From e4ea9d1198dbbc73a2cbbe7f4c87a10706c6a09e Mon Sep 17 00:00:00 2001 From: Eliza Neights Date: Wed, 28 Feb 2024 19:47:01 -0500 Subject: [PATCH 1/3] Fix link to grb notebook --- docs/tutorials/index.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/tutorials/index.rst b/docs/tutorials/index.rst index cff497e8..8e0d15e6 100644 --- a/docs/tutorials/index.rst +++ b/docs/tutorials/index.rst @@ -32,7 +32,7 @@ List of tutorials and contents, as a link to the corresponding Python notebook i - Meaning of the TS map and how to compute confidence contours - Computing a TS map, getting the best location and estimating the error -5. Fitting the spectrum of a GRB `(ipynb) `_ +5. Fitting the spectrum of a GRB `(ipynb) `_ - Introduction to 3ML and astromodels - Likelihood analysis. @@ -69,7 +69,7 @@ List of tutorials and contents, as a link to the corresponding Python notebook i Spacecraft orientation and location Detector response and signal expectation TS Map: localizing a GRB - Fitting the spectrum of a GRB + Fitting the spectrum of a GRB Fitting the spectrum of the Crab Extended source model fitting Image deconvolution From 936dea6de3197c160276ad0835104ae68d3085c4 Mon Sep 17 00:00:00 2001 From: Eliza Neights Date: Fri, 1 Mar 2024 12:09:00 -0500 Subject: [PATCH 2/3] Update COSILike to only print log-likelihood warning once per fit --- cosipy/threeml/COSILike.py | 10 +- .../continuum_fit/crab/SpectralFit_Crab.ipynb | 12594 +--------------- .../continuum_fit/grb/SpectralFit_GRB.ipynb | 6648 +------- 3 files changed, 364 insertions(+), 18888 deletions(-) diff --git a/cosipy/threeml/COSILike.py b/cosipy/threeml/COSILike.py index 3fa27e6a..639de5df 100644 --- a/cosipy/threeml/COSILike.py +++ b/cosipy/threeml/COSILike.py @@ -33,6 +33,8 @@ import logging logger = logging.getLogger(__name__) +import inspect + class COSILike(PluginPrototype): """ COSI 3ML plugin. @@ -127,6 +129,10 @@ def set_model(self, model): model : astromodels.core.model.Model Any model supported by astromodels """ + + # Temporary fix to only print log-likelihood warning once max per fit + if inspect.stack()[1][3] == '_assign_model_to_data': + self._printed_warning = False # Get point sources and extended sources from model: point_sources = model.point_sources @@ -294,7 +300,9 @@ def get_log_like(self): expectation = self._signal + self._bkg.contents expectation += 1e-12 # to avoid -infinite log-likelihood (occurs when expected counts = 0 but data != 0) - logger.warning("Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.") + if not self._printed_warning: + logger.warning("Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.") + self._printed_warning = True # This 1e-12 should be defined as a parameter in the near future (HY) # Convert data into an arrary: diff --git a/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb b/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb index 7f294173..f4a2f72a 100644 --- a/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb +++ b/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb @@ -71,12 +71,12 @@ { "data": { "text/html": [ - "
12:04:06 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
12:03:40 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m12:04:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=470346;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=893600;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m12:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=916286;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=215945;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -91,7 +91,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=6762;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416496;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868229;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764392;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -101,11 +101,11 @@ { "data": { "text/html": [ - "
12:04:07 WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m12:04:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=948704;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=826068;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919383;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -118,7 +118,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=763578;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=926964;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402464;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -131,7 +131,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=437289;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=276200;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200604;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=500344;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -144,7 +144,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=854754;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=780252;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=943578;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=139722;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -157,7 +157,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=51037;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=886253;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882185;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=365193;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -170,7 +170,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882348;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=32791;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=588991;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483700;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -179,11 +179,11 @@ { "data": { "text/html": [ - "
12:04:07 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
12:03:40 INFO      Starting 3ML!                                                                     __init__.py:35\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m12:04:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=779126;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=678149;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=534169;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474409;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -196,7 +196,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=33406;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=943257;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=765631;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=407033;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -209,7 +209,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=477322;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=629927;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770994;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -222,7 +222,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=398906;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628562;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=670603;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=174077;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -235,7 +235,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=760473;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=993456;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=60557;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=407332;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -248,7 +248,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587648;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773161;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=541693;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894858;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -261,7 +261,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=608676;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=815233;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=707179;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -275,7 +275,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=36225;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=173051;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=853968;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45582;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -290,7 +290,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=16130;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=712416;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=982551;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=171931;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -305,7 +305,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891845;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=99596;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -315,11 +315,11 @@ { "data": { "text/html": [ - "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
12:03:41 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=426622;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=4150;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=138869;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412603;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -328,12 +328,12 @@ { "data": { "text/html": [ - "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "
12:03:41 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
        "                  performances in 3ML                                                                              \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=194972;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=896469;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m12:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828564;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=463928;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -348,7 +348,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=365667;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991180;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=215262;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=583062;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -363,7 +363,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754610;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=699096;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752545;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955651;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -520,7 +520,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "ed2c03a0-63e3-4044-9e16-50f0f17996af", "metadata": {}, "outputs": [], @@ -538,7 +538,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "3b5faaa1-1874-4d43-a6ae-7e1b0aaabb26", "metadata": {}, "outputs": [], @@ -558,12268 +558,199 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "620159d2-f01a-453e-9e4c-075c99740086", - "metadata": {}, - "outputs": [], - "source": [ - "crab.load_binned_data_from_hdf5(binned_data=data_path / \"crab_binned_data.hdf5\")\n", - "crab_bkg.load_binned_data_from_hdf5(binned_data=data_path / \"crab_bkg_binned_data.hdf5\")\n", - "bkg.load_binned_data_from_hdf5(binned_data=data_path / \"bkg_binned_data.hdf5\")" - ] - }, - { - "cell_type": "markdown", - "id": "a6bdaee8-45d7-41df-9835-413c1e397c12", - "metadata": {}, - "source": [ - "Define the path to the detector response" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "acccab93-7f9c-4167-a8f9-eedcf74b8a05", - "metadata": {}, - "outputs": [], - "source": [ - "dr = str(data_path / \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\") # path to detector response" - ] - }, - { - "cell_type": "markdown", - "id": "c4d25ed1-7139-4e1d-91ab-889bd2c01300", - "metadata": { - "tags": [] - }, - "source": [ - "## Perform spectral fit" - ] - }, - { - "cell_type": "markdown", - "id": "3d27b1c3-3e9f-4ca7-9a4f-1176a03d10df", - "metadata": {}, - "source": [ - "Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "8784a70b-c322-4e0b-a08e-c6f36bac024b", - "metadata": {}, - "outputs": [], - "source": [ - "bkg_par = Parameter(\"background_cosi\", # background parameter\n", - " 1, # initial value of parameter\n", - " min_value=0, # minimum value of parameter\n", - " max_value=5, # maximum value of parameter\n", - " delta=0.05, # initial step used by fitting engine\n", - " desc=\"Background parameter for cosi\")\n", - "\n", - "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", - " dr = dr, # detector response\n", - " data = crab_bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", - " bkg = bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", - " sc_orientation = sc_orientation, # spacecraft orientation\n", - " nuisance_param = bkg_par) # background parameter" - ] - }, - { - "cell_type": "markdown", - "id": "a58bb558-e03d-4a07-b433-312302f622a7", - "metadata": {}, - "source": [ - "Define a point source at the known location with a Band function spectrum and add it to the model. The initial values of the Band function parameters are set to the true values used to simulate the source" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "e836fc74-15d8-4680-a947-2495670d7a25", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
19:06:16 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=300841;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=209787;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=321434;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263869;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:48 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=92657;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=858679;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "l = 184.56\n", - "b = -5.78\n", - "\n", - "alpha = -1.99\n", - "beta = -2.32\n", - "E0 = 531. * (alpha - beta) * u.keV\n", - "xp = E0 * (alpha + 2) / (alpha - beta)\n", - "piv = 500. * u.keV\n", - "K = 3.07e-5 / u.cm / u.cm / u.s / u.keV\n", - "\n", - "spectrum = Band()\n", - "\n", - "spectrum.alpha.min_value = -2.14\n", - "spectrum.alpha.max_value = 3.0\n", - "spectrum.beta.min_value = -5.0\n", - "spectrum.beta.max_value = -2.15\n", - "spectrum.xp.min_value = 1.0\n", - "\n", - "spectrum.alpha.value = alpha\n", - "spectrum.beta.value = beta\n", - "spectrum.xp.value = xp.value\n", - "spectrum.K.value = K.value\n", - "spectrum.piv.value = piv.value\n", - "\n", - "spectrum.xp.unit = xp.unit\n", - "spectrum.K.unit = K.unit\n", - "spectrum.piv.unit = piv.unit\n", - "\n", - "spectrum.alpha.delta = 0.01\n", - "spectrum.beta.delta = 0.01\n", - "\n", - "source = PointSource(\"source\", # Name of source (arbitrary, but needs to be unique)\n", - " l = l, # Longitude (deg)\n", - " b = b, # Latitude (deg)\n", - " spectral_shape = spectrum) # Spectral model\n", - "\n", - "# Optional: free the position parameters\n", - "#source.position.l.free = True\n", - "#source.position.b.free = True\n", - "\n", - "model = Model(source) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)\n", - "\n", - "# Optional: if you want to call get_log_like manually, then you also need to set the model manually\n", - "# 3ML does this internally during the fit though\n", - "cosi.set_model(model)" - ] - }, - { - "cell_type": "markdown", - "id": "e955d7a4-a40f-4fa2-af9a-c277fce3dc26", - "metadata": {}, - "source": [ - "Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "f83dea31-2284-4f87-910a-be1003d970c8", - "metadata": { - "scrolled": true, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=503243;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=687503;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
19:06:48 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=511152;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=796079;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=731785;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=157628;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=474452;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=805423;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=205428;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=446899;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=766005;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587646;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=465229;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=328318;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=116657;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=90078;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=583456;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=444689;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=440506;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=752055;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=272211;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=140915;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents \n", - " the requested tolerance from being achieved. The error may be \n", - " underestimated.\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587168;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519924;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=774030;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382998;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=957449;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=371962;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=172263;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=751447;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754858;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=120030;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=543163;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550594;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=862545;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=177871;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:49 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=626864;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920853;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=265165;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=564648;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244467;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313907;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=857177;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=674287;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=494310;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=823150;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=783590;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=515762;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306371;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=121067;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=932278;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=707301;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=471109;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=377176;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80497;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=172087;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=36719;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=571852;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=698711;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=586932;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=620514;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=100526;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=940714;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=197473;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=153401;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=876598;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105658;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=886856;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327934;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=625030;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828938;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474638;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=768362;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=288925;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=497851;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=151003;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=228863;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=404640;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=343927;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=641084;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=826112;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=700200;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:50 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=473665;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=202950;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=860589;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=456042;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711930;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=275880;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=624865;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721341;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=335408;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=549692;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=673775;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530883;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816176;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=293163;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=477961;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=915799;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=985399;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=805939;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=983107;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922663;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942126;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=179283;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=74764;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=592948;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923025;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276574;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=619682;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=490972;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=724767;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95095;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=63756;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=829818;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=63929;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=88334;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=998227;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942929;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=799592;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479502;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=76562;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=807577;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727907;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=159815;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=491955;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=584895;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=715401;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:51 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=859104;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=330937;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=424648;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=475747;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=824983;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=112938;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=162025;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=862575;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=980703;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=554719;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=951442;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=545372;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=52448;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=644500;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=459576;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=576251;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=192696;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=346077;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=459421;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=763735;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739626;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=397667;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=967329;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=996195;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=510735;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=687206;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=770172;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=829386;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=756849;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=841480;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752728;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=882726;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=528309;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=880674;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=116553;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=42628;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=17518;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=323102;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=365394;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=209905;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=110958;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308200;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=855724;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=909275;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=439734;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=756941;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=19755;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727917;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:52 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=75512;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551688;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=177058;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205288;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=463842;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448407;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=69243;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=788538;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=597424;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782239;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=122572;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=436845;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=916950;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458845;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=460837;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=388434;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=681188;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=974933;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=523282;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=411165;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=243387;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11234;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=198620;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=702277;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=392449;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=602486;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=346853;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=590970;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=36348;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=934860;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=875882;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=983893;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=783957;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968257;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=404010;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=711179;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=87632;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=627624;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=189661;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654318;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=638735;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868236;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881149;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=476207;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=81123;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=162895;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:53 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679467;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=103279;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=510959;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=47592;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=632374;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=348902;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=719380;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=570182;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=996793;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868156;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=454032;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=265727;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=934323;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=558796;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=671545;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=614033;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845583;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=670531;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=712679;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=835929;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=815539;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=671781;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=74045;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559106;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=529363;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=212694;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=193983;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=618705;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782417;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=301250;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=862348;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462232;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=139990;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=967048;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=658962;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339060;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=971738;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=746037;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981804;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=243285;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782476;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=522060;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662024;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806430;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=352885;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:54 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=138472;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=9525;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=401034;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878032;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95378;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205683;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339542;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=687057;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=66749;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=829108;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=876242;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73833;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809769;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=368883;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=524148;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=320657;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=971383;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828832;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=484510;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117348;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=43689;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=945637;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=550395;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=433106;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=841816;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=16369;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=433320;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=328506;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=538741;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=627043;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=405828;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=626169;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=461533;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=597490;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=541421;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=410107;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=742611;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=128615;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=808142;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=124802;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687885;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=873663;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=158847;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=83037;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806155;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=495999;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:55 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336309;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483423;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=962197;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=533831;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=398496;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=529764;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=953456;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=176301;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=563660;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=348205;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=357517;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=309789;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=197589;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=417248;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=101860;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=25975;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395079;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639353;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=361290;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=148606;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=748164;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=428883;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=563854;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=994216;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=736991;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=197939;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=337969;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=65815;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641555;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290609;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=313623;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80070;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=5067;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=582322;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=889988;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88786;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=268946;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=703768;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905619;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=931802;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430813;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=702131;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566159;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663326;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=776584;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=224966;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:56 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=533839;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=598068;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=470787;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=914585;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=405213;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=151825;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=714938;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=409933;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=801178;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777242;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=73873;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=855526;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=401229;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=883844;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=273703;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110366;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=601899;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=947495;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=328471;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=336314;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687722;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=728825;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817340;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=311035;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395366;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=276478;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=917134;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=38480;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=537353;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=25890;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482206;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=94146;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=118976;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=65976;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=874891;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=808816;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=848265;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=193303;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=132802;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=547136;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=34489;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=532861;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=548381;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=757941;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=603028;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=876775;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=713040;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=596026;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:57 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=484626;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870015;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=146720;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=188473;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806251;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=627685;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=409821;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=788594;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=281898;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=531851;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=374438;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=644433;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=855600;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=839495;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=846097;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=506442;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=512609;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=76810;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=682327;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=220153;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=96979;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=441151;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=64905;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=537823;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=103617;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=583305;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=920328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=319400;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=31896;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243857;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=907573;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=81285;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=815650;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=481225;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=825854;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782128;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=263811;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=735464;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=610577;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=66750;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=22244;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=795973;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=332444;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142227;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=773762;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=204920;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=483171;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=823340;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:58 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=496943;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=128733;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7892;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23954;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=314966;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=504040;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=188429;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=784308;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208273;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=871929;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=787000;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=221425;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=855105;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=790514;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=578743;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=489646;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155257;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=851308;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=743443;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=486350;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=732545;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=573300;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=240993;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=514347;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=407030;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=694322;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=316334;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987051;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=669532;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416400;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=680532;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=769853;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=19033;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=428310;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=870918;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=95221;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817661;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605240;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=33041;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=559303;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=558499;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=543927;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=586127;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=829456;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:06:59 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:06:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=800143;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=283392;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=337957;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389018;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=768120;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=541455;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=927138;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234854;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=448757;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=175611;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370465;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=778826;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=169204;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=722316;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=101684;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68124;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=977541;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522329;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=676184;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=429852;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535220;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=942209;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=646827;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=242209;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=825013;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=392307;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=808281;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=829778;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=876232;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=959082;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=599589;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=78139;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=624191;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=754263;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=524212;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=640283;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=999425;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=26599;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242049;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=387463;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=951119;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=162493;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=783064;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=838300;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=492179;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511920;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868963;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=570458;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:07:00 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:07:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=835731;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=229235;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=31610;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=888704;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=162824;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=508180;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=221486;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=792706;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395183;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967322;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441640;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=269237;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462195;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=218963;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339592;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403722;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=763028;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=37760;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=78501;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=798865;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=618764;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59382;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504461;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=582892;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=662777;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=812315;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=486049;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=434523;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752842;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=767894;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=115101;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=283916;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=101390;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=888516;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=150691;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=995030;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=255969;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=724391;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=46303;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=66020;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868236;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249050;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=697695;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=333383;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=311725;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=538768;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=348015;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=397272;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
19:07:01 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m19:07:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=341913;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=402371;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=688945;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581077;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=796260;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68468;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=922810;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=592014;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=910414;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=747634;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72897;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=816143;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=875608;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668999;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=519577;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=849788;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=984892;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=5915;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=143674;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=429950;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923350;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357919;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=990103;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=231139;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=722114;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=546726;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=607126;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53683;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=750176;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259034;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562183;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=132977;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=91376;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438496;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=750749;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=277698;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" - ] - }, + "metadata": {}, + "outputs": [], + "source": [ + "crab.load_binned_data_from_hdf5(binned_data=data_path / \"crab_binned_data.hdf5\")\n", + "crab_bkg.load_binned_data_from_hdf5(binned_data=data_path / \"crab_bkg_binned_data.hdf5\")\n", + "bkg.load_binned_data_from_hdf5(binned_data=data_path / \"bkg_binned_data.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a6bdaee8-45d7-41df-9835-413c1e397c12", + "metadata": {}, + "source": [ + "Define the path to the detector response" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "acccab93-7f9c-4167-a8f9-eedcf74b8a05", + "metadata": {}, + "outputs": [], + "source": [ + "dr = str(data_path / \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\") # path to detector response" + ] + }, + { + "cell_type": "markdown", + "id": "c4d25ed1-7139-4e1d-91ab-889bd2c01300", + "metadata": { + "tags": [] + }, + "source": [ + "## Perform spectral fit" + ] + }, + { + "cell_type": "markdown", + "id": "3d27b1c3-3e9f-4ca7-9a4f-1176a03d10df", + "metadata": {}, + "source": [ + "Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8784a70b-c322-4e0b-a08e-c6f36bac024b", + "metadata": {}, + "outputs": [], + "source": [ + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = dr, # detector response\n", + " data = crab_bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = sc_orientation, # spacecraft orientation\n", + " nuisance_param = bkg_par) # background parameter" + ] + }, + { + "cell_type": "markdown", + "id": "a58bb558-e03d-4a07-b433-312302f622a7", + "metadata": {}, + "source": [ + "Define a point source at the known location with a Band function spectrum and add it to the model. The initial values of the Band function parameters are set to the true values used to simulate the source" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e836fc74-15d8-4680-a947-2495670d7a25", + "metadata": {}, + "outputs": [ { "data": { "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
12:04:35 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=202821;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522882;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:04:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=444891;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=999475;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" + "... Calculating point source responses ...\n" ] }, - { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=385367;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=705310;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "name": "stderr", "output_type": "stream", "text": [ "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", "\n" ] }, { - "data": { - "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=261336;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=560956;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" + "--> done (source name : source)\n", + "--> all done\n" ] - }, + } + ], + "source": [ + "l = 184.56\n", + "b = -5.78\n", + "\n", + "alpha = -1.99\n", + "beta = -2.32\n", + "E0 = 531. * (alpha - beta) * u.keV\n", + "xp = E0 * (alpha + 2) / (alpha - beta)\n", + "piv = 500. * u.keV\n", + "K = 3.07e-5 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum = Band()\n", + "\n", + "spectrum.alpha.min_value = -2.14\n", + "spectrum.alpha.max_value = 3.0\n", + "spectrum.beta.min_value = -5.0\n", + "spectrum.beta.max_value = -2.15\n", + "spectrum.xp.min_value = 1.0\n", + "\n", + "spectrum.alpha.value = alpha\n", + "spectrum.beta.value = beta\n", + "spectrum.xp.value = xp.value\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value\n", + "\n", + "spectrum.xp.unit = xp.unit\n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + "\n", + "spectrum.alpha.delta = 0.01\n", + "spectrum.beta.delta = 0.01\n", + "\n", + "source = PointSource(\"source\", # Name of source (arbitrary, but needs to be unique)\n", + " l = l, # Longitude (deg)\n", + " b = b, # Latitude (deg)\n", + " spectral_shape = spectrum) # Spectral model\n", + "\n", + "# Optional: free the position parameters\n", + "#source.position.l.free = True\n", + "#source.position.b.free = True\n", + "\n", + "model = Model(source) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)\n", + "\n", + "# Optional: if you want to call get_log_like manually, then you also need to set the model manually\n", + "# 3ML does this internally during the fit though\n", + "cosi.set_model(model)" + ] + }, + { + "cell_type": "markdown", + "id": "e955d7a4-a40f-4fa2-af9a-c277fce3dc26", + "metadata": {}, + "source": [ + "Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f83dea31-2284-4f87-910a-be1003d970c8", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ { "data": { "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
12:05:05 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=245364;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=886194;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:05:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=102912;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987128;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -12829,36 +760,23 @@ "name": "stderr", "output_type": "stream", "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "There are bins in which the total expected counts = 0 but data != 0, making log-likelihood = -inf. Masking these bins.\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", + "WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents \n", + " the requested tolerance from being achieved. The error may be \n", + " underestimated.\n", "\n" ] }, { "data": { "text/html": [ - "
19:07:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "
12:05:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
        "                  measurements such as AIC or BIC are unreliable                                                   \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m19:07:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=818690;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=331173;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=737530;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278840;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -12868,11 +786,11 @@ { "data": { "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
12:05:26 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=784232;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636646;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562228;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53136;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -12986,7 +904,7 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", "\n", "\n", @@ -13049,11 +967,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
cosi-2.612137e+08-2.612135e+08
total-2.612137e+08-2.612135e+08
\n", @@ -13061,8 +979,8 @@ ], "text/plain": [ " -log(likelihood)\n", - "cosi -2.612137e+08\n", - "total -2.612137e+08" + "cosi -2.612135e+08\n", + "total -2.612135e+08" ] }, "metadata": {}, @@ -13112,11 +1030,11 @@ " \n", " \n", " AIC\n", - " -5.224273e+08\n", + " -5.224270e+08\n", " \n", " \n", " BIC\n", - " -5.224273e+08\n", + " -5.224270e+08\n", " \n", " \n", "\n", @@ -13124,8 +1042,8 @@ ], "text/plain": [ " statistical measures\n", - "AIC -5.224273e+08\n", - "BIC -5.224273e+08" + "AIC -5.224270e+08\n", + "BIC -5.224270e+08" ] }, "metadata": {}, @@ -13135,24 +1053,24 @@ "data": { "text/plain": [ "( value negative_error positive_error \\\n", - " source.spectrum.main.Band.K 0.000029 -2.325305e-07 2.284348e-07 \n", - " source.spectrum.main.Band.alpha -1.988617 -3.716644e-04 3.609998e-04 \n", - " source.spectrum.main.Band.xp 4.473464 -1.700670e-01 1.798891e-01 \n", - " source.spectrum.main.Band.beta -2.196416 -1.562358e-03 1.599737e-03 \n", - " background_cosi 0.991932 -2.039369e-04 1.939033e-04 \n", + " source.spectrum.main.Band.K 0.000029 -2.272835e-07 2.278935e-07 \n", + " source.spectrum.main.Band.alpha -1.988617 -3.560944e-04 3.585775e-04 \n", + " source.spectrum.main.Band.xp 4.473464 -1.691279e-01 1.784522e-01 \n", + " source.spectrum.main.Band.beta -2.196416 -1.564268e-03 1.565798e-03 \n", + " background_cosi 0.991932 -1.915462e-04 1.937451e-04 \n", " \n", " error unit \n", - " source.spectrum.main.Band.K 2.304827e-07 1 / (cm2 keV s) \n", - " source.spectrum.main.Band.alpha 3.663321e-04 \n", - " source.spectrum.main.Band.xp 1.749780e-01 keV \n", - " source.spectrum.main.Band.beta 1.581048e-03 \n", - " background_cosi 1.989201e-04 ,\n", + " source.spectrum.main.Band.K 2.275885e-07 1 / (cm2 keV s) \n", + " source.spectrum.main.Band.alpha 3.573359e-04 \n", + " source.spectrum.main.Band.xp 1.737900e-01 keV \n", + " source.spectrum.main.Band.beta 1.565033e-03 \n", + " background_cosi 1.926456e-04 ,\n", " -log(likelihood)\n", - " cosi -2.612137e+08\n", - " total -2.612137e+08)" + " cosi -2.612135e+08\n", + " total -2.612135e+08)" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -13183,18 +1101,18 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "id": "1758942e-55e6-47ea-ab06-779e8a0fc622", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
12:06:33 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=129766;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=751285;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:06:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26512;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=246007;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -13238,7 +1156,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "c3851355-28fa-4ff4-9c5b-522733bb110e", "metadata": { "scrolled": true, @@ -13353,7 +1271,7 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", "\n", "\n", @@ -13416,11 +1334,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
cosi-2.612137e+08-2.612135e+08
total-2.612137e+08-2.612135e+08
\n", @@ -13428,8 +1346,8 @@ ], "text/plain": [ " -log(likelihood)\n", - "cosi -2.612137e+08\n", - "total -2.612137e+08" + "cosi -2.612135e+08\n", + "total -2.612135e+08" ] }, "metadata": {}, @@ -13479,11 +1397,11 @@ " \n", " \n", " AIC\n", - " -5.224273e+08\n", + " -5.224270e+08\n", " \n", " \n", " BIC\n", - " -5.224273e+08\n", + " -5.224270e+08\n", " \n", " \n", "\n", @@ -13491,8 +1409,8 @@ ], "text/plain": [ " statistical measures\n", - "AIC -5.224273e+08\n", - "BIC -5.224273e+08" + "AIC -5.224270e+08\n", + "BIC -5.224270e+08" ] }, "metadata": {}, @@ -13508,11 +1426,11 @@ { "data": { "text/html": [ - "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
12:06:34 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=337197;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=459682;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:06:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840959;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587231;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -13525,7 +1443,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=89741;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=341856;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=521892;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431406;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -13538,7 +1456,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=157516;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=299965;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402878;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=82481;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -13569,28 +1487,28 @@ " * main:\n", " * Band:\n", " * K:\n", - " * value: 2.8565586193551912e-05\n", + " * value: 2.8565585663971596e-05\n", " * desc: Differential flux at the pivot energy\n", " * min_value: 1.0e-99\n", " * max_value: null\n", " * unit: keV-1 s-1 cm-2\n", " * is_normalization: true\n", " * alpha:\n", - " * value: -1.9886166180646347\n", + " * value: -1.9886166208617622\n", " * desc: low-energy photon index\n", " * min_value: -2.14\n", " * max_value: 3.0\n", " * unit: ''\n", " * is_normalization: false\n", " * xp:\n", - " * value: 4.4734637141566\n", + " * value: 4.473463779563324\n", " * desc: peak in the x * x * N (nuFnu if x is a energy)\n", " * min_value: 1.0\n", " * max_value: null\n", " * unit: keV\n", " * is_normalization: false\n", " * beta:\n", - " * value: -2.1964164746917305\n", + " * value: -2.196416422107725\n", " * desc: high-energy photon index\n", " * min_value: -5.0\n", " * max_value: -2.15\n", @@ -13632,20 +1550,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "804e78ca-2ccb-421b-aff2-ad41b70ed24f", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)\n", "\n", @@ -13681,7 +1589,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "id": "3402ff8a-d50e-4bad-a27d-f3b7bc4f4f54", "metadata": { "tags": [] @@ -13690,16 +1598,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 15, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFAUlEQVR4nOzdd1yVZf/A8c9hyQYRnAwZKk6GC/feiprmrtSiMs1SS61s6FM95kwts8dyNCzUTBEVFRVH7oUoimxFRUFlb875/cHPUwQq6IHD+L5fr+f1eriv+76v7yFv+HLd1/W9FCqVSoUQQgghhKjwdLQdgBBCCCGEKBlJ3IQQQgghKglJ3IQQQgghKglJ3IQQQgghKglJ3IQQQgghKglJ3IQQQgghKglJ3IQQQgghKglJ3KqQrKwswsLCyMrK0nYoQgghhCgDkrhVIbGxsfj4+BAbG6vtUIQQQghRBiRxE0IIIYSoJCRxE0IIIYSoJCRxE0IIIYSoJCRxE0IIIYSoJPS0HYAQQghR3eXn55Obm6vtMEQZ09XVRU9PD4VC8cz3kMRNCCGE0KK0tDTi4uJQqVTaDkWUA2NjY+rVq4eBgcEzXS+JmxBCCKEl+fn5xMXFYWxsjI2NzXONxIiKTaVSkZOTQ0JCAtHR0TRq1AgdndLPWJPETQghhNCS3NxcVCoVNjY2GBkZaTscUcaMjIzQ19cnNjaWnJwcDA0NS30PWZwghBBCaJmMtFUfzzLKVuh6DcUhhBBCCCHKmCRuQgghhCikYcOGuLq64u7uTtOmTRk3bhzp6enPfL8NGzZw/fr1x7afPHmSli1b4uHhwd69exk4cCCRkZElura6kcRNCCGEEEVs3bqVixcvEhoaSkpKChs2bHjmez0t+dq4cSMvv/wyFy5coF+/fuzevRtnZ+cSXVvdyOIEIYQQooLY/tFfZCRnl2kfxhY1GPZFpxKfn52dTXp6OjVr1lQfW7JkCZs3byYvL4+6devy/fffY2dnx86dO/noo4/Q0dEhLy+PL774goSEBM6ePcv06dOZN28eX375JQMHDlTfa+HChfj6+mJsbMyvv/5KUFAQ7u7u+Pv7c/LkySdeWx1J4iaEEEJUEBnJ2WQ8KNvEraRGjhyJoaEh0dHRtG7dmlGjRgGwadMmrl+/zokTJ9DV1eXnn39m2rRp7Nixg3nz5rFmzRo6duyIUqkkJSUFS0tLfvnlF9577z0GDx5cpJ+5c+dy7do12rRpw7Rp0wq1vfbaa0+8tjqSxE2UWEJCAjY2NtoOQwghqixjixoVpo+tW7fSokUL8vLyeOONN5gzZw5Lly5l+/btnD17ltatWwMFteh0dXUB6NWrF++++y4jR46kb9++uLu7l9XHqLYkcRMlcvfuXRo2bEivXr2YM2cOXbp00XZIQghR5ZTmFWZ50dPTY8SIEbz//vssXboUlUrFvHnzmDx5cpFzly1bxpUrVzh06BCvvPIK48ePZ/bs2VqIuuqSxQmiRFavXk1WVha7du3Cz89P2+EIIYQoRwcPHqRJkyYAeHt7s3r1ah48eAAUFBG+cOECANeuXaN58+ZMmzaNKVOmcPLkSQDMzc1JTk5+pr6f59qqSBI3USK2trbY2dmhp6fH9OnTC7Xl5eXJQyWEEFXMyJEjcXd3p3nz5ly9epUVK1YA8NJLLzFhwgS6d++Om5sb7u7uHDp0CIAPPviA5s2b4+Hhwc8//8xnn30GwOuvv86CBQtwd3dn9+7dpYrjea6tihQq2dW2yggLC8PHx4e1a9eq/zLSpNzcXE6fPk2nToWH8jdv3sxrr72Gj48P7777LnZ2dhrvWwghqqKsrCyio6NxdHR8pu2PROXzvP/NZcRNlJi+vn6RpE2lUrF06VJSU1NZtmwZwcHBWopOCCGEqPokcaugkpKSmD17Nn379mXcuHGcOXNG2yEVKzs7G3d3d2rUqEHr1q0ZNGhQoXYZ0BVCCCE0RxK3Cmr58uVYWVnh5+fHW2+9xaeffloh55EZGhry/fffc+PGDX766aciGyXPmDGDSZMmERERoaUIhRBCiKpDErcKKCMjg6NHjzJp0iQMDQ3p3LkzLi4uHDt2TNuhPVbt2rVp1qxZoWNxcXF89913bNiwgbZt25KRkaGl6IQQQoiqocrVcbt06RI///wzV65cIScnBxsbG/r3788rr7xSZn1mZGSwceNGwsPDCQ8PJzk5mYkTJxZb4yYjI4MffviBQ4cOkZqair29PePHj6dXr17qc+Li4jAyMqJOnTrqY05OTkRHR5fZZygLly9fxtjYmJycHN58802MjY21HZIQQghRqVWpEbf9+/czffp0TE1N+eijj1i0aBHjx48v83lWycnJ7Ny5k9zc3KcWpp03bx4BAQFMnDiRRYsW4erqyvz589m/f7/6nMzMTExMTApdZ2JiQmZmZpnEX1b69+9PTEwMn3/+ObNmzSrUplQqWbJkiboOkBBCCCGersqMuCUkJLBkyRK8vb2ZOXOm+rinp+cTr0tPTyckJAQvL69i248fP46HhwdGRkaPvUfdunXZtWsXCoWCpKQk/P39iz3vxIkTnD17lk8++YTevXur44uPj+e7776jZ8+e6OrqYmRkRHp6epE4nxRDRWVhYcFHH31U5Livry/vv/8+X3zxBatWrWLChAlaiE4IISqec1vDy+zerUc2KrN7i/JRZUbc/P39yczMZNy4caW+bu7cuezZs6dI244dO/jggw/Yu3fvE++hUCiKTMovztGjRzEyMqJ79+6Fjg8cOJDExERCQ0OBgmK3mZmZ3Lt3T33Oo5ovxQkMDGTu3LmsWrXqqTFUBCqVis8//xwoWD1bu3ZtLUckhBDinxo2bIirqyvu7u40bdqUcePGFRlQKI0NGzZw/fr1x7afPHmSli1b4uHhwd69exk4cCCRkZEluhZg5syZ/P77788cn6bNmjWL3377rUzuXWUSt+DgYMzNzblx4waTJ0+mR48eeHt7s2TJkif+Yxs9ejQjR45k4cKF7NixQ318y5YtLF26lAkTJjBs2DCNxBgdHY2DgwN6eoUHOp2dndXtAMbGxnTu3Jn169eTnZ3N8ePHCQ8PL1JD7ZHevXuzcOFC3n77bY3EWdYUCgV79+5l4sSJ9OvXj759+xZqz83N1VJkQgghHtm6dSsXL14kNDSUlJQUNmzY8Mz3elrytXHjRl5++WUuXLhAv3792L17t/p349OuvXXrFnv27GH06NGliikvL69Ex0pz/SNz5szhs88+Q6lUliqmkqgyiVtiYiJZWVl88skn9OzZk2XLljF27Fj27t3L7NmznzjPbdq0aUyYMIGlS5eyZcsWfv31V1atWsWrr76Kj4+PxmJMTk7G3Ny8yHEzMzMAUlJS1MdmzpxJYmIigwcPZtWqVXz22WdYWlpqLBZts7W1Zf369cW+Vp42bRoDBgzg6tWrWohMCCHEP2VnZ5Oenk7NmjXVx5YsWUK7du3w9PRk4MCB3Lx5E4CdO3fSqlUr3N3dadGiBTt27OCHH37g7NmzTJ8+vdhtqxYuXIivry8rVqzA3d2dpKQkGjZsyOXLl596LcC6desYOXKk+s1Xbm4uc+fOpV27dri7uzNmzBiSkpIAmDhxItOnT6d///64ubkRFBSEu7s706dPp0OHDvz555+cPXuWDh060KpVK9q1a8dff/0FQExMDNbW1ixYsIAuXbqwatWqYj8vFFRacHR05MCBAxr/71Fl5rgplUpycnKYOHGier6Uh4cHenp6rFq1inPnztGmTZvHXu/j44OBgYH6deOUKVMYO3asxuMsyStVAEtLSxYvXqzx/iuaf48+Xr16lR9++AGlUsmJEye4efOmOrEVQghRfkaOHImhoSHR0dG0bt2aUaNGAbBp0yauX7/OiRMn0NXV5eeff2batGns2LGDefPmsWbNGjp27IhSqSQlJQVLS0t++eUX3nvvPQYPHlykn7lz53Lt2jXatGnDtGnTCrW99tprT7wWICgoiPfee0/99eLFizE1NeX06dMA/Oc//+HTTz9V77V67Ngxjhw5gqmpKUFBQVy6dIlvvvmGlStXkpOTg4uLC2vXrqVfv34cO3aMkSNHqmuR3r9/HxcXFz755BMA3NzcinzeRzp27MiBAwfo06fPs/4nKFaVGXGzsLAAoF27doWOP1p08LT34wBpaWnqxCotLU3DERbEWFwR3dTUVIBiR+Oqm7t376r3Op0zZ44kbUIIoSWPXpXev38fR0dH5syZA8D27dsJDAykdevWuLu7s2jRImJjYwHo1asX7777LosWLeLSpUvl8qYoLi6OunXrqr/evn07v/zyC+7u7ri7u/Pbb78RFRWlbh81ahSmpqbqrxs3bkznzp2Bgj2/DQwM6NevHwCdO3emdu3aXLp0CSgoOv/PQZ0nfd66desSFxen8c9bZRI3JyenYo8/ekX6pJEulUrF8uXL2bJlC3PmzGHWrFn88ssvfPvttxqPMTY2tsh78Uf/oB63+KA66d69O1evXmXZsmXFlhCpbLXshBCistPT02PEiBEEBAQABb8z582bx8WLF7l48SIhISFcvHgRgGXLlrF+/XqMjY155ZVXWLRoUZnHZ2xsXKhclkqlYvXq1er4QkND2blzp7r9n0nbv79WqVTF5guPjpmYmBRqf9LnzcrKKpNqEFUmcevWrRsAp06dKnT85MmTADRv3rzY65RKJYsWLcLPz4+PP/6YgQMHMnToUObOncvWrVtZtmyZxurAdenShczMTA4fPlzoeEBAANbW1kV2HqiujIyMmDFjBgYGBoWOb9iwAVdXV+bNmye7MAghRDk6ePAgTZo0AcDb25vVq1er63Dm5uZy4cIFAK5du0bz5s2ZNm0aU6ZMUf8ONjc3f+ZtG592batWrbh27Zr6a29vb5YtW6b+PZGRkcGVK1dK1JerqyvZ2dkcPHgQKCgJdu/ePVq2bFns+Y/7vFAw9cfNza1E/ZZGlZnj1q5dOzp27MjGjRtRKpU0b96ca9eusWHDBjp27EirVq2Kvc7X15d9+/apJxs+MmDAAAwMDPj8889xcHBgxIgRT+z/5MmTZGVlqf+hxMbGEhQUBBS8rjU0NMTLy4s2bdqo/0E1aNCAAwcOcOrUKebNm4eurq5mvhlV0IMHD5gzZw45OTl88cUX9OrVix49emg7LCGE0LiKUmvt0Ry33NxcGjZsyJo1awB46aWXuH//Pt27d0ehUJCXl8err76Kh4cHH3zwAdevX8fAwABjY2O+++47AF5//XVmzZrF4sWL+fLLLxk4cGCJ43jatSNHjuSnn35S71Y0d+5c5s+fT/v27dWjY3PmzHnsAM4/GRgY8McffzB9+nTS09MxNDRky5YtmJiYkJCQUOT8x31elUrFgQMH+PDDD0v8OUtKoSrrbQXKUXZ2NuvXrycwMJD79+9jbW1Nnz59mDhxYpHRm39eEx4eTosWLYptDwkJwdXVFX19/Sf2PWrUKOLj44tt8/X1pV69ekBB5r927dpCW15NmDCh0JZXzyosLAwfHx/Wrl2r/suoqsjIyODzzz9nyZIlvPDCCxWqXo8QQjyrrKwsdZ1OQ0NDbYdTKSmVStq2bcuOHTuwtbXVdjhAwZu0X3/9lZ9//rlI2/P+N69SiVt1V5UTt0euXbuGubk59evXL3Q8ODiYVq1alXjVrhBCVASSuGnG2bNnycrKUi8y0DZfX1+6dOlS5HcVPP9/8yrzqlRUD66urkWOnT17Fi8vLwYNGsSaNWvUo5tCCCGqhyeV+9KG0hYDLo0qszhBVE95eXlMmjSJ/Px8/Pz8nquytxBCCFHRSeImKjU9PT0WLFhA7dq18fDwKFSEUQghhKhq5FWpqPSGDx9O165defjwYZFFJDdu3MDOzk7mvgkhhKgSZMRNVAm1atXCxcWl0LG7d+/i6enJ8OHDuX//vpYiE0IIITRHEjdRZU2dOpX79++zY8cOZsyYoe1whBCi0ni0yfuTfPLJJ/j6+j5zH0FBQezbt++Zr61oCxLKi7wqFVXW+PHjOXz4MLq6uixevFjb4QghRJWyYMGC57o+KCiItLQ0+vbtq6GIqgcZcRNV1vDhwwkODmb79u3UqVNH2+EIIUSJLFu2DFtbW2xtbdU78DwSHR2tbnv77beLXOvt7a1u/7cNGzawbNmyUsXSvXt35syZQ5cuXXB2dubNN99Ut02cOJFvvvkGKNj2au7cubRr1w53d3fGjBlDUlISAMnJybz22mu0bNkSNzc3Jk+ezMWLF1mzZg0//fQT7u7u6iRw7969dO7cmdatW9O+fXuOHDmi7m/evHm4uLjQrVs3/P39S/U5qhIZcRNVWv369YsUQMzNzWXEiBG8/vrrDB48WEuRCSFE8VJSUrh16xZQsLvPP+Xn56vbHj58WOTahIQEdfu/paenk5KSUup4IiMjCQoKIicnh2bNmnHixAk6dOhQ6JzFixdjamrK6dOnAfjPf/7Dp59+yooVK3j33XcxNTUlODgYHR0dEhISsLGx4c033yQtLY0lS5YAEBUVxfz58wkICMDc3JyIiAi6detGTEwMAQEB+Pn5cfHiRYyMjBg+fHipP0dVIYmbqHY+/fRTdu7cyc6dO/nvf//L3LlztR2SEEKomZub06BBAwBq1KhRqE1XV1fdVrNmzSLX2tjYqNv/zcTEpEgiWBJjxoxBV1cXIyMj3N3diYyMLJK4bd++nZSUFLZu3QpATk4Ozs7OAPj7+3Pu3Dl0dHTUMRYnICCAiIgIunbtWuj4zZs3OXToEKNHj8bU1BSAyZMn8/nnn5f6s1QFkriJp8pMzubaoZs06+1ADdMn79la0SmVSsLCwoCCGnA9e/bUckRCCFHYzJkzmTlzZrFtjo6OxMXFPfZaPz+/x7ZNnDjxmeL557ZMurq65OXlFTlHpVKxevXq5/qZqlKp6N+/Pz/99FOxbaKAzHETT3U5IJZzm8P5/Z1DnNp0jYyHWdoO6Znp6OiwdetWvvnmG5YsWUK7du20HZIQQlR63t7eLFu2jIyMDAAyMjK4cuWKum3x4sUolUqg4HUuFIwsJicnq+/Rt29fAgICCq1mffTqtVevXmzevJn09HTy8/Or9S45kriJJ8rPzefagRsA5GbmE+Ifze/vBHHsh8skx6drObpno1AomDp1Ku+8806Rtu3bt5OTk6OFqIQQovJ5VNx87ty5uLu70759e1q1aoWXlxcXL14EYPny5WRkZNCiRQvc3d358MMPgYIFZGfPnlUvTmjUqBG//PILr732Gm5ubjRt2pQVK1YAMHjwYAYPHoybmxs9e/akVatWWvm8FYFCJeOPVUZYWBg+Pj6sXbuWJk2aaOy+KXfTueQfTfiRW+TnKtXHFQpwbF+PVt6OWDe00Fh/2rJ161ZefPFFvLy82Lx5M3Z2dtoOSQhRxWVlZREdHY2jo2OhV5KVwcCBA3n55ZcZM2aMtkOpVJ73v7mMuImnMq9jQudXWzD66260GuKEvpEuACoVRJ28w/YPjxPw1RnuXL1faechpKenM2XKFABOnjzJnj17tByREEJUXL179yY1NZVBgwZpO5RqRxYniBIzrmlIu7FNcPN24mrgDS7viSErpeC1YlxwInHBidRuZImbtxP2HrVR6FSe/UFNTEzYs2cPI0eOpFOnTvj4+Gg7JCGEqLACAwO1HUK1JYmbKLUaJvq4D3WmxYCGXA+K45J/NGmJmQDcC09i/9Lz1LQ1pZW3E85e9dDRqxwDu23atOH8+fMYGBgU2ZReqVSql7ILIYQQ2iK/icQz0zPQpVlfB0Yt60r3t1pR09ZU3fYwLo3Dqy+xedYRQvfFkpeTr8VIS87KykpdJ+iRK1eu0KJFC06dOqWlqIQQVV1lnWYiSu/R6tpnJSNu4rnp6Ong0rkBzh3rc+PCPYL9orgXngRAWkImxzeEcn5bBC36N6RpH3tqmFSeWnCpqamMGDGCsLAwunTpwp49e+jVq5e2wxJCVBH6+vooFAr1bgL/Hu0XVYdKpSInJ4eEhAR0dHQwMDB4pvtI4iY0RqGjwKF1Hew9axN/7SHBfpHEBScCkJWSw9nN1wneGUXT3va0GNAQY8saT7mj9mVkZGBjY0NYWBjNmjWjY8eO2g5JCFGF6OrqYmtrS1xcHDExMdoOR5QDY2Nj7O3tn3n6jSRuQuMUCgX1mlpRr6kV92NSCPaLIvrUHVQqyM3M49LOKK4ExNCoawNaDXbCvI6xtkN+rDp16nDw4EE+/fRTJk+ejJGRkbZDEkJUMaampjRq1Ijc3FxthyLKmK6uLnp6es81sip13KqQsqrjpgnJ8elc2hlN+NE4lHl//5NTKMCpQz1aeTtRy95cixGWXnJyMgcOHOCFF17QdihCCCGqCVmcIMqFRV0Tuvi0YPSK7rQc5Ii+4d+14CKP3+HPuX+xd/FZ4sMeajfQElKpVEyePJkRI0YwderUZ9q4WQghhCgtSdxEuTKpaUj78a6MWdmD1i82wtDs74UKNy8k4D//JDvnn+TmhXsVepXV3r172bZtGwCbNm0iPj5eyxEJIYSoDiRxE1pRw1Qfj+EujFnZgw6vNMXU+u9tP+6GPWTv4nP8+cFfRB6/jTL/+ZZOl4X+/fvz448/YmRkxM8//4yDg4O2QxJCCFENyBy3KqQiz3F7GmWekojjt7m0M4qkW4U3rzerbUSrwU406toAPQNdLUVYvLt371KnTp1Cx5RKJSqVCl3dihWrEEKIyk9G3ESFoKOnQ+Outoz4qgu9Z3hi4/z3pvWp9zL5a90VfN8JItgvkpyMirPy6t9JG8DixYvp168f9+7d00JEQgghqjIpByIqFIWOgoZt6+DQpjZ3Qh8Q7BfFrZCCWnCZyTmc+f06wX4FteCaD2iIsUXFqgUXFBTEhx9+iFKppHXr1oSGhmJmZqbtsIQQQlQRkriJCkmhUFC/eS3qN69FYlQywTujiD4dDyrIycgj2C+Ky3tiaNzdllaDHDGrXTFqwenp6VG7dm3i4+OZPHmyJG1CCCE0ShI3UeFZO1nQ6x0Pku+kc8k/ivAjt1Dmq8jPVXJ1/w2uHbiJU4d6uA1xwspeu4lS586duXDhAitXruSTTz7RaixCCCGqHlmcUIVU5sUJpZH+IIuQ3dFcO3CTvOzCm9fbedjgPtSZOo1raim6xzt8+DA1a9akVatW2g5FCCFEJSWLE0SlY2JliNeEpoxZ1Z3WIxtRw7RwLbidn53Ef8FJbl5MqDC14G7evMmIESPw8vJi48aN2g5HCCFEJSWJm6i0DE0N8HjBhTEru+P1clNMav1dCy7+2kP2LjrLnx9WjFpw//nPf7h//z6ZmZls2bKlwiSUQgghKhd5VVoFBAYGEhgYSFpaGpcuXaryr0ofJz9PSeSTasENcaJRF+3UgsvKyuKdd95h3759nDt3Disrq3KPQQghROUniVsVUl3muD2NSqki9tw9gv0iSYhMLtRmZFmDFgMa0rSXHQbG+o+5Q9l58OBBkaQtOzubGjUqVlkTIYQQFZO8KhVVzqNacN4LOjDwo3Y0aFlL3ZaZlM2Z38L4fXoQZ3yvk5lcvpvDF5e0de3alblz55KXl1eusQghhKh8pByIqLL+WQsuISqZS35RRJ/5Ry24HZFc3h1Nk+62tBzsiJlN+deCmzFjBqdPn+b06dPcvXuX9evXl3sMQgghKg9J3ES1YONkQa93PUi6ncYl/2gijv5dCy50/w2uHriJc8d6uHk7UdO2fGrBqVQqGjdujJ6eHnp6erzzzjvl0q8QQojKS+a4VSEyx63k0u9nErI7hmsHi9aCs29dG3dvJ2o3Kp9acMePH+fGjRuMGTOmXPoTQghReUniVoVI4lZ6Wak5XNkbS+i+WLLTCm9eX6+ZFW7eTjRoaY1CoSj32NasWcOYMWOwtLQs976FEEJUTLI4QVRrhmYGtB7ZiDEru9N+givGVn+v7rwT+oCAhWfZ/tFxok7eQaksv79x1q9fz5QpU2jdujUXLlwot36FEEJUbJK4CQHoG+rRcqAjo5d3o8vrLbCoZ6Juux+TwsGVF9n63hGuHbpJfm7+E+70/LKystT7nEZFRXH58uUy7U8IIUTlIYsThPgHXX1dmnS3o1FXW2LPxHNxRxT3Y1IASInP4Njay5z/I5yWAxxx7WWHvqHmHyFDQ0OOHTvGiy++iKenJy+99JLG+xBCCFE5SeImRDF0dBQ4tq9Hw3Z1uXX5PsE7IrkT+gCAjAfZnPr1Ghe3R9KsnwPN+zpgaG6g0f4dHBw4evRosW0ZGRkYG5d/6RIhhBDaJ69KhXgChUKBbUtrBs1rj/eCDji0qaNuy07P5cK2CH5/J4gTP4WSdj9To33XqFGjyI4K586dw9HRkW3btmm0LyGEEJWDJG5ClFBtF0v6zPRkxKLONOraAIVuwUrTvOx8rgTEsvndwxz5/hJJt9LKpP+HDx8ycuRI7t27x4gRI/jzzz/LpB8hhBAVlyRuQpRSTVszur3ZilHLutGsnwO6BgWPkTJfxfXDt9g6+yiBy8+TEJX8lDuVjr6+Pl5eXgC0b9+eQYMGafT+QgghKj6Z4ybEMzKzMaLjK83wGO7MlYCCWnA5GXmggpgzd4k5c5f6zWvhNtSJ+s1rPXctOFNTUzZt2kS3bt0YOHAgBgaanVcnhBCi4pPETYjnZGRegzajGtNqiBPXDtzg8u4YMpIKNq+/feU+t6/cx8bJArehTji0roNC59kTOIVCwZtvvlnkeGJiIr/88gvTp09HR0cG0oUQoqqSn/BCaIiBkR6tBjsx6utudH61OeZ1/l75mRCVTODyC2ydfZTrh+PIz1NqrF+lUsmECROYMWMG3t7ePHjwQGP3FkIIUbHIiJsQGqZnoItrL3sa97Aj+lQ8wX6RPIhNBSD5djpHvg/h3NZwWg50pEkP2+euBXfs2DH27dsHwJkzZ8jKynruzyCEEKJikhE3IcqIjo4C5w71GP5lJ/rNaUNd1783rU+/n8XJn6/y+/Qgzm8LJyst55n76dq1K3v37qVOnTr89ttv1K9fXxPhCyGEqIBkxE2IMqZQKLBzs8HOzYa71x8S7BfFjfP3AMhOy+X81ggu7YzGtZcdLQc6YmJlWOo++vTpQ1RUVJHCvPn5+WRlZWFiYvKYK4UQQlQmGkvczp07x/nz57l8+TL37t0jOTkZQ0NDLC0tcXJywt3dnQ4dOlCrVi1NdSlEpVOncU36vteaBzdSueQfReTxO6iUKvKy87m8O4bQvbG4dGmA2xCnQvullkRxuyl8+umnbN++na1bt+Lq6qqpjyGEEEJLFCqVSvWsF2dkZPDHH3+wc+dO7t27x6NbGRgYYG5uTnZ2Nunp6SiVBROxdXV16dSpE6NGjaJly5aa+QRCLSwsDB8fH9auXUuTJk20HY4ogdR7GYTsiiYsKI783H8sWFCAY9u6uHk7Ye1k8Uz33r17t7rWm6WlJdHR0VhaWmogaiGEENryzCNuO3bsYP369Tx8+BAXFxe8vb1p3rw5TZo0KfSXv0qlIi4ujtDQUM6cOcOxY8c4evQonTp1YurUqTIfR1RrZrWN6TipOe4vuHAlIJar+/+uBRd9Op7o0/E0aFkLN29n6jWzKlUtOGdnZ5o3b86VK1f46KOPJGkTQogq4JlH3Hr06EGfPn0YO3Ysjo6OJb4uOzubwMBAfvnlF/r168fEiROfpXtRDBlxq/xyMnK5euAml3dHk5lceMGCjYsF7t7O2HvWLnEtuPT0dNatW8e0adOeuwCwEEII7XvmxO3WrVs0aNDgmTvOz88nISGBunXrPvM9RGGSuFUdeTn5hB+5xaWdUaQmFN683rKBKW5DnHDuWA8dvWdbGL5r1y709PTo16+fJsIVQghRTp65HMjzJG1QMN9NkjYhiqdnoEvT3va8uKwrPaa5YWVvpm5LupXG4TWX2DzzCFf2xpKXnV+qe0dGRjJ+/HgGDBjAZ599pp6DKoQQouKTciBCVGA6ujo4d6yPU4d63LyYQPCOKO5efwhAWmImJzaGcuHPCJr3d6BZHwdqmOg/9Z5r1qwhOTkZgNDQUHmFKoQQlYgkbkJUAgqFAnuP2th71Cb+2gOC/aK4eTEBgKyUHM5tDufSzihce9nTckBDjGs+vhbcV199hZWVFb/88gs//PCDJG5CCFGJPFc5kH9LTU3lr7/+on///pq6pSgFmeNWvdyPTeHSziiiTtzhn0+xrr4Ojbo2oNVgR8zrPL4WXHZ2NjVq1Ch07MGDB9SsWVOSOSGEqKA0uuXV3bt3WbhwoSZvKYR4jFoO5vSY5s6Ly7ri2ssOHb2CZCs/V8m1AzfZMvMIB1dd5H5sSrHX/ztpS09Pp2vXrowdO5bU1NQyj18IIUTplepV6d27d5/YnpiY+FzBCCFKz7yOCZ1fbYHnCy5cDojhauANcjPzUakg6sQdok7cwdbNBvehTtR1tXrsfaZMmcKVK1e4cuUKubm5/PHHH+X4KYQQQpREqRK3UaNGPfEVikqlklcsQmiJcU1D2o11xc3bmav7b3A5IIaslIJacHHBCcQFJ1CncU3cvJ2w87Ap8qwOHz6cHTt2oFQq+fLLL7XxEYQQQjxFqRI3MzMzfHx88PDwKLY9NjaWjz/+WCOBCSGeTQ0TfdyHOdNiQEPCguII2RVNWmJBLbi71x+yb8k5atqZ4TbEEacO9dDRLZgxMXz4cFq2bEl4eLjMkRRCiAqqVIlb48aNSUpKwt7evtj2nJwcNLjWQQjxHPRq6NK8nwNNe9kReeIOwX5RJN1KA+DhzVSCVl/i7JZwWg12pHE3W/QMdHFxccHFxaXQfVQqFfPnz2fixIk0bNhQC59ECCHEI6VanDBs2DDq1av32PY6deowd+7c5w5KCKE5Ono6NOrSgBFfdabPLE9qu1iq29ISMjm+PhTfd4II9oskJyO3yPXffvst8+fPx9PTkz179pRj5EIIIf6tVCNuXbt2fWK7mZkZAwYMeK6AhBBlQ6GjwKF1Hew9/78W3I4o4i4VLCjKTM7hzO/XubgjimZ97GnevyHGljXIzc1l9erVADx8+JCsrCxtfgQhhKj2pACvENWMQqGgXtNa1Gtai8SYZIL9oog5FY9KBbmZeQT7RXF5TwyNu9nScpAjJ06cYNKkSTg5OTF8+HBthy+EENXacydu3bt3x9fXlzp16mgiHiFEObJuaEGv6R4k30nnkn804UfjUOapyM9VcjXwBtcO3MCpQz3+t3w9lg2KFvO9e/euPPtCCFGOnrsAryxGEKLys6hnQhefFoxe0Z2WgxzRN9QFQKWCyON32P7BcQ4sv0j8tQfqa/766y8cHR1ZtmyZ/BwQQohyIq9KhRBqJjUNaT/eFfehzoTuj+VKQAxZqQULFm5eSODmhQTqNKmJfRcLRr00iszMTGbNmkXt2rWZMGGClqMXQoiqT6NbXgkhqoYapvp4DHdhzMoedHilKabWf29afzfsISf/F4mXfU8AenTvwZgxY7QVqhBCVCsy4iaEeKyCWnANadrLnsjjdwjeGUnSrXR0dXQZ4DgO2xqNaObSgvCg2zTq2gA9A11thyyEEFWajLgJIZ5KR0+HRl0bMOKrLvSe4YmNswUALeu3RTfdiL/WXVHXgouNvMGsWbPIzMzUctRCCFH1yIibEKLEFDoKGratg0Ob2twJfUCwXyS3Qu4DBbXgTmwKZXnQh1y/e5kDgQfZ4bcdBwcHLUcthBBVhyRuQohSUygU1G9ei/rNa5EQlcwlvyiiz8QT9zCKmMRwAG5ExHFlx02sxtpgZmOs5YiFEKJqeO7E7aWXXsLU1FQTsQghKiEbJwt6vetB0u00LvnbYqC/nP8d+4qX2r3D7ZOpbD59BOeO9Wg1xAkrOzNthyuEEJWaQiUFmCqkpKQkvvzySy5evIi1tTUzZsygbdu2T7wmLCwMHx8f1q5dS5MmTcopUiEKS7+fSbB/FNeDbpGXna8+npefS01XQ7qPb0udxjW1GKEQQlReZb44QaVScfPmTe7du1fWXVUpy5cvx8rKCj8/P9566y0+/fRTkpOTtR2WEE9lUsuIjq80Z8zK7niOcKGGqT4AWy+u4/VFY1jy1lr8F5zk5sUEKdwrhBClpLHE7ejRoyxcuJDU1FT1sTt37jBx4kReeuklRo0axYIFC1AqlZrqssrKyMjg6NGjTJo0CUNDQzp37oyLiwvHjh3TdmhClJihmQGeIxoxZmV30p1jOXB9BylZD1kZ9AnhF2PYu+gs2z/8i8gTd1AqJYETQoiS0Fji5ufnx9WrVzEz+3sOy6pVq4iJicHDwwNnZ2cOHjzI7t27NdXlE/n7+9O1a1f69etX5n1lZGTw3XffMXPmTIYMGULXrl1Zt27dY89duXIlw4cPp3fv3kyePJkDBw4UOicuLg4jI6NCe0A6OTkRHR1dpp9DiLKgb6jHuOkj6NWrFwAvd5+KmWFBOZH7sakcWnWRrbOOcO3ADfJz8590KyGEqPY0lrhFR0fTtGlT9ddpaWmcPHmSnj17snz5cr7//nscHBzYtWuXprp8rISEBFavXo21tXWZ9wWQnJzMzp07yc3NpUuXLk88d968eQQEBDBx4kQWLVqEq6sr8+fPZ//+/epzMjMzMTEpvKG3iYmJ1MUSlZaNjQ179+5ly5YtrNm7mF7vemDtZKFuT7mbwbEfr+D7zmEu+UeRk5mnxWiFEKLi0lg5kKSkJGrVqqX+OiQkhPz8fPVf2Xp6erRp06ZQglJWli5dSqtWrTA3N+fw4cNPPDc9PZ2QkBC8vLyKbT9+/DgeHh4YGRk99h5169Zl165dKBQKkpKS8Pf3L/a8EydOcPbsWT755BN69+4NgKenJ/Hx8Xz33Xf07NkTXV1djIyMSE9PLxLnk2IQoqLT1dVl5MiRADi2q0vDtnW4feU+K/+zhjvRCXRx7kdGUjanN4VxcXskzfo60Ly/A0bmNbQcuRBCVBwaG3EzMTEhJSVF/fWFCxfQ0dHBzc1NfUxPT4+srCxNdVmsffv2cfHiRWbOnFmi8/39/Zk7dy579uwp0rZjxw4++OAD9u7d+8R7KBQKFArFU/s6evQoRkZGdO/evdDxgQMHkpiYSGhoKAC2trZkZmYWWtARHR2No6NjsfcNDAxk7ty5rFq16qkxCFFRKBQKknXu8Y3/f/n5zEq2RH5HvqrgVWlORh4Xt0fy+/Qgjm8MJS1RRpuFEAI0mLjZ29tz/PhxUlJSSEtL48CBAzRq1KjQnLf4+Hhq1iy7MgAPHz5k1apVvPHGG9SuXbtE14wePZqRI0eycOFCduzYoT6+ZcsWli5dyoQJExg2bJhG4ouOjsbBwQE9vcIDnc7Ozup2AGNjYzp37sz69evJzs7m+PHjhIeH06lTp2Lv27t3bxYuXMjbb7+tkTiFKC87d+4kIyMDANsWNoxa0p3G3Rqg0C34Qyg/R0no3lh8Zxzm8JpLPIxLfdLthBCiytPYq9IRI0bw6aef8sILL6hH1iZPnqxuz8/PJyQkpNA8OE1btmwZdnZ2pU60pk2bRo0aNVi6dCk5OTnk5OTw/fff8+qrr/LKK69oLL7k5GTq169f5Pij5PafI5YzZ87kiy++YPDgwVhbW/PZZ59haWmpsViEqAjmzJmDvb093377Ld988w3GxsZ0faMVniMbEbIrmrBDceRl56PKVxF+5BbhR27h0KYObt5O1Hax1Hb4QghR7jSWuHXv3p0ZM2aoFx/06NGDQYMGqdvPnTtHVlYW7dq101SXhQQFBXH8+HF+/PHHEr22/DcfHx8MDAzUrxunTJnC2LFjNR1miWOztLRk8eLFGu9fiIpm7NixjBkzptCzYVrLiAbdTWkxqBPXD90mdG8s2em5AMSevUvs2bvUa2aF21BnGrSo9UzPvBBCVEYa3at02LBhjx3tateuXZmVAsnIyODrr7/mhRdeoFatWupacnl5BSvTUlNT0dPTe+rk/rS0NBQKBSqVirS0NI3HaWFhUWwR3Ufxmpuba7xPISqDfydeycnJ9OrVi9q1a7N582ZaDe7OtQM3CdkdTcbDbADuhD7gTugDrB3NcfN2wqFtXXR0JIETQlRtVWKT+eTkZB48eICvry++vr5F2gcNGkTnzp358ssvi71epVLx9ddfs2PHDubMmUNubi7Lli0jJyeHqVOnaixOJycnAgMDycvLKzTPLSoqCuCxiw+EqG7eeOMNIiIiiIiIwMfHh927d9NykCPN+toTcew2wTujSIkvmBuXGJ3CgRUXsahnQqvBjrh0ro+uvq6WP4EQQpSNKpG4WVlZsWLFiiLHf/31Vy5evMjixYuxsLAo5kpQKpUsXryYgIAAPv74Y3X5EgMDAxYtWkR2djYzZszQyKuYLl26sHPnTg4fPqzuByAgIABra2uaNWv23H0IURXMnDmTEydOkJqayurVq9XHdfV1adLDjkbdbIk5HU+wXxT3YwrmhibfSefo2suc+yOclgMcce1lh75hlfgRJ4QQalXip1qNGjXw8PAocnzPnj3o6uoW2/aIr68v+/btY8GCBYWK5w4YMAADAwM+//xzHBwcGDFixBNjOHnyJFlZWeoVcrGxsQQFBQHg5eWFoaEhXl5etGnThmXLlpGRkUGDBg04cOAAp06dYt68eejqyiiBEFAwteL8+fOEhYXRsGHDIu06OgqcvOrh2L4uty7fJ3hHJHdCHwCQ8SCbU79e48L2SJr3c6B5XwcMzQ3K+RMIIUTZUKiq8C7PX375JYcPH35iHbbs7GzCw8Np0aJFse0hISG4urqir6//xL5GjRpFfHx8sW2+vr7Uq1cPKJiPt3btWg4dOkRqair29vZMmDCh0AjcswoLC8PHx4e1a9fSpEmT576fEBWNUqlk2rRpTJo0ibZt2xZquxeRRLBfFLFn7xY6rldDlyY9bGk5yBHTWlLEWghRuVXpxK26kcRNVHULFy7kgw8+wMDAgO+//56JEycWOefhrTQu7Ywi4q/bqPL//vGm0FXg0qk+bkOcsGxgWo5RCyGE5lSJV6VCiKovPz9fvTI9NzdXPYr9bzUbmNLtzVZ4jmhEyO5owg7dJD9H+XctuKO3aNimDm5DnbFxKn7uqxBCVFSSuAkhKgVdXV0OHDjA7NmzsbS0pF+/fk8838zGiI6vNMNjuDOhe2O5sjeWnIw8UEHMmbvEnLlL/ea1cBvqRP3mUgtOCFE5yKvSKkRelYrqQqVSFUm0QkNDn7gyOyczj2sHbnB5dwwZSdmF2mycLHAb6oRD6zoopBacEKICK/VepUqlkqioKBITE4u05eXlcfHiRU3EJYQQj/XvpG3fvn20aNGCt99+m+zs7GKvMTDSo9VgJ0Z93Y3OrzbHvI6xui0hKpnA5RfYOvso1w/HkZ+nLNP4hRDiWZVqxC0+Pp7Zs2cTGxuLQqHAy8uLDz74QF0j7cGDB7zwwgvqMhiifMmIm6iO7t+/j6urq/qPyR9++IFXX331qdcplSqiT8UT7BfJg9jCm9eb1DKk5UBHmvSwlVpwQogKpVQjbt999x02NjZs2bKFdevWkZuby9SpUwuNvsmbVyFEebKysuLLL7+kRo0aDBo0iEmTJpXoOh0dBc4d6jH8y070m92Guq411W3p97M4+fNVfp8exIVtEWSl5ZRV+EIIUSqlStyCg4OZMmUKtWvXxsnJiSVLltCqVSumTZvG3bsFtZNkgq8QojwpFAp8fHw4ceIEP/30Ezo6pZsBolAosHO3YfAnXgz5zAs7Dxt1W3ZaLue2hvP79CBO/XqN9AdZmg5fCCFKpVQ/4bKysgoVolUoFMyePZu2bdvy9ttvc+vWLY0HKIQQJeHh4YGVlVWhYzExMYwePZqEhIQS3aNO45r0e78NLyzsjHOn+uqFCnlZ+YTsisb33SCOrg0h+U66xuMXQoiSKFXiZm9vT1hYWJHjs2bNwsvLi7lz52osMCGEeB7Z2dm8+OKLbN68GU9PTy5fvlzia63szegx1Y1Ry7rStI89uvoFPyqVeSrCDsWx5b0jHFhxgcTo5LIKXwghilWqxK1r167s37+/2LaZM2fSs2dPmeMmhKgQIiMjuXnzJlCwn7GtrW2p72FW25hOk5ozemV33Lyd0Df6/4UKKog+Fc/2j46z579nuB16X372CSHKhdRxq0JkVakQhd25c4dJkyaxcOFC3N3dn/t+ORm5XA28weU9MWQmF16wUNvFEjdvJ+w9a0stOCFEmZHErQqRxE2IksnMzCQ2NhZXV9dnuj4vJ5/rh+MI8Y8mNSGzUJtlA1Pchjjh3LEeOnqlLpUphBBP9Nw/Vbp3765eUSqEEJXB22+/TevWrfn111+f6Xo9A12a9XHgxWVd6T7VjZp2Zuq2pFtpHF5zic0zD3Nlbyx52fmaClsIIZ4/cZMBOyFEZfLHH3/w448/kpGRweuvv87t27ef+V46ujq4dKrPCws70ff91tRp/HctuLTELE5sDC2oBbc9guy0XE2EL4So5mQcXwhRrQwcOJDJkycDsGbNGurXr//c91QoFNh71GbIZ14M/qQ9du5/14LLSs3h3OZwfp9+iFObrpHxUGrBCSGenezlIoSoVoyMjPjxxx+ZPHkynTp10vj967paUdfVivuxKVzaGUXUiTuoVJCblU+IfzRXAmJo3NWWVkMcMa9jovH+hRBVm4y4CSGqpeKStrVr1/Lhhx+Sl5f33Pev5WBOj2nuvLisG6697NQLFZR5Kq4dvMmWmUc4uOoi92NSnrsvIUT1ISNuQggBnDt3jmnTppGTk8PJkycJCAjAwMDgue9rXseYzq+2wPMFFy4HxHB1/w1ys/JRqSDqxB2iTtzB1s0GN28n6rrWlG0DhRBPJImbEEJQsBdzfn7BCtAWLVpoJGn7J+OahrQb64qbtzNX9xfUgstKLagFFxecQFxwArUbW+I2xAl7D6kFJ4QoniRuQggBTJ48mcaNG7Ns2TKWLFlSZv3UMNHHfZgzLQY25HpQHJf8o0hLLFiwcO96EvuXnqemrSmtvJ1w7lAPHV2Z0SKE+NtzJ24vvfQSpqammohFCCG0qnPnznTu3LnI8dDQUBo0aICFhYXG+tIz0KVZXwdce9oRefIOwX5RJMWlAfAwLo3Dqy9xbnM4rYY40ribLXoGuhrrWwhRecnOCVWI7JwghOYlJibi6elJjRo12Lp1K25ubmXSj0qp4saFewT7RXEvPKlQm6G5AS0GNKRpb3tqmOiXSf9CiMpBXpUKIcQTTJs2Tb1Z/fvvv8++ffvKpB+FjgKH1nWw96xN/LWHBPtFEhecCEBWSg5nfa8T7BdF0972tBjQEGPLGmUShxCiYtN44qZUKklISCAhIeGxS+o1sdmzEEKUh//+97+Eh4cTFxfHhg0byrw/hUJBvaZW1Gtqxf2YFIL9oog+9f+14DLzuLQzist7YmjcrQGtBjthXse4zGMSQlQcGkvcVCoVv/76K5s3byYl5cl1iYKCgjTVrRBClClHR0f++usvIiMjNbLLQmnUamhOz+nuJMc34tLOaMKPxqHMU6HMU3LtwE3CDt7EqUM9Wnk7UcvevFxjE0Joh8YSt++//57ffvuNmjVrMmDAAGrVqoWurkymFUJUfoaGhjRv3rzQsfz8fF588UVefvllhg0bVqb9W9Q1oYtPCzxHunB5dwxXA2+Ql11QCy7y+B0ij9/BzsMGtyFO1HW1KtNYhBDapbHELSAgADs7O/73v/9hbCxD90KIqu2TTz7hzz//5M8//+S///0vc+fOLfM+TWoa0n68K+5DnQndH8vlPTHqzetvXkjg5oUE6jSpiZu3E3buNlLMV4gqSGOJW2ZmJn369JGkTQhR5SmVSqKiogDQ1dUtkz1Pn6SGqT4ew11oMaAh1w/Hcck/mvT7BbXg7oY9ZN/ic9S0N8Pd2wnH9nWlFpwQVYjGEjcXFxfu37+vqdsJIUSFpaOjw6ZNm+jYsSP5+fl06dJFK3HoG+rRvF9DmvayJ+L4bS75RZF0Ox2AhzdSOfRNMGd9r9NqiBONujaQWnBCVAEa+zPs5Zdf5tixY4SFhWnqlkIIUWEpFArefvtt3n333SJthw4dQqlUllssOno6NO5qy4hFXeg9wxNr578LBacmZPLXuiv8Pj2IYL9IcjJyyy0uIYTmabQAb1BQEMuXL6dTp044OztjYmJS7Hn9+/fXVJfiH6QArxDat337doYPH86QIUPYuHEjNWvWLPcYVCoVd0IfEOwXya2Qwm9C9I30aNanoBackYXUghOistHYq9KcnByOHTtGcnIyu3btAigyMValUqFQKCRxE0JUScnJyUyePBmAnTt38scff/Daa6+VexwKhYL6zWtRv3ktEqOTC2rBnY6H/68FF+xXUAuuSXdbWg52xMxG5iYLUVloLHH75ptv2L9/P87OznTr1k3KgQghqh0LCws2bdrEhAkT6NWrF6+++qq2Q8La0YJe73iQfCedS/5RhB+5hTJfRX6uktD9N7h64AbOHevTaogTVnZm2g5XCPEUGntV6u3tTd26dVm9ejV6erKTljbIq1IhKoYbN25Qs2ZNzMwKJ0KP3jpoU/qDLEJ2R3PtwE3ysvMLtdl72uDm7UydxuX/elcIUTIaW5yQk5ODh4eHJG1CiGrP3t6+SNIWFhZG586duX79upaiKmBiZYjXhKaMWdUdz5EuhTatv3E+gZ2fncR/wUluXkxAg1OghRAaorEsq0mTJsTFxWnqdkIIUWWkp6czcuRILl++TJs2bdi7dy8dOnTQakyGpgZ4vtCIlgMdCTsUxyX/KDIeZgMQf+0h8dfOYmVvhttQ54JacDpSzFeIikBjI24+Pj6cPn2a48ePa+qWQghRJSQmJqrLg9jZ2dGqVSstR/Q3fUM9WgxoyOgV3en6Rkss6v1dDeDBjVQOrbrIlpmHuXbgBnk5+Y+/kRCiXGhsjtuGDRu4cuUKZ86cwcPDAxcXl2LLgSgUCl555RVNdCn+Rea4CVFxpaWl8e677/Lee+/h6uqq7XAeS6VUEXP2LsE7IkmMTinUZmRhQIuBjjTtZYeBsf5j7iCEKEsaS9y6detWsg4VCoKCgjTRpfgXSdyEqHxSU1M5f/58iX+GlheVSsXtK/e5uCOKO1eK1oJr3s+B5v0cpBacEOVMY3PcVqxYoalbCSFEtaBSqXjttdfYsmUL8+fP56OPPkJHp2LsK6pQKGjQwpoGLaxJiEwi2C+KmLN31bXgLm6PJGRXNE162NFykCNmNkbaDlmIakGjOycI7ZIRNyEql0e7LACYm5tz+fJl7OzstBzV4yXdSiuoBXf0Nirl3786FDrg3LE+bt5O1LSVWnBClKWK8aedEEJUQ97e3vznP/9BR0eHjRs3VuikDcCygSld32jF6BXdaDGgIboGBb9CVEqIOHabP2YfY9/Sc9wLf6jlSIWoujQ24hYSEsLhw4cZO3YstWrVKtJ+//59fvvtN3r06EHz5s010aX4FxlxE6JyioiIwMXFpdCxRz+atV2w90myUnK4si+WKwEx5GTkFWqr27Qm7kOdadDSukJ/BiEqG42NuPn6+vLXX38Vm7QB1KpVi+PHj7N582ZNdSmEEFXCv5M2gOXLlzNhwgTS0tK0EFHJGJob0HpkI8Z+04P2E1wxtvx7oUL81YcELDzL9g//IurkHZRKmZUjhCZobHHCtWvXaN269RPPcXNz4+zZs5rqUgghqqRjx44xe/Zs8vPzCQ4O5syZMxgZVdzJ//qGerQc6Eizvg5EHLtF8I4oUu5mAHA/NpWDKy9iVscYN28nGnWuj66+7GMtxLPS2IhbUlIS1tbWTzzHysqKhw9l7oMQQjzJw4cPMTY2BgrmwVXkpO2fdPV0aNLdjpFLu9LrHXesHP5eqJB6N4Njay/z+/QgLu2KJicz7wl3EkI8jsZG3ExNTbl3794Tz7l7926l+QEkhBDaMmTIEM6ePcvXX3/NggULtB1OqenoKHBsX4+G7epy6/J9Lm6PIP5qwR/tmck5nP71Ghf/jPj/WnANMTQ30HLEQlQeGhtxa968OUeOHOHu3bvFtt+9e5ejR4/SokULTXUphBBVVuPGjVm9ejV6eoX/vj558iSxsbFaiqp0FAoFti2tGfyxF94LOmDfura6LScjjwt/RvLb9EOc+CmUtPuZWoxUiMpDY4nbqFGjyM7OZurUqQQEBJCYmAgU7NG3Z88e3nrrLXJychg9erSmuhRCiGrl9u3bDB06FE9PTwICArQdTqnUdrGk76zWjFjUGZfO9VH8/6b1+TlKrgTE4vvOYQ5/d4mkWxV3MYYQFYFGC/Bu27aNVatWFVrG/s////bbb/PCCy9oqjvxL1IORIiq7aWXXuKXX34BoH///uzevbvSltpITcgkZFcUYYfiyM9V/t2gAAfP2rgPc8bG2VJr8QlRUWl854SoqCi2b9/OtWvXSEtLw9TUlKZNmzJ06FCcnJw02ZX4F0nchKjaHj58yMSJEzl//jznz5/HxsZG2yE9t8yUbK4ExHJlbyy5/1qwUK+pFe7DnKnfolalTVCF0DTZ8qoKkcRNiKpPqVRy69atIrssKJXKCrPP6bPIycjl2sGbhPhHk5mSU6itVkNz3Ic507BNHfUrViGqq8r7lFdxSUlJzJ49m759+zJu3DjOnDmj7ZCEEBWAjo5OkaQtJyeHHj168PXXX1NZ/xY3MNan1WAnRq/sTufXWmD6j03r78ekcODrC2yZdYTrQXHk5ymfcCchqjZJ3Cqo5cuXY2VlhZ+fH2+99RaffvopycnJ2g5LCFEBvf/++xw5coQZM2Ywc+ZMbYfzXPQMdHHtaceo5d3o8bY7Ne1M1W0pdzM48r8QfKcHcXlPNLlZUgtOVD+SuFVAGRkZHD16lEmTJmFoaEjnzp1xcXHh2LFj2g5NCFHBqFQqDA0NATAwMGD8+PFajkgzdHQUOHeoxwsLO9NvThvqNLZUt2UkZXPy52v89vYhzm8LJyst5/E3EqKK0VgBXm0LDw9n7dq1REVFkZSURI0aNbC3t2f48OH07du3TPvOyMhg48aNhIeHEx4eTnJyMhMnTmTy5MnFnvvDDz9w6NAhUlNTsbe3Z/z48fTq1Ut9TlxcHEZGRtSpU0d9zMnJiejo6DL9HEKIykehUPDVV1/RsWNHHjx4QJs2bbQdkkYpFArs3Gywc7Ph7vWHXNweyc2LCQDkpOdxfmsEwX5RNO1lT8tBjphYGWo5YiHKVpVJ3NLS0qhduza9e/fG2tqarKws9u/fz+eff86dO3d45ZVXyqzv5ORkdu7cibOzM126dMHf3/+x586bN49r167xxhtvYGdnR2BgIPPnz0epVNKnTx8AMjMzMTExKXSdiYkJSUlJZfYZhBCV29ChQ4s9/vvvvzNs2DD1qFxlVqdxTfrNbsODG6kE+0USdfIOKmVBLbjLe2K4si+WRp3r4+btjEU9k6ffUIhK6LkSt7y8vCJVvbXFw8MDDw+PQsc6duzInTt32Llz52MTt/T0dEJCQvDy8iq2/fjx43h4eDxxq666deuya9cuFAoFSUlJj03cTpw4wdmzZ/nkk0/o3bs3AJ6ensTHx/Pdd9/Rs2dPdHV1MTIyIj09vUicsl2YEKI0fv31VyZMmICnpydbt27F0dFR2yFphJW9GT2mudNmVGMu7Yom7FAcyjwlqnwV1w/f4vrhWzi0qYPHMGesnSy0Ha4QGvVcc9xeeOEFvv32W2JiYjQUjuZZWFigq6v72HZ/f3/mzp3Lnj17irTt2LGDDz74gL179z6xD4VCUaIaQ0ePHsXIyIju3bsXOj5w4EASExMJDQ0FwNbWlszMzEJ7v0ZHRz/2h25gYCBz585l1apVT41BCFE9pKen8+677wJw/vx5Dh8+rN2AyoBZbWM6TWrOmFXdcfN2Qq/G3z/rY8/eZfu84+z6/BS3r9yvtKtthfi350rc0tPT2bx5MxMnTmTKlCn4+/uTkZGhqdieiVKpJC8vj6SkJP78809Onz7NuHHjHnv+6NGjGTlyJAsXLmTHjh3q41u2bGHp0qVMmDCBYcOGaSS26OhoHBwcioxSOjs7q9sBjI2N6dy5M+vXryc7O5vjx48THh5Op06dir1v7969WbhwIW+//bZG4hRCVH4mJiYEBgbi4uLC5MmTmThxorZDKjPGFjVoO6YJ477tQdsxjalhpq9uuxP6gN1fnGbHvOPEnLmLSikJnKjcnus9559//snevXvZs2cPoaGhXL16lVWrVtGjRw8GDhxIq1atNBVniS1btgw/Pz8A9PX1eeeddx479+ORadOmUaNGDZYuXUpOTg45OTl8//33vPrqqxqdG5ecnEz9+vWLHDczMwMgJSVFfWzmzJl88cUXDB48GGtraz777DMsLS01FosQoupzc3Pj7NmzGBgYFGmrSFNdNMXAWB83b2ea92/I9cNxBPtFkX4/C4DE6BQCl5/HvK4xHsNccO5YDx09KawgKp/nemrNzc158cUXefHFFwkLC2P37t0cOHCAPXv2EBAQgK2tLYMGDaJfv35YWVlpKuYneumllxg8eDAPHz7k+PHjfP3112RmZjJ27NgnXufj44OBgYH6deOUKVOees2zKOm2LZaWlixevFjj/QshqhcLi6JzvIKDg3nhhRfYsGEDXbp00UJUZUvPQJdmfRxw7WlH1Ml4Lm6PIOlWwbzhlPgMDq+5xBnfMNy8nWjS3a7QK1YhKjqN/bnVpEkTmjRpwrRp0zhy5Ai7du3iwoULfP/996xdu5YOHTowaNAgvLy8ynRbljp16qjLaHTo0AGA//3vfwwYMOCpI1ZpaWkoFApUKhVpaWkaj83CwqLYIrqpqalAQSIshBBlKTk5mZEjRxIVFUWPHj3Ys2ePekV7VaOjq4NLp/o4d6zHzYsJXNgWQUJkwc/gjIfZnNh4lfNbI2gxsCHN+jhQw1T/KXcUQvs0Pk6ur69Pr1696NWrF/fu3WPPnj3s2bOHY8eO8ddff2FlZcW2bds03e1jNW3alB07dnD79u3HJm4qlYqvv/6aHTt2MGfOHHJzc1m2bBk5OTlMnTpVY7E4OTkRGBhY5BVFVFQUQJVZ8SWEqLhyc3Oxt7cnIiICd3f3Kjni9m8KhQJ7j9rYe9Qm/toDLvwZwa2Q+wBkp+dybkt4QS243va0HNgQ45qVv3SKqLrK9AV/7dq1eeWVV1i0aBEtW7ZEpVLx4MGDsuyyiAsXLqCjo1Ps3DIoWMywaNEi/Pz8+Pjjjxk4cCBDhw5l7ty5bN26lWXLlmlsNVKXLl3IzMwssrorICAAa2trmjVrppF+hBDicaytrdm3bx8LFixg69atVaK+W2nUdbViwAftGP7fTji2rwv/P3slLzufkF3R/D49iCP/CyHlbvqTbySElpTZzNTMzEwOHTrE7t27uXz5snpblm7dupVJf4sXL8bY2JimTZtiZWVFUlISQUFBHDx4kLFjxz52tM3X11f9Q+yff3kOGDAAAwMDPv/8cxwcHBgxYsQT+z958iRZWVnqVbWxsbEEBQUB4OXlhaGhIV5eXrRp04Zly5aRkZFBgwYNOHDgAKdOnWLevHlPLFsihBCaoqury8cff1zk+MOHD9mzZ88TV+JXFbUczOn1jgcpdzMI9osk/MgtlPkqlPkqrgfFcf1wHA3b1sFjmAu1Gso0FlFxKFQaLm4THBzM7t27CQoKIjs7G5VKhaurK4MGDaJ3794YGxtrsju13bt3s3v3bmJjY0lLS8PIyAgXFxcGDx78xC2vsrOzCQ8Pp0WLFsW2h4SE4Orqir7+k+c+jBo1ivj4+GLbfH19qVevHlCw5dXatWsLbXk1YcKEQltePauwsDB8fHxYu3YtTZo0ee77CSGqD6VSydChQ/H392fSpEl8++231arod8bDLEJ2R3M18CZ52fmF2uq3qIXHcBfqutYs8QIzIcqKRhK3hIQEAgIC2LNnD7dv30alUmFubk7fvn0ZNGgQTk5OmohVPIUkbkKIZ7V371769+8PQK1atbhw4QJ2dnZajqr8ZafnErovlpDdMeSk5xZqs3aywGO4M/YetVHoSAIntOO5XpUePHiQPXv2cPbsWZRKJTo6OrRt25aBAwfSpUuXKlcjSAghqqp+/frxyy+/8Oabb/Lrr79Wy6QNoIaJPh7DXWg50JGwoJsE+0WR8TAbgMSoZPYvPY9FPRM8hjvj1KEeOrpSC06Ur+cacXs0X61u3boMHDiQAQMGULt2bY0FJ0pHRtyEEM/r/v371KpVq9Cx/Px8lErlU6eMVEXKPCWRJ+5wYVsEKXcL7wxkXLMGbkOdadLdFj0DmaMsysdzDYn16tWLQYMG0bp1a03FI4QQQov+nbQBfP755xw4cIDff//9sSv0qyodPR0adWmAS6f63Dh/j/PbIrgfU7DLTcbDbE5sCOX8lnBaDGpI874OGBhXv+RWlC+NL04Q2iMjbkIITdu3bx/9+/dHpVJRv359wsLCMDU11XZYWqNSqYi/9oDzf0RwJ7RweSu9GroFteAGOWJsWUNLEYqqTqOT0PLy8ti2bRuBgYHcuHGD7OxsDh06BEB4eDg7d+7kxRdfrLZzJ4QQorIxNzenQYMGxMXFMXXq1GqdtEFBMd96TWsxaF4tEqOTubAtgthz94C/a8FdCYihUdcGuHk7Y16nbCopiOpLY4lbdnY2s2bN4vLly1hYWGBiYkJWVpa6vV69euzevRszMzN8fHw01a0QQogy5OXlxYULF1i9ejVz587VdjgVirWjBX1mtSb5TjoXd0QScew2KmVBLbiwQ3FcD4rDoW1dPF9wwcreTNvhiipCY8thfv75Z0JCQnj99dfZvn07gwYNKtRuamqKu7s7Z86c0VSXQgghyoG1tTWffPJJkX2mAwMDOXfunJaiqjgs6pnQ7c1WjFnZneb9HdDVL/g+qVQQczqebXOPsfvL08SHPdRypKIq0FjidvDgQdzd3Rk3bhwKhaLYIoX169fn7t27mupSCCGElsTExDBq1Cg6duzI999/r7GtASszEytDOrzcjLHf9sDzBRcMjP9+qXX78n38559kx8fHuXnhnny/xDPTWOJ27949XF1dn3iOsbEx6emy/5sQQlR2Cxcu5OHDh+Tk5BAQEKDtcCoUQ1MDPEc2Yuw3PWj/kitGFgbqtoTIZPYuPsfW948S8dctlPlKLUYqKiONzXEzMjIiOTn5iefcvn0bCwsLTXUphBBCS1auXEmNGjXYtWsX69evl62giqFvqEfLAY407+NAxF+3ufBnBKn3MgFIvp1O0LeXOPPbddyHOtGom9SCEyWjsRG35s2b89dff5GWllZs+7179zh58iRubm6a6lIIIYSWGBgYsGLFCs6fP4+lpWWhtszMTO0EVUHp6OnQuJsto5Z1o/cMz0ILFdIfZPHX+lB+m3aIizsiycnIfcKdhNBg4jZmzBhSU1OZOXMmISEh5OcXbNKblZXFuXPnmDVrFnl5eYwePVpTXQohhNAyc3PzQl9nZmbSsWNH3n33XXJycrQUVcWk0FHQsG0dhv+3EwM/akedJjXVbdlpuZz1vc6mqYc4vekamcnZWoxUVGQaLcC7Y8cOVqxYgVJZ9J29jo4OM2fOZPDgwZrqTvyLFOAVQmjba6+9xo8//gjAyy+/zMaNG7UcUcWWEJXM+T/CuXkhodBxHT0Fjbo0wH2YM2Y2UgtO/E2jBXiHDh2Km5sbO3bs4OrVq6SkpGBiYkLTpk0ZPnw4jo6OmuxOCCFEBaJSqWjTpg0///wzenp6vP/++9oOqcKzcbKg3/ttSLqdxoU/I4k6caegFlze37XgGrari+cIF2raSi04IVteVSky4iaEqAjOnDnDzZs3eeGFF7QdSqWTfj+Ti35RXA+KIz+38NurBi1r0XpkI2o3qvmYq0V1oLE5biVV3GtUIYQQVUfbtm2LJG0qlYrly5eTmJiopagqB5NaRnSa1Jyx3/TAfagz+kZ/rzS9FXIfv08LasHFBSdILbhqSmOJm7+//1PPyc/PZ8GCBZrqUgghRCXxv//9j5kzZ+Lp6cmpU6e0HU6FZ2hmQJvRjRn3bU/ajWuCoXnhWnABX51l6/tHiTx+G6VSErjqRGOJ29KlSzl69Ohj21UqFf/5z38ICgrSVJdCCCEqgaysLL744gsAbt68SWxsrJYjqjz0DfVoNdiJsd/0oLNPC0ytDdVtybfTOfRNML7Tg7i6P5b83HwtRirKi0bruC1YsIDg4OAibY+StkOHDuHt7a2pLoUQQlQChoaGnDhxgk6dOjF9+nRGjRql7ZAqHV09HVx72DHq6+70nO6OZQMTddujWnCbHtWCy8zTYqSirGlscUJaWhpTp04lISGBVatW4ezsDBQkbZ9//jmBgYF4e3sza9YsTXQniiGLE4QQFVlubi4qlQoDA4NCx1NTUzEzkxWTpaFSqbh1OZFzW8JJiCi8a5G+oS5Ne9vTarBToVesomrQ2IibqakpS5cuxdTUlPfff587d+6oR9oCAwMZMmSIJG1CCFGN6evrF0naTp48iYODA7/99puWoqqcFAoFti1tGLqgI94LOtCgpbW6LTcrn0v+0WyadohjP1wm7b7sZFGVaLwcyM2bN3nrrbcwMzOjcePGHDp0iMGDB0s9n3IgI25CiMokMTERT09Pbt68CcC2bdsYPny4lqOqvB7eSuP81nBizsSj+kcBB4UONGxbl9YjG2HZwFR7AQqN0Hg5EDs7OxYvXsyDBw8ICgpi0KBBkrQJIYQowtjYmF69egHQuXNn2VnnOdVsYEqvdzwY/XV3mvSwRUdPAYBKCdGn4tn6/lH2/PcMCZFJ2g1UPJdn3jlhw4YNT2xv2rQpERERWFtbFzpXoVDwyiuvPGu3QgghqghjY2PWrVtHt27d6Nu3L/r6+toOqUowtTaii09L2oxuzKWd0VwNvEFedsGK01shidwKScTGxYLWIxvRoKU1CoVCyxGL0njmV6XdunV7tg4VCikJUkbkVakQoqq4d+8e69at4/3330dXV/fpF4jHysnM48reGC7vjiE7LbdQm2UDEzxHuODYrh4KHUngKoNnHnFbsWKFJuMQQgghgIJi7WPHjuXgwYMcOHCATZs2YWNjo+2wKi0DIz08hrnQapAjYYfiuOgXScaDbACSbqVzcGUwJrXCcB/qTOPutujqlfumSqIUnjlxc3d312AYQgghRIHjx49z+PBhAK5cuUJ+vhSW1QRdfV2a9XXAtbc9USfucP6PcFLiMwBIv5/FX+uucG7LdVoMcqR5Xwf0DZ85RRBlSNJqIYQQFUqXLl04cOAAtra2+Pr6UrduXW2HVKXo6Chw6VSfF5d2pe/7ranlaK5uy0rN5ezv19n01kFOb7pGVlqOFiMVxXnmdHrOnDlMnjz5meZSZWdns23bNoyMjBg2bNizhiCEEKKK6tatGxEREdSoUaPQ8dzcXLKysqRgrwYoFArsPWpj71Gb+OsPOOcbzp2rD4C/a8Fd2RuLS5cGeL7ggomV4VPuKMrDM4+43bt3jzfeeIN3332XPXv2kJ6e/tRrrl27xsqVK3nxxRdZt24dFhYWz9q9EEKIKu7fSRvAhx9+SJs2bQgJCdFCRFVX3cZWDPq4PS981Rn71rXh/9cp5OcqCTt4k9+nB3FgxQWS7zz9d70oW8+8qlSlUrF79242btzI3bt30dHRwd7ensaNG1OzZk3MzMzIzs4mJSWFuLg4wsLCSE9PR6FQ0KNHD3x8fKhXr56mP0+1JqtKhRBV2fbt29UFei0sLIiJicHS0lK7QVVRqfcyOP9HOJHH76DML5wmNGhZizajG2PjZKmd4Kq55945QalUcuLECfbs2UNwcDApKSlFztHR0cHJyYkuXbowePBgrK2ti7mTeF6SuAkhqrKoqChGjhzJhQsXWLFiBdOnT9d2SFVeRnI2F7dHEnboJvk5ykJttV0saT2qEfWb15JacOVI41texcTEkJCQQEpKCgYGBlhaWuLo6IipqWyzUdYkcRNCVHVZWVn8/PPPvPbaa5IslKOcjFwu7YomdG8sORl5hdosG5jiOdIFx7Z1pRZcOdB44ia0RxI3IUR19eeff6Knp8eQIUO0HUqVlpeTz9X9N7jkH0VmcuEVp6bWhgW14LrZoiO14MqMfGeFEEJUamFhYbz88st4e3vzwQcfoFQqn36ReCZ6Brq0HOTI2G960PX1lpjVNlK3pSVmcezHK2yadohgvyj1NltCs6S6nhBCiEpt3bp1pKWlARAXFyevUMuBjq4Ojbvb0qhbA2LP3uXc1gge3kwFICslhzO/h3FxRyRNe9vj5u1EDRPZh1ZTJHETQghRqS1cuJC6devy008/sWbNGkncypFCoaBh27o0bFuX26H3Obf5OnevJwGQm5nHpZ1RXAmIoVGX+niOaIRxTakF97xkjlsVInPchBDVWW5uLvr6hUd27t27h42NjSRz5SgxOpmzm68TdykR/pFhKHQVNGxbhzajGmNR10R7AVZyMuImhBCiSvh30paamkrXrl1xdXVlw4YNUvOtnFg7WtB/TluS49M5t/k60afvolKqUOWriD4ZT/SpeGxbWtN6dGNsHKUQf2lJ4iaEEKJKeuONNwgLCyMsLIzJkyezbds2bYdUrVjUNaHndA8yHmZx7o8IIo7eIj9XCSqIu5RI3KVEajeypPWoxjRoXkvb4VYasqpUCCFElfTSSy9hZWWFubk5ixYt0nY41ZZxTUO6vNaCcat70mqwI/qGuuq2e+FJ7PniNH/MPkr0qXhk9tbTlXni1r1797LuQgghhChiwIABnD9/nm3btuHi4qLtcKq9Gib6tBvnyvjvetFmdGMMzf5+tf0wLo0DKy7g+85hrh64gTJfSro8TpknbpI9CyGE0BYHBwd69epV6JhKpWLu3LmEh4drKarqTa+GLu5DnRn3bU86TW6OSa2/V5qmJWby149X2DT1EMF+keTlSC24fytV4jZnzhx++OEHjhw5wp07d0p0zT9X8vz666/k5uaWLkIhhBBCg5YvX85XX31FmzZt8PPz03Y41ZaOng5Ne9szZkV3erzthkX9v1eaFtSCu86vUw5yetM1cjIkd3ikVIsTrK2tOXPmDL6+vuTm5mJqakqjRo1o1KgRjRs3plGjRtjb2xdK1v454rZ27VoGDhxIzZo1Afj9998ZOnQoRkZGRfoSQgghNC03N5cNGzYAkJKSgo6OTPXWNoWOAucO9XHyqsetkETObQknITIZ+P9acP7RXNkbi0uX+rQe2Qhjy+pdC65Uidv7778PQH5+PrGxsYSFhREREcG1a9fw9/cnIyMDQ0NDAgICir3+369NN2zYQNeuXdWJ28OHD3nrrbf47bffnuWzCCGEEE+kr6/P8ePH8fHxwdHRkcGDB2s7JPH/FAoFtq1ssG1lQ0JEEmd8w7gd+gBUkJ+rJOxgHNcP36Jhmzq0Hd0Y82paC+6ZyoHo6uri5OSEk5MTAJGRkRw5coTt27eTnJxc4vv8O5FTqVQlfgUrhBBCPAtTU1M2bdpU7BzsuLg4bG1ttRCV+CcbF0sGftSeh7fTOPv7dW6cv/d3LbhT8USfjqdBS2vaVMNacM9cxy00NJTDhw9z9OhR7t27h7u7O5MnT6ZTp06ajE8IIYTQOIVCUWQ3hUOHDtG/f38+++wz5syZI69RK4Ca9U3pM9OTtAeZnNscTuTxOyjzCmrB3bqUyK1Lidi4WNBmVGMatLDWdrjlolSJ27lz5zhy5AhHjx4lPT2d9u3bM2nSJDp06ICpqWmJ7nH8+HE8PDyoX7/+MwUshBBCaNq9e/cYM2YMOTk5fPjhh9jb2zN+/HhthyX+n6mVEd3ebEX7Ca5c2BZBWFAceVkFK04TIpLZ8+UZatqa4jnChYbt6lbpLc5KlbjNnDkTa2trJkyYwJAhQ4psL1Kcf37zGjVqxPLly8nLy8PY2JicnBx+/fVXWrZsSaNGjUqc/AkhhBCaVKtWLd566y3mz59Pnz59GDNmjLZDEsUwNDWgw8vNaDOqMSG7ChYtZKcVrDgtqAV3EVMbI9y8nWjS3RYd3ao3alqqTeZfe+01YmJiyMvLw8zMrNCK0saNG2NnZ1fkmu7duxMUFKT+Oi8vj5iYGK5fv87169cJDw8nIiKC7OxsFAoFKpWq0Pmi5GSTeSGEeD6BgYG4u7tjbV09XrtVdso8JaGBN7i0M4qMh9mF2gzNDWgxoCEtBjREz0D3MXeofEqVuMGTEy8jIyNcXFxYtWqV+vx/J27FUalU3Lx5U71KdcqUKc/0Yao7SdyEEELzbt68ycKFC1m0aBEmJtVzJWNFp1KqiPjrNhf+jCAlPqNQm4GRHk162uEx3BkD46e/KazoSr04QU9PDxcXF1xcXBg4cCBQNPEqzuLFi3F2dsbFxQVnZ+dC//gVCgX29vbY29vTp0+fZ/woQgghhGbl5OQwatQoTp48yeHDh/Hz81NXVBAVh0JHQaMuDXDpXJ+bF+5xbmsE92NSAMjJzCNkVzSh+2Nx6fT/teBqVt5acCVO3J438crNzWX37t3ExsaSm5tLnTp11Pd6lAjKggUhhBAVyeXLl7l8+TIA6enpWFpaajcg8UQKhQJ7zzrYe9Yh/toDzm6+Tvy1hwDk5ygJOxTH9SMFteDajGqMRb3KN4Ja4sQtLy/vuRKvDz/8EAClUsn58+eZP38+iYmJPHz4kK1bt6qL9zo5ObF69ern/2RCCCHEc/L09OTs2bOMHz+eNWvWYGVlpe2QRAnVdbVi8CdePLiRwhnf68QFJ6BSUrgWXAtr2oypXLXgSpy4ffDBB8DzJ146Ojps3LiRN998k0GDBgF/j8Z9//33NGrU6Dk/khBCCKE5TZo04cyZM0VKTGRnZ5OYmEiDBg20FJkoCSt7c/q934bUhAzO+l4n+nQ8yjxVQS24kERuhSRS28WS1i82okHLir8opdRz3DSReF29elU9AgcFW5AMHToUY2NjAgMDSxuSEEIIUaaKqws2Y8YMtmzZwqZNm2R+diVgZmNMj2nueCVnc25rOBHHbpOXXVAL7l5EEnv+W1ALzmO4C45eFbcW3DMVOLl69Sqenp7qrx8lXjNmzCA+Pv6p17u4uLBv374ix5s3b87Vq1efJSQhhBCi3GzZsoXvvvuOxMREhg0bRkJCgrZDEiVkZFGDzq+2YNzqHrTydsLA5O8xrIdxaRxcdRHfdw9zNfAGSmWpCm+Ui2dK3J438Zo1axabNm1ixYoV3L59Gyh4Bbtjx44SFfUVQgghtKlXr17qt06rVq3CxsZGyxGJ0jIw0qfdmCaM/64XbcY0xsiyhrotLSGTv9Zd4bepB7mwPYL83HwtRlrYM+1VOmvWLKZNm0ZSUhIvvvgi9evXL1Xi1ahRI1avXs3y5csZO3YsxsbG5Ofnk5eXx3vvvfcsIQkhhBDlxsrKCj8/P3bv3s3gwYO1HY54Drp6Orh7O9NqsBPXD90k2C+K1IRMADKTczi3OZwQ/2ia9LDFfZgLNUy0O8BU6gK8j0RGRrJ8+XJCQkKKJF6P6rvB0wvw3r59m/DwcBQKBU2aNKFOnTrPEo5ACvAKIURFsHHjRlJSUpg2bVqFnSclHk+lKlh1euHPCB7eTCvUpmeoS8sBDWnevyGGZgZaie+ZRtwAnJ2d+eabb56aeD0tL6xfv77UbxNCCFElXLx4kTfffJOsrCyOHz/Ozz//jJ7eM/+qFVqgUChw8qqHk1c9boUkcm5rOPfCkwDIy8rnwp+R2HnUrnyJ2yNPS7wOHz78vF0IIYQQlUJgYCBZWVkAWFpaStJWyTVoaU2DltYkRCVxxvc6d648oF5TK2q7WGotplL/i1IqlcTExGBubl5kE968vDwuX76Mu7u7puITQgghKo333nsPJycnvv32W5YvX67tcISG2DhZMvCDdqQmZKhLiGhLqVaVxsfHM3HiRCZNmsTIkSOZO3cuycnJ6vaUlBTeffddTccohBBCVBovvPACgYGBGBoW3g8zKiqK7OxsLUUlNMHMxpiatmZajaFUidt3332HjY0NW7ZsYd26deTm5jJ16lQSExPV5zzjWgchhBCiyvj3ooQHDx7Qq1cvunTpQmxsrJaiElVBqRK34OBgpkyZQu3atXFycmLJkiW0atWKadOmcffuXaD46tJCCCFEdfbGG28QExPDmTNneOutt7QdjqjESpW4ZWVlFarTplAomD17Nm3btuXtt9/m1q1bGg9QCCGEqOw++ugjnJycqFWrFmvWrNF2OKISK1XiZm9vT1hYWJHjs2bNwsvLi7lz52osMCGEEKKqcHd359y5cwQEBGBnZ6ftcEQlVqrErWvXruzfv7/YtpkzZ9KzZ0+Z4yaEEEIUw9LSkjZt2hQ6lp+fz6RJk/jrr7+0FJWobJ555wRR8cjOCUIIUbksWLCATz/9FD09PVavXo2Pj4+2QxIV3DNtMv/Iow3ihRBCCFE6+fn56iL1SqUSFxcXLUckKoPnKuk8btw4Xn31VV566SVNxSOEEEJUC7q6uuzdu5ePP/4Yc3NzevTooe2QRCXwXImbSqUiP79wBeFdu3Zx+fJl5syZ81yBCSGEEFWdnp4e//3vf4ttu3jxouxEJIp4rlelxbl37x579uwptm3Tpk1MnTpV010KIYQQVYq/vz8eHh68/vrr6r1PhYAySNyeJDs7mytXrpRnl0IIIUSlcv/+ffUUpLVr1/L7779rOSJRkZRr4iaEEEKIJ6tVqxYrVqzAyMiI4cOH88orr2g7JFGBPNccNyGEEEJo3ssvv4ynpyd2dnaylaQoREbchBBCiAqoRYsWWFhYFDoWERHB0KFDiY+P11JUQtuee8Rt+/btREdH4+rqSpMmTUhPT9dEXNVeUlISX375JRcvXsTa2poZM2bQtm1bbYclhBBCSzIzMxk5ciTBwcGcPn2avXv30qpVK22HJcrZcyVujo6O3Lhxg6CgIIKCggoN5y5YsAAnJyecnZ1xcnKiTp06zx1sdbJ8+XKsrKzw8/Pj7NmzfPrpp/z2229F/voSQghRPcTGxpKYmAiAhYUFjo6OWo5IaMNzJW4bNmwgJyeHiIgIwsPDCQsL4/r160RHR3PgwAEOHDigTuZMTEyoUaOGRoKu6jIyMjh69Ci//fYbhoaGdO7cGRcXF44dO8agQYO0HZ4QQggtcHV15fz58/j4+PDll19iZmam7ZCEFjz3q1IDAwOaNWtGs2bN1Mfy8vKIjIzk+vXr6mQuKiqKtLS0Mptkee7cOfbv38/ly5e5d+8epqamNGnShIkTJ5b5vp0ZGRls3LiR8PBwwsPDSU5OZuLEiUyePLnYc3/44QcOHTpEamoq9vb2jB8/nl69eqnPiYuLw8jIqNAopZOTE9HR0WX6OYQQQlRstWvXZseOHUWOp6enExkZKa9Oq4EyWVWqp6dHkyZNaNKkCUOGDAEKkrmYmBjCwsLKokt27NhBcnIyI0eOpGHDhiQlJeHr68ubb77JkiVLaN26dZn0C5CcnMzOnTtxdnamS5cu+Pv7P/bcefPmce3aNd544w3s7OwIDAxk/vz5KJVK+vTpAxTMYzAxMSl0nYmJCUlJSWX2GYQQQlROKpWKKVOmsHnzZr799lteffVVbYckylC5lQPR09PDxcWlzDbRnTFjBjVr1ix0rF27dowbN45ffvnlsYlbeno6ISEheHl5Fdt+/PhxPDw8MDIyemzfdevWZdeuXSgUCpKSkh6buJ04cYKzZ8/yySef0Lt3bwA8PT2Jj4/nu+++o2fPnujq6mJkZFRkkUd6evoTYxBCCFE9bd26lZ9//hmAd999l4EDB1KvXj0tRyXKSpUpB/LvpA3A2NgYBwcH7t2799jr/P39mTt3brHbdO3YsYMPPviAvXv3PrFvhUJRolfAR48excjIiO7duxc6PnDgQBITEwkNDQXA1taWzMzMQnFHR0c/diJqYGAgc+fOZdWqVU+NQQghRNXi7e2t3k7yxx9/lKStiqsyiVtx0tLSCA8Pp2HDho89Z/To0YwcOZKFCxcWmjewZcsWli5dyoQJExg2bJhG4omOjsbBwQE9vcIDnc7Ozup2KEg4O3fuzPr168nOzub48eOEh4fTqVOnYu/bu3dvFi5cyNtvv62ROIUQQlQeNWrU4JtvvuHs2bOMGjVK2+GIMlald05Yvnw5mZmZvPzyy088b9q0adSoUYOlS5eSk5NDTk4O33//Pa+++qpGtxpJTk6mfv36RY4/WhmUkpKiPjZz5ky++OILBg8ejLW1NZ999hmWlpYai0UIIUTVUtyUoG+++Ybo6GgWLlyIvr6+FqISmlZlE7cffviB/fv3884775RoVamPjw8GBgbq141Tpkxh7NixGo+rpKtqLS0tWbx4scb7F0IIUT2cPHmSmTNnkpuby+nTpzlw4AAGBgbaDks8pyr5qnT9+vX89NNP+Pj4MGLEiBJf989yJWlpaRqPy8LCguTk5CLHU1NTATA3N9d4n0IIIaqn69evq/+/l5eXJG1VRJUbcVu/fj3r169n0qRJvPTSSyW6RqVS8fXXX7Njxw7mzJlDbm4uy5YtIycnRz3hUxOcnJwIDAwkLy+v0Dy3qKgoAKmCLYQQQmNefvllmjRpwooVK/jyyy+1HY7QkCqVuG3cuJH169fz8ssvM2nSpBJdo1QqWbx4MQEBAXz88cfqQrgGBgYsWrSI7OxsZsyYoZHCwV26dGHnzp0cPny4UMHdgIAArK2tCxUxFkIIIZ5X+/bt2bRpU5HjwcHB2NnZYWVlpYWoxPOoMonb77//zo8//kj79u3p0KEDV65cKdTevHnzYq/z9fVl3759LFiwgC5duqiPDxgwAAMDAz7//HMcHBye+sr15MmTZGVlkZGRARTsKRcUFAQUDFEbGhri5eVFmzZtWLZsGRkZGTRo0IADBw5w6tQp5s2bh66u7nN8B4QQQoinu3v3rvp33NatW2nTpo22QxKloFCpVCptB6EJ06dP5+LFi49tP3LkSLHHs7OzCQ8Pp0WLFsW2h4SE4Orq+tTVOKNGjSI+Pr7YNl9fX3VdnYyMDNauXVtoy6sJEyYUGoF7VmFhYfj4+LB27doy3+ZLCCFE5TRq1Ci2bNkCQP/+/YutYyoqriqTuAlJ3IQQQjzdzZs3GTVqFLGxsVy4cKHQvtii4qsyr0qFEEII8XR2dnYcPnyYmJiYIkmbSqXSyJxuUXaqZDkQIYQQQjyegYEBjRs3LnQsNzeXwYMH4+vrq6WoRElI4iaEEEIIPvzwQ3bv3s2YMWP4z3/+o+1wxGNI4iaEEEJUc0qlkoSEBAD09fXp06ePliMSjyNz3IQQQohqTkdHh/Xr19OpUyfy8vLw8vLSdkjiMSRxE0IIIQQKhQIfH59i2wICAujTp4/UG60A5FWpEEIIIR5r8+bNDBgwgIEDB5KYmKjtcKo9SdyEEEIIUazk5GTeeOMNAPbt28fOnTu1HJGQxE0IIYQQxbKwsGDbtm3Url2bCRMmMHHiRG2HVO3JHDchhBBCPFaPHj24cOECFhYWRYrzSsHe8icjbkIIIYR4ovr162NiYlLo2JUrV2jbti1XrlzRUlTVkyRuQgghhCiV1NRURowYwblz52jXrh3Hjx/XdkjVhiRuQgghhCiVpKQkDA0NAWjUqBEeHh5ajqj6kMRNCCGEEKViZ2fHiRMnmDp1Klu3bsXIyEjbIVUbkrgJIYQQotSMjIz45ptvcHFxKXQ8OTmZffv2aSmqqk8SNyGEEEJohEqlYuLEifTr14958+aRn5+v7ZCqHEnchBBCCKER27dvZ/v27QCsXr2aO3fuaDegKkgSNyGEEEJoxLBhw1iyZAn6+vr8/PPP2NraajukKkcSNyGEEEJohEKhYNasWURERDBo0KBCbUqlEpVKpaXIqg5J3IQQQgihUfb29kWOLVq0iJEjR5KcnKyFiKoO2fJKCCGEEGXq0KFDfPTRRyiVSi5fvszFixelhMgzkhE3IYQQQpSp7OxszM3NARg3bpwkbc9BRtyEEEIIUab69+/P+fPnWbVqFfPmzdN2OJWajLgJIYQQosw5OjqybNkydHV1Cx0/evQokZGRWoqq8pHETQghhBBacePGDYYPH07r1q3ZsWOHtsOpFCRxE0IIIYRWfPjhh9y/f5/k5GR+/PFHKRdSAjLHTQghhBBasXr1anJycjhz5gwbN25EoVBoO6QKTxI3IYQQQmiFubk5vr6+3Lt3j5o1axZqy8vLQ09P0pR/k1elQgghhNAahUJBnTp1Ch3Lzs6mc+fOfPXVVyiVSi1FVjFJKiuEEEKICuXdd9/l1KlTnDp1ilu3brFy5Upth1RhSOImhBBCiApDpVJRu3ZtFAoFNWrU4NVXX9V2SBWKJG5CCCGEqDAUCgXz58+nQ4cOPHjwADc3N22HVKFI4iaEEEKICqd///7FHt+wYQOjRo3C2Ni4nCOqGGRxghBCCCEqhfXr1zNp0iS8vLy4fv26tsPRCknchBBCCFHhpaenM3v2bABCQkI4c+aMliPSDknchBBCCFHhmZiYcPjwYZo2bcqbb77J+PHjtR2SVsgcNyGEEEJUCs2aNeP06dPFFubNycnBwMBAC1GVLxlxE0IIIUSlYWpqiqGhYaFjZ8+exdnZmcDAQC1FVX4kcRNCCCFEpfXgwQNGjhxJXFwcffv2Zd++fdoOqUxJ4iaEEEKISq1Zs2YAeHl50b17d+0GU8ZkjpsQQgghKi0rKyv8/f1ZsmQJY8eOrfLz3GTETQghhBCVmo6ODrNnz8bOzq7Q8cTERNatW4dKpdJSZJoniZsQQgghqpz8/HzGjx/Pq6++yoQJE0hLS9N2SBohiZsQQgghqpzAwED1QoXAwEBSUlK0HJFmSOImhBBCiCqnX79+bNmyBUtLS37//Xfq16+v7ZA0QhYnCCGEEKJKGjlyJH369MHCwqLQ8by8PJRKZaVcyCAjbkIIIYSosv6dtAF8+umndOnShRs3bmghoucjI25CCCGEqDb8/f358ssvAWjXrh0RERGYmppqOaqSkxE3IYQQQlQb9evXx9HREYD33nuvUiVtICNuQgghhKhGPD09OXfuHGvXrmXWrFnaDqfUZMRNCCGEENVKzZo1mT17NgqFotDx3bt3c+LECS1FVTKSuAkhhBCi2ouMjGTs2LF07dqVFStWVNjdFiRxE0IIIUS1t2TJElJSUsjLy+P48ePaDuexZI6bEEIIIaq9VatWYWZmxs6dO/nhhx+KvEatKGTETQghhBDVnp6eHosWLeLs2bOYmZkVaktNTdVSVEVJ4iaEEEII8f9MTEwKfZ2enk6HDh2YMmUKWVlZWorqb/KqVAghhBCiGCqVijfffJMrV65w5coV0tLS+Pnnn7Uak4y4CSGEEEIUQ6FQ0KNHDwwNDTE1NWXevHnaDklG3IQQQgghHmfy5Mm0bt2amzdv0qRJE22HI4mbEEIIIcSTuLm54ebmpu0wAHlVKoQQQghRaUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSUjiJoQQQghRSehpOwChOdnZ2QDExsZqORIhhBBClJaDgwOGhoZPPEcStyokPj4egM8//1zLkQghhBCitNauXUuTJk2eeI5CpVKpyikeUcaSkpI4ffo027dv55133inRNatWreLtt99+6nmxsbF8/vnnzJs3DwcHh+cNtUoo6fdOG8o7trLqT1P3fZ77PMu1pb2mJOfLM1hURX4GQZ5DTd6nrJ/DivK7UEbcqhlLS0v69u3LwYMHn5qxP2Jqalric6HgH1Vpzq/KSvu9K0/lHVtZ9aep+z7PfZ7l2tJeU5rz5Rn8W0V+BkGeQ03ep6yfw8r0u1AWJ1RBvXv3LpNzRWEV+XtX3rGVVX+auu/z3OdZri3tNRX531JFVtG/b/Icau4+Zf0cVvR/S/8kr0pFiYSFheHj41Oi9+9CCM2TZ1AI7asIz6GMuIkSqVWrFhMnTqRWrVraDkWIakmeQSG0ryI8hzLiJoQQQghRSciImxBCCCFEJSGJmxBCCCFEJSGJmxBCCCFEJSGJmxBCCCFEJSGJmxBCCCFEJSGJm9CInJwc/vvf/zJixAj69+/Pm2++SUhIiLbDEqJa+eyzzxg6dCj9+/dn4sSJHD9+XNshCVFtXb58mW7durFx40aN3lfKgQiNyMzMxNfXlwEDBmBjY8PevXtZvXo1W7Zseeq+a0IIzYiOjsbW1hZ9fX1CQ0OZNWsWv//+OxYWFtoOTYhqRalUMmXKFBQKBR06dOCVV17R2L1lxE1ohJGRERMnTqROnTro6OgwYMAAlEolcXFx2g5NiGrD0dERfX19AHR1dcnNzSUxMVHLUQlR/fj5+dGyZUvs7e01fm/ZZL6aysjIYOPGjYSHhxMeHk5ycjITJ05k8uTJxZ77ww8/cOjQIVJTU7G3t2f8+PH06tXrsfePjY0lOzub+vXrl+XHEKLSKqtncMGCBRw5coScnBy8vLxwcnIqj48jRKVUFs9hcnIyW7duZc2aNaxcuVLjMUviVk0lJyezc+dOnJ2d6dKlC/7+/o89d968eVy7do033ngDOzs7AgMDmT9/Pkqlkj59+hQ5Pysriy+++IKXX34ZY2PjsvwYQlRaZfUMfvLJJ+Tl5XH+/HliY2NRKBRl/VGEqLTK4jn83//+x6hRozA1NS2TmCVxq6bq1q3Lrl27UCgUJCUlPfYf64kTJzh79iyffPIJvXv3BsDT05P4+Hi+++47evbsia6urvr8vLw8Pv30UxwcHHjppZfK5bMIURmV1TMIoKenR7t27fjjjz+wtbWlQ4cOZf55hKiMNP0choWFcf36dWbNmlVmMcsct2pKoVCU6C/xo0ePYmRkRPfu3QsdHzhwIImJiYSGhqqPKZVKvvjiC3R0dJgzZ478pS/EE5TFM/hvSqWSW7duPW+oQlRZmn4Og4ODiYmJYejQoQwZMoSDBw/y66+/8sUXX2gsZhlxE08UHR2Ng4MDenqF/6k4Ozur21u2bAnAkiVLuH//PosXLy5yvhDi2ZT0Gbx//z4hISG0b98efX19jhw5woULF3jjjTe0EbYQVUpJn8PBgwcXSu6+/fZb6taty7hx4zQWi/x2FU+UnJxc7AIDMzMzAFJSUgCIj4/H398fAwMDvL291ectWrQINze38glWiCqopM8gwNatW/nqq69QKBTY2try2Wef4eLiUm6xClFVlfQ5NDY2LjS3u0aNGhgbG2u0JI8kbuKpSjKMXLduXY4cOVIO0QhR/ZTkGaxVqxbffPNNOUQjRPX0LNN/PvzwQ43HIXPcxBNZWFiQnJxc5HhqaioA5ubm5R2SENWKPINCaF9Feg4lcRNP5OTkRGxsLHl5eYWOR0VFAQUFP4UQZUeeQSG0ryI9h5K4iSfq0qULmZmZHD58uNDxgIAArK2tadasmZYiE6J6kGdQCO2rSM+hzHGrxk6ePElWVhYZGRlAwW4HQUFBAHh5eWFoaIiXlxdt2rRh2bJlZGRk0KBBAw4cOMCpU6eYN29ekfpRQoiSk2dQCO2rbM+hbDJfjY0aNYr4+Phi23x9falXrx5QsM3H2rVrC23zMWHChCdueSWEeDp5BoXQvsr2HEriJoQQQghRScgcNyGEEEKISkISNyGEEEKISkISNyGEEEKISkISNyGEEEKISkISNyGEEEKISkISNyGEEEKISkISNyGEEEKISkISNyGEEEKISkISNyGEqCaWL1/OkCFD1Fv7AKxbt46uXbty4cIFLUb2ty+++IIXX3yR7OxsbYciRIUke5UKISqlO3fuMHr06Cee4+Liwrp168opoort5s2b+Pn58frrr2NsbFymfe3YsYOlS5fi7e3Ne++998RzX3vtNa5fv87atWtp0qQJr7zyCoGBgWzZsoUJEyaUaZxCVEaSuAkhKrUGDRrQp0+fYttq1apVztFUXOvXr8fAwIChQ4eWeV+9e/fm22+/5eDBg7z99tvUqFGj2PMiIyO5fv06jRo1okmTJgDY2trSuXNnNm3axIgRIzAyMirzeIWoTCRxE0JUag0aNGDy5MnaDqNCS0pK4siRI3Tv3r3MR9sATExM6NatG3v37uXw4cP07du32PP8/f0BGDhwYKHjffv25fDhwxw4cIDBgweXebxCVCYyx00IUW107dqV6dOnk5SUxMKFC/H29qZ37968+eabj53jlZGRwbp163j55Zfp3bs3AwcO5L333uPSpUtFzp0+fTpdu3YlJyeHH3/8kbFjx9KjR49Cr2sPHz6Mj48PvXv3ZujQoSxatIjU1FRGjRrFqFGj1Od98cUXdO3alatXrxYb13fffUfXrl05cuTIUz/3gQMHyMnJoXv37k8995HIyEiGDx/OkCFDCA0NVR+/ffs2X331FSNHjqRXr14MGzaML7/8kvj4+ELXDxo0CIA9e/YUe//c3FwCAwMxMDAokth5eXlhZGTE7t27SxyvENWFJG5CiGolLS2Nt956i8jISPr06UPXrl0JCwvjvffeIyoqqtC5KSkpTJkyhQ0bNmBubs6wYcPU57/zzjscPXq02D7mzZvH7t27cXNz48UXX6R+/foA7Nq1i48//phbt27Rr18/+vfvz5UrV5g5cyZ5eXmF7uHt7Q38PSr1T3l5eezduxcrKys6duz41M987tw5AJo3b/70bxAQHBzM22+/ja6uLt988w3NmjUDIDQ0lNdee42AgACaNGnCyJEjcXNzY//+/bzxxhvcvn1bfQ93d3dsbW05f/48d+7cKdLHX3/9RXJyMl27dsXMzKxQm76+Po0bN+bq1atkZmaWKGYhqgt5VSqEqNRu3br12AUIzZs3p3379oWORUREMGzYMN599110dAr+dvX09GTRokVs27at0GT6r7/+mujoaObOnVvodd6DBw94/fXXWbx4Me3atSsyh+v+/fusX78ec3Nz9bHU1FRWrlyJsbExP/zwgzqZ8/HxYfbs2YSFhVG3bl31+S1btsTR0ZEDBw4wbdq0QnO9jh8/zoMHDxg3bhx6ek//MX758mVsbGyoWbPmU889evQo8+fPp379+ixZsoTatWsDBcniZ599hlKpZO3atbi4uKivuXTpEu+88w4rV65k4cKF6uMDBw7kf//7HwEBAUyaNKlQP7t27QL+Hpn7tyZNmhAcHMzVq1fx9PR8atxCVBcy4iaEqNRu3brFhg0biv3fqVOnipxvZGTEm2++qU7aAPr374+uri7Xrl1TH0tKSuLQoUO0bt26yBwsKysrxo4dS1JSkno0658mTZpUKGkDOHbsGJmZmQwePFidtAHo6enx6quvFvvZvL29ycjI4ODBg4WO+/v7o1AoSjT/Kzc3l6SkpBIlbf7+/nzyySc0atSIb775Rp20QUGyGB8fz9ixYwslbQCtWrWiU6dOnDx5kvT0dPXxR9/XPXv2oFKp1McTExM5e/YsdevWfWxS9ijehISEp8YtRHUiI25CiEqtXbt2LFmypMTn29raFpmgr6enh5WVFWlpaepj165dIz8/n5ycnGJH9OLi4gCIjY0t8rqyadOmRc6PjIwEoEWLFkXamjZtiq6ubpHjffv2Zc2aNfj7+6tHphISEjhz5oz6VeTTJCcnAxR5Hflvmzdv5q+//sLLy4sFCxZgaGhYqP3KlSsA3Lhxo9jvx4MHD1Aqldy8eRNXV1cArK2tad++PcePH+f8+fO0bt0aKJj3lp+fz8CBA1EoFMXG8yjxfRS/EKKAJG5CiGrFxMSk2OO6uroolUr11ykpKQCEhIQQEhLy2PtlZWUVOWZlZVXk2KORKEtLyyJtOjo6WFhYFDluZmZGjx49CAgIICYmhoYNG7J7927y8/NLvNry0WvcpxW0fbTYon379kWSNih41Quwf//+J97n39+PQYMGcfz4cfbs2VMocdPR0WHAgAGPvc+jeB9XSkSI6koSNyGEKMajBG/06NFMnTq1VNcWN4r06H5JSUlF2pRKJcnJydjY2BRp8/b2JiAgAH9/f6ZOncqePXswNzena9euJYrFzMwMPT09dSL6OHPmzOGnn35i5cqV6OjoMHz48ELtj0YpFy5cWKIFEY906NABKysrDh8+zIwZM4iIiCAuLo527dpRp06dx173KN7iEl0hqjOZ4yaEEMVwdXVFoVCoXxE+L2dnZ6BgocC/Xb16lfz8/GKva9GiBU5OTuzdu5eTJ09y+/Zt+vTpU6qRKEdHR+Lj44usXP0nMzMzli9fTuPGjVm+fDnbtm0r1P5oZWlpvx96enr069eP7OxsDhw4oC7x8bhFCY/cvHkTACcnp1L1J0RVJ4mbEEIUo1atWvTo0YPLly/z22+/FZpc/0hoaGixr0qL07lzZ4yMjPD39y9UNiMvL48ff/zxidcOGTKE5ORkFi9eDFDqorTu7u7k5OSo59k9jpmZGcuWLcPV1ZWvv/6aP/74o1D8derUwdfXl4sXLxa5Ni8vr9jadvB3krZ9+3aCgoKwsLCgc+fOT4wlNDSUWrVqYWdn95RPJ0T1Iq9KhRCV2pPKgQDPtavCzJkzuXnzJt999x179+6lefPmmJqacu/ePcLCwoiLi+PPP/8sdk7Yv5mZmTFt2jQWL17Ma6+9Rs+ePTExMeHkyZMYGBhgbW392In6/fr14/vvvycxMZFmzZqpR+9KqkuXLmzZsoVz586pt5Z6UpxLly5l1qxZrFixApVKxciRIzEwMGDBggXMnj2b6dOn07p1axwdHQG4e/culy5dwsLCgl9++aXIPe3t7WnZsqV6ruDgwYPR19d/bAy3bt3izp07DBs2rFSfU4jqQBI3IUSl9qgcyOM8T+Jmbm7O6tWr2bZtGwcPHiQwMBClUomVlRUuLi688sorxS4qeJwhQ4ZgZmbGzz//TEBAACYmJnTq1Ik333yTF198kQYNGhR7nampKZ07dyYwMPCZtoByd3fH3t6effv2MW7cuKee/2jkbdasWaxcuRKVSsWLL75I06ZNWbduHb/99hsnT54kJCQEfX19rK2t6dKlC7169XrsPQcNGqRO3P5dXuXf9u3bB/xdhFgI8TeFqrjxfyGEEOUmLi6OcePG0aNHD+bPn1/sOS+//DJ3797lzz//fKb9Rv38/FiyZAlr1qxRz1eriPLy8hg/fjx169ZlxYoV2g5HiApH5rgJIUQ5SU1NJScnp9Cx7OxsvvnmG6DglWZxTpw4QUxMDP369XvmTeIHDRqEg4MD69evf6bry8u+ffuIj4/nrbfe0nYoQlRI8qpUCCHKycWLF/nqq69o27YttWvXJjk5mfPnzxMfH4+npyc9e/YsdP727du5d+8eO3f+Xzt3bMIgFIVh9IqFQ4jLOIToBi5g4TBOkSns3cDS3jpdmhQhQgI3OWeB137wLv8tqqqKYRguv12WZczzHOu6xnmelwPw04qiiGmaXt7iwb/yVQrwJfu+x7IssW3bY8+truto2zb6vn+a+Oi6Lo7jiKZpYhzHt/bTgN8k3AAAknDjBgCQhHADAEhCuAEAJCHcAACSEG4AAEkINwCAJIQbAEASwg0AIIk7+OEXHZQPl4IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFlElEQVR4nOzdd1yVZf/A8c9hyQYRFzJkKLhYLtx779yjUsvKHDkqrWz5VI85M8vqsVLbjsqBgoqKew/EhWxBRURlb875/cHPYwQq4MEDh+/79Xper8f7uu/7+h7ihi/XfV3fS6FSqVQIIYQQQohKT0/bAQghhBBCiNKRxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE2HZGdnExYWRnZ2trZDEUIIIUQFkMRNh8TGxjJlyhRiY2O1HYoQQgghKoAkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYSBtgMQQgghqruCggLy8vK0HYaoYPr6+hgYGKBQKMp9D0nchBBCCC1KT08nPj4elUql7VDEM2Bqakr9+vUxMjIq1/WSuAkhhBBaUlBQQHx8PKamptSuXfupRmJE5aZSqcjNzeXOnTtER0fTqFEj9PTKPmNNEjchhBBCS/Ly8lCpVNSuXRsTExNthyMqmImJCYaGhsTGxpKbm4uxsXGZ7yGLE4QQQggtk5G26qM8o2xFrtdQHEIIIYQQooJJ4iaEEEKIIho2bIiHhwfe3t40adKEcePGkZGRUe77rVu3jmvXrj2y/fjx47Ro0QIfHx927dpF//79iYyMLNW11Y0kbkIIIYQoZvPmzZw/f57Lly+TmprKunXryn2vJyVf69ev54UXXuDcuXP06dOHnTt34urqWqprqxtZnCCEEEJUElveO0JmSk6F9mFqVYOhn3Yo9fk5OTlkZGRQs2ZN9bGlS5eyceNG8vPzqVevHt999x0ODg5s376d9957Dz09PfLz8/n000+5c+cOp0+fZubMmSxYsIDPPvuM/v37q++1aNEiNmzYgKmpKb/++ivBwcF4e3vj7+/P8ePHH3ttdSSJmxBCCFFJZKbkkHmvYhO30hoxYgTGxsZER0fTsmVLRo0aBcBvv/3GtWvXOHbsGPr6+vz8889Mnz6drVu3smDBAr799lvat2+PUqkkNTUVa2trfvnlF958800GDhxYrJ/58+dz9epVWrVqxfTp04u0vfzyy4+9tjqSxE2U2p07d6hdu7a2wxBCCJ1lalWj0vSxefNmmjdvTn5+Pq+++irz5s1j2bJlbNmyhdOnT9OyZUugsBadvr4+AD169GDWrFmMGDGC3r174+3tXVEfo9qSxE2Uyu3bt2nYsCE9evRg3rx5dOrUSdshCSGEzinLK8xnxcDAgOHDh/PWW2+xbNkyVCoVCxYsYPLkycXOXb58OZcuXWL//v28+OKLjB8/nrffflsLUesuWZwgSmX16tVkZ2ezY8cOtm3bpu1whBBCPEP79u3D3d0dgMGDB7N69Wru3bsHFBYRPnfuHABXr16lWbNmTJ8+nalTp3L8+HEALC0tSUlJKVffT3OtLpLETZSKvb09Dg4OGBgYMHPmzCJt+fn58lAJIYSOGTFiBN7e3jRr1owrV66wcuVKAJ5//nkmTJhA165d8fLywtvbm/379wPwzjvv0KxZM3x8fPj555/56KOPAHjllVdYuHAh3t7e7Ny5s0xxPM21ukihkl1tdUZYWBhTpkxhzZo16r+MNCkvL4+TJ0/SoUPRofyNGzfy8ssvM2XKFGbNmoWDg4PG+xZCCF2UnZ1NdHQ0zs7O5dr+SFQ9T/vfXEbcRKkZGhoWS9pUKhXLli0jLS2N5cuXExISoqXohBBCCN0niVsllZyczNtvv03v3r0ZN24cp06d0nZIJcrJycHb25saNWrQsmVLBgwYUKRdBnSFEEIIzZHErZJasWIFNjY2bNu2jddff50PP/ywUs4jMzY25rvvvuP69ev89NNPxTZKnj17NpMmTSIiIkJLEQohhBC6QxK3SigzM5NDhw4xadIkjI2N6dixI25ubhw+fFjboT1SnTp1aNq0aZFj8fHxfPPNN6xbt47WrVuTmZmppeiEEEII3aBzddwuXLjAzz//zKVLl8jNzaV27dr07duXF198scL6zMzMZP369YSHhxMeHk5KSgoTJ04sscZNZmYm33//Pfv37yctLQ1HR0fGjx9Pjx491OfEx8djYmJC3bp11cdcXFyIjo6usM9QES5evIipqSm5ubm89tprmJqaajskIYQQokrTqRG3PXv2MHPmTMzNzXnvvfdYvHgx48ePr/B5VikpKWzfvp28vLwnFqZdsGABgYGBTJw4kcWLF+Ph4cHHH3/Mnj171OdkZWVhZmZW5DozMzOysrIqJP6K0rdvX2JiYvjkk0+YO3dukTalUsnSpUvVdYCEEEII8WQ6M+J2584dli5dyuDBg5kzZ476uK+v72Ovy8jIIDQ0FD8/vxLbjx49io+PDyYmJo+8R7169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49e6rjS0hI4JtvvqF79+7o6+tjYmJCRkZGsTgfF0NlZWVlxXvvvVfs+IYNG3jrrbf49NNPWbVqFRMmTNBCdEIIUfmc2RxeYfduOaJRhd1bPBs6M+Lm7+9PVlYW48aNK/N18+fPJyAgoFjb1q1beeedd9i1a9dj76FQKIpNyi/JoUOHMDExoWvXrkWO9+/fn6SkJC5fvgwUFrvNysoiMTFRfc6Dmi8lCQoKYv78+axateqJMVQGKpWKTz75BChcPVunTh0tRySEEOKfGjZsiIeHB97e3jRp0oRx48YVG1Aoi3Xr1nHt2rVHth8/fpwWLVrg4+PDrl276N+/P5GRkaW6FmDOnDn88ccf5Y5P0+bOncvvv/9eIffWmcQtJCQES0tLrl+/zuTJk+nWrRuDBw9m6dKlj/1mGz16NCNGjGDRokVs3bpVfXzTpk0sW7aMCRMmMHToUI3EGB0djZOTEwYGRQc6XV1d1e0ApqamdOzYkbVr15KTk8PRo0cJDw8vVkPtgZ49e7Jo0SJmzJihkTgrmkKhYNeuXUycOJE+ffrQu3fvIu15eXlaikwIIcQDmzdv5vz581y+fJnU1FTWrVtX7ns9Kflav349L7zwAufOnaNPnz7s3LlT/bvxSdfeuHGDgIAARo8eXaaY8vPzS3WsLNc/MG/ePD766COUSmWZYioNnUnckpKSyM7O5oMPPqB79+4sX76csWPHsmvXLt5+++3HznObPn06EyZMYNmyZWzatIlff/2VVatW8dJLLzFlyhSNxZiSkoKlpWWx4xYWFgCkpqaqj82ZM4ekpCQGDhzIqlWr+Oijj7C2ttZYLNpmb2/P2rVrS3ytPH36dPr168eVK1e0EJkQQoh/ysnJISMjg5o1a6qPLV26lDZt2uDr60v//v2Ji4sDYPv27Xh6euLt7U3z5s3ZunUr33//PadPn2bmzJklblu1aNEiNmzYwMqVK/H29iY5OZmGDRty8eLFJ14L8OOPPzJixAj1m6+8vDzmz59PmzZt8Pb2ZsyYMSQnJwMwceJEZs6cSd++ffHy8iI4OBhvb29mzpxJu3bt+Pvvvzl9+jTt2rXD09OTNm3acOTIEQBiYmKwtbVl4cKFdOrUiVWrVpX4eaGw0oKzszN79+7V+H8PnZnjplQqyc3NZeLEier5Uj4+PhgYGLBq1SrOnDlDq1atHnn9lClTMDIyUr9unDp1KmPHjtV4nKV5pQpgbW3NkiVLNN5/ZfPv0ccrV67w/fffo1QqOXbsGHFxcerEVgghxLMzYsQIjI2NiY6OpmXLlowaNQqA3377jWvXrnHs2DH09fX5+eefmT59Olu3bmXBggV8++23tG/fHqVSSWpqKtbW1vzyyy+8+eabDBw4sFg/8+fP5+rVq7Rq1Yrp06cXaXv55Zcfey1AcHAwb775pvrfS5YswdzcnJMnTwLwn//8hw8//FC91+rhw4c5ePAg5ubmBAcHc+HCBb766iu+/PJLcnNzcXNzY82aNfTp04fDhw8zYsQIdS3Su3fv4ubmxgcffACAl5dXsc/7QPv27dm7dy+9evUq73+CEunMiJuVlRUAbdq0KXL8waKDJ70fB0hPT1cnVunp6RqOsDDGkoropqWlAZQ4Glfd3L59W73X6bx58yRpE0IILXnwqvTu3bs4Ozszb948ALZs2UJQUBAtW7bE29ubxYsXExsbC0CPHj2YNWsWixcv5sKFC8/kTVF8fDz16tVT/3vLli388ssveHt74+3tze+//05UVJS6fdSoUZibm6v/3bhxYzp27AgU7vltZGREnz59AOjYsSN16tThwoULQGHR+X8O6jzu89arV4/4+HiNf16dSdxcXFxKPP7gFenjRrpUKhUrVqxg06ZNzJs3j7lz5/LLL7/w9ddfazzG2NjYYu/FH3xDPWrxQXXStWtXrly5wvLly0ssIVLVatkJIURVZ2BgwPDhwwkMDAQKf2cuWLCA8+fPc/78eUJDQzl//jwAy5cvZ+3atZiamvLiiy+yePHiCo/P1NS0SLkslUrF6tWr1fFdvnyZ7du3q9v/mbT9+98qlarEfOHBMTMzsyLtj/u82dnZFVINQmcSty5dugBw4sSJIsePHz8OQLNmzUq8TqlUsnjxYrZt28b7779P//79GTJkCPPnz2fz5s0sX75cY3XgOnXqRFZWFgcOHChyPDAwEFtb22I7D1RXJiYmzJ49GyMjoyLH161bh4eHBwsWLJBdGIQQ4hnat28f7u7uAAwePJjVq1er63Dm5eVx7tw5AK5evUqzZs2YPn06U6dOVf8OtrS0LPe2jU+61tPTk6tXr6r/PXjwYJYvX67+PZGZmcmlS5dK1ZeHhwc5OTns27cPKCwJlpiYSIsWLUo8/1GfFwqn/nh5eZWq37LQmTlubdq0oX379qxfvx6lUkmzZs24evUq69ato3379nh6epZ43YYNG9i9e7d6suED/fr1w8jIiE8++QQnJyeGDx/+2P6PHz9Odna2+hslNjaW4OBgoPB1rbGxMX5+frRq1Ur9DdWgQQP27t3LiRMnWLBgAfr6+pr5Yuige/fuMW/ePHJzc/n000/p0aMH3bp103ZYQgihcZWl1tqDOW55eXk0bNiQb7/9FoDnn3+eu3fv0rVrVxQKBfn5+bz00kv4+PjwzjvvcO3aNYyMjDA1NeWbb74B4JVXXmHu3LksWbKEzz77jP79+5c6jiddO2LECH766Sf1bkXz58/n448/pm3bturRsXnz5j1yAOefjIyM+PPPP5k5cyYZGRkYGxuzadMmzMzMuHPnTrHzH/V5VSoVe/fu5d133y315ywthaqitxV4hnJycli7di1BQUHcvXsXW1tbevXqxcSJE4uN3vzzmvDwcJo3b15ie2hoKB4eHhgaGj6271GjRpGQkFBi24YNG6hfvz5QmPmvWbOmyJZXEyZMKLLlVXmFhYUxZcoU1qxZo/7LSFdkZmbyySefsHTpUp577rlKVa9HCCHKKzs7W12n09jYWNvhVElKpZLWrVuzdetW7O3ttR0OUPgm7ddff+Xnn38u1va0/811KnGr7nQ5cXvg6tWrWFpaYmdnV+R4SEgInp6epV61K4QQlYEkbppx+vRpsrOz1YsMtG3Dhg106tSp2O8qePr/5jrzqlRUDx4eHsWOnT59Gj8/PwYMGMC3336rHt0UQghRPTyu3Jc2lLUYcFnozOIEUT3l5+czadIkCgoK2LZt21NV9hZCCCEqO0ncRJVmYGDAwoULqVOnDj4+PkWKMAohhBC6Rl6Viipv2LBhdO7cmfv37xdbRHL9+nUcHBxk7psQQgidICNuQifUqlULNze3Isdu376Nr68vw4YN4+7du1qKTAghhNAcSdyEzpo2bRp3795l69atzJ49W9vhCCFElfFgk/fH+eCDD9iwYUO5+wgODmb37t3lvrayLUh4VuRVqdBZ48eP58CBA+jr67NkyRJthyOEEDpl4cKFT3V9cHAw6enp9O7dW0MRVQ8y4iZ01rBhwwgJCWHLli3UrVtX2+EIIUSpLF++HHt7e+zt7dU78DwQHR2tbpsxY0axawcPHqxu/7d169axfPnyMsXStWtX5s2bR6dOnXB1deW1115Tt02cOJGvvvoKKNz2av78+bRp0wZvb2/GjBlDcnIyACkpKbz88su0aNECLy8vJk+ezPnz5/n222/56aef8Pb2VieBu3btomPHjrRs2ZK2bdty8OBBdX8LFizAzc2NLl264O/vX6bPoUtkxE3oNDs7u2IFEPPy8hg+fDivvPIKAwcO1FJkQghRstTUVG7cuAEU7u7zTwUFBeq2+/fvF7v2zp076vZ/y8jIIDU1tczxREZGEhwcTG5uLk2bNuXYsWO0a9euyDlLlizB3NyckydPAvCf//yHDz/8kJUrVzJr1izMzc0JCQlBT0+PO3fuULt2bV577TXS09NZunQpAFFRUXz88ccEBgZiaWlJREQEXbp0ISYmhsDAQLZt28b58+cxMTFh2LBhZf4cukISN1HtfPjhh2zfvp3t27fz3//+l/nz52s7JCGEULO0tKRBgwYA1KhRo0ibvr6+uq1mzZrFrq1du7a6/d/MzMyKJYKlMWbMGPT19TExMcHb25vIyMhiiduWLVtITU1l8+bNAOTm5uLq6gqAv78/Z86cQU9PTx1jSQIDA4mIiKBz585FjsfFxbF//35Gjx6Nubk5AJMnT+aTTz4p82fRBZK4iSfKTMnh6t7rNO3lhLFFyXu+VhVKpZKwsDCgsAZc9+7dtRyREEIUNWfOHObMmVNim7OzM/Hx8Y+8dtu2bY9smzhxYrni+ee2TPr6+uTn5xc7R6VSsXr16qf6mapSqejbty8//fRTiW2ikMxxE090KSCGs5sj+GNmMMd/vkLG3Sxth1Ruenp6bN68ma+++oqlS5fSpk0bbYckhBBV3uDBg1m+fDmZmZkAZGZmcunSJXXbkiVLUCqVQOHrXCgcWUxJSVHfo3fv3gQGBhZZzfrg1WuPHj3YuHEjGRkZFBQUVOtdciRxE49VkFfA1X1xAOTnFHAxIIYNsw5w8H+hpNzK0HJ05aNQKJg2bRpvvPFGsbYtW7aQm5urhaiEEKLqeVDcfP78+Xh7e9O2bVs8PT3x8/Pj/PnzAKxYsYLMzEyaN2+Ot7c37777LlC4gOz06dPqxQmNGjXil19+4eWXX8bLy4smTZqwcuVKAAYOHMjAgQPx8vKie/fueHp6auXzVgYKlYw/6oywsDCmTJnCmjVrcHd319h90xIzCd0RTVhwPAV5yocNCnBuXQ+vwS7YulhprD9t2bx5MyNHjsTPz4+NGzfi4OCg7ZCEEDouOzub6OhonJ2di7ySrAr69+/PCy+8wJgxY7QdSpXytP/NZcRNPJFFHVPaT2rG6C+74jXEFSPT/58aqYLokwlsWXCUgP+e5Oalu1V2HkJGRgZTp04F4Pjx4wQEBGg5IiGEqLx69uxJWloaAwYM0HYo1Y4sThClZmpVg9ajG+M1yJkre+O4uDOarJTC14o3Qu9yI/Qutd2s8BrkilPLOij0qs7+oGZmZgQEBDBixAg6dOjAlClTtB2SEEJUWkFBQdoOodqSxE2UmZGpIV6DXGjWx4nwgze44B9FWmLhgoU7ESkErTiLdQNzvAa54Nq+PnoGVWNgt1WrVpw9exYjI6Nim9IrlUr1UnYhhBBCW+Q3kSg3AyN9mvR0ZOSyznSb7oWNo4W6LflGOge+vcDGOQe4tCuG/JwCLUZaejY2Nuo6QQ9cunSJ5s2bc+LECS1FJYTQdVV1mokouwera8tLRtzEU9PT18O1vR0u7eoTf/4O57dFcTussKJ3elI2x9Zf4dzfkTTr60TTnk7UMDfUcsSll5aWxvDhwwkLC6NTp04EBATQo0cPbYclhNARhoaGKBQK9W4C/x7tF7pDpVKRm5vLnTt30NPTw8iofHVRJXETGqNQKHDwqYODTx0Srt4jZHsUcecK6/Vkp+ZyZmM4F7ZH4dHDkRb9GmJas/KvoMrMzKR27dqEhYXRtGlT2rdvr+2QhBA6RF9fH3t7e+Lj44mJidF2OOIZMDU1xdHRsdzTbyRxExWinocN9TxsuHs9lQvboog6dguVCvKyCgj1j+ZSYAyNO9vjOcgZy7pm2g73kerWrcu+ffv48MMPmTx5MiYmJtoOSQihY8zNzWnUqBF5eXnaDkVUMH19fQwMDJ5qZFXquOmQiqrjpgmptzO44B/NtQPxKPMffsspFODsVx+vwS7UcrLUYoRll5KSwt69e3nuuee0HYoQQohqQhYniGfCsq4ZHV9qzpiVXfEc5IyhiT4AKhVEHbvF3+8cYdfi0yRcvafdQEtJpVIxefJkhg8fzrRp08q1cbMQQghRVpK4iWfKtKYxbcZ6MObLbrQa1Rhjy4eTM+PO38F/4Qm2f3Sc6+cSK/Uqq127dvHXX38B8Ntvv5GQkKDliIQQQlQHkrgJrahhZoj3UFfGrOxKuxebYm77cKHC7Wv32b3kDH/NP0LEkZsoC55u6XRF6Nu3Lz/88AMmJib8/PPPODk5aTskIYQQ1YDMcdMhlXmO25Mo85VEHrtFyLYokm+kF2mzqGOC50AXGnVugIGRvpYiLNnt27epW7dukWNKpRKVSoW+fuWKVQghRNUnI26iUtAz0KNRpwYM/7wjveb4Utvt4ab1aYlZHPnxEhveCCZkWyS5mZVn5dW/kzaAJUuW0KdPHxITE7UQkRBCCF0m5UBEpaLQU+DUqi6OLetw68o9QrZGcSM0CYCslFxO/XGNkG1RNOnlRPO+TphY1dByxEUFBwfz7rvvolQqadmyJZcvX8bCwuLJFwohhBClIImbqJQUCgV2TWth17QWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqm2QwbAwMCAOnXqkJCQwOTJkyVpE0IIoVGSuIlKz9bFih6zfEi5lUHI9igiDt1AWaCiIE/J5T3XubI3Dtf29fEc5IKNg3YTpY4dO3Lu3Dm+/PJLPvjgA63GIoQQQvfI4gQdUpUXJ5RFxr1sQndGc3VvXLHN6x196+A12IW6jWtqKbpHO3DgADVr1sTT01PboQghhKiiZHGCqHLMbIzxm9CEMV92xXeEW5FN66+fTWT7R8fx/88J4kLuVJpacHFxcQwfPhw/Pz/Wr1+v7XCEEEJUUZK4iSrL2MII3+caMebLrvg974GZzcNacAlX7rHr89NsefcIkcduoVRqN4H7z3/+w927d8nKymLTpk2VJqEUQghRtcirUh0QFBREUFAQ6enpXLhwQedflT5KQb6SyMM3CdkeRcqtjCJtlnVN8RzkQqNOdugbPvv6atnZ2bzxxhvs3r2bM2fOYGNj88xjEEIIUfVJ4qZDqssctydRKlXEnr5NyLYokqJSirSZWtegef+GePRwxMjk2a/NuXfvXrGkLScnhxo1KldZEyGEEJWTvCoVOkdPT4Fzm3oM+U87+r3TGrtmtdRtmck5nPwtjD9m7Of0xmtkpT7bzeFLSto6d+7M/Pnzyc/Pf6axCCGEqHqkHIjQWQqFggYtbGnQwpY7kcmEbIsi5vRtdS2481siCd0ZjXs3BzwHOGNua/LMY5w9ezYnT57k5MmT3L59m7Vr1z7zGIQQQlQdkriJaqG2qzU9Z/ty/0Y6of5RhB++iapARUGuksu7YrkSdB23DnZ4DnSmpv2zqQWnUqlo3LgxBgYGGBgY8MYbbzyTfoUQQlRdMsdNh8gct9JLv5tF6I5owvbHF6sF59SqLl6DXajjZv1MYjl69CjXr19nzJgxz6Q/IYQQVZckbjpEEreyy07N5dLuWC7viiUno+jm9XbNauE52IUGzWuhUCieeWzffvstY8aMwdra+pn3LYQQonKSxQmiWjO2NKLliEaM/rIrbcd7YFrz4erOm5fuEvjfU2xdcJToE8+2FtzatWuZOnUqLVu25Ny5c8+sXyGEEJWbJG5CAEYmBrQY4MzoL7rQaUpzLOs93LQ+KTqVvSvP8+dbhwjbH0dBvrJCY8nOzlbvcxoVFcXFixcrtD8hhBBVhyxOEOIf9A31ce/mQKMu9sScTCBkWxR3Y1IBSLmVwaE1FznzZzgt+jvj0d0BQ2PNP0LGxsYcPnyYkSNH4uvry/PPP6/xPoQQQlRNkrgJUQI9PQUufvVxbluPG6FJhGyL4tblewBk3svhxC9XOb8lkqa9nWjWxwljCyON9u/k5MShQ4dKbMvMzMTU1LTENiGEELpNXpUK8RgKhQJ7z9oMWNCWwR/74dSyjrotJz2Pc39F8MfMYI7/fIWMu1ka7btGjRrFdlQ4c+YMzs7O/PXXXxrtSwghRNUgiZsQpVSnUU16zW3J8MUdcetoh0KvcKVpfk4BFwNi2DDrAAf/F1psn1RNuX//PiNGjCAxMZHhw4fz999/V0g/QgghKi9J3IQoo5r2FnR93YtRK7rQtLcT+oaFj5GyQMW14Hg2vXmQvV+cK7ZP6tMyNDTEz88PgLZt2zJgwACN3l8IIUTlJ3PchCgni9omtJ/YFJ9hrlwMjOXKnlhyM/NBBdEnE4g+mUCDFrXwGuxK/aY2T10LztzcnN9++40uXbrQv39/jIw0O69OCCFE5SeJmxBPycSqBq1HN8ZrkDNX9sZxMSCGrOTCzetvhN7lRuhdarta4TXYFaeWddSvWMtDoVDw2muvFTuelJTEL7/8wsyZM9HTk4F0IYTQVfITXggNMTI1xGuQC6O/6EKHl5phUefhpvV3IlMIWnGWP+cd4trBeJQarAWnVCqZMGECs2fPZvDgwdy7d09j9xZCCFG5yIibEBpmYKRPkx6OuHe1J/pEYS24e9fTAEi+kcHBb0M5symcFgOc8ejmgEEN/afq7/Dhw+zevRuAU6dOkZ2d/dSfQQghROUkI25CVBA9fT1c29sx7L8d6PNWS+p51FS3ZdzN5vhPV/hj5n7O/R1BTnreY+70eJ07d2bXrl3UrVuX33//HTs7O02EL4QQohKSETchKphCocDBpw4OPnVICLtPyLZI4s7dASA7LY8zm8K5sD0Kjx6ONO/fELOaxmXuo1evXkRFRRUrzFtQUEB2djZmZmYa+SxCCCG0S2OJ25kzZzh79iwXL14kMTGRlJQUjI2Nsba2xsXFBW9vb9q1a0etWrU01aUQVU4995rUe6sVd6+ncmF7NFHHbqFSqsjLLiB0RzSXdsXQqJM9noOcsapXtmSrpN0UPvzwQ7Zs2cLmzZvx8PDQ1McQQgihJQqVSqUq78WZmZn8+eefbN++ncTERB7cysjICEtLS3JycsjIyECpLJyIra+vT4cOHRg1ahQtWrTQzCcQamFhYUyZMoU1a9bg7u6u7XBEKaTeziR0RzTXDsRTkPdwwYJCAQ3b1sNrsAu2Da3Kde+dO3eqa71ZW1sTHR2NtbW1JsIWQgihJeUecdu6dStr167l/v37uLm5MXjwYJo1a4a7u3uRv/xVKhXx8fFcvnyZU6dOcfjwYQ4dOkSHDh2YNm2azMcR1ZplXVM6TG6Gz3A3LgXEcHnPdfKy8lGpIPp4AtHHE7D3tMVriAv1PMpWC87V1ZVmzZpx6dIl3nvvPUnahBBCB5R7xK1bt2706tWLsWPH4uzsXOrrcnJyCAoK4pdffqFPnz5MnDixPN2LEsiIW9WXm5nHlaDrhO6MITs1t0hbnUbWeA12wdGn9LXgMjIy+PHHH5k+ffpTFwAWQgihfeVO3G7cuEGDBg3K3XFBQQF37tyhXr165b6HKEoSN92Rn1vAtQPxXPCPJv1O0c3ra9qb4znIBdd29dEzKN/C8B07dmBgYECfPn00Ea4QQohnpNzlQJ4maYPC+W6StAlRMgMjfZr2cmLU8s50fd2Tmg7m6rb78ekc+OYCG+cc5NKuWPJzCsp078jISMaPH0+/fv346KOP1HNQhRBCVH5SDkSISkxPXw+3jg1wbW9H3Pk7nN8WSeK1ZADSk7I4tv4y5/6OoFlfJ5r2cqKGmeET7/ntt9+SkpICwOXLl+UVqhBCVCGSuAlRBSj0FDj61sHBpzYJV+8Tsi2K+JD/rwWXmsuZjQ9rwbXo1xDTx9SC+/zzz7GxseGXX37h+++/l8RNCCGqkKcqB/JvaWlpHDlyhL59+2rqlqIMZI5b9XI3JpWQ7VFEH7/FP59ifUM9GnVugOdAZyzrProWXE5ODjVq1Chy7N69e9SsWVOSOSGEqKQ0uuXV7du3WbRokSZvKYR4hFoNLek+w5sRyzrj0cMBPYPCZKsgT8nVvXFsmnOQfavOczc2tcTr/520ZWRk0LlzZ8aOHUtaWlqFxy+EEKLsyvSq9Pbt249tT0pKeqpghBBlZ1XPjI4vNcf3OTcuBsZwJeg6eVkFqFQQdewWUcduYe9VG+//rwX3KFOnTuXSpUtcunSJvLw8/vzzz2f4KYQQQpRGmRK3UaNGPfYVikqlklcsQmiJaU1j2oz1wGuwK1f2XOdi4MNacPEhd4gPuUPdxjXxGuyCg0/tYs/qsGHD2Lp1K0qlks8++0wbH0EIIcQTlClxs7CwYMqUKfj4+JTYHhsby/vvv6+RwIQQ5VPDzBDvoa4079eQsOB4QndEk55UWAvu9rX77F56hpoOFngNcsalXX309AtnTAwbNowWLVoQHh4ucySFEKKSKlPi1rhxY5KTk3F0dCyxPTc3Fw2udRBCPAWDGvo06+NEkx4ORB67Rci2KJJvpANwPy6N4NUXOL0pHM+BzjTuYo+BkT5ubm64ubkVuY9KpeLjjz9m4sSJNGzYUAufRAghxANlWpwwdOhQ6tev/8j2unXrMn/+/KcOSgihOXoGejTq1IDhn3ek11xf6rhZq9vS72RxdO1lNrwRTMi2SHIz84pd//XXX/Pxxx/j6+tLQEDAM4xcCCHEv5VpxK1z586PbbewsKBfv35PFZAQomIo9BQ4tayLo28dEq7eI2RrFPEXChcUZaXkcuqPa5zfGkXTXo4069cQU6sa5OXlsXr1agDu379Pdna2Nj+CEEJUe1KAV4hqRqFQUL9JLeo3qUVSTAoh26KIPpEAKsjLyidkWxQXA2Jo3MUez4HOHDt2jEmTJuHi4sKwYcO0Hb4QQlRrT524de3alQ0bNlC3bl1NxCOEeIZsG1rRY6YPKbcyuOAfTfiheJT5KgrylFwJus7VfXG4tKvPmhXrsGpgWuz627dvy7MvhBDP0FMX4JXFCEJUfVb1zeg0pTmjV3alxQBnDI31AVApVUQeucnf7xxh74rzJITdV19z5MgRnJ2dWb58ufwcEEKIZ0RelQoh1MxqGtN2vAdeQ1y4suc6lwJjyE4rXLAQd+4OcefuUM+jJg6drBk1YRRZWVnMnTuXOnXqMGHCBC1HL4QQuk+jW14JIXSDsbkRPsPcGL2yK34vNMGs1sNN6xOu3uf4dxH4OXUHoFvXbowZM0ZLkQohRPUiI25CiEcyNDaged+GNO3pSMTRm1zYHkXyjQz09fTp13Ac9kaNaNaoOeEHbtKoUwMMjPS1HbIQQug0GXETQjyRnoEejTvbM/zzTvSc7UNtFysAWti1Ri/dhCM/XGLjrANc2B5FbFQcc+fOJSsrS8tRCyGE7pERNyFEqSn0FDRsXQ+nVnW5dfke57dGcvPiXQAyk3M4+uslVgS/y7XbF9kbtI+t27bg5OSk5aiFEEJ3SOImhCgzhUKBXbNa2DWrxZ3IZEK2RxFz6jbx96OISQoH4HpEPJe2x1NrTB3MbU20HLEQQuiGp07cnn/+eczNzTURixCiCqrtak3PWb4k30jngn8DDA1XsObw5zzf5g1uHk1lw4kDuLW3w3OQMzXtLbQdrhBCVGkKlRRgqpSSk5P57LPPOH/+PLa2tsyePZvWrVs/9pqwsDCmTJnCmjVrcHd3f0aRClFU+t0sQrZHEn7gJvk5Berj+QV52DQ1oev41kX2SxVCCFF6Fb44QaVSERcXR2JiYkV3pVNWrFiBjY0N27Zt4/XXX+fDDz8kJSVF22EJ8UTmtUzoMLE5Y1Z2xec5N2qYGQKw+fyPTFk0miWv/Y+dn54kPjRJCvcKIUQZaSxxO3ToEIsWLSItLU197NatW0ycOJHnn3+eUaNGsXDhQpRKpaa61FmZmZkcOnSISZMmYWxsTMeOHXFzc+Pw4cPaDk2IUjO2NKLliEaM/rIr6c6x7L22ldTs+3wZ/AFhZ6II/O8pti44SvTJBJRKSeCEEKI0NLY4Ydu2bSQmJmJh8XAOy6pVq4iJicHX15fU1FT27duHr68vAwcO1FS3j+Tv78/ixYsxMTFh165dFdpXZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSmyB6SLiwvR0dEV+jmEqAhGJgaMnzUc/xOb2bt3Ly90eR0L48JyIknRqez94hxW9c3wHOSMW8cG6BtIlSIhhHgUjf2EjI6OpkmTJup/p6enc/z4cbp3786KFSv47rvvcHJyYseOHZrq8pHu3LnD6tWrsbW1rfC+AFJSUti+fTt5eXl06tTpsecuWLCAwMBAJk6cyOLFi/Hw8ODjjz9mz5496nOysrIwMzMrcp2ZmZnUxRJVVu3atdm1axebNm3i291L6T7Tm1oNLdXtKbcyOPS/i2yYFUzozmjysvO1GK0QQlReGhtxS05OplatWup/h4aGUlBQoB5JMjAwoFWrVkUSlIqybNkyPD09sbS05MCBA489NyMjg9DQUPz8/EpsP3r0KD4+PpiYPLqcQb169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49ewLg6+tLQkIC33zzDd27d0dfXx8TExMyMjKKxfm4GISo7PT19RkxYgQALn71cW5bjxuhSXz5yXckxNyhk2sfMu/lcOKXq5zfEknT3k406+OEsYWRliMXQojKQ2MjbmZmZqSmpqr/fe7cOfT09PDy8lIfMzAwIDs7W1Ndlmj37t2cP3+eOXPmlOp8f39/5s+fT0BAQLG2rVu38s477zzxVatCoUChUDyxr0OHDmFiYkLXrl2LHO/fvz9JSUlcvnwZAHt7e7Kysoos6IiOjsbZ2bnE+wYFBTF//nxWrVr1xBiEqCwUCgWpBnf4esd/+fnUl2yK+IYCZeEq1Jz0PM79FcEfM4M5/vMVMu7KaLMQQoAGEzdHR0eOHj1Kamoq6enp7N27l0aNGhWZ85aQkEDNmjU11WUx9+/fZ9WqVbz66qvUqVOnVNeMHj2aESNGsGjRIrZu3ao+vmnTJpYtW8aECRMYOnSoRuKLjo7GyckJA4OiA52urq7qdgBTU1M6duzI2rVrycnJ4ejRo4SHh9OhQ4cS79uzZ08WLVrEjBkzNBKnEM/K9u3byczMBMC+RW1GLe2CW0c7FHqFfwjl5xRwMSCGDbMOcPB/oSTfTNdmuEIIoXUae1U6fPhwPvzwQ5577jn1yNo/J+cXFBQQGhpaZB6cpi1fvhwHB4cyJ1rTp0+nRo0aLFu2jNzcXHJzc/nuu+946aWXePHFFzUWX0pKCnZ2dsWOP0hu/zliOWfOHD799FMGDhyIra0tH330EdbW1hqLRYjKYN68eTg6OvL111/z1VdfYWpqStfXvWg5sjGhO6IJ2x9HQZ4SZYGKa8HxXDsQT8PWdfEe7Irt/++XKoQQ1YnGEreuXbsye/Zs9eKDbt26MWDAAHX7mTNnyM7Opk2bNprqsojg4GCOHj3KDz/8UKrXlv82ZcoUjIyM1K8bp06dytixYzUdZqljs7a2ZsmSJRrvX4jKZuzYsYwZM6bIs2FR2wT77uY0H9iBa/tucnl3LLmZ+aCCmJO3iTl5mwYtauE12JX6TW3K9cwLIURVpNG9SocOHfrI0a42bdqwc+dOTXanlpmZyRdffMFzzz1HrVq11LXk8vMLV6alpaVhYGDwxMn96enpKBQKVCoV6emafyVjZWVVYhHdB/FaWloWaxOiOvh34pWSkkKPHj2oU6cOGzduxHNgV67sjeNiQAxZyTkA3Ai9y43Qu9R2tcJrsCtOLeuoX7EKIYSu0olN5lNSUrh37x4bNmxgw4YNxdoHDBhAx44d+eyzz0q8XqVS8cUXX7B161bmzZtHXl4ey5cvJzc3l2nTpmksThcXF4KCgsjPzy8yzy0qKgrgkYsPhKhuXn31VSIiIoiIiGDKlCns3LkTr0EuNOvjRPihG1zYHkVaYuGChTuRKQStOIt1AzM8B7ng1t4OPakFJ4TQUTqRuNnY2LBy5cpix3/99VfOnz/PkiVLsLIqeT6MUqlkyZIlBAYG8v7776vLlxgZGbF48WJycnKYPXu2Rl7FdOrUie3bt3PgwIEiBXcDAwOxtbWladOmT92HELpgzpw5HDt2jLS0NFavXq0+bmCkT5Mejrh3tSf6RAIh26K4d71wxDr5RgYHvw3lzKZwWgxwxr2rPYbGOvEjTggh1HTip1qNGjXw8fEpdjwgIAB9ff0S2x7YsGEDu3fvZuHChUWK5/br1w8jIyM++eQTnJycGD58+GNjOH78ONnZ2eoVcrGxsQQHBwPg5+eHsbExfn5+tGrViuXLl5OZmUmDBg3Yu3cvJ06cYMGCBejr65fj0wuhe9q0acPZs2cJCwujYcOGxdr19PVwbW+HS7v6xJ+/Q8j2KBKu3gcg4242x3+6wvm/I2jWpyFNeztRw9zwGX8CIYSoGAqVDu/y/Nlnn3HgwIHH1mHLyckhPDyc5s2bl9geGhqKh4cHhoaP/8E/atQoEhISSmzbsGED9evXBwrn461Zs6bIllcTJkwoMgJXXmFhYUyZMoU1a9bg7u7+1PcTorJRKpVMnz6dSZMm0bp16yJtCWH3CdkWSdy5O0WOGxrr49HDkeb9GmJmY/wswxVCCI3T6cStupHETei6RYsW8c4772BkZMR3333HxIkTi51z73oaIdujiDp2C9U/Nq/XM1DQqFMDPAe6YFXfrNh1QghRFejEq1IhhO4rKChQr0zPy8tTj2L/m42jBd2medFqZCMu7IjmWnB8YS24fBVh++MJC47HuU09vIa4YNtQasEJIaoWSdyEEFWCvr4+e/fu5e2338ba2po+ffo89nyLOqZ0mNQMn+fcuBQQw+U918nLKqwFF30igegTCdh72uI52IX6TaQWnBCiapBXpTpEXpWK6kKlUhVLtC5fvvzYldm5mXlcCbpO6M4YslNzi7TVcbPGa4gLjj5SC04IUbmVudiRUqkkKiqKpKSkYm35+fmcP39eE3EJIcQj/Ttp2717N82bN2fGjBnk5OSUeI2RqSFeg10Z82VX2k9qinnthwW5EyOS2bPsLH/NP0z4oRso85UVGr8QQpRXmUbcEhISePvtt4mNjUWhUODn58c777yjrpF27949nnvuOXUZDPFsyYibqI7u3r2Lh4eH+o/J77//npdeeumJ1ykLlEQdu0XI9ijuxxXdKcXc1gTPgc407mqPgZGU6RFCVB5lGnH75ptvqF27Nps2beLHH38kLy+PadOmFRl9kzevQohnycbGhs8++4waNWowYMAAJk2aVKrr9PT1cOvYgOf+25Fec32p08ha3ZaelMXRdZf5Y2Yw57dEkpORV0HRCyFE2ZQpcQsJCWHq1KnUqVMHFxcXli5diqenJ9OnT+f27dtA6TdRF0IITVAoFEyZMoVjx47x008/oadXthkgCj0FTi3rMugjPwa83xZ7r9rqtuzUXE5vvMYfM/Zz8verZCaX/BpWCCGelTL9hMvOzi5SiFahUPD222/TunVrZsyYwY0bNzQeoBBClIaPjw82NjZFjsXExDB69Gju3LnziKseUigU1G9iQ995rRj2WQdc/Orz4O/QvOwCLmyP5o+ZwRz+4SKptzMr4iMIIcQTlSlxc3R0JCwsrNjxuXPn4ufnx/z58zUWmBBCPI2cnBxGjhzJxo0b8fX15eLFi6W+tlZDS7rP9GbEss54dHdAz6Awg1PmK7m6N45Ncw6w/6vz3L2eWlHhCyFEicqUuHXu3Jk9e/aU2DZnzhy6d+8uc9yEEJVCZGQkcXFxQOF+xvb29mW+h1U9Mzq+3JwxK7vSYqAzBsaFCxVUKog8eou/5x9h15LTJFy9p8nQhRDikaSOmw6RVaVCFHXr1i0mTZrEokWL8Pb2fur75aTncTkolksBMWSnFV2wULdxTbyGuODgXVvm+gohKowkbjpEEjchSicrK4vY2Fg8PDzKdX1+TgFhwXFc8I8m4252kTYbRws8B7ng4lcPPf0yl8oUQojHeuqfKl27dlWvKBVCiKpgxowZtGzZkl9//bVc1xvU0KdZn4aMXtGFzq+1wNru4ab1966nEfx1CJvmHuRK0HXycws0FbYQQjx94iYDdkKIquTPP//khx9+IDMzk1deeYWbN2+W+156Bno07mzP8MWd6Dnbl9quDzetT0vM4siPl9jwRjAh2yLJzZRacEKIpyfj+EKIaqV///5MnjwZgG+//RY7O7unvqdCT0HD1nUZvLAd/d9rQ4MWtdRtWSm5nPrjGn/MDObUhmtkpUgtOCFE+RloOwAhhHiWTExM+OGHH5g8eTIdOnTQ6L0VCgV2zWph16wWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqlG+xdC6D5J3IQQ1VJJSduaNWuIjo5m4cKFGBg83Y9HWxcreszyIflmOhf8o4k4dANlgYqCPCWX91znyt44XNvXx2uwCzXtLZ6qLyFE9SGJmxBCAGfOnGH69Onk5uZy/PhxAgMDMTIyeur7WtuZ0/mVFrQc7kZoQAxX98aRn1OASqki4vBNIg7fxLFlHbwGuVC3cU0NfBIhhC6TxE0IISjci7mgoHAFaPPmzTWStP2TWS0T/CY0wXuIK5d3x3IpMFa9ef31M4lcP5NIvSY2eA12wd7TVmrBCSFKJImbEEIAkydPpnHjxixfvpylS5dWWD/GFkb4Dm9EiwHOhO2PI3RHDBn3CmvBJVy5R8KVe9RqaInXYBcatqmHnp4kcEKIh546cXv++ecxNzfXRCxCCKFVHTt2pGPHjsWOX758mQYNGmBlZVXCVeVjaGxA837ONOnlROThm4RsjyLlVgYAd2NS2ffleSzrmuI5yIVGnezQN9TXWN9CiKpLdk7QIbJzghCal5SUhK+vLzVq1GDz5s14eXlVSD9KpYrY07cJ2RpJUnTRzetNa9ageX9nPLo7YGQiL0qEqM7kJ4AQQjzG9OnT1ZvVv/XWW+zevbtC+tHTU+Dcph4NW9fl5sW7hGyL4ualuwBk3s/h5K9XOb8lgma9nWjWpyHGlpqdgyeEqBo0nrgplUru3LnDnTt3yM/PL/EcTWz2LIQQz8J///tfwsPDiY+PZ926dRXen0KhoEELWxq0sCUxIpmQ7VHEnircVjA3I59zf0dyYUc0Ht0daDHAGfNaJhUekxCi8tBY4qZSqfj111/ZuHEjqampjz03ODhYU90KIUSFcnZ25siRI0RGRmpkl4WyqONmTa/Zvty/kc6F7VFEHL6JSqmiIFfJpcBYLu++jltHO7wGuWDdQOYaC1EdaCxx++677/j999+pWbMm/fr1o1atWujry2RaIUTVZ2xsTLNmzYocKygoYOTIkbzwwgsMHTq0Qvuv2cCcLq950nJEI0J3RHN1XxwFeUpUShXhB28QfugGDVvVxWuwC7VdrSs0FiGEdmkscQsMDMTBwYH//e9/mJrKNi5CCN32wQcf8Pfff/P333/z3//+l/nz51d4n+a2JrR7sSnew1y5vCuWS7tiyc3MBxXEnLpNzKnb2DWrhddgF+ya15JacELoII0lbllZWfTq1UuSNiGEzlMqlURFRQGgr6+v8T1Pn8TEsgYtRzamxUAXru69TujOGLKSCzevv3npLjcv3cXW2RKvIa40bFUXhdSCE0JnaCxxc3Nz4+7du5q6nRBCVFp6enr89ttvtG/fnoKCAjp16qSVOIxMDPAc6EKzPk6EHyqsBZd2OxOApOhU9n5xDqv6ZngNcsG1ox36BnpaiVMIoTkae4pfeOEFDh8+TFhYmKZuKYQQlZZCoWDGjBnMmjWrWNv+/ftRKpXPLBZ9Q308ujswcllnus3wxsbx4ab1KbcyOPi/UDbMCuZiQAx52SWv9hdCVA0aLcAbHBzMihUr6NChA66urpiZmZV4Xt++fTXVpfgHKcArhPZt2bKFYcOGMWjQINavX0/Nms9+43iVSkX8hSRCtkaScPV+kbYa5oY06+tE095OGJtLLTghqhqNvSrNzc3l8OHDpKSksGPHDoBiE2NVKhUKhUISNyGETkpJSWHy5MkAbN++nT///JOXX375mcehUChw8KqNg1dtbl+7T8i2SK6fvQNATnoeZzdHcGF7NE16OtK8f0PMaho/8xiFEOWjscTtq6++Ys+ePbi6utKlSxcpByKEqHasrKz47bffmDBhAj169OCll17SdkjUbVyT3m+24t71NEK2RxF17CYqJeTnFBC6I5pLu2Jo1KkBngNdsKpf8lsSIUTlobFXpYMHD6ZevXqsXr0aAwPZSUsb5FWpEJXD9evXqVmzJhYWFkWOP3jroE1piZlc2BFN2P54lPn/mIenAOe29fAa7IJtQyvtBSiEeCyNLU7Izc3Fx8dHkjYhRLXn6OhYLGkLCwujY8eOXLt2TUtRFbKoY0qHSc0Ys6orXoNdMDT+/zcjKog+nsCWd48S8N9T3LpyFw1OgRZCaIjGsix3d3fi4+M1dTshhNAZGRkZjBgxgosXL9KqVSt27dpFu3bttBqTqVUNWo9xx2uwC1eCrhO6I4bstFwAboQmcSM0iTpu1ngNccHRp47UghOiktDYiNuUKVM4efIkR48e1dQthRBCJyQlJanLgzg4OODp6anliB4yMjXEa7ArY1Z1pf2kppjbPlyokBiRzJ5lZ/lz3iHCD90o+mpVCKEVGpvjtm7dOi5dusSpU6fw8fHBzc2txHIgCoWCF198URNdin+ROW5CVF7p6enMmjWLN998Ew8PD22H80jKAiVRx25xflsUyfHpRdrMahnjOdAF9272GBjJ4jMhtEFjiVuXLl1K16FCQXBwsCa6FP8iiZsQVU9aWhpnz54t9c/QZ0WlVBF3/g7nt0aSGJ5cpK2GhSEt+jnTpJcjNcwMtROgENWUxua4rVy5UlO3EkKIakGlUvHyyy+zadMmPv74Y9577z309CrHtlQKPQWOvnVw8KnN7bD7nN8aSXxIEgA5aXmc3niN89siadrLkeb9nDG1rqHliIWoHjS6c4LQLhlxE6JqebDLAoClpSUXL17EwcFBy1E92t2YVEK2RxJ1PAH+8ZtDz0BB4y72eA50xrKu1IIToiJVjj/thBCiGho8eDD/+c9/0NPTY/369ZU6aQOo1dCS7jN8GLmsMx7dHdDTL1xpqsxXcXVvHBvnHGTfqvPcvZ6q5UiF0F0aG3ELDQ3lwIEDjB07llq1ahVrv3v3Lr///jvdunWjWbNmmuhS/IuMuAlRNUVERODm5lbk2IMfzdou2Ps4mfezCQ2I4cqe6+TnFBRps/eyxXuIK/U8bLQUnRC6SWMjbhs2bODIkSMlJm0AtWrV4ujRo2zcuFFTXQohhE74d9IGsGLFCiZMmEB6enoJV1QOpjWNaTvOg7GrutFyVCNqmD9cqBAfkoT/whNs+/AY188lSjFfITREY4sTrl69SsuWLR97jpeXF6dPn9ZUl0IIoZMOHz7M22+/TUFBASEhIZw6dQoTExNth/VINcwN8RnqRot+zoQFx3NhexQZ97IBSAxPZveSM9S0N8driCsufvXQ05dZOkKUl8aenuTkZGxtbR97jo2NDffv39dUl0IIoZPu37+PqakpUDgPrjInbf9kUEOfZn2cGP1FF7pM9cTK7uFChfvx6QR/HcLG2Qe4vCeW/NyCx9xJCPEoGhtxMzc3JzEx8bHn3L59u8r8ABJCCG0ZNGgQp0+f5osvvmDhwoXaDqfM9Az0aNSpAW4d7Lh+NpFzWyJJikoBID0pm6NrL3N2cwQtBjSkSU9HjEylFpwQpaWxEbdmzZpx8OBBbt++XWL77du3OXToEM2bN9dUl0IIobMaN27M6tWrMTAo+vf18ePHiY2N1VJUZaPQU+DUqi5D/tOO/gvaYNf84Rzo7LRcTv1xjd+n7+fUH2FkpeRoMVIhqg6NJW6jRo0iJyeHadOmERgYSFJSYaHGpKQkAgICeP3118nNzWX06NGa6lIIIaqVmzdvMmTIEHx9fQkMDNR2OKWmUCiwa1qL/u+2Yein7WnYph78/2LZvOwCQrZF8fuMYI6svUTanUztBitEJafRArx//fUXq1atKrKM/Z//f8aMGTz33HOa6k78i5QDEUK3Pf/88/zyyy8A9O3bl507d1bqciGPk3Irg5DtUYQfuoGq4OGvIYUeuLSzw2uwCzYOFlqMUIjKSeM7J0RFRbFlyxauXr1Keno65ubmNGnShCFDhuDi4qLJrsS/SOImhG67f/8+EydO5OzZs5w9e5batWtrO6SnlnEvm9Cd0VwJuk5BrrJIm4N3bbyHulK3cU0tRSdE5SNbXukQSdyE0H1KpZIbN24U22VBqVRWmn1OyyM7LZfLe2K5GBBDbkZ+kba67jXxHuqKvadtlR1hFEJTqu5TruOSk5N5++236d27N+PGjePUqVPaDkkIUQno6ekVS9pyc3Pp1q0bX3zxRZUtdGtsYYTvc40Yu6obfs83KbJp/e2w++z6/DR/v3OEqOO3UCqr5mcUQhM0Vg5EaNaKFSuwsbFh27ZtnD59mg8//JDff/8dKysrbYcmhKhk3nrrLQ4ePMjBgweJjY1lxYoV2g6p3AyNDWjeryFNejkSefgm57dGknq7cMHCvetp7PvyPOa1TfAe4kqjTnboG+prOWIhni0ZcauEMjMzOXToEJMmTcLY2JiOHTvi5ubG4cOHtR2aEKKSUalUGBsbA2BkZMT48eO1HJFm6Bvo0birPSOWdabHLB9qNbRUt6XfyeLw9xf5fUYwF/yjyM3Kf8ydhNAtOjPiFh4ezpo1a4iKiiI5OZkaNWrg6OjIsGHD6N27d4X2nZmZyfr16wkPDyc8PJyUlBQmTpzI5MmTSzz3+++/Z//+/aSlpeHo6Mj48ePp0aOH+pz4+HhMTEyoW7eu+piLiwvR0dEV+jmEEFWPQqHg888/p3379ty7d49WrVppOySN0tNT4NymHg1b1+Xmpbuc/zuSW1fuAZCdmsvJ38I493ckzfo40ayvEyaWNZ5wRyGqNp1J3NLT06lTpw49e/bE1taW7Oxs9uzZwyeffMKtW7d48cUXK6zvlJQUtm/fjqurK506dcLf3/+R5y5YsICrV6/y6quv4uDgQFBQEB9//DFKpZJevXoBkJWVhZmZWZHrzMzMSE5OrrDPIISo2oYMGVLi8T/++IOhQ4eqR+WqKoVCQYPmtjRobsudyGTOb40k9nThbj15Wfmc3xJJ6I5o3LvZ4znQBXNb2aVH6KanStzy8/OLVfXWFh8fH3x8fIoca9++Pbdu3WL79u2PTNwyMjIIDQ3Fz8+vxPajR4/i4+Pz2K266tWrx44dO1AoFCQnJz8ycTt27BinT5/mgw8+oGfPngD4+vqSkJDAN998Q/fu3dHX18fExISMjIxiccp2YUKIsvj111+ZMGECvr6+bN68GWdnZ22HpBG1Xa3pNaclyTfSCdkeRcThm6iUKgrylFzefZ0rQXG4tq+P12AXatpLLTihW55qjttzzz3H119/TUxMjIbC0TwrKyv09R89edXf35/58+cTEBBQrG3r1q2888477Nq167F9KBSKUi1RP3ToECYmJnTt2rXI8f79+5OUlMTly5cBsLe3Jysrq8jer9HR0Y/8oRsUFMT8+fNZtWrVE2MQQlQPGRkZzJo1C4CzZ89y4MAB7QZUAawbmNPlNU9Gr+xCsz5O6BsW/kpTKVVEHL7Jn28fZvfSMyRGJGs3UCE06KkSt4yMDDZu3MjEiROZOnUq/v7+ZGZqd7sSpVJJfn4+ycnJ/P3335w8eZJx48Y98vzRo0czYsQIFi1axNatW9XHN23axLJly5gwYQJDhw7VSGzR0dE4OTkVG6V0dXVVtwOYmprSsWNH1q5dS05ODkePHiU8PJwOHTqUeN+ePXuyaNEiZsyYoZE4hRBVn5mZGUFBQbi5uTF58mQmTpyo7ZAqjHktE9q92JSxq7rhM8wVQ5OHP2Ovn01k2wfH8F94nPjQpCpbLkWIB57qPefff//Nrl27CAgI4PLly1y5coVVq1bRrVs3+vfvj6enp6biLLXly5ezbds2AAwNDXnjjTceOffjgenTp1OjRg2WLVtGbm4uubm5fPfdd7z00ksanRuXkpKCnZ1dseMWFoVD+ampqepjc+bM4dNPP2XgwIHY2try0UcfYW1trbFYhBC6z8vLi9OnT2NkZFSsrTJNddEUY0sjWo5sTIuBLoTti+OCfxRZKbkAJFy9T+B/T2HjaIHPMFecWtdDT0+K+Yqq56meWktLS0aOHMnIkSMJCwtj586d7N27l4CAAAIDA7G3t2fAgAH06dMHGxsbTcX8WM8//zwDBw7k/v37HD16lC+++IKsrCzGjh372OumTJmCkZGR+nXj1KlTn3hNeZS26re1tTVLlizReP9CiOqlpNqPISEhPPfcc6xbt45OnTppIaqKZWRiQIsBzjTt7Uj44ZuEbIkk7U4WUFgLbu/K81jUMcF7qCtuHRugbyCVsUTVobE/t9zd3XF3d2f69OkcPHiQHTt2cO7cOb777jvWrFlDu3btGDBgAH5+fhW6LUvdunXVZTTatWsHwP/+9z/69ev3xBGr9PR0FAoFKpWK9PR0jcdmZWVFSkpKseNpaWlAYSIshBAVKSUlhREjRhAVFUW3bt0ICAhQr2jXNfqG+nh0c6BxF3tiTiZw7u8I7scV/mxPS8zi0P8ucnrDNTwHueDR3QFDY90agRS6SePfpYaGhvTo0YMePXqQmJhIQEAAAQEBHD58mCNHjmBjY8Nff/2l6W4fqUmTJmzdupWbN28+MnFTqVR88cUXbN26lXnz5pGXl8fy5cvJzc1l2rRpGovFxcWFoKCgYq8ooqKiAHRmxZcQovLKy8vD0dGRiIgIvL29dXLE7d/09BS4+NXHuW09boQmce6vCG5fSwYgKyWXE79c5exfETTv40Szvg0xtij+almIyqJC/7yoU6cOL774It26dWPx4sWEhoZy7969iuyymHPnzqGnp1fi3DIoXMywZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bIxsbd+rUie3bt3PgwIEiBXcDAwOxtbWladOmT92HEEI8jq2tLbt37+azzz7j+eefr/L13cpCoVBg71kbe8/aJIbf59zfkcSdvwNAXmY+5/6O5IJ/NB7dHfAc6IxZLSnBJCqfCkvcsrKy2L9/Pzt37uTixYvqbVm6dOlSIf0tWbIEU1NTmjRpgo2NDcnJyQQHB7Nv3z7Gjh37yNG2DRs2sHv3bhYuXFjkL89+/fphZGTEJ598gpOTE8OHD39s/8ePHyc7O1u9qjY2Npbg4GAA/Pz8MDY2xs/Pj1atWrF8+XIyMzNp0KABe/fu5cSJEyxYsOCxZUuEEEJT9PX1ef/994sdv3//PgEBAY9dia8r6jSqSZ+3W3E/Po3zWyKJOnYLlQoK8pRc2hXL5T3Xcetgh9cQF6ztzLUdrhBqCpWG10aHhISwc+dOgoODycnJQaVS4eHhwYABA+jZsyempqaa7E5t586d7Ny5k9jYWNLT0zExMcHNzY2BAwc+dsurnJwcwsPDad68eYntoaGheHh4YGho+Nj+R40aRUJCQoltGzZsoH79+kDhlldr1qwpsuXVhAkTiozAlVdYWBhTpkxhzZo1uLu7P/X9hBDVh1KpZMiQIfj7+zNp0iS+/vrralX0O+1OFhf8owjbH48yX1mkzbFlHXyGuVHbpfhCDyGeNY0kbnfu3CEwMJCAgABu3ryJSqXC0tKS3r17M2DAAFxcXDQRq3gCSdyEEOW1a9cu+vbtC0CtWrU4d+4cDg4OWo7q2ctKyeFiQAyXd8eSl11QpK2ehw0+z7li16yWRqbPCFEeT/WqdN++fQQEBHD69GmUSiV6enq0bt2a/v3706lTJ52rESSEELqqT58+/PLLL7z22mv8+uuv1TJpAzCxqkHrMe54DXbhSlAcF3ZEkZOWB0DC1XsEfHaPWk4W+DznhlPLuiikFpx4xp5qxO3BfLV69erRv39/+vXrR506dTQWnCgbGXETQjytu3fvUqtWrSLHCgoKUCqVT5wyoovycwsIP3SD81siybibXaTNoo4JPsPccO1gJ7XgxDPzVENiPXr0YMCAAbRs2VJT8QghhNCifydtAJ988gl79+7ljz/+eOQKfV1lYKRPkx6OuHe1J/pEYS245BsZQGEtuIPfhXLqj2t4DnKWWnDimdD44gShPTLiJoTQtN27d9O3b19UKhV2dnaEhYVhbl59V1mqVCriQ5I4+2c4dyKLFlQ3MjWgeb+GNO3jhLG51IITFUOjfxrk5+fz119/ERQUxPXr18nJyWH//v0AhIeHs337dkaOHFlt504IIURVY2lpSYMGDYiPj2fatGnVOmmDwlpwDt61cfCuTULYfc79FcGN0CQAcjPzOftnBCHbovDo4YDnQBfMbKpPnTzxbGgsccvJyWHu3LlcvHgRKysrzMzMyM5+OB+gfv367Ny5EwsLC6ZMmaKpboUQQlQgPz8/zp07x+rVq5k/f762w6lU6rnXpN87rbl3PY1zf0cQczLhYS24wMJacK7t7fAZ6opVfTNthyt0hMZmU/7888+EhobyyiuvsGXLFgYMGFCk3dzcHG9vb06dOqWpLoUQQjwDtra2fPDBB8X2mQ4KCuLMmTNaiqrysHG0oMcbPoxc3gX3bvbo6ReuNFUVqIg4dINNcw+ye9kZkmKK71UtRFlpLHHbt28f3t7ejBs3DoVCUWKNGzs7O27fvq2pLoUQQmhJTEwMo0aNon379nz33XfIdGmwrGtKpyktGPNVN1oMcMagxsPdcK6fSWTLu0fx/88Jbl6+K18vUW4aS9wSExPx8PB47DmmpqZkZGRoqkshhBBasmjRIu7fv09ubi6BgYHaDqdSMbWqQdvxHoz7uhstRzbCyOxhGZWEK/fY+clJtrx7hNjTt1EpJYETZaOxOW4mJiakpDx+GPjmzZtYWcmWIUIIUdV9+eWX1KhRgx07drB27VrZSaAERqaG+Axzo8UAZ8L2xxOyLZLM+zkA3I1NY8/ys1jWNcV7mCtu7e3Qk1pwohQ09l3SrFkzjhw5Qnp6eontiYmJHD9+HC8vL011KYQQQkuMjIxYuXIlZ8+exdraukhbVlaWdoKqpAyM9GnWx4kxX3aly+ueWNZ7uGd36u1MDn4byu8zg7kYGE1+TsFj7iSEBhO3MWPGkJaWxpw5cwgNDaWgoPCbLzs7mzNnzjB37lzy8/MZPXq0proUQgihZZaWlkX+nZWVRfv27Zk1axa5ublaiqpy0tPXo1HHBoxc2pneb7akVsOHX7us5ByO/3SV36bt4+yf4eRk5GkxUlGZabQA79atW1m5ciVKpbJYm56eHnPmzGHgwIGa6k78ixTgFUJo28svv8wPP/wAwAsvvMD69eu1HFHlpVKpuB12nzObw7l1+V6RNn0jPTy6O+A1yAXTmlILTjyk0QK8Q4YMwcvLi61bt3LlyhVSU1MxMzOjSZMmDBs2DGdnZ012J4QQohJRqVS0atWKn3/+GQMDA9566y1th1SpKRQK6nnYMGBBW+7GpnL2z3BizySCCgpyC2vBXdlzHdcOdvgMc8WyrtSCE7LllU6RETchRGVw6tQp4uLieO6557QdSpWTejuDc39HEnHkJqqCf/x6VoBTyzr4Dm9ELSfLR99A6LxnvoSlpNeoQgghdEfr1q2LJW0qlYoVK1aQlJSkpaiqBsu6ZnR5zZOxX3alWd+G6Bv9/69pFcSeTuTvd46w45MTJFy99/gbCZ2lscTN39//iecUFBSwcOFCTXUphBCiivjf//7HnDlz8PX15cSJE9oOp9IzrWlMuxeaMO7r7vgOd8PI9OHMpluX7+G/8AR/v3uE2LO3pZhvNaOxxG3ZsmUcOnToke0qlYr//Oc/BAcHa6pLIYQQVUB2djaffvopAHFxccTGxmo5oqqjhpkhvsMbMe7r7rR93gMTKyN1292YVPYsPcumuQcJP3wDZYG80aoONFrHbeHChYSEhBRre5C07d+/n8GDB2uqSyGEEFWAsbExx44do0OHDsycOZNRo0ZpO6Qqx6CGPi36OTN2VTc6v9oCizom6rbUhEwOrL7AHzOCubQrhvxcqQWnyzS2OCE9PZ1p06Zx584dVq1ahaurK1CYtH3yyScEBQUxePBg5s6dq4nuRAlkcYIQojLLy8tDpVJhZGRU5HhaWhoWFhZaiqpqUilVxJ65zZnNEdyPSyvSZmRmSPN+TjTv2xAjU8NH3EFUVRobcTM3N2fZsmWYm5vz1ltvcevWLfVIW1BQEIMGDZKkTQghqjFDQ8NiSdvx48dxcnLi999/11JUVZNCT0HD1vV4blEH+r/XmrqNrdVtuRl5nN0cwW/T9nP85ytkpuRoL1ChcRovBxIXF8frr7+OhYUFjRs3Zv/+/QwcOFDq+TwDMuImhKhKkpKS8PX1JS4uDoC//vqLYcOGaTmqqispOoUzm8KJO3+nyHE9fQWuHezwHe6GRW3TR1wtqgqNlwNxcHBgyZIl3Lt3j+DgYAYMGCBJmxBCiGJMTU3p0aMHAB07dpSddZ6SrbMVfd5uxchlnXFtXx+FngIAZYGK8IM32DDrAHuWneHev16tiqql3DsnrFu37rHtTZo0ISIiAltb2yLnKhQKXnzxxfJ2K4QQQkeYmpry448/0qVLF3r37o2hoczH0gSr+mZ0m+5Nm3HZnN8SybUD8RTkKQtrwZ1JJPZMIvWb2NByVCPqudtoO1xRRuV+VdqlS5fydahQSEmQCiKvSoUQuiIxMZEff/yRt956C319fW2HU6Vlp+cSuiOay7tjycsquuK0VkNLfEc2wtG7NgqFQksRirIo94jbypUrNRmHEEIIARQWax87diz79u1j7969/Pbbb9SuXVvbYVVZxuZGtB7tjvcQVy7vuU6ofxTZaXnA/9eCW3IGy3qm+Dznhmt7O/T0JIGrzMqduHl7e2swDCGEEKLQ0aNHOXDgAACXLl2ioEDqkmmCobEBXoNcaN6vIdcOxBOyNZL0pGzgYS24U7+H4TXYFfdu9hgYyUhnZfTM9yoVQgghHqdTp07s3bsXe3t7NmzYQL169bQdkk7RN9CjSQ9HRn/Rle4zvbFuYKZuy7yfw7H1l/l92n7O/hVObla+FiMVJSl34jZv3jzCwsLKdW1OTg6///47W7ZsKW/3QgghdFiXLl2IiIigU6dORY7n5eWRliarIjVBoafAxa8+wxd3ou/81tR2s1K35TyoBff6Po7/fIWsVKkFV1mU+1VpYmIir776Kt7e3vTp04fOnTtjZmb22GuuXr3K7t27CQoKIisri3fffbe83QshhNBxNWrUKHbs3XffZdu2bWzevJkWLVpoISrdo1AosPe0xd7TlsSIZE5vvMbNi3cByM8p4GJADJf3xOLa3o6WIxphbmvyhDuKilTuVaUqlYqdO3eyfv16bt++jZ6eHo6OjjRu3JiaNWtiYWFBTk4OqampxMfHExYWRkZGBgqFgm7dujFlyhTq16+v6c9TrcmqUiGELtuyZYu6QK+VlRUxMTFYW1trNygdlXwjndObrhF7+jaqf+xdr1CAo28dWo5qjI2DbFOmDeUecVMoFAwYMIB+/fpx7NgxAgICCAkJYffu3cXO1dPTw8XFhU6dOjFw4EBsbW2fKmghhBDVj6enJz4+Ppw7d46FCxdK0laBrBuY03OWL+l3szj7ZwQRh2+izFei+mctuKY2tBrVmLqNa2o73GpF41texcTEcOfOHVJTUzEyMsLa2hpnZ2fMzc012Y0ogYy4CSF0XXZ2Nj///DMvv/yy1B17hrJTczm/LZKre+PIzym6ytfW2ZKWIxth7yW14J4FjSduQnskcRNCVFd///03BgYGDBo0SNuh6LS87HxCA2K4FBBDTnpekTar+oW14FzaSS24iiTlQIQQQlRpYWFhvPDCCwwePJh33nkHpVL55ItEuRgaG+A7zI1xX3ej3cSmmNZ8uIAk5VYmwV9f4I+Z+7m0O4aCfPnvUBHKPcdNCCGEqAx+/PFH0tPTAYiPj5fXdc+AvqE+zXo70aSnI1FHb3L2rwhSEzIByLyXw7F1Vzi7OYJmfZ1o0d8ZQ2NJNzRFvpJCCCGqtEWLFlGvXj1++uknvv32W0ncniE9PQVuHRvg2sGOuPN3OLMpnLsxqQDkpBfWgruwPRqP7vZ4D3XD2MJIyxFXfTLHTYfIHDchRHWWl5eHoaFhkWOJiYnUri2T5p+lhLB7nN4YTsKVe0WO6xkocG1vR6uRjTCrJbXgykvmuAkhhNAJ/07a0tLS6Ny5M8OGDSM5OVk7QVVD9dxtGPh+W55b1AFH3zrw/zmzMl9F+MEb/PFGMHuWn+V+vOyAUR7yqlQIIYROevXVVwkLCyMsLIzJkyfz119/aTukasXG0ZLeb7YkNTGTs5vDiTp2C2WBCpUSYk/fJvb0beo3taH1qMbUkVpwpSYjbkIIIXTS888/j42NDZaWlixevFjb4VRblnVM6fq6F2O/6kbT3o7oGz1MPW5dvse2j46z5b0jxJ1PRGZvPVmFJ25du3at6C6EEEKIYvr168fZs2f566+/cHNz03Y41Z6JVQ3aT2zG+NXd8R7qipHpw5d+SdGp7Fp8hs1vHiLi8A1USkngHqXCEzfJnoUQQmiLk5MTPXr0KHJMpVIxf/58wsPDtRRV9WZkakirUY0Zt7o7bca5Y2L1cKVpyq0Mglf/fy24QKkFV5IyJW7z5s3j+++/5+DBg9y6datU1/xzJc+vv/5KXl7eY84WQgghKtaKFSv4/PPPadWqFdu2bdN2ONWWgZE+ngNdGPtVNzpOaY5F7YcrTTPu5XDspyv89vo+zv4ZTl52vhYjrVzKtDjB1taWU6dOsWHDBvLy8jA3N6dRo0Y0atSIxo0b06hRIxwdHYska/8ccVuzZg39+/enZs3CSYh//PEHQ4YMwcRElgULIYSoeHl5eaxbtw6A1NRU9PRkqre26enr4dHNAfeu9sScus3ZP8O5H1dYUDknPY+zf0ZwYUc07t3s8RnmhrF59a4FV6bE7a233gKgoKCA2NhYwsLCiIiI4OrVq/j7+5OZmYmxsTGBgYElXv/v16br1q2jc+fO6sTt/v37vP766/z+++/l+SxCCCHEYxkaGnL06FGmTJmCs7MzAwcO1HZI4v8pFAqc29TDuU09blxK4szGcBLDkwHIzy7gUkAsV4LicPWrT8vRjTC3qZ6DPuUqB6Kvr4+LiwsuLi4AREZGcvDgQbZs2UJKSkqp7/PvRE6lUpX6FawQQghRHubm5vz2228lzsGOj4/H3t5eC1GJf2rQzJYGH9uSFJXCqY3XuBGaBCpQ5ikJP3SDiCM3cfSpTasxjanZwELb4T5T5a7jdvnyZQ4cOMChQ4dITEzE29ubyZMn06FDB03GJ4QQQmicQqEotpvC/v376du3Lx999BHz5s2T16iVgK2LFf3mtyY5IYMzG64Rc+o2KqUKlVJF7JlEYs8mFtaCG92YOm7VoxZcmRK3M2fOcPDgQQ4dOkRGRgZt27Zl0qRJtGvXDnNz81Ld4+jRo/j4+GBnZ1eugIUQQghNS0xMZMyYMeTm5vLuu+/i6OjI+PHjtR2W+H/W9czo8YYPmcnZnNkUTsThmxTkKUEFty7dY9sHx7F1tqTlqEbYe+r2FmdlStzmzJmDra0tEyZMYNCgQcW2FynJP794jRo1YsWKFeTn52Nqakpubi6//vorLVq0oFGjRqVO/oQQQghNqlWrFq+//joff/wxvXr1YsyYMdoOSZTA1NqYTlNa0Ha8B+f+juDqvnjysgpXnCZFp7Lr8zNY1TfDe5grbu3tUOjpXgJXpk3mX375ZWJiYsjPz8fCwqLIitLGjRvj4OBQ7JquXbsSHBys/nd+fj4xMTFcu3aNa9euER4eTkREBDk5OSgUClQqVZHzRenJJvNCCPF0goKC8Pb2xtbWVtuhiFLIzy0gdGc0lwJiyU7LLdJmZmOM5yBnmvRwRM9Ad157lylxg8cnXiYmJri5ubFq1Sr1+f9O3EqiUqmIi4tTr1KdOnVquT5MdSeJmxBCaF5cXByLFi1i8eLFmJmZaTscUQJlgZIr++K4sC2KjLvZRdqMLQxp2tsJz0EuGBjpaylCzSlz4laSxyVeDxK3JUuW4OrqipubG66urvLNXwEkcRNCCM3Kzc2lS5cuHD9+nGbNmrFt2zZ1RQVR+aiUKiKP3+LcXxGk3Mwo0mZorE/jrvb4PFe1a8GVeo7b4xIvhUKBo6Mjjo6O9OrVq8Tr8/Ly2LlzJ7GxseTl5VG3bl31vdzc3HBzc5MFC0IIISqVixcvcvHiRQAyMjKwtrbWbkDisRR6Ctza2+Harj7xIXc4szmcpKhUAPKyC7gUGMvVvXG4tKtPy1GNMbcx1nLEZVfqxC0/P/+pEq93330XAKVSydmzZ/n4449JSkri/v37bN68WV2818XFhdWrVz/9JxNCCCGekq+vL6dPn2b8+PF8++232NjYaDskUQoKhQIH7zo4eNfhdvh9Tm+4xq0r90AFBXlKwg/eIOLwTRx9a9N6dGOsq1AtuFInbu+88w7w9ImXnp4e69ev57XXXmPAgAHAw9G47777jkaNGj3lRxJCCCE0x93dnVOnThUrMZGTk0NSUhINGjTQUmSiNOo2qsmABW25fyONU39cI+7cnYe14E4nEnsmkfpNbGg1ujF1G1X+WnBlLsCricTrypUr6hE4KNyCZMiQIZiamhIUFFTWkIQQQogKVVJdsNmzZ7Np0yZ+++23R04TEpVHzQYW9J7bkvS7WZzecI2o4wko8/+/Ftzle2z/8Di2Lpa0HN4YB5/a2g73kcq1PvbKlSv4+vqq//0g8Zo9ezYJCQlPvN7NzY3du3cXO96sWTOuXLlSnpCEEEKIZ2bTpk188803JCUlMXToUO7cuaPtkEQpmdcyoevrXoz7uhtNezthUOPhStOkqFR2LTnNpjcPEn7oRonbomlbuRK3p0285s6dy2+//cbKlSu5efMmUPgKduvWraUq6iuEEEJoU48ePdRvnVatWkXt2pV3hEaUzNjCiPYTmzL+m+54D3WhhvnD/CPlZgYHvrnAHzODuRgYg7JAqcVIiyrXXqVz585l+vTpJCcnM3LkSOzs7MqUeDVq1IjVq1ezYsUKxo4di6mpKQUFBeTn5/Pmm2+WJyQhhBDimbGxsWHbtm3s3LmTgQMHajsc8RQMjQ1oNcod3+cacTEwhosBMWTezwEg4242x3+6wvm/I2jSywnPQc4Y1ij3Nu8aUe46bpGRkaxYsYLQ0NBiiVf//v3V5z2pAO/NmzcJDw9HoVDg7u5O3bp1yxOOQOq4CSFEZbB+/XpSU1OZPn26Tu+ZqatUShXXDsYTsjWK1NuZRdqMzAzwGuRCk56OGJlq5w1hudNGV1dXvvrqqycmXk/KC+3s7KR+mxBCCJ1w/vx5XnvtNbKzszl69Cg///wzBgbaHaERZaPQU+De1YHGXeyJPX2bs39FcC82DYDcjHxO/XGNuu421HPXzgrUp/5uelLideDAgaftQgghhKgSgoKCyM4u3HLJ2tpakrYqTKFQ0LB1PRq2rsfNy3c5s/Eat68lU8+jptaSNihH4qZUKomJicHS0rLYJrz5+flcvHgRb29vTcUnhBBCVBlvvvkmLi4ufP3116xYsULb4QgNsWtaC7uP2pF8I52CPO0uVCjTqtKEhAQmTpzIpEmTGDFiBPPnzyclJUXdnpqayqxZszQdoxBCCFFlPPfccwQFBWFsXHQ7paioKHJycrQUldAE6wbm1GpoqdUYypS4ffPNN9SuXZtNmzbx448/kpeXx7Rp00hKSlKfUxlrngghhBDP0r8XJdy7d48ePXrQqVMnYmNjtRSV0AVlStxCQkKYOnUqderUwcXFhaVLl+Lp6cn06dO5ffs2UHJ1aSGEEKI6e/XVV4mJieHUqVO8/vrr2g5HVGFlStyys7OL1GlTKBS8/fbbtG7dmhkzZnDjxg2NByiEEEJUde+99x4uLi7UqlWLb7/9VtvhiCqsTImbo6MjYWFhxY7PnTsXPz8/5s+fr7HAhBBCCF3h7e3NmTNnCAwMxMHBQdvhiCqsTIlb586d2bNnT4ltc+bMoXv37jLHTQghhCiBtbU1rVq1KnKsoKCASZMmceTIES1FJaqacu+cICof2TlBCCGqloULF/Lhhx9iYGDA6tWrmTJlirZDEpVcuTaZf+DBBvFCCCGEKJuCggJ1kXqlUombm5uWIxJVwVOVdB43bhwvvfQSzz//vKbiEUIIIaoFfX19du3axfvvv4+lpSXdunXTdkiiCniqxE2lUlFQUFDk2I4dO7h48SLz5s17qsCEEEIIXWdgYMB///vfEtvOnz8vOxGJYp7qVWlJEhMTCQgIKLHtt99+Y9q0aZruUgghhNAp/v7++Pj48Morr6j3PhUCKiBxe5ycnBwuXbr0LLsUQgghqpS7d++qpyCtWbOGP/74Q8sRicrkmSZuQgghhHi8WrVqsXLlSkxMTBg2bBgvvviitkMSlchTzXETQgghhOa98MIL+Pr64uDgIFtJiiJkxE0IIYSohJo3b46VlVWRYxEREQwZMoSEhAQtRSW07alH3LZs2UJ0dDQeHh64u7uTkZGhibiqveTkZD777DPOnz+Pra0ts2fPpnXr1toOSwghhJZkZWUxYsQIQkJCOHnyJLt27cLT01PbYYln7KkSN2dnZ65fv05wcDDBwcFFhnMXLlyIi4sLrq6uuLi4ULdu3acOtjpZsWIFNjY2bNu2jdOnT/Phhx/y+++/F/vrSwghRPUQGxtLUlISAFZWVjg7O2s5IqENT5W4rVu3jtzcXCIiIggPDycsLIxr164RHR3N3r172bt3rzqZMzMzo0aNGhoJWtdlZmZy6NAhfv/9d4yNjenYsSNubm4cPnyYAQMGaDs8IYQQWuDh4cHZs2eZMmUKn332GRYWFtoOSWjBU78qNTIyomnTpjRt2lR9LD8/n8jISK5du6ZO5qKiokhPT6+wSZZnzpxhz549XLx4kcTERMzNzXF3d2fixIkVvm9nZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSkySuni4kJ0dHSFfg4hhBCVW506ddi6dWux4xkZGURGRsqr02qgQlaVGhgY4O7ujru7O4MGDQIKk7mYmBjCwsIqoku2bt1KSkoKI0aMoGHDhiQnJ7NhwwZee+01li5dSsuWLSukX4CUlBS2b9+Oq6srnTp1wt/f/5HnLliwgKtXr/Lqq6/i4OBAUFAQH3/8MUqlkl69egGF8xjMzMyKXGdmZkZycnKFfQYhhBBVk0qlYurUqWzcuJGvv/6al156SdshiQr0zMqBGBgY4ObmVmGb6M6ePZuaNWsWOdamTRvGjRvHL7/88sjELSMjg9DQUPz8/EpsP3r0KD4+PpiYmDyy73r16rFjxw4UCgXJycmPTNyOHTvG6dOn+eCDD+jZsycAvr6+JCQk8M0339C9e3f09fUxMTEptsgjIyPjsTEIIYSonjZv3szPP/8MwKxZs+jfvz/169fXclSiouhMOZB/J20ApqamODk5kZiY+Mjr/P39mT9/fonbdG3dupV33nmHXbt2PbZvhUJRqlfAhw4dwsTEhK5duxY53r9/f5KSkrh8+TIA9vb2ZGVlFYk7Ojr6kRNRg4KCmD9/PqtWrXpiDEIIIXTL4MGD1dtJ/vDDD5K06TidSdxKkp6eTnh4OA0bNnzkOaNHj2bEiBEsWrSoyLyBTZs2sWzZMiZMmMDQoUM1Ek90dDROTk4YGBQd6HR1dVW3Q2HC2bFjR9auXUtOTg5Hjx4lPDycDh06lHjfnj17smjRImbMmKGROIUQQlQdNWrU4KuvvuL06dOMGjVK2+GICqbTOyesWLGCrKwsXnjhhceeN336dGrUqMGyZcvIzc0lNzeX7777jpdeekmjW42kpKRgZ2dX7PiDlUGpqanqY3PmzOHTTz9l4MCB2Nra8tFHH2Ftba2xWIQQQuiWkqYEffXVV0RHR7No0SIMDQ21EJXQNJ1N3L7//nv27NnDG2+8UapVpVOmTMHIyEj9unHq1KmMHTtW43GVdlWttbU1S5Ys0Xj/Qgghqofjx48zZ84c8vLyOHnyJHv37sXIyEjbYYmnpJOvSteuXctPP/3ElClTGD58eKmv+2e5kvT0dI3HZWVlRUpKSrHjaWlpAFhaWmq8TyGEENXTtWvX1P/fz89PkjYdoXMjbmvXrmXt2rVMmjSJ559/vlTXqFQqvvjiC7Zu3cq8efPIy8tj+fLl5Obmqid8aoKLiwtBQUHk5+cXmecWFRUFIFWwhRBCaMwLL7yAu7s7K1eu5LPPPtN2OEJDdCpxW79+PWvXruWFF15g0qRJpbpGqVSyZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bI4WDO3XqxPbt2zlw4ECRgruBgYHY2toWKWIshBBCPK22bdvy22+/FTseEhKCg4MDNjY2WohKPA2dSdz++OMPfvjhB9q2bUu7du24dOlSkfZmzZqVeN2GDRvYvXs3CxcupFOnTurj/fr1w8jIiE8++QQnJ6cnvnI9fvw42dnZZGZmAoV7ygUHBwOFQ9TGxsb4+fnRqlUrli9fTmZmJg0aNGDv3r2cOHGCBQsWoK+v/xRfASGEEOLJbt++rf4dt3nzZlq1aqXtkEQZKFQqlUrbQWjCzJkzOX/+/CPbDx48WOLxnJwcwsPDad68eYntoaGheHh4PHE1zqhRo0hISCixbcOGDeq6OpmZmaxZs6bIllcTJkwoMgJXXmFhYUyZMoU1a9ZU+DZfQgghqqZRo0axadMmAPr27VtiHVNReelM4iYkcRNCCPFkcXFxjBo1itjYWM6dO1dkX2xR+enMq1IhhBBCPJmDgwMHDhwgJiamWNKmUqk0MqdbVBydLAcihBBCiEczMjKicePGRY7l5eUxcOBANmzYoKWoRGlI4iaEEEII3n33XXbu3MmYMWP4z3/+o+1wxCNI4iaEEEJUc0qlkjt37gBgaGhIr169tByReBSZ4yaEEEJUc3p6eqxdu5YOHTqQn5+Pn5+ftkMSjyCJmxBCCCFQKBRMmTKlxLbAwEB69eol9UYrAXlVKoQQQohH2rhxI/369aN///4kJSVpO5xqTxI3IYQQQpQoJSWFV199FYDdu3ezfft2LUckJHETQgghRImsrKz466+/qFOnDhMmTGDixInaDqnakzluQgghhHikbt26ce7cOaysrIoV55WCvc+ejLgJIYQQ4rHs7OwwMzMrcuzSpUu0bt2aS5cuaSmq6kkSNyGEEEKUSVpaGsOHD+fMmTO0adOGo0ePajukakMSNyGEEEKUSXJyMsbGxgA0atQIHx8fLUdUfUjiJoQQQogycXBw4NixY0ybNo3NmzdjYmKi7ZCqDUnchBBCCFFmJiYmfPXVV7i5uRU5npKSwu7du7UUle6TxE0IIYQQGqFSqZg4cSJ9+vRhwYIFFBQUaDsknSOJmxBCCCE0YsuWLWzZsgWA1atXc+vWLe0GpIMkcRNCCCGERgwdOpSlS5diaGjIzz//jL29vbZD0jmSuAkhhBBCIxQKBXPnziUiIoIBAwYUaVMqlahUKi1FpjskcRNCCCGERjk6OhY7tnjxYkaMGEFKSooWItIdsuWVEEIIISrU/v37ee+991AqlVy8eJHz589LCZFykhE3IYQQQlSonJwcLC0tARg3bpwkbU9BRtyEEEIIUaH69u3L2bNnWbVqFQsWLNB2OFWajLgJIYQQosI5OzuzfPly9PX1ixw/dOgQkZGRWoqq6pHETQghhBBacf36dYYNG0bLli3ZunWrtsOpEiRxE0IIIYRWvPvuu9y9e5eUlBR++OEHKRdSCjLHTQghhBBasXr1anJzczl16hTr169HoVBoO6RKTxI3IYQQQmiFpaUlGzZsIDExkZo1axZpy8/Px8BA0pR/k1elQgghhNAahUJB3bp1ixzLycmhY8eOfP755yiVSi1FVjlJKiuEEEKISmXWrFmcOHGCEydOcOPGDb788ktth1RpSOImhBBCiEpDpVJRp04dFAoFNWrU4KWXXtJ2SJWKJG5CCCGEqDQUCgUff/wx7dq14969e3h5eWk7pEpFEjchhBBCVDp9+/Yt8fi6desYNWoUpqamzziiykEWJwghhBCiSli7di2TJk3Cz8+Pa9euaTscrZDETQghhBCVXkZGBm+//TYAoaGhnDp1SssRaYckbkIIIYSo9MzMzDhw4ABNmjThtddeY/z48doOSStkjpsQQgghqoSmTZty8uTJEgvz5ubmYmRkpIWoni0ZcRNCCCFElWFubo6xsXGRY6dPn8bV1ZWgoCAtRfXsSOImhBBCiCrr3r17jBgxgvj4eHr37s3u3bu1HVKFksRNCCGEEFVa06ZNAfDz86Nr167aDaaCyRw3IYQQQlRZNjY2+Pv7s3TpUsaOHavz89xkxE0IIYQQVZqenh5vv/02Dg4ORY4nJSXx448/olKptBSZ5kniJoQQQgidU1BQwPjx43nppZeYMGEC6enp2g5JIyRxE0IIIYTOCQoKUi9UCAoKIjU1VcsRaYYkbkIIIYTQOX369GHTpk1YW1vzxx9/YGdnp+2QNEIWJwghhBBCJ40YMYJevXphZWVV5Hh+fj5KpbJKLmSQETchhBBC6Kx/J20AH374IZ06deL69etaiOjpyIibEEIIIaoNf39/PvvsMwDatGlDREQE5ubmWo6q9GTETQghhBDVhp2dHc7OzgC8+eabVSppAxlxE0IIIUQ14uvry5kzZ1izZg1z587VdjhlJiNuQgghhKhWatasydtvv41CoShyfOfOnRw7dkxLUZWOJG5CCCGEqPYiIyMZO3YsnTt3ZuXKlZV2twVJ3IQQQghR7S1dupTU1FTy8/M5evSotsN5JJnjJoQQQohqb9WqVVhYWLB9+3a+//77Yq9RKwsZcRNCCCFEtWdgYMDixYs5ffo0FhYWRdrS0tK0FFVxkrgJIYQQQvw/MzOzIv/OyMigXbt2TJ06lezsbC1F9ZC8KhVCCCGEKIFKpeK1117j0qVLXLp0ifT0dH7++WetxiQjbkIIIYQQJVAoFHTr1g1jY2PMzc1ZsGCBtkOSETchhBBCiEeZPHkyLVu2JC4uDnd3d22HI4mbEEIIIcTjeHl54eXlpe0wAHlVKoQQQghRZUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRRhoOwChOTk5OQDExsZqORIhhBBClJWTkxPGxsaPPUcSNx2SkJAAwCeffKLlSIQQQghRVmvWrMHd3f2x5yhUKpXqGcUjKlhycjInT55ky5YtvPHGG6W6ZtWqVcyYMeOJ58XGxvLJJ5+wYMECnJycnjZUnVDar502POvYKqo/Td33ae5TnmvLek1pzpdnsLjK/AyCPIeavE9FP4eV5XehjLhVM9bW1vTu3Zt9+/Y9MWN/wNzcvNTnQuE3VVnO12Vl/do9S886torqT1P3fZr7lOfasl5TlvPlGXyoMj+DIM+hJu9T0c9hVfpdKIsTdFDPnj0r5FxRVGX+2j3r2CqqP03d92nuU55ry3pNZf5eqswq+9dNnkPN3aein8PK/r30T/KqVJRKWFgYU6ZMKdX7dyGE5skzKIT2VYbnUEbcRKnUqlWLiRMnUqtWLW2HIkS1JM+gENpXGZ5DGXETQgghhKgiZMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNaERubi7//e9/GT58OH379uW1114jNDRU22EJUa189NFHDBkyhL59+zJx4kSOHj2q7ZCEqLYuXrxIly5dWL9+vUbvK+VAhEZkZWWxYcMG+vXrR+3atdm1axerV69m06ZNT9x3TQihGdHR0djb22NoaMjly5eZO3cuf/zxB1ZWVtoOTYhqRalUMnXqVBQKBe3atePFF1/U2L1lxE1ohImJCRMnTqRu3bro6enRr18/lEol8fHx2g5NiGrD2dkZQ0NDAPT19cnLyyMpKUnLUQlR/Wzbto0WLVrg6Oio8XvLJvPVVGZmJuvXryc8PJzw8HBSUlKYOHEikydPLvHc77//nv3795OWloajoyPjx4+nR48ej7x/bGwsOTk52NnZVeTHEKLKqqhncOHChRw8eJDc3Fz8/PxwcXF5Fh9HiCqpIp7DlJQUNm/ezLfffsuXX36p8ZglcaumUlJS2L59O66urnTq1Al/f/9HnrtgwQKuXr3Kq6++ioODA0FBQXz88ccolUp69epV7Pzs7Gw+/fRTXnjhBUxNTSvyYwhRZVXUM/jBBx+Qn5/P2bNniY2NRaFQVPRHEaLKqojn8H//+x+jRo3C3Ny8QmKWxK2aqlevHjt27EChUJCcnPzIb9Zjx45x+vRpPvjgA3r27AmAr68vCQkJfPPNN3Tv3h19fX31+fn5+Xz44Yc4OTnx/PPPP5PPIkRVVFHPIICBgQFt2rThzz//xN7ennbt2lX45xGiKtL0cxgWFsa1a9eYO3duhcUsc9yqKYVCUaq/xA8dOoSJiQldu3Ytcrx///4kJSVx+fJl9TGlUsmnn36Knp4e8+bNk7/0hXiMingG/02pVHLjxo2nDVUInaXp5zAkJISYmBiGDBnCoEGD2LdvH7/++iuffvqpxmKWETfxWNHR0Tg5OWFgUPRbxdXVVd3eokULAJYuXcrdu3dZsmRJsfOFEOVT2mfw7t27hIaG0rZtWwwNDTl48CDnzp3j1Vdf1UbYQuiU0j6HAwcOLJLcff3119SrV49x48ZpLBb57SoeKyUlpcQFBhYWFgCkpqYCkJCQgL+/P0ZGRgwePFh93uLFi/Hy8no2wQqhg0r7DAJs3ryZzz//HIVCgb29PR999BFubm7PLFYhdFVpn0NTU9Mic7tr1KiBqampRkvySOImnqg0w8j16tXj4MGDzyAaIaqf0jyDtWrV4quvvnoG0QhRPZVn+s+7776r8Thkjpt4LCsrK1JSUoodT0tLA8DS0vJZhyREtSLPoBDaV5meQ0ncxGO5uLgQGxtLfn5+keNRUVFAYcFPIUTFkWdQCO2rTM+hJG7isTp16kRWVhYHDhwocjwwMBBbW1uaNm2qpciEqB7kGRRC+yrTcyhz3Kqx48ePk52dTWZmJlC420FwcDAAfn5+GBsb4+fnR6tWrVi+fDmZmZk0aNCAvXv3cuLECRYsWFCsfpQQovTkGRRC+6racyibzFdjo0aNIiEhocS2DRs2UL9+faBwm481a9YU2eZjwoQJj93ySgjxZPIMCqF9Ve05lMRNCCGEEKKKkDluQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQghRTaxYsYJBgwapt/YB+PHHH+ncuTPnzp3TYmQPffrpp4wcOZKcnBxthyJEpSR7lQohqqRbt24xevTox57j5ubGjz/++Iwiqtzi4uLYtm0br7zyCqamphXa19atW1m2bBmDBw/mzTfffOy5L7/8MteuXWPNmjW4u7vz4osvEhQUxKZNm5gwYUKFxilEVSSJmxCiSmvQoAG9evUqsa1WrVrPOJrKa+3atRgZGTFkyJAK76tnz558/fXX7Nu3jxkzZlCjRo0Sz4uMjOTatWs0atQId3d3AOzt7enYsSO//fYbw4cPx8TEpMLjFaIqkcRNCFGlNWjQgMmTJ2s7jEotOTmZgwcP0rVr1wofbQMwMzOjS5cu7Nq1iwMHDtC7d+8Sz/P39wegf//+RY737t2bAwcOsHfvXgYOHFjh8QpRlcgcNyFEtdG5c2dmzpxJcnIyixYtYvDgwfTs2ZPXXnvtkXO8MjMz+fHHH3nhhRfo2bMn/fv358033+TChQvFzp05cyadO3cmNzeXH374gbFjx9KtW7cir2sPHDjAlClT6NmzJ0OGDGHx4sWkpaUxatQoRo0apT7v008/pXPnzly5cqXEuL755hs6d+7MwYMHn/i59+7dS25uLl27dn3iuQ9ERkYybNgwBg0axOXLl9XHb968yeeff86IESPo0aMHQ4cO5bPPPiMhIaHI9QMGDAAgICCgxPvn5eURFBSEkZFRscTOz88PExMTdu7cWep4haguJHETQlQr6enpvP7660RGRtKrVy86d+5MWFgYb775JlFRUUXOTU1NZerUqaxbtw5LS0uGDh2qPv+NN97g0KFDJfaxYMECdu7ciZeXFyNHjsTOzg6AHTt28P7773Pjxg369OlD3759uXTpEnPmzCE/P7/IPQYPHgw8HJX6p/z8fHbt2oWNjQ3t27d/4mc+c+YMAM2aNXvyFwgICQlhxowZ6Ovr89VXX9G0aVMALl++zMsvv0xgYCDu7u6MGDECLy8v9uzZw6uvvsrNmzfV9/D29sbe3p6zZ89y69atYn0cOXKElJQUOnfujIWFRZE2Q0NDGjduzJUrV8jKyipVzEJUF/KqVAhRpd24ceORCxCaNWtG27ZtixyLiIhg6NChzJo1Cz29wr9dfX19Wbx4MX/99VeRyfRffPEF0dHRzJ8/v8jrvHv37vHKK6+wZMkS2rRpU2wO1927d1m7di2WlpbqY2lpaXz55ZeYmpry/fffq5O5KVOm8PbbbxMWFka9evXU57do0QJnZ2f27t3L9OnTi8z1Onr0KPfu3WPcuHEYGDz5x/jFixepXbs2NWvWfOK5hw4d4uOPP8bOzo6lS5dSp04doDBZ/Oijj1AqlaxZswY3Nzf1NRcuXOCNN97gyy+/ZNGiRerj/fv353//+x+BgYFMmjSpSD87duwAHo7M/Zu7uzshISFcuXIFX1/fJ8YtRHUhI25CiCrtxo0brFu3rsT/nThxotj5JiYmvPbaa+qkDaBv377o6+tz9epV9bHk5GT2799Py5Yti83BsrGxYezYsSQnJ6tHs/5p0qRJRZI2gMOHD5OVlcXAgQPVSRuAgYEBL730UomfbfDgwWRmZrJv374ix/39/VEoFKWa/5WXl0dycnKpkjZ/f38++OADGjVqxFdffaVO2qAwWUxISGDs2LFFkjYAT09POnTowPHjx8nIyFAff/B1DQgIQKVSqY8nJSVx+vRp6tWr98ik7EG8d+7ceWLcQlQnMuImhKjS2rRpw9KlS0t9vr29fbEJ+gYGBtjY2JCenq4+dvXqVQoKCsjNzS1xRC8+Ph6A2NjYYq8rmzRpUuz8yMhIAJo3b16srUmTJujr6xc73rt3b7799lv8/f3VI1N37tzh1KlT6leRT5KSkgJQ7HXkv23cuJEjR47g5+fHwoULMTY2LtJ+6dIlAK5fv17i1+PevXsolUri4uLw8PAAwNbWlrZt23L06FHOnj1Ly5YtgcJ5bwUFBfTv3x+FQlFiPA8S3wfxCyEKSeImhKhWzMzMSjyur6+PUqlU/zs1NRWA0NBQQkNDH3m/7OzsYsdsbGyKHXswEmVtbV2sTU9PDysrq2LHLSws6NatG4GBgcTExNCwYUN27txJQUFBqVdbPniN+6SCtg8WW7Rt27ZY0gaFr3oB9uzZ89j7/PvrMWDAAI4ePUpAQECRxE1PT49+/fo98j4P4n1UKREhqitJ3IQQogQPErzRo0czbdq0Ml1b0ijSg/slJycXa1MqlaSkpFC7du1ibYMHDyYwMBB/f3+mTZtGQEAAlpaWdO7cuVSxWFhYYGBgoE5EH2XevHn89NNPfPnll+jp6TFs2LAi7Q9GKRctWlSqBREPtGvXDhsbGw4cOMDs2bOJiIggPj6eNm3aULdu3Ude9yDekhJdIaozmeMmhBAl8PDwQKFQqF8RPi1XV1egcKHAv125coWCgoISr2vevDkuLi7s2rWL48ePc/PmTXr16lWmkShnZ2cSEhKKrVz9JwsLC1asWEHjxo1ZsWIFf/31V5H2BytLy/r1MDAwoE+fPuTk5LB37151iY9HLUp4IC4uDgAXF5cy9SeErpPETQghSlCrVi26devGxYsX+f3334tMrn/g8uXLJb4qLUnHjh0xMTHB39+/SNmM/Px8fvjhh8deO2jQIFJSUliyZAlAmYvSent7k5ubq55n9ygWFhYsX74cDw8PvvjiC/78888i8detW5cNGzZw/vz5Ytfm5+eXWNsOHiZpW7ZsITg4GCsrKzp27PjYWC5fvkytWrVwcHB4wqcTonqRV6VCiCrtceVAgKfaVWHOnDnExcXxzTffsGvXLpo1a4a5uTmJiYmEhYURHx/P33//XeKcsH+zsLBg+vTpLFmyhJdffpnu3btjZmbG8ePHMTIywtbW9pET9fv06cN3331HUlISTZs2VY/elVanTp3YtGkTZ86cUW8t9bg4ly1bxty5c1m5ciUqlYoRI0ZgZGTEwoULefvtt5k5cyYtW7bE2dkZgNu3b3PhwgWsrKz45Zdfit3T0dGRFi1aqOcKDhw4EENDw0fGcOPGDW7dusXQoUPL9DmFqA4kcRNCVGkPyoE8ytMkbpaWlqxevZq//vqLffv2ERQUhFKpxMbGBjc3N1588cUSFxU8yqBBg7CwsODnn38mMDAQMzMzOnTowGuvvcbIkSNp0KBBideZm5vTsWNHgoKCyrUFlLe3N46OjuzevZtx48Y98fwHI29z587lyy+/RKVSMXLkSJo0acKPP/74f+3dvYriUBjG8UdEvAERQcR7ECwtjIVFevEDrMXewtJSsBEsbMTSUtEuN6A2IugFCFpErUQQFGG3WHCYWZdlApMxu/9fGU6SUz6c9+U9GgwGms1mWq1WCgQCCoVCSqVSymQyf/ymaZqP4PZxvMpHlmVJehtCDOCN78ez838AgGt2u52KxaLS6bQajcbTNeVyWfv9XsPh0NF9o+PxWK1WS91u99Gv9oru97tKpZIikYja7fZ3bwd4OfS4AYBLzuezbrfbu2fX61WdTkfSr5LmM9PpVJvNRtls1vEl8aZpKh6Pq9/vO3rfLZZlybZtVavV794K8JIolQKAS5bLpZrNppLJpMLhsE6nkxaLhWzbViKRkGEY79aPRiMdDgdNJhMFg0EVCgXH//b7/arX65rP57pcLo4D4Ffz+Xyq1Wp/7cUD/leUSgHAJdvtVr1eT+v1+jHPLRqNyjAM5fP530Z85HI5HY9HxWIxVSqVT81PA/BvIrgBAAB4BD1uAAAAHkFwAwAA8AiCGwAAgEcQ3AAAADyC4AYAAOARBDcAAACPILgBAAB4BMENAADAI34C4fcZMfdez38AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -13734,17 +1642,17 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "id": "e20787dd-42ce-4255-9994-2280912165c8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, @@ -13786,23 +1694,23 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 16, "id": "29823cda-ca7b-4c5c-ac11-681bfaf12ba8", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 17, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHDCAYAAABsyc0zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8yklEQVR4nO3deVyVZf7/8deRHQWURUEQRDY33HBcyq1ETUutLMvUtEWzspy+NuaUrWPLWGll06KW2m7aNKmVFaXmZFpKrigiIgKCgrLvy/n94c8zoaiA4M2B93Me83h07nPd9/0+x3Pgw3Vf93WZzGazGRERERG5opoZHUBERESkKVIRJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBrA1OkBjNmLEiEqPi4qKuP/++7n99tsNSiQiIiINhUkLeF8ZGRkZ3HrrrXz88ce0bdvW6DgiIiJiMF2OvEJ++OEHunTpogJMREREAF2OtCgoKGDlypXExcURFxdHdnY2U6dO5e67766y7bJly9i4cSO5ubn4+/szceJEhg4desHjf//999x88831+RJERETEiqgn7P/Lzs5m3bp1lJaWMnDgwIu2nTdvHhs2bGDq1KksWLCAjh078uyzz/LDDz9U2T4+Pp6kpCSGDBlS7TxFRUXExsZSVFRUk5chIiIiVkI9Yf+ft7c3X3/9NSaTiaysLNavX19lu19//ZUdO3bw1FNPERkZCUCvXr1IS0vj7bff5tprr8XGxqbSPt999x1XX301Li4uFzx/RkYGp06dsjxOTExk/vz5LF26lLCwsDp4hSIiItKQqAj7/0wmU7XabdmyBScnp/N6tUaNGsVzzz1HTEwM4eHhlu0VFRVERUUxe/bsix537dq1rFixoqaxRURExEqpCKuhhIQEAgICsLWt/NYFBQVZnv9zEbZz507Kysro27fvRY87ZswYrr76asvjsz1hIiIi0jipCKuh7OzsKu9wPHupMScnp9L277//nqFDh55XtJ3L09MTT0/PugsqIiIiDZqKsFqo7qVLgCeeeKIek4iIiIi10t2RNeTm5kZ2dvZ523NzcwFwdXW90pFERETECqkIq6EOHTqQmJhIWVlZpe1HjhwBIDAw0IhYIiIiYmVUhNXQwIEDKSwsZPPmzZW2b9iwAU9PTzp37mxQMhEREbEmGhP2J9u2baOoqIiCggLgzB2KmzZtAqBfv344OjrSr18/evfuzcKFCykoKMDX15cff/yR7du3M2/evPPmCBMRERGpihbw/pPx48eTlpZW5XOrVq3Cx8cHOLNs0dKlSystWzRp0qSLLltUU7GxsUybNk2TtYqIiDRSKsIaKBVhIiIijZvGhImIiIgYQEWYiIiIiAFUhImIiIgYQEWYiIiIiAFUhImIiIgYQPOEiUgl2ceyKcgoMDpGjTh7OuPm72Z0DBGRGlERJiIW2ceyWdBxAacKT+HDmXnxTnGKZjSjFa2ooII00mhFK5xwooACssjCBx9MmDjNaQDccceMmVRSaUlLnHGmkEIyycQbb5rRjEwyqaACDzwASCUVV1xpTnOKKOI0p2lDG2ywIYssyijDE08A0kijxf//XzHFlDmW8UTsEyrERMSqqAgTEYuCjAJ2Fe7iB9sfSNyeCMD4+8fj0cqDx154jNy8XMIGh/HuS+8yethoVq1dxYJnF3Bs+zFsbW2Z8sgUAFYuWklZWRn+ff1Z9PQibhtzG+t+WMd9c+8jdnMsLi1cuP/x+zmVeYrP3/4cgPb92vP0/z3NXePvImpLFHf+9U7+2PAHbbzaMPu52Rw6coh1K9YB0Pmazsy8aybT75zOxys+5m+L/8ate2/lL/5/MeaNExGpBRVhIlJJF7owa+UsfHqd6Ql7/6P3sbW1xSfQh9blrdm5cyeBgYG0atWKyQGTGTRmEH49/TCZTLz9/tsA+AT5YDab2blzJwEBAXh4eHBr4K30HtaboO5B2NjYsOjtRZSVleETcuY827Zvw8/PDy8vL8YEjWHnwJ10Ce+CnZ0dL77+IkVFRfiEnWm76edNeHt706ZNG67LvI6Diw/i6e5pzBsmIlJLKsJExCInN4cUUgjwDbBsCwkJsfy3jY0NvXr1sjz28PDAw8PD8jgoKMjy3yaTqVLbVq1a0apVK8vjwMDASufu2bOn5b/d3Nwq7RsQEFCpbffu3f+XoZUH7WiHo4Nj9V6kiEgDoSKsgYmKiiIqKoq8vDyjo0gTdDT5KJ/wCXcm30kY1rFcVkpaCt/wDdenXW8ZxyYiYg1UhDUwkZGRREZGWtaOFLmSOgV3Yjaz6RTcyego1ZZfkM9RjpJfkG90FBGRGtE8YSJiYWdnhwsu2NnZGR2l2kI7hPIADxDaIdToKCIiNaIiTEQsklOT+YqvSE5NNjqKiEijpyJMRCyKiotIJ52i4iKjo1TbgbgDvMqrHIg7YHQUEZEaUREmIhbB7YO5l3sJbh9sdJRqc2/pTi964d7S3egoIiI1oiJMRKxaG682XMM1tPFqY3QUEZEaUREmIhb7D+3nJV5i/6H9RkeptoLCAlJIoaDQuta7FBFRESYiFq09WjOQgbT2aG10lGo7fPQwS1nK4aOHjY4iIlIjKsJExMLLw4uruRovDy+jo1RbSGAIM5hBSGDIpRuLiDQgKsJExCIvP48EEsjLt54VG5wcnfDGGydHJ6OjiIjUiIowEbE4cuwIK1nJkWNHjI5SbaknU4kiitSTqUZHERGpES1bJFKPso9lU5BRQHZuNonJiXQK7oSdnR1Jx5MoLim2TAWxL3YfbTzb4OXhRW5eLglJCYQFheFg70ByajKFRYWWy20xcTF4tPSgjVcb8gvyiU+MJyQwBCdHJ46fOE5uXi5hQWfWfYyNj8XVxRWf1j4UFhUSlxBHcPtgnJ2cOZF+gtNZp+kUcmaJokNHDlGaVspDPGRVs8/n5Oawn/3k5OYYHUVEpEZUhInUk/g/4pnddzahpaEkkcRnfMbf+BvNac6XfMlpTnMP9wDwAi8whCFcxVXEE8+HfMgsZtGKVnzN1ySRxAxmAPAKr/AX/sJgBpNEEu/xHg/wAK1pzfd8TyyxPMRDALzO63ShC5FEkkYa7/AO05iGL75sZCPRRDOb2QC8xVu0pz1jncfi7ms9c26FBYUxi1mWwlNExFqoCBOpJ4djDrO2dC2f/uNT7h54N1OTp1p6wkYeH1mpJ+yq2Ksq9YRNTJpo6QkblTqqUk/YgLgBlXrCbk281dITdsOJGyr1hA2OH1ypJ+zGhBstPWFj08dW6gkbcmQIzZ2bE9I1BDd/N2PeNBGRJkRFmEg96dapG0/zNINGDcKnlw8d6Wh5zqeXT6W2f37sgw+hhFZ6fKG2AMEDgqvdtsNVHard1lrExseymMUMjh9sta9BRJomFWEiYtVcWrgQRhilqaWkRlvP4HxnT2f1OIo0cSrCROrJkWNH+JAPiTwWqR6aehTcJZjhTsNZM2sNG9mIAw7kkks++XjjDUA66dhhR0taUkYZJzmJO+444kgeeeSSa+kZzCADG2xoRSvKKecEJ2hFK5xwIp98ssmmLW0BOMUpTJhwx50KKkgjjZa0xBlnCiggiyy88aYZzTjNacyY8cADgHzHfJ6IfUKFmEgTpiJMpJ7YNLPBAQdsmtkYHaVRc/N3Y8TaEfQf1p+1y9fSu1tvXlv2Gv/+/N/s+n4XAMPvGE5EtwjmzJ1D0vEk+o7uy2dvfcagvoN496N3eWfJOxz6+RAAY+8eS2C7QB579jFOZZ4iPDKc5QuXM2LwCD784kMW/nMhSb8lATDhwQm4NHdh7oK5FBQWEDwgmH89/y9uuu4mvvjmCxY8uYCEXxNwsHfgnkfvoaSkhA/f+JDY7bFc88A13Lr3Vv7i/xej3joRMZjJbDabjQ4h54uNjWXatGksXbqUsDDd9WWNUqNTWRKxhOk7p6snrJ4VFhZy4MABQkNDadGiBampqaSnp9OtWzcADhw4QPPmzfH396e4uJj9+/cTHByMq6srJ06cIDU1lR49egBnvnsODg60b9+e0tJS9u7dS4cOHWjZsiXp6ekkJSXRq1cvAOLi4rCxsaFDhw6Ul5eze/du2rdvj7u7O6dPn+bo0aP06NGDZs2aceTIESoqKggODmbfj/v4a+RfeS3qNboO7WrU2yYiBlNPmEg9KS8vp4QSysvLjY7S6Dk5OVkKIwAfHx98fP5X+Hbq1Mny3w4ODpXatmnThjZt2lge//mPHjs7u0ptvby88PL635JOISH/WyrJxsamUlt3d3fc3f831UeHDv+7KcKjlQcDGYhHK4+avVARaVQ0Y75IPdl/aD8v8AL7D+03Ooo0MFk5WcQQQ1ZOltFRRMRAKsJE6km7tu0YxzjatW1ndBRpYI6lHONzPudYyjGjo4iIgXQ5soGJiooiKiqKvDzrWUBZqtbKrRXhhNPKrZXRUaSB6RzSmTnMoXNIZ6OjiIiBVIQ1MJGRkURGRloG5ov1yszOZDe7yczOPG9iVGnabG1tccYZW1v9CBZpynQ5UqSeJB1P4ku+JOl4ktFRpIE5lnKML/hClyNFmjgVYSL1pGtYV+Yxj65hmoJAKistKyWHHErLSo2OIiIGUhEmUk+aNWuGLbY0a6avmVQWFBDEXdxFUECQ0VFExED67SBSTxKTE/mMz0hMTjQ6ioiINEAqwkTqSYW5gnLKqTBXGB1FGph9sft4nufZF7vP6CgiYiAVYSL1JLBdIBOZSGC7QKOjSAPj7eXNUIbi7eVtdBQRMZCKMBGRK8zT3ZN+9MPT3dPoKCJiIBVhIvVkz4E9PMMz7Dmwx+go0sDk5uVymMPk5uUaHUVEDKQiTKSe+Hr7MprR+Hr7Gh1FGpiEpAQ+4iMSkhKMjiIiBlIRJlJPPFp5EEEEHq08jI4iDUzH4I48wiN0DO5odBQRMZCKMJF6kpWTRQwxZOVkGR1FGhh7O3vccMPezt7oKCJiIBVhIvXkWMoxPudzLU0j50lOTWYd60hOTTY6iogYSEWYSD3pHNKZOcyhc0hno6NIA1NYVEgqqRQWFRodRUQMpCJMpJ7Y2trijDO2trZGR5EGJiQwhOlMJyQwxOgoImIgFWEi9eRYyjG+4AtdjhQRkSqpCBOpJ6VlpeSQQ2lZqdFRpIGJiYthAQuIiYsxOoqIGEhFmEg9CQoI4i7uIiggyOgo0sB4tvKkP/3xbKUZ80WaMhVhIiJXWGvP1gxkIK09WxsdRUQMpCJMpJ7si93H8zzPvth9RkeRBia/IJ9EEskvyDc6iogYSEWYSD3x9vJmKEPx9vI2Ooo0MPGJ8SxnOfGJ8UZHEREDqQgTqSee7p70ox+e7hr3I5WFdghlJjMJ7RBqdBQRMZCKMJF6kpuXy2EOk5uXa3QUaWAcHRzxxBNHB0ejo4iIgTSLpEg9SUhK4CM+YlLSJEJRj4f8z/ETx1nLWq7671UAHDx8kJZuLfH28qagsIDDRw8T3D4YZydn0tLTyMrOsiz2fejIIVo0b0HbNm0pKi7i0JFDBAUE0dy5OSczTpKRmWFZpSEuIQ4nRyf8fPwoKS3h4OGDBLYLxKWFCxmnM0hLT6NrWFfgzCVSO1s7/H39KSsrIyYuBn9ff1q6tuRU5ilS0lLoN7Afbv5uxrxpIo2QirAGJioqiqioKPLy8oyOIpepY3BHHuERyy9PkbMcWjqQbErmh1k/sJWtLGIR3ejGUIZynOMsYQnTmU5b2vIjP7KHPTzCIwD8i38RRBDXcR0ZZPAmb3IXdxFAAFvYwq/8yhzmALCEJfjgw2hGk002i1jEJCYRTDDb2MaP/MgTPAHAcpbjiivjGEcBBSxgAeMZT2c6s5OdrGMdzzs/z4MHHlQhJlJHTGaz2Wx0CDlfbGws06ZNY+nSpYSFhRkdR2ohNTqVJRFLmL5zOj69fIyOIw3M4ejDNKc5YB09Yft/3c/BJw/q8yxSh9QTJlJPklOTWcc6RqWOwgf90pLKgnsFW/773KIm6Or/TfB77mfn3LaB/QOr3Tagb0CltuGEX7Btuz7tKrXNycvhSZ5kWNIwFWEidUQD80XqSWFRIamkUlhUaHQUkcvWzNQMG2xoZtKvDZG6om+TSD0JCQxhOtMJCQwxOorIZQvwC+B2bifAL+DSjUWkWlSEiYjIJVVUVFBGGRUVFUZHEWk0VISJ1JOYuBgWsICYuBijo4hctn2x+5jPfC3DJVKHVISJ1BPPVp70pz+erTRjvli/dm3bcRM30a5tu0s3FpFqUREmUk9ae7ZmIANp7dna6Cgil62VWyu6051Wbq2MjiLSaKgIE6kn+QX5JJJIfkG+0VFELltmdiZ72UtmdqbRUUQaDRVhIvUkPjGe5SwnPjHe6Cgily3peBJf8AVJx5OMjiLSaKgIE6knoR1CmclMQjto3Uixfl1Cu/A4j9MltIvRUUQaDRVhIvXE0cERTzxxdHA0OorIZbOxscEee2xsbIyOItJoqAgTqSfHTxxnAxs4fuK40VFELlticiKf8zmJyYlGRxFpNFSEidSTvPw84oknLz/P6Cgil628opxiiimvKDc6ikijoSJMpJ6EdgjlQR7UmDBpFDr4d2Ayk+ng38HoKCKNhoowEREREQOoCBOpJwcPH2QRizh4+KDRUUQu254De3iWZ9lzYI/RUUQaDRVhIvWkpVtLutGNlm4tjY4ictl8vX25nuvx9fY1OopIo6EiTKSeeHt5M5SheHt5Gx1F5LJ5tPKgN73xaOVhdBSRRkNFmEg9KSgs4DjHKSgsMDqKyGXLzs3mIAfJzs02OopIo6EiTKSeHD56mCUs4fDRw0ZHEblsicmJfMZnmidMpA6pCBOpJ8Htg5nOdILbBxsdReSydQruxN/4G52COxkdRaTRsDU6QFPx9ddf89FHH3H69Gm8vLz45z//ia+vBrjWxL5f99GsqBmt3FqRmZ1J0vEkuoZ1pVmzZiQmJ1JhriCwXSBw5k4uX29fPFp5kJWTxbGUY3QO6YytrS3HUo5RWlZKUEDQmePG7sPbyxtPd09y83JJSEqgY3BH7O3sSU5NprCokJDAEABi4mLwbOVJa8/W5BfkE58YT2iHUBwdHDl+4jh5+XmWecF2bdmFG244Ozkb84aJ1CE7Ozua0xw7Ozujo4g0GirCroBffvmFNWvW8OKLLxIQEEBKSgqurq5Gx7Iq+37dR/hV4VzHdfSjH7vZzZd8yTzmYYstn/EZ5ZQzkYkAPMMzjGY0EUQQQwyf8zlzmIMzznzBF+SQw13cBcDzPM9QhtKPfhzmMB/xEY/wCG64sY51pJLKdKYDsIAF9Kc/AxlIIoksZzkzmYknnmxgA/HE8yAPAvA6r9Pdtju2rvqaifVLOp7El3zJyOMj8enlY3QckUZBvx2ugJUrVzJz5kzat28PgJ+fn7GBrFBL25bMYhY3vX0ToX1CyczO5L7j91l6wkYkj6jUE9bvQL9KPWF3p9xt6Qm7LuW6Sj1hV8VeVaknbFLSJEtP2KjUUZV6wgbEDajUE3Zb4m2WnrAbTtxQqSds0OFBeLXzwivYy5g3TaQOFZcUc5rTFJcUGx1FpNFo0EXYnj17+PDDD9m/fz8lJSV4eXlx3XXXMWXKlHo7Z0FBAStXriQuLo64uDiys7OZOnUqd999d5Vtly1bxsaNG8nNzcXf35+JEycydOhQS5vy8nLi4uKIj4/nhRdewMbGhpEjRzJ16lRMJlO9vY7GxsbGhla0IrRPKD69fPDBh850tjx/7l/mf37sgw+d6FTttqGEVnp8obYAwQOCq91WxJoFtw/mHu7RGEeROtRgi7AffviB559/nmuuuYYnnngCJycnjh8/TkZGRr2eNzs7m3Xr1hEUFMTAgQNZv379BdvOmzePgwcPct9999GuXTuioqJ49tlnqaioYNiwYQBkZmZSXl7O77//zooVK8jLy2P27Nl4e3szcuTIen0tjUliciKf8zkjkkeouBERkUahQRZh6enpvPLKK4wZM4b/+7//s2zv1avXRffLz89n79699OvXr8rnt27dSs+ePXFycrrgMby9vfn6668xmUxkZWVdsAj79ddf2bFjB0899RSRkZGWfGlpabz99ttce+212NjY4ODgAMDEiRNxcXHBxcWFMWPG8Ntvv6kIq4HyinKKKaa8otzoKCJN0r7YfbzAC1wVe5X+EBKpIw1yior169dTWFjIHXfcUeP95s6dy7fffnvec1999RV///vf+e677y56DJPJVK3LhFu2bMHJyYkhQ4ZU2j5q1CgyMjKIiYkBwMXFBU9Pz+q/CKlSB/8OTGYyHfw7GB1FpElq49mGIQyhjWcbo6OINBoNsids9+7duLq6cuzYMR5//HESEhJwcXFh0KBB3H///TRv3rzK/W677TbS09N56aWXKCkpYezYsQCsXr2axYsXM3nyZG688cY6yZiQkEBAQAC2tpXfwqCgIMvz4eHhAIwcOZJPP/2U0NBQ8vLyWL9+PXfeeWeVx42KiiIqKoq8vLw6ySkiUhe8PLy4iqvw8tCNJiJ1pUEWYRkZGRQVFfHUU08xadIkunTpwsGDB3n//fdJSEjgzTffvGBv1cyZM3FwcODVV1+lpKSEkpIS3n33Xe655546HdCfnZ1N27Ztz9vu4uICQE5OjmXb1KlTWbRoEePGjcPZ2ZnRo0czfPjwKo8bGRlJZGQksbGxTJs2rc7yWrs9B/bwLM/S70A/XQoRMUBuXi7xxJObl3veTSgiUjsNsgirqKigpKSEqVOnMmnSJAB69uyJra0tixcvZufOnfTu3fuC+0+bNg17e3sWL14MwP3338+ECRPqPGd17260s7Njzpw5zJkzp84zNBW+3r5cz/X4emuCWxEjJCQl8CEfMjFpYqU7iEWk9hrkmDA3NzcA+vTpU2n72QH3hw4duuQx8vLyLEVSfVzac3NzIzv7/IVsc3NzATQZax3zaOVBb3rj0crD6CgiTVJYUBizmEVYUJjRUUQajQZZhHXoUPXga7PZDFy8B8psNrNo0SJWr17NY489xuzZs/noo4/417/+VecZExMTKSsrq7T9yJEjAAQGBtbp+Zq67NxsDnKQ7NzzC18RqX8O9g60ohUO9g5GRxFpNBpkETZ48GAAtm/fXmn7tm3bAOjSpUuV+1VUVLBgwQLWrl3Lk08+yahRoxg7dixz585lzZo1LFy40FLIXa6BAwdSWFjI5s2bK23fsGEDnp6edO7c+QJ7Sm0kJifyGZ+RmJxodBSRJik5NZmv+Zrk1GSjo4g0Gg1yTFifPn246qqrWLlyJRUVFZaB+StWrOCqq66iW7duVe63atUqvv/+e5577jkGDhxo2T5y5Ejs7e2ZP38+AQEBjBs37qLn37ZtG0VFRRQUFACQmJjIpk2bgDOXRB0dHenXrx+9e/dm4cKFFBQU4Ovry48//sj27duZN28eNjY2dfNmCACdgjvxN/5Gp+BOl24sInWusKiQJJIoLCo0OopIo2Ey11XXUB0rLi5m+fLlREVFcerUKTw9PRk2bBhTp07F3t7+gvvExcXRtWvXKp/fu3cvHTt2xM7O7qLnHj9+PGlpaVU+t2rVKnx8ztwZVFBQwNKlSystWzRp0qRKyxbV1tm7I5cuXUpYmMZgpEansiRiCdN3TtfdkSIG0HdQpO41yJ4wAAcHB2bMmMGMGTNqtM+FCjDAMm/XpXz++efVaufs7MysWbOYNWtWtdpL7SUdT+JLvmTk8ZH6BSAiIo1CgxwTJnKu4pJiTnOa4pJio6OINEkxcTG8wivExMUYHUWk0VARJlYhuH0w93APwe2DjY4i0iR5tPTgL/wFj5aaJkakrqgIExGRS2rj1YbBDKaNl9aOFKkrKsLEKuyL3ccLvMC+2H1GRxFpkvIL8jnIQU5lngIgOTmZ/fv3W57fv38/KSkpABQWFhIdHU1+fj4Aqamp7N2719I2JiaGpKQkAIqKioiOjrZMdH3ixAl2795taRsbG0ti4pmpaUpLS4mOjrZMlJ2ens4ff/xhaRsXF0dCQgIA5eXlREdHk5mZWbdvhEgdUhEmVqGNZxuGMIQ2nvorXMQImdmZfMZnbP9pO6nRqTz/+POMuX4MqdGppEancsN1N/DSvJdIjU5l69qtRERE8PO/fyY1OpVXnnmFEZEjLG1vGXsLz/ztGVKjU4n+LpqIiAi+//R7dn23i1vH3sqgAYMsbSfeOpG/z/o7qdGp7P9pPxEREaxdsZbU6FSWvrqUfn37WdrePeluHrn/EVKjU4n/Jf5M28/WGv3WiVxQg52ioqnTFBWV6fZ4EWNlH8vm+bDnsS+yxw47ssmmmGJa0xqAk5zEEUdccaWUUtJJxxNP7LEnl1wKKKANbSxtHXDADTdLWw88KKGErWwlmGCCCAIggwxssaUlLSmnnBOcwB13HHEkn3xyyLEsKH6KUzSjGa1oRQUVpJFGa6fWPHrwUdz83Yx540QuosFOUSHyZ7l5ucQTT25eruUHrohcOW7+bjwR+wQFGQX1ep7ZzK6zY8X9FsfC+xeSfDhZRZg0SCrCxCokJCXwIR8yMWkioYQaHUekSXLzd7OqYmbPgT18xVfcn3o/Xah6uTsRI2lMmFiFsKAwZjGLsCBdmhWR6gnvGM6TPEl4x+pN1C1ypakIE6vgYO9AK1rhYO9gdBQRsRImkwkbbDCZTEZHEamSijCxCsmpyXzN1ySnJhsdRUSsxNGko3zCJxxNOmp0FJEqqQgTq1BYVEgSSRQWFRodRUREpE6oCBOrEBIYwgxmEBIYYnQUEbES7du15w7uoH279kZHEamSijAREWmUzGYz5ZSj6TCloVIRJlYhJi6GV3iFmLgYo6OIiJXYe3Av/+Af7D2499KNRQygIkysgkdLD/7CX/Bo6WF0FBGxEn4+foxlLH4+fkZHEamSijCxCm282jCYwbTx0tqRIlI97i3d6UlP3Fu6Gx1FpEoqwsQq5Bfkk0QS+QX5RkcRESuRlZPFfvaTlZNldBSRKqkIE6sQnxjPe7xHfGK80VFExEocSznGalZzLOWY0VFEqqQiTKxCSGAID/CApqgQkWrrEtqFucylS6jWjZSGSUWYWAUnRyda0xonRyejo4iIlbCxscERR2xsbIyOIlIlFWFiFY6fOM73fM/xE8eNjiIiVuJYyjHWsEaXI6XBUhEmViE3L5dYYsnNyzU6iohYibLyMvLJp6y8zOgoIlVSESZWISwojId4iLCgMKOjiIiV6ODfgSlMoYN/B6OjiFRJRZiIiIiIAWyNDiCVRUVFERUVRV5entFRGpTY+Fhe53UGxw/Gp5eP0XFExAqcXbao/8H++rkhDZKKsAYmMjKSyMhIYmNjmTZtmtFxGgxXF1e60AVXF1ejo4iIlWjbpi0jGEHbNm2NjiJSJV2OFKvg09qHSCLxaa2/ZkWkejxaedCHPni00pqz0jCpCBOrUFhUSBppFBYVGh1FRKxETm4OhzhETm6O0VFEqqQiTKxCXEIc7/AOcQlxRkcREStxNPkon/AJR5OPGh1FpEoqwsQqBLcPZhrTCG4fbHQUEbESnYI7MZvZdAruZHQUkSqpCBOr4OzkjC++ODs5Gx1FRKyEnZ0dLrhgZ2dndBSRKqkIE6twIv0EG9nIifQTRkcRESuRnJrMV3xFcmqy0VFEqqQiTKzC6azTRBPN6azTRkcREStRVFxEOukUFRcZHUWkSirCxCp0Cvn/YztCNLZDRKonuH0w93KvxpJKg6UiTERERMQAKsLEKhw6coi3eItDRw4ZHUVErMT+Q/t5iZfYf2i/0VFEqqQiTKxCc+fmtKc9zZ2bGx1FRKxEa4/WDGQgrT1aGx1FpEoqwsQq+Hr7MopR+Hr7Gh1FRKyEl4cXV3M1Xh5eRkcRqZKKMLEKRcVFnOKU7nISkWrLy88jgQTy8vOMjiJSJRVhYhUOHTnEYhZrTJiIVNuRY0dYyUqOHDtidBSRKqkIE6vQwb8DU5hCB/8ORkcRESsR2iGUh3iI0A6hRkcRqZKKMLEKLZq3IJBAWjRvYXQUEbESjg6OeOCBo4Oj0VFEqqQiTKxC+ql0fuEX0k+lGx1FRKxESloK3/ANKWkpRkcRqZKKMLEKJ0+dZAtbOHnqpNFRRMRK5Bfkc5Sj5BfkGx1FpEoqwsQqdAntwlzm0iW0i9FRRMRKhHYI5QEe0JgwabBUhImIiIgYoNZFWEJCAhs2bCA//3/dvMXFxbz66qvcfPPNTJgwgXXr1tVJSJHDRw+zjGUcPnrY6CgiYiUOxB3gVV7lQNwBo6OIVKnWRdiHH37Iu+++i7Ozs2XbkiVLWLt2LQUFBZw8eZJXX32VnTt31klQadocHRzxwkt3OYlItbm3dKcXvXBv6W50FJEq1boIO3DgAD179sRkMgFQVlbGN998Q6dOnfjqq69YtWoVLVu25PPPP6+zsNJ0+fn4MZax+Pn4GR1FRKxEG682XMM1tPFqY3QUkSrVugg7ffo0bdr874MdExNDQUEBY8eOxcHBAU9PT66++moOH9blI7l8paWl5JJLaWmp0VFExEoUFBaQQgoFhQVGRxGpUq2LMBsbm0q/EPfs2YPJZKJnz56WbW5ubmRnZ19eQhHgwOH/P7bjsMZ2iEj1HD56mKUs1VhSabBqXYR5e3vzxx9/WB5v2rQJHx8fvL29LdvS09Nxc3O7vIQiQHu/9tzBHbT3a290FBGxEiGBIcxgBiGBIUZHEamSbW13HD58OG+//TYzZszA1taWw4cPM2nSpEptDh06hJ+fxvDI5XN1cSWUUFxdXI2OIiJWwsnRCW+8cXJ0MjqKSJVq3RN28803M2TIEA4ePMjevXv5y1/+wuTJky3PHzhwgKNHj9KrV686CSpN26nMU/zGb5zKPGV0FBGxEqknU4kiitSTqUZHEalSrXvC7O3tefbZZ8nPz8dkMlWaqgLAx8eH9957r9LlSZHaOn7iON/xHbNOzKIrXY2OIyJWICc3h/3sJyc3x+goIlWqdU/Yrl27OHHiBM2bNz+vAANo2bIlrq6uujtS6kR4x3Ce5EnCO4YbHUVErERYUBizmEVYUJjRUUSqVOsi7K9//SvffvvtRdv88MMP/PWvf63tKUREREQarVoXYWazuVptzk7mKnI5jhw7wkpWcuTYEaOjiIiViI2PZTGLiY2PNTqKSJXqdQHv5ORkmjdvXp+nkCbC1saW5jTH1qbWwxhFpIlxaeFCGGG4tHAxOopIlWr0G+2ll16q9HjLli2kpaWd1668vJz09HR2795N3759Ly+hCODv688t3IK/r7/RUUTESrRt05bhDKdtm7ZGRxGpUo2KsD+PATOZTBw+fPiCA+9NJhMdO3Zk5syZl5ewkfj666/56KOPOH36NF5eXvzzn//E19fX6FhWo7y8nCKKKC8vNzqKiFiJwqJCTnKSwqJCo6OIVKlGRdiqVauAM2O9br/9dm699VZuueWW89o1a9YMFxcXnJw0QR7AL7/8wpo1a3jxxRcJCAggJSUFV1dNOloT+w/t5yVeYsihIfj9RRMAi8ilxSXE8RZvMSZhDB2u6mB0HJHz1KgI+/OcX3PnziU0NFTzgFXDypUrmTlzJu3btwfQKgK14O/rz63cqsuRIlJtQQFB3MM9BAUEGR1FpEq1HuU8cuTIusxxUevXr2fBggU4OTnx3Xff1eu5CgoKWLlyJXFxccTFxZGdnc3UqVO5++67q2y7bNkyNm7cSG5uLv7+/kycOJGhQ4da2pSXlxMXF0d8fDwvvPACNjY2jBw5kqlTp+rO0Rpo6dqSLnShpWtLo6OIiJVo7tycdrSjubNuEJOG6bJvNYuJieHgwYPk5eVRUVFx3vMmk4kpU6bU+vjp6em89dZbeHp6kp+ffzlRqyU7O5t169YRFBTEwIEDWb9+/QXbzps3j4MHD3LffffRrl07oqKiePbZZ6moqGDYsGEAZGZmUl5ezu+//86KFSvIy8tj9uzZeHt7X9FC1tqdzjrNH/zB6azT+OBjdBwRsQIn0k+wmc2MTR+rnxvSINW6CMvJyeHxxx9n3759F50z7HKLsFdffZVu3brh6urK5s2bL9o2Pz+fvXv30q9fvyqf37p1Kz179rzoWDVvb2++/vprTCYTWVlZFyzCfv31V3bs2MFTTz1FZGQkAL169SItLY23336ba6+9FhsbGxwcHACYOHEiLi4uuLi4MGbMGH777TcVYTWQnJrMV3zF/an304UuRscREStwKusUv/M7p7K05qw0TLUuwt5880327t1Ljx49uO6662jdujU2NjZ1mY3vv/+eXbt28cEHH7Bs2bJLtl+/fj1vv/02jz322HkFzldffcXChQt55JFHuPHGGy94jOpeItyyZQtOTk4MGTKk0vZRo0bx3HPPERMTQ3h4OC4uLnh6elbrmHJhWrZIRGqqc0hnHuVROod0NjqKSJVqXYT9+uuvdOrUiddee61exjZlZmayePFi7rvvPlq3bl2tfW677TbS09N56aWXKCkpYezYsQCsXr2axYsXM3ny5IsWYDWRkJBAQEAAtraV38KgoCDL8+HhZwqGkSNH8umnnxIaGkpeXh7r16/nzjvvrPK4UVFRREVFkZeXVyc5GwuTyYQNNhpHJyIijUati7CSkhK6d+9eb78UFy5cSLt27WpcNM2cORMHBwdeffVVSkpKKCkp4d133+Wee+65rMui58rOzqZt2/MnAHRxOTMzc05OjmXb1KlTWbRoEePGjcPZ2ZnRo0czfPjwKo8bGRlJZGQksbGxTJs2rc7yWrujSUf5hE8YnjQcn14a2yEilxaXEMc7vMM1Cdfo54Y0SLUuwkJCQqqcLb8ubNq0ia1bt/Lee+/VqsibNm0a9vb2LF68GID777+fCRMm1HXMamezs7Njzpw5zJkzp84ziIhI1ZwcnWhHO5wcNWelNEy1Xjvyrrvu4pdffmH//v11mYeCggJee+01br75Zjw8PMjNzSU3N5eysjIAcnNzKSy89OzHeXl5liKpPi7tubm5kZ2dfd723NxcAE3GWsfat2vPHdxB+3btjY4iIlbCz8eP67kePx/NzSgNU617wtLT0+nfvz8PP/www4YNIyQk5IKLdV933XXVPm52djanT59m1apVlhn6/+z6669nwIABvPDCC1Xubzabee211/jqq6947LHHKC0tZeHChZSUlPDggw9WO8eldOjQgaioKMrKyiqNCzty5AgAgYGBdXYuOfPvWk75Re/EFRH5s+KSYlJI4dBvhwBIP5XOiYwTdA3rCsDho4dxsHegXdt2lJaWcuDwAQL8AnBzceNU5ilS0lLo1qkbAEeOHcGmmQ0BfgGUl5ez/9B+2rVtRyu3VmRmZ5J0PImuYV1p1qwZicmJVJgrCGx35vfAngN78PX2xaOVB1k5WRxLOUbnkM7Y2tpyLOUYpWWllgll98XuIzAskOBewQa8Y3Kl1boIe/HFFzGZTJjNZr799lu+/fbb8y7Pmc1mTCZTjYowd3d3Xn/99fO2f/zxx+zatYuXX34ZNze3KvetqKjg5ZdfZsOGDTz55JOWSVPt7e1ZsGABxcXFPPLII3Uyjm3gwIGsW7eOzZs3V5qcdcOGDXh6etK5s+7GqUt7D+7lH/yDqw9eTdsILcYrIpeWZ85jKUs5ff9pwglnK1vZxCYe53EA3uM93HHnJm4in3xe5mVu53Y60pEd7OBrvuZpngbgQz7EAQfGM54SSniBFxjHOMIJZz/7SSedAQzAFls+4zPKKWciEwF4hmcYzWgiiCCGGD7nc+YwB2ec+YIvyCGHu7gLgOd5nuF2w/n48Me4+Vf9u04aj1oXYXPnzq3LHBYODg707NnzvO3ffvstNjY2VT531qpVq/j+++957rnnGDhwoGX7yJEjsbe3Z/78+QQEBDBu3LiLZti2bRtFRUUUFBQAkJiYyKZNmwDo168fjo6O9OvXj969e7Nw4UIKCgrw9fXlxx9/ZPv27cybN6/Op+to6vx8/BjLWF1WEJFq69q/K3u37sW+1B6XFi7cdOqmSj1h1x69tlJP2NDDQy09YeMyxzEzbaalJyzyWGSlnrBBhwZZesKOHznOH5/8weDpg2nRugUjkkdU6gnrd6BfpZ6wu1PutvSEXZdyXaWesE4bOvH7E79TkFGgIqwJMJmt5PrOCy+8wObNmy+6bFFxcTFxcXF07dq1yuf37t1Lx44dsbOzu+i5xo8ff8GbDlatWoWPz5m7bAoKCli6dGmlZYsmTZpUqWests7eHbl06VLCwsIu+3jWLjU6lSURS5i+c7ruchKRRuvQz4f4x+B/8OTmJwkdFGp0HKlnVlOENTUqwio7sOkAT1/zNM9ufJZOQzoZHUdEpF589/F3XDfpOjZ8tIERE0cYHUfqWa0vR544caLabdu0aVPb04gAcCzlGKtZzT0p99AJFWEi0jh1DO7IIzxCx+CORkeRK6DWRdj48eOrNcDdZDKxcePG2p5GBIAuoV2Yy1y6hGrdSBFpvOzt7HHDDXs7e6OjyBVQ6yJsxIgRVRZheXl5xMfHk5qaSo8ePfD29r6sgCIANjY2OOKoGx5EpFFLTk1mHesYlToKHzT+tbGrdRH2+OOPX/A5s9nMZ599xqeffspjjz1W21OIWBxLOcYa1nBdynUamC8ijVZhUSGppFJYdOlJycX61XrG/IsxmUxMmDCBwMBA3nrrrfo4hTQxZeVl5JNPWXmZ0VFEROpNSGAI05lOSGCI0VHkCqiXIuyssLAwoqOj6/MU0kR08O/AFKbQwb+D0VFERETqRL0WYSkpKZSXl9fnKURERBqNmLgYFrCAmLgYo6PIFVDnRVhFRQUnTpxg5cqV/PLLL3TporvZ5PKdXbZo78G9RkcREak3nq086U9/PFt5Gh1FroBaD8wfPHjwRaeoMJvNtGjRggceeKC2pxCxaNumLSMYQds2WjdSRBqv1p6tGchAWnu2NjqKXAG1LsK6d+9eZRFmMplwcXEhLCyMUaNG4e7uflkBRQA8WnnQhz54tPIwOoqISL3JL8gnkUTyC/KNjiJXQK2LsDfeeKMuc4hcVE5uDoc4RE5ujubOEZFGKz4xnuUs57bE2wgeEGx0HKln9TowX6SuHE0+yid8wtHko0ZHERGpN6EdQpnJTEI7aPHupqDWPWF/tnfvXg4fPkx+fj7Ozs6EhIQQHh5eF4cWAaBTcCdmM5tOwVo3UkQaL0cHRzzxxNHB0egocgVcVhEWExPDCy+8QHJyMnBmMP7ZcWJ+fn7MnTuXrl27Xn5KafLs7OxwwQU7Ozujo4iI1JvjJ46zgQ3ccOIGDb1oAmpdhB09epRHHnmEoqIi+vTpQ48ePXB3dyczM5M//viD3377jUcffZR33nmH9u3b12FkaYqSU5P5iq+0npqINGp5+XnEE09efp7RUeQKqHURtmLFCsrKynjllVf4y1/+Uum5O+64gx07dvDYY4+xYsUKnnnmmcvNKU1cUXER6aRTVFxkdBQRkXoT2iGUB3lQY8KaiFoPzP/jjz8YPHjweQXYWb1792bw4MH88ccftQ4nclZw+2Du5V6C2+tuIRERaRxqXYTl5+fj43Pxy0I+Pj7k52uuExERkeo4ePggi1jEwcMHjY4iV0CtizAPDw/2799/0TYxMTF4eGhyTbl8+w/t5yVeYv+hi3/mRESsWUu3lnSjGy3dWhodRa6AWhdhAwYMYNeuXSxbtozi4uJKzxUXF/P+++/zxx9/MGDAgMsOKdLa4/8v5eGhpTxEpPHy9vJmKEPx9vI2OopcAbUemD9lyhS2bt3KRx99xNq1a+nUqROtWrUiMzOTgwcPkpWVRdu2bZkyZUpd5pUmysvDi6u5Gi8PL6OjiIjUm4LCAo5znILCAqOjyBVQ654wV1dX3n33Xa677jqKiorYtm0b3377Ldu2baOgoICRI0fy9ttv4+rqWpd5pYnKy88jgQTdti0ijdrho4dZwhIOHz1sdBS5Ai5rslZXV1fmzp3Lo48+SmJiIgUFBTg7OxMQEICtbZ1Mxi8CwJFjR1jJSiYcm0AIIUbHERGpF8Htg5nOdN0J3kTUuFL64IMPKCoq4u6777YUWra2tgQFBVnalJaWsnTpUpycnJg0aVLdpZUmK7RDKA/xkObOEZFGzdnJmba0xdnJ2egocgXU6HLkjh07eP/993F1db1oT5ednR2urq4sW7aMnTt3XnZIEUcHRzzw0HpqItKopaWn8SM/kpaeZnQUuQJqVIR99913uLi4cPPNN1+y7U033YSLiwvffvttrcOJnJWSlsI3fENKWorRUURE6k1WdhZ72ENWdpbRUeQKqFERtm/fPiIiIrC3t79kW3t7e3r37s2+fftqHU7krPyCfI5ylPwCTf4rIo1Xx+COPMIjdAzuaHQUuQJqVIRlZGTQtm3barf38fHh1KlTNQ4lcq7QDqE8wAMaEyYiIo1GjYqwZs2aUVZWVu32ZWVlNGtW61kwREREmpRDRw7xL/7FoSOHjI4iV0CNKiQPDw8SEhKq3T4hIQFPT88ahxI514G4A7zKqxyIO2B0FBGRetOieQuCCKJF8xZGR5EroEZFWLdu3YiOjiY1NfWSbVNTU4mOjqZ79+61DidylntLd3rRC/eW7kZHERGpN23btOU6rqNtm+oP/RHrVaMi7KabbqKsrIynnnqKrKysC7bLzs7m6aefpry8nLFjx15uRhHaeLXhGq6hjVcbo6OIiNSbouIiMsigqLjI6ChyBdRostawsDBuvfVWVq9ezZ133snYsWPp2bMnXl5n1vPLyMhg586drFu3jqysLMaPH09YWFi9BJempaCwgBRStJ6aiDRqh44c4k3e5IYjNxDYP9DoOFLPajxj/oMPPoi9vT2ffvopH374IR9++GGl581mM82aNWPSpEnce++9dRZUmrbDRw+zlKWMOzqOoKuDLr2DiIgVCgoI4i7uIihAP+eaghoXYSaTienTp3P99dfzzTffsG/fPk6fPg2Au7s74eHhjBw5El9f3zoPK01XSGAIM5hBSKDWjRSRxqu5c3MCCKC5c3Ojo8gVUOtVtn19fZk2bVpdZhG5ICdHJ7zxxsnRyegoIiL15mTGSbawhRszbsQHH6PjSD3TJF5iFVJPphJFFKknL31nroiItcrIzOBXfiUjM8PoKHIFqAgTq5CTm8N+9pOTm2N0FBGRetM5pDNzmEPnkM5GR5ErQEWYWIWwoDBmMYuwIN1tKyIijYOKsCvk66+/ZsKECYwYMYJJkyaRkpJidCQREWlg4hLiWMIS4hLijI4iV0CtB+ZL9f3yyy+sWbOGF198kYCAAFJSUnB1dTU6llWJjY9lMYsZHD8Yn14arCoijZOToxM++OgmpCZCRdgVsHLlSmbOnEn79u0B8PPzMzaQFXJp4UIYYbi0cDE6iohIvfHz8WM0o/Hz0e+JpqBBFmFxcXEsXbqUI0eOkJWVhYODA/7+/tx0000MHz68Xs9dUFDAypUriYuLIy4ujuzsbKZOncrdd99dZdtly5axceNGcnNz8ff3Z+LEiQwdOtTSpry8nLi4OOLj43nhhRewsbFh5MiRTJ06FZPJVK+vpTFp26Ytwxmu9dREpFErKS0hm2xKSkuMjiJXQIMswvLy8mjdujWRkZF4enpSVFTEDz/8wPz580lNTWXKlCn1du7s7GzWrVtHUFAQAwcOZP369RdsO2/ePA4ePMh9991Hu3btiIqK4tlnn6WiooJhw4YBkJmZSXl5Ob///jsrVqwgLy+P2bNn4+3tzciRI+vtdTQ2hUWFnOQkhUWFRkcREak3Bw8fZBGLGHF4BAF9A4yOI/WsQRZhPXv2pGfPnpW2XXXVVaSmprJu3boLFmH5+fns3buXfv36Vfn81q1b6dmzJ05OF77W7u3tzddff43JZCIrK+uCRdivv/7Kjh07eOqpp4iMjASgV69epKWl8fbbb3PttddiY2ODg4MDABMnTsTFxQUXFxfGjBnDb7/9piKsBuIS4niLtxiTMIYOV3UwOo6ISL0IbBfIJCYR2E7rRjYFVnV3pJubGzY2Nhd8fv369cydO5dvv/32vOe++uor/v73v/Pdd99d9Bwmk6lalwm3bNmCk5MTQ4YMqbR91KhRZGRkEBMTA4CLiwuenp6XPJ5cXFBAEPdwj9ZTE5FGzaWFC8EEa/xrE9Ege8LOqqiooKKigry8PDZu3Mhvv/3GX//61wu2v+2220hPT+ell16ipKSEsWPHArB69WoWL17M5MmTufHGG+skW0JCAgEBAdjaVn4Lg4KCLM+Hh4cDMHLkSD799FNCQ0PJy8tj/fr13HnnnVUeNyoqiqioKPLy8uokZ2PR3Lk57Win9dREpFHLOJ3BNrZx8+mbtWxRE9Cgi7CFCxeydu1aAOzs7Jg1a5alsLqQmTNn4uDgwKuvvkpJSQklJSW8++673HPPPXU6liw7O5u2bc8fJO7icuavl5yc/83sPnXqVBYtWsS4ceNwdnZm9OjRF7zBIDIyksjISGJjY7U255+cSD/BZjYzNn2sfjCJSKOVlp7Gj/xIWnoa4YQbHUfqWYMuwiZPnswNN9xAZmYmW7du5bXXXqOwsJAJEyZcdL9p06Zhb2/P4sWLAbj//vsvuU9tVPfuRjs7O+bMmcOcOXPqPENTcSrrFL/zO6eyThkdRUSk3nQN68oTPEHXsK5GR5EroEEXYW3atKFNmzYA9O/fH4AlS5YwcuRIWrZsedF98/LyMJlMmM3merm05+bmRnZ29nnbc3NzATQZax3rHNKZR3lU66mJiEijYVUD8zt16kR5eTnHjx+/YBuz2cyiRYtYvXo1jz32GLNnz+ajjz7iX//6V51m6dChA4mJiZSVlVXafuTIEQACA3Vni4iI1Ex8YjzLWU58YrzRUeQKsKoi7I8//qBZs2ZVjsWCMwP5FyxYwNq1a3nyyScZNWoUY8eOZe7cuaxZs4aFCxdiNpvrJMvAgQMpLCxk8+bNlbZv2LABT09POndWj01dikuI4x3e0XpqItKo2dna4YordrZ2RkeRK6BBXo58+eWXcXZ2plOnTri7u5OVlcWmTZv46aefmDBhwgUvRa5atYrvv/+e5557joEDB1q2jxw5Ent7e+bPn09AQADjxo276Pm3bdtGUVERBQUFACQmJrJp0yYA+vXrh6OjI/369aN3794sXLiQgoICfH19+fHHH9m+fTvz5s276FQaUnNOjk60o53WUxORRs3f159xjMPf19/oKHIFNMgirEuXLnzzzTds2LCBvLw8nJycCA4OZt68eRddtujmm28mPDycrl3PH9A4dOhQWrduTceOHS95/oULF5KWlmZ5vHHjRjZu3AicKfR8fM7cnTd//nyWLl3Ke++9Z1m26Omnn660bJHUDT8fP67neq2nJiKNWllZGQUUnDfURRqnBlmEjRo1ilGjRtV4PwcHhyoLsLPOztt1KZ9//nm12jk7OzNr1ixmzZpVrfZSe8UlxWSSSXFJsdFRRETqTUxcDAtYwLVx19KuTzuj40g9s6oxYdJ0xcbH8jqvExsfa3QUEZF64+/rz3jG63JkE6EiTKxCYLtAJjNZ66mJSKPW0rUlnelMS9eWRkeRK0BFmFgFlxYuBBGk9dREpFE7lXmKnezkVKYmpm4KVISJVUg/lc5WtpJ+Kt3oKCIi9SYlLYV1rCMlLcXoKHIFqAgTq3Ai4wSb2MSJjBNGRxERqTfdOnXjGZ7BpYWLZfLviooKoqOjOX36NACnT58mOjqa8vJy4Mwk4XFx/5tDMTo6mvT0M3+wZmVlER0dTWlpKQBHjx4lNvZ/Y2t37drFiRNnfq7m5OQQHR1NcfGZG6COHTvGgQMHLG337NlDamoqcGZVmujoaAoLCwFITk7m2LFjdf+GNHIqwsQqdA3ryuM8rvXURKRJmPv0XGbeO5PU6FSO/XaMiIgIPnnrE1KjU/nsnc+IiIjg6LajpEanMmv6LKbdOY3U6FRSo1Pp06cPy19bTmp0Kv9Z/h8iIiKI/TmW1OhUHnvoMSbfNtnSduCAgbz9z7dJjU7l24+/JSIigt0/7CY1OpWnHn2K8TeNt7Qddu0wXvvHa6RGp7JxzUYiIiLYvn47qdGpPP7Xxxl6zVBLQSfVYzLX1RTyUqdiY2OZNm0aS5cuJSwszOg4hkuNTmVJxBKm75yOTy8fo+OIiNSL7GPZ/KvTv0grSMOECXfcqaCCNNJoSUuccaaAArLIwhtvmtGM05zGjBkPPAA4znHccKM5zSmkkEwyaUMbbLAhk0zKKccTTwBSScUFF1rQgiKKOM1pWtMaW2zJIotSSvHCC4A00mhOc1xwoZhiTnEKL7yww45ssnFycmLOwTm4+bsZ9v5ZmwY5T5jIuQ4fPcx7vMe1R69VESYijZabvxsPHniQgowCo6PUSPqBdL6c9CUFGQUqwmpARZhYBQd7B9xxx8HewegoIiL1ys3fzeoKmbNzOQ6OH6w/lGtAY8LEKrRr246buIl2bTWDtIhIQ+Pq4koXuuDq4mp0FKuiIkysQmlpKfnkW+7wERGRhsOntQ+RROLTWr1gNaEiTKzCgcMHeJmXOXD4wKUbi4jIFVVYVEgaaRQWFRodxaqoCBOrEOAXwO3cToBfgNFRRETkHHEJcbzDO8QlxF26sVioCBOr4ObiRkc64uZiXYNVRUSaguD2wUxjGsHtg42OYlVUhIlVOJV5ih3s0HpqIiINkLOTM7744uzkbHQUq6IiTKxCSloKX/O11lMTEWmATqSfYCMbOZGuGfNrQkWYWIVunbrxNE/TrVM3o6OIiMg5TmedJppoTmedNjqKVVERJiIiIpelU0gnZjObTiGdjI5iVVSEiVU4cuwIH/IhR44dMTqKiIhInVARJlbBppkNDjhg08zG6CgiInKOQ0cO8RZvcejIIaOjWBUVYWIVAvwCGM94zRMmItIANXduTnva09y5udFRrIqKMLEK5eXllFBCeXm50VFEROQcvt6+jGIUvt6+RkexKirCxCrsP7SfF3iB/Yf2Gx1FRETOUVRcxClOUVRcZHQUq6IiTKxCu7btGMc42rVtZ3QUERE5x6Ejh1jMYo0JqyEVYWIVWrm1IpxwWrm1MjqKiIico4N/B6YwhQ7+HYyOYlVUhIlVyMzOZDe7yczONDqKiIico0XzFgQSSIvmLYyOYlVUhIlVSDqexJd8SdLxJKOjiIjIOdJPpfMLv5B+Kt3oKFZFRZhYha5hXZnHPLqGdTU6ioiInOPkqZNsYQsnT500OopVUREmVqFZs2bYYkuzZvrIiog0NF1CuzCXuXQJ7WJ0FKui32hiFRKTE/mMz0hMTjQ6ioiISJ1QESZWocJcQTnlVJgrjI4iIiLnOHz0MMtYxuGjh42OYlVUhIlVCGwXyEQmEtgu0OgoIiJyDkcHR7zwwtHB0egoVkVFmIiIiFwWPx8/xjIWPx8/o6NYFRVhYhX2HNjDMzzDngN7jI4iIiLnKC0tJZdcSktLjY5iVVSEiVXw9fZlNKO1OKyISAN04PABXuVVDhw+YHQUq6IiTKyCRysPIojAo5WH0VFEROQc7f3acwd30N6vvdFRrIqt0QHEGNnHsinIKDA6RrXF74gnhhiycrLwwcfoOCIi8ieuLq6EEoqri6vRUayKirAmKPtYNv/q9C/yCvI4xSm88MIOO7LJpphiWtMagBOcwAknXHGlhBIyyMATT+yxJ4ccCimkDW0AOMlJHHDADTdKKSWddDzwwAEHcskln3y88QYgnXTssKMlLSmjjJOcxB13HHEkjzxyybUUWhlkYIMNhRTyOZ/zQP4DdKKTMW+ciIhU6VTmKX7jN8ZljtMfyjWgy5FNUEFGAaUFpYQ+GcoSljDiixFM3zmd/In5RHWIYvrO6UzfOZ11Pusov6ec6TunM+ijQSxhCYM+GsT0ndMpv6ecdT7rLG2jOkSRPzGf6TunM+KLESxhCX2W9WH6zunYP2jP5y0/t7T9b+f/knFzBtN3TufGb25kCUvotrgb03dOx/VRVz5w/MDSdmfETpJGJjFv+zwSdidw9YirjX77RETkHMdPHOc7vuP4ieNGR7EqJrPZbDY6hJwvNjaWadOmsXTpUsLCwur02Lu/383sEbN57j/P4djOkc6dO+Po6EhycjI5OTl07twZgH379uHu7k7btm0pKCjg4MGDdOzYEWdnZ44fP87p06fp2vXMWo4xMTG4urri5+dHUVERMTExhIaG0qJFC9LS0jh58iTdunUD4ODBgzg7O+Pv709JSQn79u0jODgYV1dXTp48yfHjx+nRowcAhw4dws7OjsBAzQ8mItJQpUansiRiCdN3Tsenl3rCqkuXI5ugjMwMfuVXCosKuarXVZbtfn6V53c5W2ABODs706tXL8vjtm3b0rZtW8vjs4UbgKOjY6W23t7eeHt7Wx537NjR8t/29vaV2rZu3ZrWrVtbHoeGhtb49YmIiFgDXY5sgjqHdGYOc+gc0vnSjUVERC7hyLEjrGQlR44dMTqKVVERJiIiIpfF1saW5jTH1kYX2GpCRVgTFJcQxxKWEJcQZ3QUERFpBPx9/bmFW/D39Tc6ilVREdYEOTk64YMPTo5ORkcREZFGoLy8nCKKKC8vNzqKVVER1gT5+fgxmtFaaFVEROrE/kP7eYmX2H9ov9FRrIqKsCaopLSEbLIpKS0xOoqIiDQC/r7+3MqtuhxZQyrCmqCDhw+yiEUcPHzQ6CgiItIItHRtSRe60NK1pdFRrIqKsCYosF0gk5hEYDtNgCoiIpfvdNZp/uAPTmedNjqKVVER1gS5tHAhmGBcWrgYHUVERBqB5NRkvuIrklOTjY5iVVSENUEZpzPYxjYyTmcYHUVERBqB8I7hPMmThHcMNzqKVVER1gSlpafxIz+Slp5mdBQREWkETCYTNthgMpmMjmJVVIQ1QV3DuvIET9A1rOulG4uIiFzC0aSjfMInHE06anQUq6IiTERERMQAKsKaoPjEeJaznPjEeKOjiIhII9C+XXvu4A7at2tvdBSroiKsCbKztcMVV+xs7YyOIiIijYDZbKaccsxms9FRrIqKsCbI39efcYzTzMYiIlIn9h7cyz/4B3sP7jU6ilVREdYElZWVUUABZWVlRkcREZFGwM/Hj7GM1ZrENaQirAmKiYthAQuIiYsxOoqIiDQC7i3d6UlP3Fu6Gx3FqqgIa4L8ff0Zz3hdjhQRkTqRlZPFfvaTlZNldBSroiKsCWrp2pLOdNZCqyIiUieOpRxjNas5lnLM6ChWRUXYFfL1118zYcIERowYwaRJk0hJSTEsy6nMU+xkJ6cyTxmWQUREGo8uoV2Yy1y6hHYxOopVsTU6QFPwyy+/sGbNGl588UUCAgJISUnB1dXVsDwpaSmsYx0Ppj1IVzRrvoiIXB4bGxscccTGxsboKFZFPWFXwMqVK5k5cybt27fHZDLh5+eHi4uLYXm6derGMzxDt07dDMsgIiKNx7GUY6xhjS5H1lCD7AnbuXMnP/zwA/v27ePkyZO0aNGCsLAwpk6dSlhYWL2eu6CggJUrVxIXF0dcXBzZ2dlMnTqVu+++u8q2y5YtY+PGjeTm5uLv78/EiRMZOnSopU15eTlxcXHEx8fzwgsvYGNjw8iRI5k6daoWOhURkUahrLyMfPIpK9fURzXRIHvCvvrqK1JTU7nllltYsGABDz/8MFlZWcyYMYOdO3fW67mzs7NZt24dpaWlDBw48KJt582bx4YNG5g6dSoLFiygY8eOPPvss/zwww+WNpmZmZSXl/P777+zYsUKXn/9dX744Qc2bNhQr6/jYhKSEviYj0lISjAsg4iINB4d/DswhSl08O9gdBSr0iB7wh555BFatWpVaVufPn244447+Oijj4iIiKhyv/z8fPbu3Uu/fv2qfH7r1q307NkTJyenC57b29ubr7/+GpPJRFZWFuvXr6+y3a+//sqOHTt46qmniIyMBKBXr16kpaXx9ttvc+2112JjY4ODgwMAEydOxMXFBRcXF8aMGcNvv/3GyJEjL/le1IdmpmbYYEMzU4OswUVERJqEBvlb+NwCDMDZ2ZmAgABOnjx5wf3Wr1/P3Llz+fbbb8977quvvuLvf/8733333UXPbTKZqnWZcMuWLTg5OTFkyJBK20eNGkVGRgYxMWcmQnVxccHT0/OSx7uSAvwCuJ3bCfALMDqKiIg0Alq2qHYaZE9YVfLy8oiLi6Nnz54XbHPbbbeRnp7OSy+9RElJCWPHjgVg9erVLF68mMmTJ3PjjTfWSZ6EhAQCAgKwta38FgYFBVmeDw8PB2DkyJF8+umnhIaGkpeXx/r167nzzjurPG5UVBRRUVHk5eXVSc6qVFRUUEYZFRUV9XYOERFpOtq2acsIRtC2TVujo1gVqynCFi1aRGFh4QWLl7NmzpyJg4MDr776KiUlJZSUlPDuu+9yzz33MGXKlDrLk52dTdu253/Yzt71mJOTY9k2depUFi1axLhx43B2dmb06NEMHz68yuNGRkYSGRlJbGws06ZNq7O8f7Yvdh/zmc+A2AH49vatl3OIiEjT4dHKgz70waOVh9FRrIpVFGHLli3jhx9+YNasWdW6O3LatGnY29uzePFiAO6//34mTJhQ57mqe3ejnZ0dc+bMYc6cOXWeoTbatW3HTdxEu7btjI4iIiKNQE5uDoc4RE5uDj74GB3HajTIMWF/tnz5cj744AOmTZvGuHHjqr1fXl6epUiqj0t7bm5uZGdnn7c9NzcXwNDJWC+llVsrutOdVm7nj70TERGpqaPJR/mETziafNToKFalQfeELV++nOXLl3PXXXcxefLkau1jNpt57bXX+Oqrr3jssccoLS1l4cKFlJSU8OCDD9ZZtg4dOhAVFUVZWVmlcWFHjhwBIDAwsM7OVdcyszPZy14yszP1F4uIiFy2TsGdmM1sOgV3MjqKVWmwPWErV65k+fLl3Hnnndx1113V2qeiooIFCxawdu1annzySUaNGsXYsWOZO3cua9asYeHChZjN5jrJN3DgQAoLC9m8eXOl7Rs2bMDT05POnTvXyXnqQ9LxJL7gC5KOJxkdRUREGgE7OztccMHOzs7oKFalQfaEffbZZ7z33nv07duX/v37s3///krPd+lS9QKhq1at4vvvv+e5556rNNHqyJEjsbe3Z/78+QQEBFzysua2bdsoKiqioKAAgMTERDZt2gRAv379cHR0pF+/fvTu3ZuFCxdSUFCAr68vP/74I9u3b2fevHkNev2sLqFdeJzHtdCqiIjUieTUZL7iK0aljtIVlhpokEXY1q1bAdi+fTvbt28/7/mff/65yv1uvvlmwsPD6dr1/EWphw4dSuvWrenYseMlz79w4ULS0tIsjzdu3MjGjRuBM4Wej8+ZD9j8+fNZunQp7733nmXZoqeffrrSskUNkY2NDfbYN+hCUURErEdRcRHppFNUXGR0FKtiMtfV9TmpU2enqFi6dGmdr5e5be027hl7D+999R79xlS9uoCIiEh1pUansiRiCdN3Tsenl3rCqqvBjgmT+lNeUU4xxZRXlBsdRUREpMlSEdYEdfDvwGQma6FVERGpE/sP7eclXmL/of2XbiwWKsJERETksrT2aM1ABtLao7XRUayKirAmaM+BPTzLs+w5sMfoKCIi0gh4eXhxNVfj5eFldBSroiKsCfL19uV6rsfXW+tGiojI5cvLzyOBBPLy636FmsZMRVgT5NHKg9701kKrIiJSJ44cO8JKVnLk2BGjo1gVFWFNUHZuNgc5SHbu+WtfioiI1FRoh1Ae4iFCO4QaHcWqqAhrghKTE/mMz0hMTjQ6ioiINAKODo544IGjg6PRUayKirAmqFNwJ/7G37TQqoiI1ImUtBS+4RtS0lKMjmJVVIQ1QXZ2djSnuRZaFRGROpFfkM9RjpJfkG90FKuiIqwJSjqexJd8SdLxJKOjiIhIIxDaIZQHeEBjwmpIRVgTVFxSzGlOU1xSbHQUERGRJsvW6ABSO+Xl5ZSWltZq34CAAB4OeJiAgACKirTivYg0XHZ2dtjY2BgdQy7hQNwBXuVVBsYN1ALeNaAizArl5eWRnJyM2Wyu1f7ltuVc/c7V5NjmkJ+g6/ci0nCZTCb8/Pxo0aKF0VHkItxbutOLXri3dDc6ilVREWZlysvLSU5OxtnZGS8vL0wmU42PkZeZR3FpMd6tvWnRSj/YRKRhMpvNpKenk5ycTEhIiHrEGrA2Xm24hmto49XG6ChWRUWYlSktLcVsNuPl5YWTk1OtjlHRvAIXXHBu7oyjo+Z0EZGGy8vLi6NHj1JaWqoirAErKCwghRQKCguMjmJVNDDfStWmB+wsWxtbWtACWxvV4CLSsF3Ozzq5cg4fPcxSlnL46GGjo1gVFWFNUEVFBcUUU1FRYXQUERFpBEICQ5jBDEICQ4yOYlVUhDVBxSXFnOJUnU1R0b59ezp27EiPHj3o1KkTd9xxB/n5tR/wv2LFCg4dOnTB57dt20Z4eDg9e/bku+++Y9SoUcTHx1dr34bgmWee4dFHH63TY7Zv3559+/bVat8dO3YwceJEALKysliwYEGl54cMGcL69esvO2NjdPToUTw9PevseFOnTuXNN9+ss+NZ07/d5XyGxXhOjk54442TY+2GyTRVKsKaIEcHR1rTuk7X+FqzZg27du0iJiaGnJwcVqxYUetjXaqQWrlyJXfeeSd//PEHI0aM4JtvviEoKKha+8r5evfuzccffwxUXYTVVllZWZ0cR4ylf0epjtSTqUQRRerJVKOjWBUVYVautKCU1OjUGv3/xO4TZB3M4sTuE5dsW1pQs7nIiouLyc/Pp1WrVpZtr7zyCn369KFXr16MGjWKpKQzM/WvW7eObt260aNHD7p27cpXX33FsmXL2LFjBw8//DA9evTgm2++qXT8l156iVWrVvH666/To0cPsrKyLH9BX2pfgAMHDjBixAi6detGt27deOeddwA4fPgwkZGRljz/+c9/LPuYTCb++c9/0rdvXwIDA1m+fDkAH330EaNHj7a0M5vNBAYGsmfPHgAWLFhAly5dCA8PZ+LEiWRnZ5+XJzQ0lJ07d1oeL1++nJtvvhmAtLQ0xo8fT58+fejWrRtPPfWUpd2WLVsIDw+nT58+zJw584LTlfTv359ff/0VgP/7v//Dz8/P8py/vz9JSUls2rSJ3r17AzBjxgyysrLo0aOHZdvZ8w0cOJCgoCBmzJhR5bnO9go999xzDBw4kMWLF1/wNVRUVDBz5kw6duxI9+7diYiIoKioyHKMRx99lL59+9KlSxd++uknyzk+/PBDwsPD6datG9dffz0pKWfWqVuxYgUjRoxgwoQJhIeH07t3b44cOQJAXFwcV199Nd27dyc8PJx58+YBZ25ymTt3Ln369KFHjx7cfvvtZGVlXfB1XSjTn5lMJvLy8iyPPT09OXr06AVfb1V2797N0KFD6dixI1OnTqW4+EyP9SeffELfvn3p2bPneZ/vC32u/2zNmjX06NHD0mv8xBNPEBwcTN++ffnb3/5m+ffetGkTPXr04OGHH6Z///58+eWX7Nixg/79+9OtWzf69OnDL7/8Uum9OSsvL6/SGK4LfXeg+p9hsQ45uTnsZz85uTlGR7EuZmmQDh48aB44cKD54MGDlbYXFhaaY2JizIWFhWaz2Ww+vvO4+Rmeqbf/H995/JJZAwICzGFhYebu3bubXV1dzddcc425tLTUbDabzR9//LF52rRp5rKyMrPZbDZ/8MEH5jFjxpjNZrO5W7du5l9++cVsNpvN5eXl5szMTLPZbDYPHjzYvG7dugueb8qUKebFixdXOv/evXsvuW9paak5JCTEvGrVKsu29PR0s9lsNvfp08f87rvvms1ms/nQoUNmd3d387Fjx8xms9kMmF977TWz2Ww2x8TEmFu0aGEuLS01FxQUmD08PMypqalms9ls/umnn8y9evUym81m8zfffGPu2LGj5TVNmzbN/MADD5jNZrP56aefNs+ePdtsNpvNzz//vPnBBx+05Bk0aJB57dq1ZrPZbB4+fLh58+bNluwjRoww//vf/zYXFRWZ27Zta964caPZbDabV61aZQYs78GfzZs3z/zss8+azWazuWfPnuY+ffqYDxw4YD548KA5NDTUbDabzRs3bjRHRESYzWazOSEhwezh4VHpGIMHDzaPGzfOXFZWZi4oKDC3b9/evHXr1vPOlZCQYAbMH3/8sWXbhV5DdHS0uWPHjuby8nKz2Ww2Z2VlmcvLyy3HWLFihdlsNpt//fVXc5s2bcx5eXnmvXv3mtu0aWNOTk42m81m8/z5882jRo0ym81m8/Lly81ubm7mo0ePms1ms/mxxx4zT58+3Ww2m80PP/yw+fnnn7dkOnXqlOW9/8c//mHZ/txzz5kffvjhC76uqjKd+34B5tzcXMtjDw8Pc0JCwgVf77mmTJliDg8PN+fm5prLysrMo0ePNv/zn/80m81mc0ZGhrmiosKSycfHx1xSUnLRz/XZ78Mrr7xiHjRokOW1r1271tytWzdzXl6euby83HzTTTdZPgMbN240m0wm85YtW8xms9lcXFxsbteunXnDhg1ms9ls3rJli9nb27vK15+bm2v+86+VC313avIZPvdnnjRMZ38XVed3hvyPbo+zcp4dPZm+c3qN9snPySclOQVfP1+auza/5PGrY82aNXTt2pWysjLuu+8+HnvsMV599VX+85//sGPHDiIiIoAz85ydvc186NCh/PWvf+WWW25h+PDh9OjRo0avo6ZiY2MpKytj/Pjxlm2enp7k5uaya9cu7rnnHgBCQkIYMGAA//3vf5kwYQKAZcxUp06dsLW1JS0tDT8/P8aNG8dHH33Eo48+yvLly7nrrrsAiIqKYuLEibRs2RKA+++/n9tvv/28TFOmTKFnz54sXLiQpKQkDh06xMiRI8nPz+enn37ixIkTlrZ5eXkcPHiQoKAgnJ2dGTJkCADjx49n+vSqPwORkZE8+eSTzJgxAzs7O8aPH09UVBQmk4nIyMhqv3e33347NjY2ODk5WXpT+vfvf147R0dHy3t2sddw7bXXUlpayt13380111zD9ddfT7NmZzrm7e3tmTx5MgD9+vXD29ub3bt3s3PnTm644QZ8fX0BeOCBB5g/f76lB2XAgAEEBAQAZ3oAFy9eDMCgQYP429/+Rn5+PoMHD7a87v/85z/k5OSwZs0aAEpKSiyXtc91oUxt27at1vvXoUOHC77ec912222WiUnvvvtu3nrrLebMmUNCQgITJ04kOTkZW1tbMjIySExMpLi4uMrP9VnPPPMMbdu25fvvv8fBwQGAjRs3Mn78eJo3P/P9nzJlCv/4xz8s+4SGhjJgwADgzPfG3t6eESNGWN7n1q1bs2fPHnx8Lj0zelXfndOnT1f7MyzSmKkIs3J2znY1XiKiJL8E5xbOeHbyxL65fZ3msbW1Zdy4cfztb3/j1VdfxWw2M2/ePO6+++7z2i5cuJD9+/ezceNGpkyZwsSJE5kzZ06d5qmOs7/Ez70V/s+P/zyfmo2NjWWczF133cW9997L9OnTWb9+Pa+99prlmBc73lm+vr706tWLtWvXsnv3biZPnoytrS2FhYWYTCZ+//137OzsKu2ze/fuar+2/v37s2/fPtauXcvQoUOJjIzkmWeeAeDOO++s9nEu9PrP1bx5c8vrrKiouOBrANi/fz+bN29m48aN/P3vf+fnn3/G1rbqH0kmk+m89/Tc9/NCGceNG8dVV13FDz/8wJtvvslrr73GN998g9ls5q233uLaa6+t5rtwfqZz2djYUF5ebnl89pKjm5tbla83ODi42ue5/fbbeeWVV7jxxhsBcHd3p6io6JJTOPTv35/vvvuOhIQEOnbsCFT9+fyzP89Of6G2JpMJW1vbKl/vn1X172LWpcdGJzY+lsUsZnD8YC1bVAMaEyZ17qeffiIsLAyAMWPG8NZbb3H69GngzDicP/74A4CDBw/SpUsXZs6cyf3338+2bdsAcHV1rXL8VHVcbN+wsDDs7e1ZvXq1ZVtGRgaurq706NGDlStXAhAfH88vv/zC1Vdffcnz9evXj4qKCubMmcOwYcNwdz+zZMewYcP47LPPyM3NBWDJkiUX7Hm6++67ef/99/nggw+YOnUqAC4uLgwcOJCXXnrJ0u748eMkJyfTsWNHCgsL+fnnn4EzvZAXes329vb07duX+fPnW8a8xcTE8PPPP3PNNdec197V1ZWCgoI6GYx9sdeQnp5Ofn4+w4cP54UXXqB9+/bExMQAZ3qkzt4o8Ntvv5GWlka3bt0YOnQo33zzDWlpaQC88847DB069JJFSFxcHK1bt+bOO+9kwYIFls/ZmDFjWLhwIQUFZyaXLCgoYP/+/VUe40KZzhUUFMT27dsB+Pe//225S/hir/dcq1evJj8/n/LycpYvX2753GRmZtK+fXvgzHjEzMxM4MKf67NGjBjBsmXLuOGGG9i1axcA11xzDatXr6agoICKigo+/PDDC75/HTt2pLi42DIObuvWrZw8eZLw8HC8vb0pKysjNjYWgA8++OCCxzn3mNX9DIt1cGnhQhhhuLRwMTqKVVER1gQVFReRRhpFxXW3ePctt9xCjx496NKlCwcOHOD1118HYPLkyUyaNIkhQ4bQvXt3evTowcaNGwH4+9//TpcuXejZsycffvihpYdm+vTpPPfccxccXH8xF9vX1taWr776iiVLllgGd3/xxRcAfPzxx3z00Ud0796dcePGsWzZMtq1a1etc9511128++67lkuRACNHjmTy5Mn079+f8PBwcnJyeP7556vcf+zYsWzfvh0fHx86d+5s2f7xxx9z4MABwsPDCQ8PZ9y4cZw6dQoHBwc+/fRTHnzwQfr06cNvv/2Gv7//BfMNGzaMkydPcvXVV2MymYiIiCA4ONhyqfTP3N3dmThxomVw++W60GtISkpi2LBhdOvWjfDwcLp27crIkSMB8PDw4PDhw/Tt25e77rqLTz75hObNm9OlSxdefPFFhg8fTrdu3diyZQvvvvvuJTOsXr2abt260bNnT26//XbLoPW5c+fSo0cP+vbtS7du3ejXr5+lSDnXhTKd67XXXuPBBx/k6quvJjo6Gg8PD4CLvt5zDRo0iBtvvJEuXbrQqlUrHnroIQBef/11brrpJgYMGMDu3bst/+YX+1z/+Ziffvop48aN49dff2XMmDGMGDGC7t27c8011xAUFISbm1uVeezt7fniiy944okn6NatG3/9619ZvXo1zZs3x9bWljfeeIORI0cyaNAgy00El1LTz7A0fG3btGU4w2nbpnqX6OUMk1n9wg1SbGws06ZNY+nSpZZeJTjT3Z+QkEBgYGCtlxwqyC4gKS6JdiHtcHZzrqvIIpft6NGj9O7du1JPjtEaYqa6kJubi4uLCxUVFdx77720bduW+fPnGx3rPHXxM0/q35GtR3j16leZ/ctsOlzVweg4VkM9YU2Qra0tLrhccPyNiDR+d955Jz179qRz584UFRUZMh5TGo+4hDje4i3iEuKMjmJV9Fu4CaqoqKCEEi1bJA1O+/btG1yPU0PMVBe+/PJLoyNIIxIUEMQ93ENQQNV3GEvV1BPWBBWXFJNBRp0tWyQiIk1bc+fmtKMdzZ0vPu2RVKYirAlydHDEC686XbZIRESarhPpJ9jMZk6kn7h0Y7FQEdYEmUwm7LC75K39IiIi1XEq6xS/8zunsk4ZHcWqqAhrgkrLSskhh9Kymq0LKSIiUpXOIZ15lEfpHNL50o3FQkVYE1RRXkERRVSUX/7A/B49etCjRw86d+6Mra2t5fFtt91WZftdu3bx+eefV+vYf15Y2kibNm3i+++/NzqGiIg0MirCmiAHBwda09qyjtzl2LVrF7t27eKbb76hZcuWlserVq26YPvqFmENhYowEZGLi0uI4x3eIS4hjuLiYqKjo8nJyQHgxIkTlSZCjo2N5ejRo8CZVVSio6PJysoCzqwuER0d/b/jxsVx5MgR4Mzaw9HR0ZYVWE6fPk10dLTlTv8jR45w+PBhy77R0dGWO5szMzOJjo62rAaSkJDAoUOH6v6NqCEVYVIvPvzwQ8vs3ddffz0pKSmcPHmSp556iqioKHr06MGMGTMAmDRpEr1796Zbt27ccMMNnDx58pLHz87O5t577yU8PJzu3btb1qbMy8vj7rvvpmvXrnTt2pVnn33Wss+QIUNYv3695fEtt9zCihUrAJg6dSoPPPAAkZGRhIaGcvPNN1NSUsKuXbt45513+OCDD+jRowfPPfcc6enpDB8+3PL6/jxTvohIU+Tk6EQ72lFxsoLdP+wmIiKCbz/+ltToVN7+59sMHDCQ1OhUUqNTmXzbZB576DFSo1OJ/TmWiIgI/rP8P6RGp7L8teX06dPH0nbandOYNX0WqdGpHN12lIiICD575zNSo1P55K1PiIiI4Nhvx0iNTmXmvTOZMXWGZd+IiAhWvL6C1OhU/v3ev4mIiODQlkOkRqfy6IOPMvWOqWQfM3a5LM2Y30DVZMb81NRUMjIyCA8PByAmJgYXFxfatWtHUVERMTExhISE4OLiwokTJ4iPjcfJ2YngDsEcTz+Oo6MjAQEBlJaWsnfv3osuYXIhf55VfN++fURGRrJz5058fX15/vnn2bp1K19//TUrVqxg/fr1rFmzxrJvRkYGnp6eALz00kskJyfz5ptvsmnTJh599FF27Nhx3vnuuusuWrRoweuvv06zZs1IT0/Hy8uLxx57jJSUFD744AMKCwsZMGAAjz/+OLfeeitDhgzh0Ucf5YYbbgDOFGE33HADU6dOZerUqRw6dIgff/wRe3t7Bg0axMyZM5kwYQLPPPMMeXl5vPLKKwAsWrSIAwcOsGTJEuDMX2Nn14wUkbqlGfOtQ/axbF7r+BoUQhllnOQk7rjjiCN55JFLLj6cWdg7gwxssKEVrSinnBOcoBWtcMKJfPLJJpu2nFn+6BSnMGHCHXcqqCCNNFrSEmecKaCALLLwxptmNOM0pzFjxoMzy4Ud5zhuuNGc5hRSSCaZtKENNtiQSSbllOPj7MODBx7Ezb9mv/PqiiZrbQTeffddli1bRnJyMgC33347Q4YM4Y033iA5OZmIiAg2btzIkCFD+OCDD3jxhRfZ+sNWmtk0Y+rUqXTp0oVly5aRkZFBREQE69ev5/rrr691no0bN3LDDTfg6+sLwAMPPMD8+fO5UL3/8ccf8+GHH1JcXExhYSHe3t6XPMf69evZuXMnzZqd6cz18vICICoqylKYNW/enDvvvJOoqChuvfXWSx7z5ptvxsnJCYA+ffoQHx9fZbt+/fqxaNEiZs+ezeDBgxkxYsQljy0i0pi5+bvx14N/pSCjwOgo1bZlwxYmPTGJv/zyF4b5DzMkg4qwRuC+++5j3LhxlsefffYZLi5nVrL38/Nj586dhISEAGeWKrlm4DW44oqdrR0rVqyw/HXp6enJzp07CQq6vBmPzWZzpekvLjYVxn//+1/efPNNtm7dipeXF2vXruW5556rs3P/+fy2traUl5dbthcVVV7A/M9/ZdvY2FjGDpyrf//+7Nq1i6ioKL744gvmzZvHH3/8gY2NTa1zi4hYOzd/N8N6lGqj0+lODGUo3l6X/sO/vmhMWCPg4+NjuRQJ0LlzZ9q1awecKSx69eplKcratGlDeNdwSinFbDYTFhZGQEAAAHZ2dvTq1avGlyLPNXToUL755hvS0tIAeOeddxg6dCgmkwlXV1eys/93DT4zMxNXV1fc3d0pKSnh3XffrdY5xowZw8svv2wZkJmeng7AsGHDWLp0KWazmfz8fD766CMiIyMBCAoKYvv27cCZQZn//e9/q3WuczMnJCTQokULxo8fz+LFizl06BB5eXnVOpaIiDQMnu6e9KMfnu6ehmVQEdYEFRUXkU46RcVFl25cC126dOHFF19k+PDhdOvWjS1btliKq6FDh5Kfn0/37t2ZMWMGI0eOJDg4mI4dOzJixAh69OhRrXMsWrSIgoICunbtSo8ePXj88ccBePLJJzGZTISHh9O3b1/GjBnDLbfcAsBjjz3GDz/8QEREBE888QR9+/at1rluuukmduzYYRmYv2nTJiIiIujRowdXX301L7/88mUXriIicmXl5uVymMPk5uUalkED8xuomgzMr6mivCLSDqbh3dEbxxYa6CoiDZcG5kt9+e7j77hu0nVs+GgDIyYaM7ZXPWFNUDNTM+yxp5lJ//wiItI0dQzuyCM8QsfgjoZl0G/hJqisrIxcci848FxERKSxs7ezxw037O3sDcugIqwJKisvI598yspVhImISNOUnJrMOtaRnJpsWAYVYVbqcobyOTo44o03jg4aXyEiDZuGLUt9KSwqJJVUCosKDcugecKsjJ2dHSaTyTJD/MXm4LqQkuISyiijqLiICpvLX8RbRKQ+mM1m0tPTMZlM2NnZGR1HGpmQwBCmM52QwBDDMqgIszI2Njb4+fmRnJxsWQC1pooKikjPSMfL5IWjs3rDRKThMplM+Pn5aTJkaZRUhFmhFi1aEBISQmlpaa3237d5H2/OeJOn3n2KwMGBdZxORKTu2NnZqQCTehETF8MCFjAgbgA+vXwMyaAizErZ2NjU+geTr5cvEYkR+Hr5at4dERFpkjxbedKf/ni20oz5cgUVFRdxilP1NmO+iIhIQ9faszUDGUhrz9aGZVAR1gQdOnKIxSzm0JFDRkcRERExRH5BPokkkl+Qb1gGXY5soIqLiwFITEys82Pb2Nhwe/PbsbGxITY2ts6PLyIi0tD9uuNXPm/+OYN2DKLcq7zOjx8QEHDJIT9aO7KB+v7775k/f77RMURERKQWzl37uSoqwhqorKwsfvvtN/7zn/8wa9asau2zePFiHnrooUu2S0xMZP78+cybN4+AgIDLjdooVPe9M8KVzlZf56ur417OcWqzb033qU57fQfP15C/g6DvYV0ep76/hw3ld2F1esJ0ObKBatmyJcOHD+enn366ZCV9VosWLardFs58QGrSvjGr6Xt3JV3pbPV1vro67uUcpzb71nSfmrTXd/B/GvJ3EPQ9rMvj1Pf30Jp+F2pgfgMXGRlZL22lsob83l3pbPV1vro67uUcpzb71nSfhvxZasga+vum72HdHae+v4cN/bP0Z7oc2QTFxsYybdq0al2vFpG6p++giPEawvdQPWFNkIeHB1OnTsXDw8PoKCJNkr6DIsZrCN9D9YSJiIiIGEA9YSIiIiIGUBEmIiIiYgAVYSIiIiIGUBEmIiIiYgAVYXKekpISXnzxRcaNG8d1113HjBkz2Lt3r9GxRJqUZ555hrFjx3LdddcxdepUtm7danQkkSZr3759DB48mJUrV9bpcXV3pJynsLCQVatWMXLkSLy8vPjuu+946623WL169SWXYBCRupGQkICfnx92dnbExMQwe/ZsPvvsM9zc3IyOJtKkVFRUcP/992Mymejfvz9Tpkyps2OrJ0zO4+TkxNSpU2nTpg3NmjVj5MiRVFRUkJycbHQ0kSYjMDAQOzs7AGxsbCgtLSUjI8PgVCJNz9q1awkPD8ff37/Oj621IxuBgoICVq5cSVxcHHFxcWRnZzN16lTuvvvuKtsuW7aMjRs3kpubi7+/PxMnTmTo0KEXPH5iYiLFxcW0bdu2Pl+GiNWqr+/gc889x88//0xJSQn9+vWjQ4cOV+LliFil+vgeZmdns2bNGt555x3eeOONOs+sIqwRyM7OZt26dQQFBTFw4EDWr19/wbbz5s3j4MGD3HfffbRr146oqCieffZZKioqGDZs2Hnti4qKeP7557nzzjtxdnauz5chYrXq6zv41FNPUVZWRnR0NImJiZhMpvp+KSJWqz6+h0uWLGH8+PG0aNGiXjKrCGsEvL29+frrrzGZTGRlZV3wg/frr7+yY8cOnnrqKcsCp7169SItLY23336ba6+9FhsbG0v7srIynn76aQICApg8efIVeS0i1qi+voMAtra29OnThy+++AI/Pz/69+9f769HxBrV9fcwNjaWQ4cOMXv27HrLrDFhjYDJZKrWX8hbtmzBycmJIUOGVNo+atQoMjIyiImJsWyrqKjg+eefp1mzZjz22GP6C1zkIurjO3iuiooKUlJSLjeqSKNV19/D3bt3c/ToUcaOHcvo0aP56aef+Pjjj3n++efrLLN6wpqQhIQEAgICsLWt/M8eFBRkeT48PByAV155hVOnTvHyyy+f115Eaqe638FTp06xd+9e+vbti52dHT///DN//PEH9913nxGxRRqV6n4Pb7jhhkqF2r/+9S+8vb2544476iyLfrs2IdnZ2VUOrndxcQEgJycHgLS0NNavX4+9vT1jxoyxtFuwYAHdu3e/MmFFGqHqfgcB1qxZwz//+U9MJhN+fn4888wzBAcHX7GsIo1Vdb+Hzs7OlcZCOzg44OzsXKfTxKgIa2Kq01Xr7e3Nzz//fAXSiDQ91fkOenh48Oabb16BNCJNU22G2Dz++ON1nkNjwpoQNzc3srOzz9uem5sLgKur65WOJNKk6DsoYryG9D1UEdaEdOjQgcTERMrKyiptP3LkCHBmckgRqT/6DooYryF9D1WENSEDBw6ksLCQzZs3V9q+YcMGPD096dy5s0HJRJoGfQdFjNeQvocaE9ZIbNu2jaKiIgoKCoAzs9xv2rQJgH79+uHo6Ei/fv3o3bs3CxcupKCgAF9fX3788Ue2b9/OvHnzzpufSESqT99BEeNZ2/dQC3g3EuPHjyctLa3K51atWoWPjw9wZqmGpUuXVlqqYdKkSRddtkhELk3fQRHjWdv3UEWYiIiIiAE0JkxERETEACrCRERERAygIkxERETEACrCRERERAygIkxERETEACrCRERERAygIkxERETEACrCRERERAygIkxExAotWrSI0aNHW5ZnAXj//fcZNGgQf/zxh4HJ/uf555/n1ltvpbi42OgoIg2S1o4UEcOlpqZy2223XbRNcHAw77///hVK1LAlJSWxdu1apk+fjrOzc72e66uvvuLVV19lzJgxPProoxdte++993Lo0CGWLl1KWFgYU6ZMISoqitWrVzNp0qR6zSlijVSEiUiD4evry7Bhw6p8zsPD4wqnabiWL1+Ovb09Y8eOrfdzRUZG8q9//YuffvqJhx56CAcHhyrbxcfHc+jQIUJCQggLCwPAz8+PAQMG8MknnzBu3DicnJzqPa+INVERJiINhq+vL3fffbfRMRq0rKwsfv75Z4YMGVLvvWAAzZs3Z/DgwXz33Xds3ryZ4cOHV9lu/fr1AIwaNarS9uHDh7N582Z+/PFHbrjhhnrPK2JNNCZMRKzSoEGDePjhh8nKyuKll15izJgxREZGMmPGjAuOiSooKOD999/nzjvvJDIyklGjRvHoo4+yZ8+e89o+/PDDDBo0iJKSEt577z0mTJjANddcU+mS6ObNm5k2bRqRkZGMHTuWBQsWkJuby/jx4xk/fryl3fPPP8+gQYM4cOBAlbnefvttBg0axM8//3zJ1/3jjz9SUlLCkCFDLtn2rPj4eG666SZGjx5NTEyMZfvx48f55z//yS233MLQoUO58cYbeeGFF0hLS6u0//XXXw/At99+W+XxS0tLiYqKwt7e/rwirV+/fjg5OfHNN99UO69IU6EiTESsVl5eHg888ADx8fEMGzaMQYMGERsby6OPPsqRI0cqtc3JyeH+++9nxYoVuLq6cuONN1raz5o1iy1btlR5jnnz5vHNN9/QvXt3br31Vtq2bQvA119/zZNPPklKSgojRozguuuuY//+/fzf//0fZWVllY4xZswY4H+9RX9WVlbGd999h7u7O1ddddUlX/POnTsB6NKly6XfIGD37t089NBD2NjY8Oabb9K5c2cAYmJiuPfee9mwYQNhYWHccsstdO/enR9++IH77ruP48ePW47Ro0cP/Pz8iI6OJjU19bxz/PLLL2RnZzNo0CBcXFwqPWdnZ0doaCgHDhygsLCwWplFmgpdjhSRBiMlJeWCg++7dOlC3759K207fPgwN954I3/9619p1uzM35S9evViwYIF/Pvf/640kPy1114jISGBuXPnVrpkdvr0aaZPn87LL79Mnz59zhvzdOrUKZYvX46rq6tlW25uLm+88QbOzs4sW7bMUphNmzaNOXPmEBsbi7e3t6V9eHg4gYGB/Pjjj8ycObPS2KitW7dy+vRp7rjjDmxtL/0jed++fXh5edGqVatLtt2yZQvPPvssbdu25ZVXXqF169bAmcLvmWeeoaKigqVLlxIcHGzZZ8+ePcyaNYs33niDl156ybJ91KhRLFmyhA0bNnDXXXdVOs/XX38N/K/H7FxhYWHs3r2bAwcO0KtXr0vmFmkq1BMmIg1GSkoKK1asqPL/27dvP6+9k5MTM2bMsBRgANdddx02NjYcPHjQsi0rK4uNGzcSERFx3pgld3d3JkyYQFZWlqWX6c/uuuuuSgUYwH//+18KCwu54YYbLAUYgK2tLffcc0+Vr23MmDEUFBTw008/Vdq+fv16TCZTtcZLlZaWkpWVVa0CbP369Tz11FOEhITw5ptvWgowOFP4paWlMWHChEoFGEC3bt24+uqr2bZtG/n5+ZbtZ9/Xb7/9FrPZbNmekZHBjh078Pb2vmCBdTZvenr6JXOLNCXqCRORBqNPnz688sor1W7v5+d33uB0W1tb3N3dycvLs2w7ePAg5eXllJSUVNnTlpycDEBiYuJ5lwQ7dep0Xvv4+HgAunbtet5znTp1wsbG5rztw4cP55133mH9+vWWHqP09HR+//13y+W+S8nOzgY475LfuT7//HN++eUX+vXrx3PPPYejo2Ol5/fv3w/AsWPHqnw/Tp8+TUVFBUlJSXTs2BEAT09P+vbty9atW4mOjiYiIgI4M06svLycUaNGYTKZqsxztog9m19EzlARJiJWq3nz5lVut7GxoaKiwvI4JycHgL1797J3794LHq+oqOi8be7u7udtO9tD1LJly/Oea9asGW5ubudtd3Fx4ZprrmHDhg0cPXqU9u3b880331BeXl7tuwbPXiq91OSnZ2806Nu373kFGJy5nArwww8/XPQ4574f119/PVu3buXbb7+tVIQ1a9aMkSNHXvA4Z/NeaHoLkaZKRZiINHpni7XbbruNBx98sEb7VtW7c/Z4WVlZ5z1XUVFBdnY2Xl5e5z03ZswYNmzYwPr163nwwQf59ttvcXV1ZdCgQdXK4uLigq2traWovJDHHnuMDz74gDfeeINmzZpx0003VXr+bO/hSy+9VK2bAc7q378/7u7ubN68mUceeYTDhw+TnJxMnz59aNOmzQX3O5u3qqJVpCnTmDARafQ6duyIyWSyXIa7XEFBQcCZQfLnOnDgAOXl5VXu17VrVzp06MB3333Htm3bOH78OMOGDatRD1FgYCBpaWnn3YH5Zy4uLixatIjQ0FAWLVrEv//970rPn71Dsqbvh62tLSNGjKC4uJgff/zRMu3EhQbkn5WUlARAhw4danQ+kcZORZiINHoeHh5cc8017Nu3j08//bTSwPKzYmJiqrwcWZUBAwbg5OTE+vXrK03lUFZWxnvvvXfRfUePHk12djYvv/wyQI0nMO3RowclJSWWcWkX4uLiwsKFC+nYsSOvvfYaX3zxRaX8bdq0YdWqVezateu8fcvKyqqcOw3+V3D95z//YdOmTbi5uTFgwICLZomJicHDw4N27dpd4tWJNC26HCkiDcbFpqgALms2/f/7v/8jKSmJt99+m++++44uXbrQokULTp48SWxsLMnJyXz55ZdVjqE6l4uLCzNnzuTll1/m3nvv5dprr6V58+Zs27YNe3t7PD09LzhIfcSIEbz77rtkZGTQuXNnS69adQ0cOJDVq1ezc+dOy/JAF8v56quvMnv2bF5//XXMZjO33HIL9vb2PPfcc8yZM4eHH36YiIgIAgMDAThx4gR79uzBzc2Njz766Lxj+vv7Ex4ebhlbd8MNN2BnZ3fBDCkpKaSmpnLjjTfW6HWKNAUqwkSkwTg7RcWFXE4R5urqyltvvcW///1vfvrpJ6KioqioqMDd3Z3g4GCmTJlS5YD6Cxk9ejQuLi58+OGHbNiwgebNm3P11VczY8YMbr31Vnx9favcr0WLFgwYMICoqKhaLePTo0cP/P39+f7777njjjsu2f5sj9js2bN54403MJvN3HrrrXTq1In333+fTz/9lG3btrF3717s7Ozw9PRk4MCBDB069ILHvP766y1F2LlTfpzr+++/B/43Ya2I/I/JXFW/vIiI1EpycjJ33HEH11xzDc8++2yVbe68805OnDjBl19+Wav1H9euXcsrr7zCO++8Yxnf1RCVlZUxceJEvL29ef31142OI9LgaEyYiEgt5ObmUlJSUmlbcXExb775JnDmsmFVfv31V44ePcqIESNqvQD39ddfT0BAAMuXL6/V/lfK999/T1paGg888IDRUUQaJF2OFBGphV27dvHPf/6Tv/zlL7Ru3Zrs7Gyio6NJS0ujV69eXHvttZXa/+c//+HkyZOsW7cOBwcHJkyYUOtz29jY8Pe//53t27dTUFBQ62KuvplMJv72t79dcuyaSFOly5EiIrWQlJTEe++9x759+yzzhfn6+nLttddy++23nzftxPjx40lPT6ddu3bMmDGjRvNziUjjpCJMRERExAAaEyYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJigP8HmirLZ6kUANkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHDCAYAAABsyc0zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB82UlEQVR4nO3deVyVZf7/8deRHQWURUEQRDY33HBcyq1ETUutLMvUtEWzspy+NuaUrWPLWGll06KW2m7aNKmVFaXmZFpKrigiIgKCgrLvy/n94c8zoaiA4M2B93Me83h07nPd9/0+x3Pgw3Vf93WZzGazGRERERG5opoZHUBERESkKVIRJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAW6MDNGYjRoyo9LioqIj777+f22+/3aBEIiIi0lCYtHbklZGRkcGtt97Kxx9/TNu2bY2OIyIiIgbT5cgr5IcffqBLly4qwERERATQ5UiLgoICVq5cSVxcHHFxcWRnZzN16lTuvvvuKtsuW7aMjRs3kpubi7+/PxMnTmTo0KEXPP7333/PzTffXJ8vQURERKyIesL+v+zsbNatW0dpaSkDBw68aNt58+axYcMGpk6dyoIFC+jYsSPPPvssP/zwQ5Xt4+PjSUpKYsiQIfWQXERERKyResL+P29vb77++mtMJhNZWVmsX7++yna//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY1NpX2+++47rr76alxcXKqdp6ioiMTERAICAnB0dKz9CxMREZEGST1h/5/JZMJkMl2y3ZYtW3BycjqvV2vUqFFkZGQQExNTaXtFRQVRUVEMHz78osfNyMggNjbW8v+ff/6ZadOmkZiYWOPXIiIiIg2fesJqKCEhgYCAAGxtK791QUFBlufDw8Mt23fu3ElZWRl9+/a96HHXrl3LihUr6jyviIiINEwqwmooOzu7yjscz15qzMnJqbT9+++/Z+jQoecVbecaM2YMV199teVxYmIi8+fPr4PEIiIi0hCpCKuF6ly2POuJJ56oVjtPT088PT1rG0lERESsjMaE1ZCbmxvZ2dnnbc/NzQXA1dX1SkcSERERK6QirIY6dOhAYmIiZWVllbYfOXIEgMDAQCNiiYiIiJVREVZDAwcOpLCwkM2bN1favmHDBjw9PencubNByURERMSaaEzYn2zbto2ioiIKCgqAM4PjN23aBEC/fv1wdHSkX79+9O7dm4ULF1JQUICvry8//vgj27dvZ968eefNESYiIiJSFS3g/Sfjx48nLS2tyudWrVqFj48PcGbZoqVLl1ZatmjSpEkXXbaopmJjY5k2bRpLly4lLCyszo4rIiIiDYOKsAZKRZiIiEjjpjFhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiAE3WKiKVZB/LpiCjwOgYNeLs6Yybv5vRMUREakRFmIhYZB/LZkHHBZwqPIUPZyYnPsUpmtGMVrSiggrSSKMVrXDCiQIKyCILH3wwYeI0pwFwxx0zZlJJpSUtccaZQgrJJBNvvGlGMzLJpIIKPPAAIJVUXHGlOc0poojTnKYNbbDBhiyyKKMMTzwBSCONFv//f8UUU+ZYxhOxT6gQExGroiJMRCwKMgrYVbiLH2x/IHF7IgDj7x+PRysPHnvhMXLzcgkbHMa7L73L6GGjWbV2FQueXcCx7cewtbVlyiNTAFi5aCVlZWX49/Vn0dOLuG3Mbaz7YR33zb2P2M2xuLRw4f7H7+dU5ik+f/tzANr3a8/T//c0d42/i6gtUdz51zv5Y8MftPFqw+znZnPoyCHWrVgHQOdrOjPzrplMv3M6H6/4mL8t/hu37r2Vv/j/xZg3TkSkFlSEiUglXejCrJWz8Ol1pifs/Y/ex9bWFp9AH1qXt2bnzp0EBgbSqlUrJgdMZtCYQfj19MNkMvH2+28D4BPkg9lsZufOnQQEBODh4cGtgbfSe1hvgroHYWNjw6K3F1FWVoZPyJnzbNu+DT8/P7y8vBgTNIadA3fSJbwLdnZ2vPj6ixQVFeETdqbtpp834e3tTZs2bbgu8zoOLj6Ip7unMW+YiEgtqQgTEYuc3BxSSCHAN8CyLSQkxPLfNjY29OrVy/LYw8MDDw8Py+OgoCDLf5tMpkptW7VqRatWrSyPAwMDK527Z8+elv92c3OrtG9AQECltt27d/9fhlYetKMdjg6O1XuRIiINhIqwBiYqKoqoqCjy8vKMjiJN0NHko3zCJ9yZfCdhWMeapSlpKXzDN1yfdr1lHJuIiDVQEdbAREZGEhkZaVnAW+RK6hTcidnMplNwJ6OjVFt+QT5HOUp+Qb7RUUREakTzhImIhZ2dHS64YGdnZ3SUagvtEMoDPEBoh1Cjo4iI1IiKMBGxSE5N5iu+Ijk12egoIiKNnoowEbEoKi4inXSKiouMjlJtB+IO8CqvciDugNFRRERqREWYiFgEtw/mXu4luH2w0VGqzb2lO73ohXtLd6OjiIjUiIowEbFqbbzacA3X0MarjdFRRERqREWYiFjsP7Sfl3iJ/Yf2Gx2l2goKC0ghhYJC61rvUkRERZiIWLT2aM1ABtLao7XRUart8NHDLGUph48eNjqKiEiNqAgTEQsvDy+u5mq8PLyMjlJtIYEhzGAGIYEhl24sItKAqAgTEYu8/DwSSCAv33pWbHBydMIbb5wcnYyOIiJSIyrCRMTiyLEjrGQlR44dMTpKtaWeTCWKKFJPphodRUSkRrRskUg9yj6WTUFGAdm52SQmJ9IpuBN2dnYkHU+iuKTYMhXEvth9tPFsg5eHF7l5uSQkJRAWFIaDvQPJqckUFhVaLrfFxMXg0dKDNl5tyC/IJz4xnpDAEJwcnTh+4ji5ebmEBZ1Z9zE2PhZXF1d8WvtQWFRIXEIcwe2DcXZy5kT6CU5nnaZTyJklig4dOURpWikP8ZBVzT6fk5vDfvaTk5tjdBQRkRpRESZST+L/iGd239mEloaSRBKf8Rl/4280pzlf8iWnOc093APAC7zAEIZwFVcRTzwf8iGzmEUrWvE1X5NEEjOYAcArvMJf+AuDGUwSSbzHezzAA7SmNd/zPbHE8hAPAfA6r9OFLkQSSRppvMM7TGMavviykY1EE81sZgPwFm/RnvaMdR6Lu6/1zLkVFhTGLGZZCk8REWuhIkyknhyOOcza0rV8+o9PuXvg3UxNnmrpCRt5fGSlnrCrYq+q1BM2MWmipSdsVOqoSj1hA+IGVOoJuzXxVktP2A0nbqjUEzY4fnClnrAbE2609ISNTR9bqSdsyJEhNHduTkjXENz83Yx500REmhAVYSL1pFunbjzN0wwaNQifXj50pKPlOZ9ePpXa/vmxDz6EElrp8YXaAgQPCK522w5Xdah2W2sRGx/LYhYzOH6w1b4GEWmaVISJiFVzaeFCGGGUppaSGm09g/OdPZ3V4yjSxKkIE6knR44d4UM+JPJYpHpo6lFwl2CGOw1nzaw1bGQjDjiQSy755OONNwDppGOHHS1pSRllnOQk7rjjiCN55JFLrqVnMIMMbLChFa0op5wTnKAVrXDCiXzyySabtrQF4BSnMGHCHXcqqCCNNFrSEmecKaCALLLwxptmNOM0pzFjxgMPAPId83ki9gkVYiJNmIowkXpi08wGBxywaWZjdJRGzc3fjRFrR9B/WH/WLl9L7269eW3Za/z783+z6/tdAAy/YzgR3SKYM3cOSceT6Du6L5+99RmD+g7i3Y/e5Z0l73Do50MAjL17LIHtAnns2cc4lXmK8Mhwli9czojBI/jwiw9Z+M+FJP2WBMCEByfg0tyFuQvmUlBYQPCAYP71/L+46bqb+OKbL1jw5AISfk3Awd6Bex69h5KSEj5840Nit8dyzQPXcOveW/mL/1+MeutExGAms9lsNjqEnC82NpZp06axdOlSwsJ015c1So1OZUnEEqbvnK6esHpWWFjIgQMHCA0NpUWLFqSmppKenk63bt0AOHDgAM2bN8ff35/i4mL2799PcHAwrq6unDhxgtTUVHr06AGc+e45ODjQvn17SktL2bt3Lx06dKBly5akp6eTlJREr169AIiLi8PGxoYOHTpQXl7O7t27ad++Pe7u7pw+fZqjR4/So0cPmjVrxpEjR6ioqCA4OJh9P+7jr5F/5bWo1+g6tKtRb5uIGEw9YSL1pLy8nBJKKC8vNzpKo+fk5GQpjAB8fHzw8flf4dupUyfLfzs4OFRq26ZNG9q0aWN5/Oc/euzs7Cq19fLywsvrf0s6hYT8b6kkGxubSm3d3d1xd//fVB8dOvzvpgiPVh4MZCAerTxq9kJFpFHRjPki9WT/of28wAvsP7Tf6CjSwGTlZBFDDFk5WUZHEREDqQgTqSft2rZjHONo17ad0VGkgTmWcozP+ZxjKceMjiIiBtLlyAYmKiqKqKgo8vKsZwFlqVort1aEE04rt1ZGR5EGpnNIZ+Ywh84hnY2OIiIGUhHWwERGRhIZGWkZmC/WKzM7k93sJjM787yJUaVps7W1xRlnbG31I1ikKdPlSJF6knQ8iS/5kqTjSUZHkQbmWMoxvuALXY4UaeJUhInUk65hXZnHPLqGaQoCqay0rJQccigtKzU6iogYSEWYSD1p1qwZttjSrJm+ZlJZUEAQd3EXQQFBRkcREQPpt4NIPUlMTuQzPiMxOdHoKCIi0gCpCBOpJxXmCsopp8JcYXQUaWD2xe7jeZ5nX+w+o6OIiIFUhInUk8B2gUxkIoHtAo2OIg2Mt5c3QxmKt5e30VFExEAqwkRErjBPd0/60Q9Pd0+jo4iIgVSEidSTPQf28AzPsOfAHqOjSAOTm5fLYQ6Tm5drdBQRMZCKMJF64uvty2hG4+vta3QUaWASkhL4iI9ISEowOoqIGEhFmEg98WjlQQQReLTyMDqKNDAdgzvyCI/QMbij0VFExEAqwkTqSVZOFjHEkJWTZXQUaWDs7exxww17O3ujo4iIgVSEidSTYynH+JzPtTSNnCc5NZl1rCM5NdnoKCJiIBVhIvWkc0hn5jCHziGdjY4iDUxhUSGppFJYVGh0FBExkIowkXpia2uLM87Y2toaHUUamJDAEKYznZDAEKOjiIiBVISJ1JNjKcf4gi90OVJERKqkIkyknpSWlZJDDqVlpUZHkQYmJi6GBSwgJi7G6CgiYiAVYSL1JCggiLu4i6CAIKOjSAPj2cqT/vTHs5VmzBdpylSEiYhcYa09WzOQgbT2bG10FBExkIowkXqyL3Yfz/M8+2L3GR1FGpj8gnwSSSS/IN/oKCJiIBVhIvXE28uboQzF28vb6CjSwMQnxrOc5cQnxhsdRUQMpCJMpJ54unvSj354umvcj1QW2iGUmcwktEOo0VFExEAqwkTqSW5eLoc5TG5ertFRpIFxdHDEE08cHRyNjiIiBtIskiL1JCEpgY/4iElJkwhFPR7yP8dPHGcta7nqv1cBcPDwQVq6tcTby5uCwgIOHz1McPtgnJ2cSUtPIys7y7LY96Ejh2jRvAVt27SlqLiIQ0cOERQQRHPn5pzMOElGZoZllYa4hDicHJ3w8/GjpLSEg4cPEtguEJcWLmScziAtPY2uYV2BM5dI7Wzt8Pf1p6ysjJi4GPx9/Wnp2pJTmadISUuh38B+uPm7GfOmiTRCKsIamKioKKKiosjLyzM6ilymjsEdeYRHLL88Rc5yaOlAsimZH2b9wFa2sohFdKMbQxnKcY6zhCVMZzptacuP/Mge9vAIjwDwL/5FEEFcx3VkkMGbvMld3EUAAWxhC7/yK3OYA8ASluCDD6MZTTbZLGIRk5hEMMFsYxs/8iNP8AQAy1mOK66MYxwFFLCABYxnPJ3pzE52so51PO/8PA8eeFCFmEgdMZnNZrPRIeR8sbGxTJs2jaVLlxIWFmZ0HKmF1OhUlkQsYfrO6fj08jE6jjQwh6MP05zmgHX0hO3/dT8Hnzyoz7NIHVJPmEg9SU5NZh3rGJU6Ch/0S0sqC+4VbPnvc4uaoKv/N8HvuZ+dc9sG9g+sdtuAvgGV2oYTfsG27fq0q9Q2Jy+HJ3mSYUnDVISJ1BENzBepJ4VFhaSSSmFRodFRRC5bM1MzbLChmUm/NkTqir5NIvUkJDCE6UwnJDDE6Cgily3AL4DbuZ0Av4BLNxaRalERJiIil1RRUUEZZVRUVBgdRaTRUBEmUk9i4mJYwAJi4mKMjiJy2fbF7mM+87UMl0gdUhEmUk88W3nSn/54ttKM+WL92rVtx03cRLu27S7dWESqRUWYSD1p7dmagQyktWdro6OIXLZWbq3oTndaubUyOopIo6EiTKSe5Bfkk0gi+QX5RkcRuWyZ2ZnsZS+Z2ZlGRxFpNFSEidST+MR4lrOc+MR4o6OIXLak40l8wRckHU8yOopIo6EiTKSehHYIZSYzCe2gdSPF+nUJ7cLjPE6X0C5GRxFpNFSEidQTRwdHPPHE0cHR6Cgil83GxgZ77LGxsTE6ikijoSJMpJ4cP3GcDWzg+InjRkcRuWyJyYl8zuckJicaHUWk0VARJlJP8vLziCeevPw8o6OIXLbyinKKKaa8otzoKCKNhoowkXoS2iGUB3lQY8KkUejg34HJTKaDfwejo4g0GirCRERERAygIkyknhw8fJBFLOLg4YNGRxG5bHsO7OFZnmXPgT1GRxFpNFSEidSTlm4t6UY3Wrq1NDqKyGXz9fbleq7H19vX6CgijYaKMJF64u3lzVCG4u3lbXQUkcvm0cqD3vTGo5WH0VFEGg0VYSL1pKCwgOMcp6CwwOgoIpctOzebgxwkOzfb6CgijYaKMJF6cvjoYZawhMNHDxsdReSyJSYn8hmfaZ4wkTqkIkykngS3D2Y60wluH2x0FJHL1im4E3/jb3QK7mR0FJFGw9boAE3F119/zUcffcTp06fx8vLin//8J76+GuBaE/t+3Uezoma0cmtFZnYmSceT6BrWlWbNmpGYnEiFuYLAdoHAmTu5fL198WjlQVZOFsdSjtE5pDO2trYcSzlGaVkpQQFBZ44buw9vL2883T3JzcslISmBjsEdsbezJzk1mcKiQkICQwCIiYvBs5UnrT1bk1+QT3xiPKEdQnF0cOT4iePk5edZ5gXbtWUXbrjh7ORszBsmUofs7OxoTnPs7OyMjiLSaKgIuwJ++eUX1qxZw4svvkhAQAApKSm4uroaHcuq7Pt1H+FXhXMd19GPfuxmN1/yJfOYhy22fMZnlFPORCYC8AzPMJrRRBBBDDF8zufMYQ7OOPMFX5BDDndxFwDP8zxDGUo/+nGYw3zERzzCI7jhxjrWkUoq05kOwAIW0J/+DGQgiSSynOXMZCaeeLKBDcQTz4M8CMDrvE532+7YuuprJtYv6XgSX/IlI4+PxKeXj9FxRBoF/Xa4AlauXMnMmTNp3749AH5+fsYGskItbVsyi1nc9PZNhPYJJTM7k/uO32fpCRuRPKJST1i/A/0q9YTdnXK3pSfsupTrKvWEXRV7VaWesElJkyw9YaNSR1XqCRsQN6BST9htibdZesJuOHFDpZ6wQYcH4dXOC69gL2PeNJE6VFxSzGlOU1xSbHQUkUajQRdhe/bs4cMPP2T//v2UlJTg5eXFddddx5QpU+rtnAUFBaxcuZK4uDji4uLIzs5m6tSp3H333VW2XbZsGRs3biQ3Nxd/f38mTpzI0KFDLW3Ky8uJi4sjPj6eF154ARsbG0aOHMnUqVMxmUz19joaGxsbG1rRitA+ofj08sEHHzrT2fL8uX+Z//mxDz50olO124YSWunxhdoCBA8IrnZbEWsW3D6Ye7hHYxxF6lCDLcJ++OEHnn/+ea655hqeeOIJnJycOH78OBkZGfV63uzsbNatW0dQUBADBw5k/fr1F2w7b948Dh48yH333Ue7du2Iiori2WefpaKigmHDhgGQmZlJeXk5v//+OytWrCAvL4/Zs2fj7e3NyJEj6/W1NCaJyYl8zueMSB6h4kZERBqFBlmEpaen88orrzBmzBj+7//+z7K9V69eF90vPz+fvXv30q9fvyqf37p1Kz179sTJyemCx/D29ubrr7/GZDKRlZV1wSLs119/ZceOHTz11FNERkZa8qWlpfH2229z7bXXYmNjg4ODAwATJ07ExcUFFxcXxowZw2+//aYirAbKK8opppjyinKjo4g0Sfti9/ECL3BV7FX6Q0ikjjTIKSrWr19PYWEhd9xxR433mzt3Lt9+++15z3311Vf8/e9/57vvvrvoMUwmU7UuE27ZsgUnJyeGDBlSafuoUaPIyMggJiYGABcXFzw9Pav/IqRKHfw7MJnJdPDvYHQUkSapjWcbhjCENp5tjI4i0mg0yJ6w3bt34+rqyrFjx3j88cdJSEjAxcWFQYMGcf/999O8efMq97vttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJk7nxxhvrJGNCQgIBAQHY2lZ+C4OCgizPh4eHAzBy5Eg+/fRTQkNDycvLY/369dx5551VHjcqKoqoqCjy8vLqJKeISF3w8vDiKq7Cy0M3mojUlQZZhGVkZFBUVMRTTz3FpEmT6NKlCwcPHuT9998nISGBN99884K9VTNnzsTBwYFXX32VkpISSkpKePfdd7nnnnvqdEB/dnY2bdu2PW+7i4sLADk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+32HNjDszxLvwP9dClExAC5ebnEE09uXu55N6GISO00yCKsoqKCkpISpk6dyqRJkwDo2bMntra2LF68mJ07d9K7d+8L7j9t2jTs7e1ZvHgxAPfffz8TJkyo85zVvbvRzs6OOXPmMGfOnDrP0FT4evtyPdfj660JbkWMkJCUwId8yMSkiZXuIBaR2muQY8Lc3NwA6NOnT6XtZwfcHzp06JLHyMvLsxRJ9XFpz83Njezs8xeyzc3NBdBkrHXMo5UHvemNRysPo6OINElhQWHMYhZhQWFGRxFpNBpkEdahQ9WDr81mM3DxHiiz2cyiRYtYvXo1jz32GLNnz+ajjz7iX//6V51nTExMpKysrNL2I0eOABAYGFin52vqsnOzOchBsnPPL3xFpP452DvQilY42DsYHUWk0WiQRdjgwYMB2L59e6Xt27ZtA6BLly5V7ldRUcGCBQtYu3YtTz75JKNGjWLs2LHMnTuXNWvWsHDhQkshd7kGDhxIYWEhmzdvrrR9w4YNeHp60rlz5wvsKbWRmJzIZ3xGYnKi0VFEmqTk1GS+5muSU5ONjiLSaDTIMWF9+vThqquuYuXKlVRUVFgG5q9YsYKrrrqKbt26VbnfqlWr+P7773nuuecYOHCgZfvIkSOxt7dn/vz5BAQEMG7cuIuef9u2bRQVFVFQUABAYmIimzZtAs5cEnV0dKRfv3707t2bhQsXUlBQgK+vLz/++CPbt29n3rx52NjY1M2bIQB0Cu7E3/gbnYI7XbqxiNS5wqJCkkiisKjQ6CgijYbJXFddQ3WsuLiY5cuXExUVxalTp/D09GTYsGFMnToVe3v7C+4TFxdH165dq3x+7969dOzYETs7u4uee/z48aSlpVX53KpVq/DxOXNnUEFBAUuXLq20bNGkSZMqLVtUW2fvjly6dClhYRqDkRqdypKIJUzfOV13R4oYQN9BkbrXIHvCABwcHJgxYwYzZsyo0T4XKsAAy7xdl/L5559Xq52zszOzZs1i1qxZ1WovtZd0PIkv+ZKRx0fqF4CIiDQKDXJMmMi5ikuKOc1pikuKjY4i0iTFxMXwCq8QExdjdBSRRkNFmFiF4PbB3MM9BLcPNjqKSJPk0dKDv/AXPFpqmhiRuqIiTERELqmNVxsGM5g2Xlo7UqSuqAgTq7Avdh8v8AL7YvcZHUWkScovyOcgBzmVeQqA5ORk9u/fb3l+//79pKSkAFBYWEh0dDT5+fkApKamsnfvXkvbmJgYkpKSACgqKiI6Otoy0fWJEyfYvXu3pW1sbCyJiWempiktLSU6OtoyUXZ6ejp//PGHpW1cXBwJCQkAlJeXEx0dTWZmZt2+ESJ1SEWYWIU2nm0YwhDaeOqvcBEjZGZn8hmfsf2n7aRGp/L8488z5voxpEankhqdyg3X3cBL814iNTqVrWu3EhERwc///pnU6FReeeYVRkSOsLS9ZewtPPO3Z0iNTiX6u2giIiL4/tPv2fXdLm4deyuDBgyytJ1460T+PuvvpEansv+n/URERLB2xVpSo1NZ+upS+vXtZ2l796S7eeT+R0iNTiX+l/gzbT9ba/RbJ3JBDXaKiqZOU1RUptvjRYyVfSyb58Oex77IHjvsyCabYoppTWsATnISRxxxxZVSSkknHU88sceeXHIpoIA2tLG0dcABN9wsbT3woIQStrKVYIIJIgiADDKwxZaWtKScck5wAnfcccSRfPLJIceyoPgpTtGMZrSiFRVUkEYarZ1a8+jBR3HzdzPmjRO5iAY7RYXIn+Xm5RJPPLl5uZYfuCJy5bj5u/FE7BMUZBTU63lmM7vOjhX3WxwL719I8uFkFWHSIKkIE6uQkJTAh3zIxKSJhBJqdByRJsnN382qipk9B/bwFV9xf+r9dKHq5e5EjKQxYWIVwoLCmMUswoJ0aVZEqie8YzhP8iThHas3UbfIlaYiTKyCg70DrWiFg72D0VFExEqYTCZssMFkMhkdRaRKKsLEKiSnJvM1X5Ocmmx0FBGxEkeTjvIJn3A06ajRUUSqpCJMrEJhUSFJJFFYVGh0FBERkTqhIkysQkhgCDOYQUhgiNFRRMRKtG/Xnju4g/bt2hsdRaRKKsJERKRRMpvNlFOOpsOUhkpFmFiFmLgYXuEVYuJijI4iIlZi78G9/IN/sPfg3ks3FjGAijCxCh4tPfgLf8GjpYfRUUTESvj5+DGWsfj5+BkdRaRKKsLEKrTxasNgBtPGS2tHikj1uLd0pyc9cW/pbnQUkSqpCBOrkF+QTxJJ5BfkGx1FRKxEVk4W+9lPVk6W0VFEqqQiTKxCfGI87/Ee8YnxRkcREStxLOUYq1nNsZRjRkcRqZKKMLEKIYEhPMADmqJCRKqtS2gX5jKXLqFaN1IaJhVhYhWcHJ1oTWucHJ2MjiIiVsLGxgZHHLGxsTE6ikiVVISJVTh+4jjf8z3HTxw3OoqIWIljKcdYwxpdjpQGS0WYWIXcvFxiiSU3L9foKCJiJcrKy8gnn7LyMqOjiFRJRZhYhbCgMB7iIcKCwoyOIiJWooN/B6YwhQ7+HYyOIlIlFWEiIiIiBrA1OoBUFhUVRVRUFHl5eUZHaVBi42N5ndcZHD8Yn14+RscREStwdtmi/gf76+eGNEgqwhqYyMhIIiMjiY2NZdq0aUbHaTBcXVzpQhdcXVyNjiIiVqJtm7aMYARt27Q1OopIlXQ5UqyCT2sfIonEp7X+mhWR6vFo5UEf+uDRSmvOSsOkIkysQmFRIWmkUVhUaHQUEbESObk5HOIQObk5RkcRqZKKMLEKcQlxvMM7xCXEGR1FRKzE0eSjfMInHE0+anQUkSqpCBOrENw+mGlMI7h9sNFRRMRKdAruxGxm0ym4k9FRRKqkIkysgrOTM7744uzkbHQUEbESdnZ2uOCCnZ2d0VFEqqQiTKzCifQTbGQjJ9JPGB1FRKxEcmoyX/EVyanJRkcRqZKKMLEKp7NOE000p7NOGx1FRKxEUXER6aRTVFxkdBSRKqkIE6vQKeT/j+0I0dgOEame4PbB3Mu9GksqDZaKMBEREREDqAgTq3DoyCHe4i0OHTlkdBQRsRL7D+3nJV5i/6H9RkcRqZKKMLEKzZ2b0572NHdubnQUEbESrT1aM5CBtPZobXQUkSqpCBOr4OvtyyhG4evta3QUEbESXh5eXM3VeHl4GR1FpEoqwsQqFBUXcYpTustJRKotLz+PBBLIy88zOopIlVSEiVU4dOQQi1msMWEiUm1Hjh1hJSs5cuyI0VFEqqQiTKxCB/8OTGEKHfw7GB1FRKxEaIdQHuIhQjuEGh1FpEoqwsQqtGjegkACadG8hdFRRMRKODo44oEHjg6ORkcRqZKKMLEK6afS+YVfSD+VbnQUEbESKWkpfMM3pKSlGB1FpEoqwsQqnDx1ki1s4eSpk0ZHERErkV+Qz1GOkl+Qb3QUkSqpCBOr0CW0C3OZS5fQLkZHERErEdohlAd4QGPCpMFSESYiIiJigFoXYQkJCWzYsIH8/P918xYXF/Pqq69y8803M2HCBNatW1cnIUUOHz3MMpZx+Ohho6OIiJU4EHeAV3mVA3EHjI4iUqVaF2Effvgh7777Ls7OzpZtS5YsYe3atRQUFHDy5EleffVVdu7cWSdBpWlzdHDECy/d5SQi1ebe0p1e9MK9pbvRUUSqVOsi7MCBA/Ts2ROTyQRAWVkZ33zzDZ06deKrr75i1apVtGzZks8//7zOwkrT5efjx1jG4ufjZ3QUEbESbbzacA3X0MarjdFRRKpU6yLs9OnTtGnzvw92TEwMBQUFjB07FgcHBzw9Pbn66qs5fFiXj+TylZaWkksupaWlRkcREStRUFhACikUFBYYHUWkSrUuwmxsbCr9QtyzZw8mk4mePXtatrm5uZGdnX15CUWAA4f//9iOwxrbISLVc/joYZayVGNJpcGqdRHm7e3NH3/8YXm8adMmfHx88Pb2tmxLT0/Hzc3t8hKKAO392nMHd9Der73RUUTESoQEhjCDGYQEhhgdRaRKtrXdcfjw4bz99tvMmDEDW1tbDh8+zKRJkyq1OXToEH5+GsMjl8/VxZVQQnF1cTU6iohYCSdHJ7zxxsnRyegoIlWqdU/YzTffzJAhQzh48CB79+7lL3/5C5MnT7Y8f+DAAY4ePUqvXr3qJKg0bacyT/Ebv3Eq85TRUUTESqSeTCWKKFJPphodRaRKte4Js7e359lnnyU/Px+TyVRpqgoAHx8f3nvvvUqXJ0Vq6/iJ43zHd8w6MYuudDU6johYgZzcHPazn5zcHKOjiFSp1j1hu3bt4sSJEzRv3vy8AgygZcuWuLq66u5IqRPhHcN5kicJ7xhudBQRsRJhQWHMYhZhQWFGRxGpUq2LsL/+9a98++23F23zww8/8Ne//rW2pxARERFptGpdhJnN5mq1OTuZq8jlOHLsCCtZyZFjR4yOIiJWIjY+lsUsJjY+1ugoIlWq1wW8k5OTad68eX2eQpoIWxtbmtMcW5taD2MUkSbGpYULYYTh0sLF6CgiVarRb7SXXnqp0uMtW7aQlpZ2Xrvy8nLS09PZvXs3ffv2vbyEIoC/rz+3cAv+vv5GRxERK9G2TVuGM5y2bdoaHUWkSjUqwv48BsxkMnH48OELDrw3mUx07NiRmTNnXl7CRuLrr7/mo48+4vTp03h5efHPf/4TX19fo2NZjfLycoooory83OgoImIlCosKOclJCosKjY4iUqUaFWGrVq0Czoz1uv3227n11lu55ZZbzmvXrFkzXFxccHLSBHkAv/zyC2vWrOHFF18kICCAlJQUXF016WhN7D+0n5d4iSGHhuD3F00ALCKXFpcQx1u8xZiEMXS4qoPRcUTOU6Mi7M9zfs2dO5fQ0FDNA1YNK1euZObMmbRv3x5AqwjUgr+vP7dyqy5Hiki1BQUEcQ/3EBQQZHQUkSrVepTzyJEj6zLHRa1fv54FCxbg5OTEd999V6/nKigoYOXKlcTFxREXF0d2djZTp07l7rvvrrLtsmXL2LhxI7m5ufj7+zNx4kSGDh1qaVNeXk5cXBzx8fG88MIL2NjYMHLkSKZOnao7R2ugpWtLutCFlq4tjY4iIlaiuXNz2tGO5s66QUwapsu+1SwmJoaDBw+Sl5dHRUXFec+bTCamTJlS6+Onp6fz1ltv4enpSX5+/uVErZbs7GzWrVtHUFAQAwcOZP369RdsO2/ePA4ePMh9991Hu3btiIqK4tlnn6WiooJhw4YBkJmZSXl5Ob///jsrVqwgLy+P2bNn4+3tfUULWWt3Ous0f/AHp7NO44OP0XFExAqcSD/BZjYzNn2sfm5Ig1TrIiwnJ4fHH3+cffv2XXTOsMstwl599VW6deuGq6srmzdvvmjb/Px89u7dS79+/ap8fuvWrfTs2fOiY9W8vb35+uuvMZlMZGVlXbAI+/XXX9mxYwdPPfUUkZGRAPTq1Yu0tDTefvttrr32WmxsbHBwcABg4sSJuLi44OLiwpgxY/jtt99UhNVAcmoyX/EV96feTxe6GB1HRKzAqaxT/M7vnMrSmrPSMNW6CHvzzTfZu3cvPXr04LrrrqN169bY2NjUZTa+//57du3axQcffMCyZcsu2X79+vW8/fbbPPbYY+cVOF999RULFy7kkUce4cYbb7zgMap7iXDLli04OTkxZMiQSttHjRrFc889R0xMDOHh4bi4uODp6VmtY8qFadkiEampziGdeZRH6RzS2egoIlWqdRH266+/0qlTJ1577bV6GduUmZnJ4sWLue+++2jdunW19rnttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJky9agNVEQkICAQEB2NpWfguDgoIsz4eHnykYRo4cyaeffkpoaCh5eXmsX7+eO++8s8rjRkVFERUVRV5eXp3kbCxMJhM22GgcnYiINBq1LsJKSkro3r17vf1SXLhwIe3atatx0TRz5kwcHBx49dVXKSkpoaSkhHfffZd77rnnsi6Lnis7O5u2bc+fANDF5czMzDk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+2OJh3lEz5heNJwfHppbIeIXFpcQhzv8A7XJFyjnxvSINW6CAsJCalytvy6sGnTJrZu3cp7771XqyJv2rRp2Nvbs3jxYgDuv/9+JkyYUNcxq53Nzs6OOXPmMGfOnDrPICIiVXNydKId7XBy1JyV0jDVeu3Iu+66i19++YX9+/fXZR4KCgp47bXXuPnmm/Hw8CA3N5fc3FzKysoAyM3NpbDw0rMf5+XlWYqk+ri05+bmRnZ29nnbc3NzATQZax1r3649d3AH7du1NzqKiFgJPx8/rud6/Hw0N6M0TLXuCUtPT6d///48/PDDDBs2jJCQkAsu1n3ddddV+7jZ2dmcPn2aVatWWWbo/7Prr7+eAQMG8MILL1S5v9ls5rXXXuOrr77iscceo7S0lIULF1JSUsKDDz5Y7RyX0qFDB6KioigrK6s0LuzIkSMABAYG1tm55My/aznlF70TV0Tkz4pLikkhhUO/HQIg/VQ6JzJO0DWsKwCHjx7Gwd6Bdm3bUVpayoHDBwjwC8DNxY1TmadISUuhW6duABw5dgSbZjYE+AVQXl7O/kP7ade2Ha3cWpGZnUnS8SS6hnWlWbNmJCYnUmGuILDdmd8Dew7swdfbF49WHmTlZHEs5RidQzpja2vLsZRjlJaVWiaU3Re7j8CwQIJ7BRvwjsmVVusi7MUXX8RkMmE2m/n222/59ttvz7s8ZzabMZlMNSrC3N3def3118/b/vHHH7Nr1y5efvll3Nzcqty3oqKCl19+mQ0bNvDkk09aJk21t7dnwYIFFBcX88gjj9TJOLaBAweybt06Nm/eXGly1g0bNuDp6Unnzrobpy7tPbiXf/APrj54NW0jtBiviFxanjmPpSzl9P2nCSecrWxlE5t4nMcBeI/3cMedm7iJfPJ5mZe5ndvpSEd2sIOv+ZqneRqAD/kQBxwYz3hKKOEFXmAc4wgnnP3sJ510BjAAW2z5jM8op5yJTATgGZ5hNKOJIIIYYvicz5nDHJxx5gu+IIcc7uIuAJ7neYbbDefjwx/j5l/17zppPGpdhM2dO7cuc1g4ODjQs2fP87Z/++232NjYVPncWatWreL777/nueeeY+DAgZbtI0eOxN7envnz5xMQEMC4ceMummHbtm0UFRVRUFAAQGJiIps2bQKgX79+ODo60q9fP3r37s3ChQspKCjA19eXH3/8ke3btzNv3rw6n66jqfPz8WMsY3VZQUSqrWv/ruzduhf7UntcWrhw06mbKvWEXXv02ko9YUMPD7X0hI3LHMfMtJmWnrDIY5GVesIGHRpk6Qk7fuQ4f3zyB4OnD6ZF6xaMSB5RqSes34F+lXrC7k6529ITdl3KdZV6wjpt6MTvT/xOQUaBirAmwGS2kus7L7zwAps3b77oskXFxcXExcXRtWvXKp/fu3cvHTt2xM7O7qLnGj9+/AVvOli1ahU+PmfusikoKGDp0qWVli2aNGlSpZ6x2jp7d+TSpUsJCwu77ONZu9ToVJZELGH6zum6y0lEGq1DPx/iH4P/wZObnyR0UKjRcaSeWU0R1tSoCKvswKYDPH3N0zy78Vk6DelkdBwRkXrx3cffcd2k69jw0QZGTBxhdBypZ7W+HHnixIlqt23Tpk1tTyMCwLGUY6xmNfek3EMnVISJSOPUMbgjj/AIHYM7Gh1FroBaF2Hjx4+v1gB3k8nExo0ba3saEQC6hHZhLnPpEqp1I0Wk8bK3s8cNN+zt7I2OIldArYuwESNGVFmE5eXlER8fT2pqKj169MDb2/uyAooA2NjY4IijbngQkUYtOTWZdaxjVOoofND418au1kXY448/fsHnzGYzn332GZ9++imPPfZYbU8hYnEs5RhrWMN1KddpYL6INFqFRYWkkkph0aUnJRfrV+sZ8y/GZDIxYcIEAgMDeeutt+rjFNLElJWXkU8+ZeVlRkcREak3IYEhTGc6IYEhRkeRK6BeirCzwsLCiI6Ors9TSBPRwb8DU5hCB/8ORkcRERGpE/VahKWkpFBeXl6fpxAREWk0YuJiWMACYuJijI4iV0CdF2EVFRWcOHGClStX8ssvv9Cli+5mk8t3dtmivQf3Gh1FRKTeeLbypD/98WzlaXQUuQJqPTB/8ODBF52iwmw206JFCx544IHankLEom2btoxgBG3baN1IEWm8Wnu2ZiADae3Z2ugocgXUugjr3r17lUWYyWTCxcWFsLAwRo0ahbu7+2UFFAHwaOVBH/rg0crD6CgiIvUmvyCfRBLJL8g3OopcAbUuwt544426zCFyUTm5ORziEDm5OZo7R0QarfjEeJaznNsSbyN4QLDRcaSe1evAfJG6cjT5KJ/wCUeTjxodRUSk3oR2CGUmMwntoMW7m4Ja94T92d69ezl8+DD5+fk4OzsTEhJCeHh4XRxaBIBOwZ2YzWw6BWvdSBFpvBwdHPHEE0cHR6OjyBVwWUVYTEwML7zwAsnJycCZwfhnx4n5+fkxd+5cunbtevkppcmzs7PDBRfs7OyMjiIiUm+OnzjOBjZww4kbNPSiCah1EXb06FEeeeQRioqK6NOnDz169MDd3Z3MzEz++OMPfvvtNx599FHeeecd2rdvX4eRpSlKTk3mK77Semoi0qjl5ecRTzx5+XlGR5EroNZF2IoVKygrK+OVV17hL3/5S6Xn7rjjDnbs2MFjjz3GihUreOaZZy43pzRxRcVFpJNOUXGR0VFEROpNaIdQHuRBjQlrImo9MP+PP/5g8ODB5xVgZ/Xu3ZvBgwfzxx9/1DqcyFnB7YO5l3sJbq+7hUREpHGodRGWn5+Pj8/FLwv5+PiQn6+5TkRERKrj4OGDLGIRBw8fNDqKXAG1LsI8PDzYv3//RdvExMTg4aHJNeXy7T+0n5d4if2HLv6ZExGxZi3dWtKNbrR0a2l0FLkCal2EDRgwgF27drFs2TKKi4srPVdcXMz777/PH3/8wYABAy47pEhrj/+/lIeHlvIQkcbL28uboQzF28vb6ChyBdR6YP6UKVPYunUrH330EWvXrqVTp060atWKzMxMDh48SFZWFm3btmXKlCl1mVeaKC8PL67marw8vIyOIiJSbwoKCzjOcQoKC4yOIldArXvCXF1deffdd7nuuusoKipi27ZtfPvtt2zbto2CggJGjhzJ22+/jaura13mlSYqLz+PBBJ027aINGqHjx5mCUs4fPSw0VHkCrisyVpdXV2ZO3cujz76KImJiRQUFODs7ExAQAC2tnUyGb8IAEeOHWElK5lwbAIhhBgdR0SkXgS3D2Y603UneBNR40rpgw8+oKioiLvvvttSaNna2hIUFGRpU1paytKlS3FycmLSpEl1l1aarNAOoTzEQ5o7R0QaNWcnZ9rSFmcnZ6OjyBVQo8uRO3bs4P3338fV1fWiPV12dna4urqybNkydu7cedkhRRwdHPHAQ+upiUijlpaexo/8SFp6mtFR5AqoURH23Xff4eLiws0333zJtjfddBMuLi58++23tQ4nclZKWgrf8A0paSlGRxERqTdZ2VnsYQ9Z2VlGR5EroEZF2L59+4iIiMDe3v6Sbe3t7enduzf79u2rdTiRs/IL8jnKUfILNPmviDReHYM78giP0DG4o9FR5AqoURGWkZFB27Ztq93ex8eHU6dO1TiUyLlCO4TyAA9oTJiIiDQaNSrCmjVrRllZWbXbl5WV0axZrWfBEBERaVIOHTnEv/gXh44cMjqKXAE1qpA8PDxISEiodvuEhAQ8PT1rHErkXAfiDvAqr3Ig7oDRUURE6k2L5i0IIogWzVsYHUWugBoVYd26dSM6OprU1NRLtk1NTSU6Opru3bvXOpzIWe4t3elFL9xbuhsdRUSk3rRt05bruI62bao/9EesV42KsJtuuomysjKeeuopsrKyLtguOzubp59+mvLycsaOHXu5GUVo49WGa7iGNl5tjI4iIlJvioqLyCCDouIio6PIFVCjyVrDwsK49dZbWb16NXfeeSdjx46lZ8+eeHmdWc8vIyODnTt3sm7dOrKyshg/fjxhYWH1ElyaloLCAlJI0XpqItKoHTpyiDd5kxuO3EBg/0Cj40g9q/GM+Q8++CD29vZ8+umnfPjhh3z44YeVnjebzTRr1oxJkyZx77331llQadoOHz3MUpYy7ug4gq4OuvQOIiJWKCggiLu4i6AA/ZxrCmpchJlMJqZPn87111/PN998w759+zh9+jQA7u7uhIeHM3LkSHx9fes8rDRdIYEhzGAGIYFaN1JEGq/mzs0JIIDmzs2NjiJXQK1X2fb19WXatGl1mUXkgpwcnfDGGydHJ6OjiIjUm5MZJ9nCFm7MuBEffIyOI/VMk3iJVUg9mUoUUaSevPSduSIi1iojM4Nf+ZWMzAyjo8gVoCJMrEJObg772U9Obo7RUURE6k3nkM7MYQ6dQzobHUWuABVhYhXCgsKYxSzCgnS3rYiINA4qwq6Qr7/+mgkTJjBixAgmTZpESkqK0ZFERKSBiUuIYwlLiEuIMzqKXAG1Hpgv1ffLL7+wZs0aXnzxRQICAkhJScHV1dXoWFYlNj6WxSxmcPxgfHppsKqINE5Ojk744KObkJoIFWFXwMqVK5k5cybt27cHwM/Pz9hAVsilhQthhOHSwsXoKCIi9cbPx4/RjMbPR78nmoIGWYTFxcWxdOlSjhw5QlZWFg4ODvj7+3PTTTcxfPjwej13QUEBK1euJC4ujri4OLKzs5k6dSp33313lW2XLVvGxo0byc3Nxd/fn4kTJzJ06FBLm/LycuLi4oiPj+eFF17AxsaGkSNHMnXqVEwmU72+lsakbZu2DGe41lMTkUatpLSEbLIpKS0xOopcAQ2yCMvLy6N169ZERkbi6elJUVERP/zwA/Pnzyc1NZUpU6bU27mzs7NZt24dQUFBDBw4kPXr11+w7bx58zh48CD33Xcf7dq1IyoqimeffZaKigqGDRsGQGZmJuXl5fz++++sWLGCvLw8Zs+ejbe3NyNHjqy319HYFBYVcpKTFBYVGh1FRKTeHDx8kEUsYsThEQT0DTA6jtSzBlmE9ezZk549e1badtVVV5Gamsq6desuWITl5+ezd+9e+vXrV+XzW7dupWfPnjg5Xfhau7e3N19//TUmk4msrKwLFmG//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY0NDg4OAEycOBEXFxdcXFwYM2YMv/32m4qwGohLiOMt3mJMwhg6XNXB6DgiIvUisF0gk5hEYDutG9kUWNXdkW5ubtjY2Fzw+fXr1zN37ly+/fbb85776quv+Pvf/85333130XOYTKZqXSbcsmULTk5ODBkypNL2UaNGkZGRQUxMDAAuLi54enpe8nhycUEBQdzDPVpPTUQaNZcWLgQTrPGvTUSD7Ak7q6KigoqKCvLy8ti4cSO//fYbf/3rXy/Y/rbbbiM9PZ2XXnqJkpISxo4dC8Dq1atZvHgxkydP5sYbb6yTbAkJCQQEBGBrW/ktDAoKsjwfHh4OwMiRI/n0008JDQ0lLy+P9evXc+edd1Z53KioKKKiosjLy6uTnI1Fc+fmtKOd1lMTkUYt43QG29jGzadv1rJFTUCDLsIWLlzI2rVrAbCzs2PWrFmWwupCZs6ciYODA6+++iolJSWUlJTw7rvvcs8999TpWLLs7Gzatj1/kLiLy5m/XnJy/jez+9SpU1m0aBHjxo3D2dmZ0aNHX/AGg8jISCIjI4mNjdXanH9yIv0Em9nM2PSx+sEkIo1WWnoaP/IjaelphBNudBypZw26CJs8eTI33HADmZmZbN26lddee43CwkImTJhw0f2mTZuGvb09ixcvBuD++++/5D61Ud27G+3s7JgzZw5z5syp8wxNxamsU/zO75zKOmV0FBGRetM1rCtP8ARdw7oaHUWugAZdhLVp04Y2bdoA0L9/fwCWLFnCyJEjadmy5UX3zcvLw2QyYTab6+XSnpubG9nZ2edtz83NBdBkrHWsc0hnHuVRracmIiKNhlUNzO/UqRPl5eUcP378gm3MZjOLFi1i9erVPPbYY8yePZuPPvqIf/3rX3WapUOHDiQmJlJWVlZp+5EjRwAIDNSdLSIiUjPxifEsZznxifFGR5ErwKqKsD/++INmzZpVORYLzgzkX7BgAWvXruXJJ59k1KhRjB07lrlz57JmzRoWLlyI2WyukywDBw6ksLCQzZs3V9q+YcMGPD096dxZPTZ1KS4hjnd4R+upiUijZmdrhyuu2NnaGR1FroAGeTny5ZdfxtnZmU6dOuHu7k5WVhabNm3ip59+YsKECRe8FLlq1Sq+//57nnvuOQYOHGjZPnLkSOzt7Zk/fz4BAQGMGzfuoufftm0bRUVFFBQUAJCYmMimTZsA6NevH46OjvTr14/evXuzcOFCCgoK8PX15ccff2T79u3MmzfvolNpSM05OTrRjnZaT01EGjV/X3/GMQ5/X3+jo8gV0CCLsC5duvDNN9+wYcMG8vLycHJyIjg4mHnz5l102aKbb76Z8PBwunY9f0Dj0KFDad26NR07drzk+RcuXEhaWprl8caNG9m4cSNwptDz8Tlzd978+fNZunQp7733nmXZoqeffrrSskVSN/x8/Lie67Wemog0amVlZRRQcN5QF2mcGmQRNmrUKEaNGlXj/RwcHKoswM46O2/XpXz++efVaufs7MysWbOYNWtWtdpL7RWXFJNJJsUlxUZHERGpNzFxMSxgAdfGXUu7Pu2MjiP1zKrGhEnTFRsfy+u8Tmx8rNFRRETqjb+vP+MZr8uRTYSKMLEKge0CmcxkracmIo1aS9eWdKYzLV1bGh1FrgAVYWIVXFq4EESQ1lMTkUbtVOYpdrKTU5mamLopUBEmViH9VDpb2Ur6qXSjo4iI1JuUtBTWsY6UtBSjo8gVoCJMrMKJjBNsYhMnMk4YHUVEpN5069SNZ3gGlxYulsm/KyoqiI6O5vTp0wCcPn2a6OhoysvLgTOThMfF/W8OxejoaNLTz/zBmpWVRXR0NKWlpQAcPXqU2Nj/ja3dtWsXJ06c+bmak5NDdHQ0xcVnboA6duwYBw4csLTds2cPqampwJlVaaKjoyksLAQgOTmZY8eO1f0b0sipCBOr0DWsK4/zuNZTE5EmYe7Tc5l570xSo1M59tsxIiIi+OStT0iNTuWzdz4jIiKCo9uOkhqdyqzps5h25zRSo1NJjU6lT58+LH9tOanRqfxn+X+IiIgg9udYUqNTeeyhx5h822RL24EDBvL2P98mNTqVbz/+loiICHb/sJvU6FSeevQpxt803tJ22LXDeO0fr5EancrGNRuJiIhg+/rtpEan8vhfH2foNUMtBZ1Uj8lcV1PIS52KjY1l2rRpLF26lLCwMKPjGC41OpUlEUuYvnM6Pr18jI4jIlIvso9l869O/yKtIA0TJtxxp4IK0kijJS1xxpkCCsgiC2+8aUYzTnMaM2Y88ADgOMdxw43mNKeQQjLJpA1tsMGGTDIppxxPPAFIJRUXXGhBC4oo4jSnaU1rbLEliyxKKcULLwDSSKM5zXHBhWKKOcUpvPDCDjuyycbJyYk5B+fg5u9m2PtnbRrkPGEi5zp89DDv8R7XHr1WRZiINFpu/m48eOBBCjIKjI5SI+kH0vly0pcUZBSoCKsBFWFiFRzsHXDHHQd7B6OjiIjUKzd/N6srZM7O5Tg4frD+UK4BjQkTq9CubTtu4ibatdUM0iIiDY2riytd6IKri6vRUayKijCxCqWlpeSTb7nDR0REGg6f1j5EEolPa/WC1YSKMLEKBw4f4GVe5sDhA5duLCIiV1RhUSFppFFYVGh0FKuiIkysQoBfALdzOwF+AUZHERGRc8QlxPEO7xCXEHfpxmKhIkysgpuLGx3piJuLdQ1WFRFpCoLbBzONaQS3DzY6ilVRESZW4VTmKXawQ+upiYg0QM5Ozvjii7OTs9FRrIqKMLEKKWkpfM3XWk9NRKQBOpF+go1s5ES6ZsyvCRVhYhW6derG0zxNt07djI4iIiLnOJ11mmiiOZ112ugoVkVFmIiIiFyWTiGdmM1sOoV0MjqKVVERJlbhyLEjfMiHHDl2xOgoIiIidUJFmFgFm2Y2OOCATTMbo6OIiMg5Dh05xFu8xaEjh4yOYlVUhIlVCPALYDzjNU+YiEgD1Ny5Oe1pT3Pn5kZHsSoqwsQqlJeXU0IJ5eXlRkcREZFz+Hr7MopR+Hr7Gh3FqqgIE6uw/9B+XuAF9h/ab3QUERE5R1FxEac4RVFxkdFRrIqKMLEK7dq2YxzjaNe2ndFRRETkHIeOHGIxizUmrIZUhIlVaOXWinDCaeXWyugoIiJyjg7+HZjCFDr4dzA6ilVRESZWITM7k93sJjM70+goIiJyjhbNWxBIIC2atzA6ilVRESZWIel4El/yJUnHk4yOIiIi50g/lc4v/EL6qXSjo1gVFWFiFbqGdWUe8+ga1tXoKCIico6Tp06yhS2cPHXS6ChWRUWYWIVmzZphiy3NmukjKyLS0HQJ7cJc5tIltIvRUayKfqOJVUhMTuQzPiMxOdHoKCIiInVCRZhYhQpzBeWUU2GuMDqKiIic4/DRwyxjGYePHjY6ilVRESZWIbBdIBOZSGC7QKOjiIjIORwdHPHCC0cHR6OjWBUVYSIiInJZ/Hz8GMtY/Hz8jI5iVVSEiVXYc2APz/AMew7sMTqKiIico7S0lFxyKS0tNTqKVVERJlbB19uX0YzW4rAiIg3QgcMHeJVXOXD4gNFRrIqKMLEKHq08iCACj1YeRkcREZFztPdrzx3cQXu/9kZHsSq2RgcQY2Qfy6Ygo8DoGNUWvyOeGGLIysnCBx+j44iIyJ+4urgSSiiuLq5GR7EqKsKaoOxj2fyr07/IK8jjFKfwwgs77Mgmm2KKaU1rAE5wAieccMWVEkrIIANPPLHHnhxyKKSQNrQB4CQnccABN9wopZR00vHAAwccyCWXfPLxxhuAdNKxw46WtKSMMk5yEnfcccSRPPLIJddSaGWQgQ02FFLI53zOA/kP0IlOxrxxIiJSpVOZp/iN3xiXOU5/KNeALkc2QQUZBZQWlBL6ZChLWMKIL0Ywfed08ifmE9Uhiuk7pzN953TW+ayj/J5ypu+czqCPBrGEJQz6aBDTd06n/J5y1vmss7SN6hBF/sR8pu+czogvRrCEJfRZ1ofpO6dj/6A9n7f83NL2v53/S8bNGUzfOZ0bv7mRJSyh2+JuTN85HddHXfnA8QNL250RO0kamcS87fNI2J3A1SOuNvrtExGRcxw/cZzv+I7jJ44bHcWqmMxms9noEHK+2NhYpk2bxtKlSwkLC6vTY+/+fjezR8zmuf88h2M7Rzp37oyjoyPJycnk5OTQuXNnAPbt24e7uztt27aloKCAgwcP0rFjR5ydnTl+/DinT5+ma9czaznGxMTg6uqKn58fRUVFxMTEEBoaSosWLUhLS+PkyZN069YNgIMHD+Ls7Iy/vz8lJSXs27eP4OBgXF1dOXnyJMePH6dHjx4AHDp0CDs7OwIDNT+YiEhDlRqdypKIJUzfOR2fXuoJqy5djmyCMjIz+JVfKSwq5KpeV1m2+/lVnt/lbIEF4OzsTK9evSyP27ZtS9u2bS2PzxZuAI6OjpXaent74+3tbXncsWNHy3/b29tXatu6dWtat25teRwaGlrj1yciImINdDmyCeoc0pk5zKFzSOdLNxYREbmEI8eOsJKVHDl2xOgoVkVFmIiIiFwWWxtbmtMcWxtdYKsJFWFNUFxCHEtYQlxCnNFRRESkEfD39ecWbsHf19/oKFZFRVgT5OTohA8+ODk6GR1FREQagfLycoooory83OgoVkVFWBPk5+PHaEZroVUREakT+w/t5yVeYv+h/UZHsSoqwpqgktISssmmpLTE6CgiItII+Pv6cyu36nJkDakIa4IOHj7IIhZx8PBBo6OIiEgj0NK1JV3oQkvXlkZHsSoqwpqgwHaBTGISge00AaqIiFy+01mn+YM/OJ112ugoVkVFWBPk0sKFYIJxaeFidBQREWkEklOT+YqvSE5NNjqKVVER1gRlnM5gG9vIOJ1hdBQREWkEwjuG8yRPEt4x3OgoVkVFWBOUlp7Gj/xIWnqa0VFERKQRMJlM2GCDyWQyOopVURHWBHUN68oTPEHXsK6XbiwiInIJR5OO8gmfcDTpqNFRrIqKMBEREREDqAhrguIT41nOcuIT442OIiIijUD7du25gzto36690VGsioqwJsjO1g5XXLGztTM6ioiINAJms5lyyjGbzUZHsSoqwpogf19/xjFOMxuLiEid2HtwL//gH+w9uNfoKFZFRVgTVFZWRgEFlJWVGR1FREQaAT8fP8YyVmsS15CKsCYoJi6GBSwgJi7G6CgiItIIuLd0pyc9cW/pbnQUq6IirAny9/VnPON1OVJEROpEVk4W+9lPVk6W0VGsioqwJqila0s601kLrYqISJ04lnKM1azmWMoxo6NYFRVhV8jXX3/NhAkTGDFiBJMmTSIlJcWwLKcyT7GTnZzKPGVYBhERaTy6hHZhLnPpEtrF6ChWxdboAE3BL7/8wpo1a3jxxRcJCAggJSUFV1dXw/KkpKWwjnU8mPYgXdGs+SIicnlsbGxwxBEbGxujo1gV9YRdAStXrmTmzJm0b98ek8mEn58fLi4uhuXp1qkbz/AM3Tp1MyyDiIg0HsdSjrGGNbocWUMNsids586d/PDDD+zbt4+TJ0/SokULwsLCmDp1KmFhYfV67oKCAlauXElcXBxxcXFkZ2czdepU7r777irbLlu2jI0bN5Kbm4u/vz8TJ05k6NChljbl5eXExcURHx/PCy+8gI2NDSNHjmTq1Kla6FRERBqFsvIy8smnrFxTH9VEg+wJ++qrr0hNTeWWW25hwYIFPPzww2RlZTFjxgx27txZr+fOzs5m3bp1lJaWMnDgwIu2nTdvHhs2bGDq1KksWLCAjh078uyzz/LDDz9Y2mRmZlJeXs7vv//OihUreP311/nhhx/YsGFDvb6Oi0lISuBjPiYhKcGwDCIi0nh08O/AFKbQwb+D0VGsSoPsCXvkkUdo1apVpW19+vThjjvu4KOPPiIiIqLK/fLz89m7dy/9+vWr8vmtW7fSs2dPnJycLnhub29vvv76a0wmE1lZWaxfv77Kdr/++is7duzgqaeeIjIyEoBevXqRlpbG22+/zbXXXouNjQ0ODg4ATJw4ERcXF1xcXBgzZgy//fYbI0eOvOR7UR+amZphgw3NTA2yBhcREWkSGuRv4XMLMABnZ2cCAgI4efLkBfdbv349c+fO5dtvvz3vua+++oq///3vfPfddxc9t8lkqtZlwi1btuDk5MSQIUMqbR81ahQZGRnExJyZCNXFxQVPT89LHu9KCvAL4HZuJ8AvwOgoIiLSCGjZotppkD1hVcnLyyMuLo6ePXtesM1tt91Geno6L730EiUlJYwdOxaA1atXs3jxYiZPnsyNN95YJ3kSEhIICAjA1rbyWxgUFGR5Pjw8HICRI0fy6aefEhoaSl5eHuvXr+fOO++s8rhRUVFERUWRl5dXJzmrUlFRQRllVFRU1Ns5RESk6Wjbpi0jGEHbNm2NjmJVrKYIW7RoEYWFhRcsXs6aOXMmDg4OvPrqq5SUlFBSUsK7777LPffcw5QpU+osT3Z2Nm3bnv9hO3vXY05OjmXb1KlTWbRoEePGjcPZ2ZnRo0czfPjwKo8bGRlJZGQksbGxTJs2rc7y/tm+2H3MZz4DYgfg29u3Xs4hIiJNh0crD/rQB49WHkZHsSpWUYQtW7aMH374gVmzZlXr7shp06Zhb2/P4sWLAbj//vuZMGFCneeq7t2NdnZ2zJkzhzlz5tR5htpo17YdN3ET7dq2MzqKiIg0Ajm5ORziEDm5OfjgY3Qcq9Egx4T92fLly/nggw+YNm0a48aNq/Z+eXl5liKpPi7tubm5kZ2dfd723NxcAEMnY72UVm6t6E53WrmdP/ZORESkpo4mH+UTPuFo8lGjo1iVBt0Ttnz5cpYvX85dd93F5MmTq7WP2Wzmtdde46uvvuKxxx6jtLSUhQsXUlJSwoMPPlhn2Tp06EBUVBRlZWWVxoUdOXIEgMDAwDo7V13LzM5kL3vJzM7UXywiInLZOgV3Yjaz6RTcyegoVqXB9oStXLmS5cuXc+edd3LXXXdVa5+KigoWLFjA2rVrefLJJxk1ahRjx45l7ty5rFmzhoULF2I2m+sk38CBAyksLGTz5s2Vtm/YsAFPT086d+5cJ+epD0nHk/iCL0g6nmR0FBERaQTs7OxwwQU7Ozujo1iVBtkT9tlnn/Hee+/Rt29f+vfvz/79+ys936VL1QuErlq1iu+//57nnnuu0kSrI0eOxN7envnz5xMQEHDJy5rbtm2jqKiIgoICABITE9m0aRMA/fr1w9HRkX79+tG7d28WLlxIQUEBvr6+/Pjjj2zfvp158+Y16PWzuoR24XEe10KrIiJSJ5JTk/mKrxiVOkpXWGqgQRZhW7duBWD79u1s3779vOd//vnnKve7+eabCQ8Pp2vX8xelHjp0KK1bt6Zjx46XPP/ChQtJS0uzPN64cSMbN24EzhR6Pj5nPmDz589n6dKlvPfee5Zli55++ulKyxY1RDY2Nthj36ALRRERsR5FxUWkk05RcZHRUayKyVxX1+ekTp2domLp0qV1vl7mtrXbuGfsPbz31Xv0G1P16gIiIiLVlRqdypKIJUzfOR2fXuoJq64GOyZM6k95RTnFFFNeUW50FBERkSZLRVgT1MG/A5OZrIVWRUSkTuw/tJ+XeIn9h/ZfurFYqAgTERGRy9LaozUDGUhrj9ZGR7EqKsKaoD0H9vAsz7LnwB6jo4iISCPg5eHF1VyNl4eX0VGsioqwJsjX25fruR5fb60bKSIily8vP48EEsjLr/sVahozFWFNkEcrD3rTWwutiohInThy7AgrWcmRY0eMjmJVVIQ1Qdm52RzkINm55699KSIiUlOhHUJ5iIcI7RBqdBSroiKsCUpMTuQzPiMxOdHoKCIi0gg4OjjigQeODo5GR7EqKsKaoE7Bnfgbf9NCqyIiUidS0lL4hm9ISUsxOopVURHWBNnZ2dGc5lpoVURE6kR+QT5HOUp+Qb7RUayKirAmKOl4El/yJUnHk4yOIiIijUBoh1Ae4AGNCashFWFNUHFJMac5TXFJsdFRREREmixbowNI7ZSXl1NaWlqrfQMCAng44GECAgIoKtKK9yLScNnZ2WFjY2N0DLmEA3EHeJVXGRg3UAt414CKMCuUl5dHcnIyZrO5VvuX25Zz9TtXk2ObQ36Crt+LSMNlMpnw8/OjRYsWRkeRi3Bv6U4veuHe0t3oKFZFRZiVKS8vJzk5GWdnZ7y8vDCZTDU+Rl5mHsWlxXi39qZFK/1gE5GGyWw2k56eTnJyMiEhIeoRa8DaeLXhGq6hjVcbo6NYFRVhVqa0tBSz2YyXlxdOTk61OkZF8wpccMG5uTOOjprTRUQaLi8vL44ePUppaamKsAasoLCAFFIoKCwwOopV0cB8K1WbHrCzbG1saUELbG1Ug4tIw3Y5P+vkyjl89DBLWcrho4eNjmJVVIQ1QRUVFRRTTEVFhdFRRESkEQgJDGEGMwgJDDE6ilVREdYEFZcUc4pTdTZFRfv27enYsSM9evSgU6dO3HHHHeTn137A/4oVKzh06NAFn9+2bRvh4eH07NmT7777jlGjRhEfH1+tfRuCZ555hkcffbROj9m+fXv27dtXq3137NjBxIkTAcjKymLBggWVnh8yZAjr16+/7IyN0dGjR/H09Kyz402dOpU333yzzo5nTf92l/MZFuM5OTrhjTdOjrUbJtNUqQhrghwdHGlN6zpd42vNmjXs2rWLmJgYcnJyWLFiRa2PdalCauXKldx555388ccfjBgxgm+++YagoKBq7Svn6927Nx9//DFQdRFWW2VlZXVyHDGW/h2lOlJPphJFFKknU42OYlVUhFm50oJSUqNTa/T/E7tPkHUwixO7T1yybWlBzeYiKy4uJj8/n1atWlm2vfLKK/Tp04devXoxatQokpLOzNS/bt06unXrRo8ePejatStfffUVy5YtY8eOHTz88MP06NGDb775ptLxX3rpJVatWsXrr79Ojx49yMrKsvwFfal9AQ4cOMCIESPo1q0b3bp145133gHg8OHDREZGWvL85z//sexjMpn45z//Sd++fQkMDGT58uUAfPTRR4wePdrSzmw2ExgYyJ49ewBYsGABXbp0ITw8nIkTJ5KdnX1entDQUHbu3Gl5vHz5cm6++WYA0tLSGD9+PH369KFbt2489dRTlnZbtmwhPDycPn36MHPmzAtOV9K/f39+/fVXAP7v//4PPz8/y3P+/v4kJSWxadMmevfuDcCMGTPIysqiR48elm1nzzdw4ECCgoKYMWNGlec62yv03HPPMXDgQBYvXnzB11BRUcHMmTPp2LEj3bt3JyIigqKiIssxHn30Ufr27UuXLl346aefLOf48MMPCQ8Pp1u3blx//fWkpJxZp27FihWMGDGCCRMmEB4eTu/evTly5AgAcXFxXH311XTv3p3w8HDmzZsHnLnJZe7cufTp04cePXpw++23k5WVdcHXdaFMf2YymcjLy7M89vT05OjRoxd8vVXZvXs3Q4cOpWPHjkydOpXi4jM91p988gl9+/alZ8+e532+L/S5/rM1a9bQo0cPS6/xE088QXBwMH379uVvf/ub5d9706ZN9OjRg4cffpj+/fvz5ZdfsmPHDvr370+3bt3o06cPv/zyS6X35qy8vLxKY7gu9N2B6n+GxTrk5Oawn/3k5OYYHcW6mKVBOnjwoHngwIHmgwcPVtpeWFhojomJMRcWFprNZrP5+M7j5md4pt7+f3zn8UtmDQgIMIeFhZm7d+9udnV1NV9zzTXm0tJSs9lsNn/88cfmadOmmcvKysxms9n8wQcfmMeMGWM2m83mbt26mX/55Rez2Ww2l5eXmzMzM81ms9k8ePBg87p16y54vilTppgXL15c6fx79+695L6lpaXmkJAQ86pVqyzb0tPTzWaz2dynTx/zu+++azabzeZDhw6Z3d3dzceOHTObzWYzYH7ttdfMZrPZHBMTY27RooW5tLTUXFBQYPbw8DCnpqaazWaz+aeffjL36tXLbDabzd988425Y8eOltc0bdo08wMPPGA2m83mp59+2jx79myz2Ww2P//88+YHH3zQkmfQoEHmtWvXms1ms3n48OHmzZs3W7KPGDHC/O9//9tcVFRkbtu2rXnjxo1ms9lsXrVqlRmwvAd/Nm/ePPOzzz5rNpvN5p49e5r79OljPnDggPngwYPm0NBQs9lsNm/cuNEcERFhNpvN5oSEBLOHh0elYwwePNg8btw4c1lZmbmgoMDcvn1789atW887V0JCghkwf/zxx5ZtF3oN0dHR5o4dO5rLy8vNZrPZnJWVZS4vL7ccY8WKFWaz2Wz+9ddfzW3atDHn5eWZ9+7da27Tpo05OTnZbDabzfPnzzePGjXKbDabzcuXLze7ubmZjx49ajabzebHHnvMPH36dLPZbDY//PDD5ueff96S6dSpU5b3/h//+Idl+3PPPWd++OGHL/i6qsp07vsFmHNzcy2PPTw8zAkJCRd8veeaMmWKOTw83Jybm2suKyszjx492vzPf/7TbDabzRkZGeaKigpLJh8fH3NJSclFP9dnvw+vvPKKedCgQZbXvnbtWnO3bt3MeXl55vLycvNNN91k+Qxs3LjRbDKZzFu2bDGbzWZzcXGxuV27duYNGzaYzWazecuWLWZvb+8qX39ubq75z79WLvTdqcln+NyfedIwnf1dVJ3fGfI/uj3Oynl29GT6zuk12ic/J5+U5BR8/Xxp7tr8ksevjjVr1tC1a1fKysq47777eOyxx3j11Vf5z3/+w44dO4iIiADOzHN29jbzoUOH8te//pVbbrmF4cOH06NHjxq9jpqKjY2lrKyM8ePHW7Z5enqSm5vLrl27uOeeewAICQlhwIAB/Pe//2XChAkAljFTnTp1wtbWlrS0NPz8/Bg3bhwfffQRjz76KMuXL+euu+4CICoqiokTJ9KyZUsA7r//fm6//fbzMk2ZMoWePXuycOFCkpKSOHToECNHjiQ/P5+ffvqJEydOWNrm5eVx8OBBgoKCcHZ2ZsiQIQCMHz+e6dOr/gxERkby5JNPMmPGDOzs7Bg/fjxRUVGYTCYiIyOr/d7dfvvt2NjY4OTkZOlN6d+//3ntHB0dLe/ZxV7DtddeS2lpKXfffTfXXHMN119/Pc2anemYt7e3Z/LkyQD069cPb29vdu/ezc6dO7nhhhvw9fUF4IEHHmD+/PmWHpQBAwYQEBAAnOkBXLx4MQCDBg3ib3/7G/n5+QwePNjyuv/zn/+Qk5PDmjVrACgpKbFc1j7XhTK1bdu2Wu9fhw4dLvh6z3XbbbdZJia9++67eeutt5gzZw4JCQlMnDiR5ORkbG1tycjIIDExkeLi4io/12c988wztG3blu+//x4HBwcANm7cyPjx42ne/Mz3f8qUKfzjH/+w7BMaGsqAAQOAM98be3t7RowYYXmfW7duzZ49e/DxufTM6FV9d06fPl3tz7BIY6YizMrZOdvVeImIkvwSnFs449nJE/vm9nWax9bWlnHjxvG3v/2NV199FbPZzLx587j77rvPa7tw4UL279/Pxo0bmTJlChMnTmTOnDl1mqc6zv4SP/dW+D8//vN8ajY2NpZxMnfddRf33nsv06dPZ/369bz22muWY17seGf5+vrSq1cv1q5dy+7du5k8eTK2trYUFhZiMpn4/fffsbOzq7TP7t27q/3a+vfvz759+1i7di1Dhw4lMjKSZ555BoA777yz2se50Os/V/PmzS2vs6Ki4oKvAWD//v1s3ryZjRs38ve//52ff/4ZW9uqfySZTKbz3tNz388LZRw3bhxXXXUVP/zwA2+++SavvfYa33zzDWazmbfeeotrr722mu/C+ZnOZWNjQ3l5ueXx2UuObm5uVb7e4ODgap/n9ttv55VXXuHGG28EwN3dnaKioktO4dC/f3++++47EhIS6NixI1D15/PP/jw7/YXamkwmbG1tq3y9f1bVv4tZlx4bndj4WBazmMHxg7VsUQ1oTJjUuZ9++omwsDAAxowZw1tvvcXp06eBM+Nw/vjjDwAOHjxIly5dmDlzJvfffz/btm0DwNXVtcrxU9VxsX3DwsKwt7dn9erVlm0ZGRm4urrSo0cPVq5cCUB8fDy//PILV1999SXP169fPyoqKpgzZw7Dhg3D3f3Mkh3Dhg3js88+Izc3F4AlS5ZcsOfp7rvv5v333+eDDz5g6tSpALi4uDBw4EBeeuklS7vjx4+TnJxMx44dKSws5OeffwbO9EJe6DXb29vTt29f5s+fbxnzFhMTw88//8w111xzXntXV1cKCgrqZDD2xV5Deno6+fn5DB8+nBdeeIH27dsTExMDnOmROnujwG+//UZaWhrdunVj6NChfPPNN6SlpQHwzjvvMHTo0EsWIXFxcbRu3Zo777yTBQsWWD5nY8aMYeHChRQUnJlcsqCggP3791d5jAtlOldQUBDbt28H4N///rflLuGLvd5zrV69mvz8fMrLy1m+fLnlc5OZmUn79u2BM+MRMzMzgQt/rs8aMWIEy5Yt44YbbmDXrl0AXHPNNaxevZqCggIqKir48MMPL/j+dezYkeLiYss4uK1bt3Ly5EnCw8Px9vamrKyM2NhYAD744IMLHufcY1b3MyzWwaWFC2GE4dLCxegoVkVFWBNUVFxEGmkUFdfd4t233HILPXr0oEuXLhw4cIDXX38dgMmTJzNp0iSGDBlC9+7d6dGjBxs3bgTg73//O126dKFnz558+OGHlh6a6dOn89xzz11wcP3FXGxfW1tbvvrqK5YsWWIZ3P3FF18A8PHHH/PRRx/RvXt3xo0bx7Jly2jXrl21znnXXXfx7rvvWi5FAowcOZLJkyfTv39/wsPDycnJ4fnnn69y/7Fjx7J9+3Z8fHzo3LmzZfvHH3/MgQMHCA8PJzw8nHHjxnHq1CkcHBz49NNPefDBB+nTpw+//fYb/v7+F8w3bNgwTp48ydVXX43JZCIiIoLg4GDLpdI/c3d3Z+LEiZbB7ZfrQq8hKSmJYcOG0a1bN8LDw+natSsjR44EwMPDg8OHD9O3b1/uuusuPvnkE5o3b06XLl148cUXGT58ON26dWPLli28++67l8ywevVqunXrRs+ePbn99tstg9bnzp1Ljx496Nu3L926daNfv36WIuVcF8p0rtdee40HH3yQq6++mujoaDw8PAAu+nrPNWjQIG688Ua6dOlCq1ateOihhwB4/fXXuemmmxgwYAC7d++2/Jtf7HP952N++umnjBs3jl9//ZUxY8YwYsQIunfvzjXXXENQUBBubm5V5rG3t+eLL77giSeeoFu3bvz1r39l9erVNG/eHFtbW9544w1GjhzJoEGDLDcRXEpNP8PS8LVt05bhDKdtm+pdopczTGb1CzdIsbGxTJs2jaVLl1p6leBMd39CQgKBgYG1XnKoILuApLgk2oW0w9nNua4ii1y2o0eP0rt370o9OUZriJnqQm5uLi4uLlRUVHDvvffStm1b5s+fb3Ss89TFzzypf0e2HuHVq19l9i+z6XBVB6PjWA31hDVBtra2uOBywfE3ItL43XnnnfTs2ZPOnTtTVFRkyHhMaTziEuJ4i7eIS4gzOopV0W/hJqiiooISSrRskTQ47du3b3A9Tg0xU1348ssvjY4gjUhQQBD3cA9BAVXfYSxVU09YE1RcUkwGGXW2bJGIiDRtzZ2b0452NHe++LRHUpmKsCbI0cERL7zqdNkiERFpuk6kn2AzmzmRfuLSjcVCRVgTZDKZsMPukrf2i4iIVMeprFP8zu+cyjpldBSroiKsCSotKyWHHErLarYupIiISFU6h3TmUR6lc0jnSzcWCxVhTVBFeQVFFFFRfvkD83v06EGPHj3o3Lkztra2lse33XZble137drF559/Xq1j/3lhaSNt2rSJ77//3ugYIiLSyKgIa4IcHBxoTWvLOnKXY9euXezatYtvvvmGli1bWh6vWrXqgu2rW4Q1FCrCREQuLi4hjnd4h7iEOIqLi4mOjiYnJweAEydOVJoIOTY2lqNHjwJnVlGJjo4mKysLOLO6RHR09P+OGxfHkSNHgDNrD0dHR1tWYDl9+jTR0dGWO/2PHDnC4cOHLftGR0db7mzOzMwkOjrashpIQkIChw4dqvs3ooZUhEm9+PDDDy2zd19//fWkpKRw8uRJnnrqKaKioujRowczZswAYNKkSfTu3Ztu3bpxww03cPLkyUsePzs7m3vvvZfw8HC6d+9uWZsyLy+Pu+++m65du9K1a1eeffZZyz5Dhgxh/fr1lse33HILK1asAGDq1Kk88MADREZGEhoays0330xJSQm7du3inXfe4YMPPqBHjx4899xzpKenM3z4cMvr+/NM+SIiTZGToxPtaEfFyQp2/7CbiIgIvv34W1KjU3n7n28zcMBAUqNTSY1OZfJtk3nsocdIjU4l9udYIiIi+M/y/5Aancry15bTp08fS9tpd05j1vRZpEancnTbUSIiIvjsnc9IjU7lk7c+ISIigmO/HSM1OpWZ985kxtQZln0jIiJY8foKUqNT+fd7/yYiIoJDWw6RGp3Kow8+ytQ7ppJ9zNjlsjRjfgNVkxnzU1NTycjIIDw8HICYmBhcXFxo164dRUVFxMTEEBISgouLCydOnCA+Nh4nZyeCOwRzPP04jo6OBAQEUFpayt69ey+6hMmF/HlW8X379hEZGcnOnTvx9fXl+eefZ+vWrXz99desWLGC9evXs2bNGsu+GRkZeHp6AvDSSy+RnJzMm2++yaZNm3j00UfZsWPHeee76667aNGiBa+//jrNmjUjPT0dLy8vHnvsMVJSUvjggw8oLCxkwIABPP7449x6660MGTKERx99lBtuuAE4U4TdcMMNTJ06lalTp3Lo0CF+/PFH7O3tGTRoEDNnzmTChAk888wz5OXl8corrwCwaNEiDhw4wJIlS4Azf42dXTNSROqWZsy3DtnHsnmt42tQCGWUcZKTuOOOI47kkUcuufhwZmHvDDKwwYZWtKKcck5wgla0wgkn8sknm2zacmb5o1OcwoQJd9ypoII00mhJS5xxpoACssjCG2+a0YzTnMaMGQ/OLBd2nOO44UZzmlNIIZlk0oY22GBDJpmUU46Psw8PHngQN/+a/c6rK5qstRF49913WbZsGcnJyQDcfvvtDBkyhDfeeIPk5GQiIiLYuHEjQ4YM4YMPPuDFF15k6w9baWbTjKlTp9KlSxeWLVtGRkYGERERrF+/nuuvv77WeTZu3MgNN9yAr68vAA888ADz58/nQvX+xx9/zIcffkhxcTGFhYV4e3tf8hzr169n586dNGt2pjPXy8sLgKioKEth1rx5c+68806ioqK49dZbL3nMm2++GScnJwD69OlDfHx8le369evHokWLmD17NoMHD2bEiBGXPLaISGPm5u/GXw/+lYKMAqOjVNuWDVuY9MQk/vLLXxjmP8yQDCrCGoH77ruPcePGWR5/9tlnuLicWcnez8+PnTt3EhISApxZquSagdfgiit2tnasWLHC8telp6cnO3fuJCjo8mY8NpvNlaa/uNhUGP/9739588032bp1K15eXqxdu5bnnnuuzs795/Pb2tpSXl5u2V5UVHkB8z//lW1jY2MZO3Cu/v37s2vXLqKiovjiiy+YN28ef/zxBzY2NrXOLSJi7dz83QzrUaqNTqc7MZSheHtd+g//+qIxYY2Aj4+P5VIkQOfOnWnXrh1wprDo1auXpShr06YN4V3DKaUUs9lMWFgYAQEBANjZ2dGrV68aX4o819ChQ/nmm29IS0sD4J133mHo0KGYTCZcXV3Jzv7fNfjMzExcXV1xd3enpKSEd999t1rnGDNmDC+//LJlQGZ6ejoAw4YNY+nSpZjNZvLz8/noo4+IjIwEICgoiO3btwNnBmX+97//rda5zs2ckJBAixYtGD9+PIsXL+bQoUPk5eVV61giItIweLp70o9+eLp7GpZBRVgTVFRcRDrpFBUXXbpxLXTp0oUXX3yR4cOH061bN7Zs2WIproYOHUp+fj7du3dnxowZjBw5kuDgYDp27MiIESPo0aNHtc6xaNEiCgoK6Nq1Kz169ODxxx8H4Mknn8RkMhEeHk7fvn0ZM2YMt9xyCwCPPfYYP/zwAxERETzxxBP07du3Wue66aab2LFjh2Vg/qZNm4iIiKBHjx5cffXVvPzyy5dduIqIyJWVm5fLYQ6Tm5drWAYNzG+gajIwv6aK8opIO5iGd0dvHFtooKuINFwamC/15buPv+O6Sdex4aMNjJhozNhe9YQ1Qc1MzbDHnmYm/fOLiEjT1DG4I4/wCB2DOxqWQb+Fm6CysjJyyb3gwHMREZHGzt7OHjfcsLezNyyDirAmqKy8jHzyKStXESYiIk1Tcmoy61hHcmqyYRlUhFmpyxnK5+jgiDfeODpofIWINGwatiz1pbCokFRSKSwqNCyD5gmzMnZ2dphMJssM8Rebg+tCSopLKKOMouIiKmwufxFvEZH6YDabSU9Px2QyYWdnZ3QcaWRCAkOYznRCAkMMy6AizMrY2Njg5+dHcnKyZQHUmioqKCI9Ix0vkxeOzuoNE5GGy2Qy4efnp8mQpVFSEWaFWrRoQUhICKWlpbXaf9/mfbw5402eevcpAgcH1nE6EZG6Y2dnpwJM6kVMXAwLWMCAuAH49PIxJIOKMCtlY2NT6x9Mvl6+RCRG4Ovlq3l3RESkSfJs5Ul/+uPZSjPmyxVUVFzEKU7V24z5IiIiDV1rz9YMZCCtPVsblkFFWBN06MghFrOYQ0cOGR1FRETEEPkF+SSSSH5BvmEZdDmygSouLgYgMTGxzo9tY2PD7c1vx8bGhtjY2Do/voiISEP3645f+bz55wzaMYhyr/I6P35AQMAlh/xo7cgG6vvvv2f+/PlGxxAREZFaOHft56qoCGugsrKy+O233/jPf/7DrFmzqrXP4sWLeeihhy7ZLjExkfnz5zNv3jwCAgIuN2qjUN33zghXOlt9na+ujns5x6nNvjXdpzrt9R08X0P+DoK+h3V5nPr+HjaU34XV6QnT5cgGqmXLlgwfPpyffvrpkpX0WS1atKh2WzjzAalJ+8aspu/dlXSls9XX+erquJdznNrsW9N9atJe38H/acjfQdD3sC6PU9/fQ2v6XaiB+Q1cZGRkvbSVyhrye3els9XX+erquJdznNrsW9N9GvJnqSFr6O+bvod1d5z6/h429M/Sn+lyZBMUGxvLtGnTqnW9WkTqnr6DIsZrCN9D9YQ1QR4eHkydOhUPDw+jo4g0SfoOihivIXwP1RMmIiIiYgD1hImIiIgYQEWYiIiIiAFUhImIiIgYQEWYiIiIiAFUhMl5SkpKePHFFxk3bhzXXXcdM2bMYO/evUbHEmlSnnnmGcaOHct1113H1KlT2bp1q9GRRJqsffv2MXjwYFauXFmnx9XdkXKewsJCVq1axciRI/Hy8uK7777jrbfeYvXq1ZdcgkFE6kZCQgJ+fn7Y2dkRExPD7Nmz+eyzz3BzczM6mkiTUlFRwf3334/JZKJ///5MmTKlzo6tnjA5j5OTE1OnTqVNmzY0a9aMkSNHUlFRQXJystHRRJqMwMBA7OzsALCxsaG0tJSMjAyDU4k0PWvXriU8PBx/f/86P7bWjmwECgoKWLlyJXFxccTFxZGdnc3UqVO5++67q2y7bNkyNm7cSG5uLv7+/kycOJGhQ4de8PiJiYkUFxfTtm3b+nwZIlarvr6Dzz33HD///DMlJSX069ePDh06XImXI2KV6uN7mJ2dzZo1a3jnnXd444036jyzirBGIDs7m3Xr1hEUFMTAgQNZv379BdvOmzePgwcPct9999GuXTuioqJ49tlnqaioYNiwYee1Lyoq4vnnn+fOO+/E2dm5Pl+GiNWqr+/gU089RVlZGdHR0SQmJmIymer7pYhYrfr4Hi5ZsoTx48fTokWLesmsIqwR8Pb25uuvv8ZkMpGVlXXBD96vv/7Kjh07eOqppywLnPbq1Yu0tDTefvttrr32WmxsbCzty8rKePrppwkICGDy5MlX5LWIWKP6+g4C2Nra0qdPH7744gv8/Pzo379/vb8eEWtU19/D2NhYDh06xOzZs+sts8aENQImk6lafyFv2bIFJycnhgwZUmn7qFGjyMjIICYmxrKtoqKC559/nmbNmvHYY4/pL3CRi6iP7+C5KioqSElJudyoIo1WXX8Pd+/ezdGjRxk7diyjR4/mp59+4uOPP+b555+vs8zqCWtCEhISCAgIwNa28j97UFCQ5fnw8HAAXnnlFU6dOsXLL798XnsRqZ3qfgdPnTrF3r176du3L3Z2dvz888/88ccf3HfffUbEFmlUqvs9vOGGGyoVav/617/w9vbmjjvuqLMs+u3ahGRnZ1c5uN7FxQWAnJwcANLS0li/fj329vaMGTPG0m7BggV07979yoQVaYSq+x0EWLNmDf/85z8xmUz4+fnxzDPPEBwcfMWyijRW1f0eOjs7VxoL7eDggLOzc51OE6MirImpTlett7c3P//88xVII9L0VOc76OHhwZtvvnkF0og0TbUZYvP444/XeQ6NCWtC3NzcyM7OPm97bm4uAK6urlc6kkiTou+giPEa0vdQRVgT0qFDBxITEykrK6u0/ciRI8CZySFFpP7oOyhivIb0PVQR1oQMHDiQwsJCNm/eXGn7hg0b8PT0pHPnzgYlE2ka9B0UMV5D+h5qTFgjsW3bNoqKiigoKADOzHK/adMmAPr164ejoyP9+vWjd+/eLFy4kIKCAnx9ffnxxx/Zvn078+bNO29+IhGpPn0HRYxnbd9DLeDdSIwfP560tLQqn1u1ahU+Pj7AmaUali5dWmmphkmTJl102SIRuTR9B0WMZ23fQxVhIiIiIgbQmDARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARESu0aNEiRo8ebVmeBeD9999n0KBB/PHHHwYm+5/nn3+eW2+9leLiYqOjiDRIWjtSRAyXmprKbbfddtE2wcHBvP/++1coUcOWlJTE2rVrmT59Os7OzvV6rq+++opXX32VMWPG8Oijj1607b333suhQ4dYunQpYWFhTJkyhaioKFavXs2kSZPqNaeINVIRJiINhq+vL8OGDavyOQ8PjyucpuFavnw59vb2jB07tt7PFRkZyb/+9S9++uknHnroIRwcHKpsFx8fz6FDhwgJCSEsLAwAPz8/BgwYwCeffMK4ceNwcnKq97wi1kRFmIg0GL6+vtx9991Gx2jQsrKy+PnnnxkyZEi994IBNG/enMGDB/Pdd9+xefNmhg8fXmW79evXAzBq1KhK24cPH87mzZv58ccfueGGG+o9r4g10ZgwEbFKgwYN4uGHHyYrK4uXXnqJMWPGEBkZyYwZMy44JqqgoID333+fO++8k8jISEaNGsWjjz7Knj17zmv78MMPM2jQIEpKSnjvvfeYMGEC11xzTaVLops3b2batGlERkYyduxYFixYQG5uLuPHj2f8+PGWds8//zyDBg3iwIEDVeZ6++23GTRoED///PMlX/ePP/5ISUkJQ4YMuWTbs+Lj47npppsYPXo0MTExlu3Hjx/nn//8J7fccgtDhw7lxhtv5IUXXiAtLa3S/tdffz0A3377bZXHLy0tJSoqCnt7+/OKtH79+uHk5MQ333xT7bwiTYWKMBGxWnl5eTzwwAPEx8czbNgwBg0aRGxsLI8++ihHjhyp1DYnJ4f777+fFStW4Orqyo033mhpP2vWLLZs2VLlOebNm8c333xD9+7dufXWW2nbti0AX3/9NU8++SQpKSmMGDGC6667jv379/N///d/lJWVVTrGmDFjgP/1Fv1ZWVkZ3333He7u7lx11VWXfM07d+4EoEuXLpd+g4Ddu3fz0EMPYWNjw5tvvknnzp0BiImJ4d5772XDhg2EhYVxyy230L17d3744Qfuu+8+jh8/bjlGjx498PPzIzo6mtTU1PPO8csvv5Cdnc2gQYNwcXGp9JydnR2hoaEcOHCAwsLCamUWaSp0OVJEGoyUlJQLDr7v0qULffv2rbTt8OHD3Hjjjfz1r3+lWbMzf1P26tWLBQsW8O9//7vSQPLXXnuNhIQE5s6dW+mS2enTp5k+fTovv/wyffr0OW/M06lTp1i+fDmurq6Wbbm5ubzxxhs4OzuzbNkyS2E2bdo05syZQ2xsLN7e3pb24eHhBAYG8uOPPzJz5sxKY6O2bt3K6dOnueOOO7C1vfSP5H379uHl5UWrVq0u2XbLli08++yztG3blldeeYXWrVsDZwq/Z555hoqKCpYuXUpwcLBlnz179jBr1izeeOMNXnrpJcv2UaNGsWTJEjZs2MBdd91V6Txff/018L8es3OFhYWxe/duDhw4QK9evS6ZW6SpUE+YiDQYKSkprFixosr/b9++/bz2Tk5OzJgxw1KAAVx33XXY2Nhw8OBBy7asrCw2btxIRETEeWOW3N3dmTBhAllZWZZepj+76667KhVgAP/9738pLCzkhhtusBRgALa2ttxzzz1VvrYxY8ZQUFDATz/9VGn7+vXrMZlM1RovVVpaSlZWVrUKsPXr1/PUU08REhLCm2++aSnA4Ezhl5aWxoQJEyoVYADdunXj6quvZtu2beTn51u2n31fv/32W8xms2V7RkYGO3bswNvb+4IF1tm86enpl8wt0pSoJ0xEGow+ffrwyiuvVLu9n5/feYPTbW1tcXd3Jy8vz7Lt4MGDlJeXU1JSUmVPW3JyMgCJiYnnXRLs1KnTee3j4+MB6Nq163nPderUCRsbm/O2Dx8+nHfeeYf169dbeozS09P5/fffLZf7LiU7OxvgvEt+5/r888/55Zdf6NevH8899xyOjo6Vnt+/fz8Ax44dq/L9OH36NBUVFSQlJdGxY0cAPD096du3L1u3biU6OpqIiAjgzDix8vJyRo0ahclkqjLP2SL2bH4ROUNFmIhYrebNm1e53cbGhoqKCsvjnJwcAPbu3cvevXsveLyioqLztrm7u5+37WwPUcuWLc97rlmzZri5uZ233cXFhWuuuYYNGzZw9OhR2rdvzzfffEN5eXm17xo8e6n0UpOfnr3RoG/fvucVYHDmcirADz/8cNHjnPt+XH/99WzdupVvv/22UhHWrFkzRo4cecHjnM17oektRJoqFWEi0uidLdZuu+02HnzwwRrtW1XvztnjZWVlnfdcRUUF2dnZeHl5nffcmDFj2LBhA+vXr+fBBx/k22+/xdXVlUGDBlUri4uLC7a2tpai8kIee+wxPvjgA9544w2aNWvGTTfdVOn5s72HL730UrVuBjirf//+uLu7s3nzZh555BEOHz5McnIyffr0oU2bNhfc72zeqopWkaZMY8JEpNHr2LEjJpPJchnucgUFBQFnBsmf68CBA5SXl1e5X9euXenQoQPfffcd27Zt4/jx4wwbNqxGPUSBgYGkpaWddwfmn7m4uLBo0SJCQ0NZtGgR//73vys9f/YOyZq+H7a2towYMYLi4mJ+/PFHy7QTFxqQf1ZSUhIAHTp0qNH5RBo7FWEi0uh5eHhwzTXXsG/fPj799NNKA8vPiomJqfJyZFUGDBiAk5MT69evrzSVQ1lZGe+9995F9x09ejTZ2dm8/PLLADWewLRHjx6UlJRYxqVdiIuLCwsXLqRjx4689tprfPHFF5Xyt2nThlWrVrFr167z9i0rK6ty7jT4X8H1n//8h02bNuHm5saAAQMumiUmJgYPDw/atWt3iVcn0rTocqSINBgXm6ICuKzZ9P/v//6PpKQk3n77bb777ju6dOlCixYtOHnyJLGxsSQnJ/Pll19WOYbqXC4uLsycOZOXX36Ze++9l2uvvZbmzZuzbds27O3t8fT0vOAg9REjRvDuu++SkZFB586dLb1q1TVw4EBWr17Nzp07LcsDXSznq6++yuzZs3n99dcxm83ccsst2Nvb89xzzzFnzhwefvhhIiIiCAwMBODEiRPs2bMHNzc3Pvroo/OO6e/vT3h4uGVs3Q033ICdnd0FM6SkpJCamsqNN95Yo9cp0hSoCBORBuPsFBUXcjlFmKurK2+99Rb//ve/+emnn4iKiqKiogJ3d3eCg4OZMmVKlQPqL2T06NG4uLjw4YcfsmHDBpo3b87VV1/NjBkzuPXWW/H19a1yvxYtWjBgwACioqJqtYxPjx498Pf35/vvv+eOO+64ZPuzPWKzZ8/mjTfewGw2c+utt9KpUyfef/99Pv30U7Zt28bevXuxs7PD09OTgQMHMnTo0Ase8/rrr7cUYedO+XGu77//HvjfhLUi8j8mc1X98iIiUivJycnccccdXHPNNTz77LNVtrnzzjs5ceIEX375Za3Wf1y7di2vvPIK77zzjmV8V0NUVlbGxIkT8fb25vXXXzc6jkiDozFhIiK1kJubS0lJSaVtxcXFvPnmm8CZy4ZV+fXXXzl69CgjRoyo9QLc119/PQEBASxfvrxW+18p33//PWlpaTzwwANGRxFpkHQ5UkSkFnbt2sU///lP/vKXv9C6dWuys7OJjo4mLS2NXr16ce2111Zq/5///IeTJ0+ybt06HBwcmDBhQq3PbWNjw9///ne2b99OQUFBrYu5+mYymfjb3/52ybFrIk2VLkeKiNRCUlIS7733Hvv27bPMF+br68u1117L7bffft60E+PHjyc9PZ127doxY8aMGs3PJSKNk4owEREREQNoTJiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAf4f4azNui3rSmMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] diff --git a/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb b/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb index b012e708..8f0a2579 100644 --- a/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb +++ b/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb @@ -72,12 +72,12 @@ { "data": { "text/html": [ - "
11:40:23 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "
12:04:24 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
        "                  available                                                                                        \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m11:40:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=632053;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922042;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m12:04:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258198;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=478015;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -92,7 +92,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=975981;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=734970;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=322055;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=156430;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -102,11 +102,11 @@ { "data": { "text/html": [ - "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
12:04:25 WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=146941;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=118241;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:04:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=427696;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920737;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -119,7 +119,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=934586;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=337412;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187003;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664651;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -132,7 +132,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=142318;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=629022;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970697;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263503;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -145,7 +145,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=181853;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=738411;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=507764;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=140382;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -158,7 +158,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=427685;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425473;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=410897;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483212;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -171,7 +171,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=516625;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=917188;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964303;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=470707;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -180,11 +180,11 @@ { "data": { "text/html": [ - "
11:40:23 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
12:04:25 INFO      Starting 3ML!                                                                     __init__.py:35\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m11:40:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187975;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=232592;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:04:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=334693;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=235575;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -197,7 +197,7 @@ "
\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=536750;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=844988;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=995830;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=95677;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -210,7 +210,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=414726;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=986647;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=324296;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -223,7 +223,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=460997;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759566;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559824;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=851427;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -236,7 +236,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=652000;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80994;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=915470;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=32249;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -249,7 +249,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=148575;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=672957;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809874;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490059;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -262,7 +262,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=396066;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=125;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=443308;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -276,7 +276,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562480;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=820025;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844985;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=163953;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -291,7 +291,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=439066;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=946376;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=871918;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23540;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -306,7 +306,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963385;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=305974;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=354714;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -320,7 +320,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=414310;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=315394;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=194521;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717765;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -334,7 +334,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=147242;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=728056;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=22466;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967970;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -349,7 +349,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=998970;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=33780;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=971686;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=989174;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -364,7 +364,7 @@ "\n" ], "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=617970;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=608769;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=980480;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=239627;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -532,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 4, "id": "ed2c03a0-63e3-4044-9e16-50f0f17996af", "metadata": {}, "outputs": [], @@ -553,7 +553,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 5, "id": "3b5faaa1-1874-4d43-a6ae-7e1b0aaabb26", "metadata": {}, "outputs": [], @@ -573,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 6, "id": "620159d2-f01a-453e-9e4c-075c99740086", "metadata": {}, "outputs": [], @@ -593,7 +593,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 7, "id": "acccab93-7f9c-4167-a8f9-eedcf74b8a05", "metadata": {}, "outputs": [], @@ -621,7 +621,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 8, "id": "a29ec8c4-edea-40bf-8a3e-8038ba47bf8e", "metadata": {}, "outputs": [], @@ -642,7 +642,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 9, "id": "a9f21e74-5f62-4030-9815-6c77ebaab16f", "metadata": {}, "outputs": [], @@ -672,7 +672,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 10, "id": "98b2d026-c24d-4cfe-8b7b-41415fce5d16", "metadata": {}, "outputs": [ @@ -680,8 +680,11 @@ "name": "stdout", "output_type": "stream", "text": [ + "... Calculating point source responses ...\n", "Now converting to the Spacecraft frame...\n", - "Conversion completed!\n" + "Conversion completed!\n", + "--> done (source name : source)\n", + "--> all done\n" ] } ], @@ -735,7 +738,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 11, "id": "d56d3ad6-7226-437a-a037-57fbcd80d196", "metadata": { "scrolled": true, @@ -745,11 +748,11 @@ { "data": { "text/html": [ - "
12:42:48 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
12:04:56 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m12:42:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=98083;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=731551;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m12:04:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963889;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=362192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -759,6452 +762,18 @@ "name": "stderr", "output_type": "stream", "text": [ - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: divide by zero encountered in log\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n", - "\n", - "WARNING RuntimeWarning: invalid value encountered in multiply\n", - "\n" + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" ] }, { "data": { "text/html": [ - "
12:43:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "
12:05:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
        "                  measurements such as AIC or BIC are unreliable                                                   \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m12:43:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=54334;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=348223;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m12:05:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395184;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=957324;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -7319,19 +888,19 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", "
1.000.97-0.370.20-0.00
0.971.00-0.160.17-0.00
-0.37-0.161.00-0.17-0.02
0.200.17-0.171.000.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
" ], "text/plain": [ " 1.00 0.97 -0.37 0.20 -0.00\n", - " 0.97 1.00 -0.16 0.17 -0.00\n", - "-0.37 -0.16 1.00 -0.17 -0.02\n", - " 0.20 0.17 -0.17 1.00 0.00\n", + " 0.97 1.00 -0.16 0.18 -0.00\n", + "-0.37 -0.16 1.00 -0.18 -0.02\n", + " 0.20 0.18 -0.18 1.00 0.00\n", "-0.00 -0.00 -0.02 0.00 1.00" ] }, @@ -7382,11 +951,11 @@ " \n", " \n", " cosi\n", - " 42920.049348\n", + " 42920.049336\n", " \n", " \n", " total\n", - " 42920.049348\n", + " 42920.049336\n", " \n", " \n", "\n", @@ -7394,8 +963,8 @@ ], "text/plain": [ " -log(likelihood)\n", - "cosi 42920.049348\n", - "total 42920.049348" + "cosi 42920.049336\n", + "total 42920.049336" ] }, "metadata": {}, @@ -7445,11 +1014,11 @@ " \n", " \n", " AIC\n", - " 85838.098697\n", + " 85838.098672\n", " \n", " \n", " BIC\n", - " 85840.098697\n", + " 85840.098672\n", " \n", " \n", "\n", @@ -7457,8 +1026,8 @@ ], "text/plain": [ " statistical measures\n", - "AIC 85838.098697\n", - "BIC 85840.098697" + "AIC 85838.098672\n", + "BIC 85840.098672" ] }, "metadata": {}, @@ -7468,24 +1037,24 @@ "data": { "text/plain": [ "( value negative_error positive_error \\\n", - " source.spectrum.main.Band.K 0.030991 -0.001874 0.002190 \n", - " source.spectrum.main.Band.alpha -0.276683 -0.048383 0.051706 \n", - " source.spectrum.main.Band.xp 474.671133 -5.121632 4.893337 \n", - " source.spectrum.main.Band.beta -6.753586 -1.219137 1.209245 \n", - " background_cosi 0.164986 -0.012501 0.012824 \n", + " source.spectrum.main.Band.K 0.030995 -0.001939 0.002116 \n", + " source.spectrum.main.Band.alpha -0.276632 -0.050195 0.049825 \n", + " source.spectrum.main.Band.xp 474.650732 -4.896060 4.873162 \n", + " source.spectrum.main.Band.beta -6.756966 -1.215124 1.201150 \n", + " background_cosi 0.164969 -0.012573 0.012434 \n", " \n", " error unit \n", - " source.spectrum.main.Band.K 0.002032 1 / (cm2 keV s) \n", - " source.spectrum.main.Band.alpha 0.050045 \n", - " source.spectrum.main.Band.xp 5.007484 keV \n", - " source.spectrum.main.Band.beta 1.214191 \n", - " background_cosi 0.012663 ,\n", + " source.spectrum.main.Band.K 0.002027 1 / (cm2 keV s) \n", + " source.spectrum.main.Band.alpha 0.050010 \n", + " source.spectrum.main.Band.xp 4.884611 keV \n", + " source.spectrum.main.Band.beta 1.208137 \n", + " background_cosi 0.012504 ,\n", " -log(likelihood)\n", - " cosi 42920.049348\n", - " total 42920.049348)" + " cosi 42920.049336\n", + " total 42920.049336)" ] }, - "execution_count": 28, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -7516,7 +1085,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 12, "id": "02e57ec8-4459-4f99-b62f-73a63aba83f3", "metadata": {}, "outputs": [], @@ -7553,7 +1122,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 13, "id": "4e25c609-e754-43b8-8ea6-0a0a90811cda", "metadata": { "scrolled": true, @@ -7668,19 +1237,19 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", "
1.000.97-0.370.20-0.00
0.971.00-0.160.17-0.00
-0.37-0.161.00-0.17-0.02
0.200.17-0.171.000.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
" ], "text/plain": [ " 1.00 0.97 -0.37 0.20 -0.00\n", - " 0.97 1.00 -0.16 0.17 -0.00\n", - "-0.37 -0.16 1.00 -0.17 -0.02\n", - " 0.20 0.17 -0.17 1.00 0.00\n", + " 0.97 1.00 -0.16 0.18 -0.00\n", + "-0.37 -0.16 1.00 -0.18 -0.02\n", + " 0.20 0.18 -0.18 1.00 0.00\n", "-0.00 -0.00 -0.02 0.00 1.00" ] }, @@ -7731,11 +1300,11 @@ " \n", " \n", " cosi\n", - " 42920.049348\n", + " 42920.049336\n", " \n", " \n", " total\n", - " 42920.049348\n", + " 42920.049336\n", " \n", " \n", "\n", @@ -7743,8 +1312,8 @@ ], "text/plain": [ " -log(likelihood)\n", - "cosi 42920.049348\n", - "total 42920.049348" + "cosi 42920.049336\n", + "total 42920.049336" ] }, "metadata": {}, @@ -7794,11 +1363,11 @@ " \n", " \n", " AIC\n", - " 85838.098697\n", + " 85838.098672\n", " \n", " \n", " BIC\n", - " 85840.098697\n", + " 85840.098672\n", " \n", " \n", "\n", @@ -7806,8 +1375,8 @@ ], "text/plain": [ " statistical measures\n", - "AIC 85838.098697\n", - "BIC 85840.098697" + "AIC 85838.098672\n", + "BIC 85840.098672" ] }, "metadata": {}, @@ -7839,28 +1408,28 @@ " * main:\n", " * Band:\n", " * K:\n", - " * value: 0.030991288726256453\n", + " * value: 0.030994516909178687\n", " * desc: Differential flux at the pivot energy\n", " * min_value: 1.0e-99\n", " * max_value: null\n", " * unit: keV-1 s-1 cm-2\n", " * is_normalization: true\n", " * alpha:\n", - " * value: -0.27668340897900645\n", + " * value: -0.27663221293105034\n", " * desc: low-energy photon index\n", " * min_value: -1.5\n", " * max_value: 3.0\n", " * unit: ''\n", " * is_normalization: false\n", " * xp:\n", - " * value: 474.671132780481\n", + " * value: 474.6507320770641\n", " * desc: peak in the x * x * N (nuFnu if x is a energy)\n", " * min_value: 10.0\n", " * max_value: null\n", " * unit: keV\n", " * is_normalization: false\n", " * beta:\n", - " * value: -6.753586360838797\n", + " * value: -6.756965748051311\n", " * desc: high-energy photon index\n", " * min_value: -15.0\n", " * max_value: -1.6\n", @@ -7902,19 +1471,10 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 14, "id": "cc7d6f50-06cd-450a-83d9-115b67d83b30", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Now converting to the Spacecraft frame...\n", - "Conversion completed!\n" - ] - } - ], + "outputs": [], "source": [ "energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)\n", "\n", @@ -7950,7 +1510,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 15, "id": "f8dbd36f-4b16-4bec-8835-8f6f876ab169", "metadata": { "tags": [] @@ -7959,16 +1519,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 32, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAG7CAYAAAD0aVBuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACMIElEQVR4nOzdd3hUVfrA8e+U9N4rCSkQWuglVBECIiBYsStiLygLKshGFJRdFMQurvBT0NVdbKsURQ29K0WKQEhICKSRPimTNuX3x8hoTICUmUzK+3keH8m9d855b8gwb8459z0Ko9FoRAghhBBCWIXS1gEIIYQQQrRnkmwJIYQQQliRJFtCCCGEEFYkyZYQQgghhBVJsiWEEEIIYUWSbAkhhBBCWJEkW0IIIYQQViTJlo1VVlaSlJREZWWlrUMRQgghhBVIsmVj6enpPPjgg6Snp9s6FCGEEEJYgSRbQgghhBBWpLZ1AB1VYmIiiYmJlJWV2ToUIYQQQliRJFs2Eh8fT3x8PElJSTz44IO2DkcIIYQQViLTiEIIIYQQViQjW0IIIUQT6PV6ampqbB2GsDKVSoVarUahUDS5DUm2hBBCiEYqKysjIyMDo9Fo61BEC3B2diYoKAh7e/smvV6SLSGEEKIR9Ho9GRkZODs74+fn16wRD9G6GY1GqqurycvLIy0tjS5duqBUNn4FliRbQgghRCPU1NRgNBrx8/PDycnJ1uEIK3NycsLOzo709HSqq6txdHRsdBuSbNmIlH4QQoi2TUa0Oo6mjGb9mSRbNiKlH4QQQoiOQUo/CCGEEO1A586d6datG3379qV79+7ccccdlJeXN7m91atXc/r06Uue37dvH7GxsfTr148ffviBiRMncubMmQa9tqORZEsIIYRoJ7788kt+/fVXTpw4QUlJCatXr25yW1dKmNasWcM999zD4cOHueaaa/juu++Iiopq0Gs7GplGFEIIIZrhm7/vRqupsmofzh4OXL94eIOvr6qqory8HC8vL/OxZcuW8fnnn6PT6QgMDORf//oXnTp1Yv369fz9739HqVSi0+lYvHgxeXl5HDhwgCeffJKEhAT+8Y9/MHHiRHNbS5YsYe3atTg7O/Ppp5+ybds2+vbty4YNG9i3b99lX9sRSbIlhBBCNINWU4W20LrJVkPdfPPNODo6kpaWxoABA5g2bRoAn332GadPn2bv3r2oVCo++eQTnnjiCb799lsSEhJ4//33GTZsGAaDgZKSEjw9Pfn3v//N008/zeTJk+v0M2/ePE6dOsXAgQN54oknap174IEHLvvajkiSLSE6uKKiIkpKSqiqqiIyMhK1+o9/FrKysti7dy9VVVX06tWL3r1713rt2rVrqaqqwt3dneuvv77WuZSUFHJycnB0dKRbt264urq2xO0I0eKcPRxaTR9ffvklvXr1QqfT8fDDDzN37lxee+01vvnmGw4cOMCAAQMAU60wlUoFwNixY5k1axY333wz48ePp2/fvta6jQ5Lki0LePHFFzl8+DBVVVUEBgby0EMPMWzYMFuHJTqQ4uJiUlNTyc/Pp0ePHoSGhprPabVabr31VkpKSujVqxfvvvturdfec889bNiwAYCTv54m0C8IfY0BfY2BHzZtZsbMewD420PPMHPG3/hzweyHH3wETWkxEWGRxAYMQaEAlZ0Slb2Kpa8t54M1KwD44dtEhg0bZj6Xmp7C4MGD8fT05J577uHll1+uFdOHH36IXq8nJCSECRMmNPuxayGsqTHTey1FrVZz00038cwzz/Daa69hNBpJSEhgxowZda5dvnw5v/32G1u3buXee+/lzjvv5Nlnn7VB1O2XJFsWcO+99/L3v/8dOzs7Tpw4wZw5c/jvf/+Lh4eHrUMT7ciqVas4dOgQOTk5fPXVV7Vq/Kxdu5ZHHnkEgGWL3uDGa26lsrSaypJqKsqqzMlU3tkivvXZQ3W5juoKHdXaGvKP//G00tcJO/F3CzJ/fTw73fzn1L3ZbC79tVZMNVU6ALRFVWx9u/a507+cM/9553snOPff6j/aKjhFaWkppaWlHPnpNJtcf8HexQ4HFzvsXex46YXFnM1IxdHRiezUXFx9nFDbm34L/+KLL1i7di0hISHcd9998lu4EJewZcsWYmJiAJgyZQpvvvkm119/Pd7e3tTU1HD8+HH69evHqVOn6NmzJz179kStVvPjjz8C4O7ujkajaVLfzXlteyTJlgVERESY/6xSqaipqSE/P1+SLXFJFRUVALWqT+fn53PTTTdx7tw5Bg8ezNq1azEYjFRoqtAWVvLpR/9h254tAKxbuh07nbMpmSqp5shvGeZ29nz1Kx4nu9bqz0HtSJWuktKScvJSav8DGOXbA51Bh1pph72q9r5fQe6h3Nx3BmqlHVG+3evcxy19H0BnqMHJzrnOue6B/bBXO1Kjr8bd0bPWOaPRSKB7J7TVZagrncg4ml/rfEFeIQBuak++nLPTdA+udjh7OfL5/vV8tf0rAHp3GkSwSzjuQS44utqTm5vLPffcQ9euXRk3bhzXXXddnbiEaM8urtmqqamhc+fOvP/++wDcfffdFBQUMHr0aBQKBTqdjvvvv59+/frx3HPPcfr0aezt7XF2dmbFCtOI9EMPPcScOXNYunRpoxe5N+e17ZHC2MF20dRqtaxZs4bk5GSSk5PRaDRMnz693qFVrVbLqlWr2Lp1K6WlpYSFhXHnnXcyduzYOtcuWrSIHTt2UF1dTVxcHK+88kqDqgtfLGq6cuVK828gou0zGo1cuHCBwMDAWsf//e9/M3v2bPLy8li9ejV33n4XZXkVlOZXUJBZTP/JMRiNRrqG9ODF699BW1yF0WB6i67e/wa7U02/cb4w4V1Cvf5I8rM059hyeh2uDu70COxHV//YWv2WVmlwVDth93syZeekwt7JDntnNXbOauwcVKjsVKjslKjtTf83TfkpzceVqt9/nn//uTb/dP/psMEAhhoD+ho9ut+nIvXVpq/1OtPXuko91doaqspqqCqvobpCB3/5V+hY1i8UavNQKlSMjLqm1rn/27uUfWe3AvCP6/4PP1fTSJyDqx0ZNcnMX/0YAPdOu5/ly17HI9AZlZ1pVOy9997D3d2dfv360aNHD6kALpqksrKStLQ0IiIimrR1i2h7mvt33uFGtjQaDevXrycqKoqRI0eap1fqk5CQwKlTp3j44Yfp1KkTiYmJLFy4EIPBwLhx42pdu2DBAnQ6HYcOHSI9PV3+Ee8AjEYjWq0WFxeXWscfeOAB/vOf/6DVaiksLMRJ7YImu5ySHC0XjpSQl5cHwPp3t1Lzg3+t13o4elOjr8be4ER5YWWtc9d0v4mroifi4eSNp6PpcW6lWoGTuwOxnXsxaER/nDzscXSzN//f0d0eBxc77JzVfyRXTmqUytbz82k0GKnW6kyJV7kpAbu6rC/aokq0RVWUF1ZSXliJtrCS8qJK7hk8i6mx91BUkY+P8x/fv6qyGk6nJv/x9Rk7vp67C4VKgXeoK96d3Xlu7nOUlJUQHBxMZmZmrTjKyspwcXGR964QwuI6XLIVGBjIxo0bUSgUFBcXXzLZ2rt3LwcOHGDBggXEx8cD0L9/f3JyclixYgVjxowxP8lxkVqtZvDgwXz11VeEhoYydOjQOu3m5+dTUFBg/jo9Pb3ONaJ1q66u5qqrriIpKYmePXuyc+dOdFV6irPK0GSXU5heilarBeCt+z4jxDnS/NoyjRIvZ198nP1xxr1O24snr8JebXrqyMnDHmcvR1y8HXH2cmCAdxfTn70dcfFywNnLEXtndZtPDhRKBQ6udji42l3xWqPRSGVpNdpCUxKmySk3J7LF2WUMM8bTK2gAF0qz8HU1jSoa9UYK0ks59VsyJWUlAPgSyldzd+Ib4YFvhDu+ER48v3Qu//vmf4wcOZK33nqr1kMGQgjRHB0u2WroB9POnTtxcnJi9OjRtY5PnDiRRYsWceLECWJjY+t9rcFgqPNb80Xr1q1rVkVf0TKOHTvG4sWL+e2333jwwQd58sknAajW1lCcWc6Z5FSKioo4dvg3/vvUNsryK8xTYXYFHgS6heLnFoSu0gB/Ws4U4hHOq1M/BsDJ0wE3Pyfc/Jxw9XPGzd8JN18n3PydcPFxQqWWJ/D+SqEwjeQ5uTvg07luslpTqfs9AdNSkl1OcVYZhedKKc4sw93Rk6euWsS5ojP4uQZSdL6MovNlJO8wvVc3fLeJfE0+69etZ9mCtzAEGlD+/neQmppKdnY2Q4YMqVUaQwghGkL+1biEtLQ0wsPD6/zDenErgrS0NGJjYykoKODYsWMMGTIEOzs7duzYweHDh3n44YfrbXfKlCkMH/7HY8Lp6el1HnsXLePQoUP89NNPHDt2jEWLFhEZ+ccIlLa8grVr1wLw45db6VIeR1FmmblwobcqEL2zkUC3UIpySrBT/TEqM67bDYzrdgMArr6OuAe44BHkgnugMx6BLrgHOOPq98fTdcJy7BzV+Hb2wLdz7YdTdFV6CtJLKDjbn/w0DflnSyjKKMOoN2XIOoMOf9dgNNoiAt1D2fLqMdQOJwjo6kVQD28+/vF9Xn9vGZ6enqxdu5bx48fb4vaEEG2UJFuXoNFoCA4OrnPczc0NgJKSEvOxL7/80rwgPjQ0lBdffJHo6Oh62/X19cXX15fExEQSExMpKyuzzg0IwLRlxYkTJ0hNTeWmm26qde7bb79l0aJFAIzofTVDuhgoPF9K4blS8s4XoECBUqkiN72IzGMFtV77t6sXo1KakiU7JzWeIS54BrviGXwxsTIlVZJQtQ5qBxUBXb0I6PrH1iW6aj1F50vJTyvhwukinvX9B2UFFZRVmd7buio9mcfyyTyWz8bNPwCmemb2Gg8qS6txdDM9bFBYWEhWVhY9e/Zs81O6QgjrkGTrMhryD6ePjw/vvPNOo9uOj48nPj7e/DSiaL4/V0S+aOTIkfzyyy8olUo0xRqqi40UnC2h4GwJNaf/KLvw3SdbUcf+kVzbqxx5afIH+LgEoFaa3iYOrnZ4hrjiFeKKZ4grnqGmPzt7OciHbBuktlfhF+WJX5Qn3ePDMBqNlOZqyTpRSPaJQrJPFphHMkdGXoOHoxeaikJS/lfImW82ExDjRfiAADafWM/fnn2K8PBw3nvvvQ7/iLsQoi5Jti7Bw8Oj3oJspaWlgKlgm7A9rVbL/fffz+HDh4mOjjY/8KCv0VN4vowQ7878wi8YDAZeve1Dwjy6mF/rWxXO/XFPE+LZmUD3TubjSrUCr1A3uoSF4NXJDe8wN7w7ueHkYS9JVTumUChwD3DBPcCFbld3wmg0UnJBS/bJQqJOBDP62AQqS0yFWY1GyDlVRM6pIj7a/ilgWhJgV+2M0Wg0/5xcrKwjPzft38Evk698URMNuLnLlS8SrZokW5cQGRlJYmIiOp2u1rqt1NRUoHYh06aQacSGq6io4MCBA/zyyy/07duXMWPGmM85OTnx008/UVBQQH5uATtXHaPgbCmF6SUY9EZ8SzozJPxqOnlF4GrnVatdd0dPxgy4Fp9wd3zC3c2JlUegM0qVLE7v6BQKBR6BLngEmpIvg8FIbnIx6QcvcO5gLppsU+X9PiFD0BlquFCaSdracj7fup3okSF0GRnCviO7mDNnDnfeeSf33HNPvUsThLCUzp074+joiKOjI1VVVfTr14+VK1fWKU/TUKtXr2bYsGF07dq13vP79u3jwQcfRK1Ws2TJEt58803efvttoqKirvhagNmzZzN48GBuu+22JsVnaXPmzGHgwIHcfvvtFm9bkq1LGDlyJOvXr2f79u21iphu2rQJX19fevTo0az2ZRqxflVVVSiVSuzs/lhwfvDgQUaNGgWYalgN6DGEvJRi8lI15KVqCLQPR6MswU3hzZEfTuP4p2rmQzpfzZDOVwPgHuiMT2d3fDu74/P7f07u1t9AVrQPSqWCwBgvAmO8GHJHN4ozy0g/eAH/g56MSrkWnV6HUqGkNK+Cw1+ncPjrFD478RbHjx/nueeeIyYmhhtuuMHWtyHauYsbURuNRq677jpWr17N448/3qS2Vq9eja+v7yUTpjVr1nDPPffwzDPPAHDNNdc0+LWZmZl8//33vPbaa42K6a8DIJc61pjXXzR37lxGjhzJrbfeavH9WDtksrVv3z4qKyvNtZDS09PZtm0bAHFxcTg6OhIXF8fAgQNZvnw5Wq2WkJAQNm/ezP79+0lISKizNqixZGSrtv/973+88sorHD58mG+++YZrr70WgKryGvzVoSiVSgwGAz/+bytflO+o9doZQ+bg7OBmXluFAjyDXUw1lCI98O3sjne4O/ZOHfLHXViJ5+9r9/pMiUJbXMW5w7mk7csh83g+GE1TiLkXTAVsne1dcU4PJeNYPsE9fVAqFVy4cIELFy7Qu3dvG9+JaI+qqqooLy/Hy+uPEf1ly5bx+eefo9PpCAwM5F//+hedOnVi/fr1/P3vf0epVKLT6Vi8eDF5eXkcOHCAJ598koSEhDpb7ixZsoS1a9fi7OzMp59+yrZt2+jbty8bNmxg3759l30tmDabv/nmm81T7DU1NTz//PNs2bKF6upqunXrxvvvv4+npyfTp0/H3d2d06dPc/78ed59911mzZrFqFGj+OWXX5g9ezYRERHMnDmT8vJyHB0def311xk+fDhnz55l4MCBPPnkk/z000/ceOONREdH17nfqVOn4u/vT0REBJs3b65TuLy5Otx2PQDTpk0jJyen3nNr164lKMi0/YdWq2XlypW1tuu566676t2up6k60nY9JSUl/Pzzz/z88888++yztX67+O9//2seun3s7llMG3YfeWeKKc40TdV8e+zfeDn5EukTU2ubGgA3fyd8Iz3wi/TAL8oDn3B37J2vXCBTCGsoL6wkZVcmyTsyKc4qJ68smyzNOfqEDAHA2cuBrleF8uXPH/HKa0sYNWoU77zzziXr9onWp76tW1rDmq0/TyOmpaUxYMAAfvzxR9RqNZ999hnbtm1jxYoVqFQqPvnkE7788ku+/fZb+vTpw4oVKxg2bBgGg4GSkhI8PT0ZPXo0Tz/9NJMnT663v+nTpzNw4ECeeOIJc/8bNmygV69eV3zt2LFjefrpp82/WP/jH//AYDCQkJAAwEsvvUR+fj5vvvkm06dP5+jRo+zYsQNXV1e2bdvGmDFj2LFjByNGjKC6upro6GhWrlzJNddcw65du7jllltISUkhLy+PiIgIPv30U+644w6AS94vmLbe02q1LFmypFa8sl1PE3z++ecNus7Z2ZmnnnqKp556ysoRdQwPPPAAX3zxBQCTJk2ie9ee5KUUcyG5iMpDph/eALcQ8o6VkayrXRR2auxdgOmJQP9oT/yjPfGLMo1cXXwEX4jWwMXbkT5Touh9XST5qRpO78jkzJ5OVJfrANAWVfHLV6dYsc60QfCePXvw8fGxZciiHbk4jajT6Xj44YeZO3cur732Gt988w0HDhxgwIABQO2nt8eOHcusWbO4+eabGT9+PH379rV6nBkZGbX2jv3mm28oKSnhyy+/BEw7dVysawmmQRJXV1fz1127dmXEiBGAadDC3t7ePI05YsQI/P39OXr0KEFBQTg6OtZah3W5+w0MDGTHjtqzJ5bQIZOt1qC9TiO+8cYbbN26lQsXLrBv375a5/r3HmhOtlbM/TeDfMZwcVzVaLTnjRvX4uLgZr5eoVLgE+7+e3LlgV+0J+4BzvJkl2gTFAqFubRE3F3dOHc4j+QdmZz/NQ/0Rib3uoOtp9cT4tmZQ/93jpprVXTq749SqWDXrl04ODgwaNAgW9+GaKPUajU33XQTzzzzDK+99hpGo5GEhARmzJhR59rly5fz22+/sXXrVu69917uvPNOnn32WavG5+zsTEVFhflro9HIe++9V+sBqD/7c6L116///ATwn1089tc9Ty93v5WVlTg5OdVpq7kk2bKRtr5APi8vj/z8fLp3717r+FdffcWuXbsASDp8BkOBHTmnCslJKqLyjCuju0wi0qcbUY69+fMEtkKhwNffh4CuXvh39cI/2hPfCHcpCiraBZWdiojBgUQMDqS8sJITP6bjutmF0dGTqNRVkHOyiJyTRbj5O9FzQmf+lvA3Dhw8wPjx4/nss89k5Es0yZYtW8zLU6ZMmcKbb77J9ddfj7e3NzU1NRw/fpx+/fpx6tQpevbsSc+ePVGr1fz444+AqcRRfSWQGuJKr+3duzenTp1i2LBh5viWL19OXFwczs7OaLVa0tLS6Nmz5xX76tatG1VVVWzZsoUxY8awZ88ecnNziY2NJS8vr871l7pfgJMnT9KnT58m3PHlSbIlGqW8vJyBAwdy6tQpRowYwc6dOwEw6Azkp2mI9u/BLnbh4uDGR89+Q7TfH09thnpGcOfA35+KUYB3mBsBXbzw7+pJQBcv3PydZNRKtHsu3o4Mui2GfjdEk7wzk+PfnzWXkSjNreA/r3/DgYMHAMjMyKy1wFm0Xq2lFtbNN9+Mo6MjNTU1dO7cmfffN01X33333RQUFDB69GgUCgU6nY7777+ffv368dxzz3H69Gns7e1xdnZmxYoVADz00EPMmTOHpUuX1rvI/XKu9Nqbb76Zjz/+2DzSNm/ePBYuXMiQIUPMnwNz585tULJlb2/PV199xZNPPmleIP/FF1/g4uJSb7J1qfs1Go1s3ryZ+fPnN/g+G6pDLpBvTVrjAnmDwcDx48fZsWMHUVFR5gWMF3Xp0oWUlBTs7ezZ/skhCs+Uk5tcbNp/rvwC1fpqAtxCUCr+eHRW7aDCP9qTgBgvAmK88I/ykEXsQgBGg5GMo/kc+y6NrOMFVOuq2Hd2K9+f+JxbBs7gvkfvpfekCBxcTe+X9PR0wsPDbRx1x9bcxdLC9DkzaNAgvv32W0JDQ20dDmAq7fTpp5/yySef1DknC+TbqNa8ZuvIkSP0798fgJtuuolrr70WXbWe3ORisk8WEu3ZC6OvmijfHuz/4jdc7P9YZ+XjEgCYFrIHxngR0M2bwBgvfDu7o1RLoVAh/kqhVNCprx+d+vpReL6U49+fxXGXI8Mi41EqlBz59gwnfjxL70mR+PZzpHvP7sTFxbFw4UJGjhxp6/CFaBKlUsm//vUvzp4922qSLY1GwyuvvGKVtmVky8ZsNbKVmprKZ599xvbt23nsscdqFVvU6/V4e3tTUlKCt4cPH81aT/4ZDQa96UelvsWILt6OBHb3JrCbqeijZ7ArCqVMCQrRFNqiSn79NpVTm8+Z33cAXx//kO+PmZ7Weuqpp3jjjTdsFGHHJiNbHY+MbIkrqqqqQqVS1aprdfr0aZ5//nnA9AjtlOumkndGQ/ZvBWSdKGBs5A3YKx3o6hfLhaSiWsmVQqHA1c+JoO7eBHXzJrC7t6y3EsKCnL0cGTa9B7GTIjj8vxSSd2RgNEAntyj83YIp0uYxZdDt6Kr18hCJEG2AJFvt2Lp163jjjTfYu3cvP/zwg3nLG4ChQ4ehUqnQ6/Xs+fEAnzzwE7pqg/n8xO631mrLPcCZwO7epgSruzeuvpZ/NFYIUZubnxOjHoqlz5RIDn+dAoqr6N9pBOeKzpC6sZCc3dsZclc3IocGsXPnTvbs2cOsWbNktEWIVkaSLRtpiTVbRUVFbN26FYCtW7cSG9WfrOMFZP1WQPaJAh4e9hyhnhH4ugTWSrQAXP2cCO7hTVAPH4J7eOPiI8mVELbiEejC6Mf60GdKJAe/TEb1s2k0S1tcxdZ3jnBsUyoJXz7ObyePs3LlSrZs2SKL6IVoRSTZspGWqLM1MNa0PUigTzCnNmXxVdLOWuf7hQ4z/9nZy4Hgnj4E9fAmuIcPbv7OCCFaF69QN+Jn9afgbAm//DeJjKP5AOzZs5cTp04A4OnhSadOnWwZphDiLyTZaqfWv7iPC6eLeGXKGrxd/Oqcd3C1I7iHD8G9fAju6YN7oFRmF6Kt8OnszoR5gzh3OJc9q0/QlV4suOZt1h7+gImhd5OyK4suI0LMD6lcqsK2aF/+vDfhpSxYsICePXty6623XvKay9m2bRvV1dWMHz++Sa99+umnOXDgQJP6bssk2WqnXHxMazYuJlpqBxWB3bwJ7uVDSE8fvMPc5GlBIdq4sH7+BPf04eiGNFTfKpkz5p8A7Hj/GCd+TGfEA73QO1USHx/P4sWLmTJlio0jFra2aNGiZr1+27ZtlJWVNSnZ6sik8FE71amPH4HdvOh/UzSTFwzh7pXxTJg7kN6TIvDp7C6JlhDthNpeRf8bo7l52SjCBvibj+enlvC/+buZdu2dHD9+nKlTp/Luu+/aMNL2bfny5YSGhhIaGsq2bdtqnUtLSzOfmzlzZp3XTpkyxXz+r1avXs3y5csbFcvo0aOZO3cuI0eOJCoqikceecR8bvr06bzzzjsA1NTUMG/ePAYPHkzfvn257bbbKC4uBkw1px544AFiY2Pp06cPM2bM4Ndff+X999/n448/pm/fvubE7YcffmDEiBEMGDCAIUOG1NrIOSEhgejoaK666io2bNjQqPtoT2Rky0asvUC+y6gQuowKsUrbQojWx83PifFzBpBxNI/dH/5GaW4FNbpqii6UAODt6cMtt9xi4yjbr5KSEjIzMwFTuZ0/0+v15nNFRUV1XpuXl2c+/1fl5eWUlJQ0Op4zZ86Yp/x69OjB3r17GTp0aK1rli5diqurKz///DMAL730Ei+88AJvvvkms2bNwtXVlSNHjqBUKsnLy8PPz49HHnmEsrIyli1bBphqNi5cuJBNmzbh7u5OSkoKV111FWfPnmXTpk2sW7eOX3/9FScnp1r1HDsaSbZspK1vRC2EaJ1Ce/tx87JRHNuYxuGvU5g56kX2nt2Co9qJk1/n4HmvN/ZO8k+/pbm7uxMSYvoF18HBodY5lUplPlffXpd+fn7m83/l4uJSJ3lriNtuuw2VSoWTkxN9+/blzJkzdZKtb775hpKSEr780lQot7q6mqioKAA2bNjAwYMHUSqV5hjrs2nTJlJSUmqVFgI4f/48W7du5dZbb8XV1RWAGTNm8PLLLzf6XtoDeccJIUQ7o1Ir6Ts1iugRwWxfcZRhirEAJO/IJPNoPqOf6INfF3emTJnCQw891KFHHCxl9uzZzJ49u95zERERZGRkXPK169atu+S56dOnNymeP9daU6lU6HS6OtcYjUbee+89xowZ06Q+LrYxYcIEPv7443rPCRNZsyWEEO2Uq48TE/8+mGH39UBlZ/rnXltcxXcv/8wjt8xi06ZN3HjjjebdJETHMmXKFJYvX45WqwVAq9Xy22+/mc8tXboUg8FUgzEvLw8wjeBpNBpzG+PHj2fTpk0cP37cfOzitOTYsWP5/PPPKS8vR6/Xs3r16pa4rVZJki0hhGjHFAoFPcaFc9OrI/CNdAdMIw6/HjoCmEY9rr/+ehtGKFraxTIg8+bNo2/fvgwZMoTevXsTFxfHr7/+CsDrr7+OVqulV69e9O3bl/nz5wNwww03cODAAfMC+S5duvDvf/+bBx54gD59+tC9e3fefPNNACZPnszkyZPp06cPY8aMoXfv3ja539ZANqK2MVttRC2E6HgMBiNH16dy6Mtk9DoD+89upaiygKf/9jSD7+iGSi2/fzdEW96IeuLEidxzzz3cdttttg6lTWnu37m8s4QQooNQKhX0nRrFDf8cjleoG3ERY7i2+y38timdr+fuouRCOWAqN3CxBIBoP+Lj4yktLWXSpEm2DqXDkWRLCCE6GK9QN27853D6TInkYmF5TXY5X8/bzTuLP+C+++5jwIABHD582LaBCotKTExk586duLm52TqUDkeeRrSRltiIWgghLkWpVjLothg6Dw7gp9cOoS2qorKiihf/uQAw1U/av38//fr1s3GkQrR9MrJlI/Hx8SxZsqTeasJCCNFS/CI9uXnpSEJifVAr1Tw9Zgmdvbsyssc47rrlHluH16rJkueO4+JTmU0lI1tCCNHB2TvbMWHeIH793xkOfgXPxi/FYNTz1bO7Gf1Yb8IHBABQUVGBk5OTjaO1PTs7OxQKhbmqumzy3X4ZjUaqq6vJy8tDqVRib2/fpHYk2RJCCIFCoaDfjdEExHiR+MYhqst11FTo+Gn5IXqOD8e1v57x48ezevVqrrnmGluHa1MqlYrQ0FAyMjI4e/asrcMRLcDZ2ZmwsDBzRf3GktIPNialH4QQrY22uIofXj1AwVnTnnyVNRW8sm0OGflnUalUrF+/nmuvvdbGUdqeXq+npqbG1mEIK1OpVKjV6maNYMrIlhBCiFqcPR2Y+tJQ9qw5wanE8ygUCnwdg8jgLDHR3Rg+fLitQ2wVVCoVKpXK1mGINkAWyAshhKhDqVIyYkYvrn6iD87Ozjw6fD7X9bqDGbHzyNhfZOvwhGhTZGSrmaqrq3nttdc4cOAA5eXldO7cmccff5zY2FhbhyaEEM0WNSwY3wh3vv/nL0xR3gXA3tUnKDpfStzd3anR11BRUYGXl5eNIxWi9ZKRrWbS6/UEBQXx3nvv8d133zF16lTmz59PZWWlrUMTQgiL8Ahy5cYlI/CL8gDAaISTief5/pVfuOO2Oxk6dCipqak2jlKI1kuSrWZycnJi+vTpBAQEoFQqufbaazEYDGRkZNg6NCGEsBh7ZzuuezGOiLhA87FVn7/L/779mqSkJOLj42WxuBCX0OGmEbVaLWvWrCE5OZnk5GQ0Gg3Tp09nxowZ9V67atUqtm7dSmlpKWFhYdx5552MHTv2ku2np6dTVVVFcHCwNW9DCCFanFKlZOyT/TgQeJpfvz1DXOex7E/fzoXSTJ576EVUClksLkR9OlyypdFoWL9+PVFRUYwcOZINGzZc8tqEhAROnTrFww8/TKdOnUhMTGThwoUYDAbGjRtX5/rKykoWL17MPffcg7OzszVvQwghbGbgtK64Bzqza5WSeeOWkZx7HPvkIA5+lUzsxAgc3ZpW+FGI9qrDJVuBgYFs3LgRhUJBcXHxJZOtvXv3cuDAARYsWEB8fDwA/fv3JycnhxUrVjBmzJhaj/zqdDpeeOEFwsPDufvuuy/Zf35+PgUFBeav09PTLXRnQgjRcrqOCsXd35kfXztIX/uh1FToOLYhjfKCSnpPjqRCVUJISIitwxSiVehwa7YUCkWDCpPt3LkTJycnRo8eXev4xIkTyc/P58SJE+ZjBoOBxYsXo1QqmTt37mXbX7duHQ8++KD5v5dffrnJ9yKEELYU2M2b618ehqufaQsfg95Iyq4sVixcTVRUNCveW2HjCIVoHTrcyFZDpaWlER4ejlpd+1sUFRVlPn+xvMOyZcsoKChg6dKlda7/qylTptQqCJieni4JlxCizXIPcOGGfwxj0ysHyEvRkFOSwcK1c9AZanjs8ccICQxlyo3X2TpMIWyqw41sNZRGo8Hd3b3OcTc3NwBKSkzbWOTk5LBhwwZOnDjBlClTuOaaa7jmmms4cuRIve36+voSExPD+fPn+eijj1i3bp31bkIIIVqAg4s9kxfEET7AnwC3EMbGTAVgaLfRBOqjKUgvsXGEQtiWjGxdRkOmGwMDA9mxY0ej246Pjyc+Pt68N6IQQrRlKrWS+Nn92fnBMW7iPkI9IxgYNpJzv+SjMKooy6ugU18/lGr5HV90PJJsXYKHhwcajabO8dLSUoB6R72EEKIjUygUjHq4Nw4udii+V4ARijPK0FfrMRqMFF0oIWZkGE7uDrYOVYgWJcnWJURGRpKYmIhOp6u1DutileSIiIhmtZ+YmEhiYiJlZWXNakcIIVqbIXd1x87ZjsNfp2A0GCnNreBoYhJvbHuescPG8/zCBHwjPGwdphAtRsZzL2HkyJFUVFSwffv2Wsc3bdqEr68vPXr0aFb78fHxLFmyhJkzZzarHSGEaI363xjNkLu6obJTotPXsOTbefx25ihvfbKMfyx8hTN7s9FV620dphAtokOObO3bt4/Kykq0Wi1geiJw27ZtAMTFxeHo6EhcXBwDBw5k+fLlaLVaQkJC2Lx5M/v37ychIaFWja2mkJEtIUR712tCZ+wcVez9+CR9QoZwJv8kbo4e9I0cTHFmGdrCSjoPCsDNX4pAi/ZNYTQajbYOoqVNmzaNnJyces+tXbuWoKAgwLRdz8qVK2tt13PXXXdddruexrq4QH7lypXExMRYrF0hhGgtUvdls/vD3/ju0Fd09etF54BoooYF4+LtiEIB/l29CO7pg1J55YeShGiLOmSy1ZpIsiWE6AjOHcpl56rjVBRXAaBUK4gaFoyrr6kgqrOXAxGDAnF0l61+RPvTIacRWwOZRhRCdCRh/f0Z/WgsO1f+Rll+BQadkZTdWaQoD9CjRw96RMVycss5OvX2wzdSFs+L9kVGtmxMRraEEB1JzqkCdvzrOJqccr4/8Tn/O7oGTzdvVv/jc0IDwwDwDHElvL8/aofmrY0VorWQpxGFEEK0mMBuPox8OBbXAAeOZx8AoLi0kG+//5/5muLMMk4knqPkQrmtwhTCoiTZEkII0aKCunlz1YN9mH/bq4R4hHNjn/sY6j6RwnN/bOtTU6EjZVcW53/Nw6Az2DBaIZpP1mzZiKzZEkJ0ZME9fRl7/yAcHf6PssxqANIP5GLQG80FT41GyE0ppjRXS+dBATh7OdoyZCGaTNZs2Zis2RJCdGTpBy9w+H9nyE/9Y3s092g7ImPDau1Pq1QqCOrhTUCMV4P2rRWiNZFpRCGEEDYT1t+f3tdF4N/FE4CckgweW34Xr7yzuNZ1BoORzOMFnN6eQVV5jQ0iFaLpJNkSQghhMwqFgohBgfQYH4Z7Z3teTXyWgvILfLnjYz5cs4q/Tr6U5VdyMvEcBWdLLtGiEK2PrNmyEVmzJYQQJgqlgsi4IAx6I3cff4j31r9KqGcEoYoYMo/lExLrW2vqUF9j4OyBCxRnl0uJCNEmyJotG5M1W0IIYaLXGUjemcnqlR/TSdcDB7VpQbxPZ3c69fOrd62WnaOK8AEBeAS5tHS4QjSYTCMKIYRoFVRqJdHDg7nnvrvoMjjMfLzgbAnpB3IxGuqODdRU6knZncW5w7lSIkK0WpJsCSGEaDXU9iq6jAwhJNaH8EEBoACj0ci2fYmk7s/GUE/CBZB3RsPJzecpL6ps4YiFuDJZsyWEEKJVsXNUEz08BH2NgcoaLS++M5dD5/dQpM1niuEWIuICUarqjhVUllaTtPU8Qd29CYzxRqGUEhGidZBky0ZkgbwQQlyag6sd0cOD2bz7Rw6d3wPA2kMf0CdkCAa9kcihQajs6iZcRgNk/VaIJsdUCNXR1b6lQxeiDostkD948CCHDh3i+PHj5ObmotFocHR0xNPTk8jISPr27cvQoUPx8fGxRHfthiyQF0KIS9PklPP4QzP5JvFL7o97mtjAQQA4ezsQNSwYtf2ln0RUqZWE9vbFN9KjpcIVol7NSra0Wi1fffUV69evJzc311wPxd7eHnd3d6qqqigvL8dgMC1aVKlUDB8+nGnTphEbG2uZO2jjJNkSQojLu5BSyM8/HsFD7cuZ3Vnoa0yfKU4e9kSNCMHuCqUfPINdCOvvj52jTOYI22jyT963337LRx99RFFREdHR0UyZMoWePXsSExODs7Oz+Tqj0UhGRgYnTpzgl19+YdeuXezcuZPhw4fz+OOPExwcbJEbEUII0T4FRHszsKYPWb8VED0yhDO7s9BV6anQVJOyI4OoESHYO13646w4q5zygnOE9ffHM8S1BSMXwqTJI1tXX30148aN4/bbbyciIqLBr6uqqiIxMZF///vfXHPNNUyfPr0p3bcbMrIlhBANc+5QLnmpGipLq/l27XoKNQXERYzB3llN9MgQHFzsrtiGb2d3Qvv4orKTQqii5TR5ZOvf//43ISEhjX6dg4MDkyZNYsKECeTl5TW1eyGEEB1Mp75+VFfU8Mm6/+PtH5eiVKjwcwsmyrcbp7dnED0iGCd3h8u2kX+2hNK8CsIHBuDm59RCkYuOrsl1tpqSaP2ZSqUiMDCwWW0IIYToOBRKBZFDgigsz8VgNKAz1LD1zDoAdJV6kndkUl545TpbVeU1JO/IIONY/iXrdglhSbJaUAghRJuhVCv515r3SE49Tb9ug7lr4v2c3XsBbXEV+moDKbsyiRwafMVRK6MRLiQVUXrBVCLCyePyI2JCNIfsjWgjf66zdfToUVmzJYQQjVBRUkXyjkxqKvXoawyk7s2iLN80qqVQKoiIC8QjsGH7JSpVCoJ7+uDfxbPe/ReFaC6LbtdTWlrKpk2bLNlkuxUfH8+SJUuYOXOmrUMRQog2x8ndgejhwajUSlR2SqKGB+MeYHoS3mgwkro3m6KM0ga1ZdAbyTiaT/KOTKrKa6wZtuigLJpsXbhwgSVLlliySSGEEKJezl6OdB4cgEIB+cW5fJu8BrcgR9NJI5z9+QL5aZoGt1eaV8HJxHMUnC2xUsSio2rUmq0LFy5c9nx+fn6zghFCCCEawzPYlaSiwzz69MNoyopxdXZlQvSt5oTp/OE89DoDAV28GtSevsbA2QMXKM4qk0KowmIa9VM0bdq0y85nG41Gme8WQgjRoiJ6hVFWYZoyXL/ta+6ecj9KtZK8lGIAso4VoK82ENTDu8GfUcVZ5ZQX/l4INVgKoYrmaVSy5ebmxoMPPki/fv3qPZ+ens7zzz9vkcCEEEKIhoiLi+P5559n37ZfeOaeF3BydCYk1gmVnZKck4WA6clDfY2B0D6+DU64air1nNmTjW+EO6F9/FCpLbryRnQgjUq2unbtSnFxMWFhYfWer66uRh5uFEII0dKef/55DPONJO/IRFtUhUKhIKi7N2p7JRlHTEtc8lM16Kv1hA8MQKFs+CxMfloJpbkVdB4UgKuvFEIVjdeoNP36668nKCjokucDAgKYN29es4Nqa7755hvuv/9+rr76aj788ENbhyOEEB2OUqlEbacialhwrX0S/aI8CR8YAL/nVkUZZaTuzcagMzSq/aryGk5vzyDzuBRCFY3XqGRr1KhRjB8//pLn3dzcuPbaa5sdVFvj4+PDjBkzGDlypK1DEUKIDs3eSU3UiGD01PDuZ69xoSAH7zA3IuOCzKNZJRe0pOzOQletb1TbRiPknCoiaet5KkqqrBG+aKdkAtoCRo4cyfDhw3FxaVgBPSGEENaTU5DJjBdu5aP//YsX33kWg8GAR5ALUcODUapNCVd5QSUpOzOpqdQ1un1tURWntpwnN6VYls6IBml2sjV69OgrloRoTbRaLStWrGD27Nlcd911jBo16pJTf1qtlrfeeosbbriB+Ph4ZsyYwebNm1s4YiGEEI3h5eWFpqQYgF9PHSQp7QQAbn5OdBkZgtre9NFXoakmeUcm1drGFzI16Iyc/zWPlN1ZVFc0PmETHUuzk622ltVrNBrWr19PTU3NFaf9EhIS2LRpE9OnT+fVV1+lW7duLFy4kJ9++qmFohVCCNFYXl5efPLJJ/Tu3ZuN//mR7lG9zOecvRzpclUodr+v66oqq+H09kwqS6qb1FdJjpaTiecaXK1edEwdrlpbYGAgGzduRKFQUFxczIYNG+q9bu/evRw4cIAFCxYQHx8PQP/+/cnJyWHFihWMGTMGlUrV6P7z8/MpKCgwf52ent60GxFCCHFJo0eP5tChQyiVSlL3ZlOcVW4+5+hmT9erQkjZlUVVWQ01FTpO78ggengwzl6Oje5LV6UndV8OPuFaOvX1RWXX+M8G0b51uGSrofVVdu7ciZOTE6NHj651fOLEiSxatIgTJ04QGxvb6P7XrVvH6tWrG/06IYQQjXPxF+KIwYGc3p5BedEfi9rtne3oMiqEM3uyqSiuQl9tIHlnJpFDg3Dzc25SfwXpJZTlawkfEICbf9PaEO2TLJC/hLS0NMLDw1Gra+ejUVFR5vMX6XQ6qqqqMBgM6PV6qqqq0Ovrf8plypQprFy50vxfQkKC9W5CCCEESrWSyGHB7DqyhbzCP9YY2zmq6TIyBFdf02iWQWfkzO5sNH8aBWusqnIdyTszOf9rXqPLS4j2S5KtS9BoNLi7u9c57ubmBkBJyR8blX788ceMGzeO77//nk8++YRx48bx448/1tuur68vMTExnD9/no8++oh169ZZ5waEEEIApn19b73jFma9/AivrVlc65zKTknU8GDcA00jUUaDkdT92RSkN30zaqMRclOKObn5HOUFFc2KXbQPHW4asTEaOuU4Y8YMZsyY0ai24+PjiY+PJykpiQcffLAp4QkhhGgAtVrN7t27AUjcs4mjkw7Ru2t/83mlSklkXBDpB3MpOl8KRjh3MBd9jQH/aM8m91tZWkPS9gwCungR1NMHZSOq1ov2RUa2LsHDwwONRlPneGmp6YmT+ka9hBBCtD4+Pj68/vrr+Pv789///peJt9Qtzq1QKggf6I9vpIf5WObRfLJPFDTrqXujAXKSiji1+RzaosomtyPatmaPbN199924ura/HdEjIyNJTExEp9PVWreVmpoKQERERLPaT0xMJDExkbKysma1I4QQ4sruuOMOrrvuOvMvytVaHbnJxbWuUSgUhPbxRW2vJOdUEWCqGK+vMRDSu+EbWNenQlNN0tYMArt7ERjj3ai9GUXb1+yRrQceeKBdVk4fOXIkFRUVbN++vdbxTZs24evrS48ePZrVfnx8PEuWLGHmzJnNakcIIcSVKRSKWjMSob198Qiq+9mlUCgI6uFDSG9f87G8MxrSD+ZibOaeiAaDkazfCknaer7Jdb1E22T1NVtGo5GMjAwcHBzw9/e3dncNsm/fPiorK9FqtYCp1tW2bdsAiIuLw9HRkbi4OAYOHMjy5cvRarWEhISwefNm9u/fT0JCQpNqbP2ZjGwJIYTtKBQKqj012JXaU1NW96lB/2hPVHZKzh3MBaDoXCn6aj0RQwJRqpo3TlFeVMXJLecI6eWLX5RHs0bMRNugMFqoBPzOnTvZvXs3jz/+uPmJvezsbObNm2cu3DlmzBgSEhJQKm27VGzatGnk5OTUe27t2rUEBQUBpu16Vq5cydatWyktLSUsLIy77rqLsWPHWiyWiwvkV65cSUxMjMXaFUIIUb/Kykr++c9/8s9//pMXFyzkun63XXLLneKsMs7+nIPx93zM1deJyKFBqOws8znm7u9M+EB/7J3tLNKeaJ0slmw988wz5ObmsmbNGvOx+fPns3v3bvr3709JSQlnzpzh6aefZvLkyZbosl2QZEsIIVrWoUOHGDRoEAaDAUdHRw7sOURNuj36S9TFKs3VkrovG4PO9HHp5OlA1PBg7BwsUyleba+kU19/vMPcLNKeaH0sNsSUlpZG9+7dzV+XlZWxb98+xowZw+uvv86//vUvwsPD2bhxo6W6bNMSExOZN28eb7/9tq1DEUKIDqV///7MnDkTtVrN7NmziezWmYghgVxqNs/N35noESGoLm5gXVxF8o6MJm1gXR9dtYG0n3NI3ZeNrrr+gtiibbNYslVcXIyPj4/562PHjqHX681Tbmq1moEDB5KZmWmpLts0WSAvhBC289JLL3Ho0CEWL16Mk5MTHkEuhPbxu+T1Lt6OdBkVip2jaTSrqvT3DaxLLbfQvSijjBM/nUOT0/QK9qJ1sliy5eLiUquq+uHDh1EqlfTp08d8TK1WU1kpdUaEEELYlpubW539bf2jPS9bxNTJ3Z4uV4Vi72JaX1VToSN5Ryba4qpLvqaxaip0pOzK4tzhXNnupx2xWLIVFhbGnj17KCkpoaysjM2bN9OlSxfzYnmAnJwcvLy8LNVlmybTiEII0boYDAZC+/jiGXzpckYOLnZ0vSoERw97AHRVepJ3ZFKWb9ltefLOaGS7n3bEYsnWTTfdRH5+PjfeeCM333wzBQUFTJ061Xxer9dz7NgxoqOjLdVlmybTiEII0ToYjUa++OILunXrxsmTJ+k8OBBnL4dLXn9xA2sX74sbWBtI2Z1l8em/i9v9ZP1W0OwaX8K2LJZsjR49mr/97W9ERETQqVMnHnroISZNmmQ+f/DgQSorKxk8eLCluhRCCCGa7aOPPmLatGkkJyfzzDPPoFIriRoWjL3zpUtRqu1VRI0Ixi3g9w2s9UZS92ZTeL7UorEZDZB90lQItaLEctOVomVZrPSDaBop/SCEELZVUVFBTEwM58+fJz4+nm+++QYXFxe0mipOb8tAX3PptVMGg5H0Xy5QnPlHgerQvn74/WmPRUtRqhSE9PLBL9pTCqG2MVavIC+EEEK0Zk5OTrz33nsoFAomTpxoTmScPRyIGBLImT1Z5qKmf6VUKug8OIDzh5UUnDU9JJbxax76aj0BMV4WTYoMeiPnj+SjydZKIdQ2RpItG5HteoQQovW4VLFtj0AXOvX159yh3Eu+VqFQ0KmfHyp7JbmniwHIPlGIrtpASKyPxUehSnK1nEw8R2hfP3zC3K/8AmFzMo1oYzKNKIQQrV/G0Twu/J5IXc6F00VkHS8wf+0d7kZYP38USutM+3mFuhLWzx+1harZC+uw7SaFQgghRCt08uRJPv74Y/PXIbG+eIa4XvF1AV296NTvj+KohemlpO3PwaC3Ts0sUyHUdDTZUgi1NZNkSwghhPiTZ555htjYWB588EFSU1MB01RhxKAAXC5TEuIi3wgPOv9p+x9Ndjln9mRfdqF9c9RU6knZnUX6wQvoa2S7n9ZIki0hhBDiT9RqNXq9nurqal599VXzcaVaSdTwy5eEuMgrxJXIYcEoVaaMqyyvgpRdmeiqrJcM5aeVcDLxPKV5Ugi1tZE1Wzby5wXyR48elTVbQgjRSpSUlNCvXz+mT5/OnDlzcHZ2rnW+ISUhLiovrOTM7izztY5udkQND2lQwtZUCgX4d/EkuKcPSpWMqbQGkmzZmCyQF0KI1qempgY7u0uXVtBkl3Nm76VLQvxZhaaKlN1Z6CpNo1p2TmqiRwTj6GZvqXDr5eRhT+eBATh7OVq1H3FljU55DQYDqamp5Ofn1zmn0+n49ddfLRGXEEIIYTOXS7QAPIJcCO3td9lrLnLycKCrlTewrk+FppqkrRlknyyU7X5srFHJVk5ODtOnT+e+++7j5ptvZt68eWg0GvP5kpISZs2aZekYhRBCCJsqKyujoqL2Wij/aE/8oz0b9Pr6NrBO2Wn5Daz/ymAwkvVbAae3Z1BZVm3VvsSlNSrZWrFiBX5+fnzxxRd8+OGH1NTU8Pjjj9ca5ZJZSSGEEO2FwWDgo48+omvXrixdurTO+dA+vngEuTSorb9uYK2vsc4G1vUpK6jkVOJ58s4UW70vUVejkq0jR47w6KOP4u/vT2RkJMuWLaN379488cQTXLhwAUD2axJCCNFupKam8tBDD5Gdnc0rr7xCVlZWrfMKhYKIIYE4e165JAT8aQNr/9obWBdlWHYD6/rodQbOHc4jeVcm1RU6q/cn/tCoZKuysrLWPLZCoeDZZ59l0KBBzJw5k8zMTIsHKIQQQthKdHQ0jz76KABjxoypM5UIoFIriRoWhJ1Tw54wVKmVRA4L+qNIqhHO/nyB/FTN5V9oISU5Wk7+lE7heesneMKkUclWWFgYSUlJdY7PmTOHuLg45s2bZ7HAhBBCiNbghRdeYO/evaxfv56oqKh6r7F3tiN6WBAqdcM+Vi9uYO3T+Y+9Dc//mkdOUpFFYr4SXbWBtP05pO3PRlcthVCtrVGFPkaNGsVPP/3E+PHj65ybPXs2RqORdevWWSy49kw2ohZCiLbBx8cHHx+fK17n7OVI58EBpO7NpiHLl80bWNspyU0uBiD7twL0NXqCe1p+A+v6FJ4vozS/kvAB/ngENmztmWg8qbNlY1JnSwgh2pcLp4vIOFq3PNLl5CQVkf3bHxtY+3R2p1M/vxZdB+0X5UForC/KBo7OiYaT76gQQgjRCL/++iv//Oc/L3k+oKsXflEejWozMMaLTn3/qNtVcLaEsz9fwKBvufGQvDMaTiSeo6xAtvuxtGYnW6NHjzY/iSiEEEK0Z7NmzaJfv37Mnz+fn3/++ZLXderjh3ug8yXP18c30oPOgwPg98Gs4swyUvdmoddZZwPr+lSV1XB6ewaZx/MxSCFUi2l2siWzkEIIITqKPy/3eOutty55nUKpIHJIIE4ejduSxyvUjcihQSh+38C6NLeClJ3W3cD6r4wGyDlVRNKW82g11q1y31HINKIQQgjRQPfffz9xcXG88cYbrFq16rLXquxURA8Pxs5R1ag+PAJdiB4RjMrO9BGtLaoieUfL18bSFleRtOU8OUlFMrDSTJJsCSGEEA1kb2/Pnj17eOqpp3B0vPIGz/bOdkQNC0apbtxCd1cfJ7qMCkHtYErUKkurSbbBljsGvZHMY/mc3p5BVVlNi/bdnkiy1UzFxcU8++yzjB8/njvuuINffvnF1iEJIYSwosY+Ieji7UjnQYE09sHCPzawNlVpqtbqSN5u/Q2s61OWX8nJxHMtVni1vZFkq5lef/11vL29WbduHY899hgvvPBCrc25hRBCtG9lZWUYDJdfxO4V4kpwL99Gt+3gakfXUaE4uv+xgXXyDutvYF0fvc5A+qFczuzJoqZStvtpDEm2mkGr1bJz507uu+8+HB0dGTFiBNHR0ezatcvWoQkhhLCyyspKXn/9dSIiIvjqq6+ueH1gjBe+Ee5XvO6v7JzUdBn1xwbWBp2BlF1ZaLKtv4F1fYqzyjnx0zmKMqUod0N1qGRLq9WyYsUKZs+ezXXXXceoUaP48MMPL3ntW2+9xQ033EB8fDwzZsxg8+bNta7JyMjAycmJgIAA87HIyEjS0tKseh9CCCFsb/v27cyePZv8/HwWLFiAXn/lJwbD+vnj7t+4khDwpw2sA37fwNpgJHVfNoXnShrdliXoqvSk7s3m7C8X0NfIdj9X0uxk6+6778bV1dUSsVidRqNh/fr11NTUMHLkyMtem5CQwKZNm5g+fTqvvvoq3bp1Y+HChfz000/mayoqKnBxqb29gYuLS70blQohhGhfxo8fz/DhwwHo168fpaVX3thZoVQQEReIk3vjSkLA7xtYDw3CM/SPDazTD+SSm1Lc6LYspSC9hJOJ5yjNk8+9y2nU3oj1eeCBBywRR4sIDAxk48aNKBQKiouL2bBhQ73X7d27lwMHDrBgwQLi4+MB6N+/Pzk5OaxYsYIxY8agUqlwcnKivLz2MG55eTlOTk6XjCE/P5+Cgj+2ZEhPT7fAnQkhhGhpCoWCd955B6VSSe/evRv8OrW9iqjhwSRtPU9NZeNGhZRKBZ0HBZBhpyQ/zTSqlXk0H321nsDu3i26vc9FVeU6kndk4N/Fk+CePihVHWrSrEGanWy1JQ39Idy5cydOTk6MHj261vGJEyeyaNEiTpw4QWxsLKGhoVRUVJCbm4u/vz8AaWlp9W7UfdG6detYvXp1U29BCCFEK9K3b98mvc7BxVQS4vSODAy6xtWwUigUhPb1Q+2gIudUEWAqQqqr0hPat2X3U7zIaIQLp4spuaCl8+BAnD0cWjyG1sziyZbBYCAvL4+8vDx0uvqfVmjqD2dLSUtLIzw8HLW69rcnKirKfD42NhZnZ2dGjBjBRx99xKxZszh48CDJycksXLjwkm1PmTLFPOwMppGtl19+2To3IoQQotVy8XYkYlAgqfuyaWzNUIVCQVAPH1T2KjJ/3/Q6P60EXY2B8IEBKJUtn3ABVGiqSdp8nqCePgR09bRJ4tcaWSzZMhqNfPrpp3z++eeUlFx+wd62bdss1a1VaDQagoOD6xx3c3MDqHV/s2fPZvHixUyePBlfX19efPFFPD09L9m2r68vvr6+JCYmkpiYSFmZPM0hhBDtxZ49e8jKyuLmm29u0PWeIa6ExPqS8XvC1Fj+0Z6o7VWkH7wARijOKENfbSAiLhCV2jbTeQaDqRBqSXY54YMCcHCxs0kcrYnFkq1//etf/Oc//8HLy4trr70WHx8fVKrGbVHQmjQ0G/f09GTp0qWNbj8+Pp74+HiSkpJ48MEHG/16IYQQrYdOp+OGG25gw4YN+Pj4cM0115h/Qb+SgK5eVJXXkHemaTUavcPcUNkpSdufg9FgpDRXy5ldWUQOC0Jtb7vP4dL8Ck4mnqNTHz98Oje+5EV7YrFka9OmTXTq1IkPPvgAZ+fGP9bamnh4eNRbmPTikybu7s3/oZGRLSGEaD/UarX5s6GgoID/+7//Y9asWQ1+fac+flSX16DJ0Tapf48g036KZ/ZkY9AZKC+sJHlHpmlvRifbLc/W1xg4e+ACmpxywvr5m7cf6mgsNsZYUVHB0KFD23yiBaZaWenp6XXWnKWmpgIQERHR7D7i4+NZsmQJM2fObHZbQgghbG/hwoVERkayatUqnnjiiUa91lQSIghnz6YvLHf1/ct+iiXVv+9p2LL7KdanKKOMEz+l26wQq61ZLNmKjo6uVdKgLRs5ciQVFRVs37691vFNmzbh6+tLjx49bBSZEEKI1io6Oprk5GTuv//+Og9YNYRKrSRqWBD2zRiJcvZ0oOtVIdg7/7Gf4mkb7af4VzWVelJ2Z3HucC4G3eW3N2pvLDa2eM899/D888+TlJRETEyMpZq1uH379lFZWYlWaxqqTU9PNy/Yj4uLw9HRkbi4OAYOHMjy5cvRarWEhISwefNm9u/fT0JCgkXWosk0ohBCtD9KZfPGMOyd7YgaHszpbRnom5iQOLja0/WqUFJ2Z1FZUo2uSk/KzkwihwXh6nPpOpAtJe+MhtJcLZ0HBZq3IGrvFEZjYx84vbRt27bx+uuvM3z4cKKioupUV79owoQJluqy0aZNm0ZOTk6959auXUtQUBBg2q5n5cqVbN26ldLSUsLCwrjrrrsYO3asReO5uEB+5cqVrTpJFUII0XjV1dXY2ze+Wrwmu5wze7MwNmMASFet58yeLLSFplEthUpBxJBAPALr/2xuaQolBHbzJqibNwoblapoKRZLtqqrq3n11VdJTEzkYpN/faLPaDSiUChafemHliTJlhBCtD8lJSW8+eabvPvuuxw4cIDQ0NBGt5F3pphzh/OaFYdeZyBtXzalub9vp6OA8IEBeHdq2JOSLcHF25HOgwJwdGt8UtpWWGwa8Z133uGnn34iKiqKq666qs2XfrA2mUYUQoj2a+nSpeaC1S+//DLvv/9+o9vwi/KkqqyGC8nFTY5DpVYSOSyY9F8uUJxZZtpP8ZcL6GsM+EV6NLldSyovrOTk5nOExvriF+Vp63CswmIjW1OmTCEwMJD33nuvSQsDOyoZ2RJCiPanoKCAiIgItFotDz30EO+++26TqqkbjUZS92ZTnNW8p/iMRiPnD+dRcPaPotxBPbwJiPFqVVXe3QOdCR8Q0KyHBFojiz2NWF1dTb9+/STREkII0eH5+PiwevVqTp48yXvvvdfkhEahUBAxOBAXr+btNahQKOjUz4+Arl7mY9knCsk8lo8Fl243W0mOlpOJ5yjKKLV1KBZlscwoJiaGjIwMSzXX7sk0ohBCtG833nijRdpRqpVEDQ/m1JbzVGvr33O4IRQKBcG9fFDZK8k6birVlJeiQV9tIKy/f6tZpK6r0pO6Lwef8HI69fVDZdf2lyRZbGTrwQcf5Oeff2bPnj2WarJdk6KmQgghGsrOUU308GBUds3/2A7o6kVYf3/z14XnSknbn4NB37pqXxWkl3Iy8RyleU2rqt+aWGxk68CBA/Tt25f58+fTr18/oqOj6y39oFAouPfeey3VrRBCCNHqGY1GEhMTCQ4OpmfPnk1qw8nDgci4QFJ2N68kBIBPZ3dUdkrO/pKD0fB7qYk92UTGBVkkobOUqnIdyTsy8e/iSXBPH5Sq1hNbY1hsgfxVV13VsA6l9EMtskBeCCHat4yMDO6880527NjB5MmTWb9+fbPay0/TkH4w1yKxleZqSd2bjUFvSgWcvRyIGhbcKvcwdPKwp/PgQJw9mrd+zRYsNrL15ptvWqopIYQQot3w9fU17627YcMGDh48yIABA5reXoQHlWU1XEgqanZsbv7ORI8M4cyeLPTVBrRFVSTvyCRqRHCreyKwQlNN0pbzBPXwIaCrZ6t6ivJKLPad7Nu3r6Wa6hBkgbwQQnQMjo6OLFiwgGXLlrFo0SL69evX7DZDevlQXV5DUUbzP0NcvB3pMjKElN1Z6Cr1VJZWk7w9g+gRITi42jW7fUsy6I1kHsunJKec8IEBOLi0rvguxaLb9YjGk2lEIYRo/3Q601OEliyPZNAbSN6RSVlBpUXaqyqvIWVnpvmJR7WDiugRwTi10mk7lZ2STn388OnsbutQrshiK82OHTvGO++8Q0FBQb3nCwoKeOedd/jtt98s1aUQQgjRJqjVaovXoVSqlEQODbLY6JODix1drwo1b5ujq9KTvCOT8kLLJHOWpq8xcPbABc7szaamsuklMVqCxZKttWvXsnv3bnx8fOo97+Pjw549e/j8888t1aUQQgjRZhkMzS+1cLEkhKUWtNs5qekyKgTn34uo6msMpOzMpDS39ZZfKM4s4+RP5yjOar3LciyWbJ06dYrevXtf9po+ffpw4sQJS3UphBBCtDkFBQXMnTuX0aNHW6R6u6ObPVFDg1CqLLNg3DR9GIKrnxNgWid1Zk+WaW/FVqqmSs+ZPdmkH7iAvkZv63DqsNiYZnFxMb6+vpe9xtvbm6Ki5j890R7IAnkhhOiYbr75ZnMJpP/9738WqTTv6utE50EBpO3PwRIrsVV2SqKGBXH25wtosssxGiBtfw5hA/zxCW+9a6Tyz5ZQmqclfGAAbn7Otg7HzGIjW66uruTmXr7ux4ULF3BycrJUl22aVJAXQoiO6ZlnngHAwcGBs2fPWqxdr1A3gntdftCjMZQqJRFDAvHq5GY+du5gLrkpxRbrwxouFkLNOJLXaqriWyzZ6tmzJzt27ODChQv1nr9w4QI7d+6kV69elupSCCGEaHOuvfZalixZQkpKCrNnz7Zo24ExXvhFeVisPYVSQfhAf3wj/2gz82g+2ScLW9UG1n9lNMKF5GJObT6Ptsj2C/wtlmxNmzaNqqoqHn/8cTZt2kR+fj4A+fn5fP/99zz22GNUV1dz6623WqpLIYQQos1RKBTMnTuX0NBQq7TfqY8fHkF1t8trKoVCQWgfXwJivMzHck4Wknk0v1UnXAAVJdVcSC62dRiWW7PVp08fnnzySd5++22WLFkCmP6CLv5FKBQKZs6cKcVPhRBCCCtSKBVEDAnk9PYMtEVVlmlToSC4pw9qeyWZx0wlnvLOaNDXGAjr749C2XaquduCRYt+3HjjjfTt25dvvvmGU6dOUVZWhqurK927d2fq1KlERkZasjshhBCizTMajWzYsIFx48bh6OhokTZVaiVRw4JJ2nreXKTUEvy7eKGyU3HukGmNduG5UvQ6A50HBbTZTaJbgsU3PoqMjLT4HLQQQgjRHv3yyy88+uijHDx4kDfffJMnn3zSYm3bO6mJHhHM6W0Z6Kott1Dcp7M7KjslZ382PfmoySrnzJ5sIocGoVJLwlUf+a4IIYQQNmJnZ8fBgwcBWLx4MVqtZYuHOrk7EDEkCKWFp/k8Q1yJHBZsru1VlldBys5MdNWtr8ZVa9C6tvTuQKTOlhBCiL59+3LLLbeQnJzMyy+/bJXySO4BznTq50f6wcuXZ2pKu1Ejgkndk42+xoC2qIrkHZlEDw/GzknSiz+TjahtTDaiFkKIjk2j0eDm5oZSad3Jpsxj+eQkWb6weIWmipRdWeiqTKNa9i5qokeE4OBimT0bm8s7zI2IwYE2jUGmEYUQQggb8vDwsHqiBRDcywevUFeLt+vk4UCXq0KwdzaNZlWX6zi9PYMKjWWehGwPJNkSQgghOgCFQkHnQQG4+Fjmicc/c3S1p8uoUBzdTKNZuko9yTsyKS+osHhfbVGzki2dznKPkwohhBAdXVZWFo8//jjPP/+8VdpXqpREDQ2yyhSfvbOaLqNCcfZyAEBfYyBlVxYlFyy76L8talaydeONN/Luu+9adG8nIYQQoiMqLy+nV69evPfee7z22mtkZ2dbpR87RzVRw4NQ21t+ckvtoCJ6RAiufqaF/ga9kdQ9WRRldOyHwZr1nS4vL+fzzz9n+vTpPProo2zYsMHij60KIYQQHYGLiwv33nsvACqVikOHDlmtL2uVhABQ2ZkKqnoEm7YMMhrh7M855KdpLN5XW9GsZOt///sfTzzxBJGRkZw4cYJly5Zxww03sGTJEo4ePWqpGFu9b775hvvvv5+rr76aDz/80NbhCCGEaKOee+45nnnmGVJTU5k0aZJV+3IPcKZTfz+rtK1UKYgYHIh3uJv52PnDeVywwtOQbYHFSj8kJSXx3XffsXnzZkpLS00bV4aGMmnSJK655hq8vb0t0U2rtHPnTpRKJT/88AOdO3dmxowZDX6tlH4QQghhS9YqCQGmrYiyjheQ+6fNoP27eBLcyweFomX2U2wNpR8sVnUsJiaGmJgYnnjiCXbs2MHGjRs5fPgw//rXv1i5ciVDhw5l0qRJxMXFtcgjri1p5MiRAOzatcvGkQghhBCNE9zLh6ryGqusq1IoFAT38kFlryL7N9MG1rnJxeirDXTq79diCZetWbzEq52dHWPHjmXs2LHk5uby/fff8/3337Nr1y52796Nt7c3X3/9taW7RavVsmbNGpKTk0lOTkaj0TB9+vR6R5m0Wi2rVq1i69atlJaWEhYWxp133snYsWMtHpcQQgjRVHq9nj179ph/qbeGiyUhqit0lBdUWqX9wBgv1PZKzh/OA6AgvQR9jZ7wQYHmLX/aM6sOMfn7+3Pvvffy6quvEhsbi9FopLCw0Cp9aTQa1q9fT01NzRV/KBMSEti0aRPTp0/n1VdfpVu3bixcuJCffvrJKrEJIYQQjbVhwwZiY2O56qqrOH78uFX7smZJiIt8IzzoPDiQi4NZxVnlpO7NQq+z3CbZrZXVNi+qqKhg69atfPfddxw/fhyj0YijoyNXXXWVVfoLDAxk48aNKBQKiouL2bBhQ73X7d27lwMHDrBgwQLi4+MB6N+/Pzk5OaxYsYIxY8agUqkAmDVr1iV/wG+77TYeeOCBRseZn59PQUGB+ev09PRGtyGEEKL9O3XqFCdPngRgwYIFVpkV+rOLJSFOb8tAV22dBMgr1BWVXRBp+3Iw6I2U5po2sI4aHozaXmWVPlsDiydbR44c4bvvvmPbtm1UVVVhNBrp1q0bkyZNIj4+HmdnZ0t3CdDged+dO3fi5OTE6NGjax2fOHEiixYt4sSJE8TGxgLwxhtvWDhKWLduHatXr7Z4u0IIIdqXxx57jOXLlxMREcHMmTNbpM+LJSFSdmditNKAk3uAC9EjgjnTgTawtshd5eXlsWnTJr7//nuysrIwGo24u7szefJkJk2aRGRkpCW6sYi0tDTCw8NRq2vfelRUlPn8xWSroXQ6HXq9HoPBgF6vp6qqCrVabR4h+7MpU6YwfPhw89fp6em8/PLLTbgTIYQQ7ZmzszM///wzISEhLbqQ3D3AmbB+/qQfzLVaHy4+TnQZFWLewLqypJrT2zNMG1i7to4NrC2pWcnWli1b+P777zlw4AAGgwGlUsmgQYOYOHEiI0eOrJPQtAYajYbg4OA6x93cTLVASkpKGt3mxx9/XGu06pNPPuG5557j2muvrXOtr68vvr6+JCYmkpiYSFlZx66qK4QQ4tJCQ0Nt0q9vhAeVZTVWrYvl5OFA16tCSdmVSbVWR7VW93vCFYyTh4PV+rWFZmVDCxcuBEzrpSZOnMi1116Lv7+/RQKzJkv/hjBjxoxG1dYCiI+PJz4+3lxnSwghhGhNQnr5UG2lkhAXObjamRKu3VlUllSjqzJtYB05LAhXHyer9dvSmpVsjR07lkmTJjFgwABLxWN1Hh4eaDR1twwoLS0FwN3dvUXikJEtIYQQjZGamsqiRYu46667zA94WZNCoaDzwACqtTrKCy1fEuIiOyc1XUaFcGZ3FtqiKvQ1Bs7syiIiLhD3ABer9duSmpVsLViwwFJxtJjIyEgSExPR6XS1pjlTU1MBiIiIaJE4ZGRLCCFEQx04cIChQ4ei0+k4efIkY8eObZF1XEq1kqhhQSRtPU9Vuc5q/ajtVUSPDCFtXzaluRW/b2CdTfigALxC3a7cQCtn0TpbOp2Ozz//nIceeogJEyZw9dVXm88lJyezfPlyzp8/b8kuG23kyJFUVFSwffv2Wsc3bdqEr68vPXr0sFFkQgghRP369+9P9+7dAdPnaVpaWov1beeoJmpYMCo76+7+olIriRwajGetDawvkJ/a9jewttgK9qqqKubMmcPx48fx8PDAxcWFyso/hh2DgoL47rvvcHNzs9pIzr59+6isrESr1QKmJ/22bdsGQFxcHI6OjsTFxTFw4ECWL1+OVqslJCSEzZs3s3//fhISEup9gtAaZBpRCCFEQymVSpYsWcL+/fuZPXs2Hh4eLdq/k4cDkXGBpOzOslpJCDBtYN15SCDnD+VRkG56YO38r3noqvUExHi12e19LLYR9apVq/jkk094+OGHuf322/noo4/4+OOPzckOwNNPP01JSQkffPCBJbqsY9q0aeTk5NR7bu3atQQFBQGm7XpWrlxZa7ueu+66yybb9chG1EIIIdqK/FQN6YesVxLiIqPRSNZvBeSeLjYf84v2ICTWt9EJV7vaiHrLli307duXO+64A6j/ib/g4GCSk5Mt1WUdn3/+eYOuc3Z25qmnnuKpp56yWixCCCFEe+Mb6UFVeQ05ViwJAaYcIqSXL2p7FVnHTbuu5KVo0FcbCOvvj0LZtka4LJZs5ebmXnFPQmdnZ8rLyy3VZZsm04hCCCGao7q6mrS0tBafFQnu5UOVlUtCXBTQ1Qu1vYpzv4+mFZ4rRV9joPPgAJQq664hsySLRerk5FRvSYU/y8rKavF55tYqPj6eJUuWtNgWDEIIIdoHo9HI6tWriYmJYcKECVRXV7do/wqFgs6DAnD1cWyR/nw6uxMxJBDF7xmLJrucM7uz0NfoW6R/S7BYstWzZ0927959yZGa3Nxc9u3bR58+fSzVpRBCCNHhKBQK/vOf/3D27FnOnj3Lhx9+2OIxKFVKIocG4eDSMlvreIa4EjUsGKXaNH1Yll9J8o4saiqtV47CkiyWbN12222UlpYye/Zsjh07hl5vyjgrKys5ePAgc+bMQafTceutt1qqyzYtMTGRefPm8fbbb9s6FCGEEG3MxT11x48fz6BBg2wSg52jmujhwajtW2Y6z83fmegRIah+769CY9rAuqq8pkX6bw6LPY0I8O233/Lmm29iMNR9LlSpVDJ79mwmT55sqe7aBXkaUQghRFMcP36cXr162ToMSvO0pOzMwmCwWDpxWZWl1aTsyqKmwjSqZeeoImpECE7u9vVe366eRgSYOnUqffr04dtvv+XkyZOUlJTg4uJC9+7dueGGG1qsOrsQQgjR3rWGRAvAzc+ZsAH+nP3lQov05+hmT9erQkjZlUVVWQ01lXqSd2QQNSwYF++WWUfWWBZNtgA6d+4sJRWEEEKIDsQn3J2q8hqyTxS2SH/2znZ0uSqUM7uzqCiuQl9tIGVnJpFDg3Dzd26RGBqjxZ+brG+KUQghhBBNd+LECe655x6Kiqxb/+pygnv44BPecvsY2jmo6DIyBFdfJwAMeiNn9mRRnNn6SipZLNnasGHDFa/R6/UsWrTIUl22abJAXgghhCWsWrWKXr168cknn/Daa6/ZNJawAQG4+Tm1WH8qOyVRw4PwCPp9P0UDpO3PoeBsSYvF0BAWS7Zee+01du7cecnzRqORl156qdb2PR2Z1NkSQghhCfHx8ajVplVBa9euRaezXTkEpVJB5NCgSy5Wt0qfKiURQwLxDvtjVO3coVwunLbdKN9fWbTO1qJFizhy5EidcxcTra1btzJlyhRLdSmEEEJ0eJ07d+bZZ5/l1Vdf5ciRI+bEy1bU9iqihgdj56hqsT4VSgVhA/zxi/6jcHrW8QKyjhdgwaILTWaxZGvJkiUEBwfz3HPPcebMGfNxo9HIyy+/zObNm5kyZQqzZ8+2VJdCCCGEwFR365lnnsHZuXUsDndwsatVhLQlKBQKQmJ9CerhbT524XQRSVvOt1hZikuxWLLl6urKa6+9hqurK8888wzZ2dnmEa3ExESuu+465syZY6nuhBBCCNGKuXg7EjEoEEUL7hmtUCgI7OZNaF8/87HMYwVsfedX9DrbPaBn0aKmAOfPn+exxx7Dzc2Nrl27snXrViZPnswzzzxjyW7avD9vRH306FEpaiqEEMJitFotWq0WX19fW4fChdNFZBzNb/F+C8+Xkn7gAvye5Yx5si+RcUEtHgdYofRDp06dWLp0KYWFhWzbto1JkyZJolUPWSAvhBDC0qqqqnjnnXeIiopqNZ+9AV298I/2bPF+vTu5ETk0CKVaQZ8pkTZLtKAZI1urV6++7PkjR46QkpLCDTfcgFL5R06nUCi49957m9JluyTb9QghhLCU4uJiIiMjKSoqQqlUcuLEiVbx2WI0Gkndm01xVnmL9+3oZkeP8eEoWnI+8y+a/MjCRx991KDr1qxZU+trSbaEEEII6/D09OSZZ55h/vz5XH/99TZ/MvEihUJB58GBJG/PoLyoqkX7dvZytGmiBc1Itt58801LxiGEEEIIC3jyyScZP348AwYMsHUotajUSqKGB3Nqy3mqtbarBWYLTU62+vbta8EwhBBCCGEJLi4urS7RusjOUU308GBOb89AV91xtu9r8b0RhRBCCNFxOXk4EDEkCKXStlN7LanJydbcuXNJSkpq0murqqr4z3/+wzfffNPU7oUQQgjRAAcOHCAhIcHWYdTiHuBMp35+V76wnWjyNGJubi4PP/wwffv25ZprrmHUqFG4uLhc9jWnTp3ixx9/JDExkYqKCubPn9/U7tu8P9fZEkIIIaxh1qxZ5jXW8fHxjB492rYB/YlvhAdVZTXkJLWePQytpcmlH4xGI9999x1r1qzhwoULKJVKwsLC6Nq1K15eXri5uVFVVUVJSQkZGRkkJSVRXl6OQqHg6quv5sEHHyQoyHY1L1oLKf0ghBDCWj7++GNzBYBp06axdu1aG0dUm9Fo5OzPORSet97Ag3eYGxGDA63WfkM0eWRLoVAwadIkrr32Wvbu3cv333/PkSNH+PHHH+tcq1QqiYyMZOTIkUyePLlVVLQVQggh2rs777yTjz/+mJtuuon777/f1uHUoVAoCB8YQLVWR1lBpa3DsZpmF+BQKpUMHz6c4cOHA3D27Fny8vIoKSnB3t4eT09PIiIicHV1bXawQgghhGg4lUpFYmKircO4LKVKSdSwYE5tPU9VWY2tw7EKi1c769y5M507d7Z0s0IIIYRop9QOKqKHBZO07Xy7LAkhpR+EEEKIDqSkpAS9Xm/rMOpwdLc37WXYDktCSLIlhBBCdADl5eW88sorREREtLqF8he5+TkTNsDf1mFYnCRbzVRdXc0///lPbrrpJiZMmMAjjzzCsWPHbB2WEEIIUcv+/fuZN28ehYWFvPDCC+h0rXPLHJ9wd4J6eNs6DIuSZKuZ9Ho9QUFBvPfee3z33XdMnTqV+fPnU1nZfp+qEEII0faMGTOGq6++GoVCwdChQ1t1ncfgHj54h7nZOgyLkWSrmZycnJg+fToBAQEolUquvfZaDAYDGRkZtg5NCCGEqOXtt9/m+PHjfPzxx3h6eto6nMsKHxiAm6+TrcOwCIs/jWgrWq2WNWvWkJycTHJyMhqNhunTpzNjxox6r121ahVbt26ltLSUsLAw7rzzTsaOHdvsONLT06mqqiI4OLjZbQkhhBCW1LNnT1uH0GBKpYLIYUEkbT1PZWnbLgnRbka2NBoN69evp6amhpEjR1722oSEBDZt2sT06dN59dVX6datGwsXLuSnn35qVgyVlZUsXryYe+65B2dn52a1JYQQQnR0ansVUcOCUTuobB1Ks1h9ZGv06NFs27bN2t0QGBjIxo0bUSgUFBcXs2HDhnqv27t3LwcOHGDBggXEx8cD0L9/f3JyclixYgVjxoxBpTL9pc6aNYvjx4/X285tt93GAw88YP5ap9PxwgsvEB4ezt13333JOPPz8ykoKDB/nZ6e3uh7FUIIISxhx44dZGdnc+utt9o6lEtydLMnMi6IlJ2ZGAxN2mHQ5qyebDVx68VGUygaVpdj586dODk51dmMc+LEiSxatIgTJ04QGxsLwBtvvNGgNg0GA4sXL0apVDJ37tzLxrJu3TpWr17doHaFEEIIa9DpdEyePJkffvgBb29vrr32Wtzd3W0d1iW5+TkRNsCfs79csHUoTdKoZGvu3Ll06dKFrl270qVLlwZtJP3nxOPTTz9l2rRp2NnZNT5SC0lLSyM8PBy1uvatR0VFmc9fTLYaatmyZRQUFLB06dI67f7VlClTzFsbgWlk6+WXX25Uf0IIIURzqNVq/Pz8ACgsLOTDDz9k1qxZtg3qCnzC3akqqyH7ZKGtQ2m0RiVbvr6+/PLLL6xdu5aamhpcXV3p0qVLrQQsLCysVoL155GtlStXMnHiRLy8vAD473//y9SpU3FyarmnDTQaTb2L193cTI+YlpSUNKq9nJwcNmzYgL29PVOmTDEff/XVV+nTp0+d6319ffH19SUxMZHExMRW/eitEEKI9uvFF1/k559/5u9//zt33nmnrcNpkOCePlSV11B4rtTWoTRKo5KtZ555BjDVlkpPTycpKYmUlBROnTrFhg0b0Gq1ODo6smnTpnpf/9cpxdWrVzNq1ChzslVUVMRjjz3Gf/7zn6bcS4M1dMqxIQIDA9mxY0ejXxcfH098fDxJSUk8+OCDFotHCCGEaIioqChOnTpl0c/ElhA+wJ9qbQ1l+W2nnmWT1mypVCoiIyOJjIwE4MyZM+zYsYNvvvkGjUbT4Hb+mnwZjUays7ObElKDeXh41BtjaakpS26pOWsZ2RJCCGFrbS3RAlCqlEQNDebU1vNUlbWNkhBNXiB/4sQJtm/fzs6dO8nNzaVv377MmDGj1nqk1igyMpLExER0Ol2t9VWpqakAREREtEgcMrIlhBCitamsrMTR0dHWYVyR2kFF9LBgkradR1dtsHU4V9SoZOvgwYPs2LGDnTt3Ul5ezpAhQ7jvvvsYOnQorq6uDWpjz5499OvXz2ZFP0eOHMn69evZvn17rSKmmzZtwtfXlx49etgkLiGEEMJWiouLee2111ixYgWHDx+mU6dOtg7pihzd7YkcGkTKzqxWXxKiUcnW7Nmz8fX15a677uK6665r0FOFfx6i7NKlC6+//jo6nQ5nZ2eqq6v59NNPiY2NpUuXLg1O2C5l3759VFZWotVqAdOTfhdrfMXFxeHo6EhcXBwDBw5k+fLlaLVaQkJC2Lx5M/v37ychIcFcY8vaZBpRCCFEa7F8+XLzk/EvvfQSH3zwgY0jahg3P+c2URJCYWxEIawHHniAs2fPotPpcHNzq/UkYteuXevNhP9a1FSn03H27FlOnz7N6dOnSU5OJiUlhaqqKhQKBUajsclFUKdNm0ZOTk6959auXWsuVaHValm5cmWt7Xruuusui2zX01gXpxFXrlxJTExMi/cvhBBCFBYWEhERQUVFBY888ghvvvlmm1rPlfVbwSVLQniHuRExOLCFI6qtUckWXD5ZcnJyIjo6mrffftt8fUMqyBuNRs6fP29+uvHRRx9t0s20RZJsCSGEaA3Wr19Pr169WmztsqWl/ZxTb0mI1pBsNXqBvFqtJjo6mujoaCZOnAjUTZbqs3TpUqKiooiOjiYqKgoXFxfzOYVCQVhYGGFhYYwbN66Jt9K2yDSiEEKI1uS6666zdQjN0ppLQjQ42WpuslRTU8N3331Heno6NTU1BAQEmNu6mLzZatG8LcjTiEIIIYTltOaSEA1OtnQ6XbOSpfnz5wOmfQQPHTrEwoULyc/Pp6ioiC+//NJcEDUyMpL33nuv+XcmhBBCiCYxGo18//33hIWF0atXL1uH02BqBxXRw4NJ2tq6SkI0ONl67rnngOYnS0qlkjVr1vDII48wadIk4I9Rr3/961906dKlmbfUNsg0ohBCiNbo3Llz3Hbbbezdu5eJEyeyceNGW4fUKI5ura8kRKPXbFkiWTp58qR5pAvAzs6OqVOn4uzsTGJiYmNDapNkGlEIIURrFBAQQGZmJgDfffcdBw8eZMCAATaOqnFaW0kIZVNedPLkSfr372/++mKy9Le//e2SpRf+LDo6mh9//LHO8Z49e3Ly5MmmhCSEEEIIC3BwcGDBggX06NGDr776qtbnfVviE+5OUHdvW4cBNDHZam6yNGfOHD777DPefPNNsrKyANP05LffftugQqlCCCGEsJ7p06dz9OhRbrzxxjZVb+uvgnv64N3JzdZhNG1vxDlz5vDEE09QXFzMLbfcQnBwcKOSpS5duvDee+/x+uuvc/vtt+Ps7Ixer0en0/H00083JaQ2R9ZsCSGEaK1aajeVluAR5HLli6ys0UVNLzpz5gyvv/46x44dq5MsXay/BVcuapqVlUVycjIKhYKYmBgCAgKaEk6bJUVNhRBCtAUGgwGlskkTYh1ek0a2AKKionjnnXeumCxdKZcLDg7uUPW1hBBCiLYkNzeXJUuWsHfvXnbv3i0JVxM0Odm66ErJ0vbt25vbhRBCCCFsZNq0aebP8q+++opbbrnFxhG1PY1OTw0GA6mpqeTn59c5p9Pp+PXXXy0RlxBCCCFagXnz5gHg5OREdna2jaNpmxo1spWTk8Ozzz5Leno6CoWCuLg4nnvuOTw8PAAoKSlh1qxZV9x4WgghhBBtwzXXXMNrr73G7bffTlBQkK3DaZMalWytWLECPz8/li1bRllZGe+++y6PP/44b7zxBr6+vsCV12gJE3kaUQghRFugUCiYPXu2rcNo0xo1jXjkyBEeffRR/P39iYyMZNmyZfTu3ZsnnniCCxdMVVrbcj2OlhQfH8+SJUuYOXOmrUMRQgghhBU1KtmqrKysVUdLoVDw7LPPMmjQIGbOnGku7y+EEEKI9slgMPDll19SWVlp61DajEYlW2FhYSQlJdU5PmfOHOLi4syL6IQQQgjR/uzbt49+/fpxyy238P7779s6nDajUcnWqFGj+Omnn+o9N3v2bMaMGSNrtoQQQoh2ytnZmaNHjwLwj3/8A61Wa+OI2oYmV5AXliEV5IUQQrQlt912G2fOnGHx4sWMGzdO1mo3QLOKmmZlZUn1dyGEEKIDWblyJa6urpJkNUKzau7fcccdfPLJJ5aKRQghhBCtnJubmyRajdSskS2j0Yher691bOPGjRw/fpy5c+c2K7D2TupsCSGEaC+MRqMkYJdh8d0kc3Nz+f777+s999lnn/H4449buss2SepsCSGEaOvOnz/PQw89xPz5820dSqvW7I2oG6OqqorffvutJbsUQgghhBWUl5cTGxuLRqPB0dGRmTNnyjruS7D4yJYQQggh2j8XFxfuv/9+AOzt7Tly5IiNI2q9WnRkSwghhBDtx7x583BycmL27Nl4e3vbOpxWS5ItIYQQQjSJn58fL7/8sq3DaPWanWx98803pKWl0a1bN2JiYigvL7dEXEIIIYQQ7UKzkq2IiAjOnTvHtm3b2LZtW63HPhctWkRkZCRRUVFERkYSEBDQ7GBbqxdffJHDhw9TVVVFYGAgDz30EMOGDbN1WEIIIUSL0ul07NixgzFjxtg6lFal2dv1VFdXk5KSQnJyMklJSZw+fZq0tDR0Op2pg98TMBcXFxwcHCgsLGTbtm3NDrw1SUtLIzQ0FDs7O06cOMGcOXP473//i4eHxxVfK9v1CCGEaA++/fZbnnnmGVJSUjhy5AixsbG2DqnVaPY0or29PT169KBHjx7mYzqdjjNnznD69GlzApaamkpZWVm7LHoWERFh/rNKpaKmpob8/PwGJVtCCCFEe5CamkpycjIAzz//PN98841tA2pFrLJAXq1WExMTQ0xMDNdddx1gSsDOnj1LUlKSNbpEq9WyZs0akpOTSU5ORqPRMH36dGbMmFHvtatWrWLr1q2UlpYSFhbGnXfeydixY5vc/6JFi9ixYwfV1dXExcURGRnZnNsRQggh2pRHHnmEZcuW0aVLF55++mlbh9OqtNjTiGq1mujoaKKjo63SvkajYf369URFRTFy5Eg2bNhwyWsTEhI4deoUDz/8MJ06dSIxMZGFCxdiMBgYN25ck/pfsGABOp2OQ4cOkZ6e3i5H8IQQQohLcXJy4sCBAwQGBspn4F+0m9IPgYGBbNy4EYVCQXFx8SWTrb1793LgwAEWLFhAfHw8AP379ycnJ4cVK1YwZswYVCoVALNmzeL48eP1tnPbbbfxwAMP1DqmVqsZPHgwX331FaGhoQwdOrTO6/Lz8ykoKDB/nZ6e3qT7FUIIIVqboKAgW4fQKrWbZKuhWfTOnTtxcnJi9OjRtY5PnDiRRYsWceLECfOivjfeeKNJsRgMBjIzM+s9t27dOlavXt2kdoUQQgjR9nS47XrS0tIIDw9Hra6dZ0ZFRZnPN0ZBQQHbtm2joqICnU7Hli1bOHz4MH379q33+ilTprBy5UrzfwkJCU26DyGEEKI1S05O5s477+THH3+0dSg2125GthpKo9HUu1Gmm5sbACUlJY1u88svv+SVV15BoVAQGhrKiy++eMm1ab6+vvj6+pKYmEhiYiJlZWWN7k8IIYRozX755ReGDh2KXq/n9OnTjBs3rkOv4+pwyRY0fMqxIXx8fHjnnXca/br4+Hji4+PNdbaEEEKI9mLAgAH06tWLI0eOcPbsWdLS0jr0U/odLtny8PBAo9HUOV5aWgqAu7t7i8QhI1tCCCHaK6VSyZIlSzh48CBPPvmkefaoo+pwyVZkZCSJiYnodLpa67ZSU1OB2gVKrUlGtoQQQrRnEyZMYMKECbYOo1XocAvkR44cSUVFBdu3b691fNOmTfj6+taqhC+EEEII0VztamRr3759VFZWotVqAVMNq4v7MMbFxeHo6EhcXBwDBw5k+fLlaLVaQkJC2Lx5M/v37ychIcFcY8vaZBpRCCFER1JZWUlqamqHHNRo9kbUrcm0adPIycmp99zatWvNxda0Wi0rV66stV3PXXfd1azteppKNqIWQgjRnhmNRlatWsWiRYtQKpWcPn0aBwcHW4fVotrVyNbnn3/eoOucnZ156qmneOqpp6wckRBCCNGxKRQKvv76azIyMgBYtWoVjz/+uI2jalntKtlqS2QaUQghREfx0ksvsWnTJiZPnsyIESNsHU6La1fTiG2RTCMKIYToCJKSkjrs51yHexpRCCGEEC2voyZaINOINiPTiEIIIUTHICNbNhIfH8+SJUuYOXOmrUMRQgghWtSRI0e4/fbbKSwstHUoLUKSLSGEEEK0mA8++IC+ffvy3//+l2XLltk6nBYhyZYQQgghWsyECROwt7cH4Ouvv0av19s4IuuTNVs2Imu2hBBCdERhYWHMnz8fDw8PHnnkkRbbucWWpPSDjUnpByGEEKJ9k2lEIYQQQggrkmRLCCGEEDZVVlZGXl6ercOwGkm2hBBCCGETlZWVvP7660RGRvL000/bOhyrkWRLCCGEEDZRVVXFSy+9RF5eHv/+9785efKkrUOyCnka0UbkaUQhhBAdnYeHB3PnzmXevHnccsstODo62jokq5CnEW1MnkYUQgjRkZWXl5OSkkKfPn1sHYrVyDSiEEIIIWzGxcWlXSdaIMmWEEIIIYRVSbIlhBBCiFZj3759zJs3z9ZhWJQkW0IIIYRoFZ544gmGDh3KK6+8wtatW20djsVIsiWEEEKIViEuLs785w8++MCGkViWJFtCCCGEaBVuv/12JkyYwMqVK/n4449tHY7FSJ0tG5E6W0IIIURtKpWK77//3tZhWJwkWzYSHx9PfHy8uc6WEEIIIdonmUYUQgghRKtVVFSEXq+3dRjNIsmWEEIIIVqd0tJSXn75ZSIiIvjss89sHU6zSLIlhBBCiFbn4MGDPP/882g0Gl588UVqampsHVKTSbIlhBBCiFZn9OjRjB07FpVKxdVXX015ebmtQ2oyWSAvhBBCiFbp7bffRq1W06VLF1uH0iwysmVBx48f56qrrmLNmjW2DkUIIYRo87p3797mEy2QZMtiDAYDb7/9Nt27d7d1KEIIIYRoRSTZspB169YRGxtLWFiYrUMRQggh2h2j0UhiYmKbfDKx3azZ0mq1rFmzhuTkZJKTk9FoNEyfPp0ZM2bUe+2qVavYunUrpaWlhIWFceeddzJ27Ngm9a3RaPjyyy95//33eeutt5p7K0IIIYT4E51Ox4QJE9i8eTNeXl5MmjQJDw8PW4fVYO1mZEuj0bB+/XpqamoYOXLkZa9NSEhg06ZNTJ8+nVdffZVu3bqxcOFCfvrppyb1/cEHHzBt2jRcXV2b9HohhBBCXJparSY0NBQwFTldvXq1bQNqpHYzshUYGMjGjRtRKBQUFxezYcOGeq/bu3cvBw4cYMGCBcTHxwPQv39/cnJyWLFiBWPGjEGlUgEwa9Ysjh8/Xm87t912Gw888ABJSUmcPn2aOXPmNCjO/Px8CgoKzF+np6c35jaFEEKIDmnBggUcOHCAhIQEpk2bZutwGqXdJFsKhaJB1+3cuRMnJydGjx5d6/jEiRNZtGgRJ06cIDY2FoA33njjiu0dOXKEs2fPMnXqVAAqKipQKpVkZGTw97//vc7169ata3MZuRBCCGFrkZGRHDt2rMGf961Ju0m2GiotLY3w8HDU6tq3HhUVZT5/MdlqiMmTJ9dK3N59910CAwO544476r1+ypQpDB8+3Px1eno6L7/8ciPuQAghhOiY2mKiBR0w2dJoNAQHB9c57ubmBkBJSUmj2nN2dsbZ2dn8tYODA87OzpdcuOfr64uvry+JiYkkJiZSVlbWqP6EEEIIYaLVamt9BrdW7WaBfGNYMzOeP38+99577xWvi4+PZ8mSJcycOdNqsQghhBDtUWFhIfPmzSM0NJRz587ZOpwr6nAjWx4eHmg0mjrHS0tLAXB3d2+ROGRkSwghhGiaN954g1deeQWARYsWsWrVKhtHdHkdbmQrMjKS9PR0dDpdreOpqakAREREtEgcMrIlhBBCNM3f/vY3PDw8cHBwwMvLC6PRaOuQLqvDJVsjR46koqKC7du31zq+adMmfH196dGjh40iE0IIIURDeHl58dlnn5GcnMzSpUtb/cL5djWNuG/fPiorK9FqtYDpSb9t27YBEBcXh6OjI3FxcQwcOJDly5ej1WoJCQlh8+bN7N+/n4SEBHONLWuTaUQhhBCi6SZOnGjrEBpMYWztY2+NMG3aNHJycuo9t3btWoKCggDT0wsrV66stV3PXXfd1eTtepojKSmJBx98kJUrVxITE9Pi/QshhBDCutpVstWW/Hlk6+jRo5JsCSGEEE1kNBr59ttviYiIoE+fPrYOp44Ot2artZAF8kIIIUTzpaenM2jQIG644QbmzZtn63DqJcmWEEIIIdqsoKAg8vPzAdPDbgcOHLBxRHVJsiWEEEKINsve3p4XXniBPn36sG7dOgYMGGDrkOpoV08jtiXyNKIQQghhGffccw/33nsvSmXrHEOSZMtG4uPjiY+PNz+NKIQQQoimaamyTU3VOlNAIYQQQohm0Ov1tg7BTJItIYQQQrQb2dnZPPHEEwwdOhSDwWDrcACZRrQZWbMlhBBCWN7tt99u3pLviy++4NZbb7VxRDKyZTNSZ0sIIYSwvPnz5wPg4uJiLglhazKyJYQQQoh2Y9y4cbz11lvceuut+Pv72zocQJItIYQQQrQjCoWi1c0ayTSiEEIIIYQVSbIlhBBCCGFFMo1oI/I0ohBCCNExSLJlI1JBXgghhOgYZBpRCCGEEMKKJNkSQgghhLAiSbaEEEIIIaxIki0hhBBCCCuSZEsIIYQQworkaUQbkdIPQgghRMcgyZaNSOkHIYQQomOQaUQhhBBCCCuSZEsIIYQQwook2RJCCCGEsCJJtoQQQgghrEiSLSGEEEIIK5JkSwghhBDCiiTZEkIIIYSwIqmzZWNVVVUApKen2zgSIYQQQjRWeHg4jo6Ol71Gki0by8nJAeDll1+2cSRCCCGEaKyVK1cSExNz2WsURqPR2ELxiHoUFxfz888/88033/DUU0816DVvv/02M2fOvOJ16enpvPzyyyQkJBAeHt7cUNuFhn7vbKGlY7NWf5ZqtzntNOW1jX1NQ66X92Bdrfk9CPI+tGQ71n4ftpbPQhnZagM8PT0ZP348W7ZsuWJmfJGrq2uDrwXTD0Jjrm/PGvu9a0ktHZu1+rNUu81ppymvbexrGnO9vAf/0JrfgyDvQ0u2Y+33YVv6LJQF8q1EfHy8Va4VtbXm711Lx2at/izVbnPaacprG/ua1vyz1Jq19u+bvA8t146134et/Wfpz2QasR27uMl1Q+aThRCWJ+9BIWyvNbwPZWSrHfPx8WH69On4+PjYOhQhOiR5Dwphe63hfSgjW0IIIYQQViQjW0IIIYQQViTJlhBCCCGEFUmyJYQQQghhRZJsCSGEEEJYkSRbQgghhBBWJMlWB1ZdXc0///lPbrrpJiZMmMAjjzzCsWPHbB2WEB3Kiy++yNSpU5kwYQLTp09nz549tg5JiA7r+PHjXHXVVaxZs8ai7Urphw6soqKCtWvXcu211+Ln58cPP/zAe++9xxdffHHFfZ6EEJaRlpZGaGgodnZ2nDhxgjlz5vDf//4XDw8PW4cmRIdiMBh49NFHUSgUDB06lHvvvddibcvIVgfm5OTE9OnTCQgIQKlUcu2112IwGMjIyLB1aEJ0GBEREdjZ2QGgUqmoqakhPz/fxlEJ0fGsW7eO2NhYwsLCLN62bETdhmi1WtasWUNycjLJycloNBqmT5/OjBkz6r121apVbN26ldLSUsLCwrjzzjsZO3bsJdtPT0+nqqqK4OBga96GEG2Wtd6DixYtYseOHVRXVxMXF0dkZGRL3I4QbZI13ocajYYvv/yS999/n7feesviMUuy1YZoNBrWr19PVFQUI0eOZMOGDZe8NiEhgVOnTvHwww/TqVMnEhMTWbhwIQaDgXHjxtW5vrKyksWLF3PPPffg7OxszdsQos2y1ntwwYIF6HQ6Dh06RHp6OgqFwtq3IkSbZY334QcffMC0adNwdXW1SsySbLUhgYGBbNy4EYVCQXFx8SV/wPbu3cuBAwdYsGCBeVf0/v37k5OTw4oVKxgzZgwqlcp8vU6n44UXXiA8PJy77767Re5FiLbIWu9BALVazeDBg/nqq68IDQ1l6NChVr8fIdoiS78Pk5KSOH36NHPmzLFazLJmqw1RKBQN+o13586dODk5MXr06FrHJ06cSH5+PidOnDAfMxgMLF68GKVSydy5c+U3aiEuwxrvwb8yGAxkZmY2N1Qh2i1Lvw+PHDnC2bNnmTp1Ktdddx1btmzh008/ZfHixRaLWUa22qG0tDTCw8NRq2v/9UZFRZnPx8bGArBs2TIKCgpYunRpneuFEE3T0PdgQUEBx44dY8iQIdjZ2bFjxw4OHz7Mww8/bIuwhWhXGvo+nDx5cq2E7N133yUwMJA77rjDYrHIp2s7pNFo6l3k7ubmBkBJSQkAOTk5bNiwAXt7e6ZMmWK+7tVXX6VPnz4tE6wQ7VBD34MAX375Ja+88goKhYLQ0FBefPFFoqOjWyxWIdqrhr4PnZ2da61VdnBwwNnZ2aLlVyTZaqcaMsQaGBjIjh07WiAaITqehrwHfXx8eOedd1ogGiE6pqYsjZk/f77F45A1W+2Qh4cHGo2mzvHS0lIA3N3dWzokIToUeQ8KYXut6X0oyVY7FBkZSXp6Ojqdrtbx1NRUwFREUQhhPfIeFML2WtP7UJKtdmjkyJFUVFSwffv2Wsc3bdqEr68vPXr0sFFkQnQM8h4UwvZa0/tQ1my1Mfv27aOyshKtVguYqr5v27YNgLi4OBwdHYmLi2PgwIEsX74crVZLSEgImzdvZv/+/SQkJNSp7yOEaDh5Dwphe23tfSgbUbcx06ZNIycnp95za9euJSgoCDBtUbBy5cpaWxTcddddl92uRwhxZfIeFML22tr7UJItIYQQQggrkjVbQgghhBBWJMmWEEIIIYQVSbIlhBBCCGFFkmwJIYQQQliRJFtCCCGEEFYkyZYQQgghhBVJsiWEEEIIYUWSbAkhhBBCWJEkW0II0Yq9/vrrXHfddeZtSQA+/PBDRo0axeHDh20Y2R8WL17MLbfcQlVVla1DEaJVkr0RhRAtJjs7m1tvvfWy10RHR/Phhx+2UESt2/nz51m3bh0PPfQQzs7OVu3r22+/5bXXXmPKlCk8/fTTl732gQce4PTp06xcuZKYmBjuvfdeEhMT+eKLL7jrrrusGqcQbZEkW0KIFhcSEsK4cePqPefj49PC0bReH330Efb29kydOtXqfcXHx/Puu++yZcsWZs6ciYODQ73XnTlzhtOnT9OlSxdiYmIACA0NZcSIEXz22WfcdNNNODk5WT1eIdoSSbaEEC0uJCSEGTNm2DqMVq24uJgdO3YwevRoq49qAbi4uHDVVVfxww8/sH37dsaPH1/vdRs2bABg4sSJtY6PHz+e7du3s3nzZiZPnmz1eIVoS2TNlhCiVRs1ahRPPvkkxcXFLFmyhClTphAfH88jjzxyyTVLWq2WDz/8kHvuuYf4+HgmTpzI008/zdGjR+tc++STTzJq1Ciqq6v5v//7P26//XauvvrqWlOZ27dv58EHHyQ+Pp6pU6fy6quvUlpayrRp05g2bZr5usWLFzNq1ChOnjxZb1wrVqxg1KhR7Nix44r3vXnzZqqrqxk9evQVr73ozJkz3HDDDVx33XWcOHHCfDwrK4tXXnmFm2++mbFjx3L99dfzj3/8g5ycnFqvnzRpEgDff/99ve3X1NSQmJiIvb19nWQsLi4OJycnvvvuuwbHK0RHIcmWEKLVKysr47HHHuPMmTOMGzeOUaNGkZSUxNNPP01qamqta0tKSnj00UdZvXo17u7uXH/99ebrn3rqKXbu3FlvHwkJCXz33Xf06dOHW265heDgYAA2btzI888/T2ZmJtdccw0TJkzgt99+Y/bs2eh0ulptTJkyBfhj9OfPdDodP/zwA97e3gwbNuyK93zw4EEAevbseeVvEHDkyBFmzpyJSqXinXfeoUePHgCcOHGCBx54gE2bNhETE8PNN99Mnz59+Omnn3j44YfJysoyt9G3b19CQ0M5dOgQ2dnZdfrYvXs3Go2GUaNG4ebmVuucnZ0dXbt25eTJk1RUVDQoZiE6CplGFEK0uMzMzEsugu/ZsydDhgypdSwlJYXrr7+eWbNmoVSafkfs378/r776Kl9//XWtBd1vvPEGaWlpzJs3r9ZUV2FhIQ899BBLly5l8ODBddYkFRQU8NFHH+Hu7m4+VlpayltvvYWzszOrVq0yJ2APPvggzz77LElJSQQGBpqvj42NJSIigs2bN/PEE0/UWru0Z88eCgsLueOOO1Crr/xP7/Hjx/Hz88PLy+uK1+7cuZOFCxcSHBzMsmXL8Pf3B0wJ3osvvojBYGDlypVER0ebX3P06FGeeuop3nrrLZYsWWI+PnHiRD744AM2bdrEfffdV6ufjRs3An+MgP1VTEwMR44c4eTJk/Tv3/+KcQvRUcjIlhCixWVmZrJ69ep6/9u/f3+d652cnHjkkUfMiRbAhAkTUKlUnDp1ynysuLiYrVu3MmDAgDpriry9vbn99tspLi42jxr92X333Vcr0QLYtWsXFRUVTJ482ZxoAajVau6///56723KlClotVq2bNlS6/iGDRtQKBQNWs9UU1NDcXFxgxKtDRs2sGDBArp06cI777xjTrTAlODl5ORw++2310q0AHr37s3w4cPZt28f5eXl5uMXv6/ff/89RqPRfDw/P58DBw4QGBh4yUTqYrx5eXlXjFuIjkRGtoQQLW7w4MEsW7aswdeHhobWWSSuVqvx9vamrKzMfOzUqVPo9Xqqq6vrHTnLyMgAID09vc5UXvfu3etcf+bMGQD+v737C2nqDeMA/t2mVszjYq4MREuTmGUgSVk0gy1q1DIKsj8GddOFZAQlFV3mVWFlSpRdWFCBVKRSI+e0sItsEYk0M4IupK2aGtEKImV/fhdyTr95zqYzVqLfz93e97zveXeuHt73Oc8pKCiQ9eXn50Oj0cjaN2/ejIaGBtjtdmkHaHh4GC9fvpSO6Sbi9/sBQHZUN97du3fx7NkzrF27FtXV1Zg7d25E/5s3bwAAHz58UHweX79+RSgUgsfjgdFoBAAYDAYUFxeju7sbPT09KCoqAjCWxxUMBrF161aoVCrF9YjBqrh+IhrDYIuIpj2tVqvYrtFoEAqFpN/fv38HALjdbrjd7qjz/fr1S9am1+tlbeKOz/z582V9arUaOp1O1i4IAsxmMxwOBwYGBrBkyRI8evQIwWBw0m/piUecExUJFRP+i4uLZYEWMHYMCgAdHR0x5xn/PGw2G7q7u9HW1hYRbKnVamzZsiXqPOJ6o5WNIJqtGGwR0YwhBmV79uxBZWVlXGOVdmvE+b59+ybrC4VC8Pv9WLBggaxv+/btcDgcsNvtqKysRFtbG9LS0rBhw4ZJrUUQBCQlJUnBYzSnTp3CzZs3UV9fD7VajZ07d0b0i7uBZ8+enVRSvmjdunXQ6/V4+vQpjh07hvfv38Pr9WLNmjXIyMiIOk5cr1JwSjSbMWeLiGYMo9EIlUolHZ/9qaVLlwIYS1Yf7+3btwgGg4rjCgoKkJubi/b2drhcLnz69AmbNm2Ka8cnJycHPp9P9sbj/wmCgNraWixbtgy1tbVobm6O6BffSIz3eSQlJcFqtWJkZASPHz+WyjlES4wXeTweAEBubm5c9yOa6RhsEdGMkZ6eDrPZjL6+PjQ1NUUkeIv6+/sVjxGVmEwmzJs3D3a7PaJEQiAQQGNjY8yxpaWl8Pv9qKmpAYC4C30WFhZidHRUyhuLRhAEXLx4EUajEZcuXcL9+/cj1p+RkYE7d+6gt7dXNjYQCCjWHgN+B1atra3o6uqCTqeDyWSKuZb+/n6kp6cjKytrgn9HNLvwGJGI/rpYpR8A/FF1+ePHj8Pj8eDq1atob2/HihUrkJqaiqGhIbx79w5erxctLS2KOU7jCYKAI0eOoKamBocOHYLFYoFWq4XL5UJKSgoMBkPUZHGr1Ypr167hy5cvWL58ubRLNlklJSW4d+8eXr16JX0WJ9Y6L1y4gKqqKtTV1SEcDmPXrl1ISUlBdXU1Tp48iaNHj6KoqAg5OTkAgMHBQbx+/Ro6nQ63b9+WzZmdnY2VK1dKuW/btm1DcnJy1DV8/PgRnz9/xo4dO+L6n0SzAYMtIvrrxNIP0fxJsJWWloYrV66gubkZT548QWdnJ0KhEPR6PfLy8nDw4EHFxPZoSktLIQgCbt26BYfDAa1Wi/Xr16OiogJlZWXIzMxUHJeamgqTyYTOzs4pfb6msLAQ2dnZcDqdKC8vn/B6cYerqqoK9fX1CIfDKCsrQ35+Pq5fv46mpia4XC643W4kJyfDYDCgpKQEGzdujDqnzWaTgq3xpTTGczqdAH4XdiWi31RhpX12IiKKyev1ory8HGazGWfOnFG85sCBAxgcHERLS8uUvm/44MEDnD9/Hg0NDVL+1XQUCASwf/9+LFq0CHV1df96OUTTDnO2iIhi+PHjB0ZHRyPaRkZGcPnyZQBjx31Knj9/joGBAVit1il/SNpms2Hx4sW4cePGlMb/LU6nEz6fD4cPH/7XSyGalniMSEQUQ29vL86dO4fVq1dj4cKF8Pv96Onpgc/nw6pVq2CxWCKub21txdDQEB4+fIg5c+Zg3759U763RqPB6dOn8eLFC/z8+XPKQVuiqVQqnDhxYsLcMqLZiseIREQxeDweNDY2oq+vT6q3lZmZCYvFgr1798rKOezevRvDw8PIyspCRUVFXPWtiGhmYrBFRERElEDM2SIiIiJKIAZbRERERAnEYIuIiIgogRhsERERESUQgy0iIiKiBGKwRURERJRADLaIiIiIEojBFhEREVEC/QcPc+nWno7Q4gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAG7CAYAAAD0aVBuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLqklEQVR4nOzdd3hUVfrA8e+UtEnvlYQUeu+hBBECAiJYELsi9oKyoIJsREHZRUTsosJPQVd3sewqoKKE3jWAFIEQSAgkIaSRSZm0Kb8/RgZjAqTMZFLez/PwPOTeO+e8N2SYN+ec+x6FyWQyIYQQQgghbEJp7wCEEEIIIVozSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCFJtoQQQgghbEiSLSGEEEIIG5Jky87Ky8tJTk6mvLzc3qEIIYQQwgYk2bKz9PR0HnroIdLT0+0dihBCCCFsQJItIYQQQggbUts7gLYqMTGRxMRESkpK7B2KEEIIIWxIki07iY+PJz4+nuTkZB566CF7hyOEEEIIG5FpRCGEEEIIG5KRLSGEEKIBDAYDVVVV9g5D2JhKpUKtVqNQKBrchiRbQgghRD2VlJSQkZGByWSydyiiCWg0GoKDg3F0dGzQ6yXZEkIIIerBYDCQkZGBRqPB39+/USMeonkzmUxUVlaSm5tLWloaHTp0QKms/wosSbaEEEKIeqiqqsJkMuHv74+Li4u9wxE25uLigoODA+np6VRWVuLs7FzvNiTZshMp/SCEEC2bjGi1HQ0ZzfozSbbsREo/CCGEEG2DlH4QQgghWoH27dvTuXNnevfuTZcuXbjzzjspLS1tcHsrV67kxIkTlz2/Z88eevToQZ8+ffjpp58YP348p06dqtNr2xpJtoQQQohW4uuvv+a3337j6NGjFBUVsXLlyga3dbWEadWqVdx7770cOHCA6667jh9++IHo6Og6vbatkWlEIYQQohG+/ftOdNoKm/ah8XTixoVD63x9RUUFpaWleHt7W44tWbKEL7/8Er1eT1BQEB9++CHt2rVj7dq1/P3vf0epVKLX61m4cCG5ubkkJSXx1FNPkZCQwD/+8Q/Gjx9vaWvRokWsXr0ajUbD559/zpYtW+jduzfr1q1jz549V3xtWyTJlhBCCNEIOm0FugLbJlt1NXnyZJydnUlLS6Nfv35MmTIFgC+++IITJ06we/duVCoVn332GU8++STfffcdCQkJfPDBBwwZMgSj0UhRURFeXl7861//4plnnmHChAk1+pkzZw7Hjx+nf//+PPnkk9XOPfjgg1d8bVskyZYQbdyFCxcoKiqioqKCqKgo1OpL/y1kZWWxe/duKioq6N69Oz179qz22tWrV1NRUYGHhwc33nhjtXMnT54kOzsbZ2dnOnfujJubW1PcjhBNTuPp1Gz6+Prrr+nevTt6vZ5HHnmE2bNn8/rrr/Ptt9+SlJREv379AHOtMJVKBcCoUaOYMWMGkydPZsyYMfTu3dtWt9FmSbJlBS+99BIHDhygoqKCoKAgHn74YYYMGWLvsEQbUlhYSGpqKnl5eXTt2pWwsDDLOZ1Ox2233UZRURHdu3fnvffeq/bae++9l3Xr1gFw/NAJgvxC0FcZMFQa+Wn9JqZNvweAvz38LNMfmGl+0R9Vsx956FG0xYVEhkfRM2gQCgWoHFSoHJS89vpSPlq1DICfvktkyNAhqByUqB1VnDp9koEDB+Ll5cW9997LK6+8Ui2mjz/+GIPBQGhoKGPHjm30Y9dC2FJ9pveailqt5pZbbuHZZ5/l9ddfx2QykZCQwLRp02pcu3TpUn7//Xc2b97Mfffdx1133cVzzz1nh6hbL0m2rOC+++7j73//Ow4ODhw9epRZs2bxn//8B09PT3uHJlqRFStWsH//frKzs/nmm2+q1fhZvXo1jz76KABLXn6TW667jfKiSsqKKykrrrAkU7mnL7DGdzcVuiqqdHoqy/TkHbn0tNI3c7cT4B5s+frIudOWv6fuPsfG4gPVYqqq0AOgu1DBprd/q3buxK9nLH/f/v5Rzvyn8lJbBccpLi6muLiYgxtOsN79V5xcHXBydcDR1YGXX1zI6YxUnJ1dyE7LxdXHGbWj+bfwr776itWrVxMaGsr9998vv4ULcRmbNm2iU6dOAEycOJG33nqLG2+8ER8fH6qqqjhy5Ah9+vTh+PHjdOvWjW7duqFWq/n5558B8PDwQKvVNqjvxry2NZJkywoiIyMtf1epVFRVVZGXlyfJlrissrIygGrVp/Py8rjllls4c+YMAwcOZPXq1ZiMJsqKKtEVlPP5J/9my65NAKxZsg1HvQtlRZWUays59HuGpZ1dX/+G59GO1fpzUjtToS+nuKiUnJOF1c5F+3VFb9SjVjrgqKq+71ewRxiTe09DrXQg2q9Ljfu4tfeD6I1VuDhoapzrEtQHR7UzVYZKPJy9qp0zGU0EebRDV1mCutyFjIN51c7n5xYA4K724quZ2wBwdndA4+PMV7vX8c3WbwDoFT6QELf2eAa74uTqQE5ODvfeey8dO3Zk9OjR3HDDDTXiEqI1u7hmq6qqivbt2/PBBx8AcM8995Cfn8+IESNQKBTo9XoeeOAB+vTpw/PPP8+JEydwdHREo9GwbJl5RPrhhx9m1qxZvPbaa/Ve5N6Y17ZGClMb20VTp9OxatUqUlJSSElJQavVMnXq1FqHVnU6HStWrGDz5s0UFxcTHh7OXXfdxahRo2pcu2DBArZt20ZlZSWxsbG8+uqrdaoufLGo6fLlyy2/gYiWz2Qycf78eYKCgqod/9e//sXMmTPJzc1l5cqV3H3n3ZTklVOcqyM/S0uf8R0xmUx0DO3G/JvfofRCBSaD+S26cu+b7Ew1/8b54tj3CPO+lORnac+w6cQa3Jw86BrUh44BPar1W1yhxVntgsMfyZSDiwpHFwccNWocNGocnFSW6T/zHxUqR/Pf1X98rVT98fN88cf6j59vy0+5wpxEGfRGDJVGDFUX/xj+9Hcj+goDFaVVVJRWUVlaRaVOX+P7dzjrVwp0uSgVKuKir6t27v92v8ae05sB+McN/4e/m3kkztnDkYzKFJ7/5DEA7pvyAG+8/gYeQa6o1OZpyPfffx8PDw/69OlD165dpQK4aJDy8nLS0tKIjIxs0NYtouVp7L95mxvZ0mq1rF27lujoaOLi4izTK7VJSEjg+PHjPPLII7Rr147ExETmz5+P0Whk9OjR1a6dN28eer2e/fv3k56eLv+JtwEmkwmdToerq2u14w8++CD//ve/0el0FBQU4OLgSlG2Du25Us4fKiI3NxeAte9tpuqngGqv9XT2ocpQiaPRmZK88mrnrutyC9fEjMfTxQcvZ/Pj3EqVAmdPR3pEdGPAsD44ezjh4uGI8x9/XNwdcXQ1J1WOGjWOLg44aNQolc3n59NoNFGpMydeFSXmJOzakl6UXqhAV1BO6YVySgvK0RVUoLtQzr0DZzCpx71cKMvDV3Pp+1deVEly6qW6PhWnHPjmuR0oVQq827nj296d52c/T1FJESEhIWRmZlaLo6SkBFdXV3nvCiGsrs0lW0FBQXz//fcoFAoKCwsvm2zt3r2bpKQk5s2bR3x8PAB9+/YlOzubZcuWMXLkSMuTHBep1WoGDhzIN998Q1hYGIMHD67Rbl5eHvn5+Zav09PTrXh3oilUVlZyzTXXkJycTLdu3di+fTv6CgOF50rQntNRkF6MTqcD4O1pXxDqEmV5bYlWibfGD19NABo8arS9cMIKHNXmp46cPRxx9XZC4+OMq48z/bw7oPFxwvWPrzVezji6qlt8cqBUKnB2c8TZzRECr3ytyWiirNg8rVpaUG5JYrXZpWjPlTIkMp7uwf04X5yFn5t5VNFoMJF/uojjR05QVFIEgB9h/HfODnzbe+AX6Yl/lAcJi2fzv2//R1xcHG+//Xa1hwyEEKIx2lyyVdcPpu3bt+Pi4sKIESOqHR8/fjwLFizg6NGj9OjRo9bXGo3GGr81X7RmzZpGVfQVTePw4cMsXLiQ33//nYceeoinnnoKgEpdFYVZOk6lpHLhwgUOH/id1U9voTivDP6YkHfI9yTIPQx/92D0ZUa4tCyLUM8IFk/6FDAnU+4BLrj7aXAPcMHN3wV3fxfc/TW4+l5aEC4uUSgVaDyd0Hg64RdZc01kZZmeoj8SL212KdqsUvLTi9FmleDh7MXT1yzgzIVT+LsFUXCmmIIzxaRsM79X1/2wnjxtHmvXrGXJvLcxBhlR/jH9mJqayrlz5xg0aFC10hhCCFEX8r/GZaSlpREREVHjP9aLWxGkpaXRo0cP8vPzOXz4MIMGDcLBwYFt27Zx4MABHnnkkVrbnThxIkOHXnpMOD09vcZj76Jp7N+/nw0bNnD48GEWLFhAVNSlEShdaRmrV68G4OevN9OhNJYLmSWWwoU+qiAMGhNB7mEUZBfhoHKwvHZ055sY3fkmAFx9nPEI0uAZ7IpHkCueQRo8AjW4+2tQO0kyZW2OLmr8Ij1rJGJV5XoKzhSTl9aHvLQi8tKKKMwswWQ0Z8h6o54AtxC0ugsEeYSxafFh1E5HCerkTXBXHz79+QOWvrcELy8vVq9ezZgxY+xxe0KIFkqSrcvQarWEhITUOO7u7g5AUVGR5djXX39tWRAfFhbGSy+9RExMTK3t+vn54efnR2JiIomJiZSUlNjmBgRg3rLi6NGjpKamcsstt1Q7991337FgwQIAhvW8lkEdjBScNY925J7NR4ECpVJFTvoFMg/nV3vt365diEppTpYcnFV4hbrhFeqGZ7DrH4mVBs9AV0momgkHZzWBHb0J7Hhp6xJ9peGPBEzL+eQLPOfzD0oulFFSYX5v6ysMZBzKI+NQHus2/gSY65k5ab0oL67E2d38sEFBQQFZWVl069atxU/pCiFsQ5KtK6jLf5y+vr68++679W47Pj6e+Ph4y9OIovH+XBH5ori4OH799VeUSiXaQi1VWhN5aUXkny5Cf+LS/N4Pn21G3eNScu2ocublCR/h6xqIWml+mzi5OeAV6oZ3qBteoa6WBMvVx1k+ZFsgtaOKgBgvAmK86Do6ApPJRFG2jnPHCjh3NJ9zRwvQFZpHMuOirsPT2RttWQEp/8vn5HebCOzkTUS/ADb+vpa/Pfc0ERERvP/++23+EXchRE2SbF2Gp6dnrQXZiouLAXPBNmF/Op2OBx54gAMHDhATE2N54MGgN3LhTDFhPu35lV8xGo0svv1jwj07WF7rWxHBA7HPEOrVniCPdpbjSrUC7zB3OoSH4t3OHZ9wd3zauePi6ShJVSumUCgsI5OdR7arlnxFHw1mxOHrKC+uAswL9bOPFZB9rIBPtn4OmJcEOFRqMBlNKP542vNiZR35uWn99n2dYrO2+03ucPWLRLMmydZlREVFkZiYiF6vr7ZuKzU1FaheyLQhZBqx7srKykhKSuLXX3+ld+/ejBw50nLOxcWFDRs2kJ+fT15OPjv+7wj5aUXknynCqDfhW9SeQRHX0s47EjcH72rtejh7MbLfOHwjPPCN8LAkVp5BGpQq2R6mrftr8mU0msg5cYH0fTmk7ztPUbb5idNeoYPQG6s4X5xJ2upSVm/eSoe4UDrEhbDn4E5mzZrFXXfdxb333lvr0gQhrKV9+/Y4Ozvj7OxMRUUFffr0Yfny5TXK09TVypUrGTJkCB07dqz1/J49e3jooYdQq9UsWrSIt956i3feeYfo6OirvhZg5syZDBw4kNtvv71B8VnbrFmz6N+/P3fccYfV25Zk6zLi4uJYu3YtW7durVbEdP369fj5+dG1a9dGtS/TiLWrqKhAqVTi4HBpwfm+ffsYPnw4YK5h1b/bIHJOaslL1ZJ7SkuQUwRaZRHuCh9+W5+M85+qmQ9qfy2D2l8LgEeQxvyof3tzcuXb3gOXJthAVrQOSqWCoM4+BHX2YeCdnSjMKuXMvvME7PNi+Mlx6A16lAolJbllHPjvSQ789yRf/P42R44c4fnnn6dTp07cdNNN9r4N0cpd3IjaZDJxww03sHLlSp544okGtbVy5Ur8/PwumzCtWrWKe++9l2effRaA6667rs6vzczM5Mcff+T111+vV0x/HQC53LH6vP6i2bNnExcXx2233Wb1/VjbZLK1Z88eysvLLbWQ0tPT2bJlCwCxsbE4OzsTGxtL//79Wbp0KTqdjtDQUDZu3MjevXtJSEiosTaovmRkq7r//e9/vPrqqxw4cIBvv/2WcePGAeZSCwEO7VAqlRiNRjb8bzNflm6r9tppA2ehcXK3rK1CAZ7BrvhHef7xZJoHPuHuOGoc/tqtEA2iUCjw/mP9Xq+J0egKKzhzIIe0PdlkHcnDZDJPIebkmAvYahzdcEkL5ezBXEJ7+KFUKjh//jznz5+nZ8+edr4b0RpVVFRQWlqKt/elEf0lS5bw5ZdfotfrCQoK4sMPP6Rdu3asXbuWv//97yiVSvR6PQsXLiQ3N5ekpCSeeuopEhISamy5s2jRIlavXo1Go+Hzzz9ny5Yt9O7dm3Xr1rFnz54rvhbMm81PnjzZMsVeVVXFCy+8wKZNm6isrKRz58588MEHeHl5MXXqVDw8PDhx4gRnz57lvffeY8aMGQwfPpxff/2VmTNnEhkZyfTp0yktLcXZ2Zk33niDoUOHcvr0afr3789TTz3Fhg0buPnmm4mJialxv5MmTSIgIIDIyEg2btxYo3B5Y7W57XoApkyZQnZ2dq3nVq9eTXCwefsPnU7H8uXLq23Xc/fdd9e6XU9DtaXteoqKivjll1/45ZdfeO6556r9dvGf//zHMnT7xD0zmDL0fnJOainMKgETfHf4X3i7+BHl26naNjUA7v4u+EV5mpOraE/82ntIYiXsprSgnJM7s0jZlklhZgm5JefI0p6hV+ggAFy8nOg4PJSvk1ay+PVFDB8+nHffffeydftE81Pb1i3NYc3Wn6cR09LS6NevHz///DNqtZovvviCLVu2sGzZMlQqFZ999hlff/013333Hb169WLZsmUMGTIEo9FIUVERXl5ejBgxgmeeeYYJEybU2t/UqVPp378/Tz75pKX/devW0b1796u+dtSoUTzzzDOWX6z/8Y9/YDQaSUhIAODll18mLy+Pt956i6lTp3Lo0CG2bduGm5sbW7ZsYeTIkWzbto1hw4ZRWVlJTEwMy5cv57rrrmPHjh3ceuutnDx5ktzcXCIjI/n888+58847AS57v2Deek+n07Fo0aJq8cp2PQ3w5Zdf1uk6jUbD008/zdNPP23jiNqGBx98kK+++gqA66+/ni4du5F7qpDzJy5Qvt/8wxvoHkrO4RJO6KsXhZ3U427A/ESgf7QXAR088Y/2wj/SE2eP6psnC2FPrj7O9Lohip4TIslLKyJlWyandoVTUWJeXF9WWEHS/5JZtsa8QfCuXbvw9fW1Z8iiFbk4jajX63nkkUeYPXs2r7/+Ot9++y1JSUn069cPqP709qhRo5gxYwaTJ09mzJgx9O7d2+ZxZmRkVNs79ttvv6WoqIivv/4aMO/UcbGuJZgHSdzc3Cxfd+zYkWHDhgHmQQtHR0fLNOawYcMICAjg0KFDBAcH4+zsXG0d1pXuNygoiG3bqs+eWEObTLaag9Y6jfjmm2+yefNmzp8/z549e6qd69OjvyXZWjb7XwzwHcnFcVWTyZE3b16Nq5O75XqFSoFvhAcB0Z74d/AiINoLjyCNPNklWgSFQoH/HyOug+7uzNkDuaRsz+TM/hwwmLih+51sPrGWUK/2JH2YTo/xCiL6B6JUKdmxYwdOTk4MGDDA3rchWii1Ws0tt9zCs88+y+uvv47JZCIhIYFp06bVuHbp0qX8/vvvbN68mfvuu4+77rqL5557zqbxaTQaysrKLF+bTCbef//9ag9A/dmfE62/fm0ymWr9XLh47K97nl7pfsvLy3FxcanRVmNJsmUnLX2BfG5uLnl5eXTp0qXa8W+++YYdO3YAcHz/KYz5as4nXyA7+QIVp9wY0eF6onw7E+3ckz9PYCsUCvwCfAns6E1AR28CYrzwi/SQLWtEq6BSK2k/IJD2AwLRXSjnWOIZ3Da4MiLmesr1ZeSkFLLxrd9w9XWm29j2/O3Fv5G0L4kxY8bwxRdfyMiXaJBNmzZZlqdMnDiRt956ixtvvBEfHx+qqqo4cuQIffr04fjx43Tr1o1u3bqhVqv5+eefAXOJo9pKINXF1V7bs2dPjh8/zpAhQyzxLV26lNjYWDQaDTqdjrS0NLp163bVvjp37kxFRQWbNm1i5MiR7Nq1i5ycHHr06EFubm6N6y93vwDHjh2jV69eDbjjK5NkS9RLaWkp/fv35/jx4wwbNozt27cD5rpWealaYgK6soMduDq5s3L2t8T4X3pqM8wrkrv6m5+KUSjAO9ydwA7eBHT0IqijN27+LjJqJVo9jbcz/W7tSK9J0ZzamcXhH05TmGke4S7NL2f129+RtC8JgIyzmdUWOIvmq7nUwpo8eTLOzs5UVVXRvn17PvjAPF19zz33kJ+fz4gRI1AoFOj1eh544AH69OnD888/z4kTJ3B0dESj0bBs2TIAHn74YWbNmsVrr71W6yL3K7naaydPnsynn35qGWmbM2cO8+fPZ9CgQZbPgdmzZ9cp2XJ0dOSbb77hqaeesiyQ/+qrr3B1da012brc/ZpMJjZu3MjcuXPrfJ911SYXyDcnzXGBvNFo5MiRI2zbto3o6GjLAsaLOnTowMmTJ3F0cGTrp/spOFXK+ZQLGCqN5Jeep9JQSaB7KErFpUdn1U7mat2BnbwJ7ORNQLSnLGIXAvN/8FlH8jn842kyfsulUl/BntOb+fHol0zuN42pD99DzxsicfEwlylJT08nIiLCzlG3bY1dLC3MnzMDBgzgu+++IywszN7hAObSTp9//jmfffZZjXOyQL6Fas5rtg4ePEjfvn0BuOWWWxg3bhz6CgPnUy6QffwC0V7dMfmpifbryt6vf8fV8dI6K1/XQACc3R0I7ORDYCdvgjp549feA6VaCoUK8VcKhYLQHn6E9vCjMLOE339Kx2WrC0Oi4lEqlBz+Po1jiWfoPq49Af01dOnehdjYWObPn09cXJy9wxeiQZRKJR9++CGnT59uNsmWVqvl1VdftUnbMrJlZ/Ya2UpNTeWLL75g69atPP7449WKLRoMBnx8fCgqKsLH05dPnl5LXqoWo8H8o1LbYkRXX2eCu/gQ1MmbwM4+eIW4ypSgEA1Upq3g4NpUjv6cjlF/6b/obw5/zPoj5qe1nn76ad588007Rdi2ychW2yMjW+KqKioqUKlU1epanThxghdeeAEwP0I78YZJ5J4sJOtoPlm/FzAq6iYclU509O/B+RMXqiVOCoUCd38Xgrr4EPzHH1lvJYT1uHg6EXt3F3qMj+S3705xfNNZTAYT4R7RBLiHcEGXy4S+t6OvNMhDJEK0AJJstWJr1qzhzTffZPfu3fz000+WLW8ABscORqVSYTAY2PVTEp8+uAFDpdFyfnyX26q15RGkMY9cXUyufK3/aKwQojpXH2eG3t+NnhMiOfDfkyi2X0PfdsM4c+EUp9dfYPXuLQy8ozMxcSFs376dXbt2MWPGDBltEaKZkWTLTppizdaFCxfYvHkzAJs3b6ZHVB8yj+ST9Xs+544W8MiQ5wnzisTPNahaogXmquzB3XwJ7upDSFdfXH3kP28h7MXdX8PwR3rSa2I0+75JQbVbBSYo01ay9YNDHP45jXnfPMHvx4+wfPlyNm3aJIvohWhGJNmyk6aos9Wvu3l7kCCfEI6vz+Sb5B3VzvcJG2L5u6uPsyWxCu7mg7u/BiFE8+IZ7MrIJ3vTe1I0SatPmAukAnv27OZo8lEAvDy9aNeunT3DFEL8hSRbrdTal/Zw/sQFXp24Ch9X/xrnndwcCOnmS0h3X0K6+kpldiFaEJ927ox5ph8ZB3PZ+cnvdKQ78657h9UHPmJ86D2c3JZFh+GhKJTm9/TlKmyL1uXPexNezrx58+jWrRu33XbbZa+5ki1btlBZWcmYMWMa9NpnnnmGpKSkBvXdkkmy1Uq5+pqn/S4mWmonFUGdfQjp7ktoN198wt0t/xELIVqmsF7+TH4tjiM/nkb1jZJZI/8JwLaPDvP7hnTiHuyOQVNOfHw8CxcuZOLEiXaOWNjbggULGvX6LVu2UFJS0qBkqy2TwketVLte/gR19qbvLTFMmDeIe5bHM3Z2f3peH4lvew9JtIRoJVQOKnpNjObWpcNpPyDQcjw/rYj/zd3JlHF3ceTIESZNmsR7771nx0hbt6VLlxIWFkZYWBhbtmypdi4tLc1ybvr06TVeO3HiRMv5v1q5ciVLly6tVywjRoxg9uzZxMXFER0dzaOPPmo5N3XqVN59910AqqqqmDNnDgMHDqR3797cfvvtFBYWAuaaUw8++CA9evSgV69eTJs2jd9++40PPviATz/9lN69e1sSt59++olhw4bRr18/Bg0aVG0j54SEBGJiYrjmmmtYt25dve6jNZGRLTux9QL5DsND6TA81CZtCyGaHzdfF+L/1pfMw3ns+L8jFOeUUWWo5ML5IgB8vH259dZb7Rxl61VUVERmZiZgLrfzZwaDwXLuwoULNV6bm5trOf9XpaWlFBUV1TueU6dOWab8unbtyu7duxk8eHC1a1577TXc3Nz45ZdfAHj55Zd58cUXeeutt5gxYwZubm4cPHgQpVJJbm4u/v7+PProo5SUlLBkyRLAXLNx/vz5rF+/Hg8PD06ePMk111zD6dOnWb9+PWvWrOG3337DxcWlWj3HtkaSLTtp6RtRCyGap9AefkxeMpwjP6Sx/5uTTB/+ErtPb8JZ7cKx/2bjdZ8Pji7yX7+1eXh4EBpq/gXXycmp2jmVSmU5V9tel/7+/pbzf+Xq6lojeauL22+/HZVKhYuLC7179+bUqVM1kq1vv/2WoqIivv7aXCi3srKS6OhoANatW8e+fftQKpWWGGuzfv16Tp48Wa20EMDZs2fZvHkzt912G25ubgBMmzaNV155pd730hrIO04IIVoZlVpJr4nRRA8NYeuyQwxRjAIgZVsmmYfyGPFET/w7ejJx4kQefvjhNj3iYC0zZ85k5syZtZ6LjIwkIyPjsq9ds2bNZc9NnTq1QfH8udaaSqVCr9fXuMZkMvH+++8zcuTIBvVxsY2xY8fy6aef1npOmMmaLSGEaKXcfF0Y//eBDL2/KyoH83/3usIKflj4K49OnsH69eu5+eabLbtJiLZl4sSJLF26FJ1OB4BOp+P333+3nHvttdcwGs01GHNzcwHzCJ5Wq7W0MWbMGNavX8+RI0csxy5OS44aNYovv/yS0tJSDAYDK1eubIrbapYk2RJCiFZMoVDQZXQEtyyOwz/GEzCPOPx24CBgHvW48cYb7RihaGoXy4DMmTOH3r17M2jQIHr27ElsbCy//fYbAG+88QY6nY7u3bvTu3dv5s6dC8BNN91EUlKSZYF8hw4d+Ne//sWDDz5Ir1696NKlC2+99RYAEyZMYMKECfTq1YuRI0fSs2dPu9xvcyAbUduZvTaiFkK0PSajicM/pJH05QkMVUb2nt7MhfJ8Zs14hkF3dkLlIPss1kVL3oh6/Pjx3Hvvvdx+++32DqVFaey/uYxsCSFEG6FQKug5IYqb/zkMn3APYiNHMq7LrRz9KZ1vZu+g6HwpYC43cLEEgGg94uPjKS4u5vrrr7d3KG2OJFtCCNHGeIW6cdM/htDn5hhLzb2ibB3fzN7BOws/5P7776dfv34cOHDAzpEKa0pMTGT79u24u7vbO5Q2R55GtJOm2IhaCCEuR6lS0m9yByL6B7Dh9f2U5pdTUV7J/H++CJjrJ+3du5c+ffrYOVIhWj4Z2bKT+Ph4Fi1aVGs1YSGEaCp+7T255dVhhPX2Q61U88zIRbT36ciwLvHcPflee4fXrMmS57bj4lOZDSUjW0II0cY5ahy47tn+HFqbStJqeC7+NYwmA9/M3smIx3sS0c+8DVBZWRkuLi52jtb+HBwcUCgUlqrqssl362UymaisrCQ3NxelUomjo2OD2pFkSwghBAqFgl4Towns6M2GpfupKKmiqkzPhqX76XZdBO59jIweM5qVK1dy3XXX2Ttcu1KpVISFhZGRkcHp06ftHY5oAhqNhvDwcEtF/fqS0g92JqUfhBDNTVlRBT+/to/cU+bileVVZby6eRYZ+adRqVSsXbuWcePG2TlK+zMYDFRVVdk7DGFjKpUKtVrdqBFMGdkSQghRjYuHEzfMH8zefx3j9/XpKBQK/FyCyeA0nWI6M3ToUHuH2CyoVCpUKqlNJq5OFsgLIYSoQalUMPjeroz6Wx9cXV15bOhcbuh+J9O6zyHz10J7hydEiyIjW41UWVnJ66+/TlJSEqWlpbRv354nnniCHj162Ds0IYRotMgBQfgu9uDHhb8wUXk3ADs//p0LZ4qJva8rlZUVlJWV4e3tbedIhWi+ZGSrkQwGA8HBwbz//vv88MMPTJo0iblz51JeXm7v0IQQwio8/DXcvGgYgZ3+SKhMcHTDGX74x17uuvNuBg8eTGpqqn2DFKIZk2SrkVxcXJg6dSqBgYEolUrGjRuH0WgkIyPD3qEJIYTVODiruf6FQcQMD7EcW/Hle/z3f9+QnJxMfHy8LBYX4jLa3DSiTqdj1apVpKSkkJKSglarZerUqUybNq3Wa1esWMHmzZspLi4mPDycu+66i1GjRl22/fT0dCoqKggJCbnsNUII0RIplQpGPNoLr2BX9n2ZQmz7UexN38r54kzmPv4SalWb+0gRok7a3MiWVqtl7dq1VFVVERcXd8VrExISWL9+PVOnTmXx4sV07tyZ+fPns2HDhlqvLy8vZ+HChdx7771oNBpbhC+EEHbXe1IM1z7Zi0DvYOaMXsLjw/6O+vcg9v83hapyvb3DE6LZaXO/hgQFBfH999+jUCgoLCxk3bp1tV63e/dukpKSmDdvHvHx8QD07duX7Oxsli1bxsiRI6s98qvX63nxxReJiIjgnnvuuWz/eXl55OfnW75OT0+30p0JIUTTiRocgpufhp+WJNHbcTD6CgO/fZdKcU4ZfW/pQLH+AqGhofYOU4hmoc2NbCkUijoVJtu+fTsuLi6MGDGi2vHx48eTl5fH0aNHLceMRiMLFy5EqVQye/bsK7a/Zs0aHnroIcufV155pcH3IoQQ9hTQwYubFg7FI9A8km8ymDi5I4t35q4gJjqGD5Z9YOcIhWge2tzIVl2lpaURERGBWl39WxQdHW05f7G8w5IlS8jPz+e1116rcf1fTZw4sVpBwPT0dEm4hBAtlpufCzf9YyjrFydxPvkC2UUZzF/9DHpjFY89/hihwWHccOMEe4cphF1JsnUZWq221kXu7u7uABQVFQGQnZ3NunXrcHR0ZOLEiZbrFi9eTK9evWq83s/PDz8/PxITE0lMTKSkpMRGdyCEEE3DwUXN9QkD2fzeQUy7TYzqNImfjn3N4M4jCDLGoD1Ximewq73DFMJuJNm6grpMNwYFBbFt27Z6tx0fH098fLxlb0QhhGjJlColo57qg5OrA7dwP2FekfQPj+PMnlyUBiWBnbwJ6e6HUtnw/eWEaKkk2boMT09PtFptjePFxcUAeHh4NHVIQgjR7A17oDuOLmoU3yvABBcySjBUGTEaTBRkF9FpaDhOrg72DlOIJiXJ1mVERUWRmJiIXq+vtg7rYpXkyMjIRrUv04hCiNZq4J2dUTurOPDfU5iMJorO6zi06QRvbEogfuh1vLjwBbzD3O0dphBNps09jVhXcXFxlJWVsXXr1mrH169fj5+fH127dm1U+/Hx8SxatIjp06c3qh0hhGiO+t7cgYF3dkKpVqI3VPHP/83m91OHeOvT13g54Z+c/vU8hiqDvcMUokm0yZGtPXv2UF5ejk6nA8xPBG7ZsgWA2NhYnJ2diY2NpX///ixduhSdTkdoaCgbN25k7969JCQkVKux1RAysiWEaO16jI/EwVnFns+O0yt0EKfyjuHu7EnfDoPITy+iJK+M9gMDcfN1sXeoQtiUwmQymewdRFObMmUK2dnZtZ5bvXo1wcHBgHm7nuXLl1fbrufuu+++4nY99XVxgfzy5cvp1KmT1doVQojmImVHJrs+Ocr6g/+lo393IoM6EDMsBBdPJxRKCOrkQ3AXHxSyeF60Um0y2WpOJNkSQrQFab+cY+f/HaW8uBIAlaOSmKEhaLydAXD1dab9gECc3RztGaYQNtEmpxGbA5lGFEK0JZEDg1E7qti+/Ai6CxUYKo2c3JFFijKJLp270JUeHE88S1gvP/wiPe0drhBWJSNbdiYjW0KItiTzcC7bPjpCSV4ZPx79kv8dWoW3uw+f/ONLwoLCAfAKcSWiXyBqp8atjRWiuZCnEYUQQjSZ0B7+DH+kBy6+Dhw5lwTAheIC1v78reWawqxSjm5IR3uu1E5RCmFdkmwJIYRoUqHd/bjmod7MmbyIUM8Ibu51P7Hu49BmXUquqsoNnNyZxZkDORj1RjtGK0TjyZotO5E1W0KItqxdL39GPTAAZ8fl6HL0YILUvedoPyCwWsHT3FNainN0tB8QhKuPsx0jFqLhZM2WncmaLSFEW2UymUj75TwH/pvChbOXfvH06uJE+85h1fanVSghuIsPQZ2kRIRoeWQaUQghhF0oFAoiBwTSe1I0vhHm/WazizJ49NU7ee39f1S71mSErN8LSN6aQXlJpT3CFaLBJNkSQghhNwqlgsjYYLqNj0ATqmZx4nPkl57nyy2rWPn5xzWuL80v53jiWXJTtXaIVoiGkTVbdiJrtoQQwkypVBAzOASj3shdRx/kgx+WEOYVSYihA9nHCwjq7FPteoPeyJn9OWjPlRLRLwAHZ/koE82brNmyM1mzJYQQZvpKAye2ZbDyw0+JUHTHSW1eEB/YyZvgrj7V1nBd5OCkIrxvAF6hbk0drhB1JtOIQgghmgW1o4oOw0K578F7iewdajl+PvkCmYfzqG1soKrCwKnd50hPOo+hytCU4QpRZ5JsCSGEaDYcnNV0iAshvI8/Yb38APNTi4lbf+bMgZxaEy6AvNNFHEs8S0leWVOGK0SdyES3EEKIZsVR40DMsFAMehPlVWW8/OHz7M/YxQVdHjcZbyeib0Ct5R8qSqs4sTWDwI7eBHfzRSklIkQzIcmWncgCeSGEuDxnd0dihgSzcddP7M/YBcDq/R/RK3QQJoOJiAGBtSZTJhNkJ1+gKEdH+wGBuHg4NXXoQtRgtQXy+/btY//+/Rw5coScnBy0Wi3Ozs54eXkRFRVF7969GTx4ML6+vtbortWQBfJCCHF5hVklPPnoU3y74SseGPQMPUIGAuARpCFyUBBK1eVXwyhVCkK7++If41Xr4nohmkqjki2dTsc333zD2rVrycm5NJfu6OiIh4cHFRUVlJaWYjSa97VSqVQMHTqUKVOm0KNHD+vcQQsnyZYQQlxZ9ol8fk08hJvRm9Q92ZiM5s8a9wAXImODUamvvPzYI0BDRP8AHDUOTRGuEDU0eBrxu+++45NPPuHChQvExMQwceJEunXrRqdOndBoNJbrTCYTGRkZHD16lF9//ZUdO3awfft2hg4dyhNPPEFISIhVbkQIIUTrFNTRl35VPTl3rIDoocGk7jqH0WCiOKeMUzuziB4SjMpBddnXF+XoOJZ4hnZ9AvBp537Z64SwlQYnW2+++SajR4/mjjvuIDIy8rLXKRQK2rVrR7t27bjuuuuoqKggMTGRf/3rX/z8889MnTq1oSEIIYRoI0K6+VJVpgcgZlgIa77+nsKSAmIZScr2LGKGhqB2unzCpa80krY3G+25Utr19kftePlrhbC2Bidb//rXvwgNDb36hX/h5OTE9ddfz9ixY8nNzW1o90IIIdqY8L4BVJZV8dma/+Odja+hVKjwdw8hms6kbMsgelgoji5X/lgrOFNMSW4Z7QcE4h6gueK1QlhLg+tsNSTR+jOVSkVQUFCj2hBCCNF2KJQKogaHUFCSg9FkRG+sYtPJ7wAoL64iZWsGFaVVV22nskxPyvZMzh7MxWgw2jpsIaT0gxBCiJZDpVbywar3OJF2gr6dB3LHmPtJ25VNZameSp2eE1sziBkWctWSDyYT5KQUUpyjo/2AIDReUiJC2I7sjWgnf66zdejQIXkaUQgh6kFXVM7JrVlUVRioKtNzckcW5cWVAKgclUQPCcHVx7lObSmVCoK7+hDYyVtKRAibsOp2PcXFxaxfv96aTbZa8fHxLFq0iOnTp9s7FCGEaHE0Hs5EDw1BqVbg4KKmw/BQy+iUodLIyR2ZFOfWbeseo9FE5pF8UrZm1mkaUoj6smqydf78eRYtWmTNJoUQQohaufo4EzkgCIUCCkpy+T79M1x8zLW0jHoTp3Zmoc0urXN7xXllHEs8Q95pra1CFm1UvdZsnT9//orn8/LyGhWMEEIIUR9eoW4kF/7GY888jLakENfJbsSHTabovA6T0UTq7nO0HxCId1jd6msZqoykJ+WgPacjom/AFctJCFFX9Uq2pkyZcsX5bJPJJPPdQgghmlRkt3aUlBUDsG7r/7jn9QdRHlJSmFkCJjj9y3kMVUb8Ij3r3GZhZgml+WVE9AvEM9jVVqGLNqJeyZa7uzsPPfQQffr0qfV8eno6L7zwglUCE0IIIeoiNjaWF154gT1bk3j2nnloXDS0H+jC2f1K8tOLADh7IBej3khAB+86t1tVbuDkziz8ozwJ7el31W2BhLiceiVbHTt2pLCwkPDw8FrPV1ZWIg83CiGEaGovvPACprkmUnZkUZpfbt69pK8/SgcFuSfNa7AyD+djqDIS1MWnXrMwualainN1tO8fiKuvi61uQbRi9UrTb7zxRoKDgy97PjAwkDlz5jQ6qJbm22+/5YEHHuDaa6/l448/tnc4QgjR5iiVSlQOKqIHB+PkZl4kr1AoCO3hR1AXH8t12ccvkHkor94DA+XFVSRvzSDr93zLRthC1FW9kq3hw4czZsyYy553d3dn3LhxjQ6qpfH19WXatGnExcXZOxQhhGjTHJzVxAwNwaio4r0vXien4DzBXXwI7elnuSb3lJYz+3LqnTSZjHDuWAHJm89SXlRp7dBFKyYT0FYQFxfH0KFDcXWVRZRCCGFvWbkZTHvxdj7534e89O5zGI1GAmK8CO8bYLmm4Ewxp3/Jxmio/yhV6YUKjm06Q87JQitGLVqzRidbI0aMuGpJiOZEp9OxbNkyZs6cyQ033MDw4cMvO/Wn0+l4++23uemmm4iPj2fatGls3LixiSMWQghRH97e3hRqLwDw2/F9JKcdBcC3vQftB5nrcgEUZpWSuvscRn3990c06k2c/S2XlB2ZVJbprRa7aJ0anWy1tAXxWq2WtWvXUlVVddVpv4SEBNavX8/UqVNZvHgxnTt3Zv78+WzYsKGJohVCCFFf3t7efPbZZ/Ts2ZP1X2+kS3T3S+dC3YgaHIxCZc64inN0nNyZhaHK0KC+irJ1HNuQzoWMYqvELlqnNrcRdVBQEN9//z0KhYLCwkLWrVtX63W7d+8mKSmJefPmER8fD0Dfvn3Jzs5m2bJljBw5EpWq/sXu8vLyyM/Pt3ydnp7esBsRQghxWSNGjGD//v2oVCrS950nL63Ics4jyJWYoSGc2mUe1SrNLydlWxbRw0JwaEARU32lkdQ92fiEl9Kutz9qRymEKqprc8lWXR/33b59Oy4uLowYMaLa8fHjx7NgwQKOHj1Kjx496t3/mjVrWLlyZb1fJ4QQon4u/kIc3ieAyjI9Rdk6yzk3Pxc6xIVwamcW+kojZdoKUrZmEDMsBEeNQ4P6KzhTTEleGe37B+IeoLHKPYjWQRbIX0ZaWhoRERGo1dXz0ejoaMv5i/R6PRUVFRiNRgwGAxUVFRgMtQ9JT5w4keXLl1v+JCQk2O4mhBBCoFAqiBoUxK4jm8ktuLTGWOPtTIdrwnBwNidlFSVVnNiaSXlxw580rNTpSdmeydmDuRgN9V8LJlonSbYuQ6vV4uHhUeO4u7t5f62ioktD0p9++imjR4/mxx9/5LPPPmP06NH8/PPPtbbr5+dHp06dOHv2LJ988glr1qyxzQ0IIYQAzPv6Tp4ymafmP8LST/9R7ZyzuyMdR4RZanNVlelJ2ZqB7kJ5g/szmSAnpZDjG89S2oh2ROvR5qYR66OuU47Tpk1j2rRp9Wo7Pj6e+Ph4kpOTeeihhxoSnhBCiDpQq9Xs3LkTgA07f+TOCffTI6a35byjxoEOw0M5tTOLMm0l+kojKdsziRocgrt/wyvGlxVVcmJzBkFdvAnq5INCKXsHt1UysnUZnp6eaLXaGseLi81PnNQ26iWEEKL58fX15Y033iAgIID//Oc/3HjvOBR/+fRzcFYTExeKq68zYC7tcGpnFtpzpY3q22g0kfV7AclbMho1PSlatkaPbN1zzz24ublZI5ZmJSoqisTERPR6fbV1W6mpqQBERkY2qv3ExEQSExMpKSlpVDtCCCGu7s477+SGG26w/KLcrpc/Zw7kVrtG7agiZmgIaXuzKTqvw2Q0kbrnHBH9AvEJd29U/6UF5RzbeIbQ7n74R3vWa29G0fI1emTrwQcfbJWV0+Pi4igrK2Pr1q3Vjq9fvx4/Pz+6du3aqPbj4+NZtGgR06dPb1Q7Qgghrk6hUFSbkfCP9iKwg1eN65RqJZGDg/EO+2MQwQTpSefJPVXY6BguFkI9uSOLSl1Vo9sTLYfN12yZTCYyMjJwcnIiICDg6i9oAnv27KG8vBydzvwYcHp6Olu2bAEgNjYWZ2dnYmNj6d+/P0uXLkWn0xEaGsrGjRvZu3cvCQkJDaqx9WcysiWEEPZV4pSPa6CG0vMV1Y4rlQoiBgSiclSRl2peTpJxMA99pZGgzt6NHpUqOq/jWOIZ2vUJwKdd40bMRMugMFmpBPz27dvZuXMnTzzxhOWJvXPnzjFnzhxL4c6RI0eSkJCAUmnfpWJTpkwhOzu71nOrV68mODgYMG/Xs3z5cjZv3kxxcTHh4eHcfffdjBo1ymqxXFwgv3z5cjp16mS1doUQQtSuvLycf/7zn/zzn//k5QUvM2ngnZQW1Hxq0GQyce5oAeeTL1iO+Ud7EtrTz2rTgD7h7lIItQ2wWrL17LPPkpOTw6pVqyzH5s6dy86dO+nbty9FRUWcOnWKZ555hgkTJlijy1ZBki0hhGha+/fvZ8CAARiNRpydnflt/0GqTjtQUVr7Hoc5KYVkHs6zfO0T7k543wCrPV3o6KImon8gHoFSCLW1stoQU1paGl26dLF8XVJSwp49exg5ciRvvPEGH374IREREXz//ffW6rJFS0xMZM6cObzzzjv2DkUIIdqUvn37Mn36dNRqNTNnziS8fTuih4agdqz9IzGggxfhfS8tgyk4U0zaL9kYDdbZG7iyTM/JHZmc/S23QZtii+bPaslWYWEhvr6+lq8PHz6MwWCwTLmp1Wr69+9PZmamtbps0WSBvBBC2M/LL7/M/v37WbhwIS4uLrh4OBE5KLhGSYiLfNt7EDkoyHJem1VK6u4sDFZKjkwmyDlZyDEphNoqWS3ZcnV1rVZV/cCBAyiVSnr16mU5plarKS+XHyIhhBD25e7uXmN/W49ADeF9Lv8gl1eoG1GDQ1CqzNOHxTllnNyRib6y9u3ZGqK82FwI9dyxfExG64ycCfuzWrIVHh7Orl27KCoqoqSkhI0bN9KhQwfLYnmA7OxsvL29rdVliybTiEII0bwYjUb8Ij0J7HT5zymPQA0xw0JQOZg/PnUFFaRsy6SqrPb1Xg2L449CqFulEGprYbVk65ZbbiEvL4+bb76ZyZMnk5+fz6RJkyznDQYDhw8fJiYmxlpdtmgyjSiEEM2DyWTiq6++onPnzhw9epTQ7r6X6mzVwtXXhQ7DQ1E7mZ8gLC+q5MS2TCpKrVs7qzTfXAg152QhVnqWTdiJ1ZKtESNG8Le//Y3IyEjatWvHww8/zPXXX285v2/fPsrLyxk4cKC1uhRCCCEa7ZNPPmHKlCmkpKTw7LPPolAoaN8/EFcf58u+xsXTiQ7XhOKoMZerrCytImVrBmVF1h2JkkKorYPVSj+IhpHSD0IIYV9lZWV06tSJs2fPEh8fz7fffourqytV5XqSN5+9bEkIgEqdnpM7M6koNidCKkcl0UNCrpioNZTaUUm73gGN3jpIND3ZiFoIIUSb5uLiwvvvv8+6dev4+eefLVvQOTiriR5yaX1WbRw1ajoMD8PFywkAQ6WRkzsyKc7VWT1OfaWRtF+ySdt7zqqL8oXtyciWnfx5u55Dhw7JyJYQQjRTRedLObkzC9MVqjwYqoyk7s6iJM/8xL1CqaD9wEC8Qi6/9qsxHFzURPQLwDOo9e1N3BpJsmVnMo0ohBDNX26qljP7c654jdFgJG1vNkXZf4xqKSC8bwC+ER5XfF1j+Ed7EtbDD6VaJqqaM/nXEUIIIf7i2LFjfPrpp5av/aM8CezodcXXKFVKomKD8W73x2iWCc7syyHnZKHN4sw9peXYxjO17u0omg9JtoQQQog/efbZZ+nRowcPPfQQqampluOhPfyuWBICzNOHEf0D8YvytBzLPJTHuaP5NivfUF5cRfKWs2T9LoVQmytJtoQQQog/UavVGAwGKisrWbx4seW4pSSE75WfNFQoFIT18iOo86XiqNnHL5B5KM9mCZfJCOeOFZC8RQqhNkeyZstOZIG8EEI0T0VFRfTp04epU6cya9YsNBpNtfPmkhAZdSpimnOykMxDeZavvcPdiegbgEKpsHrcFynVCkK7+xEQ42WzPkT9SLJlZ7JAXgghmp+qqiocHBwue768qJLkLWfRV159I+r89CLO7Lu0uN4z2JX2AwNRqmw7ueQRpCGiXyCOLmqb9iOurt7/0kajkdTUVPLy8mqc0+v1/Pbbb9aISwghhLCbKyVaAM4ejkQNDkZZhxEq3wgPImODUPzxias9V8qpnecwVF09UWuMomwdxxLPcCGj2Kb9iKurV7KVnZ3N1KlTuf/++5k8eTJz5sxBq9VazhcVFTFjxgxrxyiEEELYVUlJCWVlZdWOuftrCO8XUKfXe4W4ET0kBKXanJyV5JWRsj2TqgrbFifVVxhI3ZNN2i/ZUgjVjuqVbC1btgx/f3+++uorPv74Y6qqqnjiiSeqjXLJrKQQQojWwmg08sknn9CxY0dee+21Gud9IzwI7uJTp7bcAzTEDAtF5Wj+6C0rrCBla0aT7HlYcKaYY4lnKM6xfmV7cXX1SrYOHjzIY489RkBAAFFRUSxZsoSePXvy5JNPcv78ecD8FIYQQgjRGqSmpvLwww9z7tw5Xn31VbKysmpcE9LNt877Fbr6ONNheBgOzioAKkqqOLE1s0meIKzU6UnZnsnZg7kYDbadwhTV1SvZKi8vrzaPrVAoeO655xgwYADTp08nMzPT6gEKIYQQ9hITE8Njjz0GwMiRI2tMJV4U0T8Qd3+XOrXp4uFIxxFhOLmZP0+ryvSkbM1Ad8H2hUlNJshJKeT4xrNN0p8wq1eyFR4eTnJyco3js2bNIjY2ljlz5lgtMCGEEKI5ePHFF9m9ezdr164lOjq61muUSgVRg4NxdnesU5uOGgc6DA/FxdN8vb7SSMp222xgXZuyokqSN2dw7liBFEJtAvVKtoYPH86GDRtqPTdz5kxGjhwpa7bqKDExkTlz5vDOO+/YOxQhhBBX4OvrS2xs7FWvUzuqiBkagoOTqk7tOjir6TA81FIk1ag3cWrnObRZpY2Kt66MRhNZv+dzYmsG5SVSCNWWpM6WnUmdLSGEaF1K88s4sT0To75uH69GvZG0X5p2A+u/UqmVhPb0w/9P2wwJ65HteoQQQoh6+O233/jnP/952fOuvi60HxBEXZ8XU6qbfgPrvzLojZzZn8PJHZlUlumbrN+2otHJ1ogRIyxPIgohhBCt2YwZM+jTpw9z587ll19+uex13qFuhPbwq3O79tjAujZaKYRqE41OtmQWUgghRFvx5+Ueb7/99hWvDezojX903afl7LGBdW2kEKr1yTSiEEIIUUcPPPAAsbGxvPnmm6xYseKq17fr5Y9nsGud21coFAR39SW056VRsdxTWs7sy2nypwYLzhRzbMMZis5LIdTGkt0phRBCiDpydHRk165ddS7grVAqiBwUxImtGeguVNS5n4AYL1QOSssG1gVnijHojbQfEIRS1XTFwyvL9JzckYl/tBeh3X1RqmWMpiHku9ZIhYWFPPfcc4wZM4Y777yTX3/91d4hCSGEsKH67pSiUiuJHhKCo6Z+4xu+ER5EDrq00F6bVUrq7iwM+qat/m4yQc7JQo5tPEupFEJtEEm2GumNN97Ax8eHNWvW8Pjjj/Piiy9W25xbCCFE61ZSUoLReOUEyNFFTczQEFQO9fvY9Qp1I2pIiGU0qzinjJM7Mu2ylqq8uJITmzM4dyxfCqHWkyRbjaDT6di+fTv3338/zs7ODBs2jJiYGHbs2GHv0IQQQthYeXk5b7zxBpGRkXzzzTdXvd7F04mo2CAU9fzk9QjUED3sUqKmK6ggZXsmVeVNX6LBXAi1gOStGU2yn2Nr0aaSLZ1Ox7Jly5g5cyY33HADw4cP5+OPP77stW+//TY33XQT8fHxTJs2jY0bN1a7JiMjAxcXFwIDAy3HoqKiSEtLs+l9CCGEsL+tW7cyc+ZM8vLymDdvHgbD1UebPAJdCe8bUO++3HxdiIkLRf1HdfpybSUpWzOp1FXVuy1rKM0v59jGM+SeKrRL/y1No5Ote+65Bzc3N2vEYnNarZa1a9dSVVVFXFzcFa9NSEhg/fr1TJ06lcWLF9O5c2fmz59fbbuisrIyXF2rP2Xi6up62Y1KhRBCtB5jxoxh6NChAPTp04fi4rrVpvJr71mtvENdabyc6HBNKA4u5rVfFaVVnNiSQXmRfUaYjHoTZw7kkiKFUK+q0U8jPvjgg9aIo0kEBQXx/fffo1AoKCwsZN26dbVet3v3bpKSkpg3bx7x8fEA9O3bl+zsbJYtW8bIkSNRqVS4uLhQWlp9D6vS0lJcXC6/83teXh75+fmWr9PT061wZ0IIIZqaQqHg3XffRalU0rNnz3q9NqSbL5WlVRScLanX65zdHOl4TSgnd2RRUVJFVbmBE9syiB4SgquPc73aspaibB3HNqQT3jcA7zB3u8TQ3LWp0g91fYJk+/btuLi4MGLEiGrHx48fz4IFCzh69Cg9evQgLCyMsrIycnJyCAgwDwunpaUxZsyYy7a9Zs0aVq5c2dBbEEII0Yz07t27Qa9TKMwV4yt1ekry6/eEn6PGgQ7DQzm16xxlhRUYKo2c3J5J5OBgPAI0DYqnsfSVRlL3ZOMTXkq73v6oHeu2GXdbYfVky2g0kpubS25uLnp97cOKDf3hbCppaWlERESgVlf/9kRHR1vO9+jRA41Gw7Bhw/jkk0+YMWMG+/btIyUlhfnz51+27YkTJ1qGncE8svXKK6/Y5kaEEEI0W0qVuSTE8c1nqSip39orB2c1HeJCSd2dRUleOUaDidRdWUQMCMI71H5LewrOFFOSW0ZE/0A8Au2T+DVHVku2TCYTn3/+OV9++SVFRUVXvHbLli3W6tYmtFotISEhNY67u5uHR/98fzNnzmThwoVMmDABPz8/XnrpJby8vC7btp+fH35+fiQmJpKYmEhJSf2GkIUQQjRfu3btIisri8mTJ9fperWTipihISRvPou+sn71s1QOSqKHhnD6l/Noz5ViMsLpvdkY+vjjF1n3bYKsTQqh1mS1ZOvDDz/k3//+N97e3owbNw5fX19UqpY7jFjXKUcvLy9ee+21ercfHx9PfHw8ycnJPPTQQ/V+vRBCiOZDr9dz0003sW7dOnx9fbnuuussv6BfjbO7I1GDQzi5PRNjPetXKVVKIgcFceZADgXp5gX6Zw/koq80EtjRq94FWK3lYiHUovM62g8MxNXbPuvJmgurJVvr16+nXbt2fPTRR2g0LXvo0NPTs9bCpBefNPHw8Gh0HzKyJYQQrYdarbZ8NuTn5/N///d/zJgxo86vd/d3Ibx/AKd/OV/vvhVKBeF9A1A7qshJKQTg3O/5GCoNhHT3tVvCBeZCqMmbzxLcxYegTj4olPaLxZ6sNrZXVlbG4MGDW3yiBeZaWenp6TXWnKWmpgIQGRnZ6D7i4+NZtGgR06dPb3RbQggh7G/+/PlERUWxYsUKnnzyyXq/3jfcg+CuPg3qW6FQENrDj5DuvpZjOSmFdtnA+q9MRsyFULe03UKoVku2YmJiqpU0aMni4uIoKytj69at1Y6vX78ePz8/unbtaqfIhBBCNFcxMTGkpKTwwAMP1HjAqq5CuvriG9Hw8gmBHb1p18ff8nXBmWLS9mZjNDTtfoq1KS0wF0LNOVlo71CanNWmEe+9915eeOEFkpOT6dSpk7Watbo9e/ZQXl6OTqcDzE8DXlywHxsbi7OzM7GxsfTv35+lS5ei0+kIDQ1l48aN7N27l4SEBKusRZNpRCGEaH2UysaPYYT3M5eEKM5tWIFsv0hP1I4qTv+ajckI2nOlnNp5jqjBwfXem9HajHoTZ3/LRXuulIj+gTi6tI0KVAqTyWS18cUtW7bwxhtvMHToUKKjo2tUV79o7Nix1uqy3qZMmUJ2dnat51avXk1wcDBg3q5n+fLlbN68meLiYsLDw7n77rsZNWqUVeO5uEB++fLlzTpJFUIIUX+VlZU4OjrW+3X6SgPJmxs37VacoyN1zzmMevPHvMbLieihIZYtf+xN7aikXZ8AfNq1/kKoVku2KisrWbx4MYmJiVxs8q+L8kwmEwqFotmXfmhKkmwJIUTrU1RUxFtvvcV7771HUlISYWFh9W6joqSK5M1nqaq4+p6Ll1NaUM6pXVkY/igr4eTuQMzQUBw1zWdEySfcvdUXQrXad/vdd99lw4YNREdHc80117T40g+2JtOIQgjRer322muWgtWvvPIKH3zwQb3bcHJzIHpIMCe2ZWI0NGxcxNXHmQ7Dwzi1I5OqcgMVxVWkbMsgelgIzm71H3GzhbZQCNVqI1sTJ04kKCiI999/v8ELA9siGdkSQojWJz8/n8jISHQ6HQ8//DDvvfdeg0swXMgwL3JvzKd1RWkVJ3dkUVlqrlSvdlIRPTQEjZdTwxu1MoWCVlsI1Wp3U1lZSZ8+fSTREkII0eb5+vqycuVKjh07xvvvv9+oWlfeYe6EdPdrVDxOrg50vCYUZw/zaJa+wsDJ7ZmU5DdsEb4tXCyEemzjWUov1G+/yObOaplRp06dyMjIsFZzrZ5MIwohROt28803W62toE7eVJRUkpd25e3wrsTBWU2H4aGk7jpHaUE5hiojJ3dkETUoCI+g2h9os4fWWAjVaiNbDz30EL/88gu7du2yVpOtmhQ1FUIIUR/hfQLwCGrcmia1o4roYSG4B7gAYDKYSN19jgsZxdYI0WqqFUItavmFUK02spWUlETv3r2ZO3cuffr0ISYmptbSDwqFgvvuu89a3QohhBDNnslkIjExkZCQELp169agNhRKBVGDgkjekkGZtuEJiEqtJGpwCOlJ2RRmlmIywelfzmOoMtp1A+valBaUc2zTGUK7++Ef7WnXrYcaw2oL5K+55pq6dSilH6qRBfJCCNG6ZWRkcNddd7Ft2zYmTJjA2rVrG9Vepa6K45szqCrTX/3iKzCZTJzdn0t++qWpyeBuvnbdwPpKPAI1RPQLwFHjYO9Q6s1qI1tvvfWWtZoSQgghWg0/Pz/L3rrr1q1j37599OvXr8HtOWociBkSzImtmRj0Dd+GR6FQ0K6vPypHZbPbwLo2Red1HEs8Q7veAfiEt6xCqFZLtnr37m2tptoEWSAvhBBtg7OzM/PmzWPJkiUsWLCAPn36NLpNjbczkYOCOLU7C1Mjtj1UKBSEdPdF5aji3O/m/Y1zUgrRVxoI7xPQ7Ban6yuNpP2STWFWCeF9A1pMIVSrbtcj6k+mEYUQovXT681TftYuj5RzspCzv+Vapa28NC1nD1xqyzPElfYDAlGqmmfNKwcXNRH9AvBsRk9SXo7VvoOHDx/m3XffJT8/v9bz+fn5vPvuu/z+++/W6lIIIYRoEdRqtU3qUAbEeBEQ42WVtvwiPWk/MIiLs4farFJO7TqHoaoRQ2c2VFWm5+SOLM7sz2nUdGpTsFqytXr1anbu3Imvr2+t5319fdm1axdffvmltboUQgghWiyj0ToJQlgvP7xCrDO64x3mRtSQEJQqc8ZVklvGyR2Z6BuxP6Ot5aZqOZZ4htJmVKD1r6yWbB0/fpyePXte8ZpevXpx9OhRa3UphBBCtDj5+fnMnj2bESNGYI2VPAqFgvYDg9B4W2frHY9ADTFxoagczCmC7kIFKdsyqNQ17ulHW6ooqSJ5awZZv+djNDa/1VFWG9MsLCzEz+/K2wn4+Phw4cIFa3XZoskCeSGEaJsmT55sKYH0v//9zyqV5lVqJdFDQkjedJbKRpaEgIsbWIdycmcW+nID5cVVnNiaQcywEJzdm8cG1n9lMsK5YwVos0tpPyAQF4/ms++j1Ua23NzcyMnJueI158+fx8XFxVpdtmhSQV4IIdqmZ599FgAnJydOnz5ttXYdXdREDw1BZaVNnF08neh4TRiOrua6VlVlelK2ZaJr5vsW6i5UcHzjWXJSLlhl5NAarJZsdevWjW3btnH+/Plaz58/f57t27fTvXt3a3UphBBCtDjjxo1j0aJFnDx5kpkzZ1q1bY2XE5GDglBY6dP94gbWLp6XNrBO2Z5FSV7zXR8FYDSYOHswj5TtmVTqquwdjvWSrSlTplBRUcETTzzB+vXrycvLAyAvL48ff/yRxx9/nMrKSm677TZrdSmEEEK0OAqFgtmzZxMWFmaT9j2DXWnXy99q7Tk4q4mJC8XV1xkAo968gbX2XKnV+rCV4pwysn6vvUpCU7Lamq1evXrx1FNP8c4777Bo0SLA/AN1cQhPoVAwffp0KX4qhBBC2Jh/tBflJVWWyvCNpXZUETM0hLS92RSd12Eymkjdc46IfoHNvpp7c5hJtGrRj5tvvpnevXvz7bffcvz4cUpKSnBzc6NLly5MmjSJqKgoa3YnhBBCtHgmk4l169YxevRonJ2drdZuWE8/KkurKMyyzgiUUq0kcnAw6UnnKcwoAROkJ53HUGXAP9rLKn20VlavsBYVFWX1OWghhBCiNfr111957LHH2LdvH2+99RZPPfWU1dpWKBREDgzixNYMSi9UWKVNpVJB+wGBZDgoyUszb2CdcTAPfaWRoM7ezW4/xeaiedbgF0IIIdoABwcH9u3bB8DChQvR6XRWbV+pVhI9NARHjfXGVhQKBWG9/Qns5G05ln2sgMxDec3m6b/mxvp7B4g6kTpbQgghevfuza233kpKSgqvvPKKTcojOTiriRkaQvKWDKttvaNQKAjp5ovaUUXmYfMDcbmntOirjET0bX4bWNubbERtZ7IRtRBCtG1arRZ3d3eUSttONhWdL+XkzixMVt5GMD+9iDP7LtXZ9AjSEDkoqNlsYO0T7k7kwCC7xtA8vhNCCCFEG+Xp6WnzRAvAI9CV8N4BVm/XN8KDyNhLtb2KsnWc2pnVbDewtgdJtoQQQog2wi/Ks9paK2vxCnEjekgISvUfG1jnlZOyPZOqZryBdVNqVLKl1zffTSmFEEKIliYrK4snnniCF154wWZ9hHb3xTvMzertugdoiBkWisrRnFqUFVaQsjWjWVRwt7dGJVs333wz7733nlX3dhJCCCHaotLSUrp3787777/P66+/zrlz52zSj0JhLt9wsSK8Nbn6ONNxeBgOzioAKkqqOLE1k/LiSqv31ZI0KtkqLS3lyy+/ZOrUqTz22GOsW7fO6o+tCiGEEG2Bq6sr9913HwAqlYr9+/fbrC+lSkn04GCc/thk2pqcPRzpOCIMJ7c/bWC9NaPZb2BtS41Ktv73v//x5JNPEhUVxdGjR1myZAk33XQTixYt4tChQ9aKsdn79ttveeCBB7j22mv5+OOP7R2OEEKIFur555/n2WefJTU1leuvv96mfV0sCaF2tP7ybUeNAx2G/2kD60ojKdszKc5tmwMyViv9kJyczA8//MDGjRspLi42Fz0LC+P666/nuuuuw8fHxxrdNEvbt29HqVTy008/0b59e6ZNm1bn10rpByGEEPZUnKvj5PYsjEbrV4IyVBk4tescpfnmUS2FUkH7gYF4hVh/zdjltKrSD506deJvf/sb//vf/5g3bx59+/YlMzOTDz/8kMmTJ/P3v/+dXbt2YTS2vkdB4+LiGDp0KK6urvYORQghhKgXd38N4f2sXxICQOWgImZYCB5BGgBMRhNpe7PJTy+ySX/NldUryDs4ODBq1ChGjRpFTk4OP/74Iz/++CM7duxg586d+Pj48N///tfa3aLT6Vi1ahUpKSmkpKSg1WqZOnVqraNMOp2OFStWsHnzZoqLiwkPD+euu+5i1KhRVo9LCCGEaCiDwcCuXbuIi4uzaT++ER5UlFRx7liB1dtWqpRExQaTvu88F86aN7A+sy8HQ5WRgBgvq/fXHNm0zlZAQAD33XcfixcvpkePHphMJgoKrP8PCeYKvGvXrqWqquqqP5QJCQmsX7+eqVOnsnjxYjp37sz8+fPZsGGDTWITQggh6mvdunX06NGDa665hiNHjti8v+CuPvi0s830nkKpIKJ/IP7RnpZjmYfyOHc0v03sp2izvRHLysrYvHkzP/zwA0eOHMFkMuHs7Mw111xjk/6CgoL4/vvvUSgUFBYWsm7dulqv2717N0lJScybN4/4+HgA+vbtS3Z2NsuWLWPkyJGoVOZHVmfMmHHZH/Dbb7+dBx98sN5x5uXlkZ+fb/k6PT293m0IIYRo/Y4fP86xY8cAmDdvnk1mhf5MoTAnRJU6PSX51n9yUKFQENrTD5WDkuzjFwDIPn4BQ5WR0J5+KBStdz9FqydbBw8e5IcffmDLli1UVFRgMpno3Lkz119/PfHx8Wg0Gmt3CVDnf6Tt27fj4uLCiBEjqh0fP348CxYs4OjRo/To0QOAN99808pRwpo1a1i5cqXV2xVCCNG6PP744yxdupTIyEimT5/eJH0qVUqiBgeTvDmDilLrFyNVKBQEd/VF5agi81Db2cDaKslWbm4u69ev58cffyQrKwuTyYSHhwcTJkzg+uuvJyoqyhrdWEVaWhoRERGo1dVvPTo62nL+YrJVV3q9HoPBgNFoxGAwUFFRgVqttoyQ/dnEiRMZOnSo5ev09HReeeWVBtyJEEKI1kyj0fDLL78QGhrapKM+F0tCJG85i77SNg+1BcR4oXJQcmZ/DpjgwplijFVG2g8MbDYbWFtTo5KtTZs28eOPP5KUlITRaESpVDJgwADGjx9PXFxcjYSmOdBqtYSEhNQ47u7uDkBRUf2fkPj000+rjVZ99tlnPP/884wbN67GtX5+fvj5+ZGYmEhiYiIlJSX17k8IIUTbEBYWZpd+nT0ciYoN5uQO25SEAPOifJWDktO/ZGMygvZcKad2niNqcDAqh9aVcDUqG5o/fz5gXi81fvx4xo0bR0CAbR4ftSZr/4Ywbdq0etXWAoiPjyc+Pt5SZ0sIIYRoTtwDNLTr6096Uo7N+ri4gXXq7nMYDSZK8so4uT2T6KEhqJ1qzg61VI1KtkaNGsX1119Pv379rBWPzXl6eqLVamscLy4uBsDDw6NJ4pCRLSGEEPWRmprKggULuPvuuy0PeNmaX3tPKoqryE6+YLM+3AM0xMSFcmpXFoZKI7rCClK2ZRA9NBRHTfObIWuIRt3FvHnzrBVHk4mKiiIxMRG9Xl9tmjM1NRWAyMjIJolDRraEEELUVVJSEoMHD0av13Ps2DFGjRrVZOu4Qrr7UlFaxYUM2w0OuPo402F4KKd2ZFFVbqC8uMqccA0LwdnN0Wb9NhWrTorq9Xq+/PJLHn74YcaOHcu1115rOZeSksLSpUs5e/asNbust7i4OMrKyti6dWu14+vXr8fPz4+uXbvaKTIhhBCidn379qVLly6A+fM0LS2tyfpWKBS0HxCIq6+zTftx8XCiwzVhOP6xOXalTk/K1kx0hRU27bcpWG18rqKiglmzZnHkyBE8PT1xdXWlvPxSnY7g4GB++OEH3N3dbTaSs2fPHsrLy9HpzBtdpqens2XLFgBiY2NxdnYmNjaW/v37s3TpUnQ6HaGhoWzcuJG9e/eSkJBQ6xOEtiDTiEIIIepKqVSyaNEi9u7dy8yZM/H09Lz6i6zZv0pJtA1LQlzk5OpAx+GhnNyZRXlRJfoKAynbMokeEoybn4vN+rU1q21EvWLFCj777DMeeeQR7rjjDj755BM+/fRTS7ID8Mwzz1BUVMRHH31kjS5rmDJlCtnZ2bWeW716NcHBwYB5u57ly5dX267n7rvvtst2PbIRtRBCiJaivKjSpiUhLtJXGkjddY7SgksbWEcOCsIzuP57EDeHjaitNrK1adMmevfuzZ133gnU/sRfSEgIKSkp1uqyhi+//LJO12k0Gp5++mmefvppm8UihBBCtDbOHo5EDQ7m5HbblYQAUDuqiB4WQtqebIpzdJiMJlL3nCOifyA+7dxt1q+tWC3ZysnJueqehBqNhtLSUmt12aLJNKIQQojGqKysJC0trclnRdz9NYT3C+D0r+dt2o9KrSRqSDDpSecpzDBvYJ3+63kMlQb8o71s2re1WW2BvIuLS60lFf4sKyuryeeZm6v4+HgWLVrUZFswCCGEaB1MJhMrV66kU6dOjB07lsrKyiaPwTfCg+CuPjbvR6k0L873jbxUlinjYB7Zxwpa1AbWVku2unXrxs6dOy87UpOTk8OePXvo1auXtboUQggh2hyFQsG///1vTp8+zenTp/n444/tEkdIV198I2w/padQKGjX25/ATt6WY+eOFZB5KK/FJFxWS7Zuv/12iouLmTlzJocPH8ZgMABQXl7Ovn37mDVrFnq9nttuu81aXbZoiYmJzJkzh3feecfeoQghhGhhLu6pO2bMGAYMGGC3OML7BeLub/unBBUKBSHdfAnt4Ws5lntKy5l9OZhsuHbMWqz2NCLAd999x1tvvYXRWPMpBaVSycyZM5kwYYK1umsV5GlEIYQQDXHkyBG6d+9u7zDQVxpI3pxBeXHTTGfmny4yb2D9B89g1ytuYN2qnkYEmDRpEr169eK7777j2LFjFBUV4erqSpcuXbjpppuarDq7EEII0do1h0QLzE8OxgwNIXnzWaoqDDbvz7f9HxtY//qnDax3nSMqtvluYG31TYfat28vJRWEEEKINsTJzYHoIcGc2J6JUW/7aT2vUDeiHf60gXVuGSd3ZBI9pHluYN3kKWBtU4xCCCGEaLijR49y7733cuGC7TaMvhpXXxfaDwiiibZstGxgrXI0pzK6CxWkbMukskzfNAHUg9WSrXXr1l31GoPBwIIFC6zVZYsmC+SFEEJYw4oVK+jevTufffYZr7/+ul1j8Q51I7SHX5P15+rjTIe4UNTO5tGs8uJKUrZmUFFiuy2FGsJqydbrr7/O9u3bL3veZDLx8ssvV9u+py2TOltCCCGsIT4+HrXavCpo9erV6PX2HdkJ7OiNf3TT1dR08XSi4zVhOGrM34NKnZ4TWzMo0zafDaytWmdrwYIFHDx4sMa5i4nW5s2bmThxorW6FEIIIdq89u3b89xzz7F48WIOHjxoSbzsqV0vfzyDNE3Wn5OrAx2vCcPZwxHAsoH1xb0V7c1qydaiRYsICQnh+eef59SpU5bjJpOJV155hY0bNzJx4kRmzpxprS6FEEIIgbnu1rPPPotG03QJzpVc3Dha4+XUZH06uKjpEBeKxtvcp6HKyMntmRScKW6yGC7HasmWm5sbr7/+Om5ubjz77LOcO3fOMqKVmJjIDTfcwKxZs6zVnRBCCCGaMZWDiughwTi6NN1Im9pJRcywUNz+KLRqNJj47btTnP41u8liqI1Vi5oCnD17lscffxx3d3c6duzI5s2bmTBhAs8++6w1u2nx/rwR9aFDh6SoqRBCCKvR6XTodDr8/JpusfplYyms4MSWDAz6pqtGYDQYOf3LebTnSgFQKGD0rH6E9w1oshj+zOqlH9q1a8drr71GQUEBW7Zs4frrr5dEqxayQF4IIYS1VVRU8O677xIdHd1sPns1Xk5EDgpC0YTFppQqJZGDgvAJN+/d6B3uXm1vxabW4JGtlStXXvH8wYMHOXnyJDfddBNK5aXvsEKh4L777mtIl62SbNcjhBDCWgoLC4mKiuLChQsolUqOHj3abD5bck8VcuZAbpP2aTKZKDqvI/aeLmg8m2792F81eCL1k08+qdN1q1atqva1JFtCCCGEbXh5efHss88yd+5cbrzxxmbxZOJF/tFeVJRUcT6lsMn6VCgURA4MsmuiBY1Itt566y1rxiGEEEIIK3jqqacYM2YM/fr1s3coNYT29KNCp6cws8TeoTSpBidbvXv3tmIYQgghhLAGV1fXZplowR8jTQMCOVGmbzY1sJpC89weWwghhBCtklKtNJeE0DSfKU5ba3CyNXv2bJKTkxv02oqKCv7973/z7bffNrR7IYQQQtRBUlISCQkJ9g6jGgdnNdFDQ1A5tI0xnwanlTk5OTzyyCP07t2b6667juHDh+Pq6nrF1xw/fpyff/6ZxMREysrKmDt3bkO7b/H+XGdLCCGEsIUZM2ZY1ljHx8czYsQI+wb0JxpPc0mIU7uyMDVdCS67aHDpB5PJxA8//MCqVas4f/48SqWS8PBwOnbsiLe3N+7u7lRUVFBUVERGRgbJycmUlpaiUCi49tpreeihhwgODrb2/bQ4UvpBCCGErXz66aeWCgBTpkxh9erVdo6oJluXhPAJdydyYJDN2q+LBo9sKRQKrr/+esaNG8fu3bv58ccfOXjwID///HONa5VKJVFRUcTFxTFhwoRmUdFWCCGEaO3uuusuPv30U2655RYeeOABe4dTK/9oL8pLqshpwpIQTa3Rq9OUSiVDhw5l6NChAJw+fZrc3FyKiopwdHTEy8uLyMhI3NzcGh2sEEIIIepOpVKRmJho7zCuKqynHxUlVZbtdVobqz8K0L59e9q3b2/tZoUQQgjRSikUCiIHBXFiSwa6wgp7h2N1beMxACGEEEIAUFRUhMFgsHcYNaj+KAnh4NL6SkJIsiWEEEK0AaWlpbz66qtERkY2y4XyAI4aB2KGBKNSt670pHXdjR1UVlbyz3/+k1tuuYWxY8fy6KOPcvjwYXuHJYQQQlSzd+9e5syZQ0FBAS+++CJ6vd7eIdVK4+1M+wGBKBT2jsR6JNlqJIPBQHBwMO+//z4//PADkyZNYu7cuZSXt51tCIQQQjR/I0eO5Nprr0WhUDB48OBmXefRK9SN0B6tp3KBJFuN5OLiwtSpUwkMDESpVDJu3DiMRiMZGRn2Dk0IIYSo5p133uHIkSN8+umneHl52TucKwrs6I1/tKe9w7CKVrMKTafTsWrVKlJSUkhJSUGr1TJ16lSmTZtW67UrVqxg8+bNFBcXEx4ezl133cWoUaMaHUd6ejoVFRWEhIQ0ui0hhBDCmrp162bvEOqlXS9/Kkur0Gbr7B1Ko7SakS2tVsvatWupqqoiLi7uitcmJCSwfv16pk6dyuLFi+ncuTPz589nw4YNjYqhvLychQsXcu+996LRaBrVlhBCCNHWKZQKImOD0Xg52TuURrH5yNaIESPYsmWLrbshKCiI77//HoVCQWFhIevWrav1ut27d5OUlMS8efOIj48HoG/fvmRnZ7Ns2TJGjhyJSqUCzHtKHTlypNZ2br/9dh588EHL13q9nhdffJGIiAjuueeey8aZl5dHfn6+5ev09PR636sQQghhDdu2bePcuXPcdttt9g7lsi6WhEjenEFlWfNc1H81Nk+2Grj1Yr0p6vjYwvbt23FxcamxGef48eNZsGABR48epUePHgC8+eabdWrTaDSycOFClEols2fPvmIsa9asYeXKlXVqVwghhLAFvV7PhAkT+Omnn/Dx8WHcuHF4eHjYO6zLctQ4ED00hBNbMjDoW96u1fWaRpw9ezYrVqywZMJ18efE4/PPP6eqqqp+EVpZWloaERERqNXV88zo6GjL+fpasmQJ+fn5vPTSSzXa/auJEyeyfPlyy5+EhIR69yeEEEI0hlqtxt/fH4CCggI+/vhjO0d0dRovJyIHBaFogQug6jWy5efnx6+//srq1aupqqrCzc2NDh060KFDBzp27EiHDh0IDw+vlmD9eWRr+fLljB8/Hm9vbwD+85//MGnSJFxcXKx0O1en1WprXbzu7u4OmCvr1kd2djbr1q3D0dGRiRMnWo4vXryYXr161bjez88PPz8/EhMTSUxMbNaP3gohhGi9XnrpJX755Rf+/ve/c9ddd9k7nDrxDHYlrKc/Z3/LtXco9VKvZOvZZ58FzLWl0tPTSU5O5uTJkxw/fpx169ah0+lwdnZm/fr1tb7+r1OKK1euZPjw4ZZk68KFCzz++OP8+9//bsi91FldpxzrIigoiG3bttX7dfHx8cTHx5OcnMxDDz1ktXiEEEKIuoiOjub48eNW/UxsCgExXlSUVpGTUmjvUOqsQWu2VCoVUVFRREVFAXDq1Cm2bdvGt99+i1arrXM7f02+TCZTnacnG8rT07PWGIuLiwGabM5aRraEEELYW0tLtC4K6+lHZWkVhVml9g6lThq8QP7o0aNs3bqV7du3k5OTQ+/evZk2bRpDhw61ZnxWFxUVRWJiInq9vtr6qtTUVAAiIyObJA4Z2RJCCNHclJeX4+zsbO8wrkqhUBA5MIgTWzMovVBh73Cuql7J1r59+9i2bRvbt2+ntLSUQYMGcf/99zN48GDc3Nzq1MauXbvo06eP3Yp+xsXFsXbtWrZu3VqtiOn69evx8/Oja9eudolLCCGEsJfCwkJef/11li1bxoEDB2jXrp29Q7oqpVpJ9NAQkjefpaK0eZeEqFeyNXPmTPz8/Lj77ru54YYbcHBwuOpr/jxE2aFDB9544w30ej0ajYbKyko+//xzevToQYcOHeqcsF3Onj17KC8vR6czV5pNT0+31PiKjY3F2dmZ2NhY+vfvz9KlS9HpdISGhrJx40b27t1LQkKCpcaWrck0ohBCiOZi6dKlvPLKKwC8/PLLfPTRR3aOqG4cnNWWkhD6yuZbEkJhqkchrAcffJDTp0+j1+txd3ev9iRix44da82E/1rUVK/Xc/r0aU6cOMGJEydISUnh5MmTVFRUoFAoMJlMDS6COmXKFLKzs2s9t3r1aoKDgwHzdj3Lly+vtl3P3XffbZXteurr4jTi8uXL6dSpU5P3L4QQQhQUFBAZGUlZWRmPPvoob731Votaz1Wco+PkjiyMxpopjU+4O5EDg+wQ1SX1SrbgysmSi4sLMTExvPPOO5br61JB3mQycfbsWcvTjY899liDbqYlkmRLCCFEc7B27Vq6d+/eZGuXrS0/vYjTv56vcbw5JFv1XiCvVquJiYkhJiaG8ePHAzWTpdq89tprREdHExMTQ3R0NK6urpZzCoWC8PBwwsPDGT16dANvpWWRaUQhhBDNyQ033GDvEBrFN8KDitIqzh0tsHcoNdQ52WpsslRVVcUPP/xAeno6VVVVBAYGWtq6mLzZa9G8PcjTiEIIIYR1hXT1pbJUT356/QqU21qdky29Xt+oZGnu3LmAeR/B/fv3M3/+fPLy8rhw4QJff/21pSBqVFQU77//fuPvTAghhBANYjKZ+PHHHwkPD6d79+72DqdewvsFUFlWRXFOmb1DsahzsvX8888DjU+WlEolq1at4tFHH+X6668HLo16ffjhh3To0KGRt9QyyDSiEEKI5ujMmTPcfvvt7N69m/Hjx/P999/bO6R6USoVRMUGc2JrBmXaSnuHAzRgzZY1kqVjx45ZRroAHBwcmDRpEhqNhsTExPqG1CLJNKIQQojmKDAwkMzMTAB++OEH9u3bR79+/ewcVf2oHVVEDzHX4GoOGrR39rFjx+jbt6/l64vJ0t/+9rfLll74s5iYGH7++ecax7t168axY8caEpIQQgghrMDJyYl58+bRtWtXvvnmm2qf9y2Jk6sD0UNDUKkblOpYVYMiaGyyNGvWLL744gveeustsrKyAPP05HfffVenQqlCCCGEsJ2pU6dy6NAhbr755hZVb+uvXL2dCenma+8wGrY34qxZs3jyyScpLCzk1ltvJSQkpF7JUocOHXj//fd54403uOOOO9BoNBgMBvR6Pc8880xDQmpxZM2WEEKI5qqpdlNpCmon+99LvYuaXnTq1CneeOMNDh8+XCNZulh/C65e1DQrK4uUlBQUCgWdOnUiMDCwIeG0WFLUVAghREtgNBpRKu0/JdcSNWhkCyA6Opp33333qsnS1XK5kJCQNlVfSwghhGhJcnJyWLRoEbt372bnzp2ScDVAg5Oti66WLG3durWxXQghhBDCTqZMmWL5LP/mm2+49dZb7RxRy1Pv9NRoNJKamkpeXl6Nc3q9nt9++80acQkhhBCiGZgzZw4ALi4unDt3zs7RtEz1GtnKzs7mueeeIz09HYVCQWxsLM8//zyenp4AFBUVMWPGjKtuPC2EEEKIluG6667j9ddf54477iA4ONje4bRI9Uq2li1bhr+/P0uWLKGkpIT33nuPJ554gjfffBM/Pz/g6mu0hJk8jSiEEKIlUCgUzJw5095htGj1mkY8ePAgjz32GAEBAURFRbFkyRJ69uzJk08+yfnz5wFadD2OphQfH8+iRYuYPn26vUMRQgghhA3VK9kqLy+vVkdLoVDw3HPPMWDAAKZPn24p7y+EEEKI1sloNPL1119TXl5u71BajHolW+Hh4SQnJ9c4PmvWLGJjYy2L6IQQQgjR+uzZs4c+ffpw66238sEHH9g7nBajXsnW8OHD2bBhQ63nZs6cyciRI2XNlhBCCNFKaTQaDh06BMA//vEPdDqdnSNqGRpcQV5Yh1SQF0II0ZLcfvvtnDp1ioULFzJ69GhZq10HjSpqmpWVJdXfhRBCiDZk+fLluLm5SZJVD42quX/nnXfy2WefWSsWIYQQQjRz7u7ukmjVU6NGtkwmEwaDodqx77//niNHjjB79uxGBdbaSZ0tIYQQrYXJZJIE7AqsvptkTk4OP/74Y63nvvjiC5544glrd9kiSZ0tIYQQLd3Zs2d5+OGHmTt3rr1DadYavRF1fVRUVPD77783ZZdCCCGEsIHS0lJ69OiBVqvF2dmZ6dOnyzruy7D6yJYQQgghWj9XV1ceeOABABwdHTl48KCdI2q+mnRkSwghhBCtx5w5c3BxcWHmzJn4+PjYO5xmS5ItIYQQQjSIv78/r7zyir3DaPYanWx9++23pKWl0blzZzp16kRpaak14hJCCCGEaBUalWxFRkZy5swZtmzZwpYtW6o99rlgwQKioqKIjo4mKiqKwMDARgfbXL300kscOHCAiooKgoKCePjhhxkyZIi9wxJCCCGalF6vZ9u2bYwcOdLeoTQrjd6up7KykpMnT5KSkkJycjInTpwgLS0NvV5v7uCPBMzV1RUnJycKCgrYsmVLowNvTtLS0ggLC8PBwYGjR48ya9Ys/vOf/+Dp6XnV18p2PUIIIVqD7777jmeffZaTJ09y8OBBevToYe+Qmo1GTyM6OjrStWtXunbtajmm1+s5deoUJ06csCRgqamplJSUtMqiZ5GRkZa/q1QqqqqqyMvLq1OyJYQQQrQGqamppKSkAPDCCy/w7bff2jegZsQmC+TVajWdOnWiU6dO3HDDDYA5ATt9+jTJycm26BKdTseqVatISUkhJSUFrVbL1KlTmTZtWq3Xrlixgs2bN1NcXEx4eDh33XUXo0aNanD/CxYsYNu2bVRWVhIbG0tUVFRjbkcIIYRoUR599FGWLFlChw4deOaZZ+wdTrPSZE8jqtVqYmJiiImJsUn7Wq2WtWvXEh0dTVxcHOvWrbvstQkJCRw/fpxHHnmEdu3akZiYyPz58zEajYwePbpB/c+bNw+9Xs/+/ftJT09vlSN4QgghxOW4uLiQlJREUFCQfAb+Rasp/RAUFMT333+PQqGgsLDwssnW7t27SUpKYt68ecTHxwPQt29fsrOzWbZsGSNHjkSlUgEwY8YMjhw5Ums7t99+Ow8++GC1Y2q1moEDB/LNN98QFhbG4MGDa7wuLy+P/Px8y9fp6ekNul8hhBCiuQkODrZ3CM1Sq0m26ppFb9++HRcXF0aMGFHt+Pjx41mwYAFHjx61LOp78803GxSL0WgkMzOz1nNr1qxh5cqVDWpXCCGEEC1Pm9uuJy0tjYiICNTq6nlmdHS05Xx95Ofns2XLFsrKytDr9WzatIkDBw7Qu3fvWq+fOHEiy5cvt/xJSEho0H0IIYQQzVlKSgp33XUXP//8s71DsbtWM7JVV1qtttaNMt3d3QEoKiqqd5tff/01r776KgqFgrCwMF566aXLrk3z8/PDz8+PxMREEhMTKSkpqXd/QgghRHP266+/MnjwYAwGAydOnGD06NFteh1Xm0u2oO5TjnXh6+vLu+++W+/XxcfHEx8fb6mzJYQQQrQW/fr1o3v37hw8eJDTp0+TlpbWpp/Sb3PJlqenJ1qttsbx4uJiADw8PJokDhnZEkII0VoplUoWLVrEvn37eOqppyyzR21Vm0u2oqKiSExMRK/XV1u3lZqaClQvUGpLMrIlhBCiNRs7dixjx461dxjNQptbIB8XF0dZWRlbt26tdnz9+vX4+flVq4QvhBBCCNFYrWpka8+ePZSXl6PT6QBzDauL+zDGxsbi7OxMbGws/fv3Z+nSpeh0OkJDQ9m4cSN79+4lISHBUmPL1mQaUQghRFtSXl5OampqmxzUaPRG1M3JlClTyM7OrvXc6tWrLcXWdDody5cvr7Zdz913392o7XoaSjaiFkII0ZqZTCZWrFjBggULUCqVnDhxAicnJ3uH1aRa1cjWl19+WafrNBoNTz/9NE8//bSNIxJCCCHaNoVCwX//+18yMjIAWLFiBU888YSdo2parSrZaklkGlEIIURb8fLLL7N+/XomTJjAsGHD7B1Ok2tV04gtkUwjCiGEaAuSk5Pb7Odcm3saUQghhBBNr60mWiDTiHYj04hCCCFE2yAjW3YSHx/PokWLmD59ur1DEUIIIZrUwYMHueOOOygoKLB3KE1Cki0hhBBCNJmPPvqI3r1785///IclS5bYO5wmIcmWEEIIIZrM2LFjcXR0BOC///0vBoPBzhHZnqzZshNZsyWEEKItCg8PZ+7cuXh6evLoo4822c4t9iSlH+xMSj8IIYQQrZtMIwohhBBC2JAkW0IIIYSwq5KSEnJzc+0dhs1IsiWEEEIIuygvL+eNN94gKiqKZ555xt7h2IwkW0IIIYSwi4qKCl5++WVyc3P517/+xbFjx+wdkk3I04h2Ik8jCiGEaOs8PT2ZPXs2c+bM4dZbb8XZ2dneIdmEPI1oZ/I0ohBCiLastLSUkydP0qtXL3uHYjMyjSiEEEIIu3F1dW3ViRZIsiWEEEIIYVOSbAkhhBCi2dizZw9z5syxdxhWJcmWEEIIIZqFJ598ksGDB/Pqq6+yefNme4djNZJsCSGEEKJZiI2Ntfz9o48+smMk1iXJlhBCCCGahTvuuIOxY8eyfPlyPv30U3uHYzVSZ8tOpM6WEEIIUZ1KpeLHH3+0dxhWJ8mWncTHxxMfH2+psyWEEEKI1kmmEYUQQgjRbF24cAGDwWDvMBpFki0hhBBCNDvFxcW88sorREZG8sUXX9g7nEaRZEsIIYQQzc6+fft44YUX0Gq1vPTSS1RVVdk7pAaTZEsIIYQQzc6IESMYNWoUKpWKa6+9ltLSUnuH1GCyQF4IIYQQzdI777yDWq2mQ4cO9g6lUWRky4qOHDnCNddcw6pVq+wdihBCCNHidenSpcUnWiDJltUYjUbeeecdunTpYu9QhBBCCNGMSLJlJWvWrKFHjx6Eh4fbOxQhhBCi1TGZTCQmJrbIJxNbzZotnU7HqlWrSElJISUlBa1Wy9SpU5k2bVqt165YsYLNmzdTXFxMeHg4d911F6NGjWpQ31qtlq+//poPPviAt99+u7G3IoQQQog/0ev1jB07lo0bN+Lt7c3111+Pp6envcOqs1YzsqXValm7di1VVVXExcVd8dqEhATWr1/P1KlTWbx4MZ07d2b+/Pls2LChQX1/9NFHTJkyBTc3twa9XgghhBCXp1arCQsLA8xFTleuXGnfgOqp1YxsBQUF8f3336NQKCgsLGTdunW1Xrd7926SkpKYN28e8fHxAPTt25fs7GyWLVvGyJEjUalUAMyYMYMjR47U2s7tt9/Ogw8+SHJyMidOnGDWrFl1ijMvL4/8/HzL1+np6fW5TSGEEKJNmjdvHklJSSQkJDBlyhR7h1MvrSbZUigUdbpu+/btuLi4MGLEiGrHx48fz4IFCzh69Cg9evQA4M0337xqewcPHuT06dNMmjQJgLKyMpRKJRkZGfz973+vcf2aNWtaXEYuhBBC2FtUVBSHDx+u8+d9c9Jqkq26SktLIyIiArW6+q1HR0dbzl9MtupiwoQJ1RK39957j6CgIO68885ar584cSJDhw61fJ2ens4rr7xSjzsQQggh2qaWmGhBG0y2tFotISEhNY67u7sDUFRUVK/2NBoNGo3G8rWTkxMajeayC/f8/Pzw8/MjMTGRxMRESkpK6tWfEEIIIcx0Ol21z+DmqtUskK8PW2bGc+fO5b777rvqdfHx8SxatIjp06fbLBYhhBCiNSooKGDOnDmEhYVx5swZe4dzVW1uZMvT0xOtVlvjeHFxMQAeHh5NEoeMbAkhhBAN8+abb/Lqq68CsGDBAlasWGHniK6szY1sRUVFkZ6ejl6vr3Y8NTUVgMjIyCaJQ0a2hBBCiIb529/+hqenJ05OTnh7e2Mymewd0hW1uWQrLi6OsrIytm7dWu34+vXr8fPzo2vXrnaKTAghhBB14e3tzRdffEFKSgqvvfZas18436qmEffs2UN5eTk6nQ4wP+m3ZcsWAGJjY3F2diY2Npb+/fuzdOlSdDodoaGhbNy4kb1795KQkGCpsWVrMo0ohBBCNNz48ePtHUKdKUzNfeytHqZMmUJ2dnat51avXk1wcDBgfnph+fLl1bbrufvuuxu8XU9jJCcn89BDD7F8+XI6derU5P0LIYQQwrZaVbLVkvx5ZOvQoUOSbAkhhBANZDKZ+O6774iMjKRXr172DqeGNrdmq7mQBfJCCCFE46WnpzNgwABuuukm5syZY+9waiXJlhBCCCFarODgYPLy8gDzw25JSUl2jqgmSbaEEEII0WI5Ojry4osv0qtXL9asWUO/fv3sHVINreppxJZEnkYUQgghrOPee+/lvvvuQ6lsnmNIkmzZSXx8PPHx8ZanEYUQQgjRME1VtqmhmmcKKIQQQgjRCAaDwd4hWEiyJYQQQohW49y5czz55JMMHjwYo9Fo73AAmUa0G1mzJYQQQljfHXfcYdmS76uvvuK2226zc0QysmU3UmdLCCGEsL65c+cC4OrqaikJYW8ysiWEEEKIVmP06NG8/fbb3HbbbQQEBNg7HECSLSGEEEK0IgqFotnNGsk0ohBCCCGEDUmyJYQQQghhQzKNaCfyNKIQQgjRNkiyZSdSQV4IIYRoG2QaUQghhBDChiTZEkIIIYSwIUm2hBBCCCFsSJItIYQQQggbkmRLCCGEEMKG5GlEO5HSD0IIIUTbIMmWnUjpByGEEKJtkGlEIYQQQggbkmRLCCGEEMKGJNkSQgghhLAhSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCGps2VnFRUVAKSnp9s5EiGEEELUV0REBM7Ozle8RpItO8vOzgbglVdesXMkQgghhKiv5cuX06lTpyteozCZTKYmikfUorCwkF9++YVvv/2Wp59+uk6veeedd5g+ffpVr0tPT+eVV14hISGBiIiIxobaKtT1e2cPTR2brfqzVruNaachr63va+pyvbwHa2rO70GQ96E127H1+7C5fBbKyFYL4OXlxZgxY9i0adNVM+OL3Nzc6nwtmH8Q6nN9a1bf711TaurYbNWftdptTDsNeW19X1Of6+U9eElzfg+CvA+t2Y6t34ct6bNQFsg3E/Hx8Ta5VlTXnL93TR2brfqzVruNaachr63va5rzz1Jz1ty/b/I+tF47tn4fNvefpT+TacRW7OIm13WZTxZCWJ+8B4Wwv+bwPpSRrVbM19eXqVOn4uvra+9QhGiT5D0ohP01h/ehjGwJIYQQQtiQjGwJIYQQQtiQJFtCCCGEEDYkyZYQQgghhA1JsiWEEEIIYUOSbAkhhBBC2JAkW21YZWUl//znP7nlllsYO3Ysjz76KIcPH7Z3WEK0KS+99BKTJk1i7NixTJ06lV27dtk7JCHarCNHjnDNNdewatUqq7YrpR/asLKyMlavXs24cePw9/fnp59+4v333+err7666j5PQgjrSEtLIywsDAcHB44ePcqsWbP4z3/+g6enp71DE6JNMRqNPPbYYygUCgYPHsx9991ntbZlZKsNc3FxYerUqQQGBqJUKhk3bhxGo5GMjAx7hyZEmxEZGYmDgwMAKpWKqqoq8vLy7ByVEG3PmjVr6NGjB+Hh4VZvWzaibkF0Oh2rVq0iJSWFlJQUtFotU6dOZdq0abVeu2LFCjZv3kxxcTHh4eHcddddjBo16rLtp6enU1FRQUhIiC1vQ4gWy1bvwQULFrBt2zYqKyuJjY0lKiqqKW5HiBbJFu9DrVbL119/zQcffMDbb79t9Zgl2WpBtFota9euJTo6mri4ONatW3fZaxMSEjh+/DiPPPII7dq1IzExkfnz52M0Ghk9enSN68vLy1m4cCH33nsvGo3GlrchRItlq/fgvHnz0Ov17N+/n/T0dBQKha1vRYgWyxbvw48++ogpU6bg5uZmk5gl2WpBgoKC+P7771EoFBQWFl72B2z37t0kJSUxb948y67offv2JTs7m2XLljFy5EhUKpXler1ez4svvkhERAT33HNPk9yLEC2Rrd6DAGq1moEDB/LNN98QFhbG4MGDbX4/QrRE1n4fJicnc+LECWbNmmWzmGXNVguiUCjq9Bvv9u3bcXFxYcSIEdWOjx8/nry8PI4ePWo5ZjQaWbhwIUqlktmzZ8tv1EJcgS3eg39lNBrJzMxsbKhCtFrWfh8ePHiQ06dPM2nSJG644QY2bdrE559/zsKFC60Ws4xstUJpaWlERESgVlf/542Ojrac79GjBwBLliwhPz+f1157rcb1QoiGqet7MD8/n8OHDzNo0CAcHBzYtm0bBw4c4JFHHrFH2EK0KnV9H06YMKFaQvbee+8RFBTEnXfeabVY5NO1FdJqtbUucnd3dwegqKgIgOzsbNatW4ejoyMTJ060XLd48WJ69erVNMEK0QrV9T0I8PXXX/Pqq6+iUCgICwvjpZdeIiYmpsliFaK1quv7UKPRVFur7OTkhEajsWr5FUm2Wqm6DLEGBQWxbdu2JohGiLanLu9BX19f3n333SaIRoi2qSFLY+bOnWv1OGTNVivk6emJVqutcby4uBgADw+Ppg5JiDZF3oNC2F9zeh9KstUKRUVFkZ6ejl6vr3Y8NTUVMBdRFELYjrwHhbC/5vQ+lGSrFYqLi6OsrIytW7dWO75+/Xr8/Pzo2rWrnSITom2Q96AQ9tec3oeyZquF2bNnD+Xl5eh0OsBc9X3Lli0AxMbG4uzsTGxsLP3792fp0qXodDpCQ0PZuHEje/fuJSEhoUZ9HyFE3cl7UAj7a2nvQ9mIuoWZMmUK2dnZtZ5bvXo1wcHBgHmLguXLl1fbouDuu+++4nY9Qoirk/egEPbX0t6HkmwJIYQQQtiQrNkSQgghhLAhSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCFJtoQQQgghbEiSLSGEEEIIG5JkSwghhBDChiTZEkKIZuyNN97ghhtusGxLAvDxxx8zfPhwDhw4YMfILlm4cCG33norFRUV9g5FiGZJ9kYUQjSZc+fOcdttt13xmpiYGD7++OMmiqh5O3v2LGvWrOHhhx9Go9HYtK/vvvuO119/nYkTJ/LMM89c8doHH3yQEydOsHz5cjp16sR9991HYmIiX331FXfffbdN4xSiJZJkSwjR5EJDQxk9enSt53x9fZs4mubrk08+wdHRkUmTJtm8r/j4eN577z02bdrE9OnTcXJyqvW6U6dOceLECTp06ECnTp0ACAsLY9iwYXzxxRfccsstuLi42DxeIVoSSbaEEE0uNDSUadOm2TuMZq2wsJBt27YxYsQIm49qAbi6unLNNdfw008/sXXrVsaMGVPrdevWrQNg/Pjx1Y6PGTOGrVu3snHjRiZMmGDzeIVoSWTNlhCiWRs+fDhPPfUUhYWFLFq0iIkTJxIfH8+jjz562TVLOp2Ojz/+mHvvvZf4+HjGjx/PM888w6FDh2pc+9RTTzF8+HAqKyv5v//7P+644w6uvfbaalOZW7du5aGHHiI+Pp5JkyaxePFiiouLmTJlClOmTLFct3DhQoYPH86xY8dqjWvZsmUMHz6cbdu2XfW+N27cSGVlJSNGjLjqtRedOnWKm266iRtuuIGjR49ajmdlZfHqq68yefJkRo0axY033sg//vEPsrOzq73++uuvB+DHH3+stf2qqioSExNxdHSskYzFxsbi4uLCDz/8UOd4hWgrJNkSQjR7JSUlPP7445w6dYrRo0czfPhwkpOTeeaZZ0hNTa12bVFREY899hgrV67Ew8ODG2+80XL9008/zfbt22vtIyEhgR9++IFevXpx6623EhISAsD333/PCy+8QGZmJtdddx1jx47l999/Z+bMmej1+mptTJw4Ebg0+vNner2en376CR8fH4YMGXLVe963bx8A3bp1u/o3CDh48CDTp09HpVLx7rvv0rVrVwCOHj3Kgw8+yPr16+nUqROTJ0+mV69ebNiwgUceeYSsrCxLG7179yYsLIz9+/dz7ty5Gn3s3LkTrVbL8OHDcXd3r3bOwcGBjh07cuzYMcrKyuoUsxBthUwjCiGaXGZm5mUXwXfr1o1BgwZVO3by5EluvPFGZsyYgVJp/h2xb9++LF68mP/+97/VFnS/+eabpKWlMWfOnGpTXQUFBTz88MO89tprDBw4sMaapPz8fD755BM8PDwsx4qLi3n77bfRaDSsWLHCkoA99NBDPPfccyQnJxMUFGS5vkePHkRGRrJx40aefPLJamuXdu3aRUFBAXfeeSdq9dX/6z1y5Aj+/v54e3tf9drt27czf/58QkJCWLJkCQEBAYA5wXvppZcwGo0sX76cmJgYy2sOHTrE008/zdtvv82iRYssx8ePH89HH33E+vXruf/++6v18/333wOXRsD+qlOnThw8eJBjx47Rt2/fq8YtRFshI1tCiCaXmZnJypUra/2zd+/eGte7uLjw6KOPWhItgLFjx6JSqTh+/LjlWGFhIZs3b6Zfv3411hT5+Phwxx13UFhYaBk1+rP777+/WqIFsGPHDsrKypgwYYIl0QJQq9U88MADtd7bxIkT0el0bNq0qdrxdevWoVAo6rSeqaqqisLCwjolWuvWrWPevHl06NCBd99915JogTnBy87O5o477qiWaAH07NmToUOHsmfPHkpLSy3HL35ff/zxR0wmk+V4Xl4eSUlJBAUFXTaRuhhvbm7uVeMWoi2RkS0hRJMbOHAgS5YsqfP1YWFhNRaJq9VqfHx8KCkpsRw7fvw4BoOBysrKWkfOMjIyAEhPT68xldelS5ca1586dQqA7t271zjXpUsXVCpVjeNjxozhgw8+YN26dZYRoNzcXH799VfLNN3VaLVagBpTdX/15ZdfsnPnTmJjY1mwYAHOzs7Vzv/+++8AnDlzptbvR0FBAUajkbNnz9K5c2cA/Pz8GDRoELv+v727C2n6feM4/t58iJhzoZaBaGkR9gSSVEQz2CKkllGQPRjUSQeSEZRUdFhHhZUp0cOBBRVIRColqcuiTmwdJNLECDoQtmpaB1kQKdv8H8jWX/dQGusX+nmd7Xt/73vXdnRx39f3+nZ10d3dTXFxMTBWxxUIBNiyZQsGgyFqPKFkNRS/iIxRsiUi/zyTyRT1elJSEsFgMPz569evALjdbtxud8z1fvz4EXEtIyMj4lpox2fOnDkRY0ajEYvFEnHdbDZjs9lob2+nv7+fhQsX8ujRIwKBwG8/pRc64vxVk9BQwf/atWsjEi0YOwYFePz4cdx1Jv4fDoeDrq4u2traxiVbRqORzZs3x1wnFG+sthEiM5WSLRGZNkJJ2e7du6mqqprU3Gi7NaH1vnz5EjEWDAYZGhpi7ty5EWPbtm2jvb2d1tZWqqqqaGtrIz09nQ0bNvxWLGazmeTk5HDyGMvJkye5desW9fX1GI1GduzYMW48tBt49uzZ3yrKD1m3bh0ZGRk8f/6co0eP8u7dO7xeL2vWrCE7OzvmvFC80ZJTkZlMNVsiMm0UFhZiMBjCx2d/atGiRcBYsfpEb968IRAIRJ23YsUKCgoK6OjowOVy8eHDBzZt2jSpHZ/8/Hx8Pl/EE4//z2w2U1tby5IlS6itraWpqWnceOiJxMn+H8nJyZSWljI8PMyTJ0/C7RxiFcaHeDweAAoKCib1fSLTnZItEZk2MjMzsdls9Pb20tjYOK7AO6Svry/qMWI0VquV2bNn09raOq5Fgt/vp6GhIe7csrIyhoaGqKmpAZh0o8+ioiJGRkbCdWOxmM1mLl68SGFhIZcuXeL+/fvj4s/Ozubu3bv09PREzPX7/VF7j8HPxKqlpYVnz55hsViwWq1xY+nr6yMzM5Pc3Nxf/DqRmUXHiCLy18Vr/QD8UXf5Y8eO4fF4uHr1Kh0dHSxfvpy0tDQGBwd5+/YtXq+X5ubmqDVOE5nNZg4fPkxNTQ0HDx7EbrdjMplwuVykpqaSlZUVs1i8tLSU69ev8/nzZ5YtWxbeJftdJSUl3Lt3j1evXoVfixMvzgsXLlBdXU1dXR2jo6Ps3LmT1NRUzpw5w4kTJzhy5AjFxcXk5+cDMDAwwOvXr7FYLNy5cydizby8PFauXBmufdu6dSspKSkxY3j//j0fP35k+/btk/qdIjOBki0R+etCrR9i+ZNkKz09nStXrtDU1MTTp0/p7OwkGAySkZHB4sWLOXDgQNTC9ljKysowm83cvn2b9vZ2TCYT69evp7KykvLycnJycqLOS0tLw2q10tnZOaXX1xQVFZGXl4fT6aSiouKX94d2uKqrq6mvr2d0dJTy8nKWLl3KjRs3aGxsxOVy4Xa7SUlJISsri5KSEjZu3BhzTYfDEU62JrbSmMjpdAI/G7uKyE+G0Wj77CIiEpfX66WiogKbzcbp06ej3rN//34GBgZobm6e0vsNHzx4wPnz57l27Vq4/upf5Pf72bdvH/Pnz6euru6/Dkfkn6OaLRGROL59+8bIyMi4a8PDw1y+fBkYO+6L5sWLF/T391NaWjrlF0k7HA4WLFjAzZs3pzT/b3E6nfh8Pg4dOvRfhyLyT9IxoohIHD09PZw7d47Vq1czb948hoaG6O7uxufzsWrVKux2+7j7W1paGBwc5OHDh8yaNYu9e/dO+buTkpI4deoUL1++5Pv371NO2hLNYDBw/PjxX9aWicxUOkYUEYnD4/HQ0NBAb29vuN9WTk4OdrudPXv2RLRz2LVrF58+fSI3N5fKyspJ9bcSkelJyZaIiIhIAqlmS0RERCSBlGyJiIiIJJCSLREREZEEUrIlIiIikkBKtkREREQSSMmWiIiISAIp2RIRERFJICVbIiIiIgn0Pz9HG9UI7W5kAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -8003,23 +1563,23 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 16, "id": "7d1dd8d1-f86d-4e63-8286-db1d5bc14b04", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 33, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG+CAYAAACOFDByAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3WUlEQVR4nO3deVyVZf7/8ReyyCKiAgqyiYC4oSZmmrtSppZWlmPZYpblZOY0LVpjbqON02KLTTWplVN925dxKSsMl0qbUSoXBAGRQEEBBdlluX9/+PNMiCbCOd4ceD8fDx927nOf636fk0c/XNd1X5eDYRgGIiIiIvK7WpgdQERERMQeqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNImIiIjUgYomERERkTpQ0SQiIiJSByqaREREROpARZOIiIhIHahoEhEREakDFU3nsHfvXoYNG8aaNWsu6nVlZWUkJSVRVlZmo2QiIiJiFhVNZ6murmbFihV069btol+bnp7O9OnTSU9Pt0EyERERMZOT2QEam7Vr1xIVFcXJkyfNjiIiIiKNiN0WTSUlJaxZs4bk5GSSk5MpKChg6tSpTJs27Zznrlq1iri4OAoLCwkODmbKlCmMGjWqxnkFBQV8/PHHvPbaa7z00kuX6q2IiIiIHbDb4bmCggLWrVtHRUUFQ4YM+d1z582bx8aNG5k6dSpPP/00Xbt2ZdGiRXzzzTc1znv99deZNGkSrVq1smV0ERERsUN229Pk5+fHhg0bcHBwID8/n/Xr15/zvO3bt7Nz507mz59PTEwMAH379iU7O5tXX32VkSNH4ujoSFJSEgcOHODhhx++lG9DRERE7ITdFk0ODg51Om/btm24ubkxfPjwGsfHjh3L4sWLSUhIICoqil9++YVDhw4xYcIEAEpLS2nRogWZmZn85S9/OWfbubm55OXlWR5rAriI1EdVVRUVFRVmxxBp8pydnXF0dKz36+22aKqrtLQ0QkJCcHKq+VbDwsIsz0dFRXHttdfWKKz+8Y9/4Ofnx6233nretteuXctbb71li9gi0kwUFRWRmZmJYRhmRxFp8hwcHAgMDKz3NJwmXzQVFBTQsWPHWsc9PT0BLHfJubu74+7ubnm+ZcuWuLu74+Xldd62x48fz6BBgyyP09PTWbJkibWii0gTV1VVRWZmJu7u7vj6+ta5B11ELp5hGOTk5JCZmUlERES9epyafNEEdR/K+60nnnjiguf4+Pjg4+NTn0giIlRUVGAYBr6+vri5uZkdR6TJ8/X15dChQ1RUVKhoOhcvLy8KCgpqHS8sLASgdevWDb5GbGwssbGxFBUVNbgtEWl+1MMkcmk09Ltmt0sO1FXnzp1JT0+nsrKyxvGDBw8CEBoa2uBrxMTEsGzZMmbNmtXgtkRERKRxavJF05AhQygtLWXLli01jm/cuBEfHx+6d+/e4GvExsYyd+5cVqxY0eC2RETM1KlTJ7p27UqfPn3o1q0bt956K8XFxfVu76233uLAgQPnfX7Hjh1ERUVx2WWX8dVXXzF27FhSU1Pr9NrGYOHChTzyyCNWbbNTp07s3bu3Xq/duXMnU6ZMASA/P5+nn366xvPDhw8/7xI9cmF2PTy3Y8cOysrKKCkpAU5PxN68eTMAAwYMwNXVlQEDBtCvXz+WL19OSUkJAQEBbNq0iR9//JF58+Y16NbDM2JiYoiJiSEpKYnp06c3uD0RETN9/PHH9OzZE8MwuO6663jrrbeYOXNmvdp666238PHxoUuXLud8fs2aNdxxxx08+uijAIwePbrOr5Xa+vXrx7vvvgv8r2h67LHHGtxuZWVlrbvQmyO77mlavnw58+fPZ9myZQDExcUxf/585s+fz4kTJyznLVmyhKuvvprVq1fz6KOPkpCQwIIFC7j66qvNii4iUktFSQVZ8Vk2/VVRUvf1oMrLyykuLqZt27aWY88++yz9+/enb9++jB07loyMDADWrVtHr1696NOnDz179uTf//43q1atYufOnTz44IP06dOHL774okb7y5Yt44MPPuDFF1+kT58+5OfnW3pZLvRagP379zN69Gh69epFr169eO211wBISUkhJibGkufzzz+3vMbBwYG///3vXHHFFYSGhvLmm28C8M4773DddddZzjMMg9DQUHbv3g3A008/TY8ePYiKimLKlCnnnCvbpUsXdu3aZXn85ptvcuONNwKQnZ3NpEmT6N+/P7169WL+/PmW87Zt20ZUVBT9+/fngQceOO/yEwMHDmT79u0A/PnPfyYwMNDyXHBwMBkZGWzevJl+/foBMGPGDPLz8+nTp4/l2JnrDRkyhLCwMGbMmHHOax06dAgfHx8WL17MkCFDWLFixXnfQ3V1NQ888ABdu3ald+/eREdHU1ZWZmnjkUce4YorrqBHjx58++23lmu8/fbbREVF0atXL8aNG8fhw4eB08Xy6NGjueWWW4iKiqJfv36WKTXJyckMGjSI3r17ExUVxbx584DTN1XMnTuX/v3706dPHyZPnkx+fv4531uDGNJg33zzjTFnzhxj5syZxpAhQ4zExESzI4mIHSgtLTUSEhKM0tJSwzAM48iuI8ZCFtr015FdR343U0hIiBEZGWn07t3baN26tTFixAijoqLCMAzDePfdd43p06cblZWVhmEYxr/+9S9j/PjxhmEYRq9evYzvv//eMAzDqKqqMk6cOGEYhmEMGzbMWLdu3Xmvd+eddxorVqyocf09e/Zc8LUVFRVGRESE8cEHH1iO5eTkGIZhGP379zf++c9/GoZhGAcOHDDatWtn/Prrr4ZhGAZgvPDCC4ZhGEZCQoLRqlUro6KiwigpKTG8vb2NrKwswzAM49tvvzX69u1rGIZhfPHFF0bXrl0t72n69OnG/fffbxiGYSxYsMB4+OGHDcMwjKVLlxozZ8605Bk6dKixdu1awzAM4+qrrza2bNliyT569Gjj008/NcrKyoyOHTsacXFxhmEYxgcffGAAls/gt+bNm2csWrTIMAzDuOyyy4z+/fsb+/fvNxITE40uXboYhmEYcXFxRnR0tGEYhpGWlmZ4e3vXaGPYsGHGxIkTjcrKSqOkpMTo1KmT8cMPP9S6VlpamgEY7777ruXY+d5DfHy80bVrV6OqqsowDMPIz883qqqqLG289dZbhmEYxvbt240OHToYRUVFxp49e4wOHToYmZmZhmEYxpIlS4yxY8cahmEYb775puHl5WUcOnTIMAzDmDNnjnHvvfcahmEYDz74oLF06VJLpry8PMtn/9e//tVyfPHixcaDDz5Y632d/Z27WOprswINz4mINfh09eHeXffa/BoXcmZ4rrKykvvuu485c+bw3HPP8fnnn7Nz506io6OB0+tMnZniMGrUKP70pz9x0003cfXVV9OnTx9bvg2SkpKorKxk0qRJlmM+Pj4UFhby888/c/fddwMQERHB4MGD+e6777jlllsALHN+unXrhpOTE9nZ2QQGBjJx4kTeeecdHnnkEd58803uuusu4PS81SlTptCmTRsA/vjHPzJ58uRame68804uu+wyli9fTkZGBgcOHGDMmDEUFxfz7bffcvToUcu5RUVFJCYmEhYWhru7u2Vx5UmTJnHvvef+MxATE8OTTz7JjBkzcHZ2ZtKkScTGxuLg4GDZJqwuJk+ejKOjI25ubvTp04fU1FQGDhxY6zxXV1fLZ/Z772HkyJFUVFQwbdo0RowYwbhx42jR4vRAlouLC7fffjtwetqMn58fv/zyC7t27eLaa68lICAAgPvvv58lS5ZYetkGDx5MSEgIcLqH7cyc4aFDh/Loo49SXFzMsGHDLO/7888/5+TJk3z88ccAnDp1yrKItTWpaBI5S+pPqbgbpxc6TUhOwLuNNx18O1BcUkxqeioRoRG4ubpx5OgRCosKiQyLBCApNYnWnq3xb+9PaVkpyWnJhHcKx93NnaM5Rzmef5xuEd0AOHDwAB7uHgT4BVBWXsaBgwfoHNyZVh6tyMnL4VjeMXp06QFAyqEUXFu6EugfSEVFBftT9tMpsBOtPVuTdyKPI0ePcMXgK/AKPv9CrGIfnN2d8e/rb3YMCycnJyZOnMijjz7Kc889h2EYzJs3j2nTptU6d/ny5ezbt4+4uDjuvPNOpkyZYpW5NBfrzD+6Z99a/tvHrq6ulv92dHS03F191113cc8993Dvvfeyfv16XnjhBUubv9feGQEBAfTt25e1a9fyyy+/cPvtt+Pk5ERpaSkODg7897//xdnZucZrfvnllzq/t4EDB7J3717Wrl3LqFGjiImJYeHChQDccccddW7nfO//bB4eHpb3WV1dfd73ALBv3z62bNlCXFwcjz/+OFu3bj3vHCgHB4dan+nZn+f5Mk6cOJErr7ySb775hpdffpkXXniBL774AsMweOWVVxg5cmQdP4X6UdEkNlPwawEluSWkpqfi7ORMcEAwlZWVJCQnEBwQTJvWbcg7kcfh7MP06tYLgLSMNFo4tCAkMITq6mr2Ju0lqGMQbb3acqLgBBlHMujRpQeOjo6kZ6ZTVV1F5+DOAOzev5sAvwC823pTUFhAemY63cK74ezsTMaRDMpPlRPeKRyAvUl76eDTAV9vXwqLCknLSCMyLJJfk39l8p2Tuc24DQ88eJZnuZzLGcYwMshgNau5n/tpT3u+5muSSGIWp5eaeJEX6UEPYoghm2xe4zWmM50AAogjjnjieZiHKaSQtaylHe0YwxjyyGMFK7iTOwkllO/5nm1sYy5zAVjFKnzxZQITKKSQ53iOW7mVLnThP/yHr/iKxe6Lmbl/pgonsbpvv/2WyMjTPxiMHz+eF198keuvv5527dpRUVHB3r17ueyyy0hMTKRHjx706NEDJycnvv76a+D0Wnjnmv9TF7/32sjISFxcXPjoo4+4+eabgdP7gfr4+NCnTx/WrFnDXXfdRWpqKt9//z0vv/zyBa83YMAAqqureeyxx7jqqqto164dAFdddRWPPfYYDz74IJ6enrz++uvn7dmZNm0ab7zxBvv27ePLL78ETu9AMWTIEJYtW8aTTz4JwJEjR6iurqZr166UlpaydetWhg4dyscff3ze9+zi4sIVV1zBkiVLeOONN+jVqxcJCQnk5uZa5mad/fmVlJRYZRL3772Hli1b4ujoyNVXX81VV13Fli1bSEhIoFevXpw6dYp3332X22+/nf/85z9kZ2fTq1cvWrduzd///neys7Px8/PjtddeY9SoURdcRyk5OZnOnTtzxx130L9/f6688krg9J/N5cuXM2DAANzd3SkpKSEtLY0ePXo06H2fTUWTFWhxy9oKfi3gH93+QUVJBW/yJq1pzUQmUkIJT/M0k5hEd7qzi12sYx0LWQjAu7yLI45MZjKVVLKEJdzADfSmN3vYwyd8whM8gQsufMiHVFGFH370ox/LWc44xtGPfiSSyPu8z6M8igcefMZnHOc4d3O6y/4pnmI4w7mSK0kllbd5m9nMxgUX/Bz9uPbNa4noEcHg5ME1eppuTr/Z0tN07dFra/Q0DUsdVqOn6fq06y09TRNyJlh6mg4lHiJlaQpT/ziVK668grLyMsYdHGfpaboh74YaPU0jD42s0dN0VcpVlp6miScmcseOO0icl0hJbomKJrGKm266CVdXVyoqKujUqZNlgvXtt99OXl4ew4cPx8HBgcrKSu6++24uu+wyHn/8cQ4cOICLiwvu7u68+uqrANx77708/PDDPPPMMzz11FOMHTu2zjl+77VOTk78+9//5oEHHmDx4sU4ODgwc+ZM7rvvPt59913uu+8+XnjhBRwcHFi1ahVBQUF1uuZdd93FY489Zil4AMaMGcOePXsYOHAgDg4O9OrVi1deeeWcr58wYQJ//OMfiYiIqLGkzbvvvsuf//xnoqKiAGjVqhWvvfYagYGBvPfee9x///2WzeWDg4PPm+9MUTJo0CAcHByIjo4mNTXVMnT4W+3atWPKlClERUXh4eHBzp076/QZnM/53kNVVRXTp0+noqKC6upqrrzySsaMGcPhw4fx9vYmJSWFK664gqKiIv7v//4PDw8PevTowd/+9jfLDVlBQUG8/vrrF8zw0Ucf8e677+Li4oJhGJY/m3PnzmXRokVcccUVlsJrzpw5Vi+aHAxDu0Ray5k5TStXrrT8ZNZcffPeN4y7dRzvLH2Hjt062qynKSMlg0/f/ZQHH36Qk8bJBvc0tXRpiUMrB/y6+Jn58V2U7z//nttvuJ23P3ubQdcPuvALpNEoKysjLS2N0NDQGsMRIk3BoUOH6NevH7m5uWZHsWjod049TWITfr5+jGIU3fp3IyomqsZzQf3/9xOfP/70pOf/Hp81nyOgX0CNc7vTvca5AxjAzX++udb1/fGnK13P2+5vH/vjTxfsdx0YJ0cnPPDAyVFfZxERW7LrdZqk8fJp58MABuDTThsa21pwQDA3cRPBAefv0hcRudQ6derUqHqZrEE/mlqB5jTVVlhUSAopFBYV4k/juRuoKaqqqqKMMqqqqsyOIiLSpKmnyQq0YW9taRlpvMM7pGWkmR2lydt3YB/LWMa+A/vMjiIi0qSpaBKb6BrelYd4iK7hXS98sjRIcEAwN3OzhudERGxMRZPYhIuzC1544eLsYnaUJq9N6zb0oAdtWrcxO4qISJOmoklsIjMrk3WsIzMr0+woTd7x/OP8xE8czz9udhRpAj799FOio6Pp06cP3bp1Y9SoUVRXV5sdy1QLFy7k1KlTZseQRkATwa1AE8FrKy0rJYssSstKzY7S5GVmZfJv/s0fs/5ID6y7kJs0L9nZ2cyYMYP//ve/ln2/4uPjL7hK88WwxurUl9qiRYt45JFHcHFRz3lzp54mK9BE8NoiQiO4l3uJCI0wO0qTF9U1iid5kqiuURc+WeR3ZGVl4eTkhLe3t+VY3759LUXTzp07GThwIL169aJ///58//33wOlFDH18/re8SFFRUa19xZ577jmGDx/O448/TkFBAffccw9RUVH07t3bspddRUUFc+fOpX///vTp04fJkyeTn59/zqwbNmzg8ssvp3fv3vTp04cff/wRgI0bN9K3b1969erFsGHDSEhIAGDz5s3069fP8vq9e/fSqVOnGvnnz59PdHQ04eHhfPHFFwDMmDEDgCuvvJI+ffpw7NgxVq1aRffu3enTpw9RUVGWa0vTZ1/lvojU4uDgQBll/LTlJ8tGmHsS9xDoH0i7Nu3IP5nPr4d/tayk/uvhX6msqrTs2bcncQ8dO3TEu603JwtPcijzkGUl9cysTMrKyywrqe87sI/23u3x9falqLiIg78epEvnLri2dOVw9mGKS4rp0vn0QqH7k/fTrk07Ovh2oKS0hJRDKZYtaLKOZeHi5ULPgT3P+76aq6ysLHJzcy1bVSQkJODp6UlQUBBlZWUkJCQQERGBp6cnR48eJTs7m969ewOndyVwdXUlJCSEiooK9uzZQ1hYGF5eXuTk5FBZWYm///mXAOnduzcDBw4kODiYYcOGceWVV3LrrbcSEBDAqVOnuPHGG1m5ciWjR4/mu+++46abbiIlJaVO76u8vJzNmzcDp7cqadWqFb/88gstWrQgJycHgGeeeYZWrVrxn//8B4C//vWvLFiwgBdffLFGWwcOHODuu+9m69atdOnShYqKCkpKSjh27Bi33XYbcXFxREVF8e677zJp0iT27t17wXx5eXlER0ezePFiNm7cyOzZsxk7diyvvfYa//znP/nhhx9o1aoVAA8//DD79++nY8eOVFRUUF5eXqfPQOyfiiaxiYTkBJ7maQYnD25Uu7Y3RRUuFaxzXMdnD3/GbdxGFVX8lb8ygQlcxmXsYx8f8RFzmYsrrnzMxxRTzJ3cCcBf+SujGU1/+nOAA/wf/8fDPIwnnvybf5NDDn/gD+xkJ7vZTT/6MYhBpJHGGtYwi1l4480XfMEhDnE/9wPwHM/Rl76MYASHOcxKVjKDGfjhxwY2kOqQyo7/7iAiWr2Rv/XPf/6TVatWkZl5ej7g5MmTGT58OC+99BKZmZlER0cTFxfH8OHD+de//sXf/vY3jh8/PZ9t6tSp9OjRg1WrVpGbm0t0dDTr169n3LhxfPjhh+Tk5LBw4cLzXrtFixZ88sknJCYmsmXLFr788kuWLl3Kzp07KS0txcXFhdGjRwMwePBg2rdvz+7du3+3EDvjTG8SwPr169m1axctWpwe7PD19QXg888/5+TJk3z88ccAnDp1irCwsFptffPNN4wdO5YuXU4X6M7Oznh5ebFu3TpL7w/AlClTmDlzJllZWRfM5+HhwYQJEwAYOHAgqamp5z135MiR3HHHHVx33XWMGTPGkkOaPhVNYhM+bX0YyEB82mpFcFsL7hnMR9s+ovBYIZ2COmEYBoMSB9Xoabr78N2WnqZrDl9To6dpYOLAGj1Nd2TeYelpGps1lrLyMpzKnDj83GHuufkeekX3svQ03fLrLZaepnHZ42r0NA1JHlKjp2nioYmWnqYrv7+Sbx78hlYOrcz86Bql++67j4kTJ1oev//++3h6egIQGBjIrl27iIg4XWjecccdlg1PAd566y3Lflo+Pj7s2rXLUnRMmjSJysrKOmXo2rUrXbt25b777uOaa65h7dq1xMTEnHNuk4ODA05OTjUWVy0rK6t13plemt9jGAavvPIKI0eOrFPOc72+vhl/uw+Zo6Pj7y4W++mnn7Jr1y42b97M2LFjWbJkCZMnT65XZrEzhlhNYmKiMWTIECMxMdHsKKY7suuIsZCFxpFdR8yOIo2Q/nycVlpaaiQkJBilpaVmRzEMwzAyMzON7777zvL4+PHjRpcuXYzPP//cKC8vN4KCgoxNmzYZhmEY33//veHn52cUFRUZFRUVRqtWrSx/9z333HPGb/95AYzCwkLL42nTphkPPPCAUVVVZRiGYRw7dswwDMNYvHixMW7cOKO4uNgwDMMoLi429u7dWytncnKy4efnZyQlJRmGYRinTp0y8vPzjWPHjhk+Pj5GQkKCYRiG8d577xk9evSwvDcvLy8jNzfXMAzDePDBB42QkBDDMAwjLS3N8Pb2trRfWFhYI7+np6eRmZlpGIZhVFRUGMnJyZbn5syZYzz00EN1/ITFbA39zqmnSWyiuKSYdNIpLik2O4o0QkmpSaxgBcNSh2n4thGprKxk8eLFpKWl4e7uTmVlJXfeeadl2OqTTz7hwQcfpLi4GFdXVz766CM8PDwAeOmllxgzZgyBgYGMGTPmd6/z/PPP89BDD9GzZ09cXFy4/PLLWblyJXPnzmXRokVcccUVlh6jOXPm0KNHzbtCw8PDWb16NbfccgsVFRU4Ojryz3/+k/79+/P2228zZcoUqqqqaNOmDR9++CEAAQEBPPLII/Tr149OnToxdOjQOn8uDz/8MCNHjsTNzY2vvvqKu+66ixMnTuDk5ISvry9vvvlmndsS++ZgGIZhdgh799slB3bv3s3KlSuJjIw0O5apvnr3K6657Ro2vrOR0VNGmx1HGpldX+7iwbEP8tIXLxE9JtrsOKYpKysjLS2N0NDQGsNDImIbDf3OqafJCmJiYoiJiSEpKYnp06ebHadR6NK5Cw/wgGV+i8hvdezQkau5mo4dOpodRUSkzrROk9iEa0tXfPDBtaV+epbaSstKOcYxLX4qInZFRZPYxJGjR9jIRo4cPWJ2FGmEktOSeYVXSE5LNjuKiEidqWgSmygqLiKVVIqKtbWM1BYWEsbd3E1YSO01eJojTS0VuTQa+l3TnCaxiS6duzCTmZrTJOfk4e5BEEF4uHuYHcVUzs7OODg4kJOTg6+vr1X3eBORmgzDICcnBwcHB5ydnevVhoomEbnkjuYcZQtbmJAzAX+a75IDjo6OBAYGkpmZyaFDh8yOI9LkOTg4EBgYiKOjY71er6LJThT8WsD+n/dTbVQTGhQKwO79uwnwC8C7rbdlf7HuEd1xcnLi18O/UlFZYRn+2Ju0Fz9fP3za+VBYVEhaRhpdw7vi4uxCZlYmpWWlls11E5IT8GnrQ3uf9hSXFJOanmpZ9fnI0SMUFRdZepASUxJp49UGP18/y/5i4Z3C+Xnbz7zIiwxNGap1eKSWvPw8/st/ycvPMzuK6Vq1akVERAQVFRVmRxFp8pydnetdMIGKJrtQ8GsB/+j2D94ueZsqqpjCFAAWspDruI5ookkggQ/5kMd4DHfc+YRPOMlJ7uIuAJaylFGMYgADSCGFd3iHh3gIL7xYxzpyyaUTnehHP17lVQYykCEMIZ103uRNHuABfPBhIxtJJZWZzATgeZ6nF70YxSiOcITXeZ17uRcvvOjt1BvfIF/TPjdpvLpHdOcRHqF7RHezozQKjo6ODfqLXEQuDRVNdqDoWBGlJaU88+wztAtvZ+lpGrB/QI2epmmHp1l6mq45fE2NnqYrk66s0dN0W8Ztlp6msVljSd2fyr/f+zcTH57IGMcxNXqa/pD+B0tP07VHr63R0zQ0ZWiNnqYbD91IeKdw3N3ccWrthG+4iiYREWkatCK4Fdh6RXCtri1NzdZPtvKHm/7ABx9/wNCJdd/OQkTETOppsgJbrwge1DGIG7iBoI5BVm9bxAxurm4EEYSbq5vZUURE6kzrNNmBtl5t6U1v2nq1NTuKiFUE+gcyjnEE+geaHUVEpM5UNNmBEwUn2MMeThScMDuKiFWUnyrnBCcoP1VudhQRkTpT0WQHMo5k8AmfkHEkw+woIlaRlJrEi7xIUmqS2VFEROpMRZMd6NGlB0/wBD269DA7iohVhAaFcju3W+4EFRGxByqa7ICjoyMuuGgdF2kyPFt5EkYYnq08zY4iIlJnKprsQHpmOh/yIemZ6WZHEbGKnLwcfuAHcvJyzI4iIlJnWnLADlRVV1FOOVXVVWZHEbGKo7lH2cxmEv+bSEFhAS1dWhLUMYiKigr2p+wnJDAEL08v8k7kcTj7ML269QLg4K8HcWzhSEhgCFVVVew7sI+gjkG09WrLiYITZBzJoGdkT1q0aEF6ZrrVtx1q498Gr2Av0z43ETGXiqbfWLhwIT/99BPl5eX4+flx7733cuWVV5odi87Bnbmd2+kc3NnsKCJW0X9Qfxa4L2D/X/bzCI/QjnbcwA0UU8wzPMNkJtOVruxkJxvYwAIWAPA2b9OSlkxiEqc4xVM8xUQmEkUUv/ALn/EZ85iHE058xEdUUcU4xuGJp1W2HfJx92Hm/pkqnESaKRVNv3HnnXfyl7/8BWdnZxISEnj44Yd5//338fLSX5Ai1uQV7MXM/TMpyS1h5KGRNXqaRqWMsvQ0TTwxkQeyH7D0NMX8GlOjp2nogaE1epruO3KfpacpamsUb696m4lPTKRT104N3naoIruChY8s5Ko9V3F58OVmfnwiYhIVTb8RGvq/O3kcHR2pqKggNzfX9KJp9/7dLGIRA/YPwL+vv6lZRKzFK9gLr2CvWn+mg68Itvy3P/70pOf/Hp91buDlgTXO7c7/NgC+se+N3PinG8/5Wn/86Ua387Z79rld6MLWT7aSRRalZaV1fo8i0rTYbdFUUlLCmjVrSE5OJjk5mYKCAqZOncq0adPOee6qVauIi4ujsLCQ4OBgpkyZwqhRo2qdu3jxYrZu3cqpU6cYMGAAnTubPyQW4BfAOMYR4BdgdhSRZisiNIJ7uZeI0Aizo4iISey2aCooKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqq2qcO3/+fCorK4mPjyc9PR0HBwdbv5UL8m7rTT/64d3W2+woIiIizZbdFk1+fn5s2LABBwcH8vPzz1s0bd++nZ07dzJ//nxiYmIA6Nu3L9nZ2bz66quMHDmy1vpHTk5O9O/fn08++YTAwEAGDhxo8/fzewoKC0jk9F1G/mh4TsQMCckJPM3TDE4erGFykWbKbtdpcnBwqFMv0LZt23Bzc2P48OE1jo8dO5bc3FwSEhLO+9rq6moOHz583udzc3NJSkqy/EpPt806SumZ6bzP+1qnScREPm19GMhAfNr6mB1FRExitz1NdZWWlkZISAhOTjXfalhYmOX5qKgo8vLy2LNnD1dccQXOzs5s3bqVn376ifvuu++8ba9du5a33nrLlvEB6BbejUd5lG7h3S58sojYRHuf9gxhCO192psdRURM0uSLpoKCAjp27FjruKfn6e0bTp48aTn28ccf8/e//x0HBwcCAwNZuHAh4eHh5217/PjxDBo0yPI4PT2dJUuWWDH9ac7OznjggbOzs9XbFpG6KS4pJp10ikuKzY4iIiZp8kUTUKdhPG9vb15++eWLatfHxwcfHx9iY2OJjY2lqKiovhF/V8aRDD7jM8YcGaO5FCImSU1P5U3e5A/pfyB88Pl/mBKRpqvJF01eXl4UFBTUOl5YWAhA69atG3yNmJgYYmJiSEpKYvr06Q1u72zlp8o5znHKT5VbvW0RqZsunbvwAA/QpXMXs6OIiEnsdiJ4XXXu3Jn09HQqKytrHD948CBQc0HLxiq8Uzh3czfhnfTTrYhZXFu64oMPri1dzY4iIiZp8kXTkCFDKC0tZcuWLTWOb9y4ER8fH7p3736eV9ZdbGwsc+fOZcWKFQ1uS0QapyNHj7CRjRw5esTsKCJiErsentuxYwdlZWWUlJQApydib968GYABAwbg6urKgAED6NevH8uXL6ekpISAgAA2bdrEjz/+yLx582qt0VQfth6e25u0l6d4iiuTrtScJhGTFBUXkUoqRcW2mbsoIo2fXRdNy5cvJzs72/I4Li6OuLg4AD744AP8/U8XGEuWLGHlypWsXr3aso3KggULzrmNSmPUwacDwxlOB58OZkcRaba6dO7CTGZqTpNIM2bXRdOHH35Yp/Pc3d2ZPXs2s2fPtkkOW9895+vty5Vcia+3r03aFxERkQtr8nOaLoWYmBiWLVvGrFmzbNJ+YVEhqaRSWFRok/ZF5MISUxJ5nudJTEk0O4qImERFkx1Iy0jjbd4mLSPN7CgizVYbrzb0ohdtvNqYHUVETKKiyQ5EhkUym9lEhkWaHUWk2fLz9WMUo/Dz9TM7ioiYxK7nNDUWtp7T1NKlJW1pS0uXljZpX0QurKS0hCMcoaS0xOwoImIS9TRZga3nNGVmZbKBDWRmZdqkfRG5sJRDKbzO66QcSjE7ioiYREWTHSgtKyWDDErLSs2OItJshXcK517u1cr8Is2YiiY7EBEawQxmEBEaYXYUkWbL3c2djnTE3c3d7CgiYhLNabICW89pEhHzZedks4lNjM8Zjz9amV+kOVJPkxXYek5TQnICz/IsCckJNmlfRC4svyCf3ewmvyDf7CgiYhIVTXbAu403l3M53m28zY4i0mx1De/KQzxE1/CuZkcREZOoaLIDHXw7MIxhdPDV3nMiIiJmUdFkB4pLiskgg+KSYrOjiDRbBw4e4B/8gwMHD5gdRURMoongVmDrieCp6amsZjU3p99M+GDd7ixihlYerQgjjFYercyOIiImUdFkBTExMcTExJCUlMT06dOt3n5EaAT3c7+WHBAxUccOHbmGa+jYoaPZUUTEJBqeswNurm60pz1urm5mRxFptsrKy8gll7LyMrOjiIhJVDTZgSNHj/A1X3Pk6BGzo4g0WwcOHuBlXtacJpFmTEWTHSgsKiSJJAqLCs2OItJshYWEcRd3ERYSZnYUETGJiiY7EBkWySxmERkWaXYUkWbLw92DEELwcPcwO4qImERFk4hIHRzLPcbXfM2x3GMAJCYm8uuvvwJw6tQp4uPjOXny5Olzjx3j559/trz2wIEDpKWlAVBZWUl8fDwnTpwAIDc3l/j4eACysrJ48MEH2bFjBwDV1dXEx8dz/PhxAI4fP058fDxVVVUAHDx4kOTkZMt14uPjycnJASA/P5/4+HgqKips8nmINEcqmqwgNjaWuXPnsmLFCpu0n5SaxIu8SFJqkk3aF5ELO1Vxip/5GUdHRwBuv/12li5dCpwukqKjo9m+fTsA77//PoMGDbK89t577+XJJ58E4OTJk0RHRxMXFwfA559/TnR0NAApu1NYsWIFTz58+tyKigqio6P54osvAPjqq6+Ijo6mrOz0ZPQ5c+bwwAMPWK7Tv39/Pv30UwC2bt1KdHQ0+fn5Nvk8RJojB8MwDLNDNBVnlhxYuXIlkZHWG0qL3xjP7DGzefHLF+l7TV+rtSsidZcVn8Wz0c9y5zt34tvNl+S0ZNxc3Qj0D+RUxSkSUxIJDQrFs5Unucdzyc7JpmdkT+D0WmvOTs4EBwRTWVlJQnICwQHBtGndhrwTeRzOPkyvbr3Y+sVWJj85mZf//DI3TrmR6upq9ibtJahjEG292nKi4AQZRzLo0aUHjo6OpGemU1VdRefgzgDs3r+bAL8AvNt6U1BYQHpmOtEDovEJ8zHzoxNpMrROkx3wb+9PDDH4t9fO6iJmcfdxx9vdm89u++y85+xgR43HP/BDnc/dwQ4KKWQYw0hbnsbry1//3XPr4gQneNzxcd7a8ha9BvWq02tE5PxUNNmB0rJSssmmtKzU7CgizZZXsBcz98+kJLfEZtcoySkh4dMEut/YHXdf9wa3999N/+XTxz6l4GiBFdKJiIomO5CclsxrvMb1adfT+crOZscRaba8gr3wCvay6TXCRltvSYPLuZy7uZvwTtp+ScQaNBHcDoR3Cmc60/UXn4iIiIlUNNkBdzd3AgjA3a3h3fUi0nzsTdrLUzzF3qS9ZkcRaRJUNNmBozlHiSOOozlHzY4iInakg08HhjOcDj4dzI4i0iSoaLIDx/OPE088x/OPmx1FROyIr7cvV3Ilvt6+ZkcRaRI0EdwKYmNjiY2NpaioyCbtd4voxsM8TLeIbjZpX0SapsKiQlJJpbCoEH+0ZIlIQ6mnyQpiYmJYtmwZs2bNMjuKiIhFWkYab/M2aRlpZkcRaRJUNNmBAwcP8AqvcODgAbOjiIgdiQyLZDaztdm3iJWoaLIDHu4edKKTdlcXkYvS0qUlbWlLS5eWZkcRaRJUNNmBAL8AxjKWAL8As6OIiB3JzMpkAxvIzMo0O4pIk6CiyQ6UlZeRRx5l5WVmRxERO1JaVkoGGdqCScRKVDTZgQMHD7CCFZrTJCIXJSI0ghnMICI0wuwoIk2CiiY70Dm4M3dyJ52Dte+ciIiIWVQ02YFWHq0IJZRWHq3MjiIidiQhOYFneZaE5ASzo4g0CSqa7EBOXg7f8z05eTlmRxERO+LdxpvLuRzvNt5mRxFpErQi+P936tQpnnvuOXbu3ElxcTGdOnVi5syZREVFmR2NY3nH2MY2juUdMzuKiNiRDr4dGMYwOvhq7zkRa1BP0/9XVVWFv78/r7zyCl988QUTJkzgiSeeoKzM/DvWenTpwVzm0qNLD7OjiIgdKS4pJoMMikuKzY4i0iSoaPr/3NzcmDp1Kh06dKBFixaMGTOG6upqMjO1vomI2KfU9FRWs5rU9FSzo4g0CXY7PFdSUsKaNWtITk4mOTmZgoICpk6dyrRp08557qpVq4iLi6OwsJDg4GCmTJnCqFGjztt+eno65eXldOzY0ZZvo05SDqWwilWMPDQS/77adFNE6iYiNIL7uV9LDohYid32NBUUFLBu3ToqKioYMmTI7547b948Nm7cyNSpU3n66afp2rUrixYt4ptvvjnn+WVlZSxdupQ77rgDd3d3W8S/KK4tXfHFF9eWrmZHERE74ubqRnva4+bqZnYUkSbBbnua/Pz82LBhAw4ODuTn57N+/fpznrd9+3Z27tzJ/PnziYmJAaBv375kZ2fz6quvMnLkSBwdHS3nV1ZWsmDBAkJCQrj99tsvyXu5kED/QCYwgUD/QLOjiIgdOXL0CF/zNdcevRZ/1Est0lB229Pk4OCAg4PDBc/btm0bbm5uDB8+vMbxsWPHkpubS0LC/9Yvqa6uZunSpbRo0YI5c+ZcsP3c3FySkpIsv9LT0+v1Xi6koqKCQgqpqKiwSfsi0jQVFhWSRBKFRYVmRxFpEuy2p6mu0tLSCAkJwcmp5lsNCwuzPH9mWYFnn32WvLw8nnnmmVrnn8vatWt56623rJ75bPtT9vMcz3FVylUEXxFs8+uJSNMQGRbJLGYRGRZpdhSRJqHJF00FBQXnnMzt6ekJwMmTJwHIzs5m/fr1uLi4MH78eMt5Tz/9NL179z5n2+PHj2fQoEGWx+np6SxZssSa8QHoFNiJW7mVToGdrN62iIiI1E2TL5qAOg3j+fn5sXXr1otq18fHBx8fH2JjY4mNjaWoqKi+EX9Xa8/WdKELrT1b26R9EWmaklKTeJEXGZY6THfeiliB3c5pqisvLy8KCgpqHS8sPD3G37p1wwuRmJgYli1bxqxZsxrc1rnkncjjP/yHvBN5NmlfRJqm1p6t6UEP/cAlYiVNvmjq3Lkz6enpVFZW1jh+8OBBAEJDQ82IdVGOHD3CV3zFkaNHzI4iInbEv70/McTg3169TCLW0OSH54YMGcK6devYsmVLjcUsN27ciI+PD927d2/wNWw9PBfVNYoneZKorubvgyci9qO0rJRssiktKzU7ikiTYNdF044dOygrK6OkpAQ4PRF78+bNAAwYMABXV1cGDBhAv379WL58OSUlJQQEBLBp0yZ+/PFH5s2bV2ONpvqKiYkhJiaGpKQkpk+f3uD2RESsITktmdd4jevTrqfzlZ3NjiNi9+y6aFq+fDnZ2dmWx3FxccTFxQHwwQcf4O9/ukt6yZIlrFy5ktWrV1u2UVmwYMHvbqPSmBz89SBrWEPMrzGazCkidRbeKZzpTCe8U7jZUUSaBLsumj788MM6nefu7s7s2bOZPXu2TXLYenjOydEJDzxwcrTr/10icom5u7kTQADubuZvByXSFDT5ieCXgq3vngsOCOYmbiI4QAtbikjdHc05ShxxHM05anYUkSZBRZMdqKqqoowyqqqqzI4iInbkeP5x4onneP5xs6OINAka77ECWw/P7Tuwj2UsY/iB4QRerk17RaRuukV042EepltEN7OjiDQJKpqswNZ3zwUHBHMzN2t4TkRExEQanrMDbVq3oQc9aNO6jdlRRMSOHDh4gFd4hQMHD5gdRaRJUNFkB47nH+cnftK8BBG5KB7uHnSiEx7uHmZHEWkSVDTZgcysTP7Nv8nMyjQ7iojYkQC/AMYylgC/ALOjiDQJmtNkBdpGRUQao7LyMvLIo6y8zOwoIk2CepqswNbrNDk4OOCIIw4ODjZpX0SapgMHD7CCFZrTJGIlKprswKGMQ/wf/8ehjENmRxERO9I5uDN3ciedg7XvnIg1qGgSEWmiWnm0IpRQWnm0MjuKSJOgoskOdArqxK3cSqegTmZHERE7kpOXw/d8T05ejtlRRJoETQS3AltPBDcMgyqqMAzDJu2LSNN0LO8Y29jGsbxjZkcRaRLU02QFtp4IvidxD3/lr+xJ3GOT9kWkaerRpQdzmUuPLj3MjiLSJKhosgOB/oFMYAKB/tp3TkRExCwqmuxAuzbtuIzLaNemndlRRMSOpBxKYRWrSDmUYnYUkSZBRZMdyD+Zzz72kX8y3+woImJHXFu64osvri1dzY4i0iSoaLIDvx7+lY/4iF8P/2p2FBGxIxraF7EuFU12QJM5RaQ+KioqKKSQiooKm12jMKuQzQs3U5hVaLNriDQWWnLACmy95ICjoyOuuOLo6GiT9kWkadqfsp/neI6rUq4i+Ipgm1yjKKuILYu2EDk+Ek9/T5tcQ6SxUE+TFdh6yYFfD//Kx3ys4TkRuSidAv//wriBncyOItIkqKfJDlRWVVJMMZVVlWZHERE70tqzNV3oQnlmOVnxWTa5Ru7+3Bq/W4O7jztewV5Wa0/EWlQ02QFtuiki9VHiUMIu510U31aMBx42uUYhhexkJ4W3FeKJdYbnnN2dmbl/pgonaXRUNImINFEnOclXDl/xwLsPENU1yibX2PrFVp578jn++Nc/MnTs0Aa3l7M/h89u+4yS3BIVTdLoqGiyA2e2URmYOBD/vv5mxxERO3HZZZdRXl5u02u02d/m9O+hbfT3kzR5mghuBzp26MhoRtOxQ0ezo4iIiDRbKprsgHdbb/rTH++23mZHERE7kpyczIgRI0hOTqaqqor4+HhOnDgBQF5eHvHx8RiGAUBqaiqpqakAGIZBfHw8eXl5AJw4cYL4+HiqqqoASEtLIzk5uca1CgtPr9NUUFBAfHy8ZW2o9PR0kpKSLOf98ssvHD161PKa+Ph4ysrKAMjIyODAwQM2+SxErEFFkx04WXiSAxzgZOFJs6OIiB1p2bIlfn5+tGnThuLiYqKjo4mNjQVg3bp1REdHWwqhhx56iIceegiAqqoqoqOjWbduHXB6Lbro6GiKi4sBeOKJJ/jjH/8InL7TDeA/e/4DwHfffUd0dDS5uafvpvvrX//K1KlTLZlGjBjBv/71LwB27dpFdHQ0mZmZADzzzDP88fE/2uzzEGkozWmyAlsvbnko8xD/x/9xR+YdRBJpk2uISNMTHBzM66+/jqenJ1VVVezatYvQ0FAArrvuOnbt2mVZNPf555+3vM7R0ZFdu3YREhICnF6LbteuXXh4nL4D76mnnqKy8vQSKB6+p4+NvnE0AIMHD2bXrl34+PgA8OSTT1p6kgDi4uLw8/MDIDo6ml27dhEYeHqbl0cffZSJQyey+ebNNvk8RBrKwTjTNysNlpSUxPTp01m5ciWRkdYrbn798VdeGvASD+540Gar+oqI1Ed8fLyl+Onbt2+D2/v2g2+5fvL1fP7+54z8w0grJBSxHg3P2QFnZ2c88cTZ2dnsKCIiNtWuTTv60pd2bdqZHUWkFhVNdiAzK5N/828yszLNjiIiYlMdfDswghF08O1gdhSRWupdNKWlpbFx40bLxECA8vJynnvuOW688UZuueUWyyRCaZiy8jJyyKGsvOzCJ4uI2LGS0hIOc5iS0hKzo4jUUu+i6e233+af//wn7u7ulmOvv/46a9eupaSkhGPHjvHcc8+xa9cuqwRtzsI7hXMP9xDeKdzsKCIiNfj7+7NgwQL8/a2zsGXKoRRWspKUQylWaU/EmupdNO3fv5/LLrsMBwcHACorK/niiy/o1q0b//73v/nggw9o06YNH374odXCiohI4+Lv78/ChQutVjRFhEYwgxlEhEZYpT0Ra6p30XT8+HE6dPjfmHNCQgIlJSVMmDCBli1b4uPjw6BBg0hJ0U8LDbXvwD6WsYx9B/aZHUVExKbcXN3www83Vzezo4jUUu+iydHR0bLiK8Du3btxcHDgsssusxzz8vKioKCgYQmF9t7tGcIQ2nu3NzuKiIhNZR3LIpZYso5lmR1FpJZ6F01+fn789NNPlsebN2/G39/fsmgZQE5ODl5e2qW6oXy9fRnEIHy9fc2OIiJiUycLT7KPfdoBQRqlehdNV199NSkpKcyYMYMHHniAlJQURo0aVeOcAwcOWFZ6tQeff/45d999NyNGjOCNN94wO45FUXERaaRRVGybFcdFRBqLyLBIZjObyDDtfiCNT72LphtvvJHhw4eTmJjInj17uPzyy7n99tstz+/fv59Dhw5ZZYXYS8Xb25tp06YxZMgQs6PUcPDXg6xhDQd/PWh2FBERkWar3nvPubi4sGjRIoqLi3FwcKix9ACcvqNi9erVNYbrGrszxdJ3331ncpKaunTuwixm0aVzF7OjiIjYVFJqEitYwbDUYfj3tc4deSLWUu+i6eeff8bf37/GHXS/1aZNG06dOkVKSgp9+vSp72XOq6SkhDVr1pCcnExycjIFBQVMnTqVadOmnfPcVatWERcXR2FhIcHBwUyZMqXWcGJj5drSFW+8cW3panYUERGb8mzlSSSReLbyNDuKSC31Hp7705/+xJdffvm753zzzTf86U9/qu8lfldBQQHr1q2joqLigsNp8+bNY+PGjUydOpWnn36arl27smjRIr755hubZLO2w9mH+YIvOJx92OwoIiI21bFDR67majp26Gh2FJFa6t3TZBhGnc45s/iltfn5+bFhwwYcHBzIz89n/fr15zxv+/bt7Ny5k/nz5xMTEwNA3759yc7O5tVXX2XkyJE4OjrWK0Nubi55eXmWx+np6fVq50KKS4o5xCGKS4ovfLKIiB0rLSvlGMcoLSs1O4pILfUumuoiMzMTDw8Pm7Rd12Js27ZtuLm5MXz48BrHx44dy+LFi0lISCAqKqpeGdauXctbb71Vr9dejC6du3A/92tOk4g0eclpybzCK4xPG0/nKzubHUekhosqmpYtW1bj8bZt28jOzq51XlVVFTk5Ofzyyy9cccUVDUvYQGlpaYSEhODkVPOthoWFWZ4/UzRVVlZSVVVFdXU1VVVVlJeX4+TkdN6eqPHjxzNo0CDL4/T0dJYsWWKjdyIi0vSFhYRxN3cTFhJmdhSRWi6qaPrtHCYHBwdSUlLOu02Kg4MDXbt25YEHHmhYwgYqKCigY8faY+OenqcnGZ48+b8F1P71r3/V6Dl6++23efzxxxkzZsw52/bx8cHHx8e6gc9hf/J+nuM5hiQP0d0kItKkebh7EEQQHu62GaUQaYiLKpo++OAD4PRcpcmTJ3PzzTdz00031TqvRYsWeHp64ubWOPYOqutQ3rRp0855992FxMbGEhsbS1GRbRafbNemHX3pS7s27WzSvohIY3E05yhb2MKEnAn4ox8SpXG5qKLpt2suzZ07ly5dujT6dZjOt/9dYWEhAK1bt27wNWJiYoiJiSEpKYnp06c3uL2zdfDtwAhG0MH33Ms7iIg0FXn5efyX/5KXn3fhk0UusXpPBD/fkFVj07lzZ2JjY6msrKwxr+ngwdOra4eGhjb4GrbuaSopLeEwhykpLbFJ+yIijUX3iO48wiN0j+hudhSRWhp891xCQgKJiYkUFRVRXV1d63kHBwfuvPPOhl6m3oYMGcK6devYsmVLjcUsN27ciI+PD927N/yLaeueppRDKaxkJRMPTSRskCZHioiImKHeRdPJkyd54okn2Lt37++u2WTLomnHjh2UlZVRUnK6ByY9PZ3NmzcDMGDAAFxdXRkwYAD9+vVj+fLllJSUEBAQwKZNm/jxxx+ZN29evddoupQiQiOYwQwiQiPMjiIiYlPJacm8xmuMSBuhG1+k0al30fTyyy+zZ88e+vTpwzXXXEP79u0veQGyfPnyGksexMXFERcXB5yetO7vf/oLt2TJElauXMnq1ast26gsWLDAbrZRcXN1ww8/3Fwbx8R6ERFbcXN1I4gg/X0njVK9i6bt27fTrVs3XnjhBZut+n0hH374YZ3Oc3d3Z/bs2cyePdsmOWw9pynrWBaxxHLdset0N4mINGmB/oGMYxyB/oFmRxGppd57z506dYrevXubVjA1JjExMSxbtoxZs2bZpP2ThSfZxz5OFp688MkiInas/FQ5JzhB+alym10jKyuLhQsXkpWVZbNrSNNU76IpIiLinKuBi/VFhkUym9lEhkWaHUVExKaSUpN4kRdJSk2y2TWysrJYtGiRiia5aPUenrvrrruYM2cO+/bto0ePHtbMZHdsPTwnItJchAaFcju3ExrU8OVgRKyt3kVTTk4OAwcO5MEHH+Sqq64iIiLivJvzXnPNNfUOaA9sveRAUmoSK1jBsNRhuptERJo0z1aehBGGZytPs6OI1FLvoulvf/sbDg4OGIbBl19+yZdffllrfpNhGDg4ODT5osnWPFt5Ekmk/hIRkSYvJy+HH/iBG/Ju0I0v0ujUu2iaO3euNXPI7+jYoSNXczUdO9TeeFhEpCk5mnuUzWzmaO5Rs6OI1NLkt1G5FGw9p6m0rJRjHKO0rNQm7YuINBY9I3vyBE/QM7Knza5RnFNc43eRuqr33XPyP7ZeciA5LZlXeIXktGSbtC8i0pyU5JbU+F2krurd03T0aN27Tjt06FDfywgQFhLG3dxNWIj2nRORpi3lUAqrWc3IQyN144s0OvUumiZNmlSnhS0dHBwsW5tI/Xi4exBEEB7u5747UUSkqWjp0pJ2tKOlS0uzo4jUUu+iafTo0ecsmoqKikhNTSUrK4s+ffrg5+fXoIACR3OOsoUtTMiZoLtJRKRJC+oYxA3cQFDHILOjiNRS76LpiSeeOO9zhmHw/vvv89577zFnzpz6XkL+v7z8PP7Lf8nLzzM7ioiITVVUVFBMMRUVFWZHEanFJhPBHRwcuOWWWwgNDeWVV16xxSUaldjYWObOncuKFSts0n73iO48wiN0j+huk/ZFRBqL/Sn7eYZn2J+y3+woIrXY9O65yMhI4uPjbXmJRsHWd8+JiDQXIYEhTGYyIYEhZkcRqcWmRdPhw4epqqqy5SWaheS0ZF7jNS05ICJNnpenF13pipenl9lRRGqxetFUXV3N0aNHWbNmDd9//32z38zXGtxc3QgiCDdXN7OjiIjYVN6JPHayk7wTmsMpjU+9J4IPGzbsd5ccMAyDVq1acf/999f3EvL/BfoHMo5xBPoHmh1FRMSmDmcfZgMbeCD7AXpiu1XBReqj3kVT7969z1k0OTg44OnpSWRkJGPHjqVdu3YNCihQfqqcE5yg/FS52VFERGyqV7deLGABvbr1MjuKSC31Lppeeukla+awa7beey4pNYkXeZExqWPoNKCTTa4hIiIiv097z1mBre+eCw0K5XZuJzQo1Cbti4g0Fgd/PcjbvM3BXw+aHUWklnr3NP3Wnj17SElJobi4GHd3dyIiIoiKirJG0wJ4tvIkjDA8W3maHUVExKYcWzjSkpY4tnA0O4pILQ0qmhISEnjqqafIzMwETk/+PjPPKTAwkLlz59KzpybyNVROXg4/8AM35N2gbVREpEkLCQxhEpO0TpM0SvUumg4dOsRDDz1EWVkZ/fv3p0+fPrRr144TJ07w008/8Z///IdHHnmE1157jU6dOlkxcvNzNPcom9nM0dyjZkcREbGpqqoqTnFKa/xJo1Tvoumtt96isrKSZ599lssvv7zGc7feeis7d+5kzpw5vPXWWyxcuLChOZu1npE9eYIn6BmpXjsRadr2HdjHUzzF0ANDCbxcy6xI41LvieA//fQTw4YNq1UwndGvXz+GDRvGTz/9VO9wIiLSvAR1DGIiEwnqGGR2FJFa6l00FRcX4+//+/Nr/P39KS4uru8l5P9LOZTCalaTcijF7CgiIjbV1qstUUTR1qut2VFEaql30eTt7c2+fft+95yEhAS8vb3rewn5/1q6tKQd7Wjp0tLsKCIiNnWi4AS/8AsnCk6YHUWklnoXTYMHD+bnn39m1apVlJfXXKm6vLycN954g59++onBgwc3OGRzF9QxiBu4Qd3VItLkZRzJ4DM+I+NIBgcPHiQl5X897PHx8eTm5gJw4sQJ4uPjqaysBCAtLY0DBw5Yzv355585duwYACdPniQ+Pp5Tp04BWNo4Y/fu3WRnZwNQVFREfHw8ZWVlAGRmZpKQkGA5d+/evRw5cgSAkpIS4uPjKSkpsepncC6FWYVsXriZwqxCm19Lzq/eRdOdd96Jv78/77zzDjfffDNz5sxh2bJlzJkzh0mTJrFmzRr8/f258847rZm3UYqNjWXu3LmsWLHCJu1XVFRQTDEVFRU2aV9EpLHoGdmTecyjZ2RPHnnkEWbPnm15Ljo6ms8//xyAuLg4oqOjOXnyJABPPvkk9957r+XcQYMG8f777wOwfft2oqOjLUXU2n+vrXHNUaNG8eabbwKni63o6GjS09MBWL58OTfffLPl3GuvvZZXXnkFgMTERKKjo0lMTLTmR3BORVlFbFm0haIs2+w8IXVT77vnWrduzT//+U9eeeUVvv32W3bs2GF5zsXFhTFjxjBjxgxat25tlaCNWUxMDDExMSQlJTF9+nSrt78/ZT/P8AyjUkYRfEWw1dsXEWksWrRogRNOtGjRgmeffZbq6mrLc7t27SI4+PTfgSNGjGDXrl2Wf2P++te/1vjB8vvvv6djx44ADBw4kF27dtG+fXsAxk8Yz4dxH1rO3bRpk+W5Pn36sGvXLkJCTq8T9ec//5l77rnHcu769este6p27drVkmHevHncf//9lmtK09SgxS1bt27N3LlzeeSRR0hPT6ekpAR3d3dCQkJwcrLKYuPC6cXeJjNZi72JSLPSuXPnGo/79u1r+e+2bdvStu3/JouHhtbcZqpPnz6W/27dunWN1/r4+NQ4t1ev/20O3KpVqxrnBgbWXPbgtws2u7u707dvX/bu3cs777zD5MmTbVY0Hc05ShxxTMiZYDeLHCf/nMzSPy3lLy/8hYg+EWbHsYqLrmz+9a9/UVZWxrRp0yyFkZOTE2FhYZZzKioqWLlyJW5ubtx2223WS9tMeXl60ZWueHl6mR1FRETO0rNnTw4dOmTTaxzNPcoWttjVIscH9x1kzZY13LLvliZTNF3UnKadO3fyxhtv0Lp169/tSXJ2dqZ169asWrWKXbt2NThkc5d3Io+d7CTvRJ7ZUURERJqtiyqavvrqKzw9PbnxxhsveO4NN9yAp6cnX375Zb3DyWmHsw+zgQ0czj5sdhQRETlLQkICPXr0qHGXnTRNF1U07d27l+joaFxcXC54rouLC/369WPv3r31Dien9erWiwUsoFe3Xhc+WURELqnWrVszevToZnHjU3N3UUVTbm7uRU1y8/f3Jy9PQ0oiItJ0BQYGsnz58lqTxqXpuaiJ4C1atLAsJFYXlZWVtGhR76Wg5P87+OtB3uZtYn6Nwb+vfdw1ISLSEDn7c2zWdn5avuX3rPisBrdXVl5GXlkePQf2xNXVtcHtSeN1UUWTt7c3aWlpdT4/LS2t1q2djVl+fj5PPfUUP//8Mz4+Pjz00EPn3ZD4UnJs4UhLWuLYwtHsKCIiNuXu446zuzOf3faZza5xhNMren/75LckPtnwhSmPcITXeZ3N6zczbNywBrcnjddFFU29evXim2++ISsr64Kb9WZlZREfH8/o0aMbFPBSev7552nXrh1r165l586dLFiwgPfeew8vL3Nv9Q8JDGESk7ROk4g0eV7BXszcP5OSXNttTbL/h/0kzUriDyv+QLcruzW4vfSf0qm4p4IArwArpJPG7KKKphtuuIEvv/yS+fPn88wzz9CmTZtznldQUMCCBQuoqqpiwoQJ1shpcyUlJWzbto333nsPV1dXBg8eTHh4ON999x3jxo0zNVtVVRWnOEVVVZWpOURELgWvYC+8gm37w+oIRtDtym5Wm/IQQgge7h5WaUsar4sqmiIjI7n55pv56KOPuOOOO5gwYQKXXXYZvr6+wOmJ4rt27WLdunXk5+czadIkIiMjbRK8pKSENWvWkJycTHJyMgUFBUydOpVp06ad89xVq1YRFxdHYWEhwcHBTJkyhVGjRlnOyczMxM3NjQ4dOliOde7c+aKGI21l34F9PMVTDD0wlMDLNdFQRKQxOZZ7jG1s4/rc6+1mtW6pn4teEXzmzJm4uLjw3nvv8fbbb/P222/XeN4wDFq0aMFtt91WY78eaysoKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqqwAoLS3Fw6PmTwkeHh7k5+fb7D3UVVDHICYykaCOQWZHERGRs+SeyGU728k9kWt2FLGxiy6aHBwcuPfeexk3bhxffPEFe/fu5fjx4wC0a9eOqKgoxowZQ0CAbcd2/fz82LBhAw4ODuTn55+3aNq+fTs7d+5k/vz5xMTEAKf3L8rOzubVV19l5MiRODo64ubmRnFxcY3XFhcX4+bmZtP3URdtvdoSRRRtvdpe+GQREbmkukd05zEeo3tEd7OjiI3Ve1fdgIAApk+fbs0sF8XBwaFO523btg03NzeGDx9e4/jYsWNZvHgxCQkJREVFERgYSGlpKceOHbPsdp2WlsbVV1993rZzc3NrrEOVnp5+8W+kDk4UnOAXfuFEwQl1/YqIiJikyS+ilJaWRkhISK298s5sMHxmzpK7uzuDBw/mzTffpLy8nB9++IHk5GQGDRp03rbXrl3L9OnTLb+WLFlik/eQcSSDz/iMjCMZNmlfRKQ5aeXfimELhtHKv5VV2ktOS+Z1Xic5Ldkq7UnjVe+eJntRUFBwzlXMPT09ATh58qTl2J///GeWLl3Ktddei4+PDwsXLjzvHYIA48ePr1FUpaen26Rw6hnZk3nMo2dkT6u3LSLS3Hj6ezJ84XCrtefm6oY//ri5mj+dQ2yryRdNUPehvDZt2vDMM8/UuV0fHx98fHyIjY0lNjaWoqKi+kb8XS1atMAJJ62uLiLSCAX6B3Id1xHor7ubm7om/6+wl5cXBQUFtY4XFhYCWGWDxZiYGJYtW8asWbMa3Na5pGem8z7vk55pmzlTIiJSf6cqTlFAAacqTpkdRWysyRdNnTt3Jj09vdaeeQcPHgQgNDTUjFgXpdqopooqqo1qs6OIiMhZElMSeZ7nSUxp+JYs0rg1+eG5IUOGsG7dOrZs2VJjMcuNGzfi4+ND9+4Nv0XU1sNzoUGhTGEKoUGNv8ATEWluQoNCuY3b9Hd0M2DXRdOOHTsoKyujpOT0HkXp6els3rwZgAEDBuDq6sqAAQPo168fy5cvp6SkhICAADZt2sSPP/7IvHnzcHRs+Ca4MTExxMTEkJSUZOoyDCIicul5tvIknHA8W3maHUVszK6LpuXLl5OdnW15HBcXR1xcHAAffPCBZVPhJUuWsHLlSlavXm3ZRmXBggU1ep4as937d7OQhQzYP8Bq+ySJiIh15B7PZQc7uPH4jVpLr4mz66Lpww8/rNN57u7uzJ49m9mzZ9skh62H5wL8AriO6wjw0w7aIiKNTXZONpvYRHZONlFEmR1HbMiui6bGwtbDc95tvYkmGu+23lZvW0REGqZnZE/+wl+0ll4z0OTvnmsK8k/mk0AC+SfzzY4iIiLSbKlosgO/Hv6VD/mQXw//anYUERE5S2p6Km/yJqnpqWZHERvT8JwV2HpOk3bQFhFpvJydnGlNa5ydnM2OIjamoskKbD2nycnJCXfca206LCIi5gsOCGYiEwkOCDY7itiYhufswK+Hf+UTPtHwnIhII1RZWUkJJbV2npCmR0WTHaiorOAkJ6morDA7ioiInCUhOYGneZqE5ASzo4iNabzHCmw9pyksJIy7uIuwkDCbtC8iIvUXHBDMJCZpeK4ZUNFkBdpGRUSk+WrTug3d6U6b1m3MjiI2puE5O7A3aS9LWcrepL1mRxERkbPknchjF7vIO5FndhSxMRVNdsDP149RjMLP18/sKCIicpbD2YdZxzoOZx82O4rYmIomO+DTzocBDMCnnY/ZUURE5Cy9uvViIQvp1a2X2VHExjSnyQpsPRG8sKiQFFIoLCrUDtoiIiImUU+TFcTExLBs2TJmzZplk/bTMtJ4h3dIy0izSfsiIlJ/aRlpvMu7+ju6GVDRZAe6hnflIR6ia3hXs6OIiMhZWji0wBFHWjjon9SmTv+H7YCLswteeOHi7GJ2FBEROUtIYAiTmUxIYIjZUcTGVDTZgcysTNaxjsysTLOjiIjIWaqrq6mkkurqarOjiI2paLIDpWWlZJFFaVmp2VFEROQse5P2soQlWkuvGVDRZAciQiO4l3uJCI0wO4qIiJwlqGMQN3ADQR2DzI4iNqYlB6zA1ksOiIhI49XWqy296U1br7ZmRxEbU0+TFdh6yQHtoC0i0nidKDjBHvZwouCE2VHExlQ02QGftj4MZCA+bbUiuIhIY5NxJINP+ISMIxlmRxEbU9FkB9r7tGcIQ2jv097sKCIicpYeXXrwBE/Qo0sPs6OIjalosgPFJcWkk05xSbHZUURE5CyOjo644IKjo6PZUcTGVDTZgdT0VN7kTVLTU82OIiIiZ0nPTOdDPiQ9M93sKGJjKprsQJfOXXiAB+jSuYvZUURE5CxV1VWUU05VdZXZUcTGVDTZAdeWrvjgg2tLV7OjiIjIWToHd+Z2bqdzcGezo4iNqWiyA0eOHmEjGzly9IjZUURERJotFU12oKi4iFRSKSrW4pkiIo3N7v27WcQidu/fbXYUsTGtCG4Ftl4RvEvnLsxkpuY0iYg0QgF+AYxjHAF+AWZHERtT0WQFMTExxMTEkJSUxPTp082OIyIil5B3W2/60Q/vtt5mRxEb0/CcHUhMSeR5nicxJdHsKCIicpaCwgISSaSgsMDsKGJjKprsQBuvNvSiF2282pgdRUREzpKemc77vK91mpoBFU12wM/Xj1GMws/Xz+woIiJylm7h3XiUR+kW3s3sKGJjKprsQElpCUc4QklpidlRRETkLM7OznjggbOzs9lRxMZUNNmBlEMpvM7rpBxKMTuKiIicJeNIBp/xGRlHMsyOIjamoskOhHcK517uJbxTuNlRRETkLOWnyjnOccpPlZsdRWxMRZMdcHdzpyMdcXdzNzuKiIicJbxTOHdzt36wbQZUNJ3l888/5+6772bEiBG88cYbZscBIDsnm01sIjsn2+woIiIizZaKprN4e3szbdo0hgwZYnYUi/yCfHazm/yCfLOjiIjIWfYm7eUpnmJv0l6zo4iNaUXws5wplr777juTk/xP1/CuPMRDdA3vanYUERE5SwefDgxnOB18OpgdRWysURZNJSUlrFmzhuTkZJKTkykoKGDq1KlMmzbtnOeuWrWKuLg4CgsLCQ4OZsqUKYwaNcqE5CIi0tz4evtyJVfi6+1rdhSxsUY5PFdQUMC6deuoqKi44DDZvHnz2LhxI1OnTuXpp5+ma9euLFq0iG+++eYSpbW9AwcP8A/+wYGDB8yOIiIiZyksKiSVVAqLCs2OIjbWKHua/Pz82LBhAw4ODuTn57N+/fpznrd9+3Z27tzJ/PnziYmJAaBv375kZ2fz6quvMnLkSBwdHQH405/+xN695x5vnjx5Mvfcc49t3owVtPJoRRhhtPJoZXYUERE5S1pGGm/zNlMyptCFLmbHERtqlEWTg4NDnc7btm0bbm5uDB8+vMbxsWPHsnjxYhISEoiKigLghRdesHJKyM3NJS8vz/I4Pd02+w517NCRa7iGjh062qR9ERGpv8iwSGYzm8iwSLOjiI01yqKprtLS0ggJCcHJqebbCAsLszx/pmiqq8rKSqqqqqiurqaqqory8nKcnJwsPVa/tXbtWt56661656+rsvIycsmlrLzM5tcSEZGL09KlJW1pS0uXlmZHERuz66KpoKCAjh1r9754enoCcPLkyYtu81//+leNQujtt9/m8ccfZ8yYMbXOHT9+PIMGDbI8Tk9PZ8mSJRd9zQs5cPAAL/My1x68ltCBoVZvX0RE6i8zK5MNbGBs1lj88Tc7jtiQXRdNUPehvLqaNm3aOe/SOxcfHx98fHyIjY0lNjaWoqIiq2Y5IywkjLu4i7CQMJu0LyIi9VdaVkoGGZSWlZodRWzMrosmLy8vCgoKah0vLDx9B0Pr1q0vSY6YmBhiYmJISkpi+vTpVm/fw92DEELwcPewetsiItIwEaERzGAGEaERZkcRG2uUSw7UVefOnUlPT6eysrLG8YMHDwIQGto0hrKO5R5jG9s4lnvM7CgiIiLNll0XTUOGDKG0tJQtW7bUOL5x40Z8fHzo3r37JckRGxvL3LlzWbFihU3azz2Ry3a2k3si1ybti4hI/SUkJ/Asz5KQnGB2FLGxRjs8t2PHDsrKyigpKQFOT7LevHkzAAMGDMDV1ZUBAwbQr18/li9fTklJCQEBAWzatIkff/yRefPmnfOON1uw9fBc94juPMZjdI+4NEWgiIjUnXcbby7ncsiBrPgsm1wjPy3f8ru1ruHu445XsJdV2mouGm3RtHz5crKzsy2P4+LiiIuLA+CDDz7A3//0HQpLlixh5cqVrF692rKNyoIFC7SNioiIXBKh3UKJcY/hu1nf8R222bf0CEcA+PbJb0l8MtEqbTq7OzNz/0wVTheh0RZNH374YZ3Oc3d3Z/bs2cyePdvGic7P1nfPJacl8zqvMyJtBP59dTuriEhj4tjOkcvfuZxQ31Cb3bCze/9uXr/tdW5850Z6devV4PZy9ufw2W2fUZJboqLpIjTaosme2Hp4zs3VDX/8cXN1s3rbIiLSMAcOHODqG69m165dhPcNt8k1sjg9JOfbzVc/PJtIRZMdCPQP5DquI9A/0OwoIiJylm7durF37146d+5sdhSxMRVNduBUxSkKKOBUxSmzo4iIyFnc3Nzo0aOH2THkErDrJQcaC1svOZCYksjzPE9iinUm/4mIiPVkZmby6KOPkpmZaXYUsTEVTVYQExPDsmXLmDVrlk3aDw0K5TZuIzSoaSzWKSLSlBQUFLB27dpz7lAhTYuG5+yAZytPwgnHs5Wn2VFEROQsPXr0ICkpyewYcgmop8kO5B7PZQc7yD2uFcFFRETMoqLJCmw9pyk7J5tNbCI7J/vCJ4uIyCW1b98+wsPD2bdvn9lRxMY0PGcFtl6nqWdkT/7CX+gZ2dPqbYuISMO0adOGm2++mTZt2pgdRWxMRZOIiEgDBAQE8Le//c3sGHIJaHjODqSmp/Imb5Kanmp2FBEROUtpaSm7d++mtLTU7ChiYyqa7ICzkzOtaY2zk7PZUURE5Cz79++nd+/e7N+/3+woYmManrMCW2/YGxwQzEQmEhwQbJP2RUSk/iIjI/nPf/5DZGSk2VHExlQ0WYGtJ4JXVlZSQgmVlZVWb1tERBrGw8ODyy+/3OwYcgloeM4OJCQn8DRPk5CcYHYUERE5S1ZWFgsXLiQrK8vsKGJjKprsQHBAMJOYpOE5EZFGKDc3l1WrVpGbqwWImzoNz9mBNq3b0J3utGndxuwoIiJylqioKG3W20yop8kO5J3IYxe7yDuRZ3YUERGRZktFkx04nH2YdazjcPZhs6OIiMhZEhIS6NWrFwkJmnfa1Gl4zgpsveRAr269WMhCenXrZZP2RUSk/jw9PRk+fDienp5mRxEbU9FkBbZeckBERBqvoKAgXnrpJbNjyCWg4Tk7kJaRxru8S1pGmtlRRETkLGVlZaSkpFBWVmZ2FLExFU12oIVDCxxxpIWD/neJiDQ2CQkJREREaE5TM6B/he1ASGAIk5lMSGCI2VFEROQsERERxMXFERERYXYUsTHNabID1dXVVFJJdXW12VFEROQsZyaCS9OnniY7sDdpL0tYwt6kvWZHERGRsxw9epRnnnmGo0ePmh1FbExFkx0I6hjEDdxAUMcgs6OIiMhZsrOz+dvf/kZ2drbZUcTGNDxnB9p6taU3vWnr1dbsKCIicpbevXtz/Phxs2PIJaCiyQpsvbjliYIT7GEPJwpO4I+/Ta4hIiIiv0/Dc1YQExPDsmXLmDVrlk3azziSwSd8QsaRDJu0LyIi9ZeUlMTAgQNJSkoyO4rYmIomO9CjSw+e4Al6dOlhdhQRETmLq6srPXr0wNXV1ewoYmManrMDjo6OuOCCo6Oj2VFEROQsISEhrFq1yuwYcgmop8kOpGem8yEfkp6ZbnYUERE5S0VFBVlZWVRUVJgdRWxMRZMdqKquopxyqqqrzI4iIiJn2bNnDx07dmTPnj1mRxEbU9FkBzoHd+Z2bqdzcGezo4iIyFnCwsJYv349YWFhZkcRG9OcJhERkQbw8vJi3LhxZseQS0A9TXZg9/7dLGIRu/fvNjuKiIicJScnh3/84x/k5OSYHUVsTEWTHQjwC2Ac4wjwCzA7ioiInCUzM5M///nPZGZmmh1FbEzDc79x6tQpnnvuOXbu3ElxcTGdOnVi5syZREVFmZrLu603/eiHd1tvU3OIiEhtl112GeXl5WbHkEtAPU2/UVVVhb+/P6+88gpffPEFEyZM4IknnqCsrMzUXAWFBSSSSEFhgak5REREmjMVTb/h5ubG1KlT6dChAy1atGDMmDFUV1eb3uWanpnO+7yvdZpERBqh5ORkYmJiSE5ONjuK2FijHJ4rKSlhzZo1JCcnk5ycTEFBAVOnTmXatGnnPHfVqlXExcVRWFhIcHAwU6ZMYdSoUQ3OkZ6eTnl5OR07dmxwWw3RLbwbj/Io3cK7mZpDRERqc3JywtfXFyenRvlPqlhRo/w/XFBQwLp16wgLC2PIkCGsX7/+vOfOmzePxMRE7rvvPoKCgoiNjWXRokVUV1dz1VVX1TtDWVkZS5cu5Y477sDd3b3e7ViDs7MzHnjg7Oxsag4REaktNDSU9957z+wYcgk0yqLJz8+PDRs24ODgQH5+/nmLpu3bt7Nz507mz59PTEwMAH379iU7O5tXX32VkSNHWvZr+9Of/sTevXvP2c7kyZO55557LI8rKytZsGABISEh3H777efNmZubS15enuVxerpths8yjmTwGZ8x5sgY/Pv62+QaIiJSP1VVVRQXF+Ph4aE9Qpu4Rlk0OTg41Om8bdu24ebmxvDhw2scHzt2LIsXLyYhIcFy59sLL7xQpzarq6tZunQpLVq0YM6cOb+bZe3atbz11lt1archyk+Vc5zjlJ/S3RkiIo3NL7/8QnR0NLt27aJv375mxxEbapRFU12lpaUREhJSaxz5zFL2aWlpF71cwLPPPkteXh7PPPPMBcenx48fz6BBgyyP09PTWbJkyUVdry7CO4VzN3cT3inc6m2LiEjDhIaG8uGHHxIaGmp2FLExuy6aCgoKzjlJ29PTE4CTJ09eVHvZ2dmsX78eFxcXxo8fbzn+9NNP07t371rn+/j44OPjc5GpRUSkKWnbti0333yz2THkErDrognqPpRXF35+fmzduvWiXxcbG0tsbCxFRUVWy/Jbe5P28hRPcWXSlZrTJCLSyOTl5bFu3Tquu+46vL21CHFTZtfrNHl5eVFQUHvBx8LCQgBat259SXLExMSwbNkyZs2aZZP2O/h0YDjD6eDTwSbti4hI/aWnp3PXXXfZ7GYgaTzsuqepc+fOxMbGUllZWWP+0cGDBwGazPiyr7cvV3Ilvt6+ZkcREZGzXHbZZVRUVOjOuWbArnuahgwZQmlpKVu2bKlxfOPGjfj4+NC9e/dLkiM2Npa5c+eyYsUKm7RfWFRIKqkUFhXapH0REak/BwcHnJycrDpdRBqnRtvTtGPHDsrKyigpKQFOd39u3rwZgAEDBuDq6sqAAQPo168fy5cvp6SkhICAADZt2sSPP/7IvHnzLlnVHxMTQ0xMDElJSUyfPt3q7adlpPE2bzMlYwpd6GL19kVEpP5SU1N56KGHeP755y13b0vT1GiLpuXLl5OdnW15HBcXR1xcHAAffPAB/v6nJ0QvWbKElStXsnr1ass2KgsWLLDKNiqNRWRYJLOZTWRYpNlRREREmq1GWzR9+OGHdTrP3d2d2bNnM3v2bBsnOj9b3z3X0qUlbWlLS5eWNmlfRETqLywsjLVr15odQy4Bu57T1FjY+u65zKxMNrCBzKxMm7QvIiL1ZxgGlZWVGIZhdhSxMRVNdqC0rJQMMigtKzU7ioiInOWnn37C2dmZn376yewoYmONdnjOnth6eC4iNIIZzCAiNMIm7YuISP2FhITw5ptvEhISYnYUsTEVTVZg67vnRESk8fL29mbq1Klmx5BLQMNzdiAhOYFneZaE5ASzo4iIyFlOnDjBRx99xIkTJ8yOIjamoskOeLfx5nIux7uN9jQSEWls0tLSmDRpEmlpaWZHERvT8Jwd6ODbgWEMo4Ov9p4TEWlsevfuTUFBAR4eHmZHERtT0WQFtp4IXlxSTAYZFJcU26R9ERGpP0dHx0u2QbyYS8NzVmDrdZpS01NZzWpS01Nt0r6IiNRfWloat9xyi4bnmgEVTXYgIjSC+7lfSw6IiDRClZWV5OTkUFlZaXYUsTENz9kBN1c32tMeN1c3s6OIiMhZIiIiiI2NNTuGXALqabIDR44e4Wu+5sjRI2ZHERERabbU02QFtp4IXlhUSBJJFBYV2qR9ERGpv59++okBAwawY8cOLrvsMrPjiA2paLICW68IHhkWySxmERkWafW2RUSkYQIDA1m+fDmBgYFmRxEbU9EkIiLSAL6+vsycOdPsGPWSsz/HZm3np+Vbfs+Kz7JKm+4+7ngFe1mlrfpQ0WQHklKTeJEXGZY6DP++/mbHERGR3ygoKOC7775j8ODBeHmZ9w/6xXD3ccfZ3ZnPbvvMZtc4wul5uN8++S2JTyZapU1nd2dm7p9pWuGkoskOtPZsTQ960NpTi6eJiDQ2qampXHvttezatYu+ffuaHadOvIK9mLl/JiW5JTa7xu79u3n9tte58Z0b6dWtV4Pby9mfw2e3fUZJbomKJjk///b+xBCDf3v1MomINDZRUVEcOXIEHx8fs6NcFK9gL5sWH1mcHpLz7ebbZEZJVDTZgdKyUrLJprSs1OwoIiJyFmdnZ/z9m0ZRIL9P6zRZQWxsLHPnzmXFihU2aT85LZnXeI3ktGSbtC8iIvWXnp7OPffcQ3p6utlRxMbU02QFtl5yILxTONOZTnincKu3LSIiDVNWVsa+ffsoKyszO4rYmIomO+Du5k4AAbi7uZsdRUREzhIZGcn27dvNjiGXgIbn7MDRnKPEEcfRnKNmRxEREWm2VDTZgeP5x4knnuP5x82OIiIiZ/nll19o164dv/zyi9lRxMZUNNmBbhHdeJiH6RbRzewoIiJyFj8/Px5//HH8/PzMjiI2pjlNIiIiDdChQwceffRRs2PIJaCeJjtw4OABXuEVDhw8YHYUERE5S2FhIZs3b6awsNDsKGJjKprsgIe7B53ohIe7h9lRRETkLMnJyYwYMYLkZK2l19RpeM4KYmNjiY2NpaioyCbtB/gFMJaxBPgF2KR9ERGpv+7du5OcnExgYKDZUcTGVDRZga0XtywrLyOPPMrKtXCaiEhj4+rqSni4Fh9uDjQ8ZwcOHDzAClZoTpOISCOUkZHBgw8+SEZGhtlRxMbU02RF5eXlAFbff8jR0ZHJHpNxdHQkKSnJqm2LiEjDpKWlsW3bNsaOHUtJSYlNrpGRkYGHh4fld3tg7cy5Gbmc9DjJwYyDnPQ4aYWEtYWEhODq6nre5x0MwzBscuVm6Ouvv2bJkiVmxxAREZF6WLlyJZGRked9Xj1NVtS/f3/Cw8N56KGHcHFxqdNrVqxYwaxZs373nPT0dJYsWcK8efMICQmxRlS7V5fPzUyXOp+trmetdhvSTn1eezGvqeu5+h7W1pi/h2Zks8U1m8N3sK7nX4rv4IXaVdFkRW3atKF9+/ZERUXV+TWtWrX63ar2t0JCQup8blN3MZ+bGS51Pltdz1rtNqSd+rz2Yl5zse3re/g/jfl7aEY2W1yzOXwHL/Z8M7+DmghuZTExMTY9X05r7J/bpc5nq+tZq92GtFOf117Maxr7n6XGrDF/dmZks8U1m8N3sL7XMIPmNNmBM0sZXGisVURsR99DEXM1hu+geprsgLe3N1OnTsXb29vsKCLNlr6HIuZqDN9B9TSJiIiI1IF6mkRERETqQEWTiIiISB2oaBIRERGpAxVNIiIiInWgoqmJOHXqFH/729+YOHEi11xzDTNmzGDPnj1mxxJpVhYuXMiECRO45pprmDp1Kj/88IPZkUSapb179zJs2DDWrFlj1XZ191wTUVpaygcffMCYMWPw9fXlq6++4pVXXuGjjz763c0HRcR60tLSCAwMxNnZmYSEBB5++GHef/99vLy8zI4m0mxUV1fzxz/+EQcHBwYOHMidd95ptbbV09REuLm5MXXqVDp06ECLFi0YM2YM1dXVZGZmmh1NpNkIDQ3F2dkZAEdHRyoqKsjNzTU5lUjzsnbtWqKioggODrZ629p7ziQlJSWsWbOG5ORkkpOTKSgoYOrUqUybNu2c565atYq4uDgKCwsJDg5mypQpjBo16rztp6enU15eTseOHW35NkTslq2+g4sXL2br1q2cOnWKAQMG0Llz50vxdkTsji2+gwUFBXz88ce89tprvPTSS1bPrKLJJAUFBaxbt46wsDCGDBnC+vXrz3vuvHnzSExM5L777iMoKIjY2FgWLVpEdXU1V111Va3zy8rKWLp0KXfccQfu7u62fBsidstW38H58+dTWVlJfHw86enpODg42PqtiNglW3wHX3/9dSZNmkSrVq1skllFk0n8/PzYsGEDDg4O5Ofnn/cPy/bt29m5cyfz58+3bGjYt29fsrOzefXVVxk5ciSOjo6W8ysrK1mwYAEhISHcfvvtl+S9iNgjW30HAZycnOjfvz+ffPIJgYGBDBw40ObvR8TeWPs7mJSUxIEDB3j44Ydtlllzmkzi4OBQp59At23bhpubG8OHD69xfOzYseTm5pKQkGA5Vl1dzdKlS2nRogVz5szRT7giv8MW38GzVVdXc/jw4YZGFWmSrP0d/OWXXzh06BATJkzguuuu49tvv+Xdd99l6dKlVsusnqZGLi0tjZCQEJycav6vCgsLszwfFRUFwLPPPkteXh7PPPNMrfNFpH7q+h3My8tjz549XHHFFTg7O7N161Z++ukn7rvvPjNiizQZdf0OXnvttTUKq3/84x/4+flx6623Wi2L/mVt5AoKCs45mdvT0xOAkydPApCdnc369etxcXFh/PjxlvOefvppevfufWnCijRBdf0OAnz88cf8/e9/x8HBgcDAQBYuXEh4ePglyyrSFNX1O+ju7l5jHm/Lli1xd3e36pIfKprsQF26L/38/Ni6deslSCPS/NTlO+jt7c3LL798CdKIND/1mW7yxBNPWD2H5jQ1cl5eXhQUFNQ6XlhYCEDr1q0vdSSRZkXfQRFzNabvoIqmRq5z586kp6dTWVlZ4/jBgweB04vpiYjt6DsoYq7G9B1U0dTIDRkyhNLSUrZs2VLj+MaNG/Hx8aF79+4mJRNpHvQdFDFXY/oOak6TiXbs2EFZWRklJSXA6VW8N2/eDMCAAQNwdXVlwIAB9OvXj+XLl1NSUkJAQACbNm3ixx9/ZN68ebXWhxGRutN3UMRc9vYd1Ia9Jpo0aRLZ2dnnfO6DDz7A398fOL18/MqVK2ssH3/bbbf97jYqInJh+g6KmMvevoMqmkRERETqQHOaREREROpARZOIiIhIHahoEhEREakDFU0iIiIidaCiSURERKQOVDSJiIiI1IGKJhEREZE6UNEkIiIiUgcqmkRELoHnn3+e6667zrJdBMAbb7zB0KFD+emnn0xM9j9Lly7l5ptvpry83OwoIo2S9p4TkYuWlZXFH/7wh989Jzw8nDfeeOMSJWrcMjIyWLt2Lffeey/u7u42vda///1vnnvuOcaPH88jjzzyu+fec889HDhwgJUrVxIZGcmdd95JbGwsH330EbfddptNc4rYIxVNIlJvAQEBXHXVVed8ztvb+xKnabzefPNNXFxcmDBhgs2vFRMTwz/+8Q++/fZbZs2aRcuWLc95XmpqKgcOHCAiIoLIyEgAAgMDGTx4MP/3f//HxIkTcXNzs3leEXuioklE6i0gIIBp06aZHaNRy8/PZ+vWrQwfPtzmvUwAHh4eDBs2jK+++ootW7Zw9dVXn/O89evXAzB27Ngax6+++mq2bNnCpk2buPbaa22eV8SeaE6TiFwSQ4cO5cEHHyQ/P59ly5Yxfvx4YmJimDFjxnnn9JSUlPDGG29wxx13EBMTw9ixY3nkkUfYvXt3rXMffPBBhg4dyqlTp1i9ejW33HILI0aMqDFEuGXLFqZPn05MTAwTJkzg6aefprCwkEmTJjFp0iTLeUuXLmXo0KHs37//nLleffVVhg4dytatWy/4vjdt2sSpU6cYPnz4Bc89IzU1lRtuuIHrrruOhIQEy/EjR47w97//nZtuuolRo0Zx/fXX89RTT9XaJX7cuHEAfPnll+dsv6KigtjYWFxcXGoVVQMGDMDNzY0vvviiznlFmgsVTSJyyRQVFXH//feTmprKVVddxdChQ0lKSuKRRx7h4MGDNc49efIkf/zjH3nrrbdo3bo1119/veX82bNns23btnNeY968eXzxxRf07t2bm2++mY4dOwKwYcMGnnzySQ4fPszo0aO55ppr2LdvH3/+85+prKys0cb48eOB//XG/FZlZSVfffUV7dq148orr7zge961axcAPXr0uPAHBPzyyy/MmjULR0dHXn75Zbp37w5AQkIC99xzDxs3biQyMpKbbrqJ3r17880333Dfffdx5MgRSxt9+vQhMDCQ+Ph4srKyal3j+++/p6CggKFDh+Lp6VnjOWdnZ7p06cL+/fspLS2tU2aR5kLDcyJSb4cPHz7vZO8ePXpwxRVX1DiWkpLC9ddfz5/+9CdatDj9M1vfvn15+umn+fTTT2tMXH7hhRdIS0tj7ty5NYaQjh8/zr333sszzzxD//79a83ZycvL480336R169aWY4WFhbz00ku4u7uzatUqSyE1ffp0HnvsMZKSkvDz87OcHxUVRWhoKJs2beKBBx6oMbfnhx9+4Pjx49x66604OV34r9C9e/fi6+tL27ZtL3jutm3bWLRoER07duTZZ5+lffv2wOlCbeHChVRXV7Ny5UrCw8Mtr9m9ezezZ8/mpZdeYtmyZZbjY8eO5fXXX2fjxo3cddddNa6zYcMG4H89UmeLjIzkl19+Yf/+/fTt2/eCuUWaC/U0iUi9HT58mLfeeuucv3788cda57u5uTFjxgxLwQRwzTXX4OjoSGJiouVYfn4+cXFxREdH15pz065dO2655Rby8/MtvTi/ddddd9UomAC+++47SktLufbaay0FE4CTkxN33333Od/b+PHjKSkp4dtvv61xfP369Tg4ONRpvk9FRQX5+fl1KpjWr1/P/PnziYiI4OWXX7YUTHC6UMvOzuaWW26pUTAB9OrVi0GDBrFjxw6Ki4stx898rl9++SWGYViO5+bmsnPnTvz8/M5bEJ3Jm5OTc8HcIs2JeppEpN769+/Ps88+W+fzAwMDa02GdnJyol27dhQVFVmOJSYmUlVVxalTp87Zk5WZmQlAenp6rSGybt261To/NTUVgJ49e9Z6rlu3bjg6OtY6fvXVV/Paa6+xfv16S49MTk4O//3vfy3DXxdSUFAAUGsI7Gwffvgh33//PQMGDGDx4sW4urrWeH7fvn0A/Prrr+f8PI4fP051dTUZGRl07doVAB8fH6644gp++OEH4uPjiY6OBk7Pc6qqqmLs2LE4ODicM8+ZovNMfhE5TUWTiFwyHh4e5zzu6OhIdXW15fHJkycB2LNnD3v27Dlve2VlZbWOtWvXrtaxMz0wbdq0qfVcixYt8PLyqnXc09OTESNGsHHjRg4dOkSnTp344osvqKqqqvNdZWeGDi+0WOSZie1XXHFFrYIJTg8vAnzzzTe/287Zn8e4ceP44Ycf+PLLL2sUTS1atGDMmDHnbedM3vMtVyDSXKloEpFG50xx9Yc//IGZM2de1GvP1Xtypr38/Pxaz1VXV1NQUICvr2+t58aPH8/GjRtZv349M2fO5Msvv6R169YMHTq0Tlk8PT1xcnKyFIHnM2fOHP71r3/x0ksv0aJFC2644YYaz5/pnVu2bFmdJp+fMXDgQNq1a8eWLVt46KGHSElJITMzk/79+9OhQ4fzvu5M3nMVmSLNmeY0iUij07VrVxwcHCzDUg0VFhYGnJ6Ufbb9+/dTVVV1ztf17NmTzp0789VXX7Fjxw6OHDnCVVdddVE9MKGhoWRnZ9e6Q++3PD09ef755+nSpQvPP/88n376aY3nz9xBd7Gfh5OTE6NHj6a8vJxNmzZZlhE43wTwMzIyMgDo3LnzRV1PpKlT0SQijY63tzcjRoxg7969vPfeezUmMp+RkJBwzuG5cxk8eDBubm6sX7++xq35lZWVrF69+ndfe91111FQUMAzzzwDcNELPvbp04dTp05Z5lWdj6enJ8uXL6dr16688MILfPLJJzXyd+jQgQ8++ICff/651msrKyvPuXYV/K9A+vzzz9m8eTNeXl4MHjz4d7MkJCTg7e1NUFDQBd6dSPOi4TkRqbffW3IAaNBq4X/+85/JyMjg1Vdf5auvvqJHjx60atWKY8eOkZSURGZmJp999tk55wCdzdPTkwceeIBnnnmGe+65h5EjR+Lh4cGOHTtwcXHBx8fnvJOiR48ezT//+U9yc3Pp3r27pdeqroYMGcJHH33Erl27LNuV/F7O5557jocffpgXX3wRwzC46aabcHFxYfHixTz22GM8+OCDREdHExoaCsDRo0fZvXs3Xl5evPPOO7XaDA4OJioqyjI37Nprr8XZ2fm8GQ4fPkxWVhbXX3/9Rb1PkeZARZOI1NuZJQfOpyFFU+vWrXnllVf49NNP+fbbb4mNjaW6upp27doRHh7OnXfeec4J3Odz3XXX4enpydtvv83GjRvx8PBg0KBBzJgxg5tvvpmAgIBzvq5Vq1YMHjyY2NjYem0r0qdPH4KDg/n666+59dZbL3j+mR6nhx9+mJdeegnDMLj55pvp1q0bb7zxBu+99x47duxgz549ODs74+Pjw5AhQxg1atR52xw3bpylaDp7CYezff3118D/FvgUkf9xMM7V7y0i0kxkZmZy6623MmLECBYtWnTOc+644w6OHj3KZ599Vq/949auXcuzzz7La6+9Zpmf1BhVVlYyZcoU/Pz8ePHFF82OI9LoaE6TiDQLhYWFnDp1qsax8vJyXn75ZeD0MNq5bN++nUOHDjF69Oh6b7g7btw4QkJCePPNN+v1+kvl66+/Jjs7m/vvv9/sKCKNkobnRKRZ+Pnnn/n73//O5ZdfTvv27SkoKCA+Pp7s7Gz69u3LyJEja5z/+eefc+zYMdatW0fLli255ZZb6n1tR0dHHn/8cX788UdKSkrqXXzZmoODA48++ugF516JNFcanhORZiEjI4PVq1ezd+9ey3pNAQEBjBw5ksmTJ9daRmDSpEnk5OQQFBTEjBkzLmp9JBFpmlQ0iYiIiNSB5jSJiIiI1IGKJhEREZE6UNEkIiIiUgcqmkRERETqQEWTiIiISB2oaBIRERGpAxVNIiIiInWgoklERESkDlQ0iYiIiNTB/wNLKs7I5BdmSQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG+CAYAAACOFDByAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3VUlEQVR4nO3deVyVZf7/8ReyyCKiAgqyiYC4oSZmmrtSppZWlmPZYpblZOY0LVpjbqON02KLTTWplVN925dxKSsMl0qbUSoXBAGRQEEBBdlluX9/+PNMiCbCOd4ceD8fDx927nOf636fk0c/XNd1X5eDYRgGIiIiIvK7WpgdQERERMQeqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNImIiIjUgYomERERkTpQ0SQiIiJSByqaREREROpARZOIiIhIHahoEhEREakDFU3nsHfvXoYNG8aaNWsu6nVlZWUkJSVRVlZmo2QiIiJiFhVNZ6murmbFihV069btol+bnp7O9OnTSU9Pt0EyERERMZOT2QEam7Vr1xIVFcXJkyfNjiIiIiKNiN0WTSUlJaxZs4bk5GSSk5MpKChg6tSpTJs27Zznrlq1iri4OAoLCwkODmbKlCmMGjWqxnkFBQV8/PHHvPbaa7z00kuX6q2IiIiIHbDb4bmCggLWrVtHRUUFQ4YM+d1z582bx8aNG5k6dSpPP/00Xbt2ZdGiRXzzzTc1znv99deZNGkSrVq1smV0ERERsUN229Pk5+fHhg0bcHBwID8/n/Xr15/zvO3bt7Nz507mz59PTEwMAH379iU7O5tXX32VkSNH4ujoSFJSEgcOHODhhx++lG9DRERE7ITdFk0ODg51Om/btm24ubkxfPjwGsfHjh3L4sWLSUhIICoqil9++YVDhw4xYcIEAEpLS2nRogWZmZn85S9/OWfbubm55OXlWR5rAriI1EdVVRUVFRVmxxBp8pydnXF0dKz36+22aKqrtLQ0QkJCcHKq+VbDwsIsz0dFRXHttdfWKKz+8Y9/4Ofnx6233nretteuXctbb71li9gi0kwUFRWRmZmJYRhmRxFp8hwcHAgMDKz3NJwmXzQVFBTQsWPHWsc9PT0BLHfJubu74+7ubnm+ZcuWuLu74+Xldd62x48fz6BBgyyP09PTWbJkibWii0gTV1VVRWZmJu7u7vj6+ta5B11ELp5hGOTk5JCZmUlERES9epyafNEEdR/K+60nnnjiguf4+Pjg4+NTn0giIlRUVGAYBr6+vri5uZkdR6TJ8/X15dChQ1RUVKhoOhcvLy8KCgpqHS8sLASgdevWDb5GbGwssbGxFBUVNbgtEWl+1MMkcmk09Ltmt0sO1FXnzp1JT0+nsrKyxvGDBw8CEBoa2uBrxMTEsGzZMmbNmtXgtkRERKRxavJF05AhQygtLWXLli01jm/cuBEfHx+6d+/e4GvExsYyd+5cVqxY0eC2RETM1KlTJ7p27UqfPn3o1q0bt956K8XFxfVu76233uLAgQPnfX7Hjh1ERUVx2WWX8dVXXzF27FhSU1Pr9NrGYOHChTzyyCNWbbNTp07s3bu3Xq/duXMnU6ZMASA/P5+nn366xvPDhw8/7xI9cmF2PTy3Y8cOysrKKCkpAU5PxN68eTMAAwYMwNXVlQEDBtCvXz+WL19OSUkJAQEBbNq0iR9//JF58+Y16NbDM2JiYoiJiSEpKYnp06c3uD0RETN9/PHH9OzZE8MwuO6663jrrbeYOXNmvdp666238PHxoUuXLud8fs2aNdxxxx08+uijAIwePbrOr5Xa+vXrx7vvvgv8r2h67LHHGtxuZWVlrbvQmyO77mlavnw58+fPZ9myZQDExcUxf/585s+fz4kTJyznLVmyhKuvvprVq1fz6KOPkpCQwIIFC7j66qvNii4iUktFSQVZ8Vk2/VVRUvf1oMrLyykuLqZt27aWY88++yz9+/enb9++jB07loyMDADWrVtHr1696NOnDz179uTf//43q1atYufOnTz44IP06dOHL774okb7y5Yt44MPPuDFF1+kT58+5OfnW3pZLvRagP379zN69Gh69epFr169eO211wBISUkhJibGkufzzz+3vMbBwYG///3vXHHFFYSGhvLmm28C8M4773DddddZzjMMg9DQUHbv3g3A008/TY8ePYiKimLKlCnnnCvbpUsXdu3aZXn85ptvcuONNwKQnZ3NpEmT6N+/P7169WL+/PmW87Zt20ZUVBT9+/fngQceOO/yEwMHDmT79u0A/PnPfyYwMNDyXHBwMBkZGWzevJl+/foBMGPGDPLz8+nTp4/l2JnrDRkyhLCwMGbMmHHOax06dAgfHx8WL17MkCFDWLFixXnfQ3V1NQ888ABdu3ald+/eREdHU1ZWZmnjkUce4YorrqBHjx58++23lmu8/fbbREVF0atXL8aNG8fhw4eB08Xy6NGjueWWW4iKiqJfv36WKTXJyckMGjSI3r17ExUVxbx584DTN1XMnTuX/v3706dPHyZPnkx+fv4531uDGNJg33zzjTFnzhxj5syZxpAhQ4zExESzI4mIHSgtLTUSEhKM0tJSwzAM48iuI8ZCFtr015FdR343U0hIiBEZGWn07t3baN26tTFixAijoqLCMAzDePfdd43p06cblZWVhmEYxr/+9S9j/PjxhmEYRq9evYzvv//eMAzDqKqqMk6cOGEYhmEMGzbMWLdu3Xmvd+eddxorVqyocf09e/Zc8LUVFRVGRESE8cEHH1iO5eTkGIZhGP379zf++c9/GoZhGAcOHDDatWtn/Prrr4ZhGAZgvPDCC4ZhGEZCQoLRqlUro6KiwigpKTG8vb2NrKwswzAM49tvvzX69u1rGIZhfPHFF0bXrl0t72n69OnG/fffbxiGYSxYsMB4+OGHDcMwjKVLlxozZ8605Bk6dKixdu1awzAM4+qrrza2bNliyT569Gjj008/NcrKyoyOHTsacXFxhmEYxgcffGAAls/gt+bNm2csWrTIMAzDuOyyy4z+/fsb+/fvNxITE40uXboYhmEYcXFxRnR0tGEYhpGWlmZ4e3vXaGPYsGHGxIkTjcrKSqOkpMTo1KmT8cMPP9S6VlpamgEY7777ruXY+d5DfHy80bVrV6OqqsowDMPIz883qqqqLG289dZbhmEYxvbt240OHToYRUVFxp49e4wOHToYmZmZhmEYxpIlS4yxY8cahmEYb775puHl5WUcOnTIMAzDmDNnjnHvvfcahmEYDz74oLF06VJLpry8PMtn/9e//tVyfPHixcaDDz5Y632d/Z27WOprswINz4mINfh09eHeXffa/BoXcmZ4rrKykvvuu485c+bw3HPP8fnnn7Nz506io6OB0+tMnZniMGrUKP70pz9x0003cfXVV9OnTx9bvg2SkpKorKxk0qRJlmM+Pj4UFhby888/c/fddwMQERHB4MGD+e6777jlllsALHN+unXrhpOTE9nZ2QQGBjJx4kTeeecdHnnkEd58803uuusu4PS81SlTptCmTRsA/vjHPzJ58uRame68804uu+wyli9fTkZGBgcOHGDMmDEUFxfz7bffcvToUcu5RUVFJCYmEhYWhru7u2Vx5UmTJnHvvef+MxATE8OTTz7JjBkzcHZ2ZtKkScTGxuLg4GDZJqwuJk+ejKOjI25ubvTp04fU1FQGDhxY6zxXV1fLZ/Z772HkyJFUVFQwbdo0RowYwbhx42jR4vRAlouLC7fffjtwetqMn58fv/zyC7t27eLaa68lICAAgPvvv58lS5ZYetkGDx5MSEgIcLqH7cyc4aFDh/Loo49SXFzMsGHDLO/7888/5+TJk3z88ccAnDp1yrKItTWpaBI5S+pPqbgbpxc6TUhOwLuNNx18O1BcUkxqeioRoRG4ubpx5OgRCosKiQyLBCApNYnWnq3xb+9PaVkpyWnJhHcKx93NnaM5Rzmef5xuEd0AOHDwAB7uHgT4BVBWXsaBgwfoHNyZVh6tyMnL4VjeMXp06QFAyqEUXFu6EugfSEVFBftT9tMpsBOtPVuTdyKPI0ePcMXgK/AKPv9CrGIfnN2d8e/rb3YMCycnJyZOnMijjz7Kc889h2EYzJs3j2nTptU6d/ny5ezbt4+4uDjuvPNOpkyZYpW5NBfrzD+6Z99a/tvHrq6ulv92dHS03F191113cc8993Dvvfeyfv16XnjhBUubv9feGQEBAfTt25e1a9fyyy+/cPvtt+Pk5ERpaSkODg7897//xdnZucZrfvnllzq/t4EDB7J3717Wrl3LqFGjiImJYeHChQDccccddW7nfO//bB4eHpb3WV1dfd73ALBv3z62bNlCXFwcjz/+OFu3bj3vHCgHB4dan+nZn+f5Mk6cOJErr7ySb775hpdffpkXXniBL774AsMweOWVVxg5cmQdP4X6UdEkNlPwawEluSWkpqfi7ORMcEAwlZWVJCQnEBwQTJvWbcg7kcfh7MP06tYLgLSMNFo4tCAkMITq6mr2Ju0lqGMQbb3acqLgBBlHMujRpQeOjo6kZ6ZTVV1F5+DOAOzev5sAvwC823pTUFhAemY63cK74ezsTMaRDMpPlRPeKRyAvUl76eDTAV9vXwqLCknLSCMyLJJfk39l8p2Tuc24DQ88eJZnuZzLGcYwMshgNau5n/tpT3u+5muSSGIWp5eaeJEX6UEPYoghm2xe4zWmM50AAogjjnjieZiHKaSQtaylHe0YwxjyyGMFK7iTOwkllO/5nm1sYy5zAVjFKnzxZQITKKSQ53iOW7mVLnThP/yHr/iKxe6Lmbl/pgonsbpvv/2WyMjTPxiMHz+eF198keuvv5527dpRUVHB3r17ueyyy0hMTKRHjx706NEDJycnvv76a+D0Wnjnmv9TF7/32sjISFxcXPjoo4+4+eabgdP7gfr4+NCnTx/WrFnDXXfdRWpqKt9//z0vv/zyBa83YMAAqqureeyxx7jqqqto164dAFdddRWPPfYYDz74IJ6enrz++uvn7dmZNm0ab7zxBvv27ePLL78ETu9AMWTIEJYtW8aTTz4JwJEjR6iurqZr166UlpaydetWhg4dyscff3ze9+zi4sIVV1zBkiVLeOONN+jVqxcJCQnk5uZa5mad/fmVlJRYZRL3772Hli1b4ujoyNVXX81VV13Fli1bSEhIoFevXpw6dYp3332X22+/nf/85z9kZ2fTq1cvWrduzd///neys7Px8/PjtddeY9SoURdcRyk5OZnOnTtzxx130L9/f6688krg9J/N5cuXM2DAANzd3SkpKSEtLY0ePXo06H2fTUWTFWhxy9oKfi3gH93+QUVJBW/yJq1pzUQmUkIJT/M0k5hEd7qzi12sYx0LWQjAu7yLI45MZjKVVLKEJdzADfSmN3vYwyd8whM8gQsufMiHVFGFH370ox/LWc44xtGPfiSSyPu8z6M8igcefMZnHOc4d3O6y/4pnmI4w7mSK0kllbd5m9nMxgUX/Bz9uPbNa4noEcHg5ME1eppuTr/Z0tN07dFra/Q0DUsdVqOn6fq06y09TRNyJlh6mg4lHiJlaQpT/ziVK668grLyMsYdHGfpaboh74YaPU0jD42s0dN0VcpVlp6miScmcseOO0icl0hJbomKJrGKm266CVdXVyoqKujUqZNlgvXtt99OXl4ew4cPx8HBgcrKSu6++24uu+wyHn/8cQ4cOICLiwvu7u68+uqrANx77708/PDDPPPMMzz11FOMHTu2zjl+77VOTk78+9//5oEHHmDx4sU4ODgwc+ZM7rvvPt59913uu+8+XnjhBRwcHFi1ahVBQUF1uuZdd93FY489Zil4AMaMGcOePXsYOHAgDg4O9OrVi1deeeWcr58wYQJ//OMfiYiIqLGkzbvvvsuf//xnoqKiAGjVqhWvvfYagYGBvPfee9x///2WzeWDg4PPm+9MUTJo0CAcHByIjo4mNTXVMnT4W+3atWPKlClERUXh4eHBzp076/QZnM/53kNVVRXTp0+noqKC6upqrrzySsaMGcPhw4fx9vYmJSWFK664gqKiIv7v//4PDw8PevTowd/+9jfLDVlBQUG8/vrrF8zw0Ucf8e677+Li4oJhGJY/m3PnzmXRokVcccUVlsJrzpw5Vi+aHAxDu0Ray5k5TStXrrT8ZNZcffPeN4y7dRzvLH2Hjt062qynKSMlg0/f/ZQHH36Qk8bJBvc0tXRpiUMrB/y6+Jn58V2U7z//nttvuJ23P3ubQdcPuvALpNEoKysjLS2N0NDQGsMRIk3BoUOH6NevH7m5uWZHsWjod049TWITfr5+jGIU3fp3IyomqsZzQf3/9xOfP/70pOf/Hp81nyOgX0CNc7vTvca5AxjAzX++udb1/fGnK13P2+5vH/vjTxfsdx0YJ0cnPPDAyVFfZxERW7LrdZqk8fJp58MABuDTThsa21pwQDA3cRPBAefv0hcRudQ6derUqHqZrEE/mlqB5jTVVlhUSAopFBYV4k/juRuoKaqqqqKMMqqqqsyOIiLSpKmnyQq0YW9taRlpvMM7pGWkmR2lydt3YB/LWMa+A/vMjiIi0qSpaBKb6BrelYd4iK7hXS98sjRIcEAwN3OzhudERGxMRZPYhIuzC1544eLsYnaUJq9N6zb0oAdtWrcxO4qISJOmoklsIjMrk3WsIzMr0+woTd7x/OP8xE8czz9udhRpAj799FOio6Pp06cP3bp1Y9SoUVRXV5sdy1QLFy7k1KlTZseQRkATwa1AE8FrKy0rJYssSstKzY7S5GVmZfJv/s0fs/5ID6y7kJs0L9nZ2cyYMYP//ve/ln2/4uPjL7hK88WwxurUl9qiRYt45JFHcHFRz3lzp54mK9BE8NoiQiO4l3uJCI0wO0qTF9U1iid5kqiuURc+WeR3ZGVl4eTkhLe3t+VY3759LUXTzp07GThwIL169aJ///58//33wOlFDH18/re8SFFRUa19xZ577jmGDx/O448/TkFBAffccw9RUVH07t3bspddRUUFc+fOpX///vTp04fJkyeTn59/zqwbNmzg8ssvp3fv3vTp04cff/wRgI0bN9K3b1969erFsGHDSEhIAGDz5s3069fP8vq9e/fSqVOnGvnnz59PdHQ04eHhfPHFFwDMmDEDgCuvvJI+ffpw7NgxVq1aRffu3enTpw9RUVGWa0vTZ1/lvojU4uDgQBll/LTlJ8tGmHsS9xDoH0i7Nu3IP5nPr4d/tayk/uvhX6msqrTs2bcncQ8dO3TEu603JwtPcijzkGUl9cysTMrKyywrqe87sI/23u3x9falqLiIg78epEvnLri2dOVw9mGKS4rp0vn0QqH7k/fTrk07Ovh2oKS0hJRDKZYtaLKOZeHi5ULPgT3P+76aq6ysLHJzcy1bVSQkJODp6UlQUBBlZWUkJCQQERGBp6cnR48eJTs7m969ewOndyVwdXUlJCSEiooK9uzZQ1hYGF5eXuTk5FBZWYm///mXAOnduzcDBw4kODiYYcOGceWVV3LrrbcSEBDAqVOnuPHGG1m5ciWjR4/mu+++46abbiIlJaVO76u8vJzNmzcDp7cqadWqFb/88gstWrQgJycHgGeeeYZWrVrxn//8B4C//vWvLFiwgBdffLFGWwcOHODuu+9m69atdOnShYqKCkpKSjh27Bi33XYbcXFxREVF8e677zJp0iT27t17wXx5eXlER0ezePFiNm7cyOzZsxk7diyvvfYa//znP/nhhx9o1aoVAA8//DD79++nY8eOVFRUUF5eXqfPQOyfiiaxiYTkBJ7maQYnD25Uu7Y3RRUuFaxzXMdnD3/GbdxGFVX8lb8ygQlcxmXsYx8f8RFzmYsrrnzMxxRTzJ3cCcBf+SujGU1/+nOAA/wf/8fDPIwnnvybf5NDDn/gD+xkJ7vZTT/6MYhBpJHGGtYwi1l4480XfMEhDnE/9wPwHM/Rl76MYASHOcxKVjKDGfjhxwY2kOqQyo7/7iAiWr2Rv/XPf/6TVatWkZl5ej7g5MmTGT58OC+99BKZmZlER0cTFxfH8OHD+de//sXf/vY3jh8/PZ9t6tSp9OjRg1WrVpGbm0t0dDTr169n3LhxfPjhh+Tk5LBw4cLzXrtFixZ88sknJCYmsmXLFr788kuWLl3Kzp07KS0txcXFhdGjRwMwePBg2rdvz+7du3+3EDvjTG8SwPr169m1axctWpwe7PD19QXg888/5+TJk3z88ccAnDp1irCwsFptffPNN4wdO5YuXU4X6M7Oznh5ebFu3TpL7w/AlClTmDlzJllZWRfM5+HhwYQJEwAYOHAgqamp5z135MiR3HHHHVx33XWMGTPGkkOaPhVNYhM+bX0YyEB82mpFcFsL7hnMR9s+ovBYIZ2COmEYBoMSB9Xoabr78N2WnqZrDl9To6dpYOLAGj1Nd2TeYelpGps1lrLyMpzKnDj83GHuufkeekX3svQ03fLrLZaepnHZ42r0NA1JHlKjp2nioYmWnqYrv7+Sbx78hlYOrcz86Bql++67j4kTJ1oev//++3h6egIQGBjIrl27iIg4XWjecccdlg1PAd566y3Lflo+Pj7s2rXLUnRMmjSJysrKOmXo2rUrXbt25b777uOaa65h7dq1xMTEnHNuk4ODA05OTjUWVy0rK6t13plemt9jGAavvPIKI0eOrFPOc72+vhl/uw+Zo6Pj7y4W++mnn7Jr1y42b97M2LFjWbJkCZMnT65XZrEzhlhNYmKiMWTIECMxMdHsKKY7suuIsZCFxpFdR8yOIo2Q/nycVlpaaiQkJBilpaVmRzEMwzAyMzON7777zvL4+PHjRpcuXYzPP//cKC8vN4KCgoxNmzYZhmEY33//veHn52cUFRUZFRUVRqtWrSx/9z333HPGb/95AYzCwkLL42nTphkPPPCAUVVVZRiGYRw7dswwDMNYvHixMW7cOKO4uNgwDMMoLi429u7dWytncnKy4efnZyQlJRmGYRinTp0y8vPzjWPHjhk+Pj5GQkKCYRiG8d577xk9evSwvDcvLy8jNzfXMAzDePDBB42QkBDDMAwjLS3N8Pb2trRfWFhYI7+np6eRmZlpGIZhVFRUGMnJyZbn5syZYzz00EN1/ITFbA39zqmnSWyiuKSYdNIpLik2O4o0QkmpSaxgBcNSh2n4thGprKxk8eLFpKWl4e7uTmVlJXfeeadl2OqTTz7hwQcfpLi4GFdXVz766CM8PDwAeOmllxgzZgyBgYGMGTPmd6/z/PPP89BDD9GzZ09cXFy4/PLLWblyJXPnzmXRokVcccUVlh6jOXPm0KNHzbtCw8PDWb16NbfccgsVFRU4Ojryz3/+k/79+/P2228zZcoUqqqqaNOmDR9++CEAAQEBPPLII/Tr149OnToxdOjQOn8uDz/8MCNHjsTNzY2vvvqKu+66ixMnTuDk5ISvry9vvvlmndsS++ZgGIZhdgh799slB3bv3s3KlSuJjIw0O5apvnr3K6657Ro2vrOR0VNGmx1HGpldX+7iwbEP8tIXLxE9JtrsOKYpKysjLS2N0NDQGsNDImIbDf3OqafJCmJiYoiJiSEpKYnp06ebHadR6NK5Cw/wgGV+i8hvdezQkau5mo4dOpodRUSkzrROk9iEa0tXfPDBtaV+epbaSstKOcYxLX4qInZFRZPYxJGjR9jIRo4cPWJ2FGmEktOSeYVXSE5LNjuKiEidqWgSmygqLiKVVIqKtbWM1BYWEsbd3E1YSO01eJojTS0VuTQa+l3TnCaxiS6duzCTmZrTJOfk4e5BEEF4uHuYHcVUzs7OODg4kJOTg6+vr1X3eBORmgzDICcnBwcHB5ydnevVhoomEbnkjuYcZQtbmJAzAX+a75IDjo6OBAYGkpmZyaFDh8yOI9LkOTg4EBgYiKOjY71er6LJThT8WsD+n/dTbVQTGhQKwO79uwnwC8C7rbdlf7HuEd1xcnLi18O/UlFZYRn+2Ju0Fz9fP3za+VBYVEhaRhpdw7vi4uxCZlYmpWWlls11E5IT8GnrQ3uf9hSXFJOanmpZ9fnI0SMUFRdZepASUxJp49UGP18/y/5i4Z3C+Xnbz7zIiwxNGap1eKSWvPw8/st/ycvPMzuK6Vq1akVERAQVFRVmRxFp8pydnetdMIGKJrtQ8GsB/+j2D94ueZsqqpjCFAAWspDruI5ookkggQ/5kMd4DHfc+YRPOMlJ7uIuAJaylFGMYgADSCGFd3iHh3gIL7xYxzpyyaUTnehHP17lVQYykCEMIZ103uRNHuABfPBhIxtJJZWZzATgeZ6nF70YxSiOcITXeZ17uRcvvOjt1BvfIF/TPjdpvLpHdOcRHqF7RHezozQKjo6ODfqLXEQuDRVNdqDoWBGlJaU88+wztAtvZ+lpGrB/QI2epmmHp1l6mq45fE2NnqYrk66s0dN0W8Ztlp6msVljSd2fyr/f+zcTH57IGMcxNXqa/pD+B0tP07VHr63R0zQ0ZWiNnqYbD91IeKdw3N3ccWrthG+4iiYREWkatCK4Fdh6RXCtri1NzdZPtvKHm/7ABx9/wNCJdd/OQkTETOppsgJbrwge1DGIG7iBoI5BVm9bxAxurm4EEYSbq5vZUURE6kzrNNmBtl5t6U1v2nq1NTuKiFUE+gcyjnEE+geaHUVEpM5UNNmBEwUn2MMeThScMDuKiFWUnyrnBCcoP1VudhQRkTpT0WQHMo5k8AmfkHEkw+woIlaRlJrEi7xIUmqS2VFEROpMRZMd6NGlB0/wBD269DA7iohVhAaFcju3W+4EFRGxByqa7ICjoyMuuGgdF2kyPFt5EkYYnq08zY4iIlJnKprsQHpmOh/yIemZ6WZHEbGKnLwcfuAHcvJyzI4iIlJnWnLADlRVV1FOOVXVVWZHEbGKo7lH2cxmEv+bSEFhAS1dWhLUMYiKigr2p+wnJDAEL08v8k7kcTj7ML269QLg4K8HcWzhSEhgCFVVVew7sI+gjkG09WrLiYITZBzJoGdkT1q0aEF6ZrrVtx1q498Gr2Av0z43ETGXiqbfWLhwIT/99BPl5eX4+flx7733cuWVV5odi87Bnbmd2+kc3NnsKCJW0X9Qfxa4L2D/X/bzCI/QjnbcwA0UU8wzPMNkJtOVruxkJxvYwAIWAPA2b9OSlkxiEqc4xVM8xUQmEkUUv/ALn/EZ85iHE058xEdUUcU4xuGJp1W2HfJx92Hm/pkqnESaKRVNv3HnnXfyl7/8BWdnZxISEnj44Yd5//338fLSX5Ai1uQV7MXM/TMpyS1h5KGRNXqaRqWMsvQ0TTwxkQeyH7D0NMX8GlOjp2nogaE1epruO3KfpacpamsUb696m4lPTKRT104N3naoIruChY8s5Ko9V3F58OVmfnwiYhIVTb8RGvq/O3kcHR2pqKggNzfX9KJp9/7dLGIRA/YPwL+vv6lZRKzFK9gLr2CvWn+mg68Itvy3P/70pOf/Hp91buDlgTXO7c7/NgC+se+N3PinG8/5Wn/86Ua387Z79rld6MLWT7aSRRalZaV1fo8i0rTYbdFUUlLCmjVrSE5OJjk5mYKCAqZOncq0adPOee6qVauIi4ujsLCQ4OBgpkyZwqhRo2qdu3jxYrZu3cqpU6cYMGAAnTubPyQW4BfAOMYR4BdgdhSRZisiNIJ7uZeI0Aizo4iISey2aCooKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqq2qcO3/+fCorK4mPjyc9PR0HBwdbv5UL8m7rTT/64d3W2+woIiIizZbdFk1+fn5s2LABBwcH8vPzz1s0bd++nZ07dzJ//nxiYmIA6Nu3L9nZ2bz66quMHDmy1vpHTk5O9O/fn08++YTAwEAGDhxo8/fzewoKC0jk9F1G/mh4TsQMCckJPM3TDE4erGFykWbKbtdpcnBwqFMv0LZt23Bzc2P48OE1jo8dO5bc3FwSEhLO+9rq6moOHz583udzc3NJSkqy/EpPt806SumZ6bzP+1qnScREPm19GMhAfNr6mB1FRExitz1NdZWWlkZISAhOTjXfalhYmOX5qKgo8vLy2LNnD1dccQXOzs5s3bqVn376ifvuu++8ba9du5a33nrLlvEB6BbejUd5lG7h3S58sojYRHuf9gxhCO192psdRURM0uSLpoKCAjp27FjruKfn6e0bTp48aTn28ccf8/e//x0HBwcCAwNZuHAh4eHh5217/PjxDBo0yPI4PT2dJUuWWDH9ac7OznjggbOzs9XbFpG6KS4pJp10ikuKzY4iIiZp8kUTUKdhPG9vb15++eWLatfHxwcfHx9iY2OJjY2lqKiovhF/V8aRDD7jM8YcGaO5FCImSU1P5U3e5A/pfyB88Pl/mBKRpqvJF01eXl4UFBTUOl5YWAhA69atG3yNmJgYYmJiSEpKYvr06Q1u72zlp8o5znHKT5VbvW0RqZsunbvwAA/QpXMXs6OIiEnsdiJ4XXXu3Jn09HQqKytrHD948CBQc0HLxiq8Uzh3czfhnfTTrYhZXFu64oMPri1dzY4iIiZp8kXTkCFDKC0tZcuWLTWOb9y4ER8fH7p3736eV9ZdbGwsc+fOZcWKFQ1uS0QapyNHj7CRjRw5esTsKCJiErsentuxYwdlZWWUlJQApydib968GYABAwbg6urKgAED6NevH8uXL6ekpISAgAA2bdrEjz/+yLx582qt0VQfth6e25u0l6d4iiuTrtScJhGTFBUXkUoqRcW2mbsoIo2fXRdNy5cvJzs72/I4Li6OuLg4AD744AP8/U8XGEuWLGHlypWsXr3aso3KggULzrmNSmPUwacDwxlOB58OZkcRaba6dO7CTGZqTpNIM2bXRdOHH35Yp/Pc3d2ZPXs2s2fPtkkOW9895+vty5Vcia+3r03aFxERkQtr8nOaLoWYmBiWLVvGrFmzbNJ+YVEhqaRSWFRok/ZF5MISUxJ5nudJTEk0O4qImERFkx1Iy0jjbd4mLSPN7CgizVYbrzb0ohdtvNqYHUVETKKiyQ5EhkUym9lEhkWaHUWk2fLz9WMUo/Dz9TM7ioiYxK7nNDUWtp7T1NKlJW1pS0uXljZpX0QurKS0hCMcoaS0xOwoImIS9TRZga3nNGVmZbKBDWRmZdqkfRG5sJRDKbzO66QcSjE7ioiYREWTHSgtKyWDDErLSs2OItJshXcK517u1cr8Is2YiiY7EBEawQxmEBEaYXYUkWbL3c2djnTE3c3d7CgiYhLNabICW89pEhHzZedks4lNjM8Zjz9amV+kOVJPkxXYek5TQnICz/IsCckJNmlfRC4svyCf3ewmvyDf7CgiYhIVTXbAu403l3M53m28zY4i0mx1De/KQzxE1/CuZkcREZOoaLIDHXw7MIxhdPDV3nMiIiJmUdFkB4pLiskgg+KSYrOjiDRbBw4e4B/8gwMHD5gdRURMoongVmDrieCp6amsZjU3p99M+GDd7ixihlYerQgjjFYercyOIiImUdFkBTExMcTExJCUlMT06dOt3n5EaAT3c7+WHBAxUccOHbmGa+jYoaPZUUTEJBqeswNurm60pz1urm5mRxFptsrKy8gll7LyMrOjiIhJVDTZgSNHj/A1X3Pk6BGzo4g0WwcOHuBlXtacJpFmTEWTHSgsKiSJJAqLCs2OItJshYWEcRd3ERYSZnYUETGJiiY7EBkWySxmERkWaXYUkWbLw92DEELwcPcwO4qImERFk4hIHRzLPcbXfM2x3GMAJCYm8uuvvwJw6tQp4uPjOXny5Olzjx3j559/trz2wIEDpKWlAVBZWUl8fDwnTpwAIDc3l/j4eACysrJ48MEH2bFjBwDV1dXEx8dz/PhxAI4fP058fDxVVVUAHDx4kOTkZMt14uPjycnJASA/P5/4+HgqKips8nmINEcqmqwgNjaWuXPnsmLFCpu0n5SaxIu8SFJqkk3aF5ELO1Vxip/5GUdHRwBuv/12li5dCpwukqKjo9m+fTsA77//PoMGDbK89t577+XJJ58E4OTJk0RHRxMXFwfA559/TnR0NAApu1NYsWIFTz58+tyKigqio6P54osvAPjqq6+Ijo6mrOz0ZPQ5c+bwwAMPWK7Tv39/Pv30UwC2bt1KdHQ0+fn5Nvk8RJojB8MwDLNDNBVnlhxYuXIlkZHWG0qL3xjP7DGzefHLF+l7TV+rtSsidZcVn8Wz0c9y5zt34tvNl+S0ZNxc3Qj0D+RUxSkSUxIJDQrFs5Unucdzyc7JpmdkT+D0WmvOTs4EBwRTWVlJQnICwQHBtGndhrwTeRzOPkyvbr3Y+sVWJj85mZf//DI3TrmR6upq9ibtJahjEG292nKi4AQZRzLo0aUHjo6OpGemU1VdRefgzgDs3r+bAL8AvNt6U1BYQHpmOtEDovEJ8zHzoxNpMrROkx3wb+9PDDH4t9fO6iJmcfdxx9vdm89u++y85+xgR43HP/BDnc/dwQ4KKWQYw0hbnsbry1//3XPr4gQneNzxcd7a8ha9BvWq02tE5PxUNNmB0rJSssmmtKzU7CgizZZXsBcz98+kJLfEZtcoySkh4dMEut/YHXdf9wa3999N/+XTxz6l4GiBFdKJiIomO5CclsxrvMb1adfT+crOZscRaba8gr3wCvay6TXCRltvSYPLuZy7uZvwTtp+ScQaNBHcDoR3Cmc60/UXn4iIiIlUNNkBdzd3AgjA3a3h3fUi0nzsTdrLUzzF3qS9ZkcRaRJUNNmBozlHiSOOozlHzY4iInakg08HhjOcDj4dzI4i0iSoaLIDx/OPE088x/OPmx1FROyIr7cvV3Ilvt6+ZkcRaRI0EdwKYmNjiY2NpaioyCbtd4voxsM8TLeIbjZpX0SapsKiQlJJpbCoEH+0ZIlIQ6mnyQpiYmJYtmwZs2bNMjuKiIhFWkYab/M2aRlpZkcRaRJUNNmBAwcP8AqvcODgAbOjiIgdiQyLZDaztdm3iJWoaLIDHu4edKKTdlcXkYvS0qUlbWlLS5eWZkcRaRJUNNmBAL8AxjKWAL8As6OIiB3JzMpkAxvIzMo0O4pIk6CiyQ6UlZeRRx5l5WVmRxERO1JaVkoGGdqCScRKVDTZgQMHD7CCFZrTJCIXJSI0ghnMICI0wuwoIk2CiiY70Dm4M3dyJ52Dte+ciIiIWVQ02YFWHq0IJZRWHq3MjiIidiQhOYFneZaE5ASzo4g0CSqa7EBOXg7f8z05eTlmRxERO+LdxpvLuRzvNt5mRxFpErQi+P936tQpnnvuOXbu3ElxcTGdOnVi5syZREVFmR2NY3nH2MY2juUdMzuKiNiRDr4dGMYwOvhq7zkRa1BP0/9XVVWFv78/r7zyCl988QUTJkzgiSeeoKzM/DvWenTpwVzm0qNLD7OjiIgdKS4pJoMMikuKzY4i0iSoaPr/3NzcmDp1Kh06dKBFixaMGTOG6upqMjO1vomI2KfU9FRWs5rU9FSzo4g0CXY7PFdSUsKaNWtITk4mOTmZgoICpk6dyrRp08557qpVq4iLi6OwsJDg4GCmTJnCqFGjztt+eno65eXldOzY0ZZvo05SDqWwilWMPDQS/77adFNE6iYiNIL7uV9LDohYid32NBUUFLBu3ToqKioYMmTI7547b948Nm7cyNSpU3n66afp2rUrixYt4ptvvjnn+WVlZSxdupQ77rgDd3d3W8S/KK4tXfHFF9eWrmZHERE74ubqRnva4+bqZnYUkSbBbnua/Pz82LBhAw4ODuTn57N+/fpznrd9+3Z27tzJ/PnziYmJAaBv375kZ2fz6quvMnLkSBwdHS3nV1ZWsmDBAkJCQrj99tsvyXu5kED/QCYwgUD/QLOjiIgdOXL0CF/zNdcevRZ/1Est0lB229Pk4OCAg4PDBc/btm0bbm5uDB8+vMbxsWPHkpubS0LC/9Yvqa6uZunSpbRo0YI5c+ZcsP3c3FySkpIsv9LT0+v1Xi6koqKCQgqpqKiwSfsi0jQVFhWSRBKFRYVmRxFpEuy2p6mu0tLSCAkJwcmp5lsNCwuzPH9mWYFnn32WvLw8nnnmmVrnn8vatWt56623rJ75bPtT9vMcz3FVylUEXxFs8+uJSNMQGRbJLGYRGRZpdhSRJqHJF00FBQXnnMzt6ekJwMmTJwHIzs5m/fr1uLi4MH78eMt5Tz/9NL179z5n2+PHj2fQoEGWx+np6SxZssSa8QHoFNiJW7mVToGdrN62iIiI1E2TL5qAOg3j+fn5sXXr1otq18fHBx8fH2JjY4mNjaWoqKi+EX9Xa8/WdKELrT1b26R9EWmaklKTeJEXGZY6THfeiliB3c5pqisvLy8KCgpqHS8sPD3G37p1wwuRmJgYli1bxqxZsxrc1rnkncjjP/yHvBN5NmlfRJqm1p6t6UEP/cAlYiVNvmjq3Lkz6enpVFZW1jh+8OBBAEJDQ82IdVGOHD3CV3zFkaNHzI4iInbEv70/McTg3169TCLW0OSH54YMGcK6devYsmVLjcUsN27ciI+PD927d2/wNWw9PBfVNYoneZKorubvgyci9qO0rJRssiktKzU7ikiTYNdF044dOygrK6OkpAQ4PRF78+bNAAwYMABXV1cGDBhAv379WL58OSUlJQQEBLBp0yZ+/PFH5s2bV2ONpvqKiYkhJiaGpKQkpk+f3uD2RESsITktmdd4jevTrqfzlZ3NjiNi9+y6aFq+fDnZ2dmWx3FxccTFxQHwwQcf4O9/ukt6yZIlrFy5ktWrV1u2UVmwYMHvbqPSmBz89SBrWEPMrzGazCkidRbeKZzpTCe8U7jZUUSaBLsumj788MM6nefu7s7s2bOZPXu2TXLYenjOydEJDzxwcrTr/10icom5u7kTQADubuZvByXSFDT5ieCXgq3vngsOCOYmbiI4QAtbikjdHc05ShxxHM05anYUkSZBRZMdqKqqoowyqqqqzI4iInbkeP5x4onneP5xs6OINAka77ECWw/P7Tuwj2UsY/iB4QRerk17RaRuukV042EepltEN7OjiDQJKpqswNZ3zwUHBHMzN2t4TkRExEQanrMDbVq3oQc9aNO6jdlRRMSOHDh4gFd4hQMHD5gdRaRJUNFkB47nH+cnftK8BBG5KB7uHnSiEx7uHmZHEWkSVDTZgcysTP7Nv8nMyjQ7iojYkQC/AMYylgC/ALOjiDQJmtNkBdpGRUQao7LyMvLIo6y8zOwoIk2CepqswNbrNDk4OOCIIw4ODjZpX0SapgMHD7CCFZrTJGIlKprswKGMQ/wf/8ehjENmRxERO9I5uDN3ciedg7XvnIg1qGgSEWmiWnm0IpRQWnm0MjuKSJOgoskOdArqxK3cSqegTmZHERE7kpOXw/d8T05ejtlRRJoETQS3AltPBDcMgyqqMAzDJu2LSNN0LO8Y29jGsbxjZkcRaRLU02QFtp4IvidxD3/lr+xJ3GOT9kWkaerRpQdzmUuPLj3MjiLSJKhosgOB/oFMYAKB/tp3TkRExCwqmuxAuzbtuIzLaNemndlRRMSOpBxKYRWrSDmUYnYUkSZBRZMdyD+Zzz72kX8y3+woImJHXFu64osvri1dzY4i0iSoaLIDvx7+lY/4iF8P/2p2FBGxIxraF7EuFU12QJM5RaQ+KioqKKSQiooKm12jMKuQzQs3U5hVaLNriDQWWnLACmy95ICjoyOuuOLo6GiT9kWkadqfsp/neI6rUq4i+Ipgm1yjKKuILYu2EDk+Ek9/T5tcQ6SxUE+TFdh6yYFfD//Kx3ys4TkRuSidAv//wriBncyOItIkqKfJDlRWVVJMMZVVlWZHERE70tqzNV3oQnlmOVnxWTa5Ru7+3Bq/W4O7jztewV5Wa0/EWlQ02QFtuiki9VHiUMIu510U31aMBx42uUYhhexkJ4W3FeKJdYbnnN2dmbl/pgonaXRUNImINFEnOclXDl/xwLsPENU1yibX2PrFVp578jn++Nc/MnTs0Aa3l7M/h89u+4yS3BIVTdLoqGiyA2e2URmYOBD/vv5mxxERO3HZZZdRXl5u02u02d/m9O+hbfT3kzR5mghuBzp26MhoRtOxQ0ezo4iIiDRbKprsgHdbb/rTH++23mZHERE7kpyczIgRI0hOTqaqqor4+HhOnDgBQF5eHvHx8RiGAUBqaiqpqakAGIZBfHw8eXl5AJw4cYL4+HiqqqoASEtLIzk5uca1CgtPr9NUUFBAfHy8ZW2o9PR0kpKSLOf98ssvHD161PKa+Ph4ysrKAMjIyODAwQM2+SxErEFFkx04WXiSAxzgZOFJs6OIiB1p2bIlfn5+tGnThuLiYqKjo4mNjQVg3bp1REdHWwqhhx56iIceegiAqqoqoqOjWbduHXB6Lbro6GiKi4sBeOKJJ/jjH/8InL7TDeA/e/4DwHfffUd0dDS5uafvpvvrX//K1KlTLZlGjBjBv/71LwB27dpFdHQ0mZmZADzzzDP88fE/2uzzEGkozWmyAlsvbnko8xD/x/9xR+YdRBJpk2uISNMTHBzM66+/jqenJ1VVVezatYvQ0FAArrvuOnbt2mVZNPf555+3vM7R0ZFdu3YREhICnF6LbteuXXh4nL4D76mnnqKy8vQSKB6+p4+NvnE0AIMHD2bXrl34+PgA8OSTT1p6kgDi4uLw8/MDIDo6ml27dhEYeHqbl0cffZSJQyey+ebNNvk8RBrKwTjTNysNlpSUxPTp01m5ciWRkdYrbn798VdeGvASD+540Gar+oqI1Ed8fLyl+Onbt2+D2/v2g2+5fvL1fP7+54z8w0grJBSxHg3P2QFnZ2c88cTZ2dnsKCIiNtWuTTv60pd2bdqZHUWkFhVNdiAzK5N/828yszLNjiIiYlMdfDswghF08O1gdhSRWupdNKWlpbFx40bLxECA8vJynnvuOW688UZuueUWyyRCaZiy8jJyyKGsvOzCJ4uI2LGS0hIOc5iS0hKzo4jUUu+i6e233+af//wn7u7ulmOvv/46a9eupaSkhGPHjvHcc8+xa9cuqwRtzsI7hXMP9xDeKdzsKCIiNfj7+7NgwQL8/a2zsGXKoRRWspKUQylWaU/EmupdNO3fv5/LLrsMBwcHACorK/niiy/o1q0b//73v/nggw9o06YNH374odXCiohI4+Lv78/ChQutVjRFhEYwgxlEhEZYpT0Ra6p30XT8+HE6dPjfmHNCQgIlJSVMmDCBli1b4uPjw6BBg0hJ0U8LDbXvwD6WsYx9B/aZHUVExKbcXN3www83Vzezo4jUUu+iydHR0bLiK8Du3btxcHDgsssusxzz8vKioKCgYQmF9t7tGcIQ2nu3NzuKiIhNZR3LIpZYso5lmR1FpJZ6F01+fn789NNPlsebN2/G39/fsmgZQE5ODl5e2qW6oXy9fRnEIHy9fc2OIiJiUycLT7KPfdoBQRqlehdNV199NSkpKcyYMYMHHniAlJQURo0aVeOcAwcOWFZ6tQeff/45d999NyNGjOCNN94wO45FUXERaaRRVGybFcdFRBqLyLBIZjObyDDtfiCNT72LphtvvJHhw4eTmJjInj17uPzyy7n99tstz+/fv59Dhw5ZZYXYS8Xb25tp06YxZMgQs6PUcPDXg6xhDQd/PWh2FBERkWar3nvPubi4sGjRIoqLi3FwcKix9ACcvqNi9erVNYbrGrszxdJ3331ncpKaunTuwixm0aVzF7OjiIjYVFJqEitYwbDUYfj3tc4deSLWUu+i6eeff8bf37/GHXS/1aZNG06dOkVKSgp9+vSp72XOq6SkhDVr1pCcnExycjIFBQVMnTqVadOmnfPcVatWERcXR2FhIcHBwUyZMqXWcGJj5drSFW+8cW3panYUERGb8mzlSSSReLbyNDuKSC31Hp7705/+xJdffvm753zzzTf86U9/qu8lfldBQQHr1q2joqLigsNp8+bNY+PGjUydOpWnn36arl27smjRIr755hubZLO2w9mH+YIvOJx92OwoIiI21bFDR67majp26Gh2FJFa6t3TZBhGnc45s/iltfn5+bFhwwYcHBzIz89n/fr15zxv+/bt7Ny5k/nz5xMTEwNA3759yc7O5tVXX2XkyJE4OjrWK0Nubi55eXmWx+np6fVq50KKS4o5xCGKS4ovfLKIiB0rLSvlGMcoLSs1O4pILfUumuoiMzMTDw8Pm7Rd12Js27ZtuLm5MXz48BrHx44dy+LFi0lISCAqKqpeGdauXctbb71Vr9dejC6du3A/92tOk4g0eclpybzCK4xPG0/nKzubHUekhosqmpYtW1bj8bZt28jOzq51XlVVFTk5Ofzyyy9cccUVDUvYQGlpaYSEhODkVPOthoWFWZ4/UzRVVlZSVVVFdXU1VVVVlJeX4+TkdN6eqPHjxzNo0CDL4/T0dJYsWWKjdyIi0vSFhYRxN3cTFhJmdhSRWi6qaPrtHCYHBwdSUlLOu02Kg4MDXbt25YEHHmhYwgYqKCigY8faY+OenqcnGZ48+b8F1P71r3/V6Dl6++23efzxxxkzZsw52/bx8cHHx8e6gc9hf/J+nuM5hiQP0d0kItKkebh7EEQQHu62GaUQaYiLKpo++OAD4PRcpcmTJ3PzzTdz00031TqvRYsWeHp64ubWOPYOqutQ3rRp0855992FxMbGEhsbS1GRbRafbNemHX3pS7s27WzSvohIY3E05yhb2MKEnAn4ox8SpXG5qKLpt2suzZ07ly5dujT6dZjOt/9dYWEhAK1bt27wNWJiYoiJiSEpKYnp06c3uL2zdfDtwAhG0MH33Ms7iIg0FXn5efyX/5KXn3fhk0UusXpPBD/fkFVj07lzZ2JjY6msrKwxr+ngwdOra4eGhjb4GrbuaSopLeEwhykpLbFJ+yIijUX3iO48wiN0j+hudhSRWhp891xCQgKJiYkUFRVRXV1d63kHBwfuvPPOhl6m3oYMGcK6devYsmVLjcUsN27ciI+PD927N/yLaeueppRDKaxkJRMPTSRskCZHioiImKHeRdPJkyd54okn2Lt37++u2WTLomnHjh2UlZVRUnK6ByY9PZ3NmzcDMGDAAFxdXRkwYAD9+vVj+fLllJSUEBAQwKZNm/jxxx+ZN29evddoupQiQiOYwQwiQiPMjiIiYlPJacm8xmuMSBuhG1+k0al30fTyyy+zZ88e+vTpwzXXXEP79u0veQGyfPnyGksexMXFERcXB5yetO7vf/oLt2TJElauXMnq1ast26gsWLDAbrZRcXN1ww8/3Fwbx8R6ERFbcXN1I4gg/X0njVK9i6bt27fTrVs3XnjhBZut+n0hH374YZ3Oc3d3Z/bs2cyePdsmOWw9pynrWBaxxHLdset0N4mINGmB/oGMYxyB/oFmRxGppd57z506dYrevXubVjA1JjExMSxbtoxZs2bZpP2ThSfZxz5OFp688MkiInas/FQ5JzhB+alym10jKyuLhQsXkpWVZbNrSNNU76IpIiLinKuBi/VFhkUym9lEhkWaHUVExKaSUpN4kRdJSk2y2TWysrJYtGiRiia5aPUenrvrrruYM2cO+/bto0ePHtbMZHdsPTwnItJchAaFcju3ExrU8OVgRKyt3kVTTk4OAwcO5MEHH+Sqq64iIiLivJvzXnPNNfUOaA9sveRAUmoSK1jBsNRhuptERJo0z1aehBGGZytPs6OI1FLvoulvf/sbDg4OGIbBl19+yZdffllrfpNhGDg4ODT5osnWPFt5Ekmk/hIRkSYvJy+HH/iBG/Ju0I0v0ujUu2iaO3euNXPI7+jYoSNXczUdO9TeeFhEpCk5mnuUzWzmaO5Rs6OI1NLkt1G5FGw9p6m0rJRjHKO0rNQm7YuINBY9I3vyBE/QM7Knza5RnFNc43eRuqr33XPyP7ZeciA5LZlXeIXktGSbtC8i0pyU5JbU+F2krurd03T0aN27Tjt06FDfywgQFhLG3dxNWIj2nRORpi3lUAqrWc3IQyN144s0OvUumiZNmlSnhS0dHBwsW5tI/Xi4exBEEB7u5747UUSkqWjp0pJ2tKOlS0uzo4jUUu+iafTo0ecsmoqKikhNTSUrK4s+ffrg5+fXoIACR3OOsoUtTMiZoLtJRKRJC+oYxA3cQFDHILOjiNRS76LpiSeeOO9zhmHw/vvv89577zFnzpz6XkL+v7z8PP7Lf8nLzzM7ioiITVVUVFBMMRUVFWZHEanFJhPBHRwcuOWWWwgNDeWVV16xxSUaldjYWObOncuKFSts0n73iO48wiN0j+huk/ZFRBqL/Sn7eYZn2J+y3+woIrXY9O65yMhI4uPjbXmJRsHWd8+JiDQXIYEhTGYyIYEhZkcRqcWmRdPhw4epqqqy5SWaheS0ZF7jNS05ICJNnpenF13pipenl9lRRGqxetFUXV3N0aNHWbNmDd9//32z38zXGtxc3QgiCDdXN7OjiIjYVN6JPHayk7wTmsMpjU+9J4IPGzbsd5ccMAyDVq1acf/999f3EvL/BfoHMo5xBPoHmh1FRMSmDmcfZgMbeCD7AXpiu1XBReqj3kVT7969z1k0OTg44OnpSWRkJGPHjqVdu3YNCihQfqqcE5yg/FS52VFERGyqV7deLGABvbr1MjuKSC31Lppeeukla+awa7beey4pNYkXeZExqWPoNKCTTa4hIiIiv097z1mBre+eCw0K5XZuJzQo1Cbti4g0Fgd/PcjbvM3BXw+aHUWklnr3NP3Wnj17SElJobi4GHd3dyIiIoiKirJG0wJ4tvIkjDA8W3maHUVExKYcWzjSkpY4tnA0O4pILQ0qmhISEnjqqafIzMwETk/+PjPPKTAwkLlz59KzpybyNVROXg4/8AM35N2gbVREpEkLCQxhEpO0TpM0SvUumg4dOsRDDz1EWVkZ/fv3p0+fPrRr144TJ07w008/8Z///IdHHnmE1157jU6dOlkxcvNzNPcom9nM0dyjZkcREbGpqqoqTnFKa/xJo1Tvoumtt96isrKSZ599lssvv7zGc7feeis7d+5kzpw5vPXWWyxcuLChOZu1npE9eYIn6BmpXjsRadr2HdjHUzzF0ANDCbxcy6xI41LvieA//fQTw4YNq1UwndGvXz+GDRvGTz/9VO9wIiLSvAR1DGIiEwnqGGR2FJFa6l00FRcX4+//+/Nr/P39KS4uru8l5P9LOZTCalaTcijF7CgiIjbV1qstUUTR1qut2VFEaql30eTt7c2+fft+95yEhAS8vb3rewn5/1q6tKQd7Wjp0tLsKCIiNnWi4AS/8AsnCk6YHUWklnoXTYMHD+bnn39m1apVlJfXXKm6vLycN954g59++onBgwc3OGRzF9QxiBu4Qd3VItLkZRzJ4DM+I+NIBgcPHiQl5X897PHx8eTm5gJw4sQJ4uPjqaysBCAtLY0DBw5Yzv355585duwYACdPniQ+Pp5Tp04BWNo4Y/fu3WRnZwNQVFREfHw8ZWVlAGRmZpKQkGA5d+/evRw5cgSAkpIS4uPjKSkpsepncC6FWYVsXriZwqxCm19Lzq/eRdOdd96Jv78/77zzDjfffDNz5sxh2bJlzJkzh0mTJrFmzRr8/f258847rZm3UYqNjWXu3LmsWLHCJu1XVFRQTDEVFRU2aV9EpLHoGdmTecyjZ2RPHnnkEWbPnm15Ljo6ms8//xyAuLg4oqOjOXnyJABPPvkk9957r+XcQYMG8f777wOwfft2oqOjLUXU2n+vrXHNUaNG8eabbwKni63o6GjS09MBWL58OTfffLPl3GuvvZZXXnkFgMTERKKjo0lMTLTmR3BORVlFbFm0haIs2+w8IXVT77vnWrduzT//+U9eeeUVvv32W3bs2GF5zsXFhTFjxjBjxgxat25tlaCNWUxMDDExMSQlJTF9+nSrt78/ZT/P8AyjUkYRfEWw1dsXEWksWrRogRNOtGjRgmeffZbq6mrLc7t27SI4+PTfgSNGjGDXrl2Wf2P++te/1vjB8vvvv6djx44ADBw4kF27dtG+fXsAxk8Yz4dxH1rO3bRpk+W5Pn36sGvXLkJCTq8T9ec//5l77rnHcu769este6p27drVkmHevHncf//9lmtK09SgxS1bt27N3LlzeeSRR0hPT6ekpAR3d3dCQkJwcrLKYuPC6cXeJjNZi72JSLPSuXPnGo/79u1r+e+2bdvStu3/JouHhtbcZqpPnz6W/27dunWN1/r4+NQ4t1ev/20O3KpVqxrnBgbWXPbgtws2u7u707dvX/bu3cs777zD5MmTbVY0Hc05ShxxTMiZYDeLHCf/nMzSPy3lLy/8hYg+EWbHsYqLrmz+9a9/UVZWxrRp0yyFkZOTE2FhYZZzKioqWLlyJW5ubtx2223WS9tMeXl60ZWueHl6mR1FRETO0rNnTw4dOmTTaxzNPcoWttjVIscH9x1kzZY13LLvliZTNF3UnKadO3fyxhtv0Lp169/tSXJ2dqZ169asWrWKXbt2NThkc5d3Io+d7CTvRJ7ZUURERJqtiyqavvrqKzw9PbnxxhsveO4NN9yAp6cnX375Zb3DyWmHsw+zgQ0czj5sdhQRETlLQkICPXr0qHGXnTRNF1U07d27l+joaFxcXC54rouLC/369WPv3r31Dien9erWiwUsoFe3Xhc+WURELqnWrVszevToZnHjU3N3UUVTbm7uRU1y8/f3Jy9PQ0oiItJ0BQYGsnz58lqTxqXpuaiJ4C1atLAsJFYXlZWVtGhR76Wg5P87+OtB3uZtYn6Nwb+vfdw1ISLSEDn7c2zWdn5avuX3rPisBrdXVl5GXlkePQf2xNXVtcHtSeN1UUWTt7c3aWlpdT4/LS2t1q2djVl+fj5PPfUUP//8Mz4+Pjz00EPn3ZD4UnJs4UhLWuLYwtHsKCIiNuXu446zuzOf3faZza5xhNMren/75LckPtnwhSmPcITXeZ3N6zczbNywBrcnjddFFU29evXim2++ISsr64Kb9WZlZREfH8/o0aMbFPBSev7552nXrh1r165l586dLFiwgPfeew8vL3Nv9Q8JDGESk7ROk4g0eV7BXszcP5OSXNttTbL/h/0kzUriDyv+QLcruzW4vfSf0qm4p4IArwArpJPG7KKKphtuuIEvv/yS+fPn88wzz9CmTZtznldQUMCCBQuoqqpiwoQJ1shpcyUlJWzbto333nsPV1dXBg8eTHh4ON999x3jxo0zNVtVVRWnOEVVVZWpOURELgWvYC+8gm37w+oIRtDtym5Wm/IQQgge7h5WaUsar4sqmiIjI7n55pv56KOPuOOOO5gwYQKXXXYZvr6+wOmJ4rt27WLdunXk5+czadIkIiMjbRK8pKSENWvWkJycTHJyMgUFBUydOpVp06ad89xVq1YRFxdHYWEhwcHBTJkyhVGjRlnOyczMxM3NjQ4dOliOde7c+aKGI21l34F9PMVTDD0wlMDLNdFQRKQxOZZ7jG1s4/rc6+1mtW6pn4teEXzmzJm4uLjw3nvv8fbbb/P222/XeN4wDFq0aMFtt91WY78eaysoKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqqwAoLS3Fw6PmTwkeHh7k5+fb7D3UVVDHICYykaCOQWZHERGRs+SeyGU728k9kWt2FLGxiy6aHBwcuPfeexk3bhxffPEFe/fu5fjx4wC0a9eOqKgoxowZQ0CAbcd2/fz82LBhAw4ODuTn55+3aNq+fTs7d+5k/vz5xMTEAKf3L8rOzubVV19l5MiRODo64ubmRnFxcY3XFhcX4+bmZtP3URdtvdoSRRRtvdpe+GQREbmkukd05zEeo3tEd7OjiI3Ve1fdgIAApk+fbs0sF8XBwaFO523btg03NzeGDx9e4/jYsWNZvHgxCQkJREVFERgYSGlpKceOHbPsdp2WlsbVV1993rZzc3NrrEOVnp5+8W+kDk4UnOAXfuFEwQl1/YqIiJikyS+ilJaWRkhISK298s5sMHxmzpK7uzuDBw/mzTffpLy8nB9++IHk5GQGDRp03rbXrl3L9OnTLb+WLFlik/eQcSSDz/iMjCMZNmlfRKQ5aeXfimELhtHKv5VV2ktOS+Z1Xic5Ldkq7UnjVe+eJntRUFBwzlXMPT09ATh58qTl2J///GeWLl3Ktddei4+PDwsXLjzvHYIA48ePr1FUpaen26Rw6hnZk3nMo2dkT6u3LSLS3Hj6ezJ84XCrtefm6oY//ri5mj+dQ2yryRdNUPehvDZt2vDMM8/UuV0fHx98fHyIjY0lNjaWoqKi+kb8XS1atMAJJ62uLiLSCAX6B3Id1xHor7ubm7om/6+wl5cXBQUFtY4XFhYCWGWDxZiYGJYtW8asWbMa3Na5pGem8z7vk55pmzlTIiJSf6cqTlFAAacqTpkdRWysyRdNnTt3Jj09vdaeeQcPHgQgNDTUjFgXpdqopooqqo1qs6OIiMhZElMSeZ7nSUxp+JYs0rg1+eG5IUOGsG7dOrZs2VJjMcuNGzfi4+ND9+4Nv0XU1sNzoUGhTGEKoUGNv8ATEWluQoNCuY3b9Hd0M2DXRdOOHTsoKyujpOT0HkXp6els3rwZgAEDBuDq6sqAAQPo168fy5cvp6SkhICAADZt2sSPP/7IvHnzcHRs+Ca4MTExxMTEkJSUZOoyDCIicul5tvIknHA8W3maHUVszK6LpuXLl5OdnW15HBcXR1xcHAAffPCBZVPhJUuWsHLlSlavXm3ZRmXBggU1ep4as937d7OQhQzYP8Bq+ySJiIh15B7PZQc7uPH4jVpLr4mz66Lpww8/rNN57u7uzJ49m9mzZ9skh62H5wL8AriO6wjw0w7aIiKNTXZONpvYRHZONlFEmR1HbMiui6bGwtbDc95tvYkmGu+23lZvW0REGqZnZE/+wl+0ll4z0OTvnmsK8k/mk0AC+SfzzY4iIiLSbKlosgO/Hv6VD/mQXw//anYUERE5S2p6Km/yJqnpqWZHERvT8JwV2HpOk3bQFhFpvJydnGlNa5ydnM2OIjamoskKbD2nycnJCXfca206LCIi5gsOCGYiEwkOCDY7itiYhufswK+Hf+UTPtHwnIhII1RZWUkJJbV2npCmR0WTHaiorOAkJ6morDA7ioiInCUhOYGneZqE5ASzo4iNabzHCmw9pyksJIy7uIuwkDCbtC8iIvUXHBDMJCZpeK4ZUNFkBdpGRUSk+WrTug3d6U6b1m3MjiI2puE5O7A3aS9LWcrepL1mRxERkbPknchjF7vIO5FndhSxMRVNdsDP149RjMLP18/sKCIicpbD2YdZxzoOZx82O4rYmIomO+DTzocBDMCnnY/ZUURE5Cy9uvViIQvp1a2X2VHExjSnyQpsPRG8sKiQFFIoLCrUDtoiIiImUU+TFcTExLBs2TJmzZplk/bTMtJ4h3dIy0izSfsiIlJ/aRlpvMu7+ju6GVDRZAe6hnflIR6ia3hXs6OIiMhZWji0wBFHWjjon9SmTv+H7YCLswteeOHi7GJ2FBEROUtIYAiTmUxIYIjZUcTGVDTZgcysTNaxjsysTLOjiIjIWaqrq6mkkurqarOjiI2paLIDpWWlZJFFaVmp2VFEROQse5P2soQlWkuvGVDRZAciQiO4l3uJCI0wO4qIiJwlqGMQN3ADQR2DzI4iNqYlB6zA1ksOiIhI49XWqy296U1br7ZmRxEbU0+TFdh6yQHtoC0i0nidKDjBHvZwouCE2VHExlQ02QGftj4MZCA+bbUiuIhIY5NxJINP+ISMIxlmRxEbU9FkB9r7tGcIQ2jv097sKCIicpYeXXrwBE/Qo0sPs6OIjalosgPFJcWkk05xSbHZUURE5CyOjo644IKjo6PZUcTGVDTZgdT0VN7kTVLTU82OIiIiZ0nPTOdDPiQ9M93sKGJjKprsQJfOXXiAB+jSuYvZUURE5CxV1VWUU05VdZXZUcTGVDTZAdeWrvjgg2tLV7OjiIjIWToHd+Z2bqdzcGezo4iNqWiyA0eOHmEjGzly9IjZUURERJotLW5pBbZe3LKouIhUUikq1uKZIiKNze79u1nEIgbsH4B/X3+z44gNqWiygpiYGGJiYkhKSmL69OlWb79L5y7MZKbmNImINEIBfgGMYxwBfgFmRxEb0/CciIhIA3i39aYf/fBu6212FLExFU12IDElked5nsSURLOjiIjIWQoKC0gkkYLCArOjiI2paLIDbbza0ItetPFqY3YUERE5S3pmOu/zvtZpagZUNNkBP18/RjEKP18/s6OIiMhZuoV341EepVt4N7OjiI2paLIDJaUlHOEIJaUlZkcREZGzODs744EHzs7OZkcRG1PRZAdSDqXwOq+TcijF7CgiInKWjCMZfMZnZBzJMDuK2JiKJjsQ3imce7mX8E7hZkcREZGzlJ8q5zjHKT9VbnYUsTEVTXbA3c2djnTE3c3d7CgiInKW8E7h3M3d+sG2GVDRdJbPP/+cu+++mxEjRvDGG2+YHQeA7JxsNrGJ7Jxss6OIiIg0WyqazuLt7c20adMYMmSI2VEs8gvy2c1u8gvyzY4iIiJn2Zu0l6d4ir1Je82OIjambVTOcqZY+u6770xO8j9dw7vyEA/RNbyr2VFEROQsHXw6MJzhdPDpYHYUsbFGWTSVlJSwZs0akpOTSU5OpqCggKlTpzJt2rRznrtq1Sri4uIoLCwkODiYKVOmMGrUKBOSi4hIc+Pr7cuVXImvt6/ZUcTGGuXwXEFBAevWraOiouKCw2Tz5s1j48aNTJ06laeffpquXbuyaNEivvnmm0uU1vYOHDzAP/gHBw4eMDuKiIicpbCokFRSKSwqNDuK2Fij7Gny8/Njw4YNODg4kJ+fz/r168953vbt29m5cyfz588nJiYGgL59+5Kdnc2rr77KyJEjcXR0BOBPf/oTe/eee7x58uTJ3HPPPbZ5M1bQyqMVYYTRyqOV2VFEROQsaRlpvM3bTMmYQhe6mB1HbKhRFk0ODg51Om/btm24ubkxfPjwGsfHjh3L4sWLSUhIICoqCoAXXnjByikhNzeXvLw8y+P0dNvsO9SxQ0eu4Ro6duhok/ZFRKT+IsMimc1sIsMizY4iNtYoi6a6SktLIyQkBCenmm8jLCzM8vyZoqmuKisrqaqqorq6mqqqKsrLy3FycrL0WP3W2rVreeutt+qdv67KysvIJZey8jKbX0tERC5OS5eWtKUtLV1amh1FbMyui6aCggI6dqzd++Lp6QnAyZMnL7rNf/3rXzUKobfffpvHH3+cMWPG1Dp3/PjxDBo0yPI4PT2dJUuWXPQ1L+TAwQO8zMtce/BaQgeGWr19ERGpv8ysTDawgbFZY/HH3+w4YkN2XTRB3Yfy6mratGnnvEvvXHx8fPDx8SE2NpbY2FiKioqsmuWMsJAw7uIuwkLCbNK+iIjUX2lZKRlkUFpWanYUsTG7Lpq8vLwoKCiodbyw8PQdDK1bt74kOWJiYoiJiSEpKYnp06dbvX0Pdw9CCMHD3cPqbYuISMNEhEYwgxlEhEaYHUVsrFEuOVBXnTt3Jj09ncrKyhrHDx48CEBoaNMYyjqWe4xtbONY7jGzo4iIiDRbdl00DRkyhNLSUrZs2VLj+MaNG/Hx8aF79+6XJEdsbCxz585lxYoVNmk/90Qu29lO7olcm7QvIiL1l5CcwLM8S0JygtlRxMYa7fDcjh07KCsro6SkBDg9yXrz5s0ADBgwAFdXVwYMGEC/fv1Yvnw5JSUlBAQEsGnTJn788UfmzZt3zjvebMHWw3PdI7rzGI/RPeLSFIEiIlJ33m28uZzLIQey4rNsco38tHzL79a6hruPO17BXlZpq7lotEXT8uXLyc7OtjyOi4sjLi4OgA8++AB//9N3KCxZsoSVK1eyevVqyzYqCxYs0DYqIiJySYR2CyXGPYbvZn3Hd9hm39IjHAHg2ye/JfHJRKu06ezuzMz9M1U4XYRGWzR9+OGHdTrP3d2d2bNnM3v2bBsnOj9b3z2XnJbM67zOiLQR+PfV7awiIo2JYztHLn/nckJ9Q212w87u/bt5/bbXufGdG+nVrVeD28vZn8Nnt31GSW6JiqaL0GiLJnti6+E5N1c3/PHHzdXN6m2LiEjDHDhwgKtvvJpdu3YR3jfcJtfI4vSQnG83X/3wbCIVTXYg0D+Q67iOQP9As6OIiMhZunXrxt69e+ncubPZUcTGVDTZgVMVpyiggFMVp8yOIiIiZ3Fzc6NHjx5mx5BLwK6XHGgsbL3kQGJKIs/zPIkp1pn8JyIi1pOZmcmjjz5KZmam2VHExlQ0WUFMTAzLli1j1qxZNmk/NCiU27iN0KCmsViniEhTUlBQwNq1a8+5Q4U0LRqeswOerTwJJxzPVp5mRxERkbP06NGDpKQks2PIJaCeJjuQezyXHewg97hWBBcRETGLiiYrsPWcpuycbDaxieyc7AufLCIil9S+ffsIDw9n3759ZkcRG9PwnBXYep2mnpE9+Qt/oWdkT6u3LSIiDdOmTRtuvvlm2rRpY3YUsTEVTSIiIg0QEBDA3/72N7NjyCWg4Tk7kJqeypu8SWp6qtlRRETkLKWlpezevZvS0lKzo4iNqWiyA85OzrSmNc5OzmZHERGRs+zfv5/evXuzf/9+s6OIjWl4zgpsvWFvcEAwE5lIcECwTdoXEZH6i4yM5D//+Q+RkZFmRxEbU9FkBbaeCF5ZWUkJJVRWVlq9bRERaRgPDw8uv/xys2PIJaDhOTuQkJzA0zxNQnKC2VFEROQsWVlZLFy4kKysLLOjiI2paLIDwQHBTGKShudERBqh3NxcVq1aRW6uFiBu6jQ8ZwfatG5Dd7rTpnUbs6OIiMhZoqKitFlvM6GeJjuQdyKPXewi70Se2VFERESaLRVNduBw9mHWsY7D2YfNjiIiImdJSEigV69eJCRo3mlTp+E5K7D1kgO9uvViIQvp1a2XTdoXEZH68/T0ZPjw4Xh6epodRWxMRZMV2HrJARERabyCgoJ46aWXzI4hl4CG5+xAWkYa7/IuaRlpZkcREZGzlJWVkZKSQllZmdlRxMZUNNmBFg4tcMSRFg763yUi0tgkJCQQERGhOU3NgP4VtgMhgSFMZjIhgSFmRxERkbNEREQQFxdHRESE2VHExjSnyQ5UV1dTSSXV1dVmRxERkbOcmQguTZ96muzA3qS9LGEJe5P2mh1FRETOcvToUZ555hmOHj1qdhSxMRVNdiCoYxA3cANBHYPMjiIiImfJzs7mb3/7G9nZ2WZHERvT8JwdaOvVlt70pq1XW7OjiIjIWXr37s3x48fNjiGXgIomK7D14pYnCk6whz2cKDiBP/42uYaIiIj8Pg3PWUFMTAzLli1j1qxZNmk/40gGn/AJGUcybNK+iIjUX1JSEgMHDiQpKcnsKGJjKprsQI8uPXiCJ+jRpYfZUURE5Cyurq706NEDV1dXs6OIjWl4zg44OjrigguOjo5mRxERkbOEhISwatUqs2PIJaCeJjuQnpnOh3xIema62VFEROQsFRUVZGVlUVFRYXYUsTEVTXagqrqKcsqpqq4yO4qIiJxlz549dOzYkT179pgdRWxMRZMd6Bzcmdu5nc7Bnc2OIiIiZwkLC2P9+vWEhYWZHUVsTHOaREREGsDLy4tx48aZHUMuAfU02YHd+3eziEXs3r/b7CgiInKWnJwc/vGPf5CTk2N2FLExFU12IMAvgHGMI8AvwOwoIiJylszMTP785z+TmZlpdhSxMQ3P/capU6d47rnn2LlzJ8XFxXTq1ImZM2cSFRVlai7vtt70ox/ebb1NzSEiIrVddtlllJeXmx1DLgH1NP1GVVUV/v7+vPLKK3zxxRdMmDCBJ554grKyMlNzFRQWkEgiBYUFpuYQERFpzlQ0/YabmxtTp06lQ4cOtGjRgjFjxlBdXW16l2t6Zjrv877WaRIRaYSSk5OJiYkhOTnZ7ChiY41yeK6kpIQ1a9aQnJxMcnIyBQUFTJ06lWnTpp3z3FWrVhEXF0dhYSHBwcFMmTKFUaNGNThHeno65eXldOzYscFtNUS38G48yqN0C+9mag4REanNyckJX19fnJwa5T+pYkWN8v9wQUEB69atIywsjCFDhrB+/frznjtv3jwSExO57777CAoKIjY2lkWLFlFdXc1VV11V7wxlZWUsXbqUO+64A3d393q3Yw3Ozs544IGzs7OpOUREpLbQ0FDee+89s2PIJdAoiyY/Pz82bNiAg4MD+fn55y2atm/fzs6dO5k/fz4xMTEA9O3bl+zsbF599VVGjhxp2a/tT3/6E3v37j1nO5MnT+aee+6xPK6srGTBggWEhIRw++23nzdnbm4ueXl5lsfp6bYZPss4ksFnfMaYI2Pw7+tvk2uIiEj9VFVVUVxcjIeHh/YIbeIaZdHk4OBQp/O2bduGm5sbw4cPr3F87NixLF68mISEBMudby+88EKd2qyurmbp0qW0aNGCOXPm/G6WtWvX8tZbb9Wp3YYoP1XOcY5Tfkp3Z4iINDa//PIL0dHR7Nq1i759+5odR2yoURZNdZWWlkZISEitceQzS9mnpaVd9HIBzz77LHl5eTzzzDMXHJ8eP348gwYNsjxOT09nyZIlF3W9ugjvFM7d3E14p3Crty0iIg0TGhrKhx9+SGhoqNlRxMbsumgqKCg45yRtT09PAE6ePHlR7WVnZ7N+/XpcXFwYP3685fjTTz9N7969a53v4+ODj4/PRaYWEZGmpG3bttx8881mx5BLwK6LJqj7UF5d+Pn5sXXr1ot+XWxsLLGxsRQVFVkty2/tTdrLUzzFlUlXak6TiEgjk5eXx7p167juuuvw9tYixE2ZXa/T5OXlRUFB7QUfCwsLAWjduvUlyRETE8OyZcuYNWuWTdrv4NOB4Qyng08Hm7QvIiL1l56ezl133WWzm4Gk8bDrnqbOnTsTGxtLZWVljflHBw8eBGgy48u+3r5cyZX4evuaHUVERM5y2WWXUVFRoTvnmgG77mkaMmQIpaWlbNmypcbxjRs34uPjQ/fu3S9JjtjYWObOncuKFSts0n5hUSGppFJYVGiT9kVEpP4cHBxwcnKy6nQRaZwabU/Tjh07KCsro6SkBDjd/bl582YABgwYgKurKwMGDKBfv34sX76ckpISAgIC2LRpEz/++CPz5s27ZFV/TEwMMTExJCUlMX36dKu3n5aRxtu8zZSMKXShi9XbFxGR+ktNTeWhhx7i+eeft9y9LU1Toy2ali9fTnZ2tuVxXFwccXFxAHzwwQf4+5+eEL1kyRJWrlzJ6tWrLduoLFiwwCrbqDQWkWGRzGY2kWGRZkcRERFpthpt0fThhx/W6Tx3d3dmz57N7NmzbZzo/Gx991xLl5a0pS0tXVrapH0REam/sLAw1q5da3YMuQTsek5TY2Hru+cyszLZwAYyszJt0r6IiNSfYRhUVlZiGIbZUcTGVDTZgdKyUjLIoLSs1OwoIiJylp9++glnZ2d++ukns6OIjTXa4Tl7YuvhuYjQCGYwg4jQCJu0LyIi9RcSEsKbb75JSEiI2VHExlQ0WYGt754TEZHGy9vbm6lTp5odQy4BDc/ZgYTkBJ7lWRKSE8yOIiIiZzlx4gQfffQRJ06cMDuK2JiKJjvg3caby7kc7zba00hEpLFJS0tj0qRJpKWlmR1FbEzDc3agg28HhjGMDr7ae05EpLHp3bs3BQUFeHh4mB1FbExFkxXYeiJ4cUkxGWRQXFJsk/ZFRKT+HB0dL9kG8WIuDc9Zga3XaUpNT2U1q0lNT7VJ+yIiUn9paWnccsstGp5rBlQ02YGI0Aju534tOSAi0ghVVlaSk5NDZWWl2VHExjQ8ZwfcXN1oT3vcXN3MjiIiImeJiIggNjbW7BhyCainyQ4cOXqEr/maI0ePmB1FRESk2VJPkxXYeiJ4YVEhSSRRWFRok/ZFRKT+fvrpJwYMGMCOHTu47LLLzI4jNqSiyQpsvSJ4ZFgks5hFZFik1dsWEZGGCQwMZPny5QQGBpodRWxMRZOIiEgD+Pr6MnPmTLNj1EvO/hybtZ2flm/5PSs+yyptuvu44xXsZZW26kNFkx1ISk3iRV5kWOow/Pv6mx1HRER+o6CggO+++47Bgwfj5WXeP+gXw93HHWd3Zz677TObXeMIp+fhfvvktyQ+mWiVNp3dnZm5f6ZphZOKJjvQ2rM1PehBa08tniYi0tikpqZy7bXXsmvXLvr27Wt2nDrxCvZi5v6ZlOSW2Owau/fv5vXbXufGd26kV7deDW4vZ38On932GSW5JSqa5Pz82/sTQwz+7dXLJCLS2ERFRXHkyBF8fHzMjnJRvIK9bFp8ZHF6SM63m2+TGSVR0WQFtr57rrSslGyyKS0rtUn7IiJSf87Ozvj7N42iQH6f1mmyAltvo5KclsxrvEZyWrJN2hcRkfpLT0/nnnvuIT093ewoYmMqmuxAeKdwpjOd8E7hZkcREZGzlJWVsW/fPsrKysyOIjam4Tk74O7mTgABuLu5mx1FRETOEhkZyfbt282OIZeAeprswNGco8QRx9Gco2ZHERERabZUNNmB4/nHiSee4/nHzY4iIiJn+eWXX2jXrh2//PKL2VHExlQ02YFuEd14mIfpFtHN7CgiInIWPz8/Hn/8cfz8/MyOIjamOU0iIiIN0KFDBx599FGzY8gloJ4mO3Dg4AFe4RUOHDxgdhQRETlLYWEhmzdvprCw0OwoYmMqmuyAh7sHneiEh7uH2VFEROQsycnJjBgxguRkraXX1Gl4zgpsvSJ4gF8AYxlLgF+ATdoXEZH66969O8nJyQQGBpodRWxMRZMVxMTEEBMTQ1JSEtOnT7d6+2XlZeSRR1m5Fk4TEWlsXF1dCQ/X4sPNgYbn7MCBgwdYwQrNaRIRaYQyMjJ48MEHycjIMDuK2Jh6mqyovLwcwOr7Dzk6OjLZYzKOjo4kJSVZtW0REWmYtLQ0tm3bxtixYykpKbHJNTIyMvDw8LD8bg+snTk3I5eTHic5mHGQkx4nrZCwtpCQEFxdXc/7vINhGIZNrtwMff311yxZssTsGCIiIlIPK1euJDIy8rzPq6fJivr37094eDgPPfQQLi4udXrNihUrmDVr1u+ek56ezpIlS5g3bx4hISHWiGr36vK5melS57PV9azVbkPaqc9rL+Y1dT1X38PaGvP30Ixstrhmc/gO1vX8S/EdvFC7KpqsqE2bNrRv356oqKg6v6ZVq1a/W9X+VkhISJ3Pbeou5nMzw6XOZ6vrWavdhrRTn9dezGsutn19D/+nMX8Pzchmi2s2h+/gxZ5v5ndQE8GtLCYmxqbny2mN/XO71PlsdT1rtduQdurz2ot5TWP/s9SYNebPzoxstrhmc/gO1vcaZtCcJjtwZimDC421iojt6HsoYq7G8B1UT5Md8Pb2ZurUqXh7e5sdRaTZ0vdQxFyN4TuoniYRERGROlBPk4iIiEgdqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNDURp06d4m9/+xsTJ07kmmuuYcaMGezZs8fsWCLNysKFC5kwYQLXXHMNU6dO5YcffjA7kkiztHfvXoYNG8aaNWus2q7unmsiSktL+eCDDxgzZgy+vr589dVXvPLKK3z00Ue/u/mgiFhPWloagYGBODs7k5CQwMMPP8z777+Pl5eX2dFEmo3q6mr++Mc/4uDgwMCBA7nzzjut1rZ6mpoINzc3pk6dSocOHWjRogVjxoyhurqazMxMs6OJNBuhoaE4OzsD4OjoSEVFBbm5uSanEmle1q5dS1RUFMHBwVZvW3vPmaSkpIQ1a9aQnJxMcnIyBQUFTJ06lWnTpp3z3FWrVhEXF0dhYSHBwcFMmTKFUaNGnbf99PR0ysvL6dixoy3fhojdstV3cPHixWzdupVTp04xYMAAOnfufCnejojdscV3sKCggI8//pjXXnuNl156yeqZVTSZpKCggHXr1hEWFsaQIUNYv379ec+dN28eiYmJ3HfffQQFBREbG8uiRYuorq7mqquuqnV+WVkZS5cu5Y477sDd3d2Wb0PEbtnqOzh//nwqKyuJj48nPT0dBwcHW78VEbtki+/g66+/zqRJk2jVqpVNMqtoMomfnx8bNmzAwcGB/Pz88/5h2b59Ozt37mT+/PmWDQ379u1LdnY2r776KiNHjsTR0dFyfmVlJQsWLCAkJITbb7/9krwXEXtkq+8ggJOTE/379+eTTz4hMDCQgQMH2vz9iNgba38Hk5KSOHDgAA8//LDNMmtOk0kcHBzq9BPotm3bcHNzY/jw4TWOjx07ltzcXBISEizHqqurWbp0KS1atGDOnDn6CVfkd9jiO3i26upqDh8+3NCoIk2Stb+Dv/zyC4cOHWLChAlcd911fPvtt7z77rssXbrUapnV09TIpaWlERISgpNTzf9VYWFhluejoqIAePbZZ8nLy+OZZ56pdb6I1E9dv4N5eXns2bOHK664AmdnZ7Zu3cpPP/3EfffdZ0ZskSajrt/Ba6+9tkZh9Y9//AM/Pz9uvfVWq2XRv6yNXEFBwTknc3t6egJw8uRJALKzs1m/fj0uLi6MHz/ect7TTz9N7969L01YkSaort9BgI8//pi///3vODg4EBgYyMKFCwkPD79kWUWaorp+B93d3WvM423ZsiXu7u5WXfJDRZMdqEv3pZ+fH1u3br0EaUSan7p8B729vXn55ZcvQRqR5qc+002eeOIJq+fQnKZGzsvLi4KCglrHCwsLAWjduvWljiTSrOg7KGKuxvQdVNHUyHXu3Jn09HQqKytrHD948CBwejE9EbEdfQdFzNWYvoMqmhq5IUOGUFpaypYtW2oc37hxIz4+PnTv3t2kZCLNg76DIuZqTN9BzWky0Y4dOygrK6OkpAQ4vYr35s2bARgwYACurq4MGDCAfv36sXz5ckpKSggICGDTpk38+OOPzJs3r9b6MCJSd/oOipjL3r6D2rDXRJMmTSI7O/ucz33wwQf4+/sDp5ePX7lyZY3l42+77bbf3UZFRC5M30ERc9nbd1BFk4iIiEgdaE6TiIiISB2oaBIRERGpAxVNIiIiInWgoklERESkDlQ0iYiIiNSBiiYRERGROlDRJCIiIlIHKppERERE6kBFk4jIJfD8889z3XXXWbaLAHjjjTcYOnQoP/30k4nJ/mfp0qXcfPPNlJeXmx1FpFHS3nMictGysrL4wx/+8LvnhIeH88Ybb1yiRI1bRkYGa9eu5d5778Xd3d2m1/r3v//Nc889x/jx43nkkUd+99x77rmHAwcOsHLlSiIjI7nzzjuJjY3lo48+4rbbbrNpThF7pKJJROotICCAq6666pzPeXt7X+I0jdebb76Ji4sLEyZMsPm1YmJi+Mc//sG3337LrFmzaNmy5TnPS01N5cCBA0RERBAZGQlAYGAggwcP5v/+7/+YOHEibm5uNs8rYk9UNIlIvQUEBDBt2jSzYzRq+fn5bN26leHDh9u8lwnAw8ODYcOG8dVXX7Flyxauvvrqc563fv16AMaOHVvj+NVXX82WLVvYtGkT1157rc3zitgTzWkSkUti6NChPPjgg+Tn57Ns2TLGjx9PTEwMM2bMOO+cnpKSEt544w3uuOMOYmJiGDt2LI888gi7d++ude6DDz7I0KFDOXXqFKtXr+aWW25hxIgRNYYIt2zZwvTp04mJiWHChAk8/fTTFBYWMmnSJCZNmmQ5b+nSpQwdOpT9+/efM9err77K0KFD2bp16wXf96ZNmzh16hTDhw+/4LlnpKamcsMNN3DdddeRkJBgOX7kyBH+/ve/c9NNNzFq1Ciuv/56nnrqqVq7xI8bNw6AL7/88pztV1RUEBsbi4uLS62iasCAAbi5ufHFF1/UOa9Ic6GiSUQumaKiIu6//35SU1O56qqrGDp0KElJSTzyyCMcPHiwxrknT57kj3/8I2+99RatW7fm+uuvt5w/e/Zstm3bds5rzJs3jy+++ILevXtz880307FjRwA2bNjAk08+yeHDhxk9ejTXXHMN+/bt489//jOVlZU12hg/fjzwv96Y36qsrOSrr76iXbt2XHnllRd8z7t27QKgR48eF/6AgF9++YVZs2bh6OjIyy+/TPfu3QFISEjgnnvuYePGjURGRnLTTTfRu3dvvvnmG+677z6OHDliaaNPnz4EBgYSHx9PVlZWrWt8//33FBQUMHToUDw9PWs85+zsTJcuXdi/fz+lpaV1yizSXGh4TkTq7fDhw+ed7N2jRw+uuOKKGsdSUlK4/vrr+dOf/kSLFqd/Zuvbty9PP/00n376aY2Jyy+88AJpaWnMnTu3xhDS8ePHuffee3nmmWfo379/rTk7eXl5vPnmm7Ru3dpyrLCwkJdeegl3d3dWrVplKaSmT5/OY489RlJSEn5+fpbzo6KiCA0NZdOmTTzwwAM15vb88MMPHD9+nFtvvRUnpwv/Fbp37158fX1p27btBc/dtm0bixYtomPHjjz77LO0b98eOF2oLVy4kOrqalauXEl4eLjlNbt372b27Nm89NJLLFu2zHJ87NixvP7662zcuJG77rqrxnU2bNgA/K9H6myRkZH88ssv7N+/n759+14wt0hzoZ4mEam3w4cP89Zbb53z148//ljrfDc3N2bMmGEpmACuueYaHB0dSUxMtBzLz88nLi6O6OjoWnNu2rVrxy233EJ+fr6lF+e37rrrrhoFE8B3331HaWkp1157raVgAnBycuLuu+8+53sbP348JSUlfPvttzWOr1+/HgcHhzrN96moqCA/P79OBdP69euZP38+ERERvPzyy5aCCU4XatnZ2dxyyy01CiaAXr16MWjQIHbs2EFxcbHl+JnP9csvv8QwDMvx3Nxcdu7ciZ+f33kLojN5c3JyLphbpDlRT5OI1Fv//v159tln63x+YGBgrcnQTk5OtGvXjqKiIsuxxMREqqqqOHXq1Dl7sjIzMwFIT0+vNUTWrVu3WuenpqYC0LNnz1rPdevWDUdHx1rHr776al577TXWr19v6ZHJycnhv//9r2X460IKCgoAag2Bne3DDz/k+++/Z8CAASxevBhXV9caz+/btw+AX3/99Zyfx/Hjx6muriYjI4OuXbsC4OPjwxVXXMEPP/xAfHw80dHRwOl5TlVVVYwdOxYHB4dz5jlTdJ7JLyKnqWgSkUvGw8PjnMcdHR2prq62PD558iQAe/bsYc+ePedtr6ysrNaxdu3a1Tp2pgemTZs2tZ5r0aIFXl5etY57enoyYsQINm7cyKFDh+jUqRNffPEFVVVVdb6r7MzQ4YUWizwzsf2KK66oVTDB6eFFgG+++eZ32zn78xg3bhw//PADX375ZY2iqUWLFowZM+a87ZzJe77lCkSaKxVNItLonCmu/vCHPzBz5syLeu25ek/OtJefn1/ruerqagoKCvD19a313Pjx49m4cSPr169n5syZfPnll7Ru3ZqhQ4fWKYunpydOTk6WIvB85syZw7/+9S9eeuklWrRowQ033FDj+TO9c8uWLavT5PMzBg4cSLt27diyZQsPPfQQKSkpZGZm0r9/fzp06HDe153Je64iU6Q505wmEWl0unbtioODg2VYqqHCwsKA05Oyz7Z//36qqqrO+bqePXvSuXNnvvrqK3bs2MGRI0e46qqrLqoHJjQ0lOzs7Fp36P2Wp6cnzz//PF26dOH555/n008/rfH8mTvoLvbzcHJyYvTo0ZSXl7Np0ybLMgLnmwB+RkZGBgCdO3e+qOuJNHUqmkSk0fH29mbEiBHs3buX9957r8ZE5jMSEhLOOTx3LoMHD8bNzY3169fXuDW/srKS1atX/+5rr7vuOgoKCnjmmWcALnrBxz59+nDq1CnLvKrz8fT0ZPny5XTt2pUXXniBTz75pEb+Dh068MEHH/Dzzz/Xem1lZeU5166C/xVIn3/+OZs3b8bLy4vBgwf/bpaEhAS8vb0JCgq6wLsTaV40PCci9fZ7Sw4ADVot/M9//jMZGRm8+uqrfPXVV/To0YNWrVpx7NgxkpKSyMzM5LPPPjvnHKCzeXp68sADD/DMM89wzz33MHLkSDw8PNixYwcuLi74+Picd1L06NGj+ec//0lubi7du3e39FrV1ZAhQ/joo4/YtWuXZbuS38v53HPP8fDDD/Piiy9iGAY33XQTLi4uLF68mMcee4wHH3yQ6OhoQkNDATh69Ci7d+/Gy8uLd955p1abwcHBREVFWeaGXXvttTg7O583w+HDh8nKyuL666+/qPcp0hyoaBKRejuz5MD5NKRoat26Na+88gqffvop3377LbGxsVRXV9OuXTvCw8O58847zzmB+3yuu+46PD09efvtt9m4cSMeHh4MGjSIGTNmcPPNNxMQEHDO17Vq1YrBgwcTGxtbr21F+vTpQ3BwMF9//TW33nrrBc8/0+P08MMP89JLL2EYBjfffDPdunXjjTfe4L333mPHjh3s2bMHZ2dnfHx8GDJkCKNGjTpvm+PGjbMUTWcv4XC2r7/+GvjfAp8i8j8Oxrn6vUVEmonMzExuvfVWRowYwaJFi855zh133MHRo0f57LPP6rV/3Nq1a3n22Wd57bXXLPOTGqPKykqmTJmCn58fL774otlxRBodzWkSkWahsLCQU6dO1ThWXl7Oyy+/DJweRjuX7du3c+jQIUaPHl3vDXfHjRtHSEgIb775Zr1ef6l8/fXXZGdnc//995sdRaRR0vCciDQLP//8M3//+9+5/PLLad++PQUFBcTHx5OdnU3fvn0ZOXJkjfM///xzjh07xrp162jZsiW33HJLva/t6OjI448/zo8//khJSUm9iy9bc3Bw4NFHH73g3CuR5krDcyLSLGRkZLB69Wr27t1rWa8pICCAkSNHMnny5FrLCEyaNImcnByCgoKYMWPGRa2PJCJNk4omERERkTrQnCYRERGROlDRJCIiIlIHKppERERE6kBFk4iIiEgdqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNImIiIjUgYomERERkTr4f+28zj5Jrf3oAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -8078,17 +1638,17 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 17, "id": "06df3b27-d2ed-4214-bda7-d4fda667e145", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 35, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, From fc983a80a3c79ddd15734cbf6048e7a609a68b5b Mon Sep 17 00:00:00 2001 From: Eliza Neights Date: Mon, 4 Mar 2024 13:21:34 -0500 Subject: [PATCH 3/3] Update to Chris's version of extended source notebook --- .../diffuse_511_spectral_fit.ipynb | 7775 +++-------------- 1 file changed, 1400 insertions(+), 6375 deletions(-) diff --git a/docs/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb b/docs/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb index 1d5c822b..fca5e2f4 100644 --- a/docs/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb +++ b/docs/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb @@ -39,256 +39,10 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 7, "id": "19640dd6-f894-4b9c-9405-aa76f8c8864c", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
10:11:11 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
-       "                  available                                                                                        \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m10:11:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641281;file:///home/ckarwin/.local/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=792514;file:///home/ckarwin/.local/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
-       "                  will not be available.                                                                           \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=428413;file:///home/ckarwin/.local/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759569;file:///home/ckarwin/.local/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
10:11:13 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:33\n",
-       "                  available                                                                                        \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m10:11:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=577339;file:///home/ckarwin/.local/lib/python3.9/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53047;file:///home/ckarwin/.local/lib/python3.9/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
10:11:14 INFO      Starting 3ML!                                                                     __init__.py:35\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m10:11:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=998097;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=742856;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=824601;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=799670;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=76932;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=702563;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504990;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=236469;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   no display variable set. using backend for graphics without display (agg)         __init__.py:46\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m no display variable set. using backend for graphics without display \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251magg\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=376049;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511583;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#46\u001b\\\u001b[2m46\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/pkg_resources/__init__.py:123: PkgResourcesDeprecationWarning: dev is an invalid version and will not be supported in a future release\n", - " warnings.warn(\n" - ] - }, - { - "data": { - "text/html": [ - "
10:11:18 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m10:11:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=59563;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=919246;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=28470;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248688;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=949505;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=447249;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
10:11:19 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
-       "                  require the C/C++ interface (currently HAWC)                                                     \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m10:11:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20677;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686282;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
-       "                  software installed and configured?                                                               \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=820074;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=760839;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
-       "                  software installed and configured?                                                               \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=807206;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=944010;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
10:11:21 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m10:11:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=329957;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=613927;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
10:11:21 WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
-       "                  performances in 3ML                                                                              \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m10:11:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=781871;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=869241;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
-       "                  performances in 3ML                                                                              \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=948124;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992004;file:///home/ckarwin/.local/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# imports:\n", "from cosipy import COSILike, test_data, BinnedData\n", @@ -305,7 +59,7 @@ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", - "from threeML import PointSource, Model, JointLikelihood, DataList\n", + "from threeML import PointSource, Model, JointLikelihood, DataList, update_logging_level\n", "from astromodels import Parameter\n", "from astromodels import *\n", "from mhealpy import HealpixMap, HealpixBase\n", @@ -556,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "7006c9c0-d8ea-49d2-9ab7-66ecbcf3edea", "metadata": {}, "outputs": [], @@ -590,7 +344,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "f459d4ec-8949-4e30-98e8-09d68cf3e4b9", "metadata": { "tags": [] @@ -1009,7 +763,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "5a3508cb-12a5-4174-8171-422960718cde", "metadata": {}, "outputs": [], @@ -1030,7 +784,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "1b2ac4e3-fe0f-4ca0-b65a-1cfcf9a143e0", "metadata": {}, "outputs": [ @@ -1040,8 +794,8 @@ "text": [ "... loading the pre-computed image response ...\n", "--> done\n", - "CPU times: user 1min 52s, sys: 36.9 s, total: 2min 29s\n", - "Wall time: 2min 38s\n" + "CPU times: user 1min 55s, sys: 37.4 s, total: 2min 32s\n", + "Wall time: 2min 49s\n" ] } ], @@ -1084,7 +838,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 6, "id": "371f159b-dfa8-4475-9aec-679dc6aa91cb", "metadata": { "scrolled": true, @@ -1094,11 +848,11 @@ { "data": { "text/html": [ - "
13:47:53 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
11:55:08 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:47:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=705571;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=365304;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[38;5;46m11:55:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641391;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11475;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, @@ -1108,82 +862,21 @@ "name": "stderr", "output_type": "stream", "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", "\n", "WARNING RuntimeWarning: invalid value encountered in log\n", - "\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + "\n" ] }, { "data": { "text/html": [ - "
13:49:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "
11:56:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
        "                  measurements such as AIC or BIC are unreliable                                                   \n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m13:49:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=907644;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261137;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m11:56:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=619529;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819028;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" ] }, @@ -1280,7 +973,7 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", "\n", "
1.00-0.40
-0.401.00
" @@ -1423,8 +1116,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 6min 16s, sys: 3min 20s, total: 9min 36s\n", - "Wall time: 1min 33s\n" + "CPU times: user 6min, sys: 3min 20s, total: 9min 21s\n", + "Wall time: 1min 36s\n" ] }, { @@ -1432,17 +1125,17 @@ "text/plain": [ "( value negative_error positive_error \\\n", " gaussian.spectrum.main.Gaussian.F 0.046951 -0.000025 0.000025 \n", - " background_cosi 0.932137 -0.004748 0.004831 \n", + " background_cosi 0.932137 -0.004667 0.004841 \n", " \n", " error unit \n", " gaussian.spectrum.main.Gaussian.F 0.000025 1 / (cm2 s) \n", - " background_cosi 0.004789 ,\n", + " background_cosi 0.004754 ,\n", " -log(likelihood)\n", " cosi -1.527559e+07\n", " total -1.527559e+07)" ] }, - "execution_count": 12, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -1473,7 +1166,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 7, "id": "4d1df8b6-a464-41b2-a1cb-2b7d770a7313", "metadata": { "tags": [] @@ -1569,7 +1262,7 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", "\n", "
1.00-0.40
-0.401.00
" @@ -1783,23 +1476,23 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 8, "id": "cf7f47cf-6696-4dfa-949a-307160ccd990", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 24, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAG5CAYAAAC0v4EiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABu90lEQVR4nO3deViU5f4/8PfMwAwM++6CG4gIpqKmZm5gi1tulbnUMX+llVu2qnmqU5ZZlqejx5OpaVbn20mPlZoibolbdjSXXBDEVBQVZN+GmYGZ5/cHzTgjwzY8zMb7dV1dybPeNwi+ue/7+TwSQRAEEBEREVGTktq7AURERETNAUMXERERkQ0wdBERERHZAEMXERERkQ0wdBERERHZAEMXERERkQ0wdBERERHZAEOXg1Cr1UhLS4NarbZ3U4iIiKgJMHQ5iIyMDEyfPh0ZGRn2bgoRERE1AYYuIiIiIhtg6CIiIiKyAYYuIiIiIhtg6CIiIiKyATd7N4CIiIhsRxAEVFZWQqfT2bspTsXd3R0ymaxR12DoIiIiaia0Wi1u3boFlUpl76Y4HYlEgvDwcHh7e1t9DYYuIiKiZkCv1+PKlSuQyWRo1aoV5HI5JBKJvZvlFARBQE5ODjIzMxEVFWX1iBdDFxERUTOg1Wqh1+vRpk0bKJVKezfH6YSEhODq1auoqKiwOnRxIT0REVEzIpXyn35riDEqyM88ERERkQ0wdBEREZHdtG/fHtHR0YiLi0NMTAwmT56MsrIyq6+3YcMGpKam1rj/119/RdeuXdGjRw/s2rULI0aMQFpaWr3ObSyGLiIiIrKrjRs34vTp0zh//jyKioqwYcMGq69VV3D66quvMHnyZJw6dQpDhw5FYmIioqOj63VuY3EhPRERUTO15a9HoCrSNNn1lX4KjF3cv97Ha7VaqFQqBAQEGLd98skn2LRpEyorKxEaGorVq1ejXbt2+Omnn/DXv/4VUqkUlZWVWLx4MXJycvDbb7/h5ZdfxjvvvIMPPvgAI0aMMF7rww8/xMaNG+Hp6YmNGzciOTkZcXFx2LJlC3777bdazxUDQxcREVEzpSrSQJXfdKGrviZMmABPT09cvXoVvXr1whNPPAEA+Pbbb5GWloajR49CJpPhm2++wcyZM7Fjxw68+eabWL16Nfr16we9Xo/i4mL4+/vj3//+N1566SWMHTu22n0WLFiA1NRUxMXF4aWXXjLbN23atFrPFQNDFxGRk7p9qRDqYi3axIVAImW9JWo4pZ/CIa6/ceNGxMXFobKyEs8//zzmz5+PZcuWYcuWLTh+/Dh69eoFAGZV9B944AHMnTsXjz/+OB5++GHExcU1RRdExdBFROSEzu28il+/uQAA6DS4NQZO78rgRQ3WkKk/W3Bzc8Njjz2G119/HcuWLYMgCHjjjTfw3HPPVTv273//O86fP4/9+/fj6aefxpNPPol58+bZodX1x9BFRORkUvZkGAMXAFw8cANSNyn6P9OFFcbJ6f3888/Ghe1jx47FsmXL8PjjjyMwMBAVFRU4d+4cevTogdTUVHTp0gVdunSBm5sbdu/eDQDw9fVFUVGRVfduzLn1wacXiYicyPXTOfjly5Rq21P3XceZny7boUVEjTdhwgTExcXhnnvuwYULF7B8+XIAwJNPPompU6ciISEB3bt3R1xcHH7++WcAwMKFC9GlSxf06NED33zzDd555x0AwHPPPYcPPvgAcXFxSExMbFA7GnNufUgEQRBEvyo1WFpaGqZPn461a9caEz4R0d12Lf0N10/nAAC6j45AYFsf7P/X74AAKAMVmLQigdOMZJFarcaVK1fQoUMHeHh42Ls5TkeMzx9HuoiInISmrAI3zuYCALyCPHDvhE6IvL8V2sSFAABU+RrcvlRoxxYSUW0YuoiInMS1E7eh11VNTnTo08K4fqtD3xbGY678L8subSOiujF0ERE5iSvH7gSq9n3uBK12PcMgkUmMx3DVCNWGfz+sI8bnjaGLiMgJaFUVyDxTtZZLGaBAWJS/cZ/C2x2t7wkCAJTlqZHzR9M9fUXOy93dHQCgUqns3BLnpNVqAQAymczqa7BkBBGRE7h28jb0lVW/abfv06LaYvkOfVog8/eq9V5XjmUhtKO/rZtIDk4mk8Hf3x+3b98GACiVSpYYqSe9Xo+cnBwolUq4uVkfnRi6iIicwJXj2cY/dzCZWjRod28YDq87D0Ev4Or/stB3cmdbNo+cRIsWVX93DMGL6k8qlaJt27aNCqoMXUREDk4QBGSnFQComkoMiw6odoyHjxwtOgfgVko+SnLKUVaghlcAywKQOYlEgpYtWyI0NBQVFRX2bo5TkcvlkEobtyqLoYuIyMGV5amhLq5aTxIS4QdpDXW4QiL9cSslHwCQe7kIXr0YusgymUzWqLVJZB0upCcicnA5l+8sjA+O8KvxuJAIX+Ofcy9zMT2Ro2HoIiJycKYBKrhDzaHLNJDlXC5u0jYRUcMxdBERObjcK3dCl+lo1t28gz2h8HY3nsN6TESOhaGLiMiBCYKA3D9HrTz95FAG1rxOSyKRIOTP0S51sRZleWqbtJGI6oehi4jIgZXcLoemrOops+AIvzofVzefYuS6LiJHwtBFROTATKcWa1vPZekYLqYnciwMXUREDsx0tCqklicXDYJNn2C8wtBF5EgYuoiIHJj5k4s1L6I38Ar0gIevvOrcK8VcTE/kQBi6iIgclKAXkHulahG9MlABZT0qzJsupteUVqDkdnmTtpGI6o+hi4jIQZXmqVFRXgkACGpX9yiXQVD7O8cWXC8RvV1EZB2GLiIiB1V0q9T4Z/9W3vU+z7+Vl8k1ykRtExFZj6GLiMhBFd1SGf/sZxKk6uJnEtAKGbqIHAZDFxGRgzIdpfJv2YDQ1UJp8RpEZF8MXUREDsp0etG3AaFLrnSHp7/iz2swdBE5CoYuIiIHZZhelCvd4PlnGYj68vszpKmLtcaK9kRkX272bkBDabVarFu3Drt370ZJSQkiIyMxbdo09O7du85zc3JysHLlShw/fhx6vR49evTAnDlz0KpVK+Mx2dnZSExMxNGjR5GZmQmZTIYOHTpgypQpuPfee6tds6SkBJ9//jkOHjwIjUaDmJgYzJw5E9HR0aL2m4ial0qtDqV5VeUe/Fp61fn6n7v5t/RC1oV8AFWjXaEd/cVuIhE1kNONdC1ZsgSbNm3CQw89hBdffBFSqRTz5s3DmTNnaj1PpVJh7ty5OH36NJ566ik888wzSE9Px5w5c1BUdKf44OHDh/Htt98iPDwc06ZNw5QpU6BSqfDKK68gMTHR7Jp6vR7z58/H3r178eijj+KFF15AQUEB5s6di+vXrzdJ/4moeSjKKgP+rGvq14CpRQPT6UhOMRI5Bqca6UpJScG+ffswY8YMTJo0CQAwdOhQTJ06FatWrcKqVatqPHfLli3IzMzE6tWrERMTAwDo27cvpk6dio0bN+K5554DAPTs2RP//e9/4e/vbzx3zJgxeOaZZ7Bu3TqMGDHCuD05ORnnzp3DokWLEB8fDwAYMmQIJk+ejC+//BJvv/22yJ8BImouik2CkjWhy5+hi8jhONVI14EDByCTyTB69GjjNoVCgZEjR+L8+fPIzs6u8dzk5GR07tzZGLgAoF27dujZsyf2799v3NahQwezwAUAcrkc9913H3JycqBS3XmE+8CBAwgMDMSgQYOM2/z9/ZGQkIDDhw9Dq9U2prtE1IwVNjJ0mZ5TdJOhi8gROFXoSk9PR3h4OLy8zH8AGYLUpUuXLJ6n1+tx+fJldO7cudq+mJgY3LhxwyxMWZKfnw8PDw8oFArjtosXLyIqKgpSqfmnMSYmBmq1utYpxtzcXKSlpRn/y8jIqPX+RNS8FJvW6LIidPmEeEIiq1oHVpTF0EXkCJxqejEvLw9BQUHVthu25ebmWjyvuLgYWq22znPbtm1r8fzMzEwcPHgQCQkJkMlkxu35+fno3r17jdfMy8tDZGSkxWtu27YNGzZssLiPiKjQpFyEX4uGhy6pmxS+oUoU3SpDUVYZBL0AibRhi/GJSFxOFbo0Gg3c3d2rbZfL5cb9NZ0HwKpz1Wo1/va3v0GhUOD555+vdl3D+Q25JgCMHj0a/fv3N36ckZGB999/v8bjiaj5EATBOCXoFeQBN4WsjjMs82vlhaJbZdBp9SjLV8M72FPMZhJRAzlV6FIoFKioqF5vxrB2ynTq7+7zADT4XJ1Oh3feeQdXr17F0qVLERwcXO26ltZt1dUeAAgODq52PSIiAFCXaKFVVb3o2pqpRQPTcwtvlTF0EdmZU63pCgoKQl5eXrXthm01hRhfX1/I5fIGn/vxxx/j6NGjeOONN9CrV69q+wMDA2u9pqXpTCKiupgufG/I63/uxsX0RI7FqUJXx44dkZmZibIy8x8eKSkpxv2WSKVSREREIDU1tdq+lJQUtGrVCkql0mz7Z599hsTERMyePRsPPvigxetGRUUhPT0der3ebPuFCxfg4eGBNm3a1LtvREQGxbfvLKL3baGs5cjama4FK7ld+8NCRNT0nCp0xcfHQ6fTYdu2bcZtWq0WiYmJiI2NRVhYGICqqvJ3Pw04ePBgpKammgWva9eu4dSpU8YaWwb/+c9/8N133+Evf/kLxo8fX2N7Bg8ejPz8fBw8eNC4rbCwEPv378f9999vcb0XEVFdSnPLjX/2CbE+dPmE3JlOLDG5JhHZh1Ot6YqNjUVCQgLWrFmDwsJCtG7dGklJScjKysL8+fONxy1evBinT582C0Pjxo3D9u3bMX/+fEycOBEymQybNm1CQEAAJk6caDzu4MGDWLVqFcLDw9GuXTvs3r3brA333nsvAgMDAVSFwM2bN2PJkiW4evUq/Pz8sGXLFuj1ejzzzDNN/NkgIldVmnMnIHmHWL8OSxmggEQmgaATzK5JRPbhVKELABYuXIiwsDDs2rULpaWliIiIwEcffYS4uLhaz1MqlVi+fDlWrlyJr7/+2vjuxdmzZ5sVQzXU+srMzLT4NOHy5cuNoUsmk2Hp0qX47LPP8P3330Oj0aBz58544403aiw/QURUlxLT0NWIxe9SmRRegR4ozSln6CJyABJBEAR7N4KAtLQ0TJ8+HWvXruXLsomauY1zk1GSUw650g1TvnioUdfa8f7/cCul6sXXU754EHJl9dI5RGQbVo10TZgwodE3Hj9+PB5//PFGX4eIyJXo9QJK89UAGje1aGA6Ulaaq0ZgW4YuInuxaiF9VlYWSkpKIAiCVf9lZ2ejtLS07hsRETUzqgI1BF3VBISPCHW1zBbT5/AJRiJ7snpN1xNPPIGpU6dade7gwYOtvS0RkUsTaxG9pWuU8glGIrtyqpIRRESuznQRvY/I04slXExPZFdWjXR988038PPzs/qmjT2fiMhVlYr05KKBD0e6iByGVaGrseUQWE6BiMgy0yKmYkwvegV6QCKVQNCzVheRvXF6kYjIgZgGI59g66vRGxhqdQGcXiSyN1FDV0lJCZKSksS8JBFRs2KYAnT3dIPcS5z61d7BVaFLU1qBCnWlKNckooYTNXRlZ2fjww8/FPOSRETNhl4vGEOXd7AnJBKJKNc1fX8j13UR2U+Dfo3Kzs6udX9ubm6jGkNE1JyVF6ihN9ToEmE9l4F3iPkTjAHhPqJdm4jqr0Gh64knnqj1Ny9BEET7zYyIqLkpyVUb/yzGInoD0yKrXExPZD8NCl0+Pj549tlna3y5dEZGBt555x0RmkVE1PyUmlSMF6MavcHdI11EZB8NCl2dOnVCSUkJOnToYHG/TqcD359NRGQdsctFGK/FkS4ih9Cg0DV27Fio1eoa94eFhWHBggWNbhQRUXNUZjq9KOZIV5AHIAEgcCE9kT01KHQNGjSo1v0+Pj4YPnx4oxpERNRcleXfCV1eQR6iXVfqJoXSTwFVoQZlBTX/4kxETYvFUYmIHIQhdEllEnj6yEW9tvLPAqmqQg30lXpRr01E9dPo0BUfH4/r16+L0RYiombNELqUf766R0yGqvQQAFWRRtRrE1H9NDp0ceE8EVHjVWp10JRWADAJSCIyvaYqn1OMRPbA6UUiIgdgtp4roClCl8LivYjIdhi6iIgcQFMtojde02Ski6GLyD4YuoiIHIBZ6DIZlRKLaZAry+eaLiJ7YOgiInIAKrPQJf5Il9JkyrIsjyNdRPbA0EVE5ABMg1BTL6Tn9CKRfTB0ERE5gLImHulyk8ug8Havdi8isp1Gh67JkyfD19dXjLYQETVbZQVV66wkEsDTX/w1XcCddV1lBWoIepb7IbK1Roeu559/Hn5+fmK0hYio2TKMPnkGKCCVNc0khGEETdAJKC/RNsk9iKhmVn9na7X8hiUiEoOuUo/yP6vEN8XUooFZgVQupieyOatD17hx4/Dpp58iLS1NzPYQETU7qgIN8OdsX1MURjUwvTbXdRHZnpu1J2q1WmzZsgVbt25FZGQkRo4ciYceegg+Pj5ito+IyOU19SJ6S9dm6CKyPatHurZu3YpXXnkF0dHRuHTpElasWIFHH30UixYtwokTJ8RsIxGRS7NV6FIGMXQR2ZPVI11KpRJjxozBmDFjcPXqVezYsQN79uzBvn378PPPPyM0NBQjR47EsGHDEBYWJmabiYhciqqJXwFkvDZHuojsSpRHZNq3b49Zs2bh+++/x/vvv4/77rsPubm5WL9+PSZOnIjXX38dycnJqKysFON2REQuhdOLRM2D1SNdlshkMgwcOBADBw5Efn4+du3ahcTERBw7dgzHjx+Hr68vtm3bJuYtiYicnq1Cl9zTDe6eMlSU6xi6iOygySrSBwYGYtKkSXjnnXfQtWtXCIKA4uLiprodEZHTMg1AyoCmKYxqYAh1ZXlqCAILpBLZkqgjXQYqlQp79uzBjh07cPHiRQiCAA8PDyQkJDTF7YiInJrqz2r0Hj7ukLnLmvReygAPFN4og65CD21ZpfHVQETU9EQNXSdPnkRiYiIOHToEjUYDQRAQGxuLkSNHYsiQIVAqlWLejojI6QmCAFVB1UiXsglrdBkoTV4xpCpUM3QR2VCjQ9ft27exc+dO7Ny5E1lZWRAEAf7+/hg9ejRGjhyJ9u3bi9BMIiLXpCmpgF5XNc3X1FOLd99DVahBQDhrKxLZitWha9++fUhMTMTJkyeh1+shlUrRu3dvjBw5EgMGDICbW5PMXBIRuRRVocb4Z2UTvejalPlIl6aWI4lIbFYno0WLFgEAWrZsieHDh2P48OEIDQ0VrWFERM2BYWoRsM30oqf/nXuUFzB0EdmS1aHrgQcewMiRI9GrVy8x20NE1KyoTIKPTaYXOdJFZDdWh663335bzHYQETVLnF4kaj5EW3hVWVmJH374AXv37sW1a9eg0Wiwf/9+AEB6ejp++uknjB8/Hm3atBHrlkRETs/W04t3L6QnItsRJXRpNBq8+uqrOHfuHPz8/ODl5QW1+s4PkpYtWyIxMRE+Pj6YPn26GLckInIJZYW2nV5093CDu4cMFWodyhm6iGxKlIr033zzDc6ePYvnnnsOW7ZswciRI832e3t7Iy4uDsePHxfjdkRELsN0MbunX9OHLgDw/HOKUVXIVwER2ZIooevnn39Gjx49MHnyZEgkEkgkkmrHtGrVCtnZ2WLcjojIZRiCj4evHDK3JnszmxnDuq6Kch0q1JU2uScRiRS6bt++jejo6FqP8fT0RFlZmRi3IyJyCVXV6KtGumyxiN5AaVI2guu6iGxHlNDl6emJwsLCWo+5efMm/Pz8xLgdEZFLsHU1egPTe3FdF5HtiBK6unTpgl9++QUlJSUW92dnZ+PXX39F9+7dxbgdEZFLKCu07ZOLBp4sG0FkF6KErokTJ6KkpAQvv/wyzp49C51OBwBQq9U4ceIEXnvtNeh0OkyYMEGM2xERuQTTRfS2nV40CV2sSk9kM6KUjIiLi8NLL72EFStWYM6cOcbtw4YNAwBIpVK88sorda77IiJqTmxdjd54L450EdmFaMVRx44di7i4OGzduhUXLlxAcXExvLy8EBMTg3HjxqFDhw5i3YqIyCWYTS/acqSLa7qI7EK00AUA7du3x9y5c2vcr9PpIJPJxLwlEZHTMptetNuaLtbqIrIVUdZ0/fDDD3Ueo9Pp8O6774pxOyIil2DravQGCi93yNyrfvxzepHIdkQJXStWrEBycnKN+/V6Pd59910cPHhQjNsREbkE0/cu2qoaPQBIJJI7Vem5kJ7IZkQJXV27dsX777+PkydPVttnCFwHDhzAuHHjxLgdEZFLMKynsmU1egPDGjJNaQV0lXqb3puouRLlu/zDDz9EmzZt8OabbyI9Pd24Xa/X47333kNycjLGjh1b63ovIqLmxKwavQ2nFg1MF+5zMT2RbYgSury8vPDJJ5/A29sbr7/+Om7evAlBELBo0SL8/PPPGDNmDF5++WUxbkVE5BLMqtHb8MlFA5aNILI90cazg4KCsGzZMuj1erz66qv429/+hv379+ORRx7BK6+8ItZtiIhcgmnQsUfo8gxggVQiWxN1EUGbNm2wdOlSFBQU4ODBg3jkkUfw+uuvi3kLIiKXoCq6E3RsuYjeQMmyEUQ2Z1Wdrg0bNtS6PyYmBpcuXUJQUJDZsRKJBE8//bQ1tyQicimm66g87TK9eKcuGNd0EdmGVaHryy+/rNdxX331ldnHDF1ERFXK7Ty9yDVdRLZnVehavny52O0gImpWHGpNF0MXkU1YFbri4uJEbkb9abVarFu3Drt370ZJSQkiIyMxbdo09O7du85zc3JysHLlShw/fhx6vR49evTAnDlz0KpVK7PjtmzZgpMnTyIlJQW3b9/GsGHDsHDhwmrX27lzJ5YsWWLxXj/++COCgoKs6yQRubxyO6/p8vSRQyKVQNALXEhPZCOivnvRFpYsWYLk5GSMHz8e4eHh2LlzJ+bNm4fly5ejW7duNZ6nUqkwd+5clJWV4amnnoKbmxs2bdqEOXPmYP369fDz8zMe++2330KlUiEmJgZ5eXl1tunZZ59Fy5YtzbZ5e3tb30kicnkqO6/pkkgl8PSTQ1Wg4ZouIhtxqtCVkpKCffv2YcaMGZg0aRIAYOjQoZg6dSpWrVqFVatW1Xjuli1bkJmZidWrVyMmJgYA0LdvX0ydOhUbN27Ec889Zzx2xYoVCAsLg0QiwdChQ+tsV9++fdG5c+dG9o6ImhPDSJebQga5p31+FCv9FVWhq0gDvV6AVCqxSzuImgvbvneikQ4cOACZTIbRo0cbtykUCowcORLnz59HdnZ2jecmJyejc+fOxsAFAO3atUPPnj2xf/9+s2NbtGgBiaRhP3xUKhV0Ol2DziGi5stYjd4Oo1wGhhE2QQDUxVq7tYOouXCqka709HSEh4fDy8vLbLshSF26dAlhYWHVztPr9bh8+TJGjBhRbV9MTAyOHz8OlUoFpVJpVbvmzp2L8vJyuLu7o3fv3pg1axbatGlT6zm5ublmU5cZGRlW3ZuInE+lVgetqhKAfdZzGZiWjVAVqu0aAImaA6cKXXl5eRYXpxu25ebmWjyvuLgYWq22znPbtm3boPYoFAoMHz4cPXr0gJeXF9LS0rBp0ybMnDkTX3zxhcUAaLBt27Y6650RkWsqL7ozquTpL7dbO0zf+VheoAHa260pRM2CU4UujUYDd3f3atvlcrlxf03nAbDq3NoMGTIEQ4YMMX48cOBA9OnTB3PmzME333yD1157rcZzR48ejf79+xs/zsjIwPvvv9/gNhCR8yk3qQBvOtpka6zVRWRbThW6FAoFKioqqm3XarXG/TWdB8CqcxuqW7duiI2NxYkTJ2o9Ljg4GMHBwaLck4ici6rQQUa6GLqIbMqpFtIHBQVZLOFg2FZTiPH19YVcLrfqXGuEhoaiuLhYtOsRkWsxrdGltOOaLk+GLiKbEjV0lZSUICkpScxLmunYsSMyMzNRVlZmtj0lJcW43xKpVIqIiAikpqZW25eSkoJWrVpZvYjekps3b8Lf31+06xGRa7F3NXrjvVmVnsimRA1d2dnZ+PDDD8W8pJn4+HjodDps27bNuE2r1SIxMRGxsbHGhevZ2dnVngYcPHgwUlNTzYLXtWvXcOrUKcTHx1vVnsLCwmrbjh49irS0NPTp08eqaxKR67P3y66N9/a7ayE9ETWpBq3pqq0OFlDz04NiiY2NRUJCAtasWYPCwkK0bt0aSUlJyMrKwvz5843HLV68GKdPn8bBgweN28aNG4ft27dj/vz5mDhxImQyGTZt2oSAgABMnDjR7D5HjhzBpUuXAACVlZX4448/jC/vHjBgACIjIwEAM2bMQKdOnRAdHQ0vLy9cvHgRiYmJCA0NxV/+8pcm/VwQkfNSFTlG6JK5SeHh4w51SQVHuohsoEGh64knnqi1aKggCA0uKtpQCxcuRFhYGHbt2oXS0lJERETgo48+qvN9kEqlEsuXL8fKlSvx9ddfG9+9OHv27GpTgQcOHDCbJk1PT0d6ejqAqvVahtA1ZMgQ/Prrrzh+/DjUajWCgoIwatQoTJ06FYGBgaL2m4hch3GkSwJ4+tpvIT0AePp7/Bm61Db5GU7UnEkEQRDqe/AjjzyCZ599tsaAk5GRgXfeeQfJyckiNa/5SEtLw/Tp07F27VpER0fbuzlE1IS+e3E/SnPV8PCV46nPH7BrW3YuOY4bZ6tmKZ5a8wA8vO0bAolcWYNGujp16oSSkhJ06NDB4n6dTocGZDgiomZHEATjVJ4jVIA3K5BaqGHoImpCDVpIP3bsWLRo0aLG/WFhYViwYEGjG0VE5Ko0ZRXQV1b9cmrPVwAZmNXq4mJ6oibVoJGuQYMG1brfx8cHw4cPb1SDiIhcWbmDlIswtoFlI4hsxqmKoxIROTvz9y46QOhigVQim2l06IqPj8f169fFaAsRkctTFZi+d9H+66c8Td79WM7QRdSkGh26uHCeiKj+VKYjXQ6xputO8ONIF1HT4vQiEZENma3pCrB/6DKrSl/E0EXUlBi6iIhsyHQ0yRFGutw93ODuKQPAkS6ipsbQRURkQ4729CJwJ/xxTRdR02LoIiKyIcMUnsxdCnfPBlXtaTKG8KdVVaJSq7Nza4hcF0MXEZENmVajd5T3HHJdF5FtMHQREdmIrlIPTWkFAMeo0WXAqvREttHo0DV58mT4+vqK0RYiIpdmOorkSKHLtC0c6SJqOo1eUPD888+L0Q4iIpdntojeAZ5cNDBtC59gJGo6TTq9KAgCrl+/juzs7Ka8DRGRU1A54JOLwN0jXdpajiSixhDl0ZkDBw7g8OHDePHFF+Hj4wMAuHXrFhYsWICMjAwAVa8LeuuttyCTycS4JRGR0zEd6XKk6UWu6SKyDVFGurZu3Yr09HRj4AKAlStX4urVq+jRowciIyORnJyMxMREMW5HROSUVKZruvzs/95FA67pIrINUULX1atXERMTY/xYpVLh6NGjGDJkCD799FOsXr0a7dq1Y+giomatvPDO1J0jTS96+MphqF7BAqlETUeU0FVcXIzAwEDjx2fOnIFOp8MDDzwAAHBzc8O9996LGzduiHE7IiKn5KhruqRSCTx8q0beVBzpImoyooQuLy8vFBcXGz8+deoUpFIpunfvbtzm5uYGtVotxu2IiJyS6SiShwM9vQjcCYHlhRoIgmDn1hC5JlFCV9u2bfHLL7+gqKgIJSUl2Lt3Lzp16mS2xisrKwsBAQFi3I6IyCkZRpEU3u6QuTlWbWrDui69TjAWcCUicYnyXf/YY48hNzcXjz32GMaPH4+8vDyMHTvW7JiUlBR07NhRjNsRETkdQRCMI13KAMca5QL4KiAiWxClZER8fDxefvll7NixAwAwZMgQDB8+3Lj/9OnTKCsrQ58+fcS4HRGR09GqKqGr0AMwDziO4u6yEQHhPrUcTUTWEO0V92PHjq02umUQFxfHJxeJqFkrd9BF9AamZSO4mJ6oaTjWogIiIhdlXqPL8UKXaRBk2QiipsHQRURkAw4/0uXHVwERNTWGLiIiG1A56CuADMzXdLG8D1FTYOgiIrIB0ycCHXKkiy+9JmpyDF1ERDZg+iJpR3rvooG7hwxuChkA81E5IhIPQxcRkQ2YvwLIw44tsUwikRjDIOt0ETUNhi4iIhswLKSXuUsh9xKtWo+oDFOMmtIK6Cp0dm4Nketh6CIisgHDSJenvwISicTOrbFMyXVdRE2qwaFLr9fj8uXLyM3NrbavsrISp0+fFqNdREQuQ1epN77P0BEX0RsoTcpGcF0XkfgaNMadlZWFefPmISMjAxKJBPfddx/eeOMN+Pn5AQCKi4vx0ksvITk5uSnaSkTklBy9RpeBJwukEjWpBo10rVq1CsHBwfjuu++wdu1aaDQazJo1y2zUSxAE0RtJROTMVE4YuvgqICLxNSh0/f7775g5cyZatmyJqKgoLFu2DN26dcPs2bORnZ0NAA67VoGIyF7MykUEOG7o4quAiJpWg0KXWq2Gu7v7nZOlUsybNw+9e/fGnDlzcOPGDdEbSETk7FSFdyq8O/JIF9d0ETWtBoWutm3bIi0trdr2V199Fffddx8WLFggWsOIiFyF2ZouB3zZtQHXdBE1rQaFrkGDBmHPnj0W973yyit44IEHuKaLiOguZu9ddODpRU9fOfDnChGu6SISX4NC11NPPYWPP/64xv2vvPIKDhw40OhGERG5EkevRm8gdZPCw+fPqvSFrNNFJDYWRyUiamKGqTqJBPDwdbz3Lpry/HP6s7xIw5kLIpE1OnTFx8fj+vXrYrSFiMglGavR+ykglTr2E95K/6pQqKvQQ1tWaefWELmWRocu/iZERFQzvV4wvlLH04GfXDTw9GOtLqKmwulFIqImpC7RQtBX/XKqdOBF9AambeQTjETiYugiImpC5QXOUY3ewJO1uoiaDEMXEVETcpZXABmwKj1R02HoIiJqQqbV6Lmmi6h5Y+giImpCHOkiIgOGLiKiJmRaZNQZQpfpaBzXdBGJq9Gha/LkyfD19RWjLURELsd8etFxq9EbyJVukLlX/dNQzulFIlG5NfYCzz//vBjtICJySebTi45djR4AJBIJPP0UKM0t5/Qikcg4vUhE1IQMJSMU3u6Qucvs3Jr6MUyDqksqoKvU27k1RK6DoYuIqIkIgmAc6XKG9VwGpuu6OMVIJJ5GTy+a0ul0yMnJQW5uLiorLb+zKy4uTsxbEhE5LK2qErqKqpEiZygXYWBalV5VoIF3kKcdW0PkOkQJXXq9Ht988w02b96MkpKSWo9NTk4W45ZERA7P2cpFGJi2VVXAkS4isYgSulavXo3vvvsOAQEBGD58OIKCgiCTOcfaBSKipmK6EN0Z3rtoYDbSZfL0JRE1jiiha9euXWjTpg3WrFkDpVIpxiWJiJyeqsCkXISfE4Uuk9IWfIKRSDyiLKQvLy9Hv379GLiIiEyoipyrMKqBaVvLOL1IJBpRQldERATy8vLEuBQRkctwhelFjnQRiUeU0DVlyhQcOnQIaWlpYlyOiMglmE4vKp2gGr2Bh48cEpkEgHkfiKhxRFnT1a9fP7zxxhuYN28e+vfvj8jISHh5eVk8dtiwYWLckojI4Zk+vehMJSMkUgk8/eRQ5Wv4/kUiEYkSurRaLX755RcUFRVhx44dAKpeJWFKEARIJBKGLiJqNgyBxU0hg9xT1LKITc7L3wOqfA3Ki7XQ6/SQylhLm6ixRPkpsHLlSuzZsweRkZEYPHhwk5aM0Gq1WLduHXbv3o2SkhJERkZi2rRp6N27d53n5uTkYOXKlTh+/Dj0ej169OiBOXPmoFWrVmbHbdmyBSdPnkRKSgpu376NYcOGYeHChRavWVJSgs8//xwHDx6ERqNBTEwMZs6ciejoaFH6S0TOq9wJq9EbeBrWdQlAeZEWXoHOMz1K5KhECV3JycmIjo7GZ599Bje3pv1tbsmSJUhOTsb48eMRHh6OnTt3Yt68eVi+fDm6detW43kqlQpz585FWVkZnnrqKbi5uWHTpk2YM2cO1q9fDz8/P+Ox3377LVQqFWJiYmp9QECv12P+/Pn4448/MHHiRPj5+WHLli2YO3cu1q5dizZt2ojadyJyHpVaHbSqqjdzONMiegOzAqmFGoYuIhGINr3Yo0ePJg9cKSkp2LdvH2bMmIFJkyYBAIYOHYqpU6di1apVWLVqVY3nbtmyBZmZmVi9ejViYmIAAH379sXUqVOxceNGPPfcc8ZjV6xYgbCwMEgkEgwdOrTGayYnJ+PcuXNYtGgR4uPjAQBDhgzB5MmT8eWXX+Ltt98WoddE5IxMK7k703ouA/NXAakB+NV8MBHViyiT9NHR0cjMzBTjUrU6cOAAZDIZRo8ebdymUCgwcuRInD9/HtnZ2TWem5ycjM6dOxsDFwC0a9cOPXv2xP79+82ObdGiRbU1aTW1JzAwEIMGDTJu8/f3R0JCAg4fPgytVlvL2UTkykxfFK10osKoBqZPW3IxPZE4RAld06dPx7Fjx/DLL7+IcbkapaenIzw8vNqTkYYgdenSJYvn6fV6XL58GZ07d662LyYmBjdu3IBKpWpwey5evIioqChIpeafxpiYGKjValy/fr3Gc3Nzc5GWlmb8LyMjo8H3JyLHpXLSGl0GfP8ikfhEmQ/87bffEBcXh4ULF6Jnz541loyQSCR4+umnrb5PXl4egoKCqm03bMvNzbV4XnFxMbRabZ3ntm3btkHtyc/PR/fu3Wu8Zl5eHiIjIy2eu23bNmzYsKFB9yMi5+FK04sskEokDlFC15dffmn884kTJ3DixAmLxzU2dGk0Gri7u1fbLpfLjftrOg+AVefW1R7D+Q295ujRo9G/f3/jxxkZGXj//fcb3AYickxmI13OGLrMXgXEAqlEYhAldC1fvlyMy9RJoVCgoqKi2nbD2imFwvIPNsN2a86tqz2W1m3V55rBwcEIDg5u8D2JyDmUFzpnNXoDDz8FJBJAEDjSRSQWUUJXXFycGJepU1BQEHJycqptN5R1qCnE+Pr6Qi6XWyz/UNe5tQkMDKz1mpamM4moeXD2kS6pVAJPPwVUhRqu6SISiSgL6c+ePYuVK1fWWNMqNzcXK1euxPnz5xt1n44dOyIzMxNlZWVm21NSUoz7LZFKpYiIiEBqamq1fSkpKWjVqhWUSmWD2xMVFYX09HTo9Xqz7RcuXICHhwfrdBE1Y4bQJZVJoPCpvrTBGRjWopUXaaDXC3ZuDZHzEyV0bdy4EUeOHKlxZCc4OBi//PILNm3a1Kj7xMfHQ6fTYdu2bcZtWq0WiYmJiI2NRVhYGAAgOzu72tOAgwcPRmpqqlnwunbtGk6dOmWssdVQgwcPRn5+Pg4ePGjcVlhYiP379+P++++3uN6LiJoHw+iQp7+iXiVoHJFhMb0gAOpilsAhaixRphdTU1PRq1evWo/p3r07fvvtt0bdJzY2FgkJCVizZg0KCwvRunVrJCUlISsrC/Pnzzcet3jxYpw+fdosDI0bNw7bt2/H/PnzMXHiRMhkMmzatAkBAQGYOHGi2X2OHDliLD9RWVmJP/74A1999RUAYMCAAcYnEuPj47F582YsWbIEV69eNVak1+v1eOaZZxrVVyJyXnqdHuqSqpDijFOLBma1ugrUTt0XIkcgSugqLCysc01UYGAgCgoKGn2vhQsXIiwsDLt27UJpaSkiIiLw0Ucf1bmuTKlUYvny5Vi5ciW+/vpr47sXZ8+eDX9/f7NjDxw4gKSkJOPH6enpSE9PBwCEhoYaQ5dMJsPSpUvx2Wef4fvvv4dGo0Hnzp3xxhtvNLj8BBG5jvIiLfDnbJwzloswMK9KrwE62LExRC5AlNDl7e2N27dv13pMdnY2PD09G30vhUKBmTNnYubMmTUes2LFCovbQ0NDsWjRojrvsXDhwhpfcH03Hx8fzJ8/32ykjYiat7L8O08uegU435OLBl7VXgVERI0hypqu2NhYHDx4sMbX8GRnZ+PQoUO45557xLgdEZFDMw0oykAnHukyecl1GZ9gJGo0UULXE088AY1Gg1mzZiEpKclYGT43Nxc7d+7EzJkzodVqMWHCBDFuR0Tk0Mry7wQU5x7pMgld+RzpImos0ep0zZo1C5999hk+/PBDAFXV5wVBMP55zpw5NqvnRURkT+YjXc4bukxH6Ti9SNR4ooQuABg/fjx69uyJrVu3IjU1FaWlpfD29kZMTAzGjBmDiIgIsW5FROTQzNd0Oe/0ooePHFI3CfSVgtnoHRFZR7TQBQCRkZF45ZVXxLwkEZHTMa3g7uXEI10SiQTKAA+U5pRzpItIBKKs6SIiojsMI11uChncPUX93dbmDOu6NKUVqNTq7NwaIufG0EVEJDLDqJBXoIfTVqM34LouIvEwdBERiUirqkCFumpESOnE67kMzJ9g5LouosZg6CIiElGZi6znMjB9+pIjXUSNw9BFRCQilcmTi0onrtFlYPr0JWt1ETUOQxcRkYjKTEaDvJy4Gr2Bl9lIF6cXiRqDoYuISEQqk3VPrjDSpWRVeiLRMHQREYlIZTbS5Qqhy2R6kWu6iBpFtAIyFRUVOHTokLEavV6vt3jcggULxLolEZHDMV1I7wpPL7rJZVB4u0NTWmE2ikdEDSdK6MrKysIrr7yCmzdvGt+3aIlEImHoIiKXZlxILwGUfs4fuoCqETtNaQVUBWoIegESqXPXHiOyF1FC1z//+U/cuHEDDz/8MEaOHImQkBDIZDIxLk1E5FQMU3CefgpI3VxjBYcywAP510qg1wlQl2jh6SJhksjWRAldp06dQq9evfDXv/5VjMsRETklvU6P8sKqKThnftH13UyfwiwrUDN0EVlJlF/D9Ho9oqKixLgUEZHTKi/SwrDCQukCi+gNTJ9g5LouIuuJErpiY2ORkZEhxqWIiJyWaUkFLxcoF2Fg+hQmn2Aksp4ooev555/HyZMnkZycLMbliIickmm5CKULFEY1MJ0qVbFWF5HVrFrTtWHDhmrbevTogXfeeQfdu3dHp06d4OXlVe0YiUSCp59+2ppbEhE5vNI816rRZaAMutMX0z4SUcNYFbq+/PLLGvedPn0ap0+ftriPoYuIXFmZSSDxDvK0Y0vE5R14py9lDF1EVrMqdC1fvlzsdhAROb3SvHLjn72CXGekS+7lBjeFDJUaHV8FRNQIVoWuuLg4kZtBROT8ylx0elEikcA72AOFN8pQmlcOQRAgkbBAKlFDifYaIIOioiJcunQJZWVl8PLyQseOHeHn5yf2bYiIHI4hdHn4yuEmd60C0V6Bnii8UQadVg9NSQU8fOX2bhKR0xEtdN26dQsrVqzAr7/+avYqIIlEgn79+mHOnDlo2bKlWLcjInIoep3e+PSitwtNLRqYTpeW5pczdBFZQZTQdePGDcyaNQsFBQUIDw9H165dERAQgIKCApw7dw5HjhxBSkoKPvvsM7Rq1UqMWxIRORRVgcZYGNXLhRbRG3gHm9TqylMjuD1nMIgaSpTQ9fnnn6OwsBCvvvoqRo0aZTbXLwgCtm3bhk8//RSff/45Fi1aJMYtiYgcilm5CBcc6eITjESNJ0roOnHiBPr374/Ro0dX2yeRSDBmzBj8+uuv+O2338S4HRGRwykzeXLR5acXTfpKRPUn2rsX27dvX+sxERER0Ov1YtyOiMjhmI90ud70omno4kgXkXVECV2dOnXC1atXaz3mypUriI6OFuN2REQOx7wwquuNdJkWe2VVeiLriBK6pk+fjv/973/Yvn27xf3btm3DsWPHMG3aNDFuR0TkcFx9etFNIYPC2x0AR7qIrCXamq4ePXrgk08+wXfffYeuXbsiMDAQ+fn5OHv2LDIzM9G7d2+cOHECJ06cMJ7H1wIRkaswjP5IpBJ4Brhe6AKqwqSmtAJl+Wro9QKkUhZIJWoIUUKX6bsYr1+/juvXr1c75tixYzh27JjZNoYuInIVhpEuZYDCZcOIV5An8jJKIOgFlBdqXKrqPpEtiBK6+C5GImrOKrU6qEsqALjWi67v5m22mL6coYuogUQJXXwXIxE1Z2UuXqPLwLxshBqhUXZsDJETEmUhPRFRc2Zat8q1QxefYCRqDIYuIqJGMi8X0XymF4moYawKXYsWLcKBAwesvmljzyciciSuXqPLwHSki2UjiBrOqtC1b98+XLlyxeqbNvZ8IiJH0mymFwMUMLxal9OLRA1n9UL69PR0JCUlidkWIiKnVJJjUhg1xHWnF6VuUigDPVCWp0ZpjsrezSFyOlaHrsOHD+PIkSMNPk8QBGtvSUTkkEr/DF3unjIovNzt3Jqm5RPiibI8NdQlFahQV8LdQ5SH4ImaBau+WxYsWNDoG0dF8VljInJ+er2A0tyq0OUTooRE4pqFUQ18QpTISi0AUDXCF9jGx84tInIeVoWu4cOHi90OIiKnpCpQQ6+rGsF35alFA9M+ljJ0ETUIS0YQETVCqcl6Lp9mELpM+1jCdV1EDcLQRUTUCCW3m1fo8jYLXazVRdQQDF1ERI1QkntntMcnRGnHltiGD0MXkdUYuoiIGsF0pKs5rOnyCvSARFr1sEApQxdRgzB0ERE1guHJRaB5TC9KZVJjAdiS21zTRdQQDF1ERI1gGOlSeLlDrnTtGl0GhnCpVVVCU1Zh59YQOQ+GLiIiK+l1epTlV70OpzlMLRr43FU2gojqx2ahq6KiAmVlZba6HRFRkyvLU0PQV9Xoag5TiwamDwxwMT1R/VkduiZMmIDNmzebbTt27BhWrlxp8fh///vfGDlypLW3IyJyOKaBwyfU9Z9cNPBmrS4iq1gdurKyslBaWmq27fz589WCGBGRqzINHN7BzWmki9OLRNbgmi4iIiuZVaMPbZ6hi9OLRPXH0EVEZKWSZvYKIANlgAeksqpaXQxdRPXH0EVEZCXTwNGcphclUomxv6U5KgiCYOcWETkHhi4iIisZioN6+Mrh7uFm59bYlmE6tUKtg7pEa+fWEDkHhi4iIitUqCuhKtAAAHzDms+Tiwa+YV7GPxdn8QlGovpo1K9mu3fvxvnz540f37hxAwDw+uuvVzvWsI+IyBUUm7wCx6+FVy1HuibfFneCZnGWCmGdAuzYGiLn0KjQdePGDYth6tixYxaPl0gkjbkdEZHDMB3dMQ0gzYXp6F5RFgtfE9WH1aFr48aNYraDiMipFJsEjeY4vWg6uleczelFovqwOnS1aNFCzHYQETmVoqzmPb3oE+oJiQQQBPMASkQ1c7rHbbRaLdatW4fdu3ejpKQEkZGRmDZtGnr37l3nuTk5OVi5ciWOHz8OvV6PHj16YM6cOWjVqlW1Y7dv347vvvsOWVlZCAkJweOPP47HHnvM7Jj169djw4YN1c6Vy+XYu3ev1X0kIsdnNtLVDKcXZe4yeAV7ojSnHEVZVWUjuISEqHZWha4PP/zQ6hsuWLDA6nMBYMmSJUhOTsb48eMRHh6OnTt3Yt68eVi+fDm6detW43kqlQpz585FWVkZnnrqKbi5uWHTpk2YM2cO1q9fDz8/P+OxW7duxbJlyzB48GBMmDABZ86cwfLly6FWq/Hkk09Wu/arr74KT887NXqkUj4USuTqDGu6PHzlkCvd7dwa+/BroURpTjkqyiuhLtHC01dh7yYROTSrQtfOnTstbpdIJBaL5Bm2SySSRoWulJQU7Nu3DzNmzMCkSZMAAEOHDsXUqVOxatUqrFq1qsZzt2zZgszMTKxevRoxMTEAgL59+2Lq1KnYuHEjnnvuOQCARqPBF198gX79+uG9994DAIwaNQp6vR5ff/01Ro8eDR8fH7NrDx48GP7+/lb3i4icS4W6EqrCP8tFNMNRLgPfFl64cTYPQFUIZegiqp1VoevuRfR6vR4rVqxASkoKHn/8cXTr1g2BgYHIz8/H77//ju+//x5dunTBnDlzGtXYAwcOQCaTYfTo0cZtCoUCI0eOxJo1a5CdnY2wsDCL5yYnJ6Nz587GwAUA7dq1Q8+ePbF//35j6Dp58iSKioowduxYs/PHjRuHPXv24OjRo3j44YerXb+srAxKpZLD60TNgOnC8ea4nsvg7icYWTaCqHZWha67F9H/+9//xoULF7B+/XoEBwcbt7dt2xZxcXEYMWIEnn32WSQnJ2Py5MlWNzY9PR3h4eHw8jL/IWcIUpcuXbIYuvR6PS5fvowRI0ZU2xcTE4Pjx49DpVJBqVQiPT0dANC5c2ez46KjoyGVSnHx4sVqoWvChAkoLy+Hp6cnBgwYgFmzZiEwMLDWvuTm5iIvL8/4cUZGRq3HE5HjaO5PLhqYPcHIAqlEdRJlIf2OHTuQkJBgFrhMhYSEICEhAT/99FOjQldeXh6CgoKqbTdsy83NtXhecXExtFptnee2bdsWeXl5kMlkCAgw/43N3d0dvr6+ZkHJx8cHjz76KLp06QJ3d3ecOXMGP/74Iy5cuIC1a9dWC4emtm3bZnERPhE5PtORLt/mPNJ1V4FUIqqdKKErJycHcrm81mPkcjlycnIadR+NRgN39+oLVg331mg0NZ4HoF7najQauLlZ/rTI5XKze4wfP95sf3x8PGJiYvDee+/hxx9/xFNPPVVjX0aPHo3+/fsbP87IyMD7779f4/FE5DjMy0U035Eun1ClsWwEC6QS1U2Ux+xCQkJw6NChGkOPWq3GoUOHEBIS0qj7KBQKVFRUVNuu1WqN+2s6D0C9zlUoFKisrLR4Ha1WW+M9DB566CEEBgbixIkTtR4XHByM6Oho43/t2rWr9XgichycXqwic5PCO7jqye3ibJXFB6mI6A5RQtcjjzyCmzdvYtasWTh06BCKiooAAEVFRTh06BBmzZqFrKwsjBo1qlH3CQoKMpveMzBsq2l609fXF3K5vF7nBgUFQafToaCgwOy4iooKFBcXW5yivFtoaCiKi4vrPI6InBPLRdxhmF6tKK+Eulhr59YQOTZRphcnTZqE69evY+fOnXjrrbcAmJePEAQBw4cPN5Z5sFbHjh1x6tQplJWVma2XSklJMe63RCqVIiIiAqmpqdX2paSkoFWrVlAqq35bjYqKAgCkpqaiX79+xuNSU1Oh1+uN+2siCAKysrLqPI6InJNpuYjm/OSigW8LJW6crfpzUZYKnn4sG0FUE1FGuqRSKRYsWIDly5dj2LBhiIqKQosWLRAVFYVhw4bhH//4BxYsWNDocgrx8fHQ6XTYtm2bcZtWq0ViYiJiY2ONTy5mZ2dXexpw8ODBSE1NNQte165dw6lTpxAfH2/c1rNnT/j6+mLr1q1m52/duhUeHh5mQaywsLBaG7ds2YLCwkL07du3MV0lIgdVdLN5V6K/m2nwLLpVaseWEDk+UV8DFBcXh7i4ODEvaSY2NhYJCQlYs2YNCgsL0bp1ayQlJSErKwvz5883Hrd48WKcPn0aBw8eNG4bN24ctm/fjvnz52PixImQyWTYtGkTAgICMHHiRONxCoUCzz77LD799FO8/fbb6NOnD37//Xfs3r0b06dPh6+vr/HY8ePHY8iQIYiIiIBcLsfZs2exb98+REVFmdUSIyLXUXDjTrAICPe2Y0scg7/J56DwBhfTE9XG6tD1448/YsCAAY1eHN9QCxcuRFhYGHbt2oXS0lJERETgo48+qjPsKZVKLF++HCtXrsTXX39tfPfi7Nmzq1WTHzduHNzc3LBx40YcOXIEoaGhmD17drWnFR966CGcO3cOBw4cgFarRVhYGCZNmoQpU6bAw8ND5J4TkSMoNA1drRm6TINnQWaJHVtC5PgkgpWPmwwePBgSiQSdOnXCgAED0L9/f0RGRordvmYjLS0N06dPx9q1axEdHW3v5hBRDXYvO4FrJ24DACYsHwyfkOY9xSgIAr6ZvhdaVSW8gz0wcUWCvZtE5LCsHulas2YNDh06hCNHjmDdunVYv349WrRogQEDBmDAgAHo1q0bX/xMRC6nMLNqpMtNIYN3kGcdR7s+iUQC/9beuJ1eiNJcNbTllZB7irpyhchlWP2dYagvNW3aNNy6dcsYwL7//nts3rwZPj4+uP/++zFgwAD07t2b021E5PQqtTqU3K4qF+HfygsSKd+1CsAYugCg6GYpQiL97doeIkclyq8jLVu2xBNPPIEnnngCxcXF+OWXX3Do0CEkJycjKSkJcrkcvXr1wsCBA3H//fdXe8UOEZEzKLpZBsOCjIBwH/s2xoGYr+ti6CKqiehjwL6+vhg2bBiGDRsGrVaL3377DYcPH8Yvv/yCo0ePQiqVIjY2Fv/617/EvjURUZMyfXLRvzVrdBmYPlBg+jkiInNNOvEul8tx//334/7774cgCDh37hwOHz6MI0eONOVtiYiaRKFZ6OKTiwbmZSMYuohqYrPVjhKJBF27dkXXrl0xY8YMW92WiEg0rNFlmVegB9w9Zago1xkfNCCi6qwOXR9++KFV5y1YsMDaWxIR2ZUhUMjcpfBu5qUiTBmeYMy5VISSnHJUqCvh7sEnGInuZvV3xc6dO+t9rOE9jBKJhKGLiJySrkKH4uw/n1xs7Q0pn1w0E/Bn6AKqHjgIjvCzc4uIHI/VoWvVqlX1Oi4zMxNffvklbt68ae2tiIjsrihLBUFf9egi13NV53/XYnqGLqLqrA5dsbGxte4vLCzEhg0bsH37dlRUVKBr16544YUXrL0dEZFdFWTy9T+1MXuCka8DIrJI9El3tVqN7777Dhs3boRKpUL79u3x3HPPoX///mLfiojIZvKuFhv/HNCGoetugW3v1C3Lu8rQRWSJaKFLp9Nh27Zt+Oqrr1BQUICQkBDMmTMHw4YN4+uAiMjp5V0tMv45uAOnzu6mDPSAh4871CUVyMsoNq7jJaI7RAld+/fvxxdffIEbN27Ay8sLzz//PB577DEoFAoxLk9EZFeCIBhHujx85VAG8Gfb3SQSCYLa++HG2Vyoi7VQFWjgFcjXvxGZalToOnXqFD7//HOkpaXBzc0NEyZMwFNPPQUfH74eg4hcR1m+GuqSCgBAcHtfjuDUIKi9L26czQUA5F4pYugiuovVoev111/H8ePHIZFIMGzYMDzzzDMIDQ0Vs21ERA7BdD1XUHtfO7bEsQV3uPO5ycsoRrteYXZsDZHjsTp0HTt2DBKJBGFhYcjLy8PHH39c5zkSiQRLly619pZERHaRe4Whqz6C2pmELpPPGRFVadT0oiAIuHXrFm7dulWv4zkkT0TOKC+Doas+fMOUxtcBmX7OiKiK1aFr48aNYraDiMhhGUZt3D3d4BvK1//URCKVIKidL7JSC1Caq4a6RAsPH7m9m0XkMKwOXS1atBCzHUREDqm8WIOyfDWAqlEuCV//UytD6AKq1sK17hps5xYROQ4W0CIiqoXpIvpgTi3WKchkMX3uVU4xEpmyaqTrww8/tPqGfOE1ETkTPrnYMKafozyGLiIzVoWunTt3WtwukUggCEKN2yUSCUMXETmVnD/uVKJn6KpbQCtvyNyl0FXokXu5qO4TiJoRq0LX3Yvo9Xo9VqxYgZSUFDz++OPo1q0bAgMDkZ+fj99//x3ff/89unTpgjlz5ojSaCIiWxAEAdkXq9YnuXu6wZ8vuq6T1E2K4A5+yL5YgOJsFVRFGij9WMGfCLAydN29iP7f//43Lly4gPXr1yM4+M6iybZt2yIuLg4jRozAs88+i+TkZEyePLlxLSYispGS2+UoL9ICAMKi/CHlIvp6CYv2N4bV7LQCdOjDB6+IAJEW0u/YsQMJCQlmgctUSEgIEhIS8NNPP4lxOyIimzAEBwAI6xRgx5Y4F9PPlennkKi5EyV05eTkQC6vvRaLXC5HTk6OGLcjIrIJs9AVzdBVX2FRDF1ElogSukJCQnDo0CFoNBqL+9VqNQ4dOoSQkBAxbkdEZBOGwCCRShAS6Wfn1jgPD185/Fp6AagqLFup1dm5RUSOQZTQ9cgjj+DmzZuYNWsWDh06hKKiqidWioqKcOjQIcyaNQtZWVkYNWqUGLcjImpymrIKFGSWAgAC2/rA3aNRb01rdgwjg3qdYPYEKFFzJspPkUmTJuH69evYuXMn3nrrLQDm5SMEQcDw4cMxadIkMW5HRNTkbqcXAn9WwOHUYsOFdfLHxeRMAFUjhi1jAu3cIiL7EyV0SaVSLFiwAMOGDUNSUhL++OMPlJaWwtvbG5GRkRg6dCh69Oghxq2IiGyCi+gbh4vpiaoTdbw8Li4OcXFxYl6SiMguTINCi07+9muIk/Jr6QUPH3eoSypw+2IhBL3A91ZSs8d3LxIR3aVSo6uaXgTgHewJryBP+zbICUkkEuNol6asAnkZfCUQEUMXEdFdbl3Ih65CDwBo3dVy/UGqW+tudz53mWdy7dgSIsfA0EVEdJfM3+/UFAzvztBlrfBud8oEmX5OiZorhi4iorsYRmUkUgla3xNk59Y4L98wJXzDlACA7PRCaFUVdm4RkX0xdBERmSi5rULRrTIAQGiUP+RKdzu3yLmFd68a7RJ0Am6ez7dza4jsi6GLiMiE6dqj8G6cWmws0+nZzDOcYqTmjaGLiMiEWejqzleXNVbLmEBI3apKRWSeyTUWzSZqjhi6iIj+pKvU4+b5qtDl4eOO4Pa+dm6R83P3cEOL6Kpq9KU55Si6WWbnFhHZD0MXEdGfbp7LQ0V51cuZW3cNZjFPkZhOMV79LduOLSGyL4YuIqI/XT56y/jnDn1b2rElrqVD3xbGP5t+jomaG4YuIiIAlVodrv6WBQBw93RjfS4R+YQoEdrRHwCQf60EBZkl9m0QkZ0wdBERAbh+Osc4tdi+dxjc5DI7t8i1RPS7M3LI0S5qrhi6iIhgHgQi+3FqUWwR97UA/lwi98fRW3yKkZolhi4iava05ZW4duo2gKqnFlt1YRV6sSkDPNAypuopxuIsFfKu8gXY1PwwdBFRs3f1WBZ02qoXXHfo2xJSN/5obAqmI4jph27YsSVE9sGfLETUrAmCgPO7MowfdxzQyo6tcW3t+7aAzL3qn52LB25AW15p5xYR2RZDFxE1a9lpBcapruAOvgiN8rdvg1yYh7fcGGoryiuRfpCjXdS8MHQRUbN2PunOKFeXYe0hkbAgalPqMrS98c/nd12FoOeCemo+GLqIqNkqzS03Vkj39JNXPWFHTSqwrQ9axt5ZUG/6rksiV8fQRUTN1rmkOyMtMQ+2hcydtbls4Z5h7Y1/PrP9MstHULPB0EVEzVJJjgopu6umFmXuUnR+oK2dW9R8tOkZCt8wJQDgVko+R7uo2WDoIqJm6beNF6GvrBph6TKsPZT+Cju3qPmQSiXoNT7K+PGxb1Oh59ouagYYuoio2cm5XIQ/fqmqQK/wdkfcmAg7t6j5iejXEiERfgCAguulSD+YaecWETU9hi4ialb0egFHv04xftzzsY6QK93t2KLmSSKRoM+TnY0fn9iUDnWp1o4tImp6DF1E1Kz8vu0P3L5YCADwDVNyLZcdtYwJRLteoQAAVaEGR744z0X15NIYuoio2bh9qRAnN18CAEgkwKDnu0LGV/7Y1f1TY6HwqhppvHIsCxcPcJqRXBd/2hBRs1BepMH+laeNJSLixkaiRedAO7eKvII8MWD6PcaPj351gS/DJpfF0EVELk9TVoGkD4+j5HY5ACC0oz96PNrRzq0igw59WiA6IRwAUKnRYeeHx1F0q8zOrSISH0MXEbk0TVkFdn38G/IySgAAXkEeGPJiHKQy/vhzJP2mxCK0kz8AQF2sReIHx1CczeBFroU/dYjIZRVklmDrW78YF857+Mox/I3e8A72tG/DqBo3hQxDX78Xge18AABleWpsffMoMn/PsXPLiMTD0EVELkev0yNlTwa2vnUUxVkqAFX1uIYv6A3/Vt52bh3VROHljmELesO/tReAP6eFl/6GY/9JQ4W60s6tI2o8N3s3oKG0Wi3WrVuH3bt3o6SkBJGRkZg2bRp69+5d57k5OTlYuXIljh8/Dr1ejx49emDOnDlo1apVtWO3b9+O7777DllZWQgJCcHjjz+Oxx57rFHXJKKmpdcLuH7qNk78Nx3510qM24Pa+eDBV3rCJ0Rpx9ZRfSj9FBj9bj8krzqDayduAwJw5qfLuHT4Bno9HoXI/q3gJuc7Msk5SQQnK4ry7rvvIjk5GePHj0d4eDh27tyJ1NRULF++HN26davxPJVKhWnTpqGsrAwTJkyAm5sbNm3aBEEQsH79evj5+RmP3bp1K5YtW4bBgwejT58+OHPmDHbt2oXnn38eTz75pFXXrEtaWhqmT5+OtWvXIjo62rpPDlEzJAgCCjJLkXEiGxeTM42L5Q06xYfj/qdj4abgP9TORNAL+H3bZZz8Id34uiagasSy0+BwtLs3DKFR/pBKJXZsJVHDONVIV0pKCvbt24cZM2Zg0qRJAIChQ4di6tSpWLVqFVatWlXjuVu2bEFmZiZWr16NmJgYAEDfvn0xdepUbNy4Ec899xwAQKPR4IsvvkC/fv3w3nvvAQBGjRoFvV6Pr7/+GqNHj4aPj0+DrklEjScIAirKK6Eq0KAoqwxFN8uQc7kIty8VoixPXe34oPa+6Pd0LFpEB9ihtdRYEqkEcWMj0eG+Fvjfv1Nx7eRtAICmtAJnd1zB2R1XoPB2R2hHf4RE+sGvpRe8gz3hE+IJTz8FJAxj5ICcKnQdOHAAMpkMo0ePNm5TKBQYOXIk1qxZg+zsbISFhVk8Nzk5GZ07dzaGIwBo164devbsif379xsD0smTJ1FUVISxY8eanT9u3Djs2bMHR48excMPP9yga9pLUVYZrh7LqvO4eo111nM8VKjPgfUdW63XpcS7n6hjvvW4mJj3q/e1RLxp/S5Vv/sJekCn1aGyQg9dhR66Cl3V/7V6aMoqoC7WorxYYzbiUZPWXYPRZWg7tIkL4T+8LsCvhRcefq0XbqcX4PyuDFz5Xxb0uqq/B5rSClw/nYPrp80X28vcpfD0U8Dd0w1ypRvknm5w93SDzE0KiUwCqUwCmZsUUjcppDIJJFIJJIa/KhLzvzN3thv+JzH7uKbtEv7Vc0jh3UIQ1N7Xbvd3qtCVnp6O8PBweHl5mW03hJ5Lly5ZDF16vR6XL1/GiBEjqu2LiYnB8ePHoVKpoFQqkZ6eDgDo3Lmz2XHR0dGQSqW4ePEiHn744QZd05Lc3Fzk5eUZP87IyKij9w1XdKsMx7+7KPp1iRyJm0KG0Ch/tO0Zina9Qrluy0WFRgUgNCoA/aZocf10DjJOZOPWhXxoSiuqHaur0KM0t9zCVai5U3jLGbrqKy8vD0FBQdW2G7bl5uZaPK+4uBharbbOc9u2bYu8vDzIZDIEBJhPSbi7u8PX19cYlBpyTUu2bduGDRs21NBTIjKQSCXw8JXD01cODx85PP3k8A1TwreFFwLb+SAg3IfrepoRD185oga1RtSg1hAEASW3VcjLKEFJTjlKc8pRkqNCaU451CVaaFWV0FXo7d1kIiOnCl0ajQbu7u7VtsvlcuP+ms4DUK9zNRoN3Nwsf1rkcrnZcfW9piWjR49G//79jR9nZGTg/fffr/F4awR38MNDr/Ss38Ei/pslqc+4ej3vV6/D6juOL1az6vu5qke76v1pr0/bxZzPqO+nVKRPmEQCuMllkMmlkLlLIXOX/fl/KdzkMk4TkkUSiQS+YV7wDfOq8RhdpR4VqkpUqCuhq9RDXylAr9NDrxOgr/zz/3++GgqCYJwRN05kG/7w53z63dvNnkUTzA4lBxTU3seu93eq0KVQKFBRUX0oWavVGvfXdB6Aep2rUChQWWm5HoxWqzU7rr7XtCQ4OBjBwcE17heD0l+BdvdaXuNGRNQcyNykkPnK4eErt3dTiJyrOGpQUJDZOigDw7aaQoyvry/kcnm9zg0KCoJOp0NBQYHZcRUVFSguLjZOHTbkmkREREROFbo6duyIzMxMlJWZv48rJSXFuN8SqVSKiIgIpKamVtuXkpKCVq1aGRe8R0VFAUC1Y1NTU6HX6437G3JNIiIiIqcKXfHx8dDpdNi2bZtxm1arRWJiImJjY41PLmZnZ1d7GnDw4MFITU01C0nXrl3DqVOnEB8fb9zWs2dP+Pr6YuvWrWbnb926FR4eHujXr1+Dr0lERETkVGu6YmNjkZCQgDVr1qCwsBCtW7dGUlISsrKyMH/+fONxixcvxunTp3Hw4EHjtnHjxmH79u2YP38+Jk6cCJlMhk2bNiEgIAATJ040HqdQKPDss8/i008/xdtvv40+ffrg999/x+7duzF9+nT4+vo2+JpEREREThW6AGDhwoUICwvDrl27UFpaioiICHz00UeIi4ur9TylUonly5dj5cqV+Prrr43vSZw9ezb8/f3Njh03bhzc3NywceNGHDlyBKGhoZg9ezbGjx9v9TWJiIioeXO6dy+6Kr57kYiIyLU51ZouIiIiImfF0EVERERkAwxdRERERDbA0EVERERkAwxdRERERDbA0EVERERkAwxdRERERDbgdMVRXZVGowGAaq8vIiIiIsfXrl07eHh41HoMQ5eDyMrKAgC8//77dm4JERERNVR9ipuzIr2DKCwsxLFjx9CyZUvI5XLRrpuRkYH3338fb775Jtq1ayfadR2Fq/cPcP0+unr/ANfvI/vn/Fy9j7boH0e6nIi/vz8efvjhJrt+u3btXPr1Qq7eP8D1++jq/QNcv4/sn/Nz9T7au39cSE9ERERkAwxdRERERDbA0OXigoKCMHXqVAQFBdm7KU3C1fsHuH4fXb1/gOv3kf1zfq7eR0fpHxfSExEREdkAR7qIiIiIbIChi4iIiMgGGLqIiIiIbIChi4iIiMgGWBzVgZw6dQpz5861uG/VqlXo0qWL8eOzZ8/i888/x8WLF+Hl5YWEhARMnz4dSqXS7DytVot169Zh9+7dKCkpQWRkJKZNm4bevXvXq005OTlYuXIljh8/Dr1ejx49emDOnDlo1aqV3ft34cIFJCUl4dSpU8jKyoKvry+6dOmCadOmoU2bNnW2Z+fOnViyZInFfT/++GODn3IRu38NuV5NxPz6NbRN9enjBx98gKSkpBrv9/333yMkJKTG/evXr8eGDRuqbZfL5di7d289emSuvv07duwYfv75Z1y4cAEZGRkIDQ3Fpk2bLJ6n1+vx3XffYcuWLcjPz0d4eDieeuopPPjgg/VqU0lJCT7//HMcPHgQGo0GMTExmDlzplUFHsXuX0ZGBhITE3H8+HHcuHEDnp6e6NSpE5555hl07txZtPY0hNh9vHXrFiZMmGDxen/729/wwAMP1NkmR/4a1vQ9ZPCvf/0LXbt2rXG/2D9Hgfr1Ua1WIzExEYcPH8bly5dRXl6O8PBwjBo1CqNGjYJMJjM7z1G+Dxm6HNBjjz2GmJgYs22tW7c2/jk9PR0vv/wy2rVrh9mzZ+P27dvYuHEjMjMz8fHHH5udt2TJEiQnJ2P8+PEIDw/Hzp07MW/ePCxfvhzdunWrtR0qlQpz585FWVkZnnrqKbi5uWHTpk2YM2cO1q9fDz8/P7v279tvv8XZs2eRkJCAyMhI5OXl4ccff8S0adOwatUqRERE1Ks9zz77LFq2bGm2zdvb26q+idm/+l6vJk319atPm+rbx9GjR+Pee+81u44gCFi2bBlatGhRa+Ay9eqrr8LT09P4sVTauEH8uvq3d+9e/Pzzz+jUqVOd/6isXbsW//d//4dRo0ahc+fOOHz4MBYtWgSJRFLnP9h6vR7z58/HH3/8gYkTJ8LPzw9btmzB3LlzsXbt2nr9ctGU/du+fTt27NiBwYMHY+zYsSgrK8O2bdswY8YMfPzxx9W+tta2xxpifg0B4MEHH8R9991ntq0+odDRv4aDBw9GeHh4te1r1qxBeXl5vcIzIP7PUaD2Pt68eRPLly9Hr169MGHCBCiVShw7dgx///vfcf78efz1r381O89hvg8FchgnT54UBg4cKOzfv7/W41577TVh7NixQmlpqXHbTz/9JAwcOFD43//+Z9x2/vx5YeDAgcK3335r3KZWq4WJEycKL7zwQp3t+b//+z9h4MCBQkpKinHb1atXhfj4eGH16tUN6FkVsft35swZQavVmp177do14YEHHhAWLVpUZ3sSExOFgQMHChcuXGhYR2ogdv/qe72aiP31a0ib6ttHS37//Xdh4MCBwtdff11ne9atWycMHDhQKCgoqE/z61Tf/uXk5AgVFRWCIAjCvHnzhPHjx1s87vbt20JCQoLw97//3bhNr9cLs2bNEh599FGhsrKy1vvs27evWnsKCgqE4cOHC++++279OmVC7P6lpqYKZWVlZtsKCwuFUaNGCTNnzhStPQ0hdh9v3rxZ7edoQzj619CSrKwsYdCgQcLSpUvrPFbsn6OCUL8+FhQUCJcvX662fcmSJcLAgQOF69evG7c50vch13Q5KJVKhcrKymrby8rK8Ntvv+Hhhx+Gl5eXcfvQoUPh6emJ/fv3G7cdOHAAMpkMo0ePNm5TKBQYOXIkzp8/j+zs7FrbkJycjM6dO5v9ptGuXTv07NnT7D7WEKN/Xbt2hbu7u9n5bdq0Qfv27ZGRkdHg9uh0ugb2ovbrNbZ/9blebZry61dbm6zto8HevXshkUjqPexvel9BxLKDtX3Og4OD4eZW90TB4cOHUVlZiXHjxhm3SSQSjB07Fjk5OTh//nyt5x84cACBgYEYNGiQcZu/vz8SEhJw+PBhaLXaevamOjH6Fx0dXW1Jg5+fH7p162bV92BD/4435pr17aOp8vJyVFRUNOgcR/8aWrJv3z4IgoCHHnqowe0R8+eo4ZqW+ujv748OHTpU2z5w4EAAMPv750jfh5xedEBLlixBeXk5ZDIZunXrhhkzZhiHeC9fvgydTldtHtnd3R1RUVFIT083bktPT0d4eLjZP3wAjP8IX7p0CWFhYRbboNfrcfnyZYwYMaLavpiYGBw/fhwqlaraD1xb9s8SQRBQUFCA9u3b17s9c+fORXl5Odzd3dG7d2/MmjXL6iF/QPz+1Xa9mjTl168p+mhQWVmJ/fv345577qk2VVGbCRMmoLy8HJ6enhgwYABmzZqFwMBAq/oGWPc5tyQ9PR2enp5o166d2XbD92B6enqt0/wXL15EVFRUtenSmJgY/PTTT7h+/ToiIyMb3C6x+leT/Pz8Bk1fN0V7xL7mhg0bsGrVKkgkEkRHR2PatGno06dPnec549dwz549CA0NRffu3et9jtg/RwHr+pifnw8AZn//HOn7kKHLgbi5uWHw4MG477774Ofnh6tXr2Ljxo2YPXs2PvvsM3Tq1Al5eXkAYHGOPigoCL///rvx47y8vBqPA4Dc3Nwa21JcXAytVlvn+W3btrVb/yzZs2cPcnJy8Mwzz9TZHoVCgeHDh6NHjx7w8vJCWloaNm3ahJkzZ+KLL76oMZDaqn/1uV5NmuLr1xR9vNuxY8dQVFRU79+wfXx88Oijj6JLly5wd3fHmTNn8OOPP+LChQtYu3ZttV84xOhfQ+Tl5SEgIAASicRse32+B4Gqf0As/cNnOD8vL69B/2CL3T9Lfv/9d5w/fx5TpkyxS3vEvqZUKkXv3r0xaNAgBAcH4+bNm9i0aRPmzZuHJUuWoF+/frWe72xfwytXruCPP/7ApEmTqv29tUTsn6OA9X2sqKjAf//7X7Rs2dIsnDnS9yFDlwPp2rWr2VMiAwYMQHx8PP7f//t/WLNmDT755BNoNBoAqDatBlQ9sWU6zKnRaGo8zrC/JnXdp67zLRG7f3fLyMjAp59+ii5dumDYsGF1tmfIkCEYMmSI8eOBAweiT58+mDNnDr755hu89tprDeme6P2rz/Vq0hRfv/q2qTFfw71798LNzQ0JCQn1as/48ePNPo6Pj0dMTAzee+89/Pjjj3jqqafqdR2DxnzOLWnM96Bhv+FYa86/m9j9u1tBQQEWLVqEli1bYtKkSXZpj9jXDAsLw7Jly8y2DR06FFOmTMG//vWvOkOXs30N9+zZAwB4+OGH63W82D9HAev7+I9//ANXr17FRx99ZDa16kjfh1zT5eDCw8MxYMAAnDp1CjqdDgqFAgAsrivQarVmfzEUCkWNxxn216Su+9R1fn01pn+m8vLyMH/+fHh5eeG9996r9rhwfXXr1g2xsbE4ceKEVeffTaz+1XS9mtjq62epTdb2UaVS4fDhw+jTp0+jnqx86KGHEBgY2GRfw4ZozPegYb+lkNqU34PWKi8vx/z581FeXo4PPvjA6qlrsdrTlNf09fXF8OHDce3aNdy+fbvWY53paygIAvbu3YsOHTpYNeVpIPbPUaDuPv7nP//BTz/9hGeffbZaEHak70OGLicQGhqKiooKqNVqs+HMu+Xl5SE4ONj4cVBQUI3HATA79m6+vr6Qy+VWn98Q1vbPoLS0FPPmzUNpaSk++eSTRrcrNDQUxcXFjbrG3ddrTP9qu15NbPn1u7tN1vbx8OHDUKvVDV68W1N7mupr2BBBQUHIz8+vtsC/vl+DwMDAWr+G1tRAssTa/hlUVFTgzTffxOXLl/HBBx/Uu1xLU7XHFtcMDQ0FUFW/qTbO8jUEqmrrZWVlOeT3oOGalvq4c+dOfP755xgzZgyefvrpauc50vchQ5cTuHnzJuRyOTw9PdGhQwfIZDKkpaWZHVNRUYH09HR07NjRuK1jx47IzMxEWVmZ2bEpKSnG/TWRSqWIiIhAampqtX0pKSlo1aqV1b/J3s3a/gFVw7oLFizA9evX8eGHHzZoAX1t7fH392/0dUyvZ23/6rpeTWz59bu7Tdb2cc+ePfD09ET//v0b1RZBEJCVldVkX8OG6NixI9RqdbUn+erzPQjA+OCBXq83237hwgV4eHg0eqGygbX9A6oe2li8eDFOnjyJt956C3FxcXZtj62uefPmTQCoc1TWGb6GBnv27IFEIhEldIn9c9Rwzbv7eOjQISxduhSDBg3Cyy+/bPE8R/o+ZOhyIIWFhdW2Xbp0CUeOHEHv3r0hlUrh7e2Ne++9F7t374ZKpTIet2vXLpSXl5uthYmPj4dOp8O2bduM27RaLRITExEbG2u2wDE7O7vaX8jBgwcjNTXV7B/ua9eu4dSpU4iPj7d7/3Q6Hd555x2cP38e7777Lu65554a752bm4uMjAyzR48ttefo0aNIS0ur11NJTd2/+lzPwBZfv6boo+l1f/vtNwwaNAgeHh4W722pj5bas2XLFhQWFqJv374N61wN16vpc14fAwYMgJubG3788UfjNkEQsHXrVoSEhJj9nbX0d3Tw4MHIz8/HwYMHzdq4f/9+3H///XVOR99N7P4BVetofv75Z7z88ssYPHhwrffOyMgwG6VoivaIfU1L18vJyUFiYiIiIyPNRkmc9WsIVD05nJycjK5du9a4+N0WP0druqalPp4+fRrvvvsuunXrhrfeeqvGvjvS9yEX0juQv/3tb1AoFLjnnnsQEBCAq1ev4qeffoKHhweef/5543HTpk3DrFmzMGfOHIwePdpY7bt3795m/9DExsYiISEBa9asQWFhIVq3bo2kpCRkZWVh/vz5ZvdevHgxTp8+bfaXaty4cdi+fTvmz5+PiRMnQiaTYdOmTQgICMDEiRPt3r9//etfOHLkCO6//36UlJRg9+7dZvczXQi6Zs0aJCUlYePGjcZSBDNmzECnTp0QHR0NLy8vXLx4EYmJiQgNDcVf/vIXu/evvtcDbPP1a4o+Guzbtw86na7W37At9XH8+PEYMmQIIiIiIJfLcfbsWezbtw9RUVFm9enE7t8ff/yBw4cPAwBu3LiB0tJSfPXVVwCqfms2jNaFhoZi/Pjx+M9//oPKykrExMTg0KFDOHPmDN566y2ztYeW/o7Gx8dj8+bNWLJkCa5evWqshK3X6+v1hG5T92/Tpk3YsmULunTpAg8Pj2rfgwMHDjSOSvzwww/YsGEDli9fjh49ejSoPfbs46pVq3Djxg306tULwcHByMrKwrZt26BWq/Hiiy+a3dsZv4YG9Xly2BY/R+vbx6ysLCxcuBASiQTx8fFITk42u0ZkZKRxXZojfR8ydDmQgQMHYs+ePdi0aRPKysrg7++PQYMGYerUqWavaYiOjsbf//53fP755/jnP/8JpVKJkSNHWvwhtXDhQoSFhWHXrl0oLS1FREQEPvroo3pNASiVSixfvhwrV67E119/bXx33+zZs60aNha7f5cuXQIA/PLLL/jll1+q3a+up2+GDBmCX3/9FcePHzeuRRo1ahSmTp1qVY0nsftX3+vVROyvX1P00WDv3r0ICAhAr169GtSehx56COfOncOBAweg1WoRFhaGSZMmYcqUKTWOmInRv4sXL2LdunVm5xo+HjZsmNk/aM8//zx8fHywbds2JCUlITw8HG+++Wa9pnBkMhmWLl2Kzz77DN9//z00Gg06d+6MN954o8HlPpqif4bvwfPnz1ssMLlx48Zap7sa+3fcFn3s3bs3bt68iR9//BElJSXw9vZGt27dMGXKlHq9d8/Rv4YGe/bsadCTwwZi/xytbx9v3bqF0tJSAMCnn35a7RpTp041exjAUb4PJYKYJZyJiIiIyCKu6SIiIiKyAYYuIiIiIhtg6CIiIiKyAYYuIiIiIhtg6CIiIiKyAYYuIiIiIhtg6CIiIiKyAYYuIiIiIhtg6CIiIiKyAYYuIiIHNWjQILP/NBqNcd/OnTsxaNAg7Ny5044tvGPr1q1mbf3ggw/s3SQih8N3LxKRTd26dQsTJkyo9ZgWLVpg06ZNNmqRY2vRogWGDRsGAGYv5m0Kx44dw2uvvYbevXtj2bJltR67aNEi7N27F2+99RYeeughREdHY+rUqSgtLcXmzZubtJ1Ezoqhi4jsonXr1jW+bNbb29vGrXFcLVq0wDPPPGOTe917770ICwvDiRMnkJ2djbCwMIvHlZaW4tChQ/D29sagQYMAAJ07d0bnzp1x69Ythi6iGjB0EZFdtG7d2mZhgupHKpVi+PDh2LBhA5KSkvD0009bPG7v3r3QaDQYMWIEFAqFjVtJ5Ly4pouIHN6gQYPw4osvIj8/H4sXL8aoUaPw4IMP4oUXXsCpU6csnqNSqbB+/XpMmTIFDz74IEaMGIFXX30VZ86cqXbsiy++aFwztXbtWkycOBEJCQlYv3698ZgDBw5g+vTpePDBBzFmzBgsXboUJSUleOKJJ/DEE08Yj3vvvfcwaNAgpKSkWGzXunXrMGjQIOzdu7eRnxXLbt++jaeffhoPPvggkpOTjdsLCgrwz3/+E5MmTcIDDzyAUaNG4c0338Tly5fNzh8xYgQkEgl27twJQRAs3iMxMREAMHLkyCbpA5GrYugiIqdQWlqKWbNm4erVq3j44YcxaNAgpKWl4bXXXqsWHIqLizFjxgxs2LABPj4+GDNmDAYNGoSLFy9i7ty5OHTokMV7vPXWW0hKSkKPHj3w+OOPo2XLlgCAHTt24K233kJmZiaGDh2KYcOG4fz583jllVdQWVlpdo3Ro0cbz7mbTqdDYmIi/Pz8jNNyYrp69SpmzpyJ27dv4+OPP0Z8fDwA4MaNG5g2bRr++9//olWrVnj00Udx33334dixY5gxY4ZZQGzRogV69eqFmzdvWgy0ly9fRmpqKqKiotCpUyfR+0Dkyji9SER2cePGDbORJFNdunRB3759zbZdunQJY8eOxUsvvQSptOr3xZ49e2Lp0qX44Ycf8NprrxmP/cc//oErV65g3rx5eOSRR4zbCwoKMH36dHz88cfo06dPtamxvLw8fPnll/D19TVuKykpwYoVK+Dp6Yk1a9agTZs2AIDp06fjtddeQ1paGlq0aGE8vnv37mjfvj327duH2bNnw9PT07jv2LFjyMnJwfjx4yGXyxv6KavV+fPnMX/+fLi5ueGf//wnOnbsaNy3ePFi5Ofn45NPPkGfPn2M26dMmYLp06dj6dKl2LBhg3H7yJEj8dtvvyExMRE9e/Y0uw9HuYisx5EuIrKLGzduYMOGDRb/+9///lfteE9PT7zwwgvGwAUAw4YNg0wmQ2pqqnFbYWEh9u/fj549e5oFLgAICAjApEmTUFhYiBMnTlS7x//7f//PLHABwOHDh1FeXo4RI0YYAxcAuLm5Ydq0aRb7Nnr0aKhUKuzbt89s+/bt2wEAo0aNqunTYpWjR4/i5Zdfho+PDz777DOzwHXx4kWcO3cOQ4cONQtcANCmTRs88sgjuHz5stlo4cCBA+Hn54cDBw6grKzMuL2yshK7d++GXC6v8SEIIqoZR7qIyC769OmDTz75pN7Hh4eHQ6lUmm1zc3NDYGAgSktLjdtSU1Oh0+lQUVFhcSQtMzMTAJCRkYH777/fbF9MTEy14//44w8AQLdu3arti42NtVjGYejQoVi9ejW2b99uDH75+fn45ZdfcM8996B9+/Z19Lb+9u/fj+PHjyMyMhIff/wxAgICzPYbpg4LCgosfj6uXbtm/H9ERAQAGEPV5s2bsXfvXowZMwYAcOTIERQWFuLBBx+Ej4+PaH0gai4YuojIKXh5eVncLpPJoNfrjR8XFxcDAM6ePYuzZ8/WeD21Wl1tW2BgYLVthpGeu8MMUPW0n5+fX7XtPj4+SEhIQFJSEi5fvoyIiAjs3LkTOp1O9FGu8+fPQ6fToVu3bhbbaPh8HD16FEePHq3xOuXl5WYfjxw5Eps3b0ZiYqIxdHFqkahxGLqIyKUYwtmECRMwa9asBp0rkUhqvF5BQUG1fXq9HkVFRQgJCam2b8yYMUhKSsJPP/2EuXPnYseOHfDy8kJCQkKD2lSX5557DocPH8bmzZshk8mq9dnQ/rlz5+Kxxx6r93UjIyPRuXNnXLhwAVeuXIGPjw+OHTuGli1bVlvnRUT1wzVdRORSOnfuDIlEgvPnz4tyvcjISACwOGp24cIF6HQ6i+d16dIFkZGR2LNnD44dO4bMzEw89NBD8PDwEKVdBnK5HIsXL0a/fv2wceNGrFy50my/YcrUms+HYURrx44d2LVrF3Q6nbGkBBE1HEMXEbmUoKAgJCQk4Ny5c/jPf/5jsdZUSkqKxelFSwYMGABPT0/s2LEDN27cMG6vrKzEunXraj139OjRKC4uxocffggA1Rb2i0Uul+P999/H/fffj02bNuGf//yncV9sbCxiY2Oxb9++agv7garRutOnT1u87oMPPggPDw/s3r0biYmJkEqlxlcSEVHDcXqRiOyitpIRAPDkk09aXe38lVdewfXr17Fq1Srs2rULXbp0gbe3N3JycpCamorMzEz8+OOP9Rp18vHxwezZs/Hxxx9j+vTpGDJkCLy8vPDrr79CLpcjODi4xpGfhx9+GJ9//jlyc3MRHR3dpHWt3N3d8d577+Htt9/Gf//7XwiCgBdffBEA8Pbbb+Oll17Cu+++i82bNyMqKgoKhQK3b9/GuXPnUFRUZLFYq5eXFwYPHoxdu3ahsLAQffv2rfHVQERUN4YuIrILQ8mImowfP97q0OXr64vPPvsMP/zwA37++Wfs3bsXer0egYGB6NixI55++mmLC+BrMmrUKPj4+OCbb75BUlISvLy80L9/f7zwwgsYP348WrdubfE8Ly8vDBw4ELt3726yUS5ThuD1t7/9DZs3b4YgCJg7dy5atWqFdevWYePGjTh06BB27twJqVSKoKAgdO/e3VhE1ZKRI0di165dAKqq1ROR9SRCTe95ICKiWmVmZmLy5MlISEjAu+++a/GYp59+GllZWfjhhx9qfAKzJoMGDUJcXBxWrFghRnNt4tatW5gwYQKGDRuGhQsX2rs5RA6FI11ERHUoKSmBQqEwqyKv0WiMi9YHDhxo8bxff/0VV65cwahRoxocuAxOnz5tfGXQnj17HPYF01u3bsWyZcvs3Qwih8bQRURUh9OnT+Ojjz5C7969ERoaiqKiIpw8eRJZWVno2bMnhgwZYnb8li1bcPv2bWzfvh1yuRxPPvmkVfedOnWq2ceWCrE6iujoaLP2RkVF2a8xRA6K04tERHW4fv061q1bh3PnzqGwsBAA0Lp1awwZMgQTJ06sNvr0xBNPICcnB23atMELL7xQrfI9ETVPDF1ERERENsA6XUREREQ2wNBFREREZAMMXUREREQ2wNBFREREZAMMXUREREQ2wNBFREREZAMMXUREREQ2wNBFREREZAP/Hw0zz2XqfaxxAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG2CAYAAACu3oj0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoIElEQVR4nO3deVyU5f4//tcsDAzbgICCCu65Jy6lprhramaLPeyYaamorWYetVMZmnnM6iTf+pXkQcTsk9WpNC23MrEs99IsFVeEXFDWYRkGmJn79wfO7YwMCMM9K6/n4+HjDPd93fd1XcO57e11Xff7kgmCIICIiIiIHE7u6gYQERERNRYMvIiIiIichIEXERERkZMw8CIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy83odfrcfr0aej1elc3hYiIiByEgZebyMzMxMyZM5GZmenqphAREZGDMPAiIiIichIGXkREREROwsCLiIiIyEkYeBERERE5idLVDSAiIiLnMhqNqKysdHUzPIqPjw8UCkWD78PAi4iIqBEpKSnBpUuXIAiCq5viUWQyGVq2bInAwMAG3YeBFxERUSNhNBpx6dIl+Pv7IyIiAjKZzNVN8giCICAnJweXLl1Chw4dGjTyxcCLiIiokaisrIQgCIiIiIBarXZ1czxKREQELl68iMrKygYFXlxcT0RE1MhwpKv+pPrOGHgREREROQkDLyIiInKZ1q1bo1OnToiNjUXnzp3x2GOPobS01O77rVu3DmfOnKnx/IEDB9C9e3f07NkTO3fuxNixY3H+/Pk6XSsFBl5ERETkUl999RWOHTuGkydPoqioCOvWrbP7XrcLnj7++GNMnToVR48exb333ott27ahXbt2dbpWClxcT0RE1Eh98+qv0GnLHXZ/f40vHvz3gDqXLy8vR2lpKUJDQ8Vj//nPf/C///0PBoMBkZGRWL16NaKjo/Htt9/i1VdfhVwuh8FgwL///W/k5OTgyJEjmDNnDhYtWoTly5dj7Nix4r1WrFiBL774Av7+/vj000+xZ88exMbG4rvvvsOBAwdqvVYqDLyIiIgaKZ22HLp8xwVedfXII4/Az88PGRkZ6N27NyZOnAgA2LBhA86cOYP9+/dDoVDgk08+wXPPPYfNmzdj0aJF+Oijj3DPPffAZDKhqKgIISEh+L//+z/Mnz8f48aNq1bPv/71L6Snp6NPnz547rnnrM7Fx8fXeq1UGHgREXmoMm05Lh3PRXTPCPgFqlzdHPJA/hpft7j/V199hW7dusFgMGD27Nl46aWX8O677+Kbb77BkSNH0Lt3bwBVecjMqRyGDx+OuXPn4pFHHsGoUaMQGxvrqG5IioEXEZEHKrxSgq1vHESZtgKB4X6477V+CIpgXiaqn/pMAzqDUqnEhAkTsGDBArz77rsQBAGLFi3C9OnTq5VduXIlTpw4gbS0NDzxxBOYPHkyFi5c6IJW1w8X1xMReRhtdim2/fsQyrQVAICSXD22LTuI0rwyF7eMqOF2796Njh07AgDGjx+PVatWIT8/H0BVAtijR48CANLT09G1a1c899xzePrpp3HgwAEAQHBwMLRarV11N+TaumLgRUTkQQwVRux48zB0BdbrcopzyrDjrSMwGUwuahmR/R555BHExsaia9euOHXqFN577z0AwJQpU/D4449jyJAh6NGjB2JjY5GWlgYAePnll9G1a1f07NkTn3zyCZYsWQIAmDVrFpYuXYrY2Fhs27atXu1oyLV1JRO4S6ZbOH36NGbOnInk5GQx0iciutWFA1ex+/1jAIDQ6EAMebYHfkw8iqJrOgDA6H/1Qcs7I1zYQnJner0eGRkZaNOmDfz8/FzdHI8i1XfHES8iIg+ScShb/Nzv8c4IiwnGXZNu/mMt4+A1VzSLiOqIgRcRkYcwlBvx99EcAIBvoA+iujQBAET3iIDSt+pNr8wj2TAZOd1I5K4YeBEReYi//8iBodwIAGh9VzPIFVV/hSt9FYiOrZpe1BdX4uqpfJe1kTwDVxnVn1TfGQMvIiIPcdFimrHN3ZFW59r0vflzxsFsENlizoFVUVHh4pZ4HvN3Zv4O7cU8XkREHsBQYUTW79cBAL4BPmjeNczqfHRsBBQ+chgrTbh4+BrumdYVcrnMFU0lN6ZUKuHv74+cnBz4+PhALuf4S12YTCbk5OTA398fSmXDQicGXkREHuDyn7mo1FdNM8b0bgq50vo/mD5+SrSMjUDm4WvQF1Xg2ul8RHUOs3UrasRkMhmioqKQkZGBzMxMVzfHo8jlcsTExEAma9g/aBh4ERF5gOzTBeLnVr2b2SzTqndTZB6+JpZn4EW2qFQqdOjQgdON9aRSqSQZIWTgRUTkAXIv3Mym3bS9xmaZpu1DLMoXObpJ5MHkcjnzeLkIJ3eJiNycYBKQm1EVSPk38YV/qO3/YGoiA+Cjrlr4axmoEZH7YOBFROTmiq7pUFlmAABEtLE92gUAMrkM4TfOl+broSssr7EsEbkGAy8iIjeXYzF6Fd625sALgBh4AUBuBke9iNwNAy8iIjdnOW0YXsuIV9X5YJvXEZF7YOBFROTmLEeuLAMrWyxHxMzrwojIfTDwIiJyYyaTgLyLVQFUYLgf1BrfWssHN/OHyr/qhXWOeBG5HwZeRERuTHu1VEycertpRqAqQaa5nK6wHKUFeoe2j4jqh4EXEZEby63Hwnpb5TjqReReGHgREbkxewKviLY314HlnGfgReROGHgREbmx/L+Lxc/hrWpfWG8W1vpmgFZwqUTyNhGR/Rh4ERG5Me3VUgCAX5AP/IJVdbomMEINhY/8xvUMvIjcCQMvIiI3VVFmgK6gKvt8cFRAna+Ty2UIbuYPACjK1sFkNDmkfURUfwy8iIjcVFF2qfg5pB6BFwBobpQ3GQWU5JZJ2i4ish8DLyIiN2WeZgRuBlJ1ZVlee6W0lpJE5EwMvIiI3FThlQYEXs1vli+8ysCLyF0oXd2A+tLpdFizZg3S0tJQXFyMmJgYTJ48GcOHD7/ttQUFBUhKSsL+/fuh1+vRvn17xMfHo3fv3mKZ0tJSfP311zhy5AiysrJQVlaGyMhIjBo1Co888gh8fa2zRhsMBnzyySfYvn078vLyEBUVhYceeggTJkyQvO9E1LhYTjXWO/CKtBjxYuBF5DY8LvBatGgR0tPTMXv2bERHR2PXrl14/fXXYTKZMHLkyBqvq6iowNy5c1FSUoLnn38eoaGh2LRpE+bPn4/ExETExsYCAK5du4Yvv/wS9957LyZOnAi1Wo3jx48jNTUVR44cwcqVKyGTycT7rly5Et9//z1mzJiBTp064dChQ3j//feh0+kwZcoUR38dROTFzCNeMhnExfJ1ZTnixcCLyH14VOC1f/9+HDlyBAkJCRgxYgQAoFevXsjOzkZSUhKGDRsGhUJh89qtW7ciIyMDq1atQrdu3QAAPXv2xPTp05GUlITVq1cDAKKiovC///0ParVavLZ3797w8/NDUlIS/vzzT9x5550AgIyMDGzduhUzZ87EpEmTxHsWFRVh/fr1eOCBBxAcXLe8O0RElgRBEEe8qtJD2P67rSZ+gSr4BflAX1wJbTYDLyJ34VFrvPbu3Qu1Wo0hQ4ZYHR87dixyc3Nx8uTJWq+NiYkRgy4AUCqVGDVqFE6dOoWcnBwAgFqttgq6zDp37gwAuH79utU9BUHAmDFjrMqOGTMG5eXlOHjwYL37SEQEVO2zaN6jURMVaNc9zCkodPnlqNQbJGsbEdnPowKvjIwMtGrVCkql9UBdu3btxPM1uXDhgliuvtcCwO+//w4AaNOmjVV7QkJCEBYWVu975ubm4vTp0+KfzMzMWusnosbF8k3EkOb1W98lXhfF6UYid+NRU41arRbNmzevdjwoKAgAUFRUVOO1RUVFYrn6Xnv+/Hl89tlniIuLswretFqtzalEtVoNHx8faLU175G2ZcsWrFu3rsbzRNS4WU4PBkfWb32XmeaWwCu8Td32eiQix/GowAuA1cJ2Ka+t6dzVq1fx0ksvoWnTpnjppZckq2/8+PEYMGCA+HNmZiaWLVtWr/sTkfeyHvGyb6rRcoqSI15E7sGjAi+NRmNzFKm4uGoT2doWsgcHB9sc1TJfa2s0LDs7Gy+88AIUCgUSExOr3V+j0eDcuXPVrisrK0NlZWWt7QkPD0d4eHiN54mocWtI8tSb190cKWPgReQePGqNV9u2bZGZmQmDwXqR6IULFwBYr7+yde358+erHTcfa9u2rdXx7OxszJkzBwDw3nvvoWnTpjbvWVhYiLy8vHq3h4ioNuZASemrgH+o721K2xbczB/mgfdCZq8ncgseFXjFxcWhrKwMP/30k9XxHTt2IDw8HF26dKnx2kGDBiErK8vqzUeDwYAffvgBXbp0sRp9unbtGubMmQOTyYT/9//+HyIjI23ec+DAgZDJZNixY4fV8e3bt8PX1xd9+/a1p5tE1MiZjCYU39hfMTjS3+4lFgofBQLDq97SLr6uk6x9RGQ/j5pq7NevH/r06YOVK1dCp9OhRYsW+PHHH3Hw4EEsWrRIzOG1YsUK7Ny5E5999pkYNI0dOxabNm1CQkICZs+eLSZQzcrKQmJiolhHQUEBXnjhBeTn52PhwoUoKChAQUGBeD4iIkIc/WrTpg3uu+8+pKamQi6Xo3Pnzjh8+DC+/fZbxMfHM4cXEdlFV1AOwSgAAIIi7FtYbxbU1B/FOWWo0BlQXloJ3wAfKZpIRHbyqMALAJYtW4bk5GSkpKSIWwYtXrzYassgk8kEo9EIQRDEYyqVComJiUhKSsJ7770HvV6PDh064J133hGz1gPAxYsXceXKFbGuWz355JOYPn26+PO8efMQHh6OjRs3Ij8/H5GRkZgzZw63DCIiuxXnlImfA8P9GnQvy+tLcssYeBG5mEywjE7IZU6fPo2ZM2ciOTkZHTt2dHVziMiFzu69jJ+SjgMA+k3phG5j7F8v+vvGs/j9q6qXgEb+sxda9W4mSRuJyD4etcaLiKgxKLEa8WrgVKPF9ZYjaUTkGnZNNd76BqA95s6dK741SEREN5kX1gNAUET1LczqI9Di+hIGXkQuZ1fgdfHiRWg0GoSEhNhVaVZWFgoLC+26lojI21mPeDUw8LK43jKgIyLXsHtx/YsvvoiEhAS7rpXLOcNJRFSTkhsBko9aCVVAw96BCmjiC5lcBsEkcMSLyA0wAiIiciMmkyAGXkER6gZtkwYAcoUcAWFVbzaWcMSLyOXs+qfU2bNn0aRJE7srbej1RETeqqxAD9ONHF6BDVzfZRYUoUZJThnKSypRoauEyp8pJYhcxa7Aq127dg2qtKHXExF5q2IJ13fZuk9Jrh5NYhh4EbkKpxqJiNyI1RuNDgi8inO4dRCRKzHwIiJyI5brsKScarx5f70k9yQi+0gaeBUUFGD9+vVS3pKIqFGxfPOwoTm8zKxyeXGBPZFLSRp4ZWVlYdq0aVLekoioUXHEGq8gTjUSuY16La7Pysqq9bx5c2kiIrKPecTLx08B30BpFsEHNPGDTAYIArPXE7lavQKv1q1b15pTRhCEBuecISJqrASTgJK8qsAoUIIcXmZyZVUur5JcPacaiVysXoFXaGgoli9fjiFDhtg8f+rUKUyYMEGKdhERNTo6bTlMhhs5vCSaZjQLDFejJFcPfXElKvUG+Pg1LCM+EdmnXk9e7969kZOTg44dO9o8r9frIQiCJA0jImpspNyj8VZV9yuoqie3DKEtgyS9PxHVTb0Cr6effhqlpaU1no+JiUFqamqDG0VE1BjpCm6megi8sc2PVAKa3LxfaUE5Ay8iF6lX4PXQQw/Vej40NBRPPPFEgxpERNRYlebfDLz8m0gceFkEcro85vIichUmUCUichOl+eXi5wCpAy/LEa98Bl5ErtLgwEuhUNw2zQQREd1eqcVIFAMvIu/U4MCLi+mJiKRhGRAx8CLyTpxqJCJyE+aAyDfQB0qVQtJ7+wWpIFfIrOohIudj4EVE5AYEkyC+1Rgg8RuNACCTy8QF+wy8iFyHgRcRkRsoK66AyVi1dCMgVPrAC7g53VheUglDhdEhdRBR7Rh4ERG5AZ0DF9bbui9HvYhcg4EXEZEbcOTCelv3ZeBF5BoMvIiI3AADL6LGocGB16uvvoqQkBAJmkJE1HhZZa13wOJ6AAho4it+1jHwInIJu7enNxgMUCqVeOONN6RsDxFRo+T0ES9uG0TkEnaPeDVv3hzz58/HqVOnpGwPEVGjxKlGosbB7sBLq9Vi5cqV6NatG+655x6kpKSgpKREyrYRETUa5kDIR62ESm33ZESt1CG+kMms6yMi57I78Lp69SoSExPRvXt3HDhwALNmzUJUVBRmzJiBX375Rco2EhF5NUEQxEDIch2W1OQKOdShVfdn4EXkGnYHXk2aNMELL7yAY8eO4ciRI3j66aehUqmQmpqKwYMHo3PnznjnnXdw7do1KdtLROR1yksrYawwAXDcNKOZ+f5lRRUwGkwOrYuIqpMknUSvXr3wwQcf4OrVq9iwYQOGDx+Os2fP4l//+heio6Px0EMP4bvvvoPJxIeciOhWuvxy8bPDAy9zVnwB0BWU116YiCQnaR4vlUqFf/zjH/j+++9x8eJFLFmyBNHR0di8eTMeeOABREdHS1kdEZFXcMbCelv353QjkfM5LIFqy5Yt8dprr2Hbtm0YMGAABEFAdna2o6ojIvJYLgu88socWhcRVeeQV2dKS0vxv//9D2vXrsW+ffsgCAL8/f3xyCOPOKI6IiKPZpU81UEbZIv3twi8ONVI5HySBl579+7F2rVr8dVXX0Gn00EQBNx1112YMWMGJk2ahKCgICmrIyLyCmWFNwMgfwe+1QgA/iEW2esLGXgROVuDA6/Lly/j448/xrp163D+/HkIgoCwsDDEx8djxowZ6NatmxTtJCLyWqUFFiNeIQ4e8WLgReRSdgde//vf/5Camopdu3bBaDRCLpdj1KhRmD59Oh588EH4+PhI2U4iIq9lnvKTyWXwC1Y5tC7/0JuBVxkDLyKnszvw+sc//gEAaN26NaZNm4Zp06ahZcuWkjWMiKixMAdAao0KcrnMoXX5qJVQqOQwVpigK+RbjUTO1qDAa8aMGRg+fLiU7SEialRMRhPKtFWBl6MX1gOATCaDf4gviq+XcXE9kQvYHXht2LBBynYQETVKZUUVEISqz5bTgI7kH+KH4utlqNAZYKgwQqlSOKVeIpIwj5fBYEBiYiLuvvtuBAcHQ6m8GdMdO3YMzzzzDM6cOSNVdUREXqHMYtTJcuG7I1nWw3VeRM4lSeBVVlaGoUOHYv78+cjMzERwcDAE8z/hALRp0wapqalYv369FNUREXkNqzcanTTipQ7lm41EriJJ4LV8+XL8+uuvePPNN5GdnY34+Hir8xqNBoMHD8bOnTulqI6IyGtY5fBycCqJm/Uw8CJyFUkCry+++AJDhgzBwoULIZPJIJNVfyunbdu2yMrKkqI6IiKvUWo51ei0NV4WgRcX2BM5lSSBV1ZWFu66665aywQHB0Or1UpRHRGR19C5OvDiiBeRU0kSeAUFBSEnJ6fWMufPn0dERIQU1REReQ3LXFrOmmpUWyVRZS4vImeSJPDq168fvv322xpHtC5duoRt27Zh0KBBUlRHROQ1nJm13owjXkSuI0ngtWDBAuTn52PEiBHYt28fDAYDAECn0+HHH3/EqFGjUFlZiXnz5klRHRGR1zAHPuoQx2etN/MLVEGmkFnVT0TO0eBNsgFg0KBB+PDDDzFnzhzExcWJx4OCggAACoUCq1atQu/evaWojojIK5iMJujNWeudNM0IVI2u+Wt8UZqv5+J6IieTJPACgKeeegqDBw/GRx99hIMHDyI/Px/BwcHo27cvnnnmGXTt2lWqqoiIvIIrstab+YdUBV764gqYjCbIFZLl0yaiWkgWeAFA586d8d5770l5SyIir6VzQdZ6M3GBvQCUaSsQ0MR5I25EjZlT/4ljMpmcWR0RkVvTuSBrvVgfF9gTuYQkgdeaNWtuW8ZoNOKxxx6TojoiIq9gGfD4hzp3xMk6iSpTShA5iySB19NPP43NmzfXeF4QBEyePBlffvmlFNUREXkFV041cqNsIteQLI/XpEmTsHfv3mrnzEHX//73Pzz11FNSVEdE5BVckbXeTM2pRiKXkCTw+u6779CuXTuMHz8ef/75p3hcEARMmTIFn3/+OWbPno0PP/xQiuqIiLyCK7LWi/VZTG0y8CJyHkkCL41Gg507d0Kj0WD06NG4ePEiBEHA448/jg0bNmDWrFlISkqSoioiIq9hnuKTyeC0rPVmXFxP5BqSvdXYvHlzfP/996ioqMCoUaMwadIkfPbZZ4iPj8dHH30kVTVERF5DdyN5qp/G12lZ683UGhVwo8oyJlElchpJ00nccccd2L59O7Kzs/Hll19ixowZ+O9//ytlFUREXkEwCSjTVgBw/sJ6AJAr5FDfGGXjiBeR89iVQHXp0qW1nr/77rtx7NgxtGjRwqqsTCbDa6+9Zk+VREReRV9SAcFYlbZerXF+4AVUBXxl2grotOUQTAJkTh51I2qM7Aq8lixZUqdytwZoDLyIiKqUFVaIn/1DnLu+y0wd4gdkFkMwCtCXVEAd7JoAkKgxsSvwSktLk7oddabT6bBmzRqkpaWhuLgYMTExmDx5MoYPH37bawsKCpCUlIT9+/dDr9ejffv2iI+Pr7Z59759+5CWloYzZ84gKysLRqMRP//8c7X7Xb16FY8++qjNuhYvXlynNhFR42Re3wW4cMQr1HqBPQMvIsezK/AaPHiw1O2os0WLFiE9PR2zZ89GdHQ0du3ahddffx0mkwkjR46s8bqKigrMnTsXJSUleP755xEaGopNmzZh/vz5SExMRGxsrFj2559/xokTJ9ChQweoVCqcPn261jZNmDABI0aMsDrWsmXLBvWTiLxbmQtzeIn1WiZRLSgHYlzSDKJGRdJNsh1t//79OHLkCBISEsRAp1evXsjOzkZSUhKGDRsGhUJh89qtW7ciIyMDq1atQrdu3QAAPXv2xPTp05GUlITVq1eLZRcuXAi5vOq9g8TExNsGXk2bNkXXrl2l6CIRNRJuMeLFlBJETufUTbIbau/evVCr1RgyZIjV8bFjxyI3NxcnT56s9dqYmBgx6AIApVKJUaNG4dSpU8jJyRGPm4MuIiJHsdymxxVvNQLMXk/kCh414pWRkYFWrVpBqbRudrt27cTz3bt3t3nthQsX0KNHj2rHLa+NiIiwq10bNmxAcnIyFAoF7rjjDkyaNAkDBw6s9Zrc3Fzk5eWJP2dmZtpVNxF5pjLLES8XBV4c8SJyPo8KvLRaLZo3b17teFBQEACgqKioxmuLiorEcvW9tiY+Pj64//770adPH4SFheHatWvYuHEjXnnlFSxcuBDjxo2r8dotW7Zg3bp19a6TiLyDzg1GvCzXljGJKpFzeFTgBVSlpHDEtfbcNzw8HAsWLLA6NnToUMyePRurV6/G6NGjq43OmY0fPx4DBgwQf87MzMSyZcvq3QYi8kzmwEvpq4CPn2v+KrZcW8YRLyLn8KjAS6PRQKvVVjteXFwMAAgODq7x2uDgYJujWuZrbY2G2UOpVGLYsGFYvXo1Ll26hNatW9ssFx4ejvDwcEnqJCLPY17j5arRLgBQqhTwDfBBeWml1YbdROQ4HrWKvG3btsjMzITBYLA6fuHCBQBAmzZtar32/Pnz1Y6bj7Vt21aydgpCVTZqLtInIlsMFUZU6Kr+HnPV+i4zc/26wnLx7y4ichxJI4OCggKsX79eyltaiYuLQ1lZGX766Ser4zt27EB4eDi6dOlS47WDBg1CVlaW1ZuPBoMBP/zwA7p06SLZ6JPBYEBaWho0Gg1atGghyT2JyLtYLqz3d1EqCbH+G4GXscKEyjLDbUoTUUNJOtWYlZWFadOmYerUqVLeVtSvXz/06dMHK1euhE6nQ4sWLfDjjz/i4MGDWLRokZjDa8WKFdi5cyc+++wzREZGAqhKObFp0yYkJCRg9uzZYgLVrKwsJCYmWtWTnZ2N9PR0AMCVK1cAAHv27AEAREZGolOnTgCADz74AAaDAd27d0eTJk1w/fp1fP311zh79ixefvnlGnOKEVHjZplKwtUjXlbZ6wvKofL3cWFriLxfvQKvrKysWs+bgxRHWrZsGZKTk5GSkiJuGXTr9jwmkwlGo9Fq2FylUiExMRFJSUl47733oNfr0aFDB7zzzjtWWesB4OjRo3jzzTetjiUkJAAARo8ejVdeeQVA1dTmli1bsGvXLpSWlsLf3x+dO3fGf/7zH9x9990O+gaIyNPpLPZpVLton8ab9VsvsA9pEejC1hB5P5lQj0l9uVxe69t/giBAJpPBaDRK0rjG5PTp05g5cyaSk5PRsWNHVzeHiBzo1K4s/Lr2BAAgblY3dBwS7bK2/LktAwf/r2qEf8izPdB+QPWUPUQknXqNeIWGhmL58uXVMsebnTp1ChMmTJCiXUREXssqh5ebrPECmFKCyBnqFXj17t0bOTk5NY7I6PV6vhVDRHQb7rrGq4yBF5HD1Svwevrpp1FaWlrj+ZiYGKSmpja4UURE3sxyg2xX5vGqqt9P/KwrYC4vIkerV+D10EMP1Xo+NDQUTzzxRIMaRETk7cTteWSAX7B7La4nIsdihk8iIiczj3j5BakgV7j2r2GVWgmlb1XqGwZeRI7HwIuIyIkEQXCL7YIsmdvBNV5EjtfgwEuhUNw2vxcREVUpL62EyVj1EpLbBF43FthX6AwwVDAdEJEjNTjw4luMRER1505vNJqpLVJaWG5nRETS41QjEZETWa6jUrs4h5eZZQDI6UYix2LgRUTkRJaBjb+Ltwsys06iWlFLSSJqKAZeREROpNNa7tPoV0tJ57HMnq8rZC4vIkdi4EVE5ETuOOJlNdWo5YgXkSMx8CIiciL3XON1MwDkGi8ix2LgRUTkRNYjXu4ReFltG8S3GokcqsGB16uvvoqQkBAJmkJE5P3M6RoUKjl81PXatc1h/IJVkMmqPovbGRGRQzT4qX/jjTekaAcRUaNgnmr01/hCZo52XEwul8EvWIUybQVHvIgczKFTjYIg4OzZs7h06ZIjqyEi8gjGSiPKSyoBuE/yVDO1xbZBTIxN5DiSBF6bN2/G9OnTUVBQIB67ePEiunfvjk6dOqFVq1aYPHkyTCaTFNUREXmksqKbbwy6y/ouM3N7TEZBDA6JSHqSBF4fffQRDh8+jNDQUPHY3LlzcfLkSQwdOhR33nknPv/8c6SmpkpRHRGRR9IVuN92QWbcNojIOSQJvE6cOIG7775b/Fmr1WLbtm149NFHsWvXLhw6dAidO3dGSkqKFNUREXkky4DG301SSZhZZ69n4EXkKJIEXjk5OYiKihJ//uWXX2AwGDBp0iQAgI+PD0aOHIlz585JUR0RkUdyxw2yzaxGvBh4ETmMJIFXcHAw8vLyxJ/37NkDuVyOuLg48ZiPjw9KS0ulqI6IyCNZvjHodmu8QjniReQMkgRenTp1wrfffov8/HxotVp8/vnn6NWrl9War8zMTDRr1kyK6oiIPJLnrPHitkFEjiJJ4DVnzhxcuXIFLVq0QHR0NK5cuYKnnnpKPG80GvHLL7+gR48eUlRHROSRLAMaf4177NNoxjVeRM4hSdrkCRMm4MMPPxQXz0+cOBHTp08Xz//444/Q6XQYPXq0FNUREXkky7VTfm62uF6t4X6NRM4g2X4VTz/9NJ5++mmb50aNGmWV44uIqDEyr/HyC/KBQuleW+X6qJVQ+ipgKDdyxIvIgdzrySci8lKCIIgjSe62vgsAZDKZOOrFPF5EjsPAi4jICSp0Bhgrq3bvULvZNKOZOSAsL6mEsdLo4tYQeScGXkRETmC5bsrdUkmY+fPNRiKHY+BFROQEOjdOnmrGNxuJHI+BFxGRE+g8YMTLMiDkOi8ix2DgRUTkBB4XeHHEi8ghGHgRETmBO+/TaGa5xotTjUSOUe/Ay2Qy4a+//sKVK1eqnausrMTPP/8sScOIiLyJrkAvfnbXES+u8SJyvHoFXpmZmejevTvuvPNOREdHY/z48VabY+fn52Po0KGSN5KIyNN53FQj32okcoh6BV4LFy5Ey5YtkZWVhT/++APl5eUYMGCA1eiXIAiSN5KIyNOZF6srfRXwUUu2aYik1ME3tw3SFeprKUlE9qpX4PXTTz/h7bffRsuWLdGtWzfs2LEDcXFxiIuLQ1ZWFoCq7MdERGRNV1AVePmH+Lrt35NypRx+QT4AgLJCjngROUK9Ai+dTgdf35tD0TKZDMnJyRg1ahQGDRqE8+fPS95AIiJPZ6gwokJnAOC+C+vN1CF+AKpG6DiDQSS9egVeHTt2xJEjR6odT0pKwtixYzFu3DjJGkZE5C08IWu9mX9I1XSjsdIkBotEJJ16BV4PP/wwNmzYYPPcqlWr8Oijj/JfSEREt/CEhfVmaqaUIHKoegVeL7/8MrZt21bj+aSkJJhMpgY3iojIm1gFXqFuHngxiSqRQzGBKhGRg5kX1gPWI0ruyJ/bBhE5FAMvIiIH86SpRiZRJXKsBgdeCoVCTCVBRETVlVnkxFK7+1Qj13gROVSDAy8upiciqp3OIieWu494cY0XkWNxqpGIyMHMI14yhQx+garblHYtrvEiciwGXkREDmaesvPX+EImd8+s9WYqfyUUPlX/aeBUI5H0GHgRETmQyWhCWVHVVKO7TzMCVTuSmNd5caqRSHoMvIiIHKisqAK4sRTW3RfWm6lvZK/XF1fCZGBuRiIpMfAiInKgsgLPSSVh5n9jv0YA4mgdEUmDgRcRkQN5Ug4vM7Xm5gsAXOdFJK0GB16vvvoqQkJCJGgKEZH3sQxc1B4SePkzpQSRwygbeoM33nhDinYQEXmlMk8c8WL2eiKH4VQjEZEDeeJUo/W2QfpaShJRfTV4xMuSyWTCpUuXcPnyZVRWVtosM2jQICmrJCJyax4feBVwxItISpIEXoIgYMWKFUhMTEReXl6tZY1GoxRVEhF5BHHESGa9D6I78w+1eKuRU41EkpIk8Hr55Zfx9ttvo2nTppg2bRqioqKgVEo6mEZE5JHMgYtfkApypWes7lBrVIAMgMARLyKpSRIdrVu3Dh07dsThw4cRGBgoxS2JiDyeIAg3twvykGlGAJAr5FAHq1CmreDieiKJSfLPr5KSEtx3330MuoiILJSXVMJkqEpb70mBF3CzvTptOQST4OLWEHkPSQKv2NhYXLlyRYpbERF5DU/M4WWmvpG9XjAK0Bczez2RVCQJvBYtWoTNmzfj999/l+J2RERewRPfaDTzD2UuLyJHkGSN1+jRo/Hxxx9jzJgxGD9+PHr06IHg4GCbZadOnSpFlUREbq/Mg0e8bk0pEdbKhY0h8iKSBF7l5eXYvHkzcnNzkZKSAgCQyWRWZQRBgEwmY+BFRI2G94x4MYkqkVQkCbzmzZuHTz/9FHfeeSceeeQRh6aT0Ol0WLNmDdLS0lBcXIyYmBhMnjwZw4cPv+21BQUFSEpKwv79+6HX69G+fXvEx8ejd+/eVuX27duHtLQ0nDlzBllZWTAajfj5559t3tNgMOCTTz7B9u3bkZeXh6ioKDz00EOYMGGCJP0lIs/lidsFmfmH3MzlxalGIulIEh19+eWX6N27N/bv3+/w/F2LFi1Ceno6Zs+ejejoaOzatQuvv/46TCYTRo4cWeN1FRUVmDt3LkpKSvD8888jNDQUmzZtwvz585GYmIjY2Fix7M8//4wTJ06gQ4cOUKlUOH36dI33XblyJb7//nvMmDEDnTp1wqFDh/D+++9Dp9NhypQpUnadiDyMZQ4syxEkT2A14sVcXkSSkSRK0uv1GDp0qMODrv379+PIkSNISEjAiBEjAAC9evVCdnY2kpKSMGzYMCgUCpvXbt26FRkZGVi1ahW6desGAOjZsyemT5+OpKQkrF69Wiy7cOFCyOVV7x0kJibWGHhlZGRg69atmDlzJiZNmiTes6ioCOvXr8cDDzxQ41o3IvJ+llN0liNInsCfG2UTOYQkbzX27t0b586dk+JWtdq7dy/UajWGDBlidXzs2LHIzc3FyZMna702JiZGDLoAQKlUYtSoUTh16hRycnLE4+agqy7tEQQBY8aMsTo+ZswYlJeX4+DBg3W6DxF5J3PA4qNWQulr+x+F7sryZYAyjngRSUaSwGv58uXYsWMHvvvuOyluV6OMjAy0atWq2shau3btxPM1uXDhgliuvtfW1p6QkBCEhYXV+565ubk4ffq0+CczM7Pe9ROReyvzwKz1ZgqlHH5BPgC4uJ5ISpLMDf7www8YMmQIHnjgAQwdOhSxsbE2p9hkMhlee+01u+vRarVo3rx5teNBQUEAgKKiohqvLSoqEsvV99ra2mOrn2q1Gj4+PtBqtTVeu2XLFqxbt67edRKRZ6jUG1CpNwLwvPVdZv6hftAXV0JXUC6+mU5EDSNJ4LVkyRLx8+7du7F7926b5RoaeJnv4YhrHfEXSm33HD9+PAYMGCD+nJmZiWXLlkneBiJyDauF9R444gVUtTs/qxgmo4Dy4kr4Batc3SQijydJ4JWWlibFbW5Lo9HYHEUqLi4GgFoXsgcHB9sc1TJfa2s0rC7tsbW2raysDJWVlbW2Jzw8HOHh4fWuk4g8Q5nWInmqxjMDL/UtC+wZeBE1nCSB1+DBg6W4zW21bdsWu3btgsFgsFrndeHCBQBAmzZtar32/Pnz1Y6bj7Vt29au9vz444/Iy8uzWudVl/YQkXfz5OSpZv6hlrm89GgSU/9/oBKRNUkW1ztLXFwcysrK8NNPP1kd37FjB8LDw9GlS5carx00aBCysrKs3nw0GAz44Ycf0KVLF7tGnwYOHAiZTIYdO3ZYHd++fTt8fX3Rt2/fet+TiLyD5VSj2lPXeIUwlxeR1CQZ8fr111/x9ddfY+HChYiMjKx2Pjs7G2+//TYmTpyIfv362V1Pv3790KdPH6xcuRI6nQ4tWrTAjz/+iIMHD2LRokViDq8VK1Zg586d+Oyzz8T2jB07Fps2bUJCQgJmz54tJlDNyspCYmJitfamp6cDAK5cuQIA2LNnDwAgMjISnTp1AlA1onXfffchNTUVcrkcnTt3xuHDh/Htt98iPj6eObyIGjHvGPFiLi8iqUkSeK1cuRLHjx/HypUrbZ6PjIzEd999h8uXL+OLL75oUF3Lli1DcnIyUlJSxC2DFi9ebLVlkMlkgtFohCAI4jGVSoXExEQkJSXhvffeg16vR4cOHfDOO+9YZa0HgKNHj+LNN9+0OpaQkACgakPwV155RTw+b948hIeHY+PGjcjPz0dkZCTmzJnDLYOIGjlP3i7IjElUiaQnEyyjEzvFxMRg+PDhSE1NrbFMfHw8fvjhB+arqsHp06cxc+ZMJCcno2PHjq5uDhE10PY3D+Hyn3kAgCn/HQHfQB8Xt6j+inN0+OKFqqUdre9qhhEv9nJxi4g8nyRrvK5fv44WLVrUWiYyMhLXr1+XojoiIrdXml81QqRQyaEKcOx2ao5itbiea7yIJCFJ4BUSEoKsrKxay2RmZiIwMFCK6oiI3J6uoCrbe0Con8cmHlUo5WIKidICZq8nkoIkgVf//v2xadMm/P333zbPZ2Vl4ZtvvsE999wjRXVERG6tUm9Ahc4AwHOz1psF3Gi/rrAcgqnBK1OIGj1JAq958+ZBp9NhwIABWL9+Pa5evQoAuHr1Kj7++GMMGDAAZWVl+Oc//ylFdUREbs1yWi6giV8tJd2f/432C0YBZUUVLm4NkeeTZOFBXFwc3n//fcydOxfTpk0DULVdjnndvlwux3vvvYdBgwZJUR0RkVsrzb85LWe5TsoTBViu88rXe+wbmkTuQrIVn88++ywGDx6MpKQkHD58GIWFhQgJCcHdd9+Np556Ct26dZOqKiIit2a5HiqgiWcHKv4W7S8t0CMcGhe2hsjzSfqqTbdu3fDhhx9KeUsiIo+j89IRL8uRPCKyj0dtGURE5AlKvXCNF8CUEkRSYOBFRCQxjngRUU0YeBERScxyjZenp5OwXOOlYy4vogZj4EVEJDHdjaz1fsEqKJSe/desb4APFD5VfTBn4yci+3n23whERG7GZBLEDaU9fX0XUJUayNwPjngRNRwDLyIiCem1NzO8e/o0o5m5HxU6Ayr1Bhe3hsizMfAiIpKQN73RaBbANxuJJCNZHq+Kigp88803YvJUo9FYrYxMJkNKSopUVRIRuR3LNxoDPPyNRjP/W95s1EQFuLA1RJ5NksArMzMTI0eOxPnz58Vtgmxh4EVE3s7qjUYPz1pvZjllWsp1XkQNIkng9eKLL+LcuXOYMmUKpk+fjpYtW0KplDQpPhGRR7B8889bRrysphqZy4uoQSSJjnbv3o3hw4fj448/luJ2REQeS2c14uUdgZfVVCPXeBE1iCSL600mE3r27CnFrYiIPFqpF67xstzomyNeRA0jSeDVv39/nDp1SopbERF5NPOIl0IlhyrAO5ZcWI94MfAiaghJAq8VK1YgLS0NX331lRS3IyLyWOY1XgGhfpDJZC5ujTQUSjn8glUAbmblJyL72PXPsaVLl1Y7NnToUDz66KMYPHgwevbsCY1GU62MTCbDa6+9Zk+VRERur0JXicqyqgSj3rK+yyygiR/0RRXQFZbDZDRBrmAaSCJ72BV4LVmypMZze/bswZ49e2yeY+BFRN7Mcn1XYJh3BV6BYX7Iu1gE4caWSIFhalc3icgj2RV4paWlSd0OIiKPV5JnsbDeywITy/6U5ukZeBHZya7Aa/DgwVK3g4jI45VaBF6B4d414hVgMYJXkqdHMxe2hciTcZKeiEgipXll4udAL1vjZTl1atlPIqofyd91NhgMOHPmDLRaLTQaDe644w5msSeiRqGxTDVa9pOI6keyEa+cnBzMnDkTISEh6N69OwYOHIju3bsjJCQEs2bNQk5OjlRVERG5JW+earQe8WLgRWQvSYaiLl++jAEDBiArKwsREREYNGgQmjVrhmvXruG3337DmjVr8MMPP+CXX35BixYtpKiSiMjtlNyYgvNRK6Dy93Fxa6TlH+oLmQwQBE41EjWEJCNeCxcuRFZWFl5//XVkZmZi27ZtSE1NxbZt25CZmYklS5YgMzMTL730khTVERG5HUEQxJGggCbeNc0IAHKFXMxgz6lGIvtJMuK1Y8cOjB492maOLj8/PyQkJGDfvn3Yvn27FNUREbkdfXEFjJUmAN6Xw8ssIMwPpfl66IsqYKgwQqlSuLpJRB5HkhGviooK9OrVq9YyvXv3RkVFhRTVERG5nVIvXlhvZplSopSbZRPZRZLAq3fv3khPT6+1THp6Onr37i1FdUREbqck13uz1psF3pJElYjqT5LA64033sB3332HdevW2Ty/du1abNu2DcuWLZOiOiIit1Oaf3PBeYCXBl4BfLORqMEkWeOVlpaGoUOHYsaMGXj77bcxYMAANG3aFNevX8evv/6K06dPY9SoUdi9ezd2794tXse9G4nIW5RYpZLwzqnGQKvs9XyzkcgekgRelptmp6en25x23LlzJ3bu3Gl1jIEXEXmLUoupxgAvy1pvdut+jURUf5KNeBERNWYljWCqMfCW/RqJqP4kCby4aTYRNXbmESC/YJXXplnwC1ZB4SOHsdJktaaNiOqOm2QTETWQyWiCrqAcgPdOMwJVy0PM/bN8i5OI6s6uwOuxxx7Dxo0b7a60odcTEbkTXWE5BJMAwHtTSZiZp1Erywyo0FW6uDVEnseuwOvzzz/HX3/9ZXelDb2eiMidNIbkqWaWuby4zouo/uxe43Xs2DGsX79eyrYQEXmk4us68XNghJcHXuEWC+xzytAkOsiFrSHyPHYHXt988w02b95c7+sEQbC3SiIit1Sce3OheZCXB15BEf7i5+IcLrAnqi+7Aq/U1NQGVxwbG9vgexARuYPi640n8LIc0SvO0dVSkohssSvweuKJJ6RuBxGRxyrJsQy8/Gsp6fmCmlqs8eKIF1G9MZ0EEVEDmUd+fNRKqAIkSY/otgKa+EEmlwHgVCORPRh4ERE1gMkkiG/3BTVVQyaTubhFjiVXyMWUEhzxIqo/Bl5ERA2gy9dDMFa9NBTkpZtj38q8jq28tJK5vIjqiYEXEVEDWE63BTX17vVdZkFWC+w56kVUHwy8iIgawPLNvsBGMuJl9WbjdQZeRPXBwIuIqAGs3mhs2jgCL8s3N0tymVKCqD4YeBERNYDlVJu3Z60341Qjkf0YeBERNYDVGq9GMtXIwIvIfnYHXr169cJ///tfq2M7d+7EvHnzbJZ//fXXoVR6d34bImp8zFONvoE+UPn7uLg1zqEO9YNcUZU2gykliOrH7sDr2LFjyM7Otjp24MABvPfeezVew30aicibmAwmlOZVBR6NZWE9AMjlMrG/xTk6/t1OVA+caiQislNpvh7mmKOxLKw3M69nqywzoryUubyI6oqBFxGRnYob0R6Nt7Jc51XClBJEdcbAi4jITpY5vIIayRuNZpaBZnEuAy+iumLgRURkJ8vkoY0llYSZ5dRq0TXm8iKqKwZeRER20maXip81kQEubInzBTe7OeJVlM3Ai6iuGpTf4f/+7/9w4MAB8edz584BAMaOHVutrPkcEZG3MAccMlnjG/EKbnYz0Cy6VlpLSSKy1KDA69y5czYDqh07dtgsL5PJGlIdEZHbEARBDDgCI9RQKBvXBIJvoA98A31QXlLJES+ierA78MrIyJCyHUREHqWsqAKVZUYAjW+a0UwTGYDr5wpRmq+HodwIpa/C1U0icnt2B16tWrWSsh1ERB6l6OrN6TXL9U6NSXCkP66fKwRQtcC+SUyQaxtE5AE8bg8fnU6HNWvWIC0tDcXFxYiJicHkyZMxfPjw215bUFCApKQk7N+/H3q9Hu3bt0d8fDx69+5dreyRI0eQkpKCc+fOwc/PD/3798fTTz+N0NBQsczVq1fx6KOP2qxr8eLFdWoTEXkmyzf5ghvpiFdwpMUC+2ulDLyI6sCuwGv69Ol2VSaTyZCSkmLXtWaLFi1Ceno6Zs+ejejoaOzatQuvv/46TCYTRo4cWeN1FRUVmDt3LkpKSvD8888jNDQUmzZtwvz585GYmIjY2Fix7LFjx7BgwQL0798fy5cvR0FBAVavXo25c+ciOTkZKpXK6t4TJkzAiBEjrI61bNmyQf0kIvemtVjXpIlsnCNellOsWq7zIqoTuwKvdevW2Twuk8ls7tllPt7QwGv//v04cuQIEhISxECnV69eyM7ORlJSEoYNGwaFwvYag61btyIjIwOrVq1Ct27dAAA9e/bE9OnTkZSUhNWrV4tlV61ahejoaCxdulTc2DsqKgrPPvsstm3bhgcffNDq3k2bNkXXrl3t7hcReZ4ii1QSjXbEyyqlBN9sJKoLu17DycjIsPpz/vx5jBs3DmFhYXjjjTewZ88enDp1Cnv27MHSpUsRFhaG+++/H2fPnm1QY/fu3Qu1Wo0hQ4ZYHR87dixyc3Nx8uTJWq+NiYkRgy4AUCqVGDVqFE6dOoWcnBwAQE5ODtLT0zFq1Cgx6AKA7t27Izo6Gj///HOD+kBE3sE81SiTyxpd1nozy4CTSVSJ6sauEa9bF9avWLECBw8exB9//IGoqCjxeMeOHTFo0CBMmzYNPXv2xFdffYWFCxfa3diMjAy0atXKKiACgHbt2onnu3fvbvPaCxcuoEePHtWOW14bEREhvq1pPn5r2T///LPa8Q0bNiA5ORkKhQJ33HEHJk2ahIEDB9bal9zcXOTl5Yk/Z2Zm1lqeiNyHIAjiCE9QhBryRpZKwsw3wAd+QT7QF1daJZMloppJsrg+JSUFEydOtAq6LLVo0QITJ05EcnJygwIvrVaL5s2bVzseFFS1oLOoqKjGa4uKisRytV2r1WoBAMHBwTbLWtbh4+OD+++/H3369EFYWBiuXbuGjRs34pVXXsHChQsxbty4GtuzZcuWGqdsici9lWkrUKmvSiXRWN9oNAtuFgB9cSF0+eVMKUFUB5IEXpcuXYKfn1+tZfz8/HDp0qUG19WQJKy1XXvruZrKWh4PDw/HggULrM4PHToUs2fPxurVqzF69Ohqo3Nm48ePx4ABA8SfMzMzsWzZstv2gYhcj+u7bmJKCaL6kWR8vGXLlti0aRP0er3N8zqdDps2bWrwm34ajUYckbJUXFwMwPYolVlwcLDNETHzteaRL41GAwA11mNr1MySUqnEsGHDoNVqaw00w8PD0bFjR/EP86IReQ7LTO3BjfSNRjPrNxs53Uh0O5IEXvHx8bhw4QIGDBiAzZs3i2uX8vLy8M0332DgwIG4ePEiZs6c2aB62rZti8zMTBgMBqvjFy5cAAC0adOm1mvPnz9f7bj5WNu2ba3uYb7nrfXUVoeZ+c1Oubxxrvsg8nZWm2M39qnGSL7ZSFQfkkQGCxYswLRp03D06FE8/PDDaNq0KXx8fNC0aVNMmDABx44dw5NPPlltWq6+4uLiUFZWhp9++snq+I4dOxAeHo4uXbrUeO2gQYOQlZVl9eajwWDADz/8gC5duiA8PBwAEBERgc6dO+P777+H0WgUy544cQJZWVkYPHhwrW00GAxIS0uDRqNBixYt7OkmEbk5Jk+9KZi5vIjqRZI1XnK5HCkpKZg6dSo+/vhjHD9+HFqtFhqNBj169MDUqVNvG7DURb9+/dCnTx+sXLkSOp0OLVq0wI8//oiDBw9i0aJFYg6vFStWYOfOnfjss88QGRkJoCrlxKZNm5CQkIDZs2eLCVSzsrKQmJhoVc9TTz2FefPmISEhAQ899JCYQLVNmzYYM2aMWO6DDz6AwWBA9+7d0aRJE1y/fh1ff/01zp49i5dffrnGnGJE5NkKr1SN7MgUjTeVhJll8ljtVY54Ed2OpFsGDR48WJIAqzbLli1DcnIyUlJSxC2Dbt2ex2QywWg0WiVzValUSExMRFJSEt577z3o9Xp06NAB77zzjlXWeqAqserbb7+NtWvX4l//+pe4ZdAzzzxjlbW+TZs22LJlC3bt2oXS0lL4+/ujc+fO+M9//oO7777bod8DEbmGyWiC9moJgKr1TY01lYSZyt8H/k18ocsvR+GlEjFZNhHZJhNspZqvg9TUVIwbNw4RERFSt6lROn36NGbOnInk5GR07NjR1c0hohpor5biy39WJVJuc3ckhs/t6eIWud72Nw/h8p9Va3sfSxoGf42vi1tE5L7s/qfajBkz0Lx5c8TFxeHdd99tcFZ6IiJPUHCpRPwc0jLQhS1xH6Etb77tXWjx/RBRdXYHXvv27cP8+fORn5+PBQsWoFOnTujcuTNeeeUVHDhwQMo2EhG5jYLLxeLnUAZeAICQFje/hwIGXkS1sjvw6tevH958802cOHECZ8+exVtvvYWIiAi8/fbbGDBgAKKiojB79mxs27YN5eXlUraZiMhlLEd0LAOOxszyeyi8zMCLqDaSrApt164d5s+fj59//hnXrl3DmjVr0LdvX3z66ae4//77ER4ejgkTJuCTTz5Bfn6+FFUSEbmEObCQyWVWb/Q1ZqGWI14MvIhqJfnrOGFhYZg2bRq++eYb5ObmYtOmTZg4cSJ+/fVXPPHEE2jWrBmGDBkidbVERA5nMgliKongZv5Q+DBlDAD4BvrAP6RqQX3hpeLblCZq3CRNJ3ErPz8/jB8/HuPHj4cgCNi3bx82b96MLVu2OLJaIiKHKMnRwVhpAsCF9bcKaREIXWE59MWVKCsqhzqYbzYS2eK0BDQymQwDBgzA22+/jfT0dGdVS0QkGcuF46Fc32XFMhDlOi+imtk94vXMM8/U+xqZTIYPP/zQ3iqJiFzKMqDgG43WQm95szGqc5gLW0PkvuwOvD766KM6l7XMYszAi4g8VQHfaKyRZSDKXF5ENbM78EpLS6tTuaysLCxduhTnz5/nNhJE5NHENxplgCaqcW+OfasQvtlIVCd2B16325OxoKAAy5cvx4cffgi9Xo/+/fvjrbfesrc6IiKXEizeaAxq6g+lim80WvILUsEvWAV9UQWTqBLVQvLF9Xq9HitWrEC7du3w7rvvonXr1ti4cSN+/fVXDBw4UOrqiIicQptdCkO5EQAQGhN0m9KNU5Mb34u+qAK6Ar2LW0PkniQLvARBwJo1a9ChQwe88sor8Pf3x3//+1/89ddfePDBB6WqhojIJfIuFomfw1sHu7Al7ivM4nvJtfi+iOgmSQKvb775Bl27dsXs2bNRUlKC5cuX49y5c4iPj4dc7rSMFUREDpPLwOu2LL+XPAZeRDY1KIHqL7/8gpdeegkHDhyASqXCiy++iFdffRWhoaFStY+IyC3kZdwMJMIYeNnEES+i27M78Bo/fjy2bt0KuVyOJ554AkuXLkXLli2lbBsRkVsQBEEcwVGH+MI/1M/FLXJPmsgAKH0VMJQbOeJFVAO7A6/vvvsOMpkMMTExyM7OxqxZs257jUwmw9atW+2tkojIJUpy9SgvrQQAhLXiaFdNZHIZwloF49qZApTklEFfUgG/QJWrm0XkVho01SgIAjIyMpCRkVGn8szjRUSeKO+iVvwc3oaBV23CWlcFXgCQn1mM5l2ZwZ7Ikt2BV12DLSIiT2c5bcb1XbWzXGCfm6Fl4EV0C7sDr1atWknZDiIit8U3GusujG82EtWKuR6IiG7DHECo/JUIjFC7uDXuLaRlIOTKqmUlfLORqDq7RrymT59uV2UymQwpKSl2XUtE5Aq6wnLoCsoBVI3mcK1q7RRKOUJbBiHvYhG0V0tRqTfAx69By4mJvIpdT8O6detsHpfJZBAEocbjDLyIyNPkXri5sJ7ru+omvE1w1SihUDVaGNmpiaubROQ27JpqNL/JaP5z/vx5jBs3DmFhYXjjjTewZ88enDp1Cnv27MHSpUsRFhaG+++/H2fPnpW6/UREDmV+Qw8AmnUIcV1DPEjT9iHiZ8vvj4jsHPG6dWH9ihUrcPDgQfzxxx+IiooSj3fs2BGDBg3CtGnT0LNnT3z11VdYuHBhw1pMROREVoHXHdyVoy4sv6fs0wXo4cK2ELkbSRbXp6SkYOLEiVZBl6UWLVpg4sSJSE5OlqI6IiKnMBpMyDlfNdUYFKFmxvo60jQPgG+gDwDg+tlCCKbqS1CIGitJAq9Lly7Bz6/2v5D8/Pxw6dIlKaojInKKvAwtjJUmAECzjhztqiuZTCaOepWXVKLwaqmLW0TkPiQJvFq2bIlNmzZBr9fbPK/T6bBp0ybu5UhEHiX7TKH4mdOM9dPsjhDxM9d5Ed0kSeAVHx+PCxcuYMCAAdi8eTPy8vIAAHl5efjmm28wcOBAXLx4ETNnzpSiOiIip7jO9V12s/y+rp1m4EVkJklylQULFuDMmTNITU3Fww8/DACQy+UwmaqG6AVBwLRp07BgwQIpqiMicjhBEMSRGpW/EqEtA13cIs8S3lYDuVIGk0HgiBeRBUkCL7lcjpSUFEydOhUff/wxjh8/Dq1WC41Ggx49emDq1KkYPHiwFFURETlF8XUdyrQVAICmHUIgkzNxan0oVQqEt9Hg+tlCFGXrUKYth1rj6+pmEbmcpOmEBw8ezACLiLzCtdOF4mdOM9qn2R2huH62EABw7UwhWt/VzLUNInID3KuRiMiGKyfyxM98o9E+kRbfm+X3SdSYMfAiIrqFYBJw6XgOAEDpq2DGejtFdWkCmaJqitb8fRI1dgy8iIhukZ9VLK7viurSBAofhYtb5JlU/j5i0FqUrUPRNZ1rG0TkBhh4ERHdwnJ0JrpHhAtb4vla3nnz++OoFxEDLyKiai4dzxU/t7gz3IUt8Xwte9z8/iy/V6LGioEXEZGFijIDsm8k/Axu5g9NZICLW+TZwloFwy9YBQC4eiIPRoPJxS0ici0GXkREFq6eyINgrNrUmaNdDSeTy9DyxvdYqTcymSo1egy8iIgsWE6HtWTgJQnL7/HSH5xupMaNgRcR0Q0mk4DMI9cAAHKlDM27hrm4Rd6hxZ3hwI3E/5lHrkEQBNc2iMiFGHgREd2QfSofusJyAEDLHhHw8ZN0c49GSx3si6jOTQAA2qulyLtY5OIWEbkOAy8iohsu7L8qfm7XP8qFLfE+lt/neYvvmaixYeBFRATAZDAh41A2gKps9TG9mrq4Rd6l9V2RYhb7jANXIZg43UiNEwMvIiIAl//KQ3lJJQAgpmdTTjNKzC9YhRbdqhbZl+Tqcf1coWsbROQiDLyIiACc33dF/NzuHk4zOoLl93p+H6cbqXFi4EVEjV5FmUF8m1Hlr7TKtk7SadW7KRQ+Vf/ZuXDgKoyVRhe3iMj5GHgRUaN39udLqNRXBQFt+kZxU2wHUfn7oFXvZgAAfVEFLuzPdnGLiJyPgRcRNWqCScCJnZniz13vbeXC1ni/Lhbf7187LjKnFzU6DLyIqFG79EcOirJ1AICoLk3QJCbIxS3ybs3uCEF4m2AAQN7FIlw7U+jaBhE5GQMvImrU/tpxc7Sr2+jWrmtIIyGTydDV4ns+seOiy9pC5AoMvIio0crLKsLlP6v2DgyKUCOaubucom2/SKg1KgDAxcPXUHSt1MUtInIeBl5E1Ggd3nBa/Nx1dGvI5TIXtqbxUPgo0HlkDICqNXaHvzjj4hYROQ8DLyJqlC79mYtLx6tGuwLD/dBpeLSLW9S4dBvdGn7BVaNeGQeymVCVGg0GXkTU6JhMAg5tSBd/7jPxDihVTCHhTCp/H/Sa0F78+eCn6XzDkRoFBl5E1OicTvsb+ZnFAICw1sFod09zF7eoceo0NBqaqAAAwLXTBVablBN5KwZeRNSoaK+W4uD/3Rzt6ju5E2Rc2+UScqUcd0/qKP7869oTKMkrc2GLiByPgRcRNRpGgwlpHxyDobwqS32nYdFo3jXMxa1q3GJ6N0XbflV7OFboDNiz6jhMJk45kvdi4EVEjYIgCDj4aTpyM4oAAJqoAPR9vJOLW0UymQwDZnRFYLgfACD7VD5+/+qsi1tF5DgMvIioUTi66RxO3tgaSK6QYehzPeDjp3RxqwgAfAN8MOSZHpDdmPE99s15/LU9w7WNInIQBl5E5NUEQcDx7y7g96/OiccGzuiG8DYaF7aKbhXZqQn6Pt5Z/PnAJ+k4tSvLhS0icgwGXkTktQwVRuxN/guHLBKl9pvSCXcMaenCVlFNuo1pbZVi4te1J7Dv45MwGUwubBWRtDjOTkReKeeCFr+s+Qt5F4vEY70f6YBuY9q4sFV0Oz0fbo9KvRF/bq2aajy5MxO5GVoMnN6NG5iTV/C4wEun02HNmjVIS0tDcXExYmJiMHnyZAwfPvy21xYUFCApKQn79++HXq9H+/btER8fj969e1cre+TIEaSkpODcuXPw8/ND//798fTTTyM0NNSqnMFgwCeffILt27cjLy8PUVFReOihhzBhwgTJ+kxEdae9Woo/vr2AMz9dAm68HKdQyRE3szvaD2C+Lncnk8nQd3InaKICsG/dCZgMAq6fKcSml39BpxExuHNcGwRF+Lu6mUR287jAa9GiRUhPT8fs2bMRHR2NXbt24fXXX4fJZMLIkSNrvK6iogJz585FSUkJnn/+eYSGhmLTpk2YP38+EhMTERsbK5Y9duwYFixYgP79+2P58uUoKCjA6tWrMXfuXCQnJ0OlUollV65cie+//x4zZsxAp06dcOjQIbz//vvQ6XSYMmWKI78KIrpBX1yBv4/l4Py+K7j0R67VOU3zAAx7PhZhrYJd1DqyR6dh0WgSHYi0D/9A8fUyCAJw6ocsnNqVhZheTdGufxRa9oiAb4CPq5tKVC8eFXjt378fR44cQUJCAkaMGAEA6NWrF7Kzs5GUlIRhw4ZBobC97cfWrVuRkZGBVatWoVu3bgCAnj17Yvr06UhKSsLq1avFsqtWrUJ0dDSWLl0KpbLqK4qKisKzzz6Lbdu24cEHHwQAZGRkYOvWrZg5cyYmTZok3rOoqAjr16/HAw88gOBg/mVPJBVjpRFlRRUovq6D9qoOeReLkHO+EHkXi3DrbjM+aiV6TWiPrqNaQa7kclZP1LRDKCa8HYe/tl3Esc3nq/KvCUDWb9eR9dt1yBQyhLcKRkT7EDSJCUJghBpB4WoEhvtB4cMtoMg9eVTgtXfvXqjVagwZMsTq+NixY7F06VKcPHkS3bt3r/HamJgYMegCAKVSiVGjRuG///0vcnJyEBERgZycHKSnp2PWrFli0AUA3bt3R3R0NH7++Wcx8Nq7dy8EQcCYMWOs6hozZgy+/fZbHDx4sNZROGf4a8dFGCuMtZap8/ZodSgn1K2Qc+ur672kzNlYx5tJWWed7iVhhXW/1e0LCgJgqjTBeOOPodJY9bnCiEq9EfqiCpQVVaCyzHDbewWGq9FlZAzuGNISfkGq25Yn96ZUKRD7YDt0HNoS6bv/xqldWdAVlAMABKOAnAta5FzQVrtOrVFBFeADlVoJlb8SPmollCoF5AoZ5Ao55Ep51Wdl1c/mVBY3P9zyo8z8PzKrn2s6LuNmCG7Jv4kfOgxs4dI2eFTglZGRgVatWlkFRADQrl078XxNgdeFCxfQo0ePasctr42IiEBGRobV8VvL/vnnn1btCQkJQVhYWLVy5vM1yc3NRV5envhzZmZmjWUb4timc9AXVzrk3kRuQQaEtghEyx4RaNW7KZreEQo5twDyOmqNL3o+1B49xrdFdnoBsn6/jr//yIH2SqnN8mXaCpRpK5zcSnJ3Te8IYeBVH1qtFs2bV18cGxRU9aZLUVFRtXNmRUVFYrnartVqq/7lZGuKMCgoyKoOrVZrs5xarYaPj494L1u2bNmCdevW1XieiG5S+SvhF6yCOtgXfsEqBIb7QRMVgJDmgQhvEwyVP9f5NBZyhRzNu4ahedcw9JvSGeWllci9oEXRdR1KcspQnFOGkpwylObrUVFmqNMoKZEzeVTgBVS98eKIa289V1PZ+tRfW9nx48djwIAB4s+ZmZlYtmxZne9dV4Of7lG3HDgSDhDU6TuqY311KlbX34l0zapbwTq2q259rNOtGvR82FNn3au7fUGFjxwKlRxKH0XV5xt/lCoF12hRjXwDfNCiezhqGsMQTAIq9QZU6AwwVppgMppgMghV/2sUxJ8F4Ob8ufX/VH24cc7qGKoS9FpXKPGyBZKUb6Dr/5HmUYGXRqOxOYpUXFwMwPYolVlwcLDNETHzteaRL42mKpt1TfVYjpppNBqcO3euWrmysjJUVlbW2p7w8HCEh4fXeF4q0bERDq+DiMhdyeQyqPx9OCpKbsOj/hnZtm1bZGZmwmCwHjq+cOECAKBNm5oTI7Zt2xbnz5+vdtx8rG3btlb3MN/z1nos62jbti0KCwut1mrVtT1ERETU+HhU4BUXF4eysjL89NNPVsd37NiB8PBwdOnSpcZrBw0ahKysLJw8eVI8ZjAY8MMPP6BLly7i6FNERAQ6d+6M77//HkbjzbcBT5w4gaysLAwePFg8NnDgQMhkMuzYscOqru3bt8PX1xd9+/ZtUH+JiIjIu3jUVGO/fv3Qp08frFy5EjqdDi1atMCPP/6IgwcPYtGiRWIOrxUrVmDnzp347LPPEBkZCaAq5cSmTZuQkJCA2bNniwlUs7KykJiYaFXPU089hXnz5iEhIQEPPfSQmEC1TZs2Vqkj2rRpg/vuuw+pqamQy+Xo3LkzDh8+jG+//Rbx8fHM4UVERERWZEK1lYHuTafTITk52WrLoMcff9xqy6Dly5djx44d+OKLLxAVFSUez8/Pt9oyqEOHDpgxYwb69OlTrZ7Dhw9j7dq1OHv2rLhl0DPPPGNzy6D169dj+/btyM/PR2RkJB5++OF6bxl0+vRpzJw5E8nJyejYsWM9vxUiIiLyBB4XeHkrBl5ERETez6PWeBERERF5MgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxEREZGTeNSWQd6svLwcAJCZmenilhAREVF9tWrVCn5+frctx8DLTWRnZwMAli1b5uKWEBERUX3VdecZbhnkJgoLC3Ho0CFERUVBpVJJdt/MzEwsW7YMixYtQqtWrSS7rzvx9j56e/8A7+8j++f5vL2P7F/DccTLw4SEhGDUqFEOu3+rVq28fg9Ib++jt/cP8P4+sn+ez9v7yP45HhfXExERETkJAy8iIiIiJ2Hg5eXCwsLw5JNPIiwszNVNcRhv76O39w/w/j6yf57P2/vI/jkPF9cTEREROQlHvIiIiIichIEXERERkZMw8CIiIiJyEubxciNHjx7FCy+8YPNcUlISunbtKv58+vRpfPTRRzh58iQUCgV69uyJZ599Fs2bN6927ddff41Nmzbh6tWrCAsLw5gxYzBlyhQolbf/9RsMBnzyySfYvn078vLyEBUVhYceeggTJkxwef/+/vtvbNmyBUePHsWVK1cgk8nQqlUrTJw4EUOGDLlte65evYpHH33U5rnFixdj+PDh9esgHPM7HDRokM37zZo1C48//vht2+TOv8Pt27fjzTffrLG+2/VR6t9hXft3/PhxbN++HWfPnkVGRgYqKyvxxRdfICoqyua17vIMOqKP7vYcOuJ36InPYF37527PIFC3PhqNRnz11Vc4fPgwMjIyUFRUhGbNmmHgwIGYPHkygoKCql3rLs8hAy83NGvWLPTs2dPqWJs2bcTPmZmZeOGFF9C+fXssWbIEFRUVWLt2LZ577jmsXbsWISEhYtn169cjJSUFkydPxl133YX09HSsWbMGubm5WLBgwW3bsnLlSnz//feYMWMGOnXqhEOHDuH999+HTqfDlClTXNq/Q4cOYf/+/bj33nvRqVMnGI1G7N69GwkJCZg+fTqefPLJOrVnwoQJGDFihNWxli1b2tU3qftoNmTIkGp/uTVr1qxObXHn32H//v2RlJRU7f4pKSk4cuRIjf/Bu5XUv8Pb9e+3337Db7/9hg4dOiAgIABHjx6t8V7u+AxK2Ud3fQ6l/B0CnvcM1rV/7voMArX3sby8HKmpqRg+fDjGjRsHjUaDM2fOYP369di3bx+Sk5Ph6+srXudWz6FAbuP3338X4uLihLS0tFrLJSQkCOPGjRNKSkrEY1evXhWGDh0qrFq1SjxWWFgoDB8+XHj77betrl+/fr0waNAgISMjo9Z6Lly4IAwaNEj45JNPrI6//fbbwogRIwStVlu3jt0gdf8KCgoEk8lU7fqFCxcKI0eOFMrLy2ut58qVK0JcXJywYcOGevWjNlL3URAEIS4uTli5cqVd7XH336EtOp1OGDVqlPDss8/etj1S/w7r2j+j0Sh+3rBhgxAXFydcuXKlWjl3ewYFQfo+uttzKHX/BMEzn8H69O9WrnwGBaFufTQYDEJhYWG142lpaUJcXJywc+dO8Zi7PYdc4+VhDAYD9u3bh8GDByMgIEA8HhkZiZ49e2Lv3r3isYMHD6KiogJjx461useYMWMgCIJVWVv27t0LQRAwZsyYateXl5fj4MGDEvTIWn36FxISAplMVu0enTt3hl6vR1FRkeTtk0J9+thQ7v47tGX37t0oKyvDfffdJ3nbpCKX1+2vTk98Bs3q2kdPfQ7r2r+GctXvsCH984RnUKFQQKPRVDveuXNnAMD169fFY+72HDLwckOJiYkYOnQoRo8ejX/+8584fvy4eO7KlSsoLy9Hu3btql3Xrl07XL58GeXl5QCAjIwMAEDbtm2tyoWHh0Oj0Yjna5KRkYGQkJBqCefMdd/u+ppI1b+aHD16FCEhIQgNDa1TezZs2IBhw4Zh5MiRePbZZ/HLL7/Ur0M2SN3HXbt2YcSIERg+fDji4+Oxbdu2OrXDE3+HW7duRUBAAIYOHVrn9kj9O6ytf/Xhrs8gIF0fa+Lq51Dq/nnSM9hQ7vAMAvb18ffffwcAtG7dWjzmbs8h13i5kYCAADzyyCPo2bMngoODcfnyZXz22Wd44YUX8NZbb+Huu++GVqsFAAQHB1e7Pjg4GIIgoLi4GL6+vigqKoJKpYJarbZZ1nyvmmi1Wpv1qNVq+Pj43PZ6R/fPlu+++w5Hjx7FnDlzoFAoam2Pj48P7r//fvTp0wdhYWG4du0aNm7ciFdeeQULFy7EuHHj6tU/R/VxxIgR6N+/P5o2bYqCggJs3boVK1aswJUrVxAfH19rezztd5iZmYm//voL48ePh5+f323bI/XvsC79qw93ewYB6ftoiyufQ0f0z9OewYZw9TMI2N/HnJwcrF69Gp06dcI999wjHne355CBlxu54447cMcdd4g/9+jRA3FxcXjyySeRlJRU5wfK1rB/Q8pJdb2j+3fgwAEkJiZiyJAhdXrTJDw8vNqiyqFDh2L27NlYvXo1Ro8eXae3XSw5oo8JCQlW54YMGYJ//etf+PTTT/HII49UW4hfH+72O9y6dSsA1Pkva6l/h1L1r66c/QwCju+jq59DR/TPG5/Bmrj6GQTs62NRUREWLlwIQRCwZMmSek21Ovs55FSjmwsKCsI999yD8+fPo7y8XJzTtrVuoqioCDKZDIGBgQCqIvmKigro9XqbZW1F8JY0Go3NesrKylBZWXnb6+uiIf2zdOjQISxatAh9+vTBa6+9ZveDpFQqMWzYMGi1Wly6dMmue9xKqj5aGjlyJIxGI9LT02st50m/Q4PBgJ07d6J9+/bo1KmT3e2R+nd4a//qwxOeQaBhfbTkrs+hVP2z5M7PoL3c9RkEau9jcXEx5s2bh9zcXKxcubJaSh53ew4ZeHkAwWI7zebNm8PX1xcXLlyoVu7ChQto0aKFOIVjns++tWxeXh60Wq3Vq8e2tG3bFoWFhcjLy6tWD4DbXl9X9vbP7NChQ3jllVcQGxuLN954Az4+PpK0R8rFtw3tY01u10ZP+R0CwL59+1BQUCDJgl6pf4eCnVvaesozCNjfRzN3fw4b2r+auOMzaC93fgYt72mpuLgYL774Iq5evYp3333X5tpSd3sOGXi5ueLiYuzfvx8dOnSAr68vlEol7rnnHvz888/Q6XRiuWvXruHo0aNWOVf69u0LlUqF7du3W91z+/btkMlkiIuLq7XugQMHQiaTYceOHdWu9/X1Rd++fV3aP+DmX/Z33nkn/v3vf0OlUjWoPQaDAWlpadBoNGjRokWD7mXW0D7asnPnTiiVSqvheFs84XdotnXrVqhUKowaNapB7ZH6d3hr/+rDE55BoGF9BNz/OWxo/2xx52fQXu76DAK2+2gOuq5cuYJ33323xt+Fuz2HXOPlRpYuXYqmTZuiU6dO0Gg0uHTpEr744gvk5+fj5ZdfFstNnz4ds2bNwksvvYTJkyejoqICKSkp0Gg0+Mc//iGWCw4OxtSpU5GSkoLg4GDcddddOHXqFNatW4dx48ZZvfWxY8cOvPXWW3jppZcwevRoAFVR/H333YfU1FTI5XJ07twZhw8fxrfffov4+Ph6D69K3b/jx4/j1VdfRZMmTfD444/j3LlzVvW1bt1aTGdgq38ffPABDAYDunfvjiZNmuD69ev4+uuvcfbsWbz88su3XRTsjD5+9tlnuHjxInr37o2IiAhxYe/hw4cxbdo0q7Ulnvg7NMvNzcWhQ4cwdOhQmxmna+qf1L/DuvavsLAQx44dA3DzX70HDx5ESEgIQkJCEBsbC8D9nkFH9NHdnkOp++epz2Bd+2fmLs9gXftYXl6Of/7znzh79iyef/55GI1GnDhxQrxHSEiIGPS523PIwMuNtG3bFmlpadiyZQvKysoQFBSE7t2749VXXxVzkwBAq1at8P777+Ojjz5CQkICFAoFevXqhWeeeabaIs+pU6fC398fmzZtwueff44mTZrgsccew9SpU63KCYIAo9FYbSh33rx5CA8Px8aNG5Gfn4/IyEjMmTPHrm0SpO7fkSNHUF5ejuzsbMydO7dafe+9956Y9dhW/9q0aYMtW7Zg165dKC0thb+/Pzp37oz//Oc/di9QlbqPMTEx+PXXX7F//37xTcD27dvb3IrDE3+HZtu3b4fRaKx1Qa8zfod17V9GRka1BdcrV64EAMTGxuL9998Xj7vTM+iIPrrbcyh1/zz1GazP/0cB93kG69rH/Px8cX3drX0BgNGjR+OVV14Rf3an51AmOGrim4iIiIiscI0XERERkZMw8CIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxGRG7p48SJkMpn4JzIy0ur8kiVLIJPJsGfPHtc08BaPP/64VXvXrVvn6iYRuSUGXkTkVLcGFLb+3LqPXGPWo0cPLF68GPPnz3d4XatXr4ZMJsNTTz1127K9e/eGTCbD77//DgB4+OGHsXjxYjzwwAOObiaRR+NejUTkEu3atcPjjz9u89ytozuNWWxsLJYsWeKUuiZNmoR58+bh888/R2JiItRqtc1yx48fx++//47Y2Fj06tULQFXg9fDDD2PdunXYvHmzU9pL5IkYeBGRS7Rv395pAQXVTXBwMB555BGsX78eGzduxOTJk22WS0lJAQDMmDHDmc0j8gqcaiQityeTyTBkyBDk5ORg+vTpaNq0KdRqNfr161fjGqfi4mIsXrwYXbt2hVqtRkhICEaPHo1ffvmlWtkhQ4ZAJpOhvLwcCQkJaN++PXx8fKwCw40bN6JPnz5Qq9Vo1qwZZs6ciYKCArRu3RqtW7cWyz3xxBOQyWQ4fPiwzXYtXLgQMpkMmzZtashXUqPjx4+jefPmCA8Px8GDB8XjGRkZiI+PR0xMDHx9fREVFYUnn3wSmZmZVtebg6nU1FSb96+oqMCnn34KX1/fGgMzIqoZR7yIyCMUFhZiwIABCA4OxuTJk3H9+nV88cUXuPfee/Hbb7+hW7duYtn8/HwMGjQIJ06cQFxcHO69915otVps3rwZQ4cOxZdffokHH3ywWh0PP/ww/vjjD9x7771o0qQJ2rZtCwBYu3YtZsyYgZCQEEydOhUajQbbtm3DyJEjUVlZCR8fH/Ees2fPxvr165GcnIy77rrL6v6VlZVYv349IiMjcf/990v+He3duxf3338/goODsXv3bnTq1AkAcPDgQdx7770oLS3F/fffj/bt2+PixYv49NNPsX37duzfv1/s66BBg9ChQwfs3r0bFy9etAoqAWDLli3Iy8vDpEmTEBoaKnkfiLyeQETkRBkZGQIAoV27dsLixYtt/tm+fbvVNQAEAMIzzzwjGI1G8fiaNWsEAMLs2bOtyj/22GMCAGHt2rVWx7Ozs4Xo6GghIiJCKCsrE48PHjxYACDExsYKeXl5VtcUFBQIgYGBQlBQkHD+/HnxeGVlpTBixAgBgNCqVSura7p16yYEBQUJJSUlVsc3btwoABBeeumlOn9PTzzxhM3zixcvFgAIaWlpgiAIwjfffCP4+fkJXbp0Ef7++2+xXEVFhdC6dWshKChIOHbsmNU99u7dKygUCmHcuHFWx998800BgLBkyZJq9Y4ZM0YAIOzatctmu1JTUwUAQmpq6m37SNQYMfAiIqcyBxS1/XnhhResrgEgBAQECMXFxVbHKysrBaVSKfTq1Us8lpOTIygUCmH48OE263///fcFAMK3334rHjMHXps3b65Wft26dQIA4cUXX6x2bv/+/TYDL3MdKSkpVsfHjh0ryGQy4ezZszbbZqk+gdeaNWsEhUIh9O/fv1rgaA723njjDZv3efjhhwW5XC5otVrx2JUrVwSFQiG0bt1aMJlM4vHLly/bPG6JgRdR7TjVSEQuce+992LHjh11Lt+hQwcEBgZaHVMqlWjWrBkKCwvFY4cPH4bRaIRer7e5eP/s2bMAgPT0dIwbN87q3N13312t/B9//AEAuOeee6qdu/vuu6FUVv9rdMqUKXjppZewZs0aTJ8+HQBw+fJl7Ny5E4MHD0b79u1r72w9JCYmYsuWLRg7diy+/PJL+Pv7W50/cOAAgKr+2vo+srOzYTKZcObMGfTp0wcAEBUVhTFjxuC7775DWloahg0bBgBYt24djEYjpk2bBplMJlkfiBoTBl5E5BE0Go3N40qlEkajUfw5Pz8fAPDrr7/i119/rfF+paWl1Y41a9as2rGioiIAQERERLVzcrkc4eHh1Y6HhIRg4sSJ+Pjjj3Hy5El06dIFqampMBqNmDlzZo1tssfevXsBAKNHj64WdAE3v49PP/201vvc+n3MmDED3333HVJTU60CL7lcjieffFKClhM1TnyrkYi8SnBwMADgn//8J4Sq5RQ2/yxevLjatbZGccz3y8nJqXbOZDIhNzfXZjtmz54NAFizZg0EQUBqaiqaNGmChx9+2O6+2ZKSkoJevXrhhRdewKpVq6qdN7f/22+/rfX7GDx4sNV148aNQ7NmzfD111+jqKgIe/fuxdmzZzFy5EjExMRI2geixoSBFxF5lbvuugsymQz79++X5H49evQAAOzbt6/auUOHDsFgMNi8rn///ujevTs++eQTbN++HRcuXMDjjz8OPz8/SdplFhoail27dqFXr1549tln8eGHH1qd79u3LwDU+/tQKpWYOnUqysrK8Pnnn2Pt2rUAmLuLqKEYeBGRV4mMjMTEiROxb98+vPPOOxAEoVqZgwcPQqfT1el+DzzwAAIDA7FmzRpkZGSIxw0GA1577bVar501axZyc3PF6cX4+Ph69KTuzMFXnz598Nxzz+H/+//+P6v2x8TEYOXKlfj555+rXVtZWWkztxlwM8hatWoVvvzyS4SFhXFLIKIG4hovInKJc+fO1Zq5viFZ7VetWoXTp09j4cKF+OSTT9C/f39oNBr8/fff+O2333D27FlcvXrV5pqoW4WEhGDlypWYNWsWevXqhUcffVTM4+Xr64vmzZtDLrf9b1jzIvsrV66gb9++6N69u919qks7f/jhB4waNQpz5syBIAiYM2cOfH198dVXX2HMmDEYPHgwhg8fLuY8y8rKwt69exEWFob09PRq9+zYsSMGDBggrpWbOXMmVCqVw/pA1Bgw8CIilzh//jxef/31Gs83JPBq0qQJ9u3bhw8++ABffPEFPv30U5hMJkRGRqJHjx547bXXbC6Kr8nMmTMRGhqK5cuXY926ddBoNBg/fjzeeusttGrVCu3atbN5nUajwQMPPIDPPvtM8kX1tlgGXy+88AIEQcALL7yAu+66C3/88QfeeecdbNu2Db/88gt8fX3RokULPPjgg5g0aVKN95wxY4YYeJnf0CQi+8kEW+PwRER0W+fOnUOHDh0wceJEfPHFFzbLdO3aFVlZWbh69Wq1dBi1uXjxItq0aYMnnngC69atk6jFjrdu3TpMmzYNqampfPuRyAau8SIiuo2CggKUl5dbHSsrK8OLL74IADa3HwKAbdu24eTJk5gyZUq9gi5LH3/8MWQyGSIjI+263lkef/xxyGQyTJs2zdVNIXJrnGokIrqNn376CTNmzMCoUaMQExOD3NxccS/DYcOG4dFHH7Uqn5SUhL///hvJyclQq9VYuHBhvesMCQmxSnlhb+DmLA8//LBVYtjY2FjXNYbIjXGqkYjoNs6ePYvXXnsN+/btE/N5tW/fHo8++ijmz59fLUVE69atcenSJXTs2BFvvfVWtQz5RNR4MfAiIiIichKu8SIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxEREZGT/P8dS6oUwHgCGQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1833,7 +1526,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 9, "id": "a2a754b4-5aef-48cb-bf0f-43cad8029e5d", "metadata": { "tags": [] @@ -1891,7 +1584,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 10, "id": "18997c67-c643-428a-beb6-57872daeb3ac", "metadata": {}, "outputs": [ @@ -1901,7 +1594,7 @@ "Text(0.5, 1.0, 'injected counts')" ] }, - "execution_count": 16, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, @@ -1972,7 +1665,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 11, "id": "ec211c66-d974-48e2-86a8-2c0f63b34fc2", "metadata": {}, "outputs": [ @@ -2063,7 +1756,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 12, "id": "5bbdd2c6-39b0-4c69-bcaf-5a5b8becefdb", "metadata": {}, "outputs": [ @@ -2331,7 +2024,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 13, "id": "79816fcd-525e-4892-b179-b4cc8b502743", "metadata": {}, "outputs": [ @@ -2341,8 +2034,8 @@ "text": [ "... loading the pre-computed image response ...\n", "--> done\n", - "CPU times: user 2min 2s, sys: 46.8 s, total: 2min 49s\n", - "Wall time: 2min 56s\n" + "CPU times: user 2min 10s, sys: 41.5 s, total: 2min 52s\n", + "Wall time: 3min 10s\n" ] } ], @@ -2380,7 +2073,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "id": "a9423539-928d-41f6-9aab-04a18c1ea0b7", "metadata": {}, "outputs": [ @@ -2516,6 +2209,26 @@ "model.display()" ] }, + { + "cell_type": "markdown", + "id": "e57b7109-e602-4a83-b575-abf8d602b579", + "metadata": {}, + "source": [ + "Before we perform the fit, let's first change the 3ML console logging level, in order to mimimize the amount of console output." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c83d4333-90e1-4f55-b3f9-e5da1fd40598", + "metadata": {}, + "outputs": [], + "source": [ + "# This is a simple workaround for now to prevent a lot of output. \n", + "from threeML import update_logging_level\n", + "update_logging_level(\"CRITICAL\")" + ] + }, { "cell_type": "markdown", "id": "17f87aa8-eade-410e-a793-c15ad4604703", @@ -2526,50 +2239,13 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 18, "id": "85eae192-0970-406c-bbd3-fa9a133d32dc", "metadata": { "scrolled": true, "tags": [] }, "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "... Calculating point source responses ...\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n", - "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--> done (source name : point_source)\n", - "--> all done\n" - ] - }, - { - "data": { - "text/html": [ - "
14:00:56 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:00:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152244;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=307979;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "name": "stderr", "output_type": "stream", @@ -2580,6091 +2256,1455 @@ { "data": { "text/html": [ - "
14:00:58 INFO      trial values: 0.04,0.01,1 -> logL = 14908358.728                        joint_likelihood.py:1010\n",
+       "
Best fit values:\n",
+       "\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m14:00:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14908358.728\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=543925;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=335378;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { "text/html": [ - "
14:00:59 INFO      trial values: 0.040804,0.01,1 -> logL = 14911295.359                    joint_likelihood.py:1010\n",
-       "
\n" + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
point_source.spectrum.main.Gaussian.F(0.0 +/- 1.3) x 10^-91 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", + "
" ], "text/plain": [ - "\u001b[38;5;46m14:00:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.040804\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14911295.359\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=875816;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=935034;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + " result \\\n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 \n", + "point_source.spectrum.main.Gaussian.F (0.0 +/- 1.3) x 10^-9 \n", + "background_cosi (9.32 +/- 0.05) x 10^-1 \n", + "\n", + " unit \n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + "point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + "background_cosi " ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { "text/html": [ - "
14:01:01 INFO      trial values: 0.039204,0.01,1 -> logL = 14904015.715                    joint_likelihood.py:1010\n",
+       "
\n",
+       "Correlation matrix:\n",
+       "\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m14:01:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.039204\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14904015.715\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=613799;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=178246;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { "text/html": [ - "
14:01:02 INFO      trial values: 0.04008,0.01,1 -> logL = 14908715.495                     joint_likelihood.py:1010\n",
-       "
\n" + "
\n", + "\n", + "\n", + "\n", + "
1.00-0.01-0.40
-0.011.00-0.03
-0.40-0.031.00
" ], "text/plain": [ - "\u001b[38;5;46m14:01:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04008\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14908715.495\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=616322;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=74861;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + " 1.00 -0.01 -0.40\n", + "-0.01 1.00 -0.03\n", + "-0.40 -0.03 1.00" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { "text/html": [ - "
14:01:04 INFO      trial values: 0.03992,0.01,1 -> logL = 14907987.897                     joint_likelihood.py:1010\n",
+       "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m14:01:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.03992\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14907987.897\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=707362;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=775270;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { "text/html": [ - "
14:01:05 INFO      trial values: 0.04,0.010201,1 -> logL = 14898734.111                    joint_likelihood.py:1010\n",
-       "
\n" + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", + "
" ], "text/plain": [ - "\u001b[38;5;46m14:01:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.010201\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14898734.111\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882788;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=77148;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + " -log(likelihood)\n", + "cosi -1.527559e+07\n", + "total -1.527559e+07" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { "text/html": [ - "
14:01:07 INFO      trial values: 0.04,0.009801,1 -> logL = 14917820.671                    joint_likelihood.py:1010\n",
+       "
\n",
+       "Values of statistical measures:\n",
+       "\n",
        "
\n" ], "text/plain": [ - "\u001b[38;5;46m14:01:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.009801\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14917820.671\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=267614;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=526736;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { "text/html": [ - "
14:01:08 INFO      trial values: 0.04,0.010042,1 -> logL = 14906360.208                    joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.010042\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14906360.208\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=376195;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=215643;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:10 INFO      trial values: 0.04,0.0099582,1 -> logL = 14910350.138                   joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0099582\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14910350.138\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=513538;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=236698;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:11 INFO      trial values: 0.04,0.01,1.0201 -> logL = 14907769.198                   joint_likelihood.py:1010\n",
-       "
\n" + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", + "
" ], "text/plain": [ - "\u001b[38;5;46m14:01:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.0201\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14907769.198\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=35870;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=693168;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + " statistical measures\n", + "AIC -3.055119e+07\n", + "BIC -3.055119e+07" ] }, "metadata": {}, "output_type": "display_data" }, { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + "CPU times: user 7min 24s, sys: 3min 55s, total: 11min 20s\n", + "Wall time: 1min 46s\n" ] }, { "data": { - "text/html": [ - "
14:01:13 INFO      trial values: 0.04,0.01,0.98007 -> logL = 14908928.814                  joint_likelihood.py:1010\n",
-       "
\n" - ], "text/plain": [ - "\u001b[38;5;46m14:01:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98007\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14908928.814\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=603180;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490320;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" + "( value negative_error \\\n", + " gaussian.spectrum.main.Gaussian.F 4.695126e-02 -2.403110e-05 \n", + " point_source.spectrum.main.Gaussian.F 5.975791e-13 2.623492e-10 \n", + " background_cosi 9.320815e-01 -4.914467e-03 \n", + " \n", + " positive_error error \\\n", + " gaussian.spectrum.main.Gaussian.F 2.433950e-05 2.418530e-05 \n", + " point_source.spectrum.main.Gaussian.F 1.929678e-09 1.096013e-09 \n", + " background_cosi 4.582905e-03 4.748686e-03 \n", + " \n", + " unit \n", + " gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + " point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + " background_cosi ,\n", + " -log(likelihood)\n", + " cosi -1.527559e+07\n", + " total -1.527559e+07)" ] }, + "execution_count": 18, "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = True)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "5c045f61-bd7a-44e3-933f-a4f1541b7aa3", + "metadata": {}, + "source": [ + "We see that the normalization of the point source has gone to zero, and we essentially get the same results as the first fit. This is not entirely surprising, considering that the two components have a high degree of degeneracy, and the point source is subdominant. \n", + "\n", + "Note (CK): The injected model may not be exactly the same as the astromodel, because MEGAlib uses a cutoff of the Gaussian spectral distribution at 3 sigma. " + ] + }, + { + "cell_type": "markdown", + "id": "0e47eea2", + "metadata": {}, + "source": [ + "## *****************************************\n", + "## Example 3: Working With a Realistic Model" + ] + }, + { + "cell_type": "markdown", + "id": "672fa8bd", + "metadata": {}, + "source": [ + "## Read in the binned data\n", + "We will start with the binned data, since we already learned how to bin data: " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9bce7e04", + "metadata": {}, + "outputs": [], + "source": [ + "# background:\n", + "bg_tot = BinnedData(\"Gal_511.yaml\")\n", + "bg_tot.load_binned_data_from_hdf5(binned_data=\"cosmic_photons_binned_data.hdf5\")\n", + "\n", + "# combined data:\n", + "data_combined_thin_disk = BinnedData(\"Gal_511.yaml\")\n", + "data_combined_thin_disk.load_binned_data_from_hdf5(binned_data=\"combined_binned_data_thin_disk.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "3466ee97", + "metadata": {}, + "source": [ + "## Define source\n", + "This defines a multi-component source with a disk and gaussian component. The disk and bulge components have different spectral characteristics. Spatially, the bulge component is the sum of three different spatial models, with majority of the flux \"narrow bulge\" with " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "3ca51102", + "metadata": {}, + "outputs": [], + "source": [ + "# Spectral Definitions...\n", + "\n", + "models = [\"centralPoint\",\"narrowBulge\",\"broadBulge\",\"disk\"]\n", + "\n", + "# several lists of parameters for, in order, CentralPoint, NarrowBulge, BroadBulge, and Disk sources\n", + "mu = [511.,511.,511., 511.]*u.keV\n", + "sigma = [0.85,0.85,0.85, 1.27]*u.keV\n", + "F = [0.00012, 0.00028, 0.00073, 1.7e-3]/u.cm/u.cm/u.s\n", + "K = [0.00046, 0.0011, 0.0027, 4.5e-3]/u.cm/u.cm/u.s/u.keV\n", + "\n", + "SpecLine = [Gaussian(),Gaussian(),Gaussian(),Gaussian()]\n", + "SpecOPs = [SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\")]\n", + "\n", + "# Set units and fitting parameters; different definition for each spectral model with different norms\n", + "for i in range(4):\n", + " SpecLine[i].F.unit = F[i].unit\n", + " SpecLine[i].F.value = F[i].value\n", + " SpecLine[i].F.min_value =0\n", + " SpecLine[i].F.max_value=1\n", + " SpecLine[i].mu.value = mu[i].value\n", + " SpecLine[i].mu.unit = mu[i].unit\n", + " SpecLine[i].sigma.unit = sigma[i].unit\n", + " SpecLine[i].sigma.value = sigma[i].value\n", + "\n", + " SpecOPs[i].K.value = K[i].value\n", + " SpecOPs[i].K.unit = K[i].unit\n", + " \n", + " SpecLine[i].sigma.free = False\n", + " SpecLine[i].mu.free = False\n", + " SpecLine[i].F.free = False#True\n", + " SpecOPs[i].K.free = False # not fitting the amplitude of the OPs component for now, since we are only using the 511 response! \n", + "\n", + "SpecLine[-1].F.free = True# actually do fit the flux of the disk component\n", + "\n", + "# Generate Composite Spectra\n", + "SpecCentralPoint= SpecLine[0] + SpecOPs[0]\n", + "SpecNarrowBulge = SpecLine[1] + SpecOPs[1]\n", + "SpecBroadBulge = SpecLine[2] + SpecOPs[2]\n", + "SpecDisk = SpecLine[3] + SpecOPs[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "008ec971", + "metadata": {}, + "outputs": [], + "source": [ + "# Define Spatial Model Components\n", + "MapNarrowBulge = Gaussian_on_sphere(lon0=359.75,lat0=-1.25, sigma = 2.5)\n", + "MapBroadBulge = Gaussian_on_sphere(lon0 = 0, lat0 = 0, sigma = 8.7)\n", + "MapDisk = Wide_Asymm_Gaussian_on_sphere(lon0 = 0, lat0 = 0, a=90, e = 0.99944429,theta=0)\n", + "\n", + "# Fix fitting parameters (same for all models)\n", + "for map in [MapNarrowBulge,MapBroadBulge]:\n", + " map.lon0.free=False\n", + " map.lat0.free=False\n", + " map.sigma.free=False\n", + " \n", + "MapDisk.lon0.free=False\n", + "MapDisk.lat0.free=False\n", + "MapDisk.a.free=False\n", + "MapDisk.e.free=True#False\n", + "MapDisk.theta.free=False" + ] + }, + { + "cell_type": "markdown", + "id": "d4dc7eca-6881-45cb-801a-3e796a13dbfc", + "metadata": {}, + "source": [ + "For the Wide_Asymm_Gaussian_on_sphere model, note that e is the eccentricity of the Gaussian ellipse, defined such that the scale height b of the disk is given by $b = a \\sqrt{(1-e^2)}$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "924aec1c", + "metadata": {}, + "outputs": [], + "source": [ + "# Define Spatio-spectral models\n", + "\n", + "# Bulge\n", + "c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')\n", + "c_icrs = c.transform_to('icrs')\n", + "ModelCentralPoint = PointSource('centralPoint', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=SpecCentralPoint)\n", + "ModelNarrowBulge = ExtendedSource('narrowBulge',spectral_shape=SpecNarrowBulge,spatial_shape=MapNarrowBulge)\n", + "ModelBroadBulge = ExtendedSource('broadBulge',spectral_shape=SpecBroadBulge,spatial_shape=MapBroadBulge)\n", + "\n", + "# Disk\n", + "ModelDisk = ExtendedSource('disk',spectral_shape=SpecDisk,spatial_shape=MapDisk)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b5784f63-3712-496b-a724-e64c2b66b180", + "metadata": {}, + "outputs": [ { "data": { "text/html": [ - "
14:01:14 INFO      trial values: 0.04,0.01,1.0121 -> logL = 14908004.588                   joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.0121\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14908004.588\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=764906;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=427699;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:16 INFO      trial values: 0.04,0.01,0.98793 -> logL = 14908705.758                  joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.01\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98793\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m14908705.758\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=443232;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=397477;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:17 INFO      trial values: 0.042095,0.0016969,0.47859 -> logL = 15226326.006         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042095\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016969\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.47859\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15226326.006\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=874094;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=8163;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:19 INFO      trial values: 0.04229,0.0012799,0.43902 -> logL = 15232794.823          joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04229\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0012799\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.43902\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15232794.823\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=662026;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=829026;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:20 INFO      trial values: 0.042523,0.000861,0.39406 -> logL = 15237090.316          joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042523\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.000861\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.39406\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15237090.316\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=959785;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=428736;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:22 INFO      trial values: 0.042678,0.00062687,0.36521 -> logL = 15238270.567        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00062687\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.36521\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15238270.567\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=884564;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=164660;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:23 INFO      trial values: 0.042738,0.00062687,0.36521 -> logL = 15238920.893        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042738\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00062687\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.36521\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15238920.893\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=245299;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=373500;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:24 INFO      trial values: 0.042619,0.00062687,0.36521 -> logL = 15237612.079        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042619\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00062687\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.36521\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15237612.079\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=268696;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=850504;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:26 INFO      trial values: 0.042678,0.00063755,0.36521 -> logL = 15238251.031        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00063755\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.36521\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15238251.031\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905977;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86231;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:27 INFO      trial values: 0.042678,0.00061628,0.36521 -> logL = 15238287.734        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00061628\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.36521\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15238287.734\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244242;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737677;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:29 INFO      trial values: 0.042678,0.00064563,0.36521 -> logL = 15238234.771        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00064563\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.36521\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15238234.771\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679028;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=883812;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:30 INFO      trial values: 0.042678,0.00060838,0.36521 -> logL = 15238299.096        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00060838\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.36521\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15238299.096\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=241325;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=477881;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:32 INFO      trial values: 0.042678,0.00062687,0.3732 -> logL = 15238686.158         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00062687\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.3732\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15238686.158\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=768251;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=783745;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:33 INFO      trial values: 0.042678,0.00062687,0.3573 -> logL = 15237853.117         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00062687\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.3573\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15237853.117\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=296755;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=824413;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:35 INFO      trial values: 0.042678,0.00062687,0.3811 -> logL = 15239090.507         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00062687\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.3811\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15239090.507\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=277477;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=479178;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:36 INFO      trial values: 0.042678,0.00062687,0.34964 -> logL = 15237443.362        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.042678\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00062687\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.34964\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15237443.362\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=62092;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=199139;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:38 INFO      trial values: 0.048599,0.0002466,0.8657 -> logL = 15271663.872          joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.048599\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0002466\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.8657\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15271663.872\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=312967;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=343966;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:39 INFO      trial values: 0.047517,0.00030163,0.76339 -> logL = 15273594.939        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047517\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00030163\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.76339\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273594.939\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=74899;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=965428;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:41 INFO      trial values: 0.047576,0.00030163,0.76339 -> logL = 15273537.994        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047576\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00030163\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.76339\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273537.994\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=240023;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968436;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:42 INFO      trial values: 0.047458,0.00030163,0.76339 -> logL = 15273645.122        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047458\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00030163\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.76339\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273645.122\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=894282;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899431;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:44 INFO      trial values: 0.047517,0.0003147,0.76339 -> logL = 15273484.793         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047517\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0003147\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.76339\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273484.793\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=191251;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=37887;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:45 INFO      trial values: 0.047517,0.00028883,0.76339 -> logL = 15273699.130        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047517\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00028883\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.76339\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273699.130\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72797;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581234;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:47 INFO      trial values: 0.047517,0.00030163,0.78528 -> logL = 15273652.336        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047517\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00030163\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.78528\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273652.336\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72066;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=781353;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:48 INFO      trial values: 0.047517,0.00030163,0.74174 -> logL = 15273511.259        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047517\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00030163\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.74174\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273511.259\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=995662;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=871199;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:50 INFO      trial values: 0.047517,0.00030163,0.77488 -> logL = 15273628.459        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047517\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00030163\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.77488\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273628.459\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=738021;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142213;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:51 INFO      trial values: 0.047517,0.00030163,0.75196 -> logL = 15273554.136        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047517\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00030163\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.75196\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15273554.136\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711791;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=543280;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:53 INFO      trial values: 0.047263,0.00023218,0.83736 -> logL = 15274478.508        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047263\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00023218\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.83736\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15274478.508\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=151774;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=661389;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:54 INFO      trial values: 0.046818,0.00013202,0.97403 -> logL = 15275112.491        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046818\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00013202\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.97403\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275112.491\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=229166;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=634244;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:56 INFO      trial values: 0.046879,0.00013202,0.97403 -> logL = 15275100.573        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046879\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00013202\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.97403\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275100.573\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174119;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522422;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:57 INFO      trial values: 0.046758,0.00013202,0.97403 -> logL = 15275117.124        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046758\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00013202\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.97403\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275117.124\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=103605;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=797317;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:01:59 INFO      trial values: 0.046818,0.00014165,0.97403 -> logL = 15275059.149        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:01:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046818\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00014165\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.97403\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275059.149\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=722277;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=197535;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:00 INFO      trial values: 0.046818,0.00012272,0.97403 -> logL = 15275161.495        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046818\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00012272\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.97403\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275161.495\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=608412;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=471289;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:02 INFO      trial values: 0.046818,0.00013202,0.98668 -> logL = 15275066.922        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046818\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00013202\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98668\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275066.922\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712957;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=708565;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:03 INFO      trial values: 0.046818,0.00013202,0.96144 -> logL = 15275149.774        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046818\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.00013202\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.96144\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275149.774\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=32573;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=428683;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:05 INFO      trial values: 0.046781,9.8025e-05,0.94402 -> logL = 15275339.943        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046781\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m9.8025e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94402\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275339.943\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=708100;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=380276;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:06 INFO      trial values: 0.046742,6.8231e-05,0.91341 -> logL = 15275432.185        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046742\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.8231e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.91341\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275432.185\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482731;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=159855;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:08 INFO      trial values: 0.046737,6.4575e-05,0.90926 -> logL = 15275434.623        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046737\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.4575e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.90926\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275434.623\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=422049;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=860975;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:09 INFO      trial values: 0.046797,6.4575e-05,0.90926 -> logL = 15275455.595        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046797\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.4575e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.90926\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275455.595\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=260331;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=436496;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:10 INFO      trial values: 0.046676,6.4575e-05,0.90926 -> logL = 15275406.324        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046676\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.4575e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.90926\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275406.324\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72521;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=206222;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:12 INFO      trial values: 0.046737,7.3438e-05,0.90926 -> logL = 15275412.007        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046737\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.3438e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.90926\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275412.007\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=514618;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517132;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:13 INFO      trial values: 0.046737,5.6281e-05,0.90926 -> logL = 15275453.370        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046737\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m5.6281e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.90926\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275453.370\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=683855;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=283265;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:15 INFO      trial values: 0.046737,6.4575e-05,0.92081 -> logL = 15275445.583        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046737\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.4575e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.92081\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275445.583\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=387887;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=738689;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:16 INFO      trial values: 0.046737,6.4575e-05,0.89777 -> logL = 15275416.592        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046737\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.4575e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.89777\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275416.592\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=864586;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=881872;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:18 INFO      trial values: 0.046895,3.706e-05,0.92235 -> logL = 15275542.470         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046895\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m3.706e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.92235\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275542.470\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=347986;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991527;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:19 INFO      trial values: 0.046993,2.3897e-05,0.93044 -> logL = 15275563.633        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046993\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.3897e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93044\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275563.633\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=781517;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=779368;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:21 INFO      trial values: 0.047054,2.3897e-05,0.93044 -> logL = 15275552.836        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047054\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.3897e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93044\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275552.836\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=442972;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=771384;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:22 INFO      trial values: 0.046932,2.3897e-05,0.93044 -> logL = 15275567.167        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046932\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.3897e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93044\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275567.167\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=980658;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=734442;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:24 INFO      trial values: 0.046993,3.1596e-05,0.93044 -> logL = 15275549.674        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046993\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m3.1596e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93044\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275549.674\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=630583;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205211;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:25 INFO      trial values: 0.046993,1.7272e-05,0.93044 -> logL = 15275573.841        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046993\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.7272e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93044\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275573.841\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=405316;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=813157;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:27 INFO      trial values: 0.046993,2.3897e-05,0.94227 -> logL = 15275555.189        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046993\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.3897e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94227\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275555.189\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=34850;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=349805;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:28 INFO      trial values: 0.046993,2.3897e-05,0.91866 -> logL = 15275564.690        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046993\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.3897e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.91866\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275564.690\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=485610;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=242137;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:30 INFO      trial values: 0.046971,1.4613e-05,0.93088 -> logL = 15275579.115        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046971\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.4613e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93088\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275579.115\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=295529;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=185087;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:31 INFO      trial values: 0.046944,6.3454e-06,0.93143 -> logL = 15275588.809        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.3454e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93143\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275588.809\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=998348;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23897;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:33 INFO      trial values: 0.046932,3.7175e-06,0.93168 -> logL = 15275590.799        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046932\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m3.7175e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93168\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.799\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=377988;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=317811;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:34 INFO      trial values: 0.046922,2.0723e-06,0.93188 -> logL = 15275591.595        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046922\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.0723e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93188\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275591.595\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=309144;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=216420;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:36 INFO      trial values: 0.046917,1.3878e-06,0.93199 -> logL = 15275591.752        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046917\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3878e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93199\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275591.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=936750;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=661747;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:37 INFO      trial values: 0.046978,1.3878e-06,0.93199 -> logL = 15275592.075        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046978\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3878e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93199\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275592.075\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=645881;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=739808;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:39 INFO      trial values: 0.046856,1.3878e-06,0.93199 -> logL = 15275584.135        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046856\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3878e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93199\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275584.135\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=960364;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=277126;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:40 INFO      trial values: 0.046917,4.8349e-06,0.93199 -> logL = 15275589.240        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046917\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8349e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93199\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275589.240\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=137739;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=90246;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:42 INFO      trial values: 0.046917,2.4735e-08,0.93199 -> logL = 15275592.608        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046917\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.4735e-08\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93199\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275592.608\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=298875;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=300063;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:43 INFO      trial values: 0.046917,1.102e-05,0.93199 -> logL = 15275583.513         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046917\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.102e-05\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93199\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275583.513\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=698034;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=192222;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:45 INFO      trial values: 0.046917,9.2826e-07,0.93199 -> logL = 15275592.049        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046917\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m9.2826e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93199\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275592.049\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174181;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727363;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:46 INFO      trial values: 0.046917,1.3878e-06,0.94375 -> logL = 15275589.607        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046917\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3878e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94375\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275589.607\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=814069;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=950168;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:47 INFO      trial values: 0.046917,1.3878e-06,0.9203 -> logL = 15275586.601         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046917\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3878e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9203\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275586.601\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=28325;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=484977;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:49 INFO      trial values: 0.046947,3.4605e-07,0.93288 -> logL = 15275593.536        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046947\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m3.4605e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93288\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.536\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=544958;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=363375;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:50 INFO      trial values: 0.04695,2.6921e-07,0.93298 -> logL = 15275593.589         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04695\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.6921e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93298\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.589\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=557112;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=909772;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:52 INFO      trial values: 0.046954,1.9481e-07,0.9331 -> logL = 15275593.609         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046954\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.9481e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9331\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.609\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=672268;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308346;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:53 INFO      trial values: 0.047015,1.9481e-07,0.9331 -> logL = 15275589.344         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047015\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.9481e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9331\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275589.344\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868400;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=310506;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:55 INFO      trial values: 0.046893,1.9481e-07,0.9331 -> logL = 15275590.593         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046893\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.9481e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9331\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.593\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=13441;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=949492;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:56 INFO      trial values: 0.046954,6.212e-06,0.9331 -> logL = 15275588.711          joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046954\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m6.212e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9331\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275588.711\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942295;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=799964;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:58 INFO      trial values: 0.046954,2.591e-06,0.9331 -> logL = 15275591.838          joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046954\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.591e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9331\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275591.838\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=551054;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=254544;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:02:59 INFO      trial values: 0.046954,1.9481e-07,0.94485 -> logL = 15275589.178        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:02:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046954\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.9481e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94485\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275589.178\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=49410;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=901856;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:01 INFO      trial values: 0.046954,1.9481e-07,0.9214 -> logL = 15275590.750         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046954\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.9481e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9214\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.750\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817251;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=674025;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:02 INFO      trial values: 0.046954,4.4797e-08,0.93239 -> logL = 15275593.748        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046954\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.4797e-08\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93239\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.748\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=761055;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=620602;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:04 INFO      trial values: 0.046953,2.1913e-08,0.9322 -> logL = 15275593.767         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m2.1913e-08\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9322\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.767\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=56113;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=780990;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:05 INFO      trial values: 0.046953,4.8239e-10,0.93181 -> logL = 15275593.784        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8239e-10\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93181\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.784\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=869201;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=105604;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:07 INFO      trial values: 0.047014,4.8239e-10,0.93181 -> logL = 15275589.973        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047014\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8239e-10\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93181\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275589.973\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=358942;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=363386;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:08 INFO      trial values: 0.046892,4.8239e-10,0.93181 -> logL = 15275590.310        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046892\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8239e-10\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93181\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.310\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=540863;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=284381;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:10 INFO      trial values: 0.046953,4.6896e-06,0.93181 -> logL = 15275590.223        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.6896e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93181\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.223\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=979421;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=208858;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:11 INFO      trial values: 0.046953,4.5013e-06,0.93181 -> logL = 15275590.383        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.5013e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93181\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.383\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=440140;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=141752;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:13 INFO      trial values: 0.046953,4.8239e-10,0.94355 -> logL = 15275590.235        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8239e-10\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94355\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.235\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=688869;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=684657;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:14 INFO      trial values: 0.046953,4.8239e-10,0.92013 -> logL = 15275590.053        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8239e-10\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.92013\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.053\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=747810;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=267882;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:16 INFO      trial values: 0.046951,1.2946e-12,0.93209 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.2946e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93209\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=502252;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=307116;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:17 INFO      trial values: 0.046951,1.3798e-12,0.93212 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=135278;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458301;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:19 INFO      trial values: 0.047012,1.3798e-12,0.93212 -> logL = 15275590.152        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047012\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.152\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=449236;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=158210;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:20 INFO      trial values: 0.04689,1.3798e-12,0.93212 -> logL = 15275590.141         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04689\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.141\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=288183;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=637926;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:22 INFO      trial values: 0.046951,4.803e-06,0.93212 -> logL = 15275590.128         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.803e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.128\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=515894;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717548;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:23 INFO      trial values: 0.046951,4.8133e-06,0.93212 -> logL = 15275590.119        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8133e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.119\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=86908;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=653906;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:25 INFO      trial values: 0.046951,1.3798e-12,0.94387 -> logL = 15275590.145        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94387\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.145\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=701900;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=812584;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:26 INFO      trial values: 0.046951,1.3798e-12,0.92043 -> logL = 15275590.147        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.92043\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.147\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=350087;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=823697;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:28 INFO      trial values: 0.046951,1.3798e-12,0.93212 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987752;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=879315;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:29 INFO      trial values: 0.047012,1.3798e-12,0.93212 -> logL = 15275590.152        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047012\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.152\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=637585;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=34378;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:31 INFO      trial values: 0.04689,1.3798e-12,0.93212 -> logL = 15275590.141         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.04689\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.141\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=146982;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=67279;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:32 INFO      trial values: 0.046951,4.803e-06,0.93212 -> logL = 15275590.128         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.803e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.128\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840301;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=284866;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:34 INFO      trial values: 0.046951,4.8133e-06,0.93212 -> logL = 15275590.119        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.8133e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.119\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=808354;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=54099;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:35 INFO      trial values: 0.046951,1.3798e-12,0.94387 -> logL = 15275590.145        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94387\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.145\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=875556;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=242372;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:37 INFO      trial values: 0.046951,1.3798e-12,0.92043 -> logL = 15275590.147        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.92043\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275590.147\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=822012;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=693236;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:38 INFO      trial values: 0.046963,1.3798e-12,0.93212 -> logL = 15275593.644        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046963\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.644\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=392801;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770279;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:40 INFO      trial values: 0.046939,1.3798e-12,0.93212 -> logL = 15275593.642        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046939\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.642\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=631863;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=751732;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:41 INFO      trial values: 0.046953,1.3798e-12,0.93212 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=651310;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=932103;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:43 INFO      trial values: 0.046949,1.3798e-12,0.93212 -> logL = 15275593.782        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046949\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.782\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=601018;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=145891;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:44 INFO      trial values: 0.046951,1.913e-07,0.93212 -> logL = 15275593.661         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.913e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.661\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482484;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259929;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:46 INFO      trial values: 0.046951,1.9336e-07,0.93212 -> logL = 15275593.659        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.9336e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.659\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=199177;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=213002;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:47 INFO      trial values: 0.046951,7.4883e-09,0.93212 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.4883e-09\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366332;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=589656;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:48 INFO      trial values: 0.046951,7.9005e-09,0.93212 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.9005e-09\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=302596;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=224417;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:50 INFO      trial values: 0.046951,1.3798e-12,0.93447 -> logL = 15275593.644        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93447\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.644\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=960471;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=31984;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:51 INFO      trial values: 0.046951,1.3798e-12,0.92978 -> logL = 15275593.641        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.92978\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.641\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=279500;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=643224;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:53 INFO      trial values: 0.046951,1.3798e-12,0.93259 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93259\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=981468;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811784;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:54 INFO      trial values: 0.046951,1.3798e-12,0.93165 -> logL = 15275593.782        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93165\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.782\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=358790;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=946283;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:56 INFO      trial values: 0.047012,4.803e-06,0.93212 -> logL = 15275585.967         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047012\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.803e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275585.967\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=449402;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=554018;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:57 INFO      trial values: 0.047012,1.3798e-12,0.94387 -> logL = 15275583.576        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.047012\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94387\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275583.576\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=343232;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=493942;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:03:59 INFO      trial values: 0.046951,4.803e-06,0.94387 -> logL = 15275585.723         joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:03:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m4.803e-06\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.94387\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275585.723\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=907132;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=163225;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:00 INFO      trial values: 0.046951,1.3798e-12,0.93212 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=982049;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=462569;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:02 INFO      trial values: 0.046953,1.3798e-12,0.93212 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=11721;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438580;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:03 INFO      trial values: 0.046949,1.3798e-12,0.93212 -> logL = 15275593.782        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046949\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.782\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=815218;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=408124;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:05 INFO      trial values: 0.046951,7.4883e-09,0.93212 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.4883e-09\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=273104;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=573548;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:06 INFO      trial values: 0.046951,7.9005e-09,0.93212 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.9005e-09\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=104946;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=122052;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:08 INFO      trial values: 0.046951,7.6724e-07,0.93212 -> logL = 15275593.268        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.6724e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.268\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816432;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=887400;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:09 INFO      trial values: 0.046951,7.7136e-07,0.93212 -> logL = 15275593.265        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.7136e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.265\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=592488;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347859;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:11 INFO      trial values: 0.046951,1.3798e-12,0.93259 -> logL = 15275593.783        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93259\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.783\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=47327;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290865;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:12 INFO      trial values: 0.046951,1.3798e-12,0.93165 -> logL = 15275593.782        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93165\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.782\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244014;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636731;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:14 INFO      trial values: 0.046952,1.3798e-12,0.93212 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046952\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=845539;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=284029;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:15 INFO      trial values: 0.046951,1.3798e-12,0.93212 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=976859;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737491;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:17 INFO      trial values: 0.046951,3.0361e-08,0.93212 -> logL = 15275593.768        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m3.0361e-08\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.768\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366797;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=971957;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:18 INFO      trial values: 0.046951,3.1186e-08,0.93212 -> logL = 15275593.768        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m3.1186e-08\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.768\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=403347;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=335223;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:20 INFO      trial values: 0.046951,1.3798e-12,0.93221 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93221\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=284313;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=444753;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:21 INFO      trial values: 0.046951,1.3798e-12,0.93203 -> logL = 15275593.788        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93203\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.788\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=196224;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=710223;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:23 INFO      trial values: 0.046953,7.6724e-07,0.93212 -> logL = 15275593.259        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.6724e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93212\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.259\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=288732;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782757;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:24 INFO      trial values: 0.046953,1.3798e-12,0.93259 -> logL = 15275593.772        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046953\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.3798e-12\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93259\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.772\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=13581;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=194690;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:26 INFO      trial values: 0.046951,7.6724e-07,0.93259 -> logL = 15275593.257        joint_likelihood.py:1010\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.046951\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m7.6724e-07\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.93259\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m15275593.257\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=924791;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=223714;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1010\u001b\\\u001b[2m1010\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
14:04:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
-       "                  measurements such as AIC or BIC are unreliable                                                   \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m14:04:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=50427;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686917;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
         WARNING   51.22 percent of samples have been thrown away because they failed the  analysis_results.py:1737\n",
-       "                  constraints on the parameters. This results might not be suitable for                            \n",
-       "                  error propagation. Enlarge the boundaries until you loose less than 1                            \n",
-       "                  percent of the samples.                                                                          \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;37m51.22\u001b[0m\u001b[1;38;5;251m percent of samples have been thrown away because they failed the \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200549;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/analysis_results.py\u001b\\\u001b[2manalysis_results.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286068;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/analysis_results.py#1737\u001b\\\u001b[2m1737\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mconstraints on the parameters. This results might not be suitable for \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251merror propagation. Enlarge the boundaries until you loose less than \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mpercent of the samples. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
Best fit values:\n",
-       "\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
point_source.spectrum.main.Gaussian.F(0.0 +/- 2.0) x 10^-91 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", - "
" - ], - "text/plain": [ - " result \\\n", - "parameter \n", - "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 \n", - "point_source.spectrum.main.Gaussian.F (0.0 +/- 2.0) x 10^-9 \n", - "background_cosi (9.32 +/- 0.05) x 10^-1 \n", - "\n", - " unit \n", - "parameter \n", - "gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", - "point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", - "background_cosi " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n",
-       "Correlation matrix:\n",
-       "\n",
-       "
\n" - ], - "text/plain": [ - "\n", - "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - "\n", - "
1.000.01-0.40
0.011.000.04
-0.400.041.00
" - ], - "text/plain": [ - " 1.00 0.01 -0.40\n", - " 0.01 1.00 0.04\n", - "-0.40 0.04 1.00" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n",
-       "Values of -log(likelihood) at the minimum:\n",
-       "\n",
-       "
\n" - ], - "text/plain": [ - "\n", - "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", - "
" - ], - "text/plain": [ - " -log(likelihood)\n", - "cosi -1.527559e+07\n", - "total -1.527559e+07" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n",
-       "Values of statistical measures:\n",
-       "\n",
-       "
\n" - ], - "text/plain": [ - "\n", - "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", - "
" - ], - "text/plain": [ - " statistical measures\n", - "AIC -3.055119e+07\n", - "BIC -3.055119e+07" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPU times: user 17min 15s, sys: 7min 56s, total: 25min 12s\n", - "Wall time: 6min 32s\n" - ] - }, - { - "data": { - "text/plain": [ - "( value negative_error \\\n", - " gaussian.spectrum.main.Gaussian.F 4.695105e-02 -2.396938e-05 \n", - " point_source.spectrum.main.Gaussian.F 1.379828e-12 3.959404e-10 \n", - " background_cosi 9.321207e-01 -4.310858e-03 \n", - " \n", - " positive_error error \\\n", - " gaussian.spectrum.main.Gaussian.F 2.558651e-05 2.477795e-05 \n", - " point_source.spectrum.main.Gaussian.F 2.689562e-09 1.542751e-09 \n", - " background_cosi 4.756121e-03 4.533489e-03 \n", - " \n", - " unit \n", - " gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", - " point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", - " background_cosi ,\n", - " -log(likelihood)\n", - " cosi -1.527559e+07\n", - " total -1.527559e+07)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "%%time\n", - "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", - "\n", - "like = JointLikelihood(model, plugins, verbose = True)\n", - "\n", - "like.fit()" - ] - }, - { - "cell_type": "markdown", - "id": "5c045f61-bd7a-44e3-933f-a4f1541b7aa3", - "metadata": {}, - "source": [ - "We see that the normalization of the point source has gone to zero, and we essentially get the same results as the first fit. This is not entirely surprising, considering that the two components have a high degree of degeneracy, and the point source is subdominant. \n", - "\n", - "Note (CK): The injected model may not be exactly the same as the astromodel, because MEGAlib uses a cutoff of the Gaussian spectral distribution at 3 sigma. " - ] - }, - { - "cell_type": "markdown", - "id": "0e47eea2", - "metadata": {}, - "source": [ - "## *****************************************\n", - "## Example 3: Working With a Realistic Model" - ] - }, - { - "cell_type": "markdown", - "id": "672fa8bd", - "metadata": {}, - "source": [ - "## Read in the binned data\n", - "We will start with the binned data, since we already learned how to bin data: " - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "9bce7e04", - "metadata": {}, - "outputs": [], - "source": [ - "# background:\n", - "bg_tot = BinnedData(\"Gal_511.yaml\")\n", - "bg_tot.load_binned_data_from_hdf5(binned_data=\"cosmic_photons_binned_data.hdf5\")\n", - "\n", - "# combined data:\n", - "data_combined_thin_disk = BinnedData(\"Gal_511.yaml\")\n", - "data_combined_thin_disk.load_binned_data_from_hdf5(binned_data=\"combined_binned_data_thin_disk.hdf5\")" - ] - }, - { - "cell_type": "markdown", - "id": "3466ee97", - "metadata": {}, - "source": [ - "## Define source\n", - "This defines a multi-component source with a disk and gaussian component. The disk and bulge components have different spectral characteristics. Spatially, the bulge component is the sum of three different spatial models, with majority of the flux \"narrow bulge\" with " - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "3ca51102", - "metadata": {}, - "outputs": [], - "source": [ - "# Spectral Definitions...\n", - "\n", - "models = [\"centralPoint\",\"narrowBulge\",\"broadBulge\",\"disk\"]\n", - "\n", - "# several lists of parameters for, in order, CentralPoint, NarrowBulge, BroadBulge, and Disk sources\n", - "mu = [511.,511.,511., 511.]*u.keV\n", - "sigma = [0.85,0.85,0.85, 1.27]*u.keV\n", - "F = [0.00012, 0.00028, 0.00073, 1.7e-3]/u.cm/u.cm/u.s\n", - "K = [0.00046, 0.0011, 0.0027, 4.5e-3]/u.cm/u.cm/u.s/u.keV\n", - "\n", - "SpecLine = [Gaussian(),Gaussian(),Gaussian(),Gaussian()]\n", - "SpecOPs = [SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\")]\n", - "\n", - "# Set units and fitting parameters; different definition for each spectral model with different norms\n", - "for i in range(4):\n", - " SpecLine[i].F.unit = F[i].unit\n", - " SpecLine[i].F.value = F[i].value\n", - " SpecLine[i].F.min_value =0\n", - " SpecLine[i].F.max_value=1\n", - " SpecLine[i].mu.value = mu[i].value\n", - " SpecLine[i].mu.unit = mu[i].unit\n", - " SpecLine[i].sigma.unit = sigma[i].unit\n", - " SpecLine[i].sigma.value = sigma[i].value\n", - "\n", - " SpecOPs[i].K.value = K[i].value\n", - " SpecOPs[i].K.unit = K[i].unit\n", - " \n", - " SpecLine[i].sigma.free = False\n", - " SpecLine[i].mu.free = False\n", - " SpecLine[i].F.free = False#True\n", - " SpecOPs[i].K.free = False # not fitting the amplitude of the OPs component for now, since we are only using the 511 response! \n", - "\n", - "SpecLine[-1].F.free = True# actually do fit the flux of the disk component\n", - "\n", - "# Generate Composite Spectra\n", - "SpecCentralPoint= SpecLine[0] + SpecOPs[0]\n", - "SpecNarrowBulge = SpecLine[1] + SpecOPs[1]\n", - "SpecBroadBulge = SpecLine[2] + SpecOPs[2]\n", - "SpecDisk = SpecLine[3] + SpecOPs[3]" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "id": "008ec971", - "metadata": {}, - "outputs": [], - "source": [ - "# Define Spatial Model Components\n", - "MapNarrowBulge = Gaussian_on_sphere(lon0=359.75,lat0=-1.25, sigma = 2.5)\n", - "MapBroadBulge = Gaussian_on_sphere(lon0 = 0, lat0 = 0, sigma = 8.7)\n", - "MapDisk = Wide_Asymm_Gaussian_on_sphere(lon0 = 0, lat0 = 0, a=90, e = 0.99944429,theta=0)\n", - "\n", - "# Fix fitting parameters (same for all models)\n", - "for map in [MapNarrowBulge,MapBroadBulge]:\n", - " map.lon0.free=False\n", - " map.lat0.free=False\n", - " map.sigma.free=False\n", - " \n", - "MapDisk.lon0.free=False\n", - "MapDisk.lat0.free=False\n", - "MapDisk.a.free=False\n", - "MapDisk.e.free=True#False\n", - "MapDisk.theta.free=False" - ] - }, - { - "cell_type": "markdown", - "id": "d4dc7eca-6881-45cb-801a-3e796a13dbfc", - "metadata": {}, - "source": [ - "For the Wide_Asymm_Gaussian_on_sphere model, note that e is the eccentricity of the Gaussian ellipse, defined such that the scale height b of the disk is given by $b = a \\sqrt{(1-e^2)}$" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "id": "924aec1c", - "metadata": {}, - "outputs": [], - "source": [ - "# Define Spatio-spectral models\n", - "\n", - "# Bulge\n", - "c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')\n", - "c_icrs = c.transform_to('icrs')\n", - "ModelCentralPoint = PointSource('centralPoint', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=SpecCentralPoint)\n", - "ModelNarrowBulge = ExtendedSource('narrowBulge',spectral_shape=SpecNarrowBulge,spatial_shape=MapNarrowBulge)\n", - "ModelBroadBulge = ExtendedSource('broadBulge',spectral_shape=SpecBroadBulge,spatial_shape=MapBroadBulge)\n", - "\n", - "# Disk\n", - "ModelDisk = ExtendedSource('disk',spectral_shape=SpecDisk,spatial_shape=MapDisk)" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "id": "b5784f63-3712-496b-a724-e64c2b66b180", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "
  • disk (extended source): \n", - "
      \n", - "\n", - "
    • shape: \n", - "
        \n", - "\n", - "
      • lon0: \n", - "
          \n", - "\n", - "
        • value: 0.0
        • \n", - "\n", - "
        • desc: Longitude of the center of the source
        • \n", - "\n", - "
        • min_value: 0.0
        • \n", - "\n", - "
        • max_value: 360.0
        • \n", - "\n", - "
        • unit: deg
        • \n", - "\n", - "
        • is_normalization: False
        • \n", - "\n", - "
        \n", - "\n", - "
      • \n", - "\n", - "
      • lat0: \n", - "
          \n", - "\n", - "
        • value: 0.0
        • \n", - "\n", - "
        • desc: Latitude of the center of the source
        • \n", - "\n", - "
        • min_value: -90.0
        • \n", - "\n", - "
        • max_value: 90.0
        • \n", - "\n", - "
        • unit: deg
        • \n", - "\n", - "
        • is_normalization: False
        • \n", - "\n", - "
        \n", - "\n", - "
      • \n", - "\n", - "
      • a: \n", - "
          \n", - "\n", - "
        • value: 90.0
        • \n", - "\n", - "
        • desc: Standard deviation of the Gaussian distribution (major axis)
        • \n", - "\n", - "
        • min_value: 0.0
        • \n", - "\n", - "
        • max_value: 90.0
        • \n", - "\n", - "
        • unit: deg
        • \n", - "\n", - "
        • is_normalization: False
        • \n", - "\n", - "
        \n", - "\n", - "
      • \n", - "\n", - "
      • e: \n", - "
          \n", - "\n", - "
        • value: 0.99944429
        • \n", - "\n", - "
        • desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard deviation of the Gaussian distribution (minor axis)
        • \n", - "\n", - "
        • min_value: 0.0
        • \n", - "\n", - "
        • max_value: 1.0
        • \n", - "\n", - "
        • unit:
        • \n", - "\n", - "
        • is_normalization: False
        • \n", - "\n", - "
        \n", - "\n", - "
      • \n", - "\n", - "
      • theta: \n", - "
          \n", - "\n", - "
        • value: 0.0
        • \n", - "\n", - "
        • desc: inclination of major axis to a line of constant latitude
        • \n", - "\n", - "
        • min_value: -90.0
        • \n", - "\n", - "
        • max_value: 90.0
        • \n", - "\n", - "
        • unit: deg
        • \n", - "\n", - "
        • is_normalization: False
        • \n", - "\n", - "
        \n", - "\n", - "
      • \n", - "\n", - "
      \n", - "\n", - "
    • \n", - "\n", - "
    • spectrum: \n", - "
        \n", - "\n", - "
      • main: \n", - "
          \n", - "\n", - "
        • composite: \n", - "
            \n", - "\n", - "
          • F_1: \n", - "
              \n", - "\n", - "
            • value: 0.0017
            • \n", - "\n", - "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", - "\n", - "
            • min_value: 0.0
            • \n", - "\n", - "
            • max_value: 1.0
            • \n", - "\n", - "
            • unit: s-1 cm-2
            • \n", - "\n", - "
            • is_normalization: False
            • \n", - "\n", - "
            \n", - "\n", - "
          • \n", - "\n", - "
          • mu_1: \n", - "
              \n", - "\n", - "
            • value: 511.0
            • \n", - "\n", - "
            • desc: Central value
            • \n", - "\n", - "
            • min_value: None
            • \n", - "\n", - "
            • max_value: None
            • \n", - "\n", - "
            • unit: keV
            • \n", - "\n", - "
            • is_normalization: False
            • \n", - "\n", - "
            \n", - "\n", - "
          • \n", - "\n", - "
          • sigma_1: \n", - "
              \n", - "\n", - "
            • value: 1.27
            • \n", - "\n", - "
            • desc: standard deviation
            • \n", - "\n", - "
            • min_value: 1e-12
            • \n", - "\n", - "
            • max_value: None
            • \n", - "\n", - "
            • unit: keV
            • \n", - "\n", - "
            • is_normalization: False
            • \n", - "\n", - "
            \n", - "\n", - "
          • \n", - "\n", - "
          • K_2: \n", - "
              \n", - "\n", - "
            • value: 0.004499999999999998
            • \n", - "\n", - "
            • desc: Normalization
            • \n", - "\n", - "
            • min_value: 1e-30
            • \n", - "\n", - "
            • max_value: 1000.0
            • \n", - "\n", - "
            • unit: keV-1 s-1 cm-2
            • \n", - "\n", - "
            • is_normalization: True
            • \n", - "\n", - "
            \n", - "\n", - "
          • \n", - "\n", - "
          • dat_2: OPsSpectrum.dat
          • \n", - "\n", - "
          \n", - "\n", - "
        • \n", - "\n", - "
        \n", - "\n", - "
      • \n", - "\n", - "
      \n", - "\n", - "
    • \n", - "\n", - "
    \n", - "\n", - "
  • \n", - "\n", - "
\n" - ], - "text/plain": [ - " * disk (extended source):\n", - " * shape:\n", - " * lon0:\n", - " * value: 0.0\n", - " * desc: Longitude of the center of the source\n", - " * min_value: 0.0\n", - " * max_value: 360.0\n", - " * unit: deg\n", - " * is_normalization: false\n", - " * lat0:\n", - " * value: 0.0\n", - " * desc: Latitude of the center of the source\n", - " * min_value: -90.0\n", - " * max_value: 90.0\n", - " * unit: deg\n", - " * is_normalization: false\n", - " * a:\n", - " * value: 90.0\n", - " * desc: Standard deviation of the Gaussian distribution (major axis)\n", - " * min_value: 0.0\n", - " * max_value: 90.0\n", - " * unit: deg\n", - " * is_normalization: false\n", - " * e:\n", - " * value: 0.99944429\n", - " * desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard\n", - " * deviation of the Gaussian distribution (minor axis)\n", - " * min_value: 0.0\n", - " * max_value: 1.0\n", - " * unit: ''\n", - " * is_normalization: false\n", - " * theta:\n", - " * value: 0.0\n", - " * desc: inclination of major axis to a line of constant latitude\n", - " * min_value: -90.0\n", - " * max_value: 90.0\n", - " * unit: deg\n", - " * is_normalization: false\n", - " * spectrum:\n", - " * main:\n", - " * composite:\n", - " * F_1:\n", - " * value: 0.0017\n", - " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", - " * min_value: 0.0\n", - " * max_value: 1.0\n", - " * unit: s-1 cm-2\n", - " * is_normalization: false\n", - " * mu_1:\n", - " * value: 511.0\n", - " * desc: Central value\n", - " * min_value: null\n", - " * max_value: null\n", - " * unit: keV\n", - " * is_normalization: false\n", - " * sigma_1:\n", - " * value: 1.27\n", - " * desc: standard deviation\n", - " * min_value: 1.0e-12\n", - " * max_value: null\n", - " * unit: keV\n", - " * is_normalization: false\n", - " * K_2:\n", - " * value: 0.004499999999999998\n", - " * desc: Normalization\n", - " * min_value: 1.0e-30\n", - " * max_value: 1000.0\n", - " * unit: keV-1 s-1 cm-2\n", - " * is_normalization: true\n", - " * dat_2:\n", - " * value: OPsSpectrum.dat\n", - " * polarization: {}" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ModelDisk" - ] - }, - { - "cell_type": "markdown", - "id": "ed7ac3ec", - "metadata": {}, - "source": [ - "Make some plots to look at these new extended sources:" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "id": "73d61cb7", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG5CAYAAAA6ZcheAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwqklEQVR4nOzdeXhU5fnw8e/MJJmskz2BEAgJSyBsYV8UBTdAKoKKoLUWF7QqVGtbobZa6/KrtlqK8oq7Vm0L1AUQEVlkBwVZhRAIS4AEsu/bTDIz7x+TOZmB7HMmyYT7c122M2ee85wnEZObZ7lvjdVqtSKEEEIIIToMbXsPQAghhBBCOJMATQghhBCig5EATQghhBCig5EATQghhBCig5EATQghhBCig5EATQghhBCig5EATQghhBCig5EAzcNUVVVx/Phxqqqq2nsoQgghhHATCdA8zNmzZ5k7dy5nz55t76EIIYQQwk0kQBNCCCGE6GAkQBNCCCGE6GAkQBNCCCGE6GAkQBNCCCGE6GC82nsAQgghhGiY2Wymurq6vYchmsnb2xudTudyPxKgCSGEEB1UWVkZGRkZWK3W9h6KaCaNRkNsbCyBgYEu9SMBmhBCCNEBmc1mMjIy8Pf3JzIyEo1G095DEk2wWq3k5uaSkZFBnz59XJpJkwBNCCGE6ICqq6uxWq1ERkbi5+fX3sMRzRQZGUl6ejrV1dUuBWhySEAIIYTowGTmzLOo9e9LAjQhhBBCiA5GAjQhhBBCtIt//vOfZGVltfp+jUZDUVERABMmTCA+Pp7k5GQSExP505/+1OT9Dz74IJs3b26y3ZYtW1i3bl2rx9kaEqAJIYQQol00FqBZLBYsFkuL+lu0aBEHDx7k+++/59NPP+Wrr75qtP17773HxIkTm+y3PQI0OSQghBBCeICVf9xJRbHRrc/wD9Yz/aWrGm2ze/dufv/731NaWorVauWFF14gKSmJJ554gpycHIxGIw899BDz5s0DbLNcL730EitXriQ3N5dnn32W++67j+eff54LFy4wa9Ys/Pz8+Oijj1i5ciU//fQTZWVlnD9/ng0bNrBo0SK2bt1KdXU1BoOBd999l8TExEbHGBoayqhRozh+/DgTJ07k17/+NXv27AFg5syZ/PnPfwZss25PPPEE06dPZ86cOej1ek6ePMn58+cZOHAgy5YtIyUlhbfeeguz2cyWLVu47bbbePbZZ1X4bjdOAjQhhBDCA1QUG6kocG+A1pSCggKmT5/OZ599xvjx47FYLBQWFjJp0iQ+/fRT+vXrR0VFBWPGjGH06NGMHDkSAL1ez549e0hNTWXkyJH84he/4Nlnn+WDDz5g+fLlJCcnA7By5Up2797NgQMHiI6OBmDBggW8+uqrACxbtozHH3+8ydmsjIwMduzYwSOPPMILL7yA0Wjk8OHDVFZWcvXVV9OvXz9mzZp12X0HDx5k8+bN6PV6rrnmGj7//HPuuusufvWrX1FUVMQ///lP9b6ZTZAATQghhPAA/sH6dn/G7t27SUxMZPz48QBotVqys7M5evQos2fPVtqVlpaSkpKiBGg///nPAejXrx9eXl5kZWURGxtb7zNuvvlmJTgD2LBhA2+88QalpaVYLBYKCgoaHN9vfvMbnnvuOby9vXnmmWeYOHEiv/vd73jttdfQarUEBARw7733smHDhnoDtBkzZuDv7w/AqFGjOHXqVKPfD3eSAE0IITqpi7m5nDx7DlO1iYjQMOJiYggxBLX3sEQrNbX02F6sVithYWEcPHiwwTa+vr7Ka51OR01NTYNtHTPwnzt3jnnz5rF371569erF4cOHueaaaxq8d9GiRUyfPr3R8TaWBqMl43Q3OSQghBCdjMViYdveH/lyw0Z+OnGC42fS2bl/P/9Zs4aVGzdRXFra3kMUHmrcuHGkpaWxfft2wPZnLTIyEoPBwIcffqi0O3nyZKMzXXYGg4Hi4uIGPy8uLsbb25uuXbtitVpZsmRJi8d8ww038P7772O1WikvL+eTTz7hpptualEfTY3THSRAE0KITsRqtbJt748cSUur9/MLOTl8sX4DBW38y0Z0DqGhoXz55ZcsXLiQwYMHM2zYMH744QfWrFnDF198weDBgxkwYAAPPPAAlZWVTfb361//mrlz55KcnFzvDNygQYOYPXs2AwYMYOTIkfTo0aPFY37mmWfw9vZm0KBBjB49mmnTpnHnnXe2qI8ZM2Zw8OBBkpOTef7551s8htbQWKUCq0c5fvw4c+fObdYpFiHEledEejobd+0GQKvRcNWwYURFhHMhO4ejJ09SUlYGQHBQEDMnT8LH27s9hysaUVVVxZkzZ4iPj3daehMdm1r/3mQGTQghOonKKiPbf9ynvJ84ZjSDEvsSHR7O0KT+zJw8iYjQEACKS0v5/uChdhqpEKIpEqAJIUQnceBYCkaTCYDePXqQGB/v9Lnex4dJV1+Nl5ftfNjRkyfJr83CLoToWCRAE0KITqC8spKfTtj2nem0WsYNG1pvu+CgIIYlJQG2/Wo//nSkzcYohGg+CdCEEKITOJp2ErPZDMDAPn0IrM3lVJ/kfon41+6NOXX+vJzqFKIDkgBNCCE8nNlsJuXkScCW42lI/36Ntvfy8mKwwyGjQ6nH3To+IUTLSYAmhBAe7nRGBhVVVQDEx8Y2OntmN6BPb7x0OsB28rM9E3IKIS4nAZoQQni446fPKK8H9undrHv0Pj706tEdAFN1NWcyMtwyNiFE60iAJoQQHqyyykhGVhYAgf7+dHOoYdiUfgm9lNfHHII8ITzRli1b8PPzIzk5meTkZAYMGMC7777brHvnzJnTpoXQm0NqcQohhAc7ff48ltp8473jejRaZ/BSMVGRGAICKCkvJzM7myqjEV+9+wtyC1FTU6Oke6nvfWslJiYqFQkyMjLo1asXs2fPJijI82rQSoAmhBAeLO3sWeV1n7i4Ft2r0WhI6NGdg8dSsVqtpGdm0i8hQe0hCpXcdewf5FW798RthHcQ/+3/ZKNtNBoNL730EitXriQ3N5dnn32W++67D4Df/e53bN26lerqagwGg1PVG41Gw7PPPsvatWuZMGECubm5aLVaTp48SU5ODqmpqfz973/no48+QqvVMnjwYN58802Cg4Pp1q0be/fuJSYmhjvvvJOMjAx27dqF0WgkJiaGCxcuXDbOkpISAgIC8K6tljFhwgSeeOIJpZj6HXfcwc9+9jPmzJnjdF9paSkPPvgghw4dIjIykqSkJIxGIx999BEAr776KitWrKCmpoaoqCjefvtt4lr4315zSIAmhBAeqspo5GJuLmDLbxYRGtriPhK62wI0gNPnMyRA68DyqkvJqe4YNVT1ej179uwhNTWVkSNH8otf/AIvLy8WLFjAq6++CsCyZct4/PHHWbdunXKfTqdj7969gG1Zcd++fezYsYOgoCC++eYbPvjgA3bv3k1ISAgPPfQQCxcuZOnSpVx//fVs3LiRe+65h0OHDuHl5UVJSQl79+5l+PDh6Gtnfo8fP05ycjImk4lTp07xxhtvtLjc0vPPP4+fnx/Hjh2jrKyMcePGMXz4cAD+85//cPz4cXbv3o1Op+OTTz7h0Ucf5euvv1bj2+pEAjQhhPBQ5y5cxF5OOT62W4uWN+2iw8MJ8POjvLKS8xcvYqqulvqcHVSEt/uX6Zr7jJ///OcA9OvXDy8vL7KysoiNjWXDhg288cYblJaWYrFYKCgocLrv/vvvd3o/c+ZMZflx48aNzJo1i5CQEAAeeeQRZs6cCcANN9zAxo0bGTBgAEOGDCE6OpotW7awe/durr/+eqW/S5c4r7rqKkaMGMGwYcOa/T3YtGkTixYtQqPREBQUxKxZszhZm8Zm5cqVSlAIKLkH3UECNCGE8FBnHZZ14mJiWtWHRqMhPjaWI2lpmC0WMrOziY+NVWuIQkVNLT22JcdZKZ1OR01NDefOnWPevHns3buXXr16cfjwYa655hqn+wIDAxt978jxLxw33HADf/jDH0hKSuKGG24gOjqajRs3snv3bpYuXVrv/bGxsYwePZpNmzYxbNgwvLy8nAKqqtrUNE1xHIfVauUPf/gDDz30ULPudYWc4hRCCA9ksVg4d/EiAD7e3nSJjGx1Xz26dlVen7+Y5fLYxJWpuLgYb29vunbtitVqZcmSJS26/4YbbmDFihWUlJQA8Pbbb3PTTTcBEBMTQ3BwMG+99RY33HADEydOZM2aNaSnpzc4O1ZcXMy+ffuUPXC9e/fmhx9+AODMmTPs2LGj3vuuu+46/vWvf2G1WikrK2PFihXKZ9OnT+ett95SZgarq6s5cOBAi77O5pIZNCGE8EA5+QVKYfTuXbqg07b+79vdoqPQarVYLBbO1wZ9QrTUoEGDmD17NgMGDCA8PFzZjN9cU6ZM4ciRI4wdO9bpkIDdDTfcwJo1a0io3SfZpUsXhg4ditbhz759DxqA0WjknnvuYdq0aQA89dRTzJo1i0GDBjFgwABGjx5d7zieffZZHnjgAfr3709ERARDhgxRll1//vOfk5+fz8SJEwHb6dP777+foUPrr33rCo3VvoHBQ5hMJt5//33Wr19PaWkpvXr14sEHH2TkyJFN3pubm8uSJUvYu3cvFouFoUOHMn/+fGLqWRpYs2YNy5YtIysri8jISO644w5uv/32Vvd56TSv3UMPPcQ999zTzK/e9odv7ty5TidjhBBXnh8OHWbf0aMATBw9mv69XNvcv3LjJi7k5ADw82m3ENzI0pNoG1VVVZw5c4b4+PgWb3QXrVddXY3ZbMbX15fy8nImTZrE/PnzmTVrVrPuV+vfm8fNoP31r39ly5YtzJw5k9jYWL755hueeuopFi9ezODBgxu8r6Kigscff5zy8nLuuecevLy8WLFiBfPnz+eDDz4gODhYabtq1Spee+01rr32WmbNmsXhw4dZvHgxVVVVysbIlvYJMGLECCZPnux0rU+fPip9Z4QQV5LMnGzldfeuXVzur3vXLkqAdv7iRYLlZ5O4QhUWFjJlyhTMZjNVVVXceuut3HnnnW0+Do8K0FJSUti0aROPPPIId911FwCTJk1izpw5LF26tMGNgmA7eZGRkcHbb79N//79ARg9ejRz5sxh+fLlyoY/o9HIe++9x9ixY3nhhRcAuOWWW7BYLHz88cdMmzZNOXHS3D7tunfvrqynCyFEa1XX1JCTb9sDExwU1Kzam03p3qULPxw6DEBmVjYDJUATV6ioqCj27dvX3sPwrEMCW7duRafTKevJYMvFMnXqVI4ePUp2dnaD927ZsoV+/fopgRRAXFwcw4YNY/Pmzcq1/fv3U1xcfNna+YwZM6isrGT37t0t7tOR0WjEaDQ2+2sWQohLZeflYbFYAOgWFaVKnxGhoUp6jQu5uXjY7hchOh2PCtDS0tKIjY0lICDA6bo9QLLnKbmUxWLh9OnT9OvX77LP+vfvT2ZmJhUVFcozgMvaJiYmotVqOXHiRIv7tFu3bh033XQTN954I7/4xS/YsGFDc75sIYRwkpmdo7yOiVYnQNNqtXSJiACgsqqK4tIyVfoVQrSORy1x5ufnEx4eftl1+7W8vLx67yspKcFkMjV5b48ePcjPz0en0xF6SUZub29vDAYD+fn5Le4TYODAgUycOJGuXbuSn5/PF198wQsvvEB5eXmjJ13y8vKUZwKcdSjrIoS4Mtn3igHEqDSDBtA1KlJJ3XExN4cQg+fVLxSis/CoAM1oNCo1tRz5+Pgonzd0H9Cse41GY4MFW318fJzaNbdPwOmoMMDNN9/Mgw8+yDvvvMOUKVOUMhWXWr16tVL/SwghqmtqyK79S1twYKAq+8/sujrkUruQk0v/Xr1U61sI0TIetcSp1+uprq6+7LqpNhdQQ0GO/Xpz7tXr9dTU1NTbj8lkcmrX3D7r4+3tzW233UZZWRnHjx9vsN20adN49913lX/+9Kc/NdhWCNH55eTnK/vPYqKjVe07Kjxcyadmr/EpxKU0Gg1FRUVt+syIiAjS09MBW9Hz+Ph4kpOTGTBgADfffHOje9Dt0tPTlXxmnsCjArTw8HCn5T47+7WI2v0TlzIYDPj4+DTr3vDwcMxmM4WFhU7tqqurKSkpUZYvW9JnQ6JqlybsWZPrExERQWJiovJPXFxco30KITq3i7l1Wzm6ulA9oD5eOh1RtT/jSsrKKL9kH60QLdHQZIcaFi1axMGDBzl69ChxcXFKgfbOxKOWOHv37s2BAwcoLy93OiiQkpKifF4frVZLQkICqampl32WkpJCTEwM/rXLBPa8ZKmpqYwdO1Zpl5qaisViUT5vSZ8NuVBbR8+TInohRPvKcfhLYZcm/hLYGl0jI5XZs6z8fHqpuIQqXHPvr/9MfmGxW58RHhrMx6//pcl2r776Kl9//TXl5eX8+c9/VnKEajQann32WdauXcuECRP4/e9/z69+9SvS0tKwWq3Mnz+fhx9+GIDf/e53bN26lerqagwGg1MC9tWrV7NgwQK8vb0vyx/qqKamhrKyMrp37w7Ysis88cQTSsH0I0eO8LOf/UyZfXO0atUqFi5ciI+PD5MnT+b999/nxx9/pGfPnqSlpfHEE0+Qk5OD0WjkoYceYt68eS35VrrMowK0CRMmsGzZMlavXq3kQTOZTKxdu5akpCSia6f7s7Ozqaqqcpptuvbaa3n77bdJTU1VTl6eO3eOAwcOOGUHHjZsGAaDgVWrVjkFaKtWrcLX19fpWnP7LCoquiwIq6io4LPPPiM4OFgqAgghmsVqtZJdexhK7+NDcJD62f6jI+oOPuXk59Or9hefaH/5hcXk5Bc23bANaDQaDhw4wOnTpxkxYgRXXXUVPXv2BGzF0/fu3QvArFmzSExM5IsvviAnJ4fhw4czZMgQxowZw4IFC5SZr2XLlvH444+zbt06cnJyuO+++9i+fTtJSUm88847l61W/eY3v+G5554jMzOTrl27trjuZ05ODvfffz87d+6kX79+fPjhh8ozzGYzd911F59++in9+vWjoqKCMWPGMHr06GZVLVKLRwVoSUlJTJw4kXfeeYeioiK6devGunXryMrKYsGCBUq7l156iYMHD7Jt2zbl2owZM1izZg0LFixg9uzZ6HQ6VqxYQWhoKLNnz1ba6fV6HnjgARYtWsSzzz7LqFGjOHToEOvXr2fu3LkYDIYW9/nFF1+wY8cOxo0bR3R0NPn5+axdu5bs7Gz++Mc/1nvQQAghLlVSXk5l7eGj6PBwNBqN6s+ICncM0ApU71+0XnhocNON2ugZDz74IAAJCQlcc801bNu2TQnQ7r//fqXdxo0blaSvUVFR3HbbbWzcuJExY8awYcMG3njjDUpLS7FYLEoB8u+//57BgweTlJQEwAMPPMD8+fOdnr9o0SKmT5+O1Wrlueee4/777+fzzz9v9tdpf4Z9cuWXv/wlv/rVrwBbScWjR486/R4vLS0lJSVFArTGPP3000RHR/Ptt99SVlZGQkICr7zyilIctSH+/v4sXryYJUuW8PHHHyt1M+fNm3fZ7NaMGTPw8vJi+fLl7Ny5k6ioKObNm8fMmTNb1eegQYM4cuQIa9asoaSkBF9fX/r378+CBQsYPny4St8ZIURnl+2QSijaDcubAAF+fgT4+1NeUUFOfj5Wq9UtgaBoueYsPbYXxz8jgY3UcbW3O3fuHPPmzWPv3r306tWLw4cPN1izurE/fxqNhlmzZikzcV5eXpjNZuXzqqqqFn0dYJupDgsLU5ZJ24vHBWh6vZ5HH32URx99tME2r7/+er3Xo6KieP7555v1nFtuuYVbbrmlyXbN6XPkyJFtGnULITqn7Ly6ZZ7oenIwqiU6PIzTFRVU19RQWFJCWLD7Z26EZ/nwww957rnnSE9PZ/v27fzzn/+st90NN9zAu+++y0svvURubi5ffPEF//vf/yguLsbb25uuXbtitVqdlijHjh3Lfffdp2wf+uCDD5TsCPXZtGmTslUoISGBs2fPkpubS2RkJJ988km994wZM4bDhw9z/PhxEhMT+fTTT5VnJCYmYjAY+PDDD7nvvvsAWyL8sLAwwsLCWvPtahWPC9CEEOJKle2wDycqwn0BWlR4OKfPZwC2fWgSoIlLmc1mhg4dSnl5Oa+//rqyvHmp119/nUceeYRBgwZhtVr54x//yOjRowGYPXs2AwYMIDw83Clhe2RkJB988AEzZsxQNvBfmhTevgfNYrEQGhrKv/71LwBiYmJ46qmnGDVqFNHR0UyZMqXecUVFRfHee+8xffp09Ho9N954I4GBgYSEhODl5cWaNWt44oknWLRoEWazmYiICP7zn/+4/o1rAY1VCq55lOPHjzN37lyn0y5CiM6vxmzmvf99hsViIcRg4O6fTXXbszKzs1m16TsABvbpwzUjR7jtWaJhVVVVnDlzhvj4eHx9fdt7OJ1OaWkpQUG2ahkrV67kD3/4A8eOHXO5X7X+vckMmhBCeIC8wkIlQa07lzcBIh2WcbLryfUoRGfwxhtvsHz5csxmMwaDgX//+9/tPSQnEqAJIYQHyC2oO1EZFe7efTA+3t6EGgwUlpSQX1SE2WxGp9O59ZlCtLWnn36ap59+ur2H0SCPqiQghBBXqjyH6iaRoe7fqBwRFgqAxWKhsJFqJ0II95AATQghPEBuQV2AFh4a4vbnRYaGKq/zCjtGclQhriQSoAkhRAdnNpspKLaV+Ak1GPD2cv/ulAgJ0IRoVxKgCSFEB1dQXKwcEHAMnNwpPMQxQCtqk2cKIeq06q9hjnUmW2vmzJnccccdLvcjhBCdndP+s7C2CdD8fPVKRYG8wkKpKCBEG2vVDFpWVhalpaVYrdZW/ZOdnU1ZWZnaX4sQQnRKjvvP2moGDSCitmSdqbqa0vLyNnuu8CwRERGkp6dz8803c/z48UbbajQaioqK2mZgHq7VGxnuvPNO5syZ06p7r7322tY+VgghrjiOM2gRbVhqJiI0lLMXLihjMDRSY1GItWvXtvcQOhXJgyaEEB2YxWIhr3bGISggAF8fnzZ7dkSY8z60hO7d2+zZ4nL/W/ctFZWVbn2Gv58fMydParTN6tWrWbBgAd7e3kyePFm53rNnT1auXElycjIvvvgi//73v9Hr9QCsWrWKuLg4pa3VamXhwoUcO3aMZcuW4e/v754vyIO1KkD75JNPCHahNpur9wshxJWiuLSMmpoaoG2XNy99npzkbH8VlZWUuzlAa0pOTg733Xcf27dvJykpiXfeeYf8S6pNFBYW8uqrr3Lx4kX8/PyoqKhAq63bUWU0GrnrrrsIDw/nyy+/lCTIDWhVgNajRw+XHurq/UIIcaXIK6yrINBWBwTsDAEB+Hh7Y6qulgCtA/D382v3Z3z//fcMHjyYpKQkAB544AHmz5/v1MZgMNCnTx/uuecebrrpJqZOnUpsbKzy+dSpU7n11lt55pln1P8COhFZ4hRCiA7MMcVFW8+gaTQawkNCuJibS1lFBUaTCX0bLrEKZ00tPbaH+k726nQ6vv/+e3bt2sWWLVsYM2YM//3vfxk/fjwA1113HRs2bODxxx/HYDC09ZA9hqp50EpLS1m3bp2aXQohxBUtvzZBLUB47anKthTqsB2lwGEs4so0duxYDh8+TGpqKgAffPABJpPJqU1paSnZ2dmMHz+eZ555hquvvpoDBw4onz/99NPcdttt3HDDDZctj4o6qgZo2dnZvPzyy2p2KYQQV7SC2gMCPt7eBLbDRupwCdCEg8jISD744ANmzJjBkCFDSEtLIzw83KlNcXExt912G4MGDWLw4MFUV1fzy1/+0qnNE088wdy5c7nuuuvIyspqyy/BY7RoiTM7O7vRz/Py8lwajBBCiDpGk4myigoAwoKD2yVRbFiIQ4BWJAGagFtvvZVbb71Vef/KK68AkJ6erlz7/vvv673XarUqr+fOncvcuXPdM8hOoEUB2p133tnoDwjJNC2EEOpxnLEKa4flTbAFhnYygyZE22lRgBYUFMQDDzxAcnJyvZ+fPXuW5557ToVhCSGEyHfIuB4e0j6pifx8ffHT66k0GiVAE6INtShA69u3L6WlpcTHx9f7udlsdpq+FEII0XqOS4phwSHtNo6wkGAys3OorKqissqIn6++3cZyJZLfq55FrX9fLQrQpk+fTlVVVYOfR0dHs3DhQpcHJYQQAgqKi5TX7TWDBrZlzszsHMC2zNnNN6rdxnIl8fb2RqPRkJubS2RkpGwh8gBWq5Xc3Fw0Gg3e3t4u9dWiAO2aa65p9POgoCCmTJni0oCEEELYftDn186g+fv54atvv1krx1QbhcXFdIuWAK0t6HQ6YmNjycjIcNqALzo2jUZDbGysyxUSJFGtEEJ0QBWVlRhr80uFt3NpvHCH5dV8h1k94X6BgYH06dOH6urq9h6KaCZvb29Vyle5HKBNmDCBTz75hO5SRFcIIVST73SCs30DtNAQ5xk00bZ0Op3Uq7wCuZyoVjYvCiGE+gqcTnCGtNs4AHx9fAiordGYX1QsP/eFaAOqVhIQQgihjvyi9s+B5si+D81oMlHRyGExIYQ6JEATQogOyDHnWGgHKCjtmLC2qKSkHUcixJVBAjQhhOhgLBaLstcrOCgIb6/2P8/lGCQWSoAmhNtJgCaEEB1MaXk5NWYz4Dxz1Z5CHAO0YgnQhHA3CdCEEKKDcZyh6gjLmwChhiDltSxxCuF+EqAJIUQH4zhDFRrcMQI0P19ffGozoxeVlrbzaITo/FwO0O6++24MHeRveEII0Rl0xBk0jUajjKW0vJzqmpp2HpEQnZvLAdrDDz9McAfZIyGEEJ1BRwzQwHkfWrHMognhVq0O0Ey1JUiEEEKox2q1UlR7gjPQ39/lgstqCpWDAkK0mVYHaDNmzGDRokUcP35czfEIIcQVrbKqCmNt3cWONHsGEOJwUEBSbQjhXq1OrmMymVi5ciWrVq2iV69eTJ06lRtvvJGgoKCmbxZCCFEvp+XNDnJAwM5xiVNOcgrhXq2eQVu1ahVPPvkkiYmJnDx5ktdff53bbruN559/nn379qk5RiGEuGI4BmghHWwGLTgwEI1GA8gMmhDu1uoZNH9/f2699VZuvfVW0tPT+frrr9mwYQObNm3iu+++IyoqiqlTpzJ58mSio6PVHLMQQnRaTik2DB3rAJZOpyM4MJCi0lKKS0uxWq1KwCaEUJcqedB69uzJY489xueff86LL77ImDFjyMvL44MPPmD27Nn8/ve/Z8uWLdTIsWwhhGhUYYlDDc4OtsQJdbN6NWYzZRUV7TwaITovVQu86XQ6xo8fz/jx4ykoKODbb79l7dq17Nmzh71792IwGFi9erWajxRCiE7FPoOm9/HBT69v59FcLtRgID0zE7CNNSggoJ1HJETn5LZKAmFhYdx1110899xzDBo0CKvVSonsWRBCiAaZqqspr6wEbLNnHXH5UE5yCtE2VJ1Bs6uoqGDDhg18/fXXnDhxAqvViq+vLxMnTnTH44QQolNwTlDbsfaf2clJTiHahqoB2v79+1m7di3bt2/HaDRitVpJSkpi6tSpXHfddfj7+6v5OCGE6FScDwh0zJRFTslqJUATwm1cDtBycnL45ptv+Oabb8jKysJqtRISEsK0adOYOnUqPXv2VGGYQgjR+TkdEOigM2i+ej16Hx+MJpOUexLCjVodoG3atIm1a9eyf/9+LBYLWq2WkSNHMnXqVK6++mq8vNyyeiqEEJ1WUQdOUusoJCiI7Px8yisrqa6pwVt+3guhulb/V/X8888D0LVrV6ZMmcKUKVOIiopSbWBCCHGlsS9xeul0Hfp0ZHBtgAa2oukRoaHtPCIhOp9WB2jXX389U6dOZfjw4WqORwghrkhms5nisjLAdlKyI57gtAt2KOlXXFomAZoQbtDqAO3ZZ59VcxxCCHFFKy4rw2q1Ah13/5ldSFCg8lr2oQnhHqptHKipqeGLL75g48aNnDt3DqPRyObNmwFIS0vjq6++YubMmXTv3l2tRwohRKdRVFIX6IR00BOcdo4zaEUSoAnhFqoEaEajkd/+9rccOXKE4OBgAgICqKqqUj7v2rUra9euJSgoiLlz56rxSCGE6FRKyuoCneBAzwnQZAZNCPdQpZLAJ598wk8//cRDDz3EypUrmTp1qtPngYGBJCcns3fvXjUeJ4QQnY59/xmAwWEJsSNyLEMlAZoQ7qHKDNp3333H0KFDufvuuwHq3dwaExNDWlqay88ymUy8//77rF+/ntLSUnr16sWDDz7IyJEjm7w3NzeXJUuWsHfvXiwWC0OHDmX+/PnExMRc1nbNmjUsW7aMrKwsIiMjueOOO7j99ttd6tPu8OHDzJs3D4DVq1cTEhLS/G+AEKJTKil1CNACO3aABrZZtEqjkYqqKkzV1fh4e7f3kIToVFSZQcvJySExMbHRNn5+fpSXl7v8rL/+9a+sWLGCG2+8kV//+tdotVqeeuopDh8+3Oh9FRUVPP744xw8eJB77rmH+++/n7S0NObPn09xcbFT21WrVvG3v/2N+Ph4Hn/8cQYOHMjixYv597//3eo+7SwWC4sXL8bPz8+1b4QQolOxz6B5e3l1yCLpl5JlTiHcS5UZND8/P4qKihptc+HCBYKDXTuZlJKSwqZNm3jkkUe46667AJg0aRJz5sxh6dKlLF26tMF7V65cSUZGBm+//Tb9+/cHYPTo0cyZM4fly5fz0EMPAbb9dO+99x5jx47lhRdeAOCWW27BYrHw8ccfM23aNIJqfzA1t09HX331FTk5OUydOpXPPvvMpe+HEKJzsFgslNX+BdYQGNihU2zYXZpqIzIsrB1HI0Tno8oM2oABA9i1axelDfwtKjs7m++//54hQ4a49JytW7ei0+mYNm2ack2v1zN16lSOHj1KdnZ2g/du2bKFfv36KYEUQFxcHMOGDVNOm4KtnmhxcTHTp093un/GjBlUVlaye/fuFvdpV1JSwnvvvcf9999PoAcsYQgh2kZpRQWW2hQbwR18/5ldiJzkFMKtVAnQZs+eTWlpKb/5zW/46aefMJvNAFRVVbFv3z5+97vfYTabmTVrlkvPSUtLIzY2loBLMmzbA6STJ0/We5/FYuH06dP069fvss/69+9PZmYmFRUVyjOAy9omJiai1Wo5ceJEi/u0e++99wgLC3MKMJuSl5fH8ePHlX/Onj3b7HuFEJ6hxCHA8YT9Z+AcSMoSpxDqU2WJMzk5mSeeeILXX3+d+fPnK9cnT54MgFar5cknn2xyn1pT8vPzCQ8Pv+y6/VpeXl6995WUlGAymZq8t0ePHuTn56PT6Qi9JDO2t7c3BoOB/NryJi3pE+DUqVN89dVXvPLKK+h0uuZ+yaxevZqPPvqo2e2FEJ7H8QRnR0+xYSd70IRwL9US1U6fPp3k5GRWrVrFsWPHKCkpISAggP79+zNjxgzi4+NdfobRaMS7npNCPj4+yucN3Qc0616j0dhgoXcfHx+nds3tE2Dx4sWMHj2aUaNG1dt3Q6ZNm8ZVV12lvD979iwvvvhii/oQQnRsJR6UYsPOx9sbf19fKqqqJEATwg1UC9AAevbsyeOPP97g52azuUWzR5fS6/VUV1dfdt1kMimfN3Qf0Kx79Xo9NTU19fZjMpmc2jW3z02bNnHkyBH+9a9/NfCVNSwiIoKIiIgW3yeE8BzFpY4zaJ4RoIFtFq2iqopKoxGjyYS+9i+nQgjXqbIH7Ysvvmiyjdls5i9/+YtLzwkPD1eWGB3ZrzUUyBgMBnx8fJp1b3h4OGazmcLCQqd21dXVlJSUKMuXLelz6dKlTJgwAS8vLy5evMjFixcpq/0bc05OToNLs0KIK4N9Bk2r0RDo79/Oo2k+WeYUwn1UmUF7/fXXCQsLY8KECfV+brFY+Mtf/sK2bdtcek7v3r05cOAA5eXlTgcFUlJSlM/ro9VqSUhIIDU19bLPUlJSiImJwb/2h2KfPn0ASE1NZezYsUq71NRULBaL8nlL+szJyWHjxo1s3LjxsrYPPvggvXv35oMPPmjW90AI0blYrVZlD1pQQABarSp/b24TIZcEaFH17MkVQrSOKgHaoEGDePHFFzEYDAwbNszpM3twtnXrVm677TaXnjNhwgSWLVvG6tWrlTxoJpOJtWvXkpSURHR0NGBL61FVVUVcXJxy77XXXsvbb79NamqqcvLy3LlzHDhwwOl06bBhwzAYDKxatcopQFu1ahW+vr5O15rb50svvXTZ17Jp0ya+++47/vjHPxIZGenS90UI4bkqjUZlW4Wn7D+zcy6aXtZISyFES6kSoL388svMmzePP/3pTyxevFiZZbJYLLzwwgts2bKF6dOnN7o/rTmSkpKYOHEi77zzDkVFRXTr1o1169aRlZXFggULlHYvvfQSBw8edJqxmzFjBmvWrGHBggXMnj0bnU7HihUrCA0NZfbs2Uo7vV7PAw88wKJFi3j22WcZNWoUhw4dYv369cydOxeDwdDiPsePH3/Z12JP5zF69Ggp9STEFayk1PNOcNpJqg0h3EeVAC0gIIBXX32VRx55hN///ve8+eabdO3aleeff57Nmzdz66238pvf/EaNR/H0008THR3Nt99+S1lZGQkJCbzyyiskJyc3ep+/vz+LFy9myZIlfPzxx0rdzHnz5l0WIM2YMQMvLy+WL1/Ozp07iYqKYt68ecycObPVfQohRH2KyzwvB5qd7EETwn00Vmtt+moVnD9/nscee4yAgAD69OnD1q1b+dnPfsbvf/97tR5xxTt+/Dhz587l3XffdTmvnBCi/e396Sf2/nQEgCnXjCc+NradR9Qy//pyJeWVlfjq9dx/u2vbWIQQdVTdjdq9e3f+9re/UVhYyLZt2yQ4E0KIJjim2PC0GTSoW+asMhox1ZN2SAjROq1a4mwqs33//v05efIk4eHhTm01Gg2//OUvW/NIIYTolJyS1HpggGYIDORCTi5gW+aUoulCqKNVAdqHH37YrHaXJmaVAE0IIZzZU2z4+/nh3UAVk47M4HCwoaSsTAI0IVTSqp8GixcvVnscQghxxamurqayqgrwrAoCjhzH7VhTVAjhmlYFaE2dmBRCCNG0Yg9f3gTn3G0lkgtNCNV4TspqIYToZBz3n8kMmhDCkQRoQgjRTpxm0DysioCdr16P3tsbcA44hRCukQBNCCHaiXMVAc8M0AAMtQlrS8vLMZvN7TwaIToHCdCEEKKdOO9B86wyT44c98+VlJe340iE6DwkQBNCiHZiXxL08fbGV+/TzqNpPcfZPzkoIIQ6JEATQoh2YLZYKK2dbTIEBqDRaNp5RK3nuH9ODgoIoQ4J0IQQoh2UlZdjL4XsycubcMkMWpkUTRdCDRKgCSFEOyjuBCk27Bz3oBXLEqcQqlA1QCstLWXdunVqdimEEJ1SSSdIsWEX6O+PTmv7dSKpNoRQh6oBWnZ2Ni+//LKaXQohRKdU3ElSbICtznJQ7ddQUlamLN0KIVqvRaWesrOzG/08Ly/PpcEIIcSVoqQTlHlyFBwYSFFJCWaLhfLKSgL9/dt7SEJ4tBYFaHfeeWejJ42sVqtHn0QSQoi2Uly7mV6r1XaKYObSfWid4WsSoj21KEALCgrigQceaLBY+tmzZ3nuuedUGJYQQnReVquVkjJbio2ggAC0Ws8/rxUc5HySs1t0VDuORgjP16IArW/fvpSWlhIfH1/v52azWfYeCCFEEyqrqqipqQE8f/+ZnUGKpguhqhYFaNOnT6eqqqrBz6Ojo1m4cKHLgxJCiM6suJPtPwMIdsjlJtUEhHBdiwK0a665ptHPg4KCmDJliksDEkKIzs7pBKeHp9iwMwQGKK9lBk0I13n+xgchhPAwne0EJ4BOp1MOBkguNCFc53KANmHCBM6fP6/GWIQQ4opQ7FAOKdjDyzw5ss8GGk0mqkymdh6NEJ7N5QBNDgUIIUTLOO7Rclwa9HQGp31oUpNTCFfIEqcQQrQx+xJggJ8fXl4t2grcoQXLSU4hVCMBmhBCtCFTdTWVRiPQefaf2RmccqFJgCaEKyRAE0KINuQYuHSWE5x2wZdUExBCtF7nmVsXQggP0NY50IwmEwePnKDGbCZ5QF8C/P3c9izHr0dm0IRwjQRoQgjRhpwPCLg3QDt09ARPv7KUnLwCAPx89dw66Vp+ff8svL3V//Gv9/HBV+9DldEke9CEcJEscQohRBtyDFzcWebpZHoGjz/7mhKcAVRWGVm2aj3Pvvq2207g209ylldUUGM2u+UZQlwJXA7Q7r77bgwGgxpjEUKITs85Sa17cqCZzRae/8e7lFfaSvMN7t+bWyddi06nA2Dj9j18tWG7W54dLMucQqjC5QDt4YcfJjg4WI2xCCFEp2cPWry9vPDV+7jlGWs2bufYyXQA4nvE8P9eeoo/PX4/L//hMaXNm//6jMoqo+rPln1oQqjDrUucVquV8+fPk52d7c7HCCGERzBbLJSWlwO2E5wajUb9Z5gtfPy/r5X3f5g3B19fPQATxg1n4rgRAOQXFvP52u9Uf77jyVQ5ySlE66kSoG3dupWXXnqJUofM0RcvXmTOnDn84he/YNasWTz33HOYZT+CEOIKVlZRoez9ctfy5rYf9nPugu0vxSMG92fowESnz391723K68/WbMJisaj6fJlBE0IdqgRoq1atIi0tjaCguh84S5YsIT09naFDh9KrVy+2bNnC2rVr1XicEEJ4JMfyR+4q8eS4t+ye26dc9nlCj26MHjoAgMysXL7ff0TV50s1ASHUoUqAlp6eTv/+/ZX3FRUV7N69m+uuu45Fixbx9ttvExcXJwGaEOKK5nyCU/0ZtMLiEnb9+BMAUeGhjBk2qN52t0+9Tnn9zeZdqo7B389POYxQUib1OIVoLVUCtJKSEsLCwpT3hw8fxmw2c/311wPg5eXFiBEjyMzMVONxQgjhkZxOcLqhisCGbT8oW0kmXzcOna7+H/FXj0wmMMAfgO3fH8BoMqk2Bo1Go8wOlpSVuy2dhxCdnSoBWkBAACUlJcr7AwcOoNVqGTJkiHLNy8uLqqoqNR4nhBAeqcTNOdC27N6vvJ4yYWyD7by9vbh27DAAyiur+H6f2sucttlBi8VCWUWFqn0LcaVQJUDr0aMHu3btori4mNLSUjZu3Ejfvn2d9qRlZWURGhqqxuOEEMIj2U81ajUaAv39Ve27rKKS/T8dB6Bbl0h69YxttP0NV49UXm/ZvU/VschBASFcp0qAdvvtt5OXl8ftt9/OzJkzyc/PZ/r06U5tUlJS6N27txqPE0IIj2O1WpVgJTAgAK1W3SxHP+w/oixvXj0quckUHiOTk9DX5mH74cARVZci5aCAEK5T5SfEhAkT+M1vfkN8fDzdu3fn4YcfZsqUutNDBw8epLy8nFGjRqnxOCGE8DhVRiPVNTWAe5Y3d+w5qLy+etSQhhvW0vv4MHxQPwBy84s4lZ6h2lgc99eVSC40IVpFtWq506dPv2zWzC45OVlOcAohrmjFZe4rkm61WpV0GX6+eobVBl5NGTNsELt+PAzA7v0/0Tu+uyrjkRk0IVwnxdKFEKINuPME57nMbPIKigBIHtAXH2/vZt03dvhA5fUPKuZDCwoIUJZYZQ+aEK0jAZoQQrQBx6U+tZc49x9JVV43d/YMIC62K1HhtsNbh4+dpEalai86nU45BOGYnFcI0XwSoAkhRBtw5xLn/p9aF6BpNBqSB/YFoLLKSNrpc6qNyf41GqurqTKqX5RdiM5OAjQhhGgDJW4K0KxWq5Jew1fvQ1Kfni26f0hSX+X1gaMnVBuX7EMTwjUSoAkhRBuwB2h+vvpm7xFrjsysXHLyCgAY3L8PXl4tO/uVPKAuQDukYoAmudCEcI0EaEII4WY1NTWUV1YCYAhQd3nzoENQNXRgYovv7xUXS4C/n62vlDTV8qE5pdqQAE2IFpMATQgh3KykvFx5rfYJzqPHTyuvBye1PBm4TqdlcH/bfQWFxWRm5agyLqclTsmFJkSLSYAmhBBu5nyCM6iRli2XklYXoCX1iW9VH4P69arr70S6q0MCZIlTCFe1OECzWCycPn2avLy8yz6rqanh4MGDaoxLCCE6jeKyulQThsAA1fo1VVdzovbkZc/uXQkMaF19z/4Ogd2xk2dUGZvexwff2lJSckhAiJZrUYCWlZXFnDlzuO+++7jjjjtYuHAhxcXFyuclJSU88cQTao9RCCE8WklZ3RKnmjNoaWfOU1Njy13W2tkzgH69eyqvj6WpE6ABGGq/1vKKCtVyrAlxpWjRcZ+lS5cSERHBK6+8QllZGW+++SaPPfYY//znP4mIiABQteBufUwmE++//z7r16+ntLSUXr168eCDDzJy5Mgm783NzWXJkiXs3bsXi8XC0KFDmT9/PjExMZe1XbNmDcuWLSMrK4vIyEjuuOMObr/99lb1aTQaWbRoEceOHSMnJweLxUJMTAw333wzM2bMaPGpKyGEZyl2UxUBx/1nAxITWt1PRFgIURFh5OQVkJqWjsViUaWYe3BgIDn5+YBtmTMsONjlPoW4UrTov8BDhw7x6KOP0rVrV/r06cNrr73G4MGDmTdvHtnZ2QBKeQ93+etf/8qKFSu48cYb+fWvf41Wq+Wpp57i8OHDjd5XUVHB448/zsGDB7nnnnu4//77SUtLY/78+U6zgACrVq3ib3/7G/Hx8Tz++OMMHDiQxYsX8+9//7tVfRqNRtLT0xkzZgwPPfQQjz76KL1792bJkiX83//9n3rfHCFEh1RSu8TppdPh7+urWr8pJxwCtL6tD9AAJX9aeWUV5y5ku9SXnexDE6L1WjR1U1VVhbdD/h57cPTaa68xf/58nnnmGdUH6CglJYVNmzbxyCOPcNdddwEwadIk5syZw9KlS1m6dGmD965cuZKMjAzefvtt+vfvD8Do0aOZM2cOy5cv56GHHgJswdR7773H2LFjeeGFFwC45ZZbsFgsfPzxx0ybNo2goKAW9WkwGHjrrbecxnPrrbcSEBDAF198wWOPPUZ4eLiK3ykhREdhtVqVJU5DYKCqf4lNOWFbjvTy0tEnoYdLfSX1TWDL7v2AbZmzZ2xXl8cXHCQnOYVorRbNoPXo0YPjx49fdv23v/0tY8aMYeHChaoNrD5bt25Fp9Mxbdo05Zper2fq1KkcPXpUmcWrz5YtW+jXr58SSAHExcUxbNgwNm/erFzbv38/xcXFTJ8+3en+GTNmUFlZye7du1vcZ0O6dOkCQJn8zVKITqusogKLxQKoW0GgvKKS9IyLAPSJ7+Fy8tv+DhUI7IGfq2QGTYjWa1GAds0117Bhw4Z6P3vyySe5/vrr3boHLS0tjdjYWAICnE9B2QOkkydP1nuf/eRpv36X16jr378/mZmZVFRUKM8ALmubmJiIVqvlxIkTLe7Trrq6mqKiIrKzs9m2bRvLli2jS5cudOvWrcGvOS8vj+PHjyv/nD17tsG2QoiOxzEwUbNI+skz55Wft/16x7ncX7/edYcMTqhUkzNYAjQhWq1FS5z33HMP99xzT4OfP/nkkzz55JMuD6oh+fn59S4F2q/Vl/oDbKdLTSZTk/f26NGD/Px8dDodoaGhTu28vb0xGAzk2ze8tqBPu23btvGXv/xFed+vXz8WLFjQ6CGB1atX89FHHzX4uRCiY3NXDc4TZ84rr/vEu7a8CRBiCCQqPJSc/EIl+HN1Odbfzw+dTofZbJZUG0K0kEcdHzQajU574Ox8fHyUzxu6D2jWvUajscGAycfHx6ldc/u0Gzp0KP/4xz8oKytj3759nDx5kqqqqnqfZTdt2jSuuuoq5f3Zs2d58cUXG71HCNFxuOsEZ9qZulmuvvHdVemzd3x3cvILKSkrJye/kOiIMJf602g0GAIDKCwuobSsTJWgT4grhcvnqCdMmMD58+ebbqgCvV5PdXX1ZddNJpPyeUP3Ac26V6/XU1NTU28/JpPJqV1z+7QLCwtjxIgRTJgwgd/+9reMGzeOJ598UpmVq09ERASJiYnKP3Fxri9lCCHajnMVAXWXOO16qRig1de/K+x538wWC2WXbPsQQjTM5QDN3XnPHIWHh9cbzNiv2XOxXcpgMODj49Ose8PDwzGbzRQWFjq1q66upqSkRFm+bEmfDZkwYQKVlZXs2LGj0XZCCM/luMQZFKBOFQGLxcLJ9AwAYrpEElhb7NxVfXrWBWhpKgVoclBAiNbxqFqcvXv3JiMjg3KHwsNgS79h/7w+Wq2WhIQEUlNTL/ssJSWFmJgY/P1tJVL69OkDcFnb1NRULBaL8nlL+myIfQn00q9HCNF52Jc4A/390el0qvSZcTGHyirbzw+1ljfBXTNoDqk2JEATotk8KkCbMGECZrOZ1atXK9dMJhNr164lKSmJ6OhoALKzsy877XjttdeSmprqFFCdO3eOAwcOMGHCBOXasGHDMBgMrFq1yun+VatW4evry9ixY1vcZ1FRUb0zjWvWrAFsJ0SFEJ2P0WTCWLvlIVjV/WfqHhCw6xnbBS8vWxCZlq7SDJrD110iudCEaDaPOiSQlJTExIkTeeeddygqKqJbt26sW7eOrKwsFixYoLR76aWXOHjwINu2bVOuzZgxgzVr1rBgwQJmz56NTqdjxYoVhIaGMnv2bKWdXq/ngQceYNGiRTz77LOMGjWKQ4cOsX79eubOnYvBYGhxn+vXr2f16tVcffXVxMTEUFFRwZ49e/jxxx8ZN24cw4cPd/N3TgjRHtx1gtMpQEtQbwbNy8uL+O4xpJ05z9nzFzFVV7ucX01m0IRoHY8K0ACefvppoqOj+fbbbykrKyMhIYFXXnmF5OTkRu/z9/dn8eLFLFmyhI8//lipmzlv3jxCQkKc2trrYy5fvpydO3cSFRXFvHnzmDlzZqv6HDx4MEePHmXTpk0UFhai0+no3r078+bN47bbblPpOyOE6GiK3Rag1Z3g7KPiEidA757dSTtzHrPFwplzF0js5drBpKCAADQaTW1FBQnQhGgujwvQ9Ho9jz76KI8++miDbV5//fV6r0dFRfH888836zm33HILt9xyS5PtmtNnv379nPKfCSGuDM4nOINU6zfttG0Gzd/Pl5joSNX6BVvA901tIZS0M+ddDtB0Oh2B/v6UlpdTUlqqwgiFuDJ41B40IYTwJM4zaOqc4Cwrr+Biji0pd++esWi16v4Y79UzVnl95lymKn3aZw+N1dVU1e7JE0I0zuX/su+++26nfVlCCCFsih1mjIKD1JlBO3P+gvLaMZhSS3z3mHqf5Qqnkk8yiyZEs7gcoD388MMEBwerMRYhhOhU7AGar16PvrbCiKvOnKsLmuK7N1zHt7WiI8Pw1dvGmn7+oip9GuSggBAtJkucQgjhBtU1NZRXVgLqzZ6B86xWQo+YRlq2jlarpWf3rgBkZuUoaUJc4ZRqQwI0IZpFAjQhhHADx0BEzRJPjjNoPd0QoEHdzJzFYuVcZpbL/Tml2pBcaEI0i6qnOM1mM7m5ueTl5TVYz7KpdBhCCNEZOAYiqs6g1W7cD/DzJSo8VLV+HcU7BH5nzl10ORmulHsSouVUCdAsFguffPIJn332GaVNbADdsmWLGo8UQogOzfmAgDozaJVVRi5k205wxvfohkajUaXfS9mXOAHSVTgooPfxwVfvQ5XRJHvQhGgmVQK0t99+m2XLlhEaGsqUKVMIDw9XreacEEJ4ouIy9U9wOgZL8W5a3oRLTnKqlmojiCpjPuUVFdSYzXjJ7wghGqVKgPbtt9/SvXt33nnnnSYLhAshxJXAHUucTic43RigxXaNwstLR02NmTMqneQMDgwkJz8fsC1zhsnpfyEapcohgcrKSsaOHSvBmRBC1LIvcep9fPBVK8WG4wxad/cFaF5eXnSPiQbgXGYWNWazy33KPjQhWkaVAC0hIYH82r8ZCSHEla6mpoayigoAQlQ9IOA4g6Z+DjRH9gCwuqaGC1m5LvcXLKk2hGgRVQK0e++9l+3bt3P8+HE1uhNCCI9WUl6uvDaodEAA6vaD6fU+dI0KV63f+vRUuaKAQVJtCNEiquxBGzt2LH/4wx946qmnuOqqq+jVqxcBAfXXnZs8ebIajxRCiA7L6QSnSkXSjSYTGVk5AMR376p6Dc5LJTil2rjAtWOGudRfsCxxCtEiqgRoJpOJXbt2UVxczNdffw1w2fFvq9WKRqORAE0I0ek5BmhqLXGey8zCYrEC7inxdCnHGbSzGa4fFPD380On02E2myXVhhDNoEqAtmTJEjZs2ECvXr249tprJc2GEOKK5nyCU50lzrY6wWlnPyQAqFJNQKPRYAgMoLC4hNKyMuUv7UKI+qkSoG3ZsoXExETefPNNvLxULU4ghBAexzlJrUopNtroBKedv58vkeEh5OYXcS4zW5U+gwODKCwuwWyxUFZRQVADW2GEECodEjCZTAwdOlSCMyGEAGUJT+/tjV6lFBvpbVCD81I9unUBoKiklJLS8iZaN01SbQjRfKoEaImJiWRkZKjRlRBCeDSz2Uxp7SnO4KAg1Zbxzl6wzWLpdDpiu0Sq0mdT7AEawPkLKhdNlwBNiEapEqDNnTuXPXv2sGvXLjW6E0IIj+UYeKi1vGmxWDhfuw+sW5fINlutcAzQzqqwD80x5UiJpNoQolGq/Ff+448/kpyczNNPP82wYcMaTLOh0Wj45S9/qcYjhRCiQypxwwGB3IIiqowmwDlocjfHZ6mxD01m0IRoPlUCtA8//FB5vW/fPvbt21dvOwnQhBCdnTuKpDumuWi/AM31GbSggAA0Gg1Wq1X2oAnRBFUCtMWLF6vRjRBCeLwiNySpdQyO4towQOsWHYlOq8VssagSoOl0OgL9/SktL5cATYgmqBKgJScnq9GNEEJ4PHfkQHMMjtpyBs3b24uYLpGcv5DNucwsVXKXGQIDKS0vx2gyUWUyqVZIXojORpVDAj/99BNLlixpsGB6Xl4eS5Ys4ejRo2o8TgghOqyS2hk0H29vfPV6Vfp03P8VF9t2ARrUBYSVVUbyCopc7s+p5JPDbKMQwpkqAdry5cvZuXMn4eH1F++NiIhg165drFixQo3HCSFEh2Q2mymtqADUTbFhn0Hz89UTERaiSp/NpXZFAYMcFBCiWVQJ0FJTUxk8eHCjbYYMGUJKSooajxNCiA6ppLwcq9VWL9NxpsgV1dU1XMjKBWyzWW1dHsmtqTYkQBOiQaoEaEVFRURERDTaJiwsjMLCQjUeJ4QQHVJxifonODOzczFbLEDb7j+zc05Wq3KqDVniFKJBqgRogYGB5OTkNNomOzsbPz8/NR4nhBAdUmFpifI6xODZKTbs4lROteEYuBZLslohGqRKgJaUlMS2bdvIzq7/b1fZ2dls376dgQMHqvE4IYTokBxn0EKCDKr06XyCM7qRlu4RFRGK3sf7srG0lo+3N/6+voBzShIhhDNVArQ777wTo9HIY489xrp168jLywNspze/+eYbHn30UUwmE7NmzVLjcUII0SEVuWEGrb1yoNlptVrloEDGxRxqzGaX+7TPolVWVWGqrna5PyE6I9XyoD322GO8+eabvPzyywBKtmj76/nz50u+NCFEp1ZYO4Pm56tHr1J+L8cUG+2xxGl/7sn0DGpqzGTl5BHb1bWZvBBDEBdzbQcfikpLiQoLU2OYQnQqqlXcnTlzJsOGDWPVqlWkpqZSVlZGYGAg/fv359ZbbyUhIUGtRwkhRIdjNJmorKoC1FvehLoZtLAQA0GBl9c4bguOqTbOZmS5HKA57UMrKZEATYh6qBagAfTq1Ysnn3xSzS6FEMIjOO6nCjGoE6CVV1QqyWHba/bs0mercZIzxCFAK5KDAkLUS5U9aEIIcaUrKnHYf6ZSig3HYKg9AzTHGTRVUm04BWgljbQU4solAZoQQqig2GkGrXOk2Kjv2edUz4UmM2hC1EcCNCGEUEFhifpLnO2dYsMuLMRAgJ8tNYYaqTa8vLwI9PcHbHvQ7AfKhBB1JEATQggV2Jc4NRoNhgB1NvOfdSqS3lWVPltDo9HQvTZAzMrJo7q6xuU+7bOMxupqqowml/sTorORAE0IIVxktVqVJU5DYCA6nU6Vfu2zVRqNhtiuUar02VrdY2zLnBaLlcysxivHNIfsQxOicRKgCSGEi8oqKpQErmodELBarUqA1jU6Ah9vb1X6bS3HgwJq7EMLcSr5JBUFhLiUBGhCCOGiIjccECgoKqG8ohJo3wMCdo574M5nqn2SUwI0IS4lAZoQQrio2M0HBNqjxNOl7EucAOcvuH5QwDGZr8ygCXE51RLVVldXs337dqWKgMViqbfdwoUL1XqkEEJ0CIVOOdDUCdCcU2y03wlOZQwqL3EGBQYoJQGLSiRAE+JSqgRoWVlZPPnkk1y4cKHR49IajUYCNCFEp+OeIukdI0mtXbAhEENgACVl5aosceq0WgyBgRSXllJcWorVakWj0agwUiE6B1UCtDfeeIPMzExuuukmpk6dSmRkpGqnmIQQoqOzL3F6e3nh7+urSp/OS5ztl2LDTqPR0D0mmqMnTpOdV4DRZHK5IHxwUBDFpaXUmM2UV1YqudGEECoFaAcOHGD48OH88Y9/VKM7IYTwGDVmMyXl5YBt/5las0D2AM3H25voyI5RTLx7N1uAZrVaybiYQ6+4WJf6CwkK4lzt6+LSUgnQhHCgyiEBi8VCnz591OhKCCE8ilOJJ5VSbJjNFs5ftC0jdo+JRqvtGOe5nPahqVBRIEROcgrRIFX+q09KSuLs2bNqdCWEEB6lyA0nOC/m5FFTY8ur1hH2n9k5neRUI9WGQXKhCdEQVQK0hx9+mP3797NlyxY1uhNCCI9RWFKsvA7tZDU4L9W9m/uS1cpJTiGctWoP2kcffXTZtaFDh/Lcc88xZMgQ+vbtS0A9teg0Gg2//OUvW/NIIYTokAqL605whgarlWLDMUDrODNojkuc51UI0AL9/dFptZgtFplBE+ISrQrQPvzwwwY/O3jwIAcPHqz3MwnQhBCdjX0GTaPRqLYHzekEZzsWSb9UUGAAIYYgikpKVUlWq9FoCA4KoqC4mOLa/JkdZb+dEO2tVQHa4sWL1R6HEEJ4HIvFQmHt0lywG4qkQ8eoIuCoR7doikpKyc0vorLKiJ+v3qX+7AGaxWKhtKKC4MBAlUYqhGdrVYCWnJys8jCEEMLzlFZUYK4tkh4aHKxav/YAzRAYQLChYwUs3bt14fCxk4BtmbNvQg+X+nNM7FtcUiIBmhC1VCv1ZFdcXMzJkycpLy8nICCA3r17E6ziDy6TycT777/P+vXrKS0tpVevXjz44IOMHDmyyXtzc3NZsmQJe/fuxWKxMHToUObPn09MTMxlbdesWcOyZcvIysoiMjKSO+64g9tvv71VfWZnZ7N27Vp2795NRkYGOp2O+Ph47r33XkaMGOHaN0QI0W4Ki9U/IFBlNJGVmw/Y9p91tOz6l+5DczVAc/y+FZaU0KOen8dCXIlUC9AuXrzI66+/zvfff+9U7kmj0TB27Fjmz59P166u76X461//ypYtW5g5cyaxsbF88803PPXUUyxevJjBgwc3eF9FRQWPP/445eXl3HPPPXh5ebFixQrmz5/PBx984BRErlq1itdee41rr72WWbNmcfjwYRYvXkxVVRU///nPW9znjh07+M9//sP48eOZPHkyZrOZb7/9lieffJKFCxdy8803u/x9EUK0PXccEMi44FjiqeOc4LTrrnIutEsDNCGEjSoBWmZmJo899hiFhYXExsYyaNAgQkNDKSws5MiRI+zcuZOUlBTefPPNemermislJYVNmzbxyCOPcNdddwEwadIk5syZw9KlS1m6dGmD965cuZKMjAzefvtt+vfvD8Do0aOZM2cOy5cv56GHHgLAaDTy3nvvMXbsWF544QUAbrnlFiwWCx9//DHTpk0jqHYjcHP7HDZsGP/73/8ICQlRxnPrrbdy//338/7770uAJoSHckqxodJKgXOKjY61/wycx6RKslqHAK1IAjQhFKocl3nrrbcoKirit7/9LZ9++ikLFy7k4YcfZuHChXzyySc8+eSTFBUV8dZbb7n0nK1bt6LT6Zg2bZpyTa/XM3XqVI4ePUp2dsPHvrds2UK/fv2UQAogLi6OYcOGsXnzZuXa/v37KS4uZvr06U73z5gxg8rKSnbv3t3iPuPj452CMwAfHx/GjBlDbm4uFRUVzf4eCCE6DqcZNJWWOM928AAttmuU8lqNVBt6Hx+lfqnj91OIK50qAdq+ffu46qqrmDZt2mX7JTQaDbfeeitjx47lxx9/dOk5aWlpxMbGXpZjzR4gnTx5st77LBYLp0+fpl+/fpd91r9/fzIzM5UgKS0tDeCytomJiWi1Wk6cONHiPhtSUFCAr68ven3Dp6Dy8vI4fvy48o9UbBCiY7BarRTU7kELCgjA20udHSNnO2iKDbsAfz/CQ22zhWoEaFC3PFxpNFJlNKrSpxCeTpWfKBaLhZ49ezbaJiEhgQMHDrj0nPz8fMLDwy+7br+Wl5dX730lJSWYTKYm7+3Rowf5+fnodDpCQ0Od2nl7e2MwGMjPz29xn/XJyMhg27ZtTJw4sdGj+atXr643MbAQon2VV1ZSXVMDqDd7Bs7Lho77vTqSHjHR5BcWU1BUQllFJYH+fi71F2IwkJmdA9j2oXWNjFRjmEJ4NFUCtL59+5Kent5omzNnzpCYmOjSc4xGI97e3pdd9/HxUT5v6D6gWfcajUa8GvibsI+Pj1O75vZ5qaqqKv785z+j1+t5+OGH621jN23aNK666irl/dmzZ3nxxRcbvUcI4X5OJzhVOiAAdQFaVESYyznG3KV7ty4cOGpbTTifmUX/PvEu9RdqqNu/JwGaEDaqLHHOnTuXH374gTVr1tT7+erVq9mzZw8PPvigS8/R6/VUV1dfdt1kMimfN3Qf0Kx79Xo9NbV/K66vrWO75vbpyGw289xzz5Gens7zzz9PREREvc+yi4iIIDExUfknLi6u0fZCiLbheOJQrQMCRSVlFJeUAR1z/5md49jUWOYMNTjW5JR9aEKASjNo+/btY+jQobz66qssW7aMQYMGERYWRkFBAT/99BMZGRmMHDmSffv2sW/fPuW+lpZ+Cg8PJzc397Lr9mXHhoIdg8GAj4+P0q6xe8PDwzGbzRQWFjotc1ZXV1NSUqIsX7akT0d///vf2b17N8888wzDhw9v9OsVQnRcBQ4b2sMM6gRojuWT4jpgig0751QbKhRNd0y1IQcFhABUCtAca3OeP3+e8+fPX9Zmz5497Nmzx+laSwO03r17c+DAASUJrl1KSoryeX20Wi0JCQmkpqZe9llKSgoxMTH4+/sD0KdPHwBSU1MZO3as0i41NRWLxaJ83pI+7d58803Wrl3L/PnzueGGG5r9dQshOh53LHF21CLpl3JOVut6qo1Af3+8vLyoqamRXGhC1FIlQGur2pwTJkxg2bJlrF69WsmDZjKZWLt2LUlJSURH235oZGdnU1VV5bQceO211/L222+TmpqqnLw8d+4cBw4cYNasWUq7YcOGYTAYWLVqlVOAtmrVKnx9fZ2uNbdPgP/+978sW7aMX/ziF8ycOVPl74wQoq3ZAwl/Pz/0tftOXdVRi6RfSu1UGxqNhlCDgdyCAkrLy6kxm/FSqa6pEJ5KlQCtrWpzJiUlMXHiRN555x2Kioro1q0b69atIysriwULFijtXnrpJQ4ePMi2bduUazNmzGDNmjUsWLCA2bNno9PpWLFiBaGhocyePVtpp9freeCBB1i0aBHPPvsso0aN4tChQ6xfv565c+dicJiKb26f27ZtY+nSpcTGxhIXF8f69eudvq4RI0YQFhbmjm+ZEMINKquqlHQQ7jrB2ZFn0Hx99URFhJGTV8A5lVJthBiCyC0owGq1UlxaSvgluSOFuNKoXovT3Z5++mmio6P59ttvKSsrIyEhgVdeeaXJINHf35/FixezZMkSPv74Y6Vu5rx58y5LIjtjxgy8vLxYvnw5O3fuJCoqinnz5l0289XcPu352TIyMuo9gbl48WIJ0ITwIAUOy5thbiiSrtPp6Brd+AGi9tYjJpqcvAKKS8ooLi0jOMi1IueXnuSUAE1c6TRWx8KZosM7fvw4c+fO5d1333U5bYkQonUOHz/Ojn37AZgwaiRJDex/bQmLxcI1tz+M0WgiLrYrn73zsst9utP/vfEhX36zBYAP//EsA/v1cqm/U+fO8+2OHQCMHDSIkYMGujpEITxaq9JsPP/882zdurXVD3X1fiGEaE/5RQ4zaCrN9OTkF2I02lL0dMQi6ZdyOsmpwkEBx4MWkmpDiFYGaJs2beLMmTOtfqir9wshRHsqKCpSXqu1xOkp+8/s1M6FFhwYqJQKlJOcQriwBy0tLY1169apORYhhOjwrFYr+bV70AwBAfjUU02kNRxTbHTkE5x2PWIcAjQVcqHpdDoMgYEUl5ZSVFKC1Wq9rLazEFeSVgdoO3bsYOfOnS2+T7a8CSE8WUl5uVJtRK3lTfC8GbRuXSPRajVYLFbVTnKGGgwUl5ZSYzZTVlFBkEO+SyGuNK0K0BYuXOjyg+0JX4UQwpM4Lm+qedLQKQeaBwRoPt7edIkM50J2HucvZKsy4xVqMJCemQnYTspKgCauZK0K0KZMmaL2OIQQwiPkO+4/C1E/xYa/ny/hoer1607dY6K5kJ1HWXkFRSWlLldUcKxpWlBcTFxMjKtDFMJjqVIsXQghrhSOJzjVmkGrrq7hQratznCPbtEes/equ8M+NDVqcjoGvI6ltIS4EkmAJoQQLWBf4tRqtQQHBanSZ2ZWDhaLbX+uJ+w/s+vezbFougqpNhyqMjgGwkJciSRAE0KIZjKbzRSVlgK2YEKnVedH6FkPOyBg51w03fUZNG8vL4IDbRUJCouL5VCZuKJJgCaEEM1UWJv+AVQ+IJDhoQGaYy40FWbQoO5kbI3ZTElZmSp9CuGJJEATQohmync6waneRv6zGReV13HdOn4ONLuY6AhlFlGtVBthlxwUEOJKJQGaEEI0k/MJzhDV+nVa4oz1nBk0Ly8vYrpEAiipNlwlAZoQNhKgCSFEM+W7KQeafQYtIiyEQH8/1fptC/aanJVVRvILXQ+oHE9yFshBAXEFa7MArbq6mvLy8rZ6nBBCqMpqtZJXWAiAr96HAD91AqmS0nIKi20HD+I8aPbMzqlougr70EKCgtDWphmRGTRxJWt1gDZr1iw+++wzp2t79uxhyZIl9bb/9NNPmTp1amsfJ4QQ7aqispLKKiMAEaGhquUqO5vpmfvP7Hp0U/ckp06nI9hgS19SWFKC2WJxuU8hPFGrA7SsrCzKLjlhc/To0cuCNiGE6Axya2fPwBagqcW5SLonzqA5JKtV7aBACAAWi4Xi2rQmQlxpZA+aEEI0Q55DgBapaoDmMIMW63kzaI5LnOdVqCYAEC4HBYSQAE0IIZojz2kGLUy1fj19Bq1LVDheXjpAnT1oIAcFhAAJ0IQQolnyCmwBmpdOR3BQoGr9pmdcAGxZ9LtGRarWb1vx0umI7RoFQMbFbCwq7BmTVBtCSIAmhBBNMppMlNSeQg8PDUWrUokns9lCxoUcAGJjotDpPPNHsn2Z02iqJie/sInWTTMEBioJcAuKi1zuTwhP5Jk/DYQQog25a//ZxZxcqmtqAM/cf2bneFBAjX1oWq2W0NpZtOLSMmrMZpf7FMLTeLly8/r16zl69KjyPjMzE4Df//73l7W1fyaEEJ4mrw1OcPb04ADt0qLpI5OTXO4zPCSYvMJCrFYrhcXFRIapt+9PCE/gUoCWmZlZb+C1Z8+eeturlTdICCHaUm6BQ4AWJic4L9XdIRfauQvqHBSICA3l+Jl0wBYgS4AmrjStDtCWL1+u5jiEEKLDss+gaTUapxQQrvL0E5x2PRyXOFXKheY4U5lXWKRKn0J4klYHaF26eO4PEyGEaK4as5nCkhIAQoOD0el0qvXt6VUE7KIiQtH7eGM0VauXC82h1qnjErMQVwo5JCCEEI3Ir90HBRCp4vIm1M2ghQYHYQgKULXvtqTVaummpNrIwWx2PdWGr15PoL8/gLIXTYgrSatm0F5++eVWP3DhwoWtvlcIIdpadn6B8joqLFy1fssrKskrKAI8e/+ZXY9uXTh9NpPqmhqycvPp1sX1nG4RoaGUVVRQXVNDSXk5wYHq5Z8ToqNrVYD2zTff1Htdo9HU+7cc+3WNRiMBmhDCo+Tk5yuvo8LV26iefv6C8jqum+dvGXE+yZmlUoAWQnrtQbS8wkIJ0MQVpVUB2qUHBCwWC6+//jopKSnccccdDB48mLCwMAoKCjh06BCff/45AwYMYP78+aoMWggh2kpOgS1A02q1TvuiXHX6XF2AlhDXTbV+24tjTc5zmdmMGTbI5T7DHQ4K5BcW0qt7d5f7FMJTtCpAu/SAwKeffsqxY8f44IMPiIiIUK736NGD5ORkbr75Zh544AG2bNnC3Xff7dqIhRCijRhNJopKSgHbcpuaBwROn6tLURTfoxMEaN3kJKcQalLlkMDXX3/NxIkTnYIzR5GRkUycOJGvvvpKjccJIUSbyCmo238WreLyJsCZTjaDdmmyWjUYAgLw8fYG5CSnuPKoEqDl5ubi4+PTaBsfHx9yc3PVeJwQQrQJx/1nkSoeEAA4fdY2gxbg70dUuLqnQ9tDRFgIfr56AM5nqpOsVqPRKMvKZRUVVBmNqvQrhCdQJUCLjIxk+/btGBv4j6eqqort27cTGen6plEhhGgrOfmOM2jqBWgVlVVczMkDIKFHTKeosqLRaIitnUXLzM5TrX5mRGiI8jq/qEiVPoXwBKoEaD/72c+4cOECjz32GNu3b6e4uBiA4uJitm/fzmOPPUZWVha33HKLGo8TQog2YZ9B8/H2JsQQpFq/6efrEtR2hv1ndvZlTrPZzMXsPFX6DHfahybLnOLK4VItTru77rqL8+fP88033/DMM88Azik3rFYrU6ZM4a677lLjcUII4XZlFRWUV1YCEBkWpuosl+MBgQQ3B2iVFhPpVTlYrVZi9REYvPzc9iznk5xZTu9by/GggGNNVCE6O1UCNK1Wy8KFC5k8eTLr1q3j1KlTlJWVERgYSK9evZg0aRJDhw5V41FCCNEmHJc31cx/BnDG6QRnjKp926VX5bD0wrdsKjpMtbVuubGnPoq7o8Zze+QYvDTqnUoFW7JaO7UOCoQFB6PVaLBYreQWFjR9gxCdhCoBml1ycjLJyclqdimEEO0iO79uiS5Kxf1nUHdAANwzg/Zl3g/89dznGK01l32Wbszh/85/ztcF+3it1xwivQ2qPdfxJGd6xsVGWjafl05HeEgIuYWFFBaXUF1djXftyU4hOrNW70H78ssv5VSmEKLTysqtC9C6NpBCqLVO11YR8PfzJTpS3dm5f2Vv4bmzy5XgLNQrkGnhI7ktYjSDA+KUdofK0/ll6utkGtWblXLcT+cYhLoq0mEGM1f2oYkrRKtn0P75z3+yePFi+vbty9VXX81VV11Fr1691BybEEK0C7PZrBwQMAQG4u+n3r6tyiojF7Jsf7mN767uCc5VeXv4R8Zq5f3MiHE8GXsL/jq9cu1A2RmePvMpF0yFZJoKmHfyXT7u92uCdK5/jYagACLCQsgrKOL0uUylxJ+rosLCSeEUYFt6jomKcrlPITq6Vs+gvfPOO9xzzz1UV1fz/vvv88ADDzB79myWLFnCwYMHsVgsao5TCCHaTE5BAeban2FdI9WdPXOswalmgtpjFRm8dO4z5f1jMVP4U9wdTsEZwNDAeD5KnE8PvS3t0emqbJ4589966yi3hn3JtrikjIKiElX6dNwDaC+9JURn1+oZtMTERBITE3nwwQe5ePEi27dvZ+fOnXz++ed89tlnBAUFMW7cOK6++mpGjhyJr6+vmuMWQgi3cVze7KJy/sbTbjggYLRUs+D0J8qy5syIcTzU9cYG20f7hPD/ej/IL1Jfp8hczubiI3yZ/wO3RYxxeSwJcd3Yc/AoYKuWEB4a7HKfocHB6HQ6zGYzuflyUEBcGVQ5JNC1a1fuvPNO7rzzTkpKSti1axfbt29ny5YtrFu3Dh8fH4YPH8748eMZN24coaGenzVbCNF5ZeXV7a/tGqFugHYqXf0DAu9c3MBZo23MA/y781T36U3e08M3kr/0nMXjpz4A4G/nV3KVoR/RPiEujcVxVvD0uQxGDOnvUn8AOq2WiJAQsvPzKS4ro8pkwreJ6jVCeDpVT3ECGAwGJk+ezOTJkzGZTPz444/s2LGDXbt2sXv3brRaLUlJSfy///f/1H60EEK4zGq1KjNoem9vQoPVO+UIkHbmnPK6T3x31/urvMBHWd8B4KXR8ULPu/DRNu9H+4SQgcwIH82X+T9QaTHxz8w1/DX+HpfGk+CmgwJR4eFk1+4LzC0ooHuXLk3cIYRnUz1Ac+Tj48O4ceMYN24cVquVI0eOsGPHDnbu3OnOxwohRKsVl5ZSWVu2LjoyUvUyTCfOnAcg2BBIpAo1OP+R8RU12PbLPdjlenr5tSxweSL2Z3xX9BPF5grWFuxnZuQ4hgUmtHo8CQ7Ltqqe5Axz2IeWny8Bmuj0VCn11BwajYZBgwbxyCOP8Omnn7bVY4UQokUuOqbXUPmAQH5hMQWFtlJ4feJ7uBz8/VBygl0lxwGI8QnlgS43tLiPEK8A5nW7WXn/eubXLh0YCAoMUIq/209yqsHxoEBugexDE51fq2fQXn755Vbdt3DhwtY+Uggh3M5x/1kXlfefnaydPQPoEx/rUl8Wq4V/Zq5R3j8WM6XZS5uXuj1iDP/N2c7pqmwOlJ3h+9ITjDUktnpsCXHdyMkvpLi0nPzCYiLCQlrdl12owYC3lxfVNTVOVR6E6KxaHaB98803zW5rr8up0WgkQBNCdGgXsnMAWwk7tUs8nXDaf9bDpb42Fx0hpSIDgES/GG4OG9bqvnQaLQ93vYkFZz4B4M0L6xgT1LfVM3wJPbrx/f4jgG0WTY0ATaPREBkWxoWcHMoqKqiorFQ1P50QHU2rA7SlS5c2q11GRgYffvghFy5caLqxEEK0o9LycorLygCIDg/H20vdbbqOM2h9E1ofoFmtVj6oPRgAMK/bzWg1ru1YuSl0CO9c3MCpqiwOl59ld+kJxrVyFs3pJOfZTEYlD3BpbHZR4bYADSA7P5/4WNdmIYXoyFr90ycpKanRz4uKivjoo49Ys2YN1dXVDBo0iF/96letfZwQQrhdZu3sGUC36OhGWrZOWm2AptNqXcqBtqf0JEcqbLNxiX4xjDe4nspCWzuL9tSZjwH4JHuLOgHaOfUOCtiWnFMBW646CdBEZ6b6Kc6qqiqWLVvG8uXLqaiooGfPnjz00ENcddVVaj9KCCFUdSEnW3ndLVrdckLV1TWcqa0iENe9Kz4uFPz+IGuT8vq+LterdtL0htDBdMsMI9NUwK6S46RVXqSPX9cW9+OumpxdIuqK1mfl5TXSUgjPp9opTrPZzJdffsns2bP58MMPCQgIYMGCBXz44YcSnAkhOjyr1UpGli1A0+l0RKtcID094wI1NWbAtf1nKeXn+b70BACxPuHcGDpYlfGBbS/az6OuUd5/mr21Vf0E+vspReDVPMnp7+eHITAQsKXaMJvNqvQrREekSoC2efNm7r33XhYvXkx1dTUPP/ww//73v7n55pvRatssk4cQQrRaSXk5ZRUVAHSJiMBLp1O1/7TTDvvPXEhQ+++c7crrX3aZiJdG3XFOjxhFkM5Wmu/rgn3kV5e2qp9ecbblx9KyCrLz1Dt12aU2cDZbLOQVFqrWrxAdjUtLnAcOHOCtt97i+PHjeHl5MWvWLO655x6CgoLUGt9lTCYT77//PuvXr6e0tJRevXrx4IMPMnLkyCbvzc3NZcmSJezduxeLxcLQoUOZP38+MTGX7wVZs2YNy5YtIysri8jISO644w5uv/32Vve5cuVK9u/fT0pKCjk5OUyePJmnn3669d8IIYSqMrMdlzfV33/meIKzdysDtILqMr4tPABAsM6faeEjVBmbowCdL7dHjOWj7M1UW818mfcDD3ZteX61PvHd2fXjYcAWnHaJDG/ijubpEhnBifR0wLbMqfZMpxAdRaunt37/+9/zm9/8hhMnTjB58mT+85//8Mgjj7g1OAP461//yooVK7jxxhv59a9/jVar5amnnuLw4cON3ldRUcHjjz/OwYMHueeee7j//vtJS0tj/vz5FBcXO7VdtWoVf/vb34iPj+fxxx9n4MCBLF68mH//+9+t7vM///kP+/fvJz4+Hp3KfzMXQrguM8t9+88AUk+mK69be4Lzy7zvqbbalvWmR4zCV+ueepQzI8ehwbav7fO87zFbLS3uo29CnPL6xOmzqo2ti0NA5phUWIjOptUzaHv27EGj0RAdHU1+fj5///vfm7xHo9Hwt7/9rbWPJCUlhU2bNvHII49w1113ATBp0iTmzJnD0qVLG039sXLlSjIyMnj77bfp39924mn06NHMmTOH5cuX89BDDwFgNBp57733GDt2LC+88AIAt9xyCxaLhY8//php06YpQWhz+wR4/fXXiY6ORqPRMGnSpFZ/D4QQ6rNarcoMmpeXF1Hh6sz22FksFlJP2oKUqIiwVuUFM1st/C9vNwAaNNwZ6b69vbH6cMYZEtlZksoFUwG7S45zdXDLTor2TaibJTxx+lwjLVsmLDhYSViblZur5NgUorNxaYnTarVy8eJFLl682Kz2rv5HtHXrVnQ6HdOmTVOu6fV6pk6dyjvvvEN2djbRDSxNbNmyhX79+imBFEBcXBzDhg1j8+bNSjC1f/9+iouLmT59utP9M2bMYMOGDezevZubbrqpRX0CdJG6cUJ0WPlFRVRUVQHQLSoKncp7Z89fyKG8ohKApD49W9XHtuIULppse66uNvQjVq9uEHmpOyLHsrPEltLis9zdLQ7Qusd0Qa/3wWg0KelF1KDVaomOiCAjK4uKqipKy8uVgwNCdCatDtCWL1+u5jiaJS0tjdjYWAICApyu2wOkkydP1hugWSwWTp8+zc0333zZZ/3792fv3r1UVFTg7+9PWloaAP369XNql5iYiFar5cSJE9x0000t6tMVeXl55OfnK+/PnlVvqUAIYXPuQt1fMnvEtDytRFOOpZ1RXvfvE9+qPpbl7FBez4662uUxNeWa4CQivQ3kVpewrTiFbFMR0T4hzb5fp9PSp2d3jhw/xfkL2ZRXVBLgr07m/y61ARrY9qFJgCY6o1YHaO0xI5Sfn094PUsP9mt5DeTFKSkpwWQyNXlvjx49yM/PR6fTERoa6tTO29sbg8GgBEst6dMVq1ev5qOPPnKpDyFE485drKt00qOrewO0fr17tvj+9KocJbVG99rlR3fz0ui4LWIMb19cjxkLX+b9wK9iWrY9o0+CLUADOJmewZCkPqqMrYtDEfuLObn07dlTlX6F6EhUT1TrTkajEe96kjv6+Pgonzd0H9Cse41GI14NlHfx8fFxatfcPl0xbdo0pzxyZ8+e5cUXX3S5XyGEjdFkIqt2s3lwUBDBbjjo5DyD1rPF93+Z94PyembEOJfLOjXXbRGjeffiBixYWZW/l4e63tiiZzsehjhx+pxqAVrXiAi0Gg0Wq5XMnJymbxDCA7UqQHv55Zdb/UBXiqXr9Xqqq6svu24ymZTPG7oPaNa9er2empqaevsxmUxO7ZrbpysiIiKIkGPkQrhNRnY2ltpEqu6YPTObLRyv3STfNSqC0GBDi+6vtppZnb8XsM1q3RLedEohtXTxCWWMoS+7So5zwVTAvrLTjAzq3ez73XWS09vbm8jwcLLz8igqKaG8spIAKZwuOplWBWjffPNNvdc1Gk29GaPt1zUajUsBWnh4OLm5uZddty87NhTIGAwGfHx8nPZyNXRveHg4ZrOZwsJCp2XO6upqSkpKlOXLlvQphOi4zrt5/9m5zCwqKm0HEFoze7a9OIWCGlsB94nBAwnzbtv9VtPCR7Gr5DgAq/P3tihA690zVvn575ioVw3doqLIrt3WciE7hz4945q4QwjP0qoA7dIDAhaLhddff52UlBTuuOMOBg8eTFhYGAUFBRw6dIjPP/+cAQMGMH/+fJcG27t3bw4cOEB5ebnTQYGUlBTl8/potVoSEhJITU297LOUlBRiYmKUzfx9+tim4FNTUxk7dqzSLjU1FYvFonzekj6FEB2T1WrlbO0pdJ1OR7co9fOfuXpA4AuH5c0ZEaNUGVNLTAwZQJDOl1JzFRsKD/GH7rfhr2ve6oC/ny/du0Zx7kI2J9PPU2M2q1ahoVt0FPtrf/Zn5kiAJjqfVm1k6NKli9M/3333HceOHeODDz7g3nvvJTk5mR49epCcnMwvf/lL3n//fY4ePcqWLVtcGuyECRMwm82sXr1auWYymVi7di1JSUnKCc7s7OzLTjtee+21pKamOgVU586d48CBA0yYMEG5NmzYMAwGA6tWrXK6f9WqVfj6+joFbc3tUwjRMeUWFlJeW96pW1RUg/tPXZHiGKC18IBAtqmIncXHAOjiHcKYNjgccClfrQ83hSYDUGkxsbGo8aTgl7LvQzOaqjmXmaXauLpERqKtTd10waEKhBCdhSo/jb7++msmTpzY4JJeZGQkEydO5KuvvuLuu+9u9XOSkpKYOHEi77zzDkVFRXTr1o1169aRlZXFggULlHYvvfQSBw8eZNu2bcq1GTNmsGbNGhYsWMDs2bPR6XSsWLGC0NBQZs+erbTT6/U88MADLFq0iGeffZZRo0Zx6NAh1q9fz9y5czEYDC3uE2Dnzp2cPHkSgJqaGk6dOsW//vUvAK6++mp69erV6u+LEKJ1zpzPUF7Hd491yzMOp9hS92g0GpL6tmwGbXX+XizYto3cGjEKXRsdDrjUreGj+DzvewBW5e1hWgv2wfXtFcfGHbY9dKlp6ST06KbKmLxrEwpn5eVRVFpKeUUFAbJqIToRVQK03Nxc5eRiQ3x8fOrdP9ZSTz/9NNHR0Xz77beUlZWRkJDAK6+8QnJycqP3+fv7s3jxYpYsWcLHH3+s1M2cN28eISEhTm1nzJiBl5cXy5cvZ+fOnURFRTFv3jxmzpzZ6j63bt3KunXrlPdpaWlKzrWoqCgJ0IRoB2cyHAK0buoEDo4qq4xKFv2EHt0ICgxo4o46FquFlXl7AFvlgFvD2355025wQBxx+kjOGnP5sewUGcb8ZifKTXJY1k1JO8PN16tXAaFbdDRZtfvQMnNyJN2G6FRUCdAiIyPZvn07DzzwQL0nF6uqqti+fTuRkZEuP0uv1/Poo4/y6KOPNtjm9ddfr/d6VFQUzz//fLOec8stt3DLLbc02a65fT799NNSHF2IDqSopJSC2pq5XSIi8HfDKcCUE6cxW2x1LAcnNX9zPcDe0lNkmGwHjkYH9aGbPkz18TWXRqPh1vCRvH5hLQBr8n9sdk40x313KSdOqzqumOgo9h09CkBmtgRoonNRZb78Zz/7GRcuXOCxxx5j+/btSqHw4uJitm/fzmOPPUZWVlazAh4hhGgLZzLqThW6bXnz2Enl9eD+LcsBtjLf8XDAaNXG1Fo/Cx+hFFBfnb8XSzMLqBuCAugRY9sffPzUOaqr609j1BpdIiLQ1pblysjKqjeLgBCeSpUZtLvuuovz58/zzTff8MwzzwDOKTesVitTpkxRCpwLIUR7O52RqbxOiHXv/jOAwf2bP4NWUlPBxkLbZvxgnT/XhQxSfWwtFe0TwuigPnxfeoJMUwEHys4wPKh5WzP6903g3IVsTNXVnDqb0apqCvXx9vKia2QkmdnZlJaXU1xaSoihZXnmhOioVAnQtFotCxcuZPLkyaxbt45Tp05RVlZGYGAgvXr1YtKkSQwdOlSNRwkhhMtKy8uVHFphwcFuqR5gsVj4KdU2gxZiCKJ7zOV1ghvydcE+TFbbTNPPwofjo+0YRV+mhY9USk6tyt/b7ABtQN8Evt2yG4Cjx0+rFqCBLblwZu0pznMXL0qAJjoNVf+rT05ObnKzvhBCtLeTDml4ese5J3/WucwsikvLARjUvxea2pQQTbFarU6lnTrC8qbddaGDCDinp9xiZEPhIRZ2n9GsnGiOp1dT0s5wu4pj6hHTld0HDwJw7mIWgxPbPhWJEO7QPme2hRCiHZ1IrwvQ3JXg9JDT8mbz958dq8jgeKWtePtA/x708YtRfWyt5af1YVJYMgAVFiObin5q1n2JCT3Q1e4VO3pc3YMCYcHBSpmnC9nZ1JjNqvYvRHuRAE0IcUUpKComv6gIgOjwcIID3VM66cfDx5TXyQP6Nvu+Lx0OB9zWgWbP7BxrgX5VWyO0Kb6+ehJ62vb5nTmfSWWVUbXxaDQaunftAkCN2cxFKZ4uOgkJ0IQQV5QTZ9OV133clJbBarWyrzZA89X7MKBvQrPuq7SYWJu/33af1odJYR1v7+7QgHi61+ZA21N6koumwmbdN6B2mdNisTqVv1JDj651s4znLl5spKUQnkMCNCHEFcNqtZJWu7yp0Wjo3aO7W55zNjOL3PwiAJIHJuLt3bztvhsLD1NmsRVWnxSaTKDO1y3jc4VGo1Fm0axYWZP/Y7PuG5hYd6DAMf2IGmK7RCt7/CRAE52FBGhCiCtGRm06BrD9UndHclqAfYfqljdHDO7f7Pu+rC2nBB3rcMClbgkbobxenf9js/KPDXFY5j149ISq4/HV64kKsyXyLSwuobi0VNX+hWgPEqAJIa4YKSdPKa+T3FhezXH/2YjB/Zp1T3pVDvvKbBvoe+qjSA7o6Y6hqSJGH8bIIFtet3PGXA6Vpzd5T1y3LoQG29KZHEpJw2JpXqLb5op3yGV3xiHHnRCeSgI0IcQVobKqSqm96afX09MNtTfBef9ZgL8fic3M+WWvuwm2wwHNTcvRXm51OCywuhmHBTQajTKLVlZewemz6gZRjtUgHGusCuGpJEATQlwRjp85o8zaJCbEo9Pp3PKcU+kZFBbbltiGDkzEqxnPqbGalRORXmj5WfiIJu5of9eHDMZP6wPAtwUHqbKYmrwnOclhmTNF3WXOUINBSVJ7MTeXiqoqVfsXoq1JgCaE6PSsVmubLW/u3leXG2xU8oBm3bO9+Bh5Nbag7tqQAYR7q1/ZQG3+Oj03hg4BoMxSxeaiI03ekzygLh/cwSPqBmgA8bF1s6LpmbLMKTybBGhCiE7v3IWLFNVuHI+JinJrOaCdPx5SXl81cnCz7vncQw4HXGpaC5c5E3vF4au3zbqpPYMGzjVVz5yXZU7h2SRAE0J0eodSU5XXQ/q5rxRQWXkFB4/aKgh0j4mmR7cuTd5z0VTIzmLbnrWuPqGMMzTvUEFHMDwwgRgf2+nJ70tOkG0qarS9l5cXA/vZDhdk5xZwMTtP1fFEhYcrVQUysrIwVVer2r8QbUkCNCFEp5ZXWEhGbTHt4MBAtx0OANhz4Cjm2lJD40Y0b/ZsZd4PWLClqZgePgqdxnN+LGs1Wm6p3S9nwcrXBfuavGeoQ7qNfT+lNtKy5TQajXKa02yxyGEB4dE85yeBEEK0gvPsWT+3no7c+eNh5fXVo4Y02b7GaubL2tObWjQetbxpd4vDgYavmpETbWRykvL6hwNN71trKcfaqmkONVeF8DQSoAkhOq3isjKlMLrex4fEhHi3PctstrBzr23/ma/eh6EDm15K3VmcSnZ1EQDjg5OI9glx2/jcpbs+gmGBtlJWp6uyOVJxrtH2g/r1wt/PViFhz8GUZiW5bYkuEREEBQQAcD4rS05zCo/VvPojQgjhgfYdOaIEAIP69sXby30/8g4fSyO/sBiA0UMHovfxafKeLxwOB9weMUa1sVitVvLOlHDhSB4F50qpLDFhtVjxDfTBP1RPZO8Qug0Kx8+gV+V508JHsr82ye7KvD0MCohrsK2XlxfDBiayY+8hCgqLOZWeQe949UpuaTQaesf14EDKMaxWK6fOnWNQ3+YXqxeio5AATQjRKRWXlnL8TDoAPt7ebj0cALBpR90pxuvHj2ykpU2WqZBtxSkARHkHc1Ww64cDakxmTmzJ4Mg36ZRkVzTc8NuzaLQaeo6IZtDP4onqHeLSc28KHcLfzq+kwmLk64J9/Cb2lkbriI4cOoAdtbONew4eVTVAA+jbsycHUmwHL9LSz0qAJjySLHEKITqlHx1mz4b069esGa3WslgsfLfTFqB5e3kxflRyk/csy9mpHA64LWI0XhrXEuee/TGb/z25jV0fpTQenNWyWqyc2ZPF6md3s3nJQSoKW78UGKDz5eawYQBUWkx8nd/4YYHRQ+vyw/1w4Girn9uQ8JAQwoKDAcjKy5PanMIjyQyaEKLTySkoUGbP9N7eDE507wzKT8dOkptfBMDoYQMJDPBvtH2lxaQsb3ppdMyMHNfqZ5sqqtnx3lFOf3/R6XrMgHDix3Qhum8ogRF+aDRQVWqiJKuCjJ/yOLk9k8piW/b/U7sukvlTHuMfGkTc8OhWjePOyHF8lrcbgBW5O7kzclyDBzISenQjIiyEvIIi9v+Uiqm6Gh9v71Y9tyGJ8T3ZfdA2S3fs1GnGJDd9aEOIjkRm0IQQnYrVamXnvv3K++EDm7cfzBUbttfV0byhGcuba/P3UWy2zXJNCk0mwrt1iXMLM0pZ9cxup+AsdnAE0/9vHDf/cRT9r+9BWPcgfPy88Pb1IijSn26DIhh9dz9mvzGRcXOS0AfaAqOq0mo2vLafvctPYLW0fON+on83pcD7yaosDpSfabCtRqNRZtGqjCb2q5xuAyAxPh5tbYB47PRpzCoXZxfC3SRAE0J0KqfOnedibi4AIUFBDOrbp4k7XFNdXcO6LbaZIx9vb64ZPbTR9larlX/nbFfe/zzqmlY9N/OnPFY/u5vii+W2Z/t7MeGxIUxaMIKInsFN3q/z0pJ0UxwzX72GuBF1s2aHVp3iu9cPUmMyt3hMjjOB/8vd1Wjb8Q7fp627D7T4WU3x9/OjZ21OtMqqKs5K6SfhYSRAE0J0GkaTiR3762bPxg0b6rai6Hbb9xykuKQMgAnjhhEUGNBo+z2lJzlVlQVAckBPBgS0fIP8mT1ZfPv3H6musgVRYXFBTH/pKnpfFdPiPG++Bh9u+M1QxvyiP/Zbz+zJYv2r+6gxtixIuzF0CCE629e/ofAQBdVlDbYdM2ygcqp22w8HVE+3AZDUu67mqmMtViE8gQRoQohOY+f+A1RUVgLQIyaGuJgYtz/zqw11s2G33Di+yfYfZX+nvL67FbNnJ7Zm8N3iA1hqbAFN3PAopj03FkN04/veGqPRaBg4pSc3/m44XnpbQHvhSH5tEFjT7H70Wm+mR4wCoNpq5vPaPWn1CfD3Y8SQ/gDk5BVw4nTj+dNao3uXLkpOtHMXL1JS1nDAKERHIwGaEKJTOHfxIqmnbbm4vL28uHbkCLdWDQDIKyhid231gKiIMEYOGdBo+5Ty8+wqOQ5AjE8Y14UOatHzTu68wLZ3fsI+2dTnmm5c/8RQJahyVY+hUUz5w0i8/WwzWxdTCmwzaS1Y7pwZOQ4ttu/7f3N2YLQ0XA/zmjGOy5z7G2zXWhqNxmkW7fDx46o/Qwh3kQBNCOHxKior2bS7LunruKFDlZkTd/rs6++Uzec/u/4qdLrGf6S+l7VReX1fl+vwbkFqjfS92WxdepjazBwMmBTHNQ8NQtvEM1squm8oNz89Eh//uiBt85JDWMzN22Qfqw/nhlBbHdL8mtJG63M67kPb8r36ARrAgN698apd5k45dZoqk8ktzxFCbRKgCSE8msViYcOuXVTWlvTp3rWL06yJuxhNJr5Ya1uu1Gm13Db1ukbbn6rMYlPRTwBEehu4Nbzp0552GYdy+e6NA8rpyn7Xd2fMvf3RaN0zQxjZK4QpfxipzMyd/TGbHe8fbfY+sXujJyivP8neisVaf3AXHRFGUl9b+a200+dIP3/BtYHXw1evV0p81dTUkHLypOrPEMIdJEATQni07w8dIjM7B4AAPz9uGDvW7UubAOu3/kBhsS0B6nVXjyQ6IqzR9o6zZ7+InoBe27y8X1mpBWxYtF/Zc9b76hiuum+A27/GyF4h3PDkMLQ623NObMngx+UnmnXvoIA4hjvU59xR0nAajUnX1pW4+nbr9w22c8WQxLoqDT8dP4HZ3PITqkK0NQnQhBAe60haGgeP2X75azQabrxqHH6+DZcYUovFYuHTL75R3s++9aZG25+ouMA3BbZUEiG6AGZGjG3WcwrOl7L+1X2YTbYZqJ6jornm4UFumzm7VOygCCY8NoTaLWUcWn2alA1nm3XvvdETldcfZn3XYLsbrxmtBJvrNu92y2nOEEMQ8bHdACivrCT1TMM52oToKCRAE0J4pNPnM9j+Y93+pvEjhhMTFdUmz964fS+nz9ryag3q35tB/RpfUn39wlqstZvH7u96Pf66pouUl+VVsu6VvZgqbKcouw2KYOK8ZNX3nDUlYUxXxv0ySXm/66MU0vdmNXnfNcH9ife1/fvYX3aaPaVp9baLDA9l+GDbac6MizmknDitwqgvNyyp7mvYd+SozKKJDk8CNCGExzl1/jzrd+xQZluS+/djYB/3JqS1M5stvPeflcr7h34+vdHlxv2lp9leWxS9i3cIsyOvavIZVaUmvnl5LxUFRgAiEoK54TdD0Xm1z4/spJviGDLNtmSJFTYvOURWakGj92g1Wh7qeqPy/s0L6xqcHZsysW5Gce13jSe4ba3oiAgl7UpZRYXkRRMdngRoQgiPcuzUaTbs2Iml9pd93549GZuc3GbP/2bzLs7UbmYfktSH0UMHNtjWYrXwj8zVyvtHYiY3ufesuqqG9X/fR/EFW4UAQxd/Jv1+ON6+7Vs6ecSsvvQZb1smNFdb2PDafgozG88rNil0KAm+tioFB8rO8H1p/XvYJo4bjl5vK8e19rtdVFYZVRx5nVGD69Ka7EtJobqm+TnehGhrEqAJITyCxWJh94GDbP7hByU465cQz3VjRrfJoQCAsvIK3vhwhfL+4Xtua/TZK/P38FO5LQFrL98u3BI+otH+LTUWvnvjIDkniwDwC9EzZeFI/IKbXhJ1N41Gw/i5A+k2KAIAY3k1376yl/LCqgbv0Wm0/KrrJOV9Q7NoQYEB3HTNaMD2Pd6w7QeVR28TGRZGfG35p4rKSg4eO+aW5wihBgnQhBAdXml5Oau/28wBh1+og/r2ZeLo0Wi1bfdj7N1/r6SgsBiAieNGMDI5qcG2RTXlLM74Wnm/sMcMdJqGx2q1Wtn+3hHOH7DVEfX282LyUyMIimp9hQC1ab20XP/EUMJ72oq7l+VV8e0rP2KqaDgZ7Y2hg+nt2wWAw+Vn2VR0uN52t99cd6jgs68bPlTgqjFDhihF1PenHKO0vNxtzxLCFRKgCSE6LIvFQsrJk6xY+w0XcmypNDQaDeNHDGf8iOFtNnMGcCgljWWr1wOg9/HmibmzG22/OHMNRWbbL/8poUMZFdT4Hrkfl58gbZvt4IHWS8ONvx2mBEIdiY+fF5OeGkFgpB8ABedK2bjoAOaa+nOdaTVa5nebqrx/LeOreqsLJPVNoF/vOACOpZ3hSKp79oiFBhsYlNgXALPZzK796hdqF0INEqAJITocq9VKZnY2n6/fwJY9ezFW236hB/r7c+v11zGob982HU9FZRV/fvVtLLWJYh+461ZioiMbbL+j+Bhf5NmW6QK0ep6MndZo/z99fYZDq2tPL2pg4mNDiEkKV2fwbuAfomfyghHoA2376S4czWfbW4eVRLqXujY4iTFBtn9nF0wFfJq99bI2Go2GO6Zer7z/12dfX9ZGLSMGDsTP17ZsfOr8edIzM932LCFaSwI0IUSHYbFYOJORwZcbNrJq03fkFtSdFOzTM45ZN09ps1QadlarlRcWvUdmlm3pcXD/3vzijpsbbF9UU86f05cp75+IvYUon+AG26dty+SHf9clch03J4n40V1VGLl7hcQEMun3w9H52H6NnNp1kT3L6q91qdFo+F33W5Uane9mbSTbVHRZuynXjSMyPASALbv2cfqcewInvY+P08GSrXv2Sgko0eFIgCaEaFdWq5XcggJ2HzzIx6tW88227WTl5Smfh4UEc+v113PjuHHofXzafHzv/XcVG3fsBSDAz5e//O4hpbbjpSxWC8+dXU5eja3CwFWGfo0mpT23P4dt7/ykvB92R2+SboxTcfTuFdUnlOvmJ2Nfaf5pzRmOfJNeb9s+fl25I9L2vai0mHjx3GeXHRjw8fbm5zOmKO//tWKNW8YNkBgfT4+utkC4vLKSnfsarhkqRHuQAE0I0aasVitFJSUcP3OGzT/s4eOVq/jfum85kHKMispKpV1osIEbxo3lzsmT6RbdtrNmdstWreedT78EbLNALy54hNiu0Q22/yDrOzYXHQHAoPPjubhZDe6TO38gh43/3K8sCybdFMfQGb1V/grcL254NOPuH6C8//7TY5z+/mK9befH3EyEVxAA24pTWFtweYH0GVMmEBxkK3S/bstuTqZnuGHUtn+fE0aPwsfbtkx7/Ew6x6XCgOhA2jexjhCiU7JarVRWVVFRVUVZRQVFJSUUlZZSVFJKflERxgaWk7QaDXHdutG/VwJxMTFtegjAkdVq5ePP1rLEIaXG/Pvv5OpRyQ3es704hSUXbOWfNGj4v/ifN7i0eW6/LTiz19fsNa4rY+/t325fr6v6X9+DioIqDnx5Cqyw5c1D+AX70LW/8z46g5c/f4qbyROnPgDglfNfMjKot9P3yd/Pl3vvmMobH67AYrHy+vvLeP2F37ll3IH+/lw9fDjffW+rAbp1z14iQkMJDwlxy/OEaAkJ0IRQmX3ZRvl/2xvlmrWuofJaua60s915aR+O7Zt8hhWlvJD9teOSkuO9VosFi8WK2WLGYrFisVqwNHjNQnVNDdXVNZiqqzHVVNe9rq5WArPm1lTU6XTERkcT1y2GhO7d8W+DWpqNqawy8sqbH/P1xh3Ktbl3T+cXtze87+xQWTq/O/2x8v1+JGYS44PrT8GRvjeL714/iMVsa5swpivXPjK4zeprusuwO/pQXlDFia2ZWGqsbHhtP1OfGU14nPNJ1IkhA5kUmsy3hQcpNlfwhzOf8nbfX+GlqVs2nnXrjfxvzSaycvPZve8ndv14mHEjBrtl3P0S4rmYm8OxU6epMZtZt207t910k3KIQIj2orG6ozKtcJvjx48zd+5c3n33XRITE1Xrd8/hnygtL8Nq/6Wu/F631v2iVy5bqftTY3vdeDBS3711fSh9NxCM2F5f3r7BZzgEO00FNM73OnxdjQVPTTxDNM7P15fo8HCiwsOJjginS0QE3l4d4++K+39K5cXFH3D+QrZy7ZF7b+e+Wbc0OLuVWpHJ3BNvUmK2Lc/eGDKEvyX8Am09Oc+OfpvO7o+PKX9+e42zBWdtXV/TXSw1Fta/tp+MQ7YDFT7+tpQc0X1DndoV1pQxK+UfZFcXAfBglxuY3805AF63eTfP/P0tAGK6RPLf//ci/n7uCd5rzGa+XL+B3MJCAKLDw5l2/XUd5s+luDJJgOZh3BWg/W/dt04n5oRoDY1Gg5+vLwG+vvj5+RHg50uAnx+GwCBCDUEEGwz4tsNG/6aknkzn3f+sZNv3dTmx9HofnntyLjeMH9XgfftLT/PrU+9RarZl0x8d1Iclvefio3X+xW6xWNn73+P89HXdHqc+47sx/qGBnSY4s6uuquGb/9urVEPw0uu44TdDiR3snJbkYNkZHjj+/6jBlj/tb/H3MiksWfncYrHwq4Uvc+CI7WTorGk38rtf3eO2cZeWl/P5+g3KPsgeXbsy+ZrxDR4IEcLdJEDzMFdSgGafsVD+3/YGTVOf217Uvnd8rWl+H7VvNLb/QbnD4bXGob/L772kD6dnOY/v8mc4j09T94XU3VtfH/U9Q5n00TiM9/J7NRoNWq0WnVaLVqtFq7W912q0Dtfrrnl7eeHt7YW3tzc+Xt741L720uk8Zh9Vdl4BO344yJqNOzhy3Dkp6uD+vXn2N3OJi+3S4P1f5+/jL2eXY7Ta6jkOCejJ0j4PEaBznuWpLDayeckhLhzNV64lT+/F8Jl9POZ71VLVVTVseG2/8jVrdRquemAAiRO6O7X7V/YW/pFhq1XqrdHxdp9fMTyol/L5+QvZ3PXYnzAabXsW//mXJ7lq5BC3jTuvsJCVGzdhqs27F9ulC1OuGS8zaaJdSIDmYdwVoJWUlWGxWHD6pV77C93xl0j9gYwSHij3Nh741AUglwcjnfMXlmg/FouFgqISMrNyOZWeQUraGY4eP1Xv6cCo8FAe/Pl0pt14DboGZrYqzEYWZX7FitxdyrVxhkReS5iDv85539LFY/ls/n+HqCiwFf/WaDVcdV8S/a7voeJX2DGZq818t+QQZ/fWLRcPmBTH6J/3Q+tl+95arVaeO7uclfl7AAjS+bG0z0MMCqhLNfKfld+y6J3/2D4P9OfjxX8htqv7TvVmZufw9ZYt1JjNAHSJiGDyNePbfW+kuPJIgOZh3BWgdXaOe9CUfXa2C07v7Z8rn116b+31S9sq+9eUfWqX7M27ZHO+9dK9a0578Bz6tXXq9L6+8dfdd+n4L+3rkjE47eur5+tRxnfJnrxL9wg67QlsfAyXj8N5/FzSF9iWCGtqaqiuMTv8v5kac43t/2tqMFXXUFZeSWl5BaVl5ZSWV1BcXEpWboEyI9KQPgk9uH3KRKbecDW++oaXYHcWp/LSuc/INNXNNk8PH8WfetyBt8Oypqmyhr3LjnNswznlml+InuvmJ9O1f1ijY+lMLGYL33+SSsr6s8q1Lv1CufaRIQTVloqqtpr59cn32FViW8oM0OpZ0mcuwwITANufg6deeoMtu2x5ynp278o7f3ua0GD3lcG6mJvL11u2Kn9uAv39mTz+aqLCO251B9H5SIDmYdwVoC38vyWknTnvtBG+4cDE+Zdno4FJbQOr470NBkd1wYCaYxDiUlqthn69e3L1qGSuGT2Uvgk9Gp29PVB2hqUX1vFDaZpyzUfjxR963MZtEWOUa1aLlZM7L/Dj8hOUF1Qp17smhTFxXjL+IVfmycDUzefZ9cFR5eSqt58X4+5LovdVtlQqFWYj80++x49ltqVmvcaL53rO4uaw4QCUVVQy54m/cDbDll8tsVccb/7fAgy1+dLcIbeggLVbt1FeuydNq9UyatAgkvv3Q6vtXPsGRcckAZqHcVeAdu/jz3Es7UzTDYXwIAH+fkRHhhETFUHX6Ah6dOtC/z7x9E3o0WQahaKacjYUHuLzvO85VuG8HDoisBfPxM2kp69tqc1isXJuXzYHvjxFfnqJ0s5Lr2PErL4k3RSH1sPTaLgq+0Qhm5ccpCyvLnCNGRjO2F8mEdotkEqLiSdPfajMpAHcE3UNv+42Fb3WmwvZucz93Uvk5NtOWsZ3j+Gfzz/ZaE1UV1VUVrJu+w6nyhZRYWFcPWI4XSIi3PZcIUACNI/jrgDtkT+8wvFT6bUbxmsvajQOm89r95M57Cmr28Bu3+ju0BaN84b1Bvaa1W3sd77X/qGmGWNwuq+JMTiPvTlj0Di9b3wMlxwaqGf8dfdp6vrqKGO47P/rGcMl9zZvDJePv6kx1N1Xuw9Sq8HbywsvL53z/+t06Gpfe3t5EeDvhyHIn8CAAAID/Fp0Aq+kppKUivMcLj/LzuJUDpenY8H5x2OsTziPxExiathwNBoNlcVGTu26SMr6s5RkVzi17Z4cydhf9scQ7b5ZHk9jqqhm10cpnNxxQbmm0Wnod113hkxLwCfUm7+e/1wpNA8Q7xvFn+NmMTQwnvTzF3h4wV8pKLIFwSGGIP70xP1cO2aY28ZsNpvZc/gnDqamOs3K9+rRgxEDB0hSW+E2EqB5GNmDJkTz1VjNmCw1GK3VlNRUUlxTTpG5gqKacgqqSzlvzCfDmM95Y57TvrJLDfDvzp2RVzE1fDhVeSYyD+dydn8OGYfylFJNduE9DYy6O5FuA2WGpSFnf8xm9yfHKMutK+2l1WnoPb4b/W/ozneBR/l7xkqqrWbl8+tDBvFYzBT0RVqe+PM/lOVOgCkTx/HYfTOJjnDf/r6svDw2f/8DhSUlTte7d+3CoL596d61KzpZ+hQq8rgAzWQy8f7777N+/XpKS0vp1asXDz74ICNHjmzy3tzcXJYsWcLevXuxWCwMHTqU+fPnExMTc1nbNWvWsGzZMrKysoiMjOSOO+7g9ttvb5M+G+OuAO39ixu5YCrESv1/HJz2el16rZ52Tvc6bgqvp13r7nEeXcNjq/8exwz7l99TTzvH69bLx97UPfX9Z9bU2Br6T7OxZzrf0rzve33ft6bGWd+/H8d3LbmnsWc2NLb6XlmsVozWakyWGkzWGkyWGsy1ObZaI14fxTi/RMZW9SX0nD95Z0rIPVVM8cXyetvHDAhn0M/iiR0cIaeRm6HGZObwV6c5vOYMNUaz02fhPQ34Xqvno65bSa3OdPpsTFBffuY3lO8+2MWOHw4q1/V6H6ZPupY7b7mBHt0aTo/iCovFQsqpU+w9/BOVRqPTZ756H3r16EHPmG7EREdJag7hMo8L0P7yl7+wZcsWZs6cSWxsLN988w2pqaksXryYwYMbLgVSUVHBgw8+SHl5ObNmzcLLy4sVK1ZgtVr54IMPCA4OVtquWrWK1157jWuvvZZRo0Zx+PBhvv32Wx5++GF+/vOfu7XPprgrQLv72CKOVpxXrT8hPImfxYcuxhC6l4YTkx9CxOkgvM9oLwscLhUQ7kvvq2LofXUMobFBbTTazqWq1MSRb9I5+u1ZqitrnD6zaCycvjqPnUNPUOJd6fSZn8aHPikhpK86TVW5c7A0uH9vJl41gjFDBxLfo1uDKVNaq7q6mmOnT3Mo9Til5ZcH7Fqtli4RtmoZkaFhRIaFYggMlMMFokU8KkBLSUnhV7/6FY888gh33XUXAEajkTlz5hASEsLSpUsbvPc///kPb731Fm+//Tb9+/cH4OzZs8yZM4e77rqLhx56SOnvjjvuICkpiVdeeUW5/4UXXmDHjh189tlnBAUFua3PprgrQJu6+UUyDB0rUa1oYw4/CTTKa0091xq4x97W6drlNNZ6rlov6aOhfup7nsNnXmYtuhotXjU6dGYNOrMOXY0WnVmL3uiFb6U3vlXe+FX64FvpjaHYj+BiP3wrvS/vrx5anYbI3iHEDo6g26AIIhOCPb6GZkdhqqzh9O6LHP/uPLmni50+q/Yyc2RIBoeTz1MS4hyoUWFBt7US3V4jVF/+h9TP35d+feKIj+1GfGxXunWJIizUQFiwgdAQQ6NpVZpisVg4e+ECJ9LPkp6ZidnccECv1WgICgggOCiIoMAA/H398PPV4+fri7/eF72Pjy35c+1+Sp1UMLjiedQc7NatW9HpdEybNk25ptfrmTp1Ku+88w7Z2dlER0fXe++WLVvo16+fEkgBxMXFMWzYMDZv3qwEU/v376e4uJjp06c73T9jxgw2bNjA7t27uemmm9zWZ3uZ8cNIci8WX3a9vl/K9f2CrfeXdxO/3J2vaRrux+F59f+ibt7zmh1M1Pe8VvVTT7tLrteNt57vaav6uezu+r/3zQhGrmRanYbASD8MUf4ERfkTHhdERHwwod3/f3t3HhdVuf8B/DMLwzIsAoooGAayK5YGlTnDEu6BVhfFW6kV3NzJ8qX3djWvmppbZpaaXr3celUXInFlEXClLExxYxEUQUERZBGGnZnz+8PfnDzMDAwwgwN9369Xr5znPOc5z3eeOTNfzvIccwiM6IdTH0SmQngEDYFH0BBUl8hQdLEMty+UoSy/CkatAjx7wQkjLz6F204VuOF+HwXDytBk0gqY8SGfJIbc3xT8i03gZzaBX/ZHotRQ34jMy9eRefm6+g0LeOAZ8cAT8sEX8v///zz2xhjweODx8cdNPOxNOnhsN+NBKBDA3soKA62sMLBfP5i3mdhWwTB4KJPhoUym1fuhUCjQqlBArlCAYRgoGAYKBQMF88dr5f+BP6Y0Yv/9/1QuLeigDnlEzjDYuHjRE+1Dr0rQ8vPz4ejoCLGYe1eUMkG6ceOG2gRNoVCgoKAAkydPVlnm6emJ8+fPo76+HmZmZsjPfzTPkYeHB6eeu7s7+Hw+8vLyMH78eL20qc6DBw9QUfHHI2Ju3LgB4NGROl0S1jZAXNtmMs82v+Gql9W0rdDuS9WCTl6nw7muR6WtzjXd8aa5FVTqd7R+Bxvo6L3s+L1r+7KDN7+z+Vgn4+v4/e7sWLffoY7Hg/tZEQh5EBgJwBfyIBAKwDfiQSDkQyDkw8hUCJGZEMZiIxiZCWFsZgRjC1GbbTSgoqUBFQWdCoN0g4kb4OZmDedGC1QVy1B5R4aq4lrYlwthedQWI3nWqLCtQ7ldDR4MqEW1TT3qnRRQOBlBUS0Av6gF/FI5UNoKXn07CYgcQPOjhKX9E9odq8E95Cn7b2wEKytzWFmKYWUphpmZCcRmJhAKdZPgK/NDOmmqHw1NTbh+XUNS301OTk4w0eLJFL0qQauoqICtmpmclWUPHpur5nE1NTVobm7ucN2nnnoKFRUVEAgEsLa25tQzMjKCpaUlmyzpo011Dh8+jOjoaJXyTz75ROM6hBDyp1AKIOvRPwUADOoqwAbgYTWgel6C9BZnjx7RS7vaXqLUqxK0pqYmGBkZqZSLRCJ2uab1AGi1blNTE4Qa7r4RiUScerpuU53Q0FC89NJL7Ova2loUFRXBzc2N3Y6uFBUV4ZNPPsGKFSvg5OSk07YNAcXX+/X1GCm+3q+vx9jX4wP0H6O2bfaqBM3Y2Bgtap6p19zczC7XtB4ArdY1NjZGa2urSj1l3cfr6bpNdfr374/+bWasfu655zTW1wUnJ6c+Pccaxdf79fUYKb7er6/H2NfjA558jL3q9LWtra3a04HKsraJjJKlpSVEIpFW69ra2kIul6OqqopTr6WlBTU1NezpS320SQghhBAC9LIEbdiwYSguLkZdm3lnsrOz2eXq8Pl8ODs7Izc3V2VZdnY2Bg8eDDMzMwCAq6srAKjUzc3NhUKhYJfro01CCCGEEKCXJWgBAQGQy+U4fPgwW9bc3IyEhAR4eXmxd3Dev39f5S5Hf39/5ObmcpKk27dvIzMzEwEBAWzZqFGjYGlpiUOHDnHWP3ToEExMTPDiiy/qtc0nydbWFnPmzOmzR/Qovt6vr8dI8fV+fT3Gvh4fYDgx9qqJagFg1apVOHPmDKZPnw4HBwckJSUhJycH27ZtwzPPPAMAWLx4MS5duoQzZ86w69XX1+Pdd99FfX09wsPDIRAIEBsbC4VCgf3796PfYw+8jY+Px7Zt2xAQEAA/Pz9cvnwZycnJiIyMxFtvvaXXNgkhhBBCel2C1tTUxD6LUyaTwdnZGREREfDz82PrqEvQAKCsrEzluZkLFy6Eo6OjynaOHDmCmJgY3Lt3D3Z2dnj11VcRFhamMp+TPtokhBBCyJ9br0vQCCGEEEL6ul51DRohhBBCyJ8BJWiEEEIIIQamV01USx7JzMxEVFSU2mW7du2Ct7c3+/rq1avYvXs38vLyIBaLERgYiMjISHYKEKXm5mb22r7a2lq4uLggIiICvr6+WvWpvLxc5Vq8RYsWYfDgwQYRY05ODpKSkpCZmYnS0lJYWlrC29sbERERGDJkSIf9SUxMxIYNG9Qui4+P7/TdPrqOrzPtaaLLMdR1fOvXr0dSUpLG7f30008YMGCAxuX79+9X+8g0kUiE1NRULSJSpW2MGRkZOHHiBHJyclBUVAQ7OzvExsaqXU+hUOB///sfDh48iMrKSjg6OuLNN99EcHCwVn2qra3F7t27cebMGTQ1NcHT0xPz58/v0mSbuo6vqKgICQkJOH/+PEpKSmBqago3Nze88847Ks8p7k5/tKXr+O7du4cZM2aobW/VqlV4+eWXO+yTLscP0H2MmvYjpa+++gojRozQuPxJfI82NjYiISEB6enpKCgoQENDAxwdHRESEoKQkBAIBNxnoxrSPkgJWi/2+uuvsw+KV3JwcGD/nZ+fjyVLlsDJyQkLFy5EWVkZYmJiUFxcjM2bN3PW27BhA06dOoWwsDA4OjoiMTERy5Ytw/bt2+Hj49NuP+rr6xEVFYW6ujq8+eabEAqFiI2NxaJFi7B//35YWVk98Ri///57XL16FYGBgXBxcUFFRQXi4+MRERGBXbt2wdnZWav+vPvuuxg0aBCnzNzc/InHp217muhrDHUVX2hoqMoTNBiGwdatW2Fvb99ucva4Dz/8EKampuxrPr/7JxE6ijE1NRUnTpyAm5tbhz9Ae/fuxXfffYeQkBB4eHggPT0da9asAY/H6/AHXqFQYPny5bh58ybCw8NhZWWFgwcPIioqCnv37tXqDxF9xnf06FEcO3YM/v7+mDZtGurq6nD48GHMmzcPmzdv1voJKV39jHe1vc6MHwAEBwfjhRde4JRpkzzqa/wA3cXo7++v9ga4PXv2oKGhQatEG+jZ79G7d+9i+/btGD16NGbMmAEzMzNkZGTgs88+Q1ZWFv75z39y1jOofZAhvc7FixcZiUTCnDx5st16S5cuZaZNm8bIZDK27MiRI4xEImF+++03tiwrK4uRSCTM999/z5Y1NjYy4eHhzNy5czvsz3fffcdIJBImOzubLSssLGQCAgKYr7/+uhOR/UHXMV65coVpbm7mrHv79m3m5ZdfZtasWdNhfxISEhiJRMLk5OR0LhANdB2ftu1pousx1HV86ly+fJmRSCTMN99802F/9u3bx0gkEqaqqkqb7mtF2xjLy8uZlpYWhmEYZtmyZUxYWJjaemVlZUxgYCDz2WefsWUKhYJZsGAB89prrzGtra3tbictLU2lP1VVVcykSZOY1atXaxfUY3QdX25uLlNXV8cpq66uZkJCQpj58+frrD/a0nV8d+/eVfke7Qxdjx/D6D5GdUpLSxmpVMps2rSpw7pP4nu0qqqKKSgoUCnfsGEDI5FImDt37rBlhrYP0jVovVx9fb3a53zW1dXh999/x/jx4yEWi9nyCRMmwNTUFCdPnmTLTp8+DYFAgNDQULbM2NgYU6ZMQVZWFu7fv99uH06dOgUPDw/OXzBOTk4YNWoUZztdpYsYR4wYofJg+yFDhmDo0KEqkxpr0x+5XN7JKNpvr7vxadNee/Q5hrqOTyk1NRU8Hk/rUw+Pb5fR8c3r7b3n/fv3h1DY8cmK9PR0tLa24tVXX2XLeDwepk2bhvLycmRlZbW7/unTp2FjYwOpVMqW9evXD4GBgUhPT2efEdwVuojP3d1d5dIKKysr+Pj4dGkf7OxnvKvtaRvf4xoaGtQ+p7k9+hw/QPcxKqWlpYFhGIwbN67T/emJ79F+/frh6aefVimXSCQAwPnsGdo+SKc4e7ENGzagoaEBAoEAPj4+mDdvHnuIuaCgAHK5XOW8t5GREVxdXZGfn8+W5efnw9HRkfMjCYD9sb5x4wb7lIa2FAoFCgoKMHnyZJVlnp6eOH/+POrr61W+mHs6RnUYhkFVVRWGDh2qdX+ioqLQ0NAAIyMj+Pr6YsGCBd069aDr+NprTxN9jqG+xq+1tRUnT57E8OHDVU6VtGfGjBloaGiAqakpxo4diwULFsDGxqbTcT2uK++5Ovn5+TA1NYWTkxOnXLkf5ufnt3u5QV5eHlxdXVVO23p6euLIkSO4c+cOXFxcOt0vXcWnSWVlZadOoeu6P7puLzo6Grt27QKPx4O7u7vKPJ2a6Gv8AP2OYUpKCuzs7DBy5Eit1+nJ71FNKisrAYDz2TO0fZAStF5IKBTC398fL7zwAqysrFBYWIiYmBgsXLgQO3fuhJubG/vAdnXXE9ja2uLy5cvs64qKCo31AODBgwca+1JTU4Pm5uYO13/qqaeeaIzqpKSkoLy8HO+8806H/TE2NsakSZPw7LPPQiwW4/r164iNjcX8+fPx73//W2MC21PxadOeJvoYQ32PX0ZGBh4+fKj1X+0WFhZ47bXX4O3tDSMjI1y5cgXx8fHIycnB3r17Vf440VWMnVFRUQFra2uViau12Q+BRz846n4kletXVFR07sdBx/Gpc/nyZWRlZWHWrFk93h9dt8fn8+Hr6wupVIr+/fvj7t27iI2NxbJly7Bhw4YOH+mn6/ED9D+Gt27dws2bNzFz5kytJlx/Et+j6rS0tODHH3/EoEGDOImcwe2DWtckBmPEiBGcO2XGjh2LgIAAvP3229izZw+2bNmCpqYmAFA5rQc8unPt8UOtTU1NGuspl2vS0XY6Wl8TXcfYVlFREbZt2wZvb29MnDixw/4EBQUhKCiIfS2RSODn54dFixbh22+/xdKlSzsTns7j06Y9TfQxhvoev9TUVAiFQgQGBmrVn7CwMM7rgIAAeHp6Yu3atYiPj8ebb76pVTuP6857rk539kPlcmXdrqzflq7ja6uqqgpr1qzBoEGDMHPmzB7vj67bGzhwILZu3copmzBhAmbNmoWvvvqqwwRN1+MH6H8MU1JSAADjx4/Xqv6T+B5V5/PPP0dhYSE2btzIObVraPsgXYPWRzg6OmLs2LHIzMyEXC6HsbExAKi9DqK5uZnzITI2NtZYT7lck46209H6ndGdGB9XUVGB5cuXQywWY+3atSq3WWvLx8cHXl5euHDhQpfWb0tX8WlqT5OeGkNdxVdfX4/09HT4+fl16w7hcePGwcbGRmfjB2j/nqvTnf1QuVxdUqvPMeyqhoYGLF++HA0NDVi/fn2XL4HQVX/01Z6lpSUmTZqE27dvo6ysrN26PTF+gO5iZBgGqampePrpp7t86hXQ//doWz/88AOOHDmCd999VyVpNrR9kBK0PsTOzg4tLS1obGzkHFJtq6KiAv3792df29raaqwHgFO3LUtLS4hEoi6v31ldjVFJJpNh2bJlkMlk2LJlS7f7Zmdnh5qamm610ba97sTXXnua9OQY6iK+9PR0NDY2dvqiZE390eX4Kdvs6D1Xx9bWFpWVlSo3MGg7BjY2Nu2OYWfnmNKkq/EptbS0YMWKFSgoKMD69eu1nuJGX/3pifaAR/Njtaenxk/Zp+7GePXqVZSWlhrkfqgpvsTEROzevRtTp07F7NmzVdYztH2QErQ+5O7duxCJRDA1NcXTTz8NgUCA69evc+q0tLQgPz8fw4YNY8uGDRuG4uJi1NXVcepmZ2ezyzXh8/lwdnZGbm6uyrLs7GwMHjy4y38dq9PVGIFHh5f//ve/486dO/j00087dXNAe/3p169ft9t5vL2uxtdRe5r05BjqIr6UlBSYmpripZde6lZfGIZBaWmpTscP0O49V2fYsGFobGxUuaNRm/0QAHtjhUKh4JTn5OTAxMSkWxdhP66r8QGPbkhZt24dLl68iJUrV+KZZ555ov3pqfYAdHi0t6fGT9mn7saYkpICHo+nkwRNn9+jSmfPnsWmTZsglUqxZMkStesZ2j5ICVovVF1drVJ248YN/Pzzz/D19QWfz4e5uTmee+45HD9+HPX19Wy95ORkNDQ0cK7dCQgIgFwux+HDh9my5uZmJCQkwMvLi3Ph5v3791U+vP7+/sjNzeX8wN++fRuZmZkICAgwiBjlcjn+9a9/ISsrC6tXr8bw4cM1bvvBgwcoKiri3LKtrj/nzp3D9evXtbpDS9/xadOeUk+Moa7je7zd33//HVKpFCYmJmq3rS4+df05ePAgqqur8fzzz3cuuHba1PSea2Ps2LEQCoWIj49nyxiGwaFDhzBgwADOZ1bdZ9Tf3x+VlZU4c+YMp48nT57EmDFjOjwl3pau4wMeXftz4sQJLFmyBP7+/u1uu6ioiHMERNf96Yn2ysvLkZCQABcXF87Rl54YP0196u4YAo/uoj516hRGjBih8cJ+Q/keBYBLly5h9erV8PHxwcqVKzXGbWj7IN0k0AutWrUKxsbGGD58OKytrVFYWIgjR47AxMQE7733HlsvIiICCxYswKJFixAaGsrO0u7r68v5UfLy8kJgYCD27NmD6upqODg4ICkpCaWlpVi+fDln2+vWrcOlS5c4H8BXX30VR48exfLlyxEeHg6BQIDY2FhYW1sjPDzcIGL86quv8PPPP2PMmDGora3F8ePHOdt7/CLXPXv2ICkpCTExMewUDvPmzYObmxvc3d0hFouRl5eHhIQE2NnZ4a233nri8WnbHtAzY6jr+JTS0tIgl8vb/atdXXxhYWEICgqCs7MzRCIRrl69irS0NLi6unLm/9NHjDdv3kR6ejoAoKSkBDKZDP/9738BPPqLXHkk0M7ODmFhYfjhhx/Q2toKT09PnD17FleuXMHKlSs510qq+4wGBAQgLi4OGzZsQGFhITuLuUKh0OpOZX3HFxsbi4MHD8Lb2xsmJiYq+6BEImGPeBw4cADR0dHYvn07nn322U7150nFt2vXLpSUlGD06NHo378/SktLcfjwYTQ2NmLx4sWcbffE+OkjRiVt7qI2lO/R0tJSfPTRR+DxeAgICMCpU6c4bbi4uLDX0BnaPkgJWi8kkUiQkpKC2NhY1NXVoV+/fpBKpZgzZw7nMRzu7u747LPPsHv3buzYsQNmZmaYMmWK2i+zjz76CAMHDkRycjJkMhmcnZ2xceNGrU5BmJmZYfv27fjyyy/xzTffsM9xXLhwYZcPW+s6xhs3bgAAfvnlF/zyyy8q2+voLqSgoCD8+uuvOH/+PHv9VEhICObMmdOlebR0HZ+27Wmi6zHUx2cUeHT3prW1NUaPHt2p/owbNw7Xrl3D6dOn0dzcjIEDB2LmzJmYNWuWxiNxuooxLy8P+/bt46yrfD1x4kTOj997770HCwsLHD58GElJSXB0dMSKFSu0Oo0kEAiwadMm7Ny5Ez/99BOamprg4eGBf/zjH52e5kYf8Sn3waysLLUTfsbExLR7yq27n3F9x+fr64u7d+8iPj4etbW1MDc3h4+PD2bNmqXVcxh1PX76iFEpJSWlU3dRKz2J79F79+5BJpMBALZt26bSxpw5czg3ORjSPshjdD2lNiGEEEII6Ra6Bo0QQgghxMBQgkYIIYQQYmAoQSOEEEIIMTCUoBFCCCGEGBhK0AghhBBCDAwlaIQQQgghBoYSNEIIIYQQA0MJGiGEEEKIgaEEjRBCCCHEwFCCRgghvZxUKuX819TUxC5LTEyEVCpFYmLiE+zhHw4dOsTp6/r16590lwgxSPQsTkKIQbp37x5mzJjRbh17e3vExsb2UI8Mm729PSZOnAgAnIc660NGRgaWLl0KX19fbN26td26a9asQWpqKlauXIlx48bB3d0dc+bMgUwmQ1xcnF77SUhvRgkaIcSgOTg4aHxQsbm5eQ/3xnDZ29vjnXfe6ZFtPffccxg4cCAuXLiA+/fvY+DAgWrryWQynD17Fubm5pBKpQAADw8PeHh44N69e5SgEdIOStAIIQbNwcGhxxIPoh0+n49JkyYhOjoaSUlJmD17ttp6qampaGpqwuTJk2FsbNzDvSSkd6Nr0AghfYZUKsXixYtRWVmJdevWISQkBMHBwZg7dy4yMzPVrlNfX4/9+/dj1qxZCA4OxuTJk/Hhhx/iypUrKnUXL17MXuO1d+9ehIeHIzAwEPv372frnD59GpGRkQgODsbUqVOxadMm1NbWYvr06Zg+fTpbb+3atZBKpcjOzlbbr3379kEqlSI1NbWb74p6ZWVlmD17NoKDg3Hq1Cm2vKqqCjt27MDMmTPx8ssvIyQkBCtWrEBBQQFn/cmTJ4PH4yExMREMw6jdRkJCAgBgypQpeomBkL6MEjRCSJ8ik8mwYMECFBYWYvz48ZBKpbh+/TqWLl2qkmTU1NRg3rx5iI6OhoWFBaZOnQqpVIq8vDxERUXh7NmzarexcuVKJCUl4dlnn8Vf/vIXDBo0CABw7NgxrFy5EsXFxZgwYQImTpyIrKwsfPDBB2htbeW0ERoayq7TllwuR0JCAqysrNhTg7pUWFiI+fPno6ysDJs3b0ZAQAAAoKSkBBEREfjxxx8xePBgvPbaa3jhhReQkZGBefPmcZJJe3t7jB49Gnfv3lWb/BYUFCA3Nxeurq5wc3PTeQyE9HV0ipMQYtBKSko4R6ge5+3tjeeff55TduPGDUybNg3vv/8++PxHf4OOGjUKmzZtwoEDB7B06VK27ueff45bt25h2bJleOWVV9jyqqoqREZGYvPmzfDz81M5PVdRUYH//Oc/sLS0ZMtqa2vxxRdfwNTUFHv27MGQIUMAAJGRkVi6dCmuX78Oe3t7tv7IkSMxdOhQpKWlYeHChTA1NWWXZWRkoLy8HGFhYRCJRJ19y9qVlZWF5cuXQygUYseOHRg2bBi7bN26daisrMSWLVvg5+fHls+aNQuRkZHYtGkToqOj2fIpU6bg999/R0JCAkaNGsXZDh09I6R76AgaIcSglZSUIDo6Wu1/v/32m0p9U1NTzJ07l03OAGDixIkQCATIzc1ly6qrq3Hy5EmMGjWKk5wBgLW1NWbOnInq6mpcuHBBZRtvv/02JzkDgPT0dDQ0NGDy5MlscgYAQqEQERERamMLDQ1FfX090tLSOOVHjx4FAISEhGh6W7rk3LlzWLJkCSwsLLBz505OcpaXl4dr165hwoQJnOQMAIYMGYJXXnkFBQUFnKOQEokEVlZWOH36NOrq6tjy1tZWHD9+HCKRSOMNHoSQ9tERNEKIQfPz88OWLVu0ru/o6AgzMzNOmVAohI2NDWQyGVuWm5sLuVyOlpYWtUfoiouLAQBFRUUYM2YMZ5mnp6dK/Zs3bwIAfHx8VJZ5eXmpnfpiwoQJ+Prrr3H06FE2SaysrMQvv/yC4cOHY+jQoR1Eq72TJ0/i/PnzcHFxwebNm2Ftbc1Zrjx9WVVVpfb9uH37Nvt/Z2dnAGATsLi4OKSmpmLq1KkAgJ9//hnV1dUIDg6GhYWFzmIg5M+EEjRCSJ8iFovVlgsEAigUCvZ1TU0NAODq1au4evWqxvYaGxtVymxsbFTKlEeQ2iY+wKO7Hq2srFTKLSwsEBgYiKSkJBQUFMDZ2RmJiYmQy+U6P3qWlZUFuVwOHx8ftX1Uvh/nzp3DuXPnNLbT0NDAeT1lyhTExcUhISGBTdDo9CYh3UcJGiHkT0mZyM2YMQMLFizo1Lo8Hk9je1VVVSrLFAoFHj58iAEDBqgsmzp1KpKSknDkyBFERUXh2LFjEIvFCAwM7FSfOvK3v/0N6enpiIuLg0AgUIlZ2f+oqCi8/vrrWrfr4uICDw8P5OTk4NatW7CwsEBGRgYGDRqkcl0aIUR7dA0aIeRPycPDAzweD1lZWTppz8XFBQDUHo3LycmBXC5Xu563tzdcXFyQkpKCjIwMFBcXY9y4cTAxMdFJv5REIhHWrVuHF198ETExMfjyyy85y5WnbbvyfiiPlB07dgzJycmQy+XsNByEkK6hBI0Q8qdka2uLwMBAXLt2DT/88IPaubyys7PVnuJUZ+zYsTA1NcWxY8dQUlLClre2tmLfvn3trhsaGoqamhp8+umnAKBy04KuiEQifPLJJxgzZgxiY2OxY8cOdpmXlxe8vLyQlpamctMC8Ogo4KVLl9S2GxwcDBMTExw/fhwJCQng8/nsY6cIIV1DpzgJIQatvWk2AOCNN97o8iz1H3zwAe7cuYNdu3YhOTkZ3t7eMDc3R3l5OXJzc1FcXIz4+HitjmZZWFhg4cKF2Lx5MyIjIxEUFASxWIxff/0VIpEI/fv313hEafz48di9ezcePHgAd3d3vc4bZmRkhLVr1+Ljjz/Gjz/+CIZhsHjxYgDAxx9/jPfffx+rV69GXFwcXF1dYWxsjLKyMly7dg0PHz5UO3GuWCyGv78/kpOTUV1djeeff17j458IIdqhBI0QYtCU02xoEhYW1uUEzdLSEjt37sSBAwdw4sQJpKamQqFQwMbGBsOGDcPs2bPVXtyvSUhICCwsLPDtt98iKSkJYrEYL730EubOnYuwsDA4ODioXU8sFkMikeD48eN6O3r2OGWStmrVKsTFxYFhGERFRWHw4MHYt28fYmJicPbsWSQmJoLP58PW1hYjR45kJ7RVZ8qUKUhOTgbw6CkDhJDu4TGantFBCCFEJ4qLi/HXv/4VgYGBWL16tdo6s2fPRmlpKQ4cOKDxTlRNpFIpnnnmGXzxxRe66G6PuHfvHmbMmIGJEyfio48+etLdIcTg0BE0QgjRkdraWhgbG3Nm/29qamIvyJdIJGrX+/XXX3Hr1i2EhIR0OjlTunTpEvtYqJSUFIN9OPmhQ4ewdevWJ90NQgweJWiEEKIjly5dwsaNG+Hr6ws7Ozs8fPgQFy9eRGlpKUaNGoWgoCBO/YMHD6KsrAxHjx6FSCTCG2+80aXtzpkzh/Na3aS4hsLd3Z3TX1dX1yfXGUIMGJ3iJIQQHblz5w727duHa9euobq6GgDg4OCAoKAghIeHqxzVmj59OsrLyzFkyBDMnTtX5YkFhJA/L0rQCCGEEEIMDM2DRgghhBBiYChBI4QQQggxMJSgEUIIIYQYGErQCCGEEEIMDCVohBBCCCEGhhI0QgghhBADQwkaIYQQQoiBoQSNEEIIIcTA/B9oRP5v+8PL+wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Plot spectra at 511 keV\n", - "energy = np.linspace(500.,520.,10001)*u.keV\n", - "fig, axs = plt.subplots()\n", - "for label,m in zip(models,\n", - " [ModelCentralPoint,ModelNarrowBulge,ModelBroadBulge,ModelDisk]):\n", - " dnde = m.spectrum.main.composite(energy)\n", - " axs.plot(energy, dnde,label=label)\n", - "\n", - "axs.legend()\n", - "axs.set_ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", - "axs.set_xlabel(\"Energy [keV]\", fontsize=14);\n", - "plt.ylim(0,);\n", - "#axs[0].set_yscale(\"log\")" - ] - }, - { - "cell_type": "markdown", - "id": "db4cfb6e-e812-4f16-9c4c-95176bcc0dee", - "metadata": {}, - "source": [ - "The orthopositronium spectral component appears as the low-energy tail of the 511 keV line." - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "id": "8b588f46", - "metadata": {}, - "outputs": [], - "source": [ - "# Define healpix map matching the detector response:\n", - "nside_model = 2**4\n", - "scheme='ring'\n", - "is_nested = (scheme == 'nested')\n", - "coordsys='G'\n", - "\n", - "mBroadBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", - "mNarrowBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", - "mPointBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", - "mDisk = HealpixMap(nside = nside_model, scheme=scheme, dtype = float,coordsys=coordsys)\n", - "\n", - "coords = mDisk.pix2skycoord(range(mDisk.npix)) # common among all the galactic maps...