(examples):
total_ += 1
if filter_func(example, is_test):
continue
total += 1
context_idxs = np.zeros([para_limit], dtype=np.int32)
context_char_idxs = np.zeros([para_limit, char_limit], dtype=np.int32)
ques_idxs = np.zeros([ques_limit], dtype=np.int32)
ques_char_idxs = np.zeros([ques_limit, char_limit], dtype=np.int32)
y1 = np.zeros([para_limit], dtype=np.float32)
y2 = np.zeros([para_limit], dtype=np.float32)
def _get_word(word):
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in word2idx_dict:
return word2idx_dict[each]
return 1
def _get_char(char):
if char in char2idx_dict:
return char2idx_dict[char]
return 1
for i, token in enumerate(example["context_tokens"]):
context_idxs[i] = _get_word(token)
for i, token in enumerate(example["ques_tokens"]):
ques_idxs[i] = _get_word(token)
for i, token in enumerate(example["context_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
context_char_idxs[i, j] = _get_char(char)
for i, token in enumerate(example["ques_chars"]):
for j, char in enumerate(token):
if j == char_limit:
break
ques_char_idxs[i, j] = _get_char(char)
start, end = example["y1s"][-1], example["y2s"][-1]
y1[start], y2[end] = 1.0, 1.0
record = tf.train.Example(features=tf.train.Features(feature={
"context_idxs": tf.train.Feature(bytes_list=tf.train.BytesList(value=[context_idxs.tostring()])),
"ques_idxs": tf.train.Feature(bytes_list=tf.train.BytesList(value=[ques_idxs.tostring()])),
"context_char_idxs": tf.train.Feature(bytes_list=tf.train.BytesList(value=[context_char_idxs.tostring()])),
"ques_char_idxs": tf.train.Feature(bytes_list=tf.train.BytesList(value=[ques_char_idxs.tostring()])),
"y1": tf.train.Feature(bytes_list=tf.train.BytesList(value=[y1.tostring()])),
"y2": tf.train.Feature(bytes_list=tf.train.BytesList(value=[y2.tostring()])),
"id": tf.train.Feature(int64_list=tf.train.Int64List(value=[example["id"]]))
}))
writer.write(record.SerializeToString())
print("Built {} / {} instances of features in total".format(total, total_))
meta["total"] = total
writer.close()
return meta
def save(filename, obj, message=None):
if message is not None:
print("Saving {}...".format(message))
with open(filename, "w") as fh:
json.dump(obj, fh)
def prepro(config):
word_counter, char_counter = Counter(), Counter()
train_examples, train_eval = process_file(
config.train_file, "train", word_counter, char_counter)
dev_examples, dev_eval = process_file(
config.dev_file, "dev", word_counter, char_counter)
test_examples, test_eval = process_file(
config.test_file, "test", word_counter, char_counter)
word_emb_file = config.fasttext_file if config.fasttext else config.glove_word_file
char_emb_file = config.glove_char_file if config.pretrained_char else None
char_emb_size = config.glove_char_size if config.pretrained_char else None
char_emb_dim = config.glove_dim if config.pretrained_char else config.char_dim
word_emb_mat, word2idx_dict = get_embedding(
word_counter, "word", emb_file=word_emb_file, size=config.glove_word_size, vec_size=config.glove_dim)
char_emb_mat, char2idx_dict = get_embedding(
char_counter, "char", emb_file=char_emb_file, size=char_emb_size, vec_size=char_emb_dim)
build_features(config, train_examples, "train",
config.train_record_file, word2idx_dict, char2idx_dict)
dev_meta = build_features(config, dev_examples, "dev",
config.dev_record_file, word2idx_dict, char2idx_dict)
test_meta = build_features(config, test_examples, "test",
config.test_record_file, word2idx_dict, char2idx_dict, is_test=True)
save(config.word_emb_file, word_emb_mat, message="word embedding")
save(config.char_emb_file, char_emb_mat, message="char embedding")
save(config.train_eval_file, train_eval, message="train eval")
save(config.dev_eval_file, dev_eval, message="dev eval")
save(config.test_eval_file, test_eval, message="test eval")
save(config.dev_meta, dev_meta, message="dev meta")
save(config.test_meta, test_meta, message="test meta")
save(config.word_dictionary, word2idx_dict, message="word dictionary")
save(config.char_dictionary, char2idx_dict, message="char dictionary")