\n", - "\n", - "pix_area = mBroadBulge.pixarea().value # common among all the galactic maps with the same pixelization\n", - "\n", - "# Fill skymap with values from extended source: \n", - "mNarrowBulge[:] = ModelNarrowBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", - "mBroadBulge[:] = ModelBroadBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", - "mBulge = mBroadBulge + mNarrowBulge\n", - "mDisk[:] = ModelDisk.spatial_shape(coords.l.deg, coords.b.deg)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "id": "b80ae9d2", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAADz90lEQVR4nOydd5gb1b2w3zMz6tJq+67tdcUd40YxGIypoYaSwg25CSkQEggJgdR7Qwoh5Sb5klxIDwkXEgIpdDC92PRq3Nu6b+9dfWa+P7TSqoy0tndtee3zPs8+Xmt/Ouen0Wjm1anCNE0TiUQikUgkEolkBCiFTkAikUgkEolEMvaRUimRSCQSiUQiGTFSKiUSiUQikUgkI0ZKpUQikUgkEolkxEiplEgkEolEIpGMGCmVEolEIpFIJJIRI6VSIpFIJBKJRDJipFRKJBKJRCKRSEaMlEqJRCKRSCQSyYiRUimRSCQSiUQiGTFSKiUSiUQikUgkI0ZKpUQikUgkEolkxEiplEgkEolEIpGMGCmVEolEIpFIJJIRI6VSIpFIRgkhBEIIzjjjjDFZvkQikYwErdAJSCQSyaFECGH5uN1up6ioCL/fz+TJk1m8eDFLlizhoosuwuVyHeIsJRKJZOwhpVIikUiASCRCe3s77e3t7NixgxdffBGA4uJiPvWpT3Hrrbfi9/sLnKVEIpEcvgjTNM1CJyGRSCSHitSWyocffjj5u2ma9PT00NXVxZo1a3j55ZfZvXt38u81NTXcf//9nHbaaYcy3TQSuS9fvpyVK1cWLA+JRCKxQkqlRCI5qkiVynyXP9M0eeqpp/jKV75CbW0tAH6/n9dee41jjz32oOdphZRKiURyOCMn6kgkEokFQgguvPBC3n333WTrZE9PDx/96EcxDKPA2UkkEsnhh5RKiUQiyUNRURH/+te/KC4uBmDz5s3885//tIzdl9nZjY2NfPe73+WUU06htLQUm81GSUkJM2bMYNmyZdx888288sorB5xvIBDgoosuSubyH//xH0QikQMuTyKRSPYVKZUSiUQyDOPGjePaa69N/v+uu+46oHJWrFjBrFmzuO2223jzzTfp6uoiFovR3d3N9u3befXVV/nVr37FBz/4wQMqv7Ozk7PPPpsnn3wSgC9+8Yvcf//92O32AypPIpFI9gc5+1sikUj2gY9//OP87Gc/A+D1118nGo1is9n2+fkNDQ187GMfo7+/H4CLLrqIc889l/Hjx2MYBq2traxdu5bnnnuOnp6e/c6vrq6O8847j82bNwPwve99j+9///v7XY5EIpEcKFIqJRKJZB+YN28eHo+HgYEBAoEAmzZtYsGCBfv8/Pvvvz8plD/96U/5xje+YRlnmiavvvrqfuW2efNmzjvvPOrq6lAUhd/85jdcd911+1WGRCKRjBTZ/S2RSCT7gKqq1NTUJP/f1ta2X8/fvn178vfPfe5zOeOEECxbtmyfy33zzTc57bTTqKurw263849//EMKpUQiKQhSKiUSiWQfKSkpSf7e0dGxX891u93J3zdu3Dgq+Tz99NOcffbZdHZ24vV6WbFiBR/96EdHpWyJRCLZX6RUSiQSyT6SupRQru0ec3Huuecmf//Qhz7Er371K+rr6w84l3vvvZdLLrmEQCBARUUFL730Euecc84BlyeRSCQjRUqlRCKR7CPd3d3J30tLS/fruRdccAEf//jHgXjX+c0338zEiROZOXMmn/70p7nrrrtobW3dp7JWr17NVVddRTQaZdKkSbz66quccMIJ+5WPRCKRjDZSKiUSiWQf0HU9rWWxoqJiv8u49957+fOf/5y2I09tbS333HMPV199NePHj+fjH/84TU1Nw+aS2A0oFAoRi8X2OxeJRCIZbaRUSiQSyT6wfv16AoEAAB6P54C2ahRCcPXVV7NhwwZ27NjBPffcw+c//3lmzJgBxGXx/vvvZ8mSJbS0tOQs58QTT+TnP/85AK2trZx55pls2rTpAF6VRCKRjB5SKiUSiWQfuO+++5K/L126FE0b2Yps06ZN46qrruIPf/gD27Zt47333mPRokVAfM3JhDTm4mtf+xr/7//9P2BILEdrApBEIpEcCFIqJRKJZBiampq48847k/+/+uqrR72OxYsX87e//S35/31Zq/KrX/0qv/jFL4C4WJ511llSLCUSScGQUimRSCR56Ovr44orrkhO0pkzZ85BW7ZnypQpyd/3dZzkzTffzC9/+UtAiqVEIiksUiolEonEAtM0eeqppzjhhBOSrYZFRUX8+9//RlH2/9L5gx/8gOeeey5tWaJMfve73yV/35/dem666SZ+9atfAbIrXCKRFA65TaNEIjlqeeSRR5K/m6ZJX18fnZ2drFmzhpdffpldu3Yl/15TU8P9999/QBN0AF588UW+973vUV1dzXnnncfChQuprq7GMAwaGxt57LHHeOWVVwBwOBzcfPPN+1X+V77yFYQQfOUrX6GtrY0zzzyTF198kXnz5h1QvhKJRLK/SKmUSCRHLZdffvmwMcXFxVx11VXceuutFBcXH3BdicXSm5ubueeee7jnnnss48rLy/n73/9+QPJ64403IoTgxhtvpK2tjbPOOkuKpUQiOWRIqZRIJBLAZrNRVFREUVERU6ZMYfHixSxZsoSLL74Yl8s14vIfe+wxnn/+eVatWsV7773H9u3b6ejoQAhBaWkpxx57LBdccAFXX331iOT1y1/+MkIIvvzlL0uxlEgkhxRhJlbQlUgkEolEIpFIDhA5UUcikUgkEolEMmKkVEokEolEIpFIRoyUSolEIpFIJBLJiJFSKZFIJBKJRCIZMVIqJRKJRCKRSCQjRkqlRCKRSCQSiWTESKmUSCQSiUQikYwYKZUSiUQikUgkkhEjpVIikUgkEolEMmKkVEokEolEIpFIRozc+1sikRx1mKZJJBIhGAwSDAaJRCJpP+Fw2PKxaDSKruvJH8Mw0v7NfAxACIEQAkVRkv9P/K4oCkIIAFRVxW63o2kaNpsNTdPS/p/4STzudDpxOp24XK603zVNXtYlEklhkFcfiUQy5ojFYvT19dHb20tvb2/W7/39/QSDQQKBAAMDAwQCAQKBQNpjuq4X+mUcFDRNS5NNl8uFx+PB6/Xi8/nwer2WP4m/FRUV4XK5Cv0yJBLJGESYpmkWOgmJRHJ0E41G6erqoquri87OzrR/Ez+p8hgIBEatbk3T4j+qhqqqg//GH7NpGjb7YCuhw4bdbgeT+A8C0zDBANNg6PHBH4HANCHQE8BT6qazoQchQCgCRRUoqoLQBJpNRbWpqLb4/4UKCIiEI4SDYULBCJFQhEg4QiQUJRqJEo1GMUwdUzHxlLoIhUKjKskOh4Pi4mL8fj/FxcVZP4nHS0tLKSsrw+l0jlrdEolk7CKlUiKRHDQMw6Crq4u2tjba2tpobW1N/t7e3p4Ux97e3v0uWwiBw+7AYXdg1+zYFDuq0FDRELoCMYERNTFCJkbYIBYw0UM6esjA7XFTWl1C1ZQKqo+poHxyKaUT/BiGSWd9N12NPXQ29NDb2kdfez997QP0tQ/Q3zmAHjP2K09FVfjuyi/zgzPuwND37bmKquAtdeMr9+Ar9+Ir81BU6aVkfDGlNX5Kxxej2VW6mnpp39NJ8/Y2mne20bqnja6WHgxhgGKCamKqJqgGaCamZoJmxB/TjOT/UU2KJxTR19dHLBbb7/fC6/VSXl5OeXk5ZWVlab+n/t9ms+132RKJZOwgpVIikRwwoVCI5uZmmpqaaGxspLm5OSmNCXHcV0kRQuB2unHandhUBzZsKLqGiCoYQdADBpE+nUh3lHBPFCMcbw0cjuLqImqOraZm7jgmzKmi6phyYlGd1p0dtOxsp2VHO227O+is62agOzjSQ5LFgUjlvuAqclJWU0zFlFIqjymnalo5VceUY3fZaN3VQcOmZuo3N1O/sZnO+u59KtMkLqJoBqbNxLQZYDMs/zVtJg6/Rjgc3qeyhRCUlpZSXV1NVVUVVVVVVFdXJ/9fXV2N2+0ewRGRSCSFRkqlRCLJia7rtLa20tjYSFNTU9ZPZ2fnsGUkZNHlcONQnKi6DRFRMAYg0qMT7owS6ozssyTmQ1EF42ZWMmXRRCbOG0fNsdVoNo36zc00bGqiflMzzbVt9LUPjKie/cvp4EhlLjwlbqpnVDBhThU1x46jZk41QFwwNzSx6/06Gja1jEouCQk17QbYdUy7Ef/dMfR79axyOjo6iEQiw5bn8/mSollTU0NNTQ0TJkxgwoQJVFRUJCc4SSSSwxMplRLJUY5pmnR3d1NXV0ddXR179+6lvr6euro6GhoaiEajeZ9vt9vxunw4VReaboeQQqzHINQRJdAawQiYCHNkspiPqmPKmbp4IlMX1zB5YQ2BniC7369n77pG6jc20VHXRSGvcodaKq0oneCn5thxTDxuPFMX1VBU4WXPukZ2ra5j13t1NNe2HtRjZGLGu9+dOqYj/oNTx3QYmA4d7zgXfX19ecuw2+2MHz8+KZkJ4Zw4cSKVlZVSOCWSwwAplRLJUYKu6zQ2NrJr1y527dqVlMi6ujr6+/tzPk9VVbxuHy7NjabbMAcUot06oZYoofYYxMSIWxj3B82uMvX4icxaOo2ZS6ciVIVd7+1l13t17FpdT3fz/o/PPJgcDlKZia/cMyjiE5l2wkRUTWXbG7vY9voudr67l0gw/xeJg4GpGknJxKnHBdQVY8KCKpqamvIOo3C5XEyaNInJkyczZcqU5L/jxo2TSyxJJIcQKZUSyRGGYRi0tLQk5THxs2fPnpxdkEIIPC4vHpsHTXfAgEKk3SDQGCbaYxxSabTC5XMw+/TpzF52DFMXT6RtdwfbXo9L0MFuZRsph6NUZlI5rYyZS6cxa+lUqmdWsmdtA1tf2cGmVdsZ6Bq9mfYHiokJDgPTFRuUTR3TGaNmUTWNjY05hdNms1FTU5MUzWnTpnHMMccwYcIE2bIpkRwEpFRKJGOYYDDI9u3bqa2tpba2lp07d7J7926CQesJJ5qm4fcU4xJuRFAj2mkwUB8i3GEgjMKKYyYOt51Zy6Yx7+xZTF1Uw+7369n8yg5qX99FX8ehGxM5UsaCVKbiLnYxY8kU5iyfzrQTJlG3oZGNL25j86rtBPv2bVLOocQUg93q7lhcNt0xTHcMe5macxKR0+lMCub06dOZPn0606ZNw+PxHOLsJZIjCymVEskYoaenJymP27Zto7a2lrq6Oqw+woqi4PcU4xRuxIBKpM1goC6M3jfyyTAHE0VVmLl0KvM/MJvpS6ZQv6mJDS8MCk1vqNDpHRBjTSpTcXjszF52DPPOmsmURTXsWl3Hume3suWV7cQih/fi8YnWTWNQMhM/tjIlZ4v9uHHjkpI5a9YsZs2aRVlZ2SHOXCIZu0iplEgOQ/r6+tiyZQubNm1i69atbNu2jdbWVstYt8uDz+HHHnYQbTfp3xsm0qkf1Mkxo035pBIWXXwsC86bQ1/7AO8/uZFNL9XS31n4rteRMpalMhW338mc06ez4IK5lE8qYf1zW1j9xEZadrQXOrX9wsSMt2h6YpieKKYnRtksP21tbZbxFRUVzJ49m1mzZiX/9fv9hzhriWRsIKVSIikw0WiUHTt2sGnTJjZv3szmzZvZu3evZWyRpwiP6oN+jVB9lEB9BCLqIc54dNDsKvPOnsXiD86jYkop65/dwuoVG2mutb65j1WOFKlMpWJKKYsuPJYF58+hp6WP1U9sYN2zWwoywWe0MDUD0xPDGBTNSUuq2bNnj2VPwLhx45g9ezazZ89mzpw5zJ49W+4qJJEgpVIiOeS0trayfv16Nm7cyObNm6mtrbXsjivyFOHV/Ig+jUBdlIG94fhOMWOcogovJ1w2n+MvmUf7ni7efWQdm18+/LtTD5QjUSoTqFp8uMIJl85n/Jwq3l+xkXceWktX0+E1A/9AMRUD0xvD8EYxvTHGLSqjoaEhK05VVWbMmMG8efOYN28exx13HBUVFQXIWCIpLFIqJZKDiGma7Nmzh3Xr1iV/mpubs+Icdgd+RwnKgJ1QQ4zAnigiNvYFMpWaY8dx8kcXMuOUqWx6qZa3HlxzxLVKWnEkS2Uq5ZNLWPLhhcz/wGx2ra7nrQfeZ9fq+kKnNeqYqoHpjWL4YpjeKCWzvHR0dGTFVVVVJSVz3rx5HHPMMXJ5I8kRj5RKiWQUiUajbNu2LSmQGzZsoKenJy1GCEGJtxSX4SXWatK7PXTYT6AZCcecNJllnzyRsppi3n5oLe89voHAQdgO8XDlaJHKBE6vg0UXzWXJhxcx0BXglXvfYeurOw7rZZ9GQnJCkC+CURRl+hkT2b59O4aR/l67XC6OO+44Fi5cyKJFi5g1a5aUTMkRh5RKiWQE6LpObW0tq1ev5r333mP9+vWEQumzlDVVo9hVghZwEtwbI1gXOyK6sfMhBMw+fTrLPnkiLp+TV//+Lmuf3nTEdnHn42iTygSKqjDvnJks+8SJmCa8eu87bHhhK4Z+5N9yTMXA9MUwiiKYvijuSfasDQakZEqORKRUSiT7QaI7+7333mP16tWsWbMma3s5h91JsbME0W2jb3uYaNvB3abwcEIImHvmTM74zMmYhsEr977Dxhe3HRUikYujVSoTCAGzlx3Dsk+ehKvIycv3vMXaZzYfVeeEiRlf0sgfxfBH8B3jzOrBSJXME088kRkzZsgF2iVjDimVEskwtLe38/bbbydFMnP8lN1mp9hZitJlp29bmGinecR2ZedjxslTOOtzS1FtKi/9+XW2vHLkdnnuD0e7VKYy/aTJnPW5pdhdNl788xtsXlV7VJ4jmZLpneagtzd9cpPf7+fEE09M/pSXlxcoW4lk35FSKZFkEIvF2LBhA2+++SZvvfUWO3bsSPu7qmqUuEpReuz0bwsT6zi0e18fbkyaP56zrz2VogovL931Buuf24ppyMtKAimV2cxZPp2zrllKNBzlxT+9zva39xQ6pYKSkEzDH8UsjuCoUbJ2xZo6dSonnngiJ510EgsWLMDhcBQoW4kkN1IqJRLiy/y8/fbbvPnmm7z33nsMDAxtA5iYWOMIeRjYHiFUbxw13dn5KBnv5wNfXEbNseN4+e63WP3EBvSYlKZMpFRao6iC+R+YwxmfPZmOui6e+fXLtO7KnkV9NGIKE9MXxSiOMPO8SWzZsiVtvUy73c78+fNZunQpS5cuZfz48QXMViIZQkql5KhE13U2bdrEq6++yptvvsmuXbvS/u60OylSS4nVQ3/tkbe8z0hwuO0su+okTrj0ON5+aC2v3vvOmF70+mAjpTI/ml3llP9YzKlXnsC6Zzfz0l1vjtktOQ8WpmZgFEcwisOUHefL2v1nypQpLF26lFNPPZW5c+eiqmNzQwTJ2EdKpeSoIRwO8+677/Lqq6/y+uuv09XVlfybEIISTylar4u+LWH0zqO7S9sKIWDhhcdy9ueWsmddA8/9/lW6j5BFrg8mUir3DV+Zh7M/fyozT5nKqrvf4p1H1snjZUFim0mjJMz8D89g3bp16PrQqgp+v5+TTz6ZpUuXcuKJJ+L1eguYreRoQ0ql5Iimp6eH119/nVdffZV33nknbbkfu81Oia2caIOgf2tEtkbmoeqYcj749bPR7BpP3bGSPWuydxWRWCOlcv8YP7uKC768HJvLxuM/f4GGTdmbBUiGMFUDoySCURrGc4wtbTUKVVVZtGgRy5cvZ9myZZSWlhYwU8nRgJRKyRFHe3s7K1eu5OWXX2bdunVpixC7nR68UT8D22JEm5FjI4fB5tBY/uklnHDpfFbd8yZvPbDmqFoKZjSQUrn/CAGLLp7HOZ8/lQ3Pb+WFP71OOJC9lakkHRMTsyiKURpmwtJy9u7dm/ybEIL58+ezfPlyTj/9dCorKwuYqeRIRUql5Iigo6ODVatW8eKLL7J+/fq0Qe1+dzGOAQ+9G8MY3Yrs1t5HjjlxEhd/7Wzadnew4pcv0dPSN/yTJFlIqTxwvKVuzvvSciYvmMBT//sSm1/eMfyTJEkMZwyjLMyMC2rYsmVL2t+OPfZYTj/9dJYvXy4n+khGDSmVkjFLV1cXq1at4qWXXmLNmjVpIlnqKUPtdNG7MQQBOWh9f3C47Zz/5eVMP3kKT/3vSjatrC10SmMaKZUjZ/qSKVx085k0bm1hxS9fOqq2+RwtTIeOXhZi7qVT2bBhQ9r1cubMmZx99tmcffbZsgVTMiKkVErGFH19faxcuZIXX3yR999/P61ru9hditLqoH9TFBGRInkgTF1cw6X/9QHq1jfy5K9eItgXLnRKYx4plaOD3WXjA9cvY/ayY3j85y+w9bWdhU5pzGLadIyyMMd9dDpr165NXkeFECxYsIBzzz2X5cuXU1RUVOBMJWMNKZWSw55oNMpbb73FM888w+uvv040OrR8TbG7FLXDSd/GCCIkRfJAsTk0zvnCqcw7ZxYrfvGSbJ0cRaRUji7TT5rMJd86lx3v7OHpO1YRHpBjLUeCqRkY5SHmfmgq69atSz6uaRpLlizh3HPPZenSpTidzgJmKRkrSKmUHJaYpsnmzZt59tlneeGFF9L2yfW7i7F3e+hZH0YEpUiOlOrpFXzk+xfQUdfF4z9/gf7OQKFTOqKQUjn6OL0OLrzpDCYvmMADtz5F3fqmQqd0RGA6dPTyEFPOqUrbSczlcnH66adz3nnnsXjxYrknuSQnUiolhxXNzc08++yzPPvss2kzF512F95wMX3rotAnRXK0OPGy+Zx97ak8/8dXeffR9YVO54hESuXB47hzZnHhzWfy2n3v8drf3zkq9xE/WBjuGEZFkIoTi2huHlrWqbq6mvPPP58LLriAcePGFTBDyeGIlEpJwYlGo7z66qs8/vjjvPvuu8nHNVWjRC1nYLNOrEkuRj6aOL0OLvnmOVROLePf33uSlh3thU7piEVK5cGltKaYj956IQPdQR7+4TMMdMmW9tHEJL5lpF4Zwj1Dpb+/P/m3448/ngsvvJDTTz9d7kUuAaRUSgrI3r17eeKJJ3j66afp7u5OPl7qLsfYqxGo1RG67GYZbSbMqeIj37+QPWsbePJXL8ktFg8yUioPPqpN5QPXn8bcM2fy0A+eYtfq+kKndERiKiZGWYgFH5/Be++9l3zc6/VyzjnncOGFFzJr1iyEkA0ARytSKiWHlHA4zMqVK3niiSdYu3Zt8nGX3YW730/fupiccHMQWXTRsXzgi8t45tcvs+apTYVO56hASuWhY/ayY7jkm+fwyt/e4Y1/ri50Okc0pkNHrwxSscSX1j0+Y8YMLrvsMs455xxcLlcBM5QUAimVkkPCnj17eOSRR3jmmWeS3SdCCErs5YS3mEQb5KLkBxNVUzjvS8uZuXQq//z24zRtayt0SkcNUioPLWUTS7jyJx+kcWsrj//seaLhWKFTOqIxMTH9Uc64+QRWrVpFJBKfje/xeDj//PO59NJLmTJlSmGTlBwypFRKDhq6rvPWW2/x4IMP8s477yQfdzs8OHt89K+LyfUkDwGeEjdX/OBCDMPk3997Ui4cfYiRUnnocXjsfOiW8yiq9PGP/35c7gZ1iDA1A70ySPUyPw0NDcnHFy1axGWXXcayZcvQNK2AGUoONlIqJaNOX18fTz75JA8//DCNjY3AYKukrZzQZuSkm0NI9fQKrvyfS9i8ajvP/u4VKTUFQEplYRACln/6ZE647Dj+dcsK9q5vLHRKRw0mJmZxhJOvO47XXnstubh6WVkZF198MZdeeinl5eUFzlJyMJBSKRk1du3axYMPPsizzz5LKBQCwK7Z8QZLGFhvoITlN9RDyTEnTeZDt5zHc79/hTVPbS50Okctiqpwyws38MOzfyOlsgDMPv0YPvj1s1nxy5fY9JJc1P9QY9h19KoARfPtdHZ2AvGF1c855xyuuOIKpk+fXuAMJaOJlErJiDBNk3feeYd//OMfacsB+RxFUOdkySkncvY1pxUwQ4lEIpEUmhf/8jovPfEyc6+YnLZzz/HHH88VV1zBkiVL5KLqRwBSKiUHRCwW46WXXuL+++9n+/btwGAXt1ZOYIOJ0RafeCMUIZeXOIQIAWdds5R558zk/v96jNadnYVO6ahHtlQeHpSML+LK/7mEPWsaeOr2lRi6vPUdSkzTxDTix9zwRll280JWrVqFrusATJo0iSuuuILzzjtPrnk5hpFSKdkvAoEAK1as4N///ndyGQlN1fCFSxl430CE5cSbQqGoCpf997lUTCnjvm88Sl/HQKFTkiDHVB5OuIqcfOxHFxMORPjXd1YQi+iFTumoxnTo6OMCOGcJBgbi1yu/38/ll1/ORz7yEYqKigqcoWR/kVIp2Se6urp48MEHefjhh+nri8+kdNicODuLCG40ETHZbVFINLvKR2+9ELvbzv3fekwuaH4YIaXy8EKzq3zk+xfi9Dm4/5uPEQ5ECp3SUY+pGuhVQSqWepONFS6Xi0svvZQrrrhCTuoZQ0iplOSlvb2d++67j8cee2xo/TG7F6XORXiHQBiya7vQ2F02rvzJJURCUf79Xdn6crghpfLwI9GqXz6plHu/9jCBnlChU5IQnzVulIeZ+sFKamvjk6rsdjsXXHABV155JePHjy9whpLhkFIpsaSlpYX77ruPFStWJGWyyO4nttVGTC5UftjgKnLyiZ9fRmdDNw//6FkpLYchUioPT4SAC75yJlMW1fC3mx+ir10OFzlcMDExSiLM/o8aNmzYAICqqpxzzjl84hOfYPLkyQXOUJILKZWSNJqbm7n33nt58sknicXiO1EU2UqIbFAw2lQpk4cRbr+Tq/73w9RvaGLFr15KDoKXHF5IqTy8OfvapRx75kzu/vID9Lb1FzodSQomJmZRlIVXT09uoKEoCueeey6f+tSnqKmpKXCGkkykVEoAaG1t5Z577uHJJ59Mzsbz20oIr1MwOqRMHm64fI64UG5sYsUvXyp0OpI8SKk8/Dnz6lOYd/ZM7v7SA3KC22GK4Y1y0hfn8NprrwHxlsvzzjuPq666SnaLH0ZIqTzK6e7u5t577+WRRx5JdnP7baWE1grolIuVH444vQ4+dfuHadjcwopfvID8BB/eSKkcG5x97VLmLJ/O3V9+gP6OQKHTkeTA8EY5/gszefPNN4G4XF544YVcddVVVFVVFTg7iZTKo5SBgQH++c9/8s9//pNgML4XdJFWTHitCl1SJg9XnF4HV/3qQzRvb+Pxnz0vhXIMIKVy7HDudacxc+k07rnxAfo7pVgezhi+CAuvGeoWt9lsXHbZZXzyk5+kuLi4sMkdxUipPMoIh8M8/PDD/P3vf6enpwcAn62IyHoNs12T3dyHMXaXjat+9SHa9nTy2P88J4VyjCClcmzxgS8uY/pJk/m/G/5NsC9c6HQkw2AURZj3qSm8//77AHg8Hj7+8Y/z0Y9+FKfTWeDsjj6kVB4lmKbJCy+8wJ/+9KfkOmAeuxdjiwO9UY6ZPNxRNYUr/+cSwoEID3z/KTkpZwwhpXLscfHXzqZqWhl/vfkhoqFYodORDIOJiVkcYcrlFcmliMrLy/nsZz/L+eefj6bJ3rdDhZTKo4B169bx29/+ls2bNwPgtLlQd7mJ7pYyORYQAi6/5Xy8ZW7+/vVH0aNyHcqxhJTKsYdQBB+99UJsDo37/+tx+b6NEUxMjIoQ5cvdycaTyZMnc91113HKKafILYMPAVIqj2Dq6+v5wx/+wMsvvwzEt1N0tvqJbFXlouVjiPO/tJxJC8Zz95cekDvljEGkVI5NNLvKf/78Mnrb+nnkR8/I4SZjCFOY6OMCeBYq9Pb2AnDSSSdxww03MGXKlMImd4Qj99Y7AgkEAvzud7/jqquu4uWXX0YIQVG4DOX1YqKbNSmUY4jT/vMEZpwyhb9/7REplBLJISQW0fnHfz1O5dQyzr1uWaHTkewHwhRojR5Czzi48sorsdlsvP3223zmM5/hjjvuSG41LBl9pFQeQZimyXPPPcd//ud/8o9//INYLEaRKMG2upTwOxoiqhY6Rcl+cOyZMzj5ikX87asPM9AdLHQ6EslRRzgQ4e9ff4S5Z8zghEuPK3Q6kv1E6AoPffFFxBtFnHbaaei6zgMPPMDHP/5xHn300eQGH5LRQ0rlEcKOHTv48pe/zG233UZHRwcuzY1jaynhV+yIATlIeawxYU4VF3/9bP757SfobuotdDoSyVFLf2eA+775KGdfeyrTjp9Y6HQkB4AIabzzP7XYNhQzZcoUenp6+MUvfsG1117Lxo0bC53eEYWUyjFOf38/t99+O1dffTVr165FVVTc7aXoq7zQZit0epIDwF/p42M/uYQnf/kSdRuaCp2ORHLU07qrg4due5qPfP9CyieVFDodyQGidDtovDeAtsOHz+dj+/btXH/99fz85z9Pjr2UjAwplWMU0zRZuXIln/jEJ3jwwQcxDAOfXoL6Vgn6FhvClOMmxyJ2l40rf3oJ7z22nvXPby10OhKJZJDaN3ez6u63+PhPL8Xtl+sfjlUEArXJTfg5JxdccAGmafL444/ziU98gqeffho5d3lkyNnfY5CWlhb+93//N7kHqlvzoK93QIdsmRzrXHHbRZiGyQPff1LONj1CkLO/jywuuvlMyieV8revPoShyw/pWMcoijDhEj+7d+8GYOHChdx8881ylvgBIlsqxxC6rvPggw9y1VVX8dprr6EIBXdHCbFVHimURwBLrzyesoklPPKTZ6VQSiSHKU/fsQrVrnLW504tdCqSUUDptdP49wDqLi8Oh4M1a9Zw9dVXc++998qJPAeAlMoxwq5du7jhhhu4/fbbCQaDeIQP9b0S9M122dV9BDB1cQ3LPnEi//rOE3IHD4nkMEaPGfz7OytYcP4c5px+TKHTkYwCwhRoDR7MV32cfPLJRKNR/vSnP/GFL3yB7du3Fzq9MYWUysMcXde5//77ueaaa9i4cSOaasPVUEr0FRdKQM7qPhIoqvDy4e9dwCM/eZaOuu5CpyORSIahr2OAB77/JJd881zKJsqJO0cKIqyy+v/tRNtahM/nY9u2bXzuc5/jrrvuIhqV6wTvC1IqD2Pq6ur40pe+xO9//3ui0Shew4/yhh9jl01ur3iEoKgKH731Qt5fsZGtr+4sdDoSiWQf2bOmgZf/+jb/8aOLsTnlF/wjBYFAbXMRft7BsmXL0HWdu+++m2uuuYatW+XkyeGQUnkYYhgGDz74IJ/97GfZsGEDmqLh3F1C5HUHIiIXMD+SOPOaU9B1gxf//EahU5FIJPvJG/9cTUddF+d/aXmhU5GMMiKq8tZPtqJt9lNcXMyuXbv4whe+wL333ouu64VO77BFSuVhRltbG1/96le5/fbbCYfDuA0fylvFmPV22Tp5hDF1cQ3HXzyPh257GtOQM3MkkrHIYz99nhknT2HuGdMLnYpklBEI1A4ngadtLF++HF3X+dOf/sSNN95IY2NjodM7LJFSeRjxyiuv8JnPfIb33nsPVdFw1pcQe92FCMvWySMNt9/J5becz+M/f57e1v5CpyORSA6QYG+Ih374DBd/9Wz8lb5CpyM5CIiYwhs/2oy2rQi32826dev47Gc/y1NPPSXXtcxASuVhQDgc5pe//CXf/va36e3txS28KG/7MXfL1skjlUu+eS7bXt/F5pd3FDoViUQyQna/X8+7j63nQ985D6HIa/aRiECgtrqIrXJz3HHHEQgE+MlPfsL3v/99+vtlw0ACKZUFZufOnVx77bU88sgjALg6/MRedaOE5MDvI5XFFx9L2cQSnvn1qkKnIpFIRomVd72JalM59crjC52K5CAiwipbf9/Ctddei6qqvPTSS1xzzTVs2bKl0KkdFkipLBCmafLEE09w7bXXsmvXLuyqA9vGEozNTrnu5BGMv9LHudct45EfP0M0LNejlEiOFAzd4JEfP8tp/3kiFVNKC52O5CAiENxz1aMo7/kZN24cjY2NXH/99Tz44INHfXe4lMoCEA6H+elPf8rPfvYzIpEI7pgPXi9C6bIXOjXJQeaD3zib9x5bT8PmlkKnIpFIRpn2vV28/Le3ufS/PoCiysaBIx2l30bHQzGWLVtGLBbj9ttv5zvf+Q59fX2FTq1gSKk8xCS+0Tz55JMIBM6mYmJvuhBR+VYc6Sy6cC7+qiJW/t+bhU5FIpEcJN7452owTU6+YnGhU5EcAoSu8NZPtqLu8KFpGi+//DLXXHMNtbW1hU6tIEiTOYS8/vrryZPNptjR1vsxdzjkZJyjgKIKLx/44uk8+pNniUXkGmcSyZGKaZg88pNnOf2TJ1E+Se62czQgEGhNbsS7RVRXV9PU1MT111/PCy+8UOjUDjlSKg8BhmFw11138a1vfYv+/n6cugfxZhFKj6PQqUkOERfedCarV2ygflNzoVORSCQHmfY9Xbz693e45JvnIGSbwVGD0m+j8xGdE088kXA4zK233srvf//7o2qxdCmVB5lQKMT3v/997r77bgBc3X6MNz1yZ5yjiFmnTqN6RgUr75Ld3hLJ0cLr/1iN0+tgwflzC52K5BAiYgprf7WHK6+8EoD777+fb3zjG/T29hY4s0ODlMqDSGtrKzfccAMrV65ECAX7zmKMDXJ299GEzaFxwY1n8PQdq4iG5GxvieRowdANnvjFi5x73Wm4fLJX6mhCIHjoiy+ibfHjcDh45513uPbaa9m9e3ehUzvoSKk8SGzatInPf/7zbNu2DZuwoa31IxrlheVoY9lVJ9G6q50tr8hFziWSo4296xqpfXM3Z197aqFTkRQAtd2J8aaH6urq5CTd999/v9BpHVSkVB4EVq5cyZe//GU6OjpwmC7E236UXrlc0NFG+aQSTvrQAp7635WFTkUikRSI537/KnPPnMGEudWFTkVSAJSB+DjLY489lv7+fr761a/y9NNPFzqtg4aUylHmwQcf5Hvf+x6RSARnyIv5plfu3X2Ucv6NZ/DGP1fT1XR0jKWRSCTZDHQFeOnPb3DRTWfKSTtHKSKmUHtnG2eeeSaxWIwf//jH3HXXXUfkQulSKkcJ0zT5wx/+wO23345pmjg6fRjvuhG6PMRHI8ecNJmKyaW8dt+7hU5FIpEUmPceX49mV5l3zqxCpyIpEMIQvHbbRj7+8Y8DcPfdd/PjH/+YWOzIGms/5oyns7OT6667ji996UvceOONtLe3s27dOq677jq++MUvsmNHfOza5s2bueGGG/jb3/520HNKfPO47777ALDXF2Fucsn1J49ShCL4wPXLeOHO1+SalBKJBEM3efZ3r3L2taei2WXP1dGKQPDg9S+g1fpQVZVnnnmGW265hXA4XOjURo0xJ5V+v5/f/va3/PrXv+b8889nxYoV3HnnnfzsZz/ju9/9Ln/4wx8AeOGFF/j5z39Oa2vrQc0nGAzyrW99i2eeeQaBwLa9CLFbCuXRzKIL56LHdNY/u6XQqUgkksOE7W/tpqOuiyUfWVToVCQFRm1xI9b5sNvtvP7663zta1+jv7+/0GmNCmNOKlVVRVHiaQcCASZMmICiKPh8PqqqqpJ7bp511ll8/etfp7y8/KDlMjAwwNe//nXefvttVKGibvSjNLsOWn2Swx+7y8aZ1yzl2d++whE4XEYikYyAZ3/7Cqd94gTcxfI+cbSjdjkw3/Xg8XhYu3YtN954I11dXYVOa8SMOakEqK2t5fOf/zwPPfQQ8+bNw+PxJP+mqirRaJS5c+fym9/8hk996lMHJYe+vj5uvvlm1q1bhyo0lDVFqF1yyaCjnVP+YzGNm5vZ/X59oVORSCSHGS072tny8g5Ov+qkQqciOQxQeu1EXnVQXFxMbW0tN9xwAy0tLYVOa0SMSamcMWMGf/zjH7n66qv529/+xsDAQPJvuq5js9kOav3d3d185StfYfPmzWhoKKuLUPrkkkFHO06vg5OvWMSLf36j0KlIJJLDlJV3vcmiC+dSVOEtdCqSwwBlwMbA8ypVVVXU1dXxla985aAP2zuYjDmpjEajyd+9Xi8ulwtd1+nr66OlpQWfz3dQ6+/s7OTGG2+ktrYWDRtidRHKwMGVWMnY4JT/WMTOd/bSsqO90KlIJJLDlJ7WPtY9u4XTPnFioVORHCYoIY2ux3XGjx9PQ0MDN95445gVS63QCewvtbW1/O53v0NVVex2O9/85jepr6/nG9/4BkIIbr755oNWd09PDzfddBO7du3Chh3e86EEx9whlBwEXD4HJ314IXdd/69CpyKRSA5zXvnbO3zxb5/ktb+/S09rX6HTkRwGiIhK+6MRxl0yLimWd9xxBxUVFYVObb8Q5pG4+uZBoK+vj5tuuim+7SJ2xLs+REgKpSTOWZ9bSsl4Pw/e+lShU5EcZiiqwndXfpkfnHEHhm4UOh3JYcIFXzkDVVV44hcvFjoVyWGE6dApu8RGU1MTEyZMGHNiOea6vwtBIBDgG9/4Btu2bUPDBu9JoZQM4SpyctKHFrDq7jcLnYpEIhkjvPq3dzju3Fn4qw7ukC3J2EKEVToei1JdXU1DQwM333wzPT09hU5rn5FSOQzhcJj/+q//YuPGjahoiPdll7cknRMvn8+Ot/fQvmfsLwchkUgODX0dA6x7dgunXLG40KlIDjNEWKXz8RgVFRXs2bOHb3zjGwQCgUKntU9IqcyDruvceuutvP/++6hCRVkjJ+VI0tHsKks+vJDX7n+v0KlIJJIxxhv/XM3CC+fi8snl6CTpiLBK99MGfr+fzZs3c8sttxCJRAqd1rBIqcyBaZrcfvvtvPrqqyhCQVlbhNIvhVKSzoLz59K6q4PGLWN7bTGJRHLo6WzoYcc7ezjhsvmFTkVyGKIENQKrVFwuF++++y4/+tGP0PXDe+tf2Y+bg/vvv59HHnkEAG1LEeqAE+SWrZIUhCJY+rHFPPObl1FU+f1MYk3i3JDniMSKN/61mo/96IO89cAaYpHDWxgkhx4l6EB/D7T5UV566SVKS0u58cYbC51WTuTsbwuee+45brvtNgAuuugiTjvttAJnJJFIJBKJ5Ghl3bp13H///QDcdNNNXH755QXOyBoplRmsXbuWm266iVgshq3Zg7arqNApSQ5TPvnLy1n//FbWPLmp0KlIDmMUVeGWF27gh2f/Ri4pJLFk5qlTOfOzp/DHq+8rdCqSw5hP3HUxd955J6qq8tOf/pSTTjr8tvuU3d8ptLS08J3vfCculD1uxHYPBvImIMmmYkop1dMruO8bj0pRkOwThm7Ic0ViydZXd3L+l5ZTM7eavesbC52O5DDlnk89ynm3ncczzzzD9773PX7/+98zZcqUQqeVhhzkM0g4HObb3/423d3daBEHYqMXgSh0WpLDlBMuPY41T28iGo4VOhWJRDLGMQ2T9x5bz4mXywk7ktwIBC99933mz5/PwMAA3/zmN+nu7i50WmlIqSQ+0/vnP/8527ZtQzU1lLU+hCGFUmKN3WVjwXlzefeR9YVORSKRHCG8v2Ijs06dhqfEXehUJIcxwhRs+VMT48ePp6mpiR/+8IeH1YxwKZXAv/71L5599lkEAmWDDxGW07wluTnunFk0bGmmo04udi6RSEaH/s4AW1/fxaKLji10KpLDHBFTaHsihMPh4O233+avf/1roVNKctRL5YYNG/j9738PgLrDi9JjL3BGksOd4y85jncfla2UEolkdHn30XUc/8F5CNlRJhkGJWDjq1/9KgB33303b7/9doEzinNUS2VfXx8/+MEPMAwDrdOF0uQqdEqSw5yKKaUUjyti2+u7Cp2KRCI5wti7tgGASfMnFDgTyVjgFxf+hQ9+8IOYpsltt91GS0vhN+E4aqXSNE1+9rOf0dzcjBqzoWyVE3Mkw7Pg/LlseGEbevTwGcMikUiODEwT1j6zmQXnzyl0KpIxwjPfeouZM2fS09PDD37wg4KPrzxqpfKxxx5j1apVQ+Mo9aP2UEj2EaEI5n9gNmuflutSSiSSg8Papzcz94wZ2BxyxT/J8AhTsPvvnbjdbtavX8999xV2rdOj0qR2797NHXfcAYCy0yP39JbsE1MXTyQSiNCwufBdDBKJ5Mikq7GH1p3tzDrtmEKnIhkjiLCa3LrxrrvuYuvWrQXL5aiTylgsxk9+8hOi0SharxO1US7fINk3Fpw3m7XPbC50GhKJ5AhnzdOyC1yyf/zior+wfPlydF3ntttuIxQKFSSPo04q//3vf7N582YUU0XZIsdRSvYN1aYy67Rj2PB84b4BSiSSo4PNq7YzZeEEnF5HoVORjBEEgjd+uomysjL27t3LH//4x4LkcVRJ5Z49e/jzn/8MgFLrQUTkepSSfWPaCRPpauyhq6m30KlIJJIjnGBviL3rGpl12rRCpyIZQ4iYQu+q+ESdhx56iI0bNx7yHI4aqdR1nf/5n/8hGo2i9jhQWp2FTkkyhpi7fAabVtYWOg2JRHKUsGllLXOXTy90GpIxhtLt4LzzzkvuFBiLHdqthI8aqXziiSfYuHEjiqmgbvXJbm/JPqOoCrOXHcOmldsLnYpEIjlK2PLKDqadMAmHW27IIdk/Xrp1NX6/n507d/LPf/7zkNZ9VEhlT08Pd955JwBip+z2luwfUxfX0NvWL7dllEgkh4yB7iD1m5qZuXRqoVORjDFETOH6668H4P/+7/9oaGg4ZHWPilT29fUVdAr7cNx555309vaiBm2octccyX4y89RpbHllR6HTkEgkRxlbXtnBzFPluErJ/vOLi/7C4sWLiUQi/PrXvz5k9Y5YKletWsXnP/95vvOd7wBQW1vL17/+9REnNlps2bKFxx9/HAClVs72luw/M5ZMYftbuwudhkQiOcrY/tZujjlxEkKR9y3J/iEQrL9zD6qq8vrrr/Pee+8dknpHLJV//etf+dOf/oTP5wNgxowZtLa2jjix0cA0Te644w5M00Rpc6L0yrEpkv2jtKYYV5GT+k3NhU5FIpEcZXTUdRPqDzNhTnWhU5GMQZSgxmWXXQbAb3/720OyheOIpdJms+H1etMeE+Lw+Fb12muvsWHDBoSpoO3yDv8EiSSDGSdPYcc7ezANs9CpSCSSo5Dtb+5mxsmTC52GZIzy+Ndfxuv1sn37dp5++umDXt+IpXLcuHG8++67AAwMDHDXXXcxfXrhl0HQdT05OUepd8rJOZIDYsbJU6h9Y3eh05BIJEcptW/uZvqSKYVOQzJGETGFq666CojPLwkGgwe1vhFL5c0338wzzzxDW1sbH/vYx2hqakruQVlIXnjhBXbt2oUwFNR6T6HTkYxBNLvK5AUT2P72nkKnIpFIjlJ2v19P5bRy3H65trLkwPjzfz7AuHHj6Ozs5NFHHz2odWkjLcDn8/Htb397NHIZNaLRKH/5y18AUPa6EfpRsXKSZJSZMKea7uZeBroChU5FIpEcpUTDMRo3NzNp/gS5CoXkgBCm4KqrruKnP/0p//jHP7jssstwOg/Ol5QDlsq//e1vef/+yU9+8kCLHjHPPfccTU1NKDEVtdFdsDwkY5vJCyewe82hW99LIpFIrNi9poEpC2ukVEoOmF9d8n9Uf7ia5uZmHnvsMa644oqDUs8BN+HFYjFisRi7d+9mxYoV9PT00NPTw5NPPsmePYXrLjQMg/vvvx8AUedCGIfHpCHJ2GPKwhr2rKkvdBoSieQoZ8+aeiYvnFDoNCRjGGGKZGPffffdRzgcPij1HLBUfuYzn+Ezn/kMra2t/PnPf+aGG27ghhtu4M4776SlpWU0c9wv3njjDfbs2RMfS9ksFzqXHBiqplBz7Dj2yJZKiURSYOo2NlExpRSn11HoVCRjmNsvu4eqqio6Ozt56qmnDkodIx5s2NnZids91MXsdDrp7OwcabEHTKKVUmlwyrGUkgNm3Kwq+tr76esYKHQqEonkKCcaitG0rY1J88cXOhXJGEaYgo997GMAPPDAAxiGMep1jHiizimnnMJNN93EWWedBcCLL77IKaecMuLEDoSNGzeybt06hClQm+RYSsmBU3NsNXUbmgqdhkQikQBQt6GRmrnVbHt9V6FTkYxhfv+x+/Cc42Hv3r288847LFmyZFTLH3FT3g033MCHP/xh6urqqKur4yMf+Qg33HDDaOS23zzyyCMAiFaHXJdSMiImzK6icUvhhnFIJBJJKo1bWhgvd9aRjBChK1x44YVAvLVytBlxSyXA6aefzumnnz4aRR0wvb29vPTSSwCylVIyYsbPruLNB9YUOg2JRCIBoGFzCxfedGah05AcATz6jRcRJwneeustGhsbGT9+9IZVjFgqcy10fvvtt4+06P3i6aefJhKJIAY0RP+ouLLkKMXpdeCv8tGyva3QqUgkEgkAXY09CCEoGVdEV1NvodORjGFEWOP444/n3Xff5amnnuLqq68etbJHbF/XXHNN8vdIJMLKlSvxeA7tDjamabJixQoA1CYXArmMkOTAGT+rktZdHcQieqFTkUgkkiSJLnAplZKRsubeWpgNTz31FJ/+9KdR1dEZMjhiqTzuuOPS/n/88cfzhS98YaTF7hc7d+5k165dYAqUNrmVlWRkjJtVSdPW1kKnIZFIJGk0bm1h/KxKNr64rdCpSMY4SocDr9dLa2sr7733HieddNLolDsqpaSwfft2enp6RrvYvDz33HMAKB12uYyQZMRUTCmjdWdHodOQSCSSNFp3dVAxpbTQaUiOAIQpOOecc4D4qj2jxYhbKs8880yEiHc3K4pCVVUV119//YgT21cMw0geENlKKRkNKqaUsvaZzYVOQ7IvCAGmOfKY0UTmtG8cjjkd5rTt6qRiSlmh05AcIay4bRUcB6+88gpf+9rX0LSRz0cZcQmJGdeFYsuWLTQ3NyN0gdIldxuQjAwh4i2VbbsL2FK5rzdbGJ2b8mjVtz85jUZZYj/GTg/3GmVOhclpNM7Pg3GchosrkOi27+3EX+nD5tSIhmIFyUFy5CB6bJSUlNDV1cXq1atHpQt8xH3FN9988z49drB44403ABBddrnPt2TE+KuK0KM6/R2B/X/yvty8hcgfl3qzHUk9+1vWSOtLjdnXsnLFjVbMoa5P5rTv9eV6zljJabhyhvuc72tMBrGITldTDxWTZRe4ZOQIRHI5yFWrVo1KmSOWyszxk6FQiNbWQzfJ4fXXXwdA6ZStlJKRUzGl9MBaKfdXzqziMh870JjRLOtAYnJxqHPYXxkuVE6H8n04HHI6lPUdzHPlUIvuIG27ZRe4ZPR48kdxmXzzzTcxR6EF/oC7v++55x7uvvtuDMNIbtFomiYul4vLL798xIntC21tbdTW1oIppVIyOpRPLqF9b9f+PWkkN/PEhzjfzWd/YkaST6FySsSOVsxIcx/tnNJ+z3HRPtKPQaHqG0lOo3We728+w9C+p5PyySX7FCuRDIfotWO322lra2PPnj1MmTJlROUdsFR+6lOf4lOf+hS/+c1vCrYt47vvvguA6NcQsUMw6ztxwTicBo4LAUIB4xCtqaioCEVgxg7ReB5FRagqZjRySKorri6iq7Enb4zQNISmYYTDOQL2U6iGQWgawm7HCAZHVM6+togITUM4HBiB3EMAhKYhXC6M/v4R17cvsUJVUdxu9L6+EZWzrzGHur59iROqiuL1oPcMs0bhaOUkFFS/99DW5/PkP+b7EjOqOQkUr3fk5/m+CiqguFx5P3tdTb1MWThh+DpHEcXpxAiFDll9wmY/ZNd8iF/PDtk9bV9R1ENyXxeGYMHChbz99tu89dZbI5bKUdn7u1CsXbsWAKXbbh0gRPpPLoSIv4HDxYhhDleinH0oS2javsUoeRYkFQKh2RCqmj9OURE2+z7FiHyzvxQVYduH7yGKinA4hi/L4YjnlSdGsduGrUtxOlGczuHLcrsRjtwt2kLTKJ5QSnd7bnlLCBc2G8owZSkeD4oz94oEcUnworhc+WPc7n0SDtXnG7Ys1eeLl5c3Jw8ouc/1RIzQNBSvN399/qLhY4qLh41RfD6waag+37BljUaM4i8Cuw3VX5S/rNKSfYgpzvn3/SlH8ReBpuWNQyjx1zcaMf4iGHwPR6OsfMccoaAWeeP15YuD4WOEgurzDVuO6vPlPe+SxQ2KZT4Urzfv5wqIXw+G2RhEcbtBVfPGdTf3UjyhOH99QqC43cPHDF47812n4okpw8YIhyPv9XVfY+L1ifzXc+LiOSoxmgZCyX+/YqgxYaQxSUfIdz9Ojd2XsoaLGcaBEhN0Eg11I+GApfLaa68F4Mwzz+Sss87K+vdQsGbNGgCUHouTJiGBiZ9cpMqiUHJ3X+xjjFAEQhlGFgdXrhdqDvlMjVGE9UkzKJR5SYhian1WZQ22BqKI3B+uVKFU1dwxDgfCpiGEyBun2G0IIRCqYv2hTwilouSPcTriAqQo8fwtEJoWjxsUdauLWuLx4mofPW0DeWPyCRfEj7NwueJxOeQzESMGc7KSwaRQKvHzIZcwpsXZbbnL8nri74lNs7zZJGMGz4HhYhLHxOqGmxTBwXMgb0wi72FigJxiOVSfkj/GXxSPsdvyxyQ+lzmuHWlxOUQvsyzVP0x9wwrjYE654pIiqOxbTC5hTMQkjvm+xOWLGZTFnF8KEjGJY51LGhNxw8UMnucouWVQTZx3qpJXGBWvNx6XRywVr3fwWqbmlLj45zN+ncoreolri6JYi6UQ9HZHKK7yJcXRKkZxuZIiMWx9ibxySGPy8TwxwuGIHwMhckpjZky+uHh9ucUy3kgiho9J+T2nXKbc23MJYerjI4mJVyOGPCGXEKY+PpKYoUpzuwvwx2vuB2Djxo0YhpG/rGE44O7vP/3pT0DhlhRqbW2lsbERTBD9GSeLVauiUAAjvQtiuJbH/SwrVSaFqmLqelpMQu6yyjJTmrgt4oQiMElpCrcQSqGq8dFaiZiEKGZVJzBTz5lUoYT4v4aS3h1g1UKpqgjIihEpJ60QAjPz2Fm0PgpVAVK6O1KEMv5/ZXDjzYwYpyOjHBUyuk0SXcepH6bEB94c7L5OFc3iKi/dLf25Y1KF0mZDgbRu8KRQppIRlyqUqTkpLleyiztVFOOvV+SOGfx7siz7YH2pcSkiiFCSYpnoZsuKAYTdHi8nTwyQ9jqScakimMg9pRsxKyaR9zAxma81LU5NvD6RFJhEN2mWLEJSLPPGqEpaTM64QYlLdBWPVkxaXCqZcamyuK8xYkgGs7q4M495ZlymeOaKSQhlgoz3ZehFZlwnBqUxGZcpnrliEkI5+H+hktV9rWaed4PvsWmaaXGK1zt4bYofD2Fkl5UQyqGy1LTPFaQIZfIBJSsmGZf2QFwsjYGBwcLjstjdOoCn2IVqU9GjenpZqUKZTEpk1ydE9pfdQWlM7eZWnM7s3DNiErI4VLQAhyN57Ux7PPP3jLgs0RyUxrRrekIo88TkIqusTPkTGfc+q5jBx4brLk/eQ1LjlGHu7RYxyceG6wpPPM9I94mMCklzl8EYMaDhdDrp7+9nz549TJ06NX9d+dI44GcO8uMf/3ifHhtttmzZAoAY0OK76CRbFvLIYsLU9yVmP8uyap1MtkTmEkriJ1VqfXnjBpuxc7VQJlsicwhlMu/EyZcplAnSPrB5urwTLZEWQplaVvJDua/d2alCmXw8pcXSQiiTL8+mJb+RWgllVnyKULp8DlRNpb8rkPa3vC2Ugy2RiZtJllCm5A/WQpmai+JyZQtlsgxhHWPVQjtYfi4RTBXLnDEMiuUwMQx24yfryyGCCbHMGcOQWOaLSW2lyhLK1Nc/KDCW8pZgUCz3JSZZX664QYkbrZh9rc9SKPc1JkUs4/9XcreWJuKshNIqJlMoE6S2WKa2PlqV5fNZC6VVTKpQJl+fkt0aaZV3RqtlmlCmxqS0WGYKZbLKzBZLq+vGoFgm4rLEMzXO40mTRT2qM9AdxF85+JoyWyNz9H4lYxJCmau+wdbILKG0iIkXZ3EMMlosc7ZKpsTl7BbPbI3M9f5ltEzmIvX+YHlOpbRY5m1x3NeWyZT7n6UnpLZYDjNEzfL3XHG5/CXTcQCBYM6cOQBs2LAhd9n7wIilcseOHVmPbd26daTFDsu2bfG9T8VAiqTsQ+uj4nDkHQuXjHG7hy0r0aScr7tbcbv3aTyOWlSUWwST1Q3f5a16Pagl/vwxRV7U8jJroRyqbLDLIH9jtuIvQquqsBZK4hcNpdiPNmF8XqEUavxCZSmUycqUeFmT8g9SV0qL0aZNySuUie7d1AtZUbmHvo6BtAm6amkJyoypuXMClLJSlFnH5I0hRTpzHat47iWIeTNzvy+KQCkrhQWzcscQl+v4mLEcIgggFJTSEowTj817rivlpRhL5uWNEYPyklMEk7mXoJ96XN7clbISYsvm543BpsXHYloJZTIpgSgtJrp8Qf4vFiV+ImctzBuD3RavL5fgJcryFxE+O39ZwucbNgZN27f6vF4iH1ic+xgkYs5dlPc4kRhrmksWE6EuF9FzFg0fc9ZCa6FMYIufLzllMYHLSeyMhfljHA700xfkrm9QLPdlnKVw2DFOXZAtlAkGh2qYp8zP+zlOjpceputZ2DTECfPyXjuEqiIWz007D3rbBvBXpHSPJ8ZQ5hlTjRDxcZ3Hzhr2WqXOnZk/ZlAs845RHxyzqc6Ylv9YCYE2bUruuiB+3Icdgx8XS21iTf6yAG3C+Pzn1D6MsYTB615FxbBxanlZXk/I2xWeiqKiFue/vwOoRUXDvr7M68q8efMA2Lx5ZLvJHbBUPvjgg1x55ZXs2bOHj3/848mfyy67jFmzZo0oqX0hIZVKf1xUhN0e/+aYR4IUuw3hzD8mTrHb4jd+hyNnaxiA4nSglvhRXHkmYjgcCLc7/wfK5ULxuBFuV/4JFC4XakV5XBJy5eRyIop8eU9OxeNC+IsQXg9KnpNT8XpQa8YNG0Npcd6bh/B6oKwEs8iDUp57bTXh8yGmTkSpyv0BFT4v5rgyTC3P6yvyYY4rRy/xIMZX5Y7zeTHnTEVMqE4+5il2MdA9NElHKfIRm1iBactfX3RyBdESF0zOLbuKvwh94QyYlvuCJ4p8hKdXYdjzHE+fj9CMKiJlLozpE3PH+YsInzgDffbkPPV5CcytxrTnuaEVeRmYW0241E702Dxl+X0Els4kOn9Knty99B9XTcyZ7/V56VtQTajURnhB7i4Y4fPSf/oMQsdPyx3j9dC7aByhUo3QYuuyhNdD7/HjCRdrBI/PU5/HTd8ZMwmeeEzemGRZJ1jnJTxuek+cQLhYI3BintxdLvrOmEngpDz1uVz0nlhD2K/mLEs4nfSeWEPEP0x9Tif9p88guGR6/pgTJhEpUvMeB4BoUe5jACBsNgJLZxI6IXd92G0EF00m5lEJL85dFoog5lGJLMzTZWezEz5xBpHFeerTNCLHTSbm0Ygel6c+QHdpxPLFqCr6/GPQ5+c5nqpCbM4UdKeGMWdK7rIUgeHQMOcMvb6B7iBuf0proarG/z4zXzkKTJ+E6dRg+qTccYBp1xBTc19fgPj1elqechQFMWkC2DTExPH567NpqBPG5Y1Rx1ejplyvrWOqQFNRqyvzxqGpqJXl+cuqKEetyB+jlJUiNDX+RT9vYWreeymAWuLfpwYhVDV3634yMRFvuc8X4vWmNXjd/+3HANi5c2f+sofhgKXyvPPO45e//CVLlizhl7/8ZfLnr3/9K//93/89oqT2hdraWoB497fdHv8RIv6vhVgmhRLiXWwWrWYJoUwOAM4hlorTgXA54y0hLutvawmhRImPL7HqFk0IZbKLPIdYxls7BydZuF2WYpkUSlVBOB0oFiddQihR4t9ShMeFUpTd1aW43YgSP6aqIDxuyw9DUigVBdPtRCkpzn59g0KJGq/P9LktxVL4fFBRgmlTMXwelAqrGC9mVWm8Po/TUj6VIh9GdRmmFq/P8LsR47IvLorPi14Tl0XD706KpbvYmZTKVKHUPQ5ETfbFLCGU5uDrixU7LcVS8RcRmVKBYVeIFTsxp2bHJIVSE8S8doyp2fKZEErDJjAFREqdlmIp/EUEZ1SiOxQixQ70GRZlFXkJzK7CsClEPRqxOdk3h4RQGnaBqUCkxFoshd/HwLFV6A6FcImN6FyLGJ+X/nnV6HZBzK0SOW6KZUzfgmoMmwAB4RLNUiyFz0vfwurB16cRXmBR1qBQ6naBqQj0XOIsxGAMRPzWYpmQRd0hCPtVS1lKxtjjuevOXD0AIhkTKbKWwbgsTkB3iPwxJ8RjEGA48tdnCoj6cpTlcNB3Qk38ePoUS2EUTif9i2vi9QFRr2J9HOx2+o+fhCkg5lEtpV/YbAwsnoTuUIh5rWMSQqk74u9NzJ1DLDWN0IJJmGLwvLISS1UhPH+wPpdKZKGFEA8KZeI8iblVa7FUVaJzJ2MK0J2qtViqKrG5kzHsCoZTRZ9ncQwGhdLU4vUZDmuxFEJgzJgUv57ZVczZ8ZiBnhCeYtdgWSrGjInx65lTgxkWX/4UBabVJL8gm/YcYikEDMqkaVNziqWYPAHTpuaOURREzThINADkEUtRM26wvtxiqY6vxlQVTE1FHWfdWKBWVw41GOURSzVx78gjlmp5abyxRFVRczSGKGWliMSwJkXJKZbJ+2cesUz2SAiRUyzThpPkEcukTOYRS8XjTk6aSg5dCsSdaNeuXSOarHPAUun1ehk3bhw/+tGPqK6uTv4UWUjKaDMwMEBHR3zXE1X4k0IJWIplqlAmEE5HmlimCWXywZTxjomHUoQyWVaGWKYJ5WA5wulME8s0oUw+mD0+TnG7Eb6UkykhnyknS6pQJutzu9PEMk0oh6uvxI85+LipiCyxTBXKRDmmz5MmlmlCmVpfRrdSUii1RO5kiWWqUCbKMYrcaWKZJpQp9WWKZVIoB+NMVSTFMt5SGcpuoVQEsWJ3mlimCWVKfZlimRBK06Ykj2emWKYKZTwGoiXONLFMFcoEVmKZEErDriTLipQ608QyVSgTOUWK7WlimSqUyfosxDIplIn6hCBcli6WSaF0DL2+cIktWyyFSHt9VmKZFEr7UO7xmKGyUoUyQcwlslor43FD76mVWKbJYiKnDLHMigFijmzpEh43vYtTbpoWYpkUypT6LGMSQplSX6YwCqeTvuOHbuRWYpkqlPEHRJZYZgplAt2Z8VkeFMrk+ywgmiGNqUIZjxHZYpkilMncrcRS0wgtmpx27mWJpaoQXjAl5fWRLZYZQpk8ppliOSiUQ7lbiGWKUCbIFMtMoUzGZYilEAJj1uShngsx2GI5ewoD3UE8xa40oRyqL0MsM4QyeUwzxTIhlCl5WUljQijzxQBDQpnAQixFzbi0ni4rsUwIZTIml1hm9kBaiKVaVZExmS1bLJNCmYzRLMVSZNRnJZZKsT+9LAuxzBrikkssM3sELcRS9XqyHCZTLBNCOVRdXCxV1Y/dbicYDNLU1JRd/z4y4jGVtbW1XHfddZx//vmcddZZyZ+DSX19ffyXqIpiZk8QSRg4WAtlMm5QLC2FMhFjt6M4Hcnu7kyhTMYNimWWUCZIEUtLoUzm5EwO4FYryhFWcSlimSWUqfUNiqWlUKbknWitzBTKBKlimSWUKTklxNJSKBNluZ3J1sosoUzmDqbXjVJRli2UKfUlxNJSKFPiEh/GTKFM5jQolt6acgJB3brLO0UsLYUytb7B8jOFMvV4JsRSFPmIHFOZFMqhmCGxtBLKZJwAYzBX4fOlCWVqWQmxzBTK1JwixXZisydZCmVaWcVxscwUyqGcBOHSuFhmCmVqOaliKXxe+uZb3ChSxDJTKFNzT4illVAmY/wqoYWD9eWMGxJLK1lM5uRX9y0mRSx7F1vHRYricVlCmRETOHGapVBmxsCgUJ4wgZgj872Ji2XwhGnZQpksa0gscwklgGETydcn7HYGFk/Mfp9TxDJTKIdiUsTSQiiTcalimSGUaWUlxDJTKFOOVcylEl0w9N7kaslOimWGUKa+vqRYWghl8lhliKXltYohscwSymTucbEcsLvwlLgxjploOTwnUyxzDeFJiqWFUKY+NyGNmUKZFjN58ItropXSihSxzBTKobLiYimEyBLKZEyGWKqVOYZNpYilWlmeYzLbkFhmCWUyRot3hw/eu3K1SqaKZZZQJpMdEsucY6YHxTIhl3knsw3+LUsoE2SIZa6JVYpQqKmJv4dJxzoAhDnCzR6vu+46brrpJn7605/y61//mkcffRRd1/nEJz4xkmLz8sILL3DrrbeiDDhx7rBunk+8rJwDrgcRgzPrzDy7lQi3G1QFs39g+OSEkn+CgW+wG7s39w4NZpEX06ahdA+za0SCPK/R8HswnDa0tt6cMXqpF8OhYWvuyRLKLITIOyY1VuYh6rPhqstdH6YJhhk/pjkurgDRMjfhEhvenbmPQ7jSTahEo2hHnh0vTBOhm5ha/vou+uSx7AkGWf/w7pwxoQo7/dUqZRvz7C6RqE8VWUKZSrDCTu8khYo1OXbmAYIVNnqnKFSuzr1chjBBiRoYqrC8oSXLKtfongnVb+ZemiJYrtI1G8a9kX/5CmGAMMzc3cpAsEyh8ziT8S/nvsQIA9SIgaEJS2lOllWq0LlYZ/yLuesLlQg6T4wy7rk8MzENEzVixrvEc3UZA2G/oGtpmOqnck8MCPsFXaeGqX4yz+QBE2wx+J+vnMzXf/8WhmF9LMJFgu7TQ1Q9kXscd8Qn6FqePwYTtHC86ypTKFOJugUdZ4YZ90Tu3KNuQfsZEcY/kX/CghoyEaZJzJnnuuAUtCzXqXkqd4wwTZSImfc8ANDtgqblMPHp3OeV7hA0nSaY+Fye89gENWwgzPznsakJGk/TqHkh92fQ1BSaTrFRszL/rjNKWEcYZvKLYK76mk9yMv7V3LvqHLeoiunLqnnkV+/nrU+EdYRh5B0XbiqC9oVeKt/uyR2jCjqPK6Jsdf4tbEVUB93IbqVMCxL0zC3Gv64jb1now+8mI3SDgdmVeLa05o0LTSvHuT1/DDHdWvAyiE4sx7a7JW+MPqEcpW6Y+vbh9QFQWQYt7fljykqgdZgYw8Q0zbxzPBZdV8lrr73GzTffzGWXXbZv+WUw4pbKaDTKzJkzicViuN1urrzySlatWjXSYvPS2NgIgNBzT5JRvB5EVXlcGnMgvF7MIk/eD4DwejBKvBhFg93QueKKfBgTq6E4z+zCIi96uY9YqQezxHqYgFnsI1rpI1bmwijNXZZR7CM8owq9qjh3TImP4AQf4XInsSrrcRp6mY/ARA/BKieRCSU5y9LLffQuqCQ8KXdMrNxL71QXgUobgcm5BxxHK720n1xB/4zcuUcqPHTOchDLc+MPVbnpnG1nYLxCz8zc702oyk3DWcV0zst9PEMVTtRKG90enY5jrWdQBqsctC7SGJgI7Qtyz7IMjHOw5yI3LSflnngVqLLTsgQGJum0nmAtCcFKGy1LTQKTY7SclPvmP1BlY8dHNRqW544JVGi0Lo8SmxKi6bTc57thA2XqAI2n5740BCpUGj4WZe95+QRWYeC8foqndtFwTu6bf6BSofUzQeouyhNTrmBc1IW9JPcNO1gqUD7YwfSpLTRflPvmHyxXCH6um6aP5I4JlQicl7cwd3ITbZdY1xkqFrgub2He5EbaL8t98w+VCGLX5L/Yh/0C14daOG5iIx2XW5cVLhI4PtzCsRObcsZAXDyD13TT/LHcxyrqERgf6mDGhFbaLs/9ZdpUYPKEdpo/lPtLT9St0PbpAHVX5l6zL+YSdF86QPn4HhouzR0XdSnU/2eMuktyj+fSHQpNF0dRSnK/f7pD0HC+gagKsfeiPF+4HYKdH1HZdWnuz41hU9j7AZVoWYy951nHGTaF+rM0ImU6e8/NLfyGKthzoZs9F+S+VpmaoOF0J5Fik/ozrK8fpiKon6bgcqk0np6nLEXQeKafxjNzX7NNRdB6ko+oT9C8tDhnHEDUK2g7KXdZCEH7SeV0nJxnkowQdM0vIepW6F6UfxJM74JK+ubnL6t/XhUxt0L/sbknZQZmVhBzqQRm544BCM+sJjwjf0x0cgWGQyU6LfeEodjECgy7ij45f1nGxGrMmvwxZnVFvDW5epgZ5jYN8kxyBaCyDFGV/5iPGxdvYS5o97fNFh+XWF1dzYsvvsj69evpz7dP6iiQGE+pCBdYzL4WHjem152cRGIllsLrxfQNxrgGu6yzYjwY/sEt6xQFw+eyFEvh86KXeEBTMIpcYNVUXeRFL/PGWwIFmBatfWaxj2i5N97CJQSxEmuxNIp9RKo86HaFSIkTvTxbUI1iL8FxnnhZirDsQtDLfAQmuDHU+GD4ULmd6Lji7LhyH/0TXeh2QbDcRrgmWxhj5V56pzgxtHhZwXLNUiyjFR66pznRHRAoVxmYmp17pNxD1ww7hk0QKlHom559DEJVbrpm2dHtYKgQqLIWy1Cli465NnQnBKoFXbOzz4VQhZP24zTsdpWQaVh2+warHLQtUDEcJqYKgXGmpVgGqu20LVaIuU0C40xaF2Wfn4EqO60ngOE0QQXd4j4UrLTRcoqJ6TBAMQlOsBbLQKWN1lN1hCdGZEKUplOyW5UCFRptp0fRXDEUxUSvsRbLQKVK57Iwqmqg1gQsxTJQrtJzVhCPJ4S7pp+GMy1yL1cY+EA/PncITTUomdBDw9nZ0hgsU4ic30OpN0BVTRcNH8iWiWCZgnlBF6WeAFXFfTSeny0lwVKBenEHZe4BVGEwdXw7zRdmS0eoVGD/YBvjfL1MH9dKy8XZshQqEbgubaHK3YddieH1ZMtZqFjgvqyFak8vdiXG7HGttF+aLWeJuAneeAtQxyXZMhj2xwW22tOLpujMqm61lEZTgSp3H5rIHRPxCpTL2+Ovr6qddouYqEdgXN5BhWcAIUymVnZYimXULYhc0o0iTCZWdFmKZdSt0H9pL6XeANXlPTRdln3MYy5B1wcDFHlCCGFSVt5nKZYxp6DtgyE8nhC+sgHqPph9LugOhaaLIjg9EWz2GHsvzgpJCqXmiSIApSRsKZaGXVD3ARCeGGZxlL0XZH9uDJtC/TkKpiveoqT7c4ul7jHi3epFhqVYGqqg4Uw7MbdJzGtQf3b2tcPUBA3LnOguM16W16RhubVYBlUDh6oSc0PjsuzrnqkImk/2oDsh5oKmU7OvswmhjDkHu/Fd0HJK9jXbVAXti4sGu/oFbSdaiKUQdCwsRndAzAkdx1tMbhkUysTwjphD5BTL3nll8Ul9DmEtlkIwMLs8WZbuEDnFMjHUx7ApBGdZx4SnVaDbFXS7Qni6dUx0ckVaWbnEMjleX1MwJuXIaXwFaEp8slMOsTSrK5LDEUybmlssywe74jU1t1iWlyY9hkrriUeitJjH/vI2AM3Nzdbl7AMjlspPf/rT9Pf3c/311/Poo49yxx138JWvfGWkxeals7MTAGHY05pyhccNlWVxoUxZ3DNTLFOFEoiLpdeVJpZpQpnAQiyFz4te6k0rK0ssU4VyEN3nSGutTBXK5GMWYpkQyuSkDlVkiaVR7CU4Pr2siN+W1lqZFMqUsXxWYpkQytRJJJlimSqUqWWZGeMEE0JpDM6PMtVssYyUe+iaaU92gZkqDFSqaWKZKpTJ12whlgmhNOxDOWWKZUIodQc4VYWQrhMqJa21MlUok6/PQiwTQqkPxplqtlgmhdI1VFa41EhrrUwTygQWYpkUSlf8Ji1UI0ssU4UyWZSFWAYqVTrOCON0x8XASiwD5So9Zwdxu+OCoSpGllimCmUCTTUoqUkXy2CZQuSCHvyueJymGFliGSxTMC6MCyWATdWZOKEjTSxThTKBTdGZOiFdLBNCWemJf+G1qzozxqeLZapQJpjg76E1pbUyVSgT2JUYs8e3pImlVdyccS1prZoJoRyXUVamNIaLBI5Lh7rSrMQyIZTV3r7k8cwUy1ShTGAlllG3IHxZN+XeeJyVWCaEssQzuGsTUF2RLpYJofR7h8q2EsukUA6eVwLwlaeLZapQJspxlgXTxDJVKJP1kS2WqUIZDzKzxDIhlIY7vYsyUywNm0LDmSlCaiGWSaEc/MzHx7Wmi2VSKN1mWllRX7pYmoqg8TQX4ZiOQ1UGZ9mni2WqUCZzcqeLZapQJh8TEHOLNLFMCGXMOTT5SndliGWKUCaIuazFMnO8sJVYJoQyNSZNLDOEMlm2hVgGZqZLlm7PFsuEUA6Vky2WqUKZwEosYxMrsmIyxTIhlAmsxDJVKFPjssSyvDS9p9VKLBNCmSAhlplyqSiIwZtqV1f+YQ75GLFULlmyBK/Xy+TJk7n99tu58847R5TQvpCUSt0Wb6l0OdNaJ60mtiTEMksoE6SIpaVQpsYNtvplCWVKTFIsLYQy/mSI+V2YxT5LoUyQKpam35smlMmYFLG0EkoYnKhQ6iBW5Ucv9WYJ5VDckFhmCmVqTEIsrYQyQahYTbZWZgrlUO5DYhkp99A9w541pipVLK2EMoGhDl20MoUyNfeEWKYKJYBDVQnHjHhO1YKOY10EKx20z08XyrTcB8UyUyiHYobEMlCZLZQAaCaBcXGxDFbaaDk5QygTJMTyRHuWUCZIiGXzyZqlUCaLUszkTS5QkS6UCZJiuUzJEspkTEIszxAEyxX6z00XyuRLTBHLYJlC+PzepFAmYxJiea6RJZQJkmJ5XsxSKJNxKWIZKkkXygSpYhkqETguaU0TShgSxoRYmqpIE8XMuPZLg/Gu8QyhjL8+nbmDYmkllKllJUQsXCSwX96aFacJnRlVbbRfFsgSytTjmRBLK6FMIITJ5MpOWi8LZQllAkWY1JR303x5JEsok+UwJJYxZ7ZQptaXEMuYU9B2cTgplKllJcRSdyg0XRhNCmVqOWliKUgTytSylJIwey9UsoUyGTQoludrOYUyge6PUfcBe1IodU/GZzVFLA1V0HDGkFAmSBVLS6FMKSshlqYiaDrVhe6EkG7gHJSJVLHMEsrUnDLEMmYxeixVLDOFMjUmKZYWQpksP1UsB1sprYg5BN0L42KZKZSpMX3zK+NCOStbKBPoDsHA3LiABmZmiyCki2WmUA6VMySWVkKZIFUsYxOzJ4EmYhJiaY4rzzkZKk0sc4z9TxPLTKFMPjdFLDOFMsFgq6UYbOUUpcXxf434F6Sentzja4djxBN1rPjIRz7CAw88MNrFJvnkJz/Jnj17cLbPRo34MW1afHKMPszaSjYNUxUIPfdLNm0qpqYgYnnKGlzDybSpeSetGHYVw6agRHIPyDUciZjh14UyVWEpb0P1Keh2gRrOM4DdKYaNgfiHM+YQaKHccTGnQHeAlntYVsqEDpEllGlluQS6C7Q8c6F0V/xClS9G0UHE4l3KmUKZXp9JzGti6x16/356ynx+s76Wuv74C9KdJrEiHVtP/p0OYi4T0xdD6c49ocFwG2hFEfSu3GOuTJeOpzjIQHueXTgAxR2jrKSf9vbcY0TtrigTSnvY22o9SxHAMARGUEM49CyhTMXjjDCnrJm1LbkXd/e7QswvbeTt1vyLKuuGIBy1UezOfdIUO4MsLd3JC625N1EocQRYXlrLipZ5eesrdQQ4o3QrT7TOz12fPcA5JZt4pHVRzpiIodE64MWm6pYimMBvC3Fh6Trubzkp+ZiC4Cb+k1/xdwxMyxir+pr7faiKkbc+txbl4rK13Ne8JE9MhAvL1nFfY+6YRNz5FRv5Z8MJOWMcaowPVG7igbrFOWNMoKvfjdeVeywmxKX+1KqdPL1nTs4YTdVZUr2XlXtyLyJumoJQnwN0YSmVCYRiMLO6jU17ci+yLRSTiVVd7Nk9zPg0xaS0qpeuvXnGKwoTV2WA8N48C1ULoCKMWp97fgDEj2msPIqjIX5RK7bb+NHJx/HFl1enlGUSKTNwNeS5XpmghUCJxK+l+YiUmLia809cifjB1Zr/XqKFQImaOUUQiK9e4BO42vPfByM+gatj+Htl1KPg7Mw/ESbqVXB05d+/W40YsA+GFHOr2Lvz7z2uuzRsvfljRFSHmJFTKhMYTg21L//ny7BrKAP5J44BmHYbSiAep2sDhCo3UFpayiOPPDLsc60Yfh+iA+AgeGoawcRMbVPFdNgwHYO76kR1iFqfJKZzMC5mIHTrGMOpYThtmALUsB4vzyrObUd3aSgRI6cw6k6NqDd+eFVFoIay69RdGlGfiikEqirQgtZlxVwqUZ+KGjFQg9YfKN2lEC5SMQXYVBMtkB0XcyuE/fGFkDVVYLOIgXjXVrhYoEZMyHFORt2CcJkYXNIG7L3W73nEJwiXCtQw2HusY2IeQbDCjK9RqQnsFl+SYh4IVhrxGLvA3mV9gYoUQagqhhpQcHRafzCjXpPY+AgoJhG7DXt7/CLsUFVCg19MYh4DpSaAUzUJ2R3Y2qyNOOY18NX0Eo5oRHNIpeHVmTi5HZuq0+L0EWiyuMl4oxw3pRG7EqPeWUxLvfXNSvNGOWXqTlxqlN3OMmrrs8cbubxhzp+yGZcapcw5wPt7rVdI8BcF+OBxG2gOF/HKXusdUkq8AT456S18aohxzl5LASj3DvD5SasoUkJMdHby4N6FlmWVuwf44sQXqYuUce9ea8GpdPfxjZqn8SthpjlaubNuWVZMlauPb094Er+iM9nexu/qLAZ2ApWuPr43/klKFYVj7C3cXn9uVkyFo59bxz9NqWJnpr2Fn9Wfb1nWBHc3f5j2b1p0Oz+pv9AypswxwI/GPU+J4uKYmhX8sP6ivDEzJj7BD+osBgYCVc4+fjf1Adp1W84Yvz3EbeOfolSxM2PSY9y695KsmCJbiFsnPBE/BlNauW33By3LKrKHuKVmBRVKjGOmtvDjXdm5e2wR/nviCkrVENOOaeVnO6yPldcW4b8XPkm37uH27WdZxji1GNdPWUmp2s+kmR38adtpWTF2TefT096gTO2nZmYX92470bIsmy3Gx45/j37dwSNbFljGKKrBBdM34deCjHP18sKW7C8sQjU5Zdouim1Byl39vLd5qmVZqCbHHtOA1xamwx1kx5bsRb1NxWTC1HY8tghdrjAdW3PsJiagrKSfAVeEaG2OyZuAmBzAZdOJuHS07S7CuoEzdbkaYRKeGEGxGQQcKu6d1t+oTQV6Z8QQhsCzO7d8BscZGLb4rHjvXutrbbDajPcOOcBbl7Mo+iYJMAXe+hxeICBYIeI9UnYFT2NuaYy5BQM2FU9zbmEMlSrxvGwqnhbruFCJiqmCUaHhasstlsEKO5gmrrbcX1Yifi3eE1jmwNFhLXrRIjumAkapA0dnnolvJc74ihHduWVQ99gxBZh+J1pP7jjTFu8xVXrzTMZzxbcyNnwulL5gsqWyr28fV56xYMTd31akjnP8/e9/zw033MAPf/hDYrEY99xzD1/60pdGtD94KDR4IG2OpFDCYMuhxW46CaE0BcnBsZmkCiWA7lBzxsXctsElSVTLLfWSQikAEW9K153peaUKZfw58d0eMom5VCJFanyNNoeC7rJoqk8IpRKvL+oSxNzpcQmhNNTB9d5ccXnMJCGUphpvrYx6sy8oSaEcrC/mhkiRRZxHEC4DUxuM8Vt0awwKpakMfhv3mkT8mTFxoTQ1E1MxiXlMIiXZF6iYB0LVMdBMdJ9OuDT74pQQSqEZCMUEX5RIefzCowmBbphJobTZdBTFwFkUJlqRfVFJCKXDFsPnDiOqsz/gCaF0aVE0YVBV1Id7XPZENqGYuLUImmJQ4+umqiZ7CElCKIu0MDZhMMXXwYya9GUrEkJZpIWwCZ2Z3lYWTcq+4vu8QT40ZS2Vtl7meJpYNmlHVkxCKEu1fmwixnx3HedPTt8XNiGUZWo8ZoFrLx+etCarrHL3AF+Z+BzVai8LnXv5xKS3smISQlmhBrELgwWOBj438ZXs46DoVKgGdiFY7Gjl+okvZZc1KJRVqoZNKFSo2c3bCaGsUl3YhMp8u843ap7OjnP2c9u456nRvMy3q/xXzZNZMQlZLFc9qELhOLuNW2pWpMWU2gNpMcfa7Hx34hNZZZXYg/xo/LPUaF6OtWuWMQmhTOQ+xwbfm/RYVpwijOQxmGsL8Z0pj2fFJISyWtVRhaBazT4/E0JZoQZRMZltb+Mbx2QfK48twk2T4+/zDHszN05/MSsmIZQVWi+qMJhhb+bama+mxSSEskLrRREG0xytfGLmO1llaZrOFdPep9zWxxRnO5fNXpt9DAaFskQLoGAy3tnN2bPT7z+pQglQ7ezj+Dm7sspKFUoAny37M58qlAAlziBlsyyWz1HAMyX+DdrjjGCbkd0inRBKmz2GECZ2R5TY9CBR00ARIr56XYpQAihOncC07BYxU0BwQvz6aNoNBqZYC1dCKAEMh0H/JItJdoNCCfFGhf4cOzoGKwWmBqYN+mus1mMcEspEWQPjrbUkWK4MxVRbC3FCKJNxVdlxCaGEeCNGsMK6MSAui/EewmCFdaNCQigTZYXLsnuiEkIJ8bLCpda9VTGvbXBSrSBabN1ynRBKiA9pi/mt4wy3PRljFFk3SSeEEkiKpRhUwmg0esC76hywVN588805fxL98du3b6e9vZ3f/OY3TJo0iZUrV9LW1sbPfvYznn/++QOtOimVpi37zckUyzShJP7BSmwvlSBTKBNkimVCKEnECbLEMk0oGYpL/X+mUA49N10sE0KZWl+mWKYJZUp9qWKZKpTJ42IhlqlCORSTLpZpQplSX6ZYJoVSzYhJEctUoUzmRcpzSBfKodyzxTIplKqZrC9TLFOFMpl6ilgKARGXnhTKBFZimSqUEB/fVVIUSBPLVKFMYCmW3ijHThpawsFKLFOFMoFNGGllpwrlUEy2WCaEsmRwHIFN6FlimSqUQ2Wli2WqUKbGZIplQijL1KH6MsUyVSgTWIlllauPb457JiUmWyxThTLBRNXgxprnkv9PFcqh3LPFMiGUlaonJSZdLFOFMoGVWN427oWsmEyxTAhlan2ZYpkqlKm5Z4plkS3E98Y/mRKTLZapQpmgVNH576lDeacKZTJ3C7FMCGWF2peMyRTLVKEcOg7pYpkqlAmsxDIhlCUp42EyxTJVKJOP5RDLhFAmyBLLDKGEeBf+MbMbk//PFMoEWWI5KJRO21ArWaZYpgplgqRYThucICVIE8pk8RlimSqUyccsxDJVKBNYiaWR4WpWYpkQymR9mWKZIZSpZWWKZbBcSYuzEstUoUyLSxHLVKFMxliIZUIok7lbiGWqUKaWlSmWZoZlWYllQihTYzLFMlUoh8rOFkvDnR5nJZZpQplACAzP0NCraDR362w+DnhM5Zo1a/L+feHChTzyyCM4nU7OP/98tm7dypNPPonf72f16tV88YtfZM6c3GNp8nHGGWdgGAbOgaUIM8duOVE9vpyOI1sWIb5gdCLGSihTUcPxuDShTMUcjFEEMY+WdRINxRiDA6+zhXIoLxNlcLxjmlBmlJVY4DhLKDPiGOyezvywJeszhsZEpgpldowJBoRLrWOSeQVA6KQLpUWMEiNLKJP1AVq/iMdkCGV6XgJtQKBERLpQZtSn9qkoEUF0XPbFNxlmCP48eSnfbHmTgGrdXWAYCqFeByKg4ps4JJSp6Iagp8+N3m9jwqSOrJtLgpip0NLrI9DnYO7kprQbVTLGUKjvK6aj25sllAmipsLOvnIau4s4d8rWtJtnepzKtv5KtneWpwllZszG/gls6qrKEsr0OI0+3UmxGki78WfGrA1OYlX7jDShzKxvTWgSz7bPzRLKVCKmwurwRFa0z+dbE55KE6ChGJPV4UoeaD8hSyiH6jNYHfFxX9spWUKZHqfzfkTjr+2npgllZsy6iM6f2pZnCWUqumnQEguzZ+8/WTLtahSRnbtuGqyPRPlt61lpQplZ38ZIjNtbzskSysy4DVHBHU3ncuuEJ3Ieh01RJ7c3npsllEM5mWyK+rm9/ly+OfFJqlXr80pHsCVSwW/3npUmlJkxtZFq/rj79CyhTK9ToTnmp89w5YwxTIWd4Ur+sXNxllCmsjtUzmO1x2UJZVpZCBpDxbxYOzOtlTKT5pCP97ZNYc60Rors1t2NbUEvO2urGT+1HW+Oz7yBoCfkpKO2LEsoUxkI2YnUFmUJZSqKqfCnqrO5avurGLY8Y/ZDKq5d9iyhTEVEFDy7VUuhTKszHO8KT22lzIqJxrvCM4UyLSYCnkbTUigzy/I0GoTKFIxcZUXB06xbCmVaXAzUcI57UjLGxNUWyxLKVIQe7wq3EsrMshwd4bRWSquyHJ3hLKHMjLF1hyyFMi3OMNF6QllCmRmj9AathXIQE4OQdxUA//73v6mqyr+OphUHPKZy4cKFw8b09fVRVhYfS+LxeOjr6+Omm27is5/97IFWCwx1rwtFoOQ4gmJwbUZDFZZeBiAMBaHGm5vzDUcWqgBVYdlpM5kxo4pNmxt4+51dWTFCFQgtd1mKGh+DKFQlT30CRY3LpzI4g/u0xccwe2oVG3c08caaXYP1KSAG681dVPyDpuVpklZBqIOSnZH7GXOncuzEKtbtbeaN1bvim+nkmSgUzydel5LrzBKgDNan5PiAn3XMNBaUV7F+dzPP9O7A2qwBJZ6PoovB3bCsu1cUTaDqAmxm3rIqS8v4YsWpvNu5l5dbarNCVMUkpsXXqXTZdMuyFAUcmkFYAZ8tmrM+uzBxajoRBc6smM0072Rq+3axpntDWoxb0+lVTfxqNPsrL2AHfFoUmwKlasgyJh5nUqRGsClQogbBVJjqOYVK10yag1vYM/AWNkxKtBA2AaVqIGdZNgyqtT58SijnVdqGSYkaxK6YlCohzJS4Ytc5eOzH0R9ZQ2l0PXZhUq5E0mLSy4IKZQC7MKhSsIyLxwSwY1KpOLD6qux0nMc8z3wWRWNUKK+SY3MbVFSqlCAagnKlyDJORaVc6ccOlOaIARD4GF/9b0rLxmF0+4Bs6RKoVCphVMhbX6USwYZJheLdh9xNxrsuQLUvRI+sIxYe6hnSUKlSwmiQ83gqMFgOVCnhnO+NAlSp/agCypUApqnid52F176Agch6uoPPowDVah+aID4MIUdZKlCt9uMUes5zTwGqtD4URPI8TjDZs4Rq12xag9sYiL2PJvJ/JlSgzBZERVCihXPGldpCqAiKbWGs7tgLi+cxbcI0no+E2WNrItdnXgF89ijdCNw5rh8AbnsMXRHY7bljhDApKSnhq8efxtqOJl5oyL5eASh2E1UI4t8tclz7bCaqIhA2UPPdCe2gCMGZM6ayYHw165tbeHHHzvS87IMTi/PtimSPz6vNey9JxCkCbPFO2WVzpjB/UjUb61pYuWnw/msbjNFE/m5XW7yxI2+NNoGiZN/DT1k4lWOPGceWXS28unrHYEy+ezhgty4rDUXkLWvJSccwZ/Y4dr1fxyvv7sxf32BZeV1GEXEHybMDn5lyFIN5dhnMx0GZ/Z3g4YcfxuVypbVU3nTTTSMu96yzziIWi/Gtb30Lvz/3zi2jzZQpUygpKaGjo4O9e/ce8no7OzvZs2ePrFfWe0TU29XVxe7du4/oehVFYcGC+OSRtWvXHvA4pQPhaDrOhax38uTJlJaWynplvWO+Xl3XueWWW4ACtFTuC/PmzeNf//oX559/Pm+//TbHHXfcqJSrDC7jc8d/v4TQMrqKYgYiFiPZVCEEptOeNu5RRA2UyFC3gikEpsuG7kj/Bq3EDJSUWdtf+PoFLFzi4OXX9nL3X+Pjf5SIgRKOIcxEWaB7bFmTbtSwgRqMl5XoJo+5M2IGZ3eLwWaIeJzKDde5OeFYJ6verecv970Zn9md8vqiXoWIR8koy8QWMBB6vGEg6lEI+9K/w6hhsA8YiMH7nKlAxKMkxz1+8zI3J0938vLqBv7477eGYryCaHF6WUooPgM80btnKvExltGSlJgw2LvTY6J+QThj0s13NDenqk5e2tLEHU++Q6wIQuXpXTxqUMHRJZJloUDEbxIpTxl/FFJwtqvpORUbmFXp3chGQMPervHc5Mk0B4M809LAb1vTx/yGAnZEixMlUZaAWHGM8gndyZiBoINQowehJwY/g1kaYfqE9Mk0nUE3HQ1+RCz+nv23z8Fyr50NrOcf4lEA2kJedtdXYEYG31fVxFsaYNmE9JaBhqCf9bvjS/0IxaS0tJ8LJ2xKi2kM+3mtbhrRiDYYZzCutJdfOZfgUk+g2fk6T3ge4um6OUSi8RhFMZlY0sVV419Pry9SxgP1CwmE7aiKwfSSdj437uW0mLpoKX+rP5mBSHywuKoYzCpu5fqq+LhHxfvfxNSzeF3fxe0D8XGONlVntr+VmypfSCurPlbEbxrPpCcS7+7VhMFsfwvfqhyqsy5m438bz6UzEh8PpCkGc4ua+XbFWykxBuvEncwzF/COsYV7zYeY42vhlor0iR3NepDbGj9AdzRenyJM5vqa+W7F0DFtjvXzg+ZzkvUpxGNuqUifxNSmD/CTlouYyPcoxc9K72/4evl7aTEd+gDfaTo7razZvpa0+tr0Ab7TmFKfMJnhaeO7lWsyygpyS+N5dEbi18TPGJewVMymrOhJvFN+PFhWjO83XEh72JM8VpPdXdxS/VJKOYIf1F9Ex2CMIkwmurv41rhn0+rrNuz8sO5iOoNDeY339PAr72KEdiaKdxXhcb/kJ3suoCfkTMZUevr50oT097nPcPLLnefSF3KgCJNST4DPTUw/r/p0F3/auYxAaGhmc5EnyMcnxcdZOh2fw6GcwvPBen5UF+/CE8LE7Q5z6eT1aWUFDDuPbjuOWHjwM6GanDcz/f0LGyora2diBAdvkwIUV4wTpgx9AYuZCud0XsU5bher2pr48bo3MZ06M6ak70gSMxV2bx2HiAxdNw2HQfnkoXHTuiHo2V6KmhKj202ck9Jbtw1DQd/p5YXJk2kOBHm5qYUf7kk/Vphg3+lCSemJN+wQGhdNi3HvsaGkPGTYIFid0Z1uCjx1SrKsL11sZ/kiF681tfCj199OhnnqBErUTClLEM5Ymcldb2bVFy7PbltzN5oosZSyVMG1n7Rz5jwXb+5s5acPv4OnxUiLMVVBsCS9LGGCu81I5mVqEPJnt5S722JpSw2aiiAyGPf5j2qcfoKL999p4ne/GRrfbaqCSFG2Qjk7I4jo0JfHSHH2THx7VwQlZdlCUxXEPOljNq/5D51Tz3Tw/tv1/OHnz2EKge7JnjCk9YbScxcCw50ep/aH0pdcHPSiLAIDMLgWvc+XZ8vpPByU2d8JZsyYQUlJCTfccAO7du1i+fLlo1KuwxEfR2mEQ5jhGIZhxn8iOmY4ihEzMHQz/hMzMAfCEIrHmWEdQtGh5xgmpm5gDkQQwaGyiOgQSI9TFBHflD2sx2NCOgSjmHpqWSaiL4IykFJWSIeUss2YgdIXRekfekyEdMSAjhkzMuJiqIOeZEQNlH4dQx+KMXQDtVdH69MxTBPDNBEhA7Vfx4wOlhM1Uft0bD1GSoyJ1qdjxlJyj8Uf07rjcaohEAboaTmZaL0GapeBbpropglBE63HiJc1WL6pxx9TO+MxZshE68qOUbsNtE6SZYkgqJH4cFBdNzB1E6XHxNamoGOiY0JAoHWCETOTz9N1E7Ub1DYVHRMjJLC1KWkxhm6idgmMZnuyrGhARW1TMaIAAmEKCEF/oycZMxCwYTQ7MFPLMkxEl0pLgx8Dk96gnYFGN0Zs6LXohonRaWNrQwUGJgYm7UEXrQ1FGDGRLF+YAhMRjxEmLSEPO+rLiUWGYnQdejpdrGyYiikMTGHQFPawvqE6GRMzoK3TwxMNc5IxDREfL9dNJRRRU+IE9Z0+avvjV/w+3cGTdbMJRodiogbs7irm7sZTEouNUh8t4V/1C+gP2zAwiRqCbV1l/LF52WDfkk5drJh76pfQF7ElX3PUEGzuruC3rWcghE6/6aQ75iakK8mYsK6wqaeCX7adiRA6QujU6x7uaDyDrogzGRcxBR1RZ0qMwi+bzqE94hqKMQQbeqv4YfuJybiYMAkZGmayHIWNfZXc1n4citBRhE6L0c8Pms6lMzpUX8yEDX1V3No+Ox6j93Bry1lp9cWADf1V3NY+K1lWu9HLd5vPpD3iSi5zt3WgIi2m0+jllsGY1LI29Vcm62s3erml6ez0GBO2DpRza9v8lLL6+XbTB2iPuJNxBnGZEZgIodNuhPlu4wW0ht1px2pXoJjbWpYnj5UpDNpSYmIm7AkU85Pmc5MxPabKD+ouoj2Ynlf9QBFv908GIGKq/GjP+XSFHGkxzQMebm84K3nO9Jl2/t/Oc+gJ2ZMx7QMu/li3LHnu9RkO/rDzNPpCtqHPBCZdA07u3XsCCIMo0BN1ocdSznUT+gJ2Ht4zL/mZGDA1Hto2j3A4JU6H5/dMT8aETIUXamcQDQ7F6KZJNKjy1u5JGCL+WY2ZYERF/D0WDF57FLbsrko7Z3dsrcYIp1wbTBMzJGjZUzz4GYHO2hLIiCEMA3u8KZ9LQWSHBxGOL91nmqAYQL0jLU91hxMzbKbXFzaxNWrJGMduDTOSERMxsTcpKWWBa6+A8NB12zAMRCw+DC3xPNdeIDJ0fzFMEyIGttahsp11BkTMjBgTW5uRloOzwYiXlXLvJWpg9uuD0wQEriY9K8aMGjg6hnIwDRNniw7hlPtXxMTeFUvLwdkSxYxmlBUz0Lri9+dozEDETBREVn1ad7oj2NvDST9I/Kg96TFaRxgielZZSl9k6DmdQfSYEX9/FZH0FJESYxgmSncwO3fdgP6hONETxIjoQ06U4kVpz+sLYsaGjN/pzL92ai5GLJW33npr2ppGvb293Hbbbcn/X3/99fzmN7/hu9/9bnKf8JHiSW65GINwJLlgqIimtFCmYpqIYCTvIuTCNBHBKGpYz2qhTLB3Zxu1mxupq23B1htJa6FMLwvUgShaUEeJGKghPdn6mIwxTLSBGFpAz2qhzIzbu72V2i1N1O/syPn6bP0G9n4DNTzUQplWjg62AQNHrxlvoewfaqFMry/+N3uPyc6mDrbuamFvU2d2TJ+JvdtEzWihzIrrNXE3mTi688T0mDi6BGpYYO+GHY2dbKprZXdrVzLG1gvONjW+/mRqC2UqBth7BK49Npxtau76uhVEsyPeQtmmIWKDS0Jgxseh6ia2boVgkzfeQtk81EKZVpYJWpdGW0MxhiGS5WTmJDrt1DZU0hl0057SQpmgtquD9S0tvNEQoS3oZVdqC2UquqC/082q+mNoDvlYW1eDHk2PMw1BR6eXFfXH0hj288reY5ItlOlxCmvb+nittYsXGkzCUYu9jw3B3q4S7m44lfpIGf+uW0QgnP7tVjcUdnSV8cemM6iLlnFP3SnJFsrMuC1dlXx71+WsaNHY1NPEnv62tJiorrK5u4pftJ5DXayIOxrOTrZQptISKOLHrcupi9n4ReN5dIazF4uPGQobe8ZxW9vJ1MUMftV8LnsDLWzvr6M+GG9Fipkqm3qrubVtIU16kNuazqPLoj7DFGzuq+b6hpP5fvO5yRa8zJiNfeO4tW0urfoA32k6JysuZips7q/m1ra5tOsDfNsiJrW+GxqW8O3GD9Bh8foMU7Ctv5LvtS6iXQ9yS+P5WWXVBZvZ1lfPI10mnUaM7zRcTHsou76YobB7oJQfNJ9Fhy64tT57XUzDFOwdKOHHTefTbdi5de8lyRbKzLhNXT282dXNg83uZAtlZkzrgJfb68+lz3AlWygzYzoH3NxZdzp9uos/7DidgZBFywrQM+Dirh2n8PheO+s7mtnR2572d9MUDAQcPLJ7PgHDziPb5idbKFMJB2y8sHsmYUPjxW0pLZRphYER1Hhn12RihsL72yazvbuT9W3NbO8auk6KkMq23dXETIWd26oR4RzjLCMKuiHork1voUxFjQhCe33xFsodXpSwwK4ocXGK14YSFvEF1E2w70hvoUyvD5wNNty701so02Ki4GpS42tL7lWyytrV0sWmva3s3hV/vd769BbK9LJMnK3gaTDz1udsjz/f02jmLKuuvoPNda3U13aktVCmInQTV6cZb6FsNSzLEjFwdscv6O7WWM7NUIRhYu/RadrWxratzezZ054do5vYe+OukNlCORRjYOuLx2S2UGaWpQ1EsXXHWx7rd7dTu7mRvTuHrpPCNFEH4gcys4UyraxBT1D7MlooUxn0IgAxEELoBubgTdPlciV7hPeXEY+pvPrqq/nLX/4y7GOjyWc/+1m2b9+Oo2MWWrgYwpH49omu3LuVAIhEnDu3gYtgOL5WlDf3dgNiIIToD2D6PBj+3LufKIH4G5ZrLSkANRA/QXKtS5VA64+AaRIuz52XrT8Ghmm5VlZqjNBNgpV5tpsBbP06StQkUJX7i4C9z0CJGgxU545x9Bp46gYIl7vonZR7tIW9z8QWNOidmCemNy7MvZNzT+FzdJkU7wgTrLDRPSN3nL0nXl7P9KEL+TOf/ijC7ebxjVv59ao3sffEy+vJvbELALYegbPDpHt27o+SvVvB2Q49x+b+YmPrVnA1C3qOy7+Ug9at4W4S9C3Ms1tCtx1PnUJosfXMVwC9y0HlG4JghUL01Ny7tgS7nbh32NGWZK+dmaCvx4Wz1on3lLacMQAdXV5c610Un9mcM6a914PY5GP8afU5Y1p6fcTW+5myLP9Y0JY+H8G1JcxcbrHm4CBNfUX0rS5j7hnbc8bU9xUTXVFBxA9zLtyWu6yBIjrermLemfGJE07FyU8XfIMy/Fy79hYCRpDmgSLa36pm3ln5ywk8Vk3UBzMvsp6EAdAa8NHxejUzzt6ZM6Yj6Kbr1WomnZX/WPWEnfS+UkX1WbmPe2/ISfDVcorPyP3+9YUcKM+XYLsg/7kQjNgQrxQjTs99XoUjGo7XfESX5T4/IxGNsqdcGDboPif35AI9plDymoOupbkXnzajCmVv2OhYkn+nFXRBxZsq7SflGSMbE1S+DW3H5w4RuqDqHZO2xfknrQgdKt8zaFsQv6b5bBr/vvISDLeXt3bXc+vTL8Zj3o/RflyeUW0mjHszft1oOT7PfdCA8nVhOufkvpcIA8o2huiamSfGhPI18VUkOufm2VkIKNncT+8x1qsoJMoqqu2jf0r+coQJ3u09BCZZLyafwLOzm+DE3DHCBNf2dsKTcu9KlsCxt5Nodf75HbbGLvSK/DFqffwzY1Tlr1Np6cQsHWY+SXsX+PehC7uzG1EUj0vsqFNWVsbDDz88/HOtcjugZ6Wg63raLKFAIEAsNswHcoQkWyqFDsEQ5sAAZl8fIpD7JiuCYcz+AczePsSA9YVHBEKYvX3Q3YvozzPzyTQxo1Ho6UPpsb5pKwNhRGcPorMHrdu6LHUggtLeg9Leg60rd31afwS1rQe1vRdHu3WcrTeKrakbW3M3zlbrGHtfFHtDN7bmHtzNuS+s9p4Yrr09OBp68DRZf+V19Oi4d/fiqu/D25AjptfAu6sPJRDB2dhH0V7r88LZbeKv7ce9ZwD/LusYR7dJydYBfLsDFO/ILWaKHj9envoQxbXWcY4uk7KNIYp2BSnZkjKuRcS7VgzDxNEFFWvDFO8MUbIxZ3U4OgWV70cp3h6hdL31jcHRqVD1XpSS7RFK1+SYUd2pUPW2TvH2KCWrc98UtE6N6jcNSrZF8b9tfVMQHXbGvWpSujWG5808Wz7GBI5ug6LdOrbXrC+uwU4XVS9plGzTMV4tsYzp7XJT8YKDkq06wVW5t7fr6PJS9ryTot0G3SurLWNau734nvZSssWg+YUay5im7iKcTxZRssWg7rnJOetr7C1CWVFCyRaTHc9Ms4yp7/FjPF5G8VaTrU/PsI7pKyb2eDmuTgN7brehvq+Y4CNVFG812fzkTOvcB4oIPFJF8TYjZwzEW21dnQbeeoNtT1rn1RLwxcvabrBrhfXrawt4CD1chX+HQcOTuY9VZ9BN5OFK/DsN2p60Pu7dQSfmI2X4dxr0PWX9/vWFHNgeL8bTrBN9Kve5EAjbcT7mx79bR32m2DImHNHwP+HFvyeG61nrm2MkolH+pBNnl46jN7fg6VGFqqfs+OpjVLxgLUFmVGH8sxq+hhhVq/KsPaMLJjwv8DZEqH45hwzGBDUvGXiaoox7LUcrXkwwYZWOuyVM9Rt5etF0GP9KDFdLmOq34l84bYqCPtizJUQ8ZtzrYZxtIarezdFMOSiUWl8k2dplWZ8BVW8HsHeEqFiT415pQMXqAWydAcrWW98DE0KpDIRRBsKUbrJeogygdF0vak+Q4s3WHzBhgn9TN0pPAN/Wnty5m+Db0oXSF8SzI/eXFc+2DsRAENfOTsu/J4SSSBTHXuuYBI7d7RAMYWvIHWer68AMhlCbcseo9W2Y0WjcLfIgmtoxI5G4NOaitRPCYejszlsWHV0QiWJ2DR5TJX7/PdDxlDAKUnnxxRfz5S9/mYceeoiHHnqIG2+8kUsuyd4ubDRJLFNkqvHWO4z4j9nfDx1dWXIpgmHMQAB0HXQds68/SyxFIITZ1x8vzzRziqUYCEHf4Npoum4plspAGNHVi2kYmIaB6OrNEkt1IILS0ZvMSenotRTLhFCiG6AblmJp641ia+mJl2UYaG29WWJp74tia+xBxHRETEdr7bUUS3tPDGdDb3y7S13H3tSbJZaOHh3X3r74cIOYjrOp31IslZiJGJwQJWKGpVg6u018O/sRkRhC13E1ZIulo9ukuHYAJRRDRHU89dZi6egy8W+Pv24lqluKpaPLpHRzGDUUQ4kZeOtCSbEcCIZp7+unu3WA8vXh+LCFmEnRXmuxdHQKytdF0QZiKFGDoj3ZYunoVKh8P4oW0AdjolliaetUqHpXRxtIxMQsxVLr1Kh+20AbiOfl350tlqLDTvUbJrYBA6Gb+HdZi6Xe5aD6DQaPlWkplsFOF1WrVOz98QHx/l3ZYtnb5abyJXu81ToGRbusxTIhlPE4k6Jd2WLZ2u3F/6wHR2+ivmyxbOouwv20D0eviaJD0W5rsWzsLcL2ZDGOnviwi6LdRpZY1vf4EStKcfTEy/LtMbLEMiGUzu74DdzRbbD5qWwZrO8rJvJYBc7uwbL2xqUxZIS46f3beP/999nVZyf4SFVWTCZNA0XEHo+Plld08NZli2VLwJcsSxjgrc8Wy7aAh8gjlfGhJwZ4G6zFsjPoRn+0fKisxmyx7A46EY+W4eyOD9PxNmWLZUIond3x/ZJziWUgbMf1eNFQXIuRJZYJoXT06PGYVj1LLBNC6eiOf37VsEnx89k9OXpUoeppe7IsV0e2WCaE0t4TH0Ll6tCtxXJQKO09g12eHdFssRwUSntPDGGaOLpiWWKpxATjX9ax90TBAEd31FIsE0Jp64uLhr0nSvVb/7+9+45vo77/OP66k2R5x07sJM7ehOwBCWQBgUAgQNijQKFAoFB2KaOMQmlLgZZfKbtpGWW3ZZS9A5QwEpKQRTbZseN4D+277++Pk2RJlmzHI/L4PB8PP2xLH33vq/NZeuvuvt/z49B13B4PhVXV7KuupeArL46aYOCs8tUPlhGBEqxDuz2X13/9DwVKe43POtRa46sXLEOB0lZrPd5W660XLCMDZfg5u+KH3e6rqtBdVp3m9tULlqFAqYVqPN64wTIUKDV3qM4XN1hmbCy1jloCms9fL1hGBkqgwWDp3FZiHSkN1sULlo6dpVYIBJTfHzdYhgJliL43QdgtLIHQTrtAIH6wLC4Dv6+uJl6wLC23vkKXtTasbc+0WY/Ly8uLu/ymaHGoPOOMM7jssssoKiqisLCQyy+/nNNPP72lzTYo9IRN5UZ5IgKkqcAfQNXUhINlVKAMiQmWUYEyJE6w1Go9UFVTr63IYBkZKMNNxQuWhqrXTmywtNf4sJVURZ8TERMsowJleD3UD5ZaQKEFjIjf6wfLqEAZ0a/IYBkVKEPiBEtnlUn6zuhPpqFgmbUzEGyrLlCGa0LBcluwJiJQhmtCwfLHuufjLFfkbnBHXWM9HCw3m+GaUKAM14SC5QaTFZs289u3P+S1L9dg80Suq2CwjBhUHRko65YXHSwjA2V0TXSw1AMa9trYmuhgaS+z02upGVUXDpZLrWCplaXQ+xvr3Nm69anI3h4g/du6YGmUO+n1pYajpq4uFCztX1nBMjJQ1vUzOlhGBsq6mvrBMjJQRrYVGSyLKzLJ/igjam9TbLCMDJThmjjBMjJQ1q2H6GAZGSgj24oNlv6ALRwoI2sig+Xumm743sqvX7cjus79Zq/4NRHBsrA2G/d/69elRPweGSjDzy8YLH9813p+kYEyqma3ye736tZVZKCMqosIlhXuVLQ3rUBZVxMMlu9bf7+oQBkSDJa+9+u2hahAGVGXXlwXLL0+O9nvBANlZFsRwTI2UIbb2WfQ7ZO6YBkVKCPq0koD5H1qBUvl1yn4yB4OitaNcYJlTKAMSamKaDsiUIbXVUywjAqUIXGCpWZAwZd1gTLEUR0gxaaxZfduLn3udV6/94twoAzXVPnoucwXfr6RgbKuxhsVLDUTei11W6daRfQ9MljGBsqQyGAZL1Ba/VD19lZGBsrwMt0+uq2vDrcVGSjDNTHBMjZQ1tVFP+fIQBmu8flJ21oebif1x9K6QBkSJ1hGBcqIukiRgTIkNlja9pTW2zup/P56wVIvKq0LlCGxwTIyUEbWRAbLUJj0R7elyitRNqsfoR13zdGm81S2lVdeeYVHH30UW0UWzh3xD8OgawRnxI4OXJFsNrQs6/wMVZ1g17ymQU629T02UMa2ZbdDcO9k3KZ0HZWbjXLY6vZSxmnH7GHV2EqqIJBoeTrKYbcG9yTqk64TyM/GTLPjKKyKDoJBym4j0DObQJqtfqCM6ZdKdYCh4rYDgN2GpyATf5adzK3VUWExepk6ZqoDzVSJa2w23H0z8GXpCQ+JKIeN2v7puHP1eoEykumwYaRZ6yphjV3nvCsnsGjXPnZ9UBQVKuv6rVE1MBVX7/qBMnp5OoEMmzUYyxX/b2M6dKoGOqgeQHgvZfwaO9WDoNdSE0dN/LaUXcOXZbMGNCWoMR0alYPsVI8w6PWlFhXwItUW2Cg9NFAvUEa1ZdfwZutW2EnQjmmHqsE2XOPc9QJlbFu+bA1MSK1MXFM5WCcwoYa8V+MfzjdtUDVIxza1vF6gjKRs4MnR0Q2VsMa0QfVAnYzp+6L2UsaryZ65F++bPUktT9yWv7uNR846lF89/q01kjVeWwN0co4osgJlnLZMG9T01+l2ZFG9QBn1/PSI59dATU0/nbQj99ULlJF8mRrmqaVWoCxPcCUqXcOTYw2ciwqKkTSoKbAROKqyfqCM6Ze3mx5sK8Frmga1PW1UHuGh70sJzuUO1pTN8tYPlDF13mzr/8ZZkeA1TdNw97Cxd4YZN1CGeHo4KJpGvUAZ9fw0DX+2DS1AdKCMpIM3x8HeKTYKvgyQUhW/rs+YHsw9eQh/+7/l9QJlpECG9TobGygj+bOd7JvgtAJldfzTopRNY+9h3eIGykhmegqaoeoHysiaDCdlozLjBsqoZaalgGnWC5RRNalOakZ0ixso62pSqB2aGzdQRtWlOKzBK57ENaQ48A7oHj9QRtT4+3aPGygjaQ5recqb+PlpDgdmr+7oRfWDZ5Te+fEDZSS73dpZluj9Gzj+7nG8+uqr/OQnP+HnP/954rYa0OxQ+eCDD4av9Z3o/rby2Wefceedd6LXppK6pX/cGuXzoQIBtJQUtJTEA0mUYVpX6HE0cHKzP2CFVHsj03qGPqWkNTDoJvhJQ0tJPFBGBYOk5mx4MI3yeKx/gszEJzeH+5TawCAmfwBV67KeX7fEJ0FrHh8EAqgGTv7V/AErWDc2GKq8Ai0jA7NHAydKe61D8A0OmvIb4A/Uu7ZpJL3WC8WlaFmZBHrnJKw745xRbFu3j6VrShO35Q2g+QIEuiVens3lQ9+1D7Iy8PWPfx6i1ZaB7g7g69HAQC6vic3tx9tAjaMmgGNbMSozHdfQxMuzeU3s1T48PRvou8/EXu3H07PhQW/2WoPUPdVUH9Tw8lIq/bh6NzBwrNYkfV0RKjOdqoNzEtbpfoWz1IerT+L1oPsVqSU+avs0sDyXSebqIlRGGhVjG/jb+BVpJT5qCxK3ZV3WreEam1eRs3ovv376lIShMtzWXh+1fRtZXpGX2n4NbS+K7BWFKGcKFRMSH8LSA4r0Ii+1fRv4PzUU6YWehtd5QJG1ohDlsFM1vmfiOkORtseNq28DAxv9iswfiqkem7gdq1+QVuTC3TtxW5qpSC104SlooMZQpK/ZA7qOa1SCnRNYe6+cRTV4ezYwiMQE594afA3WKBzrd6NpGr7hfRLWoRSO4moC+YlfZ0eO6sHUyb355zOrE9ZgKmw/WtclNwcVJK4DbCVVmDkND4DRS6swcxuoMUHbVWj93KfhSbO18ipUdgNtKYUqLEbr1fBhWFVYjJaejpbZwLnjWDuNtIyGa8x9pejdE78mhNuqqUFLS/waCljvpw3lAMCsqETPanidAyi3B62h9+9QTQM5B8CssU7b09MTr4dxl/Xgm2++4Ze//CXz589vtG/xNHvy83nz5gHw05/+tLlNNFv//laQNJ0+FIpEFyZSpoLgJ4V4K1z5/Fb4BDSnM+4fTvn8qNBAJE1HS3XGD3s+P6bbOuSuQ/wNyuvFDB5y1zPS4m6YyucL//E1TUNLS4v7z6A8Hszg3lUd4gZL5fGiKq29fFpmRnivbBSPF7OyCmUY1vJ0DbLqt6W5vZjlFeHlxQuWmsuDWVYOSqF3y0bl1g+MmtuLWVIGfj/KH0CHuMFSc1lBUCmF7snGzKs/0s2qKUEZJjZvTuKRdaZCebzgD2CHuMFSr/HhLqogze/Bsaccf5/6Ly62Gi/arr3WKQHdc/H1jf8CpBkK5XKj+fykQNxgaa/xo28rgkCA1JpcPAPj1NQGsP9YCIEAaVW5uAcneMEzFaq2Fjwe0iFusHTUBkjZsAcVCJBR3Z3aBDXO9XtQfj+ZFd2pGRF/eY4ag9T1hSivlyyIGyztLoP0tYUor4/s8lyqDo5XY5K+Zo/1/+XykA1xg6XdZZKxuhDl8dKtvDuVo+O3lblyD8rjJaesOxVj4jw/l0nmqkLrBd/tIWc1cYOl3W2S9b21vJyS3Pg1HtMKUw3U2LyK7OV7UB7rfz5nVRllcfoVDoK1bnJKc6kYV3/kp82nyF4eqsmhYnz9w1NWzR7r+dW6yfmeuMEyXOfy0K2kG5Xj49UEn1+ti+ySHKrG1a8JB8qaWtA0sldpVI2rfw6lzafI/N76O2eVZccNjbpfWX8/l4us1SQMlnpAkbHSaiuzJJOaMfXDoGYoMlbtRrncZJRlUjs6fk36mj3W/00DOws0Q5G2djfK7SatLBP3yPpt6YbCuc5anrMiE++IOMsLBkrlckMDl8lDKRwbdqM8HuyV1QSGxQmfpiKzqgZXSTW2LYUYQ+MERlNh27Lbet1raGoYpdC3FWK6PWjVNaj+8cO1tr0Q0+tFq6lF9Y8TGIOBUnmC5zPu2Zs4WO4qwvT50GpdUBDn7xwMlMrng70lCYOlKixGBQKoqio0lwu9Z/w6s7gE5fOjudzo+fEP65r7SlH+AGZZecJgaZZYOxtUIIDm8aLn5sSvK69ABQLg9aLnxH9PMiusU9bM6pqEwdKstE4BUIaB5vOjJwjhZlWNVeMPoGfED7tmTa2Vhxqxc+dOAAYMGNBobSLNPqfyoIOseVa2bNnChAkTor62bNnS7A41Rb9+/ay9i3YT019T/5yFQAAzuIdOmcoKjjHnOoQDpWlNkqq83vA/RBTTrKsxDJTbjYpzHoXp9oAyQZnWz+6YkeihQBmqqXXXhdVIwYE7GIb1PFwu600isu+hQBkcoGTW1Fov7FE1VqBUhml91dTGPcSvTBMVPHyulLJCaHV0W6FAqQwDZRiYVdVoldFXeQgHyuBgIbOyCq08zmFr04TQbnzDsD6tlcacmB0KlAFrT6VZWYVeUhmnxnqxwDAwyyqsAU0xdJcP9lrTNCjDQJVVYC+qiK6p8aHt3ou70kVaZgqqtBzHnugToEOBUvn81vosKydld/2TpG0unxU8sbZDSitI2RldFw6UXq+1vkrKSd0eUxMKlKGa0vLweT+RHDUBHFuLwuuTkjLSY05ODwdKr886P3dfWb0T2MOB0uMN12RujLe8YKB0ua264lKyNsT0PRQo3W4wDdhXTva62BqTjNV76v4HTCPu7A3hQOlyWW0Vl9Ftbf22MoNBA2VCcRk5a2KeX2SgDK+rcnJWx7QVCpS1rsQ1nrrAlagmHCgj/3fLKshZVVa/LhTMlAn7yuvXhAJlqKakgpyVpfVrlkUsT5lQVknO9yVx2grWBWu6rYytMevColJQVkH2qvpz9KGoe91RCsoryV61L6atYKB0ucLnqWetjr7CVDhQ1tRaH5Aq69dARKCsdVl11TVkrome2igyUAKoqhoy1tavCQdKAMMk/Yf6UyRFBkqw9lClrY+uiwyUYO0Rc26MWV5koAQwFSmbC+stLzJQAiiXG/vmPdE1psK+aRdpqTruKg/K48G2pbBeTThQApgm+rb4y9O3FaKC71XK7UHbGWc9bC8MH6JVXi/azr0xy4sOlEC999uwXUV1g1Z8PiiM+TtHBspgjdpbf9sLBcrw7wlmnAkFSsAKjfvqH4UKBcpwTVn91z2zxHo/Ci0n4fJCgRLC72/1aioixkAEg2W9msrq8PstEP5ery4YKEM1ZpyZbWIDpemqP1rfdLkw3LUUFlrbSWjHXXO0eKDOu+++26TbWpPT6aSgwPp0Zjq9mMGACMFAGRMOY4Ol8gfCgTKqJiZYKp+/3vkOylTRwTIyUNYVRQfLyEAZWRMTLJXPF97bGWYYUcEyKlCGxATLyEAZbjtesPR46wXN2GCpeXzhQFnXVnSw1DzeukAZ7lP9YKm5vZixI9FigmVUoIysqayKqSmJfuGKEyx1lw8K94VfMEJ9jwyWoUCpfD7cVV7SslOtmohgGRkoo9ZnTLC0uXzo24uiPnTEBktbbUSgjOh7ZLCMCpSRNTHB0l4bwLGlMHqwWkywdNQGSNlYGP1BKCZYRgXKmJrMTRURy4sIlJF1EcEyKlCGhILl+opgTUygDK2rGhfZ6yKWFxkoI9uKCJZ2l0nm6pjlKdMKepHBUlHvwxlGdJC1eyICZdT6rAuNVk1RgzVgDXBobHk2X0SgjOx7aV34jAqUUc8vOlhqZpzlKbP+8mKDbkyw1P0Rex/DNfWDpR5QZH0fE1RigmVUoIysiQiWUYEyJE6wjAqUkXXVNWSutUJObKAML7Kqhowf6mqiAmVwHaia2qhgGRsow6URwTI2UIZrIoJlvUBJ8DW21hUdLGMCZfhmlxtHKDSaCvvmPSi3h7TsVNzVHmunR2SwDB7yjt1Botye6GAZEygj6yKDZWSgDNdEBss4gdK63YQ9MeEzIlCG24oMljGBMrImMljGBsrwIotL6v1eb2eSP2AdKQvVRATKqJqIYBkKlPWWFzxyF/l7vbqYYBkVKCNrIt6HQ4Gy3vKqaur9HlsXGyzj7aFUpooKlqbLZT0uxYtpmqSnp7dooE6zD38vXryYxYsXU1xczAMPPBC+vba2Fntj5x62gsGDB7Nnzx7M9AB6pYnp86MFAgl38UYeCg//Hq8m9A+k61Z4TFTndlsbv6miw2JdEabbU5faE9XUuq0am8067B3vE0kwWGpuNyo0hVKsYLDUAXRbVKAML84wIXRo3eEIH/auV6cUVFaByx31aSm6LStY6mAdPorX72Cw1AFSneHD3nGfX0UlWm1wT0W8T4Gh8KkUKjUl/ifhULAEVEaaFSjjnCitDAPKKrDV1IJhhmtc1R7Sspx1NaXlOAAzKy3u8pRhQlk5KYCRm1EvUIbrAgG00gqcNS7rMfFOzA4Fy2BbCWtKy0kD/D2zSNlcWO9NqK6tMjJqXME3nXhtBYMl4O+ZmbimuJRMwNMni7R1hfXeQCPrsmutvZdx98AHw2A24O6X1WiNa2B2/UAZU5dT67beiGLDVHgdlJOzBmqHdLOCZ/0qlMtNzupyaoZ3q9v7mKCt3G+tc5hjjwpELW81VI/IsYJnvOW5PeSsKqN6ZG79sBjZVmkFud96Ey8vHCyh+uDuiZfn8ZKzqpTqkd3rB8rItsoqyVnia2B5oWAJNaN61A+eEXVajSt+oIxsq6KK7OWB4FRwcdoJB0uoPTi/fqCMrHO5EwbK8CIrq8lYZQS3l/jrMxQs3Qf1ihsow6Vud8JAGa6prrHuVypujVIKgsHSN7R33EAZrvV46gJlcH2mZTvZty0YfELBcvPuYP8StBMMlubA3nEDZd3ygoew4wTKcE0oWKoEry/BdsKHweMEynCdz5q+KF6gjKxhb4n1XBPsJVSBAGZxCXrPvLiBsq4t6/Z4gTJcEwqWjS2vvAI9Nyd+oAwJTdcTL1BG1IR2FiXaK2m959agZ2fGDZSRddDwIe/IYBne05lh9X/YsGHWkeBmavZAnc2bN7Np0yaeeuopLr744vDt6enpTJo0qUWTZzbFs88+yz/+8Q/0fak4NuZE36m1wiXNQyGwobaCNZqtgYlym7w4FVxc4j9muKYVloeyDutriQYoBcOkZrPVjaJvQGMboTKsw/5agg8cyjBRAT+azdbgIKYmM63D/vHOpdV1jRufuJQeBTkUbdvHQ9f9k+knTebcm08ks3saNxx1LyV7yply3HjOufFE3v/n//jwhS9b1h/DwPR40Rx2dGfDJ11bnWz+PzUE16fbDTZbgydmt5rgBx9sNvSGBo615vJqaq3lNeFk95Yvz8Ssrm7y8i6+41RGHTqEvTtL+csNz/HIlzdRtcfLk3f8h82rdjS+PKUwK6sO/PPT9ITnbrUqU9Ut70BsL8qsG6jQ0uU14dw0AKOmFk3XGh3UEc9Bkwbz8/vOxfAblBRW8NC1z3L3y9cAkJqWQt6AXH73s4cpXF/Kr/62gNQMJ2899gGfvPgl2QXduenvl+OqdPHA5X/HiJhBxHR70BsZ9NFUZjB0N/R6Znq9TXq9a0oMUeHxEQ0McvX50Oytczno0PtRgzWh98hWWV4A9EbaMo3Ga5rKNKxZbYJOfHA6r776KmeeeSZXX311s5tt9i7FYcOGMWzYMI444gjSD8SbVoyDDz4YAJUZ8WkkvGGa8cOgMutqNK3xmia2lWjDUqay/nAAui1uYIyqARSN1yniB0tlGNHLi7exq+hPXspP4mCprL2GGsQPlqaquwB9aEqlen2ywiJKhTfgRMESFfyU5vPFfeFQhlH3wmJ3xO13uCZyeTHBctpJkynato8/nvcXzvrVfKafMIHTrj6Ou37yEL947Bx+cvPJ/PXaZ5ly7Fiun3E7Vz9yCR/8wxt/BF4wLKKs7USz2RKP1FPWXlGT+C/EyjDCp1JoKSnocQZ7KX+g0RogGKqtc3NN4o/4U4EAZvDcOi0lJX74NAyM4Ll8DdWEDqFYYS/BG3cwCCrDsNpqhZoGT3YPBqVwW61Q05TlDR7djx55mdx48p8557rjmXHiJJxOJ3ee9yDn3TCPjV+sbnh5wUDZ6PIi6prSVpOeH3V7Q+oJBkFlGGh2R6vUgPW3TBT0otqKVxMMi6HXYD3ezoyImgaZqm5bT/ThKLYmwXtfqEYZJBhGivW/F+wfmo4eMSBz3+4ybj7pAXwePxf9+mQmTR/KjUfdhZ6WypzzZnDCFTOp2lfDWdefwL//8i4rPvye//vsLr74z9dMOGIUrz38Pr0G5jNkbH82rdhmLc/tATP44U+3JQyXpscbDi8Ja9zumPfJODVea0+76fGApiUMl6E6NC1hYAy/pjcgVKP8PqutBOEy8v2osZqGQqMyjPB7JCR+X4t8v220pqHQGHpvj3iPb7CuKTUR75MbNmwA6sbLNFeLd+ndfPPNVFfXDdqoqqri2muvbWmzjRo5ciQAKs1A2WOCoIpzSDo2LKpgSIt3WDrqcU1rq965DTFhEdMaeNPoCCzTiHsORL224pxL0VhNwuXFHgKIOeQdGjAT/ThV988ZfP4Jd/+H1lWCunDwjKyJPa8mMiwqa9n1zoWJrAm1FfDXOwzSZ1Aem5dbg8k2Lf+ReZccxY4fdlG2p5KA8jFkTH8wDJa+u4z/++K3bFq2xWon9jBPZKCEYGBvoC7UT5/PeiGN6Xvkubnxzq+NDJThmpra+nWGGXWb8vnqnZwdGSgT1UQGyoQ1Ef2PWl7sIc3IINiSmkTLiz3ZPSootV5NU+pGTRvBdx+swKyu4btP1zLq0KH4fD7ueeEqPnvh84aXFxkoG1peTF2za+I9v7insqjodRXw1zvHqzk1CZcH9duK3RZiwqIyDGvvZwM1QP12gqcORW3roT3hMXX1auL8P0TWAHEPo4f/9yJeO8yIw/tleyvxefyYtS4CXn/4SI/p9jDz1EOpqCqnal8tBx0yhOXvr8D0+9m4bAuDR/djxYffc/rVc5l01Gi2rrFG84YCZV0HjHpjDyAiUDZUExMoY1/LwrfFvt/GEVWnVPzTlWICZVNqEi0v/J4VWl4gzmlNsTUJTv9qNORGDOyJvC1eXRQz3v9f097L69U1pS2lUJpi48aNQF22aq4Wh8ra2tqoQ93Z2dlRIbOtZGdnM3DgQADM7DjndMQLg/FE1tXbS7l/NVEbX6JlR4TGemFxf2sa/eRtWCEnVKcSnB8SGSxDgTLmOUYFy8hAGS6wnr/p9daNkIsMizF19WritBUefBUbFkM1cYJlvb9NbLA0DLat3s7Eo0YDMOmYcWi6hquyFn+1B3eNF4fTjun18vWb33HdjNt57x+f1rUT+SJrmnH/zlF1scEzVBMRLGMDZVRNaGRmTKAM1wTXTbjOMKPCYlRboXNoYgJlvJrYQBm3JvT84ryxRgXCmLDY7JqIurjLCwWmOEGpWTWh2+K9qTTQVlZOJq4q65zrmsJSsnIy2LlzJzfOvosNSzYlbidOoIx83nUPil/XlLaasg5QZnQYjBMEISY0tqAm8tB0eJGJ2gqPNo+/9zEqWDZUE2onGBSt17z6/1uxdXFrIrb/RDWRwTLe/16ov1HroNZFz365TJ4znq/fWgZKkZGdSo+e2RjKT3WZC5tNQxnWa2BtpYus7plUl1Ry27x7ufdnjxPwG/UDZaLlRQbK8I3RwTLuHkqlooJlvUAZeXvEz3HrYoJl3D2UTamBqPceFfDXf58JtlXvMfGWF/shKO7yGh+N3tBjosR8AGh2TUOPiexHpg+fz0f37t1bNPIbWnD4O0TTNMrLy8nNteZ2Ki0tbWmTTTZp0iS2b9+O2c2HrTTOYUClQDVhZTelTimg8b2aTdqYTKPxvGsaKKU1/GnINOpOzk+0UQWfm0oUhiPb8pl1j4nXVOhQeKKaiNMB6oJs4gDelBp8Puv0g0Q1MaE5fscj6pTJN299x/gjRnH/x79h+w87qalwkZ6dhgr4qdpbjda3gT4F/OCxThkwE02bQfBFrLbhfimfDyMUihuoMQkeNmlgo1E+H6YR/DDSUFtNqSF43lIjNbrTWXfYO1FdZd1epBbV1ICeltrgYUzl84VHWra4proGPT29/p6vJrRVU1FLenAy/vR0O1XF5fToldGyPoUOg2dmJA6e+/P8GqsJhkE9MyN+EIysC86F2+Ka4GHwBpcX/B9ucDuICJYN1oQGMjT0f2UYCQNlZI0REXYT1URN95SAWetCz0jHrHWRnpHCzf+8mgd+9mj4vMhpJx/Cis9WkznIiVHrxvAF0DQNpRQZ3dKpLgsFeKPuaEUD7w1ReyIbCS8NHvKODJYtqYm4r8FD3pHBsqGaiCNgCRcX8KPZHfEDZWRbDb1fhdtq/P2/qYETaDwsNnUPZiPOe3A+zzzzDBMnTmzRIB1ohT2V5513Hj//+c957LHHeOyxx/jFL37BBRdc0NJmm2TSpEkAqJwGLk3UmoKHXg+Ypiwr3i7v5rbVhOcXb5d+wnYae+FoQo21vAYuTxU6jcFs5HBE+HQHq+bJG//JTcfcTVVpNa8/9A4DRvbDbrfhtDsp3rmvwXZUwB98gW3gk0FkvxrShJqGDjtH9yvQeFtNqfH5og7FJaoxGnhjj1xeY9tLg6dORC6vgRGP+7W8ptT4fBgNhLeotmJqfvh6A5OOHgvAIcdOYO2X6xpsA/ZjHZRXHrh1EPA3ex202fKU2arbQVNeOxsKlGFNOZWqKa8HysSsqUHXFLe9dB3P//bf7NpYN1flrDMOZ80366gsrgbTYMN3Wxh/5Gh0m87wSUPYtnbX/i0vVNNIXVPOoWzS+2MT30Obcg5lqy1PBc/DbKW+t5qm7n1sBStWrABg4sSJLW6rxXsqZ8+ezZAhQ1i+fDlKKe67777wYem2FkrVKt1ApRhovlYaFSXal1b+R87tlcOvX7wWZSpWfLqaVV/8wGsPvcOfFt1FVl46b/ztvf3rT+wnu3iHWOJ9+os9B6ixmnjLau3lhe4L7blvaU1Tl9dafWpsea29DuK0s2Xldsr3VvLgZ3dTvKOEV//vLWZdcUiT9s50lnXQpsvbn3WQSHtbBzF9nn3uTEZOHc55t5/BebefwVtPfMjS97+ne+8cAoafsl3lALxy3xvc9OzVXHTPObz95If4GrpudUscyDCVjOV1YcpmsmbNGqBuR11LNHtKofbiyiuvZM2aNdi3ZGErPPCj0EXnMvnksQya2I9X724kWMaKfJNI9C91IGti6xLVHsiaFrSVkprCxX84l2knH4qr2g0KvvtoJU/9+kXretoJlnfBb87CCBi8+IfX9rvvQ8cPoueAPL5+6zvQNEZMHsLxlxzNQ1cubFI742YdzHm3nc6tx/+eOz+7ht8e+VdMw2z1df7ot/fyi6m3glKcf8cZPH/Pf/avHVq2nva7pjXb6gx92s+34OOvO5Ka0lr+99zS/XqcEPEYeR4CIysZOHAgzz33XIvba/Hh702bNnHFFVcwd+5cZs+eHf46UGbOnAmA0T3+BKxC7I/SHeXkDUhwje2GRO6tOFA1Te1TQ49pi5o26NN1T1xGt7xsFoy9gZ9P/BVXH/5r3NUeHE5HI8tu/vMbOmEQh598SPj2jct+TBwoG2inWXX7URMKlADn33FG8/rUgvXUvOUleExbLK8996kZ+3TyBuRSGnPpVyGa68irDgVg+vTprdJeiw9/P/jgg1x//fXcd999PPzww/z3v//FaGxUciuaMWMGjz/+OKqbD2Uz0YxWmPhcdFklO8vo0T8XrZExUnHt72G3tq5p7eU1dgJ3qKax9vazT70H9WT6qVM4t9/leN3W4T2/188Lv/tPuE+/+OvFHDx1OCmpKWxZuY0HL30cvy8Q1d6hcydwwZ1n4nA68PsC/PXKhWxesRWAWWccxk9uPQ00cFW5uW3eH7jw7rNJzXAyYvJQ3n/6U35ctZ3zbjudm4+9B4BTrj6eEy49BtM02bl+D78/9/+atJ7y+nbnhr9fQY+CXPxeP49e8xTrvt3EuCNGcfHvzmXv9hKGThjE3u37uOu0B/B7/fQckMetz19LRk46677ZyOQ547luxu2U7C7jfd/LzE05h58/eCE2u40nlj9AZUkVNx97T/g+NI3R00fys3vO4cbZdwFw+Z8v5LB5kyjfW0nxjhJ2rN8NSpGVm8nVj15KwZBeOFLsvPD7V/nfq98062/XYE1T/8laeXvqUH2KI29ALiXbJVSKllOa4ptvrP/tdhMq/X4/I0aMIBAIkJ6ezrnnnsuCBQs4//zzW6N/jerfvz+DBw9m69atmD282Ir3/+oFQoTUlLpQpklWfiZVxTWNP6AracM3yoYMGtOfPZuLrMPeCZb3z7v+FR75euVDP+PYi47knb99HCoCYN03m7h2+u0opRg2cTBXP3Ip106/jQEj+3LpH8/nuum3UVZUQVb3TNw1Hp79zSuMmTGSBxc8AcC4I0aFFzvpmHEce+GRXDfjdlzVbrK6Z9brUyK/+OslLHl3OW88/B4jDhnKHf+6gYtGWFdLGTJhEH/86cMUbS3mnjdvYebpU/n0xS/5xUMX8+E/P+O9v3/C1HmTOOHSY+q1+8QNz3LKVcfz80m/SrieQqafMoURk4Zw6ZgbSM1w8viy+9mx3hrkccX/XcQHT3/Kso9WkdEtnUeX/JHvP11DdXkr/z8kaXtq8fKSeMaYI9VOVo9MynZXJK0PovMwc73U1NTQo0cPRo0a1fgDmqDFodLhsGak7927N59++in5+fnU1BzYN+NjjjmGhQsXYvT0SKgULVayvZz8gd0lVLZTR5w1jXNvOZWs7pn89sw/s2HpZqbNP5STfn4sKakpZHRLR9frH7Ho3juHW567hp4D8zADJn2G9QZg4tFjWfz6t5QVVQDUTcvSgEOOG88HzywKB92mPCZk3BGjuO+nDwOw8bst1Fa46Du8AIDNy7dStLUYgA3fbab34J4AjJ11MH/4yV8A+Pad5VTtx/LiGTvrYD7712KMgEFtpYuv3qw7P+/Q4ycyZNxAFtxn/W5PsVMwpCfVy+T/IdnyBuRSWVxNwHfgjgaKzmvmLyaxaNEijj76aGytdLnJFofKiy66iJqaGq688koefPBBXC7XAbmiTqRQqFTdfDIKXLRY0ZZ99BqWz5alTbhGs2hz29bupM+w3qRlpuKu8fD5v77i8399xZ8+vQt7ip1eA/P56W/O4spDbqaypIr5V81l6PhB9dq5+tFLeXfhxyx6eTFpmam8XvaMdUczpmVr6VxukXu7IsdK+r1102eZhonN3rLXMjPi6lwpqU27JrKua/zyqN9QW9nINFbigOs9LJ+iTQ1MeSZEEymbyeLFiwGYM2dOq7Xb4hMQp06dSmZmJgMHDuShhx5i4cKFHHbYYa3RtyYrKChg/PjxoIHR09P4A4RoQOHGfRSM6Jnsboigoq3FfPXfpVz18CWkpFrXBtY0LRyS0rPT8Lp9VJfX4ExL4Zjzj4jbTka3dPbtsi7OMO/yuhfRFR+vZvqpU+neOwcgfCjbVe0mPSv+kY+l73/PcRcdFb4/6vB3I1Z9tpbjfnYUAMMnDSEjJ4PdmwobfMzqL9Zx1LkzAJhy/ESyEyzP4/KSml53jeXi7fsYOmEQYJ03Gu7D5z9wxJnTsNltpGenc/hJh4TvW/LeCk6//sTw76HHi+QrGNGTwk3Fye6G6ATMPA8+n48BAwYwYsSIVmu32XsqGxt6fqAmQA+ZO3cuK1euxOjtxrYrHa05ux+EAIo2FnPYGROS3Q0R4aGf/42L//AT/r72/3BVuvC4vHy/aA0/rtyGu8bDys/X8tS6h6jcV8WGpZvj7pV75o6XufGpX+CqcvHla9+Gb9+xfjf/uPUF/vDebQDUVrj45VG/4ftP13D2TafwxPIHwgN1QpZ/vIqP/tmPh776PUbAYPvaXdx7/kP1ljlmxkie3/oY2fmZPL/1MZ6542UevfYpblh4BScsOAa/18+95z0UvmJKIo9f/wy3PHc1p103jx++3khZUUXcPYlvPvo+j353HyW7Srn52HtYePPz3PnvX1JVWsPKz9eG677671LGzhrF39c8SPneStZ9U3f5yMeufZorH/oZf1v5ZzRdY9/OUm6b9wc6+OxznULvET3533NLkt0N0QkMPbEPGzZs4MQTT2z5kZcIzZ6n8umnn27w/p/97GfN6lBzeTweTjvtNGpqarCvzcFW7mz8QULE4XDaueX9K7jvhCfwuRu4mo8QTaDb9Oh5KpvBmZaCz+NHKcXo6SO5/snLuXTM9a3cU9GeabrGre9dwcM/eZbq0trGHyBEAmamH/+EMlJSUvjPf/5DTk5Oq7Xd7D2VBzo0NiY1NZXjjz+ef//735gFLgmVotn83gClOyvoPSyfHav3NP4AIdrY4LEDuO6Jy9F0jYAvwJ8ufjTZXRIHWI9+Ofg8fgmUosXm/Pow3n33XY488shWDZTQCgN1AoEA7733Hj/++CM+X90lon71qzjTWrSx+fPnW6Ey14dKDaB5Wvz0RBe1Z/1e+o7qJaFStAvrl2yOP1WQ6DL6HtybPev3JrsbooNTDoOPP7amW5s/f36rt9/igTr33XcfP/74I4sXL2bIkCFs3ryZlJSU1ujbfhswYIA1SEiDQD8ZuSiab8fqPfQf0yfZ3RBCCAAGjOvDjtUND+gSojFn/vU4fD4fY8aMYcyYMa3efotD5ebNm7n22mtJT0/n9NNP56GHHmLDhg2t0bdmCU26bvZ0o1JkLi/RPDtW7WbAOAmVQoj2of/YPuxYtTvZ3RAdmLKZvPHGGwD85Cc/adUBOiEtDpWhvZIpKSlUVVXhcDgoL0/eJaTGjRvHuHHjQAejr+ytFM1TuqMc3abTvW+3ZHdFCNHFpWU56d6nmxz+Fi3ys2dOo7a2lkGDBjFt2rQ2WUaLQ+WoUaOorq5m/vz5XHLJJVx44YVMnjy5NfrWbKG9lUZvN8revNGWomtTCnauKaT/WNlbKYRIrv5j+1C4aZ9cSUc0m9IV//73vwFrL2W8q461hhaPZAldPWfevHlMnjyZ2tpahg4d2uKOtcTUqVMZPnw4mzZtwuhXi31bVlL7IzqmHav2MHB8X1a+vy7ZXRFCdGEDxvVlx2o59C2a78Kn57Nw4UIKCgo45phj2mw5zY6qSim8Xm/49/Xr17Nv3z5cLhdut7tVOtdcmqZx6aWXAmD0caGc8ulO7L8fv9vBkEMGJLsbQogubuihA/jxu53J7obooJTd5MUXXwTgkksuwW5vu5lxmh0qn3zySV555ZXw73fccQd///vfeeyxx3j++edbpXMtcdhhhzFx4kTQITCgJtndER1Q0aZiUlId9Oifk+yuCCG6qPScNPIGdmfHStlTKZrntL8cTW1tLcOGDWvTvZTQglC5dOlSzj333PDv2dnZPPTQQzz66KN8//33rdG3FtE0jcsvvxwAs6cHM12ujCL2j1Lw47IdDD10YLK7IoToooZMHsDO1XvwewPJ7orogFSKwWuvvQbAZZdd1mbnUoa0qHWHo+76uuedd57VoK7j8Xha1qtWMmrUKI466ihr3srBNSjk2rVi/2xZKofAhRDJM/TQAWxZur3xQiHimHnreHw+H+PHj2fq1Kltvrxmh8ra2tqoK+jMnj0bAK/XS01N+zncvGDBAhwOByrXh9nD2/gDhIjw49IdDJ7UD93Wtp/uhBAinqGHDmDLkh3J7obogMxuPj755BN0Xefqq69uk3kpYzX7nXL69Ok88MADUYNy3G43Dz74INOnT2+VzrWGfv36hfeiBoZUo2wyxZBousriair3VjNwQt9kd0UI0cX0HpaPpmvs3bIv2V0RHYzSFAXzrJlvTjnlFEaMGHFAltvsUHnZZZcBcNppp3HppZdy6aWXctppp2GaZvhcxvbivPPOo0+fPuA0MfrXJrs7ooNZ/78tHDwzudNkCSG6npGzhrL+yx9RcuaW2E8XP3caO3bsICcnh0suueSALbfZ48qdTie33XYbhYWFbN26FYBBgwZZ4a2dcTqdXHvttdx8880YfV3oxanoLkfjDxQCK1Se84eTePcvnyW7K0KILmTkzKF89PiXye6G6GCU0+DZZ58F4IorriAr68DN1d3iE8UKCgqYNm0a06ZNa5eBMuTwww9n5syZ1qCd4VUoTT76iabZs6EYpaDPQT2T3RUhRBeRW5BNTu9sti2X+SlF0ykUYy4fgNvtZty4cRx33HEHdPldavTB9ddfT1ZWFiorgNFPDoOLplv/5RZGyiFwIcQBctDMoWz6eitGQMYBiKYze7tZvnw5qamp3HLLLW0+hVCsLhUq8/LyuO666wAwBtRiZsjclaJp1n+xmVFHDk92N4QQXcSoI4ax/n9bkt0N0YEoZwD7GCvXXH755fTr1++A96FLhUqAY445hiOOOMI6DD5CDoOLptn2/W6cmU4KRuQnuytCiE4up3c2vYbmsfGrrcnuiuggFIqDL+2Hx+Nh4sSJnHrqqUnpR5cLlZqm8ctf/pKcnBxURgBjYPuZU1O0X8pUrPlkA2PnjEx2V4QQndzYOQex/n9b5Co6osl++szJrFy5krS0NG6++eYDftg7pMuFSoCcnBxuuukmAIx+LozuMim6aNzqD9cz9piD0PS2n0BWCNF1jZ0zklUfbUh2N0QHYWb7eOqppwC47rrrkjpoukuGSoAZM2Zw5plnAhAYXolyGknukWjv9mwoxuvyMWjigT9PRQjRNfQamkd6t1S2LpOr6IjGKbtJztF2TNPkuOOO4/jjj09qf7psqAT4+c9/zsiRI8Gh8B9UKedXikat/mgD446VQ+BCiLYx7riRrP10I6Yh70eiYQrF5OuHsW/fPvr378/111+f7C517VDpcDi46667yMzMRGX75fxK0aiV769j1BHDcKanJLsrQohOxmbXmTB3FCve+SHZXREdwEX/PIWvv/6alJQU7r77btLT05Pdpa4dKgH69OnDrbfeCgTPr8x3N/II0ZVVFFWxY3UhY+cclOyuCCE6mYNmDKWisIqizXKtb9Ewo7uXhQsXAnDNNdcwbNiwJPfI0uVDJcDMmTO54IILAOtqO2amzF8pElv25momnzw22d0QQnQyk08ew7K3Vie7G6KdM9MCpBziQynF/PnzOfnkk5PdpTAJlUGXXHIJM2bMAB38B1egUmTgjohv41dbyeyRIZdtFEK0mtw+3eh7cG/WfLIx2V0R7ZiymfSan4bL5WL8+PFcc801ye5SFAmVQbquc/vttzN48GBwmlaw1OVEaVGfaZiseGctk+fL3kohROuYdNIY1ny8AZ9bjpSJ+JSmGH/NIHbt2kWvXr245557cDgcye5WFAmVEdLT07n33nvp1q0bKitAYEQlCgmWor5lb65mzOwRpGU5k90VIUQHZ0+xMenE0Xz3Xzn0LeJTKI75/SEsXbqU1NRU/vCHP5CTk5PsbtUjoTJGnz59wunfzPMSGFItwVLUU7m3ms1LtjN5/rhkd0UI0cGNP+5gireUygAdkZAxoJZ3330XXde56667GD58eLK7FJc92R1ojyZMmMDtt9/OXXfdhdnHjRmw4didlexuiXbmm39/z1m/PYFv/70CI2AmuzuindJtetR3ISJpGhx21iQ+fvJL2UZEXIGetRgDagH45S9/ybRp05Lco8Q0pZTshkvg1Vdf5aGHHgLg9NNP55BDDklyj4QQQgjRVfzwww88//zzKKW46KKLuPjii5PdpQZJqGzEE088wYsvvggKUjbmYitLTXaXRDsy6qjhTD93MgsveznZXRHtlG7Tuf2Tq/jd0Y9gGrJHW0Q770/z2fC/H+V8SlGP0c2LGl+N3+/nhBNO4Oabb0bTtGR3q0Fy+LsRl19+OWVlZbz//vv4hpdjX5eDrVwGZwjLD4s2csxl0xk0sR8/fifX6hWJmYYpoVJEKRiRT8Gwnrx861uybYgoZrYPfaILn9fPjBkzuPHGG9t9oIQONlCnrKyMK664gquvvpprr72WkpISAFatWsUVV1zBL37xC7Zs2QLAunXruOqqq3juuedatExN07jpppuYPXs26BA4uAIzx9vi5yI6B9NQfPnCUo64cEqyuyKE6GBmXTiVr/+1HL8nkOyuiHbEzPJhn+rB6/UydepU7rrrLuz2jrEPsEOFym7duvHoo4/y8MMPM3fuXN555x0AFi5cyP3338+dd97JE088AcAnn3zCAw88QHFxcYuXa7fbuf3225k5c6Y1OfqoCsxuvha3KzqHFe/+QG6fbgyc0DfZXRFCdBC9huYxaEI/lry2MtldEe2ImeHHOd2P2+1m0qRJ/O53vyMlJSXZ3WqyDhUqbTYbum512eVyMXjwYLxeL7quk5WVRa9evaiurgZg9uzZ/OpXvyIvL69Vlm2327nrrrusUVcSLEUEw2/w5YvfccSFU5PdFSFEBzHzgil8+5/v8dbK+4iwmJl+Umf5qampYdy4cdx77704nR3rdLsOFSoBNm3axOWXX85rr73GiBEjqK6uJiMjI3y/zWbD7/czatQoHnnkES688MJWW7bD4eDuu+9mypQpYFP4R5dj5MqhcAHL31pD/uAe9B9TkOyuCCHaubyBuQybMpBv/r0i2V0R7YSZ7cMxzUN1dTWjR4/mvvvuIy0tLdnd2m8dIlS+8sorXHPNNbz00ksMHz6cJ598kksuuYTnn3+ezMxMamtrw7WGYbTpZYucTie///3vw3ssAwdXYPTwtNnyRMcQ8Bl89dJ3HHnxYcnuihCinTvyZ4ex5PWVeGpkp4QAs5sX2xQ3LpeLiRMn8uc//zlqZ1lH0iFC5dlnn81f//pXzjjjjPBtmZmZpKamkpqaimEYVFdXs3fvXrKy2n6ScqfTye9+97u6wTsjKzF6utt8uaJ9W/r6KvIGdGfIIQOS3RUhRDtVMKInQw4ZwFcvLUt2V0Q7YOR60Sa78Hg8TJ06lfvvv5/09PRkd6vZOsZwoqBNmzbx2GOPYbPZSElJ4eabbwbg0ksv5aabbkLTNG644YYD0he73c4dd9xBamoq7777LoERVTjSbZjbOs4JtaJ1BXwGi576mmN+Pp2FC3YgM8AKIWId8/PpfPn8UtlLKTDy3ahRtfh8BjNnzuQ3v/lNhxqUE49Mft5Cpmny8MMP8+qrrwJg25mObXsmGu1/PinR+jRd44qnz+OLfy5hzScbk90d0Q7oNp07P7uG3x75V5mLsIsbcsgA5t8yh4d/8gwBn5Hs7ogkUSiMfi6MQTUAzJkzh1tvvbXDTBvUkA5x+Ls903Wda665hksuuQQAo7+LwIgqlCZZvStSpuLjJxcze8E0bHb59xJCWDQN5lwxg0VPfS2BsgtTKAJDqsOB8txzz+W2227rFIESJFS2Ck3TuPDCC7n11lux2WyYPT34R5ejbLJXoiva+NVWqktqOeSUccnuihCinRg7ZyQ2h42V769LdldEkihdMfXWgzD7uNE0jauvvporrrgiPFViZ9B5nkk7cPzxx4enAVA5fvzjylBO+UTaFX3w8OcccdFUMnI63pQQQojWlZLmYM4VM/jg4c9RphzF6oqUw2D4gnz+97//4XA4uOuuuzjzzDOT3a1WJ6GylU2ZMoVHHnmEHj16oDIMfOPLMLNkctuuZs+GYtZ9vpmjL5+e7K4IIZJs1oVT2bW2iC1LdyS7KyIJzAw/OSfprF27lszMTP785z9z1FFHJbtbbUJCZRsYPnw4TzzxBMOGDYMUE//YcoxeMuVQV/PJwq8YOXMofQ/uleyuCCGSpEf/XA6ZP5YPHvki2V0RSWD08GA73EVxcTH9+/fnySefZMKECcnuVpuRUNlGevXqxaOPPsoRRxxhzWU5vIrA4GoUcuijq3BVuFn0j6854bqj0GQyACG6pOOvPYKvX1lORVFVsrsiDiCFItC/hsDBlXg8HqZMmcITTzxB//79k921NiWhsg2lpaVx9913c/HFFwNg9HXhH12BsssAnq5i2ZursTlsTDxxTLK7IoQ4wEbOHEqP/rksfvG7ZHdFHEDKZnL4bQdjDLSu9nfmmWfyxz/+8YBcnCXZJFS2MV3Xueiii7jnnntITU1F5frwTSjFzPQnu2viADANxdt//pRjLp9OZo+Oe5UEIcT+Sc10csL1R/Hu/y2SKYS6EDPdT88znXz++efY7XZuuukmrr766k4zZVBjJFQeIEcccQSPP/44ffv2hVQT/7gyjAKXHA7vAnatLWTVh+s54brOeWK2EKK+OVfMYNuKXWz6ZluyuyIOECPfjX54Lbt27aJnz5488sgjnHjiicnu1gElofIAGjp0KAsXLqw7z3JoNWp0jcxn2QV8uvAr+hzUi4NnDU12V4QQbWzQhH6MnDmU9x/+PNldEQeA0hT+oVUEDqrC6/Vy6KGH8ve//51Ro0Ylu2sHnITKAywzM5Pf/va3XHXVVdhsNvy5LvzjyzDT5XB4Z+Zz+3nrT59wwg2zSc10Jrs7Qog2Yk+xcdJNR/P+w5/jqpBZPzo7MzXA4ItzMQusCc0vuugi7r//fnJycpLdtaSQUJkEmqZx1lln8de//pX8/HxUuoF/QhkBORzeqW1Zsp0tS7Zz3FWzkt0VIUQbOerSwyndVcHqjzYkuyuiDSkURk839pkuNmzYQHZ2Nvfffz8XX3wxNpst2d1LGgmVSTR27Fj+8Y9/cPjhh4MOxtBqAqMqUA45qbuzev+vnzP00AGMnCmHwYXobAZN6MfE40fz9gOfJLsrog0pm8n0O0YTGFGF2+1m4sSJPP3000ydOjXZXUs6CZVJlpOTwx//+Eeuu+46UlJSMLv78E0sw8j1Jrtrog14ary8/ocPOelXR8tocCE6kdRMJ6fefizvPPgpVftqkt0d0UbMLB+5p+gsWrQIm83GZZddxoMPPkh+fn6yu9YuSKhsBzRN47TTTmPhwoUMGTIEUkwCoyvwD6lC6XI4vLPZumwnqz5cz/xbjk12V4QQreSE649k24pdrF20KdldEW1AaYrAwGqMiZXs3buXvn378uijj3L++ed36cPdsSRUtiODBw/mySef5IwzzgDA7OPGN7EUM1uuHd7ZfPK3xWTnZ3LoqeOS3RUhRAuNOXoEA8b25d2/fJbsrog2YGb46Xt+BkZ/F6Zpctxxx/GPf/yjS47uboyEynbG6XRyzTXX8Kc//YmePXtCmoF/bLl1iUfZa9lpBHwGr93zPrMXTKP3MDlsIkRHldunGydcfxSv//4DvLWyA6AzUZoiMKAG85BKtm7dSm5uLr///e+57bbbSE+X05fikVDZTk2ZMoVnnnmGefPmgRa8xKPstexU9m4p4eMnFnPmb0/AmZGS7O4IIfaTPcXGWffM4+tXlrN95e5kd0e0IjPDz4ALszEG1GIYBrNnz+bZZ59l5syZye5auyahsh3LzMzk5ptv5v7777emHgrttRxSJROmdxLL3lzN7nVFnHzzMcnuihBiPx139RHUlLn48vmlye6KaCVKt86dNA+pZPPmzXTr1o27776bu+66q8vOPbk/JFR2AIcddhjPPPMMJ5xwgrXXso8b36RSjB6eZHdNtIK3//QpPQfnMeX08cnuihCiicYecxAjDh/M6797HyVnJnUKZo6XvDPsGP1dGIbBEUccwbPPPstRR8kldptKQmUHkZWVxS233MKf//xn6/rhTpPAwZUYY6tQKTKvZUfmc/v51x1vc9Qlh9NvVO9kd0cI0Yj8Qd054Yaj+M9d7+KqlA/3HZ2ym/hHVOIfU8GePXvIz8/nD3/4A/fccw/du3dPdvc6FAmVHcyhhx7KM888wwUXXIDNZiPQzY1vcimBPnI1no5s37Yy3vnzIs7+/Ylk5WUkuztCiATSspyce+/JLPrH1+xcU5js7ogWUCiMXm5Sj/Vi9vSgaRqnn346zz33HDNmzEh29zokCZUdkNPpZMGCBTz11FOMGTMGbApjSDX+CWUykKcDW/PJBr5/7wfO+cNJ2FNk3jMh2hvdpnHmb+exdflOlry6MtndES1gZvoZuqAHgeFVVFVVMWzYMB5//HGuvfZaGdndAhIqO7DBgwfzyCOP8Mtf/pKsrCxUZgD/uHL8IyrlkHgH9enCr6gprWX+LXOS3RUhRIzjrpqFzWHj3f9blOyuiGZSdhP/sCoCE8tZt24d6enpXHnllfztb3+TeSdbgYTKDk7XdebPn88LL7zAySefjKZpmD091iHxfrUoTQ6JdyRKwWv3fECvoXnMOP/QZHdHCBE06cTRHDR9KP+6/W2MgMy+0dEoFEaBi5Rj3Ji93SilOO6443j++ec555xzsNvtye5ipyChspPIycnhxhtvZOHChYwdO9Y6JD6oxhol3t0j51t2IF6Xj5dufYvDz5rI6KOGJ7s7QnR5Qw8dwJwrZvLSrW9SW+FOdnfEfjJzvPS9IIPA0GpqamoYPnw4jz76KLfddht5eXnJ7l6nIqGykxkxYgSPPPIIt99+Oz169IA0g8CoSvxjyzEz/cnunmii8j2VvHTLm5z4q6MZOKFvsrsjRJfVe3g+Z9x1Aq/e/R57t5QkuztiP5jpfsZdPwD/mAq2bt1KVlYWN9xwA3/729+snS+i1WlKyQxbnZXL5eKFF17gX//6F16vFwB9nxP7tkw0r+zq7wgOmj6E+bfM4emr/82+bWXJ7o5oBt2mc+dn1/DbI/+Kachh044kp3c2lzx+Fp/87Su+f++HZHdHNJFKMQgMqEEVeFFKYbfbOe200/jpT39KdnZ2srvXqcmeyk4sPT2dBQsW8MILL3D88cdb51vme63zLQdXo+zyBtfebVj8I5/+/SvO/9MpMtWQEAdQWpaT8x44haWvr5JA2UEom0lgQA36rBrM3h6UUhx11FE899xzXHXVVRIoDwDZU9mFbN68mccff5ylS4OXFAto2HanY9uTjmbI54v2bPaCaRw0fQjPXPMf3FUy2XJHInsqO56UNAcX/PlU9v5Yytt/+iTZ3RGNULo1CCdzgo3KykoARo8ezS9+8Qtr2j1xwEio7IKWLFnC448/zpYtWwDQAjrOvdk4S7LwVMs8l+3VvF/Opu/IXjx73at4a+Xv1FFIqOxY7Ck2zrv/FGor3Lx2z3uYhrxFtldKU5i93OQc5qSkxDrfdcCAAVx66aUcccQRaJqW5B52PRIquyjTNFm0aBFPPfUUO3fuBCCnWw41ywz0vWloSv4Z2xtNg/m3Hkv3fjk8/8vX8bll4FVHIKGy47A5bJzz+xMxAib/uuMd+Xu1UwqFme8h/8gMCgutqxr17t2biy66iGOPPVamB0oiCZVdXCAQ4MMPP+SZZ56hqKjIutGjY9+ZgV4s4bK90W0ap995PGndUnnxpv8S8Mkk9+2dhMqOQbdpnHHXCaSkp/DyrW/K/1Y7pDQrTBYc3S28M6R79+5ccMEFnHTSSaSkpCS5h0JCpQDA5/Px9ttv889//pOysuAoY6+OfVeGtefSlHDZXtjsOmf97kQ0XeNft78tb37tnITK9k+3aZzy6+PI7pnJCze+gd8bSHaXRASlKcyebvJnZYb3TGZnZ3Puuedy2mmnkZaWluQeihAJlSKKx+PhzTff5KWXXqK0tNS60adbA3oK09BMGdDTHthTbJz9uxPRbTov//oteRNsxyRUtm+6Tef0O+eS2SODF2/6L16XnK/cXijdOmcy97BU9u3bB0Bubi5nn302p5xyilyjux2SUCni8nq9vPfee7zwwgvs3bvXutEfHC1eKKPF2wObw8YZvzmetOxUXrz5v3KOZTslobL9sqfYOPPuE3CkOXjpljfxe+TDWXugdBOjwE23ySnhI2d5eXmce+65nHTSSaSmpia5hyIRCZWiQX6/nw8//JDnn3+e3bt3WzcaGraiNGsqIq8tuR3s4nSbzqm3H0dO72xe+NUbeGq8ye6SiCGhsn1yOO2c/YeTMA1TTiNpJ5TDwOjjIn2UjerqasAagHPeeecxd+5cnE5nknsoGiOhUjRJIBDg008/5aWXXgpPRYQCvcSJbXcGeo0juR3swjRd4+Sbj6HX0Dxe+NV/qS13JbtLIoKEyvbHmZHCufeejLvaw3/ueg/DL4Eymcz0AEbfWvS+AQIBa29x3759Of/88znuuONkNHcHIqFS7BelFEuXLuXll1/mu+++C9+uVTiscFmegoYM6jnQNA2OvWoWB00bwvM3vk7Z7spkd0kESahsX7LyMjj/T6dQuHEfb973sfxNkkShUN18BPq5ULl157GOHTuWs88+m+nTp2OzyZGwjkbiv9gvmqYxZcoUpkyZwubNm3nllVf4+OOPMXL8BHIq0Gpt2ArT0YtTZVDPAaQUfPDwF1Tvq+HiR8/ixZv/y54NxcnulhDtSt7AXM7/06ms+nA9ny78Ktnd6ZKUpjDzPAya15PNmzcDoOs6s2bN4uyzz2b06NFJ7qFoCdlTKVqsuLiYV199lTfffJPa2loANEMjpTSTlJIsfGVyaOlAGjvnIE647ihevfs9Ni/ZnuzudHmyp7J96D+mgHPuPYnPn/6WJa+tTHZ3uhzlNDB6u8gam0JFRQUAqampzJs3jzPPPJM+ffokt4OiVUioFK2mpqaGd999lzfeeINdu3aFb9crnNgL09ErnHJo/AAZPLk/Z/zmeD5Z+BXL31qT7O50abpN5/ZPruJ3Rz8ioTJJRh01nHk3HMXbf/qEdZ9vSXZ3ugyFwuzmI9C7FvL8mKa1/efn53PKKacwf/58srOzk9xL0ZokVIpWZ5om3333Ha+99hpff/01oU0sNzeXww47jMmTJ5ORkZHkXgohhGgLHo+HZcuW8c0334SvyQ0wadIkTj31VKZPny6DbzopCZWiTe3Zs4c33niDd955JzxFBCbYSlOxFaejV8nAnraUnpPGmXefQMAf4NW73pcph5JA9lQmhyPVzvxb55Bb0I1/3f42lcU1ye5Sp6ZQqEw/gZ4uHAMVHo8HgPT0dObOncspp5zCoEGDkttJ0eYkVIoDwuPx8Mknn/Daa6+xadOmujvcNmx707AVp6L5ZKRfW7DZdeb9cjYDx/flpVvepGRHebK71KXIOZUHXreeWZz7x5Mp213B67//QCY1b0PKbmL0dDPg6Hy2bt0avn3w4MGceuqpHHvssXLlmy5EQqU4oJRSbNiwgbfffpuPP/4Ylys4p6ICvSwFfW8aepmce9kWpp4xgSN/dhhvPfAJP3y2qfEHiFYhofLAGjZlIKfefhxLX1/F5898g7zDtT6FQuX4MHq70Xsb4bklnU4nRx55JPPmzWP8+PFomryOdzUSKkXSuN1uPvvsM9555x1WrVpVd4dPx7Y3FX1fGrpLzrtpTQPG9eHMu09g7aJNfPTY/zACEnLamoTKA0PTNY782VQOOWUcr//uQzZ/uy3ZXep0lDOA0ctDj0MyKC6um7LsoIMO4sQTT+Too48mMzMziT0UySahUrQL27dv55133uH9998PTzcBoNXY0YtTse1LRfPL4fHWkJGbzum/mUtKqoN/3/kulcXVye5Spyahsu1l5KRx+m+OJyU9hX/f+Q6Ve2Wbbi3KbmLmeTB6elDZ/vDtWVlZHHvsscybN49hw4YlsYeiPZFQKdoVv9/P4sWL+eCDD/jmm28wjOAclwq0ihRsxanopU6ZWL2FrL06h3HIKWP5770fsfGrrY0/SDSLhMq2NWhCP067cy7rPt/Eh4/K3vfWoHSF2d2L2dONlm+EX4d1XWfSpEnMmzePGTNmyLW4RT0SKkW7VVFRwWeffcYHH3zA2rVr6+4wNByVaaSUZ2KvTpURzS0wdMpATvn1saz/3xY+fOQL/F4Z0NDaJFS2DZtd56hLpzFp3mje/vOncp5wC4Uum2j09JA6WK873x0YMWIEc+bM4eijjyYvLy+JvRTtnYRK0SHs3r2bjz76iA8//DBqYvWM9AzcWw3r8HhlCpqSE8P3V3pOGiffdAx5A3J59bfvU7hRLu/YmiRUtr68gbmcfufxuKs8vPGHD6naJ9MFNYcVJP0YPTzkjEmjrKwsfF/v3r2ZM2cOc+bMkamARJNJqBQdilKKdevW8eGHH7Jo0SLKyyOmx/Fr6GVO9JJU9AoJmPtr0omjmXPlTL56aRmLX/wO05CXhtYgobL1aBoceup4Zl86jc+f/ZZv/rVcRnfvp/AeyTwv3UalRr2GZmVlMXv2bObMmcOYMWPQdTnNSOwfCZWiwzIMg1WrVrFo0SK++OKLqE/ZBDT0UgmY+6t7vxxO/fWx2Bw2/vvHj9i7paTxB4kGSahsHT3653DyTcfgzHDy+u8/kG1zPyitLkhmHZRCZWVl+L6srCxmzpzJkUceyeTJk3E4HEnsqejoJFSKTsEwDFavXs2nn34aP2CWp1h7McudaAH59N0QTdeYcup4jrzkMJa8upIv/rkEw28ku1sdloTKltFtGoefPYmZ509h8UvfsfjFZbIem0DZTMwcH2YPL5nDUqiqqgrf161bt3CQnDRpklwyUbQaCZUioRUrVvDss8+ilOL0009n1qxZrFq1iscffxxd17nhhhsYOnQo69at49FHH2Xq1KlccMEFye52OGAuWrSIzz//PDpgKtAqHehlTmylTjSvvJgmklOQzUm/Oprs/EzevO9jdq4pTHaXOiQJlc3Xa2ge82+ZgxEwefO+j9i3razxB3VhymlgdvdidPdi76nw++umAMrJyWHWrFkceeSRTJgwoV0FyY76XiPqaz9blWhXvF4vr7zyCg888EDU4ZCFCxdy//3343K5+NOf/sQDDzzAJ598wgMPPMBjjz2WxB7XsdlsTJgwgQkTJnDttdeyfv16Fi9ezJdffsnWrVtROX6MHD/GkBq0Wpu1B7PMiVbtkCv5RKgorOK5G15n4gmjOPfek9mw+Ec+fuJLaivcye6a6ORSM50cdclhjDvuYD5/+lu+ffV7lCn7P2JZ19sOWNP/dPeiMutmb/D7oW/fvsyYMYPp06czZsyYdhUkQzrye42or/1tYaJdWLNmDU6nk1tuuYXU1FRuuOEGMjMz0XWdrKwssrKyqK62JhiePXs2v/rVrzj00EOT3Ov6dF1n1KhRjBo1igULFrBnz55wwFy5ciVmhoGR4cLo77IG+lSkoJc70ctTZLL1oBXv/sD6L3/k6Mum84vnf8pnT33Dd/9dJQN5RKvTNBh//CiOuXw6P363k8cueI7q0tpkd6tdUXYTM8eLmesjd1QGpaV1e291XWfMmDFMnz6dadOmMWDAgHZ/qcTO8l4jLBIqRVzl5eXs2rWLJ554gu+++46nn36aiy66iIyMjHCNzWbD7/czatQoHnnkkST2tun69OnDmWeeyZlnnkl1dTXffPMNixcv5ttvv6W2thYz34uZb817qdXYrXMxK5xoVY4uPdjHXeXh7T99wvK3VnPCDbOZdOIY3v3LInas2pPsrolOomBET064/ihS0hz8+zfvsv373cnuUrugUKhsv3V+ZK4Xsg1CZ62VlnpIS0tjypQpTJs2jcMPP5ycnJzkdng/ddb3mq5KQqWI8sorr7B48WImT57M2LFjcTgcTJ48mRdeeIHMzExqa+v2GhiG0aFHCmZlZYXnYQsEAvzwww98++23LF26lPXr16MyAxiZAWsvpqFhr0nFUZVGoFhDc9u65KHyPRuK+cfPX2bivNGc9dt57FxbyCdPLqZkR3njDxYijpze2cxeMI1hUwfyxbNLWPLayi5/7qlyGuG9kWkD7VGvuygYMmQIU6ZMYcqUKYwdO7ZDXtmmK73XdCUSKkWUs88+m7PPPpuKigruvvtulFJs3ryZgoICUlNTMQyD6upqXC4XWVlZye5uq7Hb7YwbN45x48axYMECysvLWbp0KUuWLGHJkiVUVFQQ6OYm0M0N/QGvjl6ZYn1VpKB5u86hcqVg+dtrWfPJRqadM5lLnziH1Z9s4POnv6GmzNV4A0IAaVlOZv50CpNOHMOyt1bz8LnP4K7umlfHUikGZjeftTeymw9S60J1ba2X7OxsDjnkEKZMmcKhhx5Kfn5+EnvbOrrqe01nJ6O/RUKvvfYan376KZqmccstt9C3b1++//57nnzySTRN44YbbmDYsGHJ7mabM02TTZs2sWTJEr777jvWrl2Lz+eLLvLo1vmYwaCp+bpOyMzskc6RFx3GmKMP4ttXv+ebfy3vsuEgHhn9HS0lzcGU0ycw7ZxJbPpmG4v+/jUVRVWNP7ATUY5QiPSjuvlQadFTdtlsNg4++ODw3siDDjoIm63zvqbIe03nIaFSiP3k9XpZs2YNy5cvZ8WKFaxbtw7DiH5T0Fw2tCoHelWKdT6mp/MfLs8bkMuRFx/G0CkDWfLqSgmXQRIqLeEwefYkdq7Zw6KnvqFo075kd6vNKRQ4TcxsH2Z2MESmR79e6LrOiBEjmDhxIhMnTmTcuHGkp6cnqcdCNJ+ESiFayOVysXr16nDI3LhxI6YZEx58OnqVA63aYe3JrLV32oE/+YO6M+vCqQyfOoglr33P1/9agbvKk+xuJU1XD5XO9BSmnD6ew8+axI7Ve/j8mW879fXlw9P8ZPtRWVaQxBn9d9c0jWHDhoVD5Pjx48nMzExSj4VoPRIqhWhl1dXVrF69Ovy1fv36+ofLDdBq6vZk6jX2TjeFUThcHjaIle//wDf/WkF5Ydc6zAldN1Rm5WUw9YyJTD55DNu/383nz3xD4cbOt2dS2U1Uph8z24+Z7cPZ24bHE/0hymazMWLECMaOHcu4ceOYMGEC2dnZSeqxEG1HQqUQbczn87FhwwbWrFnDqlWrWLNmTdS1d8M8OnpNcG9mjQOtxo5mdPxLSub26cZhZ01kwtyD2bxkO1+/vJxdPxQlu1sHTFcLlb2G5jHtnEmMnDWMtZ9u5OtXlneaK+EoXVkBMtOPyvJjZgYgrf4lTDMzMxkzZgxjx45l7NixjBw5ktTU1CT0WIgDS0KlEAeYUoodO3awevVq1qxZw7p169i2bRv1/hVV8NzMGgd6tYNUIwObJyV82Nxd07EOKadlOTnklHFMOX0C5XsqWfLqStZ9sbnTX1e8K4RK3aYxYtoQppw2nt7D8ln6xiqWvr6yQ84GkJZphT+lKYxUHx5bbTBEBtCyzPqntmBduWbMmDHhIDlo0CB0veN/IBRif0moFKIdcLlcbNiwgXXr1rF+/XrWrVvH3r1769Xpuk5B7z4M7DeQb19ZaR02r3WgBTrOG5jNYWPM0SM4ZP44uvfrxop3fmDZm6sp3xNn720n0JlDZbeeWUw6aTQT543BVeFm6RurWPXBOvzeQOMPbkeUzURlBDAzA0w7byI7dm1nd+FuAoH6z6NHjx4cfPDBjBw5MvxdprwRwiKhUoh2qrS0NBww161bx8aNG+MfNgdr3sxaO1qNwxoEVGvvECPOew/LZ/L8sYw95iB2/1DE8nfWsuHLLQR8nWfvZWcLlTaHjeGHDWLiCaMYNKk/PyzaxHdvrmZ3BzilITwSO8OPygxYQTLDHzUvZKTMzExGjhwZFSA7wxyRQrQVCZVCdBBKKUpKSti8eTObNm1i06ZNbN68md27E1zOzgTNHQyYLhuay259tcOwmZLmYOwxBzH++FH0HNyDdV9sZtUH69j2/W6U2bFfojpLqBwwtg/jjh3J6NkjKN9Tycr317Hyg3V4atrftFFWeDQwMwxUWgCVHvoywBZ/e+rduzfDhg2L+iooKGj3184Woj2RUClEB1dbW8uWLVuigub27dvxehO82ZvUBUyXzQqenuB3M/lvoLkF2Yw9diTjjzsYh9PO6k828MNnm9mzroiO+GrVkUNl7+H5jDpiGGPnjETTNFZ9uI5VH62nZHv7uCyn0hQqzUClWoExHB7TApBgMgWHw8GgQYPCwXH48OEMHTpUDmEL0QokVArRCRmGwd69e9m6dStbt25l+/bt4e8JwyaAV7euax4OmhE/J2FezT4jezFuzkhGzhqKbtNZ/78trP9iM9u+391hAlpHCpWartF/TAEHHzGMkTOGYnfaWf+/Laz+aD07V+9JSqhXmkKlGnXhMa3uZy1N1R/gFpSSksKAAQMYNGgQAwcOZPDgwQwaNIg+ffpgt8sVioVoCxIqhehC4oXNXbt2sWvXrsTnawIorMDpsaF5bdb3iJ/x6W1+SL1gRE8OnjWUkbOGkdUjg83fbmPzku38uHQH1aW1bbrslmjvoTIjJ40hhwxg6JSBDJs6EG+tj/X/28K6L7aw+4fCNg+SCgUpJsppWOHRaQa/W+FRT1dxR1yH+5+RQb9+/Rg4cGA4QIbCY2e+tKEQ7ZGESiEEAFVVVeGAuXPnzqjvLlcjU8OYgNeGPeBA99nRfTY0v51AlQE+G5pXB0NrteDZo38Ow6YMYujUgQwa35fywiq2LN3OliXb2bmmEJ/b3yrLaQ3tLVTaU2z0G13A0CkDGXroAPIHdmfHqj1sWbqdzd9up3hraasuT9lMVIoJKQaObBtmSgAzxcBMCWDY/SinAY1MXpCWlka/fv3ifuXk5Mh5j0K0ExIqhRANUkpRVlbG7t27KSoqorCwkKKioqiv2Gufx2WA5rNZezx9NjSfDl7ru+bXrb2d/v0PnzaHjf5jChg2ZSBDpwwkf1B39m4pYefqQnas3s2O1XuoKU3efInJDpXpOWkMGNuH/mMLGDC2LwXD8yndVWGF8KU72LFy935PAaRQ1oAXuxUYrdBoolKCexqDIVKlmGBv/C3GZrORn59P7969w18FBQUUFBTQr18/evToIcFRiA5AQqUQokUMw6CkpKRe4CwpKWHfvn2UlJRQXV3d9AZNwB8dNDW/XndbQEcLaHXf/XrU+Z7OjBT6jS5gQDBE9R3Vm9pyF4Ubi4Nf+yjcWExt+YEJmgcyVKZ3S6X38J4UjOhJwYh8Ckb0JLtnFnvWFbFjTSE7Vu1m15pC3NXR59UqLRgQ7RHfHSbKYdb7Hvo50UCYeDIyMsjLyyM/P5/8/HwKCgro1asXBQUF9O7dm7y8PDnPUYhOQEKlEKLNeTweSkpKwkEz9BW6raKigvLy8sYPsydiUD9sBqy9nrrSyeyWSU5+Nt1755LXtzs9B+SBoVGzz01tsYuqoloqdldRtqOKquJqaMVBSW0RKjPz0skbmEtu325k98kku3c6mT3TsTl1ineUsG9nKSW7yygvrqCqrBoTE2wRodEWHSL3JyBGcjqd5Obm0qNHD/Ly8sJf+fn54e89evQgPT29VZ63EKJ9k1AphGg3vF5vOGCWl5dTUVFBWVlZ+Ofy8nKqq6uprq6mpqaG6urqBgdxNJdNt6HrNnRNQ1M6mKACoAyFCoAZUJiGsi6lGXoFVZo1oAms78FgqqEx9tiDWP3ReuuwsXVjxHcFwYfqNg3doaHZNXS79V2zBUdAawqlTAzTIBAwqFtY69A0jYyMDLKyssjKyqJbt27k5uaSk5OT8HtaWlqr9kEI0bFJqBRCdFimaeJyucJBM/bL7Xbjcrlwu92N/txRXwp1XSctLa1JX1lZWWRmZoaDY+TPGRkZcr1qIUSLSKgUQnR5Sin8fj8+ny/8PfQV73a/349pmpimiVIKwzBQSoVvi/3SNA1d19F1PernyN9D3+12Ow6HA4fDQUpKStzvoZ9DXzKIRQjRHkioFEIIIYQQLSbHOoQQQgghRItJqBRCCCGEEC0moVIIIYQQQrSYhEohhBBCCNFiEiqFEEIIIUSLSagUQgghhBAtJqFSCCGEEEK0mIRKIYQQQgjRYhIqhRBCCCFEi0moFEIIIYQQLSahUgghhBBCtJiESiGEEEII0WISKoUQQgghRItJqBRCCCGEEC0moVIIIYQQQrSYhEohhBBCCNFiEiqFEEIIIUSLSagUQgghhBAtJqFSCCGEEEK0mIRKIYQQQgjRYhIqhRBCCCFEi0moFEIIIYQQLSahUgghhBBCtJiESiGEEEII0WISKoUQQgghRIvZk90BIdoDpRQejyfZ3RBCiP2SmpqKpmnJ7oYQgIRKIQDweDwcd9xxye6GEELslw8++IC0tLRkd0MIQA5/CyGEEEKIViB7KoWIkbKkJ5oKft7SdDRdA00HXQNNQ9ND9wVv1zTQNbRQTfg+LfyY8BdE3FbXZvgx1D1GaVrdx76INsK3Rzwu8jYVbCZ8nw4Qul0L3xd6jAreFr4f6trQg/Xhx0QvI+oxBG/T49wXVU9UH+tu0+rdV+8xRD8m6n7qHpNoWVG/J+hHvcc01G74dhX1+Nj2wvdHtKWCtxPzODQV8Xjrfi3yvnBt6D4VblOLrA/ermmqbvML3l63eajw/Toq/Lt1H+jB3637rN9Djwvfpyk06h6nB28Lf6HCj9M1om6ve4xZV4tC10xsofuCv9e1ZYbbs0W0b8O63aaZMY8zsYXapG554Xrq2tOxHq9jLd+6z2rPFrxNw8QWejyhfpjYwHoc1nJCzy30u7UsFfyZ4H0KPbhebGjogC34x9bRgrdp2DQNPfhioKHh99k4fUFvhGhvJFQKEcvQgi/vWKGSYAAMvlvX3aeBXpegNCuhBRsJJQ+97ud6aUOvn3g0rX59ZHvE1EfdF/tzRE0oTEaEynq3RYTAyN9juxhdH+cxegP3JXoa8dpN9LiGbm/ysvavzbghNupxrRwq491P7O8q3HZkPyKXGf2YmBAavi/yfhWnPRVnWSrqKzJU1gXV4Fei++KFTUJhlKigF/rdRvR9Vqg060KZFhnKrJ91TbMCX/A74Z+18OPqAizYtLrvNogIgHHuC7Zn/a6CoVSFQ6T1ONVoqIxszxa8Tyf6tlCA1YPPW4j2SA5/CyGEEEKIFpNQKYQQQgghWkxCpRBCCCGEaDEJlUIIIYQQosUkVAohhBBCiBaTUCmEEEIIIVpMQqUQQgghhGgxmadSiFg2hVLWhMfWvItaxHctZkLy0PeIn4m8TUX83MB9odsjJi2sm6KaBLfXfVdRPxP1OAWgQrfXtanQQBF+bOT94TaiJleM7Euc31VUl2LWR4Kv2NrG5o4kwe2N3dfQXJQN3Rf5DBt8XLz5JiO/VII+Jp78PHpuyYj7wrXNn/y8rh8R81TS/HkqFXWPU5qK/sL6bt1H1O1muD2zbjko0MyI+TRV1P1KM8PtEdV+8HtoWcHf9WBN6DtQ7zYzYm5IU6v7blI3T6UZvE0j0TyVWnjCcht1f7PQ73rwMbFzXzZ98nMt+GfR8Pvi/V8KkXwSKoWI4ZtSnOwutI3Qe3YLxMZZISB60zKT2ZFmi9yy5QCeEM0l/z1CAB6PJ9ldEEIIITo02VMpBOB0OsM///e//yU1NTWJvek4PB4P8+fPB2S9NZWss+aR9RafrAfRnkioFALQtLoDuqmpqaSlpSWxNx2TrLf9J+useWS9CdE+yeFvIYQQQgjRYhIqhRBCCCFEi0moFEIIIYQQLSahUgghhBBCtJimlGrhzHVCCCGEEKKrkz2VQgghhBCixSRUCiGEEEKIFpNQKYQQQgghWkxCpRBCCCGEaDEJlUIIIYQQosUkVAohhBBCiBaTUCmEEEIIIVpMQqUQQgghhGgxe7I7IERrc7lcvPzyy3z++ecUFRWh6zr9+/dn9uzZnH766Tgcjma3XVZWxosvvsjXX3/N3r17cTqdDB48mLlz5zJv3jw0TWvFZ3LgtMU6e+qpp3jmmWcarXvxxRfp169fM3qdPB6Ph++//54NGzawceNGNm7cyN69ewG46KKLuPjii1u8jM64rbXleuvM25sQHYWEStGpFBUVcc0111BUVARAamoqfr+f9evXs379ej766CP+8pe/kJWVtd9tb9iwgRtvvJHKykoA0tLScLlcrFq1ilWrVvHZZ59x7733tii0JkNbrjMAu91OdnZ2wvttNluz2k2mdevWcdNNN7VZ+511W2vr9Qadc3sToqOQUCk6jUAgwC233EJRURE9evTgtttu45BDDsE0TRYtWsQDDzzApk2buOeee7j//vv3q+2amhpuvvlmKisrGTBgALfffjsjR47E7/fz1ltv8cgjj7BkyRIefvhhbrjhhjZ6hq2vLddZyJgxY/jrX//ayj1PvqysLEaMGBH+evjhhykrK2txu511Wwtpq/UW0lm3NyE6AgmVotN4//33+fHHHwG45557GDNmDAC6rnP00UejlOK3v/0t33zzDcuWLWPy5MlNbvvll1+mrKwMp9PJ/fffT58+fQBwOBycdtppuFwu/va3v/HWW29x5pln0r9//9Z/gm2gLddZZzZu3DjeeeedqNuefPLJVmm7s25r0LbrTQiRfDJQR3Qa77//PgATJ04Mh6NIRx99NAUFBVG1TfXBBx+E2wi9yUc67bTTSEtLwzAMPvroo/3tetK05TrrzNryEGpn3dZADj0L0dlJqBSdgsfjYc2aNQAcdthhcWs0TWPq1KkALF26tMlt79ixIzyYIPT4WOnp6YwbN26/206mtlxnonk667YmhOga5PC36BS2b9+OaZoADB48OGFd6L6ysjKqqqoaPKE/JHR4uLG2hwwZwrfffsu2bdua2Ovkast1Fmnr1q1ceOGF7NmzB13XycvLY/z48ZxyyimMGDGi+U+gE+qs29qBJNubEMkjeypFp1BSUhL+OT8/P2FdXl5e3Mc0pLS0dL/arq2txeVyNantZGrLdRapsrKS7du343Q68fl87Ny5k7fffpsFCxawcOHC/W6vM+us29qBJNubEMkjeypFpxD5xup0OhPWpaamxn1MW7Sdnp7epPaTpS3XGUC/fv244oormDFjBgUFBdjtdvx+PytWrGDhwoVs2LCB5557jqysLM4555zmPYlOprNuaweCbG9CJJ/sqRRCtIljjz2Wc889l/79+2O3W59fHQ4HU6ZM4ZFHHmHkyJEAPP3009TU1CSzq6ITkO1NiOSTUCk6hcg9NV6vN2Gdx+OJ+5hktZ1MyXxeTqeTyy67DAC3282yZctapd2OrrNua8km25sQB4aEStEpRJ73t2/fvoR1kecERj6mIT169NivtjMyMjrEG31brrOmGD16dPjnPXv2tFq7HVln3dbaA9nehGh7EipFpzBw4EB03dqct27dmrAudF/37t2bPIp5yJAh9R4fT2jk7qBBg5rUbrK15ToTzdNZtzUhRNcgoVJ0CqmpqeHJu7/99tu4NUoplixZAsChhx7a5Lb79+9Pr169Gmzb7XazatWq/W47mdpynTXFDz/8EP45NMF6V9dZt7X2QLY3IdqehErRacydOxeAFStWRL2BhCxatCh82CtU2xSapnHccccB8Omnn1JYWFiv5vXXX8ftdmOz2ZgzZ05zup8UbbXOlFIN3u/z+cLTu6SlpcnlH4M687bWlmR7E6J9kFApOo25c+cyZMgQlFLccccd4ZPxTdNk0aJFPPDAA4B1pZLYN5WnnnqKWbNmMWvWrLhv5Oeccw7du3fH4/Fw8803s2HDBgD8fj9vvPEG//jHPwA46aSTOtS1mNtqna1cuZLrr7+eDz74gOLi4vDtgUCAZcuWcdVVV4VD7IUXXkhWVlZbPs02UV1dTUVFRfgrNJG81+uNuj12Gqauuq2FtMV66wrbmxAdgcxTKToNu93Ovffey7XXXktRURHXX389qampmKaJz+cDYPjw4dx555373XZmZib33XcfN954I9u2bWPBggWkp6fj8/kIBAKAdSjyqquuatXn1Nbaap0ppVi2bFk4pDqdTlJTU6mtrQ2vL13XOe+88/jJT37Suk/qALnkkksoKiqqd/tLL73ESy+9FP597ty5/PrXv25yu511Wwtpi/XWFbY3IToCCZWiUykoKOCZZ57h5Zdf5vPPP6eoqAi73c7gwYM5+uijOf3003E4HM1q+6CDDuLZZ5/lxRdf5KuvvqK4uJjU1FSGDBnC3LlzOeGEE8IDXzqStlhnQ4YM4corr2Tt2rX8+OOPVFZWUlNTQ2pqKoMGDWLcuHGcdNJJDB06tI2eVcfWWbe1tiLbmxDtg6YaOxlFCCGEEEKIRshHXSGEEEII0WISKoUQQgghRItJqBRCCCGEEC0moVIIIYQQQrSYhEohhBBCCNFiEiqFEEIIIUSLSagUQgghhBAtJqFSCCGEEEK0mIRKIYQQQgjRYhIqhRBCCCFEi0moFEIIIYQQLSahUgghhBBCtJiESiGEEEII0WISKoUQQgghRItJqBRCCCGEEC0moVIIIYQQQrSYhEohhBBCCNFiEiqFEEIIIUSLSagUQgghhBAt9v+mzNcwQXpfvgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAACjMElEQVR4nOzdd3QUZdvH8e9sTe+B0EPvvUnvUhXsYkXAAoIIFvQRFcXuK4oNBUVQFBuIIFVpCkjvPUCABAKB9Lpt5v0jZiUSSEiblOtzTg6b3dmZa5OQ/PauiqZpGkIIIYQQQhSCQe8ChBBCCCFE2SehUgghhBBCFJqESiGEEEIIUWgSKoUQQgghRKFJqBRCCCGEEIUmoVIIIYQQQhSahEohhBBCCFFoEiqFEEIIIUShSagUQgghhBCFJqFSCCGEEEIUmoRKIYQQQghRaBIqhRBCCCFEoUmoFEIIIYQQhSahUgghhBBCFJqESiGEEEVi7ty5KIqCoijMnTtX73KEECVMQqUQ5Vj2H/jsj61bt+b5nO+//959/NSpU4u/SHFdwsPDr/i+Xv7h4+ND3bp1uf3221mwYAFOp1PvkoUQFYSESiEqkP/97396lyCKWVpaGidPnmThwoXcc889tGnThsjISL3LEkJUACa9CxBClJy1a9fyxx9/0LdvX71LEUXg888/p1KlSu7PVVUlMTGRXbt2MX/+fJKSkti/fz/9+vVj3759eHl56VitEKK8k1ApRAXg5eVFeno6kNVaKaGyfLjxxhsJDw+/4v6RI0fy3HPP0blzZ6Kiojhx4gTz5s1jzJgxJV+kEKLCkO5vISqAGjVqcMsttwCwfft2Fi1apHNForhVr16dp59+2v35hg0bdKxGCFERSKgUooJ47bXXMBiy/stPmTIFl8tVqPPt3LmTadOmMWDAAGrWrImHhweenp7UqFGDYcOGMX/+/Dyvkdts4R07djB69Gjq1auHt7c3iqKwfv36Ah1/udWrV3P//fdTp04dvLy88PX1pVGjRjz22GPs3LnzqjW+9tpr7mvu2LEj12MWL16cY7JMdHR0rsd9/PHH7mNWrVp1za9NUWjUqJH7dlJSUq7H9OzZ011TXq7n2Lzs3r2bESNGUKtWLTw8PKhSpQr9+/fnhx9+AODUqVPua40YMSLP861cuZIRI0ZQv359fH198fLyom7duowYMYKNGzcWul4hRN6k+1uICqJJkybcf//9zJs3j8OHD/PNN9/k6491bl555ZWrzgyPjo4mOjqaX3/9lQ8++IAlS5ZQtWrVfJ33rbfeuq7Am5/jU1NTueeee1i6dOkVjx09epSjR48ya9Ysxo8fz/vvv+8O3tl69uzpvr1u3TratWt3xXnWrVt3xef333//VY8zm8107dr1mq+tKFy6dMl9u2bNmsV+vfx67733mDx5co7v2/nz5zl//jyrV69m4cKFvP766/k618WLF7n77rtZu3btFY+dPHmSkydPMm/ePEaNGsXMmTMxm81F9jqEEDlJqBSiApk6dSoLFizAbrczdepU7rnnHiwWy3WfJyMjA5PJRKdOnejSpQv16tXDz8+P+Ph4IiMjmT9/PmfPnmXnzp0MGzaMTZs25fnH/IcffmDlypX4+/vz4IMP0rZtW4xGI3v37sXf379Ax7tcLgYOHOhuqQoICGDkyJG0adMGp9PJxo0b+frrr7Hb7Xz44YdkZGQwa9asHNfp0KGDe0zqunXreOaZZ66oJT+hUtM0dxd0+/bt8fb2zuOrXDiqqvLVV1+5Py8t42jnzZuXo1v+pptuYsiQIfj7+xMREcGcOXP46aef8nWu+Ph4OnXqxIkTJwBo2bIlt956K/Xq1cNgMHDgwAHmzp3L2bNn+fLLL3E6nbJ+phDFSRNClFuABmgNGzZ03zd+/Hj3/TNmzLjiOQsWLHA//vLLL+d63m3btmkxMTFXva7NZtMmTJjgPs/cuXNzPe6rr75yHwNojRo10s6ePXvV817v8W+99VaOr0Fux+7atUsLCgpyH/fbb79dcUzfvn01QPPx8dEcDkeOxy5evKgpiqIBWqdOnTRACw8Pv+Ice/fudV/jf//731VrzkutWrXc54mMjMzxmKqqWkJCgrZmzRpt4MCB7uN69eqlqaqa6/l69OjhPi4veR17+ffnq6++uuLxS5cuaQEBARqgGQwG7dtvv73imPT0dG3AgAE5vs8PPvhgrtcbNmyYBmiKomgffPBBrsekpKRoN954o/tcK1asyPN1CiEKRsZUClHBvPDCC+5Wstdff53U1NTrPkf79u0JCwu76uMWi4X33nuP2rVrA/DNN9/keU5FUfj+++/z3VWe1/F2u533338fAJPJxE8//ZTrsa1bt+bzzz93f/7mm29ecUyvXr2ArK70/46rXL9+PZqmYTKZePHFF4Gs8YCnTp3KcdzlrZnZ5yus2rVr5xjLaTAYCAwMpE+fPqxYsYI6deowZcoUVq5cWSTjIAvrq6++IjExEYBHHnmEe+6554pjPD09+fbbbwkMDLzmuXbt2sXixYsBmDhxIhMmTMj1OB8fH77//nt36/X06dML/gKEENckoVKICqZy5co8+eSTAMTGxvLBBx8Uy3WMRiMdO3YEYNu2bWiads3ju3XrRsuWLfN9/ryO37x5MxcuXABg4MCBNG/e/KrH3n777dSrVw+ATZs2ERsbm+Px/46rvFz2523btqVv377uwP7f47InD1ksFrp06XKNV1Z0LBYLPj4+qKpaItfLy6+//uq+fbUQCBAUFJTrmNTLZb9RURSFp5566prHBgYGMmjQIAD+/PNPbDZbfksWQlwHGVMpRAX0zDPPMHPmTOLj4/m///s/xo4dS1BQ0HWdQ1VVFi9ezMKFC9m9ezfnzp0jJSUl1wCTkpJCcnJyrmMjs3Xr1u26rp/X8du2bXPfvvHGG/M8X79+/Th+/DgAW7du5aabbnI/lj0GMi0tjXXr1vH888+7H8sOi7169cJsNtOlSxdWr17NunXreOihh4Csr1X2eMoOHTrg6emZvxeZh/8ufg6Qnp7OiRMnWLhwIXv37uW5557ju+++448//iA0NLRIrlsQqqqya9cuAMLCwnLMTM9Nz549+fDDD6/6+F9//QVkjZO9/Ht9NdlB0mazcfLkSRo3bpzf0oUQ+SShUogKyN/fn8mTJzN58mSSkpJ46623eOedd/L9/OjoaIYNG3bNpXj+K69QWa1atXyfKz/Hx8TEuG83aNAgz/NdfszlzwVyhMVNmzZht9uxWCxcuHCBQ4cOAf92affq1csdKrPt27ePhISEHMcVhastfg5Zy0Y999xzvPPOO+zbt4/hw4fzxx9/FNm1r1dSUpJ7Af46derkeXxex2QPL0hISHCvwZpf2d8LIUTRku5vISqo8ePHu8cYfvzxx5w7dy5fz3M4HPTv398dKENCQhg5ciTTp0/n22+/ZeHChfzyyy/88ssvOQJUXssEXW/rXV7Hp6SkuG/nZ6a1j49Prs/Nlv1a0tPT2bp1K/BvK2V26Lz8uOjoaCIiIoDiGU+ZF0VReOONN6hbty4Aa9asYfPmzSVy7dykpaW5b+dnu8i8vmdXW3czP+x2e4GfK4S4OmmpFKKC8vT05MUXX2TMmDFkZGTw6quv8tlnn+X5vAULFrhb5/r168cvv/xy1QDw7bffFmnN18PX19d9+/JAczWXT1i6/LnZ/juuslu3bu6w2KFDB/fXoG3btvj6+pKSksK6deuoX7++O3xarVY6depUkJdTIEajkb59+7qX3Pn999/p3Llzgc9XmLGZl/+MZLdYXkte3zMfHx8SExOpWbMmp0+fLnBdQoiiIy2VQlRgo0aNcrdkffnll+4xhddyeRfq+++/f80WJT3/2FepUsV9O7vF8FouPya3WeLt2rVzt2Zmh8nsfy9vfTSZTO6FzdetW4eqqvz5558A3HDDDXh4eFzvSymU4OBg9+3cWqOtVqv7dl4teJcvpn69/P393S2UJ0+ezPP4vI7JHv4QGxuLw+EocF1CiKIjoVKICsxsNvPqq68C4HQ6eemll/J8TvaMasAdSHMTGxvLnj17Cl1jQXXo0MF9+/fff8/z+MuPufy52S4Pi3///TcnT57k2LFjAPTu3TvHsdkhc/369ezevdu9jE5JdX1fLi4uzn07tzcAAQEB7tvXGgKRkJDgfr0FYTAYaNOmDZC1e86RI0eueXxuW21erkePHgBkZma6Q7sQQl8SKoWo4IYPH06LFi0A+P7779m7d+81j798PFx2t2pu3nzzTV1bkDp37uxeS3PZsmXuLvvcLFq0yN1S2bVr1ytmVGfLDoU2m4033ngDyL1LO/u48+fPM3PmzCvuLykulytHy3JuM56bNGnivp3bVofZPv3000LvFz906FD37RkzZlz1uPj4eObPn3/Ncz3wwAPu26+88kqhaxNCFJ6ESiEqOEVR3Pssa5rGRx99dM3j27dv77794osv5jrObtasWddcDqYkWCwWJk6cCGS1wt5xxx1XzOqGrJnZjz76qPvz55577qrnvHxc5bx58wDo1KnTFV3arVu3ds90zz7O09PTvW5nSdA0jf/973/u4O/l5ZUj1GUbMGCA+/abb76Z68zo5cuXM23atELX9NBDD7lbRmfNmsV33313xTEZGRnce++9xMfHX/NcHTt25LbbbgOylhe69957SU5OvurxTqeTRYsW8cknnxT8BQghrkkm6gghGDJkCJ07d2bz5s15TpB46KGHeOONN0hLS+OXX36hTZs23H///VSvXp0LFy6waNEiNmzYQFhYGM2bN89X13Nxeeqpp1i6dCkbN27k0KFDNG3aNMfe35s2bWLevHnuNQwffvhhBg8efNXztW3bFj8/P5KTk3E6nUDurY9Go5Hu3buzdOlS93GdOnXKMX6xKKxevfqKVtWMjAz3OpWXDz944403cm2B7dixI926deOvv/7i+PHjtGnThscee4w6deoQHx/PypUr+fXXX2nQoAFeXl7s3r27wPUGBwfz/vvv89BDD6GqKvfeey8//PADgwcPdu/9/dVXX3Hy5EnuuOMO9x7gBkPu7R9z5szh2LFj7N+/nx9++IFVq1Zx55130q5dOwIDA8nIyODs2bPs3r2b33//nYSEBEaNGlXg+oUQedB3l0ghRHEil72/r2bDhg059lvmGnt/L168WPPw8Lji+OyPatWqadu2bdMefPDBq+5TrWl57xVd2OM1LWvv5yFDhly1Vv7ZO3r8+PGay+XK83yDBg3K8dw///wz1+OmT5+e47hp06blq968XL73d34+PD09tQ8//PCa5zx58uQ1z9uwYUPt2LFjhd77O9u7776rGY3Gq17v9ttv1w4dOuT+/IknnrjquZKSkrS77ror31+PF198MV9fZyHE9ZPubyEEAN27d8/RFXotQ4cOZdeuXYwYMYIaNWpgNpsJDg6mbdu2vPrqq+zduzdHN7mefHx8WLp0KStXruSee+6hVq1aeHh44O3tTYMGDXjkkUfYvn07H3744VVbxC53ecvktbq0/9uCeXnXeXGyWq2EhYXRu3dvXnvtNY4fP8748eOv+ZzatWuze/du/ve//9GkSRM8PT3x8/OjdevWvPnmm+zYsYP69esXWY1PP/0027Ztc7dwWywWKleuTL9+/fj+++/56aefcnRlX2u3Jz8/P77//nt27drFk08+SevWrQkODsZkMuHj40P9+vUZNmwY06dP58SJE+6JaUKIoqdoWh4b8gohhBAl7KOPPuKJJ54AsiZSXe+uOUKIkiehUgghRKnicDho3bo1Bw8exGw2Ex0dfdUZ+UKI0kO6v4UQQpSY1NTUa+4Zb7PZGDlyJAcPHgTglltukUApRBkhLZVCCCFKTHR0NDVq1KBFixb069ePJk2a4O/vT2pqKvv27eOHH37g7NmzAAQGBrJv3z6qV6+uc9VCiPyQUCmEEKLEZIfKvNSsWZMlS5bQsmXLEqhKCFEUJFQKIYQoMS6XiyVLlrB8+XJ27drFxYsXuXTpEpqmERwcTMuWLbnpppsYMWJEie+TLoQoHAmVQgghhBCi0GSijhBCCCGEKDQJlUIIIYQQotAkVAohhBBCiEKTUCmEEEIIIQrNpHcBQghR0jRNw263k5GRQUZGBna7PceHzWbL9T6Hw4HL5XJ/qKqa49//3gegKAqKorj3Fb/8tsFgQFEUAIxGIxaLBZPJhNlsxmQy5fg8+yP7fg8PDzw8PPD09Mxx22SSX+tCCH3Ibx8hRJnjdDpJSUkhOTmZ5OTkK26npqaSkZFBeno6aWlppKenk56enuM+l8ul98soFiaTKUfY9PT0xNvbGx8fH3x9ffHx8cn1I/sxPz8/PD099X4ZQogySJYUEkLozuFwkJCQQEJCAvHx8Tn+zf64PDymp6cX2bVNJlPWh9GE0Wj859+s+8wmE2bLP62EVjMWiwU0sj5Q0FQNVNBU/r3/nw8FBU2D9KR0vIO8iD+bhKKAYlAwGBUMRgOKScFkNmI0GzGasz5XjIACdpsdW4aNzAw79kw7dpsde6YDh92Bw+FA1VxoBg3vIE8yMzOLNCRbrVYCAgLw9/cnICDgio/s+4OCgggODpb1JIUQgIRKIUQxUlWVhIQELl68yMWLF4mNjXXfvnTpkjs4JicnX/e5FUXBarFitVixmCyYDRaMigkjJhSXAZwKqkNDzdRQbSrOdA1XpgtXpoqXtxdBYYFUDg8lrG4oIbWCCKrmj6pqxEcnknAuifizSSTHppByKZWUS2mkXEojNT4Nl1O9rjoNRgMvrX+CV3t+iOrK33MNRgM+QV74hnjjG+KDb7A3fpV8CKwaQFB1f4KqBmCyGEmISebS6XjOH7/I+ZMXiT19kYQLSaiKCgYNjBqaUQOjCiYNzaSBSc26z6S6P8eoEVDNj5SUFJxO53V/L3x8fAgJCSEkJITg4OActy//3Gw2X/e5hRBlh4RKIUSBZWZmcv78eWJiYjh37hznz593h8bs4JjfkKIoCl4eXnhYPDAbrZgxY3CZUBwG1AxwpavYU1zYEx3YkhyotqzWwLwEhPlRvWkY1ZtUoVrjylSuG4LT4SL2ZBwXTl7iwolLXDwVR3xUImmJGYX9klyhIKEyPzz9PAiuHkBoeBCV6oZQuU4IleuGYPE0ExsZx9lD54k+fJ7og+eJj07M1zk1soIoJhXNrKGZVTCruf6rmTWs/iZsNlu+zq0oCkFBQYSFhVG5cmUqV65MWFiY+/OwsDC8vLwK8RURQuhNQqUQ4qpcLhexsbGcO3eOmJiYKz7i4+PzPEd2WPS0emE1eGB0mVHsBtQ0sCe5sMU7yIy35zskXovBqFClQSXCW9egRrMqVG8ahslsIvrwec4eiiH60HnOR1wk5VJaoa5zfTUVT6i8Gu9AL8Lqh1KtcWWqN61C9cZhAFkB80AMkbujOHvoQpHUkh1CNYsKFheaRc26bf33dljDEOLi4rDb7Xmez9fX1x00q1evTvXq1alWrRrVqlUjNDTUPcFJCFE6SagUooLTNI3ExESioqKIiorizJkzREdHExUVxdmzZ3E4HNd8vsViwcfTFw+jJyaXBTINOJNUMuMcpMfaUdM1FK1wYfFaKtcNoXabGtRuU51araqTnpTBqd3RnNl3juiDMcRFJaDnb7mSDpW5CarmT/WmVajRvCq1W1fHL9SH0/vOEbkrisidUZyPiC3Wr5GGltX97uFCs2Z94OFCs6poVhc+VTxJSUm55jksFgtVq1Z1h8zswFmjRg0qVaokgVOIUkBCpRAVhMvl4ty5c0RGRhIZGekOkVFRUaSmpl71eUajER8vXzxNXphcZrQ0A45EF5kXHGRecoJTKXQL4/UwWYzUbluDhp3r0KBzbRSjgcidZ4jcGUXkrmgSz1//+MziVBpC5X/5hnj/E8RrUKddDYwmI8f+juTY5khO7jiDPePabySKg2ZU3SETD1dWAPV0Uq1lZWJiYq45jMLT05OaNWtSq1YtwsPD3f9WqVJFllgSogRJqBSinFFVlQsXLrjDY/bH6dOnr9oFqSgK3p4+eJu9MbmskGbAfkkl/ZwNR5JaoqExN56+Vhp1r0ejbnWp3aYGF0/FcWxzVggq7la2wiqNofK/KtUJpkHnOjTsXJuwBpU4vfcsR/86waENx0lLKLqZ9gWloYFVRfN0/hM2XWgeTqq3DuPcuXNXDZxms5nq1au7g2adOnWoW7cu1apVk5ZNIYqBhEohyrCMjAyOHz9OREQEERERnDx5klOnTpGRkfuEE5PJhL93AJ6KF0qGCUe8Slp0JrY4FUXVNzj+l9XLQsNudWjWpyG1W1fn1O5oDv91gojNkaTEldyYyMIqC6Hycl4BntTvGE7jHvWo064mUQfOcXDtMQ5vOE5GSv4m5ZQkTfmnW93LmRU2vZxoXk4swcarTiLy8PBwB8x69epRr1496tSpg7e3dwlXL0T5IqFSiDIiKSnJHR6PHTtGREQEUVFR5PZf2GAw4O8dgIfihZJmxH5RJS3Khiul8JNhipPBaKBB59q0uLER9TqGE30ohgNr/gk0yZl6l1cgZS1UXs7qbaFRt7o0692A8NbVidwVxb7VRzny13Gc9tK9eHx266b6T8jM/jAHG67aYl+lShV3yGzYsCENGzYkODi4hCsXouySUClEKZSSksKRI0c4dOgQR48e5dixY8TGxuZ6rJenN75Wfyw2K45LGqlnbNjjXcU6OaaohdQMpPWQprTs35iUS2nsXn6QQ+siSI3Xv+u1sMpyqLycl78HjbvXo+XAJoTUDGT/70fY9dtBLpy4pHdp10VDy2rR9HaieTvQvJ0EN/Tn4sWLuR4fGhpKo0aNaNiwoftff3//Eq5aiLJBQqUQOnM4HJw4cYJDhw5x+PBhDh8+zJkzZ3I91s/bD2+jL6SayIx2kB5tB7uxhCsuGiaLkWZ9GtLmpmaEhgexf/URdi07yPmI3P+4l1XlJVReLjQ8iNaDmtJyQGOSLqSw67cD7Ft9RJcJPkVFM6lo3k7Uf4JmzY5hnD59OteegCpVqtCoUSMaNWpE48aNadSokewqJAQSKoUocbGxsezfv5+DBw9y+PBhIiIicu2O8/P2w8fkj5JiIj3KQdoZW9ZOMWWcX6gP7Ya1oO3Nzbh0OoEdi/dx+M/S351aUOUxVGYzmrKGK7Qb2oKqjSuze9lBti/aS0JM6ZqBX1CaQUXzcaL6ONB8nFRpHczZs2evOM5oNFK/fn2aNWtGs2bNaN68OaGhoTpULIS+JFQKUYw0TeP06dPs27fP/XH+/PkrjrNarPhbAzGkWcg86yT9tAPFWfYD5OWqN63CDXe0on6n2hxaF8HWhXvKXatkbspzqLxcSK1AOt7WihY3NiJyVzRbf95N5K5ovcsqcppRRfNxoPo60XwcBDb0IS4u7orjKleu7A6ZzZo1o27durK8kSj3JFQKUYQcDgfHjh1zB8gDBw6QlJSU4xhFUQj0CcJT9cEZq5F8PLPUT6ApjLodatHt/vYEVw9g26K97Fx6gPRi2A6xtKoooTKbh4+V1oOb0PG21qQlpPPX/O0c3XiiVC/7VBjuCUG+dlQ/B/V61uD48eOoas7vtaenJ82bN6dVq1a0bt2ahg0bSsgU5Y6ESiEKweVyERERwa5du9i5cyf79+8nMzPnLGWT0USAZyCmdA8yzjjJiHKWi27sa1EUaNS9Ht3ub4+nrwcbv93B3pWHym0X97VUtFCZzWA00KxvA7rd1x5Ng43zt3NgzVFUV/n/k6MZVDRfJ6qfHc3XgVdNyxUbDEjIFOWRhEohrkN2d/bOnTvZtWsXe/bsuWJ7OavFgwCPQJREMynHbTguFu82haWJokCTXg3o+dANaKrKX/O3c3DtsQoRJK6moobKbIoCjbrVpdv9HfD08+DPeVvZu+pwhfqZ0NCyljTyd6D62/Gt63FFD8blIbN9+/bUr19fFmgXZY6ESiHycOnSJbZt2+YOkv8dP2UxWwjwCMKQYCHlmA1HvFZuu7Kvpf4N4fR+uDNGs5F1X2zmyF/lt8vzelT0UHm5eh1q0fvhzlg8zaz94m8Ob4iokD8j/w2ZPnWsJCfnnNzk7+9P+/bt3R8hISE6VStE/kmoFOI/nE4nBw4cYMuWLWzdupUTJ07keNxoNBHoGYQhyULqMRvOuJLd+7q0qdmiKn0e6YJfqA/r5vzN/t+PoqnyayWbhMorNe5Rj96jO+OwOVg7azPHt53WuyRdZYdM1d+BFmDHWt1wxa5YtWvXpn379nTo0IGWLVtitVp1qlaIq5NQKQRZy/xs27aNLVu2sHPnTtLS/t0GMHtijTXTm7TjdjKj1QrTnX0tgVX9ufHxblRvWoU/525l128HcDklNP2XhMrcGYwKLW5sTM+RNxAXlcCqj/4kNvLKWdQVkaZoaL4O1AA7DfrX5MiRIznWy7RYLLRo0YLOnTvTuXNnqlatqmO1QvxLQqWokFwuF4cOHWLjxo1s2bKFyMjIHI97WDzwMwbhjIbUiPK3vE9hWL0sdHugA+2GNmfbor1snL+9TC96XdwkVF6byWKk011t6DK8HftWH2bdnC1ldkvO4qKZVNQAO2qAjeDmvlfs/hMeHk7nzp3p0qULTZo0wWgsmxsiiLJPQqWoMGw2Gzt27GDjxo1s3ryZhIQE92OKohDoHYQp2ZOUIzZc8RW7Szs3igKtBjWlz8OdOb3vLL/P3EhiOVnkujhJqMwf32Bv+jzahQadarNh7la2L94nX69cZG8zqQbaaHFbffbt24fL9e+qCv7+/txwww107tyZ9u3b4+Pjo2O1oqKRUCnKtaSkJDZv3szGjRvZvn17juV+LGYLgeYQHGcVUo/apTXyGirXDeGmZ/pgsphY8eF6Tu+5clcRkTsJldenaqPKDHyiB2ZPM0vfXcPZQ1duFiD+pRlV1EA7apAN77rmHKtRGI1GWrduTY8ePejWrRtBQUE6VioqAgmVoty5dOkS69ev588//2Tfvn05FiH28vDGx+FP2jEnjvPI2Mg8mK0meozoSLuhLdgwbwtbf95ToZaCKQoSKq+fokDrIc3o+2gXDvxxlDWzNmNLv3IrU5GThobm50ANslGtcwhnzpxxP6YoCi1atKBHjx50796dSpUq6VipKK8kVIpyIS4ujg0bNrB27Vr279+fY1C7v1cA1jRvkg/aUBMN0q2dT3Xb12TI0324eCqOZdPXkXQhJe8niStIqCw4nyAv+o/vQa2W1VjxwToO/3ki7ycJN9XDiRpso/7A6hw5ciTHY02bNqV79+706NFDJvqIIiOhUpRZCQkJbNiwgXXr1rFnz54cQTLIOxhjvCfJBzMhXQatXw+rl4UBT/Sg3g3hrPhgPYfWR+hdUpkmobLw6nUMZ/CkXpw7eoFl09dVqG0+i4pmdeEKzqTJ0NocOHAgx+/LBg0a0KdPH/r06SMtmKJQJFSKMiUlJYX169ezdu1adu/enaNrO8ArCEOsldRDDhS7BMmCqN2mOkOfv5Go/edY/v46MlJsepdU5kmoLBoWTzM3ju1Go251WfruGo5uOql3SWWWZnahBttofkc99u7d6/49qigKLVu2pF+/fvTo0QM/Pz+dKxVljYRKUeo5HA62bt3KqlWr2Lx5Mw7Hv8vXBHgFYYzzIOWgHSVTgmRBma0m+j7WhWZ9G7LsvXXSOlmEJFQWrXodanHzc/04sf00Kz/cgC1NxloWhmZSUUMyaXJrbfbt2+e+32Qy0bFjR/r160fnzp3x8PDQsUpRVkioFKWSpmkcPnyY1atXs2bNmhz75Pp7BWBJ9CZpvw0lQ4JkYYXVC+X2qQOJi0pg6btrSI1P17ukckVCZdHz8LEyaGJParWsxs+vrCBqf4zeJZULmtWFKyST8L6Vc+wk5unpSffu3enfvz9t2rSRPcnFVUmoFKXK+fPnWb16NatXr84xc9HD4omPLYCUfQ5IkSBZVNoPa0GfR7rwx+cb2fHrfr3LKZckVBaf5n0bMmhSLzZ9t5NN326vkPuIFxfVy4kamkFoez/On/93WaewsDAGDBjAwIEDqVKlio4VitJIQqXQncPhYOPGjSxdupQdO3a47zcZTQQaQ0g77MIZI4uRFyUPHys3T+5LpdrB/PTyci6cuKR3SeWWhMriFVQ9gDteGURaYga/vLaKtARpaS9KGllbRroqZeJV30hqaqr7sbZt2zJo0CC6d+8ue5ELQEKl0NGZM2f47bffWLlyJYmJie77g7xCUM+YSI9wobikm6WoVWtcmdunDuL03rMsf3+dbLFYzCRUFj+j2ciNY7vSpFcDFr26gshd0XqXVC5pBg01OJOW99Rn586d7vt9fHzo27cvgwYNomHDhiiKNABUVBIqRYmy2WysX7+e3377jb1797rv97R44pXqT8o+p0y4KUatBzflxse7seqjP9mz4pDe5VQIEipLTqNudbl5cl/++mY7f/+wS+9yyjXN6sJVKYPQjr45usfr16/PsGHD6Nu3L56enjpWKPQgoVKUiNOnT7N48WJWrVrl7j5RFIVASwi2IxqOs7IoeXEymgz0H9+DBp1r88MLS4k5dlHvkioMCZUlK7hGIMPfvIlzR2NZ+s4fOGxOvUsq1zQ0NH8HPSe1Y8OGDdjtWbPxvb29GTBgAEOHDiU8PFzfIkWJkVApio3L5WLr1q0sXLiQ7du3u+/3snrjkeRL6j6nrCdZArwDvbjz1UGoqsZPLy+XhaNLmITKkmf1tnDrlP74VfLl+/8tld2gSohmUnFVyiCsmz9nz55139+6dWuGDRtGt27dMJlMOlYoipuESlHkUlJSWL58Ob/88gvnzp0D/mmVNIeQeRiZdFOCwuqFMvytmzm84TirP/1LQo0OJFTqQ1Ggx4gbaDesOT9OWcaZ/ef0LqnC0NDQAuzcMKY5mzZtci+uHhwczJAhQxg6dCghISE6VymKg4RKUWQiIyNZuHAhq1evJjMzEwCLyYJPRiBp+1UMNnmHWpLqdqjFrVP68/vMv9iz4rDe5VRYBqOBKWvG8VqfjyVU6qBR97rc9Ewflk1fx6F1sqh/SVMtLlyV0/FrYSE+Ph7IWli9b9++3HnnndSrV0/nCkVRklApCkXTNLZv387333+fYzkgX6sfRHnQsVN7+ozuqmOFQggh9Lb2y82s++1PmtxZK8fOPW3btuXOO++kY8eOsqh6OSChUhSI0+lk3bp1LFiwgOPHjwP/dHGbQkg/oKFezJp4oxgUWV6iBCkK9B7dmWZ9G7Dg+SXEnozXu6QKT1oqS4fAqn4Mf+tmTu85y4oZ61Fd8qevJGmahqZmfc1VHwfdJrViw4YNuFwuAGrWrMmdd95J//79Zc3LMkxCpbgu6enpLFu2jJ9++sm9jITJaMLXFkTabhXFJhNv9GIwGhj2v36Ehgfz3bO/khKXpndJAhlTWZp4+nlw9+tDsKXb+fHFZTjtLr1LqtA0qwtXlXQ8GiqkpWX9vvL39+eWW27h9ttvx8/PT+cKxfWSUCnyJSEhgYULF/LLL7+QkpI1k9Jq9sAj3o+MgxqKU7ot9GSyGLnjlUFYvCwseG6JLGheikioLF1MFiO3Tx2Eh6+VBZOXYEu3611ShacZVVyVMwjt7ONurPD09GTo0KHceeedMqmnDJFQKa7p0qVLfPfddyxZsuTf9ccsPhiiPLGdUFBU6drWm8XTzPA3b8ae6eCnl6T1pbSRUFn6ZLfqh9QMYv7Tv5CelKl3SYKsWeNqiI3aN1UiIiJrUpXFYmHgwIEMHz6cqlWr6lyhyIuESpGrCxcu8N1337Fs2TJ3mPSz+OM8asYpC5WXGp5+Htz37jDizybyy+urJbSUQhIqSydFgYFP9iK8dXW+mbSIlEsyXKS00NBQA+00uqs6Bw4cAMBoNNK3b1/uu+8+atWqpXOF4mokVIoczp8/z/z581m+fDlOZ9ZOFH7mQOwHDKgXjRImSxEvfw8e+OA2og/EsOz9de5B8KJ0kVBZuvV5pDNNezVg7hM/k3wxVe9yxGU0NDQ/B61G1XNvoGEwGOjXrx8PPvgg1atX17lC8V8SKgUAsbGxzJs3j+XLl7tn4/mbA7HtM6DGSZgsbTx9rVmB8mAMy6av07sccQ0SKku/XqM60axPA+aO/1kmuJVSqo+DDo83ZtOmTUBWy2X//v154IEHpFu8FJFQWcElJiYyf/58Fi9e7O7m9jcHkblXgXhZrLw08vCx8uCM2zh7+ALL3luD/A8u3SRUlg19HulM4x71mPvEz6TGpetdjrgK1cdB28casGXLFiArXA4aNIgHHniAypUr61ydkFBZQaWlpfHDDz/www8/kJGRtRe0nykA214jJEiYLK08fKw88P6tnD9+kaXv/CGBsgyQUFl29BvTlQad6zBvws+kxkuwLM1UXzutRv/bLW42mxk2bBj3338/AQEB+hZXgUmorGBsNhu//PIL3377LUlJSQD4mv2w7zehXTJJN3cpZvE088D7t3LxdDxL3vpdAmUZIaGybLnx8W7U61CLr8b9REaKTe9yRB5UPzvNHgxn9+7dAHh7e3PPPfdwxx134OHhoXN1FY+EygpC0zTWrFnDrFmz3OuAeVt8UI9YcZ2TMZOlndFkYPhbN2NLt/Pz1BUyKacMkVBZ9gx5ug+V6wTz9aRFODKdepcj8qChoQXYCb8l1L0UUUhICCNHjmTAgAGYTNL7VlIkVFYA+/bt45NPPuHw4cMAeJg9MUZ64TglYbIsUBS4ZcoAfIK9+PaZX3E5ZB3KskRCZdmjGBTueGUQZquJBc8vle9bGaGhoYZmEtLDy914UqtWLcaMGUOnTp1ky+ASIKGyHIuOjuazzz7jzz//BLK2U/SI9cd+1CiLlpchA8b3oGbLqswd/7PslFMGSagsm0wWI/e+O4zki6ksfn2VDDcpQzRFw1UlHe9WBpKTkwHo0KED48aNIzw8XN/iyjnZW68cSk9P59NPP+WBBx7gzz//RFEU/GzBGDYH4DhskkBZhnS9tx31O4Xz7dOLJVAKUYKcdhffP7+USrWD6Temm97liOugaAqmc95krrIyfPhwzGYz27Zt46GHHuLDDz90bzUsip6EynJE0zR+//137r33Xr7//nucTid+SiDmXUHYtptQHEa9SxTXoWmv+txwZ2u+eeoX0hIz9C5HiArHlm7n22cW06RnfdoNba53OeI6KS4Dix5fi/K3H127dsXlcvHzzz9zzz338Ouvv7o3+BBFR0JlOXHixAmeeOIJpk2bRlxcHJ4mL6xHg7D9ZUFJk0HKZU21xpUZ8kwffnjhNxJjkvUuR4gKKzU+ne8m/0qfR7pQp20NvcsRBaBkmtj+VgTmAwGEh4eTlJTEe++9xyOPPMLBgwf1Lq9ckVBZxqWmpjJjxgxGjRrF3r17MRqMeF0KwrXBBy6a9S5PFIB/JV/ufvNmlk9fR9SBGL3LEaLCi42MY9G0ldw+dRAhNQP1LkcUkCHRyrn56ZhO+OLr68vx48cZO3Ys7777rnvspSgcCZVllKZprF+/nvvuu4+FCxeiqiq+rkCMWwNxHTGjaDJusiyyeJoZ/vbN7Fyyn/1/HNW7HCHEPyK2nGLD3K3c8/ZQvPxl/cOySkHBGOOF7XcPBg4ciKZpLF26lPvuu4+VK1cic5cLR2Z/l0EXLlzggw8+cO+B6mXyxrXfCnHSMlnW3TltMJqq8fPU5TLbtJyQ2d/ly+BJvQipGcQ3Ty1Cdcl/0rJO9bNT7WZ/Tp06BUCrVq2YNGmSzBIvIGmpLENcLhcLFy7kgQceYNOmTRgUA15xgTg3eEugLAc6D29LcI1AFr+5WgKlEKXUyg83YLQY6f1wF71LEUXAkGzh3LfpGCN9sFqt7Nmzh1GjRjF//nyZyFMAEirLiMjISMaNG8eMGTPIyMjAW/HFuDMQ12GLdHWXA7XbVKfbfe358cXfZAcPIUoxl1PlpxeX0XJAYxp3r6t3OaIIKJqC6aw32kZfbrjhBhwOB7NmzeKxxx7j+PHjepdXpkioLOVcLhcLFixg9OjRHDx4EJPRjOfZIBx/eWJIl1nd5YFfqA+3vTyQxW+uJi4qUe9yhBB5SIlL4+epy7l5cj+Ca8jEnfJCsRnZ9X8nMR31w9fXl2PHjvHwww8zZ84cHA5ZJzg/JFSWYlFRUYwfP56ZM2ficDjwUf0x/O2PGmmW7RXLCYPRwB2vDGL3soMc3XhS73KEEPl0es9Z/vx6G3e9PgSzh7zBLy8UFIwXPbH9YaVbt264XC7mzp3L6NGjOXpUJk/mRUJlKaSqKgsXLmTkyJEcOHAAk8GEx6lA7JutKHZZwLw86TW6Ey6Xytov/ta7FCHEdfr7h13ERSUwYHwPvUsRRUxxGNn65lFMh/0JCAggMjKSxx57jPnz5+NyufQur9SSUFnKXLx4kaeeeooZM2Zgs9nwUn0xbA1Ai7ZI62Q5U7tNddoOacaiaSvRVJmZI0RZtOTtP6h/QzhNetbTuxRRxBQUjHEepK8006NHD1wuF7NmzWLChAmcO3dO7/JKJQmVpchff/3FQw89xM6dOzEaTHhEB+Lc7Ilik9bJ8sbL34Nbpgxg6bt/kBybqnc5QogCykjOZNFrqxjyVB/8K/nqXY4oBorTwN+vH8Z0zA8vLy/27dvHyJEjWbFihaxr+R8SKksBm83G9OnTeeGFF0hOTsZL8cGwzR/tlLROllc3T+7Hsc2RHP7zhN6lCCEK6dTuaHYs2c+tL/ZHMcjv7PJIQcEY64lzgxfNmzcnPT2dN998k6lTp5KaKg0D2SRU6uzkyZM88sgjLF68GADPOH+cG70wZMrA7/KqzZCmBNcIZNVHG/QuRQhRRNbP2YLRbKTL8LZ6lyKKkWIzcnTmBR555BGMRiPr1q1j9OjRHDlyRO/SSgUJlTrRNI3ffvuNRx55hMjISCxGK+aDgaiHPWTdyXLMv5Iv/cZ0Y/Ebq3DYZD1KIcoL1aWy+I3VdL23PaHhQXqXI4qRgsK8B37FsNOfKlWqcO7cOcaOHcvChQsrfHe4hEod2Gw23n77bd555x3sdjteTl/Y7IchwaJ3aaKY3fRsH3Yu2c/Zwxf0LkUIUcQunUngz2+2MfT5GzEYpXGgvDOkmolb5KRbt244nU5mzJjBiy++SEpKit6l6UZCZQnLfkezfPlyFBQ8YgJwbvFEcci3orxrPagJ/pX9WP/VFr1LEUIUk79/2AWaxg13ttG7FFECFJeBrW8exXjCF5PJxJ9//sno0aOJiIjQuzRdSJIpQZs3b3b/sJkNFkz7/dFOWGUyTgXgF+rDjY9359c3V+O0yxpnQpRXmqqx+M3VdL+/AyE1ZbedikBBwRTjhbLDj7CwMGJiYhg7dixr1qzRu7QSJ6GyBKiqypw5c3juuedITU3Fw+WNssUPQ5JV79JECRk0sRe7lh0g+tB5vUsRQhSzS6cT2Pjtdm6e3BdF2gwqDEOqmfjFLtq3b4/NZuOVV15h5syZFWqxdAmVxSwzM5OpU6cyd+5cADwT/VG3eMvOOBVIwy51CKsfyvo50u0tREWx+ftdePhYaTmgid6liBKkOA3sff80w4cPB2DBggU8++yzJCcn61xZyZBQWYxiY2MZN24c69evR1EMWE4GoB6Q2d0VidlqYuCEnqz8cAOOTJntLURFobpUfntvLf3GdMXTV3qlKhIFhUWPr8V0xB+r1cr27dt55JFHOHXqlN6lFTsJlcXk0KFDPProoxw7dgyzYsa01x/lnPxiqWi6PdCB2MhLHPlLFjkXoqI5s+8cEVtO0eeRLnqXInRgvOSBusWbsLAw9yTd3bt3611WsZJQWQzWr1/PE088QVxcHFbNE2WbP4ZkWS6oogmpGUiHW1uy4oP1epcihNDJ7zM30qRXfao1CdO7FKEDQ1rWOMumTZuSmprKU089xcqVK/Uuq9hIqCxiCxcu5OWXX8Zut+OR6YO2xUf27q6gBkzoyd8/7CIhpmKMpRFCXCktIZ11X/zN4Im9ZNJOBaU4DUTMvkivXr1wOp288cYbzJkzp1wulC6hsohomsZnn33GjBkz0DQNa7wv6g4vFJd8iSuiuh1qEVoriE3f7dC7FCGEznYu3Y/JYqRZ34Z6lyJ0oqgKm6Yd5J577gFg7ty5vPHGGzid5WusfZlLPPHx8YwZM4bx48czYcIELl26xL59+xgzZgyPP/44J05kjV07fPgw48aN45tvvin2mrLfeXz33XcAWKL90A55yvqTFZRiULhxbDfWzN4ka1IKIVBdGqs/3UifR7pgskjPVUWloLBw7BpMEb4YjUZWrVrFlClTsNlsepdWZMpcqPT39+eTTz7ho48+YsCAASxbtozZs2fzzjvv8NJLL/HZZ58BsGbNGt59911iY2OLtZ6MjAyee+45Vq1ahYKC+bgfyikJlBVZ60FNcDld7F99RO9ShBClxPGtp4iLSqDj7a31LkXozHjBC2WfLxaLhc2bN/P000+Tmpqqd1lFosyFSqPRiMGQVXZ6ejrVqlXDYDDg6+tL5cqV3Xtu9u7dm2eeeYaQkJBiqyUtLY1nnnmGbdu2YVSMGA/6YzjvWWzXE6WfxdNMr9GdWf3JX5TD4TJCiEJY/clfdL2vHV4B8neiojMmWNF2eOPt7c3evXuZMGECCQkJepdVaGUuVAJERETw6KOPsmjRIpo1a4a3t7f7MaPRiMPhoEmTJnz88cc8+OCDxVJDSkoKkyZNYt++fRgVE4Y9fhgTZMmgiq7TXW04d/g8p3ZH612KEKKUuXDiEkf+PEH3BzroXYooBQzJFuwbrQQEBBAREcG4ceO4cOGC3mUVSpkMlfXr1+fzzz9n1KhRfPPNN6Slpbkfc7lcmM3mYr1+YmIiTz75JIcPH8aECcMuPwwpsmRQRefhY+WGO1uz9ou/9S5FCFFKrZ+zhdaDmuAX6qN3KaIUMKSZSfvDSOXKlYmKiuLJJ58s9mF7xanMhUqHw+G+7ePjg6enJy6Xi5SUFC5cuICvr2+xXj8+Pp4JEyYQERGBCTPKLj8MacUbYkXZ0Omu1pzcfoYLJy7pXYoQopRKik1h3+ojdL2vvd6liFLCkGkiYamLqlWrcvbsWSZMmFBmg6VJ7wKuV0REBJ9++ilGoxGLxcLkyZOJjo7m2WefRVEUJk2aVGzXTkpKYuLEiURGRmLGAjt9MWSUuS+hKAaevlY63NaKOWN/1LsUIUQp99c323n8m/vZ9O0OkmJT9C5HlAKK3cilX+1UubmKO1h++OGHhIaG6l3adVG08rj6ZjFISUlh4sSJWdsuYkHZ4YuSKYFSZOn9cGcCq/qz8JUVepciShmD0cBL65/g1Z4forpUvcsRpcTAJ3tiNBr47b21epciShHN6iL4ZjMxMTFUq1atzAXLMtf9rYf09HSeffZZjh07hgkz7JRAKf7l6edBh1tbsmHuFr1LEUKUERu/2U7zfg3xr1y8Q7ZE2aLYjMQtcRAWFsbZs2eZNGkSSUlJepeVbxIq82Cz2Xj++ec5ePAgRkwou6XLW+TU/pYWnNh2mkuny/5yEEKIkpESl8a+1UfodGcbvUsRpYxiMxK/1EloaCinT5/m2WefJT09Xe+y8kVC5TW4XC5eeeUVdu/ejVExYtgjk3JETiaLkY63tWLTgp16lyKEKGP+/mEXrQY1wdNXlqMTOSk2I4krVfz9/Tl8+DBTpkzBbrfrXVaeJFRehaZpzJgxg40bN2JQDBj2+mFIlUApcmo5oAmxkXGcO1K21xYTQpS8+LNJnNh+mnbDWuhdiiiFDBkm0jcY8fT0ZMeOHbz++uu4XKV761/px72KBQsWsHjxYgBMR/wwpnmAbNkqLqMYFDrf3YZVH/+JwSjvz0Tusn825GdE5ObvH3dx9+s3sfXnPTjtpTswiJJnyLDi2gmmFg7WrVtHUFAQEyZM0Lusq5LZ37n4/fffmTZtGgCDBw+ma9euOlckhBBCiIpq3759LFiwAICJEydyyy236FxR7iRU/sfevXuZOHEiTqcT83lvTJF+epckSqn7p9/C/j+Osmf5Ib1LEaWYwWhgyppxvNbnY1lSSOSqQZfa9BrZic9Hfad3KaIUu2/OEGbPno3RaOTtt9+mQ4fSt92ndH9f5sKFC7z44otZgTLJC+W4NyryR0BcKTQ8iLB6oXz37K8SFES+qC5VflZEro5uPMmA8T2o3iSMM/vP6V2OKKXmPfgr/af1Z9WqVbz88svMnDmT8PBwvcvKQQb5/MNms/HCCy+QmJiIyW5FOeiDgqJ3WaKUaje0OXtWHsJhc+pdihCijNNUjZ1L9tP+FpmwI65OQWHdS7tp0aIFaWlpTJ48mcTERL3LykFCJVkzvd99912OHTuGUTNh2OuLokqgFLmzeJpp2b8JOxbv17sUIUQ5sXvZQRp2qYN3oJfepYhSTNEUjsyKoWrVqsTExPDaa6+VqhnhEiqBH3/8kdWrV6OgYDjgi2KTad7i6pr3bcjZI+eJi5LFzoUQRSM1Pp2jmyNpPbip3qWIUk5xGrj4WyZWq5Vt27bx9ddf612SW4UPlQcOHGDmzJkAGE/4YEiy6FyRKO3a3tycHb9KK6UQomjt+HUfbW9qhiIdZSIPhnQzTz31FABz585l27ZtOleUpUKHypSUFF599VVUVcUU74khxlPvkkQpFxoeREAVP45tjtS7FCFEOXNm71kAaraopnMloix4b9CX3HTTTWiaxrRp07hwQf9NOCpsqNQ0jXfeeYfz589jdJoxHJWJOSJvLQc04cCaY7gcpWcMixCifNA02LvqMC0HNNa7FFFGrHpuKw0aNCApKYlXX31V9/GVFTZULlmyhA0bNvw7jtJVYb8UIp8Ug0KLGxuxd6WsSymEKB57Vx6mSc/6mK2y4p/Im6IpnPo2Hi8vL/bv38933+m71mmFTFKnTp3iww8/BMBw0lv29Bb5UrtNDezpds4e1r+LQQhRPiWcSyL25CUadq2rdymijFBsRvfWjXPmzOHo0aO61VLhQqXT6eTNN9/E4XBgSvbAeE6WbxD507J/I/auOqx3GUKIcm7PSukCF9fnvcFf0qNHD1wuF9OmTSMzM1OXOipcqPzpp584fPgwBs2I4YiMoxT5YzQbadi1Lgf+0O8doBCiYji84Tjhrarh4WPVuxRRRigo/P32IYKDgzlz5gyff/65LnVUqFB5+vRpvvjiCwAMEd4odlmPUuRPnXY1SDiXREJMst6lCCHKuYzkTM7sO0fDrnX0LkWUIYrTQPKGrIk6ixYt4uDBgyVeQ4UJlS6Xi7feeguHw4ExyYoh1kPvkkQZ0qRHfQ6tj9C7DCFEBXFofQRNetTTuwxRxhgSrfTv39+9U6DTWbJbCVeYUPnbb79x8OBBDJoB41Ff6fYW+WYwGmjUrS6H1h/XuxQhRAVx5K8T1GlXE6uXbMghrs+6V3bh7+/PyZMn+eGHH0r02hUiVCYlJTF79mwAlJPS7S2uT+021Um+mCrbMgohSkxaYgbRh87ToHNtvUsRZYziNDB27FgAvvrqK86ePVti1y6SUJmSkqLrFPa8zJ49m+TkZIwZZoyya464Tg261OHIXyf0LkMIUcEc+esEDbrIuEpx/d4b/CVt2rTBbrfz0Ucfldh1Cx0qN2zYwKOPPsqLL74IQEREBM8880yhCysqR44cYenSpQAYImS2t7h+9TuGc3zrKb3LEEJUMMe3nqJu+5ooBvm7Ja6PgsL+2acxGo1s3ryZnTt3lsh1Cx0qv/76a2bNmoWvry8A9evXJzY2ttCFFQVN0/jwww/RNA3DRQ8MyTI2RVyfoOoBePp5EH3ovN6lCCEqmLioRDJTbVRrHKZ3KaIMMmSYGDZsGACffPJJiWzhWOhQaTab8fHxyXGfopSOd1WbNm3iwIEDKJoBU6RP3k8Q4j/q3xDOie2n0VRN71KEEBXQ8S2nqH9DLb3LEGXU0mf+xMfHh+PHj7Ny5cpiv16hQ2WVKlXYsWMHAGlpacyZM4d69fRfBsHlcrkn5xiiPWRyjiiQ+jeEE/H3Kb3LEEJUUBFbTlGvY7jeZYgySnEaeOCBB4Cs+SUZGRnFer1Ch8pJkyaxatUqLl68yN13301MTIx7D0o9rVmzhsjISBTVgDHaW+9yRBlkship1bIax7ed1rsUIUQFdWp3NJXqhODlL2sri4L54t6fqVKlCvHx8fz666/Fei1TYU/g6+vLCy+8UBS1FBmHw8GXX34JgOGMF4qrQqycJIpYtcZhJJ5PJi0hXe9ShBAVlMPm5Nzh89RsUU1WoRAFomgKDzzwAG+//Tbff/89w4YNw8OjeN6kFDhUfvPNN9d8/P777y/oqQvt999/JyYmBoPTiPGcl251iLKtVqtqnNpTcut7CSFEbk7tOUt4q+oSKkWBvX/zV4TdFsb58+dZsmQJd955Z7Fcp8BNeE6nE6fTyalTp1i2bBlJSUkkJSWxfPlyTp/Wr7tQVVUWLFgAgBLliaKWjklDouwJb1Wd03ui9S5DCFHBnd4TTa1W1fQuQ5Rhiqa4G/u+++47bDZbsVynwKHyoYce4qGHHiI2NpYvvviCcePGMW7cOGbPns2FCxeKssbr8vfff3P69OmssZTnZaFzUTBGk4HqTatwWloqhRA6izoYQ2h4EB4+Vr1LEWXYjGHzqFy5MvHx8axYsaJYrlHowYbx8fF4ef3bxezh4UF8fHxhT1tg2a2UhrMeMpZSFFiVhpVJuZRKSlya3qUIISo4R6aTmGMXqdmiqt6liDJM0RTuvvtuAH7++WdUVS3yaxR6ok6nTp2YOHEivXv3BmDt2rV06tSp0IUVxMGDB9m3bx+KpmCMkbGUouCqNw0j6kCM3mUIIQQAUQfOUb1JGMc2R+pdiijDZt79Hd59vTlz5gzbt2+nY8eORXr+QjfljRs3jttuu42oqCiioqK4/fbbGTduXFHUdt0WL14MgBJrlXUpRaFUa1SZc0f0G8YhhBCXO3fkAlVlZx1RSIrLwKBBg4Cs1sqiVuiWSoDu3bvTvXv3ojhVgSUnJ7Nu3ToAaaUUhVa1UWW2/LxH7zKEEAKAs4cvMGhiL73LEOXAr8+uRemgsHXrVs6dO0fVqkU3rKLQofJqC53PmDGjsKe+LitXrsRut6OkmVBSiyQriwrKw8eKf2VfLhy/qHcpQggBQMK5JBRFIbCKHwkxyXqXI8owxWaibdu27NixgxUrVjBq1KgiO3eh09fo0aPdt+12O+vXr8fbu2R3sNE0jWXLlgFgjPFEQZYREgVXtWElYiPjcNpdepcihBBu2V3gEipFYe2ZHwGNYMWKFYwYMQKjsWiGDBY6VDZv3jzH523btuWxxx4r7Gmvy8mTJ4mMjARNwXBRtrIShVOlYSVijsbqXYYQQuRw7ugFqjasxMG1x/QuRZRxhjgrPj4+xMbGsnPnTjp06FA05y2Ss1zm+PHjJCUlFfVpr+n3338HwBBnkWWERKGFhgcTezJO7zKEECKH2Mg4QsOD9C5DlAOKptC3b18ga9WeolLolspevXqhKFndzQaDgcqVKzN27NhCF5Zfqqq6vyDSSimKQmh4EHtXHda7DCGEyOFiZDyh4cF6lyHKiWXTNkBz+Ouvv3j66acxmQo/H6XQZ8ieca2XI0eOcP78eRSXgiFBdhsQhaMoWS2VF09JS6UQonS5dCYe/0q+mD1MODKdepcjyjglyUxgYCAJCQns2rWrSLrAC91XPGnSpHzdV1z+/vtvAJQEi+zzLQrNv7IfLoeL1Lh0vUsRQogcnHYXCTFJhNaSLnBReAqKeznIDRs2FMk5Cx0q/zt+MjMzk9jYkpvksHnzZgAM8dJKKQovNDxIWimFEKXWxVPSBS6KzvLXs8Lkli1b0DSt0OcrcPf3vHnzmDt3Lqqqurdo1DQNT09PbrnllkIXlh8XL14kIiICNAmVomiE1Ark0pkEvcsQQohcXTodT0itQL3LEOWEkmzBYrFw8eJFTp8+TXh4eKHOV+BQ+eCDD/Lggw/y8ccf67Yt444dOwBQUk0oTpn1LQovIMyPhHMlu3qBEELkV0JMMuGtquldhignFFWhZatWbNu2ja1btxY6VBbJ3t962bt3LwCGRItuNYjyJSDMj0RZWFgIUUolnk8mIMxP7zJEOZI9QSe7oa4wCtxS+cgjjzBr1iz3kkKapuX4tyjXPbqaPXv2AGBIklApikZAFX8Sz0uoFEKUTokxyQRUkVApis7no76D1nDw4EFUVcVgKHh7Y4FD5axZswD9lhSKjY3l3LlzoIGSYtalBlH+BFSRlkohROmVdCEZ70AvTBajbCUrioSSZsLDw4PU1FROnz5N7dq1C3yuQnd/v/HGG/m6r6gdOXIEyPpiyC46oih4+nlgNBlIjU/TuxQhhMiV0+4iLSEd/8q+epciygkFhcaNGwNw4MCBQp2r0GnsxIkTV9x39OjRwp42T8eOZe19qqQWfgV4IQD8Qn1IuZRGEayqICoqRUGx5rEShcGIwUN2/xIFlxSbil8lCZWi6DRr1gyAw4cLt5tcgRPZwoUL+fnnn7l48SL33HOP+/709PQi25j8WrJDpSFVur5F0fAO9CI1XhY9FwWkKBisVjAYwGpFs9muPMZgxODpAQYDBkDNzCzxMkXZl5aQjneAp95liHJkwQtLoBGcPHmyUOcpcKjs378/nTt35uOPP2b8+PHu+728vPDzK/5BxBEREUBW97cQRcE70JO0BAmVogAuD5SQNWnxasdmD4I3myVYigLJCpVeepchypHsLBUZGVmoyToFTmQ+Pj74+Pjw+uuvF/QUBZaWlkZcXNauJ0q6hEpRNLwDvUhLlFAprtN/AiUABgPKf1srDUYMlv+sVCHBUhRAWmIG3oHSUimKjpJhxGKxkJGRQUxMDNWqFWwt1EInsoiICKZPn05kZCR2u919f3EuKRQdHZ11w26QSTqiyHgHepGWkKF3GaIsyS1QZj9kNILVCk4HAAZPK6qmXHkOCZbiOqUlpMv+36JIKShUq16dkydPEh0dXeBQWehENn36dCZOnEi1atX47bffePjhhxk5cmRhT3tN2aFSyTAW63VExeIdIN3f4vooFkuugdL9uPGySTnX6k4ymzF4SXemyJ+0hHS8A+XnRRStKlWqABATE1PgcxQ6VDocDho0aIDT6cTLy4vhw4ezYcOGwp72ms6dOweAkimhUhQdTz8PMlNymVwhRC4UqxVFUUBVr3qMITCA2Ptb5e+ERqMES5EvGck2PH3zWGVAiOtUKkKl2Zw1+zosLIy1a9eyf/9+UlNTC3vaa3KPp7RLqBRFx+Jhxp5hz/tAUeG5A2W2XIKlITCAmJtq4fDJOi7hpqZ5n1iCpcgHR6YDs6esfCKK1i/vrATg/PnzBT5HocdUjhgxgtTUVMaOHcv06dNJT0/nySefLOxpryk+Ph4AxS7jKUXRsXiasWc49C5DlHJXBMpsquru4s4OlE5vxf3OPSPUgHpzUwKXHLz2Bf4Jlmq6DMUQubNn2LFIqBRFLLuhLiEhocDnKHSo7NixI5A1G3zGjBkArFy5srCnvabsUImESlGELF4SKkUeFCX3QJlNVTEEB7kD5eU0A2RUMkB+guW1riEqPHuGA4unJe8DhbgOiiPr905SUlKBz1EsqeyLL74ojtO6Zb9gxSmhUhQds4eESnFtyn+XBPoPQ2gIp+8LvyJQZtMMkFrDwKlJza99IYNBusHFVWWFSmmpFEXsn0xV6kKlVsz73GVk/LPsi0vezYuiI93fIi+aw3nVxwyhIZy6ryZ2fw37VfZ/cFkgrZ6dzHDbtYOlqqJmyqQxkTsJlaI4KI6sSJiSklLgcxRLqLy8e2jmzJmMGzeO1157DafTybx58xg/fnyh9gfPzF7PTUKlKEJGsxGX06V3GaI0U12o9ivfeGQHSodv1htq1XxlsFQtkF7XjmJRUYza1YOlqqJmZIKmSje4yJXL4cJgNGAwys+HKEJq1s+Tw+FAvcaqFtdS4DGVkyZNuupj2U2nx48f59KlS3z88cd8/fXXrF+/nosXL/LOO+8wZ84cGjZsWKBrZ4dKRZX/UKLoKIqC5ireVnZRDqguVDsYLFktRf8NlO7DzBp2PwWPf970p9fJCpTZLg+W4dP3//OkywKl+0AFirn3R5Qt//44KHD1DUGFuD6X/Sg5HA6s1utftqrAofKBBx7I85gDBw7Qvn17IGtCz/LlywkKCuKZZ57h8ccfL+ilcTr/6YIqWJAWIleKQSn2oRuinPgnWJqqVck1ULoPM2vYQrJuXx4os7mD5cTmhL+398pA6T5QgqX4l6Zm/SwoBgWkc0UUlcsa6hITE6lcufJ1n6LAobJVq1Z5HpOSkkJwcDAA3t7epKSkMHHixELvuJPdvW4wGlDUkpus0+nm9tRvE87hLRFsX7mnxK57w01tadC2Dke2Hmfbit1y3WISEhrC8OdvZf+GwxXi9cp1C8lgQPH3RvUDI7n3mnhZLPz8wN1U8fTEN2obKc5cxkkawRmsYQoJxHk2hmuOSrqOYNlxcBsatq/LsZ0n2bJ0Z76fV1h6XbfDwNY06livQlxXMSgEBgby4NQ7ObL9eLl/vRX5uhG7TvH3ku0lck3tsqZK99yV66Roxdg088svv+Dp6cmAAQM4evQoy5cvZ+LEiYU+b+/evXE6nTz33HP4+/sXQaX5Ex4eTmBgIHFxcZw5c6bErxsfH8/p06flunLdcnHdhIQETp06Va6vazAYaNmyJQB79+4t8DilgqhIX2c9r1urVi2CgoLkunLdMn9dl8vFlClTAPjpp59KtqUyP5o1a8aPP/7IgAED2LZtG82b57GMRj4Z/llg+P075mAowV11xn4wgla9m7Nx0Va+nvpTiV930y/bmPfyDyV23THTR9C6b3M2L97O3Je+L/Hr/r1kO19NKbnrfnniPeKiEti0uGSv++j/PUDbG1uW+OvNvu6WpTuY88KCErvuI+/cT7sBrdj6206+/N93JX7dbct38cVz3xb8RAYjxiB/MGb97lEMBux1wjgz0DPHYY4AF0sGfIWHeQmZjirEhT7LhC2Dc54r2Uy9+emY4i6bbZmRifN8bM7jCvDef/Rb99JhUBu2r9jN7Mnzr/v5BZV93R0r9zDr2W9K7Lqj3riHjkPalvh1R74+nBtualfi1/0y8j3iziSwfdUePn/66xK77kOv3U2nm9uz6/d9fPbUvBK/7u4/9jNz0twSu+6IV++m87CSv+6Dr9xFl1s6sGftfj59smSuqxk0yFp6HF9f3wKdo1hDZf369QkMDGTcuHFUqlSJu+++u0jOa7VasdvtqLhKdAZ4dph1OVRUV8m1OGR397ucrhK9bvbMwpK+bjaXs2S/zlmN9gqqq2Svm62kr5s9Lku316tqOnx/C/l6DUaM/n6oGCB7UpfLhSkihupqGKcHZQVLR6CL3wbOoIklxN0x3scrhfc6LeDJv//5PZhspv7XaRgupeQcHm6xYggNxXn+QnbhBSo1+/uraSX7dc6+VolfV/3366TH6y3J6xqMWeO/NS1ruK0er1dRlBK9rtP+z+BRQwlf959lxAzGkr1u9kokBoOhxK6rGf4doOvh4VGgcxQ6VL7yyitMmjTJnWqTk5OZMWMGL774IgBjx44t7CWukD0+E2PJDlw/fSgaT19Poo6eLfHrevl5EXX0XIlf19tfj+tG4RPoTXQJf501TcOgKKglPAP89KFo/IJ9iToaU6LXPXPkLP6hfpw5UsLf38PRBFTyI+pIyX5/zxyKJqCSf8F/ng1GjEEB7hbKy2mqiuXEeWotD+P4vRZ+HfghTS05Wy7NioGBXonQ6XueXHU/9ednYLp0lfXgPD0whVXGGVPwPXjPHDlLUJVAog6X7Nc56ug5Qqqd5EwJf3+jjpwlpFpQiV/3zJFzhO4s2ddrspjQVA0NBUUp2U1Aoo6cJWLnSU4fiirZ6x49x/FdJ4k6HF3i1816vRXguv9kKk9PT3cj2vUq9JjKUaNG8eWXX+Z5X1EaOXIkx48fx3wgAEPi9U95FyI3X0T8H0bVwroFG/l66o96lyNKIcVqxRBw9XHciqcH54ZUZ/f/Pv3nHm+U4IVkOKpgSeqKQUlhdbqZV54fScDOC1e/kMuF62wMmvPqi62LissrwJMZO15FsZnYu+4AH40rvr+3ouJQvR04WscTHBzML7/8UqBzFPotjsvlyjFLKD09/d8lf4qJt7c3AJpJltgQRUfTNBRDyXYlibLlWjvqKGYzjmpBBETYafxZ7j00f2bC5OkPY8rUyAwPvva1JFCKqzBbTO7u0WvuRS/E9TBl/e0r6HhKKILu7yFDhvDEE08wcOBAAFasWMHNN99c2NNeU/YyRZpFFugSRSc9NQNXWgbx5xP1LkWUVqoLNTHpitZKxWzGUSsU1WzAaFMJ22qnMWM5/NinuC4NZvfJL3FUTWfCe2PxPetEM4DT20hmeDAep+JyXsPlwnXuGq2YosIzWY2kp2eSeSFFfl+JIqP9s5ZuSEhIgc9R6FB5++23U6tWLbZv346maTz66KO0a9eusKe9JvcLzmUxYSEKav/2Q6yZtYnInSU7VkiULZrNliNYXh4os7mDpTKWg498DsDE9x/D9+y/WzzmGiz/CZSaw15yL0iUOSaLiVPHTvHh3XP1LkWUI9mhMrvhriCKZPZ3+/bt3TvnlITQ0FAANKu0VIqiY0uz4eFt0bsMUQZkB0tjaMgVgTKb0aYStsVOxwuP8uG94HvWecUmYDmC5YlYCZQiXzx8rNjS5OdEFK1hT/dn4cKF+oTK6dOnM2nSpKvuAT59+vQCF5WX7AU5Nau0VIqik5Gciae/Z94HCkFWsNRSU1HNV18g2JzqJGx1LNzb4ernMYBmUnCdj5VAKfLF08+D9KSC7XgixNWcPZu1gkGVKlUKfI4Ch8rBg7MW8c3PHuBFrUaNGgBoXk7+WVShxGsQ5U96UiaevgVbm0tUTK7kVCwHo7A3rXHFYwaHivnMJVCzJtz4RCSQXDfgiuOMmSoeW47hsttlj2+RL55+HmQkZ+pdhihnoqKyhn7VrFmzwOco8Ozvhg0bAnDixAlatWqV4+PEiRMFLig/qlevnjXjzaSBWVorRdHISM7Ey19CpcgnRQFNxRUXj+VgznG47kDp+HcMpZKYgs+xhBzHGTNVPP8+hivlsvUqZTavyIOXv4RKUbQ0RSMmJmut5OyGu4Io9JJCy5cvz9d9RclqtbqbZzUvGVcpikZGciaefhIqRT5cHvyyg+XlizJrWo5AmX2fkmFzf5proMzt/EL8h6efJ+lJEipF0dE8XaiqipeXlz5jKjdt2sSmTZuIjY3l3Xffdd+flpaGyVSsuz8CULt2bc6dO4fq7cCQJJMrROGlJ2fgJWMqRV5yC3yaiutiHBbAWa8q5qi4K48BsNnxOZZARk3/qwfKy68jXeEiF17+HsSevMrPmBAFoPlkvQmuV69eodY+LXD6q1y5Ms2bN2f79u00a9bMfb+Xlxdt2rQpcEH51ahRIzZt2oTmIwsEi+tjMBh4Zu7jhFQL4vypWN5/5HO63tKBe6bcik+wN398solLZ+PpMKgN9zx/Cyu+XMOquev1LluUdv8ES1NGJiNfv5vG7WpzISqeGc98S/Xq1XnrpyeY9fIiIvadwfPshWsHSpBAWYE1bF+PsR88hNPhJO5sPO8/+jnTljwHgNXLSmitIKbd+x6BlQOYPG8cHt5Wln62mjXf/oVPgDfPffMEaUnpvDPiY/ci6UJcy9Dn+7Fw4UL30MaCKnD3d7169Rg4cCDz5s1j4MCB7o8ePXoUajX2/GrcuDEAmq8jjyOFyKnLLR04fyqWZ/q8QtSRs3S9tSO3TbyJl259h8jIU9z74u0AdBzchondX6Jhh/o6VyxKlWuFPdVFrfBAgoK8eOaWD4g+foGug1tjtVp5+YHP6DG0LWpcPK7k5GufRwJlhXYx6hLP9HmFp3q+zPnTF2nXvxVP957K072nsnTmKi7ExJIcm8Jdk4fyw7u/Mqnny9w8dgBmq5nWfZqz8P2l7F67n7ota+n9UkQZcfToUQD9QmW2yZMnk3LZO+7k5GQmTJhQ2NPmqVGjRkDWOADNJJN1RP5VrVuZE3tOARCxK5Ihj/TjzJFoEs4m4tTs1G2R9Yt4x8o9vP/XNCJ2Fu/EM1EG5Rb6/rmvSeeG7Fi5C1dCIjvWHaJxuzrY7XZe/XoM679Zl3P7xWucR1Rc8ecTsWdmLS/ltDvR1H//xnW/vROJKQkkxabQqH099qw9gOpSObbzBLWb1WDPugPcPukm2vRtwcl9Z/R6CaIM0RSNY8eOAf9mq4Iq9ODHtLS0HC2Tfn5+OUJmcfHz86NWrVqcPn0a1d+OMU4mWIj8OX0omvYDWrFx0Vba9G2BYlBIT87AYXOSkZKJuUrWf4u/l+7g76U7dK5WlFqa9u/4ysuCoG+gN/ExCWg2GynRsfgGeBEVFcW0vp/isuWyDuVVziNEpZohtO3Xkm9fWwiAt78XwVUDiUmJJjUuDaPZhPbPz0xaUjq+QT4c23mSF4a8qWfZoozRfB047HaCgoIKNfMbiqClUlEUEhL+XSYjLq7kBg9nj91U/WXBYJF/W37biT3TwTt/vIyHt5XUxHS8/LIm6CTHpqIYZOatyCdNuyIIpiamuX+evDxNJJ+PzzrUeY3x37mcR1RsXr6eTP56PO8+9Il7XGTnoe3ZvW4fqXFpqC4Nl8PpnlTh7e9FSnyqniWLMure6UMBaN26daEm6UARhMp7772Xxx57jE8//ZRPP/2Uxx9/nPvvv7+wp82X7FCpBUioFNfn86e/5tm+r5Acl8IvM5ZRs1F1TGYTVpOV2OhLepcnyrBDm4/Rpk8LANr1b8nBjYd1rkiUNQajgRcWPMn8V38i+tg59/3db+/Ega1HSIrNCo9Hd5ygZc+mGIwG6repw6mD0Vc7pRBXtXv3biArVBZWobu/e/fuTZ06ddi1axeapvH2229Tq1bJDA7OTtWalwvN4kKxG0vkuqJsC6wcwP++m4Cmauxeu599fx5i0Yxl/N+6qfiGeLF41gq9SxRl2Im9p0iITWL6hleJPXOJhe//Rvcx7fQuS5QhvYd3pVHH+tw75XbunXI7Sz9bzfaVewgKC8DpchAfndU7+MPbi3l23nhGTLub3z5f7R6HKUR+aUaVAwcOABTJyj2KppXtPpexY8dy4MABTCd8McZ46V2OKOPa3tyc8NbVWfiKBMvSxOJhYeQbw+l8c3vSUzJAgx2/72XO89+hqlefqHf/y3fgcrr47vVF133Nui3DqVQzxD2utkHbOgwc3YcZY2bn6/ktejTh3hdu4/mBr/PS+id4teeHqK6in1T4yba3eLxD1nIz9714O/On/Xzd5yjM10mUrIFP9iQ1Lo2/vtmudymiHHCFZOJslEStWrX45ptvCn2+Qnd/R0REMGbMGAYMGEDv3r3dHyWlW7duALiCbHkcKUTe4s4kEFIzUO8yxH88+dkj+If48XDzSTzW+hnGd/ofGSkZmK3Ft9FC3VbhdLr53xbGYztP5jtQlqTsQAlZoVKUbyE1A4mLSsj7QCHyoee49gB06dKlSM5X6N/I06dPZ+LEibz99tt89NFH/Prrr7hcJbfYateuXZk5cyaavx3NqKK4Cp2TRQV2KSqe4BqBsplJKRIWXokut3RgePVHsWVkde85bA73jFiAxz8cSeOO9bF4WDix9xTTR8/EYc85Mab9gFbc/9IdmK1mHHYnH46dzfHdkQB0v6MT9zx/KyhZOyu9MPgNHnzlLjy8rTRoW5eVX63l5L7T3PvCbUy+cRoAw8YPZNDovqiqStSRc7w+/P18vZ6QakFMmj2G4KqBOGwOPnliDoe3RtCiRxNGvjacC6cvUbdVOBdOX2Tqre/isDmoVDOE5+dPwDvAi8NbjtG2X0ue7DqFS2fjWWn/ngGWu3ls+oMYTUY+2/UuSZeSmXzjNPdjAE27NOKhaXfzdO+pADz63oPcMLgNCReSiD1ziTNHssbj+Qb6MP6T0VSpUxmzxcS3ry/kr4VbCvz9E0UrpGYgl05LqBSFpykaW7Zk/d8uNaHS4XDQoEEDnE4nXl5eDB8+nIcffpj77ruvKOrLU40aNahduzaRkZGowTaMsbLNnii41Lh0NFXFN9SH5FiZSVkahDerwbnj57O6va/i66k/ume+jp3xEDeO6MmyWX/kOObwlggmdJmCpmnUa12b8R+PZkKXF6jZqBqj37qPJ7u8QPz5RHyDfMhIzWTeyz/QrGsjpj/8GZDVnZ2tTd8W3PhgT57sOoX0lAx8g3zy/Xoe/3AU21bsYvFHK2jQri4v/jiJEQ2eAKBOq3DeeuAjzkfGMm3Jc3S7rSNrv9vI4zNGsvrr9az4Yg0dB7dh0Oi+V5z3s0nzGDZuII+1eSbPGroM60CDNnUY3WwSHt5WZu58xx0qx7w/glVfrWXn7/vw9vfik21vsWftAVIS5P+D3sweJnyDfYg/m6h3KaIcUANtpKamEhwcTJMmTfJ+Qj4UOlSazWYAwsLCWLt2LaGhoaSmluwvn759+zJ79mxclTIlVIpCu3Q6gdBaQRIqS6ked3Zm+HO34Bvkw6t3vMfR7cfpPLQ9Nz12IxYPC97+XhgMV/ZYBIUF8Nw3T1CpVgiqU6VqvTAAWvdpzqZfthJ/PhEgX8uytOvfklVz17mD7vUs5dKiRxPefuAjAI7tOEFaYjrV6lcB4PiuSM5HxgJwdMdxwmpXAqB598a8cc8HAGxdtovkQi4d07x7Y9b/uAmX00VaUjqbl/w7Pq/9wNbUaVGLh9/O+txkMVGlTiVSdsr/B72F1AwkKTYFp122XhSF1+3xNqxbt44+ffpgNBbNROdCh8oRI0aQmprK2LFjmT59Ounp6SWyo87lskOl5m+XWeCi0M6fuEjleqGc2C67UZQGpw5GUbVeGJ4+HmSkZrLhx81s+HEz/7d2KiaLicq1Qnng5TsZ224ySZeSGTpuAHVbhl9xnvGfjGb57D9Y9/0mPH08+CV+btYDBViWrbBruV0+tuLyuZIO27/bzqouFaOpcL/LVPXfc1s8zPl6jsGg8FSvl0lLSi/UtUXRC6sXyvmIi3qXIcoBzaiyadMmAPr161dk5y30AMSOHTvi4+NDrVq1mDFjBrNnz+aGG24oitryrUqVKrRs2RIUcFXKLNFri/In5thFqjSopHcZ4h/nI2PZ/Ot2xn00CouHBcgKddkhycvPE1uGnZSEVKyeFvre1yPX83j7e3ExOmtzhsGP/vtLdPcf++lyS0eCwgIA3F3Z6SkZePnm3vOxfeUe+o/o5X78erq/960/SP+HegFQv00dvAO8ORsRc83n7P/zML2GdwWgw8DW+F3lepnpNjy8rO7PY09fpG6rcAC63/7v7+V9Gw7R447OGE1GvPy86HTTvxOStq3YzW0Th7g/z36+0F+VBpWIiYjVuwxRDqghmdjtdmrWrEmDBg2K7LwFbqnMa+p5SS2Anm3AgAHs3bsXV1gGxmgvlII0PwgBnD8Wyw23t9K7DHGZGY/NYuQb9/DFwfdJT0onM93GnnUHOLn3FBmpmezdcJA5h2eQdDGZo9uP59oqN/fF73l6zuOkJ6ezcdFW9/1njpzly+e/5Y0VLwCQlpjOU71eZs/aA9z17DA+2/Wue6JOtl1/7OP3r6szY/PruJwuTh+M5s37ZlxxzWZdGzE/8lP8Qn2YH/kpc1/8nk8mzGHS7DEMergvDpuDN++d4d4x5WpmTpzLc9+M59YnB3Po72PEn0/MtSVxyScr+WTH21yKjmPyjdOYPXk+L/30FMlxqezdcNB93OZft9O8exO+ODCdhAtJHN4S4X7s0wlfMXbGQ8za+x6KQeFiVBwvDH6DMr76XLkQ1qASf32zTe8yRDlQd0hVjh49ypAhQwrf83KZAq9T+dVXX13z8YceeqhABRVUZmYmt956K6mpqZgOBmBMsOb9JCFyYbaaeG7lGN4e9Bn2DEfeTxDiGgxGQ6HXqbR6WrBnOtA0jaZdGjHx80cZ3WxiEVcqSjPFoPD8ijF8dM88UuLS9C5HlGGqjwNHq3gsFgs///wzAQEBRXbuArdUlnRozIuHhwcDBw7kp59+Qq2SLqFSFJjD5iQuKpGweqGc2X8u7ycIUcxqN6/Jk589imJQcNqd/N/IT/QuSZSw4OoB2DMdEihFofX73w0sX76cnj17FmmghCKYqON0OlmxYgUnT57Ebv93i6hnnsl7WYuiNnTo0KxQGWhH83CiZBbfwsiifDt35ALVmlSWUClKhSPbjudrqSBRflVrHMa5Ixf0LkOUcZrZxR9/ZC23NnTo0CI/f6En6rz99tucPHmSTZs2UadOHY4fP47FYimK2q5bzZo1syYJKeCsLjMXRcGd2X+OGs2q6l2GEEIAULNFVc7sv/aELiHycseH/bHb7TRr1oxmzZoV+fkLHSqPHz/OhAkT8PLy4rbbbmPGjBkcPXq0KGorkOxF19VKGWgWWctLFMyZfWep2UJCpRCidKjRvCpn9p3VuwxRhmlGlcWLFwNwzz33FOkEnWyFDpXZrZIWi4Xk5GTMZjMJCfptIdWiRQtatGgBBnBVk9ZKUTBxZxIwGA0EVfPXuxQhRAXn6WslqKq/dH+LQnlo7q2kpaURHh5O586di+UahQ6VTZo0ISUlhaFDhzJq1CgefPBB2rZtWxS1FVh2a6UrLAPNVLDZlqJi0zSIOhBDjebSWimE0FeN5lWJibgoO+mIAtMMGj/99BOQ1UqZ265jRaHQM1myd88ZPHgwbdu2JS0tjbp16xa6sMLo2LEj9evXJyIiAlf1NEynfHWtR5RNZ/ado1bLauxdeVjvUoQQFVjNFtU4s1+6vkXBPfjVUGbPnk2VKlXo27dvsV2nwFFV0zRsNpv78yNHjnDx4kXS09PJyMgokuIKSlEURo8eDYCrajqaVd7diet3cscZ6rSrqXcZQogKrm77mpzcEaV3GaKM0kwq3333HQCjRo3CZCq+lXEKHCo///xzfvjhB/fnL774Il988QWffvop8+fPL5LiCuOGG26gdevWYABnzVS9yxFl0PmIWCweZoJrBOhdihCigvIK8CSkVhBn9kpLpSiYWz/oQ1paGvXq1SvWVkooRKjcvn07w4cPd3/u5+fHjBkz+OSTT9izZ09R1FYoiqLw6KOPAqBWykT1kp1RxPXRNDi58wx129fSuxQhRAVVp21Novafw2Fz6l2KKIM0i4tFixYB8MgjjxTbWMpshTq72fzv/rr33ntv1gkNBjIzMwtXVRFp0qQJvXr1ylq3snYqGrJ3rbg+J7ZLF7gQQj9129fkxPbTeR8oRC66Pd8Su91Oy5Yt6dixY7Ffr8ChMi0tLccOOr179wbAZrORmlp6upsffvhhzGYzWqAdNdiW9xOEuMzJ7Weo3aY6BmPxvrsTQojc1G1fkxPbzuhdhiiDVH87a9aswWAwMH78+GJZl/K/CvyXskuXLrz77rs5JuVkZGQwffp0unTpUiTFFYXq1au7W1GddVLQjLLEkMi/pNgUki6kUKtVNb1LEUJUMGH1QlEMChdOXNS7FFHGaIpGlcFZK98MGzaMBg0alMh1CxwqH3nkEQBuvfVWRo8ezejRo7n11ltRVdU9lrG0uPfee6latSpYVVw10vQuR5QxR/46QeNu+i6TJYSoeBp1r8uRjSfRZOSWuE4jv7mVM2fOEBAQwKhRo0rsugWeV261WnnhhReIiYkhMjISgPDw8KzwVspYrVYmTJjA5MmTcVVLxxDrgSHdnPcThSArVN79xk0s/2C93qUIISqQRt3q8vvMjXqXIcoYzepi3rx5AIwZMwZf35Jbq7vQA8WqVKlC586d6dy5c6kMlNk6depEt27dsibt1E9GU+Stn8ifc0dj0TSo2rCS3qUIISqIwCp+BIT5cWqXrE8p8k9Do9mjNcnIyKBFixb079+/RK9foWYfTJw4EV9fXzRfJ67q0g0u8u/IxhM0ki5wIUQJaditLhF/R+JyyjwAkX9qWAa7du3Cw8OD5557rtiXEPqvChUqQ0JCePLJJwFw1UxD9Za1K0X+HPnzOE161te7DCFEBdGkRz2O/HVC7zJEGaJZnZiaZeWaRx99lOrVq5d4DRUqVAL07duXHj16ZHWDN5BucJE/p/acxepjpUqDUL1LEUKUcwFhflSuG8KxzZF6lyLKCA2NxqOrk5mZSevWrbnlllt0qaPChUpFUXjqqacICAhA83biqlV61tQUpZemahxYc5Tm/RrpXYoQopxr3q8hR/46IbvoiHx7YO7N7N27F09PTyZPnlzi3d7ZKlyoBAgICODZZ58FwFU9HVeQLIou8rZ/9RGa922IYij+BWSFEBVX836N2Pf7Ub3LEGWE6mdnzpw5ADz55JO6TpqukKESoGvXrtxxxx0AOOsnoVldOlckSrtzR2OxpdsJb13y41SEEBVD5bohePl7ELlTdtERedNMKgF9TKiqSv/+/Rk4cKCu9VTYUAnw2GOP0ahRIzBrOBomyfhKkaf9vx+lxY3SBS6EKB4t+jfi4NpjqC75eySuTUOj7cR6XLx4kRo1ajBx4kS9S6rYodJsNjN16lR8fHzQ/BwyvlLkae/KwzTpUQ+rl0XvUoQQ5YzRZKDVgCbsXnZI71JEGTDi62H8/fffWCwWXnnlFby8vPQuqWKHSoCqVavy/PPPA/+MrwzNyOMZoiJLPJ/Mmf0xNO/XUO9ShBDlTMOudUmMSeb8cdnrW1ybK8jG7NmzAXjiiSeoV6+ezhVlqfChEqBbt27cf//9QNZuO6qPrF8prm7nkv20vbm53mUIIcqZtjc3Y+fS/XqXIUo51dOJpZ0dTdMYOnQoN998s94luUmo/MeoUaPo2rUrGMDROBHNIhN3RO6ObY7EJ9hbtm0UQhSZwKr+VGscxoE1x/QuRZRimlGl8lBP0tPTadmyJU888YTeJeUgofIfBoOBKVOmULt2bbCqWcHSIAOlxZVUl8ruZQdpO1RaK4UQRaPNTc048MdR7BnSUyZypykaLZ8IJzo6msqVKzNt2jTMZrPeZeUgofIyXl5evPnmm/j7+6P5OnE2SEJDgqW40s4l+2nWuwGevla9SxFClHEmi5E2Q5qy41fp+ha509Do+3o7tm/fjoeHB2+88QYBAQF6l3UFCZX/UbVqVXf6V0NsOOukSLAUV0i6kMLxbadpO7SF3qUIIcq4lv0bE3siTiboiKty1Uxj+fLlGAwGpk6dSv369fUuKVcmvQsojVq1asWUKVOYOnUqatUMVKcR81lfvcsSpcyWn/Zw56uD2PrTblxOVe9yRCllMBpy/CvE5RQFbrizDX98vlF+RkSunJXScNVMA+Cpp56ic+fOOld0dYqmadIMdxULFy5kxowZANx22220a9dO54qEEEIIUVEcOnSI+fPno2kaI0aMYOTIkXqXdE0SKvPw2Wef8d1334EGlmOBGOM99C5JlCJNetWny/C2zH7ke71LEaWUwWhgyppxvNbnY1SXtGiLnO79v6Ec/eukjKcUV3D529BapuBwOBg0aBCTJ09GURS9y7om6f7Ow6OPPkp8fDwrV67EXj8B0+EAjAkyOUNkObTuGH0f6UJ46+qc3CF79YqrU12qhEqRQ5UGoVSpV4nvn18qPxsiB9XPjqF1Onabg65du/L000+X+kAJZWyiTnx8PGPGjGH8+PFMmDCBS5cuAbBv3z7GjBnD448/zokTJwA4fPgw48aN45tvvinUNRVF4dlnn6V3795gAGfjRNQAW6FfiygfVJfGxm+30+PBDnqXIoQoY7o/2JG/f9yFI9OpdymiFFF97Zg6ZmKz2ejYsSNTp07FZCobbYBlKlT6+/vzySef8NFHHzFgwACWLVsGwOzZs3nnnXd46aWX+OyzzwBYs2YN7777LrGxsYW+rslkYsqUKXTr1i1rcfQmiaj+9kKfV5QPu5cfIrCqP7VaVdO7FCFEGVG5bgjhraqzbdFevUsRpYjq7cDaxUFGRgZt2rThtddew2Kx6F1WvpWpUGk0GjEYskpOT0+ndu3a2Gw2DAYDvr6+VK5cmZSUFAB69+7NM888Q0hISJFc22QyMXXq1KxZVxIsxWVcDhcbv9tBjwc76l2KEKKM6HZ/B7b+vAdbmvwdEVlUHwce3R2kpqbSokUL3nzzTazWsjXcrkyFSoCIiAgeffRRFi1aRIMGDUhJScHb29v9uNFoxOFw0KRJEz7++GMefPDBIru22WzmlVdeoUOHDmDUcDRNwBUoXeECdi09QGjtYGo0q6J3KUKIUi6kViD1OtRiy0+79S5FlBKqnx1z50xSUlJo2rQpb7/9Np6ennqXdd3KRKj84YcfeOKJJ1iwYAH169fn888/Z9SoUcyfPx8fHx/S0tLcx7pcrmLdtshqtfL666+7WyydjRNxBWcW2/VE2eC0u9i8YAc9R96gdylCiFKu50M3sO2XvWSmSqOEANXfhrFDBunp6bRu3Zr33nsvR2NZWVImQuVdd93Fhx9+yO233+6+z8fHBw8PDzw8PHC5XKSkpHDhwgV8fYt/kXKr1cprr7327+SdRkm4KmUU+3VF6bb9l32E1AyiTruaepcihCilqjSoRJ12Ndm8YKfepYhSwBVoQ2mbTmZmJh07duSdd97By8tL77IKrGxMJ/pHREQEn376KUajEYvFwuTJkwEYPXo0zz77LIqiMGnSpBKpxWQy8eKLL+Lh4cHy5ctxNkjG7GVEPVV2BtSKouW0u1g352/6PtaF2Q+fQVaAFUL8V9/HurBx/nZppRS4QjPQmqRht7vo1q0bL7/8cpmalJMbWfy8kFRV5aOPPmLhwoUAGKO8MJ72QaH0ryclip5iUBjz1b38+fU2Dqw5pnc5ohQwGA28tP4JXu35oaxFWMHVaVeToc/146N75uK0u/QuR+hEQ8NVPR1XeCoA/fr14/nnny8zywZdS5no/i7NDAYDTzzxBKNGjQLAVSMdZ4NkNEWyekWkqRp/fL6J3g93xmiS/15CiCyKAv3GdGXdnL8lUFZgGhrOOinuQDl8+HBeeOGFchEoQUJlkVAUhQcffJDnn38eo9GIWikTR9MENKO0SlRExzZHknIpjXbDWuhdihCilGjerxFGs5G9Kw/rXYrQiWbQ6Ph8Q9SqGSiKwvjx4xkzZox7qcTyoPy8klJg4MCB7mUAtAAHjhbxaFZ5R1oRrfpoAz1GdMQ7oOwtCSGEKFoWTzP9xnRl1Ucb0FTpxaqINLOL+g+H8tdff2E2m5k6dSp33HGH3mUVOQmVRaxDhw58/PHHBAcHo3m7sLeMR/WVxW0rmnNHYzm84Th9Hu2idylCCJ11f7Aj0QfPc2L7Gb1LETpQvR0E3GTg4MGD+Pj48N5779GrVy+9yyoWEiqLQf369fnss8+oV68eWFQczRNwVZYlhyqaNbM306hbXao1rqx3KUIInQTXCKTd0Oas+vhPvUsROnAFZ2LslE5sbCw1atTg888/p1WrVnqXVWwkVBaTypUr88knn9CjR4+stSzrJ+OsnYKGdH1UFOmJGaz78m8GPdkLRRYDEKJCGjihB3//sIvE88l6lyJKkIaGs0YqzsZJZGZm0qFDBz777DNq1Kihd2nFSkJlMfL09OSVV15h5MiRALiqpeNomohmkgk8FcXOJfsxmo20HtJM71KEECWsUbe6BNcIZNN3O/QuRZQgzajS6YXGuGpl7fZ3xx138NZbb5XI5ix6k1BZzAwGAyNGjGDatGl4eHigBdqxt4pD9XHoXZooAapL47f31tL30S74BJfdXRKEENfHw8fKoIm9WP7+OllCqAJRvRxUusPKhg0bMJlMPPvss4wfP77cLBmUFwmVJaRHjx7MnDmTatWqgYeKo0U8rirp0h1eAUQfjGHf6iMMerJ8DswWQlyp35iunNodTcSWU3qXIkqIKzQDQ6c0oqOjqVSpEh9//DFDhgzRu6wSJaGyBNWtW5fZs2f/O86ybgpa01RZz7ICWDt7M1UbVqZx97p6lyKEKGbhrarTqFtdVn60Qe9SRAnQFA1H3WScDZOx2Wy0b9+eL774giZNmuhdWomTUFnCfHx8ePXVVxk3bhxGoxFHYDqOlvGoXtIdXp7ZMxws/b81DJrUGw8fq97lCCGKicli5KZn+7Dyow2kJ8qqH+Wd6uGk9shA1CpZC5qPGDGCd955h4CAAL1L04WESh0oisKdd97Jhx9+SGhoKJqXC0ereJzSHV6undh2mhPbTtN/XHe9SxFCFJNeozsRF53I/t+P6l2KKEYaGq5KGZi6pXP06FH8/Px45513GDlyJEajUe/ydCOhUkfNmzfnyy+/pFOnTmAAV90UnE0S0cwyqLu8WvnhBuq2r0mjbtINLkR5E96qOq0HNuW3d9foXYooRppRpcuLTXE2SCYjI4PWrVvz1Vdf0bFjR71L052ESp0FBATw1ltv8eSTT2KxWFCD7Nhbx+MKtOldmigGmak2fnljNTc900dmgwtRjnj4WLllyo0sm76W5IupepcjionqaydwmIF169ZhNBp55JFHmD59OqGhoXqXVipIqCwFFEXh1ltvZfbs2dSpUwcsKs6miTjqJKMZpDu8vIncGcW+1UcY+tyNepcihCgigyb25NTuaA6ui9C7FFEMNEXDWSsFV+skLly4QLVq1fjkk0+47777KnR3939JqCxFateuzeeff87tt98OgFo1A3vrOFQ/2Tu8vFkzaxN+oT60v6WF3qUIIQqpWZ8G1GxejeUfrNe7FFEMVG8H1e7zxlUjHVVV6d+/P19++WWFnN2dFwmVpYzVauWJJ57g//7v/6hUqRJ4unA0T8ja4lFaLcsNp93Fomkr6f1wZ8LqSbeJEGVVYFV/Bk3sxS+vr8KWJg0A5YmmaDhrpqK2SyIyMpLAwEBef/11XnjhBby8ZPhSbiRUllIdOnRg7ty5DB48GJR/tniUVsty5cKJS/zx2SbueHUQVm+L3uUIIa6TyWLkzmmD+fuHXZzee1bvckQRUr0d1HzQD1fNNFwuF71792bevHl069ZN79JKNQmVpZiPjw+TJ0/mnXfeyVp6KLvVsk6yLJheTuxcsp+zh89z8+S+epcihLhO/cf3IDU+nY3zt+tdiigimiFr7KTaLonjx4/j7+/PK6+8wtSpUyvs2pPXQ0JlGXDDDTcwd+5cBg0alNVqWTUDe5s4XMGZepcmisBv/7eWSrVD6HBbS71LEULkU/O+DWnQqTa/vLYSTUYmlQtqgI2Q2024aqTjcrno0aMH8+bNo1cv2WI3vyRUlhG+vr4899xzvPfee1n7h1tVnI2TcDVPRrPIupZlmT3DwY8v/kavUZ2o3iRM73KEEHkIDQ9i0KRe/Dx1OelJ8ua+rNNMKo4GSTiaJXLu3DlCQ0N54403mDZtGkFBQXqXV6ZIqCxj2rdvz9y5c7n//vsxGo04/TOwt43DWVV24ynLLp6KZ9l767jr9SH4hnjrXY4Q4io8fa0Mf/Nm1n35N1EHYvQuRxSChoarcgYeN9pQK2WiKAq33XYb33zzDV27dtW7vDJJQmUZZLVaefjhh5kzZw7NmjUDo4arTgqOVvEykacMO7DmKHtWHOLuN27CZJF1z4QobQxGhTteHUzkrii2LdyrdzmiEFQfB3UfDsZZP5nk5GTq1avHzJkzmTBhgszsLgQJlWVY7dq1+fjjj3nqqafw9fVF83HiaJGAo0GSdImXUWtnbyY1Lo2hz/XTuxQhxH/0H9cdo9nI8vfX6V2KKCDNpOKol4yzdQKHDx/Gy8uLsWPHMmvWLFl3sghIqCzjDAYDQ4cO5dtvv+Xmm29GURTUSplZXeLV09AU6RIvSzQNFk1bReW6IXS9r73e5Qgh/tFmSFMadqnLj1N+w+WU1TfKGg0NV5V0LH0zUMMy0DSN/v37M3/+fO6++25MJpPeJZYLEirLiYCAAJ5++mlmz55N8+bNs7rEw1OzZokHZcp4yzLElm5nwfNL6XRna5r2qq93OUJUeHXb16TfmG4seH4JaYkZepcjrpMaYKPa/d4466aQmppK/fr1+eSTT3jhhRcICQnRu7xyRUJlOdOgQQM+/vhjpkyZQnBwMHi6cDZJwtE8AdXHoXd5Ip8SziWx4LklDHmmD7VaVdO7HCEqrLD6odw+dRALX1nBhROX9C5HXAfVy0GLiTVxNEskMjISX19fJk2axKxZs7IaX0SRUzRNVtgqr9LT0/n222/58ccfsdlsABguWjGd8kGxSVN/WdCwSx2GPtePr8b/xMVT8XqXIwrAYDTw0voneLXnh6gu6TYtSwLC/Bg1807WzNrMnhWH9C5H5JNmceGsmYpWxYamaZhMJm699VYeeOAB/Pz89C6vXJOWynLMy8uLhx9+mG+//ZaBAwdmjbcMtWWNt6ydgmaSP3Cl3dFNJ1n7xWbu+79hstSQECXI09fKve8OY/sv+yRQlhGaUcVZMxVD91TUsEw0TaNXr1588803jBs3TgJlCZCWygrk+PHjzJw5k+3b/9lSzKlgPOuF8ZwXikveX5RmvR/uTMMudZj7xM9kJMtiy2WJtFSWPRZPM/e/dwsXTsbx2/+t0bsckQfNkDUJx6eVkaSkJACaNm3K448/nrXsnigxEioroG3btjFz5kxOnDgBgOI0YL3gh/WSL5kpss5laTX4qd5Ua1SZeU8uxJYm36eyQkJl2WKyGLn3nWGkJWawaNoKVJf8iSytNEVDrZxBwA1WLl3KGu9as2ZNRo8eTY8ePVAURecKKx4JlRWUqqqsW7eOOXPmEBUVBUCAfwCpO10YLniiaPKfsbRRFBj6/I0EVQ9g/lO/YM+QiVdlgYTKssNoNnL360NwOVV+fHGZfL9KKQ0NNTST0J7exMRk7WoUFhbGiBEjuPHGG2V5IB1JqKzgnE4nq1evZu7cuZw/fz7rzkwDpihvDLESLksbg1HhtpcG4unvwXfP/orTLovcl3YSKssGg1Hh9qmDsHhZ+P75JfJ/qxTSlKwwWaWPv7sxJCgoiPvvv5+bbroJi8Wic4VCQqUAwG6389tvv/H1118TH//PLGObAVO0d1bLpSrhsrQwmgzc+doQFIPCj1N+kz9+pZyEytLPYFQY9r/++FXy4dunF+OwOfUuSVxGUzTUShmEdvdxt0z6+fkxfPhwbr31Vjw9PXWuUGSTUClyyMzMZMmSJSxYsIC4uLisO+2GrAk9MZ4oqkzoKQ1MFiN3vTYEg9HA9/9bKn8ESzEJlaWbwWjgtpcG4BPszXfP/ootXcYrlxaaIWvMZOANHly8eBGAwMBA7rrrLoYNGyZ7dJdCEipFrmw2GytWrODbb7/lwoULWXc6/pktHiOzxUsDo9nI7S8PxNPPg+8m/ypjLEspCZWll8li5I5XBmH2NLPguSU4MuXNWWmgGVRcVTLwb2tx95yFhIQwfPhwbrrpJjw8PHSuUFyNhEpxTQ6Hg9WrVzN//nzOnj2bdadLwXjeM2spIptR3wIrOIPRwC1T+hMQ5se3zywmM9Wmd0niPyRUlk5mq4m73rgJ1aXKMJJSQjO7cFVNx6uJkZSUFCBrAs69997LgAEDsFqtOlco8iKhUuSL0+lk7dq1LFiwwL0UERoYLlkxnvXGkGrWt8AKTDEo3Dy5L5XrhvDtM7+SlpCud0niMhIqSx+rt4Xhb95MRkomP09dgcshgVJPqpcTV7U0DNWcOJ1ZrcXVqlXjvvvuo3///jKbuwyRUCmui6ZpbN++ne+//54dO3a471cSzVnhMsGCgkzqKWmKAjeO607DznWY//QvxJ9N0rsk8Q8JlaWLb4g39/3fMGKOXWTJ23/I90QnGhqavx1n9XS0wH/HsTZv3py77rqLLl26YDRKT1hZI/FfXBdFUejQoQMdOnTg+PHj/PDDD/zxxx+4Ahw4AxJR0owYY7wwxHrIpJ4SpGmw6qM/SbmYyshP7uS7yb9y7mis3mUJUaqE1Arkvv+7hX2rj7B29ma9y6mQNEVDDckkfHAljh8/DoDBYKB79+7cddddNG3aVOcKRWFIS6UotNjYWBYuXMiSJUtIS0sDQHEpWOJ8sFzyxR4vXUslqXm/hgx6shcLX1nB8W2n9S6nwpOWytKhRrMq3P3mTWz4aivbFu3Vu5wKR7O6cIWl49vcQmJiIgAeHh4MHjyYO+64g6pVq+pboCgSEipFkUlNTWX58uUsXryY6Oho9/2GRCumGC8MiVbpGi8htdvW4PaXB7Jm9mZ2LT2gdzkVmsFoYMqacbzW52MJlTpp0qs+gyf14rf/W8PhDSf0LqfC0NBQ/e04w9IgxIGqZv38h4aGMmzYMIYOHYqfn5/OVYqiJKFSFDlVVdmxYweLFi3i77//JvtHLDAwkBtuuIG2bdvi7e2tc5VCCCGKQ2ZmJjt37mTLli3uPbkB2rRpwy233EKXLl1k8k05JaFSFKtz586xePFili1b5l4iAhWMcR4YY70wJMvEnuLkFeDJHa8MwulwsnDqSllySAfSUqkPs4eJoc/3I7CKPz9O+Y2k2FS9SyrXNDQ0HwfOSumYa2lkZmYC4OXlxYABAxg2bBjh4eH6FimKnYRKUSIyMzNZs2YNixYtIiIi4t8HMowYL3hijPVAsctMv+JgNBkY/FRvarWsxoLnlnDpTILeJVUoMqay5PlX8mX4WzcTfzaRX15fJYuaFyPNpOKqlEHNPqFERka6769duza33HILN954o+x8U4FIqBQlStM0jh49ym+//cYff/xBevo/aypqYIi3YLjgiSFexl4Wh463t6LnQzew9N01HFofkfcTRJGQUFmy6nWoxS1T+rP9l31smLsF+QtX9DQ0tAA7rrAMDGEu99qSVquVnj17MnjwYFq2bImiyO/xikZCpdBNRkYG69evZ9myZezbt+/fB+wGjBc8MFz0xJAu426KUs0WVbnjlUEcXBfB75/+hcspIae4SagsGYpBoedDHWk3rAW/vLaa41tP6V1SuaNZnbgqZxLczpvY2H+XLGvYsCFDhgyhT58++Pj46Fih0JuESlEqnD59mmXLlrFy5Ur3chMASqoJQ6wHxoseKA7pHi8K3oFe3PbyACweZn56aTlJsSl6l1SuSagsft4Bntz28kAsXhZ+emkZSRfkZ7qoaCYVNSQTV6VMND+H+35fX19uvPFGBg8eTL169XSsUJQmEipFqeJwONi0aROrVq1iy5YtuFz/rHGpgZJowRjrgSHOKgurF1JWq84NtBvWnF/f/J1jmyPzfpIoEAmVxSu8VXVufWkAhzdEsPoTaX0vCppBQw2yoVbKQAl1uX8PGwwG2rRpw+DBg+natavsxS2uIKFSlFqJiYmsX7+eVatWcfDgwX8fcCmYkzyxJPhgSvGQGc2FULdDLYb970aO/HWC1R//icMmExqKmoTK4mE0Geg1ujNtBjflt/fWyjjhQsreNtFVKROP2oZ/x7sDDRo0oF+/fvTp04eQkBAdqxSlnYRKUSacPXuW33//ndWrV+dYWN3by5uMSFdW93iSBUWTgeHXyyvAk5uf7UtIzUAWvrqSmGOyvWNRklBZ9EJqBXLbSwPJSM5k8RurSb4oywUVRFaQdOAKziSgmSfx8fHux8LCwujXrx/9+vWTpYBEvkmoFGWKpmkcPnyY1atXs27dOhISLlsex6FgiLdiuOSBIVEC5vVqM6Qp/cZ2Y/OCnWz6bgeqS341FAUJlUVHUaD9LS3pPbozG+ZtZcuPu2R293Vyt0iG2PBv4pHjd6ivry+9e/emX79+NGvWDINBhhmJ6yOhUpRZLpeLffv2sW7dOv78888c77JxKhjiJGBer6DqAdzyvxsxmo38+tbvXDhxKe8niWuSUFk0gmsEcPOzfbF6W/nl9VXys3kdNOXfIOnb0EJSUpL7MV9fX7p160bPnj1p27YtZrNZx0pFWSehUpQLLpeL/fv3s3bt2twDZoIlqxUzwYrilHff16IYFDrc0pKeo25g28K9/Pn1NlwOl95llVkSKgvHYFTodFcbut3XgU0LdrDpu53ydcwHzaiiBthRg2341LOQnJzsfszf398dJNu0aSNbJooiI6FSXNXu3buZ9//t3XtwVPXB//H3OZvNJuRCuAQJtyAECJiEqwGx5UGpFmtbO6WInad9an3k9+vF6sjU6kzb6ah1fvOIfzC2eOnV+tgZsKMPvciIfSyioBAEgUTC1RAgNwlJzGVz3XN+f5zds7u5gLjAJtnPa+bMOXu+53v2my9h95Nz+Z4//Qnbtlm1ahXLli3j0KFDPPvss5imybp165g+fTrl5eVs3LiRxYsX8+1vfzvezXYD5vbt29mxY0d0wLTB+MSL2eDDc96H0akP04Fk5WTylYdWkJmdzt/+6385U1YT7yYNSQqVn90108dyxyO3EOix+Nt//ZNzpxouXimB2b4A1uhOAqM7SRpn090dHgIoKyuLZcuWsXz5cubNmzeoguRQ/a6RvgbPb5UMKp2dnWzevJn169dHnQ757W9/y5NPPonf7+epp55i/fr1vPnmm6xfv55nnnkmji0O83g8zJs3j3nz5vHAAw9w5MgRdu3axc6dO6moqMDO6iaQ1U1gWitGm8c5gtngw2jx6kk+EZpqmvnvdf/D/C/N4Zv/76sc3fUR//vcTtqa2uPdNBnmUtJ93PSfSyj64mx2/HEPe145gG3p+EdvzvO2e5zhf0Z3YqeHR2/o7oaJEyfyuc99jhtvvJGCgoJBFSRDhvJ3jfQ1+H7DZFAoKyvD5/PxyCOPkJKSwrp160hPT8c0TTIyMsjIyKClxRlg+Oabb+ahhx7i+uuvj3Or+zJNkzlz5jBnzhzWrl1LdXW1GzAPHjyIlRYgkOYnMNnv3OjTlIzZ6MNsTNZg60EfbD3MkZ0fseL/3MgPX/oP3vrDbt7/6yHdyCOXnWHA3Nvm8IX/eyMfvX+GZ77937Scb4t3swYVO8nCyurEGtXFqDlpnD8fPnprmiYFBQXceOONLF26lClTpgz6RyUOl+8acShUSr8aGxs5e/Yszz33HO+//z5//OMfufvuu0lLS3O38Xg8dHd3M2fOHH7961/HsbWf3oQJE1i9ejWrV6+mpaWF3bt3s2vXLvbs2UNbWxtWdidWtjPupdGa5FyL2eTDaPYm9M0+7c0d/OOpN9n/91K+tO5mFny5gK0btnP6UHW8mybDRM7McXzpwZtITvXyl19spfJAVbybNCjY2NiZ3c71kaM6ITNA6Kq18+c7SE1Npbi4mKVLl3LDDTeQlZUV3wZfouH6XZOoFColyubNm9m1axcLFy6ksLAQr9fLwoUL+fOf/0x6ejptbeGjBoFAYEjfKZiRkeGOw9bT08Phw4fZs2cPe/fu5ciRI9jpPQTSe5yjmAGDpNYUvM2p9HxsYLR7EvJUefXRj/n99zYx//bruPOx2znzYQ1vPr+L+tONF68s0o+s8ZncvHYpeYtzeftPJZS8ejDhrz21fQH3aGRqblLU5y42TJs2jeLiYoqLiyksLByST7ZJpO+aRKJQKVHWrFnDmjVraGpq4tFHH8W2bU6cOEFOTg4pKSkEAgFaWlrw+/1kZGTEu7mXTVJSEkVFRRQVFbF27VoaGxvZu3cvJSUllJSU0NTURM/IdnpGtsNkoNPE/CTZmZqSMToT51S5bcP+f3xI2ZvHWHrXQu597i5K3zzKjj/uprXBf/EdiACpGT4+/x/FLPhyAfv+XsqvvvkC7S2J+XQsOzmANbLLORo5sgtSwqG6ra2TzMxMFi1aRHFxMddffz3Z2dlxbO3lkajfNcOd7v6WAb366qv861//wjAMHnnkESZOnMiBAwd4/vnnMQyDdevWkZeXF+9mXnGWZXH8+HFKSkp4//33+fDDD+nq6oreqMN0rscMBk2jK3FCZvqYESy/ewkFK2ax55UD7H55f8KGg/7o7u9oyaleilfNY+ldCzi++xTbf/ceTbXNF684jNjeUIjsxh7ZhZ0aPWSXx+Nh9uzZ7tHIWbNm4fEM388UfdcMHwqVIpeos7OTsrIy9u/fzwcffEB5eTmBQPSXguH3YDR7MZuTnesxO4b/6fKxU0ax/J4lTC/OpeSVgwqXQQqVDjdMrlnAmbJqtv9hN7XHz8W7WVecjQ0+CyuzCyszGCJHRH9emKbJzJkzmT9/PvPnz6eoqIgRI0bEqcUin51CpUiM/H4/paWlbsg8duwYltUrPHSZmM1ejBavcySzLWnY3viTPXU0y76zmBmLp1Ly6gHee/kD2ps74t2suEn0UOkbkUzxqrnccOcCTpdWs+OFPcP6+fLuMD+Z3dgZTpDEF/3vbhgGeXl5boicO3cu6enpcWqxyOWjUClymbW0tFBaWupOR44c6Xu6PABGa/hIptmaNOyGMHLD5ZKpHHz9MLtf/oDGmsQ6zQmJGyozxqax+BvzWfjVAioPVLHjhd3UHBt+RybtJAs7vRsrsxsrswvfeA8dHdF/RHk8HmbOnElhYSFFRUXMmzePzMzMOLVY5MpRqBS5wrq6ujh69ChlZWUcOnSIsrKyqGfvujpMzNbg0cxWL0ZrEkZg6D9SctSEkSy5cz7zVs7mREkl723az9nDtfFu1lWTaKHymuljWXrXAvKX5fHhv47x3ub9w+ZJOLZpOwEyvRs7oxsrvQdS+z7CND09nYKCAgoLCyksLCQ/P5+UlJQ4tFjk6lKoFLnKbNvm9OnTlJaWUlZWRnl5OadOnaLPf0U7eG1mqxezxUtKIA1PR7J72ry9dWidUk7N8LHoa0UUr5pHY/UnlLxykPK3Twz754onQqg0PQYzl06j+OtzGZ+Xzd4th9j7PweH5GgAqelO+LMNm0BKFx2etmCI7MHIsPpe2oLz5JqCggI3SE6dOhXTHPp/EIpcKoVKkUHA7/dz9OhRysvLOXLkCOXl5dTV1fXZzjRNcsZPIHdSLns2H3ROm7d5MXqGzheYx+uhYMVMFt1RxOhJI/ngtcPs+1spjdX9HL0dBoZzqBw5LoMFX7mO+bcX4G9qZ++WQxzaVk53Z8/FKw8itsfCTuvBSu9h6b/P5/TZSqpqqujp6ftzjBkzhtmzZ5Ofn+/ONeSNiEOhUmSQOn/+vBswy8vLOXbsWP+nzcEZN7MtCaPV69wE1JY0JO44H5+XzcI7Cin8wiyqDtey/7UPObrzJD1dw+fo5XALlR6vhxlLpjL/S3OYumAyh7cf5/2/lVI1BC5pcO/ETuvGTu9xgmRad9S4kJHS09PJz8+PCpDDYYxIkStFoVJkiLBtm/r6ek6cOMHx48c5fvw4J06coKpqgMfZWWC0BwOm34PhT3KmQRg2k1O9FH5hFnNvm8O4a8dQ/vYJDm0r59SBKmxraH9EDZdQOaVwAkW35nPdzTNprP6Eg6+Xc3BbOR2tg2/YKCc8BrDSAtipPdgjQlMAPP3/Po0fP568vLyoKScnZ9A/O1tkMFGoFBni2traOHnyZFTQrKyspLNzgC97i3DA9Huc4NkRnFvx/wIdlZNJ4a35zP3ibLy+JErfPMrht05QXV7LUPy0GsqhcvyMbOb8Wx6Ft+RjGAaH3ijn0D+PUF85OB7LaRs2dmoAO8UJjG54TO2BAQZT8Hq9TJ061Q2OM2bMYPr06TqFLXIZKFSKDEOBQIC6ujoqKiqoqKigsrLSnQ8YNgE6Tee55m7QjFiOw7iaE/KvoeiWfPKXTcf0mBx55yRH3j7BqQNVQyagDaVQaZgGkwtymP1veeR/bjpJviSOvHOS0n8e4UxpdVxCvW3Y2CmBcHhMDS8bqXbfG9yCkpOTmTJlClOnTiU3N5drr72WqVOnMmHCBJKS9IRikStBoVIkgfQXNs+ePcvZs2cHvl4TwMYJnB0ejE6PM49Ypsu84qfUc2aOY/ay6eQvyyNjTBon9pziREklH+09Tcv5tiv63rEY7KEyLSuVaYumML04l7zFuXS2dXHknZOUv32SqsM1VzxI2tiQbGH7Ak549FnBuRMezRF2v3dcu+1PS2PSpEnk5ua6ATIUHofzow1FBiOFShEBoLm52Q2YZ86ciZr7/RcZGsYCOj0k9Xgxu5IwuzwY3Un0NAegy4PRaULAuGzBc8zkLPKKpzJ9cS5T506ksaaZk3srOVlSyZmyGrrauy/L+1wOgy1UJiV7mHRdDtOLc5l+/RSyc0dz+lA1J/dWcmJPJR9XnL+s72d7LOxkC5IDeDM9WMk9WMkBrOQeAknd2L4AXGTwgtTUVCZNmtTvlJWVpeseRQYJhUoRuSDbtmloaKCqqora2lpqamqora2Nmno/+7xfATC6PM4Rzy4PRpcJnc7c6Dado53dlx4+PV4PkwtyyCvOZXpxLtlTR1N3sp4zpTWcLq3idGk1refjN15ivEPliKxUphROYHJhDlMKJ5IzI5vzZ5ucEL73NKcPVl3yEEA2tnPDS5ITGJ3QaGEnB480BkOknWxB0sW/YjweD9nZ2YwfP96dcnJyyMnJYdKkSYwZM0bBUWQIUKgUkZgEAgHq6+v7BM76+nrOnTtHfX09LS0tn36HFtAdHTSNbjO8rsfE6DHC824z6npPX1oyk67LYUowRE2cM562Rj81xz4OTueoOfYxbY1XJ2hezVA5YmQK42eMI2fmOHJmZpMzcxyZ4zKoLq/ldFkNpw9VcbashvaW6OtqbSMYEJMi5l4L22v1mYeWB7oRpj9paWmMHTuW7OxssrOzycnJ4ZprriEnJ4fx48czduxYXecoMgwoVIrIFdfR0UF9fb0bNENTaF1TUxONjY0XP80+kAB9w2aPc9TTtE3SR6aTlZ3J6PGjGDtxNOOmjIWAQeu5dto+9tNc20ZTVTMNp5tp/rgFLuNNSVciVKaPHcHY3FGMmjiSzAnpZI4fQfq4EXh8Jh+frufcmfPUVzXQ+HETzQ0tWFjgiQiNnugQeSkBMZLP52PUqFGMGTOGsWPHulN2drY7HzNmDCNGjLgsP7eIDG4KlSIyaHR2droBs7GxkaamJhoaGtzlxsZGWlpaaGlpobW1lZaWlgvexPFZeUwPpunBNAwM2wQL7B6wAzZ2D1g9NlbAdh6lGfoEtQ3nhiZw5sFgamBQeOssSv95xDlt7KyMmNsQrGp6DEyvgZFkYCY5c8MTvAPasLFti4AVoKcnQPjNLg/DMEhLSyMjI4OMjAxGjhzJqFGjyMrKGnCempp6WdsgIkObQqWIDFmWZeH3+92g2Xtqb2/H7/fT3t5+0eWh+lFomiapqamfasrIyCA9Pd0NjpHLaWlpel61iMREoVJEEp5t23R3d9PV1eXOQ1N/67u7u7EsC8uysG2bQCCAbdvuut6TYRiYpolpmlHLka9D86SkJLxeL16vl+Tk5H7noeXQpJtYRGQwUKgUERERkZjpXIeIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxCwp3g0QGQxs26ajoyPezRARuSQpKSkYhhHvZogACpUiAHR0dPDFL34x3s0QEbkk27ZtIzU1Nd7NEAF0+ltERERELgMdqRTpJblkHIYd/HvLMDFMAwwTTAMMA8MMlQXXGwaYBkZoG7fMcOu4E0SsC+/TrUO4jm0Y4T/7Ivbhro+oF7nODu7GLTMBQusNtyxUxw6uc8shvA8zuL1bJ/o9ouoQXGf2Uxa1PVFtDK8z+pT1qUN0nahywnUGeq+o1wO0o0+dC+3XXW9H1e+9P7c8Yl92cD296mHYEfWdciOyzN02VGa7+zQitw+uNww7/OsXXB/+9bDdchPbfe2UgRl87ZQ5r0P13DLDxiBczwyucydst55pELU+XMcKb4uNaVh4QmXB1+F9We7+PBH79+Cs9xhWr3oWntA+Cb+fuz3h/Zk49U2c93fKnP15gusMLDyh+oTaYeEBpx7O+4R+ttBr573s4DLBMhsz2C8eDEzAE/zHNjGC6ww8hoEZ/DAwMOju8rBq7XhEBhuFSpHeAkbw4x0nVBIMgMFv63CZAWY4QRlOQgvuJJQ8zPByn7Rh9k08htF3+8j90Wv7qLLeyxHbhMJkRKjssy4iBEa+7t3E6O37qWNeoGygH6O//Q5U70LrP/V7Xdo++w2xUfUuc6jsr5zer21335HtiHzP6Dq9QqhbFllu97M/u5/3sqOmyFAZDqrBaaCy/sImoTBKVNALvfYQXeaESiscyozIUOYsm4bhBL7gHHfZcOuFAyx4jPDcAxEBsJ+y4P6c13YwlNpuiHTq2RcNlZH78wTLTKLXhQKsGfy5RQYjnf4WERERkZgpVIqIiIhIzBQqRURERCRmCpUiIiIiEjOFShERERGJmUKliIiIiMRMoVJEREREYqZxKkV689jYtjPgsTPuohExN3oNSB6aRywTuc6OWL5AWWh9xKCF4SGqGWB9eG5HLRNVzwawQ+vD+7QxwMatG1nu7iNqcMXItvTz2o5qUq/+GGDqve3Fxo5kgPUXK7vQWJQXKov8CS9Yr7/xJiMne4A2Djz4efTYkhFl7rafffDzcDsixqnks49TaROuZxt29IQzd8qIWm+5+7PC74MNhhUxnqYdVW4blrs/ovYfnIfeK/jaDG4TmgN91lkRY0NaRnhuER6n0gquMxhonErDHbDcQ/jfLPTaDNbpPfblpx/83Aj+sxh0d/X3/1Ik/hQqRXrpKv443k24MkLf2THoHWdFIPpXy4pnQz6zyN9sncAT+az0v0cE6OjoiHcTREREhjQdqRQBfD6fu/zXv/6VlJSUOLZm6Ono6OCOO+4A1H+fhfovNoncf4n0s8rgp1ApAhhG+IRuSkoKqampcWzN0Kb+i436LzbqP5H40elvEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjEzbNuOceQ6EREREUl0OlIpIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERilhTvBojEm9/vZ9OmTezYsYPa2lpM02Ty5MncfPPNrFq1Cq/XG+8mxsUnn3zCrl272LdvH8eOHaOuro5AIEBWVhazZs1i5cqVLFu27IL7UN9Ge+mll/jNb37jvn777bcH3FZ9F9bW1saWLVvYuXMnZ8+exe/3k5WVxaRJk5g7dy6rV68mIyOjTz31ocjVpSfqSEKrra3l/vvvp7a2FoCUlBQsy6KrqwuAGTNmsGHDhn6/sIa7m266iUAg4L5OTk7G4/HQ3t7urlu8eDGPP/44KSkpfeqrb6OdPn2ae+65x/35YeBQqb4L279/P4899hgNDQ0AeL1efD4fra2t7ja///3vmTFjRlQ99aHI1adQKQmrp6eHe++9l48++ogxY8bw05/+lEWLFmFZFtu3b2f9+vX4/X6WLFnCk08+Ge/mXnXLli1j9uzZ3HbbbRQXFzNhwgQAampqePHFF3nttdcAuPXWW/nZz34WVVd9G82yLO677z7Kysq47rrr+PDDD4H+Q6X6Lqy0tJR169bR2dnJsmXL+Na3vsWsWbMwDIOOjg4qKirYuXMnt99+u/v7CepDkXjRNZWSsF5//XU++ugjAB5//HEWLVoEgGmarFixgh//+McA7N69m3379sWtnfGyYcMGnn/+eb72ta9FfWHn5OTw8MMP89WvfhWAN954g7q6uqi66ttor7zyCmVlZdxyyy1cf/31F9xWfefo6OjgiSeeoLOzk1WrVvHLX/6S/Px8DMMAnCOPs2fPZu3atVG/n6A+FIkXhUpJWK+//joA8+fPp6CgoE/5ihUryMnJido2kSxYsOCC5bfffru7fPTo0agy9W1YdXU1v/vd7xg5ciQ/+tGPLrq9+s6xbds2qqurGT16NN/73vcuqa76UCQ+FColIXV0dFBWVgbAkiVL+t3GMAwWL14MwN69e69a24aK5ORkd9myLHdZfRtt/fr1tLe388Mf/pCsrKwLbqu+C9u2bRvgXNvr8/k+dT31oUj86O5vSUiVlZVuELr22msH3C5U1tDQQHNzM5mZmVelfUPBgQMH3OVp06a5y+rbsL///e/s27ePRYsWsXLlyotur75zdHV1uUe/Z86cSV1dHS+++CK7d++msbGRjIwMZs+ezR133MENN9wQVVd9KBI/CpWSkOrr693l7OzsAbcbO3ZsVB198ThaWlp46aWXACgqKmLKlClumfrWce7cOZ599ll8Pp97Dd/FqO8ctbW1dHd3A86NYd/5znfw+/14vV5SUlJobGzk3Xff5d133+XLX/4yDz30kHutpfpQJH50+lsSkt/vd5cvdGotcqicyDqJzLIsnnjiCc6fP09ycjIPPvhgVLn61vHUU0/R2trKd7/73T43kgxEfedoaWlxl1988UWSkpJ47LHH2LZtG1u3buUvf/kLN910EwD/+Mc/ePnll93t1Yci8aNQKSKX5Omnn+bdd98F4MEHH2T69OlxbtHg88Ybb/Dee+8xY8YM7rzzzng3Z8iJvEbXsiwefvhhli9fTlKSc3Ltmmuu4Re/+AV5eXmAM6h8T09PXNoqImEKlZKQRowY4S53dnYOuF1HR0e/dRLVxo0befXVVwG47777ou4AD0n0vm1oaOBXv/oVHo+Hhx56yA1Cn0ai911I5M80adIkPv/5z/fZxjRN7rrrLsB5+tOxY8f61E3kPhSJB4VKSUiR11OdO3duwO0ir8+KrJOInn32WTZv3gzAD37wgwGPwCV63z7//PN88sknfOUrX2HKlCn4/f6oKfKIWmhd6PrBRO+7kMhrISOv1+0tNzfXXQ49OUd9KBI/ulFHElJubi6maWJZFhUVFQMOPVJRUQHA6NGjE/pC/meeeYZNmzYB8P3vf989QtSfRO/bmpoaALZs2cKWLVsuuG3ojvBvfOMb3H///QnfdyGZmZlkZ2dfMBT2FrpRR30oEj86UikJKSUlxR0Uec+ePf1uY9s2JSUlABd9CspwtnHjxqhA+c1vfvOC26tvPzv1XVjoZ6usrBxwm1OnTrnLocHM1Yci8aMjlZKwVq5cyaFDh/jggw84fPgwc+bMiSrfvn071dXV7raJaOPGjVGnvC90hDJSIvft008/fcHyP/zhD7zwwgtA/8/+TuS+i3TbbbexdetWqqqqeOedd/pcV2lZlvvHTnZ2NjNnznTL1Ici8aEjlZKwVq5cybRp07Btm5///OfuM4Aty2L79u2sX78egMWLF7Nw4cJ4NjUuIq+hvO+++z51oAT1bSzUd465c+eyfPlyAJ588kneeust93rUuro6Hn30UU6ePAnAvffei2mGv87UhyLxYdi2bce7ESLxUlNTwwMPPOBe5J+SkoJlWXR1dQEwY8YMNmzYQEZGRjybedXV1dWxevVqwLnL9mKPF1yzZk2f0+Lq2/5d7EglqO9C2tvb+clPfsLBgwcB59GgPp8vahzLu+++m3vuuadPXfWhyNWnUCkJz+/3s2nTJnbs2EFtbS2GYTB58mRWrFjBqlWr8Hq98W7iVVdTU8OaNWs+9fYDfbGrb/v6NKES1HchlmWxdetWtm3bRkVFBX6/n1GjRlFUVMTXv/51CgsLB6yrPhS5uhQqRURERCRmuqZSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGY/X+O2OGoE4c5rQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAABcSAAAXEgFnn9JSAAC++UlEQVR4nOzdd3xV9f3H8dc5567sBBLC3luGgICiiAMVUXHWah3gqFZFrVpHf1qrtdWq1VartXXinrhxs1SQvXeAAGEmZM+7zvf3x8293CT33oSsm/F5Ph55mNx8c87nJnjzzndqSimFEEIIIYQQDaBHuwAhhBBCCNH6SagUQgghhBANJqFSCCGEEEI0mIRKIYQQQgjRYBIqhRBCCCFEg0moFEIIIYQQDSahUgghhBBCNJiESiGEEEII0WASKoUQQgghRINJqBRCCCGEEA0moVIIIYQQQjSYhEohhBBCCNFgEiqFEEIIIUSDSagUQgghhBANJqFSCCHqadeuXWiahqZpzJgxI9rlNJkZM2YEnueuXbuiXY4QooWSUClEO+cPC6HedF0nMTGRwYMHc+WVV/Lll19Gu9w2KTichnozDIPk5GRGjBjBb3/7W3788cdolyyEEDVIqBRChKWUori4mK1bt/L2229z3nnnccopp5Cbmxvt0toV0zQpLCxk/fr1vPzyy0yaNIlLL72UioqKaJcmhBABlmgXIIRoOT755JMqH5umyeHDh1myZAnvvvsuFRUVLFy4kPPPP5+ffvoJTdOiVGnblZaWxosvvljlMY/HQ3Z2NgsXLmT27Nl4vV4+/PBDLBYL77zzTpQqFUKIqjSllIp2EUKI6AkOhpFeDjZs2MCECRMoLi4G4KuvvuLss89u8vpasl27dtGnTx8Apk+fzqxZsxp8nV69ekWctzhv3jzOPPNMvF4vAJs2bWLIkCH1um9dzZgxg9dffx2AzMxMevfu3aT3E0K0TjL8LYSok2HDhnH99dcHPl64cGEUq2m/TjvtNKZNmxb4WH4OQoiWQkKlEKLOBg8eHHi/sLAwZJtQK4U//vhjpk2bRs+ePbHZbCGHzT0eDy+//DJTp06la9eu2O12OnbsyHHHHccDDzzAgQMHaq0vJyeHl19+mSuvvJJhw4aRmJiI1WolNTWV448/ngcffJCDBw/W+fmuX7+e6667jl69euFwOOjSpQtnnnkm7733Xp2v0RTq8nPw/wxOOeWUWq93NG1r88knn3DOOeeQnp6Ow+Ggd+/eXHnllSxduhSAWbNmBe5XW8+uy+XilVdeYdq0afTo0QOHwxFYsHTXXXfJSnQhWhiZUymEqLPDhw8H3u/Zs2et7Z1OJxdddFGNuZrVbdu2jWnTprF169Yqj+fl5ZGXl8fKlSv517/+xX/+8x+uvvrqkNfYuXMnAwcODAwLB8vNzSU3N5elS5fy9NNP88Ybb3DRRRdFrOmFF17g9ttvx+12Bx47ePAgBw8e5Pvvv+eDDz7g73//e8RrNJWj/Tk0B7fbzRVXXMGHH35Y5fHdu3eze/du3nvvPR5//HE6duxYp+utWLGCSy+9lMzMzCqPO51O1q9fz/r163nuued49tlnufHGGxvteQgh6k9CpRCiTioqKnj77bcDH0+ePLnWr7njjjv4+uuv6devH1dddRWDBg2irKysypDt3r17Oemkk8jJyQGgf//+zJgxg/79+5Ofn8/nn3/O119/TWlpKTNmzMAwDK644ooa93K5XHi9Xvr27cvpp5/OsGHDSEtLwzRN9uzZww8//MC8efMoLS3lsssuY9GiRYwdOzZk3R988AE333xz4OOzzz6b888/n+TkZLZs2cIrr7xSa1BuKrm5uXz66acA2O12Jk6cGJU6qrvhhhsCgdLhcDBjxgxOOOEEDMNgxYoVvPLKK/zhD3/gkksuqfVav/zyC5MnT6asrAxN0zjrrLM488wz6datG+Xl5fzyyy+8+eablJWV8bvf/Q673d6m9wkVotVQQoh2DQi8Vef1elVOTo764osv1Pjx4wPtZsyYEfZ606dPr3LNX/3qV8rpdIZtP2XKlEDbSy65RFVUVNRo89prryld1xWgEhIS1P79+2u0yc3NVYsWLYr4XOfNm6fi4uIUoE455ZSQbfLz81VqaqoClKZp6qWXXqrRpqioSE2cOLHK85w+fXrEe0eSmZkZuE6vXr1qfN7j8aj9+/er9957Tw0ePDjQ9qGHHgp7TX+bSZMm1Xr/2toG/0wzMzNrfP6HH34IfD41NVWtX78+5HPs1atXle/Za6+9VqNdUVGR6tGjhwJUcnKyWrBgQciaMjIyVM+ePRWg4uLiVE5OTq3PUwjRtCRUCtHOBf+Sr+3tmGOOUU8//bQyTTPs9YIDSPfu3VVJSUnYtmvXrg207d27tyorKwvb9pZbbgm0vf/+++v9fB988MHAdfbs2VPj8//85z/rFJ7379+vEhISGj1U1vamaZoaN26cev311yNeszlD5TnnnBP4/HvvvRf2PvPnz681VD711FOBz3/++ecR6547d26g7d/+9reIbYUQTU8W6ggh6sxmsxEbGxtx66Fg1157LXFxcWE///HHHwfev/XWW4mJiQnb9p577gks8An+uqM1YcKEwPvLli2r8fngYe277ror7HW6dOnClVdeWe866kvTNKxWKw6Ho9nvHUpFRQXfffcdAF27duVXv/pV2LannHIKI0aMiHi9N998E4CBAwdy3nnnRWx72mmn0bVrV4BADUKI6JE5lUKIgFDzBEtKStiyZQvvvfceq1ev5ne/+x0ffvghn3/+ObGxsRGvV9t8v+BQd+aZZ0Zs27NnTwYPHszmzZvZsmULRUVFJCYm1mi3ceNGXn/9dRYtWkRGRgaFhYW4XK6Q19y7d2+Vj5VSrFy5EoBOnToxbNiwiDWdfvrpvPDCCxHbHK1Qm58rpSgqKmLdunW8++67LFq0iEWLFvHFF18wa9YsDMNo1BqOxtq1awOLmU4++WR0PXJfxSmnnMK6detCfq6wsDDwufT09MDc0Uji4+MB2Lx581FULYRoChIqhRABF1xwQdjPPfjgg1xzzTW88847zJ07l9tuu42XX3454vW6desW8fPB2wQNHDiw1voGDhzI5s2bUUpx8ODBKqFSKcV9993HP/7xD0zTrPVaAEVFRVU+LiwspLS0FPAtGKpNXdocrdjY2Ig/h4ceeogLLriAefPm8dZbbzFo0CAeeOCBRq+jrvbv3x94v2/fvrW2j9QmKysr8LP76aef+Omnn+pcR35+fp3bCiGahgx/CyHqxGaz8cILLwSC3KxZs8jKyor4NZGGs4HA6TwWiwWbzVZrDf5eqeCv9Xv00Ud54oknME0TwzA466yzePjhh3nttdf44IMP+OSTT/jkk0945JFHAl9TffuhkpKSwPu19cICEYf2m0pCQgIvv/xyYCrAP/7xD8rLy5u9Dj9/CIeGf8/C7blZF8FbPwkhokN6KoUQdZaYmMgJJ5zAt99+i9frZd68eUyfPr3e10tISAB8G5+7XK5ag2Vw6PN/LUB5eTmPPfZY4PH58+czZsyYkNewWq1hrx8cWsvKymqtPzhQNac+ffowcOBAtm7dSmFhIcuWLWPSpEn1ulZde3XDCQ6JDf2eBX//r7766sDRkEKI1kF6KoUQRyV48+rgoc/66NKlS+D9jIyMWtv722iaRufOnQOP//LLL4GwcuONN4YNlODbjDucpKSkQEjavn17rfXUpU1Tqe3n4A/o4eaT+gVvpF4f/oUy4NuAvjaR2gRPl6g+31UI0fJJqBRCHJXc3NzA+w0d/h03blzg/e+//z5i26ysLLZs2QL4jikMnk956NChwPv9+vWLeJ1vv/027Oc0TeO4444DIDs7m40bN0a81ty5cyN+vinV9nNITk4Gag/+/uMT62vkyJGB3t8ff/yx1p7PBQsWhP1camoqQ4cOBWDJkiU15rwKIVo2CZVCiDorLi7ml19+CXw8ZMiQBl0v+KjEf//731RUVIRt++STTwYCy8UXX1zlc8Fz+Xbs2BH2GqtWreLLL7+MWNOFF14YeP/pp58O2+7QoUNVThhqTpmZmWzbti3wcaifgz+c7d69O2Lv4LPPPtugWhwOR2Dl/v79+2sc0xhswYIFYVd++/mnU5SVlUXtGEwhRP1IqBRC1Inb7eamm24K9B517dq13vP4/EaMGMHZZ58N+IZFr7nmmpDDtW+++SbPP/884JszGXyEIhDoXQR4+eWXa5wXDb6h84svvrjWnrTp06eTmpoKwGuvvcasWbNqtCkpKeGyyy6LSk9acXEx119/fWCv0DFjxjBgwIAa7aZMmRJ4/9577w25t+iDDz7IDz/80OCa7rjjjsD7M2fOZMOGDTXa7Nq1q05HKd5yyy306tULgL///e9V/pgIpbCwkGeffbZRnocQomFkoY4QIiDUvoClpaWBfSr9cwh1Xee5556r04rt2rz44ouMHj2anJwc3nvvPVatWsX06dPp378/BQUFfP7558yZMyfQ/oUXXqgyFxN8c/EuuugiPv74YwoKChg5ciQ33ngjI0aMwDRNFi9ezBtvvEFFRQVXX301b7zxRth6kpOTef755/n1r3+NUoprrrmGjz76iGnTppGUlMTWrVt55ZVX2LNnDxdeeGGjnwFeVlZW4+eglKK4uDiwT6V/SNvhcATCdnXXXnstTzzxBHl5eXz00UdMnDiRK664gtTUVPbs2cN7773HihUruOyyy3jvvfcaVPPpp5/OjBkzmDVrFocPH2bs2LHMmDGDCRMmoOs6K1as4NVXX6WoqIhLLrmEjz76CCDknpZxcXF8+umnTJo0iaKiIu655x7+97//cfHFFzN06FDi4+MpKipi586dLFu2jAULFuByuQKbpgshoihqZ/kIIVoEjuKYRkB16NBBvf/++2GvV9uRfqFs3bpVDRo0KOJ9Y2NjIx5NePjwYTV8+PCwX6/runrkkUeqHBX45z//Oez1nn/+eWWxWMJe7+KLL1bbtm1r9mMa/W89evRQ8+bNi3jdOXPmKLvdHvYa5557riorK2vwMY1KKeVyudQll1wS8fv/j3/8Q7300kuBxz7++OOwtW/ZskWNGjWqTt8Lu92uvv7667p+u4UQTUSGv4UQEcXExNCtWzemTJnCv/71LzIyMrj00ksb9R4DBw5k/fr1vPTSS0yZMoXOnTtjtVpJSUlh9OjR/N///R8ZGRlcffXVYa/RsWNHlixZwmOPPcaoUaOIjY0lNjaWfv36cc0117B48eKj2iT85ptvZtWqVcyYMYMePXpgs9lIT09n8uTJvPPOO3z00UcRtydqbHFxcfTu3Zvzzz+fl19+mc2bN3PqqadG/JqpU6eydu1arrnmGnr27InNZiMtLY1TTz2VN998k88//7zWvUTrymq18uGHHzJ79mymTJlCWloadrudnj17csUVV7Bo0SLuuuuuKguMOnToEPZ6gwYNYuXKlXz22WdMnz6dgQMHkpiYiGEYJCcnM3LkSK6++mpmzZrFgQMHqgz3CyGiQ1Oqjof4CiGEEA108cUXB85uz83NjRgshRCti/RUCiGEaBa7du0KrL4fOXKkBEoh2hgJlUIIIRpsx44dETcs37dvHxdeeGFgdf+NN97YXKUJIZqJDH8LIYRosLfeeotrrrmGk08+mYkTJ9KvXz9iYmLIzc1lyZIlfPDBB4FjHI8//nh+/vlnDMOIctVCiMYkWwoJIYRoFB6Ph3nz5jFv3rywbU455RRmz54tgVKINkh6KoUQQjRYYWEhH3zwAd9//z2bN2/m8OHD5OXlBVbNjx8/nssuu4zzzjsv2qUKIZqIhEohhBBCCNFgslBHCCGEEEI0mIRKIYQQQgjRYBIqhRBCCCFEg0moFEIIIYQQDSZbCgkh2h2lFC6Xi/LycsrLy3G5XFXenE5nyMfcbjderzfwZppmlf9WfwxA0zQ0TUPX9cDH/vd1XUfTNAAMw8Bms2GxWLBarVgsliof+9/8jzscDhwOBzExMVXet1jkZV0IER3y6iOEaHU8Hg/FxcUUFRVRVFRU4/2SkhLKy8spKyujtLSUsrIyysrKqjzm9Xqj/TSahMViqRI2Y2JiiIuLIz4+noSEBOLj40O++T+XmJhITExMtJ+GEKIVki2FhBBR53a7yc/PJz8/n7y8vCr/9b8Fh0f/ySyNwWKx+N4MC4ZhVP7X95jVYsFqq+wltFux2Wyg8L2hoUwFJiiTI49XvmloKAVlhWXEdYglb18hmgaarqEbGrqho1k0LFYDw2pgWH0fawaggcvpwlnupKLchavChcvpwlXhxu1y43a7MZUXpSviOsRQUVHRqCHZbreTnJxMUlISycnJNd78j3fo0IGOHTvicDga7d5CiNZLQqUQosmYpkl+fj45OTnk5OSQnZ0deN+/ObY/MB4tTdOw2+zYbXZsFhtW3YahWTCwoHl18GiYboVZoTCdJp4yhbfCi7fCJDYulg6dU0jvnUbnfmmk9upAh25JmKYib28B+fsLydtXSFF2McWHSyg+XErx4VJK8krxesyjqlM3dB5ccBt/OeVZTG/dvlY3dOI7xJKQGkdCajwJHeNI7BRPStdkOnRPokPXZCw2g/wDRRzencfB7Tkc3JlD9u4c8g8VYmom6AoMhTIUGCZYFMqiwGL6HrOYgY8xFMndEikuLsbj8Rz1zyI+Pp7U1FRSU1Pp2LFjlfeDP7ZarUd9bSFE6yGhUghRbxUVFRw8eJADBw6wf/9+Dh48GAiN/uBY15CiaRqxjlgcNgdWw44VK7rXgubWMcvBW2biKvbiKnDjLHRjOn29gbVJ7pxI92M6031oF7oNSSe9Xyoet5fsnbkc2nmYQzsOk7Mrl7ysAkoLyhv6LamhPqGyLmISHXTsnkxa7w506pdKet9U0vulYouxkp2Zy75NB9m7+SB7Nx4kb29Bna6p8AVRLCbKqlBWE6xmyP8qq8KeZMHpdNbp2pqm0aFDBzp37kx6ejrp6el07tw58HHnzp2JjY1twHdECBFtEiqFEGF5vV6ys7PZv38/Bw4cqPGWl5dX6zX8YTHGHotdd2B4rWguHbMUXIVenHluKvJcdQ6JkeiGRpeBneg9qgc9hnWh+zGdsVgt7N18kH2bDrB300EOZuRQfLi0Qfc5upqaJlSGE5cSS+cBaXQbkk73Y7rQfUhnAF/A3HCAzNVZ7Nt0qFFq8YdQZTPB5kXZTN/79iPvdx6USm5uLi6Xq9brJSQkBIJm9+7d6d69O926daNbt26kpaUFFjgJIVomCZVCtHNKKQoKCsjKyiIrK4s9e/awd+9esrKy2LdvH263O+LX22w24mMScBgxWLw2qNDxFJpU5Lopy3Zhlik01bCwGEl6v1T6jO5Bn9Hd6XVsd8oKy9m1ei971u1n78YD5GblE81XueYOlaF06JZE92O60GN4V/qM6k5iWjy71+0nc1UWmSuzOJiR3aTfI4XyDb87vCi77w2HF2U3UXYv8V1iKC4ujngNm81G165dAyHTHzh79OhBp06dJHAK0QJIqBSinfB6vezfv5/MzEwyMzMDITIrK4uSkpKwX2cYBvGxCcRYYrF4rahSHXeBl4pDbioOe8CjNbiH8WhYbAZ9xvRg0IS+DJzQB83QyVy5h8yVWWSu2kvBwaOfn9mUWkKorC4hNa4yiPeg73E9MCwG237JZNviTHau2IOrPPIfEk1BGWYgZOLw+gJojIduI9M5cOBAxGkUMTEx9OzZk169etG7d+/Af7t06SJbLAnRjCRUCtHGmKbJoUOHAuHR/7Z79+6wQ5CaphEXE0+cNQ6L1w6lOq7DJmX7nbgLzWYNjaHEJNgZfHJ/Bk/sR5/RPcjZlcu2xb4Q1NS9bA3VEkNldZ36dmTghL4MmtCHzgM7sXvtPrb+tINNC7dTmt94K+3rS6HAbqJiPJVh04tyeOg+qjP79+8PGzitVivdu3cPBM2+ffvSr18/unXrJj2bQjQBCZVCtGLl5eVs376djIwMMjIy2LlzJ7t27aK8PPSCE4vFQlJcMjFaLFq5BXeeSeneCpy5JpoZ3eBYnT3WxqCJfRl2+iD6jOrOrtV72fzTDjIWZ1Kc23xzIhuqNYTKYLHJMQwY35shk/rT97ieZG3Yz8Z529i8cDvlxXVblNOclFY5rB7r8YXNWA8q1oOtoxF2EZHD4QgEzP79+9O/f3/69u1LXFxcM1cvRNsioVKIVqKwsDAQHrdt20ZGRgZZWVmE+l9Y13WS4pJxaLFopQauHJPSLCfe4oYvhmlKuqEzcEIfRpw5mP7je7N30wE2zK0MNEUV0S6vXlpbqAxmj7MxeGI/hp02kN6jupO5Kot1321ly0/b8bha9ubx/t5NszJk+t+sHfWwPfZdunQJhMxBgwYxaNAgOnbs2MyVC9F6SagUogUqLi5my5YtbNq0ia1bt7Jt2zays7NDto2NiSPBnoTNacd9WFGyx4krz9uki2MaW2rPFEadewwjzxpC8eFSVn+1kU3zMyjJi/7Qa0O15lAZLDbJwZCT+zPy7KGk9kxh/fdbWPXlRg7tOBzt0o6KQvl6NOM8qDg3Ks5Dx0FJ5OTkhGyflpbG4MGDGTRoUOC/SUlJzVy1EK2DhEohosztdrNjxw42bdrE5s2b2bx5M3v27AnZNjEukTgjAUosVOx1U7bXBS6jmStuHBabwbDTBzH6vGGk9e7A+u+2sGrORg5mhP7l3lq1lVAZLK13B0ZNPYaRU4ZQeKiYVV9uYN13W6KywKexKIuJivNgVgbNnuM7s3v37pAjAV26dGHw4MEMHjyYIUOGMHjwYDlVSAgkVArR7LKzs1m/fj0bN25k8+bNZGRkhByOS4xLJN6ShFZsoSzLTekep++kmFYuMS2e4y4YwZhpwzi8O58Vn65j848tfzi1vtpiqPQzLL7pCsedP4KuQ9JZPWcjyz9eS/6BlrUCv76UbqLiPZjxblS8hy6jOrJv374a7QzDYMCAAQwbNoxhw4YxfPhw0tLSolCxENEloVKIJqSUYvfu3axbty7wdvDgwRrt7DY7SfYU9FIbFfs8lO12o3laf4AM1v2YLhz/q2MZcEIfNs3PYOnsNW2uVzKUthwqg6X2SmH8xccy4szBZK7ay9KPVpO5am+0y2p0yjBR8W7MBA8q3k3KoHhyc3NrtEtPTw+EzGHDhtGvXz/Z3ki0eRIqhWhEbrebbdu2BQLkhg0bKCwsrNJG0zRS4jsQY8bjyVYUba9o8QtoGqLfuF5MvGosHbsns+zjtaz8YgNlTXAcYkvVXkKlnyPezqhzhjL+4lGU5pfx01vL2frzjha97VNDBBYEJbgwE930P6UH27dvxzSr/qxjYmIYPnw4xx57LKNGjWLQoEESMkWbI6FSiAbwer1kZGSwatUqVq5cyfr166moqLpK2WJYSI5JwVLmoHyPh/IsT5sYxo5E02Dwyf2ZeNVYYhIc/Pz2CtZ+s6nNDnFH0t5CpZ9u6AybPJCJV45FKfj5reVsmLsV09v2f+Uo3UQleDATXagEN7E9bTUOGJCQKdoiCZVCHAX/cPbKlStZtWoVa9asqXG8nN3mINmRglZgpXi7E3dO0x5T2JJoGgw9dSCnXHM8yjT56a3lbJy3rV0EiXDaa6j00zQYPLEfE68aR0yigx9fX8rabze3q38TCuXb0ijJjZnkIqGfo8YIRnDIHDt2LAMGDJAN2kWrI6FSiFocPnyYZcuWBYJk9flTNquNZEcH9HwbxducuPNUmx3KjmTA8b057bcTMKwG819ezJaf2u6Q59Fo76EyWP9xvTjttxOwxViZ9/IvbF6Y0S7/jVQPmfF97RQVVV3clJSUxNixYwNvqampUapWiLqTUClENR6Phw0bNrBkyRKWLl3Kjh07qnzeMCykxHRAL7RRss2JJ7d5z75uaXqO6MrpN5xIYlo881/9hfXfb0WZ8rLiJ6GypiGT+nPa9RNwO93Me3Ex25ftjnZJUeUPmWaSG5Xswt5dr3EqVp8+fRg7dizjxo1j5MiR2O32KFUrRHgSKoXAt83PsmXLWLJkCStXrqS09MgxgP6FNfaKOEq3u6jYa7ab4exIUromceYtE+l+TBd+nLWUVV9uwOuR0FSdhMrQdENjxJlDOOXa48nNyufbf/9IdmbNVdTtkdIUKsGNmexi4Fk92bJlS5X9Mm02GyNGjGDChAlMmDCBrl27RrFaIY6QUCnaJa/Xy6ZNm/j5559ZsmQJmZmZVT7vsDlINDrg2QslGW1ve5+GsMfamHj1OI47fzjLPl7Lz28tb9WbXjc1CZWRWWwGJ/x6NCdefhzrvtvM/FeXtNojOZuKspiYyS7MZCcdhyfUOP2nd+/eTJgwgRNPPJGhQ4diGK3zQATR+kmoFO2G0+lkxYoV/PzzzyxevJj8/PzA5zRNIyWuA5aiGIq3OPHmte8h7VA0DY6degyn/3YCu9ft4/sXfqagjWxy3ZQkVNZNQsc4Tr/xRAae0IeFs5ay/NN18v0KwX/MpJniZMTFA1i3bh1e75FdFZKSkjj++OOZMGECY8eOJT4+PorVivZGQqVo0woLC1m8eDE///wzy5cvr7Ldj81qI8WainufRslWl/RGRpDeL5Xz7j4di83C188uYPeamqeKiNAkVB6droPTOfu2SVhjrHzx5Fz2bap5WIA4QhkmZooLs4OTuH7WKrtRGIbBqFGjmDRpEhMnTqRDhw5RrFS0BxIqRZtz+PBhFixYwI8//si6deuqbEIc64gj3p1E6TYP7oPI3MhaWO0WJs0Yz3Hnj2Dh60tY+tGadrUVTGOQUHn0NA1GnTuMyTeeyIYftjL3xcU4y2oeZSqqUihUohuzg5NuE1LZs2dP4HOapjFixAgmTZrEySefTKdOnaJYqWirJFSKNiE3N5eFCxcyb9481q9fX2VSe1JsMvbSOIo2OjELdBnWrqN+Y3ty7h9OJ2dXLnOenk/hoeLav0jUIKGy/uI7xHLWrZPoNbIbX/9rPpt/3FH7F4kA0+HB7OhkwNnd2bJlS5XPHXPMMZx88slMmjRJFvqIRiOhUrRa+fn5LFy4kPnz57NmzZoqQbJDXEeMvBiKNlZAmUxaPxr2WBtTbptE/+N78/W/FrBpQUa0S2rVJFQ2XP/xvTnnzlPZv/UQc56e366O+Wwsyu7F27GCoef3YcOGDVVeLwcOHMjpp5/O6aefLj2YokEkVIpWpbi4mAULFjBv3jxWr15dZWg7ObYDeradkk1uNJcEyfroM7o75//xTLLW7+erf86nvNgZ7ZJaPQmVjcMWY+XMmycyeGI/vnhyLlsX7Yx2Sa2WsnoxOzoZ/qv+rF27NvA6qmkaI0eO5IwzzmDSpEkkJiZGuVLR2kioFC2e2+1m6dKlfPvttyxevBi3+8j2NcmxHTByHRRvdKFVSJCsL6vdwuTfnciwyYOY89R86Z1sRBIqG1f/cb2Ydt8Z7Fi+m2+eXYizVOZaNoSymJipFQy9qA/r1q0LPG6xWBg/fjxnnHEGEyZMwOFwRLFK0VpIqBQtklKKzZs389133zF37twq5+QmxSZjK4ijcL0TrVyCZEN17p/GJQ+dTW5WPl88OZeSvLJol9SmSKhsfI54O1PvOIVeI7vx0cNfk7X+QLRLahOU3Ys3tYLek9OrnCQWExPDySefzFlnncXo0aPlTHIRloRK0aIcPHiQ7777ju+++67KykWHLYZ4ZzLF69xQLEGysYy9YASn33AiP/zvZ1Z8tj7a5bRJEiqbzvDJg5h656ksemcli95e3i7PEW8qZqwHM62ctLGJHDx4ZFunzp07M2XKFM4++2y6dOkSxQpFSyShUkSd2+3m559/5osvvmDFihWBxy2GhRQjldLNXjwHZDPyxuSItzPt3sl06tORD//8FYd2HI52SW2WhMqm1aF7Mr96eCqlBeV88tdvKc2XnvbGpPAdGentVEHsAIOSkpLA58aMGcPUqVM5+eST5SxyAUioFFG0Z88evvzyS7755hsKCgoCj3eITcXcY6Esw4vmlWGWxtZtSDqXPDSV3Wv38dU/58sRi01MQmXTM6wGZ958EkNPHcjHf/mazFV7o11Sm6R0hdmxgpG/GcDKlSsDj8fHxzN58mSmTp3KoEGD0DTpAGivJFSKZuV0OlmwYAFffvkla9euDTweY4shtiSJ4nUeWXDThEadcwxn3jKRb//9I2u+3hTtctoFCZXNZ/DEfky7dzI/vbmcX95fFe1y2jRl9+LtVE7a+IQqw+MDBgzgggsuYPLkycTExESxQhENEipFs9i9ezeffvop3377bWD4RNM0UmypOLco3PtkU/KmZFh0zrp1EgMn9OH9+7/gwLacaJfUbkiobF4de6Rw+WPnsX9rNl888QNupyfaJbVpCoVKcnPKncexcOFCXC7favy4uDimTJnC+eefT+/evaNbpGg2EipFk/F6vSxdupTZs2ezfPnywOOx9jgchQmUrPPIfpLNIC4llkv/MhXTVHz4569k4+hmJqGy+dnjbFz0wFkkdkrgvf/7Qk6DaibKYuLtVE7niUns27cv8PioUaO44IILmDhxIhaLJYoViqYmoVI0uuLiYr766is++eQT9u/fD1T2SlpTqdiMLLppRp37p3H536exeeF2vvvPTxJqokBCZXRoGkyacTzHXTCcDx6Yw571+6NdUruhUKhkF8ffNJxFixYFNlfv2LEj5557Lueffz6pqalRrlI0BQmVotFkZmYye/ZsvvvuOyoqKgCwWWzEl6dQut5Ed8pfqM2p37heXPTAWXz/wk+s+XpztMtpt3RD54G5M/nr6c9JqIyCwSf347y7T2fO0/PZNF829W9ups2LN72MxBE28vLyAN/G6pMnT+bSSy+lf//+Ua5QNCYJlaJBlFIsX76c9957r8p2QAn2RMhyMP6EsZx+/UlRrFAIIUS0zXtlMfO//JGhl/aqcnLPmDFjuPTSSxk/frxsqt4GSKgU9eLxeJg/fz7vvvsu27dvByqHuC2plG1QmDm+hTearsn2Es1I0+C06ycwbPJA3v3j52TvzIt2Se2e9FS2DCldE7n879PYvWYfXz+zANMrv/qak1IKZfq+52a8m4l3HsvChQvxer0A9OzZk0svvZSzzjpL9rxsxSRUiqNSVlbGnDlz+PDDDwPbSFgMCwnODpSuNtGcsvAmWnRD54L/O4O03h15557PKM4tjXZJAplT2ZLEJDq47G/n4ixz8cGf5uBxeaNdUrum7F68XcpwDNIoLfW9XiUlJXHhhRdyySWXkJiYGOUKxdGSUCnqJD8/n9mzZ/PJJ59QXOxbSWm3OnDkJVK+UaF5ZNgimiw2g189PBVbrI137/tcNjRvQSRUtiwWm8ElD03FkWDn3Xs/x1nminZJ7Z4yTLzp5aRNiA90VsTExHD++edz6aWXyqKeVkRCpYjo8OHDvPPOO3z++edH9h+zxaNnxeDcoaGZMrQdbbYYK5c/Ng1XhZsPH5Tel5ZGQmXL4+/VT+3Zgbf+8AllhRXRLkngWzVupjrpc14nMjJ8i6psNhtnn302l19+OV27do1yhaI2EipFSIcOHeKdd95hzpw5gTCZaEvCs9WKRzYqbzFiEh1c+eQF5O0r4JO/fSehpQWSUNkyaRqc/ftT6T2qO2/e+THFh2W6SEuhUJgpLgb/ujsbNmwAwDAMJk+ezJVXXkmvXr2iXKEIR0KlqOLgwYO89dZbfPXVV3g8vpMoEq0puDbomDmGhMkWJDbJwdX/upi9Gw4w55/zA5PgRcsiobJlO/2GCRxz6kBm3fYRRTkl0S5HBFEoVKKbY6/rHzhAQ9d1zjjjDKZPn0737t2jXKGoTkKlACA7O5vXX3+dr776KrAaL8magnOdjpkrYbKliUmw+wLlxgPMeXp+tMsREUiobPlOve4Ehp0+kFm3fiQL3FooM97NuFuGsGjRIsDXc3nWWWdx9dVXy7B4CyKhsp0rKCjgrbfe4tNPPw0McydZO1CxVoM82ay8JXLE25n+zMXs23yIOU/NRf4PbtkkVLYOp98wgSGT+jPrto8oyS2LdjkiDDPezZjfDWTJkiWAL1xOnTqVq6++mvT09ChXJyRUtlOlpaW8//77vP/++5SX+86CTrQk41xrQL6EyZbKEW/n6n9exMHtOXzxxA8SKFsBCZWtxxk3ncTACX15/faPKMmTYNmSmQkujr3+yLC41Wrlggsu4KqrriI5OTm6xbVjEirbGafTySeffMLbb79NYWEhAAnWRFzrLajDFhnmbsFsMVau/udF5OzO4/O/fy+BspWQUNm6nHnLRPqP68VrMz+kvNgZ7XJELcxEF8Om92b16tUAxMXF8Zvf/IZf/epXOByOKFfX/kiobCeUUsydO5cXX3wxsA9YnC0ec4sd736ZM9nSGRady/8+DWeZi48e+loW5bQiEipbn3P/cDrpfTvyxp0f467wRLscUQuFQiW76H1hWmArotTUVK699lqmTJmCxSKjb81FQmU7sG7dOp5//nk2b94MgMMag5EZi3uXhMnWQNPgwgemEN8xlrfv/gyvW/ahbE0kVLY+mq7xq4enYrVbePePX8jPrZVQKMy0ClInxQY6T3r16sVNN93ECSecIEcGNwMJlW3Y3r17+e9//8uPP/4I+I5TdGQn4dpqyKblrciUWyfRc2RXZt36kZyU0wpJqGydLDaDK568gKKcEj7927cy3aQVUZrC26WMuGN1ioqKABg3bhwzZ86kd+/e0S2ujZOz9dqgsrIy/vOf/3D11Vfz448/omkaic6O6IuTcW+2SKBsRU664jgGnNCbt//wqQRKIZqRx+XlvT9+Qac+HTnjponRLkccBU1pWPbHUfGtncsvvxyr1cqyZcu45pprePbZZwNHDYvGJ6GyDVFK8f3333PFFVfw3nvv4fF4SNRSsK7qgHO5Bc1tRLtEcRSOOXUAx186ijfv+oTSgvJolyNEu+Msc/H23Z8y9JQBHHf+8GiXI46S5tX5+JZ5aL8kctJJJ+H1evnoo4/4zW9+w2effRY44EM0HgmVbcSOHTu47bbbeOSRR8jNzSXGEot9awecP9nQSmWScmvTbUg65959Ou/f/yUFB4qiXY4Q7VZJXhnv3PsZp99wIn3H9Ih2OaIetAoLy/+egXVDMr1796awsJCnnnqKG264gY0bN0a7vDZFQmUrV1JSwjPPPMN1113H2rVrMXSD2MMd8C6MhxxrtMsT9ZDUKYHLHpvGV0/PJ2vDgWiXI0S7l52Zy8ePfMMlD00ltWdKtMsR9aQX2Nn/VhmWHQkkJCSwfft2br75Zp588snA3EvRMBIqWymlFAsWLODKK69k9uzZmKZJgjcFY2kK3i1WNCXzJlsjW4yVyx+fxsrP17P+h63RLkcIUSljyS4WzlrKbx4/n9gk2f+wtdLQMA7E4vzewdlnn41Sii+++IIrr7ySb775Blm73DCy+rsVOnToEP/6178CZ6DGWuLwrrdDrvRMtnaXPnIOylR89NBXstq0jZDV323LOXeeSmrPDrx518eYXvmftLUzE110m5bErl27ADj22GO58847ZZV4PUlPZSvi9XqZPXs2V199NYsWLULXdGJzU/AsjJNA2QZMuHwMHXuk8Olj30mgFKKF+ubZhRg2g9N+e2K0SxGNQC+ysf/tMozMeOx2O2vWrOG6667jrbfekoU89SChspXIzMxk5syZPPPMM5SXlxOnJWCsTMG72SZD3W1An9HdmXjlWD7405dygocQLZjXY/Lhn+YwcsoQhpzcL9rliEagKQ3LvjjUzwkcf/zxuN1uXnzxRX73u9+xffv2aJfXqkiobOG8Xi/vvvsu119/PRs3bsRiWInZ1wH3TzHoZbKquy1ITIvn4j+fzaePfUduVkG0yxFC1KI4t5SPHvqKafeeQccesnCnrdCcBqv+sRPL1kQSEhLYtm0bv/3tb3n11Vdxu2Wf4LqQUNmCZWVlceutt/LCCy/gdruJN5PQf0nCzLTK8YpthG7o/Orhqayes5GtP++MdjlCiDravWYfP76xjF//7VysDvkDv63Q0DByYnD+YGfixIl4vV5mzZrF9ddfz9atsniyNhIqWyDTNJk9ezbXXnstGzZswKJbcOxKwbXYjuaSDczbklOvPwGv12Tey79EuxQhxFH65f1V5GblM+XWSdEuRTQyzW2w9LGtWDYnkZycTGZmJr/73e9466238Hq90S6vxZJQ2cLk5ORw11138cwzz+B0Ook1E9CXJqP22qR3so3pM7o7Y84dxsePfIMyZWWOEK3R54//wIDjezP0lP7RLkU0Mg0NI9dB2TdWJk2ahNfr5cUXX+T2229n//790S6vRZJQ2YL89NNPXHPNNaxcuRJDt+DYm4JncQyaU3on25rYJAcXPjCFL578gaLskmiXI4Sop/KiCj7+67ece9fpJHVKiHY5ogloHp1f/rYZy7ZEYmNjWbduHddeey1ff/217GtZjYTKFsDpdPL0009z//33U1RURKwWj74sCbVLeifbqmn3nsG2xZls/nFHtEsRQjTQrtV7WfH5ei7601lourxmt0UaGkZ2DJ6FsQwfPpyysjIee+wxHnroIUpKpGPAT0JllO3cuZMbbriBTz/9FICY3CQ8P8eiV8jE77Zq9LnH0LFHCt/+e2G0SxFCNJIFry7BsBqcePmYaJcimpDmNNj6wiFuuOEGDMNg/vz5XH/99WzZsiXapbUIEiqjRCnFl19+yQ033EBmZiY2w451YwrmZofsO9mGJXVK4IybJvLpo9/idsp+lEK0FabX5NNHv+OkK8aS1rtDtMsRTUhD4/WrP0NfmUSXLl3Yv38/N998M7Nnz273w+ESKqPA6XTy+OOP88QTT+ByuYj1JMDiRPR8W7RLE03svHtOZ+Xn69m3+VC0SxFCNLLDe/L58c1lnP/HM9EN6Rxo6/QSK7kfe5g4cSIej4dnnnmGP/3pTxQXF0e7tKiRUNnM/H/RfPXVV2hoOA4k41kSg+aWH0VbN2rqUJLSE1nw2pJolyKEaCK/vL8KlOL4S0dHuxTRDDSvztLHtmLsSMBisfDjjz9y/fXXk5GREe3SokKSTDNavHhx4B+bVbdhWZ+E2mGXxTjtQGJaPGfecjKfPfYdHpfscSZEW6VMxaePfcfJV40jtaecttMeaGhYDsSirUikc+fOHDhwgJtvvpm5c+dGu7RmJ6GyGZimyauvvsp9991HSUkJDm8c2pJE9EJ7tEsTzWTqHaeyas4G9m46GO1ShBBN7PDufH5+eznT7p2MJn0G7YZeYiXvUy9jx47F6XTy8MMP88ILL7SrzdIlVDaxiooKHnroIWbNmgVATEES5pI4ORmnHRl0Yl86D0hjwasy7C1Ee7H4vVU44u2MnDI02qWIZqR5dNb+czeXX345AO+++y733HMPRUVFUa6seUiobELZ2dnMnDmTBQsWoGk6tp3JmBtkdXd7YrVbOPv2U/jm2YW4K2S1txDthek1+fKpeZxx00nEJMioVHuiofHxLfOwbEnCbrezfPlybrjhBnbt2hXt0pqchMomsmnTJm688Ua2bduGVbNiWZuEtl9eWNqbiVePIzvzMFt+kk3OhWhv9qzbT8aSXZx+w4nRLkVEgXHYgbkkjs6dOwcW6a5evTraZTUpCZVNYMGCBdx2223k5uZiVzFoy5LQi2S7oPYmtWcK4y4aydf/WhDtUoQQUfL9Cz8z9NQBdBvaOdqliCjQS33zLI855hhKSkq46667+Oabb6JdVpORUNnIZs+ezZ///GdcLheOinjUkng5u7udmnL7Kfzy/iryD7SPuTRCiJpK88uY//IvnHPHqbJop53SPDoZL+Vw6qmn4vF4ePTRR3n11Vfb5EbpEiobiVKK//73vzzzzDMopbDnJWCuiEXzyre4Peo3rhdpvTqw6J0V0S5FCBFlK79Yj8VmMGzyoGiXIqJEMzUWPbKR3/zmNwDMmjWLRx99FI+nbc21b3WJJy8vj5tuuolbb72V22+/ncOHD7Nu3TpuuukmbrnlFnbs8M1d27x5MzNnzuTNN99s8pr8f3m88847ANj2JqI2xcj+k+2UpmucefNE5r60SPakFEJgehXf/ednTr/hRCw2GblqrzQ0Zt88F0tGAoZh8O233/LAAw/gdDqjXVqjaXWhMikpieeff55///vfTJkyhTlz5vDSSy/xxBNP8OCDD/Lf//4XgLlz5/Lkk0+SnZ3dpPWUl5dz33338e2336KhYd2eiLZLAmV7NmrqULweL+u/2xLtUoQQLcT2pbvIzcpn/CWjol2KiDLjUCzaugRsNhuLFy/mD3/4AyUlJdEuq1G0ulBpGAa67iu7rKyMbt26oes6CQkJpKenB87cPO2007j77rtJTU1tslpKS0u5++67WbZsGYZmYGxMQj8Y02T3Ey2fLcbKqddP4Lvnf6INTpcRQjTAd8//xElXHkdssvyeaO+MfDtqRRxxcXGsXbuW22+/nfz8/GiX1WCtLlQCZGRkcOONN/Lxxx8zbNgw4uLiAp8zDAO3283QoUN57rnnmD59epPUUFxczJ133sm6deswNAv6mkSMfNkyqL074dej2b/5ILtW7412KUKIFubQjsNs+XEHJ189LtqliBZAL7Lh+tlOcnIyGRkZzJw5k0OHDkW7rAZplaFywIAB/O9//+O6667jzTffpLS0NPA5r9eL1Wpt0vsXFBTw+9//ns2bN2PBgr4qEb1Ytgxq7xzxdo6/dBTzXv4l2qUIIVqoBa8uYdTUoSSmxUe7FNEC6KVWSn8wSE9PJysri9///vdNPm2vKbW6UOl2uwPvx8fHExMTg9frpbi4mEOHDpGQkNCk98/Ly+P2228nIyMDC1a0VYnopU0bYkXrcMKvR7Fz+R4O7Tgc7VKEEC1UYXYx677bwklXjo12KaKF0Css5H/hpWvXruzbt4/bb7+91QZLS7QLOFoZGRn85z//wTAMbDYb9957L3v37uWee+5B0zTuvPPOJrt3YWEhd9xxB5mZmVixwcoE9PJW9y0UTSAmwc64i4/l1Zs/iHYpQogW7qc3l3PLm1ex6O0VFGYXR7sc0QJoLoPDn7noMq1LIFg+++yzpKWlRbu0o6Kptrj7ZhMoLi7mjjvu8B27iA1tRQJahQRK4XPabyeQ0jWJ2Q9/He1SRAujGzoPLriNv5zyLKbXjHY5ooU4+/enYBg6Xz41L9qliBZE2b10nGblwIEDdOvWrdUFy1Y3/B0NZWVl3HPPPWzbtg0LVlgpgVIcEZPoYNxFI1k4a0m0SxFCtBI/v7mc4WcMIim9aadsidZFcxrkfu6mc+fO7Nu3jzvvvJPCwsJol1VnEipr4XQ6+eMf/8jGjRsxsKCtliFvUdXYC0ewY9luDu9u/dtBCCGaR3FuKeu+28IJl46OdimihdGcBnlfeEhLS2P37t3cc889lJWVRbusOpFQGYHX6+Xhhx9m9erVGJqBvkYW5YiqLDaD8Rcfy6J3V0a7FCFEK/PL+6s4dupQYhJkOzpRleY0KPjGJCkpic2bN/PAAw/gcrmiXVatJFSGoZTimWee4eeff0bXdPS1ieglEihFVSOnDCU7M5f9W1r33mJCiOaXt6+QHct3c9wFI6JdimiB9HILZQsNYmJiWLFiBX/729/welv20b8yjhvGu+++y6effgqAZUsiRqkD5MhWEUTTNSZcNppvn/sR3ZC/z0Ro/n8b8m9EhPLLB6u47G/nsfSjNXhcLTswiOanl9vxrgTLCDfz58+nQ4cO3H777dEuKyxZ/R3C999/zyOPPALAOeecw0knnRTlioQQQgjRXq1bt453330XgDvuuIMLL7wwyhWFJqGymrVr13LHHXfg8XiwHozDkpkY7ZJEC3XV0xey/oetrPlqU7RLEdGiaUfeD/VSqmnohs4DP9zCXyc/j+kJ0RNV2zVEmzfwxD6ceu0J/O+6d6JdimjBrnz1XF566SUMw+Dxxx9n3LiWd9ynDH8HOXToEH/60598gbIwFm17HCayr5yoKa13Bzr3T+Odez6TvQfbK00DqoXA4FBY7fOm18Q0VcQ2Na4h2oWtP+9kyq2T6D60M3vW7492OaKFen36Z5z1yFl8++23/PnPf+aFF16gd+/e0S6rCpnkU8npdHL//fdTUFCAxWVH2xiPhlb7F4p26bjzh7Pmm024nZ5olyKiQQvz2hDu8aa6hmgTlKlY+fl6xl4oC3ZEeBoa8x9czYgRIygtLeXee++loKAg2mVVIaES30rvJ598km3btmEoC/raBDRTXthFaLYYKyPPGsqKT9dHuxQRDXUJfZHaNPTrRZu0es5GBp3Yl7iU2GiXIlowTWlsefEAXbt25cCBA/z1r39tUSvCJVQCH3zwAd999x0aGvqGBDSnLPMW4Q2fPIh9Ww6SmyWbnbc5tYVB3QAtwsumpqNZaplVVIc2mmH47hWxkQTPtqQkr4ytizMZdc4x0S5FtHCaRyfnywrsdjvLli3jjTfeiHZJAe0+VG7YsIEXXngBAGNHPHqhLcoViZZuzLThrPhMeinbHH9ICxXWNM0XBvVIoVP3hUFNR7OE2dO2Lm0CTbXwwTJSraLVWvHZOsacN0x+rKJWepmVu+66C4BZs2axbNmyKFfk065DZXFxMX/5y18wTRNLXgz6gZholyRauLTeHUjuksi2xZnRLkU0pjr8FvcHSk3XavZW+sNi8EPVQ2OoNkbN0BjqsciFSQJpK/as3QdAzxHdolyJaA2emvoK5513HkopHnnkEQ4div4hHO02VCqleOKJJzh48CCGx4q+VRbmiNqNnDKUDXO34XW3nDksooHC9UwGv18tRFYJliHCYqBdULAM2aba19YInaF6K2urV7RaSsHabzczcsqQaJciWolv71vKwIEDKSws5C9/+UvU51e221D5+eefs3DhwiPzKL3t9lsh6kjTNUacOZi138i+lG1GbXMoIwx7h+yxDHWZWoa5/dcIG0yDg2VDFwCJFm/tN5sZesoArHbZ8U/UTlMau97OIzY2lvXr1/POO9Hd67RdJqldu3bx7LPPAqDvjJMzvUWd9BndA1eZi32boz/EIBpBXYa8LdaI8yg1XUN32BtWh66hx0SeeqPpGpq1DvO9JVi2evn7C8neeZhBJ/WLdimildCcRuDoxldffZWtW7dGrZZ2Fyo9Hg+PPfYYbrcbS5EDY79s3yDqZuRZg1n77eZolyEaQx0Dpe+d8C+Tmt0e+Vq6hh5Th9CpaWi2CKHR35tZW69n5bVE67bmGxkCF0fnqXNeYdKkSXi9Xh555BEqKiqiUke7C5UffvghmzdvRlcG+haZRynqxrAaDDqpHxt+iN5fgKKRHE2gjNTGfiQsatYQQ5W6hh7cxhEiNOrake2FaguWR1GbBMvWbfPC7fQ+thuO+Ab2got2Q0Pjl8c30bFjR/bs2cP//ve/qNTRrkLl7t27efnllwHQM+LQXLIfpaibvsf1IH9/IfkHiqJdimiI+gbK6gt17NV+2Wta1WBZLVD6mmhowUPlwYEy+DrVg2WInlIJlm1beVEFe9btZ9BJfaNdimhFNI9O0ULfQp2PP/6YjRs3NnsN7SZUer1e/v73v+N2uzEK7ejZjmiXJFqRoZMGsGlBRrTLEA3R0B5K/xB09UAZdH3NagkZKI80qQyWoQJl8HX8wTLS0LsEyzZt04IMhk7qH+0yRCujF9g566yzAicFejzNe5RwuwmVX375JRs3bkRXOsbWBBn2FnWmGzqDJ/Zj04Lt0S5F1Fdt4UrTax161gwdPSEhchuLBaNDSu1tUpIj12MY6PFxkdvodRsul2DZOm35aQd9j+uJPVYO5BBHZ/7Dq0hKSmLnzp28//77zXrvdhEqCwsLeemllwDQdsqwtzg6fUZ3pyinRI5lbK3qEiitFjRNgzArvTVDR4uLjRjkNMNAS4gHw/C1DcX/OYsFPTFMQNV1NJvVFyzjwqwK1zVfr2cd52FKsGx9SgvK2bvpIAMn9Il2KaKV0Tw6N998MwCvvfYa+/bta7Z7N0qoLC4ujuoS9tq89NJLFBUVYZRbMeTUHHGUBp7Yly0/7Yh2GaI+jiZQQshgGQiUfiGCZSBQ+u8XKlgaBlpsTJWPawRLf6AMblM9WFYGyiNPUYJlW7Xlpx0MPFHmVYqj99Q5rzB69GhcLhf//ve/m+2+DQ6VCxcu5MYbb+RPf/oTABkZGdx9990NLqyxbNmyhS+++AIAPUNWe4ujN2B8b7Yv3RXtMkQT0eoTtkL1aFa/jh7i5bU+96rDBuuibdq+dBf9xvaMfOa8ECFoaKx/aTeGYbB48WJWrlzZLPdt8KvVG2+8wYsvvkhC5VyjAQMGkJ2d3eDCGoNSimeffRalFHqOA71I5qaIo9OhezIxiQ72bjoY7VLE0apjL2XNLzvSW1mjlzK4XWXvYKCXMsT9g7+2Si+lX3BvZfVeSj9dO9JbWa2XMrhm6a1se3KzCqgocdJtSOdolyJaIb3cwgUXXADA888/3yxHODY4VFqtVuLjq76g1usv/yawaNEiNmzYgKZ0LJkhXvSFqMWA43uzY/lulKmiXYo4Gkc57F3zy30rucPOjQRfwItxVB32ri44cEZooycmhA6UwW3i4yK+tkqwbJu2L9nFgON7RbsM0Up9cfePxMfHs337dr755psmv1+DQ2WXLl1YsWIFAKWlpbz66qv07x/9bRC8Xm9gcY6+1yGLc0S9DDi+Nxm/7Ip2GeJo1CFQ6jZr5D9+/WEw3LY/4PtcWgdUfITgaTHwpkdeDY6ho1ISoWOEdpqGZreh1bb6XIJlm5OxZBf9x/eOdhmildI8OldffTXgW19SXl7epPdrcKi88847+fbbb8nJyeGyyy7jwIEDgTMoo2nu3LlkZmaimTrG3lq25hAiBIvNoNfIbmxftjvapYi6qmOgjMgw0Cp7BTVNCx0sLRbomOybN2kxUKFWaVsMvB0TAjWZHRJD3Ev3fa2mgdUSOlhqR/a01AxdgmU7s2v1Xjr1TSU2SfZWFvXz8hUf0aVLF/Ly8vjss8+a9F4NDpUJCQncf//9fP7553zxxRfcf//9gfmV0eJ2u3nllVcA0PfEonllors4et2GdKbgYBGl+WXRLkXURSMHyiOXrRYs/YEy+H7Vg2W1QAmgrAZmx6BgGRwo/aoHS63mJukSLNsXt9PD/s0H6TmiW7RLEa2UprRAb+V7773XpOeCRxjbiezNN9+M+PmrrrqqvpdusO+//54DBw6gewyM/RGGpoSIoNex3di1pvn29xIN0BiBUtdrBMojl9dQ/nBXPVD6VQZLzemqESj9/MFSLyipGSj9/MEyryDsqTuaoUNCAqq4OOzT0TQNbDaUyxW2TWVDUDJnuCXbtWYfvY/tLlubiXr757TX6HxxZw4ePMjnn3/OpZde2iT3qXcXnsfjwePxsGvXLubMmUNhYSGFhYV89dVX7N4dveFC0zR59913AdCyYtBM+Utc1E/vY7uze83eaJchatNYPZQJ8ZEXwoTqoaxGxdgoG5wesY0ZY621DVYLdEiOWLL0WLYfu9fspdex0lMp6k9TWqCz75133sHpdDbJfeodKq+55hquueYasrOzefnll5k5cyYzZ87kpZde4tChQ41Z41H55Zdf2L17t28u5UHZ6FzUj2HR6X5MF3ZLT2XLVsdV3ipST5xhoCfEo4XaV9LPasXbpQNmhCPzlNWgrHs8qpY1gUrT8Dp0ynuEmGMZ1MZMisXs3DHitTSLUWuw9LWrwznhosXK2niAtN4dcMSHOXdeiDp45oLXSU9PJy8vj6+//rpJ7tHgyYZ5eXnExh4ZYnY4HOTl5TX0svXm76XU9zlkLqWoty6D0ik+XEJxbmm0SxH1VW0fypDBsjJQBsJpyOFoK97OKSiLjtI1zJiaAS0QKC1gWjQq0kL/QassOs5UO2jgtWshg6XSNMxYK8rQMG1G+GDpPwUoQrAMPGddqz1YSm9li+Wu8HBgWw49R3SNdimiFdOUxmWXXQbARx99hGmajX6PBqeuE044gTvuuIPPPvuMzz77jLvuuosTTjihMWo7ahs3bmTdunVoSsM4IHMpRf11P6YzWRsORLsMEUmkEBRmY/MqwbJ6oAx1XX+gNCof07WQwVJpGsp/Ow1MW81gqSw6FWmOIz2ZGqhqr8D+QBk4sUcPEyyr1RwqWNYI0RIsW7WsDfvpPlQ2QRcN88Jl7xAXF8eePXtYvnx5o1+/waFy5syZXHzxxWRlZZGVlcUll1zCzJkzG6O2o/bpp58CoGXbZV9K0SDdBqezf0v0pnGIWtQjUPoppcIHyuDrVw+UftWCpbIalHertm1ZiGBZJVBWMq1HeitrBMqg+1UJluE2bA8KlmGH+yVYtlr7txyiq5ysIxpI8+pMnToV8PVWNrZ6r/4OdvLJJ3PyySc3xqXqraioiPnz5wNIL6VosK6D01ny0ZpolyFCqSX0RAqUUHmsYmxs5OvYrHi6RNiMXNdQgCfJgbOD/UgvZZUb+YJleWff65EygOqjTZXD4GU9E7HnVoQ+U7zyfqbDguqehrHvcPjnZjEgLhZVEmHaRmWwVB53+DayIrzF2bf5EFPvODXaZYg24LN75qGN01i6dCn79++na9fGm1bR4FAZbqPzZ555pqGXPirffPMNLpcLrdSCVtIoWVm0U454O0npCRzanhPtUsRR0gwDTBU2nGmGgRYXFz68BRr6eiMBtDBHdJoxFgr7OECBozD0mbpem0ZRr8ivR8rQKO1s4EyJI3Fn+D1Rla7VXjeA7jvS0YwULJWJZhioZjgLWDSO/P2FaJpGSpdE8g8URbsc0YppTgtjxoxhxYoVfP3111x33XWNdu0Gp6/rr78+8L7L5WLBggXExTXvCTZKKebMmQOAcSAGDRm+EfXXdVAnsjNz8bjkF26LpFTIXkbNqBxbViaYeo0AVj1QKtMMveLbZsXTOfnI7XStRrA07QaFfRyYFkBBRZJRI1h6rRrFPQ20ylfZoh4W4ndX7R1UukZFso7SwR2jUdQ3NmSw9AdcZdHxdksN21upTLPy+UUIlkFBMmywlF7KFsk/BC6hUjTUmrcyYDB8/fXXzJgxA8NonCmDDZ5TOXz48MDbmDFjuOuuu1izZk0jlFZ3O3fuJDMzE5SGniNHWYmG6TKoEwe2Zke7DBFJtdCjVX9BVKavxzLo86F6KFX11Y+Vw94qQo9glUAJvmFuiy9Y+vkDpRn0Z7vp8AXLwL2DAqX/Ov5gGYlpM/B2rbkivMpz0bVAj2UVIQJkze+dBMqWav/WQ3Qd1CnaZYg2QM+1Ex8fT3Z2NitXrmy86zbalSpt376dwsLCxr5sRN9//z0Aeq5NthESDZbWuyPZO3OjXYaoTWX4qRGKAp/3BcvahrwDYSxCoPQ/ViNQ+gUFy1CBEkBp4I3xBcsagTLoOtWDZah6TLulSrCsEY6hZrCMMNR9pJdXAmVLlp2ZS1rvDtEuQ7QBmtKYPHkyAPPmzWu06zZ4+PvUU08NnEKh6zrp6encfPPNDS6srkzTDHxDpJdSNIa03h1Y++3maJch6kKr5Y9IXUOzhVhRXZ1h1NpD6Y2xUNTLXjNQBmoBd7xG3nANR5jpuEoDdwIcHK+TlBHhOpXBMmFXedh6TLsFunZE3xth7m/lULhms6HKw19LtA45mXmk9Y68Ib4QdTXnkYUwHH766Sf+8Ic/YAlzLOzRaPAV/Cuuo2XLli0cPHgQzauh58tpA6JhNM3XU5mzS3oqWzz9KOYAudwQ5qhGzWLBm5YccYGP12GhYIANpYMeZtG0165RONgLtXT2KQ08iV4KBhkkbw3TSIeKZB3PoFhStoZfvIOmodI7oB0Kc+CEqcDt8p1dHrmsyoBuSm9lC3Z4Tx5JnRKwOiy4KzzRLke0clqhlZSUFPLz81m1ahXjxo1r8DUbPFZ855131umxpvLLL78AoOXb5Jxv0WBJ6Yl43V5KciP8IhfRFxQoVZjV2RgGut3ub+QLltVoFgveTilg+BbjaJ6aw8j+QGlaKvenDJFN/YFSWRXKqijvHPqkCmVARVevbyuheC8Fg0I00nyrxtHAE6uRPyj0HEvd7buHsllQ6SGGRCsDpa+xhhYT/tjawPdQ02WfyhbM4/KSf6CQtF4yBC4aTkMLbAe5cOHCRrlmg0Nl9fmTFRUVZGc33yKHxYsXA6DnSS+laLi03h2kl7KlC9FDWSNY+gNlhOHs4EAZeKxasAwOlIF7VQuWwYHSdxEwHWaNYKkMKO/mRRlH2tUIlv5AGcQTq1EwsGqw1N1VexTDBsvgSxt6yGBZ43snwbJFy9klQ+Ci8Xz1N1+YXLJkSfhDE45CvYe/X3/9dWbNmoVpmpx22mmAb2ufmJgYLrzwwgYXVhc5OTlkZGSAklApGkdqrxQO78mPdhkinAhD3spUaLoWPlD6eytt1pCB0k8zFXhMPPG2GoEycCldw7QqlF4tUAYu4g+WEH/IV3N516BAGdTOFywNkrfVDJR+7jhfsEzeVlYjUAZqslnAPxQe3EsZfDtDh5iYwPzKsL28MhTeYh3enUdqrwgb8wtxFLQiGzabjZycHHbv3k3v3r0bdL16h8rp06czffp0nnvuuagdy7hixQoAtBILmkdWfYuGS+6cSP7+5t29QNRRHXvPIvZQKl/vYbhA6WfaDIp6hQ6UgUvpGl47NQNloF5fsCzrXtm+eqAMbmdTeG2RX8PcsRrFvWJIyigJX5PNAmkd0PaGP7feHyzN0lqmeGg6KNmrtaXJP1BE72O7RbsM0UZopsbIY49l2bJlLF26tMGhslHO/o6WtWvXAqAX2KJWg2hbkjsnUiAbC7dcKvRcRT/NYol8SozFAonx6K7wixy8DguF/WJQOhiu8D11nhgoGVmBHhfhuEO7yTHDd0esGU2hdXRSMDzCwgvlq8UTo1E4ID5CO4Xm9qB1iNCTZSrwems9zhJlyjB4C1RwsIjkzonRLkO0If4FOv6Ouoaod0/lDTfcwIsvvhjYUkgpVeW/jbnvUTj+Tdb1QgmVonEkd0mi4KCEyhYnONwoM+RWQrp/dbfXiyLEGeAWC6Qkga6Dx4teDmZM1VU3/kAZ2DYoTKb0xEDp8AoMa2XIjXNjllZbwWMzGd5vL/GGCxT07JtN5s60as9LYcR70DSFluiiYDgkrw/zsqwqV45XBssaPZZKoZf5hryVxUDrkILKqzaVw1QojwdM07cVnNWCcocIs8HhXc4Bb1EKDhSR3EVCpWg8/7vuHRgFGzduxDRN9FAnjdVRvUPliy++CERvS6Hs7Gz2798PCrTi0FuFCHG0krtIT2WLU4feMr36dkHVg2VwoPSrFixrBEoI9BAGz3WsESgB3VBVg6U/UFqcviQIdI4twuyr2L2z8kSUoEAJoAFGqGCpqvaYhgyW/kAZWMWt1QyWQYHSL2KwDCbBssUoPFREXEosFpshR8mKRqGVWnA4HJSUlLB792769OlT72s1ePj70UcfrdNjjW3Lli2A75shp+iIxhCT6MCw6JTkhTgvWURHuEAZ1JNWI1D6eb2+sBQqUPp5vOjl7tCB0s88EupCBcpAHYbyDYUHB8rgz6PoHFdEr77ZNQJl4OniD5aVIc8fKKvlueBgWSNQBi52JFiGCpRHmmlVe3XDTTGQofAWwePyUppfRlJ6QrRLEW2EhsaQIUMA2LBhQ4Ou1eA0tmPHjhqPbd0abkffxrNt2zbAt0hHiMaQmBZP8eFS6ZBpKerTQxnqMnZ76EBZSRkazlRb+JNywLcQ2ggfKP1i451cMXppjUAZqBdFz4Q8zj9udY1AGaiXymA5zBMyUAbq1nzbGTlTY2oGysDFNJShg90eMlAeaVYZLGuZsypahsLsEhI7SagUjWfYsGEAbN7csNPk6p3IZs+ezUcffUROTg6/+c1vAo+XlZU1yq7stfGHSr1Ehr5F44hLiaUkTzY9bzGUihgsNV1DeU3fauZQDAMtPs43f7CsAhVb8xhXZbdQ3j0BFDgKTSqSQl/LG6NROMQDEQ5YcMS4uHrAUpKMchKMCtYWda/Rxm54OC5xFwYmxiCTz7eOCHs9bCb5x+ikbAh9T90L9kIT06ZT0SsZx+6Cmo0qnzuGDgkJqOLi8PfzeitXfIcJlvLXVotRml9GXHL4zeyFOFrv3v85DIadO3c26Dr1DpVnnXUWEyZM4LnnnuPWW28NPB4bG0tiYtNPIs7I8B2cq5VKT6VoHHEpMZTmS6hsUcIES82o3K9SmSgvNYNlZaDU/HMBI/TSmVbf9XW3ChksvTEaBcd4wGqCqeFxGljsVeeyBQdKAHuYsxx1FFbN97UDYg4xbdC6GsFSAd4KCygw473kH2OQsrHq98AfKDVToXQwI2yPROVqeC1CsFQe33C7pmsoM0SwlEDZovhCZeiTloSoD3+WyszMbNBinXoPf8fHx9OlSxf+9re/0blz58BbcwTK0tJScnN9p55oZRIqReOIS4mltEBCZYtTLdAEAmXg8ybKGxSCggOln7/HLvjL/L2UQfzB0q9KoARf4qsMln7VAyVArO5iZOLeKte2GR6OTcg6ci9NBYJloCYqA6W/BE1hJnjJP+bI9yA4UAa+zqJR0Su56vclxHPWDB0toepz9gfKQBtdq7q6XgJli1NaUE5civRUisajlRvYbDbKy8s5cCD8Pre1afCcyoyMDG666SamTJnCaaedFnhrSnv3Vr5Yu3RZpCMaTVxKLKX55bU3FM2vMtjUCJSBz1cGy1CB0v/1Hk8gZPkDpb+XMpg/WNYIlIFrEQiWjhgXV/ZfXiVQ+qVYSqsEy9EJWTV6MIODZY1A6RcULEMFSgClg9euU9EjyfeAP1CG2LMzOFhWD5SBNv5gKYGyRSrNLyMuRXoqRePR0Oje3TdlJ5Cx6qHBiezpp5/mjjvuoFu3bnz55Zf89re/5dprr23oZSPyP2GtPPyRbUIcrbhkGf5u7TTDqBko/SqDJV5v2EAZaKprlKdRM1AGGoBh93Je7w2kWMLvFpBiKeX45EwAbOGGxDVF35gcJvbdUTNQ+mkKM9akvJNWI1AeqRm8MQbO7klhA2XQTSFcQPffUtdkxXcLJaFSNIUuXboARLen0u12M3DgQDweD7GxsVx++eUsXLiwoZeNaP/+/QBoFRIqReOJSXRQURx61a6IstrCjaaj2awopVAVFeHbWSyYCbHYCsOfguO16xT009FMsOaEXghoxHo4f9A6Yg0Xhd7ww5DJRinTk7ZFLN1UGoWeWHrH5DLxmDBtvRr2bAOPAwr6h5/yo5kKS7ELMyX8NCSlFJT7vkearQ4HR0iwbHHKi5zEJNijXYZoY1pEqLRafS+6nTt3Zt68eaxfv56SkvBn0zaGwHxKl4RK0XhsDiuucle0yxDVBYWakEcwVgZK/7ZBymuGDpZWK2bHRDA0dKcHx+GaP2t/oDQrs5YW4nb+QJli9fVqO01ryGCZbJRybmwOcbpv1fm5cRk12phKI88Tj4mGoZn0iz3MiUO317yp0tC8GmjgjgsdLHWPwp5T4Vu8YzcwU2se1egPlEop3/dL08IGyyrfawmWLYq7wo01RnY+EY3rkye+AeDgwYP1vkaDQ+WMGTMoKSnh5ptv5rPPPuPZZ5/l97//fUMvG1FeXh4AmkvmU4rGY4ux4iqPcI6zaH4hwkzVsFM1UB5pUy1YVgZKZTnSrnqwrB4oAXS3hvXwkV/e1QOlX/Vg6Q+UsfqRi3W2xHNe3JGeyOBAGbi+ZjIgLrtqsKzspTzynGsGy+BA6Wuj1QiWVQJl4AtDB8vQ4V2CZUvhKndhk1ApGpm/oy4/P7+WluE1OJWNHz+e+Ph4evXqxTPPPMNLL73UoILqwh8qkVApGpEtVkJlixIhxKjKPRVDBcojbSqDZYhA6ecPlqECpZ9RfiRYalAjUPr5g2WoQOnXpTJYhgqUgftpJh1slfM0vRr2QxZfL2WwoGBZI1AG2hwJliEDZeCbUDVYhgyUQdcU0ecqd2OLqcPUBSGOgub2/f9dWFhY72s0SSp7+eWXm+KyAf4nrHkkVIrGY3VIqGx16rKXmqGHDJQBSuFxaCEDZeAS5Rp6iaXK9j+hxOouzog5EDJQ+nUyYjkjbmvIQOnX0VrKmEG7QgdKPw28NvA49LCLd9A0sOhouh46UPpVBkvROvhCpfRUikZWmalaXKiM+OLVCMrLK7fvCPdiK0Q9yPB3CxPhdcS/tZByhZ8Dq2kaWlwceE30gtArtE2bQWk3B7pbEbcv/P28doWjRzHrCrqFbZNklPOrhC3E6lbcKnxvnwcvXQwblyatDNumzLSxtzgZT7/wi450N8TvVZhWjbLuYVYCexV6fjEYBnpchNXCpoly+f7th922CWSLoRZCQqVoCprbFwmLI528VYsmCZXBW3q88MILzJw5k7/+9a94PB5ef/11br311gadD17hnysloVI0IsNq4PVEGPoTzS9SiFEmmCpksNQ0DS0h3tf7phRaiJ+rP1AqQ0NTYC0NHSy9doVlYDF2q4e8shgW5gyo0SbJKOfXiZtIquyhNDFDBkun8gU3Q9PoblhDBstir4MfD/bD5TGIi6vAPbDmHpi6G+KzFIbbV6/HoYcMlppS4N8Y3mIJHSz9gbK2c78lULYYXrcX3dDRI52kJMTRqjyG1u12Y0Y4hSySeh9Hc+edd4b9nL/rdPv27Rw+fJjnnnuON954gwULFpCTk8MTTzzBq6++yqBBg+p1b3+o1CKcwyvE0dI0DeWVX5wtTrWjGqv0pCkTTB3lcgXmBFYJlH6VvZVmchxQNVAGrhsIllDazfe4P1A6bO7KUrRAsJyU5lvNXT1Q+vmCJRj46nUpd5WSgoPlB4VjgCOB0un2vTQbuklcXAWlA8G6zbcQqHqg9PMHy9i9lXM+/b2UwSqDpVla2SZMoNQMo+rcSgmULcqRH4eGbzd+IRpB0D8lt9uN3X7021bVO1ReffXVtbbZsGEDY8eOBXwLer766is6dOjA3XffzS233FLfW+PxnwJRvyAtREiarjX51A1RT5XBMuTQbFCw1O32moGy8us1pxu9oBRPp0TKulYNlH6aAmuZL1gW9aVKoDxyqSPBclrndSEDpZ+JiVeFn1IRHCxfyTuxSqAMtAkKlvaNMcTvrRko/QLBcncpRl7RkV7KYP5gWVwSsYcyECzl/4kWR1XOodV0DWRwRTSWoI66goIC0tPTj/oS9Q6Vxx57bK1tiouL6dixIwBxcXEUFxdzxx13NPjEHf/wum7oaGbzLdY5YdpYBozuzeYlGSz/Zk2z3ff488YwcExftizdzrKvV8t9m0hqWiqX//Ei1i/c3C6eb6u7r6ahGRH+f9c0dKuOFmZRzvjJwxhwbE827sll3r79Eef+KI+GYUCszQOhFtQojQq3DR1I1GIi5K447GkfMyq5Kyo/Aag5V0kH4vGiTAO32xqyLl1XOGxedDSsHuU7ESccm46hwfGnDWHgsb3IWJfF0h82VLugBQwNpfsrCE2hjjpUjj9nNIPG9mPbyp0s+SL8vNHGNu7sUQwe379d3FfTNVJSUpj+0KVsWb69zT/f9nzfjFW7+OXz5c1yTxXUVRlYu3KUNNWEXTOffPIJMTExTJkyha1bt/LVV19xxx13NPi6p512Gh6Ph/vuu4+kpKRGqLRuevfuTUpKCrm5uezZs6fZ75uXl8fu3bvlvnLfNnHf/Px8du3a1abvq+s6I0eOBGDt2rX1nqdUH+3p+xzN+/bq1YsOHTrIfeW+rf6+Xq+XBx54AIAPP/yweXsq62LYsGF88MEHTJkyhWXLljF8+PBGua5euY3IP3/1Knoznqpz879mcOxpw/n546W88dCHzX7fRZ8s4/U/v99s973p6RmMmjycxZ8uZ9aD7zX7fX/5fDmvPdB8931lx1PkZuWz6NPmve+N/7iaMWeObPbn67/vki9W8Or97zbbfW944iqOm3IsS79cySv/907tX1B9KFvTfcN+wR/bLFW2F9IsFrTgRSkWg2v/fBFjT7SxdNEuXnluLp54G2Wdqw5be60apd01TP/CWg1ciSaJ/Y7svWu3epiYvpMEwze3W0fR036Yi+MP1SjdpiWhWz+kwt2FY3vORGkFVT5faLr4sGhIYON0r9I55Epk6cGegTZOlxVPRgKGs/I5K7CUQ/zeavMgvYq4vRXobt946HUzT2f8BCsr5m7jlUc/r/xahSouOTLNwzR9j7mqDfGH2quyjv0P1//9CsZNHc2Kb9bw4j1v1ulrGsN1j/6G8eeOafb7Xvu3yzn+vOOa/b6vZD5F7p58ln+7hv/94Y1mu+81f72ME6aNZdX36/jvXa83+31X/7CeF+6c1Wz3nfGXy5hwQfPfd/rDv+bEC8exZt56/vP75rmv0hWM972fkJBQr2s0aagcMGAAKSkpzJw5k06dOnHZZZc1ynXtdjsulwsTb7OuAPeHWa/bxAw1V6mJ+If7vR5vs97Xv7Kwue/r5/U07/fZ94tWw/Q27339mvu+/nlZUXu+pqr9vlqohQjmkbmVmo5mM1BKg+BFVl43mrf0SLDUFErTUP77mgq9yInDVIFg6bVplHQD06KO3FKBUaiRvz2ZpP752K0eTuq8g3ijItDEC+x2dWB2qckl8UeON7NrVl+tlR9bdd/gkqdyElyh6eKD4qEUmnbQfN8HXTPpZC9gXBeTJQd6UeGy4tkWj+EEb9D3wesAbzeNhCzf12leRezeCnB7A1PNlQKFb56w6VU1A6XvK8FUYFiqrKJX4X4udQiW/p+p777N9+/KDNqrs1nvG3Sv5rqvbvh+rv41bNF4vpqmNet9Pa7KP3T0Zr6v27eGQzea977+nUh0XW+2+yr9yB+TDoejXtdocKh8+OGHufPOOwOptqioiGeeeYY//elPANx8880NvUUN/vmZGM07gXz3pr3EJMSQtXVfs983NjGWrK37m/2+cUnRuG8W8Slx7G3m77NSCl3TfL+Am9HuTXtJ7JhA1tYDzXrfPVv2kZSWyJ4tzfzz3byX5E6JZG2p5ecb6UQdU6EZRuQTdTweKC1DS0rATI5nT2Y2ySmx7N2dG2hjKXERexCKe9op6RbUQ1nlQmAr0inYk8yvTlwa6KEMZqKx25nKR8Al8QcrA2VNhqaDglyznPeLhoY8M9zQTNJtRQzumM2KhYOP9FAG08ATA8U9dBJ3eav0UPpl7TpMh47x7N5fGCZQVtJ1ME00mw3lctV+ok4twTJr635Su+1kT20/30aWtWUfqd06NPt992zZT9rK5n2+FpsFZSoUGprWvIeAZG3ZR8bKnezelNW89926n+2rdpK1eW+z39f3fNvBfSszVUxMTKAT7Wg1eE7lddddxyuvvFLrY43p2muvZfv27Vg3JKMXHP2SdyFCeTnjHximjfnv/swbD30Q7XJELSe8aBYrmiPy//+apqGlJOFNCz/32rQalPSKIX9Q+BdR06JwpXuITyvl1/1WhW1n190Md+xlSqyz8pE4tI6zKXd3wVZ4ErpWTIlZwWel3ch0poW9Tr47ls+2jMQssFU997sa3QWp6z3EHAx9dCSA5jHRD+Ye2UYo7JM0UU5n5FAJshq8BYhNjuGZFX9Bc1pYO38D/57ZdL9vRfthxrlxj8qjY8eOfPLJJ/W6RoP/xPF6vVVWCZWVlR3Z8qeJxMX59ppTFnlxE41HKYWmN+9QkoigthN1lFnriTrEOMDlxsgNfUKEsui4UmxYKkwSM0Pfz7QoXGle0BUV5eGPX9RRJOgV7HOn8F1Z6J7KMtPFV2XplJp2UiyhT/kBcCsDb7mBsntxdgod8nQXJO8wQQNnx9BDVZrHRD9ceaxtpOGsoBN1iNTzJYGyRbDaLIHhUU2O1xSNxeL73Vff+ZTQCKHy3HPP5bbbbuPjjz/m448/5vbbb2fatGkNvWxE/m2KlE026BKNp6yknLyDBeQdLIh2KcIvRIipslel1xv2RB1iHL7/KgUVzhrBUll0nB3smFYNFNiLvDWCZSBQVr7YeiosvL9jdI376Sg6WErQNYUXnSx3x8pgWYr38DmsXr2acrOAL8vSKPD6/ii2at6QwTLfHctX2445UmeIYOkPlIbTROlg2vQawTIQKCv/yNcMPXSwrLYBuqZroYOlBMoWw2I3KCurIHvPYXm9Eo1G2XyvAampqfW+RoPnVF5yySX06tWL5cuXo5Tixhtv5LjjjmvoZSMKPGGb9CiJxrN++SbmvriIzJXNO1dI1CLoRJ2Qm59XBsvgE3UCgTL4GhVOjFzwdkyoGigDbfzB0qCoT+XjGoFACYAJJfmxvL9jdGAYPDhQBkoKBMtcJsf4vn5OWSoFZtU5lP5gme/xBc18dyyfbR2Bt6zqS7MKmj8eHCgDnw8KlvbcihqB0k8zdHA4UP6jbsOdqKNrKFM/8rgEyhbFYrOwa9sunr1sVrRLEW2IP1T6O+7qo1Fm+I4dO5abb76ZW265pckDJUBamm8ukrJLT6VoPM5SJ4648MObIopqCzX+YBkqUAZfo8KJXlhWM1AG2hzpsTQtCldqiNeYoGAZKlAGSqoMlp+U+IaS/D2U1QWCZZhACYDFxJnmDRkoA6VXBktXsj1koPQL9FjWcuZ3YNsmCZQtjiPejrM0/NQPIerjgj+cBTQsVNa7p/Lpp5/mzjvvDHsG+NNPP13vomrj35BT2aWnUjSe8qIKYpJqrsYVrYSpAiv4w9J10DQc2eWUdYsN3UaBtdTEkWfg6hLmNcaE0sIYvtg3jGt6/xL2dmWmnV8KBnBdLaWXeB18nTk0dKD0l6UrYnJUyEDpp3kV9oOlKIcNrSTC3HZdA683bKAULVtMooOywvqdeCJEOPv2+XYw6NKlS72vUe9Qec455wB1OwO8sfXo0QMAFeuhclOFZq9BtD1lhRXEJNRvby7RPJTXG3oInMqhXa8XVVaOFhvijwPDQMU6fMc5ljqJ3UfIYKl0DVeCjrVEEb/NRsnAED1COug2L7mFcby++3im91pSo4nTtLKmuAdOr2/RzvqSHgxPqHlyUb4njre2j8XtsqA7vJgVIZ6fWyd5kwXNVDgTDexFNXtQdbciZm8xmtvjC8+xMVBWM3gopVAlpYHvCWFWe9e6ClxETUyig/KimltbCdEQWVm+qV89e/aspWV49R7+HjRoEAA7duzg2GOPrfK2Y8eOehdUF927d/cNb1kUWOUvbdE4yosqiE2SUNkiBfU+hgo7mqXy72PTRHk8qOphyh8o/XuvmaoyWFbdZkfpGs4kHdMATLDn+4JlFToYDg8aoEydnIJ4Xt99fJUm/kBZ7j2yCjzfFcO6kh5V2vkDpX9Vua4rdEe15+fWSd5owShXKA1MKzgTqwbPQKB0egLfL2UxfMEy+Pn5A6U3aOVwiJBe5Xssq4tbnNgkCZWicSlNceCAb69kf8ddfTR4TuVXX31Vp8cak91uD3TPqlj5a1o0jvKiCmISJVS2OCFCTXDoCQRKv3DBsvpmvqZCcx0ZIq4SKANtqgXLoEAZ+LrKYPlGULD0olUJlH5VQqYnjrd3HFdjm6IqwTIoUAbuFypYKo4ESj9NQxlHnnP1QHmkWdVgGbKHUoJlixKTGENZoYRK0XhUjBfTNImNjY3OnMpFixaxaNEisrOzefLJJwOPl5aWYqn+It8E+vTpw/79+zHj3OiFsrhCNFxZUTmxMqeyZanlVB3dFno/SH+wpKwcLSHe10sZ6vJuL7H7yijtEVczUAau5QuWKsNGxciykJNtlKmTXRDPGxzPr3usZH1x95D3K/daWVfSgx6OPN7ecRzlZaE3b9d1halRI1AG7hcULGNyPcTsC70PJ5oGsTGo0rKQgfJIMw1lGBH3/azLaTqiecQmOcjemVt7QyHqSMX79qnt379/g/Y+rXf6S09PZ/jw4Sxfvpxhw4YFHo+NjWX06Jr7uDW2wYMHs2jRIlR80260LtoeXde5e9YtpHbrwMFd2fzzhv9x0oXj+M0DFxHfMY4fnl/E4X15jJs6mt/88UK+fmUu385aEO2y2586vLApj6dmT6WfP1i63BAfZlGOqdDLXNgLbJR3iHA6jwJrKXi3xOIZHPpkGmXqHMpL5Pmik/nHCeMYmNCPHGcuL25/ne7duvOn5Lt4Y/cHrC88xDcZQyLOBPe6DOK32NAiHBmqNEAD++GKmr2Ufv7eSqczbKAMXM8tr6UtxaCx/bn5X9fgcXvI3ZfHP2/8H498fh8A9lg7ab068MgVT5GSnsy9r8/EEWfni/9+x9y3fyI+OY773ryN0sIynpjxXGCTdCEiOf+PZzB79uzA1Mb6qvfwd//+/Tn77LN5/fXXOfvsswNvkyZNatBu7HU1ZMgQAFSCu8nvJdqWEy8cx8Fd2dx9+sNkbdnHSReN5+I7zuPBi54gM3MXV/zpEgDGnzOaO05+kEHjBkS54nYqUq9Y5ebcylS+4BiKrvsCp8eDVhimJ0/XMGOsGKVuEneH6aXTwGur3CA9HyxbQgdUpTQ8xVb60hPT3Y2HNj7JvvKDjOs4BrvdzhOb/81xKSewfmc3vEU2PGFWentdBnEb7VjKfEPyZpiBGMMNiTvL0UyFignTyDQhv/JEHVv4ER1TTtNpUXKyDnP36Q9z1yl/5uDuHI4761j+cNpD/OG0h/jihW85dCCbouxifn3v+bz/5GfcecqfmXbzFKx2K6NOH87sf37B6nnr6TeyV7Sfimgltm7dChC9UOl37733Ulx85AW7qKiI22+/vaGXrdXgwYMB3zwAZZHFOqLuuvZLZ8eaXQBkrMrk3BvOYM+WveTvK8CjXPQb4XshXvHNGv750yNkrGzahWcigjoEmZDB0h8odc13nKPTVTNY6hpmrA00Dc1UWItcNYOlP1D690I3QwdLpTS8JRZQGmPSu7EwM4vlu3uxtmADgxL64XK5uGvI7cxamwXOyjF2j14jWAYHysC1QwRLf6A0KnzPW1n0msHSHyj93xtdCxksA4Ey8JzlNJ1oyztYgKvC92/R4/KgzCO/406+5AQKivMpzC5m8Nj+rJm3AdNrsm3lDvoM68Ga+Ru45M7zGD15BDvX7YnWUxCtiNIU27ZtA45kq/pqcKgsLS2t0jOZmJhYJWQ2lcTERHr18v3yN5NkE1hRd7s37WXUab4pG6Mnj0DTNcqKynE7PZQXV2C1+37R//LFCn5/0gN8/cq8aJYrqgeaEKGnSrAMDpRHGlQNlkGBMnDZCMGyyofVgmVwoARIstspcTnxFNlYuqcDcZY4srKymPbpbNbtz6l6saBgGSpQBsoPqrN6oAy0CQ6W1QOlX7VgWSNQhiKBMmo69UxlzBkj+eWLlQDEJcXSsWsKXuWhJLcUw2pBVf58SgvLSOgQT3FeCfef+xiP/uZfeGRKg6gDleDG5XLRoUOHBq38hkYIlZqmkZ+fH/g4N7f5Jg/7525KqBRHY8mXK3FVuHnihz/jiLNTUlBGbKJvgU5RdsmRk0REy+EPNhGGZ5WpUF6zZqA80sAXLItKagRKvyrB0t9LGYI/WFo3xVYJlABFLifxNt/8zBhXPDtyK3smnaH318Sj4823hw2UvhuCaQsfKANP0aKj7JbQgdJP18BqjRwo/d9nCZRRE5sQw71v3MqT1zwfmBc54fyxrJ6/jpLcUkyvwuv2BBZVxCXFUpxXEs2SRSt1xdPnAzBq1KgGLdKBRgiVV1xxBb/73e/4z3/+w3/+8x9uueUWrrrqqoZetk78oVIlS6gUR+d/f3iDeyY/TFFuMZ88M4eeg7tjsVqwW+xk7z0c7fJEKHUJOMqMvIIZUKaJkRt+NMUfLOP3e2r0UlZp5wVbEVUCJcDKQ/s5qZtvFGVS1z6s35Bda9maW8NWGPn5aV5IyHKGDZQAeBV6blHkm5nKd6RlbX88RZpfKZqUbujc/+7veesvH7J32/7A4ydfcgIblm6hMNsXHreu2MHIU45BN3QGjO7Lro17o1WyaMVWr14N+EJlQzX4VeO0007j8ccfp3PnzqSnp/P4449z6qmnNriwuvCnahXrRdlkhZuom5T0ZJ6c+2ee+P5BPC4P637cxMfPzOEf8x9ixLhhLJ+/OtolinAiHCvoD0nKa6IqnKEaQOVKcVVegXE4TPjSNJRFx1rkJmlXmN48BYZbYSlXxO+oOi9yU242h8tL+fDcyxkSk8oPazMAsGeHXpijuTQSduhopm8T81B0tyJ5hwvd6cW0hunx9CqM7HzfNICg51qFqTCDVoJHDJamvKZGy2mXn8Tg8QO44oFL+Me8h5h06QRiE2Pp0DkZj9dN3l7f6OD7j3/KZfddyNML/8KX//suMA9TiLpShsmGDRsAGmXnHk2p1j2+cfPNN7NhwwYsOxIwDoTZNkSIOhozbTi9R3Vn9sNfR7sUEcTmsHHto5czYdpYyorLQcGKH9bx6v+9i2mqmuFI09EMnav+/Cu8Hi/vPjXHF7Sq7Wupxcbg7Ri0W4WmYVp9f2v3659OWpckFm7cTVEvC0N7pHPRhGH89b25GG4F/ldODZzJGiX9jvQgah6Nkx29uOnk8dzw6sf895yx/O6r5TgdCmd6UDuXRmKGgSV4c3MdTOuR5+MPlEZ5UA+lAt3tC33Pvf5bZl75IkZOAZfPnMw7/6z8t2sqcAeFjGqBMtiVD1yM1+PlnUc/qWwrgbKlOvv3p1CSW8pPby6PdimiDfCmVuAZXEivXr148803G3y9BvdUZmRkcNNNNzFlyhROO+20wFtzmThxIgDeDiF6JoQ4Srl78kntmRLtMkQ1v//vDSSlJvLb4Xfyu1F3c+uE+ysXVVlD97Yp09dj6Z9XGKbnTpWVHxkKDwqUAP0GpDNhwgBsBS4Sd3vYlHWoZqAE31ZDBUd6LDWPhuOggVZ9lFqBpRzshyrbhQiUQJUey5CBEnxzLCt7LP2BUrndXHHn2VXbBY6vDB8oK5/6ERIoW7TUninkZuXX3lCIOjhl5lgATjzxxEa5XoOPvnn66ae54447ePzxx/n3v//NZ599hreWTXYb00knncQLL7yASnKhDBPNK/OARP0dzsqjY48UOTykBencuxMnXjiOy7vfiLPc1/PmrnDx9l8/8vVI6ho3/3MGQ8b3x+awsnPdHp6+4X+4XR5f+NM1sFg4bvIxXHHnVKw2Cx63l+fue4/t67NQZeWcMnUkl952BpqmUVbq5P/+8B4zrp+Ew2Fl4OAufPPVWrYdzOOKqydw0z9nA3DZaaO4cOJwlKnYdTCP+16eAzsslPbwoodbA6OgiyOev5w1mS7WeNwuL0+8O5/1mQcYM7A7t1xwIgdyixnUI40DuUU8fO9HmOUeOqUn8X9/voC4eDubN+xjzLi+3H7TLPL2F/L10gc4p8dt3PDwxRgWg+e//yNFeSX88df/Zk7W85zT9RZwuTlmfH9mPHwpd5/xCAA3PnEl488ZTf6hQnKyDrN78z4wvSSkxHPr89fTpW86VpuFt/82m59mL2mGn7Soi9SeKRzeLaFSNJzSFEuW+P7fbjGh0u12M3DgQDweD7GxsVx++eX89re/5corr2yM+mrVo0cP+vTpQ2ZmJmZHJ0a2HLMn6q8ktwxlmiSkxVOULSspW4Lew3qwf/tB37B3MKUAEzB485GPAitfb356OmdePYk5L88FpVAeL+gaW1Zmcud5T6GUov/wHtzy6KXccd5T9BiQzrV3T+XO37xANpCYGEN5uYtZLy9k2IgePP34HABGHtsLo8L3l8b4IT05b8JQrn38PUorXCTFOXw9lnkKR65OeVr45/Pg2aey7OddvLtwNUN7pfPEjedywZ9eA2BQj0786dVvOHCgkH/fMI1Tx/Vn7g8bmfn7M/nu63V89cVqxk/oz9Rpo9BMhZFTGLjui3+ezfnXTuKWMx6rcc/qi5dOPP84Bozuy29H3o0jzs5/lj7K7k2+RR43/XMG3742j5XfryMuKZbnl/2dNfM2UJwv/z9Em9VhIaFjPHn7CqJdimgDzBQnJSUldOzYkaFDhzbKNRscKq1W3xylzp07M2/ePNLS0igpad4Xn8mTJ/PSSy/h7VQhoVI02OHd+aT16iChsoWadOkELr/vQhI6xPOXS59i64pMJpx3HOfeOBmbw0pcYqxvSFzTfeO6Xi+qrJyUAenc89wMOnXvgNdj0rWPL/mNmjiERV+vJX93DpZYB6GW72imAqXQPYqELDcnXNKbzxdtpLRyYURhaQWaF+xFJpoJhkuDPjWvo7thbO9u/P3RL7Gbik27D1Fc7qRHp2QAtuw5xIEDhSTudrJt4z46d01GMxXDj+3J3x7yzXdcung7RUXlWHKKwOm7v6ZphJser8rKfZ8LGuMeftIQFn74C16Pl9LCMhZ/viLwubFnj6LviF789nHfxxabhS59O1G8Uv5/iLbUnikUZhfjcckUBdFwE28Zzfz58zn99NMxjDALAI9Sg0PljBkzKCkp4eabb+bpp5+mrKysWU7UCeYPlSrJhbJ50VyN880R7dPBHTmk909jx3I5jaIl2LUxi679OxMT76C8pIKFHyxm4QeL+ce8h7DYLKT37MhVf7qYW47/PwoPF3P+zWfRd0SvKntVKpeLmX/9FV+/+wsLPl1JTJydj7Y8iabrR7KWaaKVVWDJAU9auKNmFdYiN/biqqvQ/YFSrzyr21oKjtxqcyXdELfPBF8+xXCZ2Iv0KtMsXC4vibt92waZpolh1JzOo5nKF3KD95nUtJq7H3m9mKZCVU5HsoU5ylEFT1fSNHRd465T/0xpYbhNM0W0dO6fxsGMnNobClELZZgsWrQIgDPOOKPRrtvgCYjjx48nPj6eXr168cwzz/DSSy9x/PHHN0ZtddalSxdGjhzp26y4U0Wz3lu0PQe25dBlYKdolyEqHczMZvFny5n57+uwOXzBSNN1bA7fKElsYgzOchdFuSXYY2ycfsXEkBubxybEkJN5CICpV50UeHz1T1s58eyRpHRKBNMk0aZjySmmvMxFXJzdF+CCaEqx8qcMLhw7lDiHDc0LaaYtECj9bazlCsN55LH4/SYWp8nqjVlMrTzRaWj3NBIddrKyC9A9YKkwQ+5DuX7NHk6dPAzNVJwwuDMJySF2utA0nOUu7DG2QO9s9p7DgfOfJ144zvd90XTW/bSZky85Hl3zff9OOG9M4DLLvlnDxXecG/i437G9Q/9gRLPrMrATBzJq3/dUiNqYqRW4XC569uzJwIEDG+269e6prG3peXNtgO43ZcoU1q5di7dzOcbeWEL83S5EnRzcls3xlxwb7TJEkGd+9yLXPvobXt74T8oKy6goc7Jm/kZ2rt1NeUkFaxdu5NWNT1N4uIitK3dgs9fslZv18Ifc+fy1lJVUsOjrtYHHs7Yf4rXHPuevb98M+I67u+eK/7J61S5+fcUJ/HfWb/lmzhp2bj/yy3z1sp18/2Uqb9z5azwodu05zMP/mlPlfppSjBzQjbl/uI6kOBufPjuCl975iX+9Mpf7bp7CtDNG4vZ4ePjpL7HmeIh1uGsEWL8X/vUd9/35Ai6+dBxbfskgL7uI0qLyGu0+n/UTz317L4f35nLv1Md4+f73+NM7t1GUV8K6Hzf7Gukai79YxbATB/Hy+qfIP1TI5qUZgWv85/ZXufmZa3lx7VNoukZOVi73n/No2OF10Xw6D+zET28ui3YZog3od25Xtm7dyrnnntvgU3SC1Xufytdeey3i56+55pp6FVRfFRUVXHTRRZSUlGDZmIyRb2/W+4u2w2q3cN83N/H41P/iKq/D2ciiedX2AqjpaNbIfy/rdjtaXIR9bXUdFWPHmxpuGBw0r0JzeTBjrJR3doRu44GYAhd/fuwU/vjPXzBDhEbdrXAcLEPzmJgx1hBXAbvdgrvMhZ5dyDEje3DbE5dx46mP1myoFGZxyZGtlMJQbk/EjeRl64OWR9M1/vj1Tfz7N69TnFsa7XJEK2bGu3Efm4fNZuOjjz4iOTm50a5d757K5g6NtXE4HJx99tl8+OGHmF3KJFSKenM7PeRmFdC5fxp71u+v/QtE86q26KTm502U2xM2WGqaFlgNHTZYer1opeUYEDJYal6F5nSjeRV6iYuYg9QIlpoH7LlOdK8vvNlz3ZSnVK3JHyj1yiFvvdwdMlj27Z3G7XefjQ643V6evvPtEM/bFyjxeiMv3JFA2Sp17J6Mq8ItgVI02Bn/dzxfffUVp5xySqMGSmiEhToej4evv/6anTt34gratuLuu+9u6KWP2vnnn+8LlSkulMODVtHgpyfaqf1bDtFtaLqEypaqnsEyeJgnbLD0hyqlQgbL4EAJvmFuzVl1Na7mAXue03fqTeWCIaPCgz1X4ewYFBoVgUDp+zqzRrDUPCYZCzYx89s1VesMfv5BgTL4uVYPlhIoW69uQzqzf8uhaJchWjll9fLDDz8AvszU2Bq8UOfxxx9n586dLFq0iL59+7J9+3ZsttCrDJtaz549fYuENPB0l5WLov72rN9Pj2Fdo12GiKS2AFQZLP1CzRtSLheqNOi1ovo1/cHysO/UneqBMnBttxfHId+pXoFAWX3bF6Uqg6VvSoXuVjgO1Xyd8gdL//tGTmFg66Dq1/P/t3qgDPWcJVC2bj1HdGXP+gPRLkO0cr969ixcLhfDhg1j2LBhjX79BofK7du3c/vttxMbG8vFF1/MM888w9atWxujtnrxb7pudipH2WQvL1E/e9bto+cICZUtXh2CpX84OGwTf7AMd63KYGk5VBgyUIKvt9IoduI45ERTqmagDL6Wx6wx7F3jeh4To9gZPlAGnp4ZNlBWaVdboBQtXo/hXdmzbl+0yxCtmDJMPv30UwB+85vfNOoCHb8Gh0p/r6TNZqOoqAir1Up+fvSOkBoxYgQjRowAHbzdpLdS1E/unnx0Q6dDt6RolyJqU0uwVF5v7QtXXC5UWc3V1FXuUV6BnlcctommFJaiCmIzC8O2AdBdHmJ3FoQNlIBvz8zcgsiBUilUSWnEQKmUqluglF7KFi0mwU6Hrkky/C0a5JpZF1FaWkrv3r2ZMGFCk9yjwaFy6NChFBcXc/7553Pdddcxffp0xowZU/sXNiF/b6W3cznKIn+di6OnFGRtOECP4dJb2SrUFixN1eBgqTweVEUFWmGYk2WUQispQysuQw+3cbhXYeSVoJWUo5WF2VPXNNHyi1BuN8ob+vVLAmX70mN4Vw5k5MhJOqLelK748MMPAV8vpa43OP6F1OCVLP7Tc8455xzGjBlDaWkp/fr1a3BhDTF+/HgGDBhARkYG3u6lWHaF3xZEiHD2rNtPr5HdWPvN5miXIuoi0uIdZaJMHTweNEv4l73A4p3Yqse9Ko8nEL5URQUaoJLiq9xbKy2HyhCoVbjQATMpaBGQV2EUlIB/nqfHi1ZWgYoNWjUeFCh9H3tRgBZ0so4Eyvan54hu7FkvQ9+i/qa/dj4vvfQSXbp0YfLkyU12n3pHVaUUTqcz8PGWLVvIycmhrKyM8vIIw0jNQNM0rr/+egC8XctQdvnrThy9nSv20Pe4ntEuQxyNSCFJmfXqsQwOlP57VOmxrBYoA49VuKr0WBqFQYHSX2tlsARqBko/0xvosZRA2T71G9uTnSuyol2GaKWUxeSdd94B4LrrrsMS4Q/rhqp3qPzf//7H+++/H/j4T3/6Ey+//DL/+c9/eOuttxqluIY4/vjjGTVqFOjg6RlmuEqICA5mZGNzWOnYIznapYij0UjB0iwtqxkog+6hKirQ8gprBsqgNlqFCyO/8vXHHeKe/mBZUhY6UPqZXt9wuATKdic2OYbUXh3Ys1Z6KkX9XPSv0yktLaV///5N2ksJDQiVy5cv5/LLLw98nJiYyDPPPMPzzz/PmjVrGqO2BtE0jRtvvBEAs1MFZqycjCKOjlKwc+Ue+o3tFe1SxNGqLVjWdfFOeZh5j5X3UKVlvqAXjmmiCosi11rZJuJCIbPyXhFqlkDZNvUd05Os9ftxOyP/exUiFGXz8vHHHwNwww03NNlcSr8GXd1qPbJB7xVXXOG7oK5TURHhhbgZDR06lFNPPdW3b2WfEhTyYiqOzo7lMgTeajVgVbhSyhfkPB5UhTN0G5fbdw2XGxVqyo9SvqBY2UOpQr0uKoUqLUW5Pb57hurNNBWqvNw3BG6qkCflSKBsu/qN7cmO5bujXYZopSb+cSQul4uRI0cyfvz4Jr9fvUNlaWlplRN0TjvtNACcTiclJS1nuPm3v/0tVqsVleLC7Bj6l4MQ4excvoc+o7ujG037152IDhXiLG5/oAR8/w033GyaR/4bKgxC1a8NNURuBm3Qbprhj1YMswq8aiPZ6aIt6je2JzuW7Yl2GaIVMpNczJ07F13XufXWW5tkX8rq6v2b8sQTT+TJJ5+ssiinvLycp59+mhNPPLFRimsM3bt3D/SievoWowx54RV1V5hdTOGhYnod2y3apYj6qMupO7UNgytVo7dSudw12wT3Vvp7KavfK7i3svrX+AUHVDNEm2q9lYFeytpIL2Wr07l/GpqucWhHTrRLEa2M0hRdzvHtfHPBBRcwcODAZrlvvUPlDTfcAMBFF13E9ddfz/XXX89FF12EaZqBuYwtxRVXXEHXrl3BbuLtEWH+kxAhbPlpB0MmRnebLNEARzEMXqWX0q/aMLhyuY/0UgbamEeGwf2BsnoPp6mgcq/L4GHvGtfxD4MHD3tXVxksZdi7bRt8cj+2/LxTfnziqF375kXs2bOH5ORkrrvuuma7b73Xldvtdu6//34OHDhAZmYmAL179/aFtxbGbrdz++23c++99+LtVoae7UAvs9b+hULgC5WXPXoeX/1rQbRLEfUVaQ9LKoOlqdAMI3QD/4rxUi+EbWOiKpyoCmfE6+ByY0ZaAGSaKEA5nTUDbvWavF4JlG3Y4In9+P6Fn6NdhmhllN3L66+/DsBNN91EQkLz7dXd4IliXbp0YcKECUyYMKFFBkq/E044gYkTJ/oW7QwoQmnyQivqZv/WbJSCroM6RbsU0RB1GQqPdIZ2ZY9mxBXYHo+vx9IV/nhF0+n09XZG2hrI//kIgVECZduW0iWR5M6J7Fol+1OKulMoht3Yk/LyckaMGMFZZ53VrPdvV6sP7rjjDhISElAJHrzdZRhc1N2Wn3cwWIbAW7/6Bsvg8BZm1bjyeAI9i8prhgyWZlDvo/KaIYOlcrmr3i9EcJRA2fYNmtiPjF8y8XpkHYCoO7NzOatWrcLhcHDfffc1+RZC1bWrUJmamsrvf/97ALw9SzHjZO9KUTdbftzO0FMGRLsM0Rga2mMJNYJlcKAMPFYtWJpOV8g2wcGyRqAMVZ4EynZh6KT+bPlpR7TLEK2IsnuwDPPlmhtvvJHu3bs3ew3tKlQCTJ48mUmTJvmGwQfKMLiom11r9mGPt9NlYFq0SxGN4WiCZbgAFxwsw8x99AVLd+Q2/jPFIwXKysclULYPyZ0TSe+XyrbFmdEuRbQSCsWQ67tTUVHBqFGjuPDCC6NSR7sLlZqmcdddd5GcnIyK8+Dt1XL21BQtlzIVG+ZuZfgZg6NdimgsjdVj6Yy8/22te0yayneNSPMnTYXy1N6LKYGybRh+xiC2/LRDTtERdXb1rGmsXbuWmJgY7r333mYf9vZrd6ESIDk5mXvuuQcAb/cyvB1kU3RRu/XfbWH45EFoetNvICuaSW0hzPSGDZaqcvV1qA3Uq7SrLZhCxOsoU/nCZK0hWAJlWzH8jMGs+35rtMsQrYSZ6OLVV18F4Pe//31UF023y1AJcNJJJ/GrX/0KAM+AQpS99hd+0b7t35qNs8xF71HNP09FNKFwYcz/uFI1gmEg6Pk+CB88g4arI7bxX6f6nMvqgbK2WkWrl94vldgkB5kr5RQdUTtlMUk+3YJpmpx11lmcffbZUa2n3YZKgN/97ncMHjwYrAr3oEKZXylqtf77rYw4U4bA25zqoSxCSKsSKI88WDN4hpj/WGubEMGy1tokULYpI84azMZ52zC98nMVkSkUY+7oT05ODj169OCOO+6IdkntO1RarVYeeugh4uPjUYlumV8parX2m80MndQfe6wt2qWIxhYpnIXorazZ5kiwDLmgplqPZdhFN/52ocLr0dQsWh3DonPslKGsnrMp2qWIVmDGGxfwyy+/YLPZePjhh4mNjY12Se07VAJ07dqVP/7xj0Dl/Mq0EGfxClGp4GARe9YfYPgZg6JdimgqEYaYa119rczIC2qUWXsbggJnpOFuCZRtzqCT+lFwoIiD2+WsbxGZt4OTl156CYDbbruN/v37R7kin3YfKgEmTpzIVVddBfhO2zHjZf9KEd7Kz9czZtrwaJchmkJdFsM0dMFMXa8hobHdGTNtGCu/WB/tMkQLZ8Z4sB3nQinF+eefz7Rp06JdUoCEykrXXXcdJ510EujgHlKAssnCHRHatsWZxHeMk2Mb27M6LO5p9GuLNi2laxLdhnRmw9xt0S5FtGDKMEk/P4aysjJGjhzJbbfdFu2SqpBQWUnXdR544AH69OkDdtMXLHV5cRc1mV6T1XM2MuZ86a1s1+qzYCa4Taj2EijbrdHnDWPDD1txlctImQhNaYqRt/Vm7969pKen88gjj2C1WqNdVhUSKoPExsby2GOPkZSUhErw4BlYiEJe5EVNKz9fz7DTBhKTYI92KSKaIvVM1iV01hYyRbtgsRmMPvcYVnwmQ98iNIVi8t+OY/ny5TgcDh599FGSk5OjXVYNEiqr6dq1ayD9m6lOPH2LJViKGgoPFbN92W7GnD8i2qWIaKtl1Xidvl4CZbs28qwhZO/IlQU6Iixvz1K++uordF3noYceYsCAAdEuKSRLtAtoiY499lgeeOABHnroIcyu5ZgeA+u+hGiXJVqYJR+u4dK/TGXph6vxemrZ+kW0W3rlCUy6IX/Di5o0DY6/dDQ//O9n+TciQvJ0KsXbsxSAu+66iwkTJkS5ovA0peRP5HBmz57NM888A8DFF1/McccdF+WKhBBCCNFebNq0ibfeegulFDNmzODaa6+NdkkRSaisxX//+1/eeecdUGDbloKR54h2SaIFGXrqAE68fAwv3fBetEsRLZRu6DwwdyZ/Pf05TK/0aIuqrvjH+Wz9aafMpxQ1eJOcqJHFuN1upk6dyr333oumadEuKyIZ/q7FjTfeSF5eHt988w2uAflYNidj5MviDOGzaf42Jt9wIr1HdWfnCjmrV4Rnek0JlaKKLgPT6NK/E+/98Qv5tyGqMBNd6KPKcDndnHTSSfzhD39o8YESWtlCnby8PG666SZuvfVWbr/9dg4fPgzAunXruOmmm7jlllvYsWMHAJs3b2bmzJm8+eabDbqnpmncc889nHbaaaCDZ0gBZrKzwc9FtA2mV/Hz28uZNH1ctEsRQrQyJ08fzy8frMJd4Yl2KaIFMRNcWMZX4HQ6GT9+PA899BAWS+voA2xVoTIpKYnnn3+ef//730yZMoU5c+YA8NJLL/HEE0/w4IMP8t///heAuXPn8uSTT5Kdnd3g+1osFh544AEmTpzo2xx9aAFmkqvB1xVtw+qvNpHSNYlex3aLdilCiFYivV8qvY/tzrKP10a7FNGCmHFu7Ce6KS8vZ/To0fz1r3/FZrNFu6w6a1Wh0jAMdN1XcllZGX369MHpdKLrOgkJCaSnp1NcXAzAaaedxt13301qamqj3NtisfDQQw/5Vl1JsBRBvG4vP7+zgknTx0e7FCFEKzHxqnEs/WgNzlL5PSJ8zHg3jpPdlJSUMGLECB577DHs9tY13a5VhUqAjIwMbrzxRj7++GMGDhxIcXExcXFxgc8bhoHb7Wbo0KE899xzTJ8+vdHubbVaefjhhxk3bhwYCvcx+XhTZChcwKovNpDWpyM9hnWJdilCiBYutVcK/cf1YsmHq6NdimghzEQX1gkVFBcXc8wxx/D4448TExMT7bKOWqsIle+//z633XYb7777LgMGDOB///sf1113HW+99Rbx8fGUlpYG2nq93iY9tshut/O3v/0t0GPpGVKAt2NFk91PtA4el5fF767glGuPj3YpQogW7pRrjmfZJ2upKJFOCQFmkhNjXDllZWWMGjWKp556qkpnWWvSKkLlr3/9a5599lkuueSSwGPx8fE4HA4cDgder5fi4mL+v737jo+qzPcH/jnnTEuZFFJIKAmQEFpCJzTp0kFQROS3urKu3LvuWlZ2VbzqKrjuegHv7lUQlVXRhbVdEBFQUIioIF2poW5oaZQkpEwmM3PO8/tjkklCFSfJmfJ5v17zOmdOm2/azCfPOc9zCgsLYbU2/iDlZrMZf/7zn2s773S8BDW+stFfl3zbzk/2ITapGdr1TtK7FCLyUYlp8WjXOwlb39+tdynkA9ToKki9bLDb7ejbty/mzZuH0NBQvcv62fyjO1G1Y8eO4bXXXoOiKDCZTHjyyScBAA888ACeeOIJSJKEWbNmNUktBoMBzz77LCwWC9atWwdXWimMoQq0k/5zQS01LJdDRdbb3+PW3wzEkpmneec9IrrCrb8ZiO+W7WQrJUGNq4ToXAGHQ8WgQYPw3HPP+VWnnKvh4Ode0jQNr776KlasWAEAUM6EQjkVDgm+P54UNTxJlvDgO7/AN+/twIGNR/Uuh3yArMj409ePYO7QVzgWYZBr1zsJk2aPxKv/bylcDlXvckgnAgJqKxvUNuUAgJEjR+Kpp57ym2GDrscvTn/7MlmW8cgjj+DXv/41AEBtbYMrrRRCYlYPRkIT+OqNLRg+cwAUA/+8iMhNkoCRD96CrLe/Z6AMYgICrnZlnkA5ffp0PP300wERKAGGygYhSRLuu+8+PPXUU1AUBVq8Hc4uxRAKWyWC0dGtOSi7UIHek7vqXQoR+YiMkR2hGBXs/SJb71JIJ0IW6PtUB2gtKiFJEh5++GE8+OCDnqESA0HgfCU+YOzYsZ5hAESUE86uRRBm/kcajNa/uhlDZvRFWJT/DQlBRA3LFGLEyAdvwfpXN0NoPIsVjIRRRfuZcfj2229hNBrx/PPPY+rUqXqX1eAYKhtYZmYmFi5ciJiYGIgwFY5uRdCsHNw22OQdOYfszccx4j8H6l0KEels8H19cfZgAU7sPK13KaQDLcyJqIkyDh48iPDwcLz88ssYNmyY3mU1CobKRtC+fXu8/vrrSE1NBUwanBnFUJtzyKFgs3HJVnQclIKWnZrrXQoR6SSmdTR6T8rA+oXf6F0K6UCNsUPpb8O5c+fQunVrvPHGG+jevbveZTUahspG0rx5cyxatAhDhgxxj2XZvhSutmUQ4KmPYGErqUTWW99j3O+HQeJgAERBaeyjQ/D9h3tQUlCqdynUhAQEXK3L4ep0CXa7HZmZmXj99dfRunVrvUtrVAyVjSgkJARz5szB/fffDwBQW9rg7FICYWAHnmCxe/V+KEYFPSak610KETWxjoNSENM6Glv+tUvvUqgJCUVD/6c7QU123+1v6tSpeOmll5rk5ix6Y6hsZLIsY8aMGXjhhRdgsVggoh1wdL8ILdypd2nUBDRVYM3Lm3Drfw5EeIz/3iWBiG6OJdyMcY8Nw7q/ZXEIoSCihToRP9WMzZs3w2Aw4IknnsDDDz8cMEMG3QhDZRMZMmQIFi9ejJYtWwIWDc6uRVATbTwdHgTOHszHvg2HMe73gXlhNhFdaeSDt+DkD2dxbNtJvUuhJqLGVULuX4GzZ88iPj4eCxcuxIQJE/Quq0kxVDahlJQULFmypPY6y5QyiC7lHM8yCGxashUtOjRHp8EpepdCRI2sTfdW6DgoBV+8ulnvUqgJCEnAmVIKV4dSVFVVoU+fPvjHP/6Bzp07611ak2OobGLh4eGYO3cuHnroISiKAme0Dc5uRdBCeTo8kDkqnfhswUaMmzUclnCz3uUQUSMxmBRMfGIEvnh1M2wlHPUj0GkWF9reHw0t0T2g+YwZMzBv3jxERUXpXZouGCp1IEkS7rrrLrzyyiuIi4uDCFXh7F4EF0+HB7QTO07hxI5TGP3QYL1LIaJGMuyB/rh4tgT7vzyidynUiAQE1PhKGAbZcOTIEURERGDevHm4//77oSiK3uXphqFSRxkZGXjrrbfQv39/QAbUlDK4OpdAGHlRd6D64pXNSOmThI6DeBqcKNC06d4KPcZ2wZr5G/UuhRqRUDQMfLYLXGmlqKysRI8ePfDOO++gb9++epemO4ZKnUVFReGll17C73//e5hMJmjNHHD0KIIaXaV3adQI7OVV+OQvGzDx8RHsDU4UQCzhZtz+zCis/Z9NKD1frnc51Eg0qwPRk2VkZWVBURT8x3/8B/7nf/4HcXFxepfmExgqfYAkSbjjjjuwZMkStGvXDjBpcHUpgbNdKYTM0+GBJmf3GezbcBiTZo/SuxQiaiDjHhuKkz+cxcGsY3qXQo1ASAKu5DKoPS6hsLAQLVu2xKJFi3DPPfcE9enuyzFU+pC2bdvijTfewJ133gkA0FpUwtHjIrQI3js80Gx8cwsi4sLR5/auepdCRF5KH5GGpIyWWPf3r/UuhRqBFuZEy3vCoLa2QdM0jB49Gm+99VZQ9u6+EYZKH2M2m/HII49gwYIFiI+PB0JUODOK3bd4ZKtlwHA5VKx84QsMnzkACak8bULkr6JbRGLcY8PwyYvrUVXBBoBAIiQBV1I5tN6XkJOTg+joaLz44ot4+umnERrKy5euhqHSR2VmZmLp0qUYP348IFXf4pGtlgGl8MQFfPX6FkydOw7mMJPe5RDRTTKYFNz1wnh8/+EenNqbq3c51IC0MCeS7ouAmlQBVVUxfPhwvPvuuxg0aJDepfk0hkofFh4ejieffBLz5s1zDz1U02rZrpQDpgeI3av3Ize7ALc9eavepRDRTRr98BCUF9nw3bKdepdCDUTI7msntd6XcPz4cURGRmLOnDl4/vnng3bsyZvBUOkH+vXrh6VLl2LcuHHuVssWlXD0vAg1xq53adQA1izYhPi2scic0k3vUojoJ8q4tQPS+rfFJ3/+AoJXJgUELaoKsXcaoLa2QVVVDBkyBO+++y6GDeMtdn8qhko/YbVaMXv2bLz88svu+4ebNbg6XYKaUQph4riW/sxR6cRHz67BsF/3R6vOCXqXQ0Q3ENemGcbNGob/e34dbJf4z72/EwYNzrRLcKaXIC8vD3FxcfjLX/6CF154Ac2aNdO7PL/CUOln+vTpg6VLl+Lee++FoihwRVbC0esiXC14Nx5/dv5kEda+nIVpL06ANTZM73KI6BpCrGZM/+ttyHrre5w5kK93OeQFAQG1eSUso6qgxdshSRKmTJmCf/7zn7jlllv0Ls8vMVT6IbPZjJkzZ+Ltt99Geno6oAio7crg7F7Ejjx+7MDGI/jx80O4+y8TYTBx3DMiXyMrEqbOHY+cPWewY8VevcshL2jhTqTMjIGrfSlKS0uRmpqKxYsX49FHH2XPbi8wVPqxtm3bYuHChfjDH/4Aq9UKEe6Cs2sxnGmXeErcT21ashXlFyswafZIvUshosuMfmgwFKOCdX/L0rsU+pmEQYMztRSuHsXIzs5GaGgofvvb3+LNN9/kuJMNgKHSz8myjEmTJmH58uW47bbbIEkStHi7+5R4qwoIiafE/YkQwMoX1qN5SixuuaeP3uUQUbWeE7qgw8AUfPTMGqgujr7hbwQE1EQbTLdWQkuohBACo0ePxrJly3D33XfDYDDoXWJAYKgMEFFRUfjjH/+IJUuWICMjw31KvE25u5d4Mzuvt/QjVTYH3n/qM/S/qwe6DGuvdzlEQS+lTxJGPjgI7z+1GhUllXqXQzdJi6pCy3vD4EopQ3l5Odq3b49Fixbh6aefRmxsrN7lBRSGygCTlpaGhQsX4plnnkFMTAwQosLV+RKcGcXQwp16l0c/UXHeJbw/ezUmPD4Cyd1b6l0OUdBKaB+HO58fhxVzPkfhiQt6l0M3QQt1outjSXCmlyAnJwdWqxWzZs3Cm2++6W58oQYnCcERtgKVzWbD8uXL8dFHH6GqqgoAIJ83w3AyHFIVm/r9QYeB7TBp9ki88/DHOH+ySO9y6GeQFRl/+voRzB36CjSVp039SVRCBH69+C5sfHMrfvz8kN7l0E8kTCpcSeUQiVUQQsBgMOCOO+7AL3/5S0REROhdXkBjS2UACw0NxcyZM7F8+XKMHTvWfb1lXJX7esu2ZRAGfsD5uiNb/o1N/9iKexZM5lBDRE0oxGrGL+ZPxs5P9jFQ+gmhaHAllUMeXA4twQ4hBIYNG4Z//vOfeOihhxgomwBbKoPI8ePHsXjxYuzcWX1LMZcEJTcUSl4oJJX/X/iy4TMHoMPAdlj6yP+hspSDLfsTtlT6H1OIEfe+fDsK/30RaxZs1LscugEhuzvhhHdXcOnSJQBAly5d8Lvf/c497B41GYbKILRjxw4sXrwYJ06cAABILhnmwgiYL1hhL+M4l75q/B+Go2XH5nj39ytQVcGfk79gqPQvBpOCX8ybjIqSSqx84XNoKj8ifZWQBLTmlYjqZ8aFC+7rXZOSkvDAAw9gyJAhkCRJ5wqDD0NlkNI0DVlZWXj77bdx5swZAEBUZBTKd6uQC0MgCf4x+hpJAiY9NQrNWkVh2R8+gaOSHa/8AUOl/1CMCu5+cQJUl4aPnl3Ln5ePEhDQ4uyIGxqG/Hz3XY0SEhIwY8YMjBo1isMD6YihMsi5XC5s2LABS5cuRUFBgXuhXYbhTBjkcwyXvkZWJEz501iERFrwryc+hcvBQe59HUOlf5AVCXc+Pw6mUBM+eGo1/7Z8kJDcYTJxRKSnMaRZs2a49957MXHiRJhMJp0rJIZKAgA4HA6sWbMG7733HoqKqnsZV8kwnA1zt1xqDJe+QjHIuOvPEyDJEj56Zg0//HwcQ6XvkxUJk/9rNCLiw7H8j6vgrHLpXRLVISQBLb4ScYPDPS2TERERmD59Ou644w6EhIToXCHVYKikeux2O1avXo33338fFy9edC90yO4OPfkhkDR26PEFBpOCaX+eAFmR8cF/fcYPQR/GUOnbZEXGlD+NQXhMGP71xKeosvF6ZV8hZPc1k9H9LDh//jwAIDo6GtOmTcPkyZN5j24fxFBJV1VVVYXPP/8cy5cvR2FhoXuhs7q3eD57i/sCxajgzufGIiTCgn89+SmvsfRRDJW+y2BSMHXOOBhDjHh/9mo47fznzBcIWYOaWInIXibPmbPY2FhMnz4dEydOhMVi0blCuhaGSroup9OJDRs2YNmyZcjNzXUvVCUoBSHuoYiqFH0LDHKyIuP2Z0YjKiECyx9fBXt5ld4l0WUYKn2T0WzAtL9MhKZqvIzERwijCrWFDaGdFZSVlQFwd8D5xS9+gTFjxsBsNutcId0IQyX9JC6XC5s2bcL777/vGYoIApAvmKHkhkEuN+pbYBCTZAm3PXkrmqfEYvnjn6Ki2KZ3SVQHQ6XvMYeZMP2vt6GyzI7/e/5zqE4GSj1poS6oLSsgt3TB5XK3Frds2RL33HMPRo8ezd7cfoShkm6KEAI7d+7EBx98gF27dnmWSyVGd7gsNkECO/U0NUkCRj00GB0GtMOyP36CotxLepdE1RgqfYs1Ngz3LJiM/KPnsfq/v+LPRCcCAiLSAVcrG0R07XWsGRkZmDZtGgYOHAhF4Zkwf8P4TzdFkiRkZmYiMzMTx48fx4cffoivvvoKapQTrqgSSBUKlPxQyOcs7NTThIQA1r/6DcrOl+P+RXfhX09+irwj5/Qui8inxCZH454Ft2PfhsPYtGSr3uUEJSEJaLF2tBkfj+PHjwMAZFnG4MGDMW3aNHTp0kXnCskbbKkkr507dw4rVqzA6tWrUVFRAQCQVAmmi+EwXbDCUcRTS00pY2QHjPv9MKyY8zmO7zildzlBjy2VvqF1eiLu/utEbH5nO3as3Kt3OUFHmFWoCTZYM0woKSkBAFgsFowfPx5Tp05FixYt9C2QGgRDJTWY8vJyrFu3DqtWrcLZs2c9y+USMwz5oZBLzDw13kTa9mqNO58bi41LtmLPZwf0LieoyYqMZzY+hD+PWMhQqZPOw9pj/KxhWLNgI7I3n9C7nKAhIKBFOuBKqABindA09+9/XFwcJk+ejEmTJiEiIkLnKqkhMVRSg9M0Dbt27cLKlSvx/fffo+ZXLDo6Gv369UOvXr0QFhamc5VERNQY7HY7du/ejW3btnnuyQ0APXv2xO23346BAwey802AYqikRpWXl4dVq1Zh7dq1niEioAHKRQuUc6GQS9mxpzGFRoVg6pxxcDldWPH8FxxySAdsqdSH0WLApKdGIjoxEh89swaXzpXrXVJAExAQ4U644m0wJgvY7XYAQGhoKMaMGYPJkyejTZs2+hZJjY6hkpqE3W7Hxo0bsXLlShw7dqx2RaUCpTAEyjkLJAd7+jUGxSBj/B+GI7lbS7w/ezUunC7Wu6Sgwmsqm15kvBXTX7oNRbkl+OTF9RzUvBEJgwY1vhJJI+KQk5PjWd62bVvcfvvtGDVqFO98E0QYKqlJCSFw5MgRrFmzBl999RVstuoxFQUgF5kgF4ZALuK1l42h753dMfRX/fDZ/I049PWxG+9ADYKhsmmlZibj9mdGY+cn+7B56TbwE67hCQiIKAfUhErICapnbEmz2YyhQ4di/Pjx6NatGySJ7+PBhqGSdFNZWYmvv/4aa9euxb59+2pXOGQohRbI50Mg23jdTUNK6toCU+eMw8GsY/jytW+huhhyGhtDZdOQZAlDf9UXvSd3xSd/3oDj20/qXVLAEWYX1OZ2xPQOw7lztUOWdejQARMmTMCIESMQHh6uY4WkN4ZK8gmnTp3C2rVr8cUXX3iGmwAAqdwA+ZwFynkLJCdPjzeEsOhQTHluDEwWIz7+0zpcOlemd0kBjaGy8YVFhWDKc2NhCjXh4z+txaVC/k43FGHQoMXaocbbISKcnuVWqxWjRo3C+PHjkZqaqmOF5EsYKsmnOJ1ObNmyBevXr8e2bdugqtVjXApAKjFBOWeBfNHMgdW95G7V6YfekzPw6V+/xNGtOTfeiX4WhsrG1aZ7K9zxpzHI3nwMGxax9b0hCFlAa1YFLb4SUpzqeR+WZRk9e/bE+PHjccstt/Be3HQFhkryWSUlJfj666+xfv16HDx4sHaFKsF4KQSm4nAYyizs0eyFlMxkTP6vUTj87QlsWPgNnFXs0NDQGCobh2KQMeyBAeg5vgvWvLyJ1wl7qea2iWq8HZa2cu317gDS0tIwcuRIjBgxArGxsTpWSb6OoZL8Qm5uLr788kts2LCh3sDqYaFhqMxR3afHL5kgCV4YfrNCo0Jw2xO3IjYpGivmfoH8o7y9Y0NiqGx4scnRmPKnsagstWPVXzag9DyHC/o53EHSCTXGjqj0EBQVFXnWJSQkYOTIkRg5ciSHAqKfjKGS/IoQAtnZ2diwYQOysrJQXFxneBynBLnIDPmCBXIJA+bN6jmhC0b+dhC2vr8bW/61C5rKt4aGwFDZcCQJ6HN7Nwx/YAA2v7sd2z7aw97dN8nTIhlbhcjOlnrvoVarFcOHD8fIkSORnp4OWeZlRnRzGCrJb6mqin379iErKwvffPNNvf+y4ZIgX2TAvFnNWkXh9v8aBcWo4NOXvkThiQs33omui6GyYcS0jsJtT9wKc5gZn7y4nr+bN0FItUHS2sGES5cuedZZrVYMGjQIQ4cORa9evWA0GnWslPwdQyUFBFVVsX//fmzatOnqAbPY5G7FLDZDcvG/7+uRZAmZt3fD0F/3w44Ve/HNezugOlW9y/JbDJXekRUJ/af1xKB7MrHl/V3Y8q/d/D7+BELRoEU5oMVUITzVhNLSUs+6yMhIT5Ds2bMnb5lIDYahkq7phx9+wLvvvgshBKZMmYLBgwdj3759WLx4MWRZxqxZs5CSkoLs7GwsWrQIffv2xb333qt32Z6AmZWVhc2bN9cPmAKQLhkhF5mhXDRDquKb6bVEJUZg4uMjEBEXjtX//RXOHMjXuyS/xFD58zVPicWk2SOhujSs/u8vcf5k0Y13CmLCrEJrVgW1WRUM8QJOZ+0QQFFRURg8eDCGDh2K7t27+1SQ9NfPGrqS7/xWkU+pqqrChx9+iPnz59c7HbJkyRLMmzcPNpsNCxYswPz587Fx40bMnz8fr732mo4V11IUBd27d0f37t3x6KOP4vDhw9iyZQu+++475OTkQEQ5oUY5obYrh1ShuFswi8yQyoy8k08dJfml+OesT9BjXGdM/+ttOLLl3/jq9e9QUVKpd2kU4CzhZgz7dT90Hd0Jm9/Zju0rfoTQ2P5xOff9tl3u4X+aVUGE147e4HQCLVu2xC233IKBAwciPT3dp4JkDX/+rKEr+d5vGPmEAwcOwGw2Y/bs2bBYLJg1axbCw8MhyzKsViusVivKytwDDA8fPhyPP/44+vTpo3PVV5JlGZ07d0bnzp0xc+ZM5OXleQLm3r17oYWpUMNsUFvb3B19SkyQi82Qi00cbL3aD+sO4fB3/8aI/xiI3y37Jb5+ext2fbqPHXmowUkS0G1sZ9z6nwPx711n8Nq9/0TZxQq9y/IpwqBBi6qCFu1AdOcwXLxY23oryzLS09MxcOBADBgwAElJST5/q8RA+awhN4ZKuqri4mKcPXsWr7/+Onbt2oV33nkHM2bMQFhYmGcbRVHgdDrRuXNnLFy4UMdqf7oWLVpg6tSpmDp1KsrKyrBt2zZs2bIF27dvR0VFBbS4Kmhx7nEvpXKD+1rMEjOkUmNQd/apLLVjzYKN2PPZfoybNRw9J6Rj3d+zcHpfnt6lUYBITIvHuMeGwRRixMfPrcOpH3P1LsknCAiICKf7+sjoKiBCRc1Vaxcv2hESEoLMzEwMGDAA/fv3R1RUlL4F36RA/awJVgyVVM+HH36ILVu2oFevXsjIyIDRaESvXr2wfPlyhIeHo6KittVAVVW/7ilotVo947C5XC4cOnQI27dvx86dO3H48GGIcBfUcJe7FVOVYCi3wFgaAtc5CVKlEpSnyvOOnMNbv/kAPcZ3wV1zx+PMwXxsfGMLLpwuvvHORFcRlRCB4TMHILVvMr55dwd2rNwb9NeeCrPqaY0MSTbUe9+FANq1a4fMzExkZmYiIyPDL+9sE0yfNcGEoZLqmTZtGqZNm4aSkhLMmTMHQggcP34ciYmJsFgsUFUVZWVlsNlssFqtepfbYAwGA7p27YquXbti5syZKC4uxs6dO7Fjxw7s2LEDJSUlcEVWwhVZCbQGUCVDvmRyP0pMkKqC51S5EMCeNQdxYONRDLi7Fx54/W7s33gEm9/ZhvIi240PQAQgxGrGoF9moueEdOz+bD9enb4UlWXBeXcsYVKhRTrcrZGRDsBSG6orKqoQERGB3r17IzMzE3369EFcXJyO1TaMYP2sCXTs/U3XtHLlSmzatAmSJGH27Nlo2bIlfvzxR7zxxhuQJAmzZs1Camqq3mU2Ok3TcOzYMezYsQO7du3CwYMH4XA46m9kl93XY1YHTckRPCEzPCYUQ2f0Q/qIDti+4kds+2hP0IaDq2Hv7/pMIUZkTumOAXf3xLFtJ5H1j+9RUlB64x0DiDDWhEgnRKQDIqT+kF2KoqBTp06e1sgOHTpAUQL3PYWfNYGDoZLoJlVVVeHAgQPYs2cPfvjhB2RnZ0NV638oSDYFUqkRcqnJfT2mPfBPl8cmRWPo/f2QkpmMHSv2MlxWY6h084TJaT1x5kAest7ehoJj5/Uuq9EJCMCsQYtwQIuoDpGh9d8vZFlGWloaevTogR49eqBr164IDQ3VqWKin4+hkshLNpsN+/fv94TMo0ePQtMuCw8OGXKpEVKZ0d2SWWEI2I4/cW2aYfB9fdG+bxvsWPkjvv/oB1SW2vUuSzfBHirNoSZkTumG/nf1xOn9edi8dHtA31/eM8xPhBPC6g6SMNf/uUuShNTUVE+I7NatG8LDw3WqmKjhMFQSNbCysjLs37/f8zh8+PCVp8tVQCqvbcmUyw0BN4SRJ1z2a4O9XxzCto9+QHF+cJ3mBII3VFpjw9D3zh7odVs6Tv2Yi81LtyH/aOC1TAqDBhHuhBbhhBbhgDlBgd1e/58oRVGQlpaGjIwMdO3aFd27d0dERIROFRM1HoZKokbmcDhw5MgRHDhwAPv27cOBAwfq3XvXwy5DLq9uzSw3Qio3QFL9/5aS0S0i0e+uHug+phOO7ziF7z/Yg7OHCvQuq8kEW6hsnhKLAXf3RMfBqTi46Si+/3BPwNwJR8jCHSDDnRBWJ7RwFxBy5S1Mw8PDkZ6ejoyMDGRkZKBjx46wWCw6VEzUtBgqiZqYEAKnT5/G/v37ceDAAWRnZ+PkyZO44k9RVF+bWW6EXGaERQ2DYjd5TptXlvvXKeUQqxm9J3dF5pTuKM67hB0r9iL7m+MBf1/xYAiVsiIhbUA7ZN7RDQmpcdi5ah92frLXL0cDCAl3hz8hCagWB+xKRXWIdEGyalde2gL3nWvS09M9QbJNmzaQZf//h5DoZjFUEvkAm82GI0eOIDs7G4cPH0Z2djYKCwuv2E6WZSQmtEByq2Rs/3Cv+7R5hRGSy38+wBSjgvQRaeg9qSuatYrED2sPYffq/SjOu0rrbQAI5FAZGW9Fz4ld0GN8Omwlldi5ah/2rc+Gs8p14519iFA0iDAXtHAXBvyiB06fPYXc/Fy4XFd+HTExMejUqRM6duzomXLIGyI3hkoiH3Xx4kVPwMzOzsbRo0evftoccI+bWWGAVG50dwKqMPhFj/OE1Dj0mpSBjFs7IPdQAfasPYgj352AyxE4rZeBFioVo4L2/dqgx7jOaNOzNQ5lHcOu1fuR6weXNHh6Yoc5IcJd7iAZ5qw3LmRd4eHh6NixY70AGQhjRBI1FoZKIj8hhMCFCxdw/PhxHDt2DMeOHcPx48eRm3uN29lpgFRZHTBtCiSbwf3wwbBpCjEi49YO6Da2M+LbxiD7m+PYtz4bJ3/MhdD8+y0qUEJlUkYLdB3VEV2Gp6E47xL2fpGNveuzYS/3vWGj3OFRhRamQoS4IEJrHiqgXP33KSEhAampqfUeiYmJPn/vbCJfwlBJ5OcqKipw4sSJekHz1KlTqKq6xoe9htqAaVPcwdNePdX0/wCNToxAxqiO6Da6E4xmA/ZvPIJDXx9HXnYB/PHdyp9DZUL7OHQekoqMkR0hSRL2bcjGvi8P48Ip37gtp5AERIgKYXEHRk94DHEB1xhMwWg0ok2bNp7g2L59e6SkpPAUNlEDYKgkCkCqqqKwsBA5OTnIycnBqVOnPNNrhk0AqJLd9zX3BM068zqMq9miY3N0HdkRHQenQFZkHP72BA5/cxwnf8z1m4DmT6FSkiW0Tk9EpyGp6HhLCgxmAw5/ewL7vzyMM/vzdAn1QhIQFrU2PIbUzksh4soObtVMJhOSkpLQpk0bJCcno23btmjTpg1atGgBg4F3KCZqDAyVREHkamHz7NmzOHv27LWv1wQAAXfgtCuQqhT3tM48HHKjn1JPTItHp8Ep6Dg4FdaYMBzffhLHd5zCv3eeRtnFikZ9bW/4eqgMiwpBu95JSMlMRmrfZFRVOHD42xPI/uYEcg/lN3qQFBCASYMwq+7waNaqp+7wKIeKq/a49tQfFoZWrVohOTnZEyBrwmMg39qQyBcxVBIRAKC0tNQTMM+cOVNvarPdYGgYDUCVAoPLCNlhgOxQIDkNcJWqgEOBVCUDqtRgwTOmdRRSM9sgpW8y2nRrieL8UpzYeQondpzCmQP5cFQ6G+R1GoKvhUqDSUGrLolIyUxGSp8kxCU3w+l9eTix8xSObz+FczkXG/T1hKJBmDTApMIYoUAzuaCZVGgmF1SDE8KsAjcYvCAkJAStWrW66iMqKorXPRL5CIZKIrouIQSKioqQm5uLgoIC5Ofno6CgoN7j8nufX5UKSA7F3eLpUCA5ZKDKPZWcsru103nz4VMxKmidnojUzGSkZCYjrk0zFJ64gDP783F6fy5O789D+UX9xkvUO1SGRoUgKaMFWmckIimjJRLbx+Hi2RJ3CN95Gqf35t70EEACwt3hxeAOjO7QqEGYqlsaq0OkMGmA4cYfMYqiIC4uDgkJCZ5HYmIiEhMT0apVK8TExDA4EvkBhkoi8oqqqrhw4cIVgfPChQs4f/48Lly4gLKysp9+QA2As37QlJxy7TKXDMkl1U6dcr3rPc1hJrTqkoik6hDVsnMCKoptyD96rvpxHvlHz6GiuGmCZlOGytBICxLaxyMxLR6JaXFITItHRLwVedkFOH0gH6f35eLsgXxUltW/rlZI1QHRUGdq1CCM2hXTmvlrdYS5mrCwMMTGxiIuLg5xcXFITExE8+bNkZiYiISEBMTGxvI6R6IAwFBJRI3ObrfjwoULnqBZ86hZVlJSguLi4hufZr8WFVeGTZe71VMWMsIjwxEVF4FmCdGIbdkM8UmxgCqh/HwlKs7ZUFpQgZLcUhSdLkXpuTKgATslNUaoDI8NRWxyNKJbRiKiRTgiEkIRHh8KxSzj3OkLOH/mIi7kFqH4XAlKi8qgQQOUOqFRqR8ibyYg1mU2mxEdHY2YmBjExsZ6HnFxcZ5pTEwMQkNDG+TrJiLfxlBJRD6jqqrKEzCLi4tRUlKCoqIiz3xxcTHKyspQVlaG8vJylJWVXbcTx8+lyApkWYEsSZCEDGiAcAFCFRAuQHMJaKpw30qz5h1USO4OTYB7Wh1MJUjIGNUB+7887D5t7F5YZyqA6l1lRYJslCAZJMgG91RSqntASwJCaFA1FS6XitoXaxiSJCEsLAxWqxVWqxWRkZGIjo5GVFTUNachISENWgMR+TeGSiLyW5qmwWazeYLm5Y/KykrYbDZUVlbecN5f3wplWUZISMhPelitVoSHh3uCY935sLAw3q+aiLzCUElEQU8IAafTCYfD4ZnWPK623Ol0QtM0aJoGIQRUVYUQwrPs8ockSZBlGbIs15uv+7xmajAYYDQaYTQaYTKZrjqtma95sBMLEfkChkoiIiIi8hrPdRARERGR1xgqiYiIiMhrDJVERERE5DWGSiIiIiLyGkMlEREREXmNoZKIiIiIvMZQSUREREReY6gkIiIiIq8xVBIRERGR1xgqiYiIiMhrDJVERERE5DWGSiIiIiLyGkMlEREREXmNoZKIiIiIvMZQSUREREReY6gkIiIiIq8xVBIRERGR1xgqiYiIiMhrDJVERERE5DWGSiIiIiLyGkMlEREREXmNoZKIiIiIvMZQSUREREReY6gkIiIiIq8xVBIRERGR1wx6F0DkC4QQsNvtepdBRHRTLBYLJEnSuwwiAAyVRAAAu92O0aNH610GEdFNWb9+PUJCQvQugwgAT38TERERUQNgSyXRZUw74iGJ6v+3JBmSLAGSDMgSIEmQ5Jp11cslCZAlSDXbeNZJnn08D6DOstpjevZB7T5Ckmr/7atzDM/yOvvVXSaqD+NZJwNAzXLJs65mH1G9zLMeqD2GXL29Z5/6r1FvH1Qvk6+yrt72qFdj7TLpinVX7IP6+9Rbj9p9rvVa9Z5fo44r9rnecT3LRb39Lz+eZ32dY4nq5bhsP0iizv7u9VLddZ5ta9YJzzGluttXL5ckUfvrV7289tdDeNbLEJ7n7nWAXP3cvc79vGY/zzpJQELtfnL1Ms8DwrOfLKHe8tp9tNptISBLGpSaddXPa4+leY6n1Dm+AvdyRdIu20+DUnNM1L6eZ3vUHk+Ge38Z7td3r3MfT6leJkGDUrM/aurQoADu/eB+nZqvrea5+7VE9Tyq1wnI1d8XBRJkAEr1D1uGVL1MgiJJkKvfDCRIcDoUTJmZACJfw1BJdDlVqn57hztUojoAVn9a166TALk2QUnuhFZ9kJrkIdfOX5E25CsTjyRduX3d4+Gy7eutu3y+zjY1YbJOqLxiWZ0QWPf55SXW3/4q+8jXWXetL+Nqx73Wftdb/pNf6+aOedUQW2+/Bg6VV1uPy58Lz7Hr1lH3Nevvc1kI9ayru15c5XjiKq8l6j3qhsraoFr9uNa6q4VN1IRR1At6Nc8V1F/nDpVabSiT6oYy97wsSe7AVz2FZ17y7FcbYAFFqp0qQJ0AeJV11cdzPxfVoVR4QqR7P3HDUFn3eEr1Ohn1l9UEWLn66ybyRTz9TUREREReY6gkIiIiIq8xVBIRERGR1xgqiYiIiMhrDJVERERE5DWGSiIiIiLyGkMlEREREXmN41QSXU4REMI94LF73EWpzlS6bEDymmmdedRdJurMX2ddzfI6gxbWDlGNayyvnYp686i3nwAAUbO89pgCEiDg2bfues8x6g2uWLeWqzwX9Uq67Ptxjcfl295o7EhcY/mN1l1vLMrrrav7FV53v6uNN1n3Ia5R47UHP68/tmSddZ5tf/7g57V11BmnEj9/nEqB2v2EJOo/4J6616Hecs1zPK32dSAASasznqaot15Imud4qHf86mnNa1U/l6u3qZkCuGKZVmdsSE2qnWqoHadSq14m4VrjVEqeAcsV1P7Map7L1ftcPvblTx/8XKr+sUhwOq72d0mkP4ZKoss4Ms/pXULjqPnM9sLlcZYIqP+rpelZyM9W9zebJ/CIfi7+9RABsNvtepdARETk19hSSQTAbDZ75j/99FNYLBYdqwlcdrsdkyZNAsDvc2Pj97pp6P195s+VfAlDJREASao9oWuxWBASEqJjNcGB3+emw+910+D3mYIdT38TERERkdcYKomIiIjIawyVREREROQ1hkoiIiIi8pokhPBy5DoiIiIiCnZsqSQiIiIirzFUEhEREZHXGCqJiIiIyGsMlURERETkNYZKIiIiIvIaQyUREREReY2hkoiIiIi8xlBJRERERF4z6F0Akd5sNhs++OADbN68GQUFBZBlGa1bt8bw4cMxZcoUGI1GvUv0a5cuXcKWLVuwe/duHD16FIWFhVBVFVFRUejQoQPGjBmDwYMH611mwFq2bBnefPNNz/NvvvlGx2oCT0VFBVatWoXvvvsOZ8+ehc1mQ1RUFFq1aoVu3bph6tSpsFqtepdJ1CR4Rx0KagUFBXjkkUdQUFAAALBYLNA0DQ6HAwDQvn17/P3vf+eHgheGDRsGVVU9z00mExRFQWVlpWdZ37598cILL8BisehRYsA6ffo07r//fs/vM8BQ2ZD27NmDuXPnoqioCABgNBphNptRXl7u2eatt95C+/bt9SqRqEmxpZKClsvlwuzZs1FQUICYmBg8/fTT6N27NzRNQ1ZWFubPn49jx47hhRdewLx58/Qu12+pqopOnTph7NixyMzMRIsWLQAA+fn5eO+997B27Vps374dCxYswDPPPKNztYFD0zS89NJLcDgc6NKlCw4ePKh3SQFl//79ePLJJ1FVVYXBgwfjnnvuQYcOHSBJEux2O3JycvDdd98hLCxM71KJmgxbKilorVmzxhMWX3vtNaSnp9db/9VXX2Hu3LkAgL/97W/o1atXk9cYCPbs2YOePXtec/2CBQuwevVqAMDHH3+M5s2bN1VpAe3jjz/Gq6++ipEjR6Jly5ZYunQpALZUNgS73Y4ZM2YgLy8PU6ZMwaOPPqp3SUQ+gR11KGh98cUXAIAePXpcESgBYMSIEUhMTKy3Ld286wVKABg/frxn/siRI41dTlDIy8vDP/7xD0RGRuLhhx/Wu5yAs379euTl5aFZs2b4zW9+o3c5RD6DoZKCkt1ux4EDBwAA/fr1u+o2kiShb9++AICdO3c2WW3BxmQyeeY1TdOxksAxf/58VFZW4ne/+x2ioqL0LifgrF+/HoD7emGz2axzNUS+g9dUUlA6deqUJ8C0bdv2mtvVrCsqKkJpaSkiIiKapL5g8uOPP3rm27Vrp18hAeKzzz7D7t270bt3b4wZM0bvcgKOw+HwtKinpaWhsLAQ7733HrZt24bi4mJYrVZ06tQJkyZNQv/+/XWulqhpMVRSULpw4YJnPi4u7prbxcbG1tuHobJhlZWVYdmyZQCArl27IikpSeeK/Nv58+exePFimM1m/PGPf9S7nIBUUFAAp9MJwN3Z7L777oPNZoPRaITFYkFxcTG2bt2KrVu3YsKECXj88cchSZLOVRM1DZ7+pqBks9k889c7fVV3iJu6+5D3NE3Diy++iIsXL8JkMuGxxx7TuyS/t2DBApSXl+NXv/qVp5c9NayysjLP/HvvvQeDwYC5c+di/fr1WLduHT7++GMMGzYMgLsz4EcffaRXqURNjqGSiHTxyiuvYOvWrQCAxx57DCkpKTpX5N82bNiA77//Hu3bt8ddd92ldzkBq+51v5qm4cknn8TQoUNhMLhP/DVv3hzPPfccUlNTAbgHn3e5XLrUStTUGCopKIWGhnrmq6qqrrmd3W6/6j7knUWLFmHlypUAgIceeqheD3C6eUVFRXj11VehKAoef/xxT8Chhlf3faBVq1YYNGjQFdvIsoy7774bgPuOUkePHm2y+oj0xFBJQanutZLnz5+/5nZ1r72suw/9fIsXL8aHH34IAPjtb3/LVrUG8MYbb+DSpUuYOHEikpKSYLPZ6j3qtpTVLKu5LpBuTt1rsK93DXBycrJnvuaOXUSBjv/OUlBKTk6GLMvQNA05OTnXHFYoJycHANCsWTN20mkAr732Gj744AMAwIMPPuhpzSHv5OfnAwBWrVqFVatWXXfbmh7hd955Jx555JHGLi3gREREIC4u7rr/jF6OHXUoWLClkoKSxWLxDHi+ffv2q24jhMCOHTsAAH369Gmy2gLVokWL6gXK6dOn61wR0c9T835w6tSpa25z8uRJz3zNTRSIAh1bKilojRkzBvv27cMPP/yAQ4cOoXPnzvXWZ2VlIS8vz7Mt/XyLFi2qd8qbLZQN65VXXrnu+rfffpu3aWxAY8eOxbp165Cbm4tvv/32iusqNU3z/AMVFxeHtLQ0PcokanJsqaSgNWbMGLRr1w5CCDz77LPYvXs3APcHQlZWFubPnw8A6Nu3L+/77YW611A+9NBDDJTk97p164ahQ4cCAObNm4evv/7ac91qYWEh5syZgxMnTgAAHnjgAcgyP2opOEhCCKF3EUR6yc/Px6OPPuq5kN5isUDTNDgcDgBA+/bt8fe//x1Wq1XPMv1WYWEhpk6dCsDdI/ZGtwycNm0aT4s3ArZUNrzKyko88cQT2Lt3LwD37UbNZnO9cSxnzJiB+++/X68SiZocT39TUEtMTMTSpUvxwQcfYPPmzSgoKIDBYEDbtm0xYsQITJkyBUajUe8y/dblY/oVFRVdd/vKysrGLomoQYSEhOB///d/sW7dOqxfvx45OTmw2WyIi4tD165dcccddyAjI0PvMomaFFsqiYiIiMhrvNCDiIiIiLzGUElEREREXmOoJCIiIiKvMVQSERERkdcYKomIiIjIawyVREREROQ1hkoiIiIi8hpDJRERERF5jaGSiIiIiLzGUElEREREXmOoJCIiIiKvMVQSERERkdcYKomIiIjIawyVREREROQ1hkoiIiIi8hpDJRERERF5jaGSiIiIiLzGUElEREREXmOoJCIiIiKv/X/nKnwP9IHiiwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "List_of_Maps = [mDisk,mNarrowBulge,mBroadBulge]\n", - "List_of_Names = [\"Disk\",\"Narrow Bulge\",\"Broad Bulge\", ]\n", - "\n", - "for n, m in zip(List_of_Names,List_of_Maps):\n", - " plot,ax = m.plot(ax_kw={\"coord\":\"G\"})\n", - " ax.grid();\n", - " lon = ax.coords['glon']\n", - " lat = ax.coords['glat']\n", - " lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)\n", - " lat.set_axislabel('Galactic Latitude',fontsize=5)\n", - " lon.display_minor_ticks(True)\n", - " lat.display_minor_ticks(True)\n", - " lon.set_ticks_visible(True)\n", - " lon.set_ticklabel_visible(True)\n", - " lon.set_ticks(color='white',alpha=0.6)\n", - " lat.set_ticks(color='white',alpha=0.6)\n", - " lon.set_ticklabel(color='white',fontsize=4)\n", - " lat.set_ticklabel(fontsize=4)\n", - " lat.set_ticks_visible(True)\n", - " lat.set_ticklabel_visible(True)\n", - " ax.set_title(n)" - ] - }, - { - "cell_type": "markdown", - "id": "915bc5ee", - "metadata": {}, - "source": [ - "## Instantiate the COSI 3ML plugin and perform the likelihood fit\n", - "The following two cells should be run only if not already run in previous examples..." - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "id": "5b3abf0b-7631-419c-b5b7-a31dbfe1b65c", - "metadata": {}, - "outputs": [], - "source": [ - "# if not previously loaded in example 1, load the response, ori, and psr: \n", - "response_file = \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", - "response = FullDetectorResponse.open(response_file)\n", - "ori = SpacecraftFile.parse_from_file(\"20280301_3_month.ori\")\n", - "psr_file = \"psr_gal_511_DC2.h5\"" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "522db694-3a1d-4d0d-a3d9-0e028bb5cbcc", - "metadata": {}, - "outputs": [], - "source": [ - "# Set background parameter, which is used to fit the amplitude of the background:\n", - "bkg_par = Parameter(\"background_cosi\", # background parameter\n", - " 1, # initial value of parameter\n", - " min_value=0, # minimum value of parameter\n", - " max_value=5, # maximum value of parameter\n", - " delta=0.05, # initial step used by fitting engine\n", - " desc=\"Background parameter for cosi\")" - ] - }, - { - "cell_type": "markdown", - "id": "34287711-a61b-4496-bc3e-b5f2f9e02298", - "metadata": {}, - "source": [ - "We should re-run the following cell every time we set up a new fit:" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "id": "5ca19bc5", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "... loading the pre-computed image response ...\n", - "--> done\n", - "CPU times: user 1min 54s, sys: 4min 32s, total: 6min 27s\n", - "Wall time: 6min 26s\n" - ] - } - ], - "source": [ - "%%time \n", - "\n", - "# Instantiate the COSI 3ML plugin, using combined data for the thin disk\n", - "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", - " dr = response_file, # detector response\n", - " data = data_combined_thin_disk.binned_data.project('Em', 'Phi', 'PsiChi'),# data (source+background)\n", - " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", - " sc_orientation = ori, # spacecraft orientation\n", - " nuisance_param = bkg_par, # background parameter\n", - " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", - "plugins = DataList(cosi)" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "id": "774aba03", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "Model summary:

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
N
Point sources1
Extended sources3
Particle sources0
\n", - "


Free parameters (2):

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.e0.9994440.01.0
disk.spectrum.main.composite.F_10.00170.01.0s-1 cm-2
\n", - "


Fixed parameters (27):

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.lon00.00.0360.0deg
disk.Wide_Asymm_Gaussian_on_sphere.lat00.0-90.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.a90.00.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.theta0.0-90.090.0deg
disk.spectrum.main.composite.mu_1511.0NoneNonekeV
disk.spectrum.main.composite.sigma_11.270.0NonekeV
disk.spectrum.main.composite.K_20.00450.01000.0keV-1 s-1 cm-2
broadBulge.Gaussian_on_sphere.lon00.00.0360.0deg
broadBulge.Gaussian_on_sphere.lat00.0-90.090.0deg
broadBulge.Gaussian_on_sphere.sigma8.70.020.0deg
broadBulge.spectrum.main.composite.F_10.000730.01.0s-1 cm-2
broadBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
broadBulge.spectrum.main.composite.sigma_10.850.0NonekeV
broadBulge.spectrum.main.composite.K_20.00270.01000.0keV-1 s-1 cm-2
narrowBulge.Gaussian_on_sphere.lon0359.750.0360.0deg
narrowBulge.Gaussian_on_sphere.lat0-1.25-90.090.0deg
narrowBulge.Gaussian_on_sphere.sigma2.50.020.0deg
narrowBulge.spectrum.main.composite.F_10.000280.01.0s-1 cm-2
narrowBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
narrowBulge.spectrum.main.composite.sigma_10.850.0NonekeV
narrowBulge.spectrum.main.composite.K_20.00110.01000.0keV-1 s-1 cm-2
centralPoint.position.ra266.4049880.0360.0deg
centralPoint.position.dec-28.936178-90.090.0deg
centralPoint.spectrum.main.composite.F_10.000120.01.0s-1 cm-2
centralPoint.spectrum.main.composite.mu_1511.0NoneNonekeV
centralPoint.spectrum.main.composite.sigma_10.850.0NonekeV
centralPoint.spectrum.main.composite.K_20.000460.01000.0keV-1 s-1 cm-2
\n", - "


Properties (4):

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
valueallowed values
disk.spectrum.main.composite.dat_2OPsSpectrum.datNone
broadBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
narrowBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
centralPoint.spectrum.main.composite.dat_2OPsSpectrum.datNone
\n", - "


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
" - ], - "text/plain": [ - "Model summary:\n", - "==============\n", - "\n", - " N\n", - "Point sources 1\n", - "Extended sources 3\n", - "Particle sources 0\n", - "\n", - "Free parameters (2):\n", - "--------------------\n", - "\n", - " value min_value max_value unit\n", - "disk.Wide_Asymm_Gaussian_on_sphere.e 0.999444 0.0 1.0 \n", - "disk.spectrum.main.composite.F_1 0.0017 0.0 1.0 s-1 cm-2\n", - "\n", - "Fixed parameters (27):\n", - "---------------------\n", - "\n", - " value min_value max_value \\\n", - "disk.Wide_Asymm_Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", - "disk.Wide_Asymm_Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", - "disk.Wide_Asymm_Gaussian_on_sphere.a 90.0 0.0 90.0 \n", - "disk.Wide_Asymm_Gaussian_on_sphere.theta 0.0 -90.0 90.0 \n", - "disk.spectrum.main.composite.mu_1 511.0 None None \n", - "disk.spectrum.main.composite.sigma_1 1.27 0.0 None \n", - "disk.spectrum.main.composite.K_2 0.0045 0.0 1000.0 \n", - "broadBulge.Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", - "broadBulge.Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", - "broadBulge.Gaussian_on_sphere.sigma 8.7 0.0 20.0 \n", - "broadBulge.spectrum.main.composite.F_1 0.00073 0.0 1.0 \n", - "broadBulge.spectrum.main.composite.mu_1 511.0 None None \n", - "broadBulge...sigma_1 0.85 0.0 None \n", - "broadBulge.spectrum.main.composite.K_2 0.0027 0.0 1000.0 \n", - "narrowBulge.Gaussian_on_sphere.lon0 359.75 0.0 360.0 \n", - "narrowBulge.Gaussian_on_sphere.lat0 -1.25 -90.0 90.0 \n", - "narrowBulge.Gaussian_on_sphere.sigma 2.5 0.0 20.0 \n", - "narrowBulge.spectrum.main.composite.F_1 0.00028 0.0 1.0 \n", - "narrowBulge.spectrum.main.composite.mu_1 511.0 None None \n", - "narrowBulge...sigma_1 0.85 0.0 None \n", - "narrowBulge.spectrum.main.composite.K_2 0.0011 0.0 1000.0 \n", - "centralPoint.position.ra 266.404988 0.0 360.0 \n", - "centralPoint.position.dec -28.936178 -90.0 90.0 \n", - "centralPoint.spectrum.main.composite.F_1 0.00012 0.0 1.0 \n", - "centralPoint...mu_1 511.0 None None \n", - "centralPoint...sigma_1 0.85 0.0 None \n", - "centralPoint.spectrum.main.composite.K_2 0.00046 0.0 1000.0 \n", - "\n", - " unit \n", - "disk.Wide_Asymm_Gaussian_on_sphere.lon0 deg \n", - "disk.Wide_Asymm_Gaussian_on_sphere.lat0 deg \n", - "disk.Wide_Asymm_Gaussian_on_sphere.a deg \n", - "disk.Wide_Asymm_Gaussian_on_sphere.theta deg \n", - "disk.spectrum.main.composite.mu_1 keV \n", - "disk.spectrum.main.composite.sigma_1 keV \n", - "disk.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", - "broadBulge.Gaussian_on_sphere.lon0 deg \n", - "broadBulge.Gaussian_on_sphere.lat0 deg \n", - "broadBulge.Gaussian_on_sphere.sigma deg \n", - "broadBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", - "broadBulge.spectrum.main.composite.mu_1 keV \n", - "broadBulge...sigma_1 keV \n", - "broadBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", - "narrowBulge.Gaussian_on_sphere.lon0 deg \n", - "narrowBulge.Gaussian_on_sphere.lat0 deg \n", - "narrowBulge.Gaussian_on_sphere.sigma deg \n", - "narrowBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", - "narrowBulge.spectrum.main.composite.mu_1 keV \n", - "narrowBulge...sigma_1 keV \n", - "narrowBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", - "centralPoint.position.ra deg \n", - "centralPoint.position.dec deg \n", - "centralPoint.spectrum.main.composite.F_1 s-1 cm-2 \n", - "centralPoint...mu_1 keV \n", - "centralPoint...sigma_1 keV \n", - "centralPoint.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", - "\n", - "Properties (4):\n", - "--------------------\n", - "\n", - " value allowed values\n", - "disk.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", - "broadBulge.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", - "narrowBulge...dat_2 OPsSpectrum.dat None\n", - "centralPoint...dat_2 OPsSpectrum.dat None\n", - "\n", - "Linked parameters (0):\n", - "----------------------\n", - "\n", - "(none)\n", - "\n", - "Independent variables:\n", - "----------------------\n", - "\n", - "(none)\n", - "\n", - "Linked functions (0):\n", - "----------------------\n", - "\n", - "(none)" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# add sources to thin disk and thick disk models \n", - "totalModel = Model(ModelDisk, ModelBroadBulge,ModelNarrowBulge,ModelCentralPoint)\n", - "totalModel.display(complete=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "id": "c424a2e2-9bf9-457d-a54b-23d8ea30fd56", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "... Calculating point source responses ...\n", - "--> done (source name : centralPoint)\n", - "--> all done\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:04 INFO      set the minimizer to minuit                                             joint_likelihood.py:1045\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=89984;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=185921;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1045\u001b\\\u001b[2m1045\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:11 INFO      trial values: 0.99944,0.0017,1 -> logL = 166712.805                     joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166712.805\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=177840;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=724477;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:16 INFO      trial values: 0.99999,0.0017,1 -> logL = 143305.679                     joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99999\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m143305.679\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=756759;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=77785;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:21 INFO      trial values: 0.99809,0.0017,1 -> logL = 166574.594                     joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99809\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166574.594\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=581250;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=470522;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:26 INFO      trial values: 0.99954,0.0017,1 -> logL = 166719.003                     joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99954\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166719.003\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=452118;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=55020;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:30 INFO      trial values: 0.99935,0.0017,1 -> logL = 166705.103                     joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99935\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166705.103\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=540155;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=844644;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:36 INFO      trial values: 0.99947,0.0017,1 -> logL = 166714.363                     joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99947\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166714.363\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=973173;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=555772;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:40 INFO      trial values: 0.99942,0.0017,1 -> logL = 166711.167                     joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99942\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166711.167\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=967254;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=176637;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:45 INFO      trial values: 0.99944,0.0017096,1 -> logL = 166703.091                  joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017096\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166703.091\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=64598;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=352769;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:50 INFO      trial values: 0.99944,0.0016904,1 -> logL = 166721.266                  joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016904\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166721.266\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=175901;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=869157;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:21:55 INFO      trial values: 0.99944,0.0017024,1 -> logL = 166710.477                  joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:21:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017024\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166710.477\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=132205;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664494;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:00 INFO      trial values: 0.99944,0.0016976,1 -> logL = 166715.054                  joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016976\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166715.054\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=952429;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617509;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:05 INFO      trial values: 0.99944,0.0017,1.0056 -> logL = 166693.001                joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.0056\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166693.001\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=789226;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930849;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:10 INFO      trial values: 0.99944,0.0017,0.99437 -> logL = 166727.639               joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99437\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166727.639\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339112;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=804375;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:16 INFO      trial values: 0.99944,0.0017,1.0007 -> logL = 166710.575                joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m1.0007\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166710.575\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=702237;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=280544;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:21 INFO      trial values: 0.99944,0.0017,0.99929 -> logL = 166714.956               joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99944\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0017\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99929\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166714.956\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=736526;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=529079;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:26 INFO      trial values: 0.9998,0.0016312,0.98042 -> logL = 166758.820             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.9998\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016312\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98042\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166758.820\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=747700;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=687159;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:31 INFO      trial values: 0.99971,0.0016514,0.98618 -> logL = 166768.518            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99971\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016514\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98618\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166768.518\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=860002;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=321147;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:36 INFO      trial values: 0.99973,0.0016514,0.98618 -> logL = 166769.136            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99973\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016514\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98618\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166769.136\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327564;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=599044;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:41 INFO      trial values: 0.99969,0.0016514,0.98618 -> logL = 166767.828            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99969\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016514\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98618\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166767.828\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429101;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286154;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:46 INFO      trial values: 0.99971,0.0016537,0.98618 -> logL = 166768.608            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99971\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016537\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98618\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166768.608\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=389327;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=196401;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:51 INFO      trial values: 0.99971,0.001649,0.98618 -> logL = 166768.349             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99971\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.001649\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98618\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166768.349\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=303676;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286561;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:22:56 INFO      trial values: 0.99971,0.0016514,0.98689 -> logL = 166768.821            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:22:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99971\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016514\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98689\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166768.821\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=264237;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=556493;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:01 INFO      trial values: 0.99971,0.0016514,0.98547 -> logL = 166768.134            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99971\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016514\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98547\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166768.134\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635417;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930569;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:05 INFO      trial values: 0.99983,0.0016521,0.98828 -> logL = 166772.333            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99983\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016521\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98828\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.333\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641947;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=682714;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:10 INFO      trial values: 0.99985,0.0016522,0.98858 -> logL = 166772.403            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016522\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98858\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.403\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883374;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=123420;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:15 INFO      trial values: 0.99986,0.0016522,0.98858 -> logL = 166772.343            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99986\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016522\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98858\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.343\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=597648;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261531;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:20 INFO      trial values: 0.99983,0.0016522,0.98858 -> logL = 166772.375            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99983\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016522\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98858\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.375\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=976787;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=56703;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:25 INFO      trial values: 0.99985,0.0016546,0.98858 -> logL = 166772.215            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016546\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98858\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.215\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=331238;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=49281;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:30 INFO      trial values: 0.99985,0.0016498,0.98858 -> logL = 166772.513            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016498\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98858\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.513\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=248814;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=709829;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:35 INFO      trial values: 0.99985,0.0016522,0.98929 -> logL = 166772.416            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016522\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98929\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.416\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=162609;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=884446;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:40 INFO      trial values: 0.99985,0.0016522,0.98788 -> logL = 166772.311            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016522\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98788\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.311\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=136596;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=377725;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:46 INFO      trial values: 0.99985,0.0016483,0.98929 -> logL = 166772.634            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016483\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98929\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.634\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=173261;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=8228;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:51 INFO      trial values: 0.99985,0.0016432,0.99017 -> logL = 166772.738            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99017\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.738\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80606;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=645130;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:23:56 INFO      trial values: 0.99986,0.0016432,0.99017 -> logL = 166772.719            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:23:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99986\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99017\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.719\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=639873;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234823;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:00 INFO      trial values: 0.99984,0.0016432,0.99017 -> logL = 166772.693            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99984\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99017\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.693\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=749124;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=622582;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:05 INFO      trial values: 0.99985,0.0016456,0.99017 -> logL = 166772.730            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016456\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99017\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.730\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828036;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=331885;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:10 INFO      trial values: 0.99985,0.0016409,0.99017 -> logL = 166772.667            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016409\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99017\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.667\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1395;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=326268;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:15 INFO      trial values: 0.99985,0.0016432,0.99088 -> logL = 166772.748            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99088\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.748\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155058;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=612908;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:20 INFO      trial values: 0.99985,0.0016432,0.98946 -> logL = 166772.648            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98946\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.648\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=259019;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=188817;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:25 INFO      trial values: 0.99985,0.0016432,0.99058 -> logL = 166772.754            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99058\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=483129;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=165712;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:30 INFO      trial values: 0.99987,0.0016432,0.99058 -> logL = 166772.701            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99987\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99058\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.701\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=277687;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=92090;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:35 INFO      trial values: 0.99984,0.0016432,0.99058 -> logL = 166772.719            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99984\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99058\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.719\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=198976;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=134359;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:40 INFO      trial values: 0.99985,0.0016456,0.99058 -> logL = 166772.715            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016456\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99058\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.715\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152512;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=937366;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:46 INFO      trial values: 0.99985,0.0016408,0.99058 -> logL = 166772.713            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016408\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99058\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.713\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=638804;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=373583;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:51 INFO      trial values: 0.99985,0.0016432,0.99129 -> logL = 166772.717            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99129\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.717\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559924;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922018;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:24:56 INFO      trial values: 0.99985,0.0016432,0.98987 -> logL = 166772.711            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:24:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.98987\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.711\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=918715;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=738229;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:01 INFO      trial values: 0.99985,0.0016432,0.99061 -> logL = 166772.754            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99061\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=708240;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=963685;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:06 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=238430;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=419121;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:11 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=820692;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=480802;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:16 INFO      trial values: 0.99987,0.0016432,0.9906 -> logL = 166772.713             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99987\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.713\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=731801;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=975176;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:21 INFO      trial values: 0.99984,0.0016432,0.9906 -> logL = 166772.717             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99984\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.717\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=390715;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673187;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:26 INFO      trial values: 0.99985,0.0016456,0.9906 -> logL = 166772.715             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016456\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.715\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865119;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=77205;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:31 INFO      trial values: 0.99985,0.0016408,0.9906 -> logL = 166772.714             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016408\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.714\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=73833;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=896229;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:36 INFO      trial values: 0.99985,0.0016432,0.99131 -> logL = 166772.715            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99131\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.715\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=419851;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=498982;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:41 INFO      trial values: 0.99985,0.0016432,0.9899 -> logL = 166772.713             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9899\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.713\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=569871;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=651667;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:46 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=324767;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=270025;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:51 INFO      trial values: 0.99987,0.0016432,0.9906 -> logL = 166772.713             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99987\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.713\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=328319;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=28050;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:25:56 INFO      trial values: 0.99984,0.0016432,0.9906 -> logL = 166772.717             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:25:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99984\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.717\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=849846;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955100;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:01 INFO      trial values: 0.99985,0.0016456,0.9906 -> logL = 166772.715             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016456\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.715\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=398073;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=346234;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:06 INFO      trial values: 0.99985,0.0016408,0.9906 -> logL = 166772.714             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016408\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.714\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=61961;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=54192;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:11 INFO      trial values: 0.99985,0.0016432,0.99131 -> logL = 166772.715            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99131\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.715\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923169;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727772;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:15 INFO      trial values: 0.99985,0.0016432,0.9899 -> logL = 166772.713             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9899\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.713\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=604915;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978568;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:20 INFO      trial values: 0.99986,0.0016432,0.9906 -> logL = 166772.753             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99986\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.753\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=118536;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=823713;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:26 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.752             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=70308;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=897344;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:31 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=966946;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234394;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:36 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=744333;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=93576;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:41 INFO      trial values: 0.99985,0.0016437,0.9906 -> logL = 166772.753             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016437\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.753\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=551727;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=592665;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:46 INFO      trial values: 0.99985,0.0016427,0.9906 -> logL = 166772.752             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016427\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=165739;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=135858;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:51 INFO      trial values: 0.99985,0.0016432,0.99075 -> logL = 166772.753            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99075\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.753\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=337155;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=516526;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:26:56 INFO      trial values: 0.99985,0.0016432,0.99046 -> logL = 166772.752            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:26:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99046\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=294427;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=820849;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:01 INFO      trial values: 0.99987,0.0016456,0.9906 -> logL = 166772.639             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99987\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016456\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.639\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=50247;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=643384;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:06 INFO      trial values: 0.99987,0.0016432,0.99131 -> logL = 166772.659            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99987\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99131\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.659\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=783617;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=244490;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:11 INFO      trial values: 0.99985,0.0016456,0.99131 -> logL = 166772.628            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016456\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99131\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.628\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=626723;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=800154;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:16 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=379119;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=729302;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:21 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=511505;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=703434;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:26 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=92190;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=297286;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:31 INFO      trial values: 0.99985,0.0016437,0.9906 -> logL = 166772.753             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016437\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.753\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=917380;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=204633;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:36 INFO      trial values: 0.99985,0.0016427,0.9906 -> logL = 166772.752             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016427\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806007;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=918998;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:41 INFO      trial values: 0.99985,0.0016432,0.99075 -> logL = 166772.753            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99075\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.753\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=56101;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=466665;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:46 INFO      trial values: 0.99985,0.0016432,0.99046 -> logL = 166772.752            joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99046\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=665240;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=681793;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:51 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=822856;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=445887;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:27:56 INFO      trial values: 0.99985,0.0016432,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:27:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=549728;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=902669;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:28:02 INFO      trial values: 0.99985,0.0016433,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:28:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016433\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=574897;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=645359;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, - { - "data": { - "text/html": [ - "
08:28:07 INFO      trial values: 0.99985,0.0016431,0.9906 -> logL = 166772.754             joint_likelihood.py:1013\n",
-       "
\n" + "
    \n", + "\n", + "
  • disk (extended source): \n", + "
      \n", + "\n", + "
    • shape: \n", + "
        \n", + "\n", + "
      • lon0: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: Longitude of the center of the source
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 360.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • lat0: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: Latitude of the center of the source
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • a: \n", + "
          \n", + "\n", + "
        • value: 90.0
        • \n", + "\n", + "
        • desc: Standard deviation of the Gaussian distribution (major axis)
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • e: \n", + "
          \n", + "\n", + "
        • value: 0.99944429
        • \n", + "\n", + "
        • desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard deviation of the Gaussian distribution (minor axis)
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 1.0
        • \n", + "\n", + "
        • unit:
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • theta: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: inclination of major axis to a line of constant latitude
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    • spectrum: \n", + "
        \n", + "\n", + "
      • main: \n", + "
          \n", + "\n", + "
        • composite: \n", + "
            \n", + "\n", + "
          • F_1: \n", + "
              \n", + "\n", + "
            • value: 0.0017
            • \n", + "\n", + "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", + "\n", + "
            • min_value: 0.0
            • \n", + "\n", + "
            • max_value: 1.0
            • \n", + "\n", + "
            • unit: s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • mu_1: \n", + "
              \n", + "\n", + "
            • value: 511.0
            • \n", + "\n", + "
            • desc: Central value
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • sigma_1: \n", + "
              \n", + "\n", + "
            • value: 1.27
            • \n", + "\n", + "
            • desc: standard deviation
            • \n", + "\n", + "
            • min_value: 1e-12
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • K_2: \n", + "
              \n", + "\n", + "
            • value: 0.004499999999999998
            • \n", + "\n", + "
            • desc: Normalization
            • \n", + "\n", + "
            • min_value: 1e-30
            • \n", + "\n", + "
            • max_value: 1000.0
            • \n", + "\n", + "
            • unit: keV-1 s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: True
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • dat_2: OPsSpectrum.dat
          • \n", + "\n", + "
          \n", + "\n", + "
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    \n", + "\n", + "
  • \n", + "\n", + "
\n" ], "text/plain": [ - "\u001b[38;5;46m08:28:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016431\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=951908;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=335304;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" + " * disk (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 0.0\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: 0.0\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * a:\n", + " * value: 90.0\n", + " * desc: Standard deviation of the Gaussian distribution (major axis)\n", + " * min_value: 0.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * e:\n", + " * value: 0.99944429\n", + " * desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard\n", + " * deviation of the Gaussian distribution (minor axis)\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * theta:\n", + " * value: 0.0\n", + " * desc: inclination of major axis to a line of constant latitude\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * composite:\n", + " * F_1:\n", + " * value: 0.0017\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu_1:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma_1:\n", + " * value: 1.27\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * K_2:\n", + " * value: 0.004499999999999998\n", + " * desc: Normalization\n", + " * min_value: 1.0e-30\n", + " * max_value: 1000.0\n", + " * unit: keV-1 s-1 cm-2\n", + " * is_normalization: true\n", + " * dat_2:\n", + " * value: OPsSpectrum.dat\n", + " * polarization: {}" ] }, + "execution_count": 9, "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, + "output_type": "execute_result" + } + ], + "source": [ + "ModelDisk" + ] + }, + { + "cell_type": "markdown", + "id": "ed7ac3ec", + "metadata": {}, + "source": [ + "Make some plots to look at these new extended sources:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "73d61cb7", + "metadata": {}, + "outputs": [ { "data": { - "text/html": [ - "
08:28:12 INFO      trial values: 0.99985,0.0016432,0.99063 -> logL = 166772.754            joint_likelihood.py:1013\n",
-       "
\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG2CAYAAADLM3qLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvV0lEQVR4nOzdd3iUVfYH8O/09EnvhQQCJLSE3jsooCDiuio/YWkiuCKyoi6wWJdFdGFBISIEEHbVVZcivffeAlICpCekt5kkk8m09/fHZN7MpGfmnSSTnM/z+DiZ3Pfemyjh5N57zuUxDMOAEEIIIYS0GvyWngAhhBBCCDFFARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDAZoNUiqVePToEZRKZUtPhRBCCCFWQAGaDUpNTcW8efOQmpra0lMhhBBCiBVQgEYIIYQQ0spQgEYIIYQQ0spQgEYIIYQQ0spQgEYIIYQQ0soIW3oChBBCCKmfVquFWq1u6WmQRhKJRBAIBBb1QQEaIYQQ0oqVlpYiIyMDDMO09FRII/F4PAQGBsLJycnsPihAI4QQQloprVaLjIwMODg4wMvLCzwer6WnRBrAMAzy8vKQkZGB8PBws1fSKEAjhBBCWim1Wg2GYeDl5QV7e/uWng5pJC8vL6SkpECtVpsdoFGSACGEENLK0cqZbeHivxcFaIQQQgghrQwFaIQQQghpMf/617+Qm5tr1rMpKSnw9PRkP+7QoQO6du2KqKgoREZGYuPGjQ32MXHiRCQmJjbYbu/evbh27ZpZ8zQHBWiEEEIIaTH1BWg6nQ46na5J/f3666+Ii4vD0aNHsXz5cty9e7fe9ocOHULHjh0b7Le5AzRKEiCEEEJsxN7lF6GQVVitfwepBC/8fUiD7S5fvoz3338fcrkcDMPgs88+Q2RkJBYvXozc3FyoVCrMnz8fCxcuBKA/k7V69Wrs3r0bubm5WLlyJWbNmoVPP/0UmZmZeOmll2BnZ4cdO3Zg7969SExMRFlZGRISEnD48GH861//wpkzZ6BWqyGVSrF161aEh4fXO8egoCB07twZjx8/ho+PD958800kJCSAYRgsWrQIb7zxBgD9qtuBAwfQvXt3jBw5EgMGDMClS5eQmZmJcePG4dtvv8WhQ4fw22+/4cSJE9i6dSv+/Oc/Y+7cuZZ/w+tBARohhBBiIxSyCigKrRegNUZhYSGmTp2K3bt3Y/DgwdDpdCgqKsKzzz6LXbt2oWvXrlAoFBg4cCAGDhyI3r17AwDs7Oxw9epVPHz4EP3798frr7+OlStXYtu2bfj111/RvXt3APqVqtOnT+PWrVvw9vYGAHzwwQf48ssvAQA//fQT3n33XRw4cKDeef7++++Ij49Hr169sGjRInTt2hV79uxBbm4u+vTpg6ioKPTv37/Gc4mJiThz5gxUKhUiIyNx+fJlTJw4EZMnT0bfvn3x5z//mctvZ50oQCOEEEJshINU0uL9X758GZGRkRg8eDAAgM/nIycnB/fv38crr7zCtispKcGDBw/YAG369OkAgIiICAiFQmRnZyMwMLDWMZ577jk2OAOAY8eO4euvv0ZJSQl0Oh3kcnmd8zOsxjk4OGDbtm0IDw/HiRMncOfOHQCAt7c3XnzxRZw8ebLWAO2VV16BQCCAvb09oqKikJiYiEGDBjX4feEaBWiEENJGqdRqxCclIa+wEBKxBIG+Pgj08YFQSD/6bVVjth9bAsMw8PT0RFxcXJ1t7Ozs2NcCgQAajabOtsYV+NPS0rBo0SJcu3YNYWFhuHv3LkaPHl3ns8arccaql76oqxRGU+ZpTZQkQAghbVBOQQF+OngIF27ewqPkFNx99AiHzp7Djj17cSc+nq4NImYbPHgwHj58iEuXLgHQH+T38vKCg4MDdu7cybZLSEhAYWFhg/25uLhAJpPV+XmZTAaxWAxfX18wDINvvvmmyXMeO3YsvvvuOwBAXl4e9uzZU2+QZ848uUYBGiGEtDGFxTIcOHUapQpFjc+p1GpcvHUbF27epCCNmMXNzQ179uzB0qVL0bNnT0RHR+PKlSvYv38/fv75Z/Ts2RPdunXD3LlzUV5e3mB/ixYtwqxZsxAVFVXrClyPHj3whz/8Ad26dcPIkSMRHBzc5Dlv2LABd+/eRc+ePTFq1CgsX7681u3N+rz++uv44YcfEBUVha1btzZ5Dk3FY+hPqM159OgR5s2bhy1btqBLly4tPR1CSCui1Wrxy5GjKKz8Td/XyxODo6OhKFciKT0dj1NS2LYj+vdDt06dWmimpDGUSiWSk5MRGhpqsvVGWjcu/rvRQQRCCGlDbt5/wAZnHq6ueH7kSIhEIgBAWFAgAn19cOrKVQDAxZu3EOznB2dHxxabLyGkdrTFSQghbYSivBxxDx8C0GfWjRk0kA3ODLqGhbGrZhqtFpfrOdRNCGk5FKARQkgbcevBQ2i0WgBAt04d4enmVmu7gVG9YCfRl1NISE1DQXFxc02RENJIFKARQkgboFKr8aDyPkGhQIDe3brV2VYiFqOP0ecNq26EkNaDAjRCCGkDHiUls/WauoSGwtHevt72kZ06QiIWAwCepKSirJaMT0JIy6EAjRBCbBzDMLj35An7cffO9d9RCAAioRDdK+8y1DEMHiWnWGt6hBAzUIBGCCE2LregEEWVV9/4eXnBw9W1Uc917RjGvo5PSqK6aIS0IhSgEUKIjUtITWVfdw0LbfRzUicn+Ffed1hcUoLs/HzO50ZIc9mxYwdcXV0RFRWFqKgo9OrVC/v27WvUsyNHjmzw8vXmRgEaIYTYMJ1Oh4S0NAD60hqhQUFNet44oEtMS+d0boTUpfr9llzddzl27FjExcUhLi4OW7Zswdy5cznptyVQoVpCCLFhWXn5KKu8TifYzw92lQf/Gys0MBB83jXoGAbJGRkY0ju6zkukSct79eFa5KtLrNa/p8gZP0YsqbcNj8fD6tWrsXv3buTm5mLlypWYNWsWAGDp0qU4c+YM1Go1pFIptm7divDwcKSkpKBv375YtGgRjh8/jhdffBH79u3DkCFDcOXKFQDAsWPH8MEHH+DIkSMAgFGjRuGf//wnVCoVgoODkZOTA5FIhN69eyMiIgL/+c9/kJSUhHHjxiGxMoPZWGFhIdyMSs106NABBw4cYC9S79u3L7766iuMHDnS5LmnT59ixowZyM7ORmio/heYZ599Fn/+859RUlKCJUuW4M6dO1AqlRg8eDC+/vrrGvUGuUAraIQQYsOSM6pWvTqFNP2OQolYjABfHwBASVkZ8ouKOJsb4V6+ugS5apnV/mls8GdnZ4erV6/i0KFDWLRoEbsC9sEHH+D69euIi4vDggUL8O6777LPFBQUoFOnTjh//jz7flxcHI4cOYKTJ0/iu+++w82bN3Hz5k3ExcUhMTER69evh5OTE7p164bLly+joKAAWq0W169fBwAcP34cY8eOZcc4ceIEoqKi0LlzZ0ybNg1r165t8vd40aJFGDVqFO7fv49Nmzbh3Llz7Of+8pe/YPjw4bh27Rru3LkDjUZj1uXtjUEraIQQYsNSn2YC0K9qhPj7m9VHWFAQ0rOyAQCJ6enwcnfnbH6EW54i51bR//Tp0wEAEREREAqFyM7ORmBgII4dO4avv/4aJSUl0Ol0kFcmrwD6oO7VV1816ef1119nV59OnDiBOXPmQFJZRHnevHn49ttvsXTpUowdOxYnTpxATk4OnnnmGTx8+BD37t3DiRMn8PLLL7P9jR07Fr/++isA4N69exg7dixu3boF/yb82Th9+jQ2bNgAAAgODsaYMWPYz+3duxdXrlzBP//5TwBAeXk5xE1ctW4sCtAIIcRGFctLICstBaDP3pSY+RdFaEAAzkK/IpGWmYmBvXpxNkfCrYa2H5uL8QXgAoEAGo0GaWlpWLRoEa5du4awsDDcvXsXo0ePZts5OjrW2D53cnJiXzMMU+Pzho/Hjh2LpUuXIjc3Fy+++CICAgJw/PhxnD17Ft9++22tc+zevTuCg4Nx8eJF/OEPf4BQKIS28qYNQH+heV3q2uZnGAZ79+5FWFhYrZ/nEm1xEkKIjUrNzGRfh/j7md2Pg709vCrP6uQXFUNReaaNkKaQyWQQi8Xw9fUFwzBN3vobN24cduzYAZVKBY1Gg9jYWHb7csCAAYiPj8eJEycwbNgwjB07FuvXr0dQUBA8PDxq7S8jIwNPnjxB586dAQAdO3bE1atXAQDXrl3Do0ePan1u5MiR2LFjBwAgPT0dp06dYj83efJkrF69mt3SLSoqQkJCQpO+zsaiFTRCCLFRaSYBWoBFfQX5+SGv8vxZRnYOOod2sKg/0v706NEDf/jDH9CtWzcEBwdj3LhxTXr+jTfeQGJiInr37g1AHygtWrQIACAUCjF06FCUlpbC3t4e3bp1g1qtNjl/BlSdQWMYBhqNBqtWrUKvyhXhv//975g5cyZiY2PRu3dvdKvjOrT169djxowZ+O9//4vOnTtjyJAhkEqlAIB//etf+OCDDxAVFQU+nw+RSIQvvvgCnTp1atLX2hg8xsYqEyoUCmzduhWnT59GSUkJgoODMX36dJM94roUFRUhJiYGly9fhlKpRKdOnTB37lz06dOnRtsbN24gNjYWCQkJsLOzw6BBg7BgwQKTjBBAnxq8a9cuHD58GAUFBfDz88PUqVMxbdo0k3bbtm1jI3JjYrEYJ06caNL34NGjR5g3bx62bNmCLl26NOlZQkjboNZoEPvr/6DT6eDk4IDXp0y2KPvyaU4O9p3UrxR0Ce2AMYMGcTVVYgGlUonk5GSEhoaabCsS6ykvL4dIJIJQKERWVhb69euHkydPNunvWy7+u9ncCtqKFSsQHx+P+fPnIygoCCdOnMAnn3wCnU5Xb7SuUqmwePFilJaW4u2334abmxv27NmD9957D+vWrUNUVBTbNi4uDkuXLsWgQYOwatUqFBUVYfPmzVi8eDG2bNliciBw7dq1OHbsGObMmYOuXbvi2rVr2LBhAxQKBV5//fUa8/jqq6/g6OjIfkzp7IQQc2Tn50On0wHQr35Z+rPE19MTQqEQGo0G6VnZtZ4HIqQ9ePLkCWbMmAGGYaBWq/HRRx+1yGKITQVoly9fxo0bN7By5Up2WbN3797Izs5GTEwMRo8eDYFAUOuzBw8eRHJyMjZt2sTWQImOjsbs2bMRExODzZs3s203bdqEoKAgfPrppxAK9d8iPz8/vPXWWzh06BBeeOEFAEBycjIOHjyIefPmsZkp0dHRkMvl2LlzJ6ZMmQIXFxeTeXTu3BmujbyGhRBC6pKZk8u+DvDxtrg/gUCAAG9vpGZmQqFUokgmh7ur1OJ+CbE1PXv2RFxcXEtPw7aSBM6fPw97e/saReUmTpyI/Px8PHjwoN5ng4OD2eAM0O9pjx8/Hg8fPkReXh4AIC8vD/Hx8Rg/fjwbnAH6vfWgoCCTeijnz58HwzCYMGGCyVgTJkxARUUFexiREEK4lplbFaAZrmuylL9RoJeZl1tPS0KItdlUgJacnIyQkBCTwAnQZ2YYPl+XpKQktl19zxr+XVdb4zGSk5Ph6upaI4Okvvn86U9/wsiRIzFlyhT8/e9/R05OTp1zJoSQ2qg1GuQUFAAApM7OcHJw4KRffy8v9nVWbh4nfRJCzGNTW5wymazWYnPOzvrCesYF8aqTy+Vsu/qelclkAFBja9LQ1ngMmUxWazt7e3uIRCK2LwAICAjAvHnzEB4eDrFYjIcPH+LHH3/E9evXsWXLFngZ/WCsLj8/HwWVP4wBINXoYmRCSPuTY3T+LICj1TMA8HR3h1AggEarRWZeHp1DI6QF2VSABlh2qL6+Z+sqjmfJ+MZtn3nmGZPP9e7dG9HR0Vi4cCF++OEHvPPOO3X289tvv9WaAUoIaZ+ssb0JAAI+Hz6enniak4MyhQIlZWVwMSokSghpPjYVoEmlUpNVKYOSEv3dYbWtZhm4uLjUusJmeNawkmaodVLXOMarcFKptNYCdeXl5VCr1fXOBwAiIyMRGBhY79k5QF8Yb8iQIezHqamp+Pzzz+t9hhDSdpkEaBwkCBjz9/bC08qjF1l5eRSgkRp4PB5KSkpMbgGwJsNF6/n5+ez4PXr0AJ/Ph1KpxLhx4/Cvf/2rziRBgx07duDAgQPsVVCtnU2dQQsLC0NqaipbwdcgKSkJANhb5+t6trbb7g3vGa5tMPRh6LP6OMZjhIWFobi42GT7sbHzMcbn1/+fwdPTE126dGH/CQkJaVS/hJC2R6vTIaegEADg4ujI2fkzAz86h0Y4Uv3vai5dunQJcXFx+P3333H+/HkcOXLEamO1FJtaQRs2bBj279+Ps2fPmhSmPXLkCDw9PREZGVnns8OHD8fatWvx4MEDtp1Go8Hx48cRGRkJT09PAICXlxciIiJw7NgxvPLKK2xEfv/+faSlpeEPf/gD2+fQoUOxdetWHDlyhL04FgAOHz4MiUSCAQMG1Pv13L9/HxkZGTWK2hJCSF0Ki4vZ+wR9Kn9uccnH0xM8Hg8MwyC7IJ/z/ollZiz6CAVFNXd4uOLhJsXODZ802O6rr77C8ePHkZeXh08++YQtNcXj8fDVV19h//796NevH9577z28+eabSEhIAMMwWLRoEd544w0AwNKlS3HmzBmo1WpIpVJs3boV4eHhAICNGzdi3bp18PPzw4gRI+qch0KhgFKpZIvIf/zxxygtLcVXX30FAPjmm29w48aNWo8JLV++HP/973/h4eGB4cOH4/Tp07hx4wYAYNeuXfjmm2+gVqvh7OyMjRs3mlSBaA42FaANHDgQffv2xdq1a6FQKBAQEICTJ0/i6tWrWLFiBRtMrV69GkePHsWPP/4IX19fAPpSHHv27MHKlSsxf/58tlBtWloa1q1bZzLOm2++iSVLlmDlypWYOnUqW6g2NDTUpKRGaGgoJk2ahO3bt4PP5yMiIgLXr1/H/v37MXfuXJMtzlmzZmH8+PEICQkxSRJwd3dn/8cmhJCG5ORXrdj7eNZ+B6ElREIhPFylyC8qRpFMDrVGA5HQpv6qaNMKimTILShq6WmAx+Ph4sWLSEpKQv/+/TF06FAEBQUBACoqKnDmzBkAwB//+Ed07doVe/bsQW5uLvr06YOoqCj0798fH3zwAb788ksAwE8//YR3330XBw4cwN27d/H3v/8dt2/fho+PDxYuXFhj/MGDB4PH4yEhIQHTpk3D4MGDmzT//fv348CBA7hz5w7s7e3x0ksvsZ+7ePEifvrpJ5w7dw4SiQTnz5/H9OnTcefOHTO/W+axuT91n3/+ObZs2YLY2Fj2qqePPvrIZEVNp9NBq9XC+BYrsViMdevWISYmBuvXr4dSqUR4eDi+/PJLk1sEAH2x2TVr1mDbtm348MMP2aueFi5caHKLAAAsWbIEnp6e2L17NwoLC+Hr64tFixbVWBXr0KEDfvvtNxQWFkKtVsPT0xNjxozBzJkz2dU7QghpSHZ+1aqWj4d1fnZ4e3ggv6gYDMMgr7CQ00QEYhkPN+sWD25s/3PnzgWgP+ozdOhQnD9/Hq+99hoAYPbs2Wy7EydOsIGNt7c3XnzxRZw8eRL9+/fHsWPH8PXXX6OkpAQ6nY49J37mzBlMmjQJPj4+APR3dP78888m41+6dAlOTk5QKBSYNm0avv76a7z99tuN/jpPnz6Nl19+mb3ZZ+bMmfjss88AAPv27cOdO3dMdsHy8vKgUqlqxADWZHMBmoODA9555516sx6XLVuGZcuW1Xjf3d0dy5cvb9Q4/fr1Q79+/RpsJxQKMXv2bJP/IWvz0UcfNWpcQgipj6H+mYDPh6ebq1XG8PbwwIME/fnc3IICCtBakcZsP7YE46oF1ZMHaquSkJaWhkWLFuHatWsICwvD3bt3MXr0aABAU64Id3BwwPPPP4+DBw/i7bffhlAoZI8AAPo7MWtTXwkZhmEwe/ZsfPrpp42ehzXYVJIAIYS0Z8qKCsgqM8893dwazFozl49R8W1DQgIhxrZt2wZAn2F54cIFDB06tNZ2Y8eOxXfffQdAvwq1Z88ejB49GjKZDGKxGL6+vmAYBt988w37zKhRo3Do0CHkVmYrx8bG1jkPrVaLM2fOsHdlduzYETdu3IBOp4NCocD//ve/Wp8bNWoUfvnlFygUCuh0OuzatYv93PPPP4+dO3ciPT0dgH5XznA2rTnZ3AoaIYS0VzkFxufPrHc0ws3Fhb04PbdaljohACCRSDBkyBDk5eXh66+/Zs+fVbdhwwa8+eab6NmzJ3Q6HZYvX47+/fsDAP7whz+gW7duCA4Oxrhx49hnevbsiWXLlmHw4MHw9fXFpEmTavQ7ePBg8Pl8qFQq9OrVi92lmjZtGn799VdERkaiQ4cOiIqKQnl5eY3nJ0+ejEuXLqFXr17w9/fHwIEDUVSkP9s3fPhwrFq1ClOmTIFWq4VarcakSZPQt29fi79vTcFjmrKWSFqFR48eYd68ediyZQv7WwMhpO27dvd33Lh3DwAwbshghFux5M7eEyeQWVlm408vToWDnZ3VxiJ1UyqVSE5ORmhoKOzovwGnDLVNdTod5s6dC39/f85qjHLx3422OAkhxEbkFBgnCHCfwWnM26h/WkUjbdGMGTMQHR2NyMhIKJVKvP/++y09JRO0xUkIITZAn1Gp34Kxk0jgXJl9Zi3e7sYBWiE6BARYdTxCmtuePXtaegr1ohU0QgixAWXl5VBWVAAAvNzcrH6JuZe7G/u6oLjl624R0t5QgEYIITYgr7Aqm9LTKHiyFhcnJ7ZAbX5RsdXHI4SYogCNEEJsQH5R1SqWl5u71cfj8XjwrLw+p6SsDEqVyupjEkKqUIBGCCE2wHD+DAAbOFmbcSHcgiLa5iSkOZmVJBAWFmbxwIsXL8aiRYss7ocQQtoDwwqaSCiE1Nmpgdbc8DAKBPOLihBQefUOIcT6zFpBS0lJQVFRERiGMeuf1NRUFBcXc/ylEEJI21SurECpQgFAv3pm7QQBA89qARohdeHxeCgtLa2zMKxBSkoK3T/dSGaX2Xj33XexcuVKs57l82lnlRBCGiu/qCpBwKsZEgQM3KVS8Hg8MAxDiQKkUeLi4lp6Cm0G1UEjhJBWznj1qrnOnwGAUCCAm9QFhcUyFMlk0Gq1Vrv/kzTOL0eOQlHPCpWlHOzt8Ydnn2mw3e7du7Fs2TK4ublh4sSJ7Ps8Hg8lJSVwcHDAokWLcOLECUgkEgiFQly8eNGkD5VKhdmzZ8PJyQkbN26k/7eqMStAe/LkCdzdzc8isvR5QghpT1oiQYAdz9UNhcUy6BgGhTIZvOhnd4tSlJejzIoBWmPk5uZi3rx5uHTpErp06YI1a9bUaHPnzh2cPHkSDx48AJ/PZy9HNygqKsK0adMwfvx4fPjhh805fZthVoDWsWNHiwa19HlCCGlPDCtoAj4fblJps47t6eaGxykp7DwoQGtZDvb2Ld7/lStX0Lt3b/Yu6DfeeAMffPCBSZuwsDCo1WrMnj0bo0aNwqRJk9jjTUqlEkOGDMGKFSvw2muvcf9FtBG0xUkIIa2YWqNBcUkJAMDd1RWCZj7Da1Jqo1jWrGOTmhqz/WhtDMM02EYqleL+/fs4e/YsTp8+jb/+9a84d+4chEIhJBIJhgwZgv379+Pll1+GUEihSG3otD4hhLRihbKqoMjDtXlXzwB9okBtcyHt16BBg3D79m08fvwYALB169YabfLy8lBWVobx48dj1apV6NChAx48eABAf07tu+++g4+PD1588UVUVF5hRkxxGqAVFRVh586dXHZJCCHtWqFRSSIPV9dmH9/ezg52Ev3ZIQrQCAB4e3vju+++w/PPP4/BgwfXWpkhPT0d48aNQ8+ePdGjRw90794dEyZMYD/P4/Hwr3/9C7169cKkSZNQVlbWnF+CTeB0XTEtLQ2zZs3CjBkzuOyWEELarUKjbUX3Zj5/Buj/InWXSpGZmwdF5YXtdhJJs8+DtC4vvvgiXnzxRfbjJUuWAKja/uzduzdu3rxZ47kOHTogPz+f/fizzz6z8kxtV5MCtLS0tHo/n5mZadFkCCGEmCqQFbOvW2IFDQDcpa7IzM0DoF9F8/f2bpF5ENKeNClA69ChQ70VrBmGabYK14QQ0h4YDubbSSSwt7NrkTlUP4dGARoh1tekAM3NzQ2rVq3CyJEja/38w4cPMW3aNC7mRQgh7V65UolypRJAVVX/luBulJxQROfQWkRjMidJ68HFf68mBWh9+vRBXl4eW/ukOqVSSf8TEUIIR0wzOF1bbB7GK2hUaqN5iUQi8Hg85OXlwcvLi3apbADDMMjLywOPx4NIJDK7nyYFaAsWLKg30yI4OBjbt283ezKEEEKqGAdD7i1QYsPAsL1arlTSClozEwgECAwMREZGBlIqCwaT1o/H4yEwMNCi66uaFKBNnTq13s+7ublh5syZZk+GEEJIFZMSG1LXFpuHfnwpMpRKlFdUQKFUwqGFzsO1R05OTggPD4darW7pqZBGEolEFt8tSuV7CSGklSqQtY4VNABwk0qRkZMDQH8OjQK05iUQCOgy8XbG4kK1AoGgwfIbhBBCmoZhGHYFzdnREWILzrJwwfgWAzqHRoj1WRygUVIAIYRwr6SsDGqNBkDLFKitzs2k1EZxy02EkHaC7uIkhJBWqLAVbW8CpkFisVzegjMhpH2gAI0QQlqhgha+g7M6iVjMnjsrogCNEKujAI0QQlqhIllVENQatjgBwNXFBQBQrqyAsqKihWdDSNtGARohhLRCxqtUrs7OLTiTKoYADQCK5SUtOBNC2j4K0AghpJVhGIYN0FycnCAUto6KSG4uVYFicQltcxJiTRSgEUJIK1OqUEBTmcHpZrRq1dKM50Ln0AixLosDtOXLl8O1FRxgJYSQtsI4+HGTtp4AzXSLkwI0QqzJ7HVzjUYDoVCIzz77jMv5EEJIu2ecINCaVtCcHR0hEAig1WppBY0QKzN7Bc3f3x/vvfceHj58yOV8CCGk3TNZQXNpHRmcgP4CaEPCgrykFFqdroVnREjbZXaAJpPJsHbtWnTv3h2DBw9GbGwsSktLuZwbIYS0S8XyqiK1rq1oixOo2ubUMQzkJfQznxBrMTtAy8rKwrp169CjRw9cuXIFb7zxBvz8/DBnzhxcuHCByzkSQki7YlhBs7ezg51Y3MKzMUWJAoQ0D7MDNHd3d7zzzjuIi4vDjRs3sGDBAojFYmzfvh0jRoxAREQEvvzyS+Tk5HA5X0IIadOUFRUoV+qLwLam82cGVGqDkObBSZmN3r1745tvvkFWVhZ++OEHjBkzBk+ePMGHH36IoKAgTJ06FQcOHICOzisQQki9WmsGpwFlchLSPDitgyYWi/HKK6/g2LFjSElJwccff4ygoCDs27cPU6ZMQVBQEJfDEUJIm2Oawdl6EgQMjAM047kSQrhltUK1gYGB+Nvf/oZDhw5hyJAhYBgG2dnZ1hqOEELahCKjBIHWuIImEgrh5OAAQL+CxjBMC8+IkLbJKveHlJWV4eeff8a2bdtw6dIlMAwDBwcHvPTSS9YYjhBC2owiozsuW+MZNEC/ilaqUKBCrUa5UgkHe/uWnhIhbQ6nAdr58+exbds2/Prrr1AoFGAYBv369cOcOXPw6quvwrmVXPhLCCGtVbFMv4ImEgrh2EoDHzcXF2RU7ogUyUsoQCPECiwO0J4+fYrvv/8eO3bsQGJiIhiGgYeHB+bOnYs5c+age/fuXMyTEELaPI1GA3lZGQB9EMTj8Vp4RrWTGv2yLSspQYCPdwvOhpC2yewA7eeff8b27dtx4sQJaLVa8Pl8jB8/HrNnz8YLL7wAkUjE5TwJIaTNKy4x2t5shefPDFydndjXMqM5E0K4Y3aA9sorrwAAOnTogFmzZmHWrFkIDAzkbGKEENLeFMmMEgRaYQangfEKWjEFaIRYhUUB2pw5czBmzBgu50MIIe2WSYJAK15Bc3Z0BJ/Hg45haAWNECsxO0D74YcfuJwHIYS0eyYlNlppBicA8Pl8uDg5obikBLLSUjAM02rPyxFiqzirg6bRaLBu3Tr0798fLi4uEAqrYr+4uDgsXLgQjx8/5mo4Qghpc4orV9D4PB5cnJwaaN2yDNucWq0WpQpFC8+GkLaHkwCtvLwco0aNwnvvvYfU1FS4uLiYFC8MDQ3F9u3bsXPnTi6GI4SQNodhGMhLSwFUbiHyrVZHnBPVMzkJIdzi5CfAqlWrcPHiRfzjH/9AdnY25s6da/J5qVSKESNG4OjRo1wMRwghbU55RQXUGg0AwMW5da+eAYCrSYBW2oIzIaRt4qRQ7X//+1+MHDkS77//PgDUehYhLCwMt2/ftngshUKBrVu34vTp0ygpKUFwcDCmT5/eqGSFoqIixMTE4PLly1AqlejUqRPmzp2LPn361Gh748YNxMbGIiEhAXZ2dhg0aBAWLFgANzc3k3YajQa7du3C4cOHUVBQAD8/P0ydOhXTpk2rdy6fffYZjh8/jkGDBuGLL75o2jeBENLmyI2CnNa+vQkAUqMgkjI5CeEeJytoaWlp6NevX71tXFxcIDNKITfXihUrcOTIEfzpT3/CmjVr0LVrV3zyySc4fvx4vc+pVCosXrwYN2/exNtvv41Vq1bBzc0N7733HuLi4kzaxsXFYenSpXBzc8OqVavw9ttv4+bNm1i8eDFUKpVJ27Vr1+I///kPpk6diq+++grDhg3Dhg0bsGvXrjrncvnyZVy4cAGOjo5mfx8IIW2LrLQqyJHaRIBGW5yEWBMnK2jOzs7Iy8urt01iYiK8vLwsGufy5cu4ceMGVq5cibFjxwIAevfujezsbMTExGD06NEQCAS1Pnvw4EEkJydj06ZN7O0G0dHRmD17NmJiYrB582a27aZNmxAUFIRPP/2UTXbw8/PDW2+9hUOHDuGFF14AACQnJ+PgwYOYN28eXn31VbZPuVyOnTt3YsqUKXCplolVWlqKr776CnPmzMGvv/5q0feDENJ2GM6fAYCLU+u/Fs/JwQF8Ph86nY4CNEKsgJMVtIEDB2L//v11rpBlZGTg0KFDGD58uEXjnD9/Hvb29hg5cqTJ+xMnTkR+fj4ePHhQ77PBwcEmV08JhUKMHz8eDx8+ZAPMvLw8xMfHY/z48SaZqD169EBQUBDOnTtn0ifDMJgwYYLJWBMmTEBFRQWuXr1aYx4bN26Eh4dHg1ughJD2xfgcl9QGzqDx+Xx2pU9WWgqdTtfCMyKkbeEkQFu6dCkKCwsxduxYXLp0CZrKg64KhQInT57E+PHjoVarsWTJEovGSU5ORkhIiEngBAAdO3ZkP1+XpKQktl19zxr+XVdb4zGSk5Ph6uoKDw+PRs3nxo0bOHr0KN5///06V/pqk5+fj0ePHrH/pKamNvpZQohtMF1Ba/0BGlC1zanT6ajUBiEc42SLc/jw4di4cSMWLVqEYcOGse87V/7hFQgE2LRpU62H8ZtCJpPB39+/xvuGceRyeZ3PyuVytl19zxpWAatvTRraGo8hk8lqbWdvbw+RSGSyoqhQKLBmzRq88sor6NSpU53zrM1vv/2GHTt2NOkZQohtkVUGaA52dhAJOfnRbHXVz6HZSmBJiC3g7KfAm2++iREjRuDbb7/F1atXUVhYCBcXFwwYMAALFy5Et27dOBnHkmrV9T1b/XN1tW3K+MZtN2/eDKFQiJkzZzb6eYPJkydjyJAh7Mepqan4/PPPm9wPIaR1UqvVKFcqAdhGiQ2D6qU2gvxacDKEtDGc/poWERGB9evXc9mlCalUWus5t5LKA6q1rWYZuLi41LrCZnjWsJImleovKK5rHONVOKlUioSEhBrtysvLoVar2fk8ePAAe/fuxeeffw6VSsVmgup0Omi1WpSUlEAikUAsFtc6d09PT3h6etb5tRFCbJvMaHvTFjI4DajUBiHW06ylqi09RBoWFobU1FT2jJtBUlISAP2NBfU9m5iYWON9w3thYWEmfRj6rD6O8RhhYWEoLi5GQUFBvfNJTU0FwzBYvnw5Jk2axP6Tm5uLa9euYdKkSdi7d2+9XzshpO2ytQxOAyq1QYj1cBKgbd26tcE2Wq0Wr732mkXjDBs2DOXl5Th79qzJ+0eOHIGnpyciIyPrfHb48OFIS0szyfTUaDQ4fvw4IiMj2RUqLy8vRERE4NixY9BqtWzb+/fvIy0tDSNGjGDfGzp0KHg8Ho4cOWIy1uHDhyGRSDBgwAAAQP/+/bF+/foa/7i7u6Nbt25Yv359jcxUQkj7YasraE4ODmzCEwVohHCLky3OBQsWwMvLC1OmTKn18wzDYPr06fjll1/w008/mT3OwIED0bdvX6xduxYKhQIBAQE4efIkrl69ihUrVrA/KFavXo2jR4/ixx9/hK+vLwB9KY49e/Zg5cqVmD9/Ptzc3LBnzx6kpaVh3bp1JuO8+eabWLJkCVauXImpU6eiqKgImzdvRmhoqElJjdDQUEyaNAnbt28Hn89HREQErl+/jv3792Pu3LnsFqeHh0eNTE8AEIvFcHFxQXR0tNnfE0KI7TNZQbOhM2g8Hg9SJycUymSQV5baaO13iBJiKzgJ0AYOHIhXX30VR48eNcniBKqCs59//hkLFiyweKzPP/8cW7ZsQWxsLHvV00cffWRy1ZPhbJfxhe1isRjr1q1DTEwM1q9fD6VSifDwcHz55ZeIiooyGSM6Ohpr1qzBtm3b8OGHH7JXPS1cuLDGObElS5bA09MTu3fvRmFhIXx9fbFo0SKqc0YIaTTja55saQUN0G9zFspk0DEMSsrKTLY9CSHm4zHGUYyZZDIZhg4dioyMDJw7dw49evQAoA/OXn/9dfzwww+YP38+YmJiLJ4wAR49eoR58+Zhy5Yt6NKlS0tPhxBioX//th/y0lKIhELM/cNLFmWrN7fLt+Nw++FDAMBzI0cguJZSSISQpuNkLVoqleLo0aOQSqV49tlnkZKSAoZh8H//93/44Ycf8MYbb1BwRgghtdDpdCgtKwOgz4q0peAMqJYoYLRVSwixDGeHBfz9/XHs2DGoVCqMHz8er776Kn788UfMnTsX3377LVfDEEJIm1KiUEBXuZFhSxmcBsalNoy3agkhluH0NGfnzp1x+PBhZGdn45dffsGcOXPw3XffcTkEIYS0KXKj7EdbO38GmF5LRStohHDHrCSBTz/9tN7P9+/fH3FxcQgICDBpy+Px8Le//c2cIQkhpE2S2WgGp4GjvT34fD50Op1JNiohxDJmBWgff/xxo9pVD+QoQCOEEFNyG62BZsDn8+Hi5IhieQnkpaVgGMbmztER0hqZFaCdPn2a63kQQki7JCsxvkXA9gI0QH92rlheAo1WC0V5ORwdHFp6SoTYPLMCNONq+oQQQsxnWEHj8/lwstHARlrtHBoFaIRYjko+E0JIC2EYhj2D5uzoaLNV+I1X/ugcGiHcsM2fBoQQ0gaUK5XQaDQAbPP8mYFxqQ0ZldoghBMUoBFCSAsxyeC04QDNtNQGXZpOCBcoQCOEkBZiksFpgyU2DEy2OGkFjRBOUIBGCCEtpC1kcAKAUCBgEwOoWC0h3KAAjRBCWoi8jWxxAlVn6CpUKlSoVC08G0JsHwVohBDSQtrKGTSArnwihGucBmhFRUXYuXMnl10SQkibJa88UO9gbw+R0KyylK0GXZpOCLc4DdDS0tIwa9YsLrskhJA2SaVWo1xZAcC2S2wYUCYnIdxq0q9saWlp9X4+MzPToskQQkh70ZbOnwGmQSYVqyXEck0K0Dp06FDvJbh0SS4hhDSOzMYvSa/OxdmZfU3FagmxXJMCNDc3N6xatQojR46s9fMPHz7EtGnTuJgXIYS0acbntFxsuAaagZ1YDIlYjAqVilbQCOFAkwK0Pn36IC8vD126dKn180qlEgzDcDIxQghpy9raChqg36rNKyxEqUIBrVYLgUDQ0lMixGY1KUlgwYIF6NChQ52fDw4Oxvbt2y2dEyGEtHlyo4P0Lk7O9bS0Habn0MpacCaE2L4mraBNnTq13s+7ublh5syZFk2IEELaA8MWp1gkgp1E3MKz4YbxVq2stARuUpcWnA0hto0K1RJCSDPT6nQoUSgA6LcF20pyFWVyEsIdCtAIIaSZlZaVsed128r5MwCQUiYnIZyxOEATCAQN1kcjhBBSRdbGMjgNXGgFjRDOWBygUdYmIYQ0jbwNZnACgKO9PZu5SfdxEmIZ2uIkhJBmJjPJ4Gw7ARqPx4OLkyMAoKS0lH6BJ8QCFKARQkgzM1lBc24bJTYMpJUlQ7Q6HUorEyEIIU1HARohhDQzw/Yfn8+Ho7291cdLe5qNUxdvICE53epj0Tk0QrjRpDpohBBCLMMwDFvE1dnREXy+9X5P1mg0WBOzC3sOn2Hf6xwWjPcXzkCvyHCrjGl8pk5WWooAHx+rjENIW0craIQQ0ozKlUpoNBoA1k8Q+Mc335sEZwDwOCkNby1fgwePk60ypnFWqpxKbRBiNgrQCCGkGRlnN1ozQeDs5Vv47dg5AIBIKMSrL4xHx5BAAEBFhQp/+/JbVKhUnI9bfQWNEGIeiwO05cuXw9XVlYOpEEJI2ydvhgBNo9Fg7Xf/YT9e/s4sLHljOnZu+BiRnUMB6M+l/e/gKc7HdnZ0ZG9GoDNohJjP4gDts88+g4sL3bdGCCGNYVykVmqlIrXHzl1FZk4+AKBfVCQmjh4CQH/v5/JFs9l22/97AMoKblfRBAIBnBwcAADykpIGWhNC6mLVLU6GYfDkyRNkZGRYcxhCCLEZ1l5BYxgG//7fYfbjua9OMbnrs3NYMMYNHwAAKJaX4MT5a5zPwfB1VajVUFZUcN4/Ie0BJwHavn37MHv2bBQVFbHvpaSkoEePHujatStCQkIwffp06HQ6LoYjhBCbZe0A7VFiKp5UltPo1jkM0d271Gjzx8nj2NfW2Oakc2iEWI6TAO3bb7/F9evX4ebmxr63ePFiPHjwAKNGjULPnj3x008/Yfv27VwMRwghNssQsDjY2UEk5L7S0aFTF9nXk58ZbrJ6ZtAzohPCQ4MAAPceJSI9M4fTOZjUQqNMTkLMwkmAdv/+ffTv35/9WCaT4dChQ/jjH/+IEydO4Nq1a4iIiEBsbCwXwxFCiE1SazQoVyoBWOeSdI1Wi6NnrgDQnzcbO7R/re14PB4mjBrMfsz1NqdJqY0yCtAIMQcnAVpeXh78/PzYjy9cuACNRoNXX30VACASiTBu3DgkJCRwMRwhhNgka1+Sfi8+EYXFcgDAkH694OLsWGfb0UP7sa+5DtBMtjhpBY0Qs3ASoLm4uKCgoID9+MyZM+Dz+Rg2bBj7nkgkQllZGRfDEUKITTIOVqxx/uz8tTj29chBvettG+DrhYhwfcmNx0lpyMzJ42wedN0TIZbjJEDr2rUr9u/fj8LCQshkMvz000/o3bu3yZm01NRU+NCVH4SQdszaCQIXKgM0Ho+HQX17NNh++IBo9vWVW/c4m4dELIadRAyAkgQIMRcnAdqiRYuQmZmJgIAABAUFITMzE2+++Sb7ea1WiwsXLqBXr15cDEcIITbJdIvTmdO+M3PykJT6FADQvWtHuEkbrk85qE939vWVm9wFaADgUvn1lSkU0Gi1nPZNSHvASYA2bdo0bNy4Ed26dUPnzp3xj3/8A7NnVxVDPHnyJBQKBZ599lkuhiOEEJskK60q3OriVPf5MHMYB1hD+zXul+GunUIhrTyndv3OA04DKSltcxJiEc5yvBcsWIAFCxbU+rnx48eb1EgjhJD2SF6qP4crFAphb2fHad+3fo9nX/eP6taoZwQCPvpHd8fxc1dRWqbA/UdJ6BUZzsl8qp9Dc5dKOemXkPaCLksnhJBmoNPpUFKZKCV1cqq1Ppm5GIbBrXv6AM3eToKunUIa/Wz/qEj2ddz9x5zNyfgaK8rkJKTpKEAjhJBmUKpQsLepcJ0gkJGVi7yCYgBAr8hwCJtQADfK6KYBLgM0yuQkxDIUoBFCSDOwZgan8fZm7x5dm/RsSIAvXF30B/rvPnjC2ZV8dN0TIZahAI0QQpqBSQYnx7cImARotdy9WR8ej4eobvpzZ/LSMiSlZXIyJwd7ewgEgsp+KUAjpKkoQCOEkGZgvIrk4shtgGbYmpSIRYjsHNbk53t168y+vsPRNiePx2MzVUtKS8EwDCf9EtJeUIBGCCHNwForaEUyOTJz8gEAEeGhEImanpwfFWkUoD14wtncDLXetDodShUKzvolpD2gAI0QQpqBvDKTkcfjwcmRuxpoDx4ns6/NWT0DgM4dgyGqTCx4mJDcQOvGo0QBQszX5ABNp9Ph3r17yMyseU5BrVbj3LlznEyMEELaCoZh2C1OJwcHCPjc/W58/1ES+7qbmQGaWCRCp9AgAEBqRjZKFeWczI0SBQgxX5N+SqSmpqJHjx7o2bMngoKCMHnyZJNL0gsLCzFq1CjOJ0kIIbasQqWCSq0GYBq0cOHBE+MVtFCz+4kM7wBAH0w+Sky1dFoAABejrVw51UIjpEmadFjh/fffR2BgII4ePYri4mL85S9/wZAhQ3Dq1Cn4+/sDgNUPgioUCmzduhWnT59GSUkJgoODMX36dIwZM6bBZ4uKihATE4PLly9DqVSiU6dOmDt3Lvr06VOj7Y0bNxAbG4uEhATY2dlh0KBBWLBggckF8ACg0Wiwa9cuHD58GAUFBfDz88PUqVMxbdo0k3YnTpzA3r17kZ6ejtLSUri4uKBLly6YPn06evRo+FJjQojtMkkQ4PD8GcMw7Aqa1MUJAb5eZvcVER4K4DQA4OGTZPRpYrmO2tAKGiHma1KAdvbsWRw9ehSBgYEIDAzEkSNH8MYbb2DYsGE4ffo0JBIJp9Wxa7NixQrEx8dj/vz5CAoKwokTJ/DJJ59Ap9Nh3LhxdT6nUqmwePFilJaW4u2334abmxv27NmD9957D+vWrUNUVBTbNi4uDkuXLsWgQYOwatUqFBUVYfPmzVi8eDG2bNkCsVjMtl27di2OHTuGOXPmoGvXrrh27Ro2bNgAhUKB119/nW0nk8nQo0cPvPTSS3B1dUVBQQH++9//YtGiRTXGJ4S0LcarR1yuoGXm5KNYrr/fs1vnMIt+/uoDNL2HT7g5h+bs6AgejweGYegMGiFN1KQATaFQQCKRsB/zeDxs2bIFCxYswPDhw/HDDz9wPkFjly9fxo0bN7By5UqMHTsWANC7d29kZ2cjJiYGo0ePZuvuVHfw4EEkJydj06ZN6N69OwAgOjoas2fPRkxMDDZv3sy23bRpE4KCgvDpp5+yFbn9/Pzw1ltv4dChQ3jhhRcAAMnJyTh48CDmzZuHV199le1TLpdj586dmDJlClxcXACgxooaAAwYMACTJ0/GwYMHKUAjpA2Tl1mnSO2Dx1XnzyzZ3gSAsJAASMQiVKjUePgkxcKZ6QkEAjg5OKCkrAzykpKGHyCEsJp0Bq1Lly64ceNGjfdjYmIwceJEPPfcc5xNrDbnz5+Hvb09Ro4cafL+xIkTkZ+fjwcPHtT7bHBwMBucAfoLi8ePH4+HDx8iLy8PAJCXl4f4+HiMHz/e5LqUHj16ICgoyCQJ4vz582AYBhMmTDAZa8KECaioqMDVq1fr/XocHBwgFovrDCoJIW2D8V2UnAZoRitd5iYIGAgFAnTuqL/DMz0zB/KSMov6MzB8vRVqNZQVFZz0SUh70KQA7cUXX6xzlWzTpk344x//aNUzaMnJyQgJCalxz1zHjh3Zz9clKSmJbVffs4Z/19XWeIzk5GS4urrCw8Oj0fPRarXQaDTIysrCP//5TzAMg6lTp9Y5bwDIz8/Ho0eP2H9SU7k5wEsIaR7WuubpcWIa+7prpw4W9xdh1MeT5LS6GzaBlEptEGKWJm1x/vWvf8Vf//rXOj8fExODmJgYiydVF5lMxiYjGHN21hdDlMvldT4rl8vZdvU9K5PJAIDdmqze1ngMmUxWazt7e3uIRCK2L2MzZ85EWpr+B5+Hhwe++uordOlS/9Usv/32G3bs2FFvG0JI62UITOwkYkiMzrBagmEYNohykzrDw01qcZ/hlaU2AOBJcjr69IywuE+XaokC3tV+oSWE1K7pJadbmCWHYOt7tvrn6mrblPFra/vZZ5+hvLwcubm52LdvH5YuXYp//OMfiI6OrrOfyZMnY8iQIezHqamp+Pzzzxs9D0JIy9FqtWwVfRenmr8kmqugSIYimf5cV3hoMCcJWsYBWkJyusX9AdVKbdAKGiGNZlMBmlQqrXVVqqTy8Gltq1kGLi4uta6wGZ41rKRJpfrfQusax3gVTiqVIiEhoUa78vJyqNXqWucTGqo/yBsZGYmhQ4dizpw52LBhA7Zv317n3D09PeHp6Vnn5wkhrZe8tOosF5cZnE+MAqjwsKB6WjZeWEggm3X5JIWbAM2k1AbVQiOk0SwuZy0QCNgtO2sLCwtDamoqNBqNyftJSfpMJkPwU9eziYmJNd43vBcWFmbSh6HP6uMYjxEWFobi4mKTYr2NnQ+gT1Lo3Lkz0tO5+UFICGl9rHX+7ElS1c9d45UvS9jbSRDk5w0ASEx9Cq1WZ3GfdN0TIeaxOECzdmFaY8OGDUN5eTnOnj1r8v6RI0fg6emJyMjIOp8dPnw40tLSTDI9NRoNjh8/jsjISHaFysvLCxERETh27Bi0Wi3b9v79+0hLS8OIESPY94YOHQoej4cjR46YjHX48GFIJBIMGDCg3q+noqICDx48QEBAQMNfPCHEJsmslSBgvIIWGsxZv4YrnyoqVMjIyrW4P4lYDDuJ/twdFaslpPFsaotz4MCB6Nu3L9auXQuFQoGAgACcPHkSV69exYoVK9hyFatXr8bRo0fx448/wtfXF4C+FMeePXuwcuVKzJ8/ny1Um5aWhnXr1pmM8+abb2LJkiVYuXIlpk6dyhaqDQ0NNSmpERoaikmTJmH79u3g8/mIiIjA9evXsX//fsydO9dki3PBggUYMmQIQkJC4OTkhOzsbOzduxeZmZl0noyQNkxeWlX/S8rhLQKGBAGhUIDQoJrJU+bq1CEQpy7qyyklpKQjJNDX4j5dnJyhrChAmUIBjVYLIZUWIqRBNhWgAcDnn3+OLVu2IDY2lr3q6aOPPjK56kmn00Gr1Zqs7onFYqxbtw4xMTFYv349lEolwsPD8eWXX9YoEhsdHY01a9Zg27Zt+PDDD9mrnhYuXGhyiwAALFmyBJ6enti9ezcKCwvh6+uLRYsW1ShM2717d5w6dQrZ2dkoLy+HVCpFt27d8Oc//5mueiKkDTM+g8bVCppKrUZqehYAIDTIHyIRdz/KO1XL5BwztJ/FfUqdnJBbeRREXloKd6nlGaeEtHU2F6A5ODjgnXfewTvvvFNnm2XLlmHZsmU13nd3d8fy5csbNU6/fv3Qr1/DP5iEQiFmz56N2bNn19vurbfeatS4hJC2RVa5gibg8+Fob89Jn8lpmdDq9OfDOnXg5vyZgVUyOaudQ6MAjZCGWXwGjRBCSO30d1DqV9BcnJw4u6v4sXGCAEcZnAb+Pl6wt9Nf6cdZsVpnyuQkpKkoQCOEECspKy9nk424TBAwXtnqzGGCAADw+Xx0DAkEoL+MvVxp+fVMlMlJSNNRgEYIIVZivFokreUmE3MlpWeyrzt2COSsX4MOQX7s69SMLIv7o+ueCGk6iwO05cuXw9XVlYOpEEJI2yIrsU4GZ3LaUwCAs5MDJ1c8VWecFZpsFAyay8Hens2yp1IbhDSOxQHaZ599Vm8Ff0IIaa9kJiU2uFlBK1OUIyevEIA+kOLqXJuxDsFGAVqa5QEaj8eDi5MjAKCktLRZ62cSYqtoi5MQQqzEGlucKUZbjlzWPzMWFsztChoASCvvIdXqdOzdpISQunFaZkOn0yEjIwNPnz6FWq2utc3w4cO5HJIQQlotwxYnn8eDs4MDJ30ar2iFBlvnFhI/by+IRSKo1GqkcBSgVU8UcHZ05KRfQtoqTgI0hmGwevVqrFu3rsa9lNUZX59ECCFtFcMw7HkrZycn8PncbFgYzp8BQGiwdVbQBAI+QgJ98SQ5HemZuVCrNRYXwzW5NL20FAE+PpZOk5A2jZMA7a9//SvWrFkDb29vzJo1C35+fhAKba4GLiGEcEahVEKj0QDgOIPTaAUtzEoraADQIcgfT5LTodVqkZ6VY/FYLkZJEnKqhUZIgziJonbs2IEuXbrg+vXrcOKw1g8hhNgqkwxODn8uGlbQHOzt4OPlzlm/1RmvzqWkZVocoFVfQSOE1I+TNffS0lJMmjSJgjNCCKlkWmKDmxU0ZYUKmTn5AICQQD+rZHAacF1qw9nRkZ0v1UIjpGGcBGhRUVHIzOTmICkhhLQFxhmcrhzVQEvNyGJLVIRZ6fyZQQeTAM3yYrUCgQBOlYkSFKAR0jBOArQVK1Zg3759uHXrFhfdEUKIzbNGDbTmyOA0CA7wAZ+vX/HiOpOzQqWCUqXipE9C2ipOzqA9++yz+P777zFhwgRMnjwZvXr1qrN47YwZM7gYkhBCWjXDFiePx4MTRyUlmiOD00AsEiHQzwdpT7ORkpEFnU5ncSaq1MkJT3NyAADykhLYeXhwMVVC2iROArSKigrs27cP+fn5iI2NBYAaZyMYhgGPx6MAjRDS5jEMw25xujg6QsBRiQ3jOzitvcUJ6O/kTHuajYoKFXLyCuHn42lRfy7VEgW8KUAjpE6cBGhLlizBf/7zH/Ts2RMvvfQSldkghLRr5Uol1FYosWHY4pSIRfDz9uKs37qEBPgBuA0ASHuabXmA5kyXphPSWJxEUb/88gv69OmDy5cvU2BGCGn3TK944iZBQK3WICNTvz0YHOgHgcD6N/UFBVQVk019mo0Bvbtb1J9JqQ2qhUZIvTj5E65UKjFq1CgKzgghBKYJAi5O3KygpWflQKvTAQBCg/w46bMhwQG+7Ou0p9kW91f9uidCSN04CdD69OmDhIQELroihBCbZ1pig5sALS2jKkDqENg8AVqIUYCWXrl6ZwmJWAw7iRgAFaslpCGcBGirVq3CkSNHcODAAS66I4QQm1ZsUqSWmy1O4xUs45Uta/Jwk8LB3q7G+JYwrCiWKRTQ0N3MhNSJkz3J48ePY+TIkZgyZQpGjRqFqKioWsts8Hg8/O1vf+NiSEIIabXkRiU2nDkqsdESARqPx0NwgA/iE1KRmZPH2aXpuQUFAPTbnO5SKRdTJaTN4SRA+/jjj9nXp06dwqlTp2ptRwEaIaStYxiG3b5zdnSEQCDgpN9UowAtqJkCNEAfDMYnpEKnY/A0O9fkhgFzVD+HRgEaIbXjJEA7ffo0F90QQojNK6+ogEqtBsDtJemGFTQPNymcHOw567chxqt1qU+zLQ7QpFRqg5BG4SRAGzFiBBfdEEKIzbPGJeklpWUoLJYDaL7tTQNrZnJSqQ1C6mb9QjqEENKOWKMGWppRBmVIoG0HaFIqtUFIo3ASoF28eBFLlixBdnbtf3izs7OxZMkSXLlyhYvhCCGk1bLGClpLJAiw4/lXFatNe2p5qQ0He3v2XB6V2iCkbpwEaGvXrsX+/fvh61v7Dw5fX18cOHAA69at42I4QghptYyL1Eo5KlLbkgGas5Mj3KTONeZhLh6PBxcnfWZrSWkpGIaxuE9C2iJOArTr169j6NCh9bYZPnw4raARQto8mbyqxIYhELGUcWAU0swBGlAVFOYXFkNRrrS4P0PgqtXpUKpQWNwfIW0RJwFabm4uAgIC6m3j6+uL3NxcLoYjhJBWiWEYtkgtpyU2Km8R4PN5CPD15qTPpgjm+EYB47N5xlvChJAqnARorq6uSEtLq7dNamoqnDhMOSeEkNZGUV4OtUYDgLsrnhiGYVfQ/H28LC4Uaw6TUhsZlm9zujpXFTIvpgCNkFpxEqANGjQIe/bsQXp6eq2fT0tLw969ezF48GAuhiOEkFbJONhwreU2FXPkFxajXFkBoPnPnxlwnslpvIImpwCNkNpwEqAtWbIECoUCQ4YMwc6dO5GVlQUAyMrKwvfff48hQ4agvLwcf/nLX7gYjhBCWqUiuZx97erCfYJAc5fYMOA6QDMOXmkFjZDacbJWPmzYMGzYsAGLFy/GrFmzAOgPyBqyc/h8PtavX4/hw4dzMRwhhLRKxqtBXG1xprZgBqdBoJ83+zOdiwDN0d4eQoEAGq2WzqARUgfODjO89dZbGDFiBGJiYnD9+nUUFxfD1dUV/fv3x5tvvonu3btzNRQhhLRKRVbY4mzJEhsGdhIxvD3dkJNXyEmSAI/Hg9TZGQXFxZCXlkKn04HPp7rphBjj9LRp9+7dsXHjRi67JIQQm1FcucUpFArhaM/NfZmtIUADgCB/X+TkFUJeWoZieSlcXSxL+jIEaDqGQUlZGWdFfQlpK+hXFkII4YBWq0VJWRkA/fYmj8fjpF9D1qREIoa3hxsnfZojJKDqRoH0TC4yOasCMjqHRkhNFKARQggHZEZV8blKENBoNHianQdAf+VSS24DBvlznclpFKBRJichNVCARgghHCg2SRDg5vxZZk4+tFotgJa5QcBYUAC3d3IaB7GUKEBITRSgEUIIB2Ql1i2x0ZLnzwDTS9O5uU2AtjgJqQ8FaIQQwoEiuZUzOFuoBppBgK83+Hz9uTouzqDZSyQQi0QAaAWNkNpQgEYIIRwoNl5B4ygjsTWtoIlEQvh6ewIA0p/msOftzGUotQEAJWVl0FRu5RJC9ChAI4QQDhiK1DrY27MrQ5ZKNTrr1dIBGlC1zVlWrkRhsbyB1g0zDmTlpaUW90dIW8JZHTSVSoW9e/eyRWq1tfw2xOPxEBsby9WQhBDSKihVKpRX6O/L5Gr1DADSMvTX5kldnEzur2wpQf4+uHLrHgD9OTQPN6lF/VXP5HSXWtYfIW0JJwFaamoqxo0bh8TExHqXvSlAI4S0RcVWuINTUa5EbkERgNaxegbUvJMzqltni/qjTE5C6sZJgPbuu+8iISEBr7/+OmbPno3AwEAIhZxeUkAIIa2WNUpsGGdKtnSJDYMgyuQkpNlwEkWdOnUKY8aMwffff89Fd4QQYlOK23iJDQPjeXARoBlvB9MKGiGmOEkS0Ol0iI6O5qIrQgixOdZYQTMO0FrLCpqfjycEAgEAbm4TkIjFsJdIANAKGiHVcRKgDRo0CA8fPuSiK0IIsTmGM2h8Hg8uTo6c9NkaV9CEAgECfCpLbWRaXmoDAKSVK46K8nKo1WqL+yOkreAkQFu9ejVOnz6NX3/9lYvuCCHEZuh0Onb1R+rszNl9mcbXKQUanf1qaUGVwaKyQoW8yiQGS9Cl6YTUzqwzaJ9++mmN90aNGoU//vGPGDFiBKKjoyGtJV2ax+Phb3/7mzlDEkJIqyQvLYNOpwMAuHFUJoJhGKQ+1ZfY8PXygJ1EzEm/XKieKODt6W5Rf1KTc2il8HK3rD9C2gqzArSPP/64zs+dOXMGZ86cqfVzFKARQtqaIrmMfe0u5eb8WbG8BCWlCgBASAtf8VSdcYCWlpmDPj0jLOrPdAXN8uK3hLQVZgVop0+f5noehBBik4pkVUGFG1d3cGa0vvNnBsYJC+lPOS61IactTkIMzArQRowYwfU8CCHEJhXKqlbQuNriTG2FCQIGQQHGW5yWZ3JKqdQGIbWyuWqyCoUCW7duxenTp1FSUoLg4GBMnz4dY8aMafDZoqIixMTE4PLly1AqlejUqRPmzp2LPn361Gh748YNxMbGIiEhAXZ2dhg0aBAWLFgANzc3k3YajQa7du3C4cOHUVBQAD8/P0ydOhXTpk0zaXfgwAFcunQJCQkJKCwshJeXF/r27YuZM2fC09PTsm8KIaTFFMnb9iXp1fl4ekAkFEKt0SCNg1poIqEQzo6OKCkrQ5FcDoZhwOPxOJgpIbaN8wBNo9Hg8ePHkMlkkEql6Ny5M6e3CqxYsQLx8fGYP38+goKCcOLECXzyySfQ6XQYN25cnc+pVCosXrwYpaWlePvtt+Hm5oY9e/bgvffew7p16xAVFcW2jYuLw9KlSzFo0CCsWrUKRUVF2Lx5MxYvXowtW7ZALK46sLt27VocO3YMc+bMQdeuXXHt2jVs2LABCoUCr7/+Ottu27ZtiI6Oxrx58+Dl5YW0tDR8//33uHDhAmJjY+FOB2MJsTkMw7ABmouTE2c/69Ja2SXpxgQCPgL9vJGcnomMzFzodDqLM1fdXFxQUlYGlVoNhVIJR3t7jmZLiO3iLHLKy8vDsmXL8OOPP6K8vJx9397eHq+99hr+/ve/w8vLy6IxLl++jBs3bmDlypUYO3YsAKB3797Izs5GTEwMRo8ezRZRrO7gwYNITk7Gpk2b0L17dwBAdHQ0Zs+ejZiYGGzevJltu2nTJgQFBeHTTz9lf+D6+fnhrbfewqFDh/DCCy8AAJKTk3Hw4EHMmzcPr776KtunXC7Hzp07MWXKFLhUnkmJjY01WX2LiopC586d8cYbb2D//v2YOXOmRd8bQkjzK1UooNFoAHB3/gyoWkETCgXw8259K+xBAT5ITs+ESq1GTl4h/Hwsm6OriwvSsvRZq8VyOQVohICjOmhPnz5Fv379EBsbC0dHRzzzzDOYMWMGnnnmGTg6OmLr1q3o378/nj59atE458+fh729PUaOHGny/sSJE5Gfn48HDx7U+2xwcDAbnAGAUCjE+PHj8fDhQ+Tl5QHQB5rx8fEYP368yW/DPXr0QFBQEM6dO2fSJ8MwmDBhgslYEyZMQEVFBa5evcq+V31rFAC6dOkCgUCA3Nzcxn0DCCGtSpHMOIOTm/NnWq2OvUYpyM8HAgE3ddW4VD2T01LGwa1x0gUh7Rknf/Lff/99pKWl4ZNPPkFqaioOHTqE7du349ChQ0hNTcXHH3+M1NRUfPDBBxaNk5ycjJCQkBrbCB07dmQ/X5ekpCS2XX3PGv5dV1vjMZKTk+Hq6goPD48mzwfQb6VqtVqEhobW2y4/Px+PHj1i/0lNTa23PSGkeRQaZ3ByVGIjJ78AqsqK+q2txIZBsL/xnZyWJwoYf++Mz/QR0p5xssV55MgRPPvss7XWOLOzs8PKlStx6dIlHD582KJxZDIZ/P39a7zvXHkwV17PH2y5XM62q+9ZWeVvxC61bFc4OzubjCGTyWptZ29vD5FIxPZVG4VCgbVr18Lb2xsTJ06ssx0A/Pbbb9ixY0e9bQghzc84mHBz4WYFrTUnCBiYFKvloNSGq/EKmrzun5uEtCecBGgqlQq9e/eut02fPn1w8eJFi8eyJLunvmerf66utk0Zv662FRUVWLFiBXJycvCvf/0LDg4O9fYzefJkDBkyhP04NTUVn3/+eaPnQQixjiKTEhvcX5LeagO0AG63OO0lEkjEYlSoVCiiWmiEAOAoQOvTpw/i4+PrbRMfH19rOYumkEqlta5KlVTWzqltNcvAxcWl1hU2w7OGlTTDFVV1jWO8CieVSpGQkFCjXXnlpb+1zUelUmHFihW4e/cuvvjiC0RGRtY5ZwNPT08qxUFIK2Ocweno4ACxSMRJv605g9PA28MNEokYFRUq9rycJXg8HtxcXJCdn48yhQIqtZqz7ychtoqTM2ifffYZDhw4UOc23LZt23Do0CGLV33CwsKQmprKZk0ZJCUlAUC9Z7nCwsKQmJhY433De2FhYSZ9GPqsPo7xGGFhYSguLkZBQUGj5qNSqbB8+XLcvn0bq1atsjhgJYS0nHKlEhUqFQDAncMMztZcpNaAz+cjyM8bAPA0OxcardbiPo23OYvpHBoh3ARop0+fxqhRozBnzhxERkZi3rx5WL58OebNm8d+PHLkSJw6dQqffvop+89nn33WpHGGDRuG8vJynD171uT9I0eOwNPTs97VqOHDhyMtLc0k01Oj0eD48eOIjIxkV6i8vLwQERGBY8eOQWv0Q+f+/ftIS0szuUVh6NCh4PF4OHLkiMlYhw8fhkQiwYABA9j3DMHZrVu38Nlnn6F///5N+toJIa1LoRW2NwEgLUNfbsLRwR7urtz1y7WgykQBjUaL7NyCBlo3jBIFCDHFyRan8eXp8fHxtW53Hj16FEePHjV5r6mXpw8cOBB9+/bF2rVroVAoEBAQgJMnT+Lq1atYsWIFWwNt9erVOHr0KH788Uf4+up/iEycOBF79uzBypUrMX/+fLZQbVpaGtatW2cyzptvvoklS5Zg5cqVmDp1KluoNjQ01KSkRmhoKCZNmoTt27eDz+cjIiIC169fx/79+zF37lyTLc6VK1fi6tWreP311+Hi4oL79++zn3N0dESHDh0a/X0ghLQ8kwQBjkpsVKhUyKoMdkICfVt1RX3TK59yEFi5omYuN5MVNDqHRggnAVpzXp7++eefY8uWLYiNjWWvevroo49MrnrS6XTQarVgGIZ9TywWY926dYiJicH69euhVCoRHh6OL7/80uQWAUBfbHbNmjXYtm0bPvzwQ/aqp4ULF5rcIgAAS5YsgaenJ3bv3o3CwkL4+vpi0aJFNa56unTpEgBg165d2LVrl8nnoqKisGHDBi6+PYSQZmKNS9IzsnLZn1utdXvTINjf9E7OQX16WNSfG2VyEmKCkwCtOS9Pd3BwwDvvvIN33nmnzjbLli3DsmXLarzv7u6O5cuXN2qcfv36oV+/fg22EwqFmD17NmbPnl1vO+MCt4QQ21coK2Zfc1Wk1hYyOA1MitVyUGrD2dERfD4fOp2OtjgJAUdn0AghpD1hGAYFxfpVHkd7e9hJJJz0axzohLTyAM04gDQOLM3F5/PZy+ZlJaXQ6XQW90mILTMrQHvttdewe/duswe19HlCCGlJZeXlVRmcrtysngG2tYLm4SaFg70dAHBSagOoShTQ6XSQl5Zy0ichtsqsAO2nn37CvXv3zB7U0ucJIaQlFRYXs689XF0569c4QDPeQmyNeDweO8esnPwa5Y/MYXoOjbY5Sftm9hm0uLg47Ny5k8u5EEKITTBsbwKAu9SVs35TK0tseHm4wtHBnrN+rSXI3wePElOh1enwNDvf4rtDXasFaPXfUkxI22Z2gLZ3717s27evyc8ZZ1YSQogtKjBZQeNmi1NeUoYimb68RGvf3jSonslpaYDmRsVqCWGZFaBt377d4oGrl7YghBBbYcjg5PF4nNVAS8+0nfNnBkHGiQIcnEMzXkErlFGARto3swK0mTNncj0PQgixCTqdjq2BJnV2hrCyQLalbOGKp+qMz8mlc1BqQyQUwsXREfKyMhTJZGAYplUX6yXEmqjMBiGENEFxSQm0lSUguNreBGzjkvTqggNMtzi5YFiRVGs0KFUoOOmTEFtEARohhDRBoVGCgAeHCQK2VGLDwNXFGU6ODgC4KVYLmJYtMT7rR0h7QwEaIYQ0gXHQ4G6FEhsCPh8BPl6c9WtNxqU2svMK2NpwljAOeo0vpCekvaEAjRBCmsD4iieutjgZhmEDNH9fL4hEnNzC1ywMq30Mw+Bpdp7F/RmvoBmvVhLS3lCARgghTWCogSYUCuHi5MRJn7kFRShXVgBo/Vc8VRfMcaKAq4sLmxhAK2ikPaMAjRBCGkmtVrNXELlLpZxlGBoK1AJAcKAfJ302lyCjRIE0DhIFhAIBpM76wLdIJqM7OUm7RQEaIYQ0UoHRig6XGZypGVWBjaXFXpubabFajhIFKs+haelOTtKOUYBGCCGNlF9UxL72dHXjrF/jFbQQW1tB868KKLnY4gT0q5MGtM1J2iuzA7TevXvju+++M3nv6NGjWLJkSa3tP/nkEwiFtnPwlRBCqssvNArQ3DkM0IxKbNjaGTQXZ0dIXfRbklzcJgBQogAhgAUBWlxcHLKzTc8bXLlyBevXr6/zGbqHkxBiy/JMVtBcOes3rXIFzdHBHh5u3G2dNhfDNmdufiGUlckOljBeQSugFTTSTtEWJyGENIJWp0NhZQ00V2dniEQiTvpVVqiQlVsAQH/+zBavNjK+8ikjK9fi/qTOzuDz9X89GZc1IaQ9oQCNEEIaoVguZ6948nTjbnszIzOH3V0ICbCt82cGxufQjG9EMJeAz4db5cXpMnkJtFqtxX0SYmsoQCOEkEbIs9L5sxSTBAHbOn9mYHw1FWfn0Cq3OXUMg+KSEk76JMSWUIBGCCGNYJLByeEKmi1ncBqYXppOiQKEcIECNEIIaQTjAM2L0wDNdmugGQSZ3CZg+RYnQKU2CLGo7sW///1vXLlyhf04ISEBADBx4sQabQ2fI4QQW8MwDBugOdrbw97OjrO+U5/qV9D0F4/bZoDm6GAPdzcpCotknG1xehhlyRpfUE9Ie2FRgJaQkFBr4HXkyJFa29tidhIhhMjLyqBSqwFwu73JMAy7gubn7QE7iZizvptbsL8PCotkKCiSoUxRDkcHe4v6c3Z0hFgkgkqtNlm9JKS9MDtAS05O5nIehBDSahkXqPXiMEHAEMwAtncHZ3VB/j6Iu/8YgL7URpeOIRb1x+Px4OnmiszcPJQqFFBWVMBOIuFiqoTYBLMDtJAQy/7wEUKIrbBagoAN3yBQnfE5tLSn2RYHaADg4eqGzNw8APr/BoG+tv09IqQpKEmAEEIakFdYyL72cnfnrN+2kMFpYFxqg6tMTk83V/Z1flExJ30SYivMWkGbPXu2WYPxeDzExsaa9SwhhLQEhmGQU6Cv9G8vkcDJwYGzvttCBqeBcakNLorVAqarlXQOjbQ3ZgVoO3bsqPV9Ho9X632bhvcpQCOE2Bp5aSkqVCoAgLeHB6fJTinpmexrW19BC/IzCtA4WkFzk0rB5/GgYxjkF1OARtoXswK06gkCOp0O77zzDq5cuYJ33nkHw4YNg4+PD3JycnDu3Dls2LABgwYNwrp16ziZNCGENJfcgqrtTW8PD077Tk7TB2iODvbw9uDubFtLsLOTwNvDDbkFRUh/yk2AJhQI4Cp1QWGxDMUyObRaLQQCASd9E9LamRWgVU8QWL16Na5evYo7d+7Az6/qt8AuXbpg+PDhmDVrFqKjo/Hrr7/i/ffft2zGhBDSjHIrtzcBwNuDu/NninIlsnLzAQBhwf5togxRUIAPcguKUCwvQUlpGZydHC3u09PVDYXFMugYBoUyGadnAAlpzThJEoiNjcXLL79sEpwZCwgIwMsvv4wtW7ZwMRwhhDSbnEKjAM2duxW0ZKPtzbDgAM76bUkmmZycJQoYn0Mr5qRPQmwBJwFaRkYG7BqorG1nZ4eMjAwuhiOEkGah0+nYGmgujo6wt+OuDldS6lP2dWgbCdCCjW5C4Gqb0zSTk86hkfaDkwAtMDAQe/bsgVKprPXzCoUCe/bsQWBgIBfDEUJIsyiUyaDRagFY7/wZAISFtI0AzeROzkzuMzkLKFGAtCOcBGhz585FUlIShgwZgn379qGg8sxGQUEB9u7di6FDhyIlJQXz5s3jYjhCCGkWpufPuA7QjFfQ/Dntu6UEBXC/xWknkcCxsrRJflFxrZUCCGmLLLqL02Dp0qV4/Pgxtm/fjhdffBEAwOfzodPpAOjrCM2aNQtLly7lYjhCCGkWOSYZnNweTk+qDNAc7e3g42m9g+8Mw+CpqhBFmlJIBQ4IkHhAwLNOjfJAP2+2rBJXW5wA4OnqijKFAiq1GvKyMkidnDjrm5DWipMAjc/nIzY2FjNmzMD333+Pu3fvQiaTQSqVolevXpgxYwZGjBjBxVCEENJsDCtoPB6P0+zBcmUFMnP0GZyhwQFWyeDUMFrszr+KnTmnkV5RtRIo4Qkx2rUH5vuPR6idTz09NJ1ELIavlweycvORlpnN1r+0lJe7G1Iz9VvCeYWFFKCRdoGTAM1gxIgRFIgRQtoEtVqNQpkMAOAmdYFIyN2PS+PzZ9bY3sxXy/FB0i7cKE2s8bkKRoPDRbdxsvh3LA16AS97DeZ07CB/H2Tl5qOkVIEiWQncXV0s7tM4ezavoBCdgoMt7pOQ1s7sde7t27cjLy+Py7kQQkirkVNQwJ538vX04rTv5PSq82dcJwjkqeWY9WijSXDW16kj/ug1BGNce8BNqK9NpmI0+Hvar/g28yin4xsHnMaZqpbwMtpezjUqe0JIW2b2r4Rz5syBQCDAwIED8cILL2Dy5MkIDw/ncm6EENJisvLy2dd+Xp6c9m1SYiOIuxU0hbYC8x9/i7QK/S/P3iIpVof+H/o4d2TblOtU2PD0IH7IPQ8AiMk6Cm+xFC96DuRkDsYBZ1JaBvr2irC4T0d7ezja26OsvBx5hUWcbZ0S0pqZvYJ26dIlvPfeeygsLMTSpUvRtWtXREREYNmyZbhy5QqXcySEkGaXZbRD4OfF7QpaktEWZ8cQbsoPMQyDj1P/i0SlvrxFgNgdO7suMgnOAMCeL8YHQVOxJOB59r2/p/6K38tSOZlHR6OablytoAFVSRoqtRrFJSWc9UtIa2V2gDZw4ED84x//wP379/HkyRN88cUX8PLywpo1azBkyBD4+flh/vz5OHToECoqKricMyGEWJVOp0NOvn4FzcHeHs6Oll9ZZMyQwelgbwcfL26SD/YVXMfRojgAgBPfDpvC34CfuO77PWf6jsJ072EAAA10WJb8AxRay39Wm66gZdbTsmm8qp1DI6St4yTXumPHjnjvvfdw7tw55OTkYOvWrRgwYAD+85//4Pnnn4enpyemTZuGXbt2obCQ/mARQlq3QpkMao0GAODn6cnpdpqiXIksQwZnEDd3cBaoS/DPjH3sx590eAUd7LwbfO7dwMno5hAEAEiryMPGzCMWz8XZyRFeHq4A9IEoV3XLvN3pHBppXzgvhuPh4YFZs2Zh7969yM/Px549e/Dyyy/j4sWLmDlzJnx8fDBy5EiuhyWEEM4Yb2/6cnz+LCElgw1aOoUGcdLnmvS9kGvLAQAT3XtjrFvPRj0n4gmwKnQ6JDz9ceSfcs8jsdzyGwAMd4vK5KUoLJZb3B9gWocul37RJ+2AdaoVVrKzs8PkyZMRGxuLrKwsnD9/Hu+++y6ys7m5AoQQQqwh2yhBwJfj82dPktLY153DLA/Q7pSm4EjRbQCAq8ARSwNfaNLzHey8Mdt3DAD9Vuea9L0Wr3qZbHNydA7NTiKBS+VWc35hEVsInZC2yqoBmjEej4chQ4ZgzZo1iI+Pb65hCSGkyQwraEKBwOQuSC48SUlnX4eHWlbPi2EYrHu6n/34zwET4C5qehHXP/mOgr9Yv0J1peQxrpU8sWheYcaJAmncJQp4VV63pdFqUSTnZmWOkNbK7DIbCxcubPIzPB4PGzduNHdIQgixulKFAqUKBQD9/ZsCPre/xxqvoHXqYFkG51nZA9wuTQYAdJB4Y6rnALP6seOLsShgEj5M3gUA2JR5BP2dw80+HxdmlJnKdSZnYpr++5dbUAAPV1fO+iaktTE7QPv2228b3db4DzkFaISQ1iwzJ5d9zXV5DZ1Oh4SUDH3f3p5wdjI/O5RhGGzKPMx+vChgIoQ8gdn9jXfrhe+yjiFJmYO4shRckj/CEGlXs/oKMy5Wy+EKmkmiQEEhIjp2rKc1IbbN7ADt9OnTjWqXlpaGTz/9FImJiVRYkBDS6j3NrbrkO8Cn4UzIpsjMyYeiXAkACLfw/NlFeTwelevLWHRzCMJo1x4W9Sfg8bHA/xksTdoJANicdczsAM3J0QHenu7IzS9EUupTDu/kdGcvY88pyG/4AUJsmNkBWkN3bhYVFWHVqlXYuHEjlEolBg0ahC+++MLc4QghpFk8zdYHaHw+H76e3GZwPkmu2t609PxZbPZJ9vUc3zGcBEBjXXuio50vEpXZuFOWgjulKejl1MGsvsJCApCbXwh5aRkKimTwdHe1eH5ikQjuUikKiotRUCyDSq2GWCSyuF9CWiPOkwSUSiVWr16Njh074p///Cc6dOiA3bt34+LFixg6dCjXwxFCCGfkpaWQl5UBAHw9PSHk8IJ0AHiSZJwgYP4K2u3SZNwqTQIAhNp5Y5Rrd4vnBgB8Hh8zfEayH+/KOWt2X8aJAokcnkMzlD1hGAa5BVQPjbRdnAVoDMNg69atCA8Px7Jly+Dg4IDvvvsO9+7dwwsvvMDVMIQQYjVPjc6fBfj4cN6/aQan+QHa9uxT7OtZPqPB53H3u/ZE997wEDoDAE4W30VGhXlBUEcrlNoAYLKqaVwOhZC2hpM/1Xv37kW3bt0wf/58lJaWYtWqVUhISMDcuXPB5zgDihBCrOVpjvXOnwFVGZx2EjEC/czrP02Zh7Oy+wAAX5ErJrr35mx+ACDmC/FH7yEAAB0Y/JB7zqx+jAO0BKPA1FLGdemy8ylAI22XRev3Fy5cwAcffIArV65ALBbj3XffxfLly+HGcd0gYwqFAlu3bsXp06dRUlKC4OBgTJ8+HWPGjGnw2aKiIsTExODy5ctQKpXo1KkT5s6diz59+tRoe+PGDcTGxiIhIQF2dnYYNGgQFixYUONr02g02LVrFw4fPoyCggL4+flh6tSpmDZtmkm75ORk7NmzB0+ePEFiYiKUSiXWr1+P6Ohoy74hhBBOMAyDp7n6FTShQAAfD48GnmiaUkU5nmbr66t16hBk9i+vP+ddYl+/4j0UIj6327AA8LLXYMRmnUAFo8FvBdfxdsAk2PPFTeqjY0gg+HwedDrGpLSIpVwcHWFvZ4dypRLZ+fmcJSAQ0tqYvbw1efJkjBgxAteuXcPMmTPx5MkTfPXVV1YNzgBgxYoVOHLkCP70pz9hzZo16Nq1Kz755BMcP3683udUKhUWL16Mmzdv4u2338aqVavg5uaG9957D3FxcSZt4+LisHTpUri5uWHVqlV4++23cfPmTSxevBgqlcqk7dq1a/Gf//wHU6dOxVdffYVhw4Zhw4YN2LVrl0m7+Ph4nD9/Hs7Ozujdm9vfeAkhlpOVlKKssv6Zr5cXBALzS1bU5lFiKvu6S0fzEgTKdSrsLbgGABDzhHjBsz8nc6vOTeiEZ9z1vzyWaJU4WhjX5D7s7CQIDvAFoD+Dpqm829RSPB6P3eZUqdUolMk46ZeQ1sbsX70OHDgAHo+H4OBgZGdn44033mjwGR6Ph4MHD5o7JC5fvowbN25g5cqVGDt2LACgd+/eyM7ORkxMDEaPHl3nD9WDBw8iOTkZmzZtQvfu+gO10dHRmD17NmJiYrB582a27aZNmxAUFIRPP/2UPSTs5+eHt956C4cOHWLP1CUnJ+PgwYOYN28eXn31VbZPuVyOnTt3YsqUKXBxcQEAPPPMM5gwYQIA4MyZM7h0qeq3YEJIy8vIqbqCzhrbm/FPUtjXEeGhZvVxuPAWSirv3HzWPRpuwqbfGtBYf/AajN8KrgMAfsm7ZFYwGB4ajJT0LKjUaqRkZFtcmNfA18sTyRn6enLZ+flUsJa0SRatjTMMg+TkZCQnJzeqvaXL0OfPn4e9vX2Ny9YnTpyITz/9FA8ePECPHrXXAjp//jyCg4PZ4AwAhEIhxo8fj++++w55eXnw8vJCXl4e4uPj8cYbb5hkcPXo0QNBQUE4d+4cG6CdP38eDMOwgZfBhAkTsH//fly9ehXjxo0DADqLR0grl56Vxb4O8vXlvP+HT6p+TpoToDEMg59yL7If/9FrCCfzqksPh2B0sffHo/JM3FOkIV7xFF0dAhp+0EjnsGAcP3cVgL7ECGcBWrVEgW6dOnHSLyGtidkBWmODMi4lJycjJCSkRup7x8pq0snJyXUGaElJSejVq1eN942f9fLyYr+ujrVUqO7YsSN+//13k/m4urrCo9pZFeM+uZCfn48Co3Ty1NTUeloTQppKq9Uio7L+mb1EAi+jivVcMQRoErHIpNJ+Y8WVpeBRuT4bsrtDMLo7WlZHrSE8Hg8veQ3G39N+BQD8mncZK0JealIfncOq5vg4KQ0TRg3mZG5e7u7g8/nQ6XSUKEDaLLMDtJCQEC7n0SgymQz+/jV/sDk761PC5fVcniuXy9l29T0rqzzPYNiarN7WeAyZTFZrO3t7e4hEIrYvS/3222/YsWMHJ30RQmrKzs+HuvKMVJCfH+eHzktKy5CWqQ8Aw0ODzaqv9nNe1erZK97WXT0zmOjeG2szfkO5ToWDhTexJPB5OAgkjX7eOEDjMlFAKBDAy90dOfn5kJWUQFFeDgd7e876J6Q14D79x8os+cFZ37PVP1dX26aMz9UP+cmTJ2PIkKofyKmpqfj888856ZsQAqRlVm1vBvv7cd5/fELVqndEeIcmPy/TlOFE0V0AgKvAEePdojiaWf2cBHaY6N4b/8u/AoWuAseL7mBKE86iebhJ4e7qgsJiOR4npXGacenv7YWcytWzp7m5CG+BRQNCrMmsAG327NlmDcbj8RAbG2vWswAglUprXZUqKSkBUPuql4GLi0utK2yGZw0raVKpFADqHMd4FU4qlSIhIaFGu/LycqjV6nrn0xSenp7w5PjKGUJIldSsTPZ1kK81ArQU9rU5588OFt6CitGv8D3n0QcSfvNdb/SCR3/8L/8KAOC3gutNCtB4PB46hwXjyq17KJKVIL+wGF4e3GT6B/j44PaDhwD0BYYpQCNtjVkBWl3bbYZLbOt639IALSwsDCdOnIBGozHZIkhKqrzyJLTuH3xhYWFITEys8b7hvbCwMJM+kpKSMGjQIJO2SUlJJmOEhYXh5MmTKCgoMDmH1pj5EEJah1KFAoXF+l/IvD08YG/X+C28xnpgQYIAwzDYUxkgAcALngM4m1dj9HAMQQeJN1IqcnGjNBEZFQUIlDS+Rlx4qD5AA/Tn0LgK0Pw8PcHn8aBjGGQaXXBPSFthVmqhIXPT8E9iYiKee+45eHh44LPPPsOZM2fw8OFDnDlzBp9++ik8PDzw/PPP48mTJxZNdtiwYSgvL8fZs6b3wx05cgSenp6IjIys89nhw4cjLS0NDx48YN/TaDQ4fvw4IiMj2RUqLy8vRERE4NixY9BqtWzb+/fvIy0tzeSS+KFDh4LH4+HIkSMmYx0+fBgSiQQDBjTvD1JCSNOlGWVvBvtxv3oGVCUI2EnE6BDUtDEeKDLwuFw/xx6OwQi3t84c68Lj8TDZsx/78YGCG016vnqiAFdEIhG8K38xLpaXoKy8nLO+CWkNzFpBq54gsHr1aly9ehV37tyBn9EPuC5dumD48OGYNWsWoqOj8euvv+L99983e7IDBw5E3759sXbtWigUCgQEBODkyZO4evUqVqxYwdZAW716NY4ePYoff/wRvpXp8hMnTsSePXuwcuVKzJ8/H25ubtizZw/S0tKwbt06k3HefPNNLFmyBCtXrsTUqVNRVFSEzZs3IzQ01KSkRmhoKCZNmoTt27eDz+cjIiIC169fx/79+zF37lyTLU6lUokrV/S/Bd+/r7+mJS4uDjKZDHZ2dhg4cKDZ3xdCiPmS0zPY1yFWOH9WLC9lbxDoHBYMYRML4O7Jv8q+nurRMr/0PefeB18/PQQGDH4ruI43/MY1+v7PzkZFeR8ncpuB7u/jzWZxZubkILxDB077J6QlcZIkEBsbi5dfftkkODMWEBCAl19+GVu2bLEoQAOAzz//HFu2bEFsbCx71dNHH31kctWTTqeDVqs12W4Vi8VYt24dYmJisH79eiiVSoSHh+PLL79EVFSUyRjR0dFYs2YNtm3bhg8//JC96mnhwoUQi02vO1myZAk8PT2xe/duFBYWwtfXF4sWLapx1VNRURFWrlxp8t727dsBAL6+vvj5558t+r4QQppOpVYjI1tfoNbR3p5dkeHS7w+rzql279q0el3lOhUOF94CANjzxXjWvWWuhvMRu2KgS2dclj/CU1UhbpUmoa9z476W4ABfSCRiVFSo8NDoLB4XAry9ceu+flfkaW4uBWikTeEkQMvIyICdnV29bezs7JCRkVFvm8ZwcHDAO++8g3feeafONsuWLcOyZctqvO/u7o7ly5c3apx+/fqhX79+DbYTCoWYPXt2g4kTfn5+OHfOvEuHCSHWkZ6VBa1OBwAIDQy0yp2Odx9WHe3oFdG0AO1E0R2U6pQAgPFuUXAU1P9z1pqmePTDZfkjAMC+guuNDtCEAgG6hAXj7sMEPM3OQ7G8FK4u3NyA4OvlxdZDe5qTy0mfhLQWnJS3DwwMxJ49e6BUKmv9vEKhwJ49exAYyE0VaUII4UKS0fZmaGDTquQ31l2jFbQeTQzQdhttb77YzMkB1Y1y7Q4nvj5APF50BwptRaOf7dYljH1tfKOCpURCIbw99EWFZSUlKK28S5WQtoCTAG3u3LlISkrCkCFDsG/fPrbqfUFBAfbu3YuhQ4ciJSUF8+bN42I4QgixmFarRWqmvryGRCSCv48P52NoNBrcf6zP6vb38WxSBmOKMhe3Siszwu280cuxA+fzawo7vhjPuEcB0G+9nii+2+hnI8OrArT7j5I4nVeAd9V/N8NtEIS0BZxscS5duhSPHz/G9u3b8eKLLwIAu+wM6NPEZ82ahaVLl3IxHCGEWOxpbi5UajUAICQgAAIr3Jf7OCkdFRUqAECPiPAmPWuSHOA50Crbr0012aOfSU20yR4NHwMBgMjOVaVFHjzhNkAL8vPFzcrEq/SsLHQNo/JGpG3gJEDj8/mIjY3FjBkz8P333+Pu3buQyWSQSqXo1asXZsyYYVKeghBCWlpiWlXJh1ArHb8wPn/Wswnbm2pGi/2V5SyE4OM59z6cz80cvRw7IFjihbSKPFwvScDTikIESBq+tzTI3wfOTg4oKVXg/uNkTm8U8PH0hFgkgkqtRnp2FnQ6HfhWCLYJaW6cXvU0YsQICsQIIa2eVqtFYlo6AP05JmuU1wBMz581JUC7IHuIAo3+lpORrt3hIap5j3BL4PF4mOzRF99kHgYAHCi8gfl+4xv1XGR4KK7evo/CIhly8gvh68VNxqyAz0egrw+S0jOgrFAhr6gIPlbIxiWkudGvGYSQdic1M4vd3gwLCjTr8vKGMAyDOw/0K2h2EjE6hQY1+tndRjcHTG3h5IDqnvPoCx70q1/7C67XentMbSI7V51De8DxObQgoxJP6Ub3qhJiyyhAI4S0O09SUtjX4SEdrDJGRlYucvMLAeizNxtboDZHVYwLMv0dkz4iVwxy6WKV+ZnLT+yG/pUlNtIrCnC7rHFZmZFGV1zd5zCTEzC9AcL4ZghCbBkFaISQdkWlViPl6VMAgL1EgkBf7rM3AeDG3Yfs63696r6Grrr9BTegg35VaopnPwgaWbG/ORknB/yWf71RzxiX2uB6Bc3Z0RFulTe35BQUQKlScdo/IS2h9f3JJ4QQK0pKT2eL03YKCbbagfIbd6ru/e3bK6JRz+gYHfYW6LM3eeDhhRa62qkho117wIGvv1T+WFEcynUNB0ReHm7w9tQnFNx/nASNRsPpnAzbnAzDsLdDEGLLKEAjhLQrDxIT2dfWuhqIYRjcuBsPAHCwt0NEp8aNc6M0EekV+jqSA5zDG5Uh2RIcBBKMd+sFACjTVeBU0e+Nei6qm77USLmyAo84vDgdMN3mTMl4ymnfhLQECtAIIe1GoUyG7Dz95druUqnVsv1S0rNQWCQDAER169zoJATj2mcvtLLkgOpMtjkLGrfN2SuyM/v6zv3HnM4nwMcbosrvc2pmJrtKSoitogCNENJuPEyoWj2L6NjRasVfjc+fNXZ7U65R4ESRvjq/VOCA0a7drTI3rkQ7hSJQrA9wr5Y8QbaqqOFnulcFaHH3n9TTsukEAgFCAvwBABUqFbJy6W5OYtsoQCOEtAsarRaPUvTZgwI+H11CO1htrOtxRufPejYuQDtUeAsqRn8ua5JHH0j4IqvMjSt8Hh/Pe/QFADBgcLDgZoPPhAUHwsnRAQBw58HjRpfoaCzjgsPJGRn1tCSk9aMAjRDSLiSlp0NZee1SWFAQ7CQSq4yj0WhwLU5/9ZDU2RGdw0IafIZhGJOL0ae20uSA6p6rDNAAYF8jaqIJBHy2YG9hsRxpT7m9OzPE359N+kjKeMp5AEhIc6IAjRDS5jEMgzvxj9iPIzs1vqp/U915mIAyRTkAYGCfnhAIGv4x+0CRgUfl+oPt3RyC0NnB32rz41KgxAN9nToCAFIr8vB7WWqDz0R1MzqH9oDbc2hikQiBlZfelykUyCtqeNuVkNaKAjRCSJuXnZePvEJ90VhPN1f4e3tZbaxL1++wr4f069moZ/6Xf5l9/ZLXIM7nZE3GyQL7GpEsYByg3b73qJ6W5gkNqtrmTEpP57x/QpoLBWiEkDYvLj6efd2ra1erJQcAwMXr+oP+PB4Pg3r3aLB9mVaJQ4W3AAAOfAmedYu22tysYaxbT9jxxQCAo0VxqNCp620f2TkUYpH+fN3Nu/Hcn0MLCGD/+yakptE2J7FZFKARQto0WUkJe2Dc0d4enYKDrTZWdm4BElP1Y3Xv2hGu0oYvOT9ceJst9DrRvTccBNY5G2ctjgI7jHPVrxSWaMtxpvh+ve0lYjF6RurroWXl5iMji9tsSwd7ewT4eAMA5KWlyC0o4LR/QpoLBWiEkDbt5v2qjMoenTtD0Mg7Mc1x/loc+3pI37a/vWnwvElNtGsNth8Q3Y19fe12/QGdOYzvV32c0vC5OEJao8ZVTySEEBskKynBo2R9aQ2xSIRu4dZLDgCAUxdvsK+H9o9qsP1DRQYeKPQrbpEOgYhwCGzgicarKFMj/XYu8pJkkGcroFFpIRDxYS+VwMXXAQHdPODZ0RV8vuXbvf2cO8JP7IYsVREuyR8hR1UMH7Frne37R3XDRvwCALh6+z6mTRpt8RyMhQUF4tz169DqdEhIS8OQ3tFWu9KLEGuhAI0Q0mbdvH+fPYPUq2sXSMRiq41VWCzHrd/1BWqD/H3QOazhrdRf8i6xr1/0HMjJPArS5LizNwkp17Oh09Z9/uomnsDZyx4R44IROS4EQon5K4t8Hh9TPPrh26xj0IHB//KvYKH/s3W279IxBC5OjpCXluHG3QfQanWNynZtLIlYjJAAfySlZ6BcqcTTnBz2rk5CbAX9SkEIaZOK5SV4lJwCAJCIROjZpYtVxztz+SZ0On1ANHpI3wYTEWSaMra4qyNfggnuvS0aX1miwtlv72LPhxeRdCWr3uDMoCSvHNd+eISf/3IWiZcyLTpQ/6LnQAgq/0rZnX8FakZbZ1uBgI9+UZH6OZQqEJ+QbPa4dTHe5jT8f0CILaEVNEJIm3Q57rbR6llXq66eAcDJ81UlJsYM7VdPS73d+VehZPQZj1M8+8NJYGf22Gm3cnHuu9+hlKvY9+xcxOg42A9BUV5wD3aB2EEIjVILRXEFchOLkXI1Gxl39feSKgorcPqbO0i9kYshs7tB4tT0Wwx8xK4Y7hqJ08X3kKeW42zxPYytvFC9Nv2juuHkBf337Ort++jWpWOTx6xPSIA/JCIRKtRqJKanY6iqD+ys/P8AIVyiAI0Q0uZkZGcjOUNf+NXB3h69ulp39aywWI6blfdv+vt6oWunDvW21zBa/JR7AQDAAw+veA01a1ydjsHt/z3B7T1Vd4yKHYToPa0Tuo4JhlBsum0pFAtg5yKGe7Azuo4KQtHTUlz7IR7pt/MAAElXspCXVIzxS/vCLcCpyfP5o9cQnC6+BwD4Oe9SvQHagN5Vd41euH4Hs1+Z3OTx6iMUCNA5NBS/P34MrVaLJ8kp6NGlc8MPEtJK0BYnIaRN0el0uHDzFvvxwF49IRJZ917Lw6cuQavTAQDGDuvf4Pbm6eJ7yFYXAwCGSiMQYtf0wrkalRYn1982Cc5C+njjpS+HofuE0BrBWW3cApzwzNK+GL0oChJH/feoJLcc+z+6jKe/5zd5TgOcwxEs8QSgv0A9RVl3CY0AXy+EhQQAAO7FJ6KgSNbk8RoS2alqVe5+YgLVRCM2hQI0Qkibcic+HoUy/V/2Xu7u6BIaatXxGIbB/uPn2Y+fHzeswWd+yK1qP9274fbVqRRqHF1zA6nX9XdZ8nhA/9e6YOyS3nBwa/pWadhAP0xdPQQeIc6V/Wtw9MsbSL3ZtLsy+Tw+XvIazH78S97leloDwwfoi/IyDIMLRiVKuOLh6gofT33AWFgso5poxKZQgEYIaTOK5XJc+/0e+/Gwvn2semsAAMQnpLDFaXtEdEKHwPqzBe+WpuBWaRIAIMzOBwOdm7btpixV4dDfryHrgf7qKqFEgGc+6Iuez4VZ9LU6edjjuY8GIri3vsirTsPg5L9uI+V6dpP6meLRD2Ke/vTMvoJrUGgr6mw7YmBVYsS5q7fNmHXDIjsaraIlJFhlDEKsgQI0QkiboNPpcPrqNWi1+uzBXl26wLdy9cSafjvWtNWzrdkn2dev+4xoUlClUqhxdPUN5CfLAQASJxEmLu+PwJ7c3C0qshNi7LvR6DhYH2TqtAxOro9D2q3GV/t3FTqyGakl2nLsyb9aZ9vIzqHwcJMC0CcKKJV1B3Pm6hQSzF4t9TglFYrycs7HIMQaKEAjhLQJN+7dR1ae/rC7i5MT+vdqXCV/S5SWKXDo1EUAgEQixrhh/ett/1iRibMyfeV8X5Ernnfv2+ixNBVaHPvqJvKS9Nu39lIxnls5AN6dXM2bfB34Aj5GLOyF8GH682GMjsHJ9beRHV/Y6D5m+IxkX/879yw0dZTc4PP5GDYgCgBQUaHClVv3am1nCZFQiG6d9AWKdTodfn/8hPMxCLEGCtAIITYvIzsbN+7p/3Ln8XgYPXAARELrJ6n/duwcFOVKAMBzY4bAydGh3vaxRqtnM31HQcRv3By1ai2Or72F7PgiAPqVswnL+sMtsOG7Ps3B5/MwfH4PdiVNq9bh2Fc3UZhW0qjnO9n7YqhLVwBApqoIJ4ru1tl25KA+7Ovj5+tebbNEjy6dwa9cqbz35AnUGo1VxiGESxSgEUJsmry0FMcvVlXk79+zB/y9va0+rlarw3/3n2A//uPk8fW2T1Hm4lhRHADATeiEqZ4DGjWOTqvDqW/usFmVInshJnzYD+5B1gnODHh8Hoa/2RMBPfTbxCqFBkdWX0dJnqJRz8/0HcW+/j7ndJ0ZlAOiu0Hqoi/pcfbKbTbg5ZKTgwM6hYQAACpUKjxK4r4wLiFcowCNEGKzlCoVDpw5i/IK/dmlID9f9I6MbJaxT128jsxs/ZbqwN7dERrsX2/7b54ehg76IOV1nxGw5zdcNJVhGFzc9oDN1hRKBHjm/b7wDJNaOPvGEQj5GPtuNLw66cdTFFfgyOobUJaoGngS6OfUib1b9IEiA9dKaj+gLxQKMbaysG9FhQpnLt/kaPamoiK6sq9vP3zInlUkpLWiAI0QYpPUGg0Onz2HYrn+wLyriwvGDRli9axNQL96tuWHvezH01+s+95JALhXlobjxXcAAB5CZ7zayMK0t/6XgEen0wEAfAEPY5f0hm8XN/MmbSaRnRDPLO0LqZ8jAECWVYZjX92ERlV/gMPj8TDT6Cza5qyjda6iPTNyEPv66Jkrlk+6Fp5ubgiuvI+zpKwMD5OSrDIOIVyhAI0QYnPUajUOnjnDJgXYSySYNHJEs13lc/LCNSSnZQLQl9YYEN29zrYMw2D904Psx/P9xsNBIGlwjAfHU3F7d9Wq04gFPRHYw/pZqbWxcxbj2Q/7wt5VP+/cJ8U4/XUce/doXca7RaGDRL/dfLM0CddKaj+g3ysyHL5eHgCAq7fuIb+wmLvJG+nXswf7+ua9+9DQKhppxShAI4TYFIVSid9On0Fmrj44E4tEmDRyBKROTb+ayBxqtQabd+1mP57/fy/Wu2p3Qf6QDUyCJB540Wtgg2MkX83CpR0P2I8Hvh6BjoPr30K1NmcvBzz7fl+I7PU3FKTezMXlHQ/qrc4v4PHxpv8z7MebMo/U2p7P52PCaH2BW61OZ1L4l0s+Hh7oEKDPTi0rL8f9J1QXjbReFKARQmxGQXEx/nf0GHLy9QfmJSIRJo8eBW8Pj2abw497jyItU38mLLp7F/SPqvvMW4VOjS/S97Af/9l/IkS8+q9gynxQgNMb76DyuBp6Ph+G7hM6WDxvLnh0cMHYxb3BE+gD0ocn0nBnX/1bhePdeqGjnS8AIK4sBZfkj2ptN+WZqppwew6fgVar43DmVfobraLduHcPygrua68RwgUK0AghrR7DMLj/JAH/O3oMJWVlAABHe3tMGTumWYOz3PxCbP1xHwB9KYq/zJ9e7+rZ9uxTSK/QXy/U16kjnnGLqrf/glQ5jv/zFnQafXQWPjwA/V5pXRd8B/TwxPD5RkHOz4/x+GxGne0FPD4WGK2irX96AFqmZvAV4OuFQX30/Wbl5uPyzbpLc1jC080NnTt0AKDP6Lx293erjEOIpShAI4S0arLSUhw6ew5nr19nzwx5ublh2jPj4enWfAfmGYbB3zdsR3lltfupE0ahS8eQOtunKfOwrbLumRB8/DV4Wr3BXEmuAke+uAF1ub5GV1CUF4bN7d4sSQ9NFT40AP1e7cJ+fH7LPaTfyauz/RjXHoiszOh8VJ5Z5+0C0yaNZl//bFTChGuDonpBWFkn735CAvKLiqw2FiHmogCNENIqKVUqXL1zFz8dOIjUzEz2/W7hnfDCuLFwcqi/KCzXdh86jUs39Ks6Hm5SLJgxrc62WkaHFSk/ooLRB1vTfYajk71vne0Vsgoc/sd1lBfrgz/vTq4YvSgKfGHr/RHd87lQRD6jD1AZnf7ezvzKWw6q4/P4WBr0AvvxN5mHUaKteeXSkL694OetT4S4fPN3PEpM5X7iABwdHNC3ezcA+sD77LXr0Omss6VKiLla759+Qki7VFJWhstxcdi1dx9u3r8PbeVfnA729pg4fDhG9OvXLLcEGLv/OAnrtvzAfvy3xXMgda47KWFH9incKUsBoE8MeNPvmTrb6u/XvA55jr4ArGuAI8Yv7QORXfN+jU3F4/Ew8PUIdOjvA0B/FdWRNTfYr6O63k5h7BZvkaYU32YerdFGIODj/6ZVlSz5/peDNdpwpVeXLnB11hf7zSkowJ342s/GEdJSKEAjhLS4CpUKT1JSsP/0aeza9xtuP3jIXsfD5/MRHRGB156bhA6BAc0+t7yCIiz9bD0qVGoAwEuTxmBIv151tr9blopNWfrggw8ePuvwWp1lNTQq/RVOBan6K5QcPezw7If9YOfcPOVCLMXn8zByYS/4dtVvNSvlKhz54jrK5bUfvF8c8BwkPH3g+UPuedwtq7lCNnn8CLi7ugDQlzNJe5ptlbkLBAKMGlh1m8O1u3dRKKt9BZCQlkABGiGk2anUamRkZ+Pm/fvYe+Iktv1vN45fuoz0rKq/jPl8PiI7dcJrz03CoOgoiEWiZp9nQZEMC5d9gbyCYgBAVLfOWPLGa3W3V5fgL4k72MvBZ/qMQrRTaK1tNSotjv/zJrIe6C8hlziJMOHDfnDysOf2i7AyoViAcUv6wDVAv6Ioz1bg2Jc3oVbWvO/SX+LOlt3QgcFHKT9BpTNtZycR49UXKtvoGMTs/J/V5u7n5YVeXfU3DGh1Ohy7eJHu6SStBgVohBCrUGs0kJWUICs3D/FJSbgSdwdHzp/HjwcPYusvv+K3U6dx9c5dZObmmtTGcnZ0RL8ePfB/k5/HyP794NJM9c2qy8zJw4IPVyMlPQsA4O/rhS+Wvw2RqPatR5VOg6VJ3yNXrV+FiXYKxVsBE2ptq6nQ4thXN/H0d32Gp8hOf4WTIcixNRInEZ79oC8c3PQrhXmJMpz6Og66WkplzPAZySYMJClz8G1Wza3Ol54bw66inTh/DXcfWq9e2YCePeAm1Y9VWCzD2WvX663tRkhz4TH0f6LNefToEebNm4ctW7agS5cuDT9Amp3hjxXDMPpyVoaPK18ztbQz+bz+RY1nq7evdQyTZytfMew7tY7JMAx0Oh10OgY6Rlf5uuofra7y85Wf02p1UKnVUGvUUKk1UKvVUGnUUKs1UFZUoKy8vEkrEVInJ4QEBCA0MAD+3t4tnrl48+5DfLhqI4rl+q1HXy8PbF7zV/j7eNXaXsvo8EHSLvY6Jy+RC36KWAJPkUuNtiqFGifW3Ubm/crgzF6AZz/oB5/OzXuFkzUUpMlx4JOrbCZq55GB+kxUvul/z8eKTLz6cC000IEHHjaFv4HBLqY/y/538BRWb/wegP62hq1fLgefb501hUKZDP87eoz9f3ZI797o1ZV+tpKW1bpPoZJmk19UhDvx8Ya/403/UmcMNTOrXlcFCEzVMzWCEaNn2aCkqr3hdfV2lSNVjVHtWaZqQjXmxzDG7ateVw+ATMeov48awRNQ7xikfnw+H+5SF/h4esLHwwO+nl5wdXFu6WkBABTlSny763/4ad9x9r9ncIAvNnz2Xp3BmY7R4fO0X9jgzI4nwtqOs2oNzsqKlDi65gYKK8+cieyFmPBhX3iH235wBgAewS4Yt6Q3jqy+Dp2WweMzGdBpdBj+Rg+TjNTODv54K2AC1j89CAYMliX/G/+N+At8xK5smynPjsBPvx1DSnoWfn+YgN2HT+OlSWOsMm93qRSjBg7AsQsXAQAXb92Co4M9OgUHW2U8QhqDAjQCAChVKPAoOaWlp0HaAJFQCAd7ezja28HBzh4O9nZwdnSEq7MLXF2c4ezoaLWVEHMpypX47dg5bPvpNxTJStj3B0R3w6oP34KLs2Otz6l1GqxI+RFHim4D0Nc7W9vxT+jpWLM+WmFaCY5+eQNlBUoA+m3BZ97vC+9Ortx/QS3Iv5sHRizshTMb74DRMUi4kAmVQoPRi6IgFFfdovAnn1G4VZqM87IHKNKU4d3E7djaeSGbUCEUCLB0wet4a9kaAMDX237Wl+Hwsc59pJ2Cg1HQrRg3798HAJy4dBkSkQhBlResE9LcaIvTBlljizPl6VMcOnuOk764Ytjm4uk/YN/jVTVgX7Pvs+30T/KM29XybK1jGN436aPyFY99p3Fj1NLe8NrQX80xTL8uk7GqtTe8ZrcEq41XtVVY/VnTMXk8fa0qPt/wD6/qNY8PQbX3BHw+REIRxCIRRCJh5b9FEAmFELSy4KsuGo0Gcfef4OSF6zh8+hLKFFV1uSRiERbMeAmvTBkPgaD2r6dQXYoPk3fhauU9mwLw8ffQ6ZjgHl2j7ZMLT3Ex9j40FfrkAWcvezzzQV+4+tvmmbPGSLmeg1Nf32ZvRfDu7Iqx7/aGg7Qqo7VYU4ZXHq5FlkpfKHa4NBLrOs6C0Og6rL9v2Ia9R84C0CdpxPzjA7bILNcYhsHpq9cQn6S/vkrA5+OZoUNbJHuYEArQbJA1AjS1Wo3S8nLDX+36v8xrCRQMr2sPeAxBQM1nqwdAtQU0VcFI66ucTmybUlmBrNwCpGVmIz4hBQ+fpCDu/mOToMxg3PABWDBjGoL8fers71ZJEj5M/jdy1MUAAAlPiC/DZmKEazeTdmqlBlf/HY/4U+nse55hUoxf2sckUGmrMu8X4Pg/b0Kt1Aemju52GLekNzzDpGybJ+WZ+FP8NyjV6VcWn3fvi487/JEN0krLFHhl4XLk5OmzXV+ZMh5/mT/danPW6XQ4euEikjP011fxeTyMHNAfXcPCrDYmIbWhAM0GUZKAeRiGqfyn8mMwJgfrGTBGB+hR4xxazYP81Z9lGxsdyDd9tra+qs7aGc7xmT6LGh9XjdnQ/A1fp/GzNeZglEBgSFCoMYc6EhWqJydUn39dc6j572pJDMZtK5/VaLTQaDX6f1e+Vqu10Gi1UKs10Gi1KFdWoLRMAXlpGUpL9f/OLyxGYbEc9bGTiPHMyEH4w3Nj6r2+Sa4px4anB/FL/iX2PQ+hM77qOBO9nUz/As+8X4Dz3/2OkryqILDzyEAM/lOkyVZfW5efJMOxtTehKNTXRhOI+Bjwf10RMTaY/WXsqvwJFiZ8x5YnGe8WhVWh09mL5e8/SsS8pavYQ/xLF/wfXn5+nNXmrNXpcOryFTxJrarT1qNzZwzuHW0zK8TE9lGAZoOsEaDdvPsQ//jme/Yv4+qBicmBeJOkgJqBSY2kAfa5msGR8cfGz1k6h8qXdHCf1MnVxRkD+3THsP5RGNy3J5wc6746qlSrxI+55/F9zhmTK4p6O4VhTdgMeBklBJTklePGz4+ReLHqeiqBmI8hf+qGziMDrfPFtHKK4gqcWHcLuU+K2feCorww7I0ecHDVrySeLLqL95N3sUFaP+dO+DJsBtyE+m3g3YdP4x9f72CfX/nuXDw/bpjV5qzT6XDh5i3ce/KEfc/L3R1jBg2Eu1Raz5OEcIMCNBtkjQDtwrU4vPvxOk76IqS1EAgE8HB1gZ+PJ/x8POHv44XOYcGICO8AP2/PerfTdYwOv5elYV/BNRwqvIVynYr9nD1fjLf9J+IV76EQ8PQrKqUF5bh3OAUPj6dBq66q/+Xb1Q3D5vWA1K/2RIP2QqvW4sq/4/HweBr7nsheiD4vhSNyXDD4Qj7Oyx5gSeIOqCrvMPUXu+OL0P9DT6cOAICY73/Ftv/uZ5//86yXMeOliVY9FvEgIRHnbtxg7+rk8/no0y0SURERzX7lGGlfKECzQdYI0K7euoe/rt4IoOrQeNWZMZ7pgfPq58uMDqbXPBhf81ya8VmzGgkA7Fn3ygP51eZgaNeYOVQ914g5sM9Vn0P1vuqbQ80Egaoxqs+h+udbwRyqnzOsaw6Vz1Z204g5mCZGVJ8D+7la51B1blEoFFT+I4RQIIBIVPlvoRBCof7fEokYzk4OcHZ0gLOTI+wk4kb/5a1jdEhR5uGeIg03SxJxXvYQBZoSkzZ88PCcR18s9H8WfmI3MDoG2Y8K8eh0BhIvZ4HRVv04lTiJ0OcP4YgYE1yjDlh7ln47F+e++x3lsqqA1zXACb2ndUKH/r64q0jBksQd7PeeDx5m+IzEfL/xsOeLsfa7H/DTvmPss+OGD8CHb82sM9OWCzkFBTh5+QqK5VVb5Q729ujXvTu6hIVCKGg/W9ak+VCAZoPoDBohjcMwDFSMBhU6Dcp1FZBpFCjSlEGmLUOxRoFsVRHSKwqQUZGPVGUeynS13yHpwJdggns0ZviMRJDAAzmPi5F+Jw/JV7JQmq80aSsQ8dHt2RD0mtwREsfmv57KFijlKlz76REen80AjP4Gkvo7osfEUDj1dcBfM/9tclenp9AZ8/3HY4p7f/zw6xFs+v5X9nPeHm5YNOePGD9ioNVW0zQaDa79/jvuxD8yOTphbydB9/BwdA0Lg7Nj+14lJdyyuQBNoVBg69atOH36NEpKShAcHIzp06djzJiGCxgWFRUhJiYGly9fhlKpRKdOnTB37lz06dOnRtsbN24gNjYWCQkJsLOzw6BBg7BgwQK4ubmZtNNoNNi1axcOHz6MgoIC+Pn5YerUqZg2bVqNPjMzM7Fx40bcvn0bWq0W3bp1w/z585scZFkjQHtSnomfcvVFGhnU/F/C+D2Tc2Ts52u+Z/K88QH7am3Ne8Z0dvXPrYF51vP11DkmU3PuDT1T2x+1huZm3jM1Z9TQ972271ttY9b29dT536KB70F9/8/U/vXU/9+fAQMNo0OFTg11ZVBm2Cozhx1PhAHO4RjA64yo/BCUJZcjP0mO3IRitlyGMYmTCJHjghExPqRdZGhyIS+xGJd3PjQ5mwYAQokAIQO9catfKn7EBaiZqu+3m9AJL3kOgtdjMTbH/IqSUgX7uYhOHfDa1GcxZmi/Oq/kslSRXI4rcXFIznha43N+Xl7oGByEID8/uDo7U0Y6sYjNBWhLlixBfHw85s+fj6CgIJw4cQIHDhzA3/72N4wbV3dWj0qlwrx581BaWor58+fDzc0Ne/bsweXLl7Fu3TpERUWxbePi4vDuu+9i0KBBmDp1KoqKirB582Y4OTlhy5YtEIvFbNs1a9bg2LFjmDNnDrp27Ypr167hhx9+wNy5c/H666+z7YqLizF79mw4Oztj9uzZEIvF+M9//oOEhAR89913CG5CxWprBGjnZA/wdsJWTvoixNbwGB48tE4ILHNHYLE7vLNc4PbYEap8dfVo0PQ5Pg+BPT3Raag/Qvr4QCihra6mYhgGT+8VIG5PArLji2p8vsRHiZvjU/D7/7d373FR1fn/wF8HBobhMjMiCEoCcjEwSSTUvADeBcNqWX+aiaai2CNb2azV7SLYZStrw8e6reYql/Ch5tfUTVPUXNmkICQxbXM1lAEvoHKHBAZm+Pz+UI4c5gwXGeQMvp+PBw+Zz/mcz/m85/hh3nMunzPgqsEyb60zmv9Vjev/LRGUq5UOCHtyJELHBmHEMF+oHEw/39zN8nKc/d8FXL56VfSLlL2tLQY6O8PZ0RHOjo5w6qeGvNVnByEdMasELTs7G2vWrEF8fDymTp3Kl69atQqFhYXYs2cPLI1cC7B//35s2LABmzZtwvDhwwHcOfq1ZMkSKBQKbNmyha8bGxuLhoYGJCcn8xMi/vzzz1ixYgVWrVqFZ599FgCg0WiwaNEiLFu2DNHR0fz6H3/8MY4dO4a9e/dCqbxzd9fmzZuxZ88e7Ny5E66urgCA27dv47nnnkNQUBDefvvtTr8PPZGg7T/7A9bp/s8kbREzdvevASf4q8CJlAnr36nFGZSLHT/gmEhpV9phIvXustBzkOktYKmzhKWeg6XO8u5rC8h0FrBpsIJNvTUU9VawqbeC3W05VFUKONQoYNncuekTbPvJ4RbghEced4LbcCfYKOlD11TKCqpxIeMqLmcVo6leeJTyhms1fnqiCJeG3gKzEP5n5PIbITtWB+6G4ZFNABj8iAt8vdwxxG0g3N1c4eLkiH5qJRxVSigduvdki9rbt3FRU4j8wkJU1nQ8nYvS3gEqe3vY2Spga2MDhY0NFHIbKGzksJLdnfhZJoNMJqMjcA85s7oFJTMzEwqFAhMnThSUz5w5E++88w7Onz+PgIAAo+u6u7vzyRkAyGQyTJ8+Hf/85z9RWloKZ2dnlJaW4sKFC4iNjRXMVh0QEIDBgwfj5MmTfIKWmZkJxhgiIiIE24qIiMDBgweRk5PDH9U7efIkgoKC+OQMAOzs7BAaGopjx45Bp9P12OzYneGnH4Tn0p40KBf7UBb9gDVSt70Pd7EkwGg7jGtTC0aSgI7aaanVURLQqh2RZjrfTuuecQZl9/pquJUOk5JOvqei7714VKQVGwcrOAywhcMAW6gG2sFpiBJOXirY9bPp7a71WU5eKkzwUuHJaH9c/7kMRXm3cCXvFhpqGuF6Q4XwQ4/jt28b8KvfDVwaehM3B95JiJivNZp8rMAV6WCR0wCLXxvB3bsHAVev3cTVazeNbpez4sBZWYCT3fmxkHF3buzgWv5tuSnn7r8W917fbQEAoLa1hYtaDReVCs5KpcGcaQ3aRjRoy3GrvLxT74dOf2eev+a7Uw013/1hIv8CEM5L2Kodg0sLOqhD7hjo6oo//L/ZvbZ9s0rQNBoNPDw8DBIZb29vfrmxBK2goAAjRowwKG+9rrOzMzQajaC8bd2ff/5Z0B+1Wo3+/fsbbRMAtFotiouLERoaKtqmVqtFSUkJBg8eLNr3srIylLca0JcuXQIAFLWaRLG7ym9Uwa62SVjY5jPc8Mtc2wrtvjQs6OK3Q4Nvkwbtda35jjffJvXrYHtd3UBH72fH71/bl51/f5hY+x1tz2A5J/arkapd3dftd6bjfSEssLAELKwsYXn3w9fSyhKWMg4WVhaQWVnC2k4Ga4UV5HYyWCmsYGMvg8ym9d+ZZjSgCtduVQG3uhQKuV8OgEuYNVzCHsFvZfWouFKL8qJasFt6+OTZwSPLA3W2WpQNqEXpgFqUOf2GWqUOunEW0I+2AXetCRbXdeBu6ICyZnDN7WxLD7CGewmL+HG4jtUBaJn9zsKCg4O9AmqVA1QqO9jbKWBnawMbm87fWdwRDgCdVO85BZfycfHixR5p28PDAzY27X/ZM6sErbq6GoMGDTIod3BwAADUtHN4uaamhq/X3rrV1dUAwJ+abFu39Taqq6tF6ykUClhZWfFt1dbWgjEmuv2W9aurq40maAcOHEBqaqpB+XvvvSdanxBCHhqF935V9FonxGlvAzdvAsaP3RGpW5ae3iPtduYSJbNK0ICufxPv7Lptlxmr25Xtd7bNjpY9/fTTGD9+PP+6trYWRUVFGDp0qOCGhe4qKirCe++9h7feegseHh4ma1cq+np8QN+Psa/HB/T9GCk+89fXY3wQ8XWmXbNK0FQqFX9UqrXa2jsTGoodzWqhVCpFj7C1rNtydEt19xEexrbT+iiYSqXiTze2Vl9fj6amJr4/DndvtxbbfktZe313cnKCk5OToCw4ONho/e7y8PDo0/Or9fX4gL4fY1+PD+j7MVJ85q+vx9jb8ZnVU1+9vLxQVFQEnU44t1FBQQEAYMiQIe2ue/nyZYPyljIvLy9BGy1ttt1O6214eXmhqqpKcH2YWH/kcjnc3NyMtimXyzFw4ECjfSeEEELIw8WsErSQkBDU19fj22+/FZQfOXIETk5OGDZsmNF1Q0NDceXKFZw/f54v0+l0+OabbzBs2DD+CJWzszP8/f1x7Ngx6PX3LhX95ZdfcOXKFYSFhfFlEyZMAMdxOHLkiGBb6enpkMvlGDNmjKDveXl5uHnz3tUIdXV1OHnyJMaPH9+rd3ASQgghRFrMKit48sknERwcjMTERNTV1cHNzQ3//ve/kZOTg7feeoufA+3DDz/E0aNHsWvXLn5ai5kzZ2L//v2Ij48XTFR75coVbNggfEj4iy++iFWrViE+Pl4wUe2QIUMEU2oMGTIETz31FFJSUmBhYQF/f3/k5ubi4MGDWLp0qeC05bx583Ds2DGsWbMGMTExsLKywo4dO9DY2IjFixc/gHevY/3798eiRYsM7krtK/p6fEDfj7Gvxwf0/RgpPvPX12OUSnxmNVEtcOeo09atWwWPeoqOjhY86un999/HkSNHsHv3bsGpw4qKCsGjnnx9fRETEyN6PVdubi6Sk5ORn5/PP+rppZdeEn3UU1paGtLT01FRUQFXV1dERUWJPurp+vXr2LRpE/Ly8vhHPb344ot9+hw+IYQQQrrO7BI0QgghhJC+zqyuQSOEEEIIeRhQgkYIIYQQIjFmdZMAuePMmTOIi4sTXbZ582Y89thj/OuLFy/is88+w/nz52FpaYmRI0dixYoVok9k2Lt3L/bv34+SkhL0798fERERWLBgQafuMNXpdNi+fTvS09NRXl6OgQMH4ne/+53otXi9EePVq1dx4MABnDlzBsXFxeA4Dh4eHpgzZ47Bs13FlJSUYO7cuaLLEhISBNdA9kZ8AEQfJQYAsbGxiI6O7rBPUt+H6enp+OCDD4xur6M4e2sfnjt3Dunp6cjPz4dGo0FTU5PB9bGtSWUcmjo+qY1BoGf2oZTGoanjM8cxqNfr8eWXXyI3NxcajQY1NTVwcXHBhAkTMH/+fNEn/EhlDFKCZsZiY2MxcuRIQVnredqKiooQFxcHHx8frFu3Do2NjUhOTsbLL7+M5ORkqNVqvm5aWhqSkpIwf/58jBo1ChcuXMC2bdtQVlaGP/3pTx32JTExEceOHUNMTAz8/Pxw6tQpbNy4EXV1dViwYEGvx3jq1ClkZ2djxowZ8PPzg16vx4kTJxAfH48lS5Zg0aJFnerP73//e0ydOlVQ9sgjj/R6fC0mTpxo8AfQxcWlU32R+j4cO3YsNm/ebNB+UlISfvzxR6MfjG096H14+vRpnD59Gr6+vrCzs8OZM2eMtiXFcWiq+KQ6BgHT7kNAeuPQVPGZ4xjUarVISUnBlClTEBkZCZVKhV9//RVpaWnIysrC1q1bIZfL+fUkNQYZMTt5eXksJCSEZWRktFsvPj6eRUZGst9++40vKykpYZMmTWKbNm3iy6qqqtiUKVPYRx99JFg/LS2NhYaGMo1G0+52CgoKWGhoKNu+fbug/KOPPmJTp05l1dXVnQusFVPHWFlZyZqbmw3WX716NZs2bRrTarXtbqe4uJiFhISwnTt3di0QI0wdH2OMhYSEsMTExPvqjznsQzF1dXVs+vTpbMWKFR32p7f2oV6v53/fuXMnCwkJYcXFxQb1pDYOTR2f1MYgY6aPkTFpjcOeiK8tqY9BnU7HqqqqDMozMjJYSEgIO3r0KF8mtTFI16D1UTqdDllZWQgLC4OdnR1f7urqipEjRyIzM5Mvy8nJQWNjI2bOnCloIyIiAowxQV0xmZmZYIwJ5ohrWV+r1SInJ8cEERnqSoxqtVr0eaf+/v5oaGgQfQxXb+tKfN1lDvtQzIkTJ1BfX4+nnnqqR/pnChYWnfsza67jsLPxmeMYbNHZGLtL6vtQjNTHoKWlJf8Ix9b8/f0BALdu3eLLpDYGKUEzYxs2bMCkSZMQHh6OV199FefOneOXFRcXQ6vVwtvb22A9b29vXL9+HVqtFgCg0WgA3HvcVQsnJyeoVCp+uTEajQZqtdpgUr+WbXe0fntMFaMxZ86cgVqtNpjfzpidO3di8uTJmDZtGlasWIHvvvuuawG1Yer4jh8/jqlTp2LKlClYunQpDh8+3Kl+mOs+PHToEOzs7DBp0qRO9+dB7sOukOo4NFV8xvT2GARMH6PUxmFP7kNzHYN5eXkAAE9PT75MamOQrkEzQ3Z2dpg9ezZGjhwJpVKJ69evY9euXYiLi8P69esxevRo/mHvYg9hVyqVYIyhtrYWcrkcNTU1sLa2hkKhEK0r9uD41qqrq0W3o1AoYGVl1eH6DyJGMV9//TXOnDmDlStX8k+hMMbKygqzZs1CcHAw+vfvj5s3b2Lfvn144403sHr1akRGRvZ6fFOnTsXYsWMxYMAAVFZW4tChQ/jwww9RXFyMpUuXttsfc9yHRUVF+O9//4unn34aNjY2HfanN/ZhV0htHJo6PjG9OQaBnolRSuOwp/ehuY7B0tJSbNmyBX5+fhg3bhxfLrUxSAmaGRo6dCiGDh3Kvx4xYgRCQkKwaNEibN68udODTux0Q3fqmXL9no7xhx9+wIYNGzBx4sRO3V3j5ORkcIHopEmTsHz5cmzZsgXh4eFdep5qT8QXHx8vWDZx4kT8+c9/xo4dOzB79myDGwq6Qor78NChQwDQ6T/qUt2HnfWgx2FPx9fbYxDomRilNA57eh+a4xisqanB6tWrwRjDunXrunR690GPQTrF2Uc4ODhg3LhxuHz5MrRaLX/OXey6jpqaGnAcB3t7ewB3vhk0NjaioaFBtK7YN4LWVCqV6Hbq6+vR1NTU4fqd1Z0YWzt16hTeeustBAcHY+3atfc96GQyGSZPnozq6mpcu3btvtpozVTxtTZt2jTo9XpcuHCh3Xrmtg91Oh2OHj0KHx8f+Pn53Xd/enofdoU5jMPuxNeaVMcgYLoYW5PSODRVfOY4Bmtra7Fq1SqUlZUhMTHRYKoiqY1BStD6ENbqqV2DBg2CXC5HQUGBQb2CggK4ubnxp41azre3rVteXo7q6mrB7dhivLy8UFVVhfLycoPtAOhw/a643xhbnDp1Cm+88QYCAwPx7rvvwsrKyiT9MdVFxN2Nz5iO+mdO+xAAsrKyUFlZaZILk3tyH3aFuYzD+42vhdTHYOs2TU0q49AU8ZnbGKytrcUrr7yCkpISfPLJJ6LXvUptDFKC1kfU1tYiOzsbvr6+kMvlkMlkGDduHE6ePIm6ujq+3s2bN3HmzBnBfDVjxoyBtbU10tPTBW2mp6eD4ziEhIS0u+0JEyaA4zgcOXLEYH25XI4xY8aYIMLuxQjc+2B4/PHH8Ze//AXW1tbd6o9Op0NGRgZUKhXc3Ny61RbQ/fjEHD16FDKZTHAaQIy57MMWhw4dgrW1NaZPn96t/vT0PuwKcxiH3YkPkP4YBLofoxgpjUNTxWdOY7AlOSsuLsYnn3xidD9IbQzSNWhm6J133sGAAQPg5+cHlUqFa9euYffu3aioqMDrr7/O11uyZAliY2OxZs0azJ8/H42NjUhKSoJKpcJzzz3H11MqlVi4cCGSkpKgVCoxatQo/O9//0NqaioiIyMFd7kcOXIE69evx5o1axAeHg7gzreCp556CikpKbCwsIC/vz9yc3Nx8OBBLF269L4Oy5s6xnPnzuHNN9+Eo6MjoqOjcenSJcH2PD09+WkexGL89NNPodPpEBAQAEdHR9y6dQt79+5Ffn4+Xn/99Q4vcO7p+Hbt2oXCwkI88cQTcHZ25i9Ozs3NxeLFiwXXvZjrPmxRVlaGU6dOYdKkSaKzgBuLsbf2YVVVFX766ScA975J5+TkQK1WQ61WIzAwEID0xqGp45PaGOyJGKU2Dk0dXwtzGoNarRavvvoq8vPz8Yc//AF6vR6//PIL34ZareYTQ6mNQUrQzJCXlxcyMjJw4MAB1NfXw8HBAQEBAXjzzTf5uV0AwMPDAxs3bsRnn32G+Ph4WFpaIigoCC+99JLBhaoLFy6Era0t9u/fjy+++AKOjo54/vnnsXDhQkE9xhj0er3BIeRVq1bByckJ+/btQ0VFBVxdXbFy5cr7fkyQqWP88ccfodVqcePGDfzxj3802N7f/vY3fiZqsRiHDBmCAwcO4Pjx47h9+zZsbW3h7++Pv/71r/d1oa2p43N3d8f333+P7Oxs/q5HHx8f0cenmOs+bJGeng69Xt/uhclS2ocajcbgwvHExEQAQGBgIDZu3MiXS2kcmjo+qY3BnohRauOwJ/6PAuY1BisqKvhr/9rGAQDh4eF44403+NdSGoMc66mT7YQQQggh5L7QNWiEEEIIIRJDCRohhBBCiMRQgkYIIYQQIjGUoBFCCCGESAwlaIQQQgghEkMJGiGEEEKIxFCCRgghhBAiMZSgEUIIIYRIDCVohBBi5goLC8FxHP/j6uoqWL5u3TpwHIf//Oc/vdPBNqKjowX9TU1N7e0uESI5lKARQiSrbeIh9tP2OYEPsxEjRiAhIQGvvfZaj29ry5Yt4DgOL774Yod1n3jiCXAch7y8PABAVFQUEhIS8Mwzz/R0NwkxW/QsTkKI5Hl7eyM6Olp0WdujRQ+zwMBArFu37oFsa968eVi1ahW++OILbNiwAQqFQrTeuXPnkJeXh8DAQAQFBQG4k6BFRUUhNTUVX3311QPpLyHmhhI0Qojk+fj4PLDEg3SOUqnE7NmzkZaWhn379mH+/Pmi9ZKSkgAAMTExD7J7hJg9OsVJCOlTOI7DxIkTUVpaiiVLlmDAgAFQKBR48sknjV6DVVtbi4SEBDz22GNQKBRQq9UIDw/Hd999Z1B34sSJ4DgOWq0W8fHx8PHxgZWVlSCB3LdvH4KDg6FQKODi4oJly5ahsrISnp6e8PT05Ou98MIL4DgOubm5ov1avXo1OI7D/v37u/OWGHXu3DkMGjQITk5OyMnJ4cs1Gg2WLl0Kd3d3yOVyDBw4EIsWLUJRUZFg/ZakKyUlRbT9xsZG7NixA3K53GgCRwgRR0fQCCF9TlVVFcaPHw+lUon58+fj1q1b2L17N2bMmIHTp09j+PDhfN2KigqEhobil19+QUhICGbMmIHq6mp89dVXmDRpEvbs2YNnn33WYBtRUVE4e/YsZsyYAUdHR3h5eQEAkpOTERMTA7VajYULF0KlUuHw4cOYNm0ampqaYGVlxbexfPlypKWlYevWrRg1apSg/aamJqSlpcHV1RWzZs0y+XuUmZmJWbNmQalU4sSJE/Dz8wMA5OTkYMaMGbh9+zZmzZoFHx8fFBYWYseOHUhPT0d2djYfa2hoKHx9fXHixAkUFhYKkk8AOHDgAMrLyzFv3jz069fP5DEQ0qcxQgiRKI1GwwAwb29vlpCQIPqTnp4uWAcAA8Beeuklptfr+fJt27YxAGz58uWC+s8//zwDwJKTkwXlN27cYIMHD2bOzs6svr6eLw8LC2MAWGBgICsvLxesU1lZyezt7ZmDgwO7fPkyX97U1MSmTp3KADAPDw/BOsOHD2cODg7st99+E5Tv27ePAWBr1qzp9Pv0wgsviC5PSEhgAFhGRgZjjLF//etfzMbGhg0bNoxdvXqVr9fY2Mg8PT2Zg4MD++mnnwRtZGZmMktLSxYZGSko/+CDDxgAtm7dOoPtRkREMADs+PHjov1KSUlhAFhKSkqHMRLysKEEjRAiWS2JR3s/cXFxgnUAMDs7O1ZbWysob2pqYjKZjAUFBfFlpaWlzNLSkk2ZMkV0+xs3bmQA2MGDB/mylgTtq6++MqifmprKALBXXnnFYFl2drZogtayjaSkJEH5zJkzGcdxLD8/X7RvrXUlQdu2bRuztLRkY8eONUgwW5LCd999V7SdqKgoZmFhwaqrq/my4uJiZmlpyTw9PVlzczNffv36ddHy1ihBI8Q4OsVJCJG8GTNm4MiRI52u7+vrC3t7e0GZTCaDi4sLqqqq+LLc3Fzo9Xo0NDSI3oSQn58PALhw4QIiIyMFy0aPHm1Q/+zZswCAcePGGSwbPXo0ZDLDP7kLFizAmjVrsG3bNixZsgQAcP36dRw9ehRhYWHw8fFpP9gu2LBhAw4cOICZM2diz549sLW1FSz/4YcfANyJV+z9uHHjBpqbm/Hrr78iODgYADBw4EBERETg66+/RkZGBiZPngwASE1NhV6vx+LFi8FxnMliIORhQQkaIaTPUalUouUymQx6vZ5/XVFRAQD4/vvv8f333xtt7/bt2wZlLi4uBmU1NTUAAGdnZ4NlFhYWcHJyMihXq9WYM2cOPv/8c5w/fx7Dhg1DSkoK9Ho9li1bZrRP9yMzMxMAEB4ebpCcAffejx07drTbTtv3IyYmBl9//TVSUlIECZqFhQUWLVpkgp4T8vChuzgJIQ8tpVIJAHj11VfB7lzyIfqTkJBgsK7YUaGW9kpLSw2WNTc3o6ysTLQfy5cvBwBs27YNjDGkpKTA0dERUVFR9x2bmKSkJAQFBSEuLg6bNm0yWN7S/4MHD7b7foSFhQnWi4yMhIuLC/bu3YuamhpkZmYiPz8f06ZNg7u7u0ljIORhQQkaIeShNWrUKHAch+zsbJO0N2LECABAVlaWwbJTp05Bp9OJrjd27FgEBARg+/btSE9PR0FBAaKjo2FjY2OSfrXo168fjh8/jqCgIKxYsQL/+Mc/BMvHjBkDAF1+P2QyGRYuXIj6+np88cUXSE5OBkBznxHSHZSgEUIeWq6urpgzZw6ysrLw8ccfgzFmUCcnJwd1dXWdau+ZZ56Bvb09tm3bBo1Gw5frdDqsXbu23XVjY2NRVlbGn9ZcunRpFyLpvJYkLTg4GC+//DL+/ve/C/rv7u6OxMREnDx50mDdpqYm0bnhgHvJ2KZNm7Bnzx7079+fHuVESDfQNWiEEMm7dOlSu08S6M5TBjZt2oSLFy9i9erV2L59O8aOHQuVSoWrV6/i9OnTyM/PR0lJieg1W22p1WokJiYiNjYWQUFBmDt3Lj8Pmlwux6BBg2BhIf69uOVmgeLiYowZMwYBAQH3HVNn+vnNN99g+vTpWLlyJRhjWLlyJeRyOb788ktEREQgLCwMU6ZM4eeMu3LlCjIzM9G/f39cuHDBoM1HH30U48eP56/lW7ZsGaytrXssBkL6OkrQCCGSd/nyZbz99ttGl3cnQXN0dERWVhY+/fRT7N69Gzt27EBzczNcXV0xYsQIrF27VvTifmOWLVuGfv364f3330dqaipUKhWefvpprF+/Hh4eHvD29hZdT6VS4ZlnnsGuXbtMfnOAmNZJWlxcHBhjiIuLw6hRo3D27Fl8/PHHOHz4ML777jvI5XK4ubnh2Wefxbx584y2GRMTwydoLXekEkLuD8fEjukTQggxqUuXLsHX1xdz5szB7t27Res89thjuHLlCkpKSgymCWlPYWEhhgwZghdeeAGpqakm6nHPS01NxeLFi5GSkkJ3exLSBl2DRgghJlRZWQmtVisoq6+vxyuvvAIAoo+NAoDDhw/j/PnzWLBgQZeSs9Y+//xzcBwHV1fX+1r/QYmOjgbHcVi8eHFvd4UQyaJTnIQQYkLffvstYmJiMH36dLi7u6OsrIx/VuXkyZMxd+5cQf3Nmzfj6tWr2Lp1KxQKBVavXt3lbarVasFUIPeb4D0oUVFRggl4AwMDe68zhEgUneIkhBATys/Px9q1a5GVlcXPh+bj44O5c+fitddeM5g6w9PTE9euXcOjjz6K9evXGzyxgBDycKIEjRBCCCFEYugaNEIIIYQQiaEEjRBCCCFEYihBI4QQQgiRGErQCCGEEEIkhhI0QgghhBCJoQSNEEIIIURiKEEjhBBCCJEYStAIIYQQQiTm/wOgtM9bys6nzQAAAABJRU5ErkJggg==\n", "text/plain": [ - "\u001b[38;5;46m08:28:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99063\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=256181;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=520728;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" + "
" ] }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, + } + ], + "source": [ + "# Plot spectra at 511 keV\n", + "energy = np.linspace(500.,520.,10001)*u.keV\n", + "fig, axs = plt.subplots()\n", + "for label,m in zip(models,\n", + " [ModelCentralPoint,ModelNarrowBulge,ModelBroadBulge,ModelDisk]):\n", + " dnde = m.spectrum.main.composite(energy)\n", + " axs.plot(energy, dnde,label=label)\n", + "\n", + "axs.legend()\n", + "axs.set_ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "axs.set_xlabel(\"Energy [keV]\", fontsize=14);\n", + "plt.ylim(0,);\n", + "#axs[0].set_yscale(\"log\")" + ] + }, + { + "cell_type": "markdown", + "id": "db4cfb6e-e812-4f16-9c4c-95176bcc0dee", + "metadata": {}, + "source": [ + "The orthopositronium spectral component appears as the low-energy tail of the 511 keV line." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8b588f46", + "metadata": {}, + "outputs": [], + "source": [ + "# Define healpix map matching the detector response:\n", + "nside_model = 2**4\n", + "scheme='ring'\n", + "is_nested = (scheme == 'nested')\n", + "coordsys='G'\n", + "\n", + "mBroadBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mNarrowBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mPointBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mDisk = HealpixMap(nside = nside_model, scheme=scheme, dtype = float,coordsys=coordsys)\n", + "\n", + "coords = mDisk.pix2skycoord(range(mDisk.npix)) # common among all the galactic maps...\n", + "\n", + "pix_area = mBroadBulge.pixarea().value # common among all the galactic maps with the same pixelization\n", + "\n", + "# Fill skymap with values from extended source: \n", + "mNarrowBulge[:] = ModelNarrowBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", + "mBroadBulge[:] = ModelBroadBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", + "mBulge = mBroadBulge + mNarrowBulge\n", + "mDisk[:] = ModelDisk.spatial_shape(coords.l.deg, coords.b.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b80ae9d2", + "metadata": {}, + "outputs": [ { "data": { - "text/html": [ - "
08:28:17 INFO      trial values: 0.99985,0.0016432,0.99058 -> logL = 166772.754            joint_likelihood.py:1013\n",
-       "
\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAADz9ElEQVR4nOydZ5gc1Zlwz62qzt2Tk/IoB5SIAoEQIopgwGvDGq+NAxivMZjguGu8NmadP+MFpzW2WZzAgSByMiCRo3JOI2lyzp2r6vvRYTpUt8KM1BrpnueZR6Oet+99u7q66vSNwjRNE4lEIpFIJBKJZBgohU5AIpFIJBKJRDL6kVIpkUgkEolEIhk2UiolEolEIpFIJMNGSqVEIpFIJBKJZNhIqZRIJBKJRCKRDBsplRKJRCKRSCSSYSOlUiKRSCQSiUQybKRUSiQSiUQikUiGjZRKiUQikUgkEsmwkVIpkUgkEolEIhk2UiolEolEIpFIJMNGSqVEIpFIJBKJZNhIqZRIJBKJRCKRDBsplRKJRCKRSCSSYSOlUiKRSEYIIQRCCM4555wRL3vPnj3J8j/96U+PePkSiUQyXLRCJyCRSCRHEiGE5eN2u52ioiKKi4uZOHEiJ510EosWLeKyyy7D5XId4SwlEolk9CGlUiKRSIBwOExHRwcdHR3s2rWLV155BYDi4mKuvfZavvvd71JSUlLYJCUSieQoRkqlRCI5bnnssceSv5umSW9vL93d3axdu5ZXX32VPXv20Nvby89//nMeffRR/vKXv7B06dKc5ZmmeSTSlkgkkqMSKZUSieS45corr8z5N9M0efbZZ7n11lvZsWMHjY2NfOhDH+KNN95g3rx5Ry5JiUQiGSXIiToSiURigRCCSy65hPfff5+zzjoLgP7+fq666ioMwyhwdhKJRHL0IaVSIpFI8lBUVMTf//53SktLAdi2bRt//etfLWMPZPb3jh07+PKXv8zJJ59MSUkJNpuNyspK5syZw8UXX8z/+3//j82bNx9yvm1tbZx88snJXG6//XbZLS+RSI4IUiolEolkP4wZM4Ybbrgh+f/777//kMr53e9+x9y5c7n77rtZvXo1vb29RKNROjo62LJlC8899xxf/epX+fjHP35I5dfV1XHmmWeyevVqAL7//e9z991355zxLpFIJCOJHFMpkUgkB8A111zDj370IwDeeustIpEINpvtgJ+/Zs0aPv/5z2MYBqqqcskll3DeeedRVVUFQHNzM2vWrOGFF144pPzWr1/P8uXLaW5uRlVVfvOb33DdddcdUlkSiURyKEiplEgkkgNg7ty5eDweBgcH8fv9bN68mQULFhzw83//+98nx2L+5S9/4V//9V8t43Rd55133jmo3F577TU+9KEP0dvbi9Pp5K9//StXXHHFQZUhkUgkw0V2f0skEskBoKoq48ePT/6/vb39oJ6/c+dOIDZG8+qrr85bz+LFiw+43Mcff5wLL7yQ3t5eiouLef7556VQSiSSgiClUiKRSA6QxGQdgM7OzoN6rtvtBmBgYID6+voRyef+++/nIx/5CMFgkJqaGlatWsXZZ589ImVLJBLJwSKlUiKRSA6Q1KWEDnbyywUXXJAs45xzzuH3v//9QYtpKj/84Q+57rrr0HWdqVOn8sYbbxxUd7xEIpGMNFIqJRKJ5ADp6elJ/l5WVnZQz73uuuuSSw3V1dVx/fXXU1lZybx58/j85z/PQw89RG9v7wGVtWLFCv7jP/4DgAULFvDGG28wZcqUg8pHIpFIRhoplRKJRHIARKNRGhoakv+vrKw8qOfb7Xaef/55fvKTn1BbWwvEdu3ZuHEj9913Hx//+Meprq7mi1/8In19ffvNJUEgEEDX9YPKRSKRSA4HUiolEonkANiwYQN+vx8Aj8fDnDlzDroMu93OV77yFerq6ti0aRP33Xcfn/rUp5ITgEKhEL/61a84++yzCQQCOcv56Ec/ys033wzA9u3bWbZsGU1NTYfwqiQSiWTkkFIpkUgkB8CDDz6Y/H3x4sUHtUalFXPmzOFzn/scDzzwAPX19bz88svJFsx169bx+9//Pu/z7733Xr70pS8BUiwlEsnRgZRKiUQi2Q9NTU387ne/S/7/cCwqvmzZMn7xi18k///666/v9zn33HMPt9xyCxATy3POOUeKpUQiKRhSKiUSiSQP/f39/Ou//mtyks7s2bO56qqrDktdiZZKSB83mY//+Z//4dZbbwVi+4qfc845NDY2HobsJBKJJD9SKiUSicQC0zR59tlnOeWUU5KthkVFRfzjH/9AUQ7+0vnlL3+Zt99+O2/Mr3/96+TvB7M80M9+9rM0sVy2bJkUS4lEcsSR2zRKJJLjlhUrViR/N02T/v5+urq6WLt2La+++ip1dXXJv48fP56HHnqIE0444ZDqeuSRR7j77ruZPHky559/PvPnz6eyspJwOEx9fT0PP/wwa9asAaC8vJwbbrjhoMr/2c9+hhCCn/3sZ0mxfOWVVxg3btwh5SuRSCQHi5RKiURy3PLhD394vzElJSVce+213HnnnZSUlBxyXYnWzbq6On7729/mjJs0aRKPPvoo1dXVB13H3XffjRCCu+++O9kVvnLlSimWEonkiCClUiKRSACbzUZRURFFRUXU1tZy0kknsWjRIi677DJcLtewy1+9ejUrV67k5Zdf5p133mH37t309vaiKAqVlZXMnz+fyy+/nGuvvXZY9f30pz9FCMFPf/pTdu7cKcVSIpEcMYRpmmahk5BIJBKJRCKRjG7kRB2JRCKRSCQSybCRUimRSCQSiUQiGTZSKiUSiUQikUgkw0ZKpUQikUgkEolk2EiplEgkEolEIpEMGymVEolEIpFIJJJhI6VSIpFIJBKJRDJspFRKJBKJRCKRSIaNlEqJRCKRSCQSybCRUimRSCQSiUQiGTZy72+JRHLcYZom4XCYQCBAIBAgHA6n/YRCIcvHIpEIuq4nfwzDSPs38zEAIQRCCBRFSf4/8buiKAghAFBVFbvdjqZp2Gw2NE1L+3/iJ/G40+nE6XTicrnSftc0eVmXSCSFQV59JBLJqCMajdLf309fXx99fX1Zvw8MDBAIBPD7/QwODuL3+/H7/WmP6bpe6JdxWNA0LU02XS4XHo8Hr9eLz+fD6/Va/iT+VlRUhMvlKvTLkEgkoxBhmqZZ6CQkEsnxTSQSobu7m+7ubrq6utL+TfykyqPf7x+xujVNi/2oGqqqxv+NPWbTNGz2eCuhw4bdbgeT2A8C0zDBANNg6PH4j0BgmuDv9eMpc9PV2IsQIBSBogoUVUFoAs2motpUVFvs/0IFBIRDYUKBEMFAmHAwTDgUJhyMEAlHiEQiGKaOqZh4ylwEg8ERlWSHw0FJSQnFxcWUlJRk/SQeLysro7y8HKfTOWJ1SySS0YuUSolEctgwDIPu7m7a29tpb2+nra0t+XtHR0dSHPv6+g66bCEEDrsDh92BXbNjU+yoQkNFQ+gKRAVGxMQImhghg6jfRA/q6EEDt8dNWU0p1bWV1EytpGJSGWXjijEMk66GHrqbeulq7KWvrZ/+jgH6Owbp7xhkoGsQPWocVJ6KqvBfK7/Ed8+5F0M/sOcqqoK3zI2vwoOvwouv3ENRlZfSsSWUjS+mbGwJml2lu7mPjr1dtOxsp2V3O2172+lu7cUQBigmqCamaoJqgGZiaiZoRuwxzUj+H9WkZFwR/f39RKPRg34vvF4vFRUVVFRUUF5envZ76v9tNttBly2RSEYPUiolEskhEwwGaWlpobm5maamJlpaWpLSmBDHA5UUIQRupxun3YlNdWDDhqJriIiCEQDdbxDu1wn3RAj1RjBCsdbA/VFSU8T4E2oYP2cM42ZXUz21gmhEp213J627O2jd1UH7nk666nsY7AkM95BkcShSeSC4ipyUjy+hsraMqqkVVE+poHpqBXaXjba6Tho3t9CwpYWGTS10NfQcUJkmMRFFMzBtJqbNAJth+a9pM3EUa4RCoQMqWwhBWVkZNTU1VFdXU11dTU1NTfL/NTU1uN3uYRwRiURSaKRUSiSSnOi6TltbG01NTTQ3N2f9dHV17beMhCy6HG4cihNVtyHCCsYghHt1Ql0Rgl3hA5bEfCiqYMyMKmpPnMCEuWMYf0INmk2jYUsLjZubadjcQsuOdvo7BodVz8HldHikMheeUjc10ysZN7ua8SeMYfzsGoCYYG5spm5NPY2bW0ckl4SEmnYD7Dqm3Yj97hj6vWZmBZ2dnYTD4f2W5/P5kqI5fvx4xo8fz7hx4xg3bhyVlZXJCU4SieToREqlRHKcY5omPT091NfXU19fz759+2hoaKC+vp7GxkYikUje59vtdrwuH07VhabbIagQ7TUIdkbwt4Ux/CbCHJ4s5qN6agWTT5rA5JPGM2nhePy9AfasaWDf+iYaNjXTWd9NIa9yR1oqrSgbV8z4E8YwYd5YJp84nqJKL3vXN1G3up66D+pp2dF2WI+RiRnrfnfqmI7YD04d02FgOnS8Y1z09/fnLcNutzN27NikZCaEc8KECVRVVUnhlEiOAqRUSiTHCbqu09TURF1dHXV1dUmJrK+vZ2BgIOfzVFXF6/bh0txoug1zUCHSoxNsjRDsiEJUDLuF8WDQ7CqTT57AzMVTmLF4MkJVqPtgH3Uf1FO3uoGeloMfn3k4ORqkMhNfhScu4hOYcsoEVE1l+1t1bH+zjt3v7yMcyP9F4nBgqkZSMnHqMQF1RRm3oJrm5ua8wyhcLhcTJ05k0qRJ1NbWJv8dM2aMXGJJIjmCSKmUSI4xDMOgtbU1KY+Jn7179+bsghRC4HF58dg8aLoDBhXCHQb+phCRXuOISqMVLp+DWWdPY9aSqUw+aQLtezrZ/mZMgg53K9twORqlMpOqKeXMWDyFmYsnUzOjir3rGtn22i42r9rJYPfIzbQ/VExMcBiYrmhcNnVMZ5TxJ9bQ1NSUUzhtNhvjx49PiuaUKVOYOnUq48aNky2bEslhQEqlRDKKCQQC7Ny5kx07drBjxw52797Nnj17CASsJ5xomkaxpwSXcCMCGpEug8GGIKFOA2EUVhwzcbjtzFwyhbnnzWTyiePZs6aBLa/tYsebdfR3HrkxkcNlNEhlKu4SF9MX1TJ76TSmnDKR+o1NbHp5O1tW7STQf2CTco4kpoh3q7ujMdl0RzHdUezlas5JRE6nMymY06ZNY9q0aUyZMgWPx3OEs5dIji2kVEoko4Te3t6kPG7fvp0dO3ZQX1+P1UdYURSKPSU4hRsxqBJuNxisD6H3D38yzOFEURVmLJ7M/AtnMW1RLQ2bm9n4Ulxo+oKFTu+QGG1SmYrDY2fWkqnMPXcGtSeOp251Petf2MbW13YSDR/di8cnWjeNuGQmfmzlSs4W+zFjxiQlc+bMmcycOZPy8vIjnLlEMnqRUimRHIX09/ezdetWNm/ezLZt29i+fTttbW2WsW6XB5+jGHvIQaTDZGBfiHCXflgnx4w0FRNLOfGyE1hw0Wz6OwZZ88wmNr+yg4Guwne9DpfRLJWpuIudzD57GgsunkPFxFI2vLiV1U9tonVXR6FTOyhMzFiLpieK6YlgeqKUzyymvb3dMr6yspJZs2Yxc+bM5L/FxcVHOGuJZHQgpVIiKTCRSIRdu3axefNmtmzZwpYtW9i3b59lbJGnCI/qgwGNYEMEf0MYwuoRznhk0Owqc8+byUkfmktlbRkbXtjK6qc30bLD+uY+WjlWpDKVytoyTrzkBBYsn01vaz+rn9rI+he2FmSCz0hhagamJ4oRF82Ji2rYu3evZU/AmDFjmDVrFrNmzWL27NnMmjVL7iokkSClUiI54rS1tbFhwwY2bdrEli1b2LFjh2V3XJGnCK9WjOjX8NdHGNwXiu0UM8opqvRyypXzOfnyuXTs7eb9FevZ8urR3516qByLUplA1WLDFU65Yj5jZ1ez5ulNvPfoOrqbj64Z+IeKqRiY3iiGN4LpjTLmxHIaGxuz4lRVZfr06cydO5e5c+cyb948KisrC5CxRFJYpFRKJIcR0zTZu3cv69evT/60tLRkxTnsDoodpSiDdoKNUfx7I4jo6BfIVMafMIbTr1rI9DMms/mVHbzzyNpjrlXSimNZKlOpmFTKoo8sZP6Fs6hb3cA7D6+hbnVDodMacUzVwPRGMHxRTG+E0pleOjs7s+Kqq6uTkjl37lymTp0qlzeSHPNIqZRIRpBIJML27duTArlx40Z6e3vTYoQQlHrLcBleom0mfTuDR/0EmuEw9bRJLPnkqZSPL+HdR9fxwZMb8R+G7RCPVo4XqUzg9Do48dI5LPrIiQx2+3ntz++x7fVdR/WyT8MhOSHIF8YoijDtnAns3LkTw0h/r10uF/PmzWPhwoWceOKJzJw5U0qm5JhDSqVEMgx0XWfHjh2sXr2aDz74gA0bNhAMps9S1lSNElcpmt9JYF+UQH30mOjGzocQMOvsaSz55Km4fE5e/8v7rHtu8zHbxZ2P400qEyiqwtzzZ7DkE6dimvD6n99j40vbMPRj/5ZjKgamL4pRFMb0RXBPtGdtMCAlU3IsIqVSIjkIEt3ZH3zwAatXr2bt2rVZ28s57E5KnKWIHhv9O0NE2g/vNoVHE0LAnGUzOOczp2MaBq/9+T02vbz9uBCJXByvUplACJi1ZCpLPnkariInr/7hHdY9v+W4OidMzNiSRsURjOIwvqnOrB6MVMk89dRTmT59ulygXTLqkFIpkeyHjo4O3n333aRIZo6fstvslDjLULrt9G8PEekyj9mu7HxMP72Wcz+3GNWm8srv3mTra8dul+fBcLxLZSrTTpvEuZ9bjN1l4+XfvcWWVTuOy3MkUzK9Uxz09aVPbiouLubUU09N/lRUVBQoW4nkwJFSKZFkEI1G2bhxI2+//TbvvPMOu3btSvu7qmqUuspQeu0MbA8R7Tyye18fbUycP5bzbjiTokovr9z/Fhte3IZpyMtKAimV2cxeOo1zr19MJBTh5fveZOe7ewudUkFJSKZRHMEsCeMYr2TtijV58mROPfVUTjvtNBYsWIDD4ShQthJJbqRUSiTElvl59913efvtt/nggw8YHBzaBjAxscYR9DC4M0ywwThuurPzUTq2mAu/uITxJ4zh1QfeYfVTG9GjUpoykVJpjaIK5l84m3M+ezqd9d08//NXaavLnkV9PGIKE9MXwSgJM+OiiWzdujVtvUy73c78+fNZvHgxixcvZuzYsQXMViIZQkql5LhE13U2b97M66+/zttvv01dXV3a3512J0VqGdEGGNhx7C3vMxwcbjtLrj2NU66Yx7uPruP1P783qhe9PtxIqcyPZlc5419P4sxrTmH9C1t45f63R+2WnIcLUzMwSsIYJSHK5/mydv+pra1l8eLFnHnmmcyZMwdVHZ0bIkhGP1IqJccNoVCI999/n9dff50333yT7u7u5N+EEJR6ytD6XPRvDaF3Hd9d2lYIAQsvOYHzPreYvesbefHXr9NzjCxyfTiRUnlg+Mo9nPf5M5lxxmRWPfAO761YL4+XBYltJo3SEPM/Mp3169ej60OrKhQXF3P66aezePFiTj31VLxebwGzlRxvSKmUHNP09vby5ptv8vrrr/Pee++lLfdjt9kptVUQaRQMbAvL1sg8VE+t4ENfPQ/NrvHsvSvZuzZ7VxGJNVIqD46xs6q5+EtLsblsPPmTl2jcnL1ZgGQIUzUwSsMYZSE8U21pq1GoqsqJJ57I0qVLWbJkCWVlZQXMVHI8IKVScszR0dHBypUrefXVV1m/fn3aIsRupwdvpJjB7VEiLcixkfvB5tBY+ulFnHLFfFb94W3eeXjtcbUUzEggpfLgEQJOvGwu53/+TDb+cxsv3fcmIX/2VqaSdExMzKIIRlmIcYsr2LdvX/JvQgjmz5/P0qVLOfvss6mqqipgppJjFSmVkmOCzs5OVq1axcsvv8yGDRvSBrUXu0twDHro2xTC6FFkt/YBMvXUiVz2lfNo39PJ03e/Qm9r//6fJMlCSuWh4y1zc9HNS5m0YBzP/s8rbHl11/6fJEliOKMY5SGmXzyerVu3pv3thBNO4Oyzz2bp0qVyoo9kxJBSKRm1dHd3s2rVKl555RXWrl2bJpJlnnLULhd9m4Lgl4PWDwaH287yLy1l2um1PPs/K9m8ckehUxrVSKkcPtMW1XLp7cto2tbK03e/clxt8zlSmA4dvTzInCsms3HjxrTr5YwZMzjvvPM477zzZAumZFhIqZSMKvr7+1m5ciUvv/wya9asSevaLnGXobQ5GNgcQYSlSB4Kk08azxX/cSH1G5p45mevEOgPFTqlUY+UypHB7rJx4Y1LmLVkKk/+5CW2vbG70CmNWkybjlEeYt5V01i3bl3yOiqEYMGCBVxwwQUsXbqUoqKiAmcqGW1IqZQc9UQiEd555x2ef/553nzzTSKRoeVrStxlqJ1O+jeFEUEpkoeKzaFx/r+fydzzZ/L0T1+RrZMjiJTKkWXaaZO4/BsXsOu9vTx37ypCg3Ks5XAwNQOjIsicf5nM+vXrk49rmsaiRYu44IILWLx4MU6ns4BZSkYLUiolRyWmabJlyxZeeOEFXnrppbR9covdJdh7PPRuCCECUiSHS820Sj76nYvprO/myZ+8xECXv9ApHVNIqRx5nF4Hl9x2DpMWjOPhO5+lfkNzoVM6JjAdOnpFkNrzq9N2EnO5XJx99tlcdNFFnHTSSXJPcklOpFRKjipaWlp44YUXeOGFF9JmLjrtLryhEvrXR6BfiuRIceqV8znvhjP5529e5/3HNxQ6nWMSKZWHj3nnz+SS25fxxoMf8MZf3jsu9xE/XBjuKEZlgMpTi2hpGVrWqaamhuXLl3PxxRczZsyYAmYoORqRUikpOJFIhNdff50nn3yS999/P/m4pmqUqhUMbtGJNsvFyEcSp9fB5V8/n6rJ5fzj28/Ququj0Ckds0ipPLyUjS/hqjsvYbAnwGP//TyD3bKlfSQxiW0ZqVcFcU9XGRgYSP7t5JNP5pJLLuHss8+We5FLACmVkgKyb98+nnrqKZ577jl6enqSj5e5KzD2afh36AhddrOMNONmV/PR71zC3nWNPPOzV+QWi4cZKZWHH9WmcuGNZzFn2Qwe/e6z1K1uKHRKxySmYmKUB1nw8el88MEHyce9Xi/nn38+l1xyCTNnzkQI2QBwvCKlUnJECYVCrFy5kqeeeop169YlH3fZXbgHiulfH5UTbg4jJ156Ahd+cQnP//xV1j67udDpHBdIqTxyzFoylcu/fj6v/ek93vrb6kKnc0xjOnT0qgCVi3xp3ePTp0/nyiuv5Pzzz8flchUwQ0khkFIpOSLs3buXFStW8Pzzzye7T4QQlNorCG01iTTKRckPJ6qmcNHNS5mxeDJ/++aTNG9vL3RKxw1SKo8s5RNKueYHH6JpWxtP/vifRELRQqd0TGNiYhZHOOf2U1i1ahXhcGw2vsfjYfny5VxxxRXU1tYWNknJEUNKpeSwoes677zzDo888gjvvfde8nG3w4Oz18fA+qhcT/II4Cl1c/V3L8EwTP7x7WfkwtFHGCmVRx6Hx86/3HERRVU+/vqfT8rdoI4QpmagVwWoWVJMY2Nj8vETTzyRK6+8kiVLlqBpWgEzlBxupFRKRpz+/n6eeeYZHnvsMZqamoB4q6StguAW5KSbI0jNtEqu+eHlbFm1kxd+9ZqUmgIgpbIwCAFLP306p1w5j7/f8TT7NjQVOqXjBhMTsyTM6V+YxxtvvJFcXL28vJzLLruMK664goqKigJnKTkcSKmUjBh1dXU88sgjvPDCCwSDQQDsmh1voJTBDQZKSH5DPZJMPW0S/3LHRbz469dY++yWQqdz3KKoCne8dBP/fd4vpFQWgFlnT+VDXz2Pp+9+hc2vyEX9jzSGXUev9lM0305XVxcQW1j9/PPP5+qrr2batGkFzlAykkiplAwL0zR57733+Otf/5q2HJDPUQT1ThadcSrnXX9WATOUSCQSSaF5+fdv8spTrzLn6klpO/ecfPLJXH311SxatEguqn4MIKVSckhEo1FeeeUVHnroIXbu3AnEu7i1CvwbTYz22MQboQi5vMQRRAg49/rFzD1/Bg/9xxO07e4qdErHPbKl8uigdGwR1/zwcvaubeTZe1Zi6PLWdyQxTRPTiB1zwxthye0LWbVqFbquAzBx4kSuvvpqLrroIrnm5ShGSqXkoPD7/Tz99NP84x//SC4joakavlAZg2sMREhOvCkUiqpw5X9eQGVtOQ9+7XH6OwcLnZIEOabyaMJV5ORj37uMkD/M37/1NNGwXuiUjmtMh44+xo9zpmBwMHa9Ki4u5sMf/jAf/ehHKSoqKnCGkoNFSqXkgOju7uaRRx7hscceo78/NpPSYXPi7CoisMlERGW3RSHR7CpX3XkJdredh77xhFzQ/ChCSuXRhWZX+eh3LsHpc/DQ158g5A8XOqXjHlM10KsDVC72JhsrXC4XV1xxBVdffbWc1DOKkFIpyUtHRwcPPvggTzzxxND6Y3YvSr2L0C6BMGTXdqGxu2xc84PLCQcj/OO/ZOvL0YaUyqOPRKt+xcQy/vyVx/D3BgudkoTYrHGjIsTkD1WxY0dsUpXdbufiiy/mmmuuYezYsQXOULI/pFRKLGltbeXBBx/k6aefTspkkb2Y6DYbUblQ+VGDq8jJJ35yJV2NPTz2vRektByFSKk8OhECLr51GbUnjudPtz9Kf4ccLnK0YGJilIaZ9a/j2bhxIwCqqnL++efziU98gkmTJhU4Q0kupFRK0mhpaeHPf/4zzzzzDNFobCeKIlsp4Y0KRrsqZfIowl3s5Nr/+QgNG5t5+mevJAfBS44upFQe3Zx3w2JOWDaDB770MH3tA4VOR5KCiYlZFGHhddOSG2goisIFF1zApz71KcaPH1/gDCWZSKmUANDW1sYf/vAHnnnmmeRsvGJbKaH1CkanlMmjDZfPERPKTc08ffcrhU5HkgcplUc/y647g7nnzeCBmx+WE9yOUgxvhNO+OJs33ngDiLVcXnTRRVx77bWyW/woQkrlcU5PTw9//vOfWbFiRbKbu9hWRnCdgC65WPnRiNPr4FP3fITGLa08/dOXkJ/goxsplaOD825YzOyl03jgSw8z0OkvdDqSHBjeCCf/+wzefvttICaXl1xyCddeey3V1dUFzk4ipfI4ZXBwkL/97W/87W9/IxCI7QVdpJUQWqdCt5TJoxWn18G1P/sXWna28+SP/ymFchQgpXL0cMEXzmLG4in84ZaHGeiSYnk0Y/jCLLx+qFvcZrNx5ZVX8slPfpKSkpLCJnccI6XyOCMUCvHYY4/xl7/8hd7eXgB8tiLCGzTMDk12cx/F2F02rv3Zv9C+t4snfviiFMpRgpTK0cWFX1zCtNMm8X83/YNAf6jQ6Uj2g1EUZu6nalmzZg0AHo+Hj3/841x11VU4nc4CZ3f8IaXyOME0TV566SXuu+++5DpgHrsXY6sDvUmOmTzaUTWFa354OSF/mIe/86yclDOKkFI5+rjsK+dRPaWcP97+KJFgtNDpSPaDiYlZEqb2w5XJpYgqKir47Gc/y/Lly9E02ft2pJBSeRywfv16fvnLX7JlyxYAnDYXap2byB4pk6MBIeDDdyzHW+7mL199HD0i16EcTUipHH0IRXDVnZdgc2g89B9PyvdtlGBiYlQGqVjqTjaeTJo0iS984QucccYZcsvgI4CUymOYhoYG/vd//5dXX30ViG2n6GwrJrxNlYuWjyKW37yUiQvG8sDND8udckYhUipHJ5pd5d9+ciV97QOs+N7zcrjJKMIUJvoYP56FCn19fQCcdtpp3HTTTdTW1hY2uWMcubfeMYjf7+dXv/oV1157La+++ipCCIpC5ShvlhDZokmhHEWc9W+nMP2MWv7ylRVSKCWSI0g0rPPX/3iSqsnlXPCFJYVOR3IQCFOgNXkIPu/gmmuuwWaz8e677/KZz3yGe++9N7nVsGTkkVJ5DGGaJi+++CL/9m//xl//+lei0ShFohTb6jJC72mIiFroFCUHwQnLpnP61Sfypy8/xmBPoNDpSCTHHSF/mL98dQVzzpnOKVfMK3Q6koNE6AqPfvFlxFtFnHXWWei6zsMPP8zHP/5xHn/88eQGH5KRQ0rlMcKuXbv40pe+xF133UVnZycuzY1jWxmh1+yIQTlIebQxbnY1l331PP72zafoae4rdDoSyXHLQJefB7/+OOfdcCZTTp5Q6HQkh4AIarz3wx3YNpZQW1tLb28vP/3pT7nhhhvYtGlTodM7ppBSOcoZGBjgnnvu4brrrmPdunWoioq7owx9lRfabYVOT3IIFFf5+NgPLueZu1+hfmNzodORSI572uo6efSu5/jody6hYmJpodORHCJKj4OmP/vRdvnw+Xzs3LmTG2+8kZ/85CfJsZeS4SGlcpRimiYrV67kE5/4BI888giGYeDTS1HfKUXfakOYctzkaMTusnHNjy7ngyc2sOGf2wqdjkQiibPj7T2seuAdPv6jK3AXy/UPRysCgdrsJvSik4svvhjTNHnyySf5xCc+wXPPPYecuzw85OzvUUhrayv/8z//k9wD1a150Dc4oFO2TI52rr7rUkzD5OHvPCNnmx4jyNnfxxaX3r6Mioll/OnLj2Lo8kM62jGKwoy7vJg9e/YAsHDhQm6//XY5S/wQkS2Vowhd13nkkUe49tpreeONN1CEgruzlOgqjxTKY4DF15xM+YRSVvzgBSmUEslRynP3rkK1q5z7uTMLnYpkBFD67DT9xY9a58XhcLB27Vquu+46/vznP8uJPIeAlMpRQl1dHTfddBP33HMPgUAAj/ChflCKvsUuu7qPASafNJ4lnziVv3/rKbmDh0RyFKNHDf7xradZsHw2s8+eWuh0JCOAMAVaowfzdR+nn346kUiE++67j3//939n586dhU5vVCGl8ihH13Ueeughrr/+ejZt2oSm2nA1lhF5zYXil7O6jwWKKr185NsXs+IHL9BZ31PodCQSyX7o7xzk4e88w+Vfv4DyCXLizrGCCKms/n+70bYV4fP52L59O5/73Oe4//77iUTkOsEHgpTKo5j6+npuvvlmfv3rXxOJRPAaxShvFWPU2eT2iscIiqpw1Z2XsObpTWx7fXeh05FIJAfI3rWNvPrHd/nX712GzSm/4B8rCARqu4vQPx0sWbIEXdd54IEHuP7669m2TU6e3B9SKo9CDMPgkUce4bOf/SwbN25EUzSce0oJv+lAhOUC5scSy64/A103ePl3bxU6FYlEcpC89bfVdNZ3s/zmpYVORTLCiIjKOz/YhralmJKSEurq6vj3f/93/vznP6PreqHTO2qRUnmU0d7ezpe//GXuueceQqEQbsOH8k4JZoNdtk4eY0w+aTwnXzaXR+96DtOQM3MkktHIEz/6J9NPr2XOOdMKnYpkhBEI1E4n/udsLF26FF3Xue+++7jllltoamoqdHpHJVIqjyJee+01PvOZz/DBBx+gKhrOhlKib7oQIdk6eazhLnby4TuW8+RP/klf20Ch05FIJIdIoC/Io//9PJd9+TyKq3yFTkdyGBBRhbe+twVtexFut5v169fz2c9+lmeffVaua5mBlMqjgFAoxN133803v/lN+vr6cAsvyrvFmHtk6+SxyuVfv4Dtb9ax5dVdhU5FIpEMkz1rGnj/iQ38y7cuQijymn0sIhCobS6iq9zMmzcPv9/PD37wA77zne8wMCAbBhJIqSwwu3fv5oYbbmDFihUAuDqLib7uRgnKgd/HKidddgLlE0p5/uerCp2KRCIZIVbe/zaqTeXMa04udCqSw4gIqWz7dSs33HADqqryyiuvcP3117N169ZCp3ZUIKWyQJimyVNPPcUNN9xAXV0ddtWBbVMpxhanXHfyGKa4yscFX1jCiu8/TyQk16OUSI4VDN1gxfdf4Kx/O5XK2rJCpyM5jAgEf7j2cZQPihkzZgxNTU3ceOONPPLII8d9d7iUygIQCoX40Y9+xI9//GPC4TDuqA/eLELpthc6Nclh5kNfO48PnthA45bWQqcikUhGmI593bz6p3e54j8uRFFl48CxjjJgo/PRKEuWLCEajXLPPffwrW99i/7+/kKnVjCkVB5hEt9onnnmGQQCZ3MJ0bddiIh8K451TrxkDsXVRaz8v7cLnYpEIjlMvPW31WCanH71SYVORXIEELrCOz/YhrrLh6ZpvPrqq1x//fXs2LGj0KkVBGkyR5A333wzebLZFDvahmLMXQ45Gec4oKjSy4VfPJvHf/AC0bBc40wiOVYxDZMVP3iBsz95GhUT5W47xwMCgdbsRrxfRE1NDc3Nzdx444289NJLhU7tiCOl8ghgGAb3338/3/jGNxgYGMCpexBvF6H0OgqdmuQIcclty1j99EYaNrcUOhWJRHKY6djbzet/eY/Lv34+QrYZHDcoAza6VuiceuqphEIh7rzzTn79618fV4ulS6k8zASDQb7zne/wwAMPAODqKcZ42yN3xjmOmHnmFGqmV7LyftntLZEcL7z519U4vQ4WLJ9T6FQkRxARVVj3s71cc801ADz00EN87Wtfo6+vr8CZHRmkVB5G2trauOmmm1i5ciVCKNh3l2BslLO7jydsDo2LbzmH5+5dRSQoZ3tLJMcLhm7w1E9f5oIvnIXLJ3uljicEgke/+DLa1mIcDgfvvfceN9xwA3v27Cl0aocdKZWHic2bN/P5z3+e7du3YxM2tHXFiCZ5YTneWHLtabTVdbD1NbnIuURyvLFvfRM73t7DeTecWehUJAVA7XBivO2hpqYmOUl3zZo1hU7rsCKl8jCwcuVKvvSlL9HZ2YnDdCHeLUbpk8sFHW9UTCzltH9ZwLP/s7LQqUgkkgLx4q9fZ86y6YybU1PoVCQFQBmMjbM84YQTGBgY4Mtf/jLPPfdcodM6bEipHGEeeeQRvv3tbxMOh3EGvZhve+Xe3ccpy285h7f+tpru5uNjLI1EIslmsNvPK797i0tvWyYn7RyniKjCjt+2s2zZMqLRKN///ve5//77j8mF0qVUjhCmafK///u/3HPPPZimiaPLh/G+G6HLQ3w8MvW0SVROKuONB98vdCoSiaTAfPDkBjS7ytzzZxY6FUmBEIbgjbs28fGPfxyABx54gO9///tEo8fWWPtRZzy7d+/mxhtv5Oabb+ZrX/safr+fl156iS984QvccssttLbGdip56623uPHGG3n66acPe06Jbx4PPvggAPaGIszNLrn+5HGKUAQX3riEl377hlyTUiKRYOgmL/zqdc674Uw0u+y5Ol4RCB658SW0HT5UVeX555/njjvuIBQKFTq1EWPUSeXEiRP51a9+xc9//nNmz57Na6+9xt///nfuvfderr/+ev74xz8CMan8xS9+cdg3eQ8EAnzjG9/g+eefRyCw7SxC7JFCeTxz4iVz0KM6G144vOeeRCIZPex8Zw+d9d0s+uiJhU5FUmDUVjdivQ+73c6bb77JV77yFQYGBgqd1ogw6qRS07Tk78FgkOrqaiZPnozNZmPevHns3r0bgNNOO40vfvGLzJx5+LobBgcH+epXv8q7776LKlTUTcUoLa7DVp/k6MfusrHs+sW88MvXOAaHy0gkkmHwwi9f46xPnIK7RN4njnfUbgfm+x48Hg/r1q3jlltuobu7u9BpDZtRJ5UA7733Htdddx1r1qxBVVXcbnfyb4mV68866yx+/etfc9lllx2WHPr7+7n99ttZv349qtBQ1hahdsslg453zvjXk2ja0sKeNQ2FTkUikRxltO7qYOuruzj72tMKnYrkKEDpsxN+3UFJSQk7duzgpptuSg7hG62MSqk89dRT+f3vf88555zDunXr8Pv9yb+p6uEfr9LT08Ott97Kli1b0NBQVheh9Mslg453nF4Hp199Ii//7q1CpyKRSI5SVt7/NideMoeiSm+hU5EcBSiDNgb/qVJdXU19fT233norbW1thU7rkBl1UhkOh5O/ezweXC4Xe/bsIRKJsGHDBqZMmXJY6+/q6uKWW25hx44daNgQq4tQBm2HtU7J6OCMfz2R3e/to3VXR6FTkUgkRym9bf2sf2ErZ33i1EKnIjlKUIIa3U/qjB07lsbGRm655ZZRK5ajTirff/99br75Zm655RZWr17NpZdeylVXXcWXvvQlfve733Httdcetrp7e3u57bbbqKurw4Yd8UERil8KpQRcPgenfWQhK/9P7u8tkUjy89qf3mPBRbMorvIVOhXJUYIIq3Q8HmbMmDFJsWxvby90WgeNMI/F1TcPA/39/dx2222xbRexI973IYLa/p8oOS4493OLKR1bzCN3PlvoVCRHGYqq8F8rv8R3z7kXQzcKnY7kKOHiW89BVRWe+unLhU5FchRhOnTKL7fR3NzMuHHjuPfee6msrCx0WgfMqGupLAR+v5+vfe1rbN++HQ0bfCCFUjKEq8jJaf+ygFUPyFZKiURyYLz+p/eYd8FMiqtla6VkCBFS6XwiQk1NDY2Njdx+++309vYWOq0DRkrlfgiFQvzHf/wHmzZtQkVDrPGhBKRQSoY49cPz2fXuXjr2jv7lICQSyZGhv3OQ9S9s5YyrTyp0KpKjDBFS6XoySmVlJXv37k1u9DIakFKZB13XufPOO2NLFwkVZa2clCNJR7OrLPrIQt546INCpyKRSEYZb/1tNQsvmYPLJ5ejk6QjQio9zxkUFxezZcsW7rjjjrSJykcrUipzYJom99xzD6+//jqKUFDWFaEMSKGUpLNg+Rza6jpp2jq61xaTSCRHnq7GXna9t5dTrpxf6FQkRyFKQMO/SsXlcvH+++/zve99L7kW99GK7MfNwUMPPcSKFSsA0LYWoQ46QW7ZKklBKILFHzuJ53/xKooqv59JrEmcG/IckVjx1t9X87HvfYh3Hl5LNHx0C4PkyKMEHOgfgDY/wiuvvEJZWRm33HJLodPKiZz9bcGLL77IXXfdBcCll17KWWedVeCMJBKJRCKRHK+sX7+ehx56CIDbbruND3/4wwXOyBoplRmsW7eO2267jWg0iq3Fg1ZXVOiUJEcpn7z7w2z45zbWPrO50KlIjmIUVeGOl27iv8/7hVxSSGLJjDMns+yzZ/Cb6x4sdCqSo5hP3H8Zv/3tb1FVlR/96EecdtrRt92n7P5OobW1lW9961sxoex1I3Z6MJA3AUk2lbVl1Eyr5MGvPS5FQXJAGLohzxWJJdte383ym5cyfk4N+zY0FTodyVHKHz71OBfddRHPP/883/72t/n1r39NbW1todNKQw7yiRMKhfjmN79JT08PWtiB2ORFIAqdluQo5ZQr5rH2uc1EQtFCpyKRSEY5pmHywRMbOPXDcsKOJDcCwSv/tYb58+czODjI17/+dXp6egqdVhpSKonN9P7JT37C9u3bUU0NZZ0PYUihlFhjd9lYcNEc3l+xodCpSCSSY4Q1T29i5plT8JS6C52K5ChGmIKt9zUzduxYmpub+e///u+jaka4lErg73//Oy+88AICgbLRhwjJad6S3Mw7fyaNW1vorJeLnUskkpFhoMvPtjfrOPHSEwqdiuQoR0QV2p8K4nA4ePfdd/njH/9Y6JSSHPdSuXHjRn79618DoO7yovTaC5yR5Gjn5Mvn8f7jspVSIpGMLO8/vp6TPzQXITvKJPtB8dv48pe/DMADDzzAu+++W+CMYhzXUtnf3893v/tdDMNA63KhNLsKnZLkKKeytoySMUVsf7Ou0KlIJJJjjH3rGgGYOH9cgTORjAZ+esnv+dCHPoRpmtx11120thZ+E47jVipN0+THP/4xLS0tqFEbyjY5MUeyfxYsn8PGl7ajR46eMSwSieTYwDRh3fNbWLB8dqFTkYwSnv/GO8yYMYPe3l6++93vFnx85XErlU888QSrVq0aGkepH7eHQnKACEUw/8JZrHtOrkspkUgOD+ue28Kcc6Zjc8gV/yT7R5iCPX/pwu12s2HDBh58sLBrnR6XJrVnzx7uvfdeAJTdHrmnt+SAmHzSBML+MI1bCt/FIJFIjk26m3pp293BzLOmFjoVyShBhNTk1o33338/27ZtK1gux51URqNRfvCDHxCJRND6nKhNcvkGyYGx4KJZrHt+S6HTkEgkxzhrn5Nd4JKD46eX/p6lS5ei6zp33XUXwWCwIHkcd1L5j3/8gy1btqCYKspWOY5ScmCoNpWZZ01l4z8L9w1QIpEcH2xZtZPaheNweh2FTkUyShAI3vrRZsrLy9m3bx+/+c1vCpLHcSWVe/fu5Xe/+x0Ayg4PIizXo5QcGFNOmUB3Uy/dzX2FTkUikRzjBPqC7FvfxMyzphQ6FckoQkQV+lbFJuo8+uijbNq06YjncNxIpa7r/PCHPyQSiaD2OlDanIVOSTKKmLN0OptX7ih0GhKJ5Dhh88odzFk6rdBpSEYZSo+Diy66KLlTYDR6ZLcSPm6k8qmnnmLTpk0opoK6zSe7vSUHjKIqzFoylc0rdxY6FYlEcpyw9bVdTDllIg633JBDcnC8cudqiouL2b17N3/729+OaN3HhVT29vby29/+FgCxW3Z7Sw6OySeNp699QG7LKJFIjhiDPQEaNrcwY/HkQqciGWWIqMKNN94IwP/93//R2Nh4xOoeEans7+8v6BT2/fHb3/6Wvr4+1IANVe6aIzlIZpw5ha2v7Sp0GhKJ5Dhj62u7mHGmHFcpOXh+eunvOemkkwiHw/z85z8/YvUOWypXrVrFDTfcwLe+9S0Adu7cyVe/+tVhJzZSbN26lSeffBIAZYec7S05eKYvqmXnO3sKnYZEIjnO2PnOHqaeOhGhyPuW5OAQCDb8di+qqvLmm2/ywQcfHJF6hy2Vf/zjH7nvvvvw+XwATJs2jba2tmEnNhKYpsm9996LaZoo7U6UPjk2RXJwlI0vwVXkpGFzS6FTkUgkxxmd9T0EB0KMm11T6FQkoxAloHHllVcC8Mtf/vKIbOE4bKm02WxJoUwgxNHxreqNN95g48aNCFNBq/MWOh3JKGT66bXsem8vpmEWOhWJRHIcsvPtPUw/fVKh05CMUp786qt4vV527tzJc889d9jrG7ZUjhkzhvfeew+AwcFB7r//fqZNK/wyCLquJyfnKA1OOTlHckhMP72WHW/tKXQaEonkOGXH23uYtqi20GlIRikiqnDttdcCsfklgUDgsNY3bKm8/fbbeeGFF2hvb+djH/sYzc3NyT0oC8lLL71EXV0dwlBQGzyFTkcyCtHsKpMWjGPnu3sLnYpEIjlO2bOmgaopFbiL5drKkkPjd//2MGPGjKGrq4vHH3/8sNalDbcAn8/HN7/5zZHIZcSIRCL8/ve/B0DZ50box8XKSZIRZtzsGnpa+hjs9hc6FYlEcpwSCUVp2tLCxPnj5CoUkkNCmIJrr72WH/3oR/z1r3/lyiuvxOk8PF9SDlkq//SnP+X9+yc/+clDLXrYvPjiizQ3N6NEVdQmd8HykIxuJi0cx561R259L4lEIrFiz9pGaheOl1IpOWR+dvn/UfORGlpaWnjiiSe4+uqrD0s9h9yEF41GiUaj7N27l2eeeYbe3l56e3t55plnaG5uHskcDwrDMHjooYcAEPUuhHF0TBqSjD5qF45n79qGQqchkUiOc/aubWDSwnGFTkMyihGmSDb2Pfjgg4RCocNSzyFL5Wc+8xk+85nP0N7ezu9+9ztuuukmbrrpJn7729/S3t4+kjkeFG+99RZ79+6NjaVskQudSw4NVVMYf8IY9sqWSolEUmDqNzVTWVuG0+sodCqSUcw9V/6B6upqurq6ePbZZw9LHcMebNjZ2YnLNSRvTqeTlpbCremXaKVUGp1yLKXkkBkzs5r+jgH6OwcLnYpEIjnOiQSjNG9vZ+L8sYVORTKKEabgYx/7GAAPP/wwhmGMeB3DnqizaNEibr31Vs477zwgNut60aJFw07sUNi0aRPr169HmAK1WY6llBw640+ooX5j4YZxSCQSSSr1G5sYP6eG7W/WFToVySjm1x97EM/5Hvbt28d777034r427Ka8m2++mauuuor6+nr27dvHVVddxU033TQSuR00K1asAEC0OeS6lJJhMW5WNU1bWwudhkQikQDQtLWVsXJnHckwEbrCJZdcAsRaK0eaYbdUAixZsoQlS5aMRFGHTF9fH6+88gqAbKWUDJuxs6p5++G1hU5DIpFIAGjc0solty0rdBqSY4DHv/Yy4jTBO++8Q1NTE2PHjtywimFLZa6Fzu+5557hFn1QPPfcc4TDYcSghhgYEVeWHKc4vQ6Kq3207izchDOJRCJJpbupFyEEpWOK6G7uK3Q6klGMCGmcfPLJvP/++zz77LNcd911I1b2sO3r+uuvT/4eDod59dVX0ybuHAlM0+Tpp58GQG12IZDLCEkOnbEzq2ir6yQa1gudikQikSRJdIFLqZQMl7V/3gGz4Nlnn+XTn/40qjoyQwaHLZXz5s1L+//JJ598xLdp3L17N3V1dWAKlHa5lZVkeIyZWUXztrZCpyGRSCRpNG1rZezMKja9vL3QqUhGOUqnA6/XS1tbGx988AGnnXbayJQ7IqWksHPnTtrajuwN+cUXXwRA6bTLZYQkw6aytpy23Z2FTkMikUjSaKvrpLK2rNBpSI4BhCk4//zzAXj55ZdHrNxht1QuW7YMIWLdzYqiUF1dzY033jjsxA4UwzCSB0S2UkpGgsraMtY9v6XQaUgOBCHANIcfM5LInA6MozGno5z2ui4qa8sLnYbkGOHpu1bBPHjttdf4yle+gqYNfz7KsEtIzLguFFu3bqWlpQWhC5RuuduAZHgIEWupbN9TwJbKA73ZwsjclEeqvoPJaSTKEgcxdnp/r1HmVJicRuL8PBzHaX9xBRLdjn1dFFf5sDk1IsFoQXKQHDuIXhulpaV0d3ezevXqEekCH3Zf8e2335712Fe/+tXhFnvAvPXWWwCIbrvc51sybIqri9AjOgOd/oN/8oHcvIXIH5d6sx1OPQdb1nDrS4050LJyxY1UzJGuT+Z04PXles5oyWl/5ezvc36gMRlEwzrdzb1UTpJd4JLhIxCcffbZAKxatWpEyhy2VPb29qb9PxQKHdExlW+++SYASpdspZQMn8raskNrpTxYObOKy3zsUGNGsqxDicnFkc7hYGW4UDkdyffhaMjpSNZ3OM+VIy26cdr3yC5wycjxzPdiMvn2229jjkAL/CF3f//hD3/ggQcewDAMzj33XCC2tI/L5eKjH/3osBM7ENrb29mxYweYUiolI0PFpFI69nUf3JOGczNPfIjz3XwOJmY4+RQqp0TsSMUMN/eRzint9xwX7WP9GBSqvuHkNFLn+cHmsx869nZRMan0gGIlkv0h+uzY7Xba29vZu3cvtbW1wyrvkKXyU5/6FJ/61Kf4xS9+UbBtGd9//30AxICGiB6BWd+JC8bRNHBcCBAKGEdoTUVFRSgCM3qExvMoKkJVMSPhI1JdSU0R3U29eWOEpiE0DSMUyhFwkEK1H4SmIex2jEBgWOUcaIuI0DSEw4Hhzz0EQGgawuXCGBgYdn0HEitUFcXtRu/vH1Y5BxpzpOs7kDihqiheD3rvftYoHKmchIJa7D2y9fk8+Y/5gcSMaE4Cxesd/nl+oIIKKC5X3s9ed3MftQvH7b/OEURxOjGCwSNWn7DZj9g1H2LXsyN2TztQFPWI3NeFIViwcCHvvvsu77zzzrClctgmViihBFi3bh0ASo/dOkCI9J9cCBF7A/cXI/ZzuBLlHEBZQtMOLEbJsyCpEAjNhlDV/HGKirDZDyhG5Jv9pagI2wF8D1FUhMOx/7IcjlheeWIUu22/dSlOJ4rTuf+y3G6EI3eLttA0SsaV0dORW94SwoXNhrKfshSPB8WZe0WCmCR4UfJsFpCQmwMRDtXn229Zqs8XKy9vTh5Qcp/riRihaSheb/76iov2H1NSst8YxecDm4bq8+23rJGIUYqLwG5DLS7KX1ZZ6QHElOT8+8GUoxQXgabljUMosdc3EjHFRRB/D0eirHzHHKGgFnlj9eWLg/3HCAXV59tvOarPl/e8SxYXF8t8KF5v3s8VELseeDz5Y9xuUNW8cT0tfZSMK8lfnxAobvf+Y+LXznzXqVhiyn5jhMOR9/p6oDGx+kT+6zkx8RyRGE0DoeS/XzHUmDDcmKQj5Lsfp8YeSFn7i9mPAyUm6CQa6obDIUvlDTfcAMCyZcs499xzs/49EqxduxYApdfipElIYOInF6myKJTc3RcHGCMUgVD2I4vxleuFmkM+U2MUYX3SxIUyLwlRTK3Pqqx4ayCKyP3hShVKVc0d43AgbBpCiLxxit2GEAKhKtYf+oRQKkr+GKcjJkCKEsvfAqFpsbi4qFtd1BKPl9T46G0fzBuTT7ggdpyFyxWLyyGfiRgRz8lKBpNCqcTOh1zCmBZnt+Uuy+uJvSc2zfJmk4yJnwP7i0kcE6sbblIE4+dA3phE3vuJAXKK5VB9Sv6Y4qJYjN2WPybxucxx7UiLyyF6mWWpxfupb7/CGM8pV1xSBJUDi8kljImYxDE/kLh8MXFZzPmlIBGTONa5pDERt7+Y+HmOklsG1cR5pyp5hVHxemNxecRS8Xrj1zI1p8TFPp+x61Re0UtcWxTFWiyFoK8nTEm1LymOVjGKy5UUif3Wl8grhzQmH88TIxyO2DEQIqc0Zsbki4vVl1ssY40kYv8xKb/nlMuUe3suIUx9fDgxsWrEkCfkEsLUx4cTM1RpbncBfnP9QwBs2rQJwzDyl7UfDrn7+7777gMKt6RQW1sbTU1NYIIYyDhZrFoVhQIY6V0Q+2t5PMiyUmVSqCqmrqfFJOQuqywzpYnbIk4oApOUpnALoRSqGhutlYhJiGJWdQIz9ZxJFUqI/Wso6d0BVi2UqoqArBiRctIKITAzj51F66NQFSCluyNFKGP/V+Ibb2bEOB0Z5aiQ0W2S6DpO/TAlPvBmvPs6VTRLqr30tA7kjkkVSpsNBdK6wZNCmUpGXKpQpuakuFzJLu5UUYy9XpE7Jv73ZFn2eH2pcSkiiFCSYpnoZsuKAYTdHisnTwyQ9jqScakimMg9pRsxKyaR935iMl9rWpyaeH0iKTCJbtIsWYSkWOaNUZW0mJxxcYlLdBWPVExaXCqZcamyeKAxYkgGs7q4M495ZlymeOaKSQhlgoz3ZehFZlwn4tKYjMsUz1wxCaGM/1+oZHVfq5nnXfw9Nk0zLU7xeuPXptjxEEZ2WQmhHCpLTftcQYpQJh9QsmKScWkPxMTSGByMFx6TxZ62QTwlLlSbih7R08tKFcpkUiK7PiGyv+zGpTG1m1txOrNzz4hJyOJQ0QIcjuS1M+3xzN8z4rJEMy6Nadf0hFDmiclFVlmZ8icy7n1WMfHH9tddnryHpMYp+7m3W8QkH9tfV3jieUa6T2RUSJq7xGPEoIbT6WRgYIC9e/cyefLk/HXlS+OQnxnn+9//ftZjP/zhD4db7H7ZunUrAGJQi+2ik2xZyCOLCVM/kJiDLMuqdTLZEplLKImdVKn15Y2LN2PnaqFMtkTmEMpk3omTL1MoE6R9YPN0eSdaIi2EMrWs5IfyQLuzU4Uy+XhKi6WFUCZfnk1LfiO1Esqs+BShdPkcqJrKQLc/7W95WyjjLZGJm0mWUKbkD9ZCmZqL4nJlC2WyDGEdY9VCGy8/lwimimXOGOJiuZ8Y4t34yfpyiGBCLHPGMCSW+WJSW6myhDL19ccFxlLeEsTF8kBikvXliotL3EjFHGh9lkJ5oDEpYhn7v5K7tTQRZyWUVjGZQpkgtcUytfXRqiyfz1oorWJShTL5+pTs1kirvDNaLdOEMjUmpcUyUyiTVWa2WFpdN+JimYjLEs/UOI8nTRb1iM5gT4DiqvhrymyNzNH7lYxJCGWu+uKtkVlCaRETK87iGGS0WOZslUyJy9ktntkamev9y2iZzEXq/cHynEppsczb4nigLZMp9z9LT0htsdzPEDXL33PF5fKXTMcBBILZs2cDsHHjxtxlHwDDlspdu3ZlPbZ9++HflzRRhxhMkZQDaH1UHI68Y+GSMW73fstKNCnn6+5W3O4DGo+jFhXlFsFkdfvv8la9HtTS4vwxRV7UinJroRyqLN5lkL8xWykuQquutBZKYhcNpaQYbdzYvEIp1NiFylIok5UpsbIm5h+krpSVoE2pzSuUie7d1AtZUYWH/s7BtAm6alkpyvTJuXMClPIylJlT88aQIp25jlUs91LE3Bm53xdFoJSXwYKZuWOIyXVszFgOEQQQCkpZKcapJ+Q915WKMoxFc/PGiLi85BTBZO6l6GfOy5u7Ul5KdMn8vDHYtNhYTCuhTCYlEGUlRJYuyP/ForSY8LkL88Zgt8XqyyV4ibKKiwidl78s4fPtNwZNO7D6vF7CF56U+xgkYi44Me9xIjHWNJcsJkJdLiLnn7j/mHMXWgtlAlvsfMkpiwlcTqLnLMwf43Cgn70gd31xsTyQcZbCYcc4c0G2UCaID9Uwz5if93OcHC+9n65nYdMQp8zNe+0Qqoo4aU7aedDXPkhxZUr3eGIMZZ4x1QgRG9d5wsz9XqvUOTPyx8TFMu8Y9fiYTXX6lPzHSgi0KbW564LYcd/vGPyYWGoTxucvC9DGjc1/Th3AGEuIX/cqK/cbp1aU5/WEvF3hqSgqakn++zuAWlS039eXeV2ZO3cuAFu2DG83uUOWykceeYRrrrmGvXv38vGPfzz5c+WVVzJjxoxhJXUgJKRSGYiJirDbY98c80iQYrchnPnHxCl2W+zG73DkbA0DUJwO1NJiFFeeiRgOB8Ltzv+BcrlQPG6E25V/AoXLhVpZEZOEXDm5nIgiX96TU/G4EMVFCK8HJc/JqXg9qOPH7DeGspK8Nw/h9UB5KWaRB6Ui99pqwudDTJ6AUp37Ayp8Xswx5ZhantdX5MMcU4Fe6kGMrc4d5/Nizp6MGFeTfMxT4mKwZ2iSjlLkIzqhEtOWv77IpEoipS6YlFt2leIi9IXTYUruC54o8hGaVo1hz3M8fT6C06sJl7swpk3IHVdcROjU6eizJuWpz4t/Tg2mPc8NrcjL4JwaQmV2IifkKavYh3/xDCLza/Pk7mVgXg1RZ77X56V/QQ3BMhuhBbm7YITPy8DZ0wmePCV3jNdD34ljCJZpBE+yLkt4PfSdPJZQiUbg5Dz1edz0nzODwKlT88YkyzrFOi/hcdN36jhCJRr+U/Pk7nLRf84M/Kflqc/lou/U8YSK1ZxlCaeTvlPHEy7eT31OJwNnTyewaFr+mFMmEi5S8x4HgEhR7mMAIGw2/ItnEDwld33YbQROnETUoxI6KXdZKIKoRyW8ME+Xnc1O6NTphE/KU5+mEZ43iahHIzIvT32A7tKI5otRVfT5U9Hn5zmeqkJ0di26U8OYXZu7LEVgODTM2UOvb7AngLs4pbVQVWN/n5GvHAWmTcR0ajBtYu44wLRriMm5ry9A7Ho9JU85ioKYOA5sGmLC2Pz12TTUcWPyxqhja1BTrtfWMdWgqag1VXnj0FTUqor8ZVVWoFbmj1HKyxCaGvuin7cwNe+9FEAtLT6gBiFUNXfrfjIxEWu5zxfi9aY1eD30zScA2L17d/6y98MhS+VFF13E3XffzaJFi7j77ruTP3/605/4xje+MaykDoQdO3YAxLq/7fbYjxCxfy3EMimUEOtis2g1SwhlcgBwDrFUnA6EyxlrCXFZf1tLCCVKbHyJVbdoQiiTXeQ5xDLW2hmfZOF2WYplUihVBeF0oFicdAmhRIl9SxEeF0pRdleX4nYjSosxVQXhcVt+GJJCqSiYbidKaUn264sLJWqsPtPnthRL4fNBZSmmTcXweVAqrWK8mNVlsfo8Tkv5VIp8GDXlmFqsPqPYjRiTfXFRfF708TFZNIrdSbF0lziTUpkqlLrHgRiffTFLCKUZf33REqelWCrFRYRrKzHsCtESJ+bk7JikUGqCqNeOMTlbPhNCadgEpoBwmdNSLEVxEYHpVegOhXCJA326RVlFXvyzqjFsChGPRnR29s0hIZSGXWAqEC61FktR7GPwhGp0h0Ko1EZkjkWMz8vA3Bp0uyDqVgnPq7WM6V9Qg2ETICBUqlmKpfB56V9YE399GqEFFmXFhVK3C0xFoOcSZyHiMRAuthbLhCzqDkGoWLWUpWSMPZa77szVAyCSMeEiaxmMyeI4dIfIH3NKLAYBhiN/faaAiC9HWQ4H/aeMjx1Pn2IpjMLpZOCk8bH6gIhXsT4OdjsDJ0/EFBD1qJbSL2w2Bk+aiO5QiHqtYxJCqTti703UnUMsNY3ggomYIn5eWYmlqhCaH6/PpRJeaCHEcaFMnCdRt2otlqpKZM4kTAG6U7UWS1UlOmcShl3BcKrocy2OQVwoTS1Wn+GwFkshBMb0ibHrmV3FnBWLGewN4ilxxctSMaZPiF3PnBpMt/jypygwZXzyC7JpzyGWQkBcJk2bmlMsxaRxmDY1d4yiIMaPgUQDQB6xFOPHxOvLLZbq2BpMVcHUVNQx1o0Fak3VUINRHrFUE/eOPGKpVpTFGktUFTVHY4hSXoZIDGtSlJximbx/5hHLZI+EEDnFMm04SR6xTMpkHrFUPO7kpKnk0CV/zInq6uqGNVnnkKXS6/UyZswYvve971FTU5P88e1vOYgRYHBwkM7O2K4nqihOCiVgKZapQplAOB1pYpkmlMkHU8Y7Jh5KEcpkWRlimSaU8XKE05kmlmlCmXwwe3yc4nYjfCknU0I+U06WVKFM1ud2p4llmlDur77SYsz446YissQyVSgT5Zg+T5pYpgllan0Z3UpJodQSuZMllqlCmSjHKHKniWWaUKbUlymWSaGMx5mqSIplrKUymN1CqQiiJe40sUwTypT6MsUyIZSmTUkez0yxTBXKWAxESp1pYpkqlAmsxDIhlIZdSZYVLnOmiWWqUCZyCpfY08QyVSiT9VmIZVIoE/UJQag8XSyTQukYen2hUlu2WAqR9vqsxDIplPah3GMxQ2WlCmWCqEtktVbG4obeUyuxTJPFRE4ZYpkVA0Qd2dIlPG76Tkq5aVqIZVIoU+qzjEkIZUp9mcIonE76Tx66kVuJZapQxh4QWWKZKZQJdGfGZzkulMn3WUAkQxpThTIWI7LFMkUok7lbiaWmETxxUtq5lyWWqkJoQW3K6yNbLDOEMnlMM8UyLpRDuVuIZYpQJsgUy0yhTMZliKUQAmPmpKGeCxFvsZxVy2BPAE+JK00oh+rLEMsMoUwe00yxTAhlSl5W0pgQynwxwJBQJrAQSzF+TFpPl5VYJoQyGZNLLDN7IC3EUq2uzJjMli2WSaFMxmiWYiky6rMSS6WkOL0sC7HMGuKSSywzewQtxFL1erIcJlMsE0I5VF1MLFW1GLvdTiAQoLm5Obv+A2TYYyp37NjBF77wBZYvX865556b/DmcNDQ0xH6JqChm9gSRhIGDtVAm4+JiaSmUiRi7HcXpSHZ3ZwplMi4ulllCmSBFLC2FMpmTMzmAW62sQFjFpYhlllCm1hcXS0uhTMk70VqZKZQJUsUySyhTckqIpaVQJspyO5OtlVlCmcwdTK8bpbI8WyhT6kuIpaVQpsQlPoyZQpnMKS6W3vEV+AO6dZd3ilhaCmVqffHyM4Uy9XgmxFIU+QhPrUoK5VDMkFhaCWUyToARz1X4fGlCmVpWQiwzhTI1p3CJneisiZZCmVZWSUwsM4VyKCdBqCwmlplCmVpOqlgKn5f++RY3ihSxzBTK1NwTYmkllMmYYpXgwnh9OeOGxNJKFpM5FasHFpMiln0nWceFi2JxWUKZEeM/dYqlUGbGQFwoTxlH1JH53sTEMnDKlGyhTJY1JJa5hBLAsInk6xN2O4MnTch+n1PEMlMoh2JSxNJCKJNxqWKZIZRpZSXEMlMoU45V1KUSWTD03uRqyU6KZYZQpr6+pFhaCGXyWGWIpeW1iiGxzBLKZO4xsRy0u/CUujGmTrAcnpMplrmG8CTF0kIoU5+bkMZMoUyLmRT/4ppopbQiRSwzhXKorJhYCiGyhDIZkyGWalWOYVMpYqlWVeSYzDYklllCmYzRYt3h8XtXrlbJVLHMEspkskNimXPMdFwsE3KZdzJb/G9ZQpkgQyxzTaxShML48bH3MOlYh4Awh7nZ4xe+8AVuu+02fvSjH/Hzn/+cJ554AsMw+PjHPz6cYvPy0ksvceedd6IMOnHusm6eT7ysnAOu44j4zDozz24lwu0GVcEcGNx/ckLJP8HAF+/G7su9Q4NZ5MW0aSg9+9k1IkGe12gUezCcNrT2vpwxepkXw6Fha+nNEsoshMg7JjVa7iHis+Gqz10fpgmGGTumOS6uAJFyN6FSG97duY9DqMpNsFSjaFeeHS9ME6GbmFr++i795AnsDQTY8NienDHBSjsDNSrlm/LsLpGoTxVZQplKoNJO30SFyrU5duYBApU2+moVqlbnXi5DmKBEDAxVWN7QkmVVaPTMgJq3cy9NEahQ6Z4FY97Kv3yFMEAYZu5uZSBQrtA1z2Tsq7kvMcIANWxgaMJSmpNllSl0naQz9uXc9QVLBV2nRhjzYp6ZmIaJGjZjXeK5uoyBULGge3GImmdzTwwIFQu6zwxR80yeyQMm2KLww1tP56u/fgfDsD4WoSJBz9lBqp/KPY477BN0L80fgwlaKNZ1lSmUqUTcgs5lIcY8lTv3iFvQcU6YsU/ln7CgBk2EaRJ15rkuOAWtS3XGP5s7RpgmStjMex4A6HZB81KY8Fzu80p3CJrPEkx4Mc95bIIaMhBm/vPY1ARNZ2mMfyn3Z9DUFJrPsDF+Zf5dZ5SQjjDM5BfBXPW1nOZk7Ou5d9WZd2I105bUsOJna/LWJ0I6wjDyjgs3FUHHQi9V7/bmjlEFXfOKKF+dfwtbEdFBN7JbKdOCBL1zSihe35m3LPT97yYjdIPBWVV4trbljQtOqcC5M38MUd1a8DKITKjAtqc1b4w+rgKlfj/1HcDrA6CqHFo78seUl0LbfmIME9M0887xOPELVbzxxhvcfvvtXHnllQeWXwbDbqmMRqPMmDGDaDSK2+3mYx/7GG+++eZwi81LU1MTAELPPUlG8XoQ1RUxacyB8Hoxizx5PwDC68Eo9WIUxbuhc8UV+TAm1EBJnu7/Ii96hY9omQez1HrZDrPER6TKR7TchVGWuyyjxEdoejV6dUnumFIfgXE+QhVOotXW4zT0ch/+CR4C1U7C40pzlqVX+OhbUEVoYu6YaIWXvsku/FU2/JNyDziOVHnpOL2Sgem5cw9Xeuia6SCa58YfrHbTNcvO4FiF3hm535tgtZvGc0vompv7eAYrnahVNno8Op0nWM+gDFQ7aDtRY3ACdCzIPcvSP8bB3kvdtJ6We+KVv9pO6yIYnKjTdoq1JASqbLQuNvFPitJ6Wu6b/2C1jV1XaTQuzR3jr9RoWxohWhuk+azc57thA2XyIE1n5740+CtVGj8WYd9F+QRWYfCiAUomd9N4fu6bv79Koe0zAeovzRNToWBc2o29NPcNO1AmUD7UybTJrbRcmvvmH6hQCHyuh+aP5o4JlgqcH25lzqRm2i+3rjNYInB9uJW5k5rouDL3zT9YKohen/9iHyoWuP6llXkTmuj8sHVZoSKB4yOtnDChOWcMxMQzcH0PLR/LfawiHoHxL51MH9dG+4dzf5k2FZg0roOWf8n9pSfiVmj/tJ/6a3Kv2Rd1CXquGKRibC+NV+SOi7gUGv4tSv3lucdz6Q6F5ssiKKW53z/dIWhcbiCqg+y7NM8Xbodg90dV6q7I/bkxbAr7LlSJlEfZd5F1nGFTaDhXI1yus++C3MJvqIK9l7jZe3Hua5WpCRrPdhIuMWk4x/r6YSqChikKLpdK09l5ylIETcuKaVqW+5ptKoK203xEfIKWxSU54wAiXkH7abnLQgg6Tqug8/Q8k2SEoHt+KRG3Qs+J+SfB9C2oon9+/rIG5lYTdSsMnJB7UqZ/RiVRl4p/Vu4YgNCMGkLT88dEJlViOFQiU3JPGIpOqMSwq+iT8pdlTKjBHJ8/xqypjLUm1+xnhrlNgzyTXAGoKkdU5z/mY8bEWpgL2v2txafd19TU8PLLL7Nhw4bkeMfDRaJ8RbjAYva18Lgxve7kJBIrsRReL6YvHuOKd1lnxXgwiuNb1ikKhs9lKZbC50Uv9YCmYBS5wKqpusiLXu6NtQQKMC1a+8wSH5EKb6yFSwiipdZiaZT4CFd70O0K4VInekW2oBolXgJjPLGyFGHZhaCX+/CPc2OoscHwwQo7kTEl2XEVPgYmuNDtgkCFjdD4bGGMVnjpq3ViaLGyAhWapVhGKj30THGiO8BfoTI4OTv3cIWH7ul2DJsgWKrQPy37GASr3XTPtKPbwVDBX20tlsEqF51zbOhO8NcIumdlnwvBSicd8zTsdpWgaVh2+waqHbQvUDEcJqYK/jGmpVj6a+y0n6QQdZv4x5i0nZh9fvqr7bSdAobTBBV0i/tQoMpG6xkmpsMAxSQwzlos/VU22s7UEZ4o4XERms/IblXyV2q0nx1Bc0VRFBN9vLVY+qtUupaEUFUDdbzfUiz9FSq95wbweIK4xw/QuMwi9wqFwQsH8LmDaKpB6bheGs/LlsZAuUJ4eS9lXj/V47tpvDBbJgLlCubF3ZR5/FSX9NO0PFtKAmUC9bJOyt2DqMJg8tgOWi7Jlo5gmcD+oXbG+PqYNqaN1suyZSlYKnBd0Uq1ux+7EsXryZazYInAfWUrNZ4+7EqUWWPa6LgiW84SceO8sRagzsuzZTBUHBPYGk8fmqIzs6bNUhpNBard/Wgid0zYK1A+3BF7fdUddFjERDwC48OdVHoGEcJkclWnpVhG3ILw5T0owmRCZbelWEbcCgNX9FHm9VNT0UvzldnHPOoSdH/IT5EniBAm5RX9lmIZdQraPxTE4wniKx+k/kPZ54LuUGi+NIzTE8Zmj7LvsqyQpFBqnggCUEpDlmJp2AX1F4LwRDFLIuy7OPtzY9gUGs5XMF2xFiW9OLdY6h4j1q1eZFiKpaEKGpfZibpNol6DhvOyrx2mJmhc4kR3mbGyvCaNS63FMqAaOFSVqBualmRf90xF0HK6B90JURc0n5l9nU0IZdQZ78Z3QesZ2ddsUxV0nFQU7+oXtJ9qIZZC0LmwBN0BUSd0nmwxuSUulInhHVGHyCmWfXPLY5P6HMJaLIVgcFZFsizdIXKKZWKoj2FTCMy0jglNqUS3K+h2hdA065jIpMq0snKJZXK8vqZgTMyR09hK0JTYZKccYmnWVCaHI5g2NbdYVsS74jU1t1hWlCU9hirriUeirIQnfv8uAC0tLdblHADDlspPf/rTDAwMcOONN/L444/z85//nFtvvXW4xealq6sLAGHY05pyhccNVeUxoUxZ3DNTLFOFEoiJpdeVJpZpQpnAQiyFz4te5k0rK0ssU4Uyju5zpLVWpgpl8jELsUwIZXJShyqyxNIo8RIYm15WuNiW1lqZFMqUsXxWYpkQytRJJJlimSqUqWWZGeMEE0JpxOdHmWq2WIYrPHTPsCe7wEwVBqvUNLFMFcrka7YQy4RQGvahnDLFMiGUugOcqkJQ1wmWkdZamSqUyddnIZYJodTjcaaaLZZJoXQNlRUqM9JaK9OEMoGFWCaF0hW7SQvVyBLLVKFMFmUhlv4qlc5zQjjdMTGwEkt/hUrveQHc7phgqIqRJZapQplAUw1Kx6eLZaBcIXxxL8WuWJymGFliGShXMC6JCSWATdWZMK4zTSxThTKBTdGZPC5dLBNCWeWJDZOwqzrTx6aLZapQJhhX3EtbSmtlqlAmsCtRZo1tTRNLq7jZY1rTWjUTQjkmo6xMaQwVCRxXDHWlWYllQihrvP3J45kplqlCmcBKLCNuQejKHiq8sTgrsUwIZaknvmsTUFOZLpYJoSz2DpVtJZZJoYyfVwLwVaSLZapQJspxlgfSxDJVKJP1kS2WqUIZCzKzxDIhlIY7vYsyUywNm0LjshQhtRDLpFDGP/Oxca3pYpkUSreZVlbEly6WpiJoOstFKKrjUJX4LPt0sUwVymRO7nSxTBXK5GMCom6RJpYJoYw6hyZf6a4MsUwRygRRl7VYZo4XthLLhFCmxqSJZYZQJsu2EEv/jHTJ0u3ZYpkQyqFyssUyVSgTWIlldEJlVkymWCaEMoGVWKYKZWpcllhWlKX3tFqJZUIoEyTEMlMuFQURv6l2d+cf5pCPYUvlokWL8Hq9TJo0iXvuuYf77rvvsLdUJqVSt8VaKl3OtNZJq4ktCbHMEsoEKWJpKZSpcfFWvyyhTIlJiqWFUMaeDNFiF2aJz1IoE6SKpVnsTRPKZEyKWFoJJcQnKpQ5iFYXo5d5s4RyKG5ILDOFMjUmIZZWQpkgWKImWyszhXIo9yGxDFd46JluzxpTlSqWVkKZwFCHLlqZQpmae0IsU4USwKGqhKJGLKcaQecJLgJVDjrmpwtlWu5xscwUyqGYIbH0V2ULJQCaiX9MTCwDVTZaT88QygQJsTzVniWUCRJi2XK6ZimUyaIUM3mT81emC2WCpFguUbKEMhmTEMtzBIEKhYEL0oUy+RJTxDJQrhBa3pcUymRMQiwvMLKEMkFSLC+KWgplMi5FLIOl6UKZIFUsg6UCx+VtaUIJQ8KYEEtTFWmimBnXcUUg1jWeIZSx16czJy6WVkKZWlZCxEJFAvuH27LiNKEzvbqdjiv9WUKZejwTYmkllAmEMJlU1UXblcEsoUygCJPxFT20fDicJZTJchgSy6gzWyhT60uIZdQpaL8slBTK1LISYqk7FJoviSSFMrWcNLEUpAllallKaYh9lyjZQpkMiovlci2nUCbQi6PUX2hPCqXuyfispoiloQoazxkSygSpYmkplCllJcTSVATNZ7rQnRDUDZxxmUgVyyyhTM0pQyyjFqPHUsUyUyhTY5JiaSGUyfJTxTLeSmlF1CHoWRgTy0yhTI3pn18VE8qZ2UKZQHcIBufEBNQ/I1sEIV0sM4VyqJwhsbQSygSpYhmdkD0JNBGTEEtzTEXOyVBpYplj7H+aWGYKZfK5KWKZKZQJ4q2WIt7KKcpKYv8asS9Ivb25x9fuj2FP1LHiox/9KA8//PBIF5vkk5/8JHv37sXZMQs1XIxp02KTY/T9rK1k0zBVgdBzv2TTpmJqCiKap6z4Gk6mTc07acWwqxg2BSWce0Cu4UjE7H9dKFMVlvI2VJ+CbheooTwD2J1ivzEQ+3BGHQItmDsu6hToDtByD8tKmdAhsoQyrSyXQHeBlmculO6KXajyxSg6iGisSzlTKNPrM4l6TWx9Q+/fj86Yzy827KB+IPaCdKdJtEjH1pt/p4Ooy8T0RVF6ck9oMNwGWlEYvTv3mCvTpeMpCTDYkWcXDkBxRykvHaCjI/cYUbsrwriyXva1Wc9SBDAMgRHQEA49SyhT8TjDzC5vYV1r7sXdi11B5pc18W5b/kWVdUMQitgocec+aUqcARaX7ealtpk5Y0odfpaW7eDp1rl56ytz+DmnbBtPtc3PXZ/dz/mlm1nRdmLOmLCh0TboxabqliKYoNgW5JKy9TzUelryMQXBbfwbP+MvGJiWMVb1tQz4UBUjb31uLcJl5et4sGVRnpgwl5Sv58Gm3DGJuOWVm/hb4yk5YxxqlAurNvNw/Uk5Y0yge8CN15V7LCbEpP7M6t08t3d2zhhN1VlUs4+Ve3MvIm6agmC/A3RhKZUJhGIwo6adzXtzL7ItFJMJ1d3s3bOf8WmKSVl1H9378oxXFCauKj+hfXkWqhZAZQi1Iff8AIgd02hFBEdj7KJWYrfxvdPn8cVXV6eUZRIuN3A15rlemaAFQQnHrqX5CJeauFryT1wJF4OrLf+9RAuCEjFziiAQW73AJ3B15L8Phn0CV+f+75URj4KzK/9EmIhXwdGdf/9uNWzAARhS1K1i78m/97ju0rD15Y8RER2iRk6pTGA4NdT+/J8vw66hDOafOAZg2m0o/licrg0SrNpIWVkZK1as2O9zrdj/PkSHwGHw1DQCiZnaporpsGE64rvqRHSIWJ8kpjMeFzUQunWM4dQwnDZMAWpIj5VnFee2o7s0lLCRUxh1p0bEGzu8qiJQg9l16i6NiE/FFAJVFWgB67KiLpWIT0UNG6gB6w+U7lIIFamYAmyqiebPjou6FULFsYWQNVVgs4iBWNdWqESghk3IcU5G3IJQuYgvaQP2Puv3POwThMoEagjsvdYxUY8gUGnG1qjUBHaLL0lRDwSqjFiMXWDvtr5AhYsgWB1F9Ss4uqw/mBGvSXRsGBSTsN2GvSN2EXaoKsH4F5Oox0AZ78epmgTtDmzt1kYc9Rr4xvcRCmtEckil4dWZMKkDm6rT6vThb7a4yXgjzKttwq5EaXCW0NpgfbPSvBHOmLwblxphj7OcHQ3Z441c3hDLa7fgUiOUOwdZs896hYTiIj8fmreRllARr+2z3iGl1OvnkxPfwacGGePssxSACu8gn5+4iiIlyARnF4/sW2hZVoV7kC9OeJn6cDl/3mctOFXufr42/jmKlRBTHG38tn5JVky1q59vjnuGYkVnkr2dX9VbDOwEqlz9fHvsM5QpClPtrdzTcEFWTKVjgDvHPkeZYmeGvZUfNyy3LGucu4f/nfIPWnU7P2i4xDKm3DHI98b8k1LFxdTxT/PfDZfmjZk+4Sm+W28xMBCodvbzq8kP06HbcsYU24PcNfZZyhQ70yc+wZ37Ls+KKbIFuXPcU7FjUNvGXXs+ZFlWkT3IHeOfplKJMnVyK9+vy87dYwvznxOepkwNMmVqGz/eZX2svLYw/7nwGXp0D/fsPNcyxqlFubF2JWXqABNndHLf9rOyYuyazqenvEW5OsD4Gd38efuplmXZbFE+dvIHDOgOVmxdYBmjqAYXT9tMsRZgjKuPl7Zmf2ERqskZU+oosQWocA3wwZbJlmWhmpwwtRGvLUSnO8CurdmLepuKybjJHXhsYbpdITq35dhNTEB56QCDrjCRHTkmbwJikh+XTSfs0tF2ugjpBs7U5WqESWhCGMVm4HeouHdbf6M2FeibHkUYAs+e3PIZGGNg2GKz4r37rK+1gRoz1jvkAG99zqLonyjAFHgbcniBgECliPVI2RU8TbmlMeoWDNpUPC25hTFYpsTysql4Wq3jgqUqpgpGpYarPbdYBirtYJq42nN/WQkXa7GewHIHjk5r0YsU2TEVMMocOLryTHwrdcZWjOjJLYO6x44pwCx2ovXmjjNtsR5TpS/PZDxXbCtjw+dC6Q8kWyr7+w9w5RkLht39bUXqOMdf/vKX3HTTTXz3u98lEonwhz/8gZtvvpmtW7cecvnBYPxA2hxJoYR4y6HFbjoJoTQFycGxmaQKJYDuUHPGRd22+JIkquWWekmhFICINaXrzvS8UoUy9pzYbg+ZRF0q4SI1tkabQ0F3WTTVJ4RSidUXcQmi7vS4hFAaany9N1dMHjNJCKWpxlorI97sC0pSKOP1Rd0QLrKI8whC5WBq8Zhii26NuFCaSvzbuNckXJwZExNKUzMxFZOoxyRcmn2BinogWBMFzUT36YTKsi9OCaEUmoFQTPBFCFfELjyaEOiGmRRKm01HUQycRSEildkXlYRQOmxRfO4Qoib7A54QSpcWQRMG1UX9uMdkL38kFBO3FkZTDMb7eqgenz2mJSGURVoImzCo9XUyfXz6shUJoSzSgtiEzgxvGydOzL7i+7wB/qV2HVW2PmZ7mlkycVdWTEIoy7QBbCLKfHc9yyel7wubEMpyNRazwLWPj0xcm1VWhXuQWye8SI3ax0LnPj4x8Z2smIRQVqoB7MJggaORz014Lfs4KDqVqoFdCE5ytHHjhFeyy4oLZbWqYRMKlWp283ZCKKtVFzahMt+u87Xxz2XHOQe4a8w/Ga95mW9X+Y/xz2TFJGSxQvWgCoV5dht3jH86LabM7k+LOcFm578mPJVVVqk9wPfGvsB4zcsJds0yJiGUidxn2+DbE5/IilOEkTwGc2xBvlX7ZFZMQihrVB1VCGrU7PMzIZSVagAVk1n2dr42NftYeWxhbpsUe5+n21u4ZdrLWTEJoazU+lCFwXR7CzfMeD0tJiGUlVofijCY4mjjEzPeyypL03SunrKGCls/tc4Orpy1LvsYxIWyVPOjYDLW2cN5s7alxaQKJUCNs5+TZ9dllZUqlAA+W/ZnPlUoAUqdAcpnWgwJU8BTG/sG7XGGsU3PbpFOCKXNHkUIE7sjQnRagIhpoAgRW70uRSgBFKeOf0p2i5gpIDAudn007QaDtdbClRBKAMNhMDDRYpJdXCgh1qgwkGNHx0CVwNTAtMHAeKv1GIeEMlHW4FhrLQlUKEMxNdZCnBDKZFx1dlxCKCHWiBGotG4MiMlirIcwUGndqJAQykRZofLsnqiEUEKsrFCZdW9V1GuLT6oVREqsW64TQgmxIW3RYus4w21PxhhF1k3SCaEEkmIp4koYiUQOeVedQ5bK22+/PedPoj9++/btdHV18Ytf/ILa2lpWrlxJe3s7P/7xj3nppZcOteqkVJq27DcnUyzThJLYByuxvVSCTKFMkCmWCaEkESfIEss0oWQoLvX/mUI59Nx0sUwIZWp9mWKZJpQp9aWKZapQJo+LhVimCuVQTLpYpgllSn2ZYpkUSjUjJkUsU4UymRcpzyFdKIdyzxbLpFCqZrK+TLFMFcpk6iliKQSEXXpSKBNYiWWqUEJsfFdpkT9NLFOFMoGlWHojnDBxaAkHK7FMFcoENmGklZ0qlEMx2WKZEMrS+DgCm9CzxDJVKIfKShfLVKFMjckUy4RQlqtD9WWKZapQJrASy2pXP18f83xKTLZYpgplggmqwS3jX0z+P1Uoh3LPFsuEUFapnpSYdLFMFcoEVmJ515iXsmIyxTIhlKn1ZYplqlCm5p4plkW2IN8e+0xKTLZYpgplgjJF5z8nD+WdKpTJ3C3EMiGUlWp/MiZTLFOFcug4pItlqlAmsBLLhFCWpoyHyRTLVKFMPpZDLBNCmSBLLDOEEmJd+FNnNSX/nymUCbLEMi6UTttQK1mmWKYKZYKkWE6JT5ASpAllsvgMsUwVyuRjFmKZKpQJrMTSyHA1K7FMCGWyvkyxzBDK1LIyxTJQoaTFWYllqlCmxaWIZapQJmMsxDIhlMncLcQyVShTy8oUSzPDsqzEMiGUqTGZYpkqlENlZ4ul4U6PsxLLNKFMIASGZ2joVSSSu3U2H4c8pnLt2rV5/75w4UIee+wxXC4Xy5cvZ9u2bTzzzDMUFxezevVqbrzxRubMmXMoVXPOOedgGAbOwcUIM8duORE9tpyOI1sWIbZgdCLGSihTUUOxuDShTMWMxyiCqEfLOomGYoz4wOtsoRzKy0SJj3dME8qMshILHGcJZUYc8e7pzA9bsj5jaExkqlBmx5hgQKjMOiaZlx+ETrpQWsQoUbKEMlkfoA2IWEyGUKbnJdAGBUpYpAtlRn1qv4oSFkTGZF98k2GG4HeTFvP11rfxq9bdBYahEOxzIPwqvglDQpmKbgh6+93oAzbGTezMurkkiJoKrX0+/P0O5kxqTrtRJWMMhYb+Ejp7vFlCmSBiKuzur6Cpp4gLarel3TzT41S2D1Sxs6siTSgzYzYNjGNzd3WWUKbHafTrTkpUf9qNPzNmXWAiqzqmpwllZn1rgxN5oWNOllCmEjYVVocm8HTHfL4x7tk0ARqKMVkdquLhjlOyhHKoPoPVYR8Ptp+RJZTpcTprwhp/7DgzTSgzY9aHde5rX5ollKnopkFrNMTefX9j0ZTrUER27rppsCEc4Zdt56YJZWZ9m8JR7mk9P0soM+M2RgT3Nl/AneOeynkcNkec3NN0QZZQDuVksjlSzD0NF/D1Cc9Qo1qfVzqCreFKfrnv3DShzIzZEa7hN3vOzhLK9DoVWqLF9BuunDGGqbA7VMVfd5+UJZSp7AlW8MSOeVlCmVYWgqZgCS/vmJHWSplJS9DHB9trmT2liSK7dXdje8DL7h01jJ3cgTfHZ95A0Bt00rmjPEsoUxkM2gnvKMoSylQUU+G+6vO4dufrGLY8Y/aDKq46e5ZQpiLCCp49qqVQptUZinWFp7ZSZsVEYl3hmUKZFhMGT5NpKZSZZXmaDILlCkausiLgadEthTItLgpqKMc9KRlj4mqPZgllKkKPdYVbCWVmWY7OUForpVVZjq5QllBmxth6gpZCmRZnmGi9wSyhzIxR+gLWQhnHxCDoXQXAP/7xD6qr86+jacUhj6lcuHDhfmMGBgaoqIjN6vJ4PPT393Pbbbfx2c9+9lCrBYa614UiUHIcQRFfm9FQhaWXAQhDQaix5uZ8w5GFKkBVWHLWDKZPr2bzlkbefa8uK0aoAqHlLktRY2MQharkqU+gqDH5VOIzuM86aSqzJlezaVczb62ti9engIjXm7uo2AdNy9MkrYJQ45Kdkfs5cyZzwoRq1u9r4a3VdbHNdPJMFIrlE6tLyXVmCVDi9Sk5PuDnTp3CgopqNuxp4fm+XVibNaDE8lF0Ed8Ny7p7RdEEqi7AZuYtq6qsnC9Wnsn7Xft4tXVHVoiqmES12DqVLptuWZaigEMzCCngs0Vy1mcXJk5NJ6zAsspZTPFOYkd/HWt7NqbFuDWdPtWkWI1kf+UF7IBPi2BToEwNWsbE4kyK1DA2BUrVAJgKkz1nUOWaQUtgK3sH38GGSakWxCagTPXnLMuGQY3Wj08J5rxK2zApVQPYFZMyJYiZElfiOh+PfR4D4bWURTZgFyYVSjgtJr0sqFQGsQuDagXLuFiMHzsmVYoDq6/KTsdFzPXM58RIlErldXJsboOKSrUSQENQoRRZxqmoVCgD2IGyHDEAAh9ja/5BWfkYjB4fkC1dApUqJYQKeeurUsLYMKlUvAeQu8lY18Wo9oXo4fVEQ/9MxmioVCshNMh5PBWIlwPVSijne6MA1eoAqoAKxY9pqhS7zsVrX8BgeAM9gX+iADVqP5ogNgwhR1kqUKMO4BR6znNPAaq1fhRE8jxOMMmziBrXLNoC2xmMrkET+T8TKlBuC6AiKNVCOePKbEFUBCW2EFZ37IUlc5kybgr/DIfYa2sm12deAXz2CD0I3DmuHwBuexRdEdjtuWOEMCktLeXLJ5/Fus5mXmrMvl4BKHYTVQhi3y1yXPtsJqoiEDZQ890J7aAIwbLpk1kwtoYNLa28vGt3el72+MTifLsi2WPzavPeSxJxigBbrFN2yexa5k+sYVN9Kys3x++/tniMJvJ3u9pijR15a7QJFCX7Hn7GwsmcMHUMW+taeX31rnhMvns4YLcuKw1F5C1r0WlTmT1rDHVr6nnt/d3564uXlddlFBFzkDw78JkpRzGQZ5fBfByW2d8JVqxYgdPpZPny5WzdupVnn32W2267bdjlnnvuuUSjUb7xjW9QXJx755aRpra2ltLSUjo7O9m3b98Rr7erq4u9e/fKemW9x0S93d3d7Nmz55iuV1EUFiyITR5Zt27dIY9TOhSOp+NcyHonTZpEWVmZrFfWO+rr1XWdO+64AyhAS+WBMGfOHP72t7+xfPly3n33XebNmzci5SrxZXzu/c9XEFpGV1HUQESjJJsqhMB02tPGPYqIgRIe6lYwhcB02dAd6d+glaiBkjJr+9+/ejELFzl49Y19PPDH2PgfJWyghKIIM1EW6B5b1qQbNWSgBmJlJbrJo+6MmPjsbhFvhojFqdz0BTennOBk1fsN/P7Bt2Mzu1NeX8SrEPYoGWWZ2PwGQo81DEQ8CiFf+ncYNQT2QQMRv8+ZCoQ9SnLc49evdHP6NCevrm7kN/94ZyjGK4iUpJelBGMzwBO9e6YSG2MZKU2JCYG9Jz0mUiwIZUy6+Zbm5kzVyStbm7n3mfeIFkGwIr2LRw0oOLpFsiwUCBebhCtSxh8FFZwdanpOJQZmdXo3suHXsHdovDhpEi2BAM+3NvLLtn+mxQT9dkSrEyVRloBoSZSKcT3JmMGAg2CTB6EnBj+DWRZm2rj0yTRdATedjcWIaOw9+0+fg6VeOxvZwF/F4wC0B73saajEDMffV9XEW+Znybj0loHGQDEb9sSW+hGKSVnZAJeM25wW0xQq5o36KUTCWjzOYExZHz9zLsKlnkKL802e8jzKc/WzCUdiMYpiMqG0m2vHpm+52hgu5+GGhfhDdlTFYFppB58b82paTH2kjD81nM5gODZYXFUMZpa0cWN1bNyj4v1Pouq5vKnXcc9gbJyjTdWZVdzGbVXpY60bokX8omkZveFYd68mDGYVt/KNqqE666M2/qfpArrCsfFAmmIwp6iFb1a+kxJjsF78lrnmAt4ztvJn81Fm+1q5ozJ9YkeLHuCupgvpicTqU4TJHF8L/1U5dExbogN8t+X8ZH0KsZg7KtMnMbXrg/yg9VIm8G3KKGal9xd8teKDtJhOfZBvNZ+XVtYsX2tafe36IN9qSqlPmEz3tPNfVWszygpwR9NFdIVj18TPGJezWMyivOgZvLXfj5cV5TuNl9AR8iSP1SR3N3fUvJJSjuC7DZfSGY9RhMkEdzffGPNCWn09hp3/rr+MrsBQXmM9vfzMexJCW4biXUVozN38YO/F9AadyZgqzwA3j0t/n/sNJ3fvvoD+oANFmJR5/HxuQvp51a+7uG/3EvzBoZnNRZ4AH58YG2fpdHwOh3IG/ww08L36WBeeECZud4grJm1IK8tv2Hl8+zyiofhnQjW5aEb6+xcyVFbumIERiN8mBSiuKKfUDn0Bi5oK53ddy/luF6vam/n++rcxnTrTa9N3JImaCnu2jUGEh66bhsOgYtLQuGndEPTuLENNidHtJs6J6a3bhqGg7/by0qRJtPgDvNrcyn/vTT9WmGDf7UJJ6Yk37BAcE0mLce+1oaQ8ZNggUJPRnW4KPPVKsqybL7Oz9EQXbzS38r03302GeeoFSsRMKUsQyliZyd1gZtUXqshuW3M3mSjRlLJUwQ2ftLNsrou3d7fxo8few9NqpMWYqiBQml6WMMHdbiTzMjUIFme3lLvbo2lLDZqKIByP+/xVGmef4mLNe8386hdD47tNVRAuylYoZ1cYERn68hguyZ6Jb+8Oo6QsW2iqgqgnfczm9f+qc+YyB2vebeB/f/IiphDonuwJQ1pfMD13ITDc6XHqQDB9ycW4F2XhH4T4WvQ+X54tp/NwWGZ/J5gxYwZlZWXcdNNN7Nmzh6VLl45IuQ5HbBylEQpihqIYhhn7CeuYoQhG1MDQzdhP1MAcDEEwFmeGdAhGhp5jmJi6gTkYRgSGyiKsgz89TlFEbFP2kB6LCeoQiGDqqWWZiP4wymBKWUEdUso2owZKfwRlYOgxEdQRgzpm1MiIi6LGPcmIGCgDOoY+FGPoBmqfjtavY5gmhmkiggbqgI4ZiZcTMVH7dWy9RkqMidavY0ZTco/GHtN6YnGqIRAG6Gk5mWh9Bmq3gW6a6KYJAROt14iVFS/f1GOPqV2xGDNoonVnx6g9BloXybJEANRwbDiorhuYuonSa2JrV9Ax0THBL9C6wIiayefpuonaA2q7io6JERTY2pW0GEM3UbsFRos9WVbEr6K2qxgRAIEwBQRhoMmTjBn02zBaHJipZRkmolultbEYA5O+gJ3BJjdGdOi16IaJ0WVjW2MlBiYGJh0BF22NRRhRkSxfmAITEYsRJq1BD7saKoiGh2J0HXq7XKxsnIwpDExh0BzysKGxJhkTNaC9y8NTjbOTMY1hH6/WTyYYVlPiBA1dPnYMxK74/bqDZ+pnEYgMxUQM2NNdwgNNZyQWG6UhUsrfGxYwELJhYBIxBNu7y/lNy5J435JOfbSEPzQsoj9sS77miCHY0lPJL9vOQQidAdNJT9RNUFeSMSFdYXNvJXe3L0MIHSF0GnQP9zadQ3fYmYwLm4LOiDMlRuHu5vPpCLuGYgzBxr5q/rvj1GRcVJgEDQ0zWY7Cpv4q7uqYhyJ0FKHTagzw3eYL6IoM1Rc1YWN/NXd2zIrF6L3c2XpuWn1RYONANXd1zEyW1WH08V8ty+gIu5LL3G0brEyL6TL6uCMek1rW5oGqZH0dRh93NJ+XHmPCtsEK7myfn1LWAN9svpCOsDsZZxCTGYGJEDodRoj/arqYtpA77VjV+Uu4q3Vp8liZwqA9JSZqwl5/CT9ouSAZ02uqfLf+UjoC6Xk1DBbx7sAkAMKmyvf2Lqc76EiLaRn0cE/juclzpt+08/92n09v0J6M6Rh08Zv6Jclzr99w8L+7z6I/aBv6TGDSPejkz/tOAWEQAXojLvRoyrluQr/fzmN75yY/E4OmxqPb5xIKpcTp8M+905IxQVPhpR3TiQSGYnTTJBJQeWfPRAwR+6xGTTAiIvYeC+LXHoWte6rTztld22owQinXBtPEDApa95bEPyPQtaMUMmIIweBeb8rnUhDe5UGEYkv3mSYoBtDgSMtT3eXEDJnp9YVMbE1aMsaxR8MMZ8SETezNSkpZ4NonIDR03TYMAxGNDUNLPM+1DwgP3V8M04Swga1tqGxnvQFhMyPGxNZupOXgbDRiZaXce4kYmAN6fJqAwNWsZ8WYEQNH51AOpmHibNUhlHL/CpvYu6NpOThbI5iRjLKiBlp37P4ciRqIqImCyKpP60l3BHtHKOkHiR+1Nz1G6wxBWM8qS+kPDz2nK4AeNWLvryKSniJSYgzDROkJZOeuGzAwFCd6AxhhfciJUrwo7Xn9AczokPE7nfnXTs3FsKXy29/+dtqaRn19fXznO99J/v+LX/wiv/jFL/iv//ovbLY8q18fBJ7klotRCIWTC4aKSEoLZSqmiQiE8y5CLkwTEYighvSsFsoE+3a3s2NLE/U7WrH1hdNaKNPLAnUwghbQUcIGalBPtj4mYwwTbTCK5tezWigz4/btbGPH1mYadnfmfH22AQP7gIEaGmqhTCtHB9uggaPPjLVQDgy1UKbXF/ubvddkd3Mn2+pa2dfclR3Tb2LvMVEzWiiz4vpM3M0mjp48Mb0mjm6BGhLYe2BXUxeb69vY09adjLH1gbNdja0/mdpCmYoB9l6Ba68NZ7uau74eBdHiiLVQtmuIaHxJCMzYOFTdxNajEGj2xlooW4ZaKNPKMkHr1mhvLMEwRLKczJxEl50djVV0Bdx0pLRQJtjR3cmG1lbeagzTHvBSl9pCmYouGOhys6phKi1BH+vqx6NH0uNMQ9DZ5eXphhNoChXz2r6pyRbK9DiFde39vNHWzUuNJqGIxd7HhmBfdykPNJ5JQ7icf9SfiD+U/u1WNxR2dZfzm+ZzqI+U84f6M5ItlJlxW7ur+Gbdh3m6VWNzbzN7B9rTYiK6ypaean7adj710SLubTwv2UKZSqu/iO+3LaU+auOnTRfRFcpeLD5qKGzqHcNd7adTHzX4WcsF7PO3snOgnoZArBUpaqps7qvhzvaFNOsB7mq+iG6L+gxTsKW/hhsbT+c7LRckW/AyYzb1j+HO9jm06YN8q/n8rLioqbBloIY72+fQoQ/yTYuY1PpualzEN5supNPi9RmmYPtAFd9uO5EOPcAdTcuzyqoPtLC9v4EV3SZdRpRvNV5GRzC7vqihsGewjO+2nEunLrizIXtdTMMU7Bss5fvNy+kx7Ny57/JkC2Vm3ObuXt7u7uGRFneyhTIzpm3Qyz0NF9BvuJItlJkxXYNuflt/Nv26i//ddTaDQYuWFaB30MX9u87gyX12NnS2sKuvI+3vpikY9DtYsWc+fsPOiu3zky2UqYT8Nl7aM4OQofHy9pQWyrTCwAhovFc3iaihsGb7JHb2dLGhvYWd3UPXSRFU2b6nhqipsHt7DSKUY5xlWEE3BD070lsoU1HDguA+X6yFcpcXJSSwK0pMnGK1oYREbAF1E+y70lso0+sDZ6MN9570Fsq0mAi4mtXY2pL7lKyy6lq72byvjT11sdfrbUhvoUwvy8TZBp5GM299zo7Y8z1NZs6y6hs62VLfRsOOzrQWylSEbuLqMmMtlG2GZVkiCs6e2AXd3RbNuRmKMEzsvTrN29vZvq2FvXs7smN0E3tfzBUyWyiHYgxs/bGYzBbKzLK0wQi2nljLY8OeDnZsaWLf7qHrpDBN1MHYgcxsoUwrK+4Jan9GC2UqcS8CEINBhG5gxm+aLpcr2SN8sAx7TOV1113H73//+/0+NpJ89rOfZefOnTg6Z6KFSiAUjm2f6Mq9WwmASMS5cxu4CIRia0V5c283IAaDiAE/ps+DUZx79xPFH3vDcq0lBaD6YydIrnWpEmgDYTBNQhW587INRMEwLdfKSo0RukmgKs92M4BtQEeJmPirc38RsPcbKBGDwZrcMY4+A0/9IKEKF30Tc4+2sPeb2AIGfRPyxPTFhLlvUu4pfI5uk5JdIQKVNnqm546z98bK6502dCF//tNXIdxunty0jZ+veht7b6y83twbuwBg6xU4O016ZuX+KNl7FJwd0HtC7i82th4FV4ugd17+pRy0Hg13s6B/YZ7dEnrseOoVgidZz3wF0LsdVL0lCFQqRM7MvWtLoMeJe5cdbVH22pkJ+ntdOHc48Z7RnjMGoLPbi2uDi5JlLTljOvo8iM0+xp7VkDOmtc9HdEMxtUvyjwVt7fcRWFfKjKUWaw7Gae4von91OXPO2ZkzpqG/hMjTlYSLYfYl23OXNVhE57vVzF0WmzjhVJz8aMHXKKeYG9bdgd8I0DJYRMc7Ncw9N385/idqiPhgxqXWkzAA2vw+Ot+sYfp5u3PGdAbcdL9ew8Rz8x+r3pCTvteqqTk393HvCzoJvF5ByTm537/+oAPln6XYLs5/LgTCNsRrJYizc59XobCG4w0fkSW5z89wWKP8WReGDXrOzz25QI8qlL7hoHtx7sWnzYhC+Vs2Ohfl32kFXVD5tkrHaXnGyEYFVe9C+8m5Q4QuqH7PpP2k/JNWhA5VHxi0L4hd03w2jX9cczmG28s7exq487mXYzFronTMyzOqzYQxb8euG60n57kPGlCxPkTX7Nz3EmFA+aYg3TPyxJhQsTa2ikTXnDw7CwGlWwbom2q9ikKirKId/QzU5i9HmODd2Yt/ovVi8gk8u3sITMgdI0xw7ewgNDH3rmQJHPu6iNTkn99ha+pGr8wfozbEPjNGdf46ldYuzLL9zCfp6IbiA+jC7upBFMXiEjvqlJeX89hjj+3/uVa5HdKzUtB1Hb9/6MY1ODhINLqfD+QwSbZUCh0CQczBQcz+foQ/901WBEKYA4OYff2IQesLj/AHMfv6oacPMZBn5pNpYkYi0NuP0mt901YGQ4iuXkRXL1qPdVnqYBiloxeloxdbd+76tIEwansvakcfjg7rOFtfBFtzD7aWHpxt1jH2/gj2xh5sLb24W3JfWO29UVz7enE09uJptv7K6+jVce/pw9XQj7cxR0yfgbeuH8UfxtnUT9E+6/PC2WNSvGMA995BiuusYxw9JqXbBvHt8VOyK7eYKXrseHkagpTssI5zdJuUbwpSVBegdGvKuBYR61oxDBNHN1SuC1GyO0jpppzV4egSVK2JULIzTNkG6xuDo0uh+oMIpTvDlK3NMaO6S6H6XZ2SnRFKV+e+KWhdGjVvG5Ruj1D8rvVNQXTaGfO6Sdm2KJ6382z5GBU4egyK9ujY3rC+uAa6XFS/olG6Xcd4vdQypq/bTeVLDkq36QRW5d7errPbS/k/nRTtMehZWWMZ09bjxfecl9KtBi0vjbeMae4pwvlMEaVbDepfnJSzvqa+IpSnSyndarLr+SmWMQ29xRhPllOyzWTbc9OtY/pLiD5ZgavLwJ7bbWjoLyGwopqSbSZbnplhnftgEf4V1ZRsN3LGQKzV1tVl4G0w2P6MdV6tfl+srJ0GdU9bv752v4fgY9UU7zJofCb3seoKuAk/VkXxboP2Z6yPe0/AibminOLdBv3PWr9//UEHtidL8LToRJ7NfS74Q3acTxRTvEdHfb7EMiYU1ih+ykvx3iiuF6xvjuGwRsUzTpzdOo6+3IKnRxSqn7Xja4hS+ZK1BJkRhbEvaPgao1SvyrP2jC4Y90+BtzFMzas5ZDAqGP+Kgac5wpg3crTiRQXjVum4W0PUvJWnF02Hsa9FcbWGqHkn9oXTpijo8Z4tIWIxY94M4WwPUv1+jmbKuFBq/eFka5dlfQZUv+vH3hmkcm2Oe6UBlasHsXX5Kd9gfQ9MCKUyGEIZDFG22XqJMoCy9X2ovQFKtlh/wIQJxZt7UHr9+Lb15s7dBN/WbpT+AJ5dub+seLZ3IgYDuHZ3Wf49IZSEIzj2WcckcOzpgEAQW2PuOFt9J2YgiNqcO0ZtaMeMRGJukQfR3IEZDsekMRdtXRAKQVdP3rLo7IZwBLM7fkyV2P33UMdTwghI5WWXXcYtt9zCo48+yqOPPsqtt97K5Zdnbxc2kpSXx7a8MtVY6x1G7MccGIDO7iy5FIEQpt8Pug66jtk/kCWWwh/E7B+IlWeaOcVSDAahP742mq5biqUyGEJ092EaBqZhILr7ssRSHQyjdPYlc1I6+yzFMiGU6AbohqVY2voi2Fp7Y2UZBlp7X5ZY2vsj2Jp6EVEdEdXR2vosxdLeG8XZ2Bfb7lLXsTf3ZYmlo1fHta8/NtwgquNsHrAUSyVqIuITokTUsBRLZ4+Jb/cAIhxF6DquxmyxdPSYlOwYRAlGEREdT4O1WDq6TYp3xl63EtEtxdLRbVK2JYQajKJEDbz1waRYDgZCdPQP0NM2SMWGUGzYQtSkaJ+1WDq6BBXrI2iDUZSIQdHebLF0dClUrYmg+fV4TCRLLG1dCtXv62iDiZiopVhqXRo17xpog7G8ivdki6XotFPzlolt0EDoJsV11mKpdzuoeYv4sTItxTLQ5aJ6lYp9IDYgvrguWyz7ut1UvWKPtVpHoajOWiwTQhmLMymqyxbLth4vxS94cPQl6ssWy+aeItzP+XD0mSg6FO2xFsumviJsz5Tg6I0NuyjaY2SJZUNvMeLpMhy9sbJ8e40ssUwIpbMndgN39BhseTZbBhv6Swg/UYmzJ17Wvpg0Bo0gt625izVr1lDXbyewojorJpPmwSKiT8ZGyys6eOuzxbLV70uWJQzwNmSLZbvfQ3hFVWzoiQHeRmux7Aq40R+vGCqrKVssewJOxOPlOHtiw3S8zdlimRBKZ09sv+RcYukP2XE9WTQU12pkiWVCKB29eiymTc8Sy4RQOnpin181ZFLyz+yeHD2iUP2cPVmWqzNbLBNCae+NDaFyderWYhkXSntvvMuzM5ItlnGhtPdGEaaJozuaJZZKVDD2VR17bwQMcPRELMUyIZS2/pho2Hsj1LwTwaYo/7+9+45vo77/OP66k2R5x07iJM5wdshehAQyGAkhgQBhz/YHZZW9N5SyWkoptECAlpRVNi2j7BUChTASQsgiew87Trxtbd3398dJsqbteEQen+fj4Ydt6aPvfXU+S2/dfe97OF0uCiur2FtVQ/63bmzVgcBZ6YkNlmGBEsxDu91+in39DwZKa7XHPNRa7YkJlsFAaakxH2+pcccEy/BAGXrOjvhht/OKSnSHWac5PTHBMhgotWCNyx03WAYDpeYM1nniBsuM9SXmUUtA83hjgmV4oATqDJb2rfvMI6WBunjB0rajxAyBgPJ64wbLYKAM0vckCLuF+yC4087nix8si0vB66mtiRcsS8rMr+Blrf3mtmdYzMcFp4JsjCaHytNOO41LLrmEoqIiCgsLufTSSzn11FOb2mydgk/YUE6UKyxAGgq8PlR1dShYRgTKoKhgGREog+IES63GBZXVMW2FB8vwQBlqKl6w9KuYdqKDpbXag2VfZeSYiKhgGREoQ+shNlhqPoXm84f9HhssIwJlWL/Cg2VEoAyKEyztlQbpOyI/mQaDZdYOX6Ct2kAZqgkGy62BmrBAGaoJBsvNtc/HXqbIXeeMuMZ6KFhuNEI1wUAZqgkGy3UGyzZs5N73P+Wtb1ZhcYWvq0CwDDupOjxQ1i4vMliGB8rImshgqfs0rDXRNZHB0lpqpfsSI6IuFCyXmMFSK02hx/fm2Nna9anI3uYj/YfaYOkvs9P9Gw1bdW1dMFhavzWDZXigrO1nZLAMD5S1NbHBMjxQhrcVHiyLyzPJ/iwjYm9TdLAMD5ShmjjBMjxQ1q6HyGAZHijD24oOll6fJRQow2vCg+Wu6k543suLrdseWed8t3v8mrBgWViTjfO/sXUpYb+HB8rQ8wsEy80fms8vPFBG1Owy2PVR7boKD5QRdWHBstyZivauGShrawLB8mPz7xcRKIMCwdLzce22EBEow+rSi2uDpdtjJfuDQKAMbyssWEYHylA7e/10WlAbLCMCZVhdWomPrl+YwVJ5dfI/s4aConljnGAZFSiDUirD2g4LlKF1FRUsIwJlUJxgqfkh/5vaQBlkq/KRYtHYtGsXF734Nm8/8L9QoAzVVHrottQTer7hgbK2xh0RLDUDui9xmkOtwvoeHiyjA2VQeLCMFyjNfqiYvZXhgTK0TKeHTmurQm2FB8pQTVSwjA6UtXWRzzk8UIZqPF7StpSF2kndXFIbKIPiBMuIQBlWFy48UAZFB0vL7pKYvZPK640JlnpRSW2gDIoOluGBMrwmPFgGw6Q3si1VVoGymP0I7rhrjBadp7KlvP766zzxxBNYyrOwb49/GAZdIzAjdmTgCmexoGWZ4zNUVYJd85oGOdnm9+hAGd2W1QqBvZNxm9J1VG42ymap3UsZpx2ji1lj2VcJvkTL01E2q3lyT6I+6Tq+vGyMNCu2wsrIIBigrBZ83bLxpVliA2VUv1SqDfwqbjsAWC248jPxZlnJ3FIVERYjl6ljpNrQDJW4xmLB2SsDT5ae8JCIslmo6ZOOM1ePCZThDJsFf5q5rhLWWHXOvXwsC3fuZecnRRGhsrbfGpV9U3H0iA2UkcvT8WVYzJOxHPH/NoZNp7KvjaoCQnsp49dYqeoH3ZcY2Krjt6WsGp4si3lCU4Iaw6ZR0c9K1RA/3b/RIgJeuJp8CyWH+GICZURbVg13tm6GnQTtGFao7G/BMdoZEyij2/Jka2BAakXimor+Or6x1XR9M/7hfMMClf10LJPKYgJlOGUBV46O7lcJawwLVPXVyZiyN2IvZbya7Gl7cL/bjdSyxG15O1uYd8Yh3PTUD+aZrPHaKtDJOaLIDJRx2jIsUN1Hp9ORRTGBMuL56WHPr46a6t46aUfujQmU4TyZGsbJJWagLEtwJSpdw5VjnjgXERTDaVCdb8F3VEVsoIzql7uTHmgrwWuaBjXdLFQc4aLXqwnGcgdqSg93xwbKqDp3tvl/Yy9P8JqmaTi7WNgz1YgbKINcXWwUTSYmUEY8P03Dm21B8xEZKMPp4M6xsWeihfxvfKRUxq/rObILs08cwNN//SkmUIbzZZivs9GBMpw3287esXYzUFbFHxalLBp7Du0UN1CGM9JT0PwqNlCG12TYKR2eGTdQRiwzLQUMIyZQRtSk2qke0iluoKytSaFmYG7cQBlRl2IzT15xJa4hxYa7oHP8QBlW4+3VOW6gDKfZzOUpd+Lnp9lsGN07oxfFBs8IPfLiB8pwVqu5syzR+zdw7D2jefPNNznnnHO49NJLE7dVh0aHykceeSR0re9E97eUL7/8krvuugu9JpXUTX3i1iiPB+XzoaWkoKUkPpFE+Q3zCj22OgY3e31mSLXWM61n8FNKWh0n3QQ+aWgpiU+UUYEgqdnrPplGuVzmP0Fm4sHNoT6l1nESk9eHqnGYz69T4kHQmssDPh+qjsG/mtdnBuv6ToYqK0fLyMDoUsdAabd5CL7Ok6a8fvD6Yq5tGk6vcUNxCVpWJr4eOQnrTjtrOFvX7GXJqpLEbbl9aB4fvk6Jl2dxeNB37oWsDDx94o9DNNvyozt9eLrUcSKX28Di9OKuo8ZW7cO2tRiVmY5jYOLlWdwG1ioPrm519N1jYK3y4upW90lv1ho/qburqDqo7uWlVHhx9KjjxLEag/Q1RajMdCqH5SSs070Ke4kHR8/E60H3KlL3eajpWcfyHAaZK4tQGWmUj6rjb+NVpO3zUJOfuC3zsm5111jcipyVe7j9uZMShspQW3s81PSqZ3lFbmp617W9KLKXFaLsKZSPTXwIS/cp0ovc1PSq4//Ur0gvdNW9zn2KrGWFKJuVyjHdEtf5FWm7nTh61XFio1eR+UsxVaMSt2P2C9KKHDh7JG5LMxSphQ5c+XXU+BXpq3aDruMYnmDnBObeK3tRNe5udZxEYoB9TzWeOmsUtrW70DQNz+CeCetQCltxFb68xK+zQ4d3YdLBPfjX8ysT1mAoLJvN65Ib/fIT1wGWfZUYOXWfAKOXVGLk1lFjgLaz0Py5Z92TZmtllajsOtpSClVYjNa97sOwqrAYLT0dLbOOseOYO420jLprjL0l6J0TvyaE2qquRktL/BoKmO+ndeUAwCivQM+qe50DKKcLra7372BNHTkHwKg2h+3p6YnXw+hLuvD9999zww03MHfu3Hr7Fk+jJz+fM2cOAP/3f//X2CYarU8fM0gadg8KRaILEylDQeCTQrwVrjxeM3wCmt0e9w+nPF5U8HJFmo6Wao8f9jxeDKd5yF2H+BuU240ROOSuZ6TF3TCVxxP642uahpaWFvefQblcGIG9qzrEDZbK5UZVmHv5tMyM0F7ZCC43RkUlyu83l6drkBXbluZ0Y5SVh5YXL1hqDhdGaRkohd4pG5UbGxg1pxtjXyl4vSivDx3iBkvNYQZBpRS6Kxuja+yZbmbNPpTfwOLOSXxmnaFQLjd4fVghbrDUqz04i8pJ87qw7S7D2zP2xcVS7UbbucccEtA5F0+v+C9Aml+hHE40j5cUiBssrdVe9K1F4PORWp2Lq2+cmhof1s2F4PORVpmLs3+CFzxDoWpqwOUiHeIGS1uNj5R1u1E+HxlVnalJUGNfuxvl9ZJZ3pnqIfGXZ6v2k7q2EOV2kwVxg6XV4Sd9dSHK7SG7LJfKYfFqDNJX7Tb/vxwusiFusLQ6DDJWFqJcbjqVdaZiRPy2MpfvRrnc5JR2pnxknOfnMMhcUWi+4Dtd5KwkbrC0Og2yfjaXl7MvN36NyzDDVB01Frci+6fdKJf5P5+zopTSOP0KBcEaJzkluZSPjj3z0+JRZP8UrMmhfEzs4SmzZrf5/Gqc5PxM3GAZqnO46LSvExVj4tUEnl+Ng+x9OVSOjq0JBcrqGtA0sldoVI6OHUNp8Sgyfzb/zlml2XFDo+5V5t/P4SBrJQmDpe5TZCw328rcl0n1yNgwqPkVGSt2oRxOMkozqRkRvyZ91W7z/6aOnQWaX5G2ehfK6SStNBPn0Ni2dL/CvsZcnr08E/eQOMsLBErlcEIdl8lDKWzrdqFcLqwVVfgGxQmfhiKzshrHviosmwrxD4wTGA2FZdMu83WvrqlhlELfWojhdKFVVaP6xA/X2rZCDLcbrboG1SdOYAwESuUKjGfcvSdxsNxZhOHxoNU4ID/O3zkQKJXHA3v2JQyWqrAY5fOhKivRHA70bvHrjOJ9KI8XzeFEz4t/WNfYW4Ly+jBKyxIGS2OfubNB+XxoLjd6bk78urJylM8Hbjd6Tvz3JKPcHLJmVFUnDJZGhTkEQPn9aB4veoIQblRWmzVeH3pG/LBrVNeYeageO3bsAKCgoKDe2kQaPabyoIPMeVY2bdrE2LFjI762bEk8fUdz6N27t7l30WpgeKtjxyz4fBiBPXTKUGZwjBrrEAqUhjlJqnK7Q/8QEQyjtsbvRzmdqDjjKAynC5QByjB/dkadiR4MlMGaGmdtWA0XOHEHv998Hg6H+SYR3vdgoAycoGRU15gv7BE1ZqBUfsP8qq6Je4hfGQYqcPhcKWWG0KrItoKBUvn9KL8fo7IKrSLyKg+hQBk4WcioqEQri3PY2jAguBvf7zc/rZVEDcwOBkqfuafSqKhE31cRp8Z8scDvxygtN09oiqI7PLDHnKZB+f2o0nKsReWRNdUetF17cFY4SMtMQZWUYdsdOQA6GCiVx2uuz9IyUnbFDpK2ODxm8MTcDikpJ2VHZF0oULrd5vraV0bqtqiaYKAM1pSUhcb9hLNV+7BtKQqtT/aVkh41OD0UKN0ec3zu3tKYAeyhQOlyh2oy18dbXiBQOpxmXXEJWeui+h4MlE4nGH7YW0b2mugag4yVu2v/Bwx/3NkbQoHS4TDbKi6l0+rYtjIDQQNlQHEpOauinl94oAytqzJyVka1FQyUNY7ENa7awJWoJhQow/93S8vJWVEaWxcMZsqAvWWxNcFAGazZV07O8pLYmqVhy1MGlFaQ8/O+OG0F6gI1nZZH1xi1YVEpKC0ne0XsHH0oal93lIKyCrJX7I1qKxAoHY7QOPWslZFXmAoFyuoa8wNSRWwNhAXKGodZV1VN5qrIqY3CAyWAqqwmY3VsTShQAvgN0n+JnSIpPFCCuYcqbW1kXXigBHOPmH191PLCAyWAoUjZWBizvPBACaAcTqwbd0fWGArrhp2kpeo4K10olwvLpsKYmlCgBDAM9K3xl6dvLUQF3quU04W2I8562FYYOkSr3G60HXuilhcZKIGY99uQnUW1J614PFAY9XcOD5SBGrUndtsLBsrQ7wlmnAkGSsAMjXtjj0IFA2WopjT2dc/YZ74fBZeTcHnBQAmh97eYmvKwcyACwTKmpqIq9H4LhL7H1AUCZbDGiDOzTXSgNByO2BqHA7+zhsJCczsJ7rhrjCafqPPhhx/G3PbRRx81tdk62e128vPNT2eG3Y0RCIgQCJRR4TA6WCqvLxQoI2qigqXyeGPGOyhDRQbL8EBZWxQZLMMDZXhNVLBUHk9ob2eI3x8RLCMCZVBUsAwPlKG24wVLlzsmaEYHS83lCQXK2rYig6XmctcGylCfYoOl5nRjRJ+JFhUsIwJleE1FZVTNvsgXrjjBUnd4oHBv6AUj2PfwYBkMlMrjwVnpJi071awJC5bhgTJifUYFS4vDg76tKOJDR3SwtNSEBcqwvocHy4hAGV4TFSytNT5smwojT1aLCpa2Gh8p6wsjPwhFBcuIQBlVk7mhPGx5YYEyvC4sWEYEyqBgsFxbHqiJCpTBdVXtIHtN2PLCA2V4W2HB0uowyFwZtTxlmEEvPFgqYj6c4Y8MslZXWKCMWJ+1odGsKaqzBswTHOpbnsUTFijD+15SGz4jAmXE84sMlpoRZ3nKiF1edNCNCpa6N2zvY6gmNljqPkXWz1FBJSpYRgTK8JqwYBkRKIPiBMuIQBleV1VN5moz5EQHytAiK6vJ+KW2JiJQBtaBqq6JCJbRgTJUGhYsowNlqCYsWMYESgKvsTWOyGAZFShDNzuc2IKh0VBYN+5GOV2kZafirHKZOz3Cg2XgkHf0DhLldEUGy6hAGV4XHizDA2WoJjxYxgmU5u0G7I4Kn2GBMtRWeLCMCpThNeHBMjpQhhZZvC/m95idSV6feaQsWBMWKCNqwoJlMFDGLC9w5C7895i6qGAZESjDa8Leh4OBMmZ5ldUxv0fXRQfLeHsolaEigqXhcJiPS3FjGAbp6elNOlGn0Ye/Fy1axKJFiyguLuahhx4K3e5wOLBY6pjjq5n079+f3bt3Y6T70CsMDI8XzedLuIs3/FB46Pd4NcF/IF03w2OiOqfT3PgNFRkWa4swnK7a1J6opsZp1lgs5mHveJ9IAsFSczpRwSmUogWCpQ6gWyICZWhxfgOCh9ZtttBh75g6paCiEhzOiE9LkW2ZwVIH8/BRvH4HgqUOkGoPHfaO+/zKK9BqAnsq4n0KDIZPpVCpKfE/CQeDJaAy0sxAGWegtPL7obQcS3UN+I1QjaPKRVqWvbampAwbYGSlxV2e8htQWkYK4M/NiAmUoTqfD62kHHu1w3xMvIHZwWAZaCthTUkZaYC3WxYpGwtj3oRq2yolo9oReNOJ11YgWALebpmJa4pLyARcPbNIW1MY8wYaXpddY+69jLsHPhAGswFn76x6axx9s2MDZVRdTo3TfCOKDlOhdVBGziqoGdDJDJ6xVSiHk5yVZVQP7lS79zFBW7k/mGOYo48KRCxvJVQNyTGDZ7zlOV3krCilamhubFgMb6uknNwf3ImXFwqWUDWsc+LludzkrCihamjn2EAZ3lZpBTmLPXUsLxgsoXp4l9jgGVanVTviB8rwtsoryf7JF5gKLk47oWAJNcPyYgNleJ3DmTBQhhZZUUXGCn9ge4m/PoPB0nlQ97iBMlTqdCYMlKGaqmrzfqXi1iilIBAsPQN7xA2UoVqXqzZQBtZnWradvVsDwScYLDfuCvQvQTuBYGn07RE3UNYuL3AIO06gDNUEg6VK8PoSaCd0GDxOoAzVeczpi+IFyvAa9uwzn2uCvYTK58Mo3oferWvcQFnblnl7vEAZqgkGy/qWV1aOnpsTP1AGBafriRcow2qCO4sS7ZU033Or0bMz4wbK8Dqo+5B3eLAM7enMMPs/aNAg80hwIzX6RJ2NGzeyYcMGnn32WS644ILQ7RkZGYwfP57MzPoHoDbFCy+8wDPPPIO+NxXb+pzIO7VmuKR5MATW1VagRmuGEB3842t64j9mqKY5QrsyD+triU5QCoRJzWKpPYu+DvVthMpvHvbXEoxfUn4D5fOiWSx1nsTUYIZ52D/eWFpd17jpHxfTJT+HPdv28bdrXmDqiQdz1k3Hk9E5jRumP8DeXaVMnDWGs248no9f/JpPX/qmaf3x+zFcbjSbFd1e96Brs5ON/6eGwPp0OsFiqXNgdrMJfPDBYkGv68Sx5lxedY25vAYMdm/68gyMqqoGL++iu09l6Ph+FO8q42/X/YvHv76Jyt1unr7rP2xYvr3+5SmFUVF54J+fpiccu9WsDFW7vAOxvSij9kSFpi6vAWPTAPzVNWi6Vu9JHfEMGtuXyx44G8NQlO+t5M+XzOcPb5knxdpTbeT17cz9v3mc6j0urnn8fHSLzvO/e41lC1bRc1gfrn38N+xYt5snbnwpsutOF3o9J300lBEI3XW9nhlud4Ne7xoSQ1To/Ig6TnL1eNCszXM56OD7UZ01wffIZlmeD/R62jL89dc0lOE3Z7UJOP6RKbz55pucfvrpXHXVVY1uttF7KgcNGsSgQYM44ogjSD8Qb1pRhg0bBoDKDPs0EtowjfhhUBm1NZpWf00D20q0YSlDmX84AN0SNzBG1ACK+usU8YOl8vsjlxdvY1eRn7yUl8TBUpl7DTWIHywNVXsB+uCUSjF9MsMiSoU24ETBEhX4lObxxH3hUH5/7QuL1Ra336Ga8OVFBcspJ06gcEsxD5zzV864aS5TjhvLKVfO4vfn/I0rnjyLc245kUevfp6Jx4ziuql3ctW8C/nE5Y5/Bl4gLKLM7USzWBKfqafMvaIG8V+Ild8fGkqhpaSgxznZS3l99dYAgVBtjs01iH/Gn/L5MAJj67SUlPjh0+/HHxjLV1dN8BCKGfYSvHEHgqDy+822mqGmzsHugaAUaqsZahqyvAGj+pCbm86NJz7MWdcey9Tjx2O327nr3Ec49/o5rPtqZd3LCwTKepcXVteQthr0/KjdGxIjEASV349mtTVLDZh/y0RBL6KteDWBsBh8DdbjXQkkrKZOhqrd1hN9OIquSfDeF6xRfhKcRor5vxfoH5qOHnZCZsnuMm4/5RHcTg/n33Yik6YP5caj7kZPS2X6mYdxwlVHUrm3mgvvPouHL3uG0m3F/PGDW1n2+Qqmzp3Ao1c/x8xzp5HdJZPKEvOwqeF0gRH48KdbEoZLw+UOhZeENU5n1PtknBq3uafdcLlA0xKGy2AdmpYwMIZe0+sQrFFej9lWgnAZ/n5UX01doVH5/aH3SEj8vhb+fltvTV2hMfjeHvYeX2ddQ2rC3ifXrVsH1J4v01hN3qV30003UVVVe9JGZWUlV155ZVObrdfQoUMBUGl+lDUqCKo4h6Sjw6IKhLR4h6UjHtewtmLGNkSFRQzzxJt6z8Ay/HHHQMS0FWcsRX01CZcXfQgg6pB38ISZyMep2n/OwPNPuPs/uK4S1IWCZ3hN9Lia8LCozGXHjIUJrwm25fPGHAbJ79uFjT9tAmDDT5s57sKj2Lp6B6W7K/ApD/1H9Aa/nyUfLuWv/7uXDUs3me1EH+YJD5QQCOx11AX76fGYL6RRfQ8fmxtvfG14oAzVVNfE1vmNiNuUxxMzODs8UCaqCQ+UCWvC+h+xvOhDmuFBsCk1iZYXPdg9Iig1X01D6oYfOoQfP1mGUVXNj1+sZtiEAXg8Hu57+Uq+euV/dS8vPFDWtbyoukbXxHt+cYeyqMh15fPGjPFqTE3C5UFsW9HbQlRYVH6/ufezjhogtp3A0KGIbT24JzyqLqYmzv9DeA0Q9zB66H8v7LXDCDu8X1Zcidvpwahx4PN48XvN9yrD6eLwkw+horKMyr01dO7eiZ2rtuGoqKaypIrszpl88+9vufbx35DdOSMmUNZ2wB9z7gGEBcq6aqICZfRrWei26PfbOCLqlIo/XCkqUDakJtHyQu9ZweX54gxriq5JMPyr3pAbdmJP+G3x6iIY8f7/GvZeHlPXkLaUQmmK9evXA7XZqrGaHCqdTmfEdSKzs7MjrgXeUrKzs+nbty8ARnacMR3xwmA84XUxeyn3ryZi40u07LDQGBMW97em3k/efjPkBOtUgvEh4cEyGCijnmNEsAwPlKEC8/kbbnftGXLhYTGqLqYmTluhk6+iw2KwJk6wjPnbRAdLv59tq7Yx7qgRAIw/ejQAjooavFUunNVubHYrhtvNd+/+yLVT7+SjZ76obSf8RdYw4v6dI+qig2ewJixYRgfKiJrgmZlRgTJUE1g3oTq/EREWI9oKjqGJCpTxaqIDZdya4POL8/8eEQijwmKja8Lq4i4vGJjiBKVG1QRvi/emUkdbmTkZOCrNMdfVhSVk5WSwY8cObpx+N2t/WJ+4nTiBMvx51z4ofl1D2mrIOkAZkWEwThCEqNDYhJrwQ9OhRSZqK3S2efy9jxHBsq6aYDuBoGi+5sX+b0XXxa0J2/4T1YQHy3j/e8H+RqyDGgd5vXIZP2MU37+/FJQiLSOFvF6d8SkvVaUOoPb9oabCQVbnTHZv2M1NM+5l3vUvmu1EB8pEywsPlKEbI4Nl3D2USkUEy5hAGX572M9x66KCZdw9lA2pgYj3HuXzxr7PBNqKeUy85UV/CIq7vPrPRq/rMRGiPgA0uqaux4T3I9ODx+Ohc+fOTTrzG5pw+DtI0zRKS0vp3NmcW62kpKRB4yOaw/jx49m2bRtGJw+WkjiHAZUC1YCV3ZA6pYD692o2aGMy/PXnXcOPUlrdn4YMf+3g/EQbVeC5qURhOLwtj1H7mHhNBQ+FJ6oJGw5QG2QTB/CG1ODxmMMPEtVEheb4HQ+rUwbfv7eUMUeO4KEFv2fr6h1Ul1WTnp2G8nmp3FOF1quOPvm84DKHDBiJps0g8CJWU3e/lMeDPxiK66gxCBw2qWOjUR4Phj/wYaSuthpSQ2DcUj01ut1ee9g7UV1F7V6kJtVUg56WWudhTOXxhM60bHJNVTV6enrsnq8GtFVVbm5PABkZNiqLy+jSPaNpfQoeBs/MSBw89+f51VcTCIN6Zkb8IBheF5gLt8k1gcPgdS4v8D9c53YQFizrrAmeyFDX/5XfnzBQhtf4w8JuopqI6Z4SMGoc6BnpGDUO0jNSuPVfV/HQBU/iD1wQ47ATDubnr1aSUZCCv8ZJ+AmZmTkZVJUGA7y/9mhFHe8NEXsi6wkvdR7yDg+WTakJu6/OQ97hwbKumrAjYAkX5/OiWW3xA2V4W3W9X4Xaqv/9v6GBE6g/LDZ0D2Y9zn1kLs8//zzjxo1r0kk60Ax7Ks8991wuu+wynnzySZ588kmuuOKKAzYh+vjx4wFQOXVcmqg5BQ69HjANWVa8Xd6NbasBzy/eLv2E7dT3wtGAGnN5dVyeKjiMwajncERouINCKcXfr3+Bm2bcQ2VJFW89+gF9h/XGarVgt9op3rG3znaUzxt4ga3jk0F4v+rSgJq6DjtH9stXf1sNqfF4Ig7FJarx1/HGHr68+raXOodOhC+vjjMe92t5DanxePDXEd4i2oqqWfP9Bg6eOQaACceMYfU3a+psA/ZjHZRVHLh14PM2eh202PKU0azbQUNeO+sKlCENGUrVkNcDZWBUV6OjuPWlq3npvn+za0PtVECHn3YYq79fS0VxFRh+SovK6TWoB+lZaWR1zqSyJOxD0P68/tRT15AxlA16f2zge2hDxlA22/JUYBxmM/W92TR072MzWLZsGQDjxo1rcltN3lM5ffp0BgwYwE8//YRSigcffDB0WLqlBVO1SvejUvxonpafykgkQTP/I+d2z+GOV6/F7/Pz04KVrPpmLW89+gEPf3kPmV3TeecfsXOv1tmf6E928Q6xxPv0Fz0GqL6aeMtq7uUF7wvuuW9qTUOX11x9qm95zb0O4rSz6eetlBWV88iX91C8fR//eeQ9Dr9sQoP2zrSXddCiy9ufdZBIa1sHUX0+4szJjJh8EOlZaZx752m89/dPWfzhT3Qr6IrH66Z0ZxkAz97xKjc+ewW6ReeF378ef9nN4UCGqWQsrwNTFoNVq1YBtTvqmqLRUwq1FpdffjmrVq3CuikLS+GBPwtdtC8HnziKfuN68+Y9+zmBf/ibRKJ/qQNZE12XqPZA1jShLXtaChc+cC6HHn8wjionKPjxs+U8e/sr5vW0Eyzv178/A7/Pzyt/fGu/+z5wTD+6FXTlu/d+BE1jyMEDOPbCGTx6+fwGtTP68GGce8ep3HbsH7jry6u598jHMPxGs6/zJ354gCsm3QZK8avfncZL9/1n/9qhaetpv2uas6320Kf9fAs+9tojqS6p4esXl+zX44SIx9/VhW9oBX379uXFF19scntNPvy9YcMGLrvsMmbPns306dNDXwfKtGnTAPB3jj8BqxD7o2R7GV0LElxjuy7heysOVE1D+1TXY1qipgX6dN3Tl5LVOZOLR13PpeNu4qrDbsdZ5cJmt9Wz7MY/v4Fj+3HYiRNCt69fujlxoKyjnUbV7UdNMFAC/Op3pzWuT01YT41bXoLHtMTyWnOfGrFPp2tBLiVRl34VorGOvPIQAKZMmdIs7TX58PcjjzzCddddx4MPPsjjjz/Ou+++i2E04KzrZjJ16lSeeuopVCcPymKg+Zth4nPRYe3bUUqXPrlo9ZwjFdf+HnZr6ZrmXl59A7iDNfW1t5996tG/G4edOIGze/8Wt9McP+11e3n5/v+E+nTFYxcwbNJgUlJT2LR8K49c9BRejy+ivUNmj+XXd52ONcWKz+vnscvns3HZFgAOP+1QzrntFNDAVePmttn3c949Z5KaYWfIwQP5+Lkv2LxiG+fecSq3HHMfACdddSzHXXQ0hmGwa0MR953xcIPWU9denbn+n5fRJT8Xr9vLE1c/y5ofNjD6iOFccP/ZFG4pZsjBAyjaUszdp/4Fr9tLj37duPXFq0jvlM7qRWs5ZPY4rp16J/t2lfKx5zVmp5zFpY+ch8Vq4e8/PUTFvkpuOea+0H1oGiOmDOU3953FjdPvBuDSR85j4rHjKS0sY+/OEnas2w1KkZWbyVVPXET+gO7Y7FZevv9Nvn7z+0b97eqsaeg/WTNvT22qT3F0Lchl3zYJlaLplKb4/nvzf7vVhEqfz8eQIUPw+Xykp6dz1llnceWVV3LOOec0R//q1adPH/r378+WLVswurixFO//1QuECKoucaAMg6y8TCqLq+t/QEfSgm+Udek3og+Fm/aYh70TLO9fd78ROvP18kd/wzHnH8kHT38eLALME2iumXInSikGjevPVfMu4popd1AwtBcX/elXXDf1TkoKy8jqnImz2sULv3+dkVOH8sjFfwdg9BHDQ4sdf/RojjnvSK6d9jscleZULg1dB1c8egGLP/yJdx7/iCETBvK7N67n/CFXAzBgbD/+9H+PU7SlmPvevZVpp07ii1e+4fK//YZPXviSj/65gElzxnP8b4+Jaffv17/ASVcey6Xjb0q4noImzz2EweMHcPGo67Gn23lq6YPsWGde5u+yv57Pp88v5MdPl5OZk8G8xX/i5y9WUVXWzP8PSdqemry8JI4Ys6VayeqSSemu8qT1QbQfRq6b6upqunTpwvDhw+t/QAM0OVRaAzPE9+jRgy+++IK8vDxKSkqa3LH9cfTRRzN//nz83VwSKkWT7dtWRl7fzhIqW5Hwod9HnDGZs289mazOmdx7+sOsW7KRyXMP4YRLjyElNYWMTunoeuwRi849crj1xavp1rcrhs+g56AeAIybMYpFb/9ASaG59yc0LUsdJswawyfPL8RR6WjwY4JGHzmCB8+bB8D6HzdRU+6g1+B8ADb+tIWiLcUArPtxIz36dwNg5LSh/OHsvwLwwwc/Ubkfy4vbhyOG8+Xri/D7/DgqHea40YBDjh3HgNF9uehPvwLAarOQP6AbVUvl/yHZuhbkUlFchc9z4M4MFu3XtCvGs3DhQmbMmIGlmS432eRQef7551NdXc3ll1/OI488gtPp5JprrmmOvjVYMFSqTh45C1w0WdGmvXQflMemJQ24RrNocVtX76DnoB6kZabirHbx1Rvf8tUb3/KXL+7GmmKle988/u/3Z3D5hFuo2FfJ3CtnM3BMv5h2rnriIj6c/zkLX1tEWmYqb5c+b97RiGnZmjqXW4xAaPa6a6fPMvwGFmv817KGLt4IuzpXir325b6u/uu6xg1H/Z6aipa/iIXYPz0G5VG0oY4pz4RoIGUxWLRoEQAzZ85stnabPABx0qRJZGZm0rdvXx599FGefvppDj300OboW4Pl5+czZswY0MDfzVX/A4SoQ+H6veQP6ZbsboiAoi3FfPvfJVz5+IWkpJrXBtY0jZRU87q9aVlpuJ0eqsqqsaelMOPcw+O2k56dzt6d5lGUOZccHbp92ecrmXLyJDr3yAEIHcp2VDpIy4x/5GPxR8uYdf5RpGenRzymIVZ8uZpjLzRPZhwyYSAZOens2lhU52NWfbOW6eeaJyVOmjOerNz4y3M53NjTaq+fXLxtLwPH9gNg6imTQrcv/3I1R545BYvVQnp2OoedMCHiuZ12/Qmh3+MFdJEc+UO6UbihONndEO2A0dWFx+OhoKCAIUOGNFu7jd5TWd+p57/+9a8b23SjzJ49m+XLl+Pv4cSyMx2tMbsfhACK1hdz6Gljk90NEebRS5/mgj+ewz9X/xVHhQOXw83PC1exeflWnNUuln+1mmdW/5Xi7ftYt2RjRLAKeuGu17jx2SsoKyrn+w+Whm7fvnYXz9z2Mg98bI63dFa5uO7w37Hsi1WccdNcnlj8Jz594Uu2rKrdc71swUo++9dXPLrofvxePzvX7+b+s/4as8yRU4fy0pYnyc7L5KUtT/Kvu9/giWue5fr5lzH7gul43V7+eM6joSumJPLUdc9z64tXc/xvj2HF/36htKgcR2XsGNO3H/uQx394gH07S7n9uD8w/5aXuOvfN7B3Rwlrl2wM1X373yWMPmI4T694mD1b97L8q19C9z15zXNc/uhveHr5w2i6xt4dJdwx54+08dnn2oUeQ7rx9YuLk90N0Q4MPL4n69at4/jjj2/WIy+Nnqfyueeeq/P+3/zmN43qUGO5XC5OOeUUqqursa7OwVJmP6DLF+2HzW7l1o8v48Hj/o7HWcfVfIRoAN2iR85T2Qj2tBQ8Li9KKUZMGcr1T/+WC0dc18w9Fa2Zpmvc9tFlPH7OC1SV1NT/ACESMDK9eMeWkpKSwn/+8x9ycnKare1G76k80KGxPqmpqRx77LH8+9//xsh3SKgUjeZ1+yjZUU6PQXlsX7k72d0Rgv6jCrh+/mUopfB5fDz0myeS3SVxgHXpnYPH5ZVAKZps5u2H8uGHH3LkkUc2a6CEZppS6KOPPmLz5s14PLXX4L7ppjjTWrSwuXPnmqEy14NK9aG5mvz0RAe1e+0eeg3vLqFStAprF2/kkjE3JLsbIol6DevB7rV7kt0N0cYpm5/PPzenW5s7d26zt9/kE3UefPBBNm/ezKJFixgwYACbNm0iJSV2PNOBUFBQYJ4kpIGvt5y5KBpv+8rd9BnZM9ndEEIIAApG92T7ysJkd0O0cac/NguPx8PIkSMZOXJks7ff5FC5ceNGrrnmGtLT0zn11FP529/+xrZt25qjb43yq1+Zc6sZ3ZyoFJnLSzTO9hW7KBgtoVII0Tr0GdWT7St2Jbsbog1TFoN33nkHgHPOOaf5p0ajGUJlcK9kSkoKlZWV2Gw29uxJ3i760aNHM3r0aNDB30v2VorGKdlehm7R6dyrU7K7IoTo4NKy7HTu2UkOf4sm+c3zp1BTU0O/fv2YPHlyiyyjyaFy+PDhVFVVMXfuXC688ELOO+88xo0b1xx9a7Tg3kp/DyfKeuCuQy7aD6Vgx6pC+oySvZVCiOTqM6onhRv2ypV0RKMpXfHvf/8bMPdSxrvqWHNo8pkswavnzJkzh4MPPhiHw8GAAQOa3LGmmDRpEoMHD2bDhg34e9dg3ZqV1P6Itmn7it30HdOL5R+vSXZXhBAdWMHoXmxfKYe+ReOd99xc5s+fT35+PkcffXT9D2ikRkdVpRRutzv0+9q1a9m7dy81NTU4nbGT8h5ImqZx0UUXAeDv6UDZ5dOd2H+bf9zOgAkFye6GEKKDG3hIAZt/3JHsbog2SlkNXnnlFQAuvPBCrNaWmxmn0aHyH//4B6+//nro99/97nf885//5Mknn+Sll15qls41xaGHHmoehtfBV1Cd7O6INqhoQzEpqTa69MlJdleEEB1Uek4aXft2Zvty2VMpGueUv82gpqaGQYMGteheSmhCqFyyZAlnn3126Pfs7GweffRRnnjiCX7++efm6FuTaJrGb3/7WwCMbi6MdLkyitg/SsHmpdsZeEjfZHdFCNFBDTi4gB0rd+N1+5LdFdEGqRQ/b731FgCXXHJJi42lDGpS6zabLfTzueeeazao67hcrqb1qpkMHz6co446ypy3sn81Crl2rdg/m5bIIXAhRPIMPKSATUuSN02faNum3TYGj8fDmDFjmDRpUosvr9GhsqamJuIKOtOnTwfA7XZTXd16DjdffPHF2Gw2VK4Ho4u7/gcIEWbzku30H98b3dKyn+6EECKegYcUsGnx9mR3Q7RBRicPCxYsQNd1rrrqqhaZlzJao98pDzvsMB566KGIk3KcTiePPPIIU6ZMaZbONYfevXuH9qL6BlShLDLFkGi4iuIqKvZU0Xdsr2R3RQjRwfQYlIema+zZtDfZXRFtjNIU+XPMmW9OOukkhgwZckCW2+hQeemll+L3+znllFO48MILueiiizjllFMwDCM0lrG1OPfcc+nZsyfYDfx9apLdHdHGrP16E8OmDUx2N4QQHczQwwey9pvNKBm5JfbTBS+ewvbt28nJyeHCCy88YMtt9Hnldrudu+66i927d7N161YA+vXrZ4a3VsZut3PNNddwyy234O/lQC9ORXfY6n+gEJih8qw/nsCHf/sy2V0RQnQgQ6cN5LOnvkl2N0Qbo+x+XnjhBQAuu+wysrIO3FzdTR4o1rNnTyZPnszkyZNbZaAMOuyww5g2bZp50s7gSpQmH/1Ew+xeV4xS0POgbsnuihCig8jNzyanRzZbf5L5KUXDKRQjf1uA0+lk9OjRzJo164Auv0OdfXDdddeRlZWFyvLh7y2HwUXDrf1mE0PlELgQ4gA5aNpANny3Bb9PzgMQDWf0cPLTTz+RmprKrbfe2uJTCEXrUKGya9euXHvttQD4C2owMmTuStEwa/+3keFHDk52N4QQHcTwIwax9utNye6GaEOU3Yd1pJlrfvvb39K7d+8D3ocOFSoBjj76aI444gjzMPgQOQwuGmbrz7uwZ9rJH5KX7K4IIdq5nB7ZdB/YlfXfbkl2V0QboVAMu6g3LpeLcePGcfLJJyelHx0uVGqaxg033EBOTg4qw4e/b+uZU1O0XspQrFqwjlEzhya7K0KIdm7UzINY+/UmuYqOaLD/e/5Eli9fTlpaGrfccssBP+wd1OFCJUBOTg4333wzAP7eDvydZVJ0Ub+Vn65l1NEHoektP4GsEKLjGjVzKCs+W5fsbog2wsj28OyzzwJw7bXXJvWk6Q4ZKgGmTp3K6aefDoBvcAXK7k9yj0Rrt3tdMW6Hh37jDvw4FSFEx9B9YFfSO6WyZalcRUfUT1kNcmZYMQyDWbNmceyxxya1Px02VII5gfvQoUPBpvAeVCHjK0W9Vn62jtHHyCFwIUTLGD1rKKu/WI/hl/cjUTeF4uDrBrF371769OnDddddl+wudexQabPZuPvuu8nMzERle2V8pajX8o/XMPyIQdjTU5LdFSFEO2Ox6oydPZxlH/yS7K6INuD8f53Ed999R0pKCvfccw/p6enJ7lLHDpVgTt5+2223AYHxlXnOeh4hOrLyokq2ryxk1MyDkt0VIUQ7c9DUgZQXVlK0Ua71Lerm7+xm/vz5AFx99dUMGjQoyT0ydfhQCTBt2jR+/etfA+bVdoxMmb9SJLb03ZUcfOKoZHdDCNHOHHziSJa+tzLZ3RCtnJHmI2WCB6UUc+fO5cQTT0x2l0IkVAZceOGFTJ06FXTwDitHpciJOyK+9d9uIbNLhly2UQjRbHJ7dqLXsB6sWrA+2V0RrZiyGHSfm4bD4WDMmDFcffXVye5SBAmVAbquc+edd9K/f3+wG2aw1GWgtIhl+A2WfbCag+fK3kohRPMYf8JIVn2+Do9TjpSJ+JSmGHN1P3bu3En37t257777sNlsye5WBAmVYdLT03nggQfo1KkTKsuHb0gFCgmWItbSd1cycvoQ0rLsye6KEKKNs6ZYGH/8CH78rxz6FvEpFEf/YQJLliwhNTWVP/7xj+Tk5CS7WzEkVEbp2bNnKP0bXd34BlRJsBQxKvZUsXHxNg6eOzrZXRFCtHFjZg2jeFOJnKAjEvIX1PDhhx+i6zp33303gwcPTnaX4rImuwOt0dixY7nzzju5++67MXo6MXwWbLuykt0t0cp8/++fOePe4/jh38vw+4xkd0e0UrpFj/guRDhNg0PPGM/n//hGthERl69bDf6CGgBuuOEGJk+enOQeJaYppWQ3XAJvvvkmjz76KACnnnoqEyZMSHKPhBBCCNFR/PLLL7z00ksopTj//PO54IILkt2lOkmorMff//53XnnlFVCQsj4XS2lqsrskWpHhRw1mytkHM/+S15LdFdFK6RadOxdcyf0z5mH4ZY+2iHTuX+ay7uvNMp5SxPB3cqPGVOH1ejnuuOO45ZZb0DQt2d2qkxz+rsdvf/tbSktL+fjjj/EMLsO6JgdLmZycIUy/LFzP0ZdMod+43mz+Ua7VKxIz/IaEShEhf0ge+YO68dpt78m2ISIY2R70cQ48bi9Tp07lxhtvbPWBEtrYiTqbN2/m8ssv56qrruLmm2/G4XAAsGDBAi677DKuueYa9uzZA8B3333H5ZdfzgcffNCkZWqaxs0338z06dNBB9+wcowcd5Ofi2gfDL/im5eXcMR5E5PdFSFEG3P4eZP47o2f8Lp8ye6KaEWMLA/WSS7cbjeTJk3i7rvvxmptG/sA21SoLCgo4Mknn+Txxx9n2LBhfP311/h8Pt544w0ee+wxLrroIv71r38BZqicN28ea9eubfJyrVYrd955J9OmTTMnRx9ejtHJ0+R2Rfuw7MNfyO3Zib5jeyW7K0KINqL7wK70G9ubxW8tT3ZXRCtiZHixT/HidDoZP348999/PykpKcnuVoO1qVAZntRdLhcFBQXs3LmT/v37Y7PZGDVqFJs3bwZg4sSJXHHFFRx0UPNco9lqtXL33XebZ11JsBRh/F4/37zyI0ecNynZXRFCtBHTfj2RH/7zM+4aeR8RJiPTS+rhXqqrqxk9ejQPPPAAdnvbGm7XpkIlwJIlS7jwwgtZtmwZvXr1oqqqivT09ND9fr95ecWpU6fy1FNPcfzxxzfbsm02G/fccw8TJ04Ei8I7ogx/rhwKF/DTe6vI69+FPiPzk90VIUQr17VvLoMm9uX7fy9LdldEK2Fke7BNdlFVVcWIESN48MEHSUtLS3a39lubCJWvv/46V199Na+//jqHHHIIzzzzDEceeSTvvvsuWVlZobGVABaLpUX7Yrfb+cMf/hDaY+kbVo6/i6tFlylaP5/Hz7ev/siRFxya7K4IIVq5I39zKIvfXo6rWnZKCDA6ubFMdOJwOBg3bhwPP/wwGRkZye5Wo7SJUHnmmWfy2GOPcfLJJ4duy8jIIC0tjd69e7N161a8Xi8rV65kwIABLd4fu93O/fffX3vyztAK/N2cLb5c0boteXsFXQs6M2BCQbK7IoRopfKHdGPAhAK+fXVpsrsiWgF/rhvtYAcul4tJkybx5z//OeLoa1vTNk4nCvjxxx959dVX0XWdnJwcbrvtNqxWK6effjpXX301KSkp3H777QekL1arld/97nekpqby4Ycf4htSiS3dgrG17QyoFc3L5/Gz8NnvOPrSKcy/eDsyA6wQItrRl07hm5eWyF5KgT/PiRpeg8fjZ9q0afz+979vUyflxNOmQuXkyZPjXp5oxowZzJgx44D3x2KxcPPNN5OWlsabb76Js3cZFpWOZVsmGq1/PinR/JZ/vIbJZ45nxPQhrFqwPtndEUK0IgMmFNC1oDOv3vpusrsikkih8Pd24O9XDX6YOXNmaCdZW9cmDn+3Zrquc/XVV3PhhRcC4O/jwDekEqXJbqqOSBmKz/+xiOkXT8ZilX8vIYRJ02DmZVNZ+Ox3+Dz+ZHdHJIlC4RtQZQZK4Oyzz+aOO+5oF4ESJFQ2C03TOO+887jtttuwWCwY3Vx4R5ShLHKFhI5o/bdbqNpXw4STRie7K0KIVmLUzKFYbBaWf7wm2V0RSaJ0xaTbDsLo6UTTNK666iouu+wydL39RLH280xagWOPPTY0DYDK8eIdXYqyyyfSjuiTx7/iiPMnkZHT9qaEEEI0r5Q0GzMvm8onj3+FMuQoVkekbH4GX5zH119/jc1m4+677+b0009PdreanYTKZjZx4kTmzZtHly5dUBl+PGNKMbJkctuOZve6YtZ8tZEZv52S7K4IIZLs8PMmsXN1EZuWbE92V0QSGBleck7QWb16NZmZmTz88MMcddRRye5Wi5BQ2QIGDx7M3//+dwYNGgQpBt5RZfi7y5RDHc2C+d8ydNpAeg3rnuyuCCGSpEufXCbMHcUn8/6X7K6IJPB3cWE5zEFxcTF9+vThH//4B2PHjk12t1qMhMoW0r17d5544gmOOOIIcy7LwZX4+lehkEMfHYWj3MnCZ77juGuPQpPJAITokI695gi+e/0nyosqk90VcQApFL4+1fiGVeByuZg4cSJ///vf6dOnT7K71qIkVLagtLQ07rnnHi644AIA/L0ceEeUo6xyAk9HsfTdlVhsFsYdPzLZXRFCHGBDpw2kS59cFr3yY7K7Ig4gZTE47I5h+PvWAHD66afzpz/9iaysrCT3rOVJqGxhuq5z/vnnc99995GamorK9eAZW4KR6U1218QBYPgV7z/8BUf/dgqZXdruVRKEEPsnNdPOcdcdxYd/XShTCHUgRrqXbqfb+eqrr7Bardx8881cddVV7WbKoPpIqDxAjjjiCJ566il69eoFqQbe0aX48x1yOLwD2Lm6kBWfruW4a9vnwGwhRKyZl01l67KdbPh+a7K7Ig4Qf54T/bAadu7cSbdu3Zg3bx7HH398srt1QEmoPIAGDhzI/Pnza8dZDqxCjaiW+Sw7gC/mf0vPg7oz7PCBye6KEKKF9Rvbm6HTBvLx418luyviAFCawjuwEt9Blbjdbg455BD++c9/Mnz48GR37YCTUHmAZWZmcu+993LllVdisVjw5jrwjinFSJfD4e2Zx+nlvb8s4Ljrp5OaaU92d4QQLcSaYuGEm2fw8eNf4SiXWT/aOyPVR/8LcjHyzQnNzz//fP785z+Tk5OT7K4lhYTKJNA0jTPOOIPHHnuMvLw8VLof79hSfHI4vF3btHgbmxZvY9aVhye7K0KIFnLURYdRsrOclZ+tS3ZXRAtSKPzdnFinOVi3bh3Z2dn8+c9/5oILLsBisSS7e0kjoTKJRo0axTPPPMNhhx0GOvgHVuEbXo6yyaDu9urjx75i4CEFDJ0mh8GFaG/6je3NuGNH8P5DC5LdFdGClMVgyu9G4BtSidPpZNy4cTz33HNMmjQp2V1LOgmVSZaTk8Of/vQnrr32WlJSUjA6e/CMK8Wf605210QLcFW7efuPn3LCTTPkbHAh2pHUTDsn33kMHzzyBZV7q5PdHdFCjCwPuSfpLFy4EIvFwiWXXMIjjzxCXl5esrvWKkiobAU0TeOUU05h/vz5DBgwAFIMfCPK8Q6oROlyOLy92bJ0Bys+XcvcW49JdleEEM3kuOuOZOuynaxeuCHZXREtQGkKX98q/OMq2LNnD7169eKJJ57gV7/6VYc+3B1NQmUr0r9/f/7xj39w2mmnAWD0dOIZV4KRLdcOb28WPL2I7LxMDjl5dLK7IoRoopEzhlAwqhcf/u3LZHdFtAAjw0uvX2Xg7+PAMAxmzZrFM8880yHP7q6PhMpWxm63c/XVV/OXv/yFbt26QZof76gy8xKPstey3fB5/Lx138dMv3gyPQbJYRMh2qrcnp047rqjePsPn+CukR0A7YnSFL6CaowJFWzZsoXc3Fz+8Ic/cMcdd5CeLsOX4pFQ2UpNnDiR559/njlz5oAWuMSj7LVsV/Zs2sfnf1/E6fcehz0jJdndEULsJ2uKhTPum8N3r//EtuW7kt0d0YyMDC8F52XjL6jB7/czffp0XnjhBaZNm5bsrrVqEipbsczMTG655Rb+/Oc/m1MPBfdaDqiUCdPbiaXvrmTXmiJOvOXoZHdFCLGfZl11BNWlDr55aUmyuyKaidLNsZPGhAo2btxIp06duOeee7j77rs77NyT+0NCZRtw6KGH8vzzz3PccceZey17OvGML8HfxZXsrolm8P5fvqBb/65MPHVMsrsihGigUUcfxJDD+vP2/R+jZGRSu2DkuOl6mhV/Hwd+v58jjjiCF154gaOOkkvsNpSEyjYiKyuLW2+9lYcffti8frjdwDesAv+oSlSKzGvZlnmcXt743fscdeFh9B7eI9ndEULUI69fZ467/ij+c/eHOCrkw31bp6wG3iEVeEeWs3v3bvLy8vjjH//IfffdR+fOnZPdvTZFQmUbc8ghh/D888/z61//GovFgq+TE8/BJfh6ytV42rK9W0v54OGFnPmH48nqmpHs7gghEkjLsnP2Ayey8Jnv2LGqMNndEU2gUPi7O0k9xo3RzYWmaZx66qm8+OKLTJ06Ndnda5MkVLZBdrudiy++mGeffZaRI0eCReEfUIV3bKmcyNOGrVqwjp8/+oWz/ngC1hSZ90yI1ka3aJx+7xy2/LSDxW8uT3Z3RBMYmV4GXtwF3+BKKisrGTRoEE899RTXXHONnNndBBIq27D+/fszb948brjhBrKyslCZPryjy/AOqZBD4m3UF/O/pbqkhrm3zkx2V4QQUWZdeTgWm4UP/7ow2V0RjaSsBt5BlfjGlbFmzRrS09O5/PLLefrpp2XeyWYgobKN03WduXPn8vLLL3PiiSeiaRpGN5d5SLx3DUqTQ+JtiVLw1n2f0H1gV6b+6pBkd0cIETD++BEcNGUgb9z5Pn6fzL7R1igU/nwHKUc7MXo4UUoxa9YsXnrpJc466yysVmuyu9guSKhsJ3JycrjxxhuZP38+o0aNMg+J96s2zxLv7JLxlm2I2+Hh1dve47AzxjHiqMHJ7o4QHd7AQwqYedk0Xr3tXWrKncnujthPRo6bXr/OwDewiurqagYPHswTTzzBHXfcQdeuXZPdvXZFQmU7M2TIEObNm8edd95Jly5dIM2Pb3gF3lFlGJneZHdPNFDZ7gpevfVdjr9pBn3H9kp2d4TosHoMzuO0u4/jzXs+Ys+mfcnujtgPRrqX0dcV4B1ZzpYtW8jKyuL666/n6aefNne+iGanKSUzbLVXDoeDl19+mTfeeAO32w2AvteOdWsmmlt29bcFB00ZwNxbZ/LcVf9m79bSZHdHNIJu0bnry6u598jHMPxy2LQtyemRzYVPncGCp7/l549+SXZ3RAOpFD++gmpUvhulFFarlVNOOYX/+7//Izs7O9nda9dkT2U7lp6ezsUXX8zLL7/Msccea463zHOb4y37V6Gs8gbX2q1btJkv/vktv/rLSTLVkBAHUFqWnXMfOoklb6+QQNlGKIuBr6Aa/fBqjB4ulFIcddRRvPjii1x55ZUSKA8A2VPZgWzcuJGnnnqKJUsClxTzaVh2pWPZnY7ml88Xrdn0iydz0JQBPH/1f3BWymTLbYnsqWx7UtJs/Prhk9mzuYT3/7Ig2d0R9VC6eRJO5lgLFRUVAIwYMYIrrrjCnHZPHDASKjugxYsX89RTT7Fp0yYANJ+OfU829n1ZuKpknsvWas4N0+k1tDsvXPsm7hr5O7UVEirbFmuKhXP/fBI15U7euu8jDL+8RbZWSlMY3Z3kHGpn3z5zvGtBQQEXXXQRRxxxBJqmJbmHHY+Eyg7KMAwWLlzIs88+y44dOwDI6ZRD9VI/+p40NCX/jK2NpsHc246hc+8cXrrhbTxOOfGqLZBQ2XZYbBbO+sPx+H0Gb/zuA/l7tVIKhZHnIu/IDAoLzasa9ejRg/PPP59jjjlGpgdKIgmVHZzP5+PTTz/l+eefp6ioyLzRpWPdkYFeLOGytdEtGqfedSxpnVJ55eb/4vPIJPetnYTKtkG3aJx293GkpKfw2m3vyv9WK6Q0M0zmz+gU2hnSuXNnfv3rX3PCCSeQkpKS5B4KCZUCAI/Hw/vvv8+//vUvSksDZxm7daw7M8w9l4aEy9bCYtU54/7j0XSNN+58X978WjkJla2fbtE46fZZZHfL5OUb38Hr9iW7SyKM0hRGNyd5h2eG9kxmZ2dz9tlnc8opp5CWlpbkHoogCZUigsvl4t133+XVV1+lpKTEvNGjmyf0FKahGXJCT2tgTbFw5v3Ho1t0Xrv9PXkTbMUkVLZuukXn1Ltmk9klg1du/i9uh4xXbi2Ubo6ZzD00lb179wKQm5vLmWeeyUknnSTX6G6FJFSKuNxuNx999BEvv/wye/bsMW/0Bs4WL5SzxVsDi83Cab8/lrTsVF655b8yxrKVklDZellTLJx+z3HY0my8euu7eF3y4aw1ULqBP99Jp4NTQkfOunbtytlnn80JJ5xAampqknsoEpFQKerk9Xr59NNPeemll9i1a5d5o1/DUpRmTkXktiS3gx2cbtE5+c5Z5PTI5uWb3sFV7U52l0QUCZWtk81u5cw/noDhN2QYSSuhbH78PR2kD7dQVVUFmCfgnHvuucyePRu73Z7kHor6SKgUDeLz+fjiiy949dVXQ1MRoUDfZ8eyKwO92pbcDnZgmq5x4i1H031gV16+6b/UlDmS3SURRkJl62PPSOHsB07EWeXiP3d/hN8rgTKZjHQf/l416L18+Hzm3uJevXrxq1/9ilmzZsnZ3G2IhEqxX5RSLFmyhNdee40ff/wxdLtWbjPDZVkKGnJSz4GmaXDMlYdz0OQBvHTj25Tuqkh2l0SAhMrWJatrBr/6y0kUrt/Luw9+Ln+TJFEoVCcPvt4OVG7tONZRo0Zx5plnMmXKFCwWORLW1kj8F/tF0zQmTpzIxIkT2bhxI6+//jqff/45/hwvvpxytBoLlsJ09OJUOannAFIKPnn8f1TtreaCJ87glVv+y+51xcnulhCtSte+ufzqLyez4tO1fDH/22R3p0NSmsLo6qLfnG5s3LgRAF3XOfzwwznzzDMZMWJEknsomkL2VIomKy4u5s033+Tdd9+lpqYGAM2vkVKSScq+LDylcmjpQBo18yCOu/Yo3rznIzYu3pbs7nR4sqeydegzMp+zHjiBr577gcVvLU92dzocZffj7+Ega1QK5eXlAKSmpjJnzhxOP/10evbsmdwOimYhoVI0m+rqaj788EPeeecddu7cGbpdL7djLUxHL7fLofEDpP/BfTjt98eyYP63/PTeqmR3p0PTLTp3LriS+2fMk1CZJMOPGsyc64/i/b8sYM1Xm5LdnQ5DoTA6efD1qIGuXgzD3P7z8vI46aSTmDt3LtnZ2UnupWhOEipFszMMgx9//JG33nqL7777juAmlpuby6GHHsrBBx9MRkZGknsphBCiJbhcLpYuXcr3338fuiY3wPjx4zn55JOZMmWKnHzTTkmoFC1q9+7dvPPOO3zwwQehKSIwwFKSiqU4Hb1STuxpSek5aZx+z3H4vD7evPtjmXIoCWRPZXLYUq3MvW0mufmdeOPO96kork52l9o1hUJlevF1c2Drq3C5XACkp6cze/ZsTjrpJPr165fcTooWJ6FSHBAul4sFCxbw1ltvsWHDhto7nBYse9KwFKeieeRMv5ZgserMuWE6fcf04tVb32Xf9rJkd6lDkTGVB16nblmc/acTKd1Vztt/+EQmNW9Bymrg7+akYEYeW7ZsCd3ev39/Tj75ZI455hi58k0HIqFSHFBKKdatW8f777/P559/jsMRmFNRgV6agr4nDb1Uxl62hEmnjeXI3xzKew8t4JcvN9T/ANEsJFQeWIMm9uXkO2ex5O0VfPX898g7XPNTKFSOB38PJ3oPf2huSbvdzpFHHsmcOXMYM2YMmiav4x2NhEqRNE6nky+//JIPPviAFStW1N7h0bHsSUXfm4bukHE3zalgdE9Ov+c4Vi/cwGdPfo3fJyGnpUmoPDA0XePI30xiwkmjefv+T9n4w9Zkd6ndUXYf/u4uukzIoLi4dsqygw46iOOPP54ZM2aQmZmZxB6KZJNQKVqFbdu28cEHH/Dxxx+HppsA0Kqt6MWpWPamonnl8HhzyMhN59TfzyYl1ca/7/qQiuKqZHepXZNQ2fIyctI49ffHkpKewr/v+oCKPbJNNxdlNTC6uvB3c6GyvaHbs7KyOOaYY5gzZw6DBg1KYg9FayKhUrQqXq+XRYsW8cknn/D999/j9wfmuFSgladgKU5FL7HLxOpNZO7VOZQJJ43ivw98xvpvt9T/INEoEipbVr+xvTnlrtms+WoDnz4he9+bg9IVRmc3RjcnWp4/9Dqs6zrjx49nzpw5TJ06Va7FLWJIqBStVnl5OV9++SWffPIJq1evrr3Dr2GrSCOlLBNrVaqc0dwEAyf25aTbj2Ht15v4dN7/8LrlhIbmJqGyZVisOkddNJnxc0bw/sNfyDjhJgpeNtHfzUVqf712vDswZMgQZs6cyYwZM+jatWsSeylaOwmVok3YtWsXn332GZ9++mnExOoZ6Rk4t/jNw+MVKWhKBobvr/ScNE68+Wi6FuTy5r0fU7heLu/YnCRUNr+ufXM59a5jcVa6eOePn1K5V6YLagwzSHrxd3GRMzKN0tLS0H09evRg5syZzJw5U6YCEg0moVK0KUop1qxZw6effsrChQspKwubHseroZfa0felopdLwNxf448fwczLp/Htq0tZ9MqPGH55aWgOEiqbj6bBISePYfpFk/nqhR/4/o2f5Ozu/RTaI9nVTafhqRGvoVlZWUyfPp2ZM2cycuRIdF2GGYn9I6FStFl+v58VK1awcOFC/ve//0V8ysanoZdIwNxfnXvncPLtx2CxWfjvnz5jz6Z99T9I1ElCZfPo0ieHE28+GnuGnbf/8Ilsm/tBabVBMuugFCoqKkL3ZWVlMW3aNI488kgOPvhgbDZbEnsq2joJlaJd8Pv9rFy5ki+++CJ+wCxLMfdiltnRfPLpuy6arjHx5DEceeGhLH5zOf/712L8Xn+yu9VmSahsGt2icdiZ45n2q4ksevVHFr2yVNZjAyiLgZHjwejiJnNQCpWVlaH7OnXqFAqS48ePl0smimYjoVIktGzZMl544QX8fj9nnHEG06ZNY8GCBfznP/8hJSWF22+/ne7du/Pdd9/x4osvMmfOHObMmZPsbocC5sKFC/nqq68iA6YCrcKGXmrHUmJHc8uLaSI5+dmccNMMsvMyeffBz9mxqjDZXWqTJFQ2XveBXZl760z8PoN3H/yMvVtL639QB6bsfozObvyd3Vi7Kbze2imAcnJyOPzwwznyyCMZO3ZsqwqSbfW9RsRqPVuVaFXcbjevv/46Dz30UOhwiM/n44033mDevHmsXbuWf/3rX9x000189913zJs3j7/+9a+t4h/dYrEwduxYxo4dyzXXXMPatWtZtGgR33zzDVu2bEHlePHnePEPqEarsZh7MEvtaFU2uZJPmPLCSl68/m3GHTecsx84kXWLNvP537+hptyZ7K6Jdi41085RFx7K6FnD+Oq5H/jhzZ9Rhuz/iGZeb9tnTv/T2Y3KrJ29weuFXr16MXXqVKZMmcLIkSNbVZAMasvvNSJW69vCRKuwatUq7HY7t956K6mpqVx//fVUVVXRv39/bDYbo0aN4sknnwRg4sSJXHHFFa3yn1zXdYYPH87w4cO5+OKL2b17dyhgLl++HCPDjz/Dgb+PwzzRpzwFvcyOXpYik60HLPvwF9Z+s5kZl0zhipf+jy+f/Z4f/7tCTuQRzU7TYMyxwzn6t1PY/OMOnvz1i1SV1CS7W62KshoYOW6MXA+5wzMoKande6vrOiNHjmTKlClMnjyZgoKCVn+pxPbyXiNMEipFXGVlZRQWFvLEE0+wdOlSnnvuOWbNmkV6enqoJjgh7tSpU5k6dWqyurpfevbsyemnn87pp59OVVUV33//PYsWLeKHH36gpqYGI8+NkWfOe6lVW82xmOV2tEpbhz7Zx1np4v2/LOCn91Zy3PXTGX/8SD7820K2r9id7K6JdiJ/SDeOu+4oUtJs/Pv3H7Lt513J7lKroFCobK85PjLXDdl+gqPWSkpcpKWlMXHiRCZPnsxhhx1GTk5Ocju8n9rre01HJaFSRHj99ddZtGgREyZMYNSoUdhsNsaPH89LL71EVlZWxIS4Fkvb3pOXlZUVmofN5/Pxyy+/8MMPP7BkyRLWrl2LyvThz/SZezH9GtbqVGyVafiKNTSnpUMeKt+9rphnLn2NcXNGcMa9c9ixupAF/1jEvu1l9T9YiDhyemQz/eLJDJrUl/+9sJjFby3v8GNPld0f2huZ1tdKTU3Y3loFAwYMYOLEiUycOJFRo0a1ySvbdKT3mo5EQqWIcOaZZ3LmmWdSUVHBvffeC8CGDRvo2bMnvXv3ZuvWrXi9XtauXcuAAQOS3NvmY7VaGT16NKNHj+biiy+mrKyMJUuWsHjxYhYvXkx5eTm+Tk58nZzQB3Dr6BUp5ld5Cpq747zoKQU/vb+aVQvWM/msg7no72excsE6vnrue6pLHfU3IASQlmVn2v9NZPzxI1n63koeP/t5nFUd8+pYKsWP0clj7o3s5IHU2lBdU+MmOzubCRMmMHHiRA455BDy8vKS2Nvm0VHfa9o7OftbJPTWW2/xxRdfoOs6t956Kz179ox7Rl57ZxgGGzZsYPHixfz444+sXr0aj8cTWeTSzfGYgaCpeTpOyMzsks6R5x/KyBkH8cObP/P9Gz912HAQj5z9HSklzcbEU8cy+azxbPh+Kwv/+R3lRZX1P7AdUbZgiPSiOnlQaZFTdlksFoYNGxbaG3nQQQe167118l7TfkioFGI/ud1uVq1axU8//cSyZctYs2ZNaMxPkOawoFXa0CtTzPGYrvZ/uLxrQS5HXnAoAyf2ZfGbyyVcBkioNIXC5Jnj2bFqNwuf/Z6iDXuT3a0Wp1BgNzCyPRjZgRCZHvl6oes6Q4YMYdy4cYwbN47Ro0dHjCkUoq2QUClEEzkcDlauXBkKmevXr8cwosKDR0evtKFV2cw9mTXWdnviT16/zhx+3iQGT+rH4rd+5rs3luGsdCW7W0nT0UOlPT2FiaeO4bAzxrN95W6+ev6Hdn19+dA0P9leVJYZJLFH/t01TWPQoEGhEDlmzBgyMzOT1GMhmo+ESiGaWVVVFStXrgx9rV27NvZwuR+06to9mXq1td1NYRQKl4f2Y/nHv/D9G8soK+xYhzmh44bKrK4ZTDptHAefOJJtP+/iq+e/p3B9+9szqawGKtOLke3FyPZg72HB5Yr8EGWxWBgyZAijRo1i9OjRjB07luzs7CT1WIiWI6FSiBbm8XhYt24dq1atYsWKFaxatSri2rshLh29OrA3s9qGVm1F87f9S0rm9uzEoWeMY+zsYWxcvI3vXvuJnb8UJbtbB0xHC5XdB3Zl8lnjGXr4IFZ/sZ7vXv+p3VwJR+nKDJCZXlSWFyPTB2mxlzDNzMxk5MiRjBo1ilGjRjF06FBSU1OT0GMhDiwJlUIcYEoptm/fzsqVK1m1ahVr1qxh69atxPwrqsDYzGobepWNVH8GFldK6LC5s7ptHVJOy7Iz4aTRTDx1LGW7K1j85nLW/G9ju7+ueEcIlbpFY8jkAUw8ZQw9BuWx5J0VLHl7eZucDSAt0wx/SlP4Uz24LDWBEOlDyzJih7ZgXrlm5MiRoSDZr18/dL3tfyAUYn9JqBSiFXA4HKxbt441a9awdu1a1qxZw549e2LqdF0nv0dP+vbuyw+vLzcPm9fY0Hxt5w3MYrMwcsYQJswdTefenVj2wS8sfXclZbvj7L1tB9pzqOzULYvxJ4xg3JyROMqdLHlnBSs+WYPX7av/wa2IshioDB9Gpo/J545j+85t7Crchc8X+zy6dOnCsGHDGDp0aOh7VlZWEnotROsjoVKIVqqkpCQUMNesWcP69evjHzYHc97MGitatc08CajG2ibOOO8xKI+D545i1NEHseuXIn76YDXrvtmEz9N+9l62t1BpsVkYfGg/xh03nH7j+/DLwg38+O5KdrWBIQ2hM7EzvKhMnxkkM7wR80KGy8zMZOjQoREBsj3MESlES5FQKUQboZRi3759bNy4kQ0bNrBhwwY2btzIrl0JLmdngOYMBEyHBc1hNb9aYdhMSbMx6uiDGHPscLr178Ka/21kxSdr2PrzLpTRtl+i2kuoLBjVk9HHDGXE9CGU7a5g+cdrWP7JGlzVrW/aKDM8+jEy/Kg0Hyo9+OUHS/ztqUePHgwaNCjiKz8/v9VfO1uI1kRCpRBtXE1NDZs2bYoImtu2bcPtTvBmb1AbMB0WM3i6At+N5L+B5uZnM+qYoYyZNQyb3crKBev45cuN7F5TRFt8tWrLobLH4DyGHzGIUTOHomkaKz5dw4rP1rJvW+u4LKfSFCrNj0o1A2MoPKb5IMFkCjabjX79+oWC4+DBgxk4cKAcwhaiGUioFKId8vv97Nmzhy1btrBlyxa2bdsW+p4wbAK4dfO65qGgGfZzEubV7Dm0O6NnDmXo4QPRLTprv97E2v9tZOvPu9pMQGtLoVLTNfqMzGfYEYMYOnUgVruVtV9vYuVna9mxcndSQr3SFCrVXxse02p/1tJU7AluASkpKRQUFNCvXz/69u1L//796devHz179sRqlSsUC9ESJFQK0YHEC5s7d+5k586dicdrAijMwOmyoLkt5vewn/HoLX5IPX9IN4YdPpChhw8iq0sGG3/YysbF29i8ZDtVJTUtuuymaO2hMiMnjQETChg4sS+DJvXFXeNh7debWPO/Tez6pbDFg6RCQYqBsvvN8Gg3At/N8Kinq7hnXIf6n5FB79696du3byhABsNje760oRCtkYRKIQQAlZWVoYC5Y8eOiO8ORz1TwxiA24LVZ0P3WNE9FjSvFV+lHzwWNLcOfq3ZgmeXPjkMmtiPgZP60m9ML8oKK9m0ZBubFm9jx6pCPE5vsyynObS2UGlNsdB7RD4DJ/Zl4CEF5PXtzPYVu9m0ZBsbf9hG8ZaSZl2eshioFANS/NiyLRgpPowUP0aKD7/Vi7L7oZ7JC9LS0ujdu3fcr5ycHBn3KEQrIaFSCFEnpRSlpaXs2rWLoqIiCgsLKSoqiviKvvZ5XH7QPBZzj6fHgubRwW1+17y6ubfTu//h02Kz0GdkPoMm9mXgxL7k9evMnk372LGykO0rd7F95W6qS5I3X2KyQ2V6ThoFo3rSZ1Q+BaN6kT84j5Kd5WYIX7Kd7ct37fcUQAplnvBiNQOjGRoNVEpgT2MgRKoUA6z1v8VYLBby8vLo0aNH6Cs/P5/8/Hx69+5Nly5dJDgK0QZIqBRCNInf72ffvn0xgXPfvn3s3buXffv2UVVV1fAGDcAbGTQ1r157m09H82m13716xHhPe0YKvUfkUxAIUb2G96CmzEHh+uLA114K1xdTU3ZgguaBDJXpnVLpMbgb+UO6kT8kj/wh3cjulsXuNUVsX1XI9hW72LmqEGdV5LhapQUCojXsu81A2YyY78GfE50IE09GRgZdu3YlLy+PvLw88vPz6d69O/n5+fTo0YOuXbvKOEch2gEJlUKIFudyudi3b18oaAa/greVl5dTVlZW/2H2RPzEhk2fuddTVzqZnTLJycumc49cuvbqTLeCruDXqN7rpKbYQWVRDeW7KindXkllcRU040lJLREqM7um07VvLrm9OpHdM5PsHulkdkvHYtcp3r6PvTtK2LerlLLicipLqzAwwBIWGi2RIXJ/AmI4u91Obm4uXbp0oWvXrqGvvLy80PcuXbqQnp7eLM9bCNG6SagUQrQabrc7FDDLysooLy+ntLQ09HNZWRlVVVVUVVVRXV1NVVVVnSdxNJZFt6DrFnRNQ1M6GKB8oPwK5QPDpzD8yryUZvAVVGnmCU1gfg8EUw2NUcccxMrP1pqHjc0bw74rCDxUt2joNg3NqqFbze+aJXAGtKZQysBv+PH5/NQurHlomkZGRgZZWVlkZWXRqVMncnNzycnJSfg9LS2tWfsghGjbJFQKIdoswzBwOByhoBn95XQ6cTgcOJ3Oen9uqy+Fuq6TlpbWoK+srCwyMzNDwTH854yMDLletRCiSSRUCiE6PKUUXq8Xj8cT+h78ine71+vFMAwMw0Aphd/vRykVui36S9M0dF1H1/WIn8N/D363Wq3YbDZsNhspKSlxvwd/Dn7JSSxCiNZAQqUQQgghhGgyOdYhhBBCCCGaTEKlEEIIIYRoMgmVQgghhBCiySRUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJJFQKIYQQQogmk1AphBBCCCGaTEKlEEIIIYRoMgmVQgghhBCiySRUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJJFQKIYQQQogmk1AphBBCCCGazJrsDgjRGiilcLlcye6GEELsl9TUVDRNS3Y3hAAkVAoBgMvlYtasWcnuhhBC7JdPPvmEtLS0ZHdDCEAOfwshhBBCiGYgeyqFiJKyuBuaCnze0nQ0XQNNB10DTUPTg/cFbtc00DW0YE3oPi30mNAXhN1W22boMdQ+Rmla7ce+sDZCt4c9Lvw2FWgmdJ8OELxdC90XfIwK3Ba6H2rb0AP1ocdELiPiMQRu0+PcF1FPRB9rb9Ni7ot5DJGPibif2sckWlbE7wn6EfOYutoN3a4iHh/dXuj+sLZU4HaiHoemwh5v3q+F3xeqDd6nQm1q4fWB2zVN1W5+gdtrNw8Vul9HhX437wM98Lt5n/l78HGh+zSFRu3j9MBtoS9U6HG6RsTttY8xamtR6JqBJXhf4PfatoxQe5aw9i2Yt1s0I+pxBpZgm9QuL1RPbXs65uN1zOWb95ntWQK3aRhYgo8n2A8DC5iPw1xO8LkFfzeXpQI/E7hPoQfWiwUNHbAE/tg6WuA2DYumoQdeDDQ0vB4Lp17cAyFaGwmVQkTza4GXd8xQSSAABt6ta+/TQK9NUJqZ0AKNBJOHXvtzTNrQYxOPpsXWh7dHVH3EfdE/h9UEw2RYqIy5LSwEhv8e3cXI+jiP0eu4L9HTiNduosfVdXuDl7V/bcYNsRGPa+ZQGe9+on9XobbD+xG+zMjHRIXQ0H3h96s47ak4y1IRX+GhsjaoBr4S3RcvbBIMo0QEveDvFiLvM0OlURvKtPBQZv6sa5oZ+ALfCf2shR5XG2DBotV+t0BYAIxzX6A983cVCKUqFCLNx6l6Q2V4e5bAfTqRtwUDrB543kK0RnL4WwghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFkEiqFEEIIIUSTyTyVQkSzKJQyJzw2513Uwr5rUROSB7+H/Uz4bSrs5zruC94eNmlh7RTVJLi99ruK+JmIxykAFby9tk2FBorQY8PvD7URMblieF/i/K4iuhS1PhJ8RdfWN3ckCW6v77665qKs677wZ1jn4+LNNxn+pRL0MfHk55FzS4bdF6pt/OTntf0Im6eSxs9Tqah9nNJU5Bfmd/M+Im43Qu0ZtctBgWaEzaepIu5XmhFqj4j2A9+Dywr8rgdqgt+BmNuMsLkhDa32u0HtPJVG4DaNRPNUaqEJyy3U/s2Cv+uBx0TPfdnwyc+1wJ9Fw+uJ938pRPJJqBQiimdicbK70DKC79lNEB1nhYDITctIZkcaLXzLlgN4QjSW/PcIAbhcrmR3QQghhGjTZE+lEIDdbg/9/N///pfU1NQk9qbtcLlczJ07F5D11lCyzhpH1lt8sh5EayKhUghA02oP6KamppKWlpbE3rRNst72n6yzxpH1JkTrJIe/hRBCCCFEk0moFEIIIYQQTSahUgghhBBCNJmESiGEEEII0WSaUqqJM9cJIYQQQoiOTvZUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJrMnugBDNzeFw8Nprr/HVV19RVFSEruv06dOH6dOnc+qpp2Kz2RrddmlpKa+88grfffcde/bswW63079/f2bPns2cOXPQNK0Zn8mB0xLr7Nlnn+X555+vt+6VV16hd+/ejeh18rhcLn7++WfWrVvH+vXrWb9+PXv27AHg/PPP54ILLmjyMtrjttaS6609b29CtBUSKkW7UlRUxNVXX01RUREAqampeL1e1q5dy9q1a/nss8/429/+RlZW1n63vW7dOm688UYqKioASEtLw+FwsGLFClasWMHChQt54IEHSElJadbn1NJacp0BWK1WsrOzE95vsVga1W4yrVmzhptvvrnF2m+v21pLrzdon9ubEG2FhErRbvj9fm699VaKioro0qULd9xxBxMmTMAwDBYuXMhDDz3Ehg0buPfee3nooYf2q+3q6mpuueUWKioqKCgo4M4772To0KF4vV7ee+895s2bx5IlS5g3bx7XX399Cz3D5teS6yxo5MiRPPbYY83c8+TLyspiyJAhoa/HH3+c0tLSJrfbXre1oJZab0HtdXsToi2QUCnajY8++ojNmzcDcN999zFy5EgAdF1nxowZKKW49957+eGHH1i6dCkHH3xwg9t+7bXXKC0txW638+c//5mePXsCYLPZOOWUU3A4HDz99NO89957nH766fTp06f5n2ALaMl11p6NHj2aDz74IOK2f/zjH83Sdnvd1qBl15sQIvnkRB3Rbnz88ccAjBs3LhSOws2YMYP8/PyI2ob65JNPQm0E3+TDnXLKKaSlpeH3+/nss8/2t+tJ05LrrD1ryUOo7XVbAzn0LER7J6FStAsul4tVq1YBcOihh8at0TSNSZMmAbBkyZIGt719+/bQyQTBx0dLT09n9OjR+912MrXkOhON0163NSFExyCHv0W7sG3bNgzDAKB///4J64L3lZaWUllZWeeA/qDg4eH62h4wYAA//PADW7dubWCvk6sl11m4LVu2cN5557Fr1y4sFgtdu3ZlzJgxnHTSSQwZMqTxT6Adaq/b2oEk25sQySN7KkW7sG/fvtDPeXl5Ceu6du0a9zF1KSkp2a+2a2pqcDgcDWo7mVpynYWrqKhg27ZtpKam4vF42LFjB++//z4XX3wx8+fP3+/22rP2uq0dSLK9CZE8sqdStAvhb6x2uz1hXWpqatzHtETb6enpDWo/WVpynQH07t2byy67jKlTp5Kfn4/VasXr9bJs2TLmz5/PunXrePHFF8nKyuKss85q3JNoZ9rrtnYgyPYmRPLJnkohRIs45phjOPvss+nTpw9Wq/n51WazMXHiRObNm8fQoUMBeO6556iurk5mV0U7INubEMknoVK0C+F7atxud8I6l8sV9zHJajuZkvm87HY7l1xyCQBOp5OlS5c2S7ttXXvd1pJNtjchDgwJlaJdCB/3t3fv3oR14WMCwx9Tly5duuxX2xkZGW3ijb4l11lDjBgxIvTz7t27m63dtqy9bmutgWxvQrQ8CZWiXejbty+6bm7OW7ZsSVgXvK9z584NPot5wIABMY+PJ3jmbr9+/RrUbrK15DoTjdNetzUhRMcgoVK0C6mpqaHJu3/44Ye4NUopFi9eDMAhhxzS4LYLCgro3r17nW07nU5WrFix320nU0uus4b45ZdfQj8HJ1jv6NrrttYayPYmRMuTUCnajdmzZwOwbNmyiDeQoIULF4YOewVrG2rWrFkAfPHFFxQWFsbc//bbb+N0OrFYLMycOXN/u540LbXOlFJ13u/xeELTu6SlpcnlH8O0122tJcn2JkTrIKFStBuzZ89mwIABKKX43e9+FxqMbxgGCxcu5KGHHgLMK5VEv6k8++yzHH744Rx++OFx38jPOussOnfujMvl4pZbbmHdunUAeL1e3nnnHZ555hkATjjhhDZ1LeaWWmfLly/nuuuu49NPP6W4uDh0u8/nY+nSpVx55ZWhEHveeeeRlZXVkk+zRVRVVVFeXh76Ck4k73a7I26Pnoapo25rQS2x3jrC9iZEWyDzVIp2w2q18sADD3DNNddQVFTEddddR2pqKoZh4PF4ABg8eDB33XXXfredmZnJgw8+yI033sjWrVu5+OKLSU9Px+Px4PP5APNQ5JVXXtmsz6mltdQ6U0qxdOnSUEi12+2kpqZSU1MTWl+6rnPuuedyzjnnNO+TOkAuvPBCioqKYm5/9dVXefXVV0O/z549m9tvv73B7bbXbS2oJdZbR9jehGgLJFSKdiU/P5/nn3+e1157ja+++oqioiKsViv9+/dnxowZnHrqqdhstka1fdBBB/HCCy/wyiuv8O2331JcXExqaioDBgxg9uzZHHfccaETX9qSllhnAwYM4PLLL2f16tVs3ryZiooKqqurSU1NpV+/fowePZoTTjiBgQMHttCzatva67bWUmR7E6J10FR9g1GEEEIIIYSoh3zUFUIIIYQQTSahUgghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFkEiqFEEIIIUSTSagUQgghhBBNJqFSCCGEEEI0mYRKIYQQQgjRZBIqhRBCCCFEk0moFEIIIYQQTSahUgghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFk/w8P8cCe7IkhUwAAAABJRU5ErkJggg==\n", "text/plain": [ - "\u001b[38;5;46m08:28:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99058\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.754\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=110502;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689540;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" + "
" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { - "text/html": [ - "
08:28:22 INFO      trial values: 0.99985,0.0016437,0.9906 -> logL = 166772.752             joint_likelihood.py:1013\n",
-       "
\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAACk2ElEQVR4nOzdd1yVdf/H8dd1JocNgoIi4t57b03NWdqwsmlqyxzZ7q7uLNvD+2fLyjIry5Zp5i5X5t57i6CAgux55vX7gzhJIiLrYnyejwcPD+dc57o+wBHe5zsVVVVVhBBCCCGEKAGd1gUIIYQQQojKT0KlEEIIIYQoMQmVQgghhBCixCRUCiGEEEKIEpNQKYQQQgghSkxCpRBCCCGEKDEJlUIIIYQQosQkVAohhBBCiBKTUCmEEEIIIUpMQqUQQgghhCgxCZVCCCGEEKLEJFQKIYQQQogSk1AphBBCCCFKTEKlEEIIIYQoMQmVQgghSkW/fv1QFAVFUbQuRQihAQmVQlRheX/g8z62bdt21ed8//337uOnT59e9kWKIlu/fv1lP9NLPwwGA4GBgXTq1ImpU6eyZ88erUsWQlQjEiqFqEb+85//aF2CKENOp5Pk5GR27drF+++/T8eOHZkyZQoul0vr0oQQ1YBB6wKEEOVn7dq1/PHHHwwcOFDrUkQJtWzZkldffTXffXa7ndjYWFatWsWKFStQVZUPPvgAT09P3nzzTY0qFUJUFxIqhagGPD09ycrKAuC5556TUFkFBAUFMWrUqAIfmzp1Kl9//TX33XcfADNnzuTZZ5/F39+//AoUQlQ70v0tRDVQt25dbrrpJgB27tzJL7/8onFFoqzde++9tG/fHshtwdyyZYvGFQkhqjoJlUJUE6+++io6Xe5/+RdeeAGn01mi8+3evZsZM2YwZMgQwsPD8fDwwGKxULduXUaNGsX8+fOveo158+a5J5nMmzcPgC1btjB27FgaNmyIp6cniqKwd+9eAKZPn+4+fv369QCsXLmS0aNHExERgdlsRlEUUlJS8l3HZrPx6aefMmTIEGrXro3ZbCYoKIhu3brx8ssvk5iYeMUaGzVqhKIotGrV6orHDB8+3F3XkCFDrnhc27ZtURSFunXrFvp9KS3NmjVz305LS7vs8TNnzrjrHjt2bKHnupZjryYnJ4d33nmHzp074+fnh6+vL61bt+all17i4sWLwLXNJI+Ojub555+nS5cuBAcHYzKZCAkJYdCgQcyePRubzVaieoUQRaQKIaosQAXUpk2bqqqqqvfdd5/7vi+//LLA5yxYsMB9zEsvvVTgMdOnT3cfU9hHx44d1ZiYmCvW9+WXX+arZ8aMGapOp7vsPHv27FFVVVVfeukl931r165VH3rooQKvm5yc7L7G4cOH1UaNGhVap5+fn7p48eICaxw/frz7uAsXLlz2uMPhUH19fd3HeHl5qTab7bLjEhMTVUVRVEC95557rvg9Kcy6devc1+nbt+9Vjx80aJD7+M2bN1/2eGRkpPvx++67r9BzFeXYvn37uo+5kujoaLVZs2ZX/FmEhYWp+/btK9K5VFVV33rrLdVsNhf6823cuLF67NixQs8jhCg5GVMpRDXy8ssvs2DBAmw2G9OnT+fOO+/EZDJd83mys7MxGAx0796dnj170qhRI3x9fUlKSiIyMpL58+cTExPDrl27GDlyJJs3b8ZoNBZ6zh9++IGVK1fi7+/P/fffT/v27VEUhV27duHl5XXZ8W+//TYrV66kdu3ajB07lpYtW2Kz2di0aRN6vR7IbcHq3bu3uyWyWbNm3HfffdSvX5+LFy+ycOFC1q1bR2pqKrfccgtLlixh2LBh+a7Tv39/vvjiCyB3SZ/bbrst3+O7du3K1wqYmZnJjh076NGjR77j1q9fj6qq7nOWtRMnTvDnn38CEBwcTNu2bcv8mleTlZXFwIEDOX78OABhYWGMHz+e5s2bk5aWxtKlS1myZAk33XRTkcZ/Pvnkk7z33nsA+Pj4cMcdd9ClSxf8/Pw4f/48ixcvZu3atZw4cYI+ffqwd+9eQkJCyvJLFKJ60zrVCiHKDv9qqVRVVZ08ebL7/lmzZl32nKK0VG7fvl2Ni4u74nWtVqv62GOPuc8zb968Ao+7tKUSUFu2bFnoeS9tqeTv1rq0tLQrHn9pS90dd9yhWq3Wy46ZOXOm+5iaNWtedr6YmBj34w8//PBlz3/rrbdUQA0NDVXr1aunAuqrr7562XGXft9Pnz59xZoLc7WWSrvdrkZFRalz5sxRa9eurQKqoijq3LlzCzxfebdU/uc//3E/3qNHjwJ/dl9//bW7Rbewcy1ZsiTfua70uvn000/dx40ePbrQr1EIUTISKoWowgoKlRcuXFC9vLzcISo9PT3fc4oSKovC4XCoDRo0UAF1wIABBR5zaahUFEXdv39/oee8NFR6e3sXGkD37NnjPrZBgwZqdnb2FY+9/fbbCw3ajRs3vuz7mGfIkCEqoN55553q2LFjr/j1tmrVSgXUevXqFfo1FubSUHm1D71er/br109dunTpFc9XnqEyJydHDQwMVAHVw8NDjYqKuuK1xo0bd9VQ2a5dOxVQg4KC1MTExEJrv+eee1RA1el0hV5XCFEyMlFHiGqmZs2aPPbYYwDEx8fzf//3f2VyHb1eT5cuXQDYvn27u+v3Svr27Uvr1q2LfP5bb7210K7MRYsWuW9PnjwZDw+PKx779NNPF/i8PP369QPg2LFjxMbGuu93OBxs2rQJyO3SzuvW3rx5M1ar1X3cxYsXOXTokPu48qDT6TAajRgMFWOU019//UVSUhIAo0aNIjw8/IrHTp48udBz7du3zz15a9y4cQQGBhZ6/N133w2Ay+VizZo111C1EOJaVIzfNkKIcvXUU08xe/ZskpKSePfdd5k4ceJV/zD/m8vlYvHixSxcuJA9e/YQGxtLenp6gbu3pKenk5aWhp+f3xXP16tXr2u6/tWO3759u/v2oEGDCj22Q4cO1KhRg8TERHbs2IGqqvlmHffv3585c+YAuWMj77zzTiB3eab09HT3MXnjU7Ozs9m2bRt9+vRxPycvVOcF1JIqaPFzl8tFcnIyu3fvZsGCBfz+++/8/vvvPPnkk7zzzjulct3i2rlzp/v21b4H7dq1w9/f/7JZ/Hk2btzovp33OixMTEyM+/bRo0evWqsQongkVApRDfn5+fHMM8/wzDPPkJqayptvvsnbb79d5OefO3eOUaNGsWvXriI/52qhsnbt2kU+V1GOj4uLc99u1KjRVc/XuHFjEhMTyczMJD09HV9fX/djl4agtWvXukNl3rJGdevWpWHDhgA0bNiQU6dOsXbt2nyhMk9ptVQWtvj5+PHjmT59OgMHDmT//v28++67tG7dmnvvvbdUrl0cl/486tevf9Xj69evf8W9y8+cOeO+/e677/Luu+8WuY681lIhROmT7m8hqqnJkye7g9mHH36Yr1u3MHa7nSFDhrgDZVBQEOPGjWPmzJl8++23LFy4kEWLFrFo0aJ8Aepqa1ZaLJZrqv9qx2dkZABgMBgwm81XPd+lM8zzWh/zhIaG0rRpUwDWrVvnvj/v9qVfZ97tgo5r0KBBod2+pSk4OJgPPvjA/fmMGTPK5bpXkvfzAAqczf9vhR2Tmppa7DrsdnuxnyuEKJy0VApRTVksFl588UUeeeQRsrOzeeWVV/jkk0+u+rwFCxa4xwcOGjSIRYsWXTEAfPvtt6Va87Xw9vYGcsc92my2qy6dlJmZ6b7t4+Nz2eP9+vXj2LFjnD59mujoaEJDQ/ONp7z0uM8//5ytW7eSnZ1Neno6hw8fvuy48tCrVy/3Fp0nT54kOjq62KG2oGEN1+LS10jelqGFKeyYvJ8t5LYC9+3bt0S1CSFKh7RUClGNjR8/3t1t+8UXX3Dy5MmrPuePP/5w3/7f//5XaItSVFRUyYssptDQUPftonxdecd4eXkVGCovDYTr1q1jx44d7iBaUEulzWZj8+bN+bq+S2s8ZVHpdLp86z1eOrYQyNeCe7VdZ/J2uimuS38ekZGRVz2+sGPq1Knjvn3w4MES1SWEKD0SKoWoxoxGI6+88gqQ26L33//+96rPuXDhgvt2XiAtSHx8vHuGrhbyZp5D/iBckL1797pDU+fOnQvcGvDSQLhu3Tp3WGzQoAH16tVzP1a7dm2aNGly2XH/Pkd5cDqdJCcnuz/39PTM93hhgfPftm3bVqJaOnXq5L596fekIPv27ctX97/ljVUFZB97ISoQCZVCVHNjxoyhTZs2AHz//ffs27ev0OMvDSanTp264nFvvPGGpuPXbr75ZvftDz74IN8SP/926SSlS593qVq1atG8eXMgNywWNJ4yz6XjKvOOa9y4MWFhYdf4VZTMxo0byc7OBsBkMl32JsBisbgnzezcuTPfuMdL2e32Ig2NKEzv3r3dKwwsXryYs2fPXvHY999/v9BzderUyf2zWLt2LatWrSpRbUKI0iGhUohqTlEUXnvtNQBUVc03uaMgl7YAvvjiiwWOtfvss8+uGgzKWtu2bbn++uuB3K7tCRMmFBhyP/jgAxYsWADkruE5duzYK54zr6UxOjra3dpWWKjcvn27ewmb8m6lvHDhQr71Hm+44YZ8YxHzDB06FMgdw/jSSy9d9rjD4eChhx5yjwstLrPZzMMPPwzkLrk0ZsyYyyZEAXzzzTd8+eWXhZ5Lp9PxxhtvuD+/4447WLFiRaHPOXToEI888kgxKhdCFJVM1BFCMGLECHr06MHmzZvzTVgpyLhx43j99dfJyMhg0aJFdOjQgXvuuYewsDAuXLjAL7/8woYNG6hVqxZt2rTh999/L6ev4nJz5syhQ4cOJCYmMn/+fHbt2pVv7+9ffvnFvRi2Xq9n3rx5BY6nzNO/f39mz54N5IatvPv+LS9A5h1zpeNK4uLFi5etz6iqKsnJyezatYsFCxa4u5Br1KhxxSWjpkyZwueff47NZmPmzJkcPXqUm2++GR8fH06ePMnXX3/NsWPHuOOOO/j+++9LVPPzzz/Pzz//zPHjx9m0aRMtWrRgwoQJNGvWLN/e3w0aNMDPz489e/YUOBQBYOTIkfznP//h9ddfJyUlhWHDhtGrVy+GDRtGvXr1MBgMJCUlcejQIdavX8/BgwfR6/Xun58Qogxoup+PEKJMUcA2jVeyYcOGy7b6u9I2jb/99ptqsViuuEVg7dq11W3btqn33Xef+77IyMjLznPpNo1ffvnlVWu8dJvGdevWXfV4VVXVw4cPq40aNSp0S0M/Pz910aJFVz1XfHx8vuc1adLkise2aNEi37GxsbFFqrcw17JNY95HixYt1H379hV63i+//FLV6XRXPMeECRPUU6dOlXjvb1VV1aioKLVp06ZXvFZYWJi6d+9etWfPniqg+vr6Flr7J598ovr4+BTpe1GSLTKFEFcn3d9CCCB38sOQIUOKdOyIESPYvXs3999/P+Hh4RiNRgIDA+nQoQOvvPIK+/fvz9dNrqXmzZtz6NAhZs+ezfXXX0+tWrXc9Xbp0oXp06dz8uTJKy4kfqng4GBatmzp/ryw1sdLH2vatGm+2c9lRVEUfHx8aNSoEbfddhvff/89e/fudY+ZvZKxY8eybds2br/9dkJDQzEajYSEhDB8+HCWLl3KnDlz0OlK589FeHg4e/fu5e2336ZDhw54e3vj4+NDq1atePHFF9mzZw9t27YlMTER4Ko7PT300ENERUXxzjvvcP3111O7dm3MZjNms5mQkBD69OnDU089xZo1azh9+nSpfA1CiIIpqnqVDXmFEEKIcpSWlkZgYCBOp5MbbriBJUuWaF2SEKIIpKVSCCFEhfLpp5+6d2Aq7wlOQojik5ZKIYQQ5WbXrl00a9bsiovmL1++nFtuuYWcnBwsFgvR0dEEBQWVc5VCiOKQ2d9CCCHKzezZs/npp58YMmQIXbt2de+Oc/bsWVauXOmejQ/w5ptvSqAUohKRUCmEEKJcpaWl8eOPP/Ljjz8W+Lher+eVV15hypQp5VyZEKIkpPtbCCFEuYmOjua3337j999/5/jx4yQkJJCSkoKvry/16tWjf//+PPzwwzRu3FjrUoUQ10hCpRBCCCGEKDGZ/S2EEEIIIUpMQqUQQgghhCgxCZVCCCGEEKLEJFQKIYQQQogSkyWFhBDVjqqq2Gw2srOzyc7Oxmaz5fuwWq0F3me323E6ne4Pl8uV799/3we5+3EriuLeO/vS2zqdDkVRgNxldEwmEwaDAaPRiMFgyPd53kfe/R4eHnh4eGCxWPLdNhjk17oQQhvy20cIUek4HA7S09NJS0sjLS3tstsZGRlkZ2eTlZVFZmYmWVlZZGVl5bsvbxvAqsZgMOQLmxaLBS8vL7y9vfHx8cHb27vAj7zHfH19sVgsWn8ZQohKSJYUEkJozm63k5ycTHJyMklJSfn+zfu4NDxmZWWV2rUNBkPuh96AXq//+9/c+4wGA0bT362EZiMmkwlUcj9QUF0quEB18c/9f38oKKgqZKVm4RXoSVJMKooCik5Bp1fQ6XUoBgWDUY/eqEdvzP1c0QMK2Kw2rNlWcrJt2HJs2Kw2bDl27DY7drsdl+pE1al4BVrIyckp1ZBsNpvx9/fHz88Pf3//yz7y7g8MDKRGjRp4eHiU2rWFEJWXhEohRJlxuVwkJyeTkJBAQkIC8fHx7tsXL150B8e0tLRrPreiKJhNZswmMyaDCaPOhF4xoMeA4tSBQ8FlV3HlqLisLhxZKs4cJ84cF55engSGBFArIpiQhsEE1QsksI4fLpdK0rkUkmNTSYpJJS0+nfSLGaRfzCT9YiYZSZk4Ha5rqlOn1/Hf9VN4pd/7uJxFe65Or8M70BOfIC98grzxqeGFb01vAmr7ExjmR2BtfwwmPclxaVyMSuL8yQTOn04gPiqB5AupuBQX6FTQq6h6FfQuMKioBhUMrtz7DC735+hV/Ov4kp6ejsPhuOafhbe3N0FBQQQFBVGjRo18ty/93Gg0XvO5hRCVh4RKIUSx5eTkcP78eeLi4oiNjeX8+fPu0JgXHIsaUhRFwdPDEw+TB0a9GSNGdE4Dil2HKxucWS5s6U5sKXasqXZc1tzWwKvxD/ElrGUIYS1CqdO8FrUaBuGwO4k/nciF0xe5cOoiCWcSSTqbQmZKdkm/JZcpTqgsCouvBzXC/AmOCKRmwyBqNQiiVsMgTBYj8ZGJxBw+z7kj5zl36DxJ51KKdE6V3CCKwYVqVFGNLjC6CvxXNaqY/QxYrdYinVtRFAIDAwkJCaFWrVrUqlWLkJAQ9+chISF4enqW4DsihNCahEohxBU5nU7i4+OJjY0lLi7uso+kpKSrniMvLFrMnph1HuidRhSbDlcm2FKdWJPs5CTZihwSC6PTK4Q2qUlE+7rUbRVKWMsQDEYD546cJ+ZwHOcOn+f8iQTSL2aW6DrXVlPZhMor8QrwJKRxMHWa1yKsZShhzUMAcgPmwTgi95wl5vCFUqklL4SqJheYnKgmV+5t8z+3Q5oGkZiYiM1mu+r5fHx83EEzLCyMsLAw6tSpQ506dQgODnZPcBJCVEwSKoWo5lRVJSUlhbNnz3L27Fmio6M5d+4cZ8+eJSYmBrvdXujzTSYT3hYfPPQWDE4T5OhwpLrISbSTFW/DlaWiqCULi4Wp1TCI+h3qUr9DGPXahZGVms2ZPeeI3h/LuUNxJJ5NRsvfcuUdKgsSWMePsJah1G1dm/rtw/AN9iZqfyyRu88Suess50/El+n3SEXN7X73cKKacz/wcKKaXahmJ96hFtLT0ws9h8lkonbt2u6QmRc469atS82aNSVwClEBSKgUoppwOp3ExsYSGRlJZGSkO0SePXuWjIyMKz5Pr9fj7emDxeCJwWlEzdRhT3GSc8FOzkUHOJQStzBeC4NJT/2OdWnaowFNetRH0euI3BVN5K6zRO4+R8r5ax+fWZYqQqj8N58gr7+DeF0adKqL3qDn+JZIjm+O5PTOaGzZhb+RKAuq3uUOmXg4cwOoxUGdtrWIi4srdBiFxWIhPDycevXqERER4f43NDRUllgSohxJqBSiinG5XFy4cMEdHvM+oqKirtgFqSgKXhZvvIxeGJxmyNRhu+giK9aKPdVVrqGxIBYfM836NKJZ74bU71CXhDOJHN+cG4LKupWtpCpiqPy3mg1q0KRHA5r2qE9Ik5pE7Yvh2MZTHN5wkszk0ptpX1wqKphdqBbH32HTierhIKx9CLGxsVcMnEajkbCwMHfQbNCgAQ0bNqROnTrSsilEGZBQKUQllp2dzcmTJzlx4gQnTpzg9OnTnDlzhuzsgiecGAwG/Lz8sSieKNkG7EkuMs/lYE10obi0DY7/ZvY00bR3A1oNaEr99mGc2XOOIxtPcWJzJOmJ5TcmsqQqQ6i8lKe/hcZdI2jetxENOoVz9mAsh9Ye58iGk2SnF21STnlSlb+71T0duWHT04Hq6cBUQ3/FSUQeHh7ugNmoUSMaNWpEgwYN8PLyKufqhahaJFQKUUmkpqa6w+Px48c5ceIEZ8+epaD/wjqdDj8vfzwUT5RMPbYEF5lnrTjTSz4Zpizp9Dqa9KhPm+ub0ahrBOcOx3Fwzd+BJi1H6/KKpbKFykuZvUw0692QVtc1IaJ9GJG7z7J/9TGObjyJw1axF4/Pa910/R0y8z6MNXRXbLEPDQ11h8ymTZvStGlTatSoUc6VC1F5SagUogJKT0/n6NGjHD58mGPHjnH8+HHi4+MLPNbT4oWP2Q+T1Yz9okpGtBVbkrNMJ8eUtqDwANqPaEnbwc1Jv5jJnuWHOLzuBBlJ2ne9llRlDpWX8vTzoHmfRrQd2oKg8AAO/H6U3UsPceHURa1LuyYqam6LppcD1cuO6uWgRlM/EhISCjw+ODiYZs2a0bRpU/e/fn5+5Vy1EJWDhEohNGa32zl16hSHDx/myJEjHDlyhOjo6AKP9fXyxUvvAxkGcs7ZyTpnA5u+nCsuHQaTnlYDmtLhhlYERwRyYPVRdi87xPkTBf9xr6yqSqi8VHBEIO2HtaTtkOakXkhn99KD7F99VJMJPqVFNbhQvRy4/g6a4V1DiIqKKrAnIDQ0lGbNmtGsWTOaN29Os2bNZFchIZBQKUS5i4+P58CBAxw6dIgjR45w4sSJArvjfL188Tb4oaQbyDprJzPamrtTTCXnG+xNp1Ft6HhjKy5GJbNz8X6O/Fnxu1OLqyqGyjx6Q+5whU4j21C7eS32LDvEjl/2kRxXsWbgF5eqc6F6O3B521G9HYS2r0FMTMxlx+n1eho3bkyrVq1o1aoVrVu3Jjg4WIOKhdCWhEohypCqqkRFRbF//373x/nz5y87zmwy42cOQJdpIifGQVaUHcVR+QPkpcJahtJtdDsad6/P4XUn2LZwb5VrlSxIVQ6VlwqqF0DXW9rR5vpmRO4+x7af9xC5+5zWZZU6Ve9C9bbj8nGgetsJaOpNYmLiZcfVqlXLHTJbtWpFw4YNZXkjUeVJqBSiFNntdo4fP+4OkAcPHiQ1NTXfMYqiEOAdiMXljSNeJe1kToWfQFMSDbvUo/c9nakR5s/2X/ax67eDZJXBdogVVXUJlXk8vM20H96Crre0JzM5i43zd3Dsr1MVetmnknBPCPKx4fK106hfXU6ePInLlf9nbbFYaN26Ne3ataN9+/Y0bdpUQqaociRUClECTqeTEydOsHv3bnbt2sWBAwfIyck/S9mgN+BvCcCQ5UF2tIPss44q0Y1dGEWBZn0a0fuezlh8PPjr253sW3m4ynZxF6a6hco8Or2OVgOb0Pvuzqgq/DV/BwfXHMPlrPp/clSdC9XHgcvXhupjxzPcdNkGAxIyRVUkoVKIa5DXnb1r1y52797N3r17L9tezmzywN8jACXFSPpJK/aEst2msCJRFGjRvwn97u+G6nKxcf4ODq09Xi2CxJVU11CZR1GgWe+G9L6nCxZfD/78ahv7Vh2pVq8JFTV3SSM/Oy4/Gz4NPS7rwbg0ZHbu3JnGjRvLAu2i0pFQKcRVXLx4ke3bt7uD5L/HT5mMJvw9AtElm0g/bsWepFbZruzCNO4WwXUP9EBv1LPu880c3Vh1uzyvRXUPlZdq1KUe1z3QA5PFyNrPt3Bkw4lq+Rr5d8j0bmAmLS3/5CY/Pz86d+7s/ggKCtKoWiGKTkKlEP/icDg4ePAgW7duZdu2bZw6dSrf43q9gQBLILpUExnHrTgSy3fv64omvE1tBjzYE99gb9bN3cKB34+huuTXSh4JlZdr3rcR103ogd1qZ+1nmzm5PUrrkjSVFzJdfnZUfxvmMN1lu2LVr1+fzp0706VLF9q2bYvZbNaoWiGuTEKlEOQu87N9+3a2bt3Krl27yMz8ZxvAvIk15hwvMk/ayDnnqjbd2YUJqO3H9Y/2JqxlKH/O28bupQdxOiQ0/ZuEyoLp9Aptrm9Ov3HdSDybzKoP/iQ+8vJZ1NWRqqioPnZc/jaaDA7n6NGj+dbLNJlMtGnThh49etCjRw9q166tYbVC/ENCpaiWnE4nhw8f5q+//mLr1q1ERkbme9zD5IGvPhDHOcg4UfWW9ykJs6eJ3vd2odPI1mz/ZR9/zd9RqRe9LmsSKgtnMOnpfnsHeo7pxP7VR1g3d2ul3ZKzrKgGFy5/Gy5/KzVa+1y2+09ERAQ9evSgZ8+etGjRAr2+cm6IICo/CZWi2rBarezcuZO//vqLzZs3k5yc7H5MURQCvAIxpFlIP2rFmVS9u7QLoijQblhLBjzQg6j9Mfw++y9Sqsgi12VJQmXR+NTwYsBDPWnSvT4b5m1jx+L98v0qQN42k64AK21uacz+/ftxOv9ZVcHPz49u3brRo0cPOnfujLe3t4bViupGQqWo0lJTU9m8eTN//fUXO3bsyLfcj8loIsAYhD1GIeOYTVojC1GrYRA3PDUAg8nAivfXE7X38l1FRMEkVF6b2s1qMXRKX4wWI7+9s4aYw5dvFiD+oepduAJsuAKteDU05luNQq/X0759e/r27Uvv3r0JDAzUsFJRHUioFFXOxYsXWb9+PX/++Sf79+/Ptwixp4cX3nY/Mo87sJ9HxkZehdFsoO/YrnQa2YYNX21l2897q9VSMKVBQuW1UxRoP6IVAx/qycE/jrHms81Ysy7fylTkp6Ki+tpxBVqp0yOI6Oho92OKotCmTRv69u1Lnz59qFmzpoaViqpKQqWoEhITE9mwYQNr167lwIED+Qa1+3n6Y870Iu2QFVeKTrq1i6hh53BGPDmAhDOJLJu5jtQL6Vd/kriMhMri8w70ZPDkvtRrW4cV/7eOI3+euvqThJvLw4GrhpXGQ8M4evRovsdatmxJnz596Nu3r0z0EaVGQqWotJKTk9mwYQPr1q1j7969+YJkoFcN9EkW0g7lQJYMWr8WZk8TQ6b0pVG3CFb833oOrz+hdUmVmoTKkmvUNYLhj/cn9tgFls1cV622+SwtqtmJs0YOLUbW5+DBg/l+XzZp0oQBAwYwYMAAacEUJSKhUlQq6enprF+/nrVr17Jnz558Xdv+noHo4s1kHLaj2CRIFkf9DmGMfO56zh6IZfn/1pGdbtW6pEpPQmXpMFmMXD+xN816N+S3d9ZwbNNprUuqtFSjE1cNK61HN2Lfvn3u36OKotC2bVsGDRpE37598fX11bhSUdlIqBQVnt1uZ9u2baxatYrNmzdjt/+zfI2/ZyD6RA/SD9lQciRIFpfRbGDgwz1pNbApy95bJ62TpUhCZelq1KUeNz47iFM7olj5/gasmTLWsiRUgwtXUA4tbq7P/v373fcbDAa6du3KoEGD6NGjBx4eHhpWKSoLCZWiQlJVlSNHjrB69WrWrFmTb59cP09/TClepB6womRLkCypkEbB3Dp9KIlnk/ntnTVkJGVpXVKVIqGy9Hl4mxk2rR/12tbh55dXcPZAnNYlVQmq2YkzKIeIgbXy7SRmsVjo06cPgwcPpkOHDrInubgiCZWiQjl//jyrV69m9erV+WYuepgseFv9Sd9vh3QJkqWl86g2DHiwJ398+hc7fz2gdTlVkoTKstN6YFOGPd6fTd/tYtO3O6rlPuJlxeXpwBWcTXBnX86f/2dZp5CQEIYMGcLQoUMJDQ3VsEJREUmoFJqz2+389ddf/Pbbb+zcudN9v0FvIEAfROYRJ444WYy8NHl4m7nxmYHUrF+Dn15azoVTF7UuqcqSUFm2AsP8Gf3yMDJTsln06ioyk6WlvTSp5G4Z6ayZg2djPRkZGe7HOnbsyLBhw+jTp4/sRS4ACZVCQ9HR0SxdupSVK1eSkpLivj/QMwhXtIGsE04Up3SzlLY6zWtx6/RhRO2LYfn/1skWi2VMQmXZ0xv1XD+xFy36N+GXV1YQufuc1iVVSapOxVUjh7Z3NmbXrl3u+729vRk4cCDDhg2jadOmKIo0AFRXEipFubJaraxfv56lS5eyb98+9/0WkwXPDD/S9ztkwk0Zaj+8Jdc/2ptVH/zJ3hWHtS6nWpBQWX6a9W7Ijc8MZOM3O9jyw26ty6nSVLMTZ81sgrv65Oseb9y4MaNGjWLgwIFYLBYNKxRakFApykVUVBSLFy9m1apV7u4TRVEIMAVhPapij5FFycuS3qBj8OS+NOlRnx+e/4244wlal1RtSKgsXzXqBjDmjRuIPRbPb2//gd3q0LqkKk1FRfWz0+/xTmzYsAGbLXc2vpeXF0OGDGHkyJFERERoW6QoNxIqRZlxOp1s27aNhQsXsmPHDvf9nmYvPFJ9yNjvkPUky4FXgCe3vTIMl0vlp5eWy8LR5UxCZfkze5m4+YXB+Nb04fv//Ca7QZUT1eDCWTObkN5+xMTEuO9v3749o0aNonfv3hgMBg0rFGVNQqUodenp6SxfvpxFixYRGxsL/N0qaQwi5wgy6aYchTQKZsybN3Jkw0lWf7xRQo0GJFRqQ1Gg79hudBrVmh9fWEb0gVitS6o2VFRUfxvdHmnNpk2b3Iur16hRgxEjRjBy5EiCgoI0rlKUBQmVotRERkaycOFCVq9eTU5ODgAmgwnv7AAyD7jQWeUdanlq2KUeN78wmN9nb2TviiNal1Nt6fQ6XlgziVcHfCihUgPN+jTkhqcGsGzmOg6vk0X9y5vL5MRZKwvfNiaSkpKA3IXVBw4cyG233UajRo00rlCUJgmVokRUVWXHjh18//33+ZYD8jH7wlkPunbvzIAJvTSsUAghhNbWfrGZdUv/pMVt9fLt3NOxY0duu+02unbtKouqVwESKkWxOBwO1q1bx4IFCzh58iTwdxe3IYisgyquhNyJN4pOkeUlypGiwHUTetBqYBMWPLeE+NNJWpdU7UlLZcUQUNuXMW/eSNTeGFbMWo/LKX/6ypOqqqiu3O+5y9tO78fbsWHDBpxOJwDh4eHcdtttDB48WNa8rMQkVIprkpWVxbJly/jpp5/cy0gY9AZ8rIFk7nGhWGXijVZ0eh2j/jOI4IgafPf0r6QnZmpdkkDGVFYkFl8P7nhtBNYsGz++uAyHzal1SdWaanbiDM3Co6lCZmbu7ys/Pz9uuukmbr31Vnx9fTWuUFwrCZWiSJKTk1m4cCGLFi0iPT13JqXZ6IFHki/Zh1QUh3RbaMlg0jP65WGYPE0seHaJLGhegUiorFgMJj23Th+Gh4+ZBc8swZpl07qkak/Vu3DWyia4h7e7scJisTBy5Ehuu+02mdRTiUioFIW6ePEi3333HUuWLPln/TGTN7qzFqynFBSXdG1rzWQxMuaNG7Hl2Pnpv9L6UtFIqKx48lr1g8IDmf/kIrJSc7QuSZA7a9wVZKX+DTU5cSJ3UpXJZGLo0KGMGTOG2rVra1yhuBoJlaJAFy5c4LvvvmPZsmXuMOlr8sNxzIhDFiqvMCy+Htz9ziiSYlJY9NpqCS0VkITKiklRYOhj/YloH8Y3j/9C+kUZLlJRqKi4Amw0uz2MgwcPAqDX6xk4cCB333039erV07hCcSUSKkU+58+fZ/78+SxfvhyHI3cnCl9jALaDOlwJegmTFYinnwf3/t8tnDsYx7L/rXMPghcVi4TKim3Agz1o2b8J86b8TFpChtbliEuoqKi+dtqNb+TeQEOn0zFo0CDuu+8+wsLCNK5Q/JuESgFAfHw8X331FcuXL3fPxvMzBmDdr8OVKGGyorH4mHMD5aE4ls1cp3U5ohASKiu+/uO702pAE+ZN/lkmuFVQLm87XR5tzqZNm4DclsvBgwdz7733Srd4BSKhsppLSUlh/vz5LF682N3N7WcMJGefAkmyWHlF5OFt5r5ZtxBz5ALL3luD/A+u2CRUVg4DHuxB876NmDflZzISs7QuR1yBy9tOx4ebsHXrViA3XA4bNox7772XWrVqaVydkFBZTWVmZvLDDz/www8/kJ2duxe0r8Ef6z49JEuYrKg8vM3c+7+bOX8ygd/e/kMCZSUgobLyGPRIL5r0aMBXU38mI0mCZUXm8rHRbsI/3eJGo5FRo0Zxzz334O/vr21x1ZiEymrGarWyaNEivv32W1JTUwHwMfpiO2BAvWiQbu4KzGQxcu//biYhKoklb/4ugbKSkFBZuVz/aG8adanHl5N+IjvdqnU54ipcvjZa3RfBnj17APDy8uLOO+9k9OjReHh4aFxd9SOhsppQVZU1a9bw2WefudcB8zJ54zpqxhkrYyYrOr1Bx5g3b8SaZePn6StkUk4lIqGy8hnx5ABqNajB14//gj3HoXU54ipUVFR/GxE3BbuXIgoKCmLcuHEMGTIEg0F638qLhMpqYP/+/Xz00UccOXIEAA+jBX2kJ/YzEiYrA0WBm14YgncNT7596lecdlmHsjKRUFn5KDqF0S8Pw2g2sOC53+TnVkmoqLiCcwjq6+luPKlXrx6PPPII3bt3ly2Dy4GEyirs3LlzfPLJJ/z5559A7naKHvF+2I7pZdHySmTI5L6Et63NvMk/y045lZCEysrJYNJz1zujSEvIYPFrq2S4SSWiKirO0Cy82ulIS0sDoEuXLkyaNImIiAhti6viZG+9KigrK4uPP/6Ye++9lz///BNFUfC11kC32R/7EYMEykqk112daNw9gm+fXCyBUohy5LA5+f6536hZvwaDHumtdTniGiiqgiHWi5xVZsaMGYPRaGT79u3cf//9vP/+++6thkXpk1BZhaiqyu+//85dd93F999/j8PhwFcJwLg7EOsOA4pdr3WJ4hq07N+Ybre155snFpGZkq11OUJUO9YsG98+tZgW/RrTaWRrrcsR10hx6vjl0bUoW3zp1asXTqeTn3/+mTvvvJNff/3VvcGHKD0SKquIU6dOMWXKFGbMmEFiYiIWgyfmY4FYN5pQMmWQcmVTp3ktRjw1gB+eX0pKXJrW5QhRbWUkZfHdM78y4MGeNOhYV+tyRDEoOQZ2vHkC40F/IiIiSE1N5b333uPBBx/k0KFDWpdXpUiorOQyMjKYNWsW48ePZ9++feh1ejwvBuLc4A0JRq3LE8XgV9OHO964keUz13H2YJzW5QhR7cVHJvLLjJXcOn0YQeEBWpcjikmXYiZ2fhaGUz74+Phw8uRJJk6cyDvvvOMeeylKRkJlJaWqKuvXr+fuu+9m4cKFuFwufJwB6LcF4DxqRFFl3GRlZLIYGfPWjexacoADfxzTuhwhxN9ObD3DhnnbuPOtkXj6yfqHlZWCgj7OE+vvHgwdOhRVVfntt9+4++67WblyJTJ3uWRk9ncldOHCBf7v//7PvQeqp8EL5wEzJErLZGV324zhqC6Vn6cvl9mmVYTM/q5ahj/en6DwQL554hdcTvlPWtm5fG3UudGPM2fOANCuXTsef/xxmSVeTNJSWYk4nU4WLlzIvffey6ZNm9ApOjwTA3Bs8JJAWQX0GNORGnUDWPzGagmUQlRQK9/fgN6k57oHempdiigFujQTsd9moY/0xmw2s3fvXsaPH8/8+fNlIk8xSKisJCIjI5k0aRKzZs0iOzsbL8UH/a4AnEdM0tVdBdTvEEbvuzvz44tLZQcPISowp8PFTy8uo+2Q5jTv01DrckQpUFQFQ4wX6l8+dOvWDbvdzmeffcbDDz/MyZMntS6vUpFQWcE5nU4WLFjAhAkTOHToEAa9EUtMIPaNFnRZMqu7KvAN9uaWl4ay+I3VJJ5N0bocIcRVpCdm8vP05dz4zCBq1JWJO1WFYtWz+93TGI754uPjw/Hjx3nggQeYO3cudrusE1wUEiorsLNnzzJ58mRmz56N3W7H2+WHbosfrkijbK9YRej0Oka/PIw9yw5x7K/TWpcjhCiiqL0x/Pn1dm5/bQRGD3mDX1UoKOgTLFj/MNO7d2+cTifz5s1jwoQJHDsmkyevRkJlBeRyuVi4cCHjxo3j4MGDGHQGPM4EYNtsRrHJAuZVSf8J3XE6Xaz9fIvWpQghrtGWH3aTeDaZIZP7al2KKGWKXc+2N45hOOKHv78/kZGRPPzww8yfPx+n06l1eRWWhMoKJiEhgSeeeIJZs2ZhtVrxdPmg2+aPes4krZNVTP0OYXQc0YpfZqxEdcnMHCEqoyVv/UHjbhG06NdI61JEKVNQ0Cd6kLXSSN++fXE6nXz22WdMnTqV2NhYrcurkCRUViAbN27k/vvvZ9euXeh1BjzOBeDYbEGxSutkVePp58FNLwzht3f+IC0+Q+tyhBDFlJ2Wwy+vrmLEEwPwq+mjdTmiDCgOHVteO4LhuC+enp7s37+fcePGsWLFClnX8l8kVFYAVquVmTNn8vzzz5OWloan4o1uux/qGWmdrKpufGYQxzdHcuTPU1qXIoQooTN7zrFzyQFufnEwik5+Z1dFCgr6eAuODZ60bt2arKws3njjDaZPn05GhjQM5JFQqbHTp0/z4IMPsnjxYgAsiX44/vJElyMDv6uqDiNaUqNuAKs+2KB1KUKIUrJ+7lb0Rj09x3TUuhRRhhSrnmOzL/Dggw+i1+tZt24dEyZM4OjRo1qXViFIqNSIqqosXbqUBx98kMjISEx6M8ZDAbiOeMi6k1WYX00fBj3Sm8Wvr8JulfUohagqXE4Xi19fTa+7OhMcEah1OaIMKSh8de+v6Hb5ERoaSmxsLBMnTmThwoXVvjtcQqUGrFYrb731Fm+//TY2mw1Phw9s9kWXbNK6NFHGbnh6ALuWHCDmyAWtSxFClLKL0cn8+c12Rj53PTq9NA5UdboMI4m/OOjduzcOh4NZs2bx4osvkp6ernVpmpFQWc7y3tEsX74cBQWPOH8cWy0odvlRVHXth7XAr5Yv67/cqnUpQogysuWH3aCqdLutg9aliHKgOHVse+MY+lM+GAwG/vzzTyZMmMCJEye0Lk0TkmTK0ebNm90vNqPOhOGAH+ops0zGqQZ8g725/tE+/PrGahw2WeNMiKpKdaksfmM1fe7pQlC47LZTHSgoGOI8UXb6EhISQlxcHBMnTmTNmjVal1buJFSWA5fLxdy5c3n22WfJyMjAw+mFstUXXapZ69JEORk2rT+7lx3k3OHzWpcihChjF6OS+evbHdz4zEAUaTOoNnQZRpIWO+ncuTNWq5WXX36Z2bNnV6vF0iVUlrGcnBymT5/OvHnzALCk+OHa6iU741QjTXs2IKRxMOvnSre3ENXF5u934+Ftpu2QFlqXIsqR4tCx739RjBkzBoAFCxbw9NNPk5aWpnFl5UNCZRmKj49n0qRJrF+/HkXRYTrtj+ugzO6uToxmA0On9mPl+xuw58hsbyGqC5fTxdL31jLokV5YfKRXqjpRUPjl0bUYjvphNpvZsWMHDz74IGfOnNG6tDInobKMHD58mIceeojjx49jVIwY9vmhxMovluqm971diI+8yNGNssi5ENVN9P5YTmw9w4AHe2pditCA/qIHrq1ehISEuCfp7tmzR+uyypSEyjKwfv16pkyZQmJiImbVgrLdD12aLBdU3QSFB9Dl5ras+L/1WpcihNDI77P/okX/xtRpEaJ1KUIDuszccZYtW7YkIyODJ554gpUrV2pdVpmRUFnKFi5cyEsvvYTNZsMjxxt1q7fs3V1NDZnajy0/7CY5rnqMpRFCXC4zOYt1n29h+LT+MmmnmlIcOk7MSaB///44HA5ef/115s6dWyUXSpdQWUpUVeWTTz5h1qxZqKqKOckH105PFKd8i6ujhl3qEVwvkE3f7dS6FCGExnb9dgCDSU+rgU21LkVoRHEpbJpxiDvvvBOAefPm8frrr+NwVK2x9pUu8Zw+fZqJEycyefJknn76abKyslizZg2PPPIIU6dO5cKF3J1KtmzZwsSJE1m2bFmZ15T3zuO7774DwHTOF/WwRdafrKYUncL1E3uzZs4mWZNSCIHLqbL6478Y8GBPDCbpuaquFBQWTlyD4YQPer2eVatW8cILL2C1WrUurdRUulAZHh7Oxx9/zAcffEDz5s3ZuHEjP/74I++//z4TJkzg66+/BnJD5Ycffljmm7xnZ2fz7LPPsmrVKhQUjCd9Uc5IoKzO2g9rgdPh5MDqsn3tCSEqj5PbzpB4Npmut7bXuhShMf0FT5T9PphMJjZv3syTTz5JRkaG1mWVikoXKg0Gg/t2Tk4OtWrVon79+hiNRlq3bs3p06cB6NKlC48++ihNm5Zdd0NmZiZPPfUU27dvR6/o0R/yQ3feUmbXExWfyWKk/4QerP5oI1VwuIwQogRWf7SRXnd3wtNf/k5Ud/pkM+pOL7y8vNi3bx9Tp04lOTlZ67JKrNKFSoAdO3Ywfvx49uzZg16vx9PT0/1Y3sr1vXr1Yvbs2YwYMaJMakhPT+fxxx9n//796BUDur2+6JNlyaDqrvvtHYg9cp4ze85pXYoQooK5cOoiR/88RZ97u2hdiqgAdGkmbH+Z8ff358SJE0yaNMk9hK+yqpShsnPnznzxxRf069ePffv2kZWV5X5Mry/78SopKSk89thjHDlyBAMGdLt90aXLkkHVnYe3mW63tWft51u0LkUIUUGtn7uV9sNa4BvsrXUpogLQZRrJ/ENPrVq1OHv2LI899hjx8fFal1VslS5U2mw2920vLy8sFgtnzpzBbrdz4MABGjRoUKbXT0pKYurUqZw4cQIDRpTdvugyjWV6TVE5dL+9Pad3RHPh1EWtSxFCVFCp8ensX32UXnd31roUUUHocgwk/+akdu3axMTEMHXq1EobLCtdqNy5cyeTJ09m6tSp7N69m+HDhzN69GimTJnC559/zr333ltm105NTWXatGlERkZixISyyxddlgRKARYfM11uacf6L2V/byFE4TZ+s4O2g5vhV9NH61JEBaHY9Fz81UZoaKg7WCYkJGhd1jVT1Kq4+mYZSE9PZ9q0abnbLmJC2emDkmO4+hNFtXDdAz0IqO3HwpdXaF2KqGB0eh3/XT+FV/q9j8vp0rocUUEMfawfer2Ope+t1boUUYGoZic1bjQSFxdHnTp1eP/99wkODta6rCKrdC2VWsjKyuLpp5/m+PHjGDDCLgmU4h8WXw+63NyWDfOklVIIUTR/fbOD1oOa4ldLWivFPxSrnsQldkJCQoiJieHxxx8nNTVV67KKTELlVVitVp577jkOHTqEHgPKHh902RIoxT8639SGU9ujuBhV+ZeDEEKUj/TETPavPkr32zpoXYqoYBSrnqTfHAQHBxMVFeXe6KUykFBZCKfTycsvv5y7dJGiR7dXJuWI/AwmPV1vacemBbu0LkUIUcls+WE37Ya1wOIjy9GJ/BSrnpSVLvz8/Dhy5AgvvPBCvonKFZWEyitQVZVZs2bx119/oVN06Pb5osuQQCnyazukBfGRicQerdxriwkhyl9STCqndkTRaVQbrUsRFZAu20DWBj0Wi4WdO3fy2muvudfirqikH/cKFixYwOLFiwEwHPVFn+kBsmWruISiU+hxRwdWffgnOr28PxMFy3ttyGtEFGTLj7u547Ub2PbzXhy2ih0YRPnTZZtx7gJDGzvr1q0jMDCQqVOnal3WFcns7wL8/vvvzJgxA4Dhw4fTq1cvjSsSQgghRHW1f/9+FixYAMC0adO46aabNK6oYBIq/2Xfvn1MmzYNh8OB8bwXhkhfrUsSFdQ9M2/iwB/H2Lv8sNaliApMp9fxwppJvDrgQ1lSSBSoSc/69B/XnU/Hf6d1KaICu3vuCObMmYNer+ett96iS5eKt92ndH9f4sKFC7z44ou5gTLVE+WkFy7kj4C4XHBEICGNgvnu6V8lKIgicTld8loRBTr212mGTO5LWIsQog/Eal2OqKC+uu9XBs8YzKpVq3jppZeYPXs2ERERWpeVjwzy+ZvVauX5558nJSUFg82McsgbBUXrskQF1Wlka/auPIzd6tC6FCFEJae6VHYtOUDnm2TCjrgyBYV1/91DmzZtyMzM5JlnniElJUXrsvKRUEnuTO933nmH48ePo1cN6Pb5oLgkUIqCmSxG2g5uwc7FB7QuRQhRRexZdoimPRvgFeCpdSmiAlNUhaOfxVG7dm3i4uJ49dVXK9SMcAmVwI8//sjq1atRUNAd9EGxyjRvcWWtBzYl5uh5Es/KYudCiNKRkZTFsc2RtB/eUutSRAWnOHQkLM3BbDazfft2vv76a61Lcqv2ofLgwYPMnj0bAP0pb3SpJo0rEhVdxxtbs/NXaaUUQpSunb/up+MNrVCko0xchS7LyBNPPAHAvHnz2L59u8YV5arWoTI9PZ1XXnkFl8uFIcmCLs6idUmigguOCMQ/1JfjmyO1LkUIUcVE74sBILxNHY0rEZXBe8O+4IYbbkBVVWbMmMGFC9pvwlFtQ6Wqqrz99tucP38evcOI7phMzBFX13ZICw6uOY7TXnHGsAghqgZVhX2rjtB2SHOtSxGVxKpnt9GkSRNSU1N55ZVXNB9fWW1D5ZIlS9iwYcM/4yid1fZbIYpI0Sm0ub4Z+1bKupRCiLKxb+URWvRrjNEsK/6Jq1NUhTPfJuHp6cmBAwf47jtt1zqtlknqzJkzvP/++wDoTnvJnt6iSOp3qIsty0bMEe27GIQQVVNybCrxpy/StFdDrUsRlYRi1bu3bpw7dy7Hjh3TrJZqFyodDgdvvPEGdrsdQ5oH+lhZvkEUTdvBzdi36ojWZQghqri9K6ULXFyb94Z/Qd++fXE6ncyYMYOcnBxN6qh2ofKnn37iyJEj6FQ9uqMyjlIUjd6op2mvhhz8Q7t3gEKI6uHIhpNEtKuDh7dZ61JEJaGgsOWtw9SoUYPo6Gg+/fRTTeqoVqEyKiqKzz//HADdCS8Um6xHKYqmQae6JMemkhyXpnUpQogqLjsth+j9sTTt1UDrUkQlojh0pG3Inajzyy+/cOjQoXKvodqESqfTyZtvvondbkefakYX76F1SaISadG3MYfXn9C6DCFENXF4/Qla9G2kdRmiktGlmBk8eLB7p0CHo3y3Eq42oXLp0qUcOnQInapDf8xHur1Fken0Opr1bsjh9Se1LkUIUU0c3XiKBp3CMXvKhhzi2qx7eTd+fn6cPn2aH374oVyvXS1CZWpqKnPmzAFAOS3d3uLa1O8QRlpChmzLKIQoN5kp2Zw7fJ4mPeprXYqoZBSHjokTJwLw5ZdfEhMTU27XLpVQmZ6erukU9quZM2cOaWlp6LON6GXXHHGNmvRswNGNp7QuQwhRzRzdeIomPWVcpbh27w3/gg4dOmCz2fjggw/K7bolDpUbNmzgwQcf5MUXXwTg5MmTPPXUUyUurLQcPXqU3377DQDdCZntLa5d464RnNx2RusyhBDVzMltZ2jYORxFJ3+3xLVRUDgwJwq9Xs/mzZvZtWtXuVy3xKHy66+/5rPPPsPHxweARo0aER8fX+LCSoOqqrz//vuoqoouwQNdmoxNEdcmMMwfi68H5w6f17oUIUQ1k3g2hZwMK3Wah2hdiqiEdNkGRo0aBcBHH31ULls4ljhUGo1Gd6DMoygV413Vpk2bOHjwIIqqwxDprXU5ohJq3C2CUzuiUF2q1qUIIaqhk1vP0LhbPa3LEJXUb0/9ibe3NydPnmTlypVlfr0Sh8rQ0FB27NgBQGZmJnPnzqVRI+2XQXA6ne7JObpzHjI5RxRL424RnNhyRusyhBDV1ImtZ2jUNULrMkQlpTh03HvvvUDu/JLs7OwyvV6JQ+Xjjz/O6tWrSUhI4I477iAuLs69B6WW1qxZQ2RkJIpLh/6cl9bliErIYNJTr20dTm6P0roUIUQ1dWbPOWo2CMLTT9ZWFsXz+V0/ExoaSlJSEr/++muZXstQ0hP4+Pjw/PPPl0YtpcZut/PFF18AoIv2RHFWi5WTRCmr0zyElPNpZCZnaV2KEKKaslsdxB45T3ibOrIKhSgWRVW49957eeutt/j+++8ZNWoUHh5l8yal2KHym2++KfTxe+65p7inLrHff/+duLg4dA49+lhPzeoQlVu9dnU4s7f81vcSQoiCnNkbQ0S7MAmVotj+d+OXhNwSwvnz51myZAm33XZbmVyn2E14DocDh8NBVFQUy5cvJzU1ldTUVJYvX05cXFxp1nhNXC4XCxYsAEA5a0FxVYxJQ6LyiWgXRtTec1qXIYSo5qL2nqNeuzpalyEqMUVV3I193333HVartUyuU+xQef/993P//feTkJDA559/zqRJk5g0aRJz5swhISGhNGu8Jlu2bCEqKip3LOV5WehcFI/eoCOsZShR0lIphNDY2UNxBEcE4uFt1roUUYnNGvUVtWrVIikpiRUrVpTJNUo82DAxMRGL5Z/w5uHhwfnz2q3pl9dKqYvxkLGUothCm9Yi/WIG6YmZWpcihKjm7DkO4o4nEN6mttaliEpMURXuuOMOAH7++WdcLlepX6PEE3W6du3KY489xoABA4DcWdddu3YtcWHFcejQIfbv34+iKujjZCylKL6wliGcPajdMA4hhLjU2YOxhLUI4fjmSK1LEZXY7Du+w2ugF9HR0ezYsaPU81qJm/ImT57M6NGjOXv2LNHR0YwePZpJkyaVRm3XbPHixQAo8WZZl1KUSJ1mtYg9ekHrMoQQAoDYoxeoLTvriBJSnDqGDRsG5LZWlrYSt1QC9O7dm969e5fGqYotLS2NdevWAUgrpSix2s1qsfXnvVqXIYQQAMQcucCwaf21LkNUAb8+vRali8K2bduIjY2ldu3SG1ZR4lB5pYXOZ82aVdJTX5OVK1dis9lQMg0oGaWSlUU15eFtxq+WDxdOajfhTAghLpUcm4qiKASE+pIcl6Z1OaISU6wGOnbsyM6dO1mxYgXjx48vtXOXOH1NmDDBfdtms/Hnn3/mm7hTHlRVZdmyZQDo4ywoyDJCovhqN61JfGQiDptT61KEEMItrwtcQqUoqb3zT0AzWLFiBWPHjkWvL50hgyUOla1bt873eceOHct9m8bTp08TGRkJqoIuQbayEiUT2rQmccfitS5DCCHyiT12gdpNa3Jo7XGtSxGVnC7RjLe3N/Hx8ezatYsuXbqUznlL5SyXOHnyJPHx5fsH+ffffwdAl2iSZYREiQVH1CD+dKLWZQghRD7xkYkERwRqXYaoAhRVYeDAgQCsXbu21M5b4pbK/v37oyi53c06nY5atWoxceLEEhdWVC6Xy/0NkVZKURqCIwLZt+qI1mUIIUQ+CZFJBEfU0LoMUUUsm7EBWsPGjRt58sknMRhKPh+lxGfIm3GtlaNHj3L+/HkUp4IuWXYbECWjKLktlQlnpKVSCFGxXIxOwq+mD0YPA/Ych9bliEpOSTUSEBBAcnIyu3fvLpUu8BL3FT/++OOX3ffUU0+V9LRFtmXLFgCUZJPs8y1KzK+WL067k4zELK1LEUKIfBw2J8lxqQTXky5wUXIKCn369AFgw4YNpXLOEofK1NTUfJ9brdZyHVO5efNmAHRJ0kopSi44IlBaKYUQFVbCGekCF6Vn+Wu5YXLr1q2oqlri8xW7+/urr75i3rx5uFwurrvuOiB3aR+LxcKtt95a4sKKIiEhgRMnToAqoVKUjqB6AVyMTta6DCGEKNDFqCSC6gVoXYaoIpQ0EyaTiYSEBKKiooiIiCjR+YodKu+77z7uu+8+PvzwQ822Zdy5cycASoYBxSGzvkXJ+Yf4khybevUDhRBCA8lxaUS0q6N1GaKKUFwKbdu1Y/v27Wzbtq3EobLESUyrQAmwb98+AHQpJs1qEFWLf4gvKbKwsBCigko5n4Z/iK/WZYgqJG+CTl5DXUkUu6XywQcf5LPPPnMvKaSqar5/S3PdoyvZu3cvALpUCZWidPiH+pFyXkKlEKJiSolLwz9UQqUoPZ+O/w7aw6FDh3C5XOh0xW9vLHao/OyzzwDtlhSKj48nNjYWVFDSjZrUIKoe/1BpqRRCVFypF9LwCvDEYNLLVrKiVCiZBjw8PMjIyCAqKor69esX+1wl7v5+/fXXL7vvzTffLOlpr+ro0aNA7jdDdtERpcHi64HeoCMjKVPrUoQQokAOm5PM5Cz8avloXYqoIhQUmjdvDsDBgwdLdK4Sp7FTp05ddt/x42W/L2neNZSMkq8ALwSAb7A36RczKYVVFUR1pSgo5qusRKHTo/OQ3b9E8aXGZ+BbU0KlKD2tWrUC4MiRku0mV+xEtnDhQn7++WcSEhK488473fdnZWXRrVu3EhVVFHmhUpchXd+idHgFeJKRJIuei2JSFHRmM+h0YDajWq2XH6PTo7N4gE6HDnDl5JR7maLyy0zOwsvfonUZogpZ8PwSaAanT58u0XmKHSoHDx5Mjx49+PDDD5k8ebL7fi8vL3x8yv4d1IkTJ4Dc7m8hSoNXgIXMZAmVohguDZSQO2nxSsfmDYI3GiVYimLJDZWeWpchqpC8LBUZGVmiyTrFTmTe3t54e3vz2muvFfcUxZaZmUliYu6uJ0qWhEpROrwCPMlMkVAprtG/AiUAOh3Kv1srdXp0pn+tVCHBUhRDZko2XgHSUilKj5Ktx2QykZ2dTVxcHHXqFG8t1BInshMnTjBz5kwiIyOx2Wzu+8tySaFz587l3rDpZJKOKDVeAZ5kJmdrXYaoTAoKlHkP6fVgNoPDDoDOYsalKpefQ4KluEaZyVmy/7coVQoKdcLCOH36NOfOnSt2qCxxIps5cybTpk2jTp06LF26lAcffJAJEyaU9LSFyguVSra+TK8jqhcvf+n+FtdGMZkKDJTux/WXTMoprDvJaETnKd2Zomgyk7PwCpDXiyhdoaGhAMTFxRX7HCUOlQ6HgyZNmuBwOPD09OSOO+5g8+bNJT1toWJjYwFQciRUitJj8fUgJ72AyRVCFEAxm1EUBVyuKx6jC/An/p52RTuhXi/BUhRJdpoVi89VVhkQ4hpViFBpMOT2oIeEhLB27VoOHDjgHu9YVtzjKW0SKkXpMXkYsWXbrn6gqPbcgTJPAcFSF+BP3A31sHvnHpd8Q8urn1iCpSgCe44do0VWPhGla9HbKwE4f/58sc9R4jGVY8eOJSMjg4kTJzJz5kyys7N57LHHSnraQiUlJQGg2GQ8pSg9JosRW7Zd6zJEBXdZoMzjcrm7uPMCpcNLcb9zzw7W4bqxJQFLDhV+gb+DpStLhmKIgtmybZgkVIpSltdQl5ycXOxzlDhUdu3aFcidDT5r1iwAli9fXtLTFiovVCKhUpQik6eESnEVilJwoMzjcqGrEegOlJdSdZBdUwdFCZaFXUNUe7ZsOyaL6eoHCnENFHvu753U1NRin6NMUtncuXPL4rRueV+w4pBQKUqP0UNCpSic8u8lgf5FFxxE1N0RlwXKPKoOMurqOPN468IvpNNJN7i4otxQKS2VopT9nakqXKhUy3ifu+zsv5d9ccq7eVF6pPtbXI1qd1zxMV1wEGfuDsfmp2LzLfgYpwkyG9nIibAWHixdLlw5MmlMFExCpSgLij03Eqanpxf7HGUSKi/tHvroo4+YNGkSr7zyCna7na+++orJkydz9OjRYp8/J289NwmVohTpjXqcDqfWZYiKzOXEZbv8jUdeoLT75L6hdhkvD5YuE2Q1tKGYXCh69crB0uXClZ0Dqku6wUWBnHYnOr0OnV5eH6IUuXJfT3a7HVchq1oUpthjKh9//PErPpbXdHr8+HGSkpL48MMP+frrr1m/fj0JCQm8/fbbzJ07l2bNmhXr2nmhUnHJfyhRehRFQXWWbSu7qAJcTlw20JlyW4r+HSjdhxlVbL4KHn+/6c9qkBso81waLCNmHvj7SZcESveBCpRx74+oXP55OShw5Q1Bhbg2l7yU7HY7ZvO1L1tV7FB57733XvWYQ4cO0blzZyB3Qs/y5csJDAzkqaeeYuLEicW9NA7H311QxQvSQhRI0SllPnRDVBF/B0tDndACA6X7MKOKNSj39qWBMo87WE5rTcR7+y4PlO4DJViKf6iu3NeColNAOldEabmkoS4lJYVatWpd8ymKHSrbtWt31WMyMjIICsr9jerl5UV6ejrTpk1j3Lhxxb0s8E/3uk6vQ3GV32Sd7jd2pnGHCI5sPcGOlXvL7brdbuhIk44NOLrtJNtX7JHrlpGg4CDGPHczBzYcqRZfr1y3hHQ6FD8vXL6gp+BeE0+TiZ/vvYNQiwWfs9tJdxQwTlIPjhoqhqAAHDFxFDoq6RqCZdfhHWjauSHHd51m62+7ivy8ktLqul2GtqdZ10bV4rqKTiEgIID7pt/G0R0nq/zXW52ve2L3GbYs2VEu11Qvaap0z125Ropahk0zixcvxsPDgyFDhnD06FFWrFjBtGnTSnze6667DofDwbPPPoufn18pVFo0ERERBAQEkJiYSHR0dLlfNykpiaioKLmuXLdKXDc5OZkzZ85U6evqdDratm0LwL59+4o9Tqk4qtP3Wcvr1qtXj8DAQLmuXLfSX9fpdPLCCy8A8NNPP5VvS2VRtGjRgh9++IEhQ4awfft2Wre+yjIaRaT7e4Hh/42ei64cd9WZ+H9jaXdda/76ZRtfT/+p3K+7adF2vnrph3K77iMzx9J+YGs2L97BvP9+X+7X3bJkB1++UH7X/eLUeySeTWbT4vK97kPv3kvH69uW+9ebd92tv+1k7vMLyu26D759D52GtGPb0l188Z/vyv2625fv5vNnvy3+iXR69IF+oM/93aPodNgahBA91JLvMLu/kyVDvsTDuIQceyiJwU8zdevw/OdKM9JofhaGxEtmW2bn4Dgfn/+4Yrz3n/DmXXQZ1oEdK/Yw55n51/z84sq77s6Ve/ns6W/K7brjX7+TriM6lvt1x702hm43dCr3634R+R6J0cnsWLWXT5/8utyue/+rd9D9xs7s/n0/nzzxVblfd88fB5j9+Lxyu+7YV+6gx6jyv+59L99Oz5u6sHftAT5+rHyuq+pUyF16HB8fn2Kdo0xDZZMmTQgMDGTSpEnUrFmTMWPGlMp5zWYzNpsNF85ynQGeF2addhcuZ/m1OOR19zsdznK9bt7MwvK+bh6no3y/z7mN9gouZ/leN095XzdvXJZmX69L1eDnW8KvV6dH7+eLCx3kTepyOjGciCPMFULUsNxgaQ9wsnToLFqYgtwd4wM803mv+wIe23JH7h1pRhp/nYnuYnr+4eEmM7rgYBznL+QVXqxS836+qlq+3+e8a5X7dV3/fJ+0+HrL87o6fe74b1XNHW6rxderKEq5Xtdh+3vwqK6cr/v3MmI6ffleN28lEp1OV27XVXX/DND18PAo1jlKHCpfeuklnnzySXeqTUtLY+bMmUyfPh2ARx99tKSXuEze+Ez05TtwPerwOSw+Fs4eiyn363r6enL2WGy5X9fLT4vrnsU7wItz5fx9VlUVnaLgKucZ4FGHz+Fbw4ezx+LK9brRR2PwC/Yl+mg5/3yPnMO/pi9nj5bvzzf68Dn8a/oV//Ws06MP9He3UF5KdbkwnTpPveUhnLzLxK9D36elKX/LpVHRMdQzBbp/z2Or7qHx/GwMF6+wHpzFA0NILRxxxd+DN/poDIGhAZw9Ur7f57PHYgmqc5rocv75nj0aQ1CdwHK/bvTRWIJ3le/XazAZUF0qKgqKUr6bgJw9GsOJXaeJOny2fK97LJaTu09z9si5cr9u7tdbDa77d6ayWCzuRrRrVeIxlePHj+eLL7646n2lady4cZw8eRLjQX90Kdc+5V2Ignx+4l30LhPrFvzF19N/1LocUQEpZjM6/yuP41YsHsSOCGPPfz7++x4vlBoLybaHYkrthU5JZ3WWkZefG4f/rgtXvpDTiTMmDtVx5cXWRfXl6W9h1s5XUKwG9q07yAeTyu7vrag+XF527O2TqFGjBosWLSrWOUr8FsfpdJKVleX+PDMz858lf8qIl5cXAKpBltgQpUdVVRRd+XYlicqlsB11FKMRe51A/E/YaP5JwUum/ZkDz8x8AEOOSk5EjcKvJYFSXIHRZHB3jxa6F70Q18KQ+7evuOMpoRS6v0eMGMHUqVMZOnQoACtWrODGG28s6WkLVaNG7i9j1SQLdInSk5WRjTMzm6TzKVqXIioqlxNXSuplrZWK0Yi9XjAuow691UXINhvNmciRhz/GeXE4e05/gb12FlPfm4hPjANVBw4vPTkRNfA4k5j/Gk4nzthCWjFFtWcw68nKyiHnQrr8vhKlRv17Ld28pSCLo8Sh8tZbb6VevXrs2LEDVVV5+OGH6dixY0lPWyj3F1zAYsJCFNeBHYdZ89kmIneV71ghUbmoVmu+YHlpoMzjDpbKRA49+CkA0/73MD4x/2zxWGCw/DtQqnZb+X1BotIxmAycOX6G9++Yp3UpogrJC5V5DXfFUSqzvzt37uzeOac8BAcHA6CapaVSlB5rphUPL5PWZYhKIC9Y6oODLguUefRWFyFbbXS98BDv3wU+MY7LNgHLFyxPxUugFEXi4W3GmimvE1G6Rj05mIULF2oTKmfOnMnjjz9+xT3AZ86cWeyiriZvQU7VLC2VovRkp+Vg8bNc/UAhyA2WakYGLuOVFwg2ZjgIWR0Pd3W58nl0oBoUnOfjJVCKIrH4epCVWrwdT4S4kpiY3BUMQkNDi32OYofK4cNzF/Etyh7gpa1u3boAqJ4O/l5UodxrEFVPVmoOFp/irc0lqidnWgamQ2extax72WM6uwtj9EVw5U648T6RTFpD/8uO0+e48Nh6HKfNJnt8iyKx+HqQnZajdRmiijl7NnfoV3h4eLHPUezZ302bNgXg1KlTtGvXLt9HZGRksQsqirCwsNwZbwYVjNJaKUpHdloOnn4SKkURKQqoLpyJSZgO5R+H6w6U9n/GUCop6XgfT853nD7HhWXLcZzpl6xXKbN5xVV4+kmoFKVLVVTi4nLXSs5ruCuOEi8ptHz58svuW7FiRUlPWyiz2exunlU9ZVylKB3ZaTlYfCVUiiK4NPjlBctLF2VW1XyBMu8+Jdvq/rTAQFnQ+YX4F4uvhaxUCZWi9KgWJy6XC09PT23GVG7atIlNmzYRHx/PO++8474/KysLfQE7TpS2+vXrExsbi8vLji5VJleIkstKy8ZTxlSKqyko8KkunAmJmABHo9oYzyZefgyA1Yb38WSyw/2uHCgvvY50hYsCePp5EH/6Cq8xIYpB9c59E9yoUaMSrX1a7FBZq1YtWrduzY4dO2jVqpX7fi8vLzp06FDsgoqqWbNmbNq0CdVbFggW10an0/H0V5MIqhPIhTMJzHzwE3rd3JU7/3MTXkGerPl4MwnnEukyrAN3PncTK+auZdWX67QuW1R0fwdLQ3YOE968k6bt65EQk8z/PfktYWFhvPnTFOZMX8TxfVFYYi4UHihBAmU11rhDAx7531hUl0ryhRTeuvcD3lj5AgAmi4maETWYcdd7hDcPY9qnD6HT65j33+/Zs+YAIfVr8vhnDxN9NIYPJ8tOO6JoRj43iIULF7qHNhZXsbu/GzVqxNChQ/nqq68YOnSo+6NPnz54e3uXqKiiaN68OQCqj/0qRwqRX6+buxAXeYEnr5tO1JGz9Lq5K7dMG8GLN79F5Okz3PXirQB0Hd6BaX3+S9POjbQtWFQshYU9l5OIBoH4+3nw1E3/R/Tx8/Qc3g6z2cxL935Cnxs74EpMwpmWVvh5JFBWaxdjknhuyKs80f8lYk+dp/uNnXjyuuk8ed10fv1wBRfi4kmLT2fca2N4d9xHPDfkVe57+XYAet/Sjf899CnpyRn41ij+ziiiejl27BiAdqEyz1NPPUX6Je+409LSmDRpUklPe1XNmjUDcscBqAaZrCOKLrRBLU7tPQPAid2RDH9wEFGHz5Ick4JDtdGgde7Mt50r9/K/jTM4seuUhtWKCqmg0Pf3fS26N2Hnyt04k1PYue4wzTs2wGaz8crXj7Bh/vr82y8Wch5RfSVfSMGanbu8lMPuxOn4529cn1u7k5qeQmp8OoGhAcScPE9WejZpien41vBh06LtTPvsYXxr+JCWeJXWcCHInaRz/Phx4J9sVVwlXvw8Ozs73z6Rvr6++fYCLyu+vr7Uq1ePqKgoXH429IkywUIUTfSRGDoNbstfv2yjw8A2QO54SrvVQXZ6DsbQ3P8WW37byZbfdmpZqqjIVPWf8ZWXBEFvfy8SY5NRrVbSz8Xj4+/J2bNnmTHwY5zWAtahvMJ5hAiuG0SHAa359tWFAFi8PahZL4i4tHNkJGbmG/uWmZqFT6A3MSfieHrgy1qVLCoh1ceO3WYjMDCwRDO/oRRaKhVFISkpyf15YmIiajn9Yswbu+nykwWDRdFtXboLu83BO2tewsPLTEZyBp6+uRN00uIzUHQy81YUkapeFgTTkzPdrycvTwNp53N/P+ZroSzCeUT15ulj4dmvJ/POuI9xOnJXOel+Yyf2rj9IRmImLqeK6vqnBdPb34v0pAytyhWV2F0zRwLQvn37Ek3SgVIIlXfddRePPPIIH3/8MR9//DGPPvpouS2InhcqVX8JlaLoVFXlk8e/4qkBL5OWmM4vs5ZRr3kYBqMBs8FM/LmLWpcoKrEjW4/TcVBbADoNbsehv45oXJGobHQ6Hc/On8L8GT8RcyLOfX+fW7tzaNtRUuNzw2PS+RTqNArB08eCT6C3dHeLYtmzZw+QGypLqsTd39dddx0NGjRg9+7dqKrKW2+9Rb169UpcWFHkpWrV04lqcqLYyn4pI1H5BdTy5/kFj+F0ONm95gAH/zrKL7OW8d76l/EO8mTxp5evvSpEUZ3ae4bkCynM3PAK8dEX+Xnmb/R5pJPWZYlKpO9t3WnZoymePhbueuFWfvtkNduX76ZmeBA2u5Wkc7mL6M99fgFPzn0UnV7HVy/9oHHVojJS9S4OHjwIUCor9yhqefVVl5GJEydy8OBBDKd80Md5al2OqOQ63tiaiPZhLHy5bBfwF9fGbDEx/o276DaiI1np2aDCzt/3Mfe573C5rjxR756XRuN0OPnutV+u+ZoN20ZQMzzIPa62SccGDJ0wgFmPzCnS89v0bcFdz9/Cc0Nf47/rp/BKv/dxOUt/UuFH29/k0S7PAnD3i7cyf8bP13yOknyfRPka+lg/MhIz2fjNDq1LEVWAMygHR7NU6tWrxzfffFPi85W4+/vEiRM88sgjDBkyhOuuu879UV569+4NgDPQepUjhbi6xOhkgsIDtC5D/Mu0zx7GJ9CbB1o/zsPtn2Jy9/+QnZ6N0VzizpYratgugu43/tPCeHzX6SIHyvKUFyghN1SKqi0oPIDEs8lXP1CIIug3qTMAPXv2LJXzlfg38syZM5k2bRpvvfUWH3zwAUuWLCm05aC09erVi9mzZ6P62VD1LhRniXOyqMYunk2iRt0A2cykAgmpX5PuN3ZiTNhD7mVW7Fa7e0YswKPvj6N518aYPEyc2neGmRNmY7flnxjTeUg77vnvaAwmAw67k/cnzuHknkgA+ozuzp3P3QwK5GRa3ev+eXiZadKxISu/XMvp/VHc9fwtPHP9DABGTR7KsAkDcblcxJw4z4zb3ivS1xNUJ5DH5zxCjdoB2K12PpoylyPbTtCmbwvGvTqGuMh4mnRswPnIeKbf8i52q52QiJo8+81kPP08ObTpKJ2HtOexXi9wMSaJlbbvGWK6g4dn3ofeoOeT3e+QejGNZ66f4X4MoGXPZtw/4w6evG46AA/PvI8uQzuQFJdMwrlEzh6LAcAnwJvJH00gtEEtjGYD3766kI0Ltxb75ydKV1B4ABejJFSKklMVla1bc/9vV5hQ6XA4aNKkCQ6HA09PT+644w4mTZrEnXfeWRr1XVXdunWpX78+kZGRuGpY0cfLNnui+DISs1BdLnyCvUmLl5mUFUFEy7rEnbqQ2+19BV9P/9E983XirPu5fmw/ln32R75jjmw9wdSeL6CqKo3a12fyhxOY2vN5wpvVYcKbdzOt1wskxiXjE+hNdkYOX730A616NWPmA58Aud3ZeToMbMP19/Xjsd4vkpWWu5RLUT06axzbV+xm8QcraNKpIS/++Dhjm0wBoEG7CN689wPOR8YzY8mz9L6lK2u/+4uJ/3c/q75az4rP19B1eAdGPHT9Zef95PGvGDVpKA93eOqqNfQY2ZnGHRrwQOvHMXuamb3rLXeofOR/Y1k9bx07V+/D29+LD7e/yd61B0lPlv8PWjN6GPCp4U1STIrWpYgqwBVgJSMjgxo1atCiRYurP6EIShwqDYbcU4SEhLB27VqCg4NJTCzfPUkHDhzInDlzcNbMkVApSuxiVDLB9QIlVFYglw797ntbD8Y8exM+gd68Mvo9ju04SY+Rnbnh4esxeZjw8vNEp7u8xyIwxJ9nv5lCzXpBuBwuajcKAaD9gNZsWrSNxLjc1p+iLMvSaXBbVs1bR1ZaVpGfk6dNv5a8dd+HABzfeYrMlCzqNA4F4OTuSM5HxgNwbOdJQurXBKBV72a8NuZ/AGxbtpu0Ei4d06ZvC9b/sAmnw0lWWla+9Vg7D21Pgzb1mPDm3QAYjHpCG9QkfZf8f9BaUHgAqfHpOGxOrUsRVUDvRzuwbt06BgwYgF5fOhOdSxwqx44dS0ZGBhMnTmTmzJlkZ2czderU0qityPJCpepnk1ngosTOn0qgVqNgTu2I1roUAZw5dJbajUKweHuQnZHDhh83s+HHzby7djoGk4Fa9YK596XbmNjpGVIvpjFy0hAato247DyTP5rA8jl/sO77TVi8PViUNC/3gWIsy1bStdwu83dotlv/2XbW5XShNxT8u6yol3e5/gnjpkvGnxZWv06n8ET/l8hMLftNLMS1CWkUzPkTCVqXIaoAVe9i06ZNAAwaNKjUzlviAYhdu3bF29ubevXqMWvWLD777DO6detWGrUVWWhoKG3btgUFnDVzyvXaouqJO55AaJOaWpch/nY+Mp7Nv+5g0gfjMXmYgNxQZPIwAmDxsWDNtpGenIHZYmLAXX0KPI+nrycJ53J7UYY/ONB9/54/DtDzpq4EhvgDuLuys9KysHgX3POxfcUeBo/tj6evZ77nFMX+9YcYOj53MmOTTg3x8vck5uT5Qp9z8K+jXHdX7qTErsM74BNQ8PVysqyYLSb35/FRCTRsFwFAr5u7uu/ft/4Q/W7vid6gx9PXk+43/DMhafuKPdz6+A3uzwsK6EIboU1qEnciXusyRBXgCsrBZrMRHh5OkyZNSu28xW6pvNrU83vuuae4py6WIUOGsG/fPpwh2ejPeaIUp/lBCOD88Xi63dpO6zLEJWY9/BnjXr+Tzw/9j6zULHKyrOxdd5DT+86QnZHDvg2H+OLQ/4iPvsixHSfzBas8X/33e56c+yjJ51PYumyX+/7oozF88dy3vLEyd7xldnoO0/q8yJ61B7ntqZF8tP1NVn+1nsiD/7Rc71lzgN+/3sCsTa/itDs5dzyWV+/432XXbNWrGfMjP8Y32Jv5kR/z9fQf+WjqXB6f8whDxl2H3Wrn9TtnuXdMuZLZ0+bx7DdTGPHQ9ez/8zBJ51PISrt8jOmi95fzwbY3uHguif8Me405z8znvz89QcLZRI7uOOk+bvOvO2jTtwWf7X+PC2cS2LfhsPuxj6d+ycRZ9/PZvvdQdAoJZxN5fvjr5bZTmriykCY12fjNdq3LEFVAwxG1OXbsGCNGjCjVnpdir1P55ZdfFvr4/fffX6yCiisnJ4ebb76ZjIwMDIf80Seby/X6ouowmg08u/IR3hr2CbZs+9WfIEQhdHpdidepNFtM2HLsqKpKy57NePyzhxjfclopVyoqMkWn8NyKR/jgzq9IT8zUuhxRibm87djbJWEymfj555/x9/cvtXMXu6WyvEPj1Xh4eDB06FB++uknXKFZEipFsdmtDhLPphDSKJjoA7FalyME9VuH8/icR1BVFYfNwTv3f6R1SaKc1Qjzx5Zjl0ApSmzQf7qxfPly+vXrV6qBEkppSaEVK1Zw+vRpbLZ/9uB+6qmrL2tR2kaOHJkbKgNsqB4OlJyyWxhZVG2xRy9Qp0UtCZWiQji6/SQPtn1C6zKEhuo0DyH26AWtyxCVnGp08scfucutjRw5stTPX+KJOm+99RanT59m06ZNNGjQgFOnTmEyXT6eqTyEh4fnThJSwBEmMxdF8UUfiKVuq9palyGEEACEt6lN9IE4rcsQldzo9wdjs9lo1aoVrVq1KvXzlzhUnjx5kqlTp+Lp6cktt9zC//3f/xEVFVUatRXL3Xfnrq3mqpmNapK1vETxRO+PIbyNhEohRMVQt3VtovfHaF2GqMRUvYvFixcDcOedd5b+0miUQqjMa5U0mUykpaVhNBq5cEG7Jvo2bdrQpk0b0IGzjrRWiuJJjE5Gp9cRWMdP61KEENWcxcdMYG0/6f4WJXL/vJvJzMwkIiKCHj16lMk1ShwqW7RoQXp6OiNHjmT8+PHcd999tG/fvjRqK7a81kpnSDaqofz2IRdVh6rC2YNx1G0trZVCCG3VbV2buBMJspOOKDZVp/LTTz8Bua2UBe06VhpKPJMlb/ec4cOH07FjR7KysmjQoEGJCyuJrl270rhxY06cOIEzLBPDGR9N6xGVU/T+WOq1rcO+lUe0LkUIUY2Ft6lD9AHp+hbFd9+XI5kzZw6hoaEMHDjw6k8opmJHVVVVsVqt7s+PHj1KQkICmZmZZGdfvihveVIUhQkTJgDgrJ2FapZ3d+Land4ZTYNO4VqXIYSo5hp2Duf0zrNalyEqKdXg4rvvvgNg/PjxGAxltzJOsUPlp59+yg8//OD+/MUXX+Tzzz/n448/Zv78+aVSXEl069YttxteB47wDK3LEZXQ+RPxmDyM1Kjrr3UpQohqytPfQlC9QKL3SUulKJ6b/28AmZmZNGrUqExbKaEEoXLHjh2MGTPG/bmvry+zZs3io48+Yu/evaVRW4koisJDDz0EgKtmDi5P2RlFXBtVhdO7omnYuZ7WpQghqqkGHcM5eyAWu9WhdSmiElJNTn755RcAHnzwwTIbS5mnRGc3Go3u23fddVfuCXU6cnJySlZVKWnRogX9+/fPXbeyfgYqsnetuDandkgXuBBCOw07h3Nqh3bL9InKrfdzbbHZbLRt25auXbuW+fWKHSozMzPz7aBz3XXXAWC1WsnIqDjdzQ888ABGoxE1wIarhvXqTxDiEqd3RFO/Qxg6fdm+uxNCiII07BzOqe3RWpchKiGXn401a9ag0+mYPHlymaxL+W/F/kvZvXt33nnnnXyTcrKzs5k5cyY9e/YsleJKQ1hYmLsV1dEgHVUvSwyJokuNTyf1Qjr12tXRuhQhRDUT0igYRadw4VSC1qWISkZVVEKH5658M2rUKJo0aVIu1y12qHz44YdxOp3cfPPNjB8/ngkTJnDzzTfjcrncYxkrirvuuovatWuD2YWzbqbW5YhK5ujGUzTv3VDrMoQQ1UyzPg05+tdpVBm5Ja7RuG9uJjo6Gn9/f8aPH19u1y32vHKz2cx///tfYmNjOXPmDAARERG54a2CMZvNTJ06lWeeeQZnnSx08R7osoxXf6IQ5IbKO16/geX/t17rUoQQ1Uiz3g35ffZfWpchKhnV7OSrr74C4JFHHsHHp/zW6i7xQLHatWvTo0cPevToUSEDZZ7u3bvTu3fv3Ek7jdNQFXnrJ4om9lg8qgq1m9bUuhQhRDUREOqLf4gvZ3bL+pSi6FRUWj0UTnZ2Nm3atGHw4MHlev1qNftg2rRp+Pj4oPo4cIZJN7gouqN/naKZdIELIcpJ094NObElEqdD5gGIonOFZLN79248PDx49tlny3wJoX+rVqEyKCiIxx57DABneCYuL1m7UhTN0T9P0qJfY63LEEJUEy36NuLoxlNalyEqEdXswNAqN9c89NBDhIWFlXsN1SpUAgwcOJC+ffvmdoM3kW5wUTRn9sZg9jYT2iRY61KEEFWcf4gvtRoGcXxzpNaliEpCRaX5hDBycnJo3749N910kyZ1VLtQqSgKTzzxBP7+/qheDpz1Ks6amqLiUl0qB9cco/WgZlqXIoSo4loPasrRjadkFx1RZPfOu5F9+/ZhsVh45plnyr3bO0+1C5UA/v7+PP300wA4w7JwBsqi6OLqDqw+SuuBTVF0Zb+ArBCi+mo9qBn7fz+mdRmiknD52pg7dy4Ajz32mKaTpqtlqATo1asXo0ePBsDROBXV7NS4IlHRxR6Lx5plI6J9+Y9TEUJUD7UaBuHp50HkLtlFR1ydanDhP8CAy+Vi8ODBDB06VNN6qm2ohNwF3Js1awZGFXvTVBlfKa7qwO/HaHO9dIELIcpGm8HNOLT2OC6n/D0ShVNR6TitEQkJCdStW5dp06ZpXVL1DpVGo5Hp06fj7e2N6muX8ZXiqvatPEKLvo0we5q0LkUIUcXoDTraDWnBnmWHtS5FVAJjvx7Fli1bMJlMvPzyy3h6empdUvUOlZC7ePtzzz0H/D2+Mjj7Ks8Q1VnK+TSiD8TRelBTrUsRQlQxTXs1JCUujfMnZa9vUThnoJU5c+YAMGXKFBo1aqRxRbmqfagE6N27N/fccw+Qu9uOy1vWrxRXtmvJATre2FrrMoQQVUzHG1ux67cDWpchKjiXxYGpkw1VVRk5ciQ33nij1iW5Saj82/jx4+nVqxfowN48BdUkE3dEwY5vjsS7hpds2yiEKDUBtf2o0zyEg2uOa12KqMBUvYtaIy1kZWXRtm1bpkyZonVJ+Uio/JtOp+OFF16gfv36YHblBkudDJQWl3M5XexZdoiOI6W1UghROjrc0IqDfxzDli09ZaJgqqLSdkoE586do1atWsyYMQOj0ah1WflIqLyEp6cnb7zxBn5+fqg+DhxNUlGRYCkut2vJAVpd1wSLj1nrUoQQlZzBpKfDiJbs/FW6vkXBVFQGvtaJHTt24OHhweuvv46/v7/WZV1GQuW/1K5d253+XUFWHA3SJViKy6ReSOfk9ig6jmyjdSlCiEqu7eDmxJ9KlAk64oqc4ZksX74cnU7H9OnTady4sdYlFcigdQEVUbt27XjhhReYPn06rtrZuBx6jDE+WpclKpitP+3ltleGse2nPTgdLq3LERWUTq/L968Ql1IU6HZbB/749C95jYgCOWpm4gzPBOCJJ56gR48eGld0ZYqqqtIMdwULFy5k1qxZANxyyy106tRJ44qEEEIIUV0cPnyY+fPno6oqY8eOZdy4cVqXVCgJlVfxySef8N1334EKpuMB6JM8tC5JVCAt+jem55iOzHnwe61LERWUTq/jhTWTeHXAh7ic0qIt8rvr3ZEc23haxlOKyzj9rKht07Hb7QwbNoxnnnkGRVG0LqtQ0v19FQ899BBJSUmsXLkSW+NkDEf80SfL5AyR6/C64wx8sCcR7cM4vVP26hVX5nK6JFSKfEKbBBPaqCbfP/ebvDZEPi5fG7r2Wdisdnr16sWTTz5Z4QMlVLKJOqdPn2bixIlMnjyZp59+mqysLADWrFnDI488wtSpU7lw4QIAW7ZsYeLEiSxbtqxE11QUhaeffprrrrsOdOBonoLL31rir0VUDS6nyl/f7qDvfV20LkUIUcn0ua8rW37cjT3HoXUpogJx+dgwdM3BarXStWtXpk+fjsFQOdoAK1WoDA8P5+OPP+aDDz6gefPmbNy4EYfDwY8//sj777/PhAkT+Prrr4HcUPnhhx9y9OjREl/XYDDwwgsv0Lt379zF0Vuk4PKzlfi8omrYs/wwAbX9qNeujtalCCEqiVoNg4hoF8b2X/ZpXYqoQFxedsw97WRnZ9OhQwdeffVVTCaT1mUVWaUKlZcm9ZycHMLDwzl37hz169fHaDTSunVrTp8+DUCXLl149NFHadq0dPZoNhgMTJ8+PXfWlQRLcQmn3clf3+2k731dtS5FCFFJ9L6nC9t+3os1U/6OiFwubzsefexkZGTQpk0b3njjDczmyjXcrlKFSoAdO3Ywfvx49uzZQ506dUhPT8fT09P9uNOZu71ir169mD17NiNGjCi1axuNRl5++WW6dOkCehV7y2ScAdIVLmD3bwcJrl+Duq1CtS5FCFHBBdULoFGXemz9aY/WpYgKwuVrw9gjh/T0dFq2bMlbb72FxWLRuqxrVilC5Q8//MCUKVP44Ycf6Ny5M1988QX9+vVjyZIl+Pj4uMdWAuj1+jKtxWw289prr7lbLB3NU3DWyCnTa4qKz2FzsnnBTvqN66Z1KUKICq7f/d3YvmgfORnSKCHA5WdF3yWbrKws2rdvz3vvvYeXl5fWZRVLpQiVt99+O++//z433XST+z4vLy8sFgthYWGcOXMGu93OgQMHaNCgQZnXYzabefXVV/+ZvNMsFWfN7DK/rqjYdizaT1B4IA06hWtdihCiggptUpMGncLZvGCX1qWICsAZYEXpmEVOTg5du3bl7bffztf7WtlUjulEf9u5cycLFixAp9Ph7+/Pc889h8FgYPTo0UyZMgWTycR//vOfcqnFYDDw4osv4uHhwfLly3E0ScPoqcd1pvIMqBWly2Fzsm7uFgY+3JM5D0QjK8AKIf5t4MM9+Wv+DmmlFDiDs1FbZGKzOenduzcvvfRSpZqUU5BKFSp79OhR4PZEAwYMYMCAAeVej16v5+mnn8ZisbBw4UKyw5LRq57oo7xRqPjrSYnSt2/lEXrc3oGW1zXh4JrjWpcjhKhAGnQKJyg8kAXPLtG6FKEhFRVnWBbOiAxwwqBBg9yNZJVdpej+rsh0Oh1Tpkxh/PjxADjrZuFokoaqSDNVdaS6VP74dBPXPdADvUH+ewkhcikKDHqkF+vmbsFhc2pdjtCIioqjQXpuoATGjBnD888/XyUCJUioLBWKonDffffx3HPPodfrcdXMwd4yGVUvOyRUR8c3R5J+MZNOo9poXYoQooJoPagZeqOefSuPaF2K0IiqU+n6XFNctbNRFIXJkyfzyCOPoNNVnShWdb6SCmDo0KHuZQBUfzv2NkmoZnlHWh2t+mADfcd2xcu/8i0JIYQoXSaLkUGP9GLVBxtQXdKLVR2pRieNHwhm48aNGI1Gpk+fzujRo7Uuq9RJqCxlXbp04cMPP6RGjRqoXk5sbZNw+cjittVN7LF4jmw4yYCHempdihBCY33u68q5Q+c5tSNa61KEBlxedvxv0HHo0CG8vb1577336N+/v9ZllQkJlWWgcePGfPLJJzRq1AhMLuytk3HWkiWHqps1czbTrHdD6jSvpXUpQgiN1KgbQKeRrVn14Z9alyI04KyRg757FvHx8dStW5dPP/2Udu3aaV1WmZFQWUZq1arFRx99RN++fXPXsmychqN+OirS9VFdZKVks+6LLQx7rD+KLAYgRLU0dGpftvywm5TzaVqXIsqRioqjbgaO5qnk5OTQpUsXPvnkE+rWrat1aWVKQmUZslgsvPzyy4wbNw4AZ50s7C1TUA0ygae62LXkAHqjnvYjWmldihCinDXr3ZAadQPY9N1OrUsR5UjVu+j+fHOc9TIBGD16NG+++SY+Pj4aV1b2JFSWMZ1Ox9ixY5kxYwYeHh6oATZs7RJxedu1Lk2UA5dTZel7axn4UE+8a1TeXRKEENfGw9vMsGn9Wf6/dbKEUDXi8rRTc7SZDRs2YDAYePrpp5k8eXKVWTLoaiRUlpO+ffsye/Zs6tSpAx4u7G2ScIZmSXd4NXDuUBz7Vx9l2GNVc2C2EOJygx7pxZk95zix9YzWpYhy4gzORtc9k3PnzlGzZk0+/PBDRowYoXVZ5UpCZTlq2LAhc+bM+WecZcN01JYZsp5lNbB2zmZqN61F8z4NtS5FCFHGItqF0ax3Q1Z+sEHrUkQ5UBUVe8M0HE3TsFqtdO7cmc8//5wWLVpoXVq5k1BZzry9vXnllVeYNGkSer0ee0AW9rZJuDylO7wqs2Xb+e3dNQx7/Do8vM1alyOEKCMGk54bnh7Ayg82kJUiq35UdS4PB/XHBeAKzV3QfOzYsbz99tv4+/trXZomJFRqQFEUbrvtNt5//32Cg4NRPZ3Y2yXhkO7wKu3U9ihObY9i8KQ+WpcihCgj/Sd0J/FcCgd+P6Z1KaIMqag4a2Zj6J3FsWPH8PX15e2332bcuHHo9Xqty9OMhEoNtW7dmi+++ILu3buDDpwN03G0SEE1yqDuqmrl+xto2DmcZr2lG1yIqiaiXRjth7Zk6TtrtC5FlCFV76Lniy1xNEkjOzub9u3b8+WXX9K1a1etS9OchEqN+fv78+abb/LYY49hMplwBdqwtU/CGWDVujRRBnIyrCx6fTU3PDVAZoMLUYV4eJu56YXrWTZzLWkJGVqXI8qIy8dGwCgd69atQ6/X8+CDDzJz5kyCg4O1Lq1CkFBZASiKws0338ycOXNo0KABmFw4WqZgb5CGqpPu8KomctdZ9q8+yshnr9e6FCFEKRk2rR9n9pzj0LoTWpciyoCqqDjqpeNsn8qFCxeoU6cOH330EXfffXe17u7+NwmVFUj9+vX59NNPufXWWwFw1c7G1j4Rl6/sHV7VrPlsE77B3nS+qY3WpQghSqjVgCaEt67D8v9br3Upogy4vOzUudsLZ90sXC4XgwcP5osvvqiWs7uvRkJlBWM2m5kyZQrvvvsuNWvWBIsTe+vk3C0epdWyynDYnPwyYyXXPdCDkEbSbSJEZRVQ249h0/qz6LVVWDOlAaAqURUVR3gGrk6pREZGEhAQwGuvvcbzzz+Pp6cMXyqIhMoKqkuXLsybN4/hw4eD8vcWj9JqWaVcOHWRPz7ZxOhXhmH2MmldjhDiGhlMem6bMZwtP+wmal+M1uWIUuTyshN+ny/O8EycTifXXXcdX331Fb1799a6tApNQmUF5u3tzTPPPMPbb7+du/RQXqtlgzRZML2K2LXkADFHznPjMwO1LkUIcY0GT+5LRlIWf83foXUpopSoutyxk65OqZw8eRI/Pz9efvllpk+fXm3XnrwWEiorgW7dujFv3jyGDRuW22pZOxtbh0ScNXK0Lk2UgqXvrqVm/SC63NJW61KEEEXUemBTmnSvz6JXV6LKyKQqweVvJehWA866WTidTvr27ctXX31F//6yxW5RSaisJHx8fHj22Wd57733cvcPN7twNE/F2ToN1STrWlZmtmw7P764lP7juxPWIkTrcoQQVxEcEciwx/vz8/TlZKXKm/vKTjW4sDdJxd4qhdjYWIKDg3n99deZMWMGgYGBWpdXqUiorGQ6d+7MvHnzuOeee9Dr9Tj8srF1TMRRW3bjqcwSziSx7L113P7aCHyCvLQuRwhxBRYfM2PeuJF1X2zh7ME4rcsRJaCi4qyVjcf1Vlw1c1AUhVtuuYVvvvmGXr16aV1epSShshIym8088MADzJ07l1atWoFexdkgHXu7JJnIU4kdXHOMvSsOc8frN2AwybpnQlQ0Or3C6FeGE7n7LNsX7tO6HFECLm87DR+ogaNxGmlpaTRq1IjZs2czdepUmdldAhIqK7H69evz4Ycf8sQTT+Dj44Pq7cDeJhl7k1TpEq+k1s7ZTEZiJiOfHaR1KUKIfxk8qQ96o57l/1undSmimFSDC3ujNBztkzly5Aienp5MnDiRzz77TNadLAUSKis5nU7HyJEj+fbbb7nxxhtRFAVXzZzcLvGwTFRFusQrE1WFX2asolbDIHrd3VnrcoQQf+swoiVNezbkxxeW4nTI6huVjYqKMzQL08BsXCHZqKrK4MGDmT9/PnfccQcGg0HrEqsECZVVhL+/P08++SRz5syhdevWuV3iERm5s8QDc2S8ZSVizbKx4Lnf6H5be1r2b6x1OUJUew07hzPokd4seG4JmSnZWpcjrpHL30qde7xwNEwnIyODxo0b89FHH/H8888TFBSkdXlVioTKKqZJkyZ8+OGHvPDCC9SoUQMsThwtUrG3Tsblbde6PFFEybGpLHh2CSOeGkC9dnW0LkeIaiukcTC3Th/GwpdXcOHURa3LEdfA5WmnzbRw7K1SiIyMxMfHh8cff5zPPvsst/FFlDpFVWWFraoqKyuLb7/9lh9//BGr1QqALsGM4Yw3ilWa+iuDpj0bMPLZQXw5+ScSziRpXY4oBp1ex3/XT+GVfu/jckq3aWXiH+LL+Nm3seazzexdcVjrckQRqSYnjvAM1FArqqpiMBi4+eabuffee/H19dW6vCpNWiqrME9PTx544AG+/fZbhg4dmjveMtiaO96yfjqqQf7AVXTHNp1m7eebufvdUbLUkBDlyOJj5q53RrFj0X4JlJWEqnfhCM9A1ycDV0gOqqrSv39/vvnmGyZNmiSBshxIS2U1cvLkSWbPns2OHX9vKeZQ0Md4oo/1RHHK+4uK7LoHetC0ZwPmTfmZ7DRZbLkykZbKysdkMXLPezdx4XQiS99do3U54ipUXe4kHO92elJTUwFo2bIljz76aO6ye6LcSKishrZv387s2bM5deoUAIpDh/mCL+aLPuSkyzqXFdXwJ66jTrNafPXYQqyZ8nOqLCRUVi4Gk5673h5FZko2v8xYgcspfyIrKlVRcdXKxr+bmYsXc8e7hoeHM2HCBPr27YuiKBpXWP1IqKymXC4X69atY+7cuZw9exYAfz9/MnY50V2woKjyn7GiURQY+dz1BIb5M/+JRdiyZeJVZSChsvLQG/Xc8doInA4XP764TH5eFZSKiis4h+B+XsTF5e5qFBISwtixY7n++utleSANSais5hwOB6tXr2bevHmcP38+984cHYazXujiJVxWNDq9wi3/HYrFz4Pvnv4Vh00Wua/oJFRWDjq9wq3Th2HyNPH9c0vk/1YFpCq5YTJ0gJ+7MSQwMJB77rmHG264AZPJpHGFQkKlAMBms7F06VK+/vprkpL+nmVs1WE455XbcumScFlR6A06bnt1BIpO4ccXlsofvwpOQmXFp9MrjPrPYHxrevPtk4uxWx1alyQuoSoqrprZBPfxdrdM+vr6MmbMGG6++WYsFovGFYo8EipFPjk5OSxZsoQFCxaQmJiYe6dNlzuhJ86C4pIJPRWBwaTn9ldHoNPr+P4/v8kfwQpMQmXFptPruOW/Q/Cu4cV3T/+KNUvGK1cUqi53zGRANw8SEhIACAgI4Pbbb2fUqFGyR3cFJKFSFMhqtbJixQq+/fZbLly4kHun/e/Z4nEyW7wi0Bv13PrSUCy+Hnz3zK8yxrKCklBZcRlMeka/PAyjxciCZ5dgz5E3ZxWBqnPhDM3Gr6PJ3XMWFBTEmDFjuOGGG/Dw8NC4QnElEipFoex2O6tXr2b+/PnExMTk3ulU0J+35C5FZNVrW2A1p9PruOmFwfiH+PLtU4vJybBqXZL4FwmVFZPRbOD212/A5XTJMJIKQjU6cdbOwrOFnvT0dCB3As5dd93FkCFDMJvNGlcorkZCpSgSh8PB2rVrWbBggXspIlTQXTSjj/FCl2HUtsBqTNEp3PjMQGo1DOLbp34lMzlL65LEJSRUVjxmLxNj3riR7PQcfp6+AqddAqWWXJ4OnHUy0dVx4HDkthbXqVOHu+++m8GDB8ts7kpEQqW4JqqqsmPHDr7//nt27tzpvl9JMeaGy2QTCjKpp7wpClw/qQ9NezRg/pOLSIpJ1bok8TcJlRWLT5AXd787irjjCSx56w/5mWhERUX1s+EIy0IN+Gcca+vWrbn99tvp2bMner30hFU2Ev/FNVEUhS5dutClSxdOnjzJDz/8wB9//IHT347DPwUlU48+zhNdvIdM6ilHqgqrPviT9IQMxn10G9898yuxx+K1LkuICiWoXgB3v3sT+1cfZe2czVqXUy2pioorKIeI4TU5efIkADqdjj59+nD77bfTsmVLjSsUJSEtlaLE4uPjWbhwIUuWLCEzMxMAxalgSvTGdNEHW5J0LZWn1oOaMuyx/ix8eQUnt0dpXU61Jy2VFUPdVqHc8cYNbPhyG9t/2ad1OdWOanbiDMnCp7WJlJQUADw8PBg+fDijR4+mdu3a2hYoSoWESlFqMjIyWL58OYsXL+bcuXPu+3UpZgxxnuhSzNI1Xk7qd6zLrS8NZc2czez+7aDW5VRrOr2OF9ZM4tUBH0qo1EiL/o0Z/nh/lr67hiMbTmldTrWhouLys+EIyYQgOy5X7us/ODiYUaNGMXLkSHx9fTWuUpQmCZWi1LlcLnbu3Mkvv/zCli1byHuJBQQE0K1bNzp27IiXl5fGVQohhCgLOTk57Nq1i61bt7r35Abo0KEDN910Ez179pTJN1WUhEpRpmJjY1m8eDHLli1zLxGBC/SJHujjPdGlycSesuTpb2H0y8Nw2B0snL5SlhzSgLRUasPoYWDkc4MICPXjxxeWkhqfoXVJVZqKiuptx1EzC2M9lZycHAA8PT0ZMmQIo0aNIiIiQtsiRZmTUCnKRU5ODmvWrOGXX37hxIkT/zyQrUd/wYI+3gPFJjP9yoLeoGP4E9dRr20dFjy7hIvRyVqXVK3ImMry51fThzFv3khSTAqLXlsli5qXIdXgwlkzm/ABwURGRrrvr1+/PjfddBPXX3+97HxTjUioFOVKVVWOHTvG0qVL+eOPP8jK+ntNRRV0SSZ0FyzokmTsZVnoems7+t3fjd/eWcPh9Seu/gRRKiRUlq9GXepx0wuD2bFoPxvmbUX+wpU+FRXV34YzJBtdiNO9tqTZbKZfv34MHz6ctm3boijye7y6kVApNJOdnc369etZtmwZ+/fv/+cBmw79BQ90CRZ0WTLupjSFt6nN6JeHcWjdCX7/eCNOh4ScsiahsnwoOoV+93el06g2LHp1NSe3ndG6pCpHNTtw1sqhRicv4uP/WbKsadOmjBgxggEDBuDt7a1hhUJrEipFhRAVFcWyZctYuXKle7kJACXDgC7eA32CB4pdusdLg1eAJ7e8NASTh5Gf/ruc1Ph0rUuq0iRUlj0vfwu3vDQUk6eJn/67jNQL8pouLarBhSsoB2fNHFRfu/t+Hx8frr/+eoYPH06jRo00rFBUJBIqRYVit9vZtGkTq1atYuvWrTidf69xqYKSYkIf74Eu0SwLq5dQbqtONzqNas2vb/zO8c2RV3+SKBYJlWUrol0YN/93CEc2nGD1R9L6XhpUnYor0IqrZjZKsNP9e1in09GhQweGDx9Or169ZC9ucRkJlaLCSklJYf369axatYpDhw7984BTwZhqwZTsjSHdQ2Y0l0DDLvUY9Z/rObrxFKs//BO7VSY0lDYJlWVDb9DRf0IPOgxvydL31so44RLK2zbRWTMHj/q6f8a7A02aNGHQoEEMGDCAoKAgDasUFZ2ESlEpxMTE8Pvvv7N69ep8C6t7eXqRHenM7R5PNaGoMjD8Wnn6W7jx6YEEhQew8JWVxB2X7R1Lk4TK0hdUL4Bb/juU7LQcFr++mrQEWS6oOHKDpB1njRz8W1lISkpyPxYSEsKgQYMYNGiQLAUkikxCpahUVFXlyJEjrF69mnXr1pGcfMnyOHYFXZIZ3UUPdCkSMK9VhxEtGTSxN5sX7GLTdztxOeVXQ2mQUFl6FAU639SW6yb0YMNX29j6426Z3X2N3C2SQVb8Wnjk+x3q4+PDddddx6BBg2jVqhU6nQwzEtdGQqWotJxOJ/v372fdunX8+eef+d5l41DQJUrAvFaBYf7c9J/r0Rv1/Prm71w4dfHqTxKFklBZOmrU9efGpwdi9jKz6LVV8tq8BqryT5D0aWoiNTXV/ZiPjw+9e/emX79+dOzYEaPRqGGlorKTUCmqBKfTyYEDB1i7dm3BATPZlNuKmWxGcci778IoOoUuN7Wl3/hubF+4jz+/3o7T7tS6rEpLQmXJ6PQK3W/vQO+7u7BpwU42fbdLvo9FoOpduPxtuGpY8W5kIi0tzf2Yn5+fO0h26NBBtkwUpUZCpbiiPXv28NVXX+F0Orntttvo3bs3a9as4eeff8b0/+3de3RU5aH38e/ek8kk5EK4BAhCEu4Bk3ARgkVeak0VlGN1SRG73r7nqK3nfVtvrZdqW11dS5fLnmJXXVa07aqtx1oX6NJiPbVFj3KgIjdBIZGEm5AASYCQAEkmySSz9/vHzOyZyYWLA0yS+X3W2mvv2c9+9jzzkGR+7Muzk5P5yU9+wsiRI9m4cSN/+tOfWLx4MYsXL453s52AuXbtWtatWxcdMG0wTrkxGzy4Tngw2vXHtDdZOZnc+HApmdnp/PU//ptD5bXxblK/pFD55Y2cMJybHr0Wf6fFX//jfY4fbDh7pQRme/xYQ9vxD20naYRNR0d4CKCsrCwWLFjA1VdfzYwZM/pUkOyv3zXSXd/5qZI+pb29nVWrVrF8+XLndEhnZyevv/46zz//PJWVlbzyyis8/PDDbNy4keeff55f/epXfeIX3eVyMWPGDGbMmMH9999PZWUlGzZs4KOPPuLAgQPYWR34szrwj2/GaHEFjmA2eDCa3HqST4STtaf50wN/YeYN0/jW099g94Yv+O/ffETLydZ4N00GuJR0D1/7zpUUL5zKuj9uZvObn2FbOv7RVeB5252B4X+GtmOnh0dv6OiAyy67jPnz53PVVVdRWFjYp4JkSH/+rpHu+t5PmPQJ5eXleDweHn30UVJSUnjggQdoampi3LhxuN1uioqKeOGFFwAoKSnh7rvv7pO/5KZpMm3aNKZNm8Zdd91FTU2NEzB37NiBlebHn+bFP9YbuNHnZDJmowezMVmDrQd9+u4uKj/6gtJ/v4q7X/1X/ucPm/jk7Z26kUcuOMOA6ddP4+v/9yq++OQQL/yfP9F0oiXezepT7CQLK6sda4iPIdPSOHEifPTWNE0KCwu56qqrmDdvHrm5uX3+UYkD5btGAhQqpUeNjY3U1tayYsUKtm3bxh//+EcWLlzIoEGDnG1CA+LOnz+f+fPnx6up52X06NEsXbqUpUuX0tTUxKZNm9iwYQObN2+mpaUFK7sdKzsw7qXRnBS4FvOkB+O0O6Fv9mk93cZ/PfMB298p44YHrmHWvxTy7rNrqd5ZE++myQCRM3kEN/zwaySnunnjZ+9S9dmReDepT7CxsTM7AtdHDmmHTD+hq9ZOnGgjNTWVkpIS5s2bx1e+8hWysrLi2+DzNFC/axKVQqVEWbVqFRs2bGD27NkUFRXhdruZNWsWr776KhkZGVED4rpc/ftIXkZGhjMOW2dnJ7t27WLz5s1s3bqVyspK7PRO/OmdgaOYfoOk5hTcp1PpPGZgtLoS8lR5ze5jvPT/VjJz8eXc+sRiDn1eywe/3UB9dePZK4v0IGtUJtfcNY+Jc/NY/59b2PLWjoS/9tT2+J2jkal5SbS0RByttWH8+PGUlJRQUlJCUVFRv3yyTSJ91yQShUqJsmzZMpYtW8apU6d44oknANi7dy+jR49mzJgxHDx4kI6ODiorKxk/fnycW3vhJCUlUVxcTHFxMXfddReNjY1s3bqVLVu2sGXLFk6ePEnn4FY6B7fCWKDdxDyVHJhOJmO0J84fPduG7f/1OeUf7GHebVfw3d/cRtkHu1n3x000N3jPvgMRIDXDw//61xJm/Ush294p49ffepnWpsR8Opad7Mca7AscjRzsg5RwqG5paSczM5PZs2dTUlLCnDlzyM7OjmNrL4xE/a4Z6HT3t/Tqrbfe4sMPP8Q0TR599FFGjx7d4x15A51lWezdu5ctW7bwySef8Pnnn+Pz+aI3ajMD12MGg6bhS5yQmT5sEFfffiWFpVPY/OZnbHp9e8KGg57o7u9oyaluSpbMYN5ts9i76SBrf7+Rk3Wnz15xALHdoRDZgT3Yh50aPWSXy+Vi6tSpztHIKVOmDOijdfquGTgUKkXOU3t7O+Xl5Wzfvp1PP/2UiooK55qfEMPrwjjtxjydHLges23gny4fnjuEq++8kgkleWx5c4fCZZBCZYATJpfN4lB5DWv/sIm6vcfj3ayLzsYGj4WV6cPKDIbIQdF/L0zTZPLkycycOZOZM2dSXFwcdU2hSH+hUCkSI6/XS1lZmRMy9+zZg2V1CQ8+E/O0G6PJHTiS2ZI0YG/8yc4fyoJ/m8ukuflseeszNr7+Ka2n2+LdrLhJ9FDpGZRMyZLpfOXWWVSX1bDu5c0D+vnyzjA/mR3YGYEgiSf6390wDCZOnOiEyOnTp5Oenh6nFotcOAqVIhdYU1MTZWVlzlRZWdn9dLkfjObwkUyzOWnADWHkhMsr89nxj11sev1TGmsT6zQnJG6ozBiextxvzuSKbxRS9dkR1r28ido9A+/IpJ1kYad3YGV2YGX68Ixy0dYW/Z8ol8vF5MmTKSoqori4mBkzZpCZmRmnFotcPAqVIheZz+dj9+7dlJeXs3PnTsrLy6OevetoMzGbg0czm90YzUkY/v7/SMkhowdz5a0zmbFoKvu2VLFx5XYO76qLd7MumUQLlSMnDGfebbMoWDCRzz/cw8ZV2wfMk3Bs0w4EyPQO7IwOrPROSO3+CNP09HQKCwspKiqiqKiIgoICUlJS4tBikUtLoVLkErNtm+rqasrKyigvL6eiooKDBw/S7VfRDl6b2ezGbHKT4k/D1ZbsnDZvbe5fp5RTMzzMvrmYkiUzaKw5xZY3d1Cxft+Af654IoRK02Uwed54Sm6ZzqiJ2WxdvZOtf9nRL0cDSE0PhD/bsPGn+GhztQRDZCdGhtX90hYCT64pLCx0gmR+fj6m2f//QyhyvhQqRfoAr9fL7t27qaiooLKykoqKCo4ePdptO9M0yRk1mrwxeWxetSNw2rzFjdHZf77AXG4XhaWTmX1TMUPHDObTv+1i21/LaKzp4ejtADCQQ+XgERnMuvFyZi4uxHuyla2rd7JzTQUd7Z1nr9yH2C4LO60TK72Tef97JtWHqzhSe4TOzu6fY9iwYUydOpWCggJnnpGREYdWi/Q9CpUifdSJEyecgFlRUcGePXt6Pm0OgXEzW5Iwmt2Bm4BakvrFHeejJmZzxU1FFH19Ckd21bH9b5+z+6P9dPoGztHLgRYqXW4Xk67MZ+YN08ifNZZda/fyyV/LONIPLmlw7sRO68BO7wwEybSOqHEhI6Wnp1NQUBAVIAfCGJEiF4tCpUg/Yds29fX17Nu3j71797J371727dvHkSO9PM7OAqM1GDC9LgxvUmDqg2EzOdVN0denMP36aYwYN4yK9fvYuaaCg58dwbb695+ogRIqc4tGU3xdAZdfM5nGmlPs+EcFO9ZU0Nbc94aNCoRHP1aaHzu1E3tQaPKDq+efp1GjRjFx4sSoKScnp88/O1ukL1GoFOnnWlpa2L9/f1TQrKqqor29ly97i3DA9LoCwbMtOLfi/wU6JCeTousKmL5wKm5PEmUf7GbX/+yjpqKO/vjXqj+HylGTspn21YkUXVuAYRjsfK+Cne9XUl/VNx7LaRs2dqofOyUQGJ3wmNoJvQym4Ha7yc/Pd4LjpEmTmDBhgk5hi1wACpUiA5Df7+fo0aMcOHCAAwcOUFVV5cx7DZsA7WbgueZO0IxYjsO4mqMLRlJ8bQEFCyZgukwq/7mfyvX7OPjZkX4T0PpTqDRMg7GFOUz96kQK5k8gyZNE5T/3U/Z+JYfKauIS6m3Dxk7xh8NjanjZSLW73+AWlJycTG5uLvn5+eTl5TFu3Djy8/MZPXo0SUl6QrHIxaBQKZJAegqbhw8f5vDhw71frwlgEwicbS6MdldgHrGMz7zop9RzJo9g6oIJFCyYSMawNPZtPsi+LVV8sbWaphMtF/W9Y9HXQ2VaVirjZ+cyoSSPiXPzaG/xUfnP/VSs38+RXbUXPUja2JBsYXv8gfDosYLzQHg0B9k93nHttD8tjTFjxpCXl+cEyFB4HMiPNhTpixQqRQSA06dPOwHz0KFDUXOv9yxDw1hAu4ukTjemLwnT58LoSKLztB98Lox2E/zGBQuew8ZmMbEknwlz88iffhmNtafZv7WK/VuqOFRei6+144K8z4XQ10JlUrKLMZfnMKEkjwlzcsnOG0r1zhr2b61i3+Yqjh04cUHfz3ZZ2MkWJPtxZ7qwkjuxkv1YyZ34kzqwPX44y+AFqampjBkzpscpKytL1z2K9BEKlSJyRrZt09DQwJEjR6irq6O2tpa6urqoqeuzz3vkB8PnChzx9LkwfCa0B+ZGhxk42tlx/uHT5XYxtjCHiSV5TCjJIzt/KEf313OorJbqsiNUl9XQfCJ+4yXGO1QOykolt2g0Y4tyyC26jJxJ2Zw4fDIQwrdWU73jyHkPAWRjB254SQoExkBotLCTg0cagyHSTrYg6exfMS6Xi+zsbEaNGuVMOTk55OTkMGbMGIYNG6bgKNIPKFSKSEz8fj/19fXdAmd9fT3Hjx+nvr6epqamc9+hBXREB02jwwyv6zQxOo3wvMOMut7Tk5bMmMtzyA2GqMumjaKl0UvtnmPB6Ti1e47R0nhpgualDJWDBqcwatIIciaPIGdyNjmTR5A5IoOaijqqy2up3nmEw+W1tDZFX1drG8GAmBQxd1vYbqvbPLTc240wPUlLS2P48OFkZ2eTnZ1NTk4OI0eOJCcnh1GjRjF8+HBd5ygyAChUishF19bWRn19vRM0Q1No3cmTJ2lsbDz7afbe+OkeNjsDRz1N2yR9cDpZ2ZkMHTWE4ZcNZUTucPAbNB9vpeWYl9N1LZw8cpqG6tOcPtYEF/CmpIsRKtOHD2J43hCGXDaYzNHpZI4aRPqIQbg8Jseq6zl+6AT1RxpoPHaS0w1NWFjgigiNrugQeT4BMZLH42HIkCEMGzaM4cOHO1N2drYzHzZsGIMGDbogn1tE+jaFShHpM9rb252A2djYyMmTJ2loaHCWGxsbaWpqoqmpiebmZpqams54E8eX5TJdmKYL0zAwbBMssDvB9tvYnWB12lh+O/AozdBfUNsI3NAEgXkwmBoYFF03hbL3KwOnjQMrI+Y2BKuaLgPTbWAkGZhJgbnhCt4BbdjYtoXf8tPZ6Sf8ZheGYRikpaWRkZFBRkYGgwcPZsiQIWRlZfU6T01NvaBtEJH+TaFSRPoty7Lwer1O0Ow6tba24vV6aW1tPetyf/1TaJomqamp5zRlZGSQnp7uBMfI5bS0ND2vWkRiolApIgnPtm06Ojrw+XzOPDT1tL6jowPLsrAsC9u28fv92LbtrOs6GYaBaZqYphm1HPk6NE9KSsLtduN2u0lOTu5xHloOTbqJRUT6AoVKEREREYmZznWIiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMyS4t0Akb7Atm3a2tri3QwRkfOSkpKCYRjxboYIoFApAkBbWxsLFy6MdzNERM7LmjVrSE1NjXczRACd/hYRERGRC0BHKkW6SN4yAsMO/n/LMDFMAwwTTAMMA8MMlQXXGwaYBkZoG6fMcOo4E0SsC+/TqUO4jm0Y4f/2RezDWR9RL3KdHdyNU2YChNYbTlmojh1c55RDeB9mcHunTvR7RNUhuM7soSxqe6LaGF5ndCvrVofoOlHlhOv09l5Rr3tpR7c6Z9qvs96Oqt91f055xL7s4Hq61MOwI+oHyo3IMmfbUJnt7NOI3D643jDs8I9fcH34x8N2yk1s53WgDMzg60BZ4HWonlNm2BiE65nBdc6E7dQzDaLWh+tY4W2xMQ0LV6gs+Dq8L8vZnyti/y4C612G1aWehSu0T8Lv52xPeH8mgfomgfcPlAX25wquM7BwheoTaoeFCwL1CLxP6LOFXgfeyw4uEyyzMYP94sLABFzBf2wTI7jOwGUYmME/BgYGHT4XS+4ahUhfo1Ap0pXfCP55JxAqCQbA4Ld1uMwAM5ygjEBCC+4klDzM8HK3tGF2TzyG0X37yP3RZfuosq7LEduEwmREqOy2LiIERr7u2sTo7XuoY56hrLeP0dN+e6t3pvXn/F7nt88eQ2xUvQscKnsqp+tr29l3ZDsi3zO6TpcQ6pRFlts97M/u4b3sqCkyVIaDanDqraynsEkojBIV9EKvXUSXBUKlFQ5lRmQoCyybhhEIfME5zrLh1AsHWHAZ4bkLIgJgD2XB/QVe28FQajshMlDPPmuojNyfK1hmEr0uFGDN4OcW6Yt0+ltEREREYqZQKSIiIiIxU6gUERERkZgpVIqIiIhIzBQqRURERCRmCpUiIiIiEjOFShERERGJmcapFOnKZWPbgQGPA+MuGhFzo8uA5KF5xDKR6+yI5TOUhdZHDFoYHqKaXtaH53bUMlH1bAA7tD68TxsDbJy6keXOPqIGV4xsSw+v7agmdemPXqau255t7Eh6WX+2sjONRXmmsshPeMZ6PY03GTnZvbSx98HPo8eWjChztv3yg5+H2xExTiVffpxKm3A927CjJwLzQBlR6y1nf1b4fbDBsCLG07Sjym3DcvZH1P6D89B7BV+bwW1Cc6DbOitibEjLCM8twuNUWsF1Br2NU2k4A5a7CP+bhV6bwTpdx74898HPjeA/i0GHr6ffS5H4U6gU6cJXcizeTbg4Qt/ZMegaZ0Ug+kfLimdDvrTIn2ydwBP5svTbIwK0tbXFuwkiIiL9mo5UigAej8dZfvvtt0lJSYlja/qftrY2brrpJkD992Wo/2KTyP2XSJ9V+j6FShHAMMIndFNSUkhNTY1ja/o39V9s1H+xUf+JxI9Of4uIiIhIzBQqRURERCRmCpUiIiIiEjOFShERERGJmWHbdowj14mIiIhIotORShERERGJmUKliIiIiMRMoVJEREREYqZQKSIiIiIxU6gUERERkZgpVIqIiIhIzBQqRURERCRmCpUiIiIiErOkeDdAJN68Xi8rV65k3bp11NXVYZomY8eO5ZprrmHJkiW43e54NzEuTp06xYYNG9i2bRt79uzh6NGj+P1+srKymDJlCosWLWLBggVn3EdDQwOvvfYaGzdu5OjRo3g8HsaNG8eiRYtYvHgxhmFcok/TN7z66qv87ne/c16vX7++123Vd2EtLS2sXr2ajz76iMOHD+P1esnKymLMmDFMnz6dpUuXkpGR0a2e+lDk0tITdSSh1dXVcd9991FXVwdASkoKlmXh8/kAmDRpEs8++2yPX1gD3de+9jX8fr/zOjk5GZfLRWtrq7Nu7ty5PPnkk6SkpHSrv3v3bh566CFOnToFQGpqKj6fz9nnnDlzePrpp0lOTr7In6RvqK6u5s4773R+tqD3UKm+C9u+fTtPPPEEDQ0NALhcLlJTU2lubna2eemll5g0aVJUPfWhyKWnUCkJy+/3853vfIcvvviCYcOG8dOf/pTZs2djWRZr165l+fLleL1e5s6dy/Lly+Pd3EtuwYIFTJ06leuvv56SkhJGjx4NQG1tLa+88gp/+9vfALjuuut47LHHouo2Nzfz7W9/m4aGBnJzc3nssccoKCigo6ODd955h+eff57Ozk5uvvlmHnjggUv+2S41y7K49957KSsr4/LLL+fzzz8Heg6V6ruwsrIyHnjgAdrb25k9ezZ33HEHl19+OaZp0t7ezsGDB1m/fj2LFy92fj5BfSgSL7qmUhLW3//+d7744gsAnnzySWbPng2AaZqUlpby0EMPAbB582a2bdsWt3bGy7PPPstvf/tbbr755qgv7JycHB555BG+8Y1vAPDee+9x9OjRqLorV66koaEBj8fDL37xCwoKCgBwu93ccsst3HnnnQC88847HDp06BJ9ovh58803KSsr49prr2XOnDln3FZ9F9DW1sZTTz1Fe3s7X/3qV3nmmWcoKirCNANfWx6PhylTpnDXXXdF/XyC+lAkXhQqJWH94x//AGDmzJkUFhZ2Ky8tLSUnJydq20Qya9asM5YvXrzYWd69e3dU2Zo1a4BAH3b9wge45ZZbSE1Nxe/38/7771+A1vZdNTU1/P73v2fw4MHce++9Z91efRewZs0aampq8Hg8PPjgg06YPNe6oD4UudQUKiUhtbW1UV5eDsCVV17Z4zaGYTB37lwAtm7desna1l9EXotmWZazXF1d7Ry5DPVfV4MGDaK4uBgY+H27fPlyWltbufvuu8nKyjrjtuq7sFAwnD9//ln7LZL6UCR+FColIVVVVTlBaNy4cb1uFypraGjg9OnTl6Rt/cVnn33mLI8fP95ZDl1SAGfu21CdgwcPXvC29RXvvPMO27ZtY/bs2SxatOis26vvAnw+n3P0e8aMGdTU1PDzn/+cJUuWUFpays0338yPf/xjNm3a1K2u+lAkfjSkkCSk+vp6Zzk7O7vX7YYPHx5VJzMz86K2q79oamri1VdfBaC4uJjc3Fyn7MSJE87yufRtS0sLXq+XQYMGXaTWxsfx48d58cUX8Xg8zvW5Z6O+C6irq6OjowOAY8eOcccdd9Da2orb7cbj8dDQ0MCGDRvYsGEDN910Ew8++KBTV30oEj86UikJyev1Ossej6fX7SKHyomsk8gsy+Kpp57ixIkTJCcn84Mf/CCqXH0b8Mwzz9Dc3Mwdd9zR43V9PVHfBTQ1NTnLf/7zn3G5XPzsZz9jzZo1vPvuu7zxxhuUlpYC8Pbbb/PGG28426sPReJHoVJEzstzzz3Hxx9/DMAPf/hDJk6cGOcW9T3vvfceGzduZNKkSdx6663xbk6/E3mNrmVZPPjgg5SWlpKUFDi5NnLkSB5//HFnbMpXXnmFzs7OuLRVRMIUKiUhRZ7qam9v73W7tra2HuskqhUrVvDWW28BcM8990TdAR6S6H3b2NjIr3/9a1wuFw8//LAThM5FovddSORnGjFihHNUMpJpmixbtgwIPP1pz5493eomch+KxINCpSSkyGsljx8/3ut2kddeRtZJRC+++CKrVq0C4Hvf+16vR+CGDRvmLJ9L36alpQ2oL/Xf/OY3nDp1ihtvvJHc3Fy8Xm/UFHlELbQudP1govddSOS1kJHX63aVl5fnLIeeiqU+FIkf3agjCSkvLw/TNLEsiwMHDvQ6rNCBAwcAGDp0aELfpPPCCy+wcuVKIBAov/Wtb/W6beSd4AcOHCA/P7/H7UJ36fZW3l/V1tYCsHr1alavXn3GbUN3hH/zm9/kvvvuS/i+C8nMzCQ7O5vjx4+f8/O5Q9upD0XiR0cqJSGlpKQ4A55v3ry5x21s22bLli0AZ30KykC2YsWKcw6UEDiyNHLkSKD3vm1tbWXnzp1AYvdtV+q7sNBnq6qqorenCVdVVTnLoQcVqA9F4kehUhJW6CjRp59+yq5du7qVr127lpqamqhtE82KFSucU97f//73zxooQxYuXAjAhx9+6By5i/SXv/yF1tZWXC4X11577YVrcB/w3HPPsX79+l6n22+/3dk2tO6+++5z1iVy30W6/vrrgcCQQh9++GG3csuynJ/N7OxsJk+e7JSpD0XiQ6FSEtaiRYsYP348tm3z+OOPO8/3tiyLtWvXsnz5ciDwVI4rrrgink2Ni8hrKO+55x5uu+22c6572223MXToUNra2njkkUecgaw7OjpYvXo1L730EgA33ngjY8eOvfCN78fUdwHTp0/n6quvBuCXv/wlH3zwgXM96tGjR3nyySfZu3cvAN/97nejHuOoPhSJD8Pu7byCSAKora3l/vvvdy7yT0lJwbIsfD4fAJMmTeLZZ58lIyMjns285I4ePcrSpUuBwF22Z3tM3rJly7odxdy9ezcPPfQQp06dAgJ32Pp8PicYzJkzh6effjrqcY+J4A9/+AMvv/wyEDhS2RP1XUBrays/+tGP2LFjBxB4NKjH44kax/L222/nzjvv7FZXfShy6SlUSsLzer2sXLmSdevWUVdXh2EYjB07ltLSUpYsWYLb7Y53Ey+52tpaZ7iWc9HbF3tDQwOvvfYaH3/8MceOHSM5OZnx48ezaNEibrjhhqijS4niXEIlqO9CLMvi3XffZc2aNRw4cACv18uQIUMoLi7mlltuoaioqNe66kORS0uhUkRERERipv+miYiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISs/8Pb5bYec6bJQoAAAAASUVORK5CYII=\n", "text/plain": [ - "\u001b[38;5;46m08:28:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016437\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.9906\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=516287;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550790;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" + "
" ] }, "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" - ] - }, { "data": { - "text/html": [ - "
08:28:27 INFO      trial values: 0.99985,0.0016432,0.99075 -> logL = 166772.752            joint_likelihood.py:1013\n",
-       "
\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAAC+8UlEQVR4nOzdd3xUVf7/8de909MTCL33XkRAEUQFV8S6trUXYFGxgmXd7+pPXXfXVVd37bu6unbFrggiijQB6R1CDRBqQnqdds/vj8kMKTOTkDYpn+fjkQfJ5OTczyQwvHPOPedoSimFEEIIIYQQtaBHugAhhBBCCNH0SagUQgghhBC1JqFSCCGEEELUmoRKIYQQQghRaxIqhRBCCCFErUmoFEIIIYQQtSahUgghhBBC1JqESiGEEEIIUWsSKoUQQgghRK1JqBRCCCGEELUmoVIIIYQQQtSahEohhBBCCFFrEiqFEEIIIUStSagUQgghhBC1JqFSCCFq4YknnkDTNDRNY/HixZEup974n+M555wT6VKEEI2UhEohRCAwBHvTdZ24uDj69+/PjTfeyHfffRfpcpulsuE02JvNZqNt27acc845/OUvf+HIkSORLlkIIcqRUCmECEspRX5+PikpKXz44YdccsklnHPOOWRmZka6tBbF5XKRnp7OkiVLeOyxx+jTpw/vvvtupMsSQogAc6QLEEI0Ll999VW5jw3D4MSJE/z66698/PHHlJSUsGTJEi655BJ++eUXdF1+N61rv/vd77j22mvLPVZcXMzevXv57LPP2Lx5M4WFhdx22220adOGCy+8MEKVCiHESRIqhRDlXH755UEfnz59OrNmzWLMmDHk5+ezcuVK5s+fz+TJkxu2wBagX79+IX8O//d//8f06dN56623UErx+OOPS6gUQjQKMsQghKi2QYMGMW3atMDHS5YsiWA1LZOu6zz33HOYTCYA1qxZQ1FRUYSrEkIICZVCiFPUr1+/wPt5eXlB29x6662BBSb79+8H4JNPPmHy5Ml06tQJi8VCQkJCpa8rKCjgH//4B+PHj6dt27ZYrdbA4pQXXniBwsLCKutLSUnhueee49JLL6VHjx5ERUVhs9lo3749kyZN4rXXXqOkpKTaz/fLL79k0qRJtGnTBofDQY8ePZg2bRpbtmypdh91LTExkTZt2gQ+zs/Pr9TmnXfeCfwM3nnnnbD9nUrbqhw5coRZs2bRt29fHA4HycnJjB07ln//+994PB7g1FaS//rrr9x5550MGDCAhIQE7HY7Xbp04Xe/+x1z586tVa1CiLol099CiFNy4sSJwPtdunSpsr3T6eTSSy9lzpw5YdstX76cq666imPHjpV7PD09PbBA5R//+AdffPEFZ555ZtA+3nvvPW655Zagnzt27BjHjh3jhx9+4IUXXmDOnDn0798/ZD1ut5sbb7yRTz/9tNzjqampvPXWW3zwwQe8+eabYZ9TffF4POTm5gJgt9vLBcxI+umnn7jqqqsCtQGUlJRw4sQJli9fzscff8w333xTrb6KioqYNm0aH3/8caXPpaWlkZaWxqeffspFF13Exx9/TGxsbJ09DyFEzUioFEJUW0lJCR9++GHg44kTJ1b5Nffffz/z58+nd+/e3HTTTfTu3ZvCwkJWrVoVaLNu3TrOP/98iouLATj99NO5/vrr6dChA0eOHOHDDz9k3bp1HD16lIkTJ7J8+XKGDRtW6VpFRUVomsaIESM4++yz6du3L4mJieTl5XHgwAFmz57Nrl272Lt3LxdeeCEbN24MOmIKcOeddwYCpd1u57bbbuPMM89EKcWyZct49913mTp1Kueff/4pfAfrxscffxyY8p4wYQKapjV4DRVt2bKFSy+9NPAzHDlyZOBneOjQIT744AOWLl3K9OnTq+zL5XJx/vnns2LFCsD3y8t1113HwIEDsdls7Nmzh/fee4+dO3cyd+5cLr/8cn788UdZNCZEpCkhRIsHBN4q8nq9KiMjQ82ZM0eNHj060O7WW28N2d8tt9xSrs9rr71WOZ3OoG29Xq/q169foO2DDz6oDMOo1GbmzJmBNgMHDlRer7dSX1u3blX79u0LWZfX61X/+Mc/Av088cQTQdstWrQo0CYxMVFt3LixUptff/1VxcbGlnueixYtCnntqjz++OOBfh5//PFKny8uLlbbtm1Tjz/+uLLZbApQ8fHxatOmTUH7+9///hfo73//+1/Ya1enrf/z48ePD/r5MWPGBNrcd999lX6GHo9H3X777eW+X6H6mjVrVqDNHXfcEfTvjsvlUjfffHOg3auvvhr2OQoh6p+ESiFEuf/oq3obOHCgev755yuFhrLKhsouXbqooqKikG2/+uqrQNsxY8aE7NcwDHXGGWcE2n7zzTc1fr7jx49XgOrZs2fQz19yySWB67z//vsh+3n99dfrJVRW9RYTE6OuvvpqtWPHjpD9NWSoXL16deDzgwcPVh6PJ2gfLpdL9e3bN2xfR48eDYTmCRMmhK3b5XKpHj16KED16tUrbFshRP2TuQIhxCmxWCzY7XYMw6hW+ylTpuBwOEJ+vuy+mA899FDIqVxN03jooYeCft2p8t+TuXfv3nL3iIJvin/+/PkAtG3bluuuuy5kP1OmTCExMbHGddSUyWTCbrejlGrwawfz7bffBt6/6667AivTK7JYLNxxxx1h+5o9ezZOpxOABx54IGxbi8XC7373OwD27NlDamrqqZQthKhjck+lEKKcYGGtoKCAlJQUZs+ezcaNG7nrrrv47LPP+O6774iOjg7b39ixY8N+fvXq1YAvNE6YMCFs24kTJ6JpGkqpcvdkVvTTTz/xySefsGbNGg4ePEh+fj5erzdo28OHD9O6devAx5s2bcLtdgMwfvz4kAEJwGq1ctZZZ9X50ZXBNj/3eDwcP36cpUuX8tVXX/H+++/z2Wef8cEHH3DllVfW6fVP1dq1awPvV7Wiu6rPL1u2LPB+eno6X3/9ddj22dnZgfdTUlLo3r172PZCiPojoVIIUU6oTbcBHn/8caZNm8Z7773H4sWLueeee3j77bfD9tehQ4ewnz969CgA7dq1q3IFb1xcHG3btg2s5K4oNzeXa665hgULFoTtp6yK2yKVPVO7V69eVX59ddqcqnCbn991112sWbOGCRMmkJ+fz4033sjgwYPp06dPnddRXf6fIVBlqOvRo0fYz/u3oALf1lSnIisr65TaCyHqlkx/CyGqzWKx8MorrxAXFwfAu+++y8GDB8N+Tbipb/CNggJVjnj6+dsF25vx6quvDgTK2NhYrr/+ep599lnef/99vvjiC7766iu++uqrwJQpUGkEs+xemFFRUdWupyGNHDmSBx98EPBN1z/33HMNXkNZ/p+h2WzGarWGbVvV96vsdkSnyj/CLISIDBmpFEKcktjYWM4880x++OEHDMNg8eLF3HzzzTXuLyYmhtzc3GqfCuMPfRVHNZcuXcqPP/4IwNChQ/nxxx9JTk4O2sfy5ctD9l829FSnpupsyF4ffvOb3/D4448DsHDhwlr1Vd37Y0Pxf888Hg9utxuLxRKybVXf05iYGMAXUIuLizGb5b8pIZoKGakUQpyyVq1aBd4/fPhwrfpq37494Nuc3D/iFUp+fj7Hjx8v93V+P/30U+D9v/71ryEDJcCBAwdCfq7sdP2ePXvC1lPdNvWhqp+BzWYLvO9yucL2VXGx0qkq+7OoarHMvn37wn6+Y8eOgC+g7ty5s1Z1CSEaloRKIcQpKxtCqjNFHM6oUaMA32jZzz//HLbtwoULAyue/V/n5w+bAD179gzZh8vlYvHixSE/P3To0MBI29KlS0Mu8PH3FW7Usz5V9TMouyq9quAfbtFTdZx++umB98N9b6vz+bPPPjvw/pdfflmbsoQQDUxCpRDilOTl5bFy5crAx+GOOqyOK664IvD+888/H7KdUop//OMfQb8OygervXv3huzn9ddfJyMjI+Tn7XY7kyZNAnyjp7Nnzw7Z9p133im3+rgh/fDDD4H3g/0MBgwYEHh/0aJFIftJTU2t9er1yy67LPD+q6++GjKIu91u/v3vf4ft69prrw2E+n/961/lFk4JIRo3CZVCiGpzu93MmDEjsEimffv2VW4RU5VLLrkkEIqWLl3KH//4x0r7LyqlePjhhwOjggMHDuSiiy4q16bsyOWf//znwF6HZX333Xc88sgjVdY0c+bMwPv33nsvW7ZsqdRmzZo15fbNbEirVq0qF8Cvv/76Sm26dOkSCJbLli0LevZ6RkYGV111VZXT41UZOXIkY8aMAWDz5s088MADlX6GhmFwzz33kJKSEravLl26cNdddwG+1dwXXHABu3fvDtneMAx++ukn/vKXv9TqOQghak/ugBZClBNsX8DCwkJSUlL45JNPAvcQ6rrOq6++WuVq36rous7777/P2LFjKSkp4e9//zs///wz119/Pe3btw+c/e3fC9HhcPDBBx9UOuf5t7/9LZ07dyYtLY3Vq1czYMAApk6dSo8ePcjJyWHevHnMmTOHqKgorrjiirBTq+eeey5Tp07lrbfeIjMzk1GjRjFlypTA2d+//PIL77zzDkopJk+ezLx582r1PagoJSWl0s/B4/GQnp7OkiVL+PLLL/F4PIAvTN9+++1B+3nooYe47bbbALjyyiuZMmUKZ599NkopNmzYwP/+9z9ycnK4+uqr+eyzz2pV87///W9Gjx5NcXExL774IitWrOCGG26gffv2HD58mPfff58NGzZw1VVX8fnnnwOEPKv72WefZePGjSxevJitW7cyYMAALrvsMsaPH0+7du1wu90cP36cTZs2sWDBAo4ePcqECRN49NFHa/UchBC1FKmjfIQQjQencEwjoJKSktTs2bND9lf2mMbU1NRq1bB06VLVtm3bsNdt166dWr58ecg+Vq9erZKSkkJ+fXx8vPruu+/KHYkY6mhFl8ulrr766pB92Ww29d5771Wrr+o4lWMa/W+XXHKJysrKCtvvlClTQn691WpVb775Zp2c/a2UUgsWLFBxcXEhrzdu3DiVkZER+PjSSy8N2ZfT6VQzZsxQuq5X63tx8803V+fbLISoRzL9LYSoksPhoGPHjkyaNIl//etf7N69m2uuuaZOrzFu3Dj27NnDs88+y7hx42jdujVms5nWrVszbtw4/vGPf7B79+7ANGswI0eOZNOmTdxzzz306tULm81GfHw8gwYN4g9/+AObN2+uNG0eisVi4dNPP+Xzzz/nN7/5Da1atcJms9G9e3emTJnCmjVruOmmm+rq6VdJ13USEhIYOnQo06dPZ+nSpXz77bdVHhP51ltvMXv2bCZMmEBiYiI2m41u3boxZcoU1q5dy7Rp0+qsxvPPP58dO3Zw//3307t3b+x2O61atWLMmDG8/vrr/Pzzz+Xut0xKSgrZl9Vq5dVXXyUlJYVHHnmE0aNHk5ycjNlsJioqiu7duzN58mT+9re/sXnzZt599906ex5CiJrRlGokh8cKIYRo9ubOncvFF18M+BZmzZo1K8IVCSHqioxUCiGEaDCvv/564P3aLvISQjQuEiqFEELUiWXLloU8nUcpxRNPPMHcuXMB396Wp512WkOWJ4SoZzL9LYQQok706tULp9PJ5MmTGTZsGMnJyTidTnbu3Mnnn3/Ojh07AN/9qitXrmTEiBERrlgIUZckVAohhKgTvXr1CrvxPEBCQgKffPIJF1xwQQNVJYRoKBIqhRBC1In169czb948fv75Z9LS0khPT6e4uJjExET69+/PpEmTuOOOO0hISIh0qUKIeiChUgghhBBC1Jos1BFCCCGEELUmoVIIIYQQQtSahEohhBBCCFFrEiqFEEIIIUStmSNdgBBCNDSlFC6Xi+LiYoqLi3G5XOXenE5n0MfcbjderzfwZhhGuT8rPgagaRqapqHreuBj//u6rqNpGgAmkwmr1YrZbMZisWA2m8t97H/zP26327Hb7TgcjnLvm83ysi6EiAx59RFCNDkej4f8/Hzy8vLIy8ur9H5BQQHFxcUUFRVRWFhIUVERRUVF5R7zer2Rfhr1wmw2lwubDoeD6OhoYmJiiI2NJSYmJuib/3NxcXE4HI5IPw0hRBMkWwoJISLO7XaTnZ1NdnY2WVlZ5f70v5UNj0VFRXV2bbPZ7HszmTGZTKV/+h6zmM1YrKWjhDYLVqsVFL43NJShwABlcPLx0jcNDaWgKLeI6KQosg7nommg6Rq6SUM36WhmDbPFhMliwmTxfayZAA1cThfOYiclxS5cJS5cTheuEjdulxu3242hvChdEZ3koKSkpE5Dss1mIyEhgfj4eBISEiq9+R9PSkqiVatW2O32Oru2EKLpklAphKg3hmGQnZ1NRkYGGRkZpKenB94/ceJEIDjm5eWdct+apmGz2rBZbVjNViy6FZNmxoQZzauDR8NwK4wSheE08BQpvCVevCUGUdFRJLVLpG23ZNr1TKZ11ySSOsZjGIqsQzlkH8kl63Aueen55J8oIP9EIfknCinIKsTrCX62dSi6Sef/Lb6XP5/zEoa3el+rm3RikqKIbR1NbOsYYltFE9cmhsQOCSR1iiepQwJmq4nso3mcOJDFsT0ZHNuXQfqBDLKP52JoBugKTAplUmAywKxQZgVmw/eY2Qh8jEmR0DGO/Px8PB7PKf8sYmJiaN26Na1bt6ZVq1bl3i/7scViOeW+hRBNh4RKIUSNlZSUcOzYMY4ePcqRI0c4duxYIDT6g2N1Q4qmaUTZo7Bb7VhMNixY0L1mNLeOUQzeIgNXvhdXjhtnrhvD6RsNrEpCuzg6DWxHpwHt6di/LW17tsbj9pK+L5Pj+05wfO8JMvZnkpWWQ2FOcW2/JZXUJFRWhyPOTqtOCSR3S6JNz9a07dGatj1bY3VYSE/N5PD2YxzacYxD246RdSinWn0qfEEUs4GyKJTFAIsR9E9lUdjizTidzmr1rWkaSUlJtGvXjrZt29K2bVvatWsX+Lhdu3ZERUXV4jsihIg0CZVCiJC8Xi/p6ekcOXKEo0ePVnrLysqqsg9/WHTYorDpdkxeC5pLxygEV64XZ5abkixXtUNiOLpJo32fNnQb3pnOg9rTaWA7zBYzh3Yc4/D2oxzafoxjuzPIP1FYq+ucWk31EypDiU6Mol3vZDr2b0unge3p1L8dgC9gbj1K6oY0Dm8/Xie1+EOoshpg9aKshu9928n32/VtTWZmJi6Xq8r+YmNjA0GzU6dOdOrUiY4dO9KxY0eSk5MDC5yEEI2ThEohWjilFDk5OaSlpZGWlsbBgwc5dOgQaWlpHD58GLfbHfbrrVYrMY5Y7CYHZq8VSnQ8uQYlmW6K0l0YRQpN1S4shtO2Z2u6n9aZ7qd1ouuwThTlFrN/wyEObj7CoW1HyUzLJpKvcg0dKoNJ6hhPp4Ht6Ty4A92HdyIuOYYDm4+Quj6N1HVpHNudXq/fI4XyTb/bvSib7w27F2UzUDYvMe0d5Ofnh+3DarXSoUOHQMj0B87OnTvTpk0bCZxCNAISKoVoIbxeL0eOHCE1NZXU1NRAiExLS6OgoCDk15lMJmKiYnGYozB7LahCHXeOl5LjbkpOeMCj1XqE8VSYrSa6j+hM3zE96DOmO5pJJ3XdQVLXpZG6/hA5x079/sz61BhCZUWxraNLg3hnepzeGZPZxK6Vqexakcq+tQdxFYf/RaI+KJMRCJnYvb4A6vDQcWhbjh49GvY2CofDQZcuXejatSvdunUL/Nm+fXvZYkmIBiShUohmxjAMjh8/HgiP/rcDBw6EnILUNI1oRwzRlmjMXhsU6rhOGBQdceLONRo0NAbjiLXR7+xe9BvXk+6ndSZjfya7VvhCUH2PstVWYwyVFbXp0Yo+Y3rQd0x32vVpw4FNh9m5bC/bl+yhMLvuVtrXlEKBzUA5PKVh04uye+g0vB1HjhwJGTgtFgudOnUKBM0ePXrQs2dPOnbsKCObQtQDCZVCNGHFxcXs2bOH3bt3s3v3bvbt28f+/fspLg6+4MRsNhMfnYBDi0IrNuPOMig8VIIz00AzIhscK7JFWek7rgeDJvSl+/BO7N9wiB3L9rJ7RSr5mQ13T2RtNYVQWVZUgoPeo7vRf3wvepzehbStR9j28y52LNlDcX71FuU0JKWVTqtHeXxhM8qDivJgbWUKuYjIbrcHAmavXr3o1asXPXr0IDo6uoGrF6J5kVApRBORm5sbCI+7du1i9+7dpKWlEeyfsK7rxEcnYNei0ApNuDIMCtOcePNrvximPukmnT5jujPkN/3oNbobh7YfZevC0kCTVxLp8mqkqYXKsmzRVvqN68mg8/rQbXgnUtensXnBTlKW7cHjatybx/tHN43SkOl/s7TSQ47Yt2/fPhAy+/btS9++fWnVqlUDVy5E0yWhUohGKD8/n5SUFLZv387OnTvZtWsX6enpQdtGOaKJtcVjddpwn1AUHHTiyvLW6+KYuta6SyLDLx7I0Av6k3+ikA3ztrF90W4KsiI/9VpbTTlUlhUVb6f/2b0YeuEAWndJZMuPKaz/bhvH956IdGmnRKF8I5rRHlS0GxXtoVXfeDIyMoK2T05Opl+/fvTt2zfwZ3x8fANXLUTTIKFSiAhzu93s3buX7du3s2PHDnbs2MHBgweDto2LjiPaFAsFZkoOuSk65AKXqYErrhtmq4lBE/py2iWDSO6WxJYFKayfu41ju4P/595UNZdQWVZytySGTx7I0En9yT2ez/rvtrJ5QUpEFvjUFWU2UNEejNKg2WV0Ow4cOBB0JqB9+/b069ePfv360b9/f/r16yenCgmBhEohGlx6ejpbtmxh27Zt7Nixg927dwedjouLjiPGHI+Wb6YozU3hQafvpJgmLi45htMvH8KISwdx4kA2a7/ezI6ljX86taaaY6j0M5l9tyucftkQOvRvy4a521jz5SayjzauFfg1pXQDFePBiHGjYjy0H96Kw4cPV2pnMpno3bs3gwYNYtCgQQwePJjk5OQIVCxEZEmoFKIeKaU4cOAAmzdvDrwdO3asUjub1Ua8LRG90ErJYQ9FB9xonqYfIMvqNLA9Z1w9jN5ndmf7ot2s+mJjsxuVDKY5h8qyWndNZPSVwxjym36krj/Eqs83kLr+UKTLqnPKZKBi3BixHlSMm8S+MWRmZlZq17Zt20DIHDRoED179pTtjUSzJ6FSiDrkdrvZtWtXIEBu3bqV3Nzccm00TSMxJgmHEYMnXZG3p6TRL6CpjZ6jujLuppG06pTA6i83sW7OVorq4TjExqqlhEo/e4yN4RcNYPSVwynMLmLZB2vY+cveRr3tU20EFgTFujDi3PQ6pzN79uzBMMr/rB0OB4MHD2bYsGEMHz6cvn37SsgUzY6ESiFqwev1snv3btavX8+6devYsmULJSXlVymbTWYSHImYi+wUH/RQnOZpFtPY4Wga9Du7F+NuGokj1s4vH65l0/ztzXaKO5yWFir9dJPOoIl9GHfjSJSCXz5Yw9aFOzG8zf+/HKUbqFgPRpwLFesmqou10gEDEjJFcyShUohT4J/OXrduHevXr2fjxo2VjpezWe0k2BPRcizk73HizqjfYwobE02DAef24ZzbzkAZBss+WMO2n3e1iCARSksNlX6aBv3G9WTcTaNwxNlZ+u4qNv2wo0X9nVAo35ZG8W6MeBexPe2VZjDKhsyRI0fSu3dv2aBdNDkSKoWowokTJ1i9enUgSFa8f8pqsZJgT0LPtpK/y4k7SzXbqexwep/RjfN+PwaTxcSi/64gZVnznfI8FS09VJbVa1RXzvv9GKwOCz//dyU7luxukX9HKobMmB428vLKL26Kj49n5MiRgbfWrVtHqFohqk9CpRAVeDwetm7dyq+//sqqVavYu3dvuc+bTGYSHUnouVYKdjnxZDbs2deNTZchHZgw/SzikmNY9PZKtvy4E2XIy4qfhMrK+o/vxXnTxuB2uvn5jRXsWX0g0iVFlD9kGvFuVIILWye90qlY3bt3Z+TIkYwaNYqhQ4dis9kiVK0QoUmoFALfNj+rV6/m119/Zd26dRQWnjwG0L+wxlYSTeEeFyWHjBYznR1OYod4fnPXODoNbM/Sd1ax/ruteD0SmiqSUBmcbtIY8pv+nDPlDDLTsvnh5aWkp1ZeRd0SKU2hYt0YCS76XNCFlJSUcvtlWq1WhgwZwpgxYxgzZgwdOnSIYLVCnCShUrRIXq+X7du388svv/Drr7+Smppa7vN2q504UxKeQ1Cwu/lt71Mbtigr424exemXDWb1l5v45YM1TXrT6/omoTI8s9XEmb87jbOuO53NC3aw6O1fm+yRnPVFmQ2MBBdGgpNWg2Mrnf7TrVs3xowZw1lnncWAAQMwmZrmgQii6ZNQKVoMp9PJ2rVr+eWXX1ixYgXZ2dmBz2maRmJ0EuY8B/kpTrxZLXtKOxhNg2GTBzLh92M4sPkwP77+CznNZJPr+iShsnpiW0Uz4faz6HNmd5a8s4o1X2+W71cQ/mMmjUQnQ67szebNm/F6T+6qEB8fzxlnnMGYMWMYOXIkMTExEaxWtDQSKkWzlpuby4oVK/jll19Ys2ZNue1+rBYriZbWuA9rFOx0yWhkGG17tuaShyZgtpr5/qXFHNhY+VQREZyEylPToV9bLrx3PBaHhTnPLeTw9sqHBYiTlMnASHRhJDmJ7mkptxuFyWRi+PDhjB8/nnHjxpGUlBTBSkVLIKFSNDsnTpxg8eLFLF26lM2bN5fbhDjKHk2MO57CXR7cx5B7I6tgsZkZf+toTr9sCEve/ZVVn29sUVvB1AUJladO02D4xYOYePtZbP1pJwvfWIGzqPJRpqI8hULFuTGSnHQc05qDBw8GPqdpGkOGDGH8+PGcffbZtGnTJoKViuZKQqVoFjIzM1myZAk///wzW7ZsKXdTe3xUArbCaPK2OTFydJnWrqaeI7tw8YMTyNifydwXFpF7PL/qLxKVSKisuZikKC64Zzxdh3bk+38tYsfSvVV/kQgw7B6MVk56X9iJlJSUcp8bOHAgZ599NuPHj5eFPqLOSKgUTVZ2djZLlixh0aJFbNy4sVyQTIpuhSnLQd62EiiSm9ZPhS3KyqR7x9PrjG58/6/FbF+8O9IlNWkSKmuv1+huXDTrXI7sPM7cFxa1qGM+64qyefG2KmHAZd3ZunVrudfLPn36MGHCBCZMmCAjmKJWJFSKJiU/P5/Fixfz888/s2HDhnJT2wlRSejpNgq2u9FcEiRrovtpnbjsj78hbcsR5v1zEcX5zkiX1ORJqKwbVoeF38wYR79xPZnz3EJ2Lt8X6ZKaLGXxYrRyMvjqXmzatCnwOqppGkOHDuX8889n/PjxxMXFRbhS0dRIqBSNntvtZtWqVfzwww+sWLECt/vk9jUJUUmYMu3kb3OhlUiQrCmLzczEO85i0MS+zH1+kYxO1iEJlXWr16iuXPrI+exdc4D5Ly3BWSj3WtaGMhsYrUsYcEV3Nm/eHHjcbDYzevRozj//fMaMGYPdbo9glaKpkFApGiWlFDt27GDBggUsXLiw3Dm58VEJWHOiyd3iRCuWIFlb7Xolc9UTF5KZls2c5xZSkFUU6ZKaFQmVdc8eY2PyzHPoOrQjnz/5PWlbjka6pGZB2bx4W5fQbWLbcieJORwOzj77bC644AJOO+00OZNchCShUjQqx44dY8GCBSxYsKDcykW71UGMM4H8zW7IlyBZV0ZePoQJ08/ip//8wtpvtkS6nGZJQmX9GTyxL5Nnncvyj9ax/MM1LfIc8fpiRHkwkotJHhnHsWMnt3Vq164dkyZN4sILL6R9+/YRrFA0RhIqRcS53W5++eUX5syZw9q1awOPm01mEk2tKdzhxXNUNiOvS/YYG5f+YSJturfis8fncXzviUiX1GxJqKxfSZ0SuPrJyRTmFPPVX36gMFtG2uuSwndkpLdNCVG9TRQUFAQ+N2LECCZPnszZZ58tZ5ELQEKliKCDBw/y3XffMX/+fHJycgKPJ0W1xjhopmi3F80r0yx1rWP/tlz1xGQObDrMvH8ukiMW65mEyvpnspj4zYyxDDi3D1/++XtS1x+KdEnNktIVRqsShl7fm3Xr1gUej4mJYeLEiUyePJm+ffuiaTIA0FJJqBQNyul0snjxYr777js2bdoUeNxhdRBVEE/+Zo8suKlHwy8ayG/uGscPLy9l4/fbI11OiyChsuH0G9eTS/8wkWXvr2Hl7PWRLqdZUzYv3jbFJI+OLTc93rt3by6//HImTpyIw+GIYIUiEiRUigZx4MABvv76a3744YfA9ImmaSRaW+NMUbgPy6bk9clk1rngnvH0GdOd2X+aw9FdGZEuqcWQUNmwWnVO5LqnL+HIznTmPPsTbqcn0iU1awqFindzzqzTWbJkCS6XbzV+dHQ0kyZN4rLLLqNbt26RLVI0GAmVot54vV5WrVrFF198wZo1awKPR9misefGUrDZI/tJNoDoxCiu+fNkDEPx2ePzZOPoBiahsuHZoq1c8egFxLWJ5ZP/myOnQTUQZTbwtimm3bh4Dh8+HHh8+PDhXH755YwbNw6z2RzBCkV9k1Ap6lx+fj7z5s3jq6++4siRI0DpqKSlNSU7kEU3Dahdr2Su+/ul7FiyhwWvLZNQEwESKiND02D8rWdw+uWD+fTRuRzcciTSJbUYCoVKcHHGnYNZvnx5YHP1Vq1acfHFF3PZZZfRunXrCFcp6oOESlFnUlNT+eKLL1iwYAElJSUAWM1WYooTKdxioDvlN9SG1HNUV6549AJ+fH0ZG7/fEelyWizdpPPowrv5y4RXJFRGQL+ze3LJQxOY+8Iiti+STf0bmmH14m1bRNwQK1lZWYBvY/WJEydyzTXX0KtXrwhXKOqShEpRK0op1qxZwyeffFJuO6BYWxyk2Rl95kgmTBsbwQqFEEJE2s9vrWDRd0sZcE3Xcif3jBgxgmuuuYbRo0fLpurNgIRKUSMej4dFixbx8ccfs2fPHqB0itvcmqKtCiPDt/BG0zXZXqIBaRqcN20Mgyb24eM/fkv6vqxIl9TiyUhl45DYIY7r/n4pBzYe5vsXF2N45b++hqSUQhm+77kR42bcrGEsWbIEr9cLQJcuXbjmmmu44IILZM/LJkxCpTglRUVFzJ07l88++yywjYTZZCbWmUThBgPNKQtvIkU36Vz+f+eT3K0VHz38DfmZhZEuSSD3VDYmjjg71/71YpxFLj59bC4elzfSJbVoyubF274Ie1+NwkLf61V8fDy//e1vueqqq4iLi4twheJUSagU1ZKdnc0XX3zBV199RX6+byWlzWLHnhVH8TaF5pFpi0gyW01c/eRkrFFWPn7kW9nQvBGRUNm4mK0mrnpiMvZYGx//4VucRa5Il9TiKZOBt20xyWNiAoMVDoeDyy67jGuuuUYW9TQhEipFWCdOnOCjjz7i22+/Pbn/mDUGPc2Bc6+GZsjUdqRZHRaue/pSXCVuPvt/MvrS2EiobHz8o/qtuyTxwYNfUZRbEumSBL5V40ZrJ90vacPu3b5FVVarlQsvvJDrrruODh06RLhCURUJlSKo48eP89FHHzF37txAmIyzxuPZacEjG5U3Go44Ozc+dzlZh3P46q8LJLQ0QhIqGydNgwvvP5duwzvx/qwvyT8ht4s0FgqFkeii3+86sXXrVgBMJhMTJ07kxhtvpGvXrhGuUIQioVKUc+zYMT744APmzZuHx+M7iSLOkohrq46RYZIw2YhExdu5+V9XcmjrUeb+c1HgJnjRuEiobNwmTB/DwHP78M69n5OXURDpckQZCoWKczNsaq/AARq6rnP++edzyy230KlTpwhXKCqSUCkASE9P591332XevHmB1XjxlkScm3WMTAmTjY0j1uYLlNuOMveFRZEuR4QhobLxO3fqmQya0Id37vlcFrg1UkaMm1F39Wf58uWAb+Tyggsu4Oabb5Zp8UZEQmULl5OTwwcffMDXX38dmOaOtyRRskmDLNmsvDGyx9i45cUrObzjOHOfX4j8C27cJFQ2DROmj6H/+F68c+/nFGQWRbocEYIR42bEHX349ddfAV+4nDx5MjfffDNt27aNcHVCQmULVVhYyOzZs5k9ezbFxb6zoOPMCTg3mSBbwmRjZY+xcfM/r+DYngzmPPuTBMomQEJl03H+nWPpM6YH7973OQVZEiwbMyPWxbBpJ6fFLRYLl19+OTfddBMJCQmRLa4Fk1DZwjidTr766is+/PBDcnNzAYi1xOHaYkadMMs0dyNmdVi4+Z9XkHEgi2///qMEyiZCQmXT8pu7xtFrVFf+d/dnFOc7I12OqIIR52LQLd3YsGEDANHR0Vx//fVcffXV2O32CFfX8kiobCGUUixcuJA33ngjsA9YtDUGI8WG94jcM9nYmcw61/39UpxFLj5/4ntZlNOESKhsei5+cAJte7TivVlf4i7xRLocUQWFQiW46Pbb5MBWRK1bt2bKlClMmjQJs1lm3xqKhMoWYPPmzbz66qvs2LEDALvFgSk1Cvd+CZNNgabBbx+dREyrKD586Bu8btmHsimRUNn0aLrG1U9OxmIz8/Ef58jPrYlQKIzkElqPjwoMnnTt2pU777yTM888U44MbgASKpuxQ4cO8e9//5ulS5cCvuMU7enxuHaaZNPyJmTSPePpMrQD79zzuZyU0wRJqGyazFYTNzx3OXkZBXz91x/kdpMmRGkKb/sioofp5OXlATBq1CjuvvtuunXrFtnimjk5W68ZKioq4rXXXuPmm29m6dKlaJpGnLMV+ooE3DvMEiibkLE3nE7vM7vx4YNfS6AUogF5XF4++eMc2nRvxfl3jot0OeIUaErDfCSakh9sXHfddVgsFlavXs1tt93GSy+9FDhqWNQ9CZXNiFKKH3/8kRtuuIFPPvkEj8dDnJaIZX0SzjVmNLcp0iWKUzDw3N6ccc1w3n/gKwpziiNdjhAtjrPIxYcPfc2Ac3pz+mWDI12OOEWaV+fLu35GWxnH2LFj8Xq9fP7551x//fV88803gQM+RN2RUNlM7N27l3vvvZennnqKzMxMHOYobDuTcC6zohXKTcpNTcf+bbn4oQnM/tN35BzNi3Q5QrRYBVlFfPSHb5gw/Sx6jOgc6XJEDWglZtb8fTeWrQl069aN3Nxcnn/+eaZPn862bdsiXV6zIqGyiSsoKODFF19k6tSpbNq0CZNuIupEEt4lMZBhiXR5ogbi28Ry7dOXMu+FRaRtPRrpcoRo8dJTM/nyqflc9cRkWndJjHQ5oob0HBtHPijCvDeW2NhY9uzZw4wZM3juuecC916K2pFQ2UQppVi8eDE33ngjX3zxBYZhEOtNxLQqEW+KBU3JfZNNkdVh4bpnLmXdt1vY8tPOSJcjhCi1+9f9LHlnFdc/cxlR8bL/YVOloWE6GoXzRzsXXnghSinmzJnDjTfeyPz585G1y7Ujq7+boOPHj/Ovf/0rcAZqlDka7xYbZMrIZFN3zVMXoQzF50/Mk9WmzYSs/m5eLpp1Lq27JPH+A19ieOUfaVNnxLnoeGk8+/fvB2DYsGHMmjVLVonXkIxUNiFer5cvvviCm2++meXLl6NrOlGZiXiWREugbAbGXDeCVp0T+frpBRIohWik5r+0BJPVxHm/PyvSpYg6oOdZOfJhEabUGGw2Gxs3bmTq1Kl88MEHspCnBiRUNhGpqancfffdvPjiixQXFxOtxWJal4h3h1WmupuB7qd1YtyNI/n0se/kBA8hGjGvx+Czx+YydFJ/+p/dM9LliDqgKQ3z4WjUL7GcccYZuN1u3njjDe644w727NkT6fKaFAmVjZzX6+Xjjz9m2rRpbNu2DbPJguNwEu5lDvQiWdXdHMQlx3Dl4xfy9dMLyEzLiXQ5Qogq5GcW8vkT87j0D+fTqrMs3GkuNKeJ9f/Yh3lnHLGxsezatYvf//73vP3227jdsk9wdUiobMTS0tK45557eP3113G73cQY8egr4zFSLXK8YjOhm3SufnIyG+ZuY+cv+yJdjhCimg5sPMzS91bzu79ejMUuv+A3FxoapgwHzp9sjBs3Dq/XyzvvvMO0adPYuVMWT1ZFQmUjZBgGX3zxBVOmTGHr1q2YdTP2/Ym4VtjQXLKBeXNy7rQz8XoNfv7vykiXIoQ4RStnryczLZtJ94yPdCmijmluE6ue3ol5RzwJCQmkpqZyxx138MEHH+D1eiNdXqMlobKRycjI4IEHHuDFF1/E6XQSZcSir0pAHbLK6GQz0/20Toy4eBBfPjUfZcjKHCGaom+f+YneZ3RjwDm9Il2KqGMaGqZMO0XzLYwfPx6v18sbb7zBfffdx5EjRyJdXqMkobIRWbZsGbfddhvr1q3DpJuxH0rEs8KB5pTRyeYmKt7Obx+dxJznfiIvvSDS5Qghaqg4r4Qv//IDFz8wgfg2sZEuR9QDzaOz8q87MO+KIyoqis2bNzNlyhS+//572deyAgmVjYDT6eSFF17gT3/6E3l5eURpMeir41H7ZXSyubr0D+eza0UqO5bujXQpQoha2r/hEGu/3cIVj12ApstrdnOkoWFKd+BZEsXgwYMpKiri6aef5oknnqCgQAYG/CRURti+ffuYPn06X3/9NQCOzHg8v0Shl8iN383VaRcPpFXnRH54eUmkSxFC1JHFb/+KyWLirOtGRLoUUY80p4mdrx9n+vTpmEwmFi1axLRp00hJSYl0aY2ChMoIUUrx3XffMX36dFJTU7GabFi2JWLssMu+k81YfJtYzr9zHF//7QfcTtmPUojmwvAafP23BYy9YSTJ3ZIiXY6oRxoa7978Dfq6eNq3b8+RI0eYMWMGX3zxRYufDpdQGQFOp5NnnnmGZ599FpfLRZQnFlbEoWdbI12aqGeXPDyBdd9u4fCO45EuRQhRx04czGbp+6u57I+/QTfJ4EBzpxdYyPzSw7hx4/B4PLz44os89thj5OfnR7q0iJFQ2cD8v9HMmzcPDQ370QQ8vzrQ3PKjaO6GTx5AfNs4Fv/v10iXIoSoJytnrwelOOOa0yJdimgAmldn1dM7Me2NxWw2s3TpUqZNm8bu3bsjXVpESJJpQCtWrAj8ZbPoVsxb4lF7bbIYpwWIS47hN3edzTdPL8Djkj3OhGiulKH4+ukFnH3TKFp3kdN2WgINDfPRKLS1cbRr146jR48yY8YMFi5cGOnSGpyEygZgGAZvv/02jzzyCAUFBdi90Wi/xqHn2iJdmmggk2eey/q5Wzm0/VikSxFC1LMTB7L55cM1XPqHiWgyZtBi6AUWsr72MnLkSJxOJ08++SSvv/56i9osXUJlPSspKeGJJ57gnXfeAcCRE4/xa7ScjNOC9D2rB+16J7P4bZn2FqKlWPHJeuwxNoZOGhDpUkQD0jw6m/55gOuuuw6Ajz/+mIcffpi8vLwIV9YwJFTWo/T0dO6++24WL16MpulY9yVgbJXV3S2JxWbmwvvOYf5LS3CXyGpvIVoKw2vw3fM/c/6dY3HEyqxUS6Kh8eVdP2NOicdms7FmzRqmT5/O/v37I11avZNQWU+2b9/O7bffzq5du7BoFsyb4tGOyAtLSzPu5lGkp54gZZlsci5ES3Nw8xF2/7qfCdPPinQpIgJMJ+wYv0bTrl27wCLdDRs2RLqseiWhsh4sXryYe++9l8zMTGzKgbY6Hj1PtgtqaVp3SWTUFUP5/l+LI12KECJCfnz9Fwac25uOA9pFuhQRAXqh7z7LgQMHUlBQwAMPPMD8+fMjXVa9kVBZx7744gsef/xxXC4X9pIY1K8xcnZ3CzXpvnNYOXs92Udbxr00QojKCrOLWPTflVw081xZtNNCaR6d3W9mcO655+LxePjb3/7G22+/3Sw3SpdQWUeUUvz73//mxRdfRCmFLSsWY20Umle+xS1Rz1FdSe6axPKP1ka6FCFEhK2bswWz1cSgiX0jXYqIEM3QWP7UNq6//noA3nnnHf72t7/h8TSve+2bXOLZt28fM2bM4J577uHhhx+mqKiIhQsXcuedd3Lfffdx/LjvpJKVK1cyY8YM5s6dW+81+X/z+OijjwCwHopDbXfI/pMtlKZr/GbGOBa+uVz2pBRCYHgVC177hQnTz8JslZmrlkpD44sZCzHvjsVkMvHDDz/w6KOP4nQ6I11anWlyobJLly689tprvPzyy/Tv359ly5bx6aef8tJLLzFt2jTee+89wBcqX3nllXo/5L24uJhHHnmEH374AQ0Ny544tP0SKFuy4ZMH4PV42bKgfv/uCSGajj2r9pOZls3oq4ZHuhQRYabjUWibY7FaraxYsYIHH3yQgoKCSJdVJ5pcqDSbzYH3S0pKaNu2Ld27d8disTB48GD27dsHwKhRo7jrrrvo27f+phsKCwt56KGHWL16NSbNhGlbPPoxR71dTzR+VoeFc6eNYcGry2iGt8sIIWphwavLGHvj6UQlyP8TLZ0p24ZaG010dDSbNm3ivvvuIzs7O9Jl1VqTC5UAa9asYerUqWzYsAGTyURUVFTgc/6d68eOHcvrr7/OxRdfXC815OfnM2vWLDZv3oxJM6NvjMOULVsGtXRn/u40juw4xv4NhyJdihCikTm+9wQpS/dy9s2jIl2KaAT0PCuuX2wkJCSwe/du7r777sAtfE1VkwyVI0eO5K233uKcc85h06ZNFBUVBT5nMtX//So5OTncf//97NixAzNm9PVx6PmyZVBLZ4+xccY1w/n5vysjXYoQopFa/PavDJ88gLjkmEiXIhoBvdBC4U8m2rZtS1paGvfffz/p6emRLqvGmlyodLlcgfejo6NxOBzs378ft9vNli1b6NGjR71ePysri/vuu4/du3djxoK2Pg690FKv1xRNw5m/G86+NQc5vvdEpEsRQjRSuen5bF6QwtgbR0a6FNFI6CVmsud46dChA4cPH+a+++5rssGyyYXKtWvXcs8993Dfffexfv16LrroIq6++mruvfde/vvf/3LzzTfX27Vzc3OZOXMmqampWLCirYtDL5JAKcARa2PUlcNY/D8531sIEd6y99cw9IJ+xLeJjXQpopHQXCZOfOOiffv2gWCZkZER6bJOmaaa4+6b9SA/P5+ZM2f6jl3EirY2Fq3EXPUXihbhvN+PIbFDPF88+X2kSxGNjG7S+X+L7+XP57yE4TUiXY5oJC68/xxMJp3vnv850qWIRkTZvLS61MLRo0fp2LEjL730EsnJyZEuq9qa3EhlJBQVFfHwww+za9cuzFhgnQRKcZIjzs6oK4ay5B0ZpRRCVM8v769h8Pl9iW8ro5XiJM1pIvNbN+3atePw4cPMmjWL3NzcSJdVbRIqq+B0OvnjH//Itm3bMGFG2xCLXiyBUpw08rdD2Lv6ACcONP3tIIQQDSM/s5DNC1I485rTIl2KaGQ0p4msOR6Sk5M5cOBA4KCXpkBCZRher5cnn3zSt3WRZkLfKItyRHlmq4nRVw5j+cfrIl2KEKKJWTl7PcMmD8ARK9vRifI0p4mc+Qbx8fHs2LGDRx99tNxC5cZKQmUISilefPFFfvnlF3RNR98Uh14ggVKUN3TSANJTMzmS0rT3FhNCNLysw7nsXXOA0y8fEulSRCOkF5spWmLC4XCwdu1a/vrXvwb24m6sZB43hI8//pivv/4aAHNKHKZCO8iRraIMTdcYc+1p/PDKUnST/H4mgvP/3ZC/IyKYlZ+u59q/XsKqzzficTXuwCAanl5sw7sOzEPcLFq0iKSkJO67775IlxWSrP4O4scff+Spp54C4KKLLmLs2LERrkgIIYQQLdXmzZv5+OOPAZg5cya//e1vI1xRcBIqK9i0aRMzZ87E4/FgORaNOTUu0iWJRuqmF37Llp92snHe9kiXIiJF006+H+ylVNPQTTqP/nQXf5n4KoYnyEhUVX2IZq/PWd05d8qZ/GfqR5EuRTRiN759MW+++SYmk4lnnnmGUaMa33GfMv1dxvHjx3nsscd8gTI3Cm1PNAayr5yoLLlbEu16JfPRw9/I3oMtlaYBFUJg2VBY4fOG18AwVNg2lfoQLcLOX/Yx6Z7xdBrQjoNbjkS6HNFIvXvLN1zw1AX88MMPPP7447z++ut069Yt0mWVIzf5lHI6nfzpT38iJycHs8uGti0GDa3qLxQt0umXDWbj/O24nZ5IlyIiQQvx2hDq8frqQzQLylCs+3YLI38rC3ZEaBoai/7fBoYMGUJhYSF/+MMfyMnJiXRZ5UioxLfS+7nnnmPXrl2YlBl9UyyaIS/sIjirw8LQCwaw9ustkS5FREJ1Ql+4NrX9etEsbZi7jb5n9SA6MSrSpYhGTFMaKW8cpUOHDhw9epS//OUvjWpFuIRK4NNPP2XBggVoaOhbY9GcssxbhDZ4Yl8OpxwjM002O292qgqDugm0MC+bmo5mruKuomq00Uwm37XCNpLg2ZwUZBWxc0Uqwy8aGOlSRCOneXQyvivBZrOxevVq3nvvvUiXFNDiQ+XWrVt5/fXXATDtjUHPtUa4ItHYjbh0MGu/kVHKZscf0oKFNU3zhUE9XOjUfWFQ09HMIfa0rU6bQFMtdLAMV6tostZ+s5kRlwySH6uokl5k4YEHHgDgnXfeYfXq1RGuyKdFh8r8/Hz+/Oc/YxgG5iwH+lFHpEsSjVxytyQS2sexa0VqpEsRdaka/4v7A6Wma5VHK/1hsexDFUNjsDamyqEx2GPhC5ME0lwc3HQYgC5DOka4EtEUPD/5LS655BKUUjz11FMcPx75QzhabKhUSvHss89y7NgxTB4L+k5ZmCOqNnTSALYu3IXX3XjuYRG1FGpksuz7FUJkuWAZJCwG2pUJlkHbVPjaSqEz2GhlVfWKJksp2PTDDoZO6h/pUkQT8cMjq+jTpw+5ubn8+c9/jvj9lS02VH777bcsWbLk5H2U3hb7rRDVpOkaQ37Tj03zZV/KZqOqeyjDTHsHHbEM1k0V09z+PkIG07LBsrYLgESjt2n+Dgac0xuLTXb8E1XTlMb+D7OIiopiy5YtfPRRZPc6bZFJav/+/bz00ksA6Pui5UxvUS3dT+uMq8jF4R2Rn2IQdaA6U95mS9j7KDVdQ7fbaleHrqE7wt96o+kamqUa93tLsGzyso/kkr7vBH3H9ox0KaKJ0JymwNGNb7/9Njt37oxYLS0uVHo8Hp5++mncbjfmPDumI7J9g6ieoRf0Y9MPOyJdhqgL1QyUvndCv0xqNlv4vnQN3VGN0KlpaNYwodE/mlnVqGdpX6Jp2zhfpsDFqXn+orcYP348Xq+Xp556ipKSkojU0eJC5WeffcaOHTvQlQk9Re6jFNVjspjoO7YnW3+K3G+Aoo6cSqAM18Z2MixqliBTlbqGXraNPUho1LWT2wtVFSxPoTYJlk3bjiV76DasI/aYWo6CixZDQ2PlM9tp1aoVBw8e5D//+U9E6mhRofLAgQP897//BUDfHY3mkv0oRfX0OL0z2UdyyT6aF+lSRG3UNFBWXKhjq/CfvaaVD5YVAqWviYZWdqq8bKAs20/FYBlkpFSCZfNWnFfCwc1H6Du2R6RLEU2I5tHJW+JbqPPll1+ybdu2Bq+hxYRKr9fL3//+d9xuN6ZcG3q6PdIliSZkwPjebF+8O9JliNqo7Qilfwq6YqAs079mMQcNlCeblAbLYIGybD/+YBlu6l2CZbO2ffFuBozvFekyRBOj59i44IILAicFejwNe5RwiwmV3333Hdu2bUNXOqadsTLtLapNN+n0G9eT7Yv3RLoUUVNVhStNr3LqWTPp6LGx4duYzZiSEqtuk5gQvh6TCT0mOnwbvXrT5RIsm6aUZXvpcXoXbFFyIIc4NYueXE98fDz79u1j9uzZDXrtFhEqc3NzefPNNwHQ9sm0tzg13U/rRF5GgRzL2FRVJ1BazGiaBiFWemsmHS06KmyQ00wmtNgYMJl8bYPxf85sRo8LEVB1Hc1q8QXL6BCrwnXNN+pZzfswJVg2PYU5xRzafow+Y7pHuhTRxGgenRkzZgDwv//9j8OHDzfYteskVObn50d0CXtV3nzzTfLy8jAVWzDJqTniFPU5qwcpy/ZGugxRE6cSKCFosAwESr8gwTIQKP3XCxYsTSa0KEe5jysFS3+gLNumYrAsDZQnn6IEy+YqZdle+pwl91WKU/f8RW9x2mmn4XK5ePnllxvsurUOlUuWLGH69Ok89thjAOzZs4eHHnqo1oXVlZSUFObMmQOAvltWe4tT13t0N/as2h/pMkQ90WoStoKNaFbsRw/y8lqTa1Vjg3XRPO1ZtZ+eI7uEP3NeiCA0NLa8eQCTycSKFStYt25dg1y31q9W7733Hm+88Qaxpfca9erVi/T09FoXVheUUrz00ksopdAz7Oh5cm+KODVJnRJwxNk5tP1YpEsRp6qao5SVv+zkaGWlUcqy7UpHBwOjlEGuX/Zry41S+pUdraw4SumnaydHKyuMUpatWUYrm5/MtBxKCpx07N8u0qWIJkgvNnP55ZcD8OqrrzbIEY61DpUWiyUQKP1q9Jt/PVi+fDlbt25FUzrm1CAv+kJUofcZ3di75gDKUJEuRZyKU5z2rvzlvpXcIe+NBF/Ac9jLT3tXVDZwhmmjx8UGD5Rl28REh31tlWDZPO35dT+9z+ga6TJEEzXnoaXExMSwZ88e5s+fX+/Xq3WobN++PWvWrAGgsLCQt99+m169Ir8NgtfrDSzO0Q/ZZXGOqJHeZ3Rj98r9kS5DnIpqBErdagn/y68/DIba9gd8n0tOQsWECZ5mE9624VeDY9JRiXHQKkw7TUOzWdGqWn0uwbLZ2f3rfnqN7hbpMkQTpXl0br75ZsC3vqS4uLher1frUDlr1iwWLFhARkYG1157LUePHg2cQRlJCxcuJDU1Fc3QMR2qYmsOIYIwW010HdqRPasPRLoUUV3VDJRhmUxopaOCmqYFD5ZmM7RK8N03aTahgq3SNpvwtooN1GQkxQW5lu77Wk0Dizl4sNRO7mmpmXQJli3M/g2HaNOjNVHxsreyqJn/3vA57du3Jysri2+++aZer1XrUBkbG8uf/vQnvv32W+bMmcOf/vSnStPhDc3tdvPWW28BoB+MQvPKje7i1HXs346cY3kUZhdFuhRRHXUcKE92WyFY+gNl2etVDJYVAiWAspgwWpUJlmUDpV/FYKlV3iRdgmXL4nZ6OLLjGF2GdIx0KaKJ0pQWGK385JNP6vVc8DBzO+G9//77YT9/00031bTrWvvxxx85evQouseE6UiYqSkhwug6rCP7Nzbc/l6iFuoiUOp6pUB5snsN5Q93FQOlX2mw1JyuSoHSzx8s9ZyCyoHSzx8ss3JCnrqjmXSIjUXl54d8OpqmgdWKcrlCtiltCEruGW7M9m88TLdhnWRrM1Fj/7z0f7S7sh3Hjh3j22+/5ZprrqmX69R4CM/j8eDxeDhw4ADz5s0jNzeX3Nxc5s2bx9GjR+uyxlNiGAYff/wxAFqaA82Q38RFzXQb1okDGw9FugxRlboaoYyNCb8QJtgIZQXKYaWoX9uwbQyHpco2WMyQlBC2ZBmxbDkObDxE12EyUilqTlNaYLDvo48+wul01st1ahwqb7vtNm677TYyMjL473//y913383dd9/Nm2++SUZGRl3WeEpWrlzJgQMHfPdSHpONzkXNmMw6nQa254CMVDZu1VzlrcKNxJlM6LExaMH2lfSzWPC2T8IIc2Sespgo6hSDqmJNoNI0vHad4s5B7rEs08aIj8Jo1ypsX5rZVGWw9LWrxjnhotFK23aU5G5J2GNCnDsvRDW8ePm7tG3blqysLL7//vt6uUatbzbMzMzE4TgZ3ux2O8eORW5PP/8opX7YLvdSihpr37ct+ScKyM8sjHQpoqYq7EMZNFiWBspAOA06HW3B2y4RZdZRuobhqBzQAoHSDIZZoyQ5+C+0yqzjbG0DDbw2LWiwVJqGEWVBmTQMqyl0sPSfAhQmWAaes65VHSxltLLRcpd4OLorgy5DOkS6FNGEaUrj2muvBeDzzz/HMIw6v0atU9fo0aO5//77+eabb/jmm2+YNWsWo0eProvaTtm2bdvYvHkzmtIwHZV7KUXNdRrYjrStkbuNQ1RDuBAUYmPzcsGyYqAM1q8/UJpKH9O1oMFSaRrKfzkNDGvlYKnMOiXJ9pMjmRqoCq/A/kAZOLFHDxEsK9QcLFhWCtESLJu0tK1H6DRANkEXtfP6tR8RHR3NwYMHA9tB1qVah8p77rmHq6++mrS0NA4ePMjVV1/N3XffXRe1nbKvv/4aAC3dJvtSilrp2K8tR1KOR7oMEUoNAqWfUip0oCzbf8VA6VchWCqLieKOFbYtCxIsywXKUobl5GhlpUBZ5nrlgmWoDdvLBMuQ0/0SLJusIynH6SAn64ha0rw6kydPBnyjlXWtxqu/yxo3bhzjxo2ri65qLC8vj0WLFgHIKKWotQ792vLr5xsjXYYIporQEy5QQumxilFR4fuxWvC0D7MZua6hAE+8HWeS7eQoZbkL+YJlcTvf65EyARVnm0qnwYu6xGHLLAl+pnjp9Qy7GdUpGdPhE6Gfm9kE0VGogjC3bZQGS+Vxh24jK8IbncM7jjN55rmRLkM0A988/DPaKI1Vq1Zx5MgROnSou9sqah0qQ210/uKLL9a261Myf/58XC4XWqEZraBOsrJooewxNuLbxnJ8T+QWnIma0UwmMFTIcKaZTGjR0aHDW6ChbzQSQAtxRKfhMJPb3Q4K7LnBz9T1WjXyuoZ/PVImjcJ2JpyJ0cTtC70nqtK1qusG0H1HOhrhgqUy0EwmVAOcBSzqRvaRXDRNI7F9HNlH8yJdjmjCNKeZESNGsHbtWr7//numTp1aZ33XOn1NmzYt8L7L5WLp0qXlFu40BKUUc+fOBcB01IGGTN+ImuvQtw3pqZl4XPIfbqOkVNBRRs1UOresDDD0SgGsYqBUhhF8xbfVgqddwsnL6VqlYGnYTOR2t2OYAQUl8aZKwdJr0cjvYkIrfZXN62wm5kD50UGla5Qk6Cgd3A6NvB5RQYOlP+Aqs463Y+uQo5XKMEqfX5hgWSZIhgyWMkrZKPmnwCVUitra+MFu6Afff/89t956KyZT3dwyWOt7KgcPHhx4GzFiBDNnzmTHjh11UVu17du3j9TUVFAaeoYcZSVqp33fNhzdmR7pMkQ4FUKPVvEFURm+Ecsynw82Qqkqrn4snfZWYUYEywVK8E1zm33B0s8fKI0yv7Ybdl+wDFy7TKD09+MPluEYVhPeDpVXhJd7LroWGLEsJ0iArPy9k0DZWB3ZeZwOfdtEugzRDOiZNmJiYkhPT2fdunV112+d9VRqz549pKc37H/IP/74IwB6plW2ERK1ltytFen7MiNdhqhKafipFIoCn/cFy6qmvANhLEyg9D9WKVD6lQmWwQIlgNLA6/AFy0qBskw/FYNlsHoMm7lcsKwUjqFysAwz1X1ylFcCZWOWnppJcrekSJchmgFNaUycOBGAn3/+uc76rfX097nnnhs4hULXddq2bcuMGTNqXVh1GYYR+IbIKKWoC8ndktj0Q8OOtosa0qr4JVLX0KxBVlRXZDJVOULpdZjJ62qrHCgDtYA7RiNrsIY9xO24SgN3LBwbrRO/O0w/pcEydn9xyHoMmxk6tEI/FObe39KpcM1qRRWH7ks0DRmpWSR3C78hvhDVNfepJTAYli1bxoMPPog5xLGwp6LWPfhXXEdKSkoKx44dQ/Nq6Nly2oCoHU3zjVRm7JeRykZPP4V7gFxuCHFUo2Y2401OCLvAx2s3k9PbitJBD7Fo2mvTyO3nhSoG+5QGnjgvOX1NJOwM0UiHkgQdT98oEneGXryDpqHaJqEdzwr+eUOB2+U7uzx8WaUB3ZDRykbsxMEs4tvEYrGbcZd4Il2OaOK0XAuJiYlkZ2ezfv16Ro0aVes+az1XPGvWrEqPPfTQQ7XtttpWrlwJgJZtlXO+Ra3Ft43D6/ZSkBnmP3IReWUCpQqxOhuTCd1m8zfyBcsKNLMZb5tEMPkW42ieytPI/kBpmEv3pwySTf2BUlkUyqIobhf8pAplgpIOXt9WQjFecvoGaaT5Vo2jgSdKI7tv8HssdbfvGspqRrUNMiVaGih9jTW0MAsoA99DTZd9Khsxj8tL9tFckrvKFLioPQ2Ns88+G4AlS5bUSZ+1DpW5ubnlPnY6nQ16T+WKFSsA0LNklFLUXnK3JBmlbOyCjFBWCpb+QBlmOrtsoAw8ViFYlg2UgWtVCJZlA6WvEzDsRqVgqUxQ3NGLMp1sVylY+gNlGZ4ojZw+5YOl7i4/ohgyWJbt2qQHDZaVvncSLBu1jP0yBS7qzry/+sLkr7/+GvrQhFNQ4+nvd999l3feeQfDMDjvvPMA39Y+DoeDq666qtaFVUdGRga7d+8GJaFS1I3WXRM5cTA70mWIUMJMeStDoela6EDpH620WoIGSj/NUOAx8MRYKwXKQFe6hmFRKL1CoAx04g+WEHPcV3NxhzKBskw7X7A0kbCrcqD0c0f7gmXCrqJKgTJQk9UM/qnwsqOUZS9n0sHhCNxfGXKUV6bCG60TB7Jo3TXMxvxCnAItz4rVaiUjI4MDBw7QrVu3WvVX41B5yy23cMstt/DKK69E7FjGtWvXAqAVmNE8supb1F5Cuziyj+RW3VA0vGqOnoUdoVS+0cNQgdLPsJrI6xo8UAa60jW8NioHykC9vmBZ1Km0fcVAWbadVeG1hn8Nc0dp5Hd1EL+7IHRNVjMkJ6EdCn1uvT9YGoVV3OKh6aBkr9bGJvtoHt2GdYx0GaKZ0AyNocOGsXr1alatWlXrUFnrJBapQAmwadMmAPQca8RqEM1LQrs4cmRj4cZLBb9X0U8zm8OfEmM2Q1wMuiv0Igev3UxuTwdKB5Mr9EidxwEFQ0vQo8Mcd2gzGDj4QNia0RRaKyc5g8MsvFC+WjwOjdzeMWHaKTS3By0pzEiWocDrrfI4S5Qh0+CNUM6xPBLaxUW6DNGM+Bfo+AfqaqPGI5XTp0/njTfeCGwppJQq92dd7nsUysaNGwHQcyVUirqR0D6enGMSKhudsuFGGUG3EtL9q7u9XhRBzgA3myExHnQdPF70YjAc5Vfd+ANlYNugEJnS44DCwSWYLKUhN9qNUVhhBY/VYHDPQ8SYXKCgS490UvclV3heClOMB01TaHEucgZDwpYQL8uqdOV4abCsNGKpFHqRb8pbmU1oSYmorAq3chgK5fGAYfi2grOYUe4gYbZseJdzwBuVnKN5JLSXUCnqzn+mfgTDYdu2bRiGgR7spLFqqnGofOONN4DIbSmUnp7OkSNHQIGWH3yrECFOVUJ7GalsdKoxWqZX3C6oYrAsGyj9KgTLSoESAiOEZe91rBQoAd2kygdLf6A0O31JEGgXlYfRQ3FgX+mJKGUCJYAGmIIFS1V+xDRosPQHysAqbq1ysCwTKP3CBsuyJFg2GrnH84hOjMJsNclRsqJOaIVm7HY7BQUFHDhwgO7du9e4r1pPf//tb3+r9Njf//732nZbpZSUFMD3zZBTdERdcMTZMZl1CrKCnJcsIiNUoCwzklYpUPp5vb6wFCxQ+nm86MXu4IHSzzgZ6oIFykAdJuWbCi8bKMt+HkW76Dy69kivFCgDTxd/sCwNef5AWSHPlQ2WlQJloLOTwTJYoDzZTCs/qhvqFgOZCm8UPC4vhdlFxLeNjXQpopnQ0Ojfvz8AW7durVVftU5je/furfTYrl27atttlfzX0ApqvwO8EABxyTHknyiUAZnGoiYjlMG6sdmCB8pSyqThbG0NfVIO+BZCm0IHSr+oGCc3nLaqUqAM1IuiS2wWl52+oVKgDNRLabAc5AkaKAN1a77tjJytHZUDZaAzDWXSwWYLGihPNisNllXcsyoah9z0AuLaSKgUdWfQoEEA7NhRu9PkapzIvvjiCz7//HMyMjK4/vrrA48XFRVxxhln1Kqo6vCHSr1Apr5F3YhOjKIgSzY9bzSUChssNV1DeQ3fauZgTCa0mGjf/YNFJaioyse4KpuZ4k6xoMCea1ASH7wvr0Mjt78HwhywYHe4uLn3KuJNxcSaStiU16lSG5vJw+lx+zFhYOpr8O3OISH7w2qQPVAncWvwa+pesOUaGFadkq4J2A/kVG5U+twx6RAbi8rPD309r7d0xXeIYCm/bTUahdlFRCeE3sxeiFP18Z++hX6wb9++WvVT41B5wQUXMGbMGF555RXuueeewOPR0dHExtb/b1C7d/sOztUKZaRS1I3oRAeF2RIqG5UQwVIzle5XqQyUl8rBsjRQav57AcOM0hkWX/+6WwUNll6HRs5AD1gMMDQ8ThNmW/l72coGSgBbiLMcdRQWzfe1vR3HubTv5krBUgHeEjMoMGK8ZA80kbit/PfAHyg1Q6F0MMJsj0TpangtTLBUHt90u6ZrKCNIsJRA2aj4QmXwk5aEqAl/lkpNTa3VYp0aT3/HxMTQvn17/vrXv9KuXbvAW0MEysLCQjIzfaeeaEUSKkXdiE6MojBHQmWjUyHQBAJl4PMGylsmBJUNlH7+EbuyX+YfpSzDHyz9ygVK8CW+0mDpVzFQAkTpLobGHSrXt9XkYVhs2slraSoQLAM1URoo/SVoCiPWS/bAk9+DsoEy8HVmjZKuCeW/L0Ges2bS0Sq8RvsDZaCNrpVfXS+BstEpzCkmOlFGKkXd0YpNWK1WiouLOXo09D63Van1PZW7d+/mzjvvZNKkSZx33nmBt/p06FDpi7VLl0U6os5EJ0ZRmF1cdUPR8EqDTaVAGfh8abAMFij9X+/xBEKWP1D6RynL8gfLSoEy0BeBYGl3uLix15pygdIv0VxYLlieFptWaQSzbLCsFCj9ygTLYIESQOngtemUdI73PeAPlEH27CwbLCsGykAbf7CUQNkoFWYXEZ0oI5Wi7mhodOrku2UnkLFqoNaJ7IUXXmDmzJl07NiR7777junTpzNt2rTadhuW/wlrxaGPbBPiVEUnyPR3U6eZTJUDpV9psMTrDRkoA011jeJkKgfKQAMw2bxc0m0riebQuwUkmgs5IyEVAGuoKXFN0cORwbgeeysHSj9NYUQZFLfRKgXKkzWD12HC2Sk+ZKAsc1EIFdD9l9Q1WfHdSEmoFPWhffv2AJEdqfR4PPTp0wePx0NUVBTXXnstK1asqG23YR05cgQArURCpag7jjg7JfnBV+2KCKsq3Gg6mtWCUgpVUhK6ndmMERuFNTf0KThem05OTx3NAEtG8IWApigPl/XdTJTJRa439DRkgqmQW+LD74ZhKI1cTxTdHJmMGxiirVfDlm7CY4ecXqFv+dEMhTnfhZEYenNspRQU+75HmrUaB0dIsGx0ivOcOGJtkS5DNDONIlSazb4XuHbt2vHzzz+zZcuWwP2O9SVwP6VLQqWoO1a7BVexK9JliIrKhJqgRzCWBkr/tkHKawQPlhYLRqs4MGnoTg/2E5V/1v5AaZRmLS3I5fyBMtHiG9V2GpagwTLBVMjFURlE675V5xdH767UxlAaWZ4YDDRMmkHPqBOcNWBP5YsqDc2rgQbu6ODBUvcobBklvsU7NhNG68pHNfoDpVLK9/3StJDBstz3WoJlo+IucWNxyM4nom599ex8AI4dO1bjPmodKm+99VYKCgqYMWMG33zzDS+//DL3339/bbsNKysrCwDNJfdTirpjdVhwFYc5x1k0vCBhpnzYKR8oT7apECxLA6Uyn2xXMVhWDJQAulvDcuLkf94VA6VfxWDpD5RR+snO2pljuCT65Ehk2UAZ6F8z6B2dXj5Ylo5SnnzOlYNl2UDpa6NVCpblAmXgC4MHy+DhXYJlY+EqdmGVUCnqmH+gLjs7u4qWodU6lY0ePZqYmBi6du3Kiy++yBtvvFHvI5X+UImESlGHrFESKhuVMCFGle6pGCxQnmxTGiyDBEo/f7AMFij9TMUng6UGlQKlnz9YBguUfu1Lg2WwQBm4nmaQZC29T9OrYTtu9o1SllUmWFYKlIE2J4Nl0EAZ+CaUD5ZBA2WZPkXkuYrdWB3VuHVBiFOguX3/vnNzc2vcR72ksrfffrs+ug3wP2HNI6FS1B2LXUJlk1OdvdRMetBAGaAUHrsWNFAGuijW0AvM5bb/CSZKd3G+42jQQOnXxhTF+dE7gwZKv1aWQkb03R88UPpp4LWCx66HXLyDpoFZR9P14IHSrzRYiqbBFyplpFLUsdJM1ehCZdgXrzpQXFy6fUeoF1shakCmvxuZMK8j/q2FlCv0PbCapqFFR4PXQM8JvkLbsJoo7GhHdyuiD4e+ntemsHfOZ3NOx5Bt4k3FXB2bQpRuwa1Cj/Z58NLeZOWa+HUh2xQZVg7lJ+DpGXrRke6GmEMKw6JR1CnESmCvQs/OB5MJPTrMamHDQLl8f/dDbtsEssVQIyGhUtQHze2LhPnhTt6qQr2EyrJberz66qvcfffd/PnPf8btdvPuu+9yzz33kJKSUuP+S/z3SkmoFHXIZDHh9YSZ+hMNL1yIUQYYKmiw1DQNLTbGN/qmFFqQn6s/UCqThqbAUhg8WHptCnOffGwWD1lFDpZk9K7UJt5UzO/ithNfOkJpYAQNlk7lC24mTaOTyRI0WOZ77Sw91hOXx0R0dAnuPpX3wNTdEJOmMLl99XrsetBgqSkF/o3hzebgwdIfKKs691sCZaPhdXvRTTp6uJOUhDhVpcfQut1ujDCnkIVT4+NoZs2aFfJz/qHTXbt2kZWVxSuvvMJ7773H4sWLycjI4Nlnn+Xtt9+mX79+Nbq2P1RqYc7hFeJUaZqG8sp/nI1OhaMay42kKQMMHeVyBe4JLBco/UpHK42EaKB8oAz0GwiWUNjR97g/UNqt7tJStECwHJ/sW81dMVD6+YIlmPDV61LuciWVDZaf5o4ATgZKp9v30mzSDaKjSyjsA5ZdvoVAFQOlnz9YRh0qvefTP0pZVmmwNApL24QIlJrJVP7eSgmUjcrJH4eGbzd+IepAmb9Kbrcbm+3Ut62qcai8+eabq2yzbds2Ro4cCfgW9MybN4+kpCQeeughZsyYUdNL4/GfAlGzIC1EUJqu1futG6KGSoNl0KnZMsFSt9kqB8rSr9ecbvScQjxt4ijqUD5Q+mkKLEW+YJnXg3KB8mRXJ4Plpe02Bw2UfgYGXhX6loqywfKtrLPKBcpAmzLB0rbNQcyhyoHSLxAsDxRiyso7OUpZlj9Y5heEHaEMBEv5N9HoqNJ7aDVdA5lcEXWlzEBdTk4Obdu2PeUuahwqhw0bVmWbgoICWrduDUB0dDT5+fnMnDmTKVOm1PSywMnpdd2koxkNt1jnzEtH0vu0buz4dTdr5m9ssOuecckI+ozoQcqqPaz+foNct560Tm7NdX+8gi1LdrSI59vkrqtpaKYw/941Dd2io4VYlDN64iB6D+vCtoOZ/Hz4SNh7f5RHw2SCKKsHgi2oURolbis6EKc5wuSuaGzJXzI8oQMqOxaofK+SDsTgRRkm3G5L0Lp0XWG3etHRsHiU70ScUKw6Jg3OOK8/fYZ1ZffmNFb9tLVCh2YwaSjdX0FwCnXKoXL0RafRd2RPdq3bx69zQt83WtdGXTicfqN7tYjrarpGYmIitzxxDSlr9jT759uSr7t7/X5WfrumQa6pygxVBtaunCJN1ePQzNdff43dbmfSpEmkpKTw/fffM3PmzFr3e9555+HxeHjkkUeIj4+vg0qrp1u3biQmJpKZmcnBgwcb/LpZWVkcOHBArivXbRbXzc7OZv/+/c36urquM3ToUAA2bdpU4/uUaqIlfZ8jed2uXbuSlJQk15XrNvnrer1eHn30UQA+++yzhh2prI4BAwYwe/ZsJk2axOrVqxk8eHCd9KuXbiPyz6vfRm/AU3Vm/OtWhp03mF++XMV7T3zW4Ndd/tVq3n18doNd984XbmX4xMGs+HoN7/y/Txr8uiu/XcP/Hm24676193ky07JZ/nXDXvf2f9zMiN8MbfDn67/ur3PW8vafPm6w605/9iZOnzSMVd+t463/+6jqL6g4la3pvmm/sh9bzeW2F9LMZrSyi1LMJqY8fgUjz7Kyavl+3nplIZ4YK0Xtyk9bey0ahZ00DP/CWg1ccQZxPU9uBmyzeBjXdh+xJt+93TqKLrYTXBlzvFLpVi0e3fIZJe72DOtyN0rLKff5XMPFZ3n9Axune5XOcVccq451CbRxuix4dsdicpY+ZwXmYog5VOE+SK8i+lAJuts3Hzr17gmMHmNh7cJdvPW3b0u/VqHyC07e5mEYvsdcFab4g+1VWc3xh2l/v4FRk09j7fyNvPHw+9X6mrow9W/XM/riEQ1+3Sl/vY4zLjm9wa/7VurzZB7MZs0PG/nPg+812HVv+8u1nHnpSNb/uJl/P/Bug193w09beH3WOw123Vv/fC1jLm/4697y5O8467ej2PjzFl67v2Guq3QFo33vx8bG1qiPeg2Vffr0ISkpibvvvps2bdpw3XXX1Um/NpsNl8uFgbdBV4D7w6zXbWAEu1epnvin+70eb4Ne17+ysKGv6+f1NOz32fcfrYbhbdjr+jX0df33ZUXs+Rqq6utqwRYiGCfvrdR0NKsJpTQou8jK60bzFp4MlppCaRrKf11Doec5sRsqECy9Vo2CjmCY1clLKjDlamTvSSC+VzY2i4ex7fYSYyoJNPECB1xJfFFocFXMyePNbJrFV2vpxxbdN7nkKb0JLtdw8Wn+AHING2i+74OuGbSx5TCqvcGvR7tS4rLg2RWDyQneMt8Hrx28HTVi03xfp3kVUYdKwO0N3GquFCh89wkbXlU5UPq+EgwFJnO5VfQq1M+lGsHS/zP1Xbfh/l4ZZfbqbNDrlrlWQ11XN/l+rv41bJF4vpqmNeh1Pa7SX3T0Br6u27eGQzc17HX9O5Hout5g11X6yV8m7XZ7jfqodah8/PHHefDBBwOpNi8vjxdeeIEnnngCgLvuuqu2l6jEf38mpoa9gfzA9kM4Yh2k7Tzc4NeNiosibeeRBr9udHwkrptGTGI0hxr4+6yUQtc033/ADejA9kPEtYolbefRBr3uwZTDxCfHcTClgX++Ow6R0CaOtJQqfr7hTtQxFJrJFP5EHY8HCovQ4mMxEmI4mJpOQmIUhw6cPPHLXOAi6hjkd7FR0LHMCGW5jsCap5NzMIGrz1oVGKEsy0DjgLM1nwNXxRwrDZSVmTQdFGQaxczOGxD0zHCTZtDWmke/VumsXdLv5AhlWRp4HJDfWSduv7fcCKVf2v4TJLWK4cCR3BCBspSug2GgWa0ol6vqE3WqCJZpO4/QuuM+Dlb1861jaSmHad0xqcGvezDlCMnrGvb5mq1mlKFQaGhawx4CkpZymN3r9nFge1rDXnfnEfas30fajkMNfl3f820B1y3NVA6HIzCIdqpqfU/l1KlTeeutt6p8rC5NmTKFPXv2YNmagJ5z6kvehQjmv7v/gcmwsujjX3jviU8jXY6o4oQXzWxBs4f/969pGlpiPN7k0PdeGxYTBV0dZPcN/SJqmBWuth5ikgv5Xc/1IdvZdDeD7YeYFOUsfSQardUXFLvbY80di67lU2CU8E1hR1KdySH7yXZH8U3KUIwca/lzvyvQXdB6iwfHseBHRwJoHgP9WObJbYRCPkkD5XSGD5Ugq8EbgagEBy+u/TOa08ymRVt5+e76+/9WtBxGtBv38CxatWrFV199VaM+av0rjtfrpajo5ItVYWHhyS1/6kl0tG+vOWWWFzdRd5RSaHrDTiWJMKo6UUcZVZ6og8MOLjemzOAnRCizjivRirnEIC41+PUMs8KV7AVdUVIc+vhFHUWsXsJhdyILioKPVBYZLuYVtaXQsJFoDn7KD4BbmfAWm1A2L842wUOe7oKEvQZo4GwVfKpK8xjoJ0qPtQ03nVXmRB3CjXxJoGwULFZzYHpUk+M1RV0x+/7vq+n9lFAHofLiiy/mvvvu48svv+TLL7/k/vvv59JLL61tt2G1atUKAGWVDbpE3SkqKCbrWA5Zx3IiXYrwCxJiyu1V6fWGPFEHh933p1JQ4qwULJVZx5lkw7BooMCW560ULAOBsvTF1lNiZvbe0ypdT0eRZC5A1xRedNLcrUqDZSHeExexYcMGio0cvitKJsfr+6XYonmDBstsdxTzdg08WWeQYOkPlCangdLBsOqVgmUgUJb+kq+Z9ODBssIG6JquBQ+WEigbDbPNRFFRCekHT8jrlagzyup7DfBvBVkTtb6n8qqrrqJr166sWbMGpRR33HEHI0aMqG23YQWesFVGlETd2bJmOwvfWE7quoa9V0hUocyJOkE3Py8NlmVP1AkEyrJ9lDgxZYK3VWz5QBlo4w+WJvK6lz6uEQiUABhQkB3F7L2nBabBywbKQEmBYJnJRIfv6+cWtSbHKH8PpT9YZnt8QTPbHcU3O4fgLSr/0qzK3D9eNlAGPl8mWNoySyoFSj/NpIPdjvIfdRvqRB1dQxn6ycclUDYqZquZ/bv289K170S6FNGM+EOlf+CuJurkDt+RI0cyY8YM7rrrrnoPlADJyb57kZRNRipF3XEWOrFHh57eFBFUVajxB8tggbJsHyVO9NyiyoEy0ObkiKVhVrhaB3mNKRMsgwXKQEmlwfKrAt9Ukn+EsqJAsAwRKAEwGziTvUEDZaD00mDpSrAFDZR+gRHLKs78DmzbJIGy0bHH2HAWhr71Q4iauPzBC4Dahcoaj1S+8MILzJo1K+QZ4C+88EKNi6qKf0NOZZORSlF3ivNKcMRXXo0rmghDBVbwh6TroGnY04sp6hgVvI0CS6GBPcuEq32I1xgDCnMdzDk8iNu6rQx5uSLDxsqc3kytovQCr53vUwcED5T+snSFI0MFDZR+mldhO1aIslvRCsLc265r4PWGDJSicXPE2SnKrdmJJ0KEcviwbweD9u3b17iPGofKiy66CKjeGeB1rXPnzgCoKA+lmyo0eA2i+SnKLcERW7O9uUTDUF5v8ClwSqd2vV5UUTFaVJBfDkwmVJTdd5xjoZOowwQNlkrXcMXqWAoUMbusFPQJMiKkg271kpkbzbsHzuCWrr9WauI0LGzM74zT61u0s6WgM4NjK59clO2J5oM9I3G7zOh2L0ZJkOfn1knYbkYzFM44E7a8yiOoulvhOJSP5vb4wnOUA4oqBw+lFKqgMPA9IcRq7ypXgYuIccTZKc6rvLWVELWRlua79atLly5VtAytxtPfffv2BWDv3r0MGzas3FtqamqNC6qOTp06+aa3zAos8pu2qBvFeSVExUuobJTKjD4GCzuaufT3Y8NAeTyoimHKHyj9e68ZqjRYlt9mR+kazngdwwQYYMv2BctydDDZPWiAMnQycmJ498AZ5Zr4A2Wx9+Qq8GyXg80Fncu18wdK/6pyXVfo9grPz62TsM2MqVihNDAs4IwrHzwDgdLpCXy/lNnkC5Zln58/UHrLrBwOEtLLfY9ldXGjExUvoVLULaUpjh717ZXsH7iriVrfUzlv3rxKj33//fe17TYsm80WGJ5VUfLbtKgbxXklOOIkVDY6QUJN2dATCJR+oYJlxc18DYXmOjlFXC5QBtpUCJZlAmXg60qD5XtlgqUXrVyg9CsXMj3RfLj39ErbFJULlmUCZeB6wYKl4mSg9NM0lOnkc64YKE82Kx8sg45QSrBsVBxxDopyJVSKuqMcXgzDICoqKjL3VC5fvpzly5eTnp7Oc889F3i8qKgIU4jpqbrUvXt3jhw5ghHtRs+VxRWi9oryiomSeyoblypO1dGtwfeD9AdLiorRYmN8o5TBund7iTpcRGHn6MqBMtCXL1iq3VZKhhYFvdlGGTrpOTG8xxn8rvM6tuR3Cnq9Yq+FzQWd6WzP4sO9p1NcFHzzdl1XGBqVAmXgemWCpSPTg+Nw8H040TSIcqAKi4IGypPNNJTJFHbfz+qcpiMaRlS8nfR9mVU3FKKaVIxvn9pevXrVau/TGofKtm3bMnjwYNasWcOgQYMCj0dHR3PaaZX3catr/fr1Y/ny5aiY+t1oXTQ/uq7z8Lt307pjEsf3Z/DC9H8z9orRXP9/vyW6dRQLX1tBxqFMRk0+jev/+Fu+f/tnfvjfokiX3fJU44VNeTyVRyr9/MHS5YaYEItyDIVe5MKWY6U4KczpPAosheBNicLTL/jJNMrQOZ4Vx6t5Z/PCmDPoFdOdE84s/rPnXTp17MRjCQ/w/oHP2Jx7jPm7+4e9E9zrMhGTYkULc2So0gANbCdKKo9S+vlHK53OkIEy0J9bXksbi96n9eDOf96KMhTZx3N45uaXeXr+owBYHVbadGvFUzc8T5f+nZj5n9vRTTrv/L9P2LBwC+26t2HWG3dwMOUwr9wjJ+2I6rnsj+fzxRdfBG5trKkaT3/36tWLCy+8kHfffZcLL7ww8Hb22WcTExNTq6Kqo3///gCoWHe9X0s0L2OvGMXR1OM8eN4THNiRxtgrRnPlzIt57IpnSN23nxseuwqA0Redxsyz/x99R/aKbMEtVbhRsdLNuZWhfMExGF33BU6PBy03xEiermE4LJgK3cQdCDFKp4HXWrpBejaYU4IHVKU0PPkWemld8bja88S25zhUfJTRrU7DZrPx7I6XGZF4Blv2dcSbZ8UTYqW312UiepsNc5FvSt4IMRFjckPcvmI0Q6EcIRoZBmSXnqhjDT2jY8hpOo3KicNZ/HHSX3jg3Mc5svcYZ156Og+e9wQPnvcE37zyPcePppOXns+Uv17HP6a8yh8n/YVbnvwdAOOuPIN/3v4f8rMLiGtV85NRRMuyc+dOgMiFSr+HHnqI/PyTL9h5eXncfffdte22Sv369QN89wEosyzWEdXXvkdb9m7cD8Du9alcNP18DmxPI/twDh7losdg38q3tfM38s9lT7F73d4IVtvCVSPIBA2W/kCpa77jHJ2uysFS1zCirKBpaIbCkueqHCz9gdK/F7oRPFgqpeEtMIPSOK1tB5akprHmQFc25WylT2xPXC4XD/S/j3c3HwJn6Ry7R68ULMsGykDfQYKlP1CaSnzPW5n1ysHSHyj93xtdCxosA4Ey8JzlNJ1Iyz6eg7PY93fR4/bi9Zz8P+7sq84kNz+H3PR8ktoncnjPMYryi8nLzCeuVSzLv1rNzDfuIK5VLHkhjicVoiylKXbt2gWczFY1VetQWVxcXO6cyLi4uHJngdeXuLg4unbtCoARL5vAiuo7uOMww8/z3bJx2sQhgO9+SrfTQ3F+CRab7z/6lXPWcv/YR/n+rZ8jVqugcqAJEnrKBcuygfJkg/LBskygDHQbJliW+7BCsCwbKAHirDYKXE48eVZWHUwi2hxNWloal379BZsOp5fvrEywDBYoA+WXqbNioAy0KRssKwZKvwrBslKgDEYCZcQkd27NaRMG8+t36wBwxNhp07U1HuWmILOw3L1vhblFxCbFcGTvMR6e+CQv3/XfSJUtmhgV68blcpGUlFSrld9QB6FS0zSysrICH2dmZqIa6EXIf++mhEpxKn79bh1ul4fnFj6OPdpGQXYBUXG+BTp56QUnTxIRjYf/NSXM9KwyFMprVA6UJxv4gmVeQaVA6VcuWPpHKYPwB0vL9qhygRIg1+kkxuq7PzPKFcPezNKRSWeIBYweHW+2LWSg9F0QDGvoQBl4imYdZTMHD5R+ugYWS/hA6f8+S6CMmKhYB4+8dw/PTXkNr8d3P+yZl57OxsVbKcgsxPAqlHFyBDMmIZr8rIJIlSuasBteuAyA4cOH12qRDtRBqLzhhhu48847ee2113jttde46667GmxDdH+oVAkSKkX1KaX496x3eWjCk+Rl5vPli3Pp2r8TZosZm9lG+qETkS5RBFOdgKOM8CuYAWUYmMJMC/qDZcwRT6VRynLtvGDNo1ygBNiQfoSzO3UDYHzH7mzZml75iyv25daw5oZ/fpoXYtOcIQMlAF6FnpkX/mKG8h1pWdUvT+HurxT1Std1HvngXj546jMO7z4aePzsq85k26oUctN94THrWA4de7UjKtZBbFKMTHeLGtmwYQPgC5W1VePV337nnXcePXr0YP369SileOaZZwLT0vXNn6pVlBdl9aK56n8rI9H0JbZN4E8f34/X42X9wi1s/SWFL1+cy/OLnySmdRRf/6fy3quikVBGyLDjD0nKa0CJE81uq9gASleKq+ISTCfA2zouSEcayqxjyXMTvx9yuwXZtkiBya3ADTF7zRT0PBn0tmWmk1FUyGcXX8fxjHw+2rSBy9uPwJZupqhN5dFBzaURu1dHMxS6WwU9k1x3KxL2utCdXgyLCd0dZCW3V2FKz/bdBuB/rhVHKw2FUWYluKZrKCNEmDVkD+BIGX/NmQwc05eoWAc3PHoVc/69gNXz1tOmS2tcbidZh7IBePtPH/Pg23ehm3TefXx2hKsWTZEyGWzduhWgTnbu0VRDzVXXkxkzZrB161bMe2MxHQ2xbYgQ1TTi0sF0G96JL56s3w38xamxOaxMffoGzrh4BEX5xaBg7U+befv/PsYwVOVRN01HM+nc9PjVeD1ePn5+ri9oVdjXUoty4C27QlbTMCy+0NqzV1uS28ezZNsB8rqaGdC5LVeMGcRfPlnoC5T+V04NnAlauWCpeTTOtnflzrNHM/3tL/n3RSO5Y94anHaFs22Zdi6NuN0mzGU3N9cpFyz9gdJUXCYgKgLB8pV3f8/dN76BKSOH6+6eyEf/LP27ayhwlxm1rRAoy7rx0Svxerx89LevSttKoGysLrz/HAoyC1n2/ppIlyKaAW/rEjz9cunatSvvv/9+rfur9fzG7t27ufPOO5k0aRLnnXde4K2hjBs3DgBvkrPBrimar8yD2bTukhjpMkQFM9+4g9ikGH4/eBZ3DH+Ie8b8qXRRlSX4NK4yUF7j5OKdMqOU5ZoVFZ+cCi8TKAF69m7LmDG9sea4iDvgYXva8cqBEnxbDeUoYvb6+tc8GvZjJrSKs9QKzMVgO17aLkigBN/9mrrb91jQQAm+eywtvpkZf6BUbjc3zLqwfLvA8ZWhA2XpUz9JAmWj1rpLIplp2ZEuQzQT59w9EoCzzjqrTvqr9fT3Cy+8wMyZM3nmmWd4+eWX+fbbbzGMhtviZ+zYsbz++uuoeBfKZKB55T4gUXMn0rJo1TlRDg9pRNp1b8OZl57OdZ1uD2yz4i5x8eFfPveNSOoaM/55K/1H98Jqt7Bv80FemP4f3C6PL/zpGpjNnD5xIDfMmozFasLjNnjlkU/YsyUNVVTMOZOHcs2956NpGiXFLh6Z9TG3ThuP3W6hT7/2zJ+3iV3Hsrjh5jHc+c8vALj2vOH8dtxglKE4mJ7Nw298B3vNFHb2oodaA6OgvT2GP18wkfaWGNwuL89+vIgtqUcZ0acTd11+FkdO5NG/axsOZ+Tx50c+xyj20K59Ao88dhnRMTa2bk5j1Bm9uO/Od8g6ksv3qx7los73Mv3JKzGZTbz64x/Jyyrgj797mblpr3JRh7vA5Wbg6F7c+uQ1PHT+UwDc8dxNjLxwGFlHczhxOIuDKYfB8BKbGMM9r06jfY+2WGxmPvzLFyz74tcG+EmL6mjdJZETByRUitpTmuLXX33/thtNqPR4PPTp0wePx0NUVBTXXnstd999N9dff31d1Felzp070717d1JTUzFaOTGlyzF7ouYKMotQhkFscgx56bKSsjHoNrAzR/ce9017l6UUYAAm3n/q88DK1xkv3MJvbh7P3P8uBKVQHi/oGinrUpl1yfMopeg1uDN3/e0aZl7yPJ17t2XKQ5OZdcPrpCuIi3NQXOzinf8uYdCQzrzwzFwAhg7riqnE95vG6P5duGTMAKY++wkFxS7io+2+EcsshT1Tpzg59PN5bNI5rP5lPx8v2cCArm159vaLufyx/wHQt3MbHnt7PkeP5vLy9Es5d1QvFv60jRn3/YYF329m3pwNjB7Ti0suH4FmKEwZuYF+33j8Cy6bMp67zn+60jUrLl4ac+np9D6tO9OHPYwtysprq57m4I5DANz5z1tZ8M4i1i7YRExCNK+s/jsbf95Kfrb8e4g0i91MbKsYsg7nRLoU0QwYiU4KCgpo1aoVAwYMqJM+ax0qzaXTK+3atePnn38mOTmZzMyGPZN04sSJvPnmm3jblEioFLV24kA2yV2TJFQ2ImVv/R5/zRiue+S3xCbF8Odrnmfn2lTGXHI6F98+EavdQnRclG9KXNN987peL6qomMTebXn4lVtp0ykJr8egQ3df8hs+rj/Lv99E9v4MzFF2gq2d1gwFSqF7FLFpbs68qhvfLt9GQenIaW5hCZoXbHkGmgEmlwbdK/eju2FU90488/RcbIZi+4Hj5Bc76dwmAYCUg8c5ejSXuANOdm07TLsOCWiGYvDQzvz18S8BWLViD3l5xZgz8sDpu76maSG3clNFxb7PlZnjHjKuP4s/XYnX46Uor5iVc9YGPjfywuH0GNKVaX+/EQCzxUT7Hm3IXyf/HiKtdZdEctPz8bjkFgVRe+PuOo1FixYxYcIETKa6Wehc61B56623UlBQwIwZM3jhhRcoLi7mvvvuq4vaqs0fKlW8S1aBi1o7tjeDtr2S2bvmYKRLEcD+bWl06NUOR4yd4oISlny6giWfruAfPz+B2WqmbZdW3PTYldx1xv+ReyKfy2ZcQI8hXcvtValcLu7+y9V8//FKFn+9Dke0jc9TnkPT9ZNZyzDQikowZ4AnOdTxdgpLnhtbfvlbfPyBUi89q9tSCPbMCvdKuiH6sBG4H9PkMrDl+feD9P3hcnmJO+DbNsgwDEymyrfzaIZCU8p3pnngQa3y7kdeL4ahUKX3UVrs1nLtA8+o7H2Wmoauazxw7uMU5tb/IRbi1LTrlcyx3RmRLkM0A8pksHz5cgDOP//8Ouu31jcgjh49mpiYGLp27cqLL77IG2+8wRlnnFEXtVVb+/btGTp0qG+z4jYlDXpt0fwc3ZVB+z5tIl2GKHUsNZ0V36zh7penYi0NRpquY7X7VnI7Yu04i13kZRZgc1iZcP3YoBubR8XYyUg9DsCFN44NPL5h2U7OunAoiW3iwDCIs+qYM/IpKnQSFWX1jVKWoSnFuqW7+e3IAcQ4rGheSDasgUDpb2MpVpicJx+LOWJgdhps2JbGxRMGAzCwSxvi7DbSMnLQPWAuMYLuQ7l1UxoTfjMYzVCMGdCe2PggO11oGs5iFzaHJTA6m37wBD2H+rZ4G3vZ6b7vi6azeel2zrnmTHQNouIcnHnJiEA3q+dv5KpZlwQ+7jm0W/AfjGhw7fu04ejuqvc9FaIqRusSXC4XXbp0oU+fPnXWb41HKqtaen7TTTfVtOsamTRpEps2bcLbrhjToSiC/N4uRLUc25XOGVcNi3QZoowX73iDKX+7nv9u+ydFuUWUFDnZuGgb+zYdoLighE1LtvHWln+QnpZJyrp92OyVz7h+58+fM+vVKWSn57H6522Bx9P2HOd/T3/LXz+cgQKKC0p48NrX2LB+P7+7/kxefWsqC+ZtInXfyRGiDWv28eN3rXl35u9wozh0OIv/9/ycctfTlGJo744sfHAq8dFWvn5pCG99spx/vbWQR2ZM4qIJQ3B7PDzx/HdYMjxE2d2VAqzf6y8u4JHHL+fiy4azdWkKWel5FOVX/gX667eW8OLchzhxKJP/u/RZ/vunT3jso3vJOJTFzrWlZ9jrGivmrGfw2H68sekfHD+QwaYl2wN9vHbf28x4cQpvbHoeTdfISMvkTxf9rcFOShOhtevThmXvr450GaIZ6HlxB3bu3MnFF19c61N0yqrxPpX/+9//wn7+tttuq1FBNVVSUsIVV1xBQUEB5m0JmLJtVX+REEFYbGYemX8nz0z+N67iapyNLBpWVS+Amo5mCf/7sm6zoUWH2ddW11EOG97WoabBQfMqNJcHw2GhuJ09eBsPOHJcPP70OfzxnysxgoRG3a2wHytC8xgYjiAbrQM2mxl3kQs9PZeBQztz73PXcfs5f63cUCmM/IKTWymFoNwe30byIRtIgGxsNF3jj9/fycvXv0t+ZmGkyxFNmBHjxj0sC6vVyueff05CQkKd9V3jkcqGDo1VsdvtXHjhhXz22WcY7YskVIoaczs9ZKbl0K5XMge3HIl0OaKiCotOKn/eQLk9IYOlpmmB1dAhg6XXi1ZYjAmCBkvNq9CcbjSvQi9w4ThGpWCpecCW6UT3+sKbLdNNcWL5mvyBUi+d8taL3UGDZY9uycz8w0VgGLjdXl6Y+UGQ5+0LlHi94RfuSKBsklp1SsBV4pZAKWrt/P87g3nz5nHOOefUaaCEOtpS6Pvvv2ffvn24ymxb8dBDD9W261N22WWX+UJlogtl96CV1PrpiRbqSMpxOg5oK6GysaphsCw7zRMyWPpDlVJBg2XZQAm+aW7NWX41ruYBW5bTd+pN6YIhU4kHW6bC2apMaFQEAqXv64xKwVLzGOxevJ0ZP2wsX2fZ518mUJZ9rhWDpQTKpqtj/3YcSTke6TJEE6csXn766SfAl5nqWq0X6jzzzDPs27eP5cuX06NHD/bu3YvVWvl+pobQpUsX3yIhDTydZOWiqLmDW47QeVCHSJchwqkqAJUGS79g9w0plwtVWOa1omKf/mB5wnfqTsVAGejb7cV+3HeqVyBQVtz2RanSYOm7pUJ3K+zHK79O+YOl/31TRm5g66CK/fn/rBgogz1nCZRNW5chHTi45WikyxBN3NUvXYDL5WLQoEEMGjSozvuvdajcs2cP9913H1FRUVx55ZX861//4sCBA3VRW43ceKNvbzWjTTHKKnt5iZo5uPkwXYZIqGz0qhEs/dPBIZv4g2WovkqDpfl4btBACb7RSlO+E/txJ5pSlQNl2b48RqVp70r9eQxM+c7QgTLw9IyQgbJcu6oCpWj0Og/uwMHNhyNdhmjClMng66+/BuD666+v0wU6frUOlf5RSavVSl5eHhaLhePHIzdEP2TIEIYMGQI6eDvKaKWomcyD2egmnaSO8ZEuRVSlimCpvN6qF664XKii4jANFBSXoGflh2yiKYU5r4So1NyQbQB0l4eofTkhAyXg2zMzMyd8oFQKVVAYNlAqpaoXKGWUslFzxNpI6hAv09+iVm575woKCwvp1q0bY8aMqZdr1DpUDhgwgPz8fC677DKmTp3KLbfcwvDhw+uithrzj1Z62xWjzPLbuTh1SkHa1qN0HiyjlU1CVcHSULUOlsrjQZWUoOWGOFlGKbSCIrT8IvRQG4d7FaasArSCYrSiEHvqGgZadh7K7UZ5g79+SaBsWToP7sDR3Rlyko6oMaUrPvvsM8A3SqnrtY5/QdV6JYv/9JyLLrqIESNGUFRURI8ePWpdWG2MHj2a3r17s3v3brydCjHvD70tiBChHNx8hK5DO7Jp/o5IlyKqI9ziHWWgDB08HjRz6Je9wOKdqPLHvSqPJxC+VEkJGqDiY8pdWysshtIQqJW40AGj7CblXoUppwD893l6vGhFJaioMqvGywRK38deFKCVOVlHAmXL02VIRw5ukalvUXO3/O8y3nzzTdq3b8/EiRPr7To1jqpKKZxOZ+DjlJQUMjIyKCwspLg4zDRSA9A0jWnTpgHg7VCEsslvd+LU7Vt7kB6nd4l0GeJUhAtJyqjRiGXZQOm/RrkRywqBMvBYiavciKUpt0yg9NdaGiyByoHSz/AGRiwlULZMPUd2Yd/atEiXIZooZTb46KOPAJg6dSrmML9Y11aNQ+V//vMfZs+eHfj4scce47///S+vvfYaH3wQZA+1BnbGGWf4puF18HQJMV0lRBjHdqdjtVto1Tkh0qWIU1FHwdIoLKocKMtcQ5WUoGXlVg6UZdpoJS5M2aWvP+4g1/QHy4Ki4IHSz/D6psMlULY4UQkOWndN4uAmGakUNXPFvyZQWFhIr1696nWUEmoRKtesWcN1110X+DguLo4XX3yRV199lY0bN9ZFbbWiaRq33347AEabEowoORlFnBqlYN+6g/Qc2TXSpYhTVVWwrO7ineIQ9z2WXkMVFvmCXiiGgcrNC19raZuwC4WM0muFqVkCZfPUY0QX0rYcwe0M//dViGCU1cuXX34JwPTp0+vtXkq/WvVusZzcoPeGG27wdajrlJSEeSFuQAMGDODcc8/17VvZvQCFvJiKU7N3jUyBN1m1WBWulPIFOY8HVeIM3sbl9vXhcqOC3fKjlC8olo5QqmCvi0qhCgtRbo/vmsFGMw2FKi72TYEbKuhJORIom6+eI7uwd03ktukTTdu4Pw7F5XIxdOhQRo8eXe/Xq3GoLCwsLHeCznnnnQeA0+mkoKDxTDf//ve/x2KxoBJdGK2C/+cgRCj71hyk+2md0E31+9udiAwV5Cxuf6AEfH+Gmm42jJN/BguDUP5rg02RG2U2aDeM0EcrhlgFXr6R7HTRHPUc2YW9qw9GugzRBBnxLhYuXIiu69xzzz31si9lRTX+n/LMM8/kueeeK7cop7i4mBdeeIGzzjqrToqrC506dQqMonp65KNM8sIrqi83PZ/c4/l0HdYx0qWImqjOqTtVTYMrVWm0UrnclduUHa30j1JWvFbZ0cqKX+NXNqAaQdpUGK0MjFJWRUYpm5x2vZLRdI3jezMiXYpoYpSmaH+Rb+ebyy+/nD59+jTIdWscKu+44w68Xi9XXHEFU6dOZdq0aVxxxRUYhhG4l7GxuOGGG+jQoQPYDLydw9z/JEQQKcv20n9cz0iXIWrqFKbBy41S+lWYBlcu98lRykAb4+Q0uD9QVhzhNBSU7nVZdtq7Uj/+afCy094VlQZLmfZu3vqd3ZOUX/bJj0+csinvX8HBgwdJSEhg6tSpDXbdGq8rt9ls/L//9/84cuQI+/fvB6Bbt26+8NbI2Gw27rvvPv7whz/g7ViEnm5HL7JU/YVC4AuV1/7tEub9a3GkSxE1FW4PS0qDpaHQTKbgDfwrxgu9ELKNgSpxokqcYfvB5cYItwDIMFCAcjorB9yKNXm9EiibsX7jevLj679EugzRxCibl3fffReAO++8k9jYhturu9Y3inXo0IExY8YwZsyYRhko/c4880zGjRvnW7TTOw+lyQutqJ4jO9NRCjr0bRPpUkRtVGcqPNwZ2qUjmmFXYHs8vhFLV+jjFQ2n0zfaGW5rIP/nwwRGCZTNW2L7OBLaxbF/vexPKapPoRh0exeKi4sZMmQIF1xwQYNev0WtPpg5cyaxsbGoWA/eTjINLqov5Ze99JMp8KavpsGybHgLsWpceTyBkUXlNYIGS6PM6KPyGkGDpXK5y18vSHCUQNn89R3Xk90rU/F6ZB2AqD6jXTHr16/HbrfzyCOP1PsWQhW1qFDZunVr7r//fgC8XQoxomXvSlE9KUv3MOCc3pEuQ9SF2o5YQqVgWTZQBh6rECwNpytom7LBslKgDFaeBMoWYcD4XqQs2xvpMkQTomwezIN8ueb222+nU6dODV5DiwqVABMnTmT8+PG+afA+Mg0uqmf/xsPYYmy075Mc6VJEXTiVYBkqwJUNliHuffQFS3f4Nv4zxcMFytLHJVC2DAnt4mjbszW7VqRGuhTRRCgU/ad1oqSkhOHDh/Pb3/42InW0uFCpaRoPPPAACQkJqGgP3q6NZ09N0XgpQ7F14U4Gn98v0qWIulJXI5bO8PvfVrnHpKF8fYS7f9JQKE/Vo5gSKJuHwef3JWXZXjlFR1Tbze9cyqZNm3A4HPzhD39o8GlvvxYXKgESEhJ4+OGHAfB2KsKbJJuii6ptWZDC4Il90fT630BWNJCqQpjhDRksVenq62AbqJdrV1UwhbD9KEP5wmSVIVgCZXMx+Px+bP5xZ6TLEE2EEefi7bffBuD++++P6KLpFhkqAcaOHcvVV18NgKd3LspW9Qu/aNmO7EzHWeSi2/CGv09F1KNQYcz/uFKVgmEg6Pk+CB08y0xXh23j76fiPZcVA2VVtYomr23P1kTF20ldJ6foiKops0HCBDOGYXDBBRdw4YUXRrSeFhsqwbeBe79+/cCicPfNlfsrRZW2/LiTIb+RKfBmp2IoCxPSygXKkw9WDp5B7n+ssk2QYFllbRIom5UhF/Rj28+7MLzycxXhKRQjZvYiIyODzp07M3PmzEiX1LJDpcVi4YknniAmJgYV55b7K0WVNs3fwYDxvbBFWSNdiqhr4cJZkNHKym1OBsugC2oqjFiGXHTjbxcsvJ5KzaLJMZl1hk0awIa52yNdimgCbn3vclauXInVauXJJ58kKioq0iW17FAJvs3b//jHPwKl91cmBzmLV4hSOcfyOLjlKIPP7xvpUkR9CTPFXOXqa2WEX1CjjKrbUCZwhpvulkDZ7PQd25Oco3kc2yNnfYvwvElO3nzzTQDuvfdeevXqFeGKfFp8qAQYN24cN910E+A7bceIkf0rRWjrvt3CiEsHR7oMUR+qsximtgtmqtuHhMYWZ8Slg1g3Z0ukyxCNnOHwYD3dhVKKyy67jEsvvTTSJQVIqCw1depUxo4dCzq4++egrLJwRwS3a0UqMa2i5djGlqwai3vqvG/RrCV2iKdj/3ZsXbgr0qWIRkyZDNpe5qCoqIihQ4dy7733RrqkciRUltJ1nUcffZTu3buDzfAFS11e3EVlhtdgw9xtjLhMRitbtJosmCnbJlh7CZQt1mmXDGLrTztxFctMmQhOaYqh93bj0KFDtG3blqeeegqLxRLpssqRUFlGVFQUTz/9NPHx8ahYD54+uSjkRV5Utu7bLQw6rw+OWFukSxGRFG5ksjqhs6qQKVoEs9XEaRcPZO03MvUtglMoJv71dNasWYPdbudvf/sbCQkJkS6rEgmVFXTo0CGQ/o3WTjw98iVYikpyj+ezZ/UBRlw2JNKliEirYtV4tb5eAmWLNvSC/qTvzZQFOiIkb5dC5s2bh67rPPHEE/Tu3TvSJQVljnQBjdGwYcN49NFHeeKJJzA6FGN4TFgOx0a6LNHI/PrZRq7582RWfbYBr6eKrV9Ei6WXnsCkm+R3eFGZpsEZ15zGT//5Rf6OiKA8bQrxdikE4IEHHmDMmDERrig0TSn5FTmUL774ghdffBGAK6+8ktNPPz3CFQkhhBCipdi+fTsffPABSiluvfVWpkyZEumSwpJQWYV///vffPTRR6DAuisRU5Y90iWJRmTAub0567oRvDn9k0iXIhop3aTz6MK7+cuEVzC8MqItyrvhH5exc9k+uZ9SVOKNd6KG5uN2u5k8eTJ/+MMf0DQt0mWFJdPfVbj99tvJyspi/vz5uHpnY96RgClbFmcIn+2LdjFx+ll0G96JfWvlrF4RmuE1JFSKctr3SaZ9rzZ88sc58ndDlGPEudCHF+Fyuhk7diwPPvhgow+U0MQW6uzbt48ZM2Zwzz338PDDD1NUVATAwoULufPOO7nvvvs4fvw4ACtXrmTGjBnMnTu3VtfUNI2HH36Y8847D3Tw9M/BSHDW+rmI5sHwKn75cA3jbxkV6VKEEE3M2beMZuWn63GXeCJdimhEjFgX5tElOJ1ORo8ezRNPPIHZ3DTGAJtUqOzSpQuvvfYaL7/8Mv3792fZsmV4PB4+/fRTXnrpJaZNm8Z7770H+ELlK6+8QkpKSq2vazabefTRRxk3bpxvc/QBORjxrlr3K5qHDfO2k9ghnq7DOka6FCFEE9G2Z2u6DevE6i83RboU0YgY0W5sZ7kpLi7mtNNO4y9/+QtWqzXSZVVbkwqVZZN6SUkJXbp04dChQ3Tv3h2LxcLgwYPZt28fAKNGjeKuu+6ib9+6OaPZbDbzxBNP+FZdSbAUZXjdXn75aC3jbxkd6VKEEE3EuJtGserzjTgL5f8R4WPEuLGf7aagoIAhQ4bw9NNPY7M1rdvtmlSoBFizZg1Tp05lw4YNdOzYkfz8fKKiogKf93p9xyuOHTuW119/nYsvvrjOrm2xWHjyyScZNWoUmBTugdl4E2UqXMD6OVtJ7t6KzoPaR7oUIUQj17prIr1GdeXXzzZEuhTRSBhxLixjSsjPz2fgwIE888wzOByOSJd1yppEqJw9ezb33nsvs2fPZuTIkbz11lucc845fPvtt8TGxgburQQwmUz1WovNZuOvf/1rYMTS0z8Hb6uSer2maPw8Li8rPl7LOVPOiHQpQohG7pzbzmD1V5soKZBBCQFGvBPTqGKKiooYPnw4zz//PNHR0f+/vfsOr6LM9wD+nZlTk5wUUkgoCb0mNCEgHSI1IiAC8qzuoiv3Xte6uiq2VXHdInh3r4K4uioqLJYFEQEBhQgr0lEIEOrSkxBCek6fmfvHSU4SSEA8SeaU7+d5zjNzpp1f2jnfvDPvO1qX9bMERKicOXMmXn/9dUydOtW7LDw8HGazGW3atMHp06fhcrmQnZ2NDh06NHk9RqMRf/jDH2o673QrhZxga/LXJf+2+/MDiEtugQ79k7UuhYj8VFKXBHTon4zvl+/VuhTyA3KMA8JNVtjtdgwcOBCvvvpqnbOvgSYwuhNV2bNnD5YvXw5RFBEdHY2nn34aOp0O06dPx8MPPwyDwYBnnnmmWWrR6XR4/vnnYTKZsG7dOri7lEEfJkE5HTgX1FLjcjtlZL23Hbf8zxC8M+cs77xHRFe55X+G4Lulu9lKSZDjbVB7VMLplDFs2DC88MILAdUppz4BFSoHDx5c7+2JMjIykJGR0ez1SJKEJ598EmazGStWrICtTTEkNQzSmQgI8P/xpKjx7V+fg8Ez+6Hn6C44uOmY1uUQkR/p0D8ZccktsHzuaq1LIQ2pUCG3sUJuVwHIwJgxY7yNZIEuIE5/+zNRFPHwww/j17/+NQBAbmuFu0sZVIHNVKFIVVR88/dtGD1nMCQd/7yIyEMQgDH3D0XWe9vhdspal0MaUaHC3aHcEygBzJo1C88++2xQBEqAobJRCIKAX/3qV3j66achSRKUBDtcPYuhSrxDQig69v0plBdWov+UXlqXQkR+Im1MN0h6CfvX52hdCmlEFVUMfLorlFY2CIKAhx56CPfffz9EMXiiWPB8JX5gwoQJ3mEA1GgXXL2KoBr5H2ko2vDGFoyYPRDh0YE3JAQRNS6DWY8x9w/Fhje2QFV4FisUqXoZnefE49///jf0ej1efPFFTJ8+XeuyGh1DZSNLT0/HwoULERsbCzVchrN3ERQLB7cNNblHC5Cz5QQy/nuI1qUQkcaG/2ogzh/Kx8ndZ7UuhTSghLsQPUnEoUOHEBERgddeew2jRo3SuqwmwVDZBDp37oy33noLnTp1AgwKXGnFkFtyyKFQs+md79FtWEe07t5S61KISCOxbWPQf3IaNizcqnUppAE51g7pZisKCgrQtm1b/P3vf0efPn20LqvJMFQ2kZYtW2LRokUYMWKEZyzLzmVwty+HCp76CBXWEhuy3t2OiY+OgsDBAIhC0oRHRmD7J/tQkl+mdSnUjFSocLetgLt7Kex2O9LT0/HWW2+hbdu2WpfWpBgqm5DZbMZLL72Ee++9FwAgt7bC1bMEqo4deELF3tXZkPQS+t6aqnUpRNTMug3riNi2Mdj2zz1al0LNSJUU3Pxsd8gplQCA6dOn489//jMsFovGlTU9hsomJooiZs+ejZdffhkmkwlqjBPOPpehRLi0Lo2agSKrWPPaZtzy30MQERu4d0kgohtjijBi4m9HYd1fsziEUAhRwlxImG7Eli1boNPp8OSTT+Khhx4KmiGDroehspmMGDECixcvRuvWrQGTAlevIshJVp4ODwHnD+XhwMYjmPhocF6YTURXG3P/UJz+4TyO7zitdSnUTOR4G8SbK3H+/HkkJCRg4cKFuPXWW7Uuq1kxVDajjh074p133qm5zrJjOdSeFRzPMgRsfud7tOraEt2Hd9S6FCJqYu36tEG3YR2x/o0tWpdCzUAVVLg6lsHdtQwOhwMDBgzAP/7xD/To0UPr0podQ2Uzi4iIwLx58/Dggw9CkiS4Yqxw9S6CEsbT4cHMaXPhywWbMPGx0TBFGLUuh4iaiM4gYdKTGVj/xhZYSzjqR7BTTG60vzcGSpJnQPPZs2fj1VdfRXR0tNalaYKhUgOCIGDGjBl4/fXXER8fDzVMhqtPEdw8HR7UTu46g5O7zmDcg8O1LoWImsio+27G5fMlyP76qNalUBNSoUJOsEE3zIqjR48iMjISr776Ku69915IkqR1eZphqNRQWloa3n33Xdx8882ACMgdy+HuUQJVz4u6g9X617eg44BkdBvG0+BEwaZdnzboO6En1szfpHUp1IRUScGQ53vC3aUMNpsNffv2xfvvv4+BAwdqXZrmGCo1Fh0djT//+c949NFHYTAYoLRwwtm3CHKMQ+vSqAnYKxz4/I8bMemJDPYGJwoipggjpj43Fmv/dzPKLlVoXQ41EcXiRMwUEVlZWZAkCf/1X/+F//3f/0V8fLzWpfkFhko/IAgCbr/9drzzzjvo0KEDYFDg7lkCV4cyqCJPhwebU3vP4cDGI5g8d6zWpRBRI5n425E4/cN5HMo6rnUp1ARUQYU7pRxy31JcvHgRrVu3xqJFi3DXXXeF9OnuKzFU+pH27dvj73//O+644w4AgNLKBmffy1Aiee/wYLPp7W2IjI/AgKm9tC6FiHyUmtEFyWmtse5v32pdCjUBJdyF1neFQ25rhaIoGDduHN59992Q7N19PQyVfsZoNOLhhx/GggULkJCQAJhluNKKPbd4ZKtl0HA7Zax8eT1GzxmMxE48bUIUqGJaRWHib0fh81c2wFHJBoBgogoq3MkVUPqX4tSpU4iJicErr7yCZ599FmFhvHypPgyVfio9PR1LlixBZmYmIFTd4pGtlkHl4slCfPPWNkyfNxHGcIPW5RDRDdIZJMx4ORPbP9mHM/svaF0ONSIl3IXkX0VCTq6ELMsYPXo0PvjgAwwbNkzr0vwaQ6Ufi4iIwFNPPYVXX33VM/RQdatlhzIOmB4k9q7OxoWcfNz21C1al0JEN2jcQyNQUWTFd0t3a10KNRJV9Fw7qfQvxYkTJxAVFYWXXnoJL774YsiOPXkjGCoDwKBBg7BkyRJMnDjR02rZygZnv8uQY+1al0aNYM2CzUhoH4f0ab21LoWIfqK0W7qiy83t8fkf1kPllUlBQYl2IO4OHeS2VsiyjBEjRuCDDz7AqFG8xe5PxVAZICwWC+bOnYvXXnvNc/9wowJ391LIaWVQDRzXMpA5bS58+vwajPr1zWjTI1HrcojoOuLbtcDEx0bhXy+ug7WU/9wHOlWnwNWlFK7UEuTm5iI+Ph5//OMf8fLLL6NFixZalxdQGCoDzIABA7BkyRLcfffdkCQJ7igbnDddhrsV78YTyC6dLsLa17Iw85VbYYkL17ocImqA2WLErD/dhqx3t+PcwTytyyEfqFAht7TBNNYBJcEOQRAwbdo0fPTRRxg6dKjW5QUkhsoAZDQaMWfOHLz33ntITU0FJBVyh3K4+hSxI08AO7jpKH786jDu/OMk6Awc94zI34iSgOnzMnFq3znsWrFf63LIB0qECx3nxMLduQxlZWXo1KkTFi9ejEceeYQ9u33AUBnA2rdvj4ULF+Lxxx+HxWKBGuGGq1cxXF1KeUo8QG1+53tUXK7E5LljtC6FiK4w7sHhkPQS1v01S+tS6GdSdQpcncrg7luMnJwchIWF4Te/+Q3efvttjjvZCBgqA5woipg8eTKWLVuG2267DYIgQEmwe06Jt6mEKvCUeCBRVWDlyxvQsmMcht41QOtyiKhKv1t7ouuQjvj0uTWQ3Rx9I9CoUCEnWWG4xQYl0QZVVTFu3DgsXboUd955J3Q6ndYlBgWGyiARHR2N3/3ud3jnnXeQlpbmOSXersLTS7yFnddbBhCH1YnlT3+Jm2f0Rc9RnbUuhyjkdRyQjDH3D8Pyp1ejssSmdTl0g5RoB1rfHQ53x3JUVFSgc+fOWLRoEZ599lnExcVpXV5QYagMMl26dMHChQvx3HPPITY2FjDLcPcohSutGEqES+vy6Ccqzi3F8rmrcesTGUjp01rrcohCVmLneNzx4kSseOkrXDxZqHU5dAOUMBd6/TYZrtQSnDp1ChaLBY899hjefvttT+MLNTpBVTnCVrCyWq1YtmwZPv30UzgcDgCAeMkI3ekICA429QeCrkM6YPLcMXj/oc9w6XSR1uXQzyBKIn7/7cOYN/J1KDJPmwaS6MRI/HrxDGx6+3v8+NVhrcuhn0g1yHAnV0BNckBVVeh0Otx+++345S9/icjISK3LC2psqQxiYWFhmDNnDpYtW4YJEyZ4rreMd3iut2xfDlXHDzh/d3Tbf7D5H9/jrgVTONQQUTMyW4z4xfwp2P35AQbKAKFKCtzJFRCHV0BJtENVVYwaNQofffQRHnzwQQbKZsCWyhBy4sQJLF68GLt3V91SzC1AuhAGKTcMgsz/L/zZ6DmD0XVIByx5+F+wlXGw5UDClsrAYzDrcfdrU3HxP5exZsEmrcuh61BFTyeciD4SSktLAQA9e/bEAw884Bl2j5oNQ2UI2rVrFxYvXoyTJ08CAAS3COPFSBgLLbCXc5xLf5X5+Gi07tYSHzy6Ao5K/pwCBUNlYNEZJPzi1SmoLLFh5ctfQZH5EemvVEGF0tKG6EFGFBZ6rndNTk7GfffdhxEjRkAQBI0rDD0MlSFKURRkZWXhvffew7lz5wAA0VHRqNgrQ7xohqDyj9HfCAIw+emxaNEmGksf/xxOGzteBQKGysAh6SXc+cqtkN0KPn1+LX9efkqFCiXejviR4cjL89zVKDExEbNnz8bYsWM5PJCGGCpDnNvtxsaNG7FkyRLk5+d7FtpF6M6FQyxguPQ3oiRg2u8nwBxlwj+f/AJuJwe593cMlYFBlATc8eJEGMIM+Pjp1fzb8kOq4AmTSRlR3saQFi1a4O6778akSZNgMBg0rpAYKgkA4HQ6sWbNGnz44YcoKqrqZewQoTsf7mm5VBgu/YWkEzHjD7dCEAV8+twafvj5OYZK/ydKAqY8Mw6RCRFY9rtVcDncWpdEtaiCCiXBhvjhEd6WycjISMyaNQu33347zGazxhVSNYZKqsNut2P16tVYvnw5Ll++7FnoFD0devLMEBR26PEHOoOEmX+4FaIk4uNnvuSHoB9jqPRvoiRi2u/HIyI2HP988gs4rLxe2V+ooueayZhBJly6dAkAEBMTg5kzZ2LKlCm8R7cfYqikejkcDnz11VdYtmwZLl686Fnoquotnsfe4v5A0ku444UJMEea8M+nvuA1ln6KodJ/6QwSpr80EXqzHsvnrobLzn/O/IEqKpCTbIi6yeA9cxYXF4dZs2Zh0qRJMJlMGldIDWGopGtyuVzYuHEjli5digsXLngWygKkfLNnKCKHpG2BIU6UREx9bhyiEyOx7IlVsFc4tC6JrsBQ6Z/0Rh1m/nESFFnhZSR+QtXLkFtZEdZDQnl5OQBPB5xf/OIXGD9+PIxGo8YV0vUwVNJP4na7sXnzZixfvtw7FBFUQCw0QroQDrFCr22BIUwQBdz21C1o2TEOy574ApXFVq1LoloYKv2PMdyAWX+6DbZyO/714leQXQyUWlLC3JBbV0Js7Ybb7Wktbt26Ne666y6MGzeOvbkDCEMl3RBVVbF79258/PHH2LNnj3e5UKL3hMtiAwSwU09zEwRg7IPD0XVwByz93ecoulCqdUlUhaHSv1jiwnHXginIO3YJq//yDX8mGlGhQo1ywt3GCjWm5jrWtLQ0zJw5E0OGDIEk8UxYoGH8pxsiCALS09ORnp6OEydO4JNPPsE333wDOdoFd3QJhEoJUl4YxAITO/U0I1UFNryxFeWXKnDvohn451NfIPdogdZlEfmVuJQY3LVgKg5sPILN73yvdTkhSRVUKHF2tMtMwIkTJwAAoihi+PDhmDlzJnr27KlxheQLtlSSzwoKCrBixQqsXr0alZWVAABBFmC4HAFDoQXOIp5aak5pY7pi4qOjsOKlr3Bi1xmtywl5bKn0D21Tk3DnnyZhy/s7sWvlfq3LCTmqUYacaIUlzYCSkhIAgMlkQmZmJqZPn45WrVppWyA1CoZKajQVFRVYt24dVq1ahfPnz3uXiyVG6PLCIJYYeWq8mbS/qS3ueGECNr3zPfZ9eVDrckKaKIl4btOD+EPGQoZKjfQY1RmZj43CmgWbkLPlpNblhAwVKpQoJ9yJlUCcC4ri+f2Pj4/HlClTMHnyZERGRmpcJTUmhkpqdIqiYM+ePVi5ciW2b9+O6l+xmJgYDBo0CDfddBPCw8M1rpKIiJqC3W7H3r17sWPHDu89uQGgX79+mDp1KoYMGcLON0GKoZKaVG5uLlatWoW1a9d6h4iAAkiXTZAKwiCWsWNPUwqLNmP6SxPhdrmx4sX1HHJIA2yp1IbepMPkp8cgJikKnz63BqUFFVqXFNRUqFAjXHAnWKFPUWG32wEAYWFhGD9+PKZMmYJ27dppWyQ1OYZKahZ2ux2bNm3CypUrcfz48ZoVNgnSRTOkAhMEJ3v6NQVJJyLz8dFI6d0ay+euRuHZYq1LCim8prL5RSVYMOvPt6HoQgk+f2UDBzVvQqpOgZxgQ3JGPE6dOuVd3r59e0ydOhVjx47lnW9CCEMlNStVVXH06FGsWbMG33zzDazWqjEVVUAsMkC8aIZYxGsvm8LAO/pg5D2D8OX8TTj87fHr70CNgqGyeXVKT8HU58Zh9+cHsGXJDvATrvGpUKFGOyEn2iAmyt6xJY1GI0aOHInMzEz07t0bgsD38VDDUEmasdls+Pbbb7F27VocOHCgZoVThHTRBPGSGaKV1900puRerTD9pYk4lHUcX7/5b8huhpymxlDZPARRwMh7BqL/lF74/A8bcWLnaa1LCjqq0Q25pR2x/cNRUFAzZFnXrl1x6623IiMjAxERERpWSFpjqCS/cObMGaxduxbr16/3DjcBAEKFDmKBCdIlEwQXT483hvCYMEx7YTwMJj0++/06lBaUa11SUGOobHrh0WZMe2ECDGEGfPb7tSi9yN/pxqLqFChxdsgJdqiRLu9yi8WCsWPHIjMzE506ddKwQvInDJXkV1wuF7Zt24YNGzZgx44dkOWqMS5VQCgxQCowQbxs5MDqPvK06gxC/ylp+OJPX+PY96euvxP9LAyVTatdnza4/ffjkbPlODYuYut7Y1BFFUoLB5QEG4R42fs+LIoi+vXrh8zMTAwdOpT34qarMFSS3yopKcG3336LDRs24NChQzUrZAH6UjMMxRHQlZvYo9kHHdNTMOWZsTjy75PYuHArXA52aGhsDJVNQ9KJGHXfYPTL7Ik1r23mdcI+qr5topxgh6m9WHO9O4AuXbpgzJgxyMjIQFxcnIZVkr9jqKSAcOHCBXz99dfYuHFjnYHVw8PCYTsle06PlxogqLww/EaFRZtx25O3IC45BivmrUfeMd7esTExVDa+uJQYTPv9BNjK7Fj1x40ou8Thgn4OT5B0QY61IzrVjKKiIu+6xMREjBkzBmPGjOFQQPSTMVRSQFFVFTk5Odi4cSOysrJQXFxreByXALHICLHQBLGEAfNG9bu1J8b8Zhi+X74X2/65B4rMt4bGwFDZeAQBGDC1N0bfNxhbPtiJHZ/uY+/uG+RtkYxzIKqHqc57qMViwejRozFmzBikpqZCFHmZEd0YhkoKWLIs48CBA8jKysLWrVvr/JcNtwDxMgPmjWrRJhpTnxkLSS/hiz9/jYsnC6+/E10TQ2XjiG0bjduevAXGcCM+f2UDfzdvgCrUBElLVwNKS0u96ywWC4YNG4aRI0fipptugl6v17BSCnQMlRQUZFlGdnY2Nm/eXH/ALDZ4WjGLjRDc/O/7WgRRQPrU3hj560HYtWI/tn64C7JL1rqsgMVQ6RtREnDzzH4Ydlc6ti3fg23/3Mvv40+gSgqUaCeUWAciOhlQVlbmXRcVFeUNkv369eMtE6nRMFRSg3744Qd88MEHkGUZM2bMwLBhw7Bp0yb861//gsFgwDPPPIOWLVti+/bt+Oijj5CZmYnMzEyty/YGzKysLGzZsqVuwFQBoVQPscgI6bIRgoNvpg2JTorEpCcyEBkfgdV/+QbnDuZpXVJAYqj8+Vp2jMPkuWMguxWs/svXuHS66Po7hTDVKENp4YDcwgFdggqXq2YIoOjoaAwfPhwjR45Enz59/CpIBupnDV3Nf36ryK84HA588sknmD9/vvd0iNvtxqeffoqFCxfiyJEj+PDDD/HEE09g+/btWLhwIf7617/6xR+6JEno06cP+vTpg0ceeQRHjhzBtm3b8N133+HUqVNQo12Qo12QO1RAqJQ8LZhFRgjlet7Jp5aSvDJ89Njn6DuxB2b96TYc3fYffPPWd6gssWldGgU5U4QRo349CL3GdceW93di54ofoSps/7iS537bbs/wPy0cUCNqRm9wuYDWrVtj6NChGDJkCFJTU/0qSFYL5M8aupr//YaRXzh48CCMRiPmzp0Lk8mExx57DOXl5Wjfvj30ej3S0tLw5ptvAgDS09PxwAMP+OUfuSiK6NGjB3r06IE5c+YgNzfXGzD3798PJVyGHG6F3Nbq6ehTYoBYbIRYbOBg61V+WHcYR777DzL+awgeWPpLfPveDuz54gA78lCjEwSg94QeuOW/h+A/e87hzbs/QvnlSq3L8iuqToES7YAS40RMj3BcvlzTeiuKIlJTUzFkyBAMHjwYycnJfn+rxGD5rCEPhkqqV3FxMfLy8rBo0SLs3bsX77//PsaNG4ewsDDvNtUD4g4dOhRDhw7VqtQb0qpVK0yfPh3Tp09HeXk5duzYgW3btmHnzp2orKyEEu+AEu8Z91Ko0HmuxSwxQijTh3RnH1uZHWsWbMK+L7Mx8bHR6HdrKtb9LQtnD+RqXRoFiaQuCZj421EwmPX47IV1OPPjBa1L8gsqVKiRLs/1kTEOIFJG9VVrly/bYTabkZ6ejsGDB+Pmm29GdHS0tgXfoGD9rAlVDJVUxyeffIJt27ahf//+SEtLg16vR79+/bB06VJYLJY6A+JKUmC35FksFu84bG63G4cPH8bOnTuxe/duHDlyBGqEG3KE29OKKQvQVZigLzPDXSBAsEkheao892gB3v2fj9E3sydmzMvEuUN52PT3bSg8W3z9nYnqEZ0YidFzBqPTwBRs/WAXdq3cH/LXnqpG2dsaaU7RobKyVmutCnTo0AHp6elIT09HWlpaQN7ZJpQ+a0IJQyXVMXPmTMycOROlpaWYN28eAOD48eNo1aoV2rRpg9OnT8PlcuHIkSPo0KGDxtU2Hp1Oh169eqFXr16YM2cOiouLsXv3buzatQu7du1CSUkJ3FE2uKNsQFsADhFiqcHzKDFAcITOm56qAvvWHMLBTccw+M6bcN9bdyJ701FseX8HKoqs1z8AEQCzxYhhv0xHv1tTsffLbLwxawls5aF5dyzVIEOJcnpaI6OcgKkmVFdWOhAZGYn+/fsjPT0dAwYMQHx8vIbVNo5Q/awJduz9TQ1auXIlNm/eDFEUMXfuXLRq1areHnnBTlEUHD9+HLt27cKePXtw6NAhOJ3OuhvZRc/1mFVBU3CGTsiMiA3DyNmDkJrRFTtX/Igdn+4L2XBQH/b+rstg1iN9Wh8MvrMfju84jax/bEdJftn1dwwiqr46RLqgRjmhmusO2SVJErp37+5tjezatWtQt9bxsyZ4MFQS3SCHw4GDBw9i3759+OGHH5CTk+O95qeaYJUglOkhlhk812Pag/90eVxyDEbeOwgd01Owa8V+hssqDJUe3jA5sx/OHcxF1ns7kH/8ktZlNTkVKmBUoEQ6oURWhciwuu8XoiiiS5cu6Nu3L/r27YtevXrVuaaQKFAwVBL5yGq1Ijs72xsyjx07BkW5Ijw4RYhlegjlek9LZqUuaDv+xLdrgeG/GojOA9th18ofsf3TH2Ars2tdlmZCPVQawwxIn9YbN8/oh7PZudiyZGdQ31/eO8xPpAuqxRMkYaz7cxcEAZ06dfKGyN69eyMiIkKjiokaD0MlUSMrLy9Hdna293HkyJGrT5fLgFBR05IpVuiCbggjb7gc1A771x/Gjk9/QHFeaJ3mBEI3VFriwjHwjr646bZUnPnxArYs2YG8Y8HXMqnqFKgRLiiRLiiRThgTJdjtdf+JkiQJXbp0QVpaGnr16oU+ffogMjJSo4qJmg5DJVETczqdOHr0KA4ePIgDBw7g4MGDde6962UXIVZUtWZW6CFU6CDIgX9LyZhWURg0oy/6jO+OE7vOYPvH+3D+cL7WZTWbUAuVLTvGYfCd/dBteCcc2nwM2z/ZFzR3wlFF1RMgI1xQLS4oEW7AfPUtTCMiIpCamoq0tDSkpaWhW7duMJlMGlRM1LwYKomamaqqOHv2LLKzs3Hw4EHk5OTg9OnTuOpPUa26NrNCD7FcD5McDslu8J42t1UE1ills8WI/lN6IX1aHxTnlmLXiv3I2Xoi6O8rHgqhUpQEdBncAem390Zip3jsXnUAuz/fH5CjAZgjPOFPFVTIJifsUmVViHRDsChXX9oCz51rUlNTvUGyXbt2EMXA/4eQ6EYxVBL5AavViqNHjyInJwdHjhxBTk4OLl68eNV2oigiKbEVUtqkYOcn+z2nzSv1ENyB8wEm6SWkZnRB/8m90KJNFH5Yexh7V2ejOLee1tsgEMyhMirBgn6TeqJvZiqsJTbsXnUABzbkwOVwX39nP6JKCtRwN5QINwb/oi/Onj+DC3kX4HZf/XXExsaie/fu6Natm3dqsVg0qJrI/zBUEvmpy5cvewNmTk4Ojh07Vv9pc8AzbmalDkKF3tMJqFIXED3OEzvF46bJaUi7pSsuHM7HvrWHcPS7k3A7g6f1MthCpaSX0HlQO/Sd2APt+rXF4azj2LM6GxcC4JIGb0/scBfUCLcnSIa76owLWVtERAS6detWJ0AGwxiRRE2FoZIoQKiqisLCQpw4cQLHjx/H8ePHceLECVy40MDt7BRAsFUFTKsEwarzPPwwbBrMeqTd0hW9J/RAQvtY5Gw9gQMbcnD6xwtQlcB+iwqWUJmc1gq9xnZDz9FdUJxbiv3rc7B/Qw7sFf43bJQnPMpQwmWoZjfUsOqHDEj1/z4lJiaiU6dOdR5JSUl+f+9sIn/CUEkU4CorK3Hy5Mk6QfPMmTNwOBr4sFdQEzCtkid42qumivYfoDFJkUgb2w29x3WH3qhD9qajOPztCeTm5CMQ360COVQmdo5HjxGdkDamGwRBwIGNOTjw9REUnvGP23KqggrVLEM1eQKjNzya3UADgyno9Xq0a9fOGxw7d+6Mjh078hQ2USNgqCQKQrIs4+LFizh16hROnTqFM2fOeKcNhk0AcIie+5p7g2ateQ3G1WzVrSV6jemGbsM7QpREHPn3SRzZegKnf7wQMAEtkEKlIApom5qE7iM6odvQjtAZdTjy75PI/voIzmXnahLqVUGFapJrwqO5Zl4wq1d3cKtiMBiQnJyMdu3aISUlBe3bt0e7du3QqlUr6HS8QzFRU2CoJAoh9YXN8+fP4/z58w1frwkAKjyB0y5BcEieaa15OMUmP6We1CUB3Yd3RLfhnWCJDceJnadxYtcZ/Gf3WZRfrmzS1/aFv4fK8GgzOvRPRsf0FHQamAJHpRNH/n0SOVtP4sLhvCYPkipUwKBANcqe8GhUqqae8CiGqfX2uPbWHx6ONm3aICUlxRsgq8NjMN/akMgfMVQSEQCgrKzMGzDPnTtXZ2q1XmdoGAWAQ4LOrYfo1EF0ShBcOrjLZMApQXCIgCw0WvCMbRuNTunt0HFgCtr1bo3ivDKc3H0GJ3edwbmDeXDaXI3yOo3B30KlziChTc8kdExPQccByYhPaYGzB3JxcvcZnNh5BgWnLjfq66mSAtWgAAYZ+kgJisENxSBDMbgh61xQjTJwncELzGYz2rRpU+8jOjqa1z0S+QmGSiK6JlVVUVRUhAsXLiA/Px95eXnIz8+v87jy3uf1kgHBKXlaPJ0SBKcIODxTwSV6WjtdNx4+Jb2EtqlJ6JSego7pKYhv1wIXTxbiXHYezmZfwNnsXFRc1m68RK1DZVi0GclprdA2LQnJaa2R1Dkel8+XeEL47rM4u//CDQ8BpEL1dHjReQKjJzQqUA1VLY1VIVI1KIDu+h8xkiQhPj4eiYmJ3kdSUhKSkpLQpk0bxMbGMjgSBQCGSiLyiSzLKCwsvCpwFhYW4tKlSygsLER5eflPP6ACwFU3aAousWaZW4TgFmqmLrHO9Z7GcAPa9ExCclWIat0jEZXFVuQdK6h6XELesQJUFjdP0GzOUBkWZUJi5wQkdUlAUpd4JHVJQGSCBbk5+Th7MA9nD1zA+YN5sJXXva5WFaoCoq7WVK9A1StXTavnG+oIU5/w8HDExcUhPj4e8fHxSEpKQsuWLZGUlITExETExcXxOkeiIMBQSURNzm63o7Cw0Bs0qx/Vy0pKSlBcXHz90+wNkXF12HR7Wj1FVUREVASi4yPRIjEGca1bICE5DpAFVFyyobLAirL8SpRcKEPR2TKUFZQDjdgpqSlCZURcGOJSYhDTOgqRrSIQmRiGiIQwSEYRBWcLcencZRReKEJxQQnKisqhQAGkWqFRqhsibyQg1mY0GhETE4PY2FjExcV5H/Hx8d5pbGwswsLCGuXrJiL/xlBJRH7D4XB4A2ZxcTFKSkpQVFTknS8uLkZ5eTnKy8tRUVGB8vLya3bi+LkkUYIoShAFAYIqAgqgugFVVqG6AcWtQpFVz600q99BVcHToQnwTKuCqQABaWO7IvvrI57Txp6FtaYqULWrKAkQ9QIEnQBR55kKUlUPaEGFqiqQFRlut4yaF2scgiAgPDwcFosFFosFUVFRiImJQXR0dINTs9ncqDUQUWBjqCSigKUoCqxWqzdoXvmw2WywWq2w2WzXnQ/Ut0JRFGE2m3/Sw2KxICIiwhsca8+Hh4fzftVE5BOGSiIKeaqqwuVywel0eqfVj/qWu1wuKIoCRVGgqipkWYaqqt5lVz4EQYAoihBFsc587efVU51OB71eD71eD4PBUO+0er76wU4sROQPGCqJiIiIyGc810FEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPtNpXQCRP1BVFXa7XesyiIhuiMlkgiAIWpdBBIChkggAYLfbMW7cOK3LICK6IRs2bIDZbNa6DCIAPP1NRERERI2ALZVEVzDsSoCgVv2/JYgQRAEQREAUAEGAIFavq1ouCIAoQKjexrtO8O7jfQC1ltUc07sPavZRBaHm375ax/Aur7Vf7WVq1WG860QAqF4ueNdV76NWLfOuB2qOIVZt792n7mvU2QdVy8R61tXZHnVqrFkmXLXuqn1Qd58661GzT0OvVed5A3Vctc+1jutdrtbZ/8rjedfXOpZatRxX7AdBrbW/Z71Qe5132+p1qveYQu3tq5YLglrz61e1vObXQ/WuF6F6n3vWAWLVc886z/Pq/bzrBBUCavYTq5Z5H1C9+4kC6iyv2Uep2RYqREGBVL2u6nnNsRTv8aRax5fgWS4JyhX7KZCqj4ma1/Nuj5rjifDsL8Lz+p51nuNJVcsEKJCq90d1HQokwLMfPK9T/bVVP/e8llo1j6p1KsSq74sEASIAqeqHLUKoWiZAEgSIVW8GAgS4nBKmzUkEkb9hqCS6kixUvb3DEypRFQCrPq1r1gmAWJOgBE9CqzpIdfIQa+avShvi1YlHEK7evvbxcMX2ddZdOV9rm+owWStUXrWsVgis/fzKEutuX88+4jXWNfRl1Hfchva71vKf/Fo3dsx6Q2yd/Ro5VNa3Hlc+V73Hrl1H7desu88VIdS7rvZ6tZ7jqfW8llrnUTtU1gTVqkdD6+oLm6gOo6gT9KqfS6i7zhMqlZpQJtQOZZ55URA8ga9qCu+84N2vJsACklAzlYBaAbCedVXH8zxXq0Kp6g2Rnv3U64bK2seTqtaJqLusOsCKVV83kT/i6W8iIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZxynkuhKkgpV9Qx47Bl3Uag1Fa4YkLx6WmsetZepteavsa56ea1BC2uGqEYDy2umap151NlPBQC1ennNMVUIgArvvrXXe49RZ3DF2rXU81ytU9IV348GHldue72xI9HA8uutu9ZYlNdaV/srvOZ+9Y03WfuhNlBjw4Of1x1bstY677Y/f/DzmjpqjVOJnz9OpYqa/VRBrfuAZ+pZhzrLFe/xlJrXgQoISq3xNNU661VB8R4PdY5fNa1+rarnYtU21VMAVy1Tao0NqQg1UwU141QqVcsENDROpeAdsFxCzc+s+rlYtc+VY1/+9MHPhaofiwCXs76/SyLtMVQSXcGZXqB1CU2j+jPbB1fGWSKg7q+WomUhP1vt32yewCP6ufjXQwTAbrdrXQIREVFAY0slEQCj0eid/+KLL2AymTSsJnjZ7XZMnjwZAL/PTY3f6+ah9feZP1fyJwyVRAAEoeaErslkgtls1rCa0MDvc/Ph97p58PtMoY6nv4mIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5TFBV1ceR64iIiIgo1LGlkoiIiIh8xlBJRERERD5jqCQiIiIinzFUEhEREZHPGCqJiIiIyGcMlURERETkM4ZKIiIiIvIZQyURERER+UyndQFEWrNarfj444+xZcsW5OfnQxRFtG3bFqNHj8a0adOg1+u1LjGglZaWYtu2bdi7dy+OHTuGixcvQpZlREdHo2vXrhg/fjyGDx+udZlBa+nSpXj77be9z7du3aphNcGnsrISq1atwnfffYfz58/DarUiOjoabdq0Qe/evTF9+nRYLBatyyRqFryjDoW0/Px8PPzww8jPzwcAmEwmKIoCp9MJAOjcuTP+9re/8UPBB6NGjYIsy97nBoMBkiTBZrN5lw0cOBAvv/wyTCaTFiUGrbNnz+Lee+/1/j4DDJWNad++fZg3bx6KiooAAJIkwWw2o6KiwrvNu+++i86dO2tVIlGzYkslhSxZljF37lzk5+cjNjYWzz77LPr37w9FUZCVlYX58+fj+PHjmDdvHubPn691uQFLlmV0794dEyZMQHp6Olq1agUAyMvLw4cffoi1a9di586dWLBgAZ577jmNqw0eiqLgL3/5C5xOJ3r27IlDhw5pXVJQyc7OxlNPPQWHw4H+/fvjnnvuQc+ePSGKIhwOB06fPo2tW7ciPDxc61KJmg1bKilkrVmzBq+++ioA4M0330Rqamqd9d988w3mzZsHAPjrX/+Km266qdlrDAb79u1Dv379Gly/YMECrF69GgDw2WefoWXLls1VWlD77LPP8MYbb2DMmDFo3bo1lixZAoAtlY3Bbrdj9uzZyM3NxYgRI/DSSy9BFNlFgYh/BRSy1q9fDwDo27fvVYESADIyMpCUlFRnW7px1wqUAJCZmemdP3r0aFOXExJyc3Pxj3/8A1FRUXjooYe0LifobNiwAbm5uTAajXj88ccZKImq8C+BQpLdbsfBgwcBAIMGDap3G0EQMHDgQADA7t27m622UGMwGLzziqJoWEnwmD9/Pmw2Gx544AFER0drXU7Q2bBhAwBg6NCh/P4S1cJrKikknTlzxhtg2rdv3+B21euKiopQVlaGyMjIZqkvlPz444/e+Q4dOmhXSJD48ssvsXfvXvTv3x/jx4/Xupyg43Q6vS3qffr0QW5uLj788EPs3r0bJSUlsFgs6N69OyZPntzgP6xEwYqhkkJSYWGhdz4+Pr7B7eLi4ursw1DZuMrLy7F06VIAQK9evZCcnKxxRYHt0qVLWLx4MYxGI373u99pXU5Qys/Ph8vlAgAUFBTgnnvugc1mg16vh9FoRFFREbZt24Zt27Zh8uTJePzxxzWumKj58PQ3hSSr1eqdNxqNDW5Xe4ib2vuQ7xRFwSuvvILLly/DYDDg0Ucf1bqkgLdgwQJUVFTgnnvu8fayp8ZVXl7unV+2bBkkScILL7yADRs2YN26dfjss8+QkZEBAPjiiy/w2WefaVUqUbNjqCQiTbz++uv4/vvvAQC//e1v0alTJ40rCmwbN27E9u3b0blzZ8yYMUPrcoJW7et+FUXB448/joyMDOh0nhN/LVu2xPPPP+8dm/LDDz+E2+3WpFai5sZQSSEpLCzMO+9wOBrczm6317sP+WbRokVYuXIlAODBBx+s0wOcblxxcTHeeOMNSJKEJ554whtwqPHVfh9ISEjwtkrWJooiZs6cCcBzR6ljx441W31EWmKopJBU+1rJS5cuNbhd7Wsva+9DP9/ixYvxySefAADuv/9+tqo1grfeegulpaWYNGkSkpOTYbVa6zxqt5RVL6u+LpBuTO1rsK91DXBKSop3vvqOXUTBjv/OUkhKSUmBKIpQFAWnTp1qsJfmqVOnAAAtWrRgJ51G8Oabb+Ljjz8G4AmUs2bN0rii4JCXlwcAWLVqFVatWnXNbat7hN9xxx14+OGHm7q0oBMZGYn4+HhcunQJgiD8pH1+6nZEgY4tlRSSTCaTd8DznTt31ruNqqrYtWsXAGDAgAHNVluwWrRoEQMlBYXq94MzZ86goZvSnTlzxjtffRMFomDHlkoKWePHj8eBAwfwww8/4PDhw+jRo0ed9VlZWcjNzfVuSz/fokWLvKe8f/Ob3+DOO+/UuKLg8vrrr19z/XvvvcfbNDaiCRMmYN26dSgoKMDmzZuvuq5SURTv73t8fDy6dOmiRZlEzY4tlRSyxo8fjw4dOkBVVTz//PPYu3cvAM8HQlZWFubPnw8AGDhwIO/77YPa11A++OCDDJQU8Hr37o2RI0cCAF577TVs2rTJe93qxYsX8fLLL+P48eMAgPvuu4+3caSQIagNtd0ThYC8vDw88sgj3gvpTSYTFEWB0+kEAHTu3Bl/+9vfYLFYtCwzYF28eBHTp08H4OkRe71b2s2cOZOnxZsAWyobn81mw5NPPon9+/cD8Nxu1Gg01hnHcvbs2bj33nu1KpGo2fH0N4W0pKQkLFmyBB9//DG2bNmC/Px86HQ6tG/fHhkZGZg2bRr0er3WZQasK8f0Kyoquub2NputqUsiahRmsxn/93//h3Xr1mHDhg04deoUrFYr4uPj0atXL9x+++1IS0vTukyiZsWWSiIiIiLyGS/0ICIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZ/8P6aJnBuZt95QAAAAASUVORK5CYII=\n", "text/plain": [ - "\u001b[38;5;46m08:28:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016432\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99075\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.752\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=773396;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=213207;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" + "
" ] }, "metadata": {}, "output_type": "display_data" - }, + } + ], + "source": [ + "List_of_Maps = [mDisk,mNarrowBulge,mBroadBulge]\n", + "List_of_Names = [\"Disk\",\"Narrow Bulge\",\"Broad Bulge\", ]\n", + "\n", + "for n, m in zip(List_of_Names,List_of_Maps):\n", + " plot,ax = m.plot(ax_kw={\"coord\":\"G\"})\n", + " ax.grid();\n", + " lon = ax.coords['glon']\n", + " lat = ax.coords['glat']\n", + " lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)\n", + " lat.set_axislabel('Galactic Latitude',fontsize=5)\n", + " lon.display_minor_ticks(True)\n", + " lat.display_minor_ticks(True)\n", + " lon.set_ticks_visible(True)\n", + " lon.set_ticklabel_visible(True)\n", + " lon.set_ticks(color='white',alpha=0.6)\n", + " lat.set_ticks(color='white',alpha=0.6)\n", + " lon.set_ticklabel(color='white',fontsize=4)\n", + " lat.set_ticklabel(fontsize=4)\n", + " lat.set_ticks_visible(True)\n", + " lat.set_ticklabel_visible(True)\n", + " ax.set_title(n)" + ] + }, + { + "cell_type": "markdown", + "id": "915bc5ee", + "metadata": {}, + "source": [ + "## Instantiate the COSI 3ML plugin and perform the likelihood fit\n", + "The following two cells should be run only if not already run in previous examples..." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5b3abf0b-7631-419c-b5b7-a31dbfe1b65c", + "metadata": {}, + "outputs": [], + "source": [ + "# if not previously loaded in example 1, load the response, ori, and psr: \n", + "response_file = \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "response = FullDetectorResponse.open(response_file)\n", + "ori = SpacecraftFile.parse_from_file(\"20280301_3_month.ori\")\n", + "psr_file = \"psr_gal_511_DC2.h5\"" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "522db694-3a1d-4d0d-a3d9-0e028bb5cbcc", + "metadata": {}, + "outputs": [], + "source": [ + "# Set background parameter, which is used to fit the amplitude of the background:\n", + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")" + ] + }, + { + "cell_type": "markdown", + "id": "34287711-a61b-4496-bc3e-b5f2f9e02298", + "metadata": {}, + "source": [ + "We should re-run the following cell every time we set up a new fit:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "5ca19bc5", + "metadata": {}, + "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + "... loading the pre-computed image response ...\n", + "--> done\n", + "CPU times: user 1min 56s, sys: 37 s, total: 2min 33s\n", + "Wall time: 2min 51s\n" ] - }, + } + ], + "source": [ + "%%time \n", + "\n", + "# Instantiate the COSI 3ML plugin, using combined data for the thin disk\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = response_file, # detector response\n", + " data = data_combined_thin_disk.binned_data.project('Em', 'Phi', 'PsiChi'),# data (source+background)\n", + " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = ori, # spacecraft orientation\n", + " nuisance_param = bkg_par, # background parameter\n", + " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", + "plugins = DataList(cosi)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "774aba03", + "metadata": {}, + "outputs": [ { "data": { "text/html": [ - "
08:28:32 INFO      trial values: 0.99985,0.0016437,0.99075 -> logL = 166772.749            joint_likelihood.py:1013\n",
-       "
\n" + "Model summary:

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
N
Point sources1
Extended sources3
Particle sources0
\n", + "


Free parameters (2):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.e0.9994440.01.0
disk.spectrum.main.composite.F_10.00170.01.0s-1 cm-2
\n", + "


Fixed parameters (27):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.lon00.00.0360.0deg
disk.Wide_Asymm_Gaussian_on_sphere.lat00.0-90.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.a90.00.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.theta0.0-90.090.0deg
disk.spectrum.main.composite.mu_1511.0NoneNonekeV
disk.spectrum.main.composite.sigma_11.270.0NonekeV
disk.spectrum.main.composite.K_20.00450.01000.0keV-1 s-1 cm-2
broadBulge.Gaussian_on_sphere.lon00.00.0360.0deg
broadBulge.Gaussian_on_sphere.lat00.0-90.090.0deg
broadBulge.Gaussian_on_sphere.sigma8.70.020.0deg
broadBulge.spectrum.main.composite.F_10.000730.01.0s-1 cm-2
broadBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
broadBulge.spectrum.main.composite.sigma_10.850.0NonekeV
broadBulge.spectrum.main.composite.K_20.00270.01000.0keV-1 s-1 cm-2
narrowBulge.Gaussian_on_sphere.lon0359.750.0360.0deg
narrowBulge.Gaussian_on_sphere.lat0-1.25-90.090.0deg
narrowBulge.Gaussian_on_sphere.sigma2.50.020.0deg
narrowBulge.spectrum.main.composite.F_10.000280.01.0s-1 cm-2
narrowBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
narrowBulge.spectrum.main.composite.sigma_10.850.0NonekeV
narrowBulge.spectrum.main.composite.K_20.00110.01000.0keV-1 s-1 cm-2
centralPoint.position.ra266.4049880.0360.0deg
centralPoint.position.dec-28.936178-90.090.0deg
centralPoint.spectrum.main.composite.F_10.000120.01.0s-1 cm-2
centralPoint.spectrum.main.composite.mu_1511.0NoneNonekeV
centralPoint.spectrum.main.composite.sigma_10.850.0NonekeV
centralPoint.spectrum.main.composite.K_20.000460.01000.0keV-1 s-1 cm-2
\n", + "


Properties (4):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valueallowed values
disk.spectrum.main.composite.dat_2OPsSpectrum.datNone
broadBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
narrowBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
centralPoint.spectrum.main.composite.dat_2OPsSpectrum.datNone
\n", + "


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
" ], "text/plain": [ - "\u001b[38;5;46m08:28:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m trial values: \u001b[0m\u001b[1;37m0.99985\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.0016437\u001b[0m\u001b[1;38;5;251m,\u001b[0m\u001b[1;37m0.99075\u001b[0m\u001b[1;38;5;251m -> logL = \u001b[0m\u001b[1;37m166772.749\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=701615;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=993964;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1013\u001b\\\u001b[2m1013\u001b[0m\u001b]8;;\u001b\\\n" + "Model summary:\n", + "==============\n", + "\n", + " N\n", + "Point sources 1\n", + "Extended sources 3\n", + "Particle sources 0\n", + "\n", + "Free parameters (2):\n", + "--------------------\n", + "\n", + " value min_value max_value unit\n", + "disk.Wide_Asymm_Gaussian_on_sphere.e 0.999444 0.0 1.0 \n", + "disk.spectrum.main.composite.F_1 0.0017 0.0 1.0 s-1 cm-2\n", + "\n", + "Fixed parameters (27):\n", + "---------------------\n", + "\n", + " value min_value max_value \\\n", + "disk.Wide_Asymm_Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.a 90.0 0.0 90.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.theta 0.0 -90.0 90.0 \n", + "disk.spectrum.main.composite.mu_1 511.0 None None \n", + "disk.spectrum.main.composite.sigma_1 1.27 0.0 None \n", + "disk.spectrum.main.composite.K_2 0.0045 0.0 1000.0 \n", + "broadBulge.Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", + "broadBulge.Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", + "broadBulge.Gaussian_on_sphere.sigma 8.7 0.0 20.0 \n", + "broadBulge.spectrum.main.composite.F_1 0.00073 0.0 1.0 \n", + "broadBulge.spectrum.main.composite.mu_1 511.0 None None \n", + "broadBulge...sigma_1 0.85 0.0 None \n", + "broadBulge.spectrum.main.composite.K_2 0.0027 0.0 1000.0 \n", + "narrowBulge.Gaussian_on_sphere.lon0 359.75 0.0 360.0 \n", + "narrowBulge.Gaussian_on_sphere.lat0 -1.25 -90.0 90.0 \n", + "narrowBulge.Gaussian_on_sphere.sigma 2.5 0.0 20.0 \n", + "narrowBulge.spectrum.main.composite.F_1 0.00028 0.0 1.0 \n", + "narrowBulge.spectrum.main.composite.mu_1 511.0 None None \n", + "narrowBulge...sigma_1 0.85 0.0 None \n", + "narrowBulge.spectrum.main.composite.K_2 0.0011 0.0 1000.0 \n", + "centralPoint.position.ra 266.404988 0.0 360.0 \n", + "centralPoint.position.dec -28.936178 -90.0 90.0 \n", + "centralPoint.spectrum.main.composite.F_1 0.00012 0.0 1.0 \n", + "centralPoint...mu_1 511.0 None None \n", + "centralPoint...sigma_1 0.85 0.0 None \n", + "centralPoint.spectrum.main.composite.K_2 0.00046 0.0 1000.0 \n", + "\n", + " unit \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lon0 deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lat0 deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.a deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.theta deg \n", + "disk.spectrum.main.composite.mu_1 keV \n", + "disk.spectrum.main.composite.sigma_1 keV \n", + "disk.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "broadBulge.Gaussian_on_sphere.lon0 deg \n", + "broadBulge.Gaussian_on_sphere.lat0 deg \n", + "broadBulge.Gaussian_on_sphere.sigma deg \n", + "broadBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", + "broadBulge.spectrum.main.composite.mu_1 keV \n", + "broadBulge...sigma_1 keV \n", + "broadBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "narrowBulge.Gaussian_on_sphere.lon0 deg \n", + "narrowBulge.Gaussian_on_sphere.lat0 deg \n", + "narrowBulge.Gaussian_on_sphere.sigma deg \n", + "narrowBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", + "narrowBulge.spectrum.main.composite.mu_1 keV \n", + "narrowBulge...sigma_1 keV \n", + "narrowBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "centralPoint.position.ra deg \n", + "centralPoint.position.dec deg \n", + "centralPoint.spectrum.main.composite.F_1 s-1 cm-2 \n", + "centralPoint...mu_1 keV \n", + "centralPoint...sigma_1 keV \n", + "centralPoint.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "\n", + "Properties (4):\n", + "--------------------\n", + "\n", + " value allowed values\n", + "disk.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", + "broadBulge.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", + "narrowBulge...dat_2 OPsSpectrum.dat None\n", + "centralPoint...dat_2 OPsSpectrum.dat None\n", + "\n", + "Linked parameters (0):\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Independent variables:\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Linked functions (0):\n", + "----------------------\n", + "\n", + "(none)" ] }, "metadata": {}, "output_type": "display_data" - }, + } + ], + "source": [ + "# add sources to thin disk and thick disk models \n", + "totalModel = Model(ModelDisk, ModelBroadBulge,ModelNarrowBulge,ModelCentralPoint)\n", + "totalModel.display(complete=True)" + ] + }, + { + "cell_type": "markdown", + "id": "5de3240f-7d7e-4cb4-9f23-6f976525cdf1", + "metadata": {}, + "source": [ + "Before we perform the fit, let's first change the 3ML console logging level, in order to mimimize the amount of console output." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a9d24b46-70a6-4b3c-be9a-df701d9f26e8", + "metadata": {}, + "outputs": [], + "source": [ + "# This is a simple workaround for now to prevent a lot of output. \n", + "from threeML import update_logging_level\n", + "update_logging_level(\"CRITICAL\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c424a2e2-9bf9-457d-a54b-23d8ea30fd56", + "metadata": { + "scrolled": true + }, + "outputs": [ { "name": "stderr", "output_type": "stream", @@ -8672,21 +3712,6 @@ "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" ] }, - { - "data": { - "text/html": [ - "
08:28:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:130\n",
-       "                  measurements such as AIC or BIC are unreliable                                                   \n",
-       "
\n" - ], - "text/plain": [ - "\u001b[38;5;46m08:28:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=707237;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487416;file:///home/field/COSItools_dev/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#130\u001b\\\u001b[2m130\u001b[0m\u001b]8;;\u001b\\\n", - "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "text/html": [ @@ -8741,7 +3766,7 @@ " \n", " disk.spectrum.main.composite.F_1\n", " (1.643 +/- 0.011) x 10^-3\n", - " 1 / (s cm2)\n", + " 1 / (cm2 s)\n", " \n", " \n", " background_cosi\n", @@ -8756,7 +3781,7 @@ " result unit\n", "parameter \n", "disk.Wide_Asymm_Gaussian_on_sphere.e (9.9985 +/- 0.0005) x 10^-1 \n", - "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (s cm2)\n", + "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (cm2 s)\n", "background_cosi (9.906 +/- 0.032) x 10^-1 " ] }, @@ -8783,7 +3808,7 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", "\n", "\n", @@ -8842,11 +3867,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
cosi-166772.754013-166772.754018
total-166772.754013-166772.754018
\n", @@ -8854,8 +3879,8 @@ ], "text/plain": [ " -log(likelihood)\n", - "cosi -166772.754013\n", - "total -166772.754013" + "cosi -166772.754018\n", + "total -166772.754018" ] }, "metadata": {}, @@ -8905,11 +3930,11 @@ " \n", " \n", " AIC\n", - " -333547.508027\n", + " -333547.508036\n", " \n", " \n", " BIC\n", - " -333545.508027\n", + " -333545.508036\n", " \n", " \n", "\n", @@ -8917,8 +3942,8 @@ ], "text/plain": [ " statistical measures\n", - "AIC -333547.508027\n", - "BIC -333545.508027" + "AIC -333547.508036\n", + "BIC -333545.508036" ] }, "metadata": {}, @@ -8928,28 +3953,28 @@ "name": "stdout", "output_type": "stream", "text": [ - "CPU times: user 15min 28s, sys: 23min 36s, total: 39min 4s\n", - "Wall time: 11min 5s\n" + "CPU times: user 30min 29s, sys: 15min 41s, total: 46min 11s\n", + "Wall time: 8min 12s\n" ] }, { "data": { "text/plain": [ "( value negative_error \\\n", - " disk.Wide_Asymm_Gaussian_on_sphere.e 0.999853 -0.000046 \n", + " disk.Wide_Asymm_Gaussian_on_sphere.e 0.999853 -0.000045 \n", " disk.spectrum.main.composite.F_1 0.001643 -0.000011 \n", - " background_cosi 0.990604 -0.003256 \n", + " background_cosi 0.990610 -0.003091 \n", " \n", " positive_error error unit \n", - " disk.Wide_Asymm_Gaussian_on_sphere.e 0.000044 0.000045 \n", - " disk.spectrum.main.composite.F_1 0.000011 0.000011 1 / (s cm2) \n", - " background_cosi 0.003140 0.003198 ,\n", + " disk.Wide_Asymm_Gaussian_on_sphere.e 0.000045 0.000045 \n", + " disk.spectrum.main.composite.F_1 0.000011 0.000011 1 / (cm2 s) \n", + " background_cosi 0.003209 0.003150 ,\n", " -log(likelihood)\n", - " cosi -166772.754013\n", - " total -166772.754013)" + " cosi -166772.754018\n", + " total -166772.754018)" ] }, - "execution_count": 47, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -8971,7 +3996,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 23, "id": "dd097a0a", "metadata": { "scrolled": true @@ -9031,7 +4056,7 @@ " \n", " disk.spectrum.main.composite.F_1\n", " (1.643 +/- 0.011) x 10^-3\n", - " 1 / (s cm2)\n", + " 1 / (cm2 s)\n", " \n", " \n", " background_cosi\n", @@ -9046,7 +4071,7 @@ " result unit\n", "parameter \n", "disk.Wide_Asymm_Gaussian_on_sphere.e (9.9985 +/- 0.0005) x 10^-1 \n", - "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (s cm2)\n", + "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (cm2 s)\n", "background_cosi (9.906 +/- 0.032) x 10^-1 " ] }, @@ -9073,7 +4098,7 @@ { "data": { "text/html": [ - "
\n", + "
\n", "\n", "\n", "\n", @@ -9132,11 +4157,11 @@ " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", "
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
cosi-166772.754013-166772.754018
total-166772.754013-166772.754018
\n", @@ -9144,8 +4169,8 @@ ], "text/plain": [ " -log(likelihood)\n", - "cosi -166772.754013\n", - "total -166772.754013" + "cosi -166772.754018\n", + "total -166772.754018" ] }, "metadata": {}, @@ -9195,11 +4220,11 @@ " \n", " \n", " AIC\n", - " -333547.508027\n", + " -333547.508036\n", " \n", " \n", " BIC\n", - " -333545.508027\n", + " -333545.508036\n", " \n", " \n", "\n", @@ -9207,8 +4232,8 @@ ], "text/plain": [ " statistical measures\n", - "AIC -333547.508027\n", - "BIC -333545.508027" + "AIC -333547.508036\n", + "BIC -333545.508036" ] }, "metadata": {}, @@ -9223,13 +4248,13 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 24, "id": "5b6c0a71", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAHRCAYAAADewkVpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADFWUlEQVR4nOzdd3xT9f4/8FdGm850t9DdMkophZQ9RKggIKOAbFDhiwxlOPAyRK9bL4rIRfmJKAoCKsVxWbJklC27CC0ts6V7t2mbJmmS8/sjzWlCV8bpSPt+Ph4+7mnOOZ/zSS6Edz/j/eYxDMOAEEIIIYS0GPzm7gAhhBBCCDFEARohhBBCSAtDARohhBBCSAtDARohhBBCSAtDARohhBBCSAtDARohhBBCSAtDARohhBBCSAtDARohhBBCSAtDARohhBBCSAtDARohhNRCKpXilVdeQXBwMIRCIXg8HuLj4xEXFwcej4f33nuvubvYqgQHByM4ONjidng8HoYOHWpxO4Q0NwrQCCGc4fF4Nf4TiUQIDg7G7Nmzcfv27Sbtz5w5c8Dj8ZCSkmLyvStWrMBXX32FyMhIvPnmm3j33XfRrl27Oq8fOnQoeDyeyc957733wOPxEBcXZ/K9hJDWS9jcHSCEtD7vvvsue1xSUoJLly5h+/bt+P3333H27FlIJJLm65yRDhw4gM6dO2P//v0Gr4vFYty+fRuenp7N1DNCSFtAARohhHO1Tf8tXboUGzduxH//+19s27atyftkqszMTDz55JM1XndwcECXLl2aoUeEkLaEpjgJIU1ixIgRAIC8vLxaz//yyy+Ijo6Gq6sr7OzsEB4ejo8++ggKhaLGtWfOnMG4cePg7+8PkUiEdu3aoX///nj//ffZa3g8Hn788UcAQEhICDvl2tA6J91UJcMwOHXqFHufbl3T42vQUlJSwOPxcOrUKfa5j99Tl+DgYLbP0dHRBvfqy8rKwuLFixEcHAxbW1t4eXnh2WefxdWrV+tt/3G6PuXk5GDu3Lnw8fGBo6MjBg4ciDNnzgAAysvLsXz5cgQFBUEkEiEiIgK//vprre0pFAqsWbMGkZGRcHBwgFgsxuDBg7F79+5ar2cYBhs3bkRERATs7Ozg5+eHJUuWoKSkpN5+m/Jng5DWgkbQCCFN4tixYwCA3r171zg3d+5cbN26Ff7+/pg0aRJcXV3x999/49///jeOHz+Ov/76C0Kh9uvq8OHDGDNmDMRiMWJiYuDn54fCwkLcvn0bX3/9NTu9+u6772LPnj24ceMGXn31Vbi6ugIA+791mTNnDoYOHYr3338fQUFBmDNnDgDUGdi5urri3XffxbZt25CammowvdtQMPjaa69hz549OHXqFGbPnl3r9Q8fPsQTTzyBzMxMPPXUU5gxYwbS0tLw66+/4s8//8Tvv/+OsWPH1vscfcXFxRg0aBCcnZ0xY8YMFBYWYteuXRg5ciQuXLiAhQsXorCwEGPHjkVlZSV++eUXTJs2DQEBAejfvz/bjlKpxMiRI3Hq1Cl06dIFixcvhkwmw2+//YZp06YhPj4en3zySY33++WXX6J9+/ZYsGABbGxssHfvXly8eBFKpRK2trY1+mvKnw1CWhWGEEI4AoABwLz77rvsf6+//jrzxBNPMDwejxk7diwjlUoN7tm6dSsDgJk4cSIjk8kMzr377rsMAOa///0v+9qzzz7LAGDi4+NrPD8vL8/g59mzZzMAmIcPH5r1XoYMGVLj9ZMnT7LvUd+QIUMYc75Sde/x5MmTtZ4fMWIEA4D56KOPDF4/d+4cIxAIGHd3d6a0tNSoZ+n+/1m4cCGjVqvZ17dv384AYNzc3JixY8cyFRUV7LnTp08zAJgJEyYYtPXJJ58wAJhnnnmGqaysZF/PyclhgoKCGADMuXPnDPoLgOnQoQNTUFDAvl5RUcH079+fAcAEBQUZPMPUPxu691jb/2+EWBsK0AghnNEFALX917VrV+ann36qcY9EImGEQiFTVFRU45xKpWI8PDyYPn36sK/pArTk5OQG+2PtAVpaWhoDgAkMDGSUSmWN88899xwDgPnxxx+NehYAxsHBoUaQrFKpGKFQyABg7t+/X+O+4OBgJjg42OC1jh07Mjwej7l9+3aN67ds2cIAYP7v//6PfW3evHkMAOaHH36ocb3uM308QDP1z4buPVKARloDGhcmhHCOYRj2uLy8HAkJCVi1ahVmzZqFhIQEfPzxxwAAmUyGGzduwNPTE//9739rbUskEhmk55g1axb++OMP9OvXD9OmTUN0dDQGDRoEf3//Rn1PzeH69esAgMGDB8PGxqbG+aeeego7d+7E9evX8cILLxjVZufOneHs7GzwmkAggI+PD8rLyxEaGlrjHj8/P1y8eJH9ubS0FPfu3YOfn1+tGyaeeuopg/4DwLVr1wAAQ4YMqXH9E088AYFAYPCaOX82CGlNKEAjhDQqR0dH9O3bF3/88Qf8/f3x2Wef4aWXXkJAQACKiorAMAzy8vIMFvjX59lnn8WBAwewbt06/PDDD9i8eTMAoFevXvjPf/6Dp59+ujHfTpPSLZ5v3759red1rxcXFxvdpouLS62vC4XCes+pVCqL+qW7x8fHp9b2H09bYs6fDUJaE9rFSQhpEq6urggLC4NKpWJHU3QBQVRUFBjtkos6/9M3ZswYnDhxAkVFRTh+/Dhef/11JCQkYOzYsUhMTGzy99ZYdJ9PdnZ2reezsrIMrmsq5vRLd5yTk1PjepVKhfz8/FqfYeqfDUJaCwrQCCFNpqioCACg0WgAAE5OToiIiEBCQgIKCwtNbs/R0RFPPfUUvvjiC6xevRpKpRKHDh1iz+umzdRqNQe9r5+5z6rvvqioKADA2bNnDUawdE6ePAkA6Nmzp0nPtJSzszM6dOiAjIwM3L1716h+6Y516Uj0nT17tsb7t/TPBiHWjgI0QkiT2LNnDx4+fAgbGxsMHDiQfX3ZsmVQKpWYO3durVN1RUVF7IgbAJw+fbrWYEU3MuPg4MC+5uHhAQB49OgRV2+jTuY+q777/P398fTTTyMlJaXGOqyLFy/i559/hpubGyZOnGhepy0wd+5cMAyD5cuXGwRX+fn5+PDDD9lrdHTpSj7++GODgEsul+PNN9+s9Rmm/tkgpDWhNWiEEM7pVxIoLy9HYmIiO7L1ySefGKxDmjt3Lq5evYqvv/4aHTp0wMiRIxEYGIjCwkI8fPgQp0+fxv/93//hm2++AQC88soryMjIwKBBg9jErVevXsWJEycQFBSE6dOns20PGzYMa9euxfz58zFp0iQ4OzvD1dUVS5Ys4fw9Dxs2DL/++iueffZZjB49Gvb29ggKCsLzzz9f733R0dHg8/l48803cevWLbi5uQEA3n77bQDAN998g0GDBmH58uU4evQoevfuzeZB4/P52Lp1a41F/03hX//6Fw4dOoS9e/eiR48eGD16NGQyGX799Vfk5uZixYoVeOKJJ9jrBw0ahKVLl+Krr75Ct27dMHnyZDYPmpubW63r2Uz9s0FIq9K0m0YJIa0ZakmvIRAImHbt2jExMTHM0aNH67x3//79zJgxYxgvLy/GxsaG8fHxYfr06cO89dZbBqkcYmNjmenTpzMdO3ZkHB0dGWdnZyYiIoJZvXo1k5ubW6PddevWMV26dGFsbW1rTeVQ33sxJc2GSqVi3nzzTSYkJIRNWWFsuocdO3YwPXr0YOzs7NjPTV96ejrz0ksvMYGBgYyNjQ3j4eHBjB8/nrl06ZJR7Tf0nhiGYYKCgur8bOpKIVJRUcF8/PHHTEREBGNnZ8c4OTkxgwYNYn7++eda29FoNMxXX33F/v/Rvn17ZtGiRUxxcXG9zzf2z0ZD75EQa8JjGFphSQghhBDSktAaNEIIIYSQFoYCNEIIIYSQFoYCNEIIIYSQFoYCNEIIIYSQFoYCNEIIIYSQFoYCNEIIIYSQFoYCNCsjl8uRnJwMuVze3F0hhBBCSCOhAM3KpKamYv78+UhNTW3urhBCCCGkkVCARgghhBDSwlCARgghhBDSwlCARgghhBDSwlCARgghhBDSwgibuwOEEEJIY2MYBiqVCmq1urm7Qlo5GxsbCAQCi9uhAI0QQkirplQqkZWVBZlM1txdIW0Aj8eDv78/nJycLGqHAjRCCCGtlkajwcOHDyEQCODr6wtbW1vweLzm7hZppRiGQV5eHtLT09GpUyeLRtIoQCOEENJqKZVKaDQaBAQEwMHBobm7Q9oALy8vpKSkoLKy0qIAjTYJEEIIafX4fPrnjjQNrkZo6U8sIYQQ0sSCg4MRFhYGiUSC8PBwzJw5E+Xl5Wa3t23bNiQlJdV5/u+//0ZkZCSioqJw5MgRjB49GsnJyUbd25hSUlLwzTffmH3/tm3bMGHCBLYtgUAAiUSCHj16oFevXjh58mS992dmZmLw4MFGPeu///0vsrOzze6rqShAI4QQQppBbGws4uPjkZCQgJKSEmzbts3sthoKsn788UfMnDkT169fx8iRI3Hw4EGEhYUZdW9jaihAU6lUJrXn7OyM+Ph43LhxA2+99RamTp0KhmHqvN7X1xdnzpwxqm0K0AghhJA2RKlUQiaTwc3NjX3t888/R9++fdGzZ0+MGjWKrb+8f/9+dO/eHRKJBN26dcPevXuxZcsWXLlyBa+//jokEgkOHjxo0P6aNWsQGxuLjRs3QiKRoLi4GMHBwYiPj2/w3tp8+umniIyMRI8ePdC/f392d+yOHTvQr18/9OzZE08++SRu3LgBQBsADh8+HDNmzEBkZCR69+6NBw8eAABeeuklJCcnQyKRICYmBoB2dHHlypXo27cvZs+ejezsbERHR6NXr16IiIjAkiVLoNFoGuznqFGjkJ+fj4KCAly5cgUDBw5E9+7d0bdvX5w7dw6ANkB0dXVl7+HxePjkk0/Qt29fhISEYOvWrQCADz74AJmZmZg2bRokEgni4+MbfL6laJMAIYSQNmXPW+cgK1E0WvsOLiJM+HhQg9dNmzYN9vb2SElJQa9evTB16lQAwM8//4zk5GRcuHABAoEAO3bswKJFi/Dnn3/i7bffxubNmzFgwABoNBpIpVK4urpi586deO2119jpPn2rVq1CUlISJBIJXnvtNYNz8+bNq/fex/3444/4/fffcfbsWbi4uKCoqAgikQjnzp3DL7/8gtOnT0MkEuHMmTOYOXMmEhISAACXL19GfHw8QkJCsGrVKnz66afYvHkzvvnmG7z22ms1Ap6CggJcvHgRPB4Pcrkc+/fvh5OTE9RqNcaPH4/du3dj+vTp9fb1l19+QWBgIMRiMZ599ll89913GDlyJM6ePYtJkybh3r17td4nEolw6dIlJCUloU+fPnj++efxzjvv4IcffkBsbCwkEkmDnxMXKEAjhBDSpshKFJAVNl6AZizdP/YqlQoLFy7EypUrsW7dOuzZsweXL19Gr169AMAgue6wYcPw6quvYvLkyRgxYkSTBQs6Bw4cwEsvvQQXFxcAYEf99u7dixs3bqBfv37stYWFhaioqAAADBgwACEhIezxV199Ve9z5syZwy6212g0WLlyJc6ePQuGYZCbm4tu3brVGqCVlpayn4mfnx/27duH5ORk8Pl8jBw5EgDwxBNPwMfHB/Hx8fD396/RxqxZswAAXbp0gVAoRHZ2dq3XNTYK0AghhLQpDi6iFtW+UCjEpEmTsHz5cqxbtw4Mw+DNN9/EggULalz7xRdfICEhASdPnsTs2bMxa9YsrFixgquum41hGMyePRuffPJJreft7OzYY4FA0ODaMv0kr1988QVyc3Nx8eJF2NnZYdmyZZDL5bXep1uDpu/mzZs1rqtvp6WpfW0sFKARQkgr9TA9HSkZmRDZ2sDZ0RFBvr4QW5jdvDUwZvqxqZ04cYJdtD9hwgSsW7cOkydPhru7OyorK3Hr1i1ERUUhKSkJERERiIiIgFAoxNGjRwEAYrEYJSUlZj378XszMjIwbNiwWjcOxMTE4KuvvsKkSZPg4uKC4uJiODs7IyYmBrNmzcJLL72EwMBAaDQaXLt2Db179zbp2bUpKipCu3btYGdnh+zsbPz666+YNGmS0e8vLCwMGo0Gf/31F55++mmcP38e2dnZkEgkyM/PN7odSz5jc1CARgghrYxGo8GF+Bu48dg/sGd519ApKAi9u0XAVSxupt4RHd0aNJVKhaCgIHY346xZs1BQUIDo6GgA2p2Mc+fORVRUFFavXo3k5GTY2trCwcEBmzZtAgAsWLAAb7zxBtavX49PPvkEo0ePNrofj9/r6ekJobD28OD5559HZmYmBg4cCKFQCEdHRxw7dgyDBw/GZ599hokTJ0KlUkGpVGLMmDENBmjdu3dHREQEunXrhtDQUOzbt6/GNbop3YiICPj6+mL48OFGvzcAsLW1xR9//IFXXnkFb7zxBuzs7PDbb7/BycnJpADtlVdewfz58+Hg4IBt27Y1+vQyj6lv/ylpcZKTkzF//nx899137G9bhBCio9ZocOTMWaRkZNR5jY1QiGdHPA0Pvd1rrZVcLsfDhw8REhJiMHVF6rZ27Vq0b98ezz33XHN3xSpx9WeORtAIIaQVuZmczAZnfB4PA3v2hLuLGFl5efgn+Q4USiUqVSocO38Bk0eOsKgUDWmdli9f3txdIKA8aIQQ0mpUyOW4ciuB/Xn00CHoHtYZ/u3aoU9kJJ4fHwP3qt13BcXFuFTL4mlCSMtAARohhLQSl2/egrKyEgDQJTQEge3bG5y3tbHB8IED2LqU8beTkG3CGhxCSNOhAI0QQlqBwpISJFQl3hQKhejXo0et13m6uaFv90gA2tQI1xMTm6yPhBDjWd0aNKVSie+//x5Hjx5FaWkpOnTogHnz5qFPnz4N3puXl4eNGzfi8uXL0Gg0iIqKwtKlS+Hr61vj2gMHDmDXrl3Izs6Gl5cXJk+eXOu2XmPbfPLJJ2vt04IFC2ghJiHEYvG3b7M1B3t2DYejvX2d1/bo0gU3k++gvKICKRmZkJaVUfoNQloYqwvQ/vOf/yAuLg5TpkyBv78/Dh06hBUrVmDDhg3o3r17nffJZDK8+uqrKC8vx3PPPQehUIjdu3dj6dKl+OGHH9isyIA2I/K6deswZMgQTJs2Df/88w82bNgAuVzOZhg2tU0A6N27N0aNGmXwWqdOnTj6ZAghbVVlZSXuPUoDoJ3G7NGlS73XC/h8RHTqiEv/3ATDMEi4dw8DmjgjPSGkflYVoCUmJuL48eN4+eWXMWPGDADAyJEjMWfOHGzatInNB1ObPXv2ID09HZs3b0Z4eDgAoF+/fpgzZw5iY2PZjM0KhQJbtmzBgAED8OGHHwIAxo0bB41Gg+3btyMmJgbOzs4mtakTEBCAESNGcPuhEELavPtp6Wy2846BgbCpI4eVvq4dOuDKrQRoNBrcvn8ffbp1qzP3FSGk6VnVGrRTp05BIBCwFe8BbVHTMWPGICEhATk5OXXeGxcXhy5durCBFAAEBQWhZ8+eOHnyJPvatWvXUFJSUqNo7MSJE1FRUYELFy6Y3KY+hUIBhaL5a8ARQlqPpAcP2OOw0BCj7nGwt0eHwAAAgFyhxL1Hjxqlb6R2wcHBCAsLg0QiQXh4OGbOnIny8nKz29u2bVutmf91/v77b0RGRiIqKgpHjhzB6NGjkZycbNS91mLOnDnw8/ODRCJBZGQknnzySaPfF4/HQ3FxceN20ERWFaDdvXsX/v7+cHR0NHhdFyDVVZleo9HgwYMH6FLLsH94eDgyMjIgk8nYZwCocW1YWBj4fD7u3Lljcps6hw8fxogRI/D000/j+eefx19//WXM2yaEkDpJy8qQmZsLAHAVO6Odp6fR90Z27swe377/oJ4rSWOIjY1FfHw8EhISUFJSgm3btpndVkNB1o8//oiZM2fi+vXrGDlyJA4ePMgmO2+OAE2/ADwAzupdLl++HPHx8bh58yZGjx6Nf//735y02xysKkArKCiAh4dHjdd1r9VVskEqlUKpVBp1b0FBAQQCAdzc3Ayus7GxgVgsRkFBgcltAkC3bt0wb948fPzxx3jjjTfA5/Px4YcfYs+ePfW+5/z8fCQnJ7P/paam1ns9IaRtSXrwkD3uEhJabxHox/l4eLAln7Ly8lBRRwFq0riUSiVkMpnBvzuff/45+vbti549e2LUqFHsd//+/fvRvXt3SCQSdOvWDXv37sWWLVtw5coVvP7665BIJDh48KBB+2vWrEFsbCw2btwIiUSC4uJiBAcHIz4+vsF7H7dt2zYMHz4cM2bMQGRkJHr37o0HVSO42dnZiI6ORq9evRAREYElS5ZAo9Gw90VHR2PSpEmIjIzEpUuXwOPx8O6776JPnz548803kZubi2effRaRkZHo1q0bNm/eDAA4evQouzxIKpXCxsYG3377LQBg+/btmDt3bo1+MgwDqVTKfqYpKSlw1aucUVZWVufflfPnz7OjcHPnzkWPHj0QFxfHvsepU6eib9++iIyMxNtvv13v52UJq1pwoFAoYGNjU+N1W1tb9nxd9wEw6l6FQlHnOgxbW1uD64xtEwC+/vprg2tGjx6NefPm4dtvv8UzzzwDkUhU6zP37dtn0W9VhJDW7d4j7T/cPB4PnUOCTbqXx+MhxN8P1xOlAICUjEyEdwjluostzozbXyC/srTR2ve0ccYv4csavE5XizMlJQW9evXC1KlTAQA///wzkpOTceHCBQgEAuzYsQOLFi3Cn3/+ibfffhubN2/GgAEDoNFoIJVK4erqip07d+K1116rsTwHAFatWoWkpCRIJBK89tprBufmzZtX7721uXz5MuLj4xESEoJVq1bh008/xebNm+Hq6or9+/fDyckJarUa48ePx+7duzF9+nQAwMWLF3H9+nWDMoUCgQCXL19mP4+wsDD88ccfyM3NRa9evdCjRw8MHjwY06dPh0KhwMmTJ9GnTx8cO3YMCxYswF9//YVnnnmGbW/t2rXYtm0b8vLyIBAIcPr0aaPek45SqcS0adOwfft2REdH4+TJk9i6dSt7fvbs2Vi9ejWGDBkClUqFsWPH4tdff8WUKVNMeo4xrCpAE4lEqKxKwqhPqVSy5+u6D4BR94pEojqHWpVKpcF1xrZZGxsbGzz77LNYt24dkpOT69yBGhMTg0GDBrE/p6am4qOPPqqzXUJI21FSVoZiqTbQaOfpCScHB5PbCPbzw/XE2wCAlIyMNhGg5VeWIreypLm7gdjYWEgkEqhUKixcuBArV67EunXrsGfPHly+fBm9evUCYDgdOGzYMLZ4+IgRIxq9YHdtBgwYgJCQEPb4q6++AqBd+rNy5UqcPXsWDMMgNzcX3bp1YwO0gQMH1qghrT/6dezYMVy9ehUA4O3tjWeffRbHjh1D//79IZFIcO7cORw7dgyrVq3CsmXLoNFocOLECaxdu5ZtY/ny5WwQunXrVkyePBlXrlwx+r0lJSVBKBSyheqjo6PRoUMHAEB5eTmOHz9usN69rKyMXcvHNasK0Dw8PJCXl1fjdd20o2cday/EYjFsbW3Z6+q718PDA2q1GkVFRQbDzZWVlZBKpez0pSlt1sXb2xuAdsi2Lp6eng22Qwhpmx5lZrLHgb7t67mybj4eHrC3E6FCrkBaVhZUKlWr383paePcotoXCoWYNGkSli9fjnXr1oFhGLz55ps1MgEAwBdffIGEhAScPHkSs2fPxqxZs7BixQquum4U/QLgAoGAHdT44osvkJubi4sXL8LOzg7Lli2DXG/a3KmWXHu1vaajPwU5fPhwHDt2DKdPn8aaNWsQGRmJnTt3ws3NDe3atav1/mnTpmHu3LnIy8uDUCg0CHTlJkzn6/qhyzP4999/W1QE3VhW9bewY8eOuH79OsrLyw02CiRWZcLu2LFjrffx+XyEhobWuggyMTERvr6+cKj6zVOXlywpKQkDBgxgr0tKSoJGo2HPm9JmXTKrvlz158UJIcRYqZlZ7HFQLQm3jcHn8xHs54fb9x9ApVYjPTsHwf5+XHWxRTJm+rGpnThxgh1dmjBhAtatW4fJkyfD3d0dlZWVuHXrFqKiopCUlISIiAhERERAKBTi6NGjALSDBiUl5o0KPn5vRkYGhg0bZvLGgaKiIrRr1w52dnbIzs7Gr7/+WmuC97oMHz4c3333HT7++GPk5eXhjz/+wK+//sqemzp1KoKCguDo6Ijhw4fjnXfeqXda9vjx4/D09ISHhwc0Gg0YhkFiYiK6du2K7du313pPWFgYKisrcerUKQwZMgSnTp1iNyA6OTkhOjoaa9aswXvvvQdA+++4RqOBv7+/0e/TWFa1SWDo0KFQq9XYt28f+5pSqcTBgwfRtWtX+Pj4AABycnJqLKYfMmQIkpKSDP7APXr0CNevX8fQoUPZ13r27AmxWIy9e/ca3L93717Y2dkZBG3Gtlnb1l2ZTIbffvsNLi4uNYZ8CSGkISqVCplVUy2O9vbwsOAXvWC/6oDsYUaGpV0jRpo2bRq72P/27dvYsGEDAGDWrFmYM2cOoqOj0aNHD0gkEpw4cQIAsHr1akRERCAqKgo7duxgA4UFCxbgk08+MWqh/+MevzcjI8OsUdRXX30VFy9eREREBJ5//nkMHz7cpPu//PJL3L59G5GRkYiOjsZbb72Ffv36AdAmei8pKcGwYcMAAE8//TRSU1PZn3XWrl0LiUSCHj164MMPP8Rvv/0GPp8PoVCIr776CmPHjkWfPn1qXZ4EaJcm7dq1C6+88goiIyOxdetWhIWFsQMpP/30E+7du4du3bohMjISzz77bK0zaVzgMboxOyvx7rvv4vTp05g6dSr8/Pxw+PBh3L59G+vXr2fn4l955RXEx8cbLA6UyWR48cUXIZPJMH36dAgEAuzevRsajQY//PCDwSjW//73P6xfvx5Dhw5F3759cePGDRw5cgTz58/H888/b3KbP/zwA86ePYuBAwfCx8cHBQUFOHjwIHJycvDWW2+ZlLw2OTkZ8+fPx3fffUeBHSFt2KPMTByIOwUACO8Qiuiqf8jMUalSYevvf0ClVsPezg5zJk4waTdoSyaXy/Hw4UOEhIQ0ybRUa7B27Vq0b9++zZYhLC0tZRPSX758GTExMbh//36Ds2I6XP2Zs6opTkD724OPjw+OHDmCsrIyhIaG4tNPP21woaSDgwM2bNiAjRs3Yvv27WzdzCVLltSYYpw4cSKEQiFiY2Nx7tw5eHt7Y8mSJTV2aRjbZmRkJG7duoUDBw5AKpXCzs4O4eHhWLlyJbsIlBBCTKE/vRnY3rzpTR0boRB+Pj5IzcxEhVyOohIp3F1dGr6RtErLly9v7i40q99//x3r168HwzAQCoXYsWOH0cEZl6xuBK2toxE0QggA/LRvP0rKysDn8fB/k56FqCq9j7mu376NC9fjAQBP9umNbq2kTjCNoJGmxtWfOatag0YIIQQoLS9HSVkZAKCdl5fFwRkA+FbtKgeAzJxci9sjhFiGAjRCCLEyWbnV6Yb0AytLeLm5sUXWM3NzQZMrhDQvCtAIIcTKZObpB2henLTJ5/PRzkubc1Eml6OktIyTdgkh5qEAjRBCrEx2VYDG4/HgU0s9YHMZTHPm0jQnIc2JAjRCCLEicoUChVVJRb3c3GqtB2wuCtCaTnBwMMLCwiCRSBAeHo6ZM2eivLzc7Pa2bdtWb2LZv//+G5GRkYiKisKRI0cwevRotkRRQ/c+/hxja3Zy5cCBA2xu0ZSUFAgEAkgkEkgkEnTp0sXo8ofvvfdejVqkLRkFaIQQYkWy8/LZ4/Ze3Exv6ni7u0MoEACgAK0pxMbGIj4+HgkJCSgpKcG2bdvMbquhIOvHH3/EzJkzcf36dYwcORIHDx5kMwGYEqCZQr+0EpecnZ0RHx+P+Ph4XLx4ERs3bkRCQkKjPKs5UYBGCCFWJEtv/Vl7jtaf6QgEAvhU1f4tk8kgLaN1aE1BqVRCJpMZ1H/+/PPP0bdvX/Ts2ROjRo1iq+Ps378f3bt3ZysQ7N27F1u2bMGVK1fw+uuv11pJYM2aNYiNjcXGjRshkUhQXFyM4OBgxMfHN3hvbaRSKWJiYtC1a1c8+eSTSElJAaAN9KKjozFp0iRERkbi0qVLOHLkCHr27Inu3btjyJAhbGnG7OxsREdHo1evXoiIiMCSJUug0WgAaGtfL1q0CJ06dULfvn1x8uTJOvtSXl4OhmEgFosBAHPmzMF///tf9vy//vUvttqCPt0zOnfujP79++ONN94wqAC0Y8cO9OvXDz179sSTTz6JGzduNPi5cM3qEtUSQkhbph+gteN4BA3QjsplVJWQysnPh7ieYtbW6oVX3kVBkXl1K43h4eaC7V++3+B106ZNg729PVJSUtCrVy9MnToVAPDzzz8jOTkZFy5cgEAgwI4dO7Bo0SL8+eefePvtt7F582YMGDAAGo0GUqkUrq6u2LlzJ1577bVapx9XrVqFpKQkSCSSGlN88+bNq/fe2pw7dw7x8fEIDw/HZ599hgULFrA1QS9evIjr168jLCwMubm5CA8PR1xcHCIjI/HTTz9h8uTJSEhIgKurK/bv3w8nJyeo1WqMHz8eu3fvxvTp0/Htt98iOTmZHRUbOXKkwfNLS0shkUigVqtx584drFixAgEBAUb1Xefbb7/F3bt32WeMHj3a4P398ssvOH36NEQiEc6cOYOZM2c2+SgdBWiEEGIlVCoVcgsLAQCuzs5waITEqz6e1ZsOcgsK0Sk4mPNnNLeCohLkFhQ1dzcQGxsLiUQClUqFhQsXYuXKlVi3bh327NmDy5cvs5Vm9KcKhw0bhldffRWTJ0/GiBEjGqyi0xgGDhyI8PBwANo6nm+//Tbbx4EDB7JTpxcvXkRkZCQiIyMBaGuMLl68GBkZGXB3d8fKlStx9uxZMAyD3NxcdOvWDdOnT8fx48fxwgsvwLYqv9/cuXPx/fffs8/XTXECQGFhIYYNG4Y+ffogJibG6Pdw/PhxPPfcc+waztmzZ2PLli0AtLW3b9y4wdYB1T2noqIC9vb25nxkZqEAjRBCrERuYSE7DcT19KaOt7u7wfNaIw+3xi1jZWr7QqEQkyZNwvLly7Fu3TowDIM333wTCxYsqHHtF198gYSEBJw8eRKzZ8/GrFmzsGLFCq66bjEnI0dcv/jiC+Tm5uLixYuws7PDsmXLIJfLa722vrqw7u7uePrpp3HkyBHExMRAKBQaBLRyudyoPuk/g2EYzJ49G5988olR76WxUIBGCCFWIqeggD1uV7VWjGv2dnZwdnREaXk58qoCQj6/dS1XNmb6samdOHGCHXmaMGEC1q1bh8mTJ8Pd3R2VlZW4desWoqKikJSUhIiICEREREAoFLJTi2KxGCUl5k3bPn5vRkYGhg0bVufGgQsXLiApKQldunTBli1bEB0dDUHV5hJ9/fv3x82bN3Hr1i1069YNu3btgp+fH/z8/FBUVIR27drBzs4O2dnZ+PXXXzFp0iQAwPDhw7Fz507MnDkTDMNg69atdfZdoVDg3LlzmDZtGgCgY8eOuHTpEgCgoKAABw8exAsvvFDjvqeeego///wzZs6cCQDYvn07ey4mJgazZs3CSy+9hMDAQGg0Gly7dg29e/du6KPkFAVohBBiJfIKqke0vDnMf/Y4b3d3lJaXQ6VWo0gqhYera6M9qy3TrUFTqVQICgrCN998A0A7FVhQUIDo6GgA2qntuXPnIioqCqtXr0ZycjJsbW3h4OCATZs2AdBONb7xxhtYv349PvnkE4M1VQ15/F5PT08IhXWHBwMHDsTKlStx7949eHh4GAQ3+ry8vPDTTz/hhRdegEqlgpubG3799VfweDx2mjYiIgK+vr4YPnw4e9/8+fNx69YtdO3aFW5ubhg8eDCuXr3KntetQQO0AVp0dDRefvll9r1MnjwZ4eHhCA0NRf/+/Wvt28KFC3Hz5k32Gb1790ZmZiYAYPDgwfjss88wceJEqFQqKJVKjBkzpskDNCqWbmWoWDohbdfOffshLSuDUCDAvCmTG21k63piIi7Ea3etRffrh/AOoY3ynKZAxdJNt3btWrRv3x7PPfdcc3elUZWWlsLZ2RmVlZWYNWsWevXqhZUrV1rcLld/5mgEjRBCrIBcqWTTXni6uTXqtKP+6FxuYYFVB2jEdMuXL2/uLjSJ4cOHQ6FQQC6X44knnsArr7zS3F0yQAEaIYRYgTy9Bfteegv5G4N++7kFrXOjACEXL15s7i7Uq3Wt/CSEkFYqV2+DgLdH4wZotjY2cK1K/FlQXNxoGeEJIXWjAI0QQqxAU46gAdXpNjQaDfKLixv9eYQQQxSgEUKIFdBNNdoIhXB1dm705+mvQ8ujaU5CmhwFaIQQ0sLJ5HKUyWQAAC/3xt0goOPlXl0XMr+o+bPuE9LWUIBGCCEtnOH0ZuPlP9Onn/uMpjgJaXpm7eLUZey1xJQpUzB58mSL2yGEkNbOIEFtE6w/A7QbBcROTpCWlaGwuLhVVhRoTsHBwRCJRLC3t4dCoUBUVBS+++47ODo6mtXetm3b0L9/f3Tp0qXW83///Tfmz58PoVCINWvWYMOGDVi/fj3CwsIavLc+Bw4cwOeff464uDhcuXIFa9euRWxsbL393LNnD/bs2WPys9oas/62ZWdno7S0FAzDmPVfTk4Oyqry+RBCCKlfnt4Uo/7UY2PTjaKp1Go2BxvhTmxsLOLj45GQkICSkhJs27bN7La2bdtWZ2kmAPjxxx8xc+ZMXL9+HSNHjsTBgwfZZOcN3Wus3r171xucEdOYnQdt6tSpmDNnjln3DhkyxNzHEkJIm1NQNcUoFAggNrIYNRc83VzxMD2d7YMu9QbhllKphEwmg5tbdfD9+eefY/fu3VCpVPD29sbmzZsRFBSE/fv346233gKfz4dKpcLHH3+MvLw8XLlyBa+//jree++9GqWe1qxZg9jYWNjb2yM2NhZxcXGQSCTYs2cPrly5Uu+9j6usrMSrr76Kv/76iy3DpBMXF4fXXnsN8fHxyMvLw6xZs5CVlQUej4devXrVqKmZmZmJ8ePH4+WXX8bcuXM5/ERbB0pUSwghLZiyspIdvfJwdW3SaUaDdWhFxegQGNhkz25Mvx4+AllFRaO172BvjymjRjZ4na4WZ0pKCnr16oWpU6cCAH7++WckJyfjwoULEAgE2LFjBxYtWoQ///wTb7/9NjZv3owBAwZAo9FAKpXC1dUVO3fuxGuvvYYJEybUeM6qVauQlJQEiUSC1157zeDcvHnz6r33cd9++y2Sk5ORkJAAABg5svb3uXPnToSEhLDF3AsLDXcC37x5E9OnT8f69esxYsSIBp/bFpkVoO3YsQMuLi5mP9TS+wkhpK0o0Fug7+Hm2qTP9tAb0SloRRsFZBUVKG/EAM1YsbGxkEgkUKlUWLhwIVauXIl169Zhz549uHz5Mnr16gUABomChw0bxhYaHzFiBFs0vKkcP34cL7zwAmxtbQEAc+fOxffff1/juv79+2P9+vV444038OSTT2LUqFHsuYSEBMTExGDPnj3o0aNHk/Xd2pj1q1hgYKBFAZal9xNCSFthEKDpjWg1BbGjI2yEwhr9sHYO9vZwbMT/HOztTeqPUCjEpEmTcPjwYQAAwzB48803ER8fj/j4eNy8eRM3b94EAHzxxRfYunUrHBwcMHv2bHz22Wecfz6m4PF4tb4+YMAAxMfHo1+/fvjjjz/Qp08fNtD09fWFj48PTpw40ZRdtTo0xUkIIS1YQVExe+zp2nQbBADtP74erq7Izs9HaXk5FEolRFUjJ9bMmOnHpnbixAl20f6ECROwbt06TJ48Ge7u7qisrMStW7cQFRWFpKQkREREICIiAkKhkJ1CFIvFKCkpMevZj9+bkZGBYcOG1bpxYPjw4di5cydmzpwJhmFqrCvTefjwIfz8/DB16lSMGjUK3t7e7OZANzc37NixA2PHjkVpaSneeecds/rd2nG6mKG0tJT9DYAQQojl9HOQubs2/cyD/qhdYbF5AQCp3bRp0yCRSNCtWzfcvn0bGzZsAADMmjULc+bMQXR0NHr06AGJRMKONq1evRoRERGIiorCjh078N577wEAFixYgE8++QQSiQQHDx40qR+P35uRkQGhsPbxm/nz56NTp07o2rUrnnjiiTqnWOPi4tCrVy9IJBIMHDgQa9euNZg5c3Z2xuHDh3H+/HksX77cpP62FTyGYRiuGrt37x7mzZuHuLg4rpokj0lOTsb8+fPx3Xffsb9tEUJaJ4ZhsOXX31CpUsHZ0RHPj49p8j7cunsXpy9fAQAM7t0LkZ07N3kfLCGXy/Hw4UOEhITAzs6uubtjFdauXYv27dvjueeea+6uWCWu/syZNMWZk5NT7/n8/HyzO0IIIcSQtKwMlSoVAG3Ki+agP4LWmtahkbrRiFbLYFKANnXq1DoXBALa3/bqO08IIcR4zblBoLbn6q+HI4Q0LpMCNGdnZ7z44ot1zjmnpqay8+GEEEIsk68XEHk08QYBHVsbGzg7OqK0vBxFUin9Ik5IEzEpQOvcuTNKS0sREhJS63m1Wg0Ol7QRQkibpj+C1lxTnADgJhajtLwcyspKlFdUwMnBodn6Yi6NRtPcXSBtBFdxkEkB2oQJEyCXy+s87+Pjg1WrVlncKUIIIc1X4ulxbi4ueJSVBQAoKimxqgDN1tYWfD4fmZmZ8PLygq2tLY0AkkbDMAzy8vLA4/FgY2NjUVsmBWhPPvlkveednZ3xzDPPWNQhQgghQKVKxZZ4cndxadagwt2lugZnYYkUAe3bN1tfTMXn8xESEoKsrCxkZmY2d3dIG8Dj8eDv7w+BQGBRO5SolhBCWqBiqZQ9bo78Z/rc9PJXFUmtLxeara0tAgMDoVKpDMomEdIYbGxsLA7OAA4CtKFDh2LHjh0ICAiwuDOEEEK0CvUyu7uJmzlAE1ePoBWVSOu5suXSTTlZOu1ESFOxuJIAbQoghBDu6Qdo7s1cu1hkawvHqvqShSUl9L1PSBPgtNQTIYQQbuiXVWruKU6geppToVSiop7NYoQQblCARgghLVBR1QiajVDYInZN6m8UKJJa5zQnIdaEAjRCCGlhKlUqSMvLAWhHrlpCWgj9jQL606+EkMZBARohhLQwRQbrz8T1XNl03PU2KljrRgFCrAkFaIQQ0sK0pA0COm4GudBoBI2QxkYBGiGEtDAtMUCzE4lgb2cHwHCEjxDSOCwO0GbOnAmxuGUMwRNCSGugP4Xo1kICNKB6urVCoYBcoWjm3hDSulkcoC1cuBAuLegLhBBCrF1hC9vBqePqTDs5CWkqZgdoSqWSy34QQgiBdgdnadUOzuauwfk4V7Eze1wsLW3GnhDS+pkdoE2cOBHr169HcnIyl/0hhJA2TX9kyq2F7ODUcdVbzlJcSiNohDQms2txKpVK7NmzB3v37kWHDh0wZswYPP3003B2dm74ZkIIIbUq1l9/1sw1OB9nEKDRCBohjcrsEbS9e/di2bJlCAsLw7179/Dll1/i2WefxQcffICrV69y2UdCCGkzDEbQWtgGLGcHBwj42n82aASNkMZl9giag4MDxo8fj/HjxyMlJQV//vkn/vrrLxw/fhwnTpyAt7c3xowZg1GjRsHHx4fLPhNCSKvVkqc4+Xw+XJydUVhSgpLSMmg0GvD5lK2JkMbAyd+s4OBgLF68GL///js++ugj9O/fH/n5+fjhhx8wffp0LF++HHFxcVCpVFw8jhBCWq3iqgCNz+fD2dGxmXtTk26jgEajYTczEEK4Z/YIWm0EAgEGDx6MwYMHo7CwEEeOHMHBgwdx6dIlXL58GWKxGPv27ePykYQQ0mpoNBoUl2rXdrk6O7fI0Sn9VBvF0lK40LpjQhpFo/3td3d3x4wZM/Dee+8hMjISDMNASnlzCCGkTtKycmg0GgAtb/2ZjkGqDVqHRkij4XQETUcmk+Gvv/7Cn3/+iTt37oBhGNjZ2SE6OtritpVKJb7//nscPXoUpaWl6NChA+bNm4c+ffo0eG9eXh42btyIy5cvQ6PRICoqCkuXLoWvr2+Naw8cOIBdu3YhOzsbXl5emDx5MiZNmmRRmzr//PMPlixZAgDYt28fXF1djf8ACCGtVrHeL7GuLTZA009WSzs5CWksnAZo165dw8GDB3HmzBkoFAowDIOuXbtizJgxeOqpp+DAQUbs//znP4iLi8OUKVPg7++PQ4cOYcWKFdiwYQO6d+9e530ymQyvvvoqysvL8dxzz0EoFGL37t1YunQpfvjhB4NqCHv37sW6deswZMgQTJs2Df/88w82bNgAuVyOWbNmmdWmjkajwYYNG2Bvb4+KigqLPw9CSOtRJK2ucdnSNgjoGKbaoBE0QhqLxQFabm4uDh06hEOHDiE7OxsMw8DV1RUxMTEYM2YMgoODOeimVmJiIo4fP46XX34ZM2bMAACMHDkSc+bMwaZNm7Bp06Y6792zZw/S09OxefNmhIeHAwD69euHOXPmIDY2FgsWLAAAKBQKbNmyBQMGDMCHH34IABg3bhw0Gg22b9+OmJgYNtebsW3q279/P3JzczFmzBj89ttvnH02hBDr15JTbOjY2drCXiRChULBrpcjhHDP7DVox48fxxtvvIFp06bhhx9+QE5ODvr06YP3338fv//+OxYvXsxpcAYAp06dgkAgQExMDPuaSCTCmDFjkJCQgJycnDrvjYuLQ5cuXdhACgCCgoLQs2dPnDx5kn3t2rVrKCkpwYQJEwzunzhxIioqKnDhwgWT29SRSqXYsmUL5s6dCycnJ5PeOyGk9dMvkt5SpziB6r7JKiqgrKxs5t4Q0jqZHaB98MEHuHLlCnx8fDB37lzExsZi7dq1GDp0KITCRlnahrt378Lf3x+Oj2091wVI9+7dq/U+jUaDBw8eoEuXLjXOhYeHIyMjAzKZjH0GgBrXhoWFgc/n486dOya3qbNlyxa4u7sbBJiEEAIADMOwU4ZODg6waaTvUS4Y1uSkaU5CGoPZ3wDDhg3DmDFj0KtXLy77U6+CggJ4eHjUeF33Wn5+fq33SaVSKJXKBu8NDAxEQUEBBAIB3NzcDK6zsbGBWCxGQUGByW0CwP3797F//358+umnEAgExr5l5Ofns88EgNTUVKPvJYRYjwq5HIqq0aiWuv5MRz/VRklpGbxr+R4khFjG7ADtnXfe4bIfRlEoFLCxsanxuq2tLXu+rvsAGHWvQqGocwTQ1tbW4Dpj2wSADRs2oF+/fujbt2+tbddl37592LZtm0n3EEKsjzWsP9Nxca5eolFC69AIaRScjaGrVCr88ccfOHbsGB49egSFQsGuw7p79y7279+PKVOmICAgwOxniEQiVNay3kGpVLLn67oPgFH3ikSiOiseKJVKg+uMbfP48eO4desWfvzxxzreWd1iYmIwaNAg9ufU1FR89NFHJrdDCGnZ9AOdlrz+DIBBctqSMgrQCGkMnARoCoUCb7zxBm7dugUXFxc4OjpCLpez59u3b4+DBw/C2dkZ8+fPN/s5Hh4eyMvLq/G6bgrQ09Oz1vvEYjFsbW0NpgrrutfDwwNqtRpFRUUG05yVlZWQSqXs9KUpbW7atIldm5eVlQUAKCsrA6DdBatSqersu6enZ53nCCGtR0nVdwIAiFv4JiL9/pWUltVzJSHEXJxUEtixYwdu3ryJBQsWYM+ePRgzZozBeScnJ0gkEly+fNmi53Ts2BHp6ekof6z+W2JiInu+Nnw+H6GhoUhKSqpxLjExEb6+vmyOtk6dOgFAjWuTkpKg0WjY86a0mZubi2PHjmHatGnsf7oUG/PmzcOKFSuM/gwIIa2TVC/QcWnhAZqNUAhHe3sANIJGSGPhJEA7ceIEoqKiMHPmTPB4PPB4vBrX+Pr61psGwxhDhw6FWq02qOepVCpx8OBBdO3aFT4+PgCAnJycGovphwwZgqSkJIOA6tGjR7h+/TqGDh3KvtazZ0+IxWLs3bvX4P69e/fCzs4OAwYMMLnNjz/+uMZ/Tz31FADgrbfeYqsKEELaLmnVCBqPx4NTCyyS/jjdNGeFXEGpNghpBJxMcebm5mLw4MH1XmNvb19j5MtUXbt2RXR0NL799lsUFxfDz88Phw8fRnZ2NlauXMle9/HHHyM+Ph6nT59mX5s4cSIOHDiAlStXYvr06RAIBNi9ezfc3Nwwffp09jqRSIQXX3wR69evxzvvvIO+ffvixo0bOHr0KObPnw+x3toQY9us7bPRpfPo168flXoipI1jGIad4nR2dISgBRZJf5yLsxMyc3MBaNfPebm7N3OPCGldOAnQ7O3tUVxcXO81mZmZtZY+MtXq1avh4+ODI0eOoKysDKGhofj0008hkUjqvc/BwQEbNmzAxo0bsX37drZu5pIlS2oESBMnToRQKERsbCzOnTsHb29vLFmyBFOmTDG7TUIIqYtCqWRHocROLX/0DABcnPQ2CpSWUYBGCMc4CdAiIiJw/vx5lJaWsmWQ9OXk5ODvv/9ucJTNGCKRCIsWLcKiRYvqvObLL7+s9XVvb2988MEHRj1n3LhxGDduXIPXmdKmvrlz52Lu3Lkm30cIaX30F9qLnWp+h7ZEBqk2aB0aIZzjZBx9+vTpKC0txeuvv46bN29CrVYDAORyOa5evYp//etfUKvVmDZtGhePI4SQVkVaZj0bBHQMUm1QLjRCOMfJCJpEIsFrr72GL7/8EkuXLmVfHzVqFADtjsdly5YhLCyMi8cRQkirYk0pNnRcKNUGIY2Ks0S1EyZMgEQiwd69e3H79m1IpVI4OjoiPDwcEydOREhICFePIoSQVkWqN0WoP3XYktnY2MDBzg4yuZxG0AhpBJxW4w0ODsarr75a53m1Wm1SHUpCCGkLpFY4ggZopzllcjlkcjkqKytrLX1HCDEPJ2vQ/vjjjwavUavVeP/997l4HCGEtColZdoURPYiEWytKMgx3ChA05yEcImTAO3LL79EXFxcnec1Gg3ef/99g7xkhBBCAJVajXKZDIB1jZ4BhjtOaR0aIdziJECLjIzERx99hGvXrtU4pwvOTp06hYkTJ3LxOEIIaTWsdXoToFQbhDQmTgK0NWvWICAgAG+//TabIR/QBmcffvgh4uLiMGHChHrXpxFCSFtkkGLDSjYI6Lg60wgaIY2FkwDN0dERn3/+OZycnLB8+XJkZmaCYRh88MEHOHHiBMaPH4/XX3+di0cRQkirYs0jaGKDVBs0gkYIlzgr+Obh4YF169ZBo9HgjTfewLvvvouTJ09i7NixWLZsGVePIYSQVsWwioB1BWgiW1vYi0QAKEAjhGucVuQNCAjAZ599hqKiIpw+fRpjx47F8uXLuXwEIYS0KtZYRUCfuGqas7yiApUqVTP3hpDWw6w8aNu2bav3fHh4OO7duwcPDw+Da3k8HmbPnm3OIwkhpFXSBWgCgQAO9vbN3BvTuTg5ISc/H4D2vXi4ujZvhwhpJcwK0LZu3WrUdT/++KPBzxSgEUJINYZh2ABN7OQIHo/XzD0ynctjGwUoQCOEG2YFaBs2bOC6H4QQ0uaUV1RArdEAAFz0copZE1dn2ihASGMwK0CTSCQcd4MQQtoea94goCPWH0GjXGiEcIbTTQKEEEKMZ+0bBICaU5yEEG5QgEYIIc3EmnOg6djZ2kJkawuApjgJ4RIFaIQQ0kz0pwTFVlZFQJ9uFK1MJoNKrW7m3hDSOlCARgghzURaVs4eix0dm7EnltEvUaU/KkgIMR8FaIQQ0kykVSNoTg4OEAgEzdwb8+nvQKVpTkK4QQEaIYQ0A4VSCblCCcB615/puBik2qARNEK4QAEaIYQ0A4MdnFa8/gx4bCcnpdoghBMUoBFCSDNoDTs4dWiKkxDucRqglZaW4vDhw1w2SQghrVJJKwrQ7ES2sLWxAQBIaYqTEE5wGqDl5ORgzZo1XDZJCCGtkn4gY61JanV4PB77HkplMrZ8FSHEfCaVesrJyan3fH5+vkWdIYSQtsJgBM3ZOutw6hM7OyGvqAgMw6CsvNxgXRohxHQmBWhTp04Fj8er8zzDMPWeJ4QQoqVbgyaytYVdVSZ+a6Y/TVtSWkYBGiEWMilAc3Z2xosvvlhnsfTU1FS89957HHSLEEJaL7VajTKZDID1rz/T0Z+mlZbTOjRCLGVSgNa5c2eUlpYiJCSk1vNqtRoMw3DSMUIIaa1Ky2Xsd2VrCdAeH0EjhFjGpABtwoQJkMvldZ738fHBqlWrLO4UIYS0ZgY50JogQGMYBsXSUriKnRttGYr+lCaVeyLEciYFaE8++WS9552dnfHMM89Y1CFCCGntmioHWrG0DH8cPIHDcRfw8FEmuoV1wPv/WoBAv3acP8vR3h58Ph8ajYaS1RLCAUpUSwghTUw/gGmsKgKyCjn+7/X3sWn773j4KBMAcCv5Pp5b+g4OHj/H+fP4fD5b8F1aVk7LXQixkMUB2tChQ5GWlsZFXwghpE1oihG0H3cfQHpWLvuzi7M2eKqQK/DeF9/hVtJ9zp+pey8qlQoV9SyHIYQ0zOIAjX5LIoQQ0+hyoPH5fDja23PeflZOPnb+oa3qIhQK8NPGD7Fv2xcYM2wQAO339tbd+zl/rkHRdFqHRohFaIqTEEKaEMMwkJaVAwDEjo7g87n/Gv5q624oKysBANPHj0Dn0EA42NvhrVfmwtvDDQBw+u/ruJeSzulzaScnIdyhAI0QQppQhVwOlUoFoHGmN5Pvp+Kv0xcBAG4uznhxegx7zsZGiFnPjmJ/3v7rn5w+W79oOu3kJMQyFKARQkgT0p/6a4wNAkdP/c0ez50eAydHB4PzE0YNZdejHT31NzKy8zh7tthgipN2chJiCQrQCCGkCTXmBgGGYXD87GUAgIDPx6ihA2pc42Bvh2kxTwMA1BoN9h05xdnzdbs4AcNi8IQQ01GARgghTUh/bRbXAdqdB4/YEbGe3bvA1aX2epgTn4lmj89evsHZ84VCIbvpgaY4CbEMBWiEENKEDKsIcFtQ/ETV6BkADBvUp87rPN1dEd4xGIA2qMvNL+SsD7qgs0KhYDcqEEJMZ3GANnPmTIjFYi76QgghrZ5+gObs5FjPlaZhGAbHz10BAPB4PAwZ0LPe6wf17cEen7/yD2f90F9XR6NohJjP4gBt4cKFcHFx4aIvhBDS6uk2CTjY28NGaFK1vXo9eJSB1PQsAIAkojM83V3rvX5Q7+oA7RyH05wGqTYoQCPEbI06xckwDNLS0pCTk9OYjyGEEKtQWVnJZtjnukj6yXNX2eNhT9Q9vanTtXMI3KrWqF28nsDZdKT++6KNAoSYj5MA7dSpU/j4449RWlq9rTorKwtz5szB888/j2nTpuG9996DWq3m4nGEEGKVShpxB+e1W0ns8eB+kgav5/P5GNi7OwBt+afrt+5w0g+x3ro6GkEjxHycBGh79+7F3bt34exc/Rdz48aNSElJQVRUFDp06IC4uDgcPHiQi8cRQohV0lUQALgdQVOpVGxtTR8vd/j6eBl136A++tOc8Zz0xXANGuVCI8RcnARoKSkpCA8PZ3+WyWS4cOECnnrqKaxfvx6bN29GUFAQBWiEkDZNP2DhcgQt+cEjVMgVAABJ185G39e/Zzfw+TwAwJUbtznpi8jWFrY2NgBoipMQS3ASoEmlUri7u7M///PPP1Cr1Rg2bBgAbW6c3r17IyMjg4vHEUKIVTKY4uSwisCNhOrpyR4Rxgdozk6O6BAcAAC4n5oOWYXc4r7weDx2dLBUJoNao7G4TULaIk4CNEdHR0ilUvbn69evg8/no0eP6uFzoVAIudzyv/yEEGKt9EeUuJzijE+4yx5HmRCgAUBkWAcAgEbD4Pa9FE76ows+GYZBWXl5A1cTQmrDSYAWGBiI8+fPo6SkBKWlpTh27Bg6d+5ssCYtOzsbbm5uXDyOEEKski4vmI1QCDuRiJM2GYZBfEIyAMDZyQGhQX4m3R8RFsoe69axWcog1QZNcxJiFk4CtEmTJiE/Px+TJk3ClClTUFBQgAkTJhhck5iYiI4dO3LxOEIIsToajQalVaNJYicn8Hg8Ttp9lJGDohLt2rYe4Z3A55v2tR7Zpfp7+VbSPU76ZJBqg3ZyEmIWTrIkDh06FK+//jr+/PNPAMBTTz2FZ555hj0fHx+P8vJy9O3bl4vHEUKI1SmTyaBhGACGOx0tdSPRvPVnOkH+7eDk6ICychluJt0HwzAWB4+GyWppJych5uAsjfWECRNqjJrpSCQS2sFJCGnTpI2UA+36rWT2WGJGgMbn8xHROQQXryegoKgEOXmFaOftYVGfXPSWt9AIGiHmoWLphBDSBBorSe2tZO26MRuhEOGdgs1qo5veNOdNDqY5He3t2alWSlZLiHkoQCOEkCbQGDs4ZRVypKZnAwA6BvtDZGtrVjvdON4owOfzIXbUFoKXlpWDqZraJYQYjwI0QghpAoY50JzrudJ4dx+mscFP5w5BZrfTrSrVBlA9Imcp3SihSqVi648SQozH2Rq0pqJUKvH999/j6NGjKC0tRYcOHTBv3jz06dNwceC8vDxs3LgRly9fhkajQVRUFJYuXQpfX98a1x44cAC7du1CdnY2vLy8MHnyZEyaNMmsNhUKBdavX4/bt28jNzcXGo0Gvr6+GD16NCZOnAih0Or+byCEmEi3FovH48HZwYGTNpPvp7LHYRYEaK4uzgjw9UFaZg6S7qVCpVJZ/L3k4uwEZGmPS8rK4GBvb1F7hLQ1VjeC9p///Ae7d+/G008/jVdeeQV8Ph8rVqzAP//8U+99MpkMr776KuLj4/Hcc89h7ty5uHv3LpYuXYqSkhKDa/fu3YvPPvsMISEhePXVV9GtWzds2LABP/30k1ltKhQKpKSkoH///liwYAEWLVqEjh07YuPGjfjkk0+4+3AIIS0SwzBsgObs6GhyKoy63HnwiD22JEDTv19ZWYlHmTkWtQVQLjRCLGVVQzeJiYk4fvw4Xn75ZcyYMQMAMHLkSMyZMwebNm3Cpk2b6rx3z549SE9Px+bNm9m6of369cOcOXMQGxuLBQsWANAGU1u2bMGAAQPw4YcfAgDGjRsHjUaD7du3IyYmhk3Aa2ybYrEY33zzjUF/xo8fD0dHR/zxxx9YvHgxPDws2zVFCGm55AollJWVALjdIHCnagSNx+OhU0iARW11CgnAsTOXAAD3HqYhNNC0hLePc3GinZyEWMKqRtBOnToFgUCAmJgY9jWRSIQxY8YgISEBOTl1/9YXFxeHLl26GBR1DwoKQs+ePXHy5En2tWvXrqGkpKRGypCJEyeioqICFy5cMLnNurRr1w4AUEZfXoS0avoBClcbBFQqFe6lpAPQ5jKzt7OsMkFHvQDv7sM0i9oCDGuNUi40QkxnVQHa3bt34e/vD8eq3UE6ugDp3r3at4drNBo8ePAAXbp0qXEuPDwcGRkZkMlk7DMA1Lg2LCwMfD4fd+7cMblNncrKShQXFyMnJwenT5/Grl270K5dO/j51f2ban5+PpKTk9n/UlNT67yWENIySfUCFK5G0B6mZaJSpQIAhIVaNr0JAJ2CqwO0e1wEaHrf01Ka4iTEZCZPcWo0GqSkpEAsFsPT09PgnEqlwq1btyCRSLjqn4GCgoJapwJ1r+Xn59d6n1QqhVKpbPDewMBAFBQUQCAQ1KgbamNjA7FYjIKCApPb1Dl9+jTef/999ucuXbpg5cqV9S7G3bdvH7Zt21bneUJIy6e/BourKgLJ97lbfwYA7bw94Ohgj3JZBTsyZwmhUAhHe3uUV1TQFCchZjApQMvOzsaKFSuQmpoKHo+H/v37480334SLiwsAbdDy2muvIS4urjH6CoVCARsbmxqv21bl/lEoFHXeB8CoexUKRZ0Bk62trcF1xrapExUVhS+++AJlZWW4evUq7t27B3kD289jYmIwaNAg9ufU1FR89NFH9d5DCGlZGiNJrf4OTktSbOjweDx0DPbHjcS7yM4rQGlZOZydHBu+sR5iJyeUV1SgQqGAsrIStrV8XxJCamfSFOemTZvg6emJXbt24bvvvoNCocDixYsNRq4aMyGhSCRCZdVCW31KpZI9X9d9AIy6VyQSQVU1bVDbtfrXGdumjru7O3r37o2hQ4fijTfewMCBA7Fs2TJ2VK42np6eCAsLY/8LCrL8i5gQ0rT012C5cJQDzSDFRmhgPVcaT38dGhejaPqjhTSKRohpTArQbty4gUWLFqF9+/bo1KkT1q1bh+7du2PJkiXsAn1Li+zWx8PDo9ZgRvfa41OuOmKxGLa2tkbd6+HhAbVajaKiIoPrKisrIZVK2elLU9qsy9ChQ1FRUYGzZ8/Wex0hxLrp1mA52NnBhoO8hxqNhk2x4e3pDlcXboK+jsH+7DEXARql2iDEfCYFaHK53GBKT5eDrE+fPli6dCkyMjI476C+jh07Ij09HeXl5QavJyYmsudrw+fzERoaiqSkpBrnEhMT4evrC4eqxJGdOnUCgBrXJiUlQaPRsOdNabMuuinQx98PIaT1qFSpIKtaysDV6Fl2XgHKZRUAgM4cjZ4B3G8U0N+xSiNohJjGpAAtMDAQycnJNV5/44030L9/f6xatYqzjtVm6NChUKvV2LdvH/uaUqnEwYMH0bVrV/j4+AAAcnJyaux2HDJkCJKSkgwCqkePHuH69esYOnQo+1rPnj0hFouxd+9eg/v37t0LOzs7DBgwwOQ2i4uLa536PXDgAADtDlFCSOtUUtoIOzgfZbLHHYIsy1emr4PeCNrdFA52curlQqOi6YSYxqSx9ieffBJ//fUXRowYUePcsmXLAKBGYMOlrl27Ijo6Gt9++y2Ki4vh5+eHw4cPIzs7GytXrmSv+/jjjxEfH4/Tp0+zr02cOBEHDhzAypUrMX36dAgEAuzevRtubm6YPn06e51IJMKLL76I9evX45133kHfvn1x48YNHD16FPPnz4dYLDa5zaNHj2Lfvn144okn4OvrC5lMhkuXLuHKlSsYOHAgevXq1WifGSGkeRnkQONoB+eD1OrZilAOAzQnRwf4+ngiMycf91PSodFoLKp6YLgGjXKhEWIKkwK05557Ds8991yd55ctW8YGao1l9erV8PHxwZEjR1BWVobQ0FB8+umnDab2cHBwwIYNG7Bx40Zs376drZu5ZMkSuLq6Glyrq48ZGxuLc+fOwdvbG0uWLMGUKVPMarN79+5ISEjA8ePHUVRUBIFAgICAACxZsgTPPvssR58MIaQlMkixwdEI2oNHegGahRn/H9ch2B+ZOfmQVciRlVsAv3ZeZrclsrWFrY0NlJWVlAuNEBNZVaknQDvCtWjRIixatKjOa7788staX/f29sYHH3xg1HPGjRuHcePGNXidMW126dLFIP8ZIaTtMEixwdEaNF2AxuPxEOzfnpM2dToGB+DMxXgAwL2UNIsCNB6PBxcnJ+QVFaFUJoNao4GAozqkhLR2Fv9NGTp0KNLSLF+rQAghrZFUbw0aFyNoDMOwa9B8fTxhZ2GJp8eFBPqyx4/Ssy1uT1fyiWEYlNGGKEKMZnGA1ph5zwghxNrpRtBENjawqyNXoymycwtQIdfuAOdy/ZmO/ohcSnqWxe1Rqg1CzENjzYQQ0kjUajXKqmrycj29CQAhHK8/A4Ag/QAtLbOeK41DqTYIMQ8FaIQQ0khKy8vZWYbG2CDQoRECNAd7O3h7ugMAUtKyLJ4lMRhBo52chBiNAjRCCGkkhkXSuRlB08+Bpr9ejEu6aU5pWTmKpZYFVfrvm0bQCDEeBWiEENJIGqNIui4HGo/HQ0hAIwVoAfrTnJatQ3O0t2dzqdEaNEKMRwEaIYQ0Ev0qAlwkqWUYBg+r1oW1b4QdnDr669AeWrgOjc/nQ+zoCEA7gkYbywgxDgVohBDSSAyqCHAwgpaTXwhZhbauJ9cJavXpj6ClWjiCBlSPHqrUalRU1SUlhNTP4gBt5syZBuWPCCGEaOmmOIUCARzs7S1uz6DEUyOtPwO4T7WhP3pINTkJMY7FAdrChQvh4uLCRV8IIaTV0Gg07Aia2MkJPB7P4jb1g6XgRlp/BgBeHm5wsLer8UxzUS40QkxHU5yEENIIyisqoNFoAHC3g/NRRnVm/yCOSzzp4/F4bPtZOfmQK5QWtefiRDs5CTEVBWiEENII9DcIcLWDM1Wv9FKgXztO2qyLbpqTYRikZVpW8knsTLnQCDEVp8XS1Wo18vLykJ+fD5VKVes1EomEy0cSQkiLZLBBgIMdnADwqGq60UXsBFcxN23WRT/HWkpaFjqFBJrdlm4XJwBIaYqTEKNwEqBpNBrs2LEDv/32G0pL6//tKC4ujotHEkJIi2aQpJaDETRZhRy5BUUAgKBGHj0DHiv5ZOE6NKFQCEd7e5RXVNAUJyFG4iRA27x5M3bt2gU3Nzc888wz8PDwgEAg4KJpQgixSiVl3FYRaKr1ZzqBvj7scXpmjsXtiZ2cUF5RgQqFAsrKStja2FjcJiGtGScB2pEjRxAQEIBvv/0WDg4OXDRJCCFWTbcGjc/jwYmD78VUvVGspgjQ/Np7s8dpWbkWt+fi7ISsvDwA2ulfTzc3i9skpDXjZJNARUUFBgwYQMEZIYRAu7BeN5Xn7OTEljqyhP4GgaaY4rS3E8HLwxUAdyNoOpRqg5CGcRKghYaGoqCggIumCCHE6lXI5ais2ijFxfozAEjNaNoRNAAI8NUGgkUlpSgrl1nUlv7nIKWdnIQ0iJMA7YUXXsCZM2eQnJzMRXOEEGLVGqNIum4Ejc/nwa+9FydtNiRAb5oz3cJpTrFeLjSqJkBIwzhZgzZgwAC8+eabWLFiBQYNGoQOHTrAUW9btb5Ro0Zx8UhCCGmxDHZwclQkXbdJwNfHq8kW2PvrbRRIy8xBl47BZrel/znQTk5CGsZJgKZUKnH+/HmUlJTgzz//BIAaZU0YhgGPx6MAjRDS6hkWSbd8B2duQREq5AoATTe9CQAB+js5LRxBE9nawtbGBsrKSsqFRogROAnQNm7ciL/++gsdOnTAkCFDKM0GIaRN08+WL+ZgBO1RE28Q0PHX38lp4UYBHo8HFycn5BUVoVQmg1qjgYCDzROEtFacBGhxcXEICwvD119/DaGQ0+IEhBBidfRHiLhYg9YcGwQAwwCNk52cztoAjWEYlJWXc1ajlJDWiJNfX5RKJaKioig4I4QQVI+gOTk4QMjBbEJT1uDU5+hgD3c3FwDc5EKjVBuEGI+TAC0sLAzp6elcNEUIIVZNrlBArlACAFw5GiHSn14M9POp50ru6XZy5hcWs+vgzKW/Ho82ChBSP04CtPnz5+PSpUs4f/48F80RQojVKpZWrz9zFYs5aTOtagenncgWXh5Nm4Hf32CjgGXTnGKn6t39JZQLjZB6cTIneeXKFUgkEqxevRo9e/asM80Gj8fD7NmzuXgkIYS0SMWlUvaYizVWKrUaGTn5ALS7Kh/fId/YAgw2CuSiU0ig2W3pfx40gkZI/TgJ0LZu3coeX716FVevXq31OgrQCCGtXXGp/gia5QFadm4+1Go1AMC/fdNObwKPpdqwcKOAo709+Hw+NBoNrUEjpAGcBGgbNmzgohlCCLF6JfpTnByMoD3KqA6KApp4/RlgGBSmWTjFyefzIXZ0RHFpKaRlZWx+TEJITZwEaBKJhItmCCHE6ulG0Ph8PpzrqKhiCoMNAr7NEaDpp9rgZidncWkpVGo1ZHI5HO3tLW6TkNaIk00CN2/exMaNG+ssmJ6fn4+NGzciISGBi8cRQkiLxDAMSqoCNLGTE/gcJGLVD9ACmiFAEzs7wkWsTY9h6Qga8FjJJ5rmJKROnARosbGxOHfuHDw8PGo97+npifPnz2P37t1cPI4QQlqkMpkMqqr1Yo2RYqM5AjQACKia5szJK2RTiJjLIBcabRQgpE6cBGhJSUno3r17vdf06NEDiYmJXDyOEEJaJK43CADVAZq9nQie7q6ctGkqf9/qac6MbMumOSkXGiHG4SRAKy4uhqenZ73XuLu7o6ioiIvHEUJIi8T1BgGVSoXMqhQb/s2QYkMnoL3+Tk7LAjT92qSUC42QunESoDk5OSE3t/6/tDk5ObCnxaCEkFZMPwcaF0lqs3IL2BQbzbFBQEd/BM3SdWhivY0TtAaNkLpxEqB17doVp0+fRk5O7X9xc3JycObMGXTr1o2LxxFCSItUzHmKjeoanPq7KZsal7nQhEIhu3OTpjgJqRsnAdrUqVOhUCiwePFiHD58GPn52iH5/Px8HDp0CIsWLYJSqcS0adO4eBwhhLRIujVoNkIh7O3sLG7PsAZn0xVJf5z+FGcaB6k2dDs5KxQKKCsrLW6PkNaIszxoixcvxtdff401a9YA0FYNYBiGPV66dCnlSyOEtFpqtRql5eUAtNObXKwXS8+qDoaaawcnALiIneDk6ICycpnF9TgBbcmnzNw8ANqg1tvd3eI2CWltOAnQAGDKlCno2bMn9u7di6SkJJSVlcHJyQnh4eEYP348QkNDuXoUIYS0OCVVmfEB7lJs6E9xNmeAxuPxENDeG7fvpSA7rwDKykrY2tiY3Z7+51MilVKARkgtOAvQAKBDhw5YtmwZl00SQohVKNFLscFFkXSgeorTwd4OHm4unLRpLn9fH9y+lwKNhkFmTj6C/dub3ZaLc/UGCv3UJISQapysQSOEkLbOYIMABznQVCoVsnQpNtp7N3vNygCDkk+WTXPqfz76nxshpBoFaIQQwgGDJLUcjKBl5uRDrdEAaN4UGzr+vtxtFHBxcmIDThpBI6R2FKARQggHSjjOgWZQ4qkZd3CyfdBPtWHhRgGBQMAWki+WStm1e4SQahSgEUIIB3RTdQ52dhYtoNd5lFEdBDVnDrTa+pBm4RQnUD3KWKlSoUIut7g9QlobCtAIIcRCyspKyKqCDK5qcOqPUjVnDjQdDzcX2NuJABim/zCX/kYKmuYkpCYK0AghxELF0urpTf0dipZ4pD/F2QLWoPF4PHYdWmZ2HlRVJajMRRsFCKkfBWiEEGIhrjcIAEBaVQ40R3s7uLtyE/RZyr+ddppTrdEgO7fAorb01+np1zAlhGhRgEYIIRbiOsVGZaUKWblVKTZ8fZo9xYaO/jq0DAunOfUDWRpBI6QmzhLVVlZW4syZM2wVAU3V9vDHrVq1iqtHEkJIi8B1ktrMnHxoNNqdjS1helNHP0BLz8pFPwvacnJwgEAggFqtpjVohNSCkwAtOzsby5YtQ2ZmZr3bpXk8HgVohJBWRxdg8Hg8uDg5WdxeWmZ1iaeWkANNx08/QMu2bASNx+PBxdkJhcUlkFb9Us/n06QOITqcBGhfffUVMjIyMGLECIwZMwZeXl4QCARcNE0IIS0awzDsJgFnR0dOvvsetbAcaDqPj6BZytVZjMLiEmg0GpSWl3NWIouQ1oCTAO369evo1asX3nrrLS6aI4QQqyGTy1GpUgHgcoOAXoDWAnKg6fh4ubPTkpauQQMeW4dWWkoBGiF6OBlP1mg06NSpExdNEUKIVdFf4M5VgKGfA60ljaAJBQL4+ngC0I6gWVoBgFJtEFI3TgK0rl27IjU1lYumCCHEqhQblHjiJkDTTXE6OtjDzaVljSr5tfMCAFTIFSgqsSyoctXLGVdCGwUIMcDJFOfChQuxdOlSxMXFYejQoVw0WSelUonvv/8eR48eRWlpKTp06IB58+ahT58+Dd6bl5eHjRs34vLly9BoNIiKisLSpUvh6+tb49oDBw5g165dyM7OhpeXFyZPnoxJkyaZ1WZOTg4OHjyICxcuID09HQKBACEhIXjhhRfQu3dvyz4QQkizKiqpDtDcOKjBWVmpQnZVio3AFpRiQ8fvsXVoluRoMxxBo1xohOgzK0Dbtm1bjdeioqLw3nvvoUePHujcuTMcqwrh6uPxeJg9e7Y5j2T95z//QVxcHKZMmQJ/f38cOnQIK1aswIYNG9C9e/c675PJZHj11VdRXl6O5557DkKhELt378bSpUvxww8/wMXFhb127969WLduHYYMGYJp06bhn3/+wYYNGyCXyzFr1iyT2zx79ix+/vlnDB48GKNGjYJarcaRI0ewbNkyrFq1CqNHj7boMyGENJ+ikhL22E3ve8RcGdm5bIoN/xa0g1PHcKNADrqHdzS7LTuRCCJbWyiUSkq1QchjzArQtm7dWue5+Ph4xMfH13rO0gAtMTERx48fx8svv4wZM2YAAEaOHIk5c+Zg06ZN2LRpU5337tmzB+np6di8eTPCw8MBAP369cOcOXMQGxuLBQsWAAAUCgW2bNmCAQMG4MMPPwQAjBs3DhqNBtu3b0dMTAycq9aZGNtmz5498euvv8LV1ZXtz/jx4zF37lx8//33FKARYsWKqkZ+RDY2cLCzs7i9tMzqxfctKQeajq6aAGB5slpAu1Egp6AAZTIZKlUq2Ag5S89JiFUz62/Chg0buO6HUU6dOgWBQICYmBj2NZFIhDFjxuDbb79FTk4OfHxq/0KLi4tDly5d2EAKAIKCgtCzZ0+cPHmSDaauXbuGkpISTJgwweD+iRMn4q+//sKFCxcwYsQIk9oMCQmp0R9bW1v0798fu3fvhkwmg4ODg3kfCiGk2SgrK1EmkwEAXF1cOJmONMiB5tcCAzSuU22Ixcgp0JaNKikthaebm8VtEtIamBWgSSQSjrthnLt378Lf37/G9KkuQLp3716tAZpGo8GDBw9qHakKDw/H5cuX2SDp7t27AIAuXboYXBcWFgY+n487d+5gxIgRJrVZl8LCQtjZ2UEkEtV5TX5+PgoKqmve0WYMQlqOIim368+Ax4ukt5wdnDqPr0GzlP46NArQCKnG+VhySUkJ7t27h/Lycjg6OqJjx44G67ssUVBQAA8Pjxqv617Lz8+v9T6pVAqlUtngvYGBgSgoKIBAIIDbY18SNjY2EIvFbLBkSpu1SU9Px+nTpxEdHV1vYst9+/bVuuaPENL89DcIuLtwE6ClGwRoLScHmo69nQgebi4oKCpBenaexe09nguNEKLFWYCWlZWFL7/8En///bdBbhwej4cBAwZg6dKlaN++vUXPUCgUsLGxqfG6ra0te76u+wAYda9CoYCwjjUQtra2BtcZ2+bj5HI53n33XYhEIixcuLDWa3RiYmIwaNAg9ufU1FR89NFH9d5DCGkaRVK9DQJibn4RTasK0JwcHThL28E1//beKCgqQWFRCWQVcjjYm7/2zsWZdnISUhtOArSMjAwsXrwYRUVF8Pf3R2RkJNzc3FBUVIRbt27h3LlzSExMxNdff11rSgtjiUQiVFZW1nhdqVSy5+u6D4BR94pEIqiqsoLXdq3+dca2qU+tVuO9995DSkoKPvvsM3h6etb6LB1PT88GryGENA+DFBscjKApKyuRnacdpQ9ogSk2dPzbe+NGonY5SEZ2LjqF1D5TYAzDAI1G0AjR4SRA++abb1BcXIw33ngD48aNM/hSYRgG+/btw/r16/HNN9/ggw8+MPs5Hh4eyMurOaSum3asK5ARi8WwtbU1WMtV170eHh5Qq9UoKioymOasrKyEVCplpy9NaVPf2rVrceHCBfz73/9Gr1696n2/hJCWTbcGTSgQwLmW1EKmysjKY1NstKQi6Y97fB2aJQGajVAIJwcHlMlkNMVJiB5OKglcvXoVgwYNQkxMTI3f+Hg8HsaPH48BAwbgypUrFj2nY8eOSE9PR3l5ucHriYmJ7Pna8Pl8hIaGIikpqca5xMRE+Pr6sov5dSWrHr82KSnJoKSVKW3qfP311zh48CCWLFmC4cOHG/OWCSEtlFqthrSsDIB2JyInOzj1Sjy1xBxoOtzv5NSOoimUSsjrWBpCSFvDWS3O4ODgeq8JDQ2FRqOx6DlDhw6FWq3Gvn372NeUSiUOHjyIrl27sjs4c3Jyaux2HDJkCJKSkgwCqkePHuH69esG1Q969uwJsViMvXv3Gty/d+9e2NnZYcCAASa3CQC//PILdu3aheeffx5Tpkwx+zMghLQMxaWl7HpbrnZw6hdJb8kjaPoBWgYnGwWqPz+a5iREi5Mpzs6dOyMlJaXeax4+fIiwsDCLntO1a1dER0fj22+/RXFxMfz8/HD48GFkZ2dj5cqV7HUff/wx4uPjcfr0afa1iRMn4sCBA1i5ciWmT58OgUCA3bt3w83NDdOnT2evE4lEePHFF7F+/Xq888476Nu3L27cuIGjR49i/vz5EOt9ERvb5unTp7Fp0yb4+/sjKCgIR48eNXhfvXv3hru7u0WfDSGkaXG9/gwwzIEW0AJzoOkYBGgcjKAZrEMrlaKdF627JYSTAG3+/Pl4/fXXceDAAYwdO7bG+X379uHSpUtYv369xc9avXo1fHx8cOTIEZSVlSE0NBSffvppg7nZHBwcsGHDBmzcuBHbt29n62YuWbLEIMM/oA28hEIhYmNjce7cOXh7e2PJkiU1Rr6MbfPevXsAtKk1atuBuWHDBgrQCLEyBjs4OUol1NJzoOm4ip3haG+H8go557nQaASNEC0eo58Tw0zbtm1DQkICLl++zO7idHd3R2FhIW7evIn09HT06dMHERERhg/noDZnW5OcnIz58+fju+++s3hEkhBiviNnz+H+o0cAgOljRsOdgyAtZs4byMrNh7OTA47Hft1id3ECwKwl/8adB48gEAhwds93ENaTz7EhJWVl+GnffgBAiL8/nnlyMFfdJMRqcTKCpl+bMy0tDWlpaTWuuXTpEi5dumTwGgVohBBrVVhSDEC7YUh/is5cCqXSKlJs6Pi188adB4+gVquRnVtgMO1pKmcHBwgFAqjUaoORSULaMk4CtOaqzUkIIc1BrVajpGoqzk0shoBv+X6rjOw8dtNBS57e1Hl8HZolARqfz4er2Bn5RcUoKS2DWq2ut8IKIW0BJwFac9XmJISQ5lBcWgpNVTDFxdQmUF1BAGjZOzh1Hk+10c/C9tzELsgvKgbDMCgpLYO7KzefKyHWipM0G4QQ0pYUFhezx1wFEvoBmn8LrMH5OINktdmWbxTQ3wlL05yEUIBGCCEmKyipDiA8XFw5adMwB5p1TXFysZNTv5apfgoTQtoqswK0Dz74AKdOnTL7oZbeTwghzamwuDpA42oEzSDFRgvOgabj4+XOrhPjIhea/ghaIY2gEWJegHb8+HE8fPjQ7Idaej8hhDSnwqoRNKFQyEkNTgBIrwrQXJwd4eLsxEmbjUkoEMDXR5tQVn+Dg7lcnJzAr9q5SiNohFiwSeDu3bs4fPgwl30hhJAWr1KlYmtwuru4cJIOQ6FUIie/EADg377lj57p+LX3RlpmDmQVchSVlMLd1fyKCgKBAGJnZxRLpSiWSqHRaMDnYHcsIdbK7ADt7NmzOHfunMn3cZAXlxBCmk2h3vozrnZwpmflVqfYsILpTR3/dobr0CwJ0ADA3UWMYqkUao0GpeXlnOSXI8RamRWgrVq1yuIHd+rUyeI2CCGkqemvP/PgagenlRRJf5zhRoEcdA/vaFF72o0C6QCAIqmUAjTSppkVoD3zzDNc94MQQqyCroIAALg/VsfXXGlZ1lGD83FcF013E+ul2igpQbCfn8VtEmKtaIKfEEJMYDCC1ghJagOsIAeajn6+trRMrnOh0UYB0rZRgEYIISbQ5UAT2drC3s6Okzb1pzitaQTNr51+gJZTz5XGcdUbQSuknZykjaMAjRBCjCSTyyGrqAAAeLq5clbQXJcDzUXsBLEzN2k7moKdyBY+Xu4ADKdpzWUjFELspE0xUlRSQpvKSJtGARohhBipoKiIPfZwdeOkTblCidyqFBvWtEFAJ6AqLUiJtAzS0nKL29PtjK1UqVBabnl7hFgrCtAIIcRI+UXF7LGnmysnbeqXSbKmHGg6+mlBuBhF06/MoJ/ShJC2hgI0QggxUn5x9Qiapxs3I2hpmdnssTXlQNMJ0Asq9dfSmUt/44X+hgxC2hoK0AghxEgFVSNofD7fICWEJdL1dj9a5RSnL9cjaK7scYFeShNC2pomC9AqKytRTusJCCFWSqVWs6kf3MRitlC4pVIzqkfQ/K0wQNPvMxcjaK7OzmxNThpBI22Z2QHatGnT8Ntvvxm8dunSJWzcuLHW63fu3IkxY8aY+zhCCGlW+rsKuVp/BgCP9AK0IP/2nLXbVPzbebHH6RyMoAkEAriItRUEiqrKPhHSFpkdoGVnZ6OsqmCwTkJCQo2gjRBCWoP8RtjBCVSPoHm4ucDJwZ6zdpuKnZ0I3p7aVBuPOMiFBgDuLq4AAI1Gg5LSUk7aJMTa0Bo0QggxQmPs4Cwrl6GwSDuNF+hnPQlqH6erfsBVqg2DjQK0k5O0URSgEUKIEQqKuR9BS03PYo+D/K05QGvEVBu0Do20URSgEUJIAxiGYUfQHO3tYW8n4qTd1HTrXn+mo59qI52DaU7dFCdgWJyekLaEAjRCCGlAaXk5lJWVAAAPjvKfAYY7OIP8rDhA08vfxsU6NLGTI7tLlkbQSFtFARohhDQgr7B6etOLwwDtUWuZ4uQ4WS2fz4d7VZ65krIyqFQqi9skxNoILbn56NGjSEhIYH/OyMgAACxfvrzGtbpzhBBibXILC9hjbw93ztrVjaAJBAL4+nhy1m5T82/vzR6ncbWT09UVeUVFYBgGhSUl8Pbw4KRdQqyFRQFaRkZGrYHXpUuXar2eV5V8kBBCrInBCJo7NwGaRqNhpwP923tDKLTo67hZ2dmJ4OPljpy8QjzKyAbDMBZ/33u6uSL5ofY4v6iYAjTS5pj9jRAbG8tlPwghpEViGAZ5hYUAAHs7Ozjac5OrLCevEAqFEoB1T2/qBPq1Q05eIaRl5SiWlsLNxbJSWPq1TvV30BLSVpgdoLVrZ/1fKIQQ0pDS8nIolNpAytvdnbOZgEetZIOATpBfe1yOTwSg3Z1qaYDmoVeTUz8HHSFtBW0SIISQeuRWjZ4B3E1vAkBqRuvYIKCj/x70g09z2YlEcHJwAKCt4qArs0VIW2HWCNqaNWvMfuCqVavMvpcQQppanl6A5s1lgKaXA82aqwjo6Odx00/AawlPNzeUyWSoVKkgLS+Hi5MTJ+0SYg3MCtAOHTpU6+s8Hq/W33J0r/N4PArQCCFWJa9AfwSNwxxoBik2WsEUp94Imn7waQkPV1ekVG1Eyy8qogCNtClmBWiPbxDQaDT48ssvkZiYiMmTJ6N79+5wd3dHYWEhbty4gd9//x0RERFYunQpJ50mhJCmoL9BwMHeHo5VU25c0AUxzk4OcHNx5qzd5tLOywO2NjZQVlYaTN9awmCjQFExOgQEcNIuIdbArADt8Q0CO3fuxO3bt/HDDz/A07M6l09gYCAkEglGjx6NF198EXFxcZg5c6ZlPSaEkCYiLSuDoqqCAJfTm+WyCmTnaXOrhQT4tooURHw+HwG+Prifmo70rFyo1GoIq6oBmEu/KH1+Ee3kJG0LJ5sE/vzzT0RHRxsEZ/q8vLwQHR2N/fv3c/E4QghpEoYbBLib3kxJy2SPQwL9OGu3uemmOVUqNbJy8i1uT+zkBJuq/HAFxcUWt0eINeEkQMvLy4OtrW2919ja2iIvL4+LxxFCSJPIzderIODOXaLUB4+qA7TQQF/O2q0NwzAoqCxFsiwDMrWiUZ/F9UYBHo/HptsoLS+HvCrdCSFtASepq728vHDmzBm8+OKLEIlENc7L5XKcOXMGXl5eXDyOEEKaRHZ+9SiQjyd3AdrDR40/glakKsMX6ftxtOgG5BptYCPkCSBxDMYYj16Y6NGP86nVxzcKPNHX8jY93dzY/x8Kiorg5+PTwB2EtA6cjKCNHTsWmZmZWLx4Mc6cOYOSkhIAQElJCc6cOYPFixcjOzsb48aN4+JxhBDS6NRqNfKq1j25OjvDrpZfPs318FF1ibzQIO4DtONF/2BiwmfYV3CZDc4AQMWocaXsPt5P3Y0VD3dwPqKmn3CXu40CruyxfsktQlo7TkbQZsyYgbS0NBw6dAj//ve/ARim3GAYBs888wxmzJjBxeMIIaTR5RcVQaPRAOB29AwAHlStQXO0t4O3B3dr2wDgQMEVvJXyM/uzs8AOPRyD4SJ0xD/lKUhTaKdtjxbFI1Wei02dFsLDhptdpPr53LhIVgsYJgfWz0lHSGvHSYDG5/OxatUqjBo1CocPH8b9+/dRVlYGJycndOjQASNHjkRUVBQXjyKEkCZhOL1Z+wYoc1TIFewC+pBAP06nGa+VPsB7qdVpkKJdu+HtwMnwtKkuu3Sy+BbeevgTyjUKJFdkYsWD7djc+SUIeZbtuAQAsbMj3FycUVRSylkuNHcXF/D5fGg0GgrQSJvCSYCmI5FIIJFIuGySEEKaRY7eBoF2HAZoqelZ7OxCCIcbBNIU+Xjt/g+oZNQAgMmeA/B24OQaAWC0azfs7PIaFtzdhLxKKa6U3cfXmYfxit8YTvoR5N8eRSWlyC8sRlm5DE6OluWOEwgE8HR1RW5hIYpLS6FQKiFqYFMaIa2B2WvQ/ve//9GuTEJIq6UbQRMKhXB3ceGs3Qd668+4CtAYhsF7KbEoUcsAAAPEYVgV+Gydo3Oh9j5YGzobgqp/Ar7PPo4zJYmc9EX/PaWkcbMOzcujepqT8qGRtsLsAO2///0vpkyZggULFmD79u24f/8+l/0ihJBmUy6ToUymDXa83d3B53OynwqA4Q7OUI52cB4ovIIrZdrvYD9bd6wNfQE2DUxZRjmF4FX/sezPH6X+ZrChwFwhAdXvST8YtYT+OrRcmuYkbYTZ3zrffvstnnvuOVRWVuL777/Hiy++iOnTp2Pjxo2Ij49nF9cSQoi1yS6ont7keoOAYYoNy0fQSlTlWJe+j/35rcBJcBbYG3XvC95D0N+5MwAgu7IYO3JOWdwf/bxuXAVo3rRRgLRBZq9BCwsLQ1hYGObNm4esrCycOXMG586dw++//47ffvsNzs7OGDhwIJ544gn06dMHdnZ2XPabEEIaTY7eBgEu158B1UGLncgW7bwsD/6+zDiIIlU5AGCEWw8Mcgk3+l4ej4flARMwNfFzqKHB99nHMcGzH7z0NhWYSj/o1A9GLeHm4gKBQKBNfVJAARppGzjZJNC+fXtMnToVU6dOhVQqxfnz53HmzBnExcXh8OHDsLW1Ra9evTB48GAMHDgQbm7cbisnhBAuZeXp7eD04G4ETaFUIiM7F4C2BqelU6fpigLsyb8IAHDki/Av//Emt9HRvh0mefXH7rzzqNAosTHjIN4Pnm52n7w83ODoYI9yWQVnAZqAz4enqytyCgpQUlZGGwVIm8DpLk4AEIvFGDVqFEaNGgWlUokrV67g7NmzOH/+PC5cuAA+n4+uXbvi//2//8f1owkhxGKVKhXyqqY4XcXOcLA3brrQGA8fZUKj0e7g5CJB7ZasY1BBu5zkBZ+h8LF1Naudl9uPwqHCayhVy7Gv4DLmtR+OAJF5I4c8Hg+hQX64efsesnLzIauQw8He8hkUL3d35FT9/5JXWAj/du0auIMQ68bdytda2NraYuDAgVixYgX+97//YePGjZg6dSpbaYAQQlqanPx8aKrSYPh6e3Pa9p0Hj9jjTiGBFrWVrijA/oLLALTJaGd6P2l2W+42TnjBJxoAoAGD7TlxFvUtNEBvmjONm1E0bw9ah0balkYN0PTxeDxERkbi5Zdfxs6dO5vqsYQQYpLM3Or0Qb5e3AZo91LS2OOOIQEWtaU/evac9xCIhZaN9E33GgQHvrac1d78SyioLDW7Lf36olxNc+rv5MyhdWikDTB7inPNmjVm3bdq1SpzH0kIIY0uMzeXPW7v7cVp23cfVAdonUPND9BylMWcjZ7piIUOmOTZHztyT0HBqPBz7hks9RttVluGGwW42cnpJhbDRihEpUplsImDkNbK7ADt0KFDRl+rq8vJ4/EoQCOEtFhqtZr9x9/Z0RHOjo6ctc0wDO4+1E5xerq7ws3F/J2SsXnn2NGz6V5PWDx6pvO8zxD8kncWKkaN2LxzmNvuKTgKTF8/pp/f7QFHI2h8Ph8+Hh5Iz8lBeUUFSsvLOf3/h5CWxuwAbdOmTUZdl56ejq1btyIzk5u/pIQQ0lhyCwqhrsrhyPX6s7yCIpSUatNhWDK9Kdco8Xve3wAAIfiY6jWIk/4BgI+tK8a498LegksoVVfgz8KrZrXv4+UOB3s7yCrknI2gAdqaqOk5OQCAnIICCtBIq2Z2gNa1a9d6zxcXF2Pbtm04cOAAKisrERkZiZdeesncxxFCSKPLzKue3vTlenrzod70pgUB2sHCayhWV+U9c5fA25a7MlQAMMt7MPYWXAIA7M47jymeA00u6M7j8RAS4IuEOw+QmZMPuVwBOzuRxX3TTxqck5ePjoGWbbQgpCXjPM2GXC7Hrl27EBsbC5lMhuDgYCxYsACDBnHzW55SqcT333+Po0ePorS0FB06dMC8efPQp0+fBu/Ny8vDxo0bcfnyZWg0GkRFRWHp0qXw9a2ZzfvAgQPYtWsXsrOz4eXlhcmTJ2PSpElmt7lnzx5cu3YNiYmJyM3NxahRo7B69WrzPwhCCOcyc/QDtMbbwWnuCBrDMPgp5zT78ywO1p49LszBDz0cg3GjPAV3K7IQX56CKKcQk9sJCdQGaAzD4GFaJsI7md7G4/STButXeyCkNeJsF6darcb//vc/TJ8+HVu3boWjoyNWrlyJrVu3chacAcB//vMf7N69G08//TReeeUV8Pl8rFixAv/880+998lkMrz66quIj4/Hc889h7lz5+Lu3btYunRpjbQfe/fuxWeffYaQkBC8+uqr6NatGzZs2ICffvrJ7DZ//vlnXLt2DSEhIRAI6q+RRwhpemq1GllV688c7e0hdnLitH39HZzmpti4UnYf9+TZAIAejsHo5tg4I0hTvAawx7/mnTerDf11aPdTuZnmtBOJ4OLsDADILyyEWq3mpF1CWiJORtBOnjyJLVu2ICMjA46Ojli4cCEmTZoEkcjyIW19iYmJOH78OF5++WXMmDEDADBy5EjMmTMHmzZtqndd3J49e5Ceno7NmzcjPFxbCqVfv36YM2cOYmNjsWDBAgCAQqHAli1bMGDAAHz44YcAgHHjxkGj0WD79u2IiYmBc9UXhLFtAsCXX34JHx8f8Hg8jBw5ktPPhRBiuez8fKhUKgCAX9XfVS7pdnDaCIUI9jcvyepveRfY4xneT3DSr9qMcJNgbdpelKhlOFoUj+UB4+EmNC1g1R8l1J/etVQ7Tw+UlJZCrdEgv6gIPhyX4iKkpbBoBO369etYuHAh3n//feTk5GDatGnYtWsXZs6cyXlwBgCnTp2CQCBATEwM+5pIJMKYMWOQkJCAnKrFo7WJi4tDly5d2EAKAIKCgtCzZ0+cPHmSfe3atWsoKSnBhAkTDO6fOHEiKioqcOFC9ReksW0CQLt27Tj/wieEcCctO5s9DmjPbZZ6uUKJ1IwsANqpP6HQ9N+NCyvLcLxYO1PgJnTEMNfunPZRn4hvg/GefQEAlYwa+wqumNxGJ4MA7VE9V5pGPyDLzqdpTtJ6mR2gLV++HK+//jru3LmDUaNG4eeff8bLL7/Mji41hrt378Lf3x+Oj+3c0QVI9+7dq/U+jUaDBw8eoEuXLjXOhYeHIyMjAzKZjH0GgBrXhoWFgc/n486dOya3SQhp+dKzqgM0rssIPXyUwZZ46hRq3rTk/sIrqGS0U3rjPPrAls/5EmIDkzz7s8cHqnKumcLT3RXurtpUIncfpIGpqs5gKf11aJQPjbRmZv8Nv3TpEng8Hnx8fFBQUIC1a9c2eA+Px8Nnn31m7iNRUFAAj1oKF+tey6/jL6tUKoVSqWzw3sDAQBQUFEAgENQo6G5jYwOxWIyCqoWpprRpifz8fPaZAJCammpRe4SQmuQKBXKryge5u7rAkcP6mwCQfL/67605OzgZhsEfVak1AMPgqbEE23mzmwXuVGQhWZaBMAfT6od2CgnAxesJKJaWoqCoBJ7urhb3y93FBUKhECqVCln5+WyOTUJaG4t+BWMYBllZWcjKyjLqekv/EikUCtjY2NR43dbWlj1f130AjLpXoVDUOf1ga2trcJ2xbVpi37592LZtm8XtEELqlq63PCKgEYpw376bwh536Rhs8v3Xyh4gRaHdYdrbqQOC7bjdYVqXsR69cKM8BQCwv+CKyQFax6oADdDuYuUiQOPz+Wjn6YH07ByUy2QoLS/nfEMHIS2B2QFabGwsl/0wikgkQmVlZY3XlUole76u+wAYda9IJGIXCtd2rf51xrZpiZiYGINdsKmpqfjoo48sbpcQUk1/erMxArTEuw8AaH9JNSdA+yP/Ins8yavxR890RrpJ8GnaHqgYNQ4WXsNr/mMh5Bm/C72z3m7Vew/TMLA3N+vmfL28kZ6tDaozc3MpQCOtktkBWrtG+BJriIeHB/Ly8mq8rpsC9KxjN49YLIatra3BVGFd93p4eECtVqOoqMhgmrOyshJSqZSdvjSlTUt4enpy0g4hpHYMw7AbBPh8PtpznP9MoVTi7sN0AEBwQHs42JtWOqlMLcexohsAtHU3G3NzwONchI4Y4tIVx4tvokBVir+ld/CES3jDN1bppFdv9A6HOzl9fbyBm9rjzNw8dAkN5axtQloKzvKgNYWOHTsiPT0d5eXlBq8nJiay52vD5/MRGhqKpKSkGucSExPh6+sLBwcHAECnTp0AoMa1SUlJ0Gg07HlT2iSEtFzFpaUorfpOae/lBRszdljW597DNDZfV9fOpgcSfxXdgJzRjtSPcusJEb/msorGNM6jOgn4ARN3cwb7+0Io1I64cbmT09vDA3y+9p8v/eL2hLQmZn0TrVmzxuwHWlIsfejQodi1axf27dvH5kFTKpU4ePAgunbtCh8fHwBATk4O5HI5goKC2HuHDBmCzZs3Iykpid15+ejRI1y/fh3Tpk1jr+vZsyfEYjH27t2LAQOqkzXu3bsXdnZ2Bq8Z2yYhpOVKyahOohrYvj3n7SfcecgedzUjm/4+vR2UMZ4NV0zh2hPiLnAVOKJYXY4TxTdRppbDycgC6jY2QoQE+OLuwzSkpmVBWVkJ21rW7ZpKKBDAx8MDWXl5kJaVoUwmgxP9QkxaGbMCtEOHDtX6Oo/Hq3Urte51Ho9nUYDWtWtXREdH49tvv0VxcTH8/Pxw+PBhZGdnY+XKlex1H3/8MeLj43H6dHVJlIkTJ+LAgQNYuXIlpk+fDoFAgN27d8PNzQ3Tp09nrxOJRHjxxRexfv16vPPOO+jbty9u3LiBo0ePYv78+RCLxSa3CQDnzp1j04CoVCrcv38fP/74IwDgiSeeQIcOHcz+XAgh5kvVC9BC/E1bBG+MxLvmB2iP5Hm4VqZdvxZq54NIh6avPWnDF2KUexR25Z2FglHhr6IbmOjZz+j7O4UE4O7DNKg1Gjx8lImwDkEN32QEX29vZFUtecnKzUOnYG7aJaSlMCtAe3yDgEajwZdffonExERMnjwZ3bt3h7u7OwoLC3Hjxg38/vvviIiIwNKlSy3u8OrVq+Hj44MjR46grKwMoaGh+PTTTyGRSOq9z8HBARs2bMDGjRuxfft2tm7mkiVL4OrqanDtxIkTIRQKERsbi3PnzsHb2xtLlizBlClTzG7z1KlTOHz4MPvz3bt32Zxr3t7eFKAR0gzkCgWy8rTpeVydneGq9wsYVxLvaAMsgUBgsCbLGPsLq6cUYzz6NFs6ibEevbAr7ywA7TSnKQGafkWBOw8ecRigeeGqdoMoMnNzKUAjrY5ZAdrjGwR27tyJ27dv44cffjBY0B4YGAiJRILRo0fjxRdfRFxcHGbOnGlRh0UiERYtWoRFixbVec2XX35Z6+ve3t744IMPjHrOuHHjMG7cuAavM7bN1atXU3F0QlqY1MxMdtQ/uBFGz2QVcqSkadMQdQrxh6gqBY8xNIwG+6vWfPHBwxj3Xpz3z1jdHAIRLPJGiiIXV8ruI0NRCD+Ru1H36u/k1C8Yb6l2np7s7ExmHq1DI60PJ5sE/vzzT0RHR9e529DLywvR0dHYv38/F48jhBBO6K8/C/bjPkBLupfCBoBdO5m2QeBy6X1kKYsAAAPFYfC2deG8f8bi8XgY59Gb/fnPwqtG3xuml1bktt50r6VsbGzg7a4NEotKpJBVVHDWNiEtAScBWl5eHpuctS62tra1psgghJDmoFar8ShTO7plJ7I1KCHEFf31Z+Gdgk2612BzgEdfrrpktjEe1SN4+wuuGF26yVXsBN92XgCApPupUFXtaOWCr091SpT0emoxE2KNOAnQvLy8cObMmToz58vlcpw5cwZeXl5cPI4QQiyWkZuLyqqk1EG+vmzaBi4lJN1nj01JsWGY+8weQ10jOO+bqdrbuqGPszaV0SNFHm7JjJ+u1G2OUCiUePgoo4GrjaefVDhdr9g9Ia0BJ99IY8eORWZmJhYvXowzZ86gpKQEAFBSUoIzZ85g8eLFyM7ONmpNFyGENIX7j6oTpwb7+XPePsMwuJ5wBwDg6GCPDkHGP0M/99kz7lFNnvusLqPde7LHBwuvGX1f187Vu1cT73A3zdneywtCgTbPWlpWNmcF2QlpCTjJyDhjxgykpaXh0KFD+Pe//w3AMOUGwzB45pln2NxlhBDSnNRqNR6kaQM0oVCIQF/u85+lZ+WioEj7y2r38I4QCIz/fdhwerPpc5/VZbhrD3zy6HdUMmocLryON/xjjCr9pD96mHjnIcaPHMJJfwQCAXy9vfEoKwvlFRUokkrh7tJ8a/UI4RInARqfz8eqVaswatQoHD58GPfv30dZWRmcnJzQoUMHjBw5ElFRUVw8ihBCLJaWnQ1FVc3cED8/zqsHAMD1W8nssSSis/F9U+Qb5D7r1gy5z+oiFtrjyarST4WqMlyU3sUgly4N3telQxD7S7uuLilXAtq3w6Ms7VrCtKwsCtBIq8Hpt5JEImkwHxkhhDS3e6nV66c6BTVO/qwbiXfZY1MCtP0FLSP3WV1Gu/fC8WJtIcyDhdeMCtAcHewR7N8eD9MycS8lHQql0qSUI/Xx11uHlpadgx5dGu4PIdbAqmpxEkKIpVQqFR6ma4uX29rYIKB9uwbuME981QiajVCIiDDjNghoc59ppzebO/dZXQa7hMO5qtTTieKbqNAojbpPtw5NpVLjHoeF091dXOBgbw8AyMzJYeueEmLtKEAjhLQpqVlZ7O7N0AB/CAQNr6EyVX5hMR5latM+hHcKNnq06ErZfWS2kNxndRHxbTDctQcAQKZRIK44waj79DcKJHC4UYDH4yGgnbYOs0qtRnZ+PmdtE9KcKEAjhLQpdx6msMcdm2J6s1uY0ffty29Zuc/qMtpDfzencUlrw/XqkCZymLAWAAL0itynZGRy2jYhzYUCNEJImyGrqGCLozvY2cHfx6dRnhNflV4DAKKMXH9Wrpbjr+J/ALSc3Gd16e3UAd422tG98yVJKFKVNXhP59BAdrTyll5+OC4E+vqya/VS0tMp3QZpFShAI4S0GckPU6Cp+sc7LDSkUZLTAtU7OHk8HrqHdzLqnr+K/oG8aj1XS8p9Vhs+j8/mRFNBg7+qkurWR2Rriy5VhdJT07NQVCLlrD92trZoX5UIvaSsDMXSUs7aJqS5UIBGCGkTGIbB7fvVIzfhoR0a5TlFJVK2KHjHkACInR2Num9fwSX2uCXlPquLftLaPwuMS1or6VY9mngj4W49V5ouRK/YfUpGOqdtE9IcKEAjhLQJWXl5KC7Vjqz4envDVezcKM+5eC2BnWIb0LObUfekKfJxtYXmPqtLZ3tfdLDT7oCNL3+IDEVhg/dERVSvx7uuNw3MBf1i9w8zuCsnRUhzoQCNENIm6I+ede3YOKNnAHDh6j/scf+ekUbd09Jzn9WGx+NhjLtpmwV6dK2e7o1PSK7nStO5ODvDTSwGAGTn5aNCLue0fUKaGgVohJBWTyaXs8lpRba2CA0IaJTnaDQa/H1dm3bCTmSLHhENrz+zhtxndXlGL0DbV3ClwcX5ri7OCAnwBQAk30uFrILbICpYb5ozNZN2cxLrRgEaIaTVu3XnLtQaDQCgS2goW2Cba3cfpqGwqv5m7x5dYWvT8EJ//dxng8RdWmTus7r4itzR20k7GvlIkYd/ylMbvEe3Dk2t0eBWMre7OfWnOe8/4i4ZLiHNgQI0QkirplKpcOuudkE6j8dD9zDjyy6Z6u9rt9jjAb2MW3/2v/yL7HGMZ8vfHPC48Z7V+dr0i7zXRb/sVfwtbtehtfP0hGNVVYG07GzIFQpO2yekKVGARghp1ZJTUth/qDsGBsLZ0bhdleb4++pN9tiY9WclqnIcK9KuWXMROGCIS8vNfVaX4a7dYc/XVko4UhQPhaay3usbc6MAj8dDx0DtBguNRoMH6bSbk1gvCtAIIa0WwzC4kZTE/tyji/FZ/U1VLqtAfKI24PBt54UA34aT4B4ovAoloy07Nc6jd6PlPmMYBiqlulESuDoIRBju2h0AUKquaLD0UztvD3h7ugMAbiXdQ2WlitP+6FeHuJfa8JQrIS2VsLk7QAghjeX+ozQ2aamvtxe8PTwa7VnnLt+ASqUt1D2wV/cGd2IyDIM/8v5mf37Wsz9nfSnJLkfqlRyk38hHQYoUSlklGAawsRPA0cMeniFihA5oD79ITwiElv+ePs6jD/YXanei7iu4hJHukjqv5fF46BXZBYdOnodcocQ/SffQK7KLxX3Q8fZwh9jJCdKyMmTk5EJWUcEWUyfEmlCARghplTQaDS7drE550bNr10Z93rEz1euvnhrUu8Hrb5an4p48GwAgcQxGB/t2FvehOKMM1/93D/cvZAG1DJZVytUozihDcUYZ7p3NhJ3YFlETOyJ8WAD4FgRqfZw7wNfWDZnKIpyTJiNLWYT2tm51Xt+/ZzccOnkegHZamMsAjcfjoWNQIK4lJIJhGDxIS0e3zsZVcyCkJaEpTkJIq3QnJYUdPWvv5WVQUJtrsgo5zl/Rljtyc3FGVGTDU6m/5XM3eqZWaXA59g5+X3EG988bBmcO7iJ4hrqgXRc3uLR3hMCm+mtfLlXiwo+J+H3VWWQnNZxoti58Hh/jq4q7M2CwR2/jQ2366SXw/fvazXquNE8nvWnOO6kpnLdPSFOgETRCSKujVqtx+Wb1jsp+PRqecrTEucs3oFBqF8dHD+zdYBqPYlU5jhReBwA48e3wtFsPs59dnFmGkxtvoCCluralnbMNIp4JRkjfdnBp72jw3tWVaqT/k4+7pzOQcjkHAFCSWY4/P7qE3lM7ofvYUPD4pn9WEz37YXPWUWjAYE/+JSxoPwICXu1jAB5uLugcGog7Dx4h6V4qCoulcHcVm/zMuri7uMDdxQWFJSXIzstHUYkUbi7ctU9IU6ARNEJIq3Pr7j2UlpcDAPzbtYOvt3ejPu/42erpzWGDG06V8b/8i5Az2oBuvGcfOAhEZj0341Y+9r1zgQ3O+AIeek7uiGkbhiJqQke4+jrVCEwFNgIE9fLB8Nd7IuaDAfDu6AoAYDQMLu+6g2P/vQ6VUm1yX3xsXfGESzgAILuyGOelSfVeP6BX9S5XrkfReDwewjuEsj/ffsBtvjVCmgIFaISQVqW8ogKXb1b/g9+vR/dGfV6FXIGzl7XTm65iZ/RsYD2VilEjNu8cAIAHHqZ7PWHWc++cSsfhT69AKdPugnT1c0LMhwPQ89lOsLEzbnLEu6Mrxr7XH1ETOwBVcVzqlRwcXnMZSln96TJqM0lvqvZ3vSnc2hgEaFdv1XOleToHh4DP1/4Tl/zgIdRq04NOQpoTBWiEkFbl/PXrUFZqg4vwDqHwacSdmwBw5uJ1KBRKAMDQgT0bnN6MK05AVlXlgCdcwhFo52XyMxP/SsXpzTfBqLWLzQKivDD+wwHwDDa9CgGfz0OvKZ0xakVv2Nhp+56dVIQ/P7wIeanSpLaecAmHl412KvF0cSKyq95nbbqHd4KDvR0A4OL1W9BUVXrgir2dCKH+/gCACoUCKVRAnVgZCtAIIa1GRk4u7qZoc1+JbG3Rv4ek0Z/5v8On2OORQwY0eP0vuWfY45neg01+XuLRVJzfmsj+3HVEEJ5+o5fRo2Z18e/hhdFv94OdszYXW0FqadUInfEjaUKegN3woIYGv+ZdqPNaGxshevfQTokWFktx58EjC3pfu/COHdjjxPs0zUmsCwVohJBWQVlZiZMXq3cP9u/RA/Z25q3tMtajjGxcuaENlgJ9fdCre/3TmwnlabhSpg0UgkXe6O9sWvqHO6fScX5bdXDWIyYUA2aHg2/Gov7aeIW6YOy7/WHvqv3c8h+U4Mjaq1ApjJ8enOI1EMKqf1p+y7sAuabuUbiBvaqnn0+ev2pmr+vm7+MDcVXliLSsbJSUlnL+DEIaCwVohJBW4ezVq5CWlQHQ1mTUXyTeWP53OI49nvDM0AZ3in6ffYw9nuXzJPh17HKsTfqNPJzZUr1WSzKhA3pP68z57lRXXyeMXt0HIiftSFpOchFO/r8b0GiMq0LgZSPGiKpEtcXqchwujK/z2iEDerL9P372MueVDng8Hrp27Mj+fCMpmdP2CWlMFKARQqze/UePkPTgIQDARijEsIED2AXijUVZWYkDf51lnzl2eP2L/R9U5OBEsTbA8rIRY7yH8YXR8x+U4Nh/r7NrzrqODEKvKZ0aLXWIm78znnmzD2zstWvSUq/k4PIvxgc3M/Smbn/OPVNn4OXp7soWT09Nz8L9FO5rZ3bt2IFdF5j04AEVUCdWgwI0QohVKywuwYm/q6c2B/fuBRcnp0Z/7slzV9hEuNGDejWYZ2trzgkwVRlkn/ceYnTdzdJcGY6svcJOMwb38UH/58MbNa8bAHiGuGDYq1FsTrSbfz7E7ePGrRPr7hiEbg7aouXJFRnstG5thuulJTmml66EK3YiEcI7aNeiqdRqJNy7x/kzCGkMFKARQqxWhVyBg6dOoVKlTTXRMTAQYSEhjf5chmGw4/dD7M/PPhNd7/UZikL8WaBdYyUW2GOyV8ObCQBtpv/Dn15BRYl2HZdPmBuGLu7B2Zqzhvh398LA/6sukXV+ayLSb+QZde8sn+pRtO+zj9d53VOD+uhNc15qlILu3buEsc+4mXyHUm4Qq0ABGiHEKqlUKhw+cwbSqoS0nm5uiO7fr9FHlgDg7KUbSL6v3S0a1iGowdxn32QdgRraNBIzvAfDUWDX4DNUCjWOfn4VJVna9+fq54in3+gJoW39aTy4Fj4sEJFjtEEvo2Fw/MvrKExreLH9CDcJ/GzdAQAXpMlILE+r9TpPd1dIumo3S6SkZeF+KvfpMFycnBBSlXJDJpez0+GEtGQUoBFCrI5KpcLB02eQlacdzXGws8MzTw6GjbDxq9cxDIPvft7D/jxvxvh6g8K7FVnYX3AFAOAssMdz3k82+AyNWoMTG+ORe68YAODgKsLIFX1g52RrUd/N1WdGGIJ6+wAAKivUOLr2CmQl9a/lEvIE+L92T7E/1zeKNmxwX/b4r1P1J7g1V1R4OHt8JSEBKhpFIy0cBWiEEKtSqVLh0JkzSM/OBqBdoP/MkCfhXJVOobGdv/IPbt/VjsB0Cg3EkAE9673+q4yD7Nqzee2GQSx0qPd6hmFwflsiHl3NBQDY2AswcmVvOHvZc9B78/D5PAxd1B2eIdp1dmX5chxbd63BklAxHn3gKXQGABwvvokHFTm1XjfsiT4QVG3q2H/sTKMETz6eHgj28wMAlMtkSLh7l/NnEMIlCtAIIVajXCbDnmPHkZZVHZyNjR7a6NUCdNRqDTbv+IP9uaHRs2tlD3CqJAEA4GPjiuneDZd1urH3AZKOa6cD+QIehr/eEx5BzV/o28ZOiBH/6gUHd22OtNx7xTjz7c1614yJ+DZ4wef/t3fe4VFVW+N+p6Q3UgghCQQSSkKJCgQVSUiQJkhTEbh6kaugIO2qXPiuV/QiIgqiFxuIH14+/VmISDcEEqRFUXoLhBYSSEjvvcyc3x9DDpnMTDKBSUhwv8+TZ+bsvfbaa519zpyVfXYJB0BCYk3aLqNyHm5tGNj/fgCycvKJ++OkJU2X6R98a3up4/HnqKpq/HZWAkFzIQI0gUDQKkjPzmbjrt1k5eYCt4Kz9m0bv1XS7fJT1B7OX04CoGvnDoTX03tWLWl479pm+XiG9zBslfW/orx4IIWjkRfl47CXeuPTy+POjLYg9q62DJvfF7WNbhzcld/SOLm5/hX6J7QdgKtaN6t2V95Jk2PRxj8WLn/ftHOvZQyug4erK1066maXllVUcFKsiyZowYgATSAQtGg0Wi2HT59hc0wsJWVlADg5OPDEsKHNGpxl5eTx+fqN8vGCl6fUu9baD5lxXCjTDXjvZteeMQ2se5ZyKouDX95aiDZkUje6DPS5Q6stj0cnF8Jfvk/eXP3YxktcOZRmUt5eZcOL7YfKx6tSfzYq91Cf3ni30wWjvx8/y40M82aLNpaQ4N5yr+fxc+fkxY0FgpaGCNAEAkGLJTUjg43Ruzh69qz8Ks2rrQdPDh+Ge5s2zWrLyi++paSsHICxw8LkBVaNkVGZz2c3ogFQoGBRxwmoFaZnXxosRDvMj+DRTb8Twu3SKaQdIZO6y8cH1pyWJzQYY4LHw/KMzt+LLnKo0LDnSqVSMm5EOKAbh7el1h6nlsTV2Zne3XRtp9FoiDt2vEnqEQjuFBGgCQSCFkdGdjZR+w+wdc8v5OTnA7pte0J692bco49ib9vwMhWWZHP0PvbcXES1jbMTs5+faFJWkiTevfYTpVrdLMenPB4m2LGTSfnCjBKil9dZiHZK0y9Ee6cEP96ZboN0PXyaKi0xK49RnF1mVNZKqWaOz0j5eGXKNqokw4kAo4eGorq56v+mqF8oKTWu707pH9wbezvdpIuk1FSSUiy/tIdAcKeIAE0gELQIqquruZSUxJbYPfy0O4ak1FsPzbZubjwxbCghvXs1+RZOdTmbcIUVn38jH/9j5rO0cTa9U8GP2YfYd3NigJvakbm1ApO6lBVUEP3eUcoL785CtHeCQqHgkRd64RXoCkBZQSW7Vx6jqrzaqPxw1/vpYa9bi+xSWRrfZR40kPFwa8PwQQ8CUFBUwo87TC/NcSdYW1nxyAMPyMf7jx6lvNL0pu4Cwd1ABGgCgeCuUV5ZyZVr14n97RD/t3kLMb8d4kZmppzvYGdHxIMP8tTwYc02U7M2Gdm5LFz6ibxTwcQxQxk26CGT8pfK0vjg+hb5+C2/iSaX1agqr2b3imMUZpQC0MbHkWGv9W32hWjvBJVayZC/98G5nc7H3OQi9qw6ibZaayCrVCj5V8enUNwcvPb5jWjSKvMM5J6fNFYOUP/fpp2U3nytbGm6+HXE10u3tltJaSn7DzfNLgYCwe0iAjSBQNAsVFVXk52Xx7nLV/jl9z/4bsfPfLXxJ3bFxXExKYmKWksetHFyIrx/f54dM5qgAP+78rovLSOblxa8S2aOLoh4oGc3/j5tkkn5Ek05CxO/oULSBXOT2g4kvE1Po7LVlRpiPzpBVmIBAPZuNoz4n37YOJq3P2dLwtbZmmHz+2Jtr1skOOVUFvu/OIOkNQx2ejl05Om2AwAo11ay7Nomg6DIz9dLDoILCovZ2ES9aAqFgogHH8TGWjez9sq161y4KnYYELQcmn7ZbYFAcM+i0Wioqq6msqqKqupqyisqKCuvoLS8nLLyckrKSiksLia/qJjSsvrHE1mp1fh38CXQPwBvz7Z3dQxWUkoac/61gvSsHAB823vy7j9noTaxU0G1pOEfiV9zpVy3PltXu/a86jvauGylhpiVx0k9kw2Atb2aEQtCcHS/ewvR3iltfBwZ+lofot87iqZKy5Vfb2DjYMXDzxmOpZvjM5I9eafJri5if0E8m3P+4AkP/V7JFyaNYde+3+U9T8eNCMfZyfILETs5ODCofwi7434F4MDRY3i4uuLh6mrxugSCxiICNAGgG/8jSbr1zmv+o5UAar7fzKNOXm15apeVP3XSNz903yQ5xVC+ll5j8jXfa/QaLWusTnNtqpVXV77me105YzpqLJLrqiNfkyZRpw49/2qXrWkD/fMg+2VQZ+3zop9fuw5J0qLVSmhrPrXaOt9vfmq1SDe/V98Myqqqq9FqDV9lmYtSqcTD1RUvDw86erfHx9NTHiB+N9m59zeWfbKesnLdIP+OPl6sXrYQD7c2RuUlSeK9a5v5tTAB0G2G/oH/c9goDXvDqsqrifnwODfO6gI/K1sVw/7RD7eOTk3jTDPSPsidwXPvJ/ajE0haiXO7k1Eo4aG/6gdpTio7Xu/4JK8mrgfg/Wubud+hM/527WSZTh28GTboIXbtO0R+YRGfrf+Rf86Z2iR2d+nYkWv+N0hIvKrbQmz/AZ4aPkyeRCAQ3C1EgCYAYHPsHnkBUIHA0tjZ2uLi5IiLoxNuLi54eXjQ1s3VZI/U3SA1PYtP/xtJ7MHDclqAny+fLv1HvcHZypRt/Jj9G6Dbf/KjgL/RydbTQLasoIJdK46RffO1ppWtiuELQ/Dqfu/01vj1bUfYS73Zv+Y0SBAfnQwSBrNSH3UN5imPh9mYfYhyqYqFV7/mm8B5egv5znn+aQ7+cYLSsnI27dzLyEcf4b6bm6pbmrB+/cjNLyAzN5fi0lJ2HjjImEcHN8vergKBKcTVJxAI6kWhUKBUKFAolagUCpQqFdZqNVZWaqzUVlip1VhZ6T5tbayxs7XFzsYWe1tb7O1scXZ0xNqq5Y6tSkpJY+OOPWyK2itPBgB4fMhAFrw8BTtbG6PltJKWd69tkoMzgMV+E+nn1MVANj+1mN0rj1GYrpsQYG2vZviCfrTrdu8EZzV0DfVB0kocWHtGF6TtSqaytJrQ6b1Qqm8Ne57fYSzHixNJLM/gYlkab1z9nuX+f0Wp0Mm083Bjxl+f5MO13wKw7JP1fPPxYqysLP/YUt/cz3Xjrt2UlJaSkZPDzgMHeCwsTARpgruGuPIEALRzd8fG2gpq5lgp5G/yf763PnUC8udN+Zrv8n/KejpqpRuUNVZnPXXUyMnVKOSyiluChnUYyNeqm1v5uu91bKopW0v+VrKijr36Nul/miuvX0fdNtArq1DU0VErX7bXSDuiQKFUoFQqUSpqPpUo66S19PW4GoskSVy/kUHckVPsP3Sc42cS9PLbODvxyvTJjHz0EZM6CqtLeSPpe3mfTd1itE/xuHs/A9nkoxnsW32KqjLdul/2bjaMWBiCW4fW/1rTFN0G+YICDn5xBkmCSwdTKSus5NF592Nlq3vs2CmtWe4/hSkJH1OqrSAm/xSrUt14pdbYvadHDyHqlzgSLidzJTmFVet+YP6MZ5vEZgc7O0aGhbIldg9V1dWkpGeIIE1wV1FIYl5xq+LChQtMnz6dL7/8ku7duzdcQCD4EyJJEgVFJeTmF5CbV0haZjbJKWlcSU7l3MVEcvMLDcrYWFsxceww/vb04zg6GF8aA+BsyTUWJn5DSqVuHJkKJUs6TWaUe189uepKDUcjL3I2KklOc+3gxPB/9MXR488xvunq4XT2fXYKTZVurKKrryNDXu2Di9etAf8HC84x9/I6tDdHSb7i8zhTvQbL+QmXk3j+1SVy7+bi116sN3i+U9Kzstm+91Zvqqe7O4+FheIgxqQJmhkRoLUymipAyy8slicKQK1JAdQahF5r0LlU65g6x7cG0tc5rtErUWuyQV1dNTKGZWsmANQeWK+z7dYkAb2ytcrc8qnWoPw6x7XL6tkq21lrgL5RXfr26w/0r0dX3YkARs5F3bao7Y/+pIC6uuo7f3V11W5Dw09jum75U6sNjeiqaQv5XJt5PUiShEajoVqjRaPRoNFo0Whvft5Mr6qqoqy8grKKSsrLdbNI8wuLqK42XKneGB292zF+ZASPDwmtdwHaIk0Zn6XuZEPWr3Iw4aKyZ1nnZ3nEJVBPNiuxgANrTpOXcmufx84PeRH2Ym+5B+nPQtr5XGJWHqOyVBfwWNurCXspmE4htyYFRGb9xtJrt/Y5ndF+GDPaD5d7bzdH7+Pdj/8L6ALpNe/9k16BAU1mc90gzcHensdCB+J5F9biE/x5EQFaK6OpArQp8/7N+UtXLaZPIGipODs60LO7P32Dgwh98H46d/Cu9zVukaaMDZm/8k3GfvI1JXJ6T/sOfOD/HN42bnJaeWElRyMvkrD3uhz8qqyUhEzqRs8Rne6518XmUpBWQsyHx8hPvXX+uoX78tBfg7C20wWsX6bF8OmNnXL+020HsMB3HFZKXf7Sj7+S9+d0sLfj4yXzCQ4yHO9nKbLz8ojaf4DiUt24QaVCQb/evenTI6jZd7MQ/DkRAVorQwRoAoFxrNRq7GxtsLW1oY2zI26uLri3ccbd1QUPN1c6+rTDz7c9Pl4Nr7GmkbScLL7KtpwjxOSdouTmvpoAtgorZngP59l2g7C6uQF6eVElZ6KSOLc7SR5rBuDm50T4y/fd0+PNzKWyrJoDX5wm6XCGnObgZkv/ZwLxf8gLhULB/8vYz4qUrXJ+sIMfK/yn4GXtSmVVFXMXfcCx07oxg3a2Nnzw5jz63298MWBLUFpWxs4DB8nIyZHTPN3cGNi3L15tPZqsXoEARIDW6miqAG3Vuh9IuZFxc1C54cD+WwPta+WhqBmJLx/rDVyvM0DdUFetvNqD9Osc1y576/jm95s21K9Lf4D8rbkACgNdNQPrax8bDtC/ZZPeAHy982Vcl779Cr1jvUkZdc69sXNgrGxNOcM2NNKm8kSIum3YkC7DdjF9PdSasNHg9WDkWlIoUKtUqFQq1ColKpUKVc2nUolapUKtVmFra4P6DtZQq9BWkViewZmSZI4VJXKo8AIFmlI9GSUKRrg9wGzvkfjYuCFJEtmJBZzfc53EQ2nyZucAVnYq+jzRlZ7D/fRmLv7ZkSSJi/tT+P3r81SV3zpfXoGu9J3QlfZB7mzLOcKS5B+pvLkjg5PKltneI5nQdgBVFVW89vYqDp/UTc5QKhVMmzyW5yeNRaVqmvOs0Wg4cvYsJ86d1xt+0KVjR/r26ol7mzZNUq9A0OoCtMrKStatW8fu3bspKioiICCAadOmERIS0mDZrKwsPv30U44cOYJWq+WBBx5gzpw5eHt7G8ju2LGDH374gfT0dNq2bctTTz3Fk08+2Sw660NMEhAIjKOVtFRJGqokDZXaaqqkavl7ubaSAk0pBdWlFGpKyasu4UZFLikVOVyvyCGzquDW+Lo6OChtGOH2AFPbReCrdifzSgHXT2Zx9Y80edmMGpQqBd3CfenzRBfsXW2bw+1WSVFmKb/+9xwpp7L00r2C3Og1wo/iwEr+kfQ1Nypvrc0YZO/LjPbDeMiuK/9c9jlxh0/Keb2DuvDq9L80+bi0fYcPk1tQoJfe0dubXl260MG7PSrx6lNgQVpdgLZ48WL27dvHhAkT8PX1ZefOnSQkJLBq1SqCg4NNlistLWXatGmUlJQwceJE1Go1kZGRSJLEV199hYuLiyy7detWVq5cyaBBg+jfvz+nT59m165dvPTSSzzzzDNNqrMhmipA++D6Vq5VZOs9pPQujNoD12+tSW+QZpBu5PIyKVt78LoRGqxX3+AGbDQsZ+oBbcxevYH8daRNlTFVzqx6jdhorN7aMrXPh/Fyt2ejSXulhs65ob2mbTTUhZHzAaBBF5hVS+ZNCjAHR6UtDzp15UFNV3pm+FJ8rYzc5CKyruTr9fzUYGWnpmuYD8GPd27VWzY1J5Ikce14Jn98m2AQ6Nq72tDuETd29zpNdNVJvbyudu0Z79af/F+y+Pq7HWhr7fk5+JF+TBwzlAd6dW+S8X5arZZzV65w+PQZyisq9PLsbG3w79CBTj4++Hh6tqhFmAWtk1YVoJ07d44ZM2Ywc+ZMJk+eDEBFRQVTp06lTZs2rF692mTZ7777jjVr1vDFF18QFBQEQHJyMlOnTmXy5Mm8+OKLsr6nnnqKHj168P7778vllyxZQlxcHBs3bsTJyanJdDZEUwVofzn/EfGl1y2mTyBoLThqbWlb6UzbMifa57jimeKEy1U7KvOqqO/XUaHQ9fgEDPAmYED7P93sTEuh1Wi58lsaJ7dcoSCtxCA/u1sxBwYnkOqQp5euVqgIzGhL5o8p5Kfr92p16tCeiAH9eCTkPnp262zxYKmquppzl69wKiFBnkRQG6VCgburK14e7rRz98DT3Q0nR0fRwyZoFK3qF2X//v2oVCrGjBkjp9nY2DBq1CjWrl1LRkYG7dq1M1p23759BAYGyoEUgJ+fH3369GHv3r1yMHX8+HEKCgoYN26cXvnx48cTExPDoUOHGDZsWJPpvFvk3yiGNnfVhLvPzYexQu+hXGvMlbGHtVRbUmEi3RCFZOK/e2P6TOkyVXdDNtSqW9EI2doojOSbtq0BXSaCIJPnqE6+QgKVRolSo0SlUaDSKOU/pVaBqlqJulqFbbmV/GdTrsaxyBaXfDtsKg13Oaigymiddm1s8O7hhndPdzr08cTexfguAwLzUaqUdA31ocsj3qSeyeZ87DWunchCutkz5nHRkfEX+5Lkn83RB6+S7q0LxqolDWc902GGCuUxB9S/lEGJbr21pOtp/HfDdv67YTtWVmoC/H0J8PPFt50n3u088GnXFk8PN5wc7bG3s230rEwrtZr7ArvTu1tXrqWlcSHxKldTU+W9abWSRFZuLlm5uZzhEqAbd+lkb4+zkyPOjk442tlha2uDnY2tbnKLjY1uVw61GrVajeoeXCRa0DhaVYB26dIlfH19cXBw0EuvCZAuX75sNEDTarUkJiYycuRIg7ygoCCOHDlCaWkp9vb2XLqku5kCA/XXNerevTtKpZKLFy8ybNiwJtF5N3k2LpScawWGGY0JQMyQlfMbevCb0mfyYW6oxeSD32jIJBDcRAH2LjbYu9ni4mWPm58z7h2dcPNzxr6NCMiaCoVSge99bfG9ry3lRZUkH8sg6UgG6edzqSrX0DmxLZ0T25LtUURCzzQud8ugyLkcVAq0/W2p7GODMr4S5ZFylMm3tuyqqqom4UISCReSTNdtrURpo0ShVqJQKkCpQKHS7bRR83lTUn+Cku4LAGqlknaurrR3bYO7kxMu9vqLHUuSRGFJCYUlJUAGDSFJEtUaDdVaLRqtVm+tQq281qJkNN2oPn3l9eebsOfPhEbS8v7cuXfVhlYVoOXk5OBuZKHAmrTs7Gyj5QoLC6msrGywbMeOHcnJyUGlUuHq6qonZ2VlhbOzMzk3p1s3hU5jZGdn6+VfvnwZ0L1KtSQabQFKqzL9xDpxjDn/zJn3D5++kEGZ+juDjBYy9tNhaIuiniMTiXXPgbFSDZYxA3OEFA2cN6NFGh+MNnjejHYJNpBwGzGxOdeFYbX6KUqFAoVagUqtRKGq9alSorZVYWWrQm2jxspGhbW9Gltna2wdrVGoauupooRcSjJyzXmuCixFe+g0xgm/UY7kpRaTn1pCQXox2jQFPfe5EBjjRJFzOentC8hpW0yuezHFrtVoh6vRlqpQXqtCkVKNIlODokBbf11loC2rX8QcCsm42V8GVmoVbVwccXV1wsXJAXsHG+ztbC26l+it+dkCS1NWUcGFCxeaRLefnx+2tg1PImpVAVpFRQVWRjZdtra2lvNNlQPMKltRUWFyvIK1tbWenKV1GmPbtm2sX7/eIP2dd94xWUYgEAj+FGQCl28dmt4H4u5QVARFKXfbCsHtcnDH9ibRa+4Y8lYVoNnY2FBVZTg2pLKyUs43VQ4wq6yNjQ3V1dUGcjWyteUsrdMYY8aM4ZFHbu07V1RURHJyMt26dZMDQUuRnJzMO++8wxtvvIGfn59FdbcEhH+tn3vdR+Ff6+de9/Fe9w+a3kdzdbaqAM3d3Z2srCyD9JpXgB4exld2dnZ2xtra2uirxLpl3d3d0Wg05OXl6b2SrKqqorCwUH592RQ6jeHh4WHgV79+/UzKWwI/P797eo014V/r5173UfjX+rnXfbzX/YO772OrmvPbpUsXUlJSKCnRn4p97tw5Od8YSqUSf39/EhISDPLOnTuHt7c39jcHdHbt2hXAQDYhIQGtVivnN4VOgUAgEAgEAmhlAVp4eDgajYZt27bJaZWVlURFRdGjRw95BmdGRobBIPpBgwaRkJCgFyRdu3aNEydOEB4eLqf16dMHZ2dntm7dqld+69at2Nra8vDDDzepToFAIBAIBIJW9YqzR48eREREsHbtWvLz8/Hx8SE6Opr09HQWLlwoyy1dupSTJ09y4MABOW38+PHs2LGDhQsXMmnSJFQqFZGRkbi6ujJp0iRZzsbGhhdeeIGPPvqIN998k/79+3Pq1Cl2797N9OnTcXZ2blKddxN3d3emTp1a7yvX1ozwr/Vzr/so/Gv93Os+3uv+QcvxsVXtJAC6GZE1e3EWFxfj7+/PtGnT6N+/vywzd+5cgwANIDMz02DfzNmzZ+Pr62tQz/bt29mwYQNpaWl4enoyfvx4JkyYYLBsQVPoFAgEAoFA8Oem1QVoAoFAIBAIBPc6rWoMmkAgEAgEAsGfARGgCQQCgUAgELQwRIAmEAgEAoFA0MJoVbM4BTpOnDjBvHnzjOatXr2anj17ysdnzpxhzZo1XLx4EQcHByIiIpg+fbq8RlsNlZWV8uSLoqIiAgICmDZtGiEhIWbZlJWVZTBZYs6cOXh7e7cIH8+fP090dDQnTpwgPT0dZ2dnevbsybRp0+jQoUOD9uzcuZNly5YZzdu8eXOjZ/tY2r/G6DOFJdvQ0v69++67REdHm6zvp59+om3btibzv/rqK6NbpllbWxMbG2uGR4aY6+Phw4f55ZdfOH/+PMnJyXh6ehIZGWm0nFar5YcffmDLli3k5ubi6+vLs88+y5AhQ8yyqaioiDVr1nDgwAEqKioICgri5Zdfvq3FNi3tX3JyMlFRURw5coTU1FTs7Ozo1q0bzz//PIGBgRazx1ws7V9aWhoTJ040qu+tt97i0UcfbdAmS7YfWN5HU/dRDZ999hm9e/c2mX83fkfLy8uJiooiLi6OxMREysrK8PX1ZfTo0YwePRqVSqVXriXdgyJAa8U8+eSTBAUF6aX5+PjI3y9dusQrr7yCn58fs2fPJjMzkw0bNpCSksKKFSv0yi1btox9+/YxYcIEfH192blzJwsWLGDVqlUEBwfXa0dpaSnz5s2jpKSEZ599FrVaTWRkJHPmzOGrr77CxcXlrvv43XffcebMGSIiIggICCAnJ4fNmzczbdo0Vq9ejb+/v1n2vPDCC7Rv314vzdHx9ncAtGQbmqPPFE3Vhpbyb8yYMQY7aEiSxMqVK/Hy8qo3OKvNa6+9hp2dnXysVN75S4SGfIyNjeWXX36hW7duDT6AvvzyS7799ltGjx5NYGAgcXFxvP322ygUigYf8FqtloULF3LlyhUmTZqEi4sLW7ZsYd68eXz55Zdm/SPSlP7t2LGDn3/+mUGDBjFu3DhKSkrYtm0bM2fOZMWKFWbvkHK71/jt6mtM+wEMGTKEhx56SC/NnOCxqdoPLOfjoEGDjK5QsHbtWsrKyswKtKF5f0dv3LjBqlWr6Nu3LxMnTsTe3p7Dhw/z4YcfEh8fz7/+9S+9ci3qHpQErY7jx49LoaGh0t69e+uVmz9/vjRu3DipuLhYTtu+fbsUGhoq/fHHH3JafHy8FBoaKn333XdyWnl5uTRp0iRpxowZDdrz7bffSqGhodK5c+fktKSkJCk8PFz64osvGuHZLSzt4+nTp6XKykq9steuXZMeffRR6e23327QnqioKCk0NFQ6f/584xwxgaX9M1efKSzdhpb2zxinTp2SQkNDpa+//rpBe9atWyeFhoZKeXl55phvFub6mJWVJVVVVUmSJEkLFiyQJkyYYFQuMzNTioiIkD788EM5TavVSrNmzZKeeOIJqbq6ut569uzZY2BPXl6e9Nhjj0mLFy82z6laWNq/hIQEqaSkRC8tPz9fGj16tPTyyy9bzB5zsbR/N27cMPgdbQyWbj9JsryPxkhPT5fCwsKk5cuXNyh7N35H8/LypMTERIP0ZcuWSaGhodL169fltJZ2D4oxaK2c0tJSoxuxl5SUcPToUYYNG4aDg4OcPnz4cOzs7Ni7d6+ctn//flQqFWPGjJHTbGxsGDVqFPHx8WRkZNRrw759+wgMDNT7D8bPz48+ffro1XO7WMLH3r17Y2VlpVe+Q4cOdOrUyWDXCXPs0Wg0jfSifn136p85+uqjKdvQ0v7VEBsbi0KhMPvVQ+16JQuvLlTfOffw8ECtbvhlRVxcHNXV1YwfP15OUygUjBs3jqysLOLj4+stv3//ftzc3AgLC5PT2rRpQ0REBHFxcVRWVprpjSGW8K979+4GQytcXFwIDg6+rXuwsdf47eoz17/alJWVUVVV1agyTdl+YHkfa9izZw+SJDF06NBG29Mcv6Nt2rShc+fOBumhoaEAetdeS7sHxSvOVsyyZcsoKytDpVIRHBzMzJkz5S7mxMRENBqNwXtvKysrunbtyqVLl+S0S5cu4evrq/eQBOSH9eXLl+VttOqi1WpJTExk5MiRBnlBQUEcOXKE0tJSgx/m5vbRGJIkkZeXR6dOncy2Z968eZSVlWFlZUVISAizZs26o1cPlvavPn2maMo2bKr2q66uZu/evfTq1cvgVUl9TJw4kbKyMuzs7Bg4cCCzZs3Czc2t0X7V5nbOuTEuXbqEnZ0dfn5+euk19+GlS5fqHW5w8eJFunbtavDaNigoiO3bt3P9+nUCAgIabZel/DNFbm5uo16hW9oeS+tbv349q1evRqFQ0L17d4OF1E3RVO0HTduGMTExeHp6ct9995ldpjl/R02Rm5sLoHfttbR7UARorRC1Ws2gQYN46KGHcHFxISkpiQ0bNjB79mw+//xzunXrRk5ODoDR8QTu7u6cOnVKPs7JyTEpB5CdnW3SlsLCQiorKxss37Fjx7vqozFiYmLIysri+eefb9AeGxsbHnvsMR544AEcHBy4cOECkZGRvPzyy/zv//6vyQC2ufwzR58pmqINm7r9Dh8+TEFBgdn/tTs5OfHEE0/Qs2dPrKysOH36NJs3b+b8+fN8+eWXBv+cWMrHxpCTk4Orq6vBziLm3Iege+AYe0jWlM/JyWncw8HC/hnj1KlTxMfHM2XKlGa3x9L6lEolISEhhIWF4eHhwY0bN4iMjGTBggUsW7aswT2XLd1+0PRtePXqVa5cucLkyZPN2hHnbvyOGqOqqooff/yR9u3b6wVyLe4eNFtS0GLo3bu33kyZgQMHEh4ezt/+9jfWrl3LBx98QEVFBYDBaz3QzVyr3dVaUVFhUq4m3xQN1dNQeVNY2se6JCcn89FHH9GzZ09GjBjRoD2DBw9m8ODB8nFoaCj9+/dnzpw5fPPNN8yfP78x7lncP3P0maIp2rCp2y82Nha1Wk1ERIRZ9kyYMEHvODw8nKCgIJYsWcLmzZt59tlnzdJTmzs558a4k/uwJr9G9nbK18XS/tUlLy+Pt99+m/bt2zN58uRmt8fS+tq1a8fKlSv10oYPH86UKVP47LPPGgzQLN1+0PRtGBMTA8CwYcPMkr8bv6PG+M9//kNSUhLvv/++3qvdlnYPijFo9wi+vr4MHDiQEydOoNFosLGxATA6DqKyslLvIrKxsTEpV5Nviobqaah8Y7gTH2uTk5PDwoULcXBwYMmSJQbTrM0lODiYHj16cOzYsdsqXxdL+WdKnymaqw0t5V9paSlxcXH079//jmYIDx06FDc3N4u1H5h/zo1xJ/dhTb6xoLYp2/B2KSsrY+HChZSVlfHuu+/e9hAIS9nTVPqcnZ157LHHuHbtGpmZmfXKNkf7geV8lCSJ2NhYOnfufNuvXqHpf0fr8v3337N9+3ZeeOEFg6C5pd2DIkC7h/D09KSqqory8nK9LtW65OTk4OHhIR+7u7ublAP0ZOvi7OyMtbX1bZdvLLfrYw3FxcUsWLCA4uJiPvjggzu2zdPTk8LCwjvSUVffnfhXnz5TNGcbWsK/uLg4ysvLGz0o2ZQ9lmy/Gp0NnXNjuLu7k5ubazCBwdw2cHNzq7cNG7vGlClu178aqqqqeOONN0hMTOTdd981e4mbprKnOfSBbn2s+miu9qux6U59PHPmDOnp6S3yPjTl386dO1mzZg1jx47lueeeMyjX0u5BEaDdQ9y4cQNra2vs7Ozo3LkzKpWKCxcu6MlUVVVx6dIlunTpIqd16dKFlJQUSkpK9GTPnTsn55tCqVTi7+9PQkKCQd65c+fw9va+7f+OjXG7PoKue/l//ud/uH79Ou+9916jJgfUZ0+bNm3uWE9tfbfrX0P6TNGcbWgJ/2JiYrCzs+ORRx65I1skSSI9Pd2i7QfmnXNjdOnShfLycoMZjebch4A8sUKr1eqlnz9/Hltb2zsahF2b2/UPdBNSli5dyvHjx1m0aBH333//XbWnufQBDfb2Nlf71dh0pz7GxMSgUCgsEqA15e9oDQcPHmT58uWEhYXxyiuvGC3X0u5BEaC1QvLz8w3SLl++zK+//kpISAhKpRJHR0f69evH7t27KS0tleV27dpFWVmZ3tid8PBwNBoN27Ztk9MqKyuJioqiR48eegM3MzIyDC7eQYMGkZCQoPeAv3btGidOnCA8PLxF+KjRaPj3v/9NfHw8ixcvplevXibrzs7OJjk5WW/KtjF7Dh06xIULF8yaodXU/pmjr4bmaENL+1db79GjRwkLC8PW1tZo3cb8M2bPli1byM/P58EHH2ycc/XoNHXOzWHgwIGo1Wo2b94sp0mSxNatW2nbtq3eNWvsGh00aBC5ubkcOHBAz8a9e/cyYMCABl+J18XS/oFu7M8vv/zCK6+8wqBBg+qtOzk5Wa8HxNL2NIe+rKwsoqKiCAgI0Ot9aY72M2XTnbYh6GZR79u3j969e5sc2N9SfkcBTp48yeLFiwkODmbRokUm/W5p96CYJNAKeeutt7CxsaFXr164urqSlJTE9u3bsbW15aWXXpLlpk2bxqxZs5gzZw5jxoyRV2kPCQnReyj16NGDiIgI1q5dS35+Pj4+PkRHR5Oens7ChQv16l66dCknT57UuwDHjx/Pjh07WLhwIZMmTUKlUhEZGYmrqyuTJk1qET5+9tln/PrrrwwYMICioiJ2796tV1/tQa5r164lOjqaDRs2yEs4zJw5k27dutG9e3ccHBy4ePEiUVFReHp68te//vWu+2euPmieNrS0fzXs2bMHjUZT73/txvybMGECgwcPxt/fH2tra86cOcOePXvo2rWr3vp/TeHjlStXiIuLAyA1NZXi4mL+7//+D9D9R17TE+jp6cmECRP4/vvvqa6uJigoiIMHD3L69GkWLVqkN1bS2DUaHh7Oxo0bWbZsGUlJSfIq5lqt1qyZyk3tX2RkJFu2bKFnz57Y2toa3IOhoaFyj8emTZtYv349q1at4oEHHmiUPXfLv9WrV5Oamkrfvn3x8PAgPT2dbdu2UV5ezty5c/Xqbo72awofazBnFnVL+R1NT0/n9ddfR6FQEB4ezr59+/R0BAQEyGPoWto9KAK0VkhoaCgxMTFERkZSUlJCmzZtCAsLY+rUqXrbcHTv3p0PP/yQNWvW8Mknn2Bvb8+oUaOM/pi9/vrrtGvXjl27dlFcXIy/vz/vv/++Wa8g7O3tWbVqFZ9++ilff/21vI/j7Nmzb7vb2tI+Xr58GYDffvuN3377zaC+hmYhDR48mN9//50jR47I46dGjx7N1KlTb2sdLUv7Z64+U1i6DZviGgXd7E1XV1f69u3bKHuGDh3K2bNn2b9/P5WVlbRr147JkyczZcoUkz1xlvLx4sWLrFu3Tq9szfGIESP0Hn4vvfQSTk5ObNu2jejoaHx9fXnjjTfMeo2kUqlYvnw5n3/+OT/99BMVFRUEBgbyz3/+s9HL3DSFfzX3YHx8vNEFPzds2FDvK7c7vcab2r+QkBBu3LjB5s2bKSoqwtHRkeDgYKZMmWLWPoyWbr+m8LGGmJiYRs2iruFu/I6mpaVRXFwMwEcffWSgY+rUqXqTHFrSPaiQLL2ktkAgEAgEAoHgjhBj0AQCgUAgEAhaGCJAEwgEAoFAIGhhiABNIBAIBAKBoIUhAjSBQCAQCASCFoYI0AQCgUAgEAhaGCJAEwgEAoFAIGhhiABNIBAIBAKBoIUhAjSBQCAQCASCFoYI0AQCgaCVExYWpvdXUVEh5+3cuZOwsDB27tx5Fy28xdatW/Vsfffdd++2SQJBi0Rs9SQQCFokaWlpTJw4sV4ZLy8vIiMjm8milo2XlxcjRowA0NszsCk4fPgw8+fPJyQkhJUrV9Yr+/bbbxMbG8uiRYsYOnQo3bt3Z+rUqRQXF7Nx48YmtVMgaM2IAE0gELRofHx8TO6D5+jo2MzWtFy8vLxue1PtxtKvXz/atWvHsWPHyMjIoF27dkbliouLOXjwII6OjoSFhQEQGBhIYGAgaWlpIkATCOpBBGgCgaBF4+Pj02yBh8A8lEoljz32GOvXryc6OprnnnvOqFxsbCwVFRWMHDkSGxubZrZSIGjdiDFoAoHgniEsLIy5c+eSm5vL0qVLGT16NEOGDGHGjBmcOHHCaJnS0lK++uorpkyZwpAhQxg5ciSvvfYap0+fNpCdO3euPMbryy+/ZNKkSURERPDVV1/JMvv372f69OkMGTKEsWPHsnz5coqKinj66ad5+umnZbklS5YQFhbGuXPnjNq1bt06wsLCiI2NvcOzYpzMzEyee+45hgwZwr59++T0vLw8PvnkEyZPnsyjjz7K6NGjeeONN0hMTNQrP3LkSBQKBTt37kSSJKN1REVFATBq1Kgm8UEguJcRAZpAILinKC4uZtasWSQlJTFs2DDCwsK4cOEC8+fPNwgyCgsLmTlzJuvXr8fJyYmxY8cSFhbGxYsXmTdvHgcPHjRax6JFi4iOjuaBBx7gqaeeon379gD8/PPPLFq0iJSUFIYPH86IESOIj4/n1Vdfpbq6Wk/HmDFj5DJ10Wg0REVF4eLiIr8atCRJSUm8/PLLZGZmsmLFCsLDwwFITU1l2rRp/Pjjj3h7e/PEE0/w0EMPcfjwYWbOnKkXTHp5edG3b19u3LhhNPhNTEwkISGBrl270q1bN4v7IBDc64hXnAKBoEWTmpqq10NVm549e/Lggw/qpV2+fJlx48bx97//HaVS9z9onz59WL58OZs2bWL+/Pmy7H/+8x+uXr3KggULePzxx+X0vLw8pk+fzooVK+jfv7/B67mcnBz++9//4uzsLKcVFRXx8ccfY2dnx9q1a+nQoQMA06dPZ/78+Vy4cAEvLy9Z/r777qNTp07s2bOH2bNnY2dnJ+cdPnyYrKwsJkyYgLW1dWNPWb3Ex8ezcOFC1Go1n3zyCV26dJHzli5dSm5uLh988AH9+/eX06dMmcL06dNZvnw569evl9NHjRrF0aNHiYqKok+fPnr1iN4zgeDOED1oAoGgRZOamsr69euN/v3xxx8G8nZ2dsyYMUMOzgBGjBiBSqUiISFBTsvPz2fv3r306dNHLzgDcHV1ZfLkyeTn53Ps2DGDOv72t7/pBWcAcXFxlJWVMXLkSDk4A1Cr1UybNs2ob2PGjKG0tJQ9e/bope/YsQOA0aNHmzott8WhQ4d45ZVXcHJy4vPPP9cLzi5evMjZs2cZPny4XnAG0KFDBx5//HESExP1eiFDQ0NxcXFh//79lJSUyOnV1dXs3r0ba2trkxM8BAJB/YgeNIFA0KLp378/H3zwgdnyvr6+2Nvb66Wp1Wrc3NwoLi6W0xISEtBoNFRVVRntoUtJSQEgOTmZAQMG6OUFBQUZyF+5cgWA4OBgg7wePXoYXfpi+PDhfPHFF+zYsUMOEnNzc/ntt9/o1asXnTp1asBb89m7dy9HjhwhICCAFStW4Orqqpdf8/oyLy/P6Pm4du2a/Onv7w8gB2AbN24kNjaWsWPHAvDrr7+Sn5/PkCFDcHJyspgPAsGfCRGgCQSCewoHBwej6SqVCq1WKx8XFhYCcObMGc6cOWNSX3l5uUGam5ubQVpND1LdwAd0sx5dXFwM0p2cnIiIiCA6OprExET8/f3ZuXMnGo3G4r1n8fHxaDQagoODjdpYcz4OHTrEoUOHTOopKyvTOx41ahQbN24kKipKDtDE602B4M4RAZpAIPhTUhPITZw4kVmzZjWqrEKhMKkvLy/PIE+r1VJQUEDbtm0N8saOHUt0dDTbt29n3rx5/Pzzzzg4OBAREdEomxrixRdfJC4ujo0bN6JSqQx8rrF/3rx5PPnkk2brDQgIIDAwkPPnz3P16lWcnJw4fPgw7du3NxiXJhAIzEeMQRMIBH9KAgMDUSgUxMfHW0RfQEAAgNHeuPPnz6PRaIyW69mzJwEBAcTExHD48GFSUlIYOnQotra2FrGrBmtra5YuXcrDDz/Mhg0b+PTTT/Xya17b3s75qOkp+/nnn9m1axcajUZehkMgENweIkATCAR/Stzd3YmIiODs2bN8//33RtfyOnfunNFXnMYYOHAgdnZ2/Pzzz6Smpsrp1dXVrFu3rt6yY8aMobCwkPfeew/AYNKCpbC2tuadd95hwIABREZG8sknn8h5PXr0oEePHuzZs8dg0gLoegFPnjxpVO+QIUOwtbVl9+7dREVFoVQq5W2nBALB7SFecQoEghZNfctsADzzzDO3vUr9q6++yvXr11m9ejW7du2iZ8+eODo6kpWVRUJCAikpKWzevNms3iwnJydmz57NihUrmD59OoMHD8bBwYHff/8da2trPDw8TPYoDRs2jDVr1pCdnU337t2bdN0wKysrlixZwptvvsmPP/6IJEnMnTsXgDfffJO///3vLF68mI0bN9K1a1dsbGzIzMzk7NmzFBQUGF0418HBgUGDBrFr1y7y8/N58MEHTW7/JBAIzEMEaAKBoEVTs8yGKSZMmHDbAZqzszOff/45mzZt4pdffiE2NhatVoubmxtdunThueeeMzq43xSjR4/GycmJb775hujoaBwcHHjkkUeYMWMGEyZMwMfHx2g5BwcHQkND2b17d5P1ntWmJkh766232LhxI5IkMW/ePLy9vVm3bh0bNmzg4MGD7Ny5E6VSibu7O/fdd5+8oK0xRo0axa5duwDdLgMCgeDOUEim9ugQCAQCgUVISUnhL3/5CxERESxevNiozHPPPUd6ejqbNm0yORPVFGFhYdx///18/PHHljC3WUhLS2PixImMGDGC119//W6bIxC0OEQPmkAgEFiIoqIibGxs9Fb/r6iokAfkh4aGGi33+++/c/XqVUaPHt3o4KyGkydPyttCxcTEtNjNybdu3crKlSvvthkCQYtHBGgCgUBgIU6ePMn7779PSEgInp6eFBQUcPz4cdLT0+nTpw+DBw/Wk9+yZQuZmZns2LEDa2trnnnmmduqd+rUqXrHxhbFbSl0795dz96uXbvePWMEghaMeMUpEAgEFuL69eusW7eOs2fPkp+fD4CPjw+DBw9m0qRJBr1aTz/9NFlZWXTo0IEZM2YY7FggEAj+vIgATSAQCAQCgaCFIdZBEwgEAoFAIGhhiABNIBAIBAKBoIUhAjSBQCAQCASCFoYI0AQCgUAgEAhaGCJAEwgEAoFAIGhhiABNIBAIBAKBoIUhAjSBQCAQCASCFoYI0AQCgUAgEAhaGCJAEwgEAoFAIGhh/H/RrV9d+wnNfQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAHOCAYAAAAsQvUnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDh0lEQVR4nOzdd3hUVfrA8e+k9x5ISCGEXk0AKdIFUUFBBF0VFaWIFRHBymJnscHi7gosICA/21oAUZoUFZCqRqWEGhIChPReZ+b+/pjMZYYUksxNfz/Pw+Nk5t5zTsYQ3jnnvO/RKYqiIIQQQgghGgy7+h6AEEIIIYSwJgGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEKUIycnh2eeeYY2bdrg6OiITqcjJiaGH3/8EZ1Ox6uvvlrfQ2xSIiIiiIiIsLkdnU7H0KFDbW5HiPomAZoQQjM6na7MH2dnZyIiIpg0aRLHjx+v0/E89NBD6HQ6zp07V+17n3/+ef75z3/SrVs3XnjhBV555RWCgoIqvH7o0KHodLpq9/Pqq6+i0+n48ccfq32vEKLpcqjvAQghmp5XXnlFfZyVlcXBgwf5+OOP+frrr9mzZw9RUVH1N7gq+vbbb+nQoQMbN260et7Ly4vjx48TEBBQTyMTQjQHEqAJITRX3vLfU089xb///W/++c9/snr16jofU3VdvHiRwYMHl3nezc2NTp061cOIhBDNiSxxCiHqxMiRIwFISUkp9/XPPvuMYcOG4evri4uLC507d+bNN9+kqKiozLU//vgjt912G6GhoTg5OREYGMj1119vFRjqdDrWrFkDQJs2bdQl12vtczIvVSqKwk8//aTeZ97XdPUetHPnzqHT6fjpp5/Ufq++pyIRERG89tprAAwbNszqXksXL17k8ccfJyIiQv1+x40bx6FDhypt/2rmMV2+fJnJkyfTsmVL3N3dueGGG9i9ezcAubm5zJo1i/DwcJydnenatStfffVVue0VFhbyj3/8g+7du+Pm5oaXlxeDBg3i888/L/d6RVH497//TdeuXXFxcSEkJIQnnniCrKysSsddnZ8NIZoKmUETQtSJ7du3A9CnT58yr02ZMoWPPvqIsLAwxo8fj7e3N/v37+fvf/87O3bsYNu2bTg6OgKwadMmbrvtNry9vRkzZgwhISGkp6dz/PhxlixZogZOr7zyCuvXr+ePP/7g6aefxsfHB0D9b0Ueeughhg4dymuvvUbr1q156KGHACoM7Hx8fHjllVdYvXo18fHxVsu71woGZ86cyfr16/npp5+YNGlSudefPXuWgQMHcunSJYYPH869997L+fPn+fLLL/n+++/58ssvGTt2bKX9WMrMzGTAgAF4enpy7733kp6ezueff87NN9/ML7/8wrRp08jKyuL222+npKSEzz//nLvvvptffvmFfv36qe0UFxczcuRIdu/eTZcuXXjiiSfIz8/nyy+/5N577+X333/n7bffLvP9fvDBBwQHB/PII4/g6OjIhg0bOHjwIMXFxTg5OZUZb3V+NoRoUhQhhNAIoADKK6+8ov555plnlIEDByo6nU4ZO3askpOTY3XPqlWrFECZMGGCUlBQYPXaK6+8ogDKokWL1OfGjRunAMrvv/9epv+UlBSrrydNmqQASlxcXI2+lyFDhpR5fteuXer3aGnIkCFKTX6lmr/HXbt2lfv6TTfdpADKggULrJ7fvXu3Ymdnp/j6+irZ2dlV6sv8/2f69OmKwWBQn//4448VQPH29lZuu+02q/8Pe/fuVQDljjvusGrrrbfeUgDltttuU0pKStTnk5KSlLCwMAVQdu/eXaadtm3bKmlpaerzBQUFSr9+/RRAad26tVUf1f3ZMH+P5f1/E6KxkQBNCKEZcwBQ3p8uXbooa9euLXNPVFSU4ujoqGRkZJR5Ta/XK/7+/krv3r3V5+68804FUE6cOHHN8TT2AO38+fNq4GIZBJndd999CqCsWbOmSn0BipubW5mATq/XKw4ODgqgnDlzpsx9bdq0USIiIqyea9u2raLT6cr9//Df//5XAZSHH35YfW7q1KkKoHz00Udlrje/p1cHaNX92TB/jxKgiaZAljiFEJpTFEV9nJeXx9GjR3nhhRd44IEHOH78OG+99RYA+fn5/PHHHwQEBPDPf/6z3LacnZ2JjY1Vv544cSLffPMNffv25Z577mHYsGHccMMNhIaG1ur3VB9+//13AAYNGoSDQ9lf1yNGjODTTz/lt99+48EHH6xSmx06dMDT09PqOXt7e1q2bEleXh6RkZFl7mnVqhUHDhxQv87JyeHMmTOEhobSoUOHcscF8Ntvv6nPmR8PGTKkzPXlfX81+dkQoimRAE0IUavc3d3p06cP33zzDaGhobzzzjs8+uijhIWFkZGRgaIopKSkqJvlr+XOO+/ku+++4/3332flypUsXboUgN69e7NgwQKGDx9em99OnTJvnq+o/lpwcLDVdVXh7e1d7vMODg6VvqbX620al/lxy5Yty1xvb2+Pv7+/1XM1+dkQoimRLE4hRJ3w8fGhY8eO6PV6dTbFHBBER0ejmLZcVPjH0ujRo9m5cycZGRns2LGDZ555hiNHjjB69Og6L4Zbm8zvT1JSUrmvX7p0yeq6ulKTcZkfX758ucz1BoOBtLS0cvuo7s+GEE2FBGhCiDqTkZEBgNFoBMDDw4OuXbty9OhR0tPTq92eu7s7N954IwsXLuSll16iqKiIzZs3q6/b29sDpgCgttW0r8rui46OBmDPnj1WM1hmu3btAqBnz57V6tNWnp6etG3blgsXLnDq1Kkqjcv82FyOxNLu3bvLfH+2/mwI0dhJgCaEqBPr168nLi4OR0dHbrjhBvX5WbNmUVxczOTJk8nMzCxzX0ZGhtVeph07dlBQUFDmOvPMjIuLi/qcedns/PnzWn0bFappX5XdFxoayk033cS5c+fK7MM6cOAAn376Kb6+vowbN65mg7bB5MmTURSFOXPmWAWXqampvPHGG+o1ZuZyJW+99ZZVwFVYWMiLL75Ybh/V/dkQoimRPWhCCM1ZFozNy8vj2LFj6szW/PnzrfYhTZ48mV9//ZUPP/yQtm3bcvPNNxMeHk56ejpxcXH8/PPPPPzww+pes2effZZz584xdOhQtXDrr7/+ys6dOwkPD+eee+5R2x4+fDjvvvsu06ZNY/z48Xh4eODj48OTTz6p+fc8fPhwvvzyS+68805uvfVWXF1dad26NQ888ECl9w0bNgw7OztefPFF/vrrL3x9fQGYO3cuAEuXLmXAgAHMmTOHbdu20bt3b7UOmp2dHatWrSqz6b8uzJ49m82bN7Nhwwauu+46Ro0apdZBS05O5rnnnmPgwIHq9QMGDOCpp57iX//6F926dWPChAlqHTRfX19135ql6v5sCNGk1G3SqBCiKaOc8hr29vZKUFCQMmbMGGXbtm0V3rtx40Zl9OjRSmBgoOLo6Ki0bNlSuf7665WXX35ZOX78uHrdF198odxzzz1Ku3btFHd3d8XT01Pp2rWr8tJLLynJycll2n3//feVTp06KU5OTuWWcqjse6lOmQ29Xq+8+OKLSps2bdSSFVUt97B27VrluuuuU1xcXNT3zVJiYqLy6KOPKuHh4Yqjo6Pi7++vjB07Vjl48GCV2r/W96QoitK6desK35uKSogUFBQob731ltK1a1fFxcVF8fDwUAYMGKB8+umn5bZjNBqVf/3rX+r/j+DgYOXxxx9XMjMzK+2/qj8b1/oehWhMdIoiOyyFEEIIIRoS2YMmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIDWCBUWFnLixAkKCwvreyhCCCGEqAUSoDVC8fHxTJs2jfj4+PoeihBCCCFqgQRoQgghhBANjARoQgghhBANjARoQgghhBANjARoQgghhBANjEN9D0AIIYSoCwaDgZKSkvoehmgGHB0dsbe3t6kNCdCEEEI0ebm5uSQmJqIoSn0PRTQDOp2O0NBQPDw8atyGBGhCCCGaNIPBQGJiIm5ubgQGBqLT6ep7SKIJUxSFlJQUEhMTad++fY1n0iRAE0II0aSVlJSgKAqBgYG4urrW93BEMxAYGMi5c+coKSmpcYAmSQJCCCGaBZk5E3VFi581CdCEEEKIehAREUGnTp2Iioqic+fO3HfffeTl5dW4vdWrV3Py5MkKX9+/fz/du3cnOjqarVu3MmrUKM6cOVOle2vTuXPn+O9//1vj+1999VVmz54NwI8//oibmxtRUVH06NGDgQMH8ueff1Z6/+HDh5k4cWKV+youLq7xWKtDAjQhhBCinnz11VfExMRw7NgxsrOzWb16dY3bulaQtWbNGh588EF+//13br75ZjZt2kTbtm2rdG9tulaAptfrq9Vely5diImJ4c8//+Suu+7i4YcfrvT63r1788knn1Sp7ddee00CNCGEEKK5KCoqIi8vD19fX/W59957jz59+tCzZ09GjRrF+fPnAdi4cSM9evQgKiqKbt26sWHDBlasWMHhw4eZMWMGUVFRbNq0yar9BQsW8MUXX7B48WKioqLIzMwkIiKCI0eOXPPe8rz99tt0796d6667jn79+pGfnw/A2rVr6du3Lz179mTIkCEcOXIEMAWAN998M/feey/du3end+/enD17FoBHH32UY8eOERUVxZgxYwDT7OJbb73FsGHDmDRpEklJSQwbNoxevXrRtWtXZsyYUaWM3JtuuokTJ04AsGXLFnr27EmPHj0YMmQIx44dA0yzbr179wZMwWJAQADz5s2jV69etGvXTn0/Hn30UQBuuOEGoqKiSE5Ovmb/tpAkASGEEM3O+pf3kp9VVGvtu3k7c8dbA6553YQJE3BxcSEuLo5evXpx9913A/Dpp59y8uRJ9u3bh729PWvXruXJJ59kw4YNzJ07l6VLl3LDDTdgNBrJzs7Gx8eH//u//2P27NncdtttZfp54YUXiI2NpXfv3jz55JNWr02dOrXSe6+2Zs0a1q9fz969e/Hy8iIjIwNnZ2f27t3L559/zs8//4yzszO7d+9m4sSJ/PHHHwAcOHCAP/74g9atW/PCCy/w9ttvs2zZMpYuXcrs2bM5fPiwVT8JCQns3LkTnU5HYWEhGzduxMPDA4PBwNixY/n666+ZMGFCpWP9/PPP6dWrF8nJydx///3s2rWL7t2788knn3D33XerAaSltLQ0evXqxeuvv86WLVt4+umnGTVqFEuXLmXZsmX88ssvNpXPqCoJ0IQQQjQ7+VlF5KfXXoBWVV999RXdunVDr9czffp0nn/+ed5//33Wr1/P4cOH6dWrF2AqFWLOBhw+fDgzZ85kwoQJjBw5kqioqDod83fffcdjjz2Gl5cXgDrrt2HDBv744w/69u2rXpuSkqIuCQ4cOJDWrVsD0L9/f/71r39V2s/DDz+sbrY3Go08//zz7NmzB0VRSE5OJioqqtwAzTwbB9ChQwfWrFnDgQMHiIqKonv37gBMnDiRJ554gkuXLpW5393dnbFjx6rjNO/Tq2sSoAkhhGh23LydG1T7Dg4OjB8/njlz5vD++++jKApz585l8uTJZa5duHAhR48eZdeuXUyaNImJEyfy3HPPaTX0GlMUhcmTJ/P666+X+7qLi4v62N7e/pp7yyxnqRYuXEhaWhoHDhzAxcWFWbNmUVhYWO59Xbp0KTMb9+eff5abWVnec1eP02AwVDrO2iIBmhBCNFH5BQUcOXWK/IJCPNzd8ffxpnWrVtjZyfbjqiw/1rWdO3fSsWNHAMaMGcPixYu544478PPzo6SkhCNHjhAdHU1sbCxdu3ala9euODg4sG3bNgC8vLzIysqqUd9X33vhwgWGDx9ObGxsmWvHjBnDhx9+yB133IGXlxeZmZl4enpy++238+CDDzJt2jTCwsIwGo389ttv6v6uqvZdnoyMDIKCgnBxceHy5ct8+eWX/O1vf6vy99e/f3+mTJnC8ePH6dy5M59//jmhoaEEBQWV+z1WxNPTk6ysLFniFEIIUTOpGRls+ulncks3b5t5eXjQs0tnOkVGSqDWAJj3oJWUlBAREcHSpUsBeOCBB0hLS2Po0KHodDr0ej1TpkwhOjqaF198kZMnT+Lk5ISbmxtLliwB4JFHHuHZZ5/l3XffZf78+YwaNarK47j63sDAQBwcyg8RHnjgAS5evEj//v1xdHTEzc2N7du3M3jwYObPn8/YsWPVc09Hjx59zQCtR48edOzYkW7duhEZGcm3335b5poZM2Zw1113ERUVRUhICCNGjKjy9wamwrFr165l4sSJGAwGfHx8+N///letNgCeffZZbrzxRlxdXdm2bRstWrSodhtVpVPkYLJG58SJE0ybNo3ly5ern7aEEMIsMSmJzT/vpqSSJaROkW24sV+/OhxV/SksLCQuLo42bdpYLV+Jii1cuJAWLVpw//331/dQGiUtfuZkBk0IIZqQ4pIStv+yTw3OWvj7MyA6mryCAo6dOUNiUhIAsWfjCA9uRbvW4fU5XNFAzZo1q76H0OxJgCaEEE3I78eOk1+6eTo0qCWjBg9Wl6ratQ4n9uxZdu4/AMBPhw4RHBiAu5tbvY1XCFE+2YAghBBNRE5eHjGlG57t7OwYcv31ZfYRdWzThrbhplmzouJidh08VOfjFEJcmwRoQgjRROyP+UMtCdC9Q3u8PT3LXKPT6RhyfW/cXF0BSLh4kZT09DodpxDi2hrdEmd+fj4rVqxg165d5OTkEB4ezsSJExk+fPg1783IyGDJkiXs27ePwsJC2rVrx9SpU9VCgJYOHz7MypUrOX36NC4uLvTv35/HHnvM6hgOMJ0RtnbtWjZv3kxaWhrBwcGMGzeO8ePHW1330UcflXvGmpOTE9u3b6/emyCEEFfJzs3lVHw8AC7OTvTu1q3Ca12cnendrSs/HzLVijpy6hTDLIqLCiHqX6ML0ObOnUtsbCzTp08nLCyM7du389prr2E0GrnpppsqvK+4uJiZM2eSm5vLU089ha+vL+vWrWP27NksWrTIqhJzTEwMc+bMoX///syfP5+MjAyWLVvGzJkzWb58OU5OTuq1CxcuZNu2bUyZMoVOnTpx8OBBPvjgA/Lz83nggQfKjOO9997D3d1d/bq8InlCCFFdJ+LOqY97dOyIs8XvqfJ0jIhgf8wfFJeUcPJcPP2jonBxrt3irUKIqmtUAdq+ffs4fPgw8+bNU2ug9OzZk6SkJJYsWcKNN96oHoVxte+//564uDg+/PBDupV+soyOjmby5MksWbKEZcuWqdd++OGHhIWF8frrr6v7N4KDg3niiSfYtGkTd9xxBwBxcXF8//33TJs2jXvvvVdtMzs7m48//pixY8eqR2GYdejQAR8fHy3fFiFEM6coCidKD54G0z6za3F0dKRTZBv+PHESg8HA8bNnie7cuTaHKYSohka1B2337t24uroydOhQq+dHjRpFamqqejJ9RfeGh4erwRmYjtYYOXIkx48fJyUlBTCdGxYbG8vIkSOtNtd2796dsLAwfv75Z6s2FUXh1ltvterr1ltvpaioiAMHDtjy7QohRJVcTE4hOy8PgNCgIDwtZukr0619e/Xx0ZOnMBqNtTI+Ub6IiAg6depEVFQUnTt35r777iOv9P9jTaxevZqTJ09W+Pr+/fvp3r070dHRbN26lVGjRqnnTF7r3sZi6NChREZGEhUVRbdu3Rg1ahSXL1++5n3nzp0jICCgDkZYdY0qQIuLi6N169ZlspLatm2rvl6Rs2fPqtdVdq/5vxVda9lHXFwcPj4++Pv7V3k8Dz30EEOHDmXs2LG89dZbVfrBEUKIypyIuzJ71jny2rNnZj5eXoQFBwGQnZfHxeRkzccmKvfVV18RExPDsWPHyM7OLnevclVdK8has2YNDz74IL///js333wzmzZtUv+9qusAzWg0lvlAcK2zOavqgw8+ICYmhiNHjhAREcF7772nSbt1rVEFaFlZWWWWDMF0NhZAdnZ2hfdmZ2er11V2r/k8sIr6seyjovG4urri6OhodbZYSEgI06ZN44UXXmDhwoXcfffd7Nu3j+nTp6uzdxVJTU3lxIkT6p/40o3AQghRUlLC6YTzADg5OtImNLRa93eKjFQfxyVe0HRsouqKiorIy8uzSkR777336NOnDz179mTUqFGcP2/6/7xx40Z69OihzhJt2LCBFStWcPjwYWbMmEFUVBSbNm2yan/BggV88cUXLF68mKioKDIzM4mIiODIkSPXvPdqq1ev5uabb+bee++le/fu9O7dm7OlS+xJSUkMGzaMXr160bVrV2bMmIH5wKJXX32VBx54gDvvvJOoqCj27dtHQEAAr7/+OoMGDeJf//oXp0+fZsSIEer3t379egCWLVvG9OnTgSsHn//www8A/P3vf+eNN94oM069Xk9OTo76nv74449Wx06ZA7jyfP3113Tq1Ino6GjefPNNdDodubm5ABw6dIgbb7yR3r1707NnT77++utK36+aalR70MC2TfWV3Xv1axVdW53+La+9+eabrV7r2bMn0dHRPP7443z66ac8/fTTFbbz7bff2vSpSgjRdJ27cFGdeWhXzgrDtYQHB2NnZ4fRaCQuMZGBvXo2i+Sle48vJLUkp9baD3D05LPO167Gbz6LMy4ujl69enH33XcD8Omnn3Ly5En27duHvb09a9eu5cknn2TDhg3MnTuXpUuXcsMNN2A0GsnOzsbHx4f/+7//Y/bs2dx2221l+nnhhReIjY2ld+/ePPnkk1avTZ06tdJ7y3PgwAH++OMPWrduzQsvvMDbb7/NsmXL8PHxYePGjXh4eGAwGBg7dixff/01EyZMAGDXrl389ttvtGjRgnPnzpGWlka7du2YN28eAH379mXKlCk88sgjnDp1in79+tGrVy9uuukm3n77bQB27NhB//792bFjBzfddBPbt29n4cKF6thmzJjB3LlzuXDhAsHBwfz73/+u0vdklpyczCOPPML+/ftp3749//znP9XXMjMzmT59Ot9//z3BwcGkpqbSq1cvBgwYQFBQULX6uZZGFaB5e3uXe+J9To7pL1l5s1lmXl5e5c6wme81z6R5e3sDVNiP5Syct7c3p0+fLnNdQUEBJSUllY4HoEuXLoSGhla6dw5gzJgxDBgwQP06Pj6eN998s9J7hBDNQ8Kli+rjduFh1b7f2cmJVi1akJiURG5+PmmZmQRcVU6oKUotySG5pOzv+br21Vdf0a1bN/R6PdOnT+f555/n/fffZ/369Rw+fFgtA2UwGNQkuOHDhzNz5kwmTJjAyJEjraoQ1JWBAwfSunVrAPr378+//vUvwLR0+fzzz7Nnzx4URSE5OZmoqCg1QLvtttusDhh3cXFRk+xycnKIiYlhypQpALRv356BAweyZ88e9ZqzZ8+yfft2/vGPfzBnzhyys7M5efIk119/vdrmBx98wG233YaiKLz66qtMnjy5WrNc+/fvp2fPnrQv3aP58MMP88wzzwDwyy+/cPbsWau954qicOLEieYdoEVGRrJ9+3b0er3Vp0Tz1GqbSjKXIiMj1c2QlszPRZZO85vbOHv2LP3797e69uzZs1Z9REZGsmPHDtLS0qz2oVVlPJbs7CpfaQ4ICGhwmxeFEPVPURQSLl4CwNHBgeDAwBq10yY0RD2jMy7xQrMI0AIcy255qc/2HRwcGD9+PHPmzOH9999HURTmzp3L5MmTy1y7cOFCjh49yq5du5g0aRITJ07kueee02roVWJ5ALi9vb06i7tw4ULS0tI4cOAALi4uzJo1i8LSo8cAPDw8rNpxd3dXZ2zNS6EVrWgNHz6czZs3c/r0aYYMGYLRaOTrr79m4MCB5c4c63Q6/va3v6l70BwcHNRCzoDVuCwpilLhLLKiKPTo0cMqYbC2NKoAbdCgQWzcuJGffvrJqjDtli1bCAgIoEuXLhXeO3jwYBYuXMixY8fU6/R6PT/88ANdunRRA6DAwEA6d+7Mtm3buOeee9RPLEePHiUhIYG77rpLbXPgwIGsWLGCLVu2MHHiRPX5zZs34+zsTN9rFH48evQoiYmJZYraCiFEVSSnp1NQVASYsjcrKjN0LREhIew+/CsA5xITub57xUVum4qqLD/WtZ07d9KxY0fAtHKyePFi7rjjDvz8/CgpKeHIkSNER0cTGxtL165d6dq1Kw4ODmzbtg0wrRSVt/pTFVffe+HCBYYPH05s6dFhVZWRkUFQUBAuLi5cvnyZL7/8kr/97W9VHkNUVBRr1qzh4Ycf5syZM+zdu1ddohwxYgTPP/88gwcPBmDYsGG89tprPPvssxW2uWPHDvU9bdOmDXFxceqkytq1a8u9p1+/fkyePJnTp0/Trl071qxZo752ww03cOrUKXbu3MmNN94ImGqndunSxapGqhYaVYDWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dq/5yWrBgAVu3buWzzz5TpxxHjRrFunXrmDdvHtOnT1cL1SYkJLBo0SKrfh599FFmzZrFvHnzGDdunFqotk2bNlbTmm3atGH06NGsWrUKOzs7OnfuzKFDh9i4cSNTp061WuJ8+OGHGTlyJK1bt8bJyYnjx4/z2Wef4efnp07dCiFEdZhnzwDCWwXXuB1Pd3cCfH1JzcggJSOD3Px8POQA9Tph3oNWUlJCREQES5cuBeCBBx4gLS2NoUOHotPp0Ov1TJkyhejoaF588UVOnjyJk5MTbm5uLFmyBIBHHnmEZ599lnfffZf58+czatSoKo/j6nsDAwOrvZ8RTPu/7rrrLqKioggJCVFrllbVJ598wvTp0/nnP/+JTqdjxYoVhIWZlu6HDx9OQkKC2uZNN93Ee++9V6YP8x40o9GIr6+vGmCFhIQwe/ZsevfuTUREhBroXa1ly5YsXbqU0aNH4+/vz+23346joyNubm7Y2dmxceNG5syZwzPPPENJSQnh4eFqMoOWdIp5TrGRyM/PZ/ny5VZHPd1///1WM2rz589ny5YtfPHFFwQHX/mllZ6ebnXUU/v27ZkyZYpVVofZoUOH+Oijjzh16pR61NPjjz9e7lFPH3/8MZs3byY9PZ2goCDuvPPOMrNir732GrGxsaSnp1NSUkJAQAB9+/Zl0qRJ1V6+PHHiBNOmTWP58uXqJwMhRPPz9dZtXE5LA+CBsWOqXP+sPIf++otDfx0BYPD1va1qpDV2hYWFxMXF0aZNG6ulOVGxhQsX0qJFC+6///76Hkq9sNxzvmrVKlauXMmePXuqfL8WP3ONLkATEqAJIaCgsIhV33wDgJ+3N/eMrvpsSXmS09P5astWANqGhXHzoIE2j7GhkABNVNdbb73Fl19+iV6vx8/Pj2XLltG5GidtaPEz16iWOIUQQpicv3RlebN1q1Y2txfg44OToyPFJSVcTEmudKO0EE3dyy+/zMsvv1yvY2hUhWqFEEKYJF5OUh/bsv/MzM7OjqDSLNCCwiIys2uvRpgQ4tokQBNCiEboUrLpBBI7OztaalSGJ6TFlTIdcuyTEPVLAjQhhGhk8gsKyCo9dqalvz8ONSyvcbVgiwKiEqAJUb8kQBNCiEbmksX5vUGB2hWxDvTzU0srXExORnLIhKg/EqAJIUQjYxmgtQpsUcmV1WNvZ0dQ6XJpXkEB2aWzdKJ2RERE0KlTJ6KioujcuTP33XcfeXl5NW5v9erVnDx5ssLX9+/fT/fu3YmOjmbr1q2MGjVKPU3nWvde3Y/56Ka68uqrrzJ79my1fx8fH6KiooiKiuK6665jw4YNVWpn6NChfPfdd7U5VM1IgCaEEI2Mef8ZaDuDBtDKah9aSiVXCi189dVXxMTEcOzYMbKzs1m9enWN27pWkLVmzRoefPBBfv/9d26++WY2bdpE27Ztq3RvTVkeraSlESNGEBMTQ0xMDMuXL2fq1Km10k99kgBNCCEakeKSElIzMwHw9/HBWePjZVrJPrR6UVRURF5enlUx9Pfee48+ffrQs2dPRo0axfnz5wHYuHEjPXr0ICoqim7durFhwwZWrFjB4cOHmTFjBlFRUWzatMmq/QULFvDFF1+wePFioqKiyMzMJCIigiNHjlzz3vJkZWUxfvx4oqKiGDJkCAkJCYAp0Lvlllt48MEH6d27NwcPHmTLli307NmTHj16MGTIEI4dOwZAUlISw4YNo1evXnTt2pUZM2aoy+pZWVlMmDCBLl26cPPNN3P69OkKx5Kenm71vpm/L7PevXvz448/lrnPfJxV165due2227jtttvUY6VycnKYNm0affr0oUePHjz66KOUlJRc833RktRBE0KIRuRyaqr6j1hND0evTEt/f+zs7DAajVxOTdW8/YbiwRmvkJZRs3Mrq8Lf15uPP3jtmteZj3qKi4ujV69e3H333QB8+umnnDx5kn379mFvb8/atWt58skn2bBhA3PnzmXp0qXccMMNGI1GsrOz8fHx4f/+7/+YPXs2t912W5l+XnjhBWJjY+nduzdPPvmk1WtTp06t9N7y7Nmzh5iYGDp27Mg777zDo48+qgZ2e/bs4ffff6d9+/YkJyfTpUsXdu3aRffu3fnkk0+4++67OXLkCD4+PmzcuBEPDw8MBgNjx47l66+/ZsKECbz++ut4eXlx7NgxUlNT6dmzp/reAGzfvp2oqCjy8/O5cOECX3zxRZXGbWnGjBkMGzaMuXPnkpCQQLdu3bjlllsAePbZZxk8eDDLly9HURSmTZvGv//9b5555plq91NTEqAJIUQjYrn/LFjj5U0Ae3t7Anx9SU5LIzMnh6LiYs1n6RqCtIwsktMy6nsYfPXVV3Tr1g29Xs/06dN5/vnnef/991m/fj2HDx+mV69egGmp0Hze9PDhw5k5cyYTJkxg5MiRREVF1fm4Bw4cqJ5k88gjj/DKK6+oHxwGDhxI+9Kjwg4cOEBUVBTdu3cHYOLEiTzxxBNcunQJb29vnn/+efbs2YOiKCQnJxMVFcWECRPYtWsX//rXvwAICAjgzjvvtOp/xIgRfPXVVwAcOXKEESNG8Ntvv9GqGkWbd+3axQcffABAeHi41ZGR69evZ//+/bz//vsAFBQUaH4Y+rVIgCaEEI2IVYDWQrsEAUst/PxILj3jMyU9ndCgoFrppz75+3o3qPYdHBwYP348c+bM4f3330dRFObOncvkyZPLXLtw4UKOHj3Krl27mDRpEhMnTuS5557Taug28/DwUB9XdCKFTqdj4cKFpKWlceDAAVxcXJg1axaFhYXqfVXVrVs3wsPD2bt3L3fddRcODg5We9/MbZanotMyFEVh/fr1REZGVnkcWpMATQghGglFUUhOSwfAw80NDze3Wumnhb8fnDI9Tm6iAVpVlh/r2s6dO9VZqTFjxrB48WLuuOMO/Pz8KCkp4ciRI0RHRxMbG0vXrl3p2rUrDg4ObNu2DQAvLy+ysmq2bHv1veb9WbGxseVev3fvXk6ePEmHDh1YsWIFN954Y7nBTv/+/ZkyZQrHjx+nc+fOfP7554SGhhIUFERGRgZBQUG4uLhw+fJlvvzyS/72t78BplnCVatWMWDAANLT01m3bh133XVXuWNJTEzk1KlTdOjQAYC2bdty4MABrrvuOg4ePMiJEyfKvW/o0KGsXr2al156ifPnz7Nz5051Fm3MmDEsWLCADz/8EAcHBzIyMkhLS6Ndu3ZVf1NtJAGaEEI0EpnZOZTo9UBpEFVLWvj5q4/NAaGoHeY9aCUlJURERLB06VIAHnjgAdLS0hg6dCg6nQ69Xs+UKVOIjo7mxRdf5OTJkzg5OeHm5saSJUsA01Ljs88+y7vvvsv8+fMZNWpUlcdx9b2BgYFqTbzyDBkyhFdffZVjx47h7e3Nxx9/XO51gYGBrF27lokTJ2IwGPDx8eF///sfYNoDdtdddxEVFUVISAgjRoxQ7/v73//O5MmT6dKlC61bt+amm26yate8B01RFPR6PfPnz+e6664DTAedT5o0iZUrV9KzZ0+6du1a7tgWL17Mgw8+yBdffEGHDh0YMGAA3t6mmc9//vOfPP/880RFRWFnZ4ejoyNvv/12nQZoOkUqETY6J06cYNq0aSxfvlz9tCWEaPpOxMWxY99+APpe14NeFfzDYyuj0ciKr75Gr9fj4ebGg3eMrZV+6kphYSFxcXG0adMGFxeX+h5Oo7Bw4UJatGjB/fffX99DqTUFBQU4Ojri4ODApUuXuP7669mxY4cm/65q8TMnM2hCCNFIpKRfmc1q4Vd7M2h2dna08PPlYnIKufn55BcW4iaBTbMya9as+h5CrTt16hQPPvggiqJQUlLCK6+80qAmPSRAE0KIRiLZIkALrMUAzdS+v1qoNjktjYiQkFrtT4i61qNHD2JiYup7GBWSQrVCCNEIGI1GUtNNZSG8PDxwcXau1f4s97jJPjQh6p4EaEII0QhkZGejLy0dUNuzZwAt/C0SBdIlQBOirkmAJoQQjYDlLFZt7j8z83J3VwvUpqSlVasulRDCdhKgCSFEI2CVIFCLJTbMdDqdOlNXUFREfkFBrfcphLiiRkkCWlTWnTlzJjNmzLC5HSGEaA7qMkHALMDXh8SkJABSMzNxr6XCuEKIsmo0g3bu3DkyMjJQFKVGf+Lj48nMzNT4WxFCiKbJYDSSlmFKEPDx8sTJ0bFO+vX38VEfp8nvbM1FRETQqVMnoqKi6Ny5M/fddx95eXk1bm/16tWcPHmywtf3799P9+7diY6OZuvWrYwaNYozZ85U6d5r9TthwgQAvv32W+bMmVPp9a+++iqzZ8+uUV/NSY3LbDzzzDPMmzevRvfa2cnKqhBCVFVGVhYGoxGAQN+6mT2DqwK0jMw667c5MR+WrigKt99+O6tXr+aJJ56oUVurV68mICBAPfLoamvWrOHBBx9UA6ibb765yvdW1ZgxYxgzZoxNbQgTiZSEEKKBs5y98vf1qbN+fb281A/UMoNWu4qKisjLy8PX11d97r333qNPnz707NmTUaNGcf78eQA2btxIjx49iIqKolu3bmzYsIEVK1Zw+PBhZsyYQVRUFJs2bbJqf8GCBXzxxRcsXryYqKgoMjMziYiI4MiRI9e892rFxcVMnz6dDh06MGzYMA4cOKC+ZjmbdurUKQYMGMB1111H9+7dmTt3bpm2jh07Rvfu3dm8eXON37umqkYzaKdOncLPhj0Qtt4vhBDNiWVwFGAxq1Xb7O3t8fXyIi0zUy3z4WBvX2f916Yvt2yt1cQHN1dX7rrl5mteZz6LMy4ujl69enH33XcD8Omnn3Ly5En27duHvb09a9eu5cknn2TDhg3MnTuXpUuXcsMNN2A0GsnOzsbHx4f/+7//Y/bs2dx2221l+nnhhReIjY2ld+/ePPnkk1avTZ06tdJ7r7Zs2TLi4uI4evQoJSUlDB48mIiIiDLX/fvf/2b06NG89NJLAKRfVa5l586dPPXUU3zyySdERUVds9/mpkYBWtu2bW3q1Nb7hRCiOUm1WF70t5hhqQv+Pj6kZWaiKAoZWVl1lqBQ2/ILCshrAJmp5iVOvV7P9OnTef7553n//fdZv349hw8fplevXgAYDAbsS4Pj4cOHM3PmTCZMmMDIkSPrPLjZtWsXkyZNwtHREUdHR+6//3727NlT5rrBgwczZ84c8vLyGDJkiNVh6D/88AObNm1i69athIWF1eXwGw1Z4hRCiAbOPIPm4uxc52diWi6pNqVlTjdXV9xr8Y+bq2u1xuPg4MD48ePZsmULAIqiMHfuXGJiYoiJieGvv/5SjyVauHAhq1atws3NjUmTJvHOO+9o/fZUqqo18caPH8/evXvp2LEj//73v61m59q3b4+iKBw8eLC2htnoyVmcQgjRgOUXFFBQWAiYljd1Ol2d9h/QRBMFqrL8WNd27typHtY9ZswYFi9ezB133IGfnx8lJSUcOXKE6OhoYmNj6dq1K127dsXBwYFt27YB4OXlRVZWVo36vvreCxcuMHz4cGJjY8tcO3z4cNauXcvf/vY3SkpK+PTTTwkPDy9z3alTp4iMjOTBBx+kT58+3HDDDeprERERfPDBB9xyyy3k5eXx4IMP1mjcTZmmAVpGRgYbN26UN1oIITSSapkgUIf7z8rrsynNoDUU5j1oJSUlREREsHTpUgAeeOAB0tLSGDp0KDqdDr1ez5QpU4iOjubFF1/k5MmTODk54ebmxpIlSwB45JFHePbZZ3n33XeZP38+o0aNqvI4rr43MDAQB4fyQ4RHHnmEP//8ky5duhAaGsqgQYOIj48vc92XX37JJ598gpOTE4qiqN+bWatWrdi5cye33HILubm5PP7441Ueb3OgUzQ8v+OPP/6gZ8+eGErPixO148SJE0ybNo3ly5ern7aEEE3T78ePs+/3GABu7NeXThoUCq+uVd+so6CwEBdnZx6+c1ydz+LZqrCwkLi4ONq0aYNLHS8RN1YLFy6kRYsW3H///fU9lEZJi5+5as2gJSQkVPr6xYsXazQIIYQQ5bNcVgyo4wQBM38f04kChUVF5BcW4l7N/VWi8Zk1a1Z9D6HZq1aAFhERUeknJ0VRGt0nKyGEaMjMy4p2Oh2+Xl71MgZzgAamgFECNCFqX7UCNF9fX+bPn8/QoUPLff348eOMHz9ei3EJIUSzZzAYyMjOBsDHy0sts1DX/H281ccZ2VmEtwqul3EI0ZxUK0Dr1asXKSkpFe57KiwsrHL6rRBCiMplZGdjLD3iqS5PELiar9eVAC09K7vexmEr+fdJ1BUtftaqFaA99thjlR7kGh4ezqpVq2welBBCiPo7QeBqvt5XllYzaljGoT45Ojqi0+lISUkhMDBQtuKIWqUoCikpKeh0OhwdHWvcTrUCtHHjxlX6uq+vL5MmTarxYIQQQlyRbhEM+Xn71Ns4nBwd8XBzIzc/n4ysrEa339je3p7Q0FASExM5d+5cfQ9HNAM6nY7Q0FCbtiVIoVohhGigMiyWE/0s9oHVB19vL3Lz8ykqKWmUmZweHh60b9+ekpKS+h6KaAYcHR1t3jNqc4Bmb29PXFxcuVWEhRBC1Jx5Bs3BwQEPN7d6HYuflzfnL5kyOTOyshpdgAamf6/qK9FCiOqy+SxO2XQphBDaK9Hryc7NBcDPy6velxR9vZtGooAQjYUcli6EEA2QubwG1P/yJjT+RAEhGhsJ0IQQogFKz7wSBFnOXtUXyzFkZEuAJkRtkwBNCCEaoAyrDM76D9BcnJxwK913JkucQtQ+CdCEEKIBSm9gARqY9sIBFBYVUVBYWM+jEaJpkwBNCCEaIHOA5tgAMjjNJFFAiLojAZoQQjQwJSUl5JSe2uLn7V3vGZxmkiggRN2xOUB7+eWX8anHI0iEEKKpsczgbAgJAmZ+kiggRJ2pcaFavV6Pg4MDb7zxhpbjEUKIZs96/5lXJVfWLR9PT/VxRnZOPY5EiKavxjNorVq1Yvbs2Rw/flzL8QghRLPXEBMEAFxdXHAqPfw5M1v2oAlRm2ocoGVlZbFw4UK6devGDTfcwMqVK8ktrXothBCi5izP4GxIS5w6nQ6f0kzO3Px89Hp9PY9IiKarxgHapUuXWLRoEd27d2f//v088sgjBAcHM2XKFPbs2aPlGIUQolkxz041hDM4r2a5zJmZI8ucQtSWGgdofn5+PP3008TExHD48GEee+wxnJycWLVqFUOGDKFz5868++67XL58WcvxCiFEk6Y3GMguzeD09fRsMBmcZuYZNJAATYjapEmZjZ49e/Lvf/+bS5cu8emnnzJ8+HBOnTrFCy+8QFhYGOPGjeO7777DaDRq0Z0QQjRZWTk5KIoCgE8DShAw8/WymEGTfWhC1BpN66A5OTlxzz33sG3bNs6dO8err75KWFgYGzZsYOzYsYSFhWnZnRBCNDmWQY+vV8ML0Kxm0CSTU4haU2uFakNDQ/n73//Opk2bGDBgAIqikJSUVFvdCSFEk2CVIODVcBIEzLw9PNTHMoMmRO2pcR20yuTl5fG///2Pjz76iF9++QVFUXBzc2PChAm10Z0QQjQZGQ18Bs3BwQFPd3dy8vLILF2ObWj75IRoCjQN0Hbv3s1HH33EV199RX5+PoqicP311zNlyhTuvfdePC2yf2oqPz+fFStWsGvXLnJycggPD2fixIkMHz78mvdmZGSwZMkS9u3bR2FhIe3atWPq1Kn06tWrzLWHDx9m5cqVnD59GhcXF/r3789jjz2Gr6+v1XV6vZ61a9eyefNm0tLSCA4OZty4cYwfP77Ssbzxxhv88MMP9O/fn7fffrt6b4IQoskyz0rpdDq8PT2ucXX98PHyJCcvj+KSEgoKC3Fzda3vIQnR5NgcoF24cIE1a9awevVqzpw5g6Io+Pv7M3XqVKZMmUK3bt20GKdq7ty5xMbGMn36dMLCwti+fTuvvfYaRqORm266qcL7iouLmTlzJrm5uTz11FP4+vqybt06Zs+ezaJFi4iKilKvjYmJYc6cOfTv35/58+eTkZHBsmXLmDlzJsuXL8fJyUm9duHChWzbto0pU6bQqVMnDh48yAcffEB+fj4PPPBAuWPZt28fe/bswd3dXbP3RQjR+CmKos6geXl4YG9vX88jKp+PpxfnL5m2rGRk50iAJkQtqHGA9r///Y9Vq1axfft2DAYDdnZ2jBw5ksmTJ3PHHXfgWFptWkv79u3j8OHDzJs3jxEjRgCmDNKkpCSWLFnCjTfeWOEvtO+//564uDg+/PBDNWiMjo5m8uTJLFmyhGXLlqnXfvjhh4SFhfH666/j4GB6i4KDg3niiSfYtGkTd9xxBwBxcXF8//33TJs2jXvvvVdtMzs7m48//pixY8fiddUSRW5uLu+99x5Tpkzhq6++0vT9EUI0brn5+egNBqBhLm+a+VqV2sgmpGWLehyNEE1TjZME7rnnHrZu3UpYWBivvfYa586dY/Pmzdx11121EpyBaQnV1dWVoUOHWj0/atQoUlNTOXbsWKX3hoeHW83oOTg4MHLkSI4fP05KSgoAKSkpxMbGMnLkSDU4A+jevTthYWH8/PPPVm0qisKtt95q1dett95KUVERBw4cKDOO//znP/j7+19zCVQI0fxYJwg03ADNR0ptCFHrajyDds899zBlypQq7f3SSlxcHK1bt7YKnADatm2rvt69e/dy7z179izXXXddmect7w0MDCQuLs7q+auv/euvv6zG4+Pjg7+/f4VtWjp8+DBbt27lv//9b4NduhBC1B/LBAGfBh2gSakNIWpbjQO0Tz/9VMtxVElWVhatWrUq87w5+SC7kk9y2dnZ5SYpXH1vVukhxVcvTZqvtewjKyur3OtcXV1xdHRU2wJTcsM777zDPffcQ7t27SocZ3lSU1NJS0tTv46Pj6/W/UKIxsGqBloDLFJr5u7qioO9PXqDgaxcCdCEqA2aZXHq9Xr+9a9/8dlnnxEbG0u+xUG6MTEx/Pe//2XmzJl06NDBpn5sSeeu7N6rX6vo2ur0b3ntsmXLcHBwYNKkSVW+3+zbb79l9erV1b5PCNG4NJYZNFOGqSdpmZlk5+ZhNBqxs6u1sppCNEuaBGgFBQWMHDmSX375hYCAALy8vMgrPUsOoE2bNqxatQo/Pz/efPPNGvfj7e1tNStlllN6Hlx5s1lmXl5e5c6wme81z6R5e5sKQ1bUj+UsnLe3N6dPny5zXUFBASUlJep4jh07xvr163nzzTcpLi6muLgYAKPRiMFgICcnB2dnZ6vsUEtjxoxhwIAB6tfx8fE2vY9CiIYpq/T3kauLMy4V/D5oKLw9PUjLzMRoNJKbn4+XR8MsCSJEY6XJR5758+ezd+9e/vGPf5CUlMTUqVOtXvf29mbIkCFs3brVpn4iIyOJj49XZ+bMzp49C5gCwcruPXPmTJnnzc9FRkZatWFu8+p+LPuIjIwkMzPTavmxvPHEx8ejKAovv/wyo0ePVv8kJydz8OBBRo8ezfr16ysce0BAAB07dlT/tG7dusJrhRCNk16vJ6+gAAAvD9trRtY2b4sxZsmh6UJoTpMA7YsvvmDo0KE899xz6HS6cpcBIyMjSUhIsKmfQYMGUVBQwE8//WT1/JYtWwgICKBLly4V3jt48GASEhKsMj31ej0//PADXbp0ISAgAIDAwEA6d+7Mtm3bMJSmuwMcPXqUhIQEhgwZoj43cOBAdDodW7Zssepr8+bNODs707dvXwD69OnD4sWLy/zx8/Oja9euLF68uExmqhCiecnOvbLq4N0IZqMsi+hm5ebW40iEaJo0WeJMSEhg3LhxlV7j5eVV7rJhdfTr14/evXuzcOFC8vPzCQkJYceOHRw4cIC5c+eqmZELFixg69atfPbZZwQFBQGmUhzr1q1j3rx5TJ8+XS1Um5CQwKJFi6z6efTRR5k1axbz5s1j3LhxaqHaNm3aWJXUaNOmDaNHj2bVqlXY2dnRuXNnDh06xMaNG5k6daq6xOnv718m0xNMh8t7eXkRHR1t0/sihGj8si2CnMawXOjtKTNoQtQmTQI0T09PtY5YRc6cOUNgYKDNfb355pssX76clStXqkc9vfLKK1blPsx7uxRFUZ9zcnJi0aJFLFmyhMWLF1NYWEj79u159913rU4RAFOx2XfeeYePPvqIF154QT3q6fHHHy+zT2zWrFkEBATwzTffkJ6eTlBQEDNmzJA6Z0KIarHMhmyoRzxZsg7QZAZNCK3pFMsopoZuv/129u/fz+nTp/H29ua1117j9ddfV5cIExMT6dixI3fccQeffPKJzYNu7k6cOMG0adNYvnw5HTt2rO/hCCE0sPvwYf46eQqAcTeNIFiDD7S1SVEU/vu/LzEYDPh6eXHvbaPre0hCNCma7EGbM2cO6enpjBgxgl9++UXdxJ+fn8+OHTsYOXIkJSUlzJo1S4vuhBCiybGchWoMe9B0Op06zqzcXIxGYz2PSIimRZMlzsGDB/Of//yHGTNmMGjQIPV5c0kKe3t7PvzwQ3r16qVFd0II0eRk55kCNAd7e1xdXOp5NFXj7elBelYWRqORvIICPN3d63tIQjQZmhWqffTRRxkyZAhLly7lwIEDpKen4+XlRd++fXn88cfp2rWrVl0JIUSTYjQa1SxOLw8Pmwpy16WrEwUkQBNCO5oFaACdO3dm8eLFWjYphBBNXl5BgbpE2BgSBMysa6HlEhpUj4MRoomp07M5ZI+CEEKU1dhKbJhZ10KTUhtCaEmTAG3FihXXvMZgMHDfffdp0Z0QQjQploVevRvBKQJmUmpDiNqjSYD22GOPsWHDhgpfVxSFiRMn8uWXX2rRnRBCNCnZOZYzaI1nH5e7q6t6SLoUqxVCW5oEaP369ePee+9l9+7dZV4zB2f/+9//ePTRR7XoTgghmpQsqyXOxjODZmdnpy7JZufmokFZTSFEKU0CtO+++462bdsyZswY/vrrL/V5RVF44IEH+Pzzz5k+fTr/+c9/tOhOCCGaFPMeNJ1Oh6e7Wz2Ppnp8Spc59QaDeti7EMJ2mgRo3t7ebN26FW9vb2655RbOnTuHoijcf//9fPrppzzyyCMsWbJEi66EEKLJMQdoHm5u6pnCjYVlUV1Z5hRCO5plcbZq1Ypt27ZRXFzMyJEjuffee/nss8+YOnUqS5cu1aobIYRoUgqLiykqLgYaVwanmSQKCFE7NC2z0aFDBzZv3kxSUhJffvklU6ZM4b///a+WXQghRJOSbTHr1BiOeLqal5TaEKJW1KhQ7euvv17p63369CEmJoaQkBCra3U6HX//+99r0qUQQjRJ5hMEwDrYaSxkBk2I2lGjAO3VV1+t0nVXB3ISoAkhhDXLWafGuMTp6eaGnU6HUVFkD5oQGqpRgLZr1y6txyGEEM1StlWR2sYXoJlLbWTm5JBVWmqjsZwlKkRDVqMAbciQIVqPQwghmqWsnMZ5zJMlL09PMnNy0Ov15BcW4u7qWt9DEqLRq9OzOIUQQlgzz6C5ODvh7ORUz6OpGSm1IYT2JEATQoh6YjAYyM3PB8DLvXHOnoEkCghRGyRAE0KIepKd17gzOM28pdSGEJqTAE0IIeqJdYJA4zmD82o+MoMmhOYkQBNCiHqSbZUg4F6PI7GNh7u7mrkpe9CE0IYEaEIIUU+yci0DtMY7g2ZvZ4enuynAzMrJQVGUeh6REI2fBGhCCFFPrJY4G/EeNLgy/hK9noKionoejRCNn6YBWkZGBh9//LGWTQohRJNlDtDs7ewafe0wyz10sswphO00DdASEhJ4+OGHtWxSCCGaJEVR1ADN08Oj0Vfft8rklEQBIWxWrZMEEhISKn394sWLNg1GCCGai/yCAvQGA9A4j3i6muUMmuXSrRCiZqoVoEVERFT6KU/OYBNCiKqxThBo/AGal9RCE0JT1QrQfH19mT9/PkOHDi339ePHjzN+/HgtxiWEEE1aU0oQAPByv1ImJFuWOIWwWbUCtF69epGSkkLHjh3Lfb2wsFDSq4UQogqym9gMmoODA+6uruQVFJCdJwGaELaqVoD22GOPkWdxNMnVwsPDWbVqlc2DEkKIpi4rp2kFaGD6PvIKCigoLKK4pAQnR8f6HpIQjVa1ArRx48ZV+rqvry+TJk2yaUBCCNEc1PUMWlFxMXq9AXe32ivn4e3pwaWUFMD0/QX4+tZaX0I0ddUK0IQQQmjDHKC5u7riYG9fa/0c+O0IG7b9zM8HfkcxKjz64J1MHHcLdnba1ym3DDSzJEATwiYSoAkhRB0rLilRq+3XZoLA19/vZMF/1lg998HKL9j361+89fxj+Hp7adqfZbkQSRQQwjY2f4Syt7e/Zn00IYQQV9TF8mZGVjb/Xv2lRT9XDjQ/FHOM1xau0LxPy/NEs6QWmhA2sTlAk6xNIYSonro4JH3Z/60jNy8fgFuH3cDWTz/gP289h6+3qb+9h/4g9vQ5Tfu0nA3MllpoQthEDksXQog6Zrn85+3hXsmVNXP6XCLrNu8CwM3VhRlT/oaDgwPXR3Vh2sQryV5r/vedpv06OzmpmZuyxCmEbSRAE0KIOlbbM2jL1n6N0Wha3Xjo7tsI8PNRX7v9pkH4+Zj2nu3Ye5j4xCTN+tXpdOo+tJz8fAxGo2ZtC9HcSIAmhBB1zHL5T+skgZzcPPYc+gOAAD8f7ht3s9XrLs5O3HuH6TlFUVj71fea9m8+8klRFHIrqZsphKicBGhCCFHHsnNNgYuToyPOTk6atr37QAx6vekQ9hGD+pTb/oTRN6r10Dbt/IX8gkLN+rcqtSHLnELUmARoQghRhwxGIzmlM0teHh5qZqVWduw9pD4ePvD6cq/xcHfjlqH9ACjR6zkUc0yz/q1KbUgmpxA1JgGaEELUody8PDX73VvjEht5+QXs//UIYFre7NG5XYXXDrg+Sn2851CMZmOwLlYrmZxC1JTNAdrLL7+Mj4+PBkMRQoimz6oGmsb7z/Ye+oPikhIAhvbvVelpAddf11nNuPzl0J+alUzy9ryS9GBeyhVCVJ/NAdobb7yBl5e21aiFEKKpyqrFIrU79x5WH1e0vGnm4uJMrx6dAEhOy+BU3HlNxuDu6qoGhjKDJkTN1eoSp6IonDp1isTExNrsRgghGg3LGTQtlziLiovZW5q96evtSVS3Dte8Z2Cf69TH5nttZWdnh5e7qbZbdm6eFDMXooY0CdA2bNjA5MmTycjIUJ87d+4c3bt3p1OnTrRu3ZqJEydilJo4QohmzjKzUcsZtOOnzlFYVAzADddfV6UD2C33oWkVoMGV70uv11NQqF2GqBDNiSYB2tKlSzl06BC+vr7qczNnzuTYsWMMGzaMHj168Pnnn7Nq1SotuhNCiEbLPINmp9Ph4eamWbsxR0+qj3t261ile0KCAmkT1gqAv2JPk5mtTdalZW03OZNTiJrRJEA7evQoffr0Ub/Oyspi06ZN/O1vf2P79u0cPHiQzp07s3LlSi26E0KIRklRFDVA83R3r3QTf3VZBmjXdbn28qbZDdf3AMBoVPj9SKwmY5FaaELYTpPfDikpKQQHB6tf79mzB71ez7333guAo6MjN910E6dPn9aiOyGEaJQKiooo0esBbTM4jUYjfxw7BYCfjxfhIS2rfG+URTB35MRZTcbj7WGZySkBmhA1oUmA5uXlRVpamvr1jz/+iJ2dHYMGDVKfc3R0JE+O/RBCNGPWh6Rrdwbn2fgL5OblA6bZs+oUv+3Wqa36+OiJM5qMx8tTaqEJYStNArROnTqxceNG0tPTycrK4vPPP6dnz55We9Li4+Np2bLqn+qEEKKpsaqB5uGuWbu/WyxvRnVtX617A/x8CAr0B+DYyTj0BoPN4zFncYJ1UCqEqDpNArQZM2Zw8eJFQkJCCAsL4+LFizz66KPq6waDgT179nDddddV0ooQQjRt1jXQtJtB+8MqQKtagoAl8yxaQWERZ+Mv2DweBwcH3F1NZ33KEqcQNaNJgDZ+/Hj+85//0LVrVzp06MA//vEPJk+erL6+Y8cO8vPzueWWW7ToTgghGqVsi+U+bw33oMUcMwVori7OdGgbXu37u1sscx7RapmzNFGgoKhIPd1ACFF1Dlo19Nhjj/HYY4+V+9rIkSOtaqQJIURzZHn0kVY10C5dTuVySjpgmgmrSv2zq3XtaBGgxZ7hzluH2Twub08PLqWkAKZZtACLLS9CiGuTw9KFEKKOmJc4XV1ccHTQ5vPxX7FXZryiqlFew1LHtq1xcDAFdkditZ1BA6mFJkRNSIAmhBB1oESvJ7+gAND2iKcTZ86pjzu3b1OjNlycnWjfxrQ0Gnf+IjkaHHJu+T1KooAQ1ScBmhBC1IHsWjok/cSZePVxxxrsPzOz3Id27GScTWMC6yQImUETovo024NWV/Lz81mxYgW7du0iJyeH8PBwJk6cyPDhw695b0ZGBkuWLGHfvn0UFhbSrl07pk6dSq9evcpce/jwYVauXMnp06dxcXGhf//+PPbYY1alQ8B01tzatWvZvHkzaWlpBAcHM27cOMaPH2913fbt21m/fj3nz58nNzcXLy8vOnbsyMSJE+nevbttb4oQosGzOiRdowQBRVE4eTYBMB2QHuhf831e3Tq15X8btwOmRIG+PbvZNDbL7zFbaqEJUW2NLkCbO3cusbGxTJ8+nbCwMLZv385rr72G0WjkpptuqvC+4uJiZs6cSW5uLk899RS+vr6sW7eO2bNns2jRIqKiotRrY2JimDNnDv3792f+/PlkZGSwbNkyZs6cyfLly3FyclKvXbhwIdu2bWPKlCl06tSJgwcP8sEHH5Cfn88DDzygXpeVlUX37t2ZMGECPj4+pKWl8cUXXzBjxowy/Qshmp7amEFLScsgI8sU/HRs27paBWqv1qlthPr4dNx5W4eGs5MTTo6OFJeUyBKnEDXQqAK0ffv2cfjwYebNm8eIESMA6NmzJ0lJSSxZsoQbb7wR+woymL7//nvi4uL48MMP6dbN9MkwOjqayZMns2TJEpYtW6Ze++GHHxIWFsbrr7+OQ+lG3uDgYJ544gk2bdrEHXfcAUBcXBzff/8906ZNU4+1io6OJjs7m48//pixY8fi5eUFUGZGDaBv376MGTOG77//XgI0IZo4yzMptQrQTpxJUB93aNvaprbCQlqqAdWpc4m2Dg2dToe3hwcpGRnk5OdjMBqx1/DsUSGaukb1t2X37t24uroydOhQq+dHjRpFamoqx44dq/Te8PBwNTgDUzHFkSNHcvz4cVJK08FTUlKIjY1l5MiRanAG0L17d8LCwvj555+t2lQUhVtvvdWqr1tvvZWioiIOHDhQ6ffj5uaGk5NThUGlEKLpsFri1CxAs9h/FmlbgOZgb09k61YAnL+YRGFhkU3twZUjnxRFIVeO+hOiWqodoBmNRo4cOcLFixfLvFZSUmIVwGgtLi6O1q1bWwVOAG3btlVfr8jZs2fV6yq71/zfiq617CMuLg4fHx/8/f2rPB6DwYBer+fSpUu8//77KIrCuHHjKhw3QGpqKidOnFD/xMfHV3q9EKLhMQdoDvb2uLq4aNLmibOWCQK2BWgA7SLCADAaFc4mlP0dX11WpTZkmVOIaqnWEmd8fDyjRo3i+PHj6HQ6Ro8ezapVq9QAJT09nWHDhmHQ4Cy38mRlZdGqVasyz3t6mrKFsrOzK7w3Oztbva6ye7OysgDUpcmrr7XsIysrq9zrXF1dcXR0VNuyNGnSJBISTMsS/v7+vPfee3TsWPnRLN9++y2rV6+u9BohRMNlNBrJLp1B8vb0tGmvmKWTpTNobq4uhLVqYXN75gAN4PS583TpULOyHWZWpTYkk1OIaqlWgPbcc88RGhrK1q1byczM5Nlnn2XAgAHs3LlTDZwURamVgZrZ8outsnuvfq2ia6vTf3nXvvHGGxQUFJCcnMyGDRuYM2cO//jHP4iOjq6wnTFjxjBgwAD16/j4eN58880qj0MIUb9y8/MxGo2AdvvPsnPyuHg5FYD2bcKw02B/V7s21gGarayL1UompxDVUa0A7aeffmLr1q2EhoYSGhrKli1beOSRRxg0aBC7du3C2dlZs0+G5fH29i53Vionx/QXv7zZLDMvL69yZ9jM95pn0ry9vQEq7MdyFs7b25vTp0+Xua6goICSkpJyx9OmjekTaZcuXRg4cCBTpkzhgw8+YNWqVRWOPSAggICAgApfF0I0bFm1UGLDXF4DoENkzeufWWpvEaCdirM9UcDb4velzKAJUT3V+siVn5+Ps7Oz+rVOp2P58uWMHDmSwYMHc+aMNkeEVCQyMpL4+Hj0er3V82fPngWuBD8V3Vve+MzPRUZGWrVhbvPqfiz7iIyMJDMzk7S0tGqPB0xJCh06dOD8eds/qQohGi7LMhPeHmW3WtSEdYFa2/efAfj5eOHnY/pgeTruvM0rIu6ururMnuxBE6J6qhWgdezYkcOHD5d5fsmSJYwaNYrbbrtNs4GVZ9CgQRQUFPDTTz9ZPb9lyxYCAgLo0qVLhfcOHjyYhIQEq0xPvV7PDz/8QJcuXdQZqsDAQDp37sy2bdus9tIdPXqUhIQEhgwZoj43cOBAdDodW7Zssepr8+bNODs707dv30q/n6KiIo4dO0ZISMi1v3khRKNlubyn1QzaKYslSK1m0ODKPrTM7BzSMsquJFSHnZ0dXu7ugGkGrba3wAjRlFRrifPOO+/k008/5f777y/z2ocffoiiKFb1xLTWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dq5arWLBgAVu3buWzzz4jKCgIMJXiWLduHfPmzWP69OlqodqEhAQWLVpk1c+jjz7KrFmzmDdvHuPGjVML1bZp08aqpEabNm3URAk7Ozs6d+7MoUOH2LhxI1OnTrVa4nzssccYMGAArVu3xsPDg6SkJNavX8/FixdlP5kQTVxt1ECLS7gAmFYy2oSVTZ6qqXZtwjgYcxQw7UML8POxqT0vDw8yc3LQGwwUFBbi5uqqwSiFaPqqFaC9+OKLvPjiixW+vmTJEpYsWWLzoCrz5ptvsnz5clauXKke9fTKK69YHfVkNBoxGAxWn9acnJxYtGgRS5YsYfHixRQWFtK+fXvefffdMkVio6Ojeeedd/joo4944YUX1KOeHn/8catTBABmzZpFQEAA33zzDenp6QQFBTFjxowyhWm7devGzp07SUpKoqCgAG9vb7p27cqTTz4pRz0J0cSZ91/Z2dnh4eZmc3tGo5G40jIYIUGBuLg4X+OOqrPeh3aefj1t+/3k7ekBl0yPs3JzJUAToooa1UkCYCru+vTTT/P0009XeM1LL73ESy+9VOZ5Pz8/Xn755Sr1c/3113P99ddf8zoHBwcmT57M5MmTK73uiSeeqFK/QoimRVEUNUnAy91dk2zLyynpFJQWkm0Trt3sGUC7iFD18RkNThS4uhZacGCgzW0K0Rw0qpMEhBCisSkoLFQTm7zKqcVYE2dLlzcBIsO13cPaJrwVdnambPzTGgRolkkRkskpRNXZHKDZ29urhVeFEEJYy8rR/oin2gzQnJ2cCAkyFb2NT7yk1m+rKS9PqYUmRE3YHKBJVo4QQlTMMijRKkHgbLxFgNZa+yzw1qHBABQWFZOclmFTW+YsTrAuNyKEqJwscQohRC2ymkHTqMSGOUFAp9MRURpMaSki7Eqb8ecv2dSWg4MD7qWJAbLEKUTVSYAmhBC1yDIo0aJIraIoxJ03BWitWgZomsFpZhn0nUu0LUCDKzOHBUVFFJeU2NyeEM2BBGhCCFGLsnIslzjdK7myai6npJNfUAhAG433n5lZBWg2zqCB9cyhzKIJUTUSoAkhRC0yl9jwcHNTi2nbwipBoBb2nwG0tih8q+UMGsiRT0JUlQRoQghRSwqLiykqLgasDw63hXUGp7Y10Mx8vDzw8TKN91zpcqotLLNXsyWTU4gqkQBNCCFqSbbF8qZWJTbMCQKgfYkNS+ZEgdT0THLz8m1qy8ti711Wbp5NbQnRXNgcoL388sv4+PhoMBQhhGhasnK1z+C0LLERoeEZnFdrbbEPLd7GZU7rPWgygyZEVdgcoL3xxhtWh4ILIYQwsT4kXZsMTvOesOAWAbjWQganmWWpDVv3oTk7OeHk6AhILTQhqkqWOIUQopZYzhZpMYOWkZWjLje2Dg2yub3KaJnJqdPp1CXenPx8DDaeTiBEc6DpYelGo5HExEQuXLhASQW1bgYPHqxll0II0WBZz6DZHqBZLjWGh9RygKbhDBqYjnxKychAURRy8/I0S5oQoqnSJEBTFIUFCxawaNEi0tLSKr3WYDBo0aUQQjR45ppfri4u6hKfLSwDtNqeQQtuEYiToyPFJSU2nyYAZUttSIAmROU0CdBefPFF3nnnHVq0aMHDDz9McHAwDg6aTs4JIUSjUqLXk1dQAGiXwRl/IUl93DpE+yOeLNnb2xEe0pLT5xJJuHgZvcGAgw113CxPUZBitUJcmyZR1OrVq+nYsSOHDh3CQ6NfREII0Zhl10IGp/UMWu0GaABhrYI4fS4Rg8FAUnIaocEtatyW5SkKWZLJKcQ1aZIkkJuby+jRoyU4E0KIUlpncALEJ5pm0JydnWgR4KtJm5UJa3UlIEu8dNmmtiyXNGUGTYhr0yRAi4qK4uJF26tNCyFEU6F1Bqder+dCUgpgShCws6v9JPzQVi3Vx+cvJtvUlrurqzpmOe5JiGvT5G/43Llz2bBhA7/99psWzQkhRKNnGYRosQctMSlFTbJqXcsZnGbhFgFa4kXbZtDs7Ozwcjctc2bn5qIoik3tCdHUabIH7ZZbbmHNmjXceuutjBkzhuuuu67C4rUPPvigFl0KIUSDZnmKgBZLnHVZYsPMagbNxiVOMGVyZubkoDcYyC8sxN3V1eY2hWiqNAnQioqK2LBhA6mpqaxcuRIwFSa0pCgKOp1OAjQhRLNgPofTydERF2cnm9tLSLTI4KzlEhtmgX4+ODs5UlRcQqKNS5xQutRbGmdm5+ZKgCZEJTQJ0GbNmsUnn3xCjx49mDBhgpTZEEI0awajkZx8U8V/bw+PMh9Ya6KuMzjBtCwZEtyCs/EXSLyUjMFgxN6+5jtjrq6FFhwYqMUwhWiSNImivvzyS3r16sW+ffskMBNCNHu5eXnqHisvjQqyJljWQKujAA0gLLglZ+MvUKLXk5KWQVAL/xq3JbXQhKg6TZIECgsLGTZsmARnQggBZOVYZHBqXKTW39cbD7e6WxoMtSi1cd7GRAEvi2xWqYUmROU0CdB69erF6dOntWhKCCEaPasMTg1KbOTk5pGemQ3UXYKAWViwdokC5ixOgGwptSFEpTQJ0ObPn8+WLVv47rvvtGhOCCEatcycbPWxj2f5Ge3VkWAxc1XXAVqoVakN2xIFHBwc1MQAWeIUonKarEn+8MMPDB06lLFjxzJs2DCioqLKLbOh0+n4+9//rkWXQgjRYGVmX1m+8/GyfQ/a+QsWAZpFwFQXLE8T0KrURl5BAQVFRRSXlGhyiLwQTZEmAdqrr76qPt65cyc7d+4s9zoJ0IQQzUFm6R40Z0dHXJydbW7PMjAKC6nbAK1lgD8ODvbo9Qabi9WCacn3UorpRITs3FwCfGv/yCohGiNNArRdu3Zp0YwQQjR6eoOBnLw8ALy9vDQpsWE5g2a5J6wu2NvbERLUgvjES5y/lKzWtKypq0ttSIAmRPk0CdCGDBmiRTNCCNHoWW5+99GoxIZl9mRocItKrqwdYcGmAK2oqJjU9EwC/WseVFlmtWZLJqcQFar903aFEKIZsU4Q0CpAM5XYaBHgh4uL7Uum1WV9aLqNmZwWtdCyJFFAiAppEqDt3buXWbNmkZSUVO7rSUlJzJo1i/3792vRnRBCNFiWCQLeGiQIZOXkkpVjWjKt6wQBM8tEgcRLtmVyWpYdkVIbQlRMkwBt4cKFbNy4kaCg8tO/g4KC+O6771i0aJEW3QkhRIOl9Qya5cZ8y6KxdSnUYt+b5YkGNeHs5KRmbkqpDSEqpkmAdujQIQYOHFjpNYMHD5YZNCFEk5dpcYqAFgGaVQ20VnVbA80szLIWmo0zaDqdTt2HlpOfj8FotKk9IZoqTQK05ORkQkJCKr0mKCiI5GTb/mILIURDl1W6xOnu6oqjBjW+LGfQwuppiTO4hT/2dqZ/LmzdgwZXjnxSFIXc0oxXIYQ1TQI0Hx8fEhISKr0mPj4eD43OpBNCiIaosLiYgqIiQJsCtWA9g1bXNdDMHBwcCG4ZAJhm0MwHwdfU1aU2hBBlaRKg9e/fn3Xr1nH+/PlyX09ISGD9+vXccMMNWnQnhBANUpZlgoAGRzyBdQ20kKD62YMGVzI58wsK1XNBa8rbIpNT9qEJUT5NArRZs2aRn5/PgAED+Pjjj7l06RIAly5dYs2aNQwYMICCggKeffZZLboTQogGqXZKbJgCtJaBfrg4O2nSZk2EWdRfs/VEActMzqwcqYUmRHk0KVQ7aNAgPvjgA2bOnMnDDz8MmDaCmqfB7ezsWLx4MYMHD9aiOyGEaJC0PoMzKyeX7FzTHq2wekoQMLOqhXYpmeu6dqhxW94WwWumBGhClEuTAA3giSeeYMiQISxZsoRDhw6RmZmJj48Pffr04dFHH6Vbt25adSWEEA2S1hmc9XlI+tUsj5iyNVHA3dUVB3t79AaDzKAJUQHNAjSAbt268Z///EfLJoUQotHIKl3i1Ol0eGqQFJVw8UrNsfqqgWZmXazWtgBNp9Ph7elJWmYm2bm5GIxGNUtUCGEifyOEEEIDiqKoS5xeHh6aBBznG0ANNLNWQYHqIennL9peMsm8BGxUFHJypdSGEFeTAE0IITSQV1CA3mAAtEwQuBII1VeJDTMnR0eCAv0BU+Boa6kNH4ssV8vkCiGEiQRoQgihgSyN95/BlUPSdTodIUGBmrRpC/Mya25evno+aE1ZJlFYJlcIIUwkQBNCCA1YZ3DaXgNNUZQrJTYC/HB2qr8SG2aWiQK2ltrwkUxOISolAZoQQmggM9uiBpomJTbyyMnNB+p/edPMMlHhvI2JApalNrJkiVOIMiRAE0IIDVjOAnlrUWLDIoOzvktsmGk5g+bi7IyLszMgS5xClEcCNCGE0IA5QHOwt8fd1dXm9ixroNV3kVqzUMvTBC5pl8mZV1BASUmJze0J0ZRoVgetuLiY9evXq0VqDaXZTJZ0Oh0rV67UqkshhGgQDEajeqakj5enWo7CFpaHpNd3DTSzEK0DNE9PklJSAVOAG+jnZ3ObQjQVmgRo8fHx3HTTTZw5c6bS1GsJ0IQQTVFObq76u0+rQ9ITG1ANNDNXF2f8fb1Jy8giMSnF5vasS21IgCaEJU0CtGeeeYbTp0/zwAMPMHnyZEJDQ3Fw0PSQAiGEaLC0PuIJrsyg2dnpCAmu/xIbZqHBLUjLyCI9I4v8gkLcXF1q3Ja3RTJFluxDE8KKJlHUzp07GT58OGvWrNGiOSGEaFS0zuC0LLERFOiPk6OjzW1qJTS4BX8cOwXAhaRk2rcJr3FbUmpDiIppkiRgNBqJjo7WoikhhGh0tJ5By8zOITfPVGIjNLhhZHCaabkPzdvivFIJ0ISwpkmA1r9/f44fP65FU0II0ehYlonw1qBIbUM64ulqWmZyOjg44OnuDkBWdrbNx0cJ0ZRoEqAtWLCAXbt28dVXX2nRnBBCNCrm2R8XZ2dcNKj43xBroJmFBF0J0C5okihgmnEsKimhsKjI5vaEaCpqtAft9ddfL/PcsGHD+Nvf/saQIUOIjo7G29u7zDU6nY6///3vNelSlZ+fz4oVK9i1axc5OTmEh4czceJEhg8ffs17MzIyWLJkCfv27aOwsJB27doxdepUevXqVebaw4cPs3LlSk6fPo2Liwv9+/fnsccew9fX1+o6vV7P2rVr2bx5M2lpaQQHBzNu3DjGjx9vdd13333HL7/8wunTp0lPTycwMJDevXszadIkAgICbHpPhBD1p6i4mPyCAgB8NZg9A0hogDXQzCxn0C5oVAvtfJIpIM3MzsHVpeZJB0I0JTUK0F599dUKX/vxxx/58ccfy31NiwBt7ty5xMbGMn36dMLCwti+fTuvvfYaRqORm266qcL7iouLmTlzJrm5uTz11FP4+vqybt06Zs+ezaJFi4iKilKvjYmJYc6cOfTv35/58+eTkZHBsmXLmDlzJsuXL8fJ4hPywoUL2bZtG1OmTKFTp04cPHiQDz74gPz8fB544AH1uo8++ojo6GimTZtGYGAgCQkJrFmzhj179rBy5Ur8JL1ciEYpI+tKgoCvtzYB2vmLlgFaw6iBZubr7Ymbqwv5BYWa1ELztiq1kU1wi4aTsSpEfapRgLZr1y6tx1El+/bt4/Dhw8ybN48RI0YA0LNnT5KSkliyZAk33ngj9vb25d77/fffExcXx4cffki3bt0AiI6OZvLkySxZsoRly5ap13744YeEhYXx+uuvq+VCgoODeeKJJ9i0aRN33HEHAHFxcXz//fdMmzaNe++9V20zOzubjz/+mLFjx+JV+ol65cqVVrNvUVFRdOjQgUceeYSNGzcyadIkbd8sIUSdyMjOUh/7epVdOaiJRMsSG0ENK0DT6XSEBLfg1NkELiWnoTcYcKjg925VSCanEOWrUYA2ZMgQrcdRJbt378bV1ZWhQ4daPT9q1Chef/11jh07Rvfu3Su8Nzw8XA3OwLRBdeTIkfz3v/8lJSWFwMBAUlJSiI2N5ZFHHrGq5da9e3fCwsL4+eef1QBt9+7dKIrCrbfeatXXrbfeysaNGzlw4IA6q3f10ihAx44dsbe3JznZ9k+hQoj6kZGt7QyaoihqDbSgFgE4Oja8mpKhQaYAzWAwkJScZrXsWV2WZUnkTE4hrmhUZ3HGxcXRunXrMkVw27Ztq75ekbNnz6rXVXav+b8VXWvZR1xcHD4+Pvj7+1d7PGBaSjUYDLRp06bS61JTUzlx4oT6Jz4+vtLrhRB1J91yiVODPWgZWTnk5Zv2tDW0BAEzLfehebi5YW9n+qcoS2bQhFBp/tFMr9dz8uRJsrKy8Pb2pkOHDpqdKpCVlUWrVq3KPO9ZOkWebfFJ9mrZ2dnqdZXdm5VlWq7wKucXraenp1UfWVlZ5V7n6uqKo6Oj2lZ58vPzWbhwIS1atGDUqFEVXgfw7bffsnr16kqvEULUj8zSv+eODg54uLnZ3J7l/rOGVgPN7OpSG31taMvOzg5vT0/Ss7LIysnBaDRiZ9eo5g6EqBWaBWgpKSm89NJLfPbZZxSUZjSBKVi57777eOuttwgMtH3zpy2HEFd279WvVXRtdfqv6NqioiLmzp3L5cuX+ec//4nbNX6pjxkzhgEDBqhfx8fH8+abb1Z5HEKI2lGi15OdlweYZs+0OCTdKkGggdVAM7MqVpukRaKAKUAzGI3k5ufjZVHAVojmSpMA7cKFCwwYMICEhAQCAwMZPHgwLVu25PLly/z666+sWLGCH374gT179hASElLjfry9vcudlcopnRYvbzbLzMvLq9wZNvO95pk0c3mQivqxnIXz9vbm9OnTZa4rKCigpKSk3PEUFxczd+5c/vzzT95++226dOlS4ZjNAgICpBSHEA1Qpsb7zwDOX2i4NdDMtCxWC2X3oUmAJoRGe9Cee+45EhISeO2114iPj2fTpk2sWrWKTZs2ER8fz6uvvkp8fDzPP/+8Tf1ERkYSHx+PXq+3ev7s2bMAle7lioyM5MyZM2WeNz8XGRlp1Ya5zav7sewjMjKSzMxM0tLSqjSe4uJiXn75ZX7//Xfmz59fbv01IUTjYZUgoFEGZ8LFhlsDzaxloJ+aMa9JLTTJ5BSiDE0CtC1btnDLLbfw97//HZerigy6uLgwb948Ro4cyebNm23qZ9CgQRQUFPDTTz+V6T8gIKDS2ajBgweTkJDAsWPH1Of0ej0//PADXbp0UWeoAgMD6dy5M9u2bcNgMKjXHj16lISEBKsM1oEDB6LT6diyZYtVX5s3b8bZ2Zm+fa/szDAHZ7/99htvvPEGffr0qdmbIIRoMGqjBlripSslNlq1bJgz5w729urYEi8l23xEk4/FakNWTsV7iYVoTjRZ4iwuLqZnz56VXtOrVy/27t1rUz/9+vWjd+/eLFy4kPz8fEJCQtixYwcHDhxg7ty56ie6BQsWsHXrVj777DOCgkyfQEeNGsW6deuYN28e06dPVwvVJiQksGjRIqt+Hn30UWbNmsW8efMYN26cWqi2TZs2ViU12rRpw+jRo1m1ahV2dnZ07tyZQ4cOsXHjRqZOnWq1xDlv3jwOHDjAAw88gJeXF0ePHlVfc3d3JyIiwqb3RghR97SugaYoCudLTxEIbqAlNsxCgltw/uJlCgqLyMjKwc+n5gGq1QyalNoQAtAoQOvVqxexsbGVXhMbG6vJkt6bb77J8uXLWblypXrU0yuvvGJ11JPRaMRgMFh9qnNycmLRokUsWbKExYsXU1hYSPv27Xn33XetThEAU7HZd955h48++ogXXnhBPerp8ccftzpFAGDWrFkEBATwzTffkJ6eTlBQEDNmzChz1NMvv/wCwNq1a1m7dq3Va1FRUXzwwQc2vzdCiLplnkGzs7PDy8Pd5vbSM7PJKygEICykYS5vmoUGWe9DsyVAc3F2xtnRkaKSElniFKKUJgHaG2+8wU033cTq1at56KGHyrz+0UcfsWnTJn744Qeb+3Jzc+Ppp5/m6aefrvCal156iZdeeqnM835+frz88stV6uf666/n+uuvv+Z1Dg4OTJ48mcmTJ1d63c8//1ylfoUQjYPBaFTrdvl4eWpSGsIyg7OhJgiYWScKXKZH53Y1bkun0+Ht5UVyWho5eXno9XrNyjMJ0Vhp8jdg165dDBs2jClTpvDOO+8wYMAAWrRoQXJyMnv37uXEiROMHDmSnTt3snPnTvU+Lc7mFEKI+pCVk4OxdJZeqwSBxlADzUzzQ9M9PUkuTbjKzMkhoJzTV4RoTjQJ0CwPT4+NjS13uXPr1q1s3brV6jkJ0IQQjVW6RSkef2/tA7TwBloDzSwk6EpdSy1KbfhZvIcZWdkSoIlmT7MZNCGEaE7SM68EaH4+GgVoFjXQwhr4EmeIxrXQLLNgMyo5FUaI5kKTAK2+Dk8XQoj6kp6VqT728/bRpM3zpYGOvZ1dgy2xYebq4oy/rzdpGVkkJqXY3J7lOaYZlRyTJ0RzIQeeCSFEDZhn0Ozt7TXJ4FQURV3iDG4Z0Cg2yZv3oaVnZJFfmn1aU14eHmqihcygCVHDAO2+++7jm2++qXGntt4vhBD1Sa/Xk5WbC4Cfl5cmGZxpFkFOQ1/eNLNKFLDxTE47Ozu1Hlpm6aHpQjRnNfqt8vnnn3PkyJEad2rr/UIIUZ8ysrPVOoua7T+zShBo2DXQzGprH5rRaFQDYCGaqxrPocfExPDxxx9rORYhhGgULDM4Ndt/ZnUGZ2OcQdNiH5o3cB4wZXJa7ksTormpcYC2fv16NmzYUO37bD2zTQgh6lutZHBa1UBrUcmVDUdorWZyZgGhNrcpRGNVowBt1apVNnd89fFKQgjRWKRZzaA13yVOrYvVXl0LTYjmrEYB2qRJk7QehxBCNBrpmZkAODk64uHmpkmbCaUBmr29PcENvMSGmY+XJ+6uLuQVFGoyg+bj6YlOp0NRFMnkFM2elNkQQohqKC4pITc/HzAtb+p0OpvbVBSFxNIALaRlAA729ja3WRd0Op2aKHApOQ29Xm9Te/b29ni5m0qWZGRlyZYY0axJgCaEENVgtf9MowSBtIwsCgqLAAhtJAkCZuaEBoPBQFJKms3t+ZYuc+oNBjUQFqI5kgBNCCGqIc3qBAFt9p8lNKIjnq5muQ8t4cLlSq6sGstEgXQ5UUA0YxKgCSFENaRmZKiPA3x9NGmzMR2SfjXLhIbES7YHaJZBrwRoojmTAE0IIaohLSNTfezv46NJm9Y10BpHBqeZ1jNoVgFapgRoovmSAE0IIapIURRSSzM4Pd3dcXZy0qRd6wCtcdRAM7OeQdOgFpqXl5p4ITNoojmTAE0IIaooOzdXzVTUankTrgRo9vb2BLVoHCU2zPx9vXF1cQbgvMVeuppycHDA28MDMGVyypmcormSAE0IIaoo1Wp501eTNhVFUQO0kKDARlNiw0yn06mZpxcup6I3GGxu03w6g95gICcvz+b2hGiMahyg9ezZk//+979Wz23dupVZs2aVe/1rr72Gg0ONT5YSQoh6VxsJAilpGRQWFQONL4PTLKx0H5rBYCApOdXm9izLl6TJPjTRTNU4QIuJiSEpyXo6e//+/SxevLjCe6TooBCiMUsr3X8GEOCrzQya5cb61o3kiKerWdZuO39RgyOffCwTBTJtbk+IxkiWOIUQoorMM2hOjo54lla8t1V84iX1cevQYE3arGvhVgGa7fvQLDM50yRRQDRTEqAJIUQVFBYVqZXt/X18NDniCSD+wpUArbEckn41rWfQvD09sbMz/fOUblEYWIjmRAI0IYSoAuvlTR/N2o1PvDLj1Dq0cQZo1jNottdCs7ezw9fLdKJAVnYOBg0SD4RobCRAE0KIKrBMENAqgxOuLHG6uboQ4OejWbt1KcDPBxdnU004LQI0uLLMaVQUMnNyNGlTiMZEAjQhhKgCqxIbGs2gFZeUcKk067F1SJBmy6Z1TafTqRmoF5JSNC21AZIoIJonm+pe/N///R/79+9Xvz59+jQAo0aNKnOt+TUhhGiMUtLTAbDT6TQ74inxUjJGoym7PbyRJgiYhQa35FTcebXURmiwbSVD/K8qtdHexvEJ0djYFKCdPn263MBry5Yt5V7fWD8dCiGatxK9nozsbMA0s6NVMVmrDM5Gdkj61cIsxp9w4bLNAZrlDFqazKCJZqjGAVpcXJyW4xBCiAYrNSNDreMY6OevWbvWCQKNewbNsoZbwoUkbujdw6b2PN3dcXJ0pLikxGr/nxDNRY0DtNatW2s5DiGEaLDMy5sAgX7aJwhA4w/QLEuEWAaeNaXT6Qjw9eFicgp5BQUUFBapZ34K0RxIkoAQQlyDZYDWws9Ps3YTLA4Xb6w10MwsS4RY1nazhWW2bFqmzKKJ5qVGM2iTJ0+uUWc6nY6VK1fW6F4hhKgvyeYEATs7zRIEAOJLA7QWAX6NfnbIx8sTLw93snPzrAJPW1jWm0vNyCQ0qHEHsUJUR40CtNWrV5f7vE6nK/e8TfPzEqAJIRqbkpISMrNNdbj8vb2x1yhBIDM7l6zsXKDxz56B6fd869Ag/oo9w+WUdE2WJC3PO5V9aKK5qdESZ1xcnNWfM2fOcNttt+Hv788bb7zBjz/+yPHjx/nxxx95/fXX8ff35/bbb+fUqVNaj18IIWpVakbmlQQBf+2WN633nzX+AA2sS4VoMYvm6+2tZv+nyhKnaGZqNIN2dYLAggULOHDgAH/88QfBwVf+gnbs2JHBgwfz8MMPEx0dzVdffcVzzz1n24iFEKIOJVslCNRSgBbSuBMEzFpflSjQsa1tyWQO9vb4enmRnpVFZlY2BoNBsxlMIRo6TZIEVq5cyd13320VnFkKCQnh7rvvZvny5Vp0J4QQdaa2EgTizl9UH0eGt9Ks3fp0dakNLZhPbTAqCulZWZq0KURjoEmAlpiYiIuLS6XXuLi4kJiYqEV3QghRZywTBMznQ2rhbPwF9XGbJhKgWS5xapXJabkPTQrWiuZEkwAtNDSUdevWUVhYWO7r+fn5rFu3jtDQUC26E0KIOlFUXExm6QkCAT4+mi6vxSWYZtDc3VwJ9Neutlp5iowlnCtM5nxRarmJXFoJa9VC3TOmRS00ML3vZpIoIJoTTQK0qVOncvbsWQYMGMCGDRtIS0sDIC0tjfXr1zNw4EDOnTvHtGnTtOhOCCHqxOXUNPVxy4AAzdrNLyhUD0mPDG9Va8fgbc/4k7FHFtDn9+cZe3QBtx2Zz81/vcFr8V+QWJR27QaqydnJieCWpvcpIfGSJsGgv1UmZ6bN7QnRWNh0FqfZnDlzOHnyJKtWreLOO+8ETMsBRqMRAEVRePjhh5kzZ44W3QkhRJ24nJaqPg4K0O6Ip3Pnryz/RYaHaNauWaY+j/kJX7M1I6bMa5dLMvkm9QA/ZPzJO5EPcoNXR037bh0SxMWkFPIKCknLyCLAz8em9txcXHB3dSWvoEA9ckvOdRbNgSYzaHZ2dqxcuZJdu3YxadIkoqOjiYiIIDo6moceeohdu3axcuVK+UslhGhUamsGLe685f4zbQO0fEMRj5xcahWcdXQN4VbfaPp7dcRZZ/pcnmMo4IlT/+WL5L2a9t/aah+aNsuc5uzZ4pISsnJyNWlTiIZOkxk0syFDhjBkyBAtmxRCiHqhKAqXU00zaK4uLni6u2vW9tmEKxmcWiYIGBQjz8et5USBKQD0tnfjhfBx3OrbU/2AnGMo4OW4T/kp6yhGFP5x/hvCXAI0m0mzPpPzEr26d7K5zUA/P85dMH1PKelp+Hh52tymEA1djWfQVq1aRUpKipZjEUKIBiMzO4eikhLAtLyp5QpAXMKVGTQtlzgXJn7Lz1nHAPC0d2F1x6cY5dfLauye9q78s+3DPNhyKAAKCi/F/R+XizM1GYPVmZzntcnktCxvYlmXToimrMYB2pQpU2jVqhWDBg3i/fffl1MChBBNSlLqlf1nLf21W96EKxmcbq4utAzUprbawZxT/F/yzwA4YMf7kQ8T6dqy3GvtdHY8E3Ibg7w6A5Chz+O5sx+jVww2j8My4LSs9WaLQL8riQIp6ZLJKZqHGgdov/zyC7NnzyY9PZ05c+bQqVMnOnfuzEsvvcT+/fu1HKMQQtQ5ywQBLfefFRYVcyHJtPoQERasycxcsVHPW/Ffq1/PDhtLX6/2ld5jp7PjzTb3EexkCn5i8s7xdYrtv7v9fb3x9HAD4KzFTKEt3FxdcXcztZmSnl6rpUKEaChqHKD169ePf/zjHxw9epRTp07x9ttvExgYyDvvvMOAAQMIDg5m+vTpbNq0iaKiIi3HLIQQtc48g6bT6Wih8Rmc5gBDqwSB1Zd3ca4oGYAe7q35W+CAKt3n4+DO/DYT1a8/vLiFbH2BTWPR6XS0CTPtq7uckk5uvm3tmZmXOUv0ejJzcjRpU4iGTJMszrZt2zJ79mx+/vlnLl++zIoVK+jbty+ffPIJt99+OwEBAYwfP561a9eSLvsHhBANXHFJCemZpmOF/H28cXTQLp/KclYpMsz2BIHEojSWX/oBAHvsmBs+ATtd1X+19/SI5BbfaAAyDXksT/rB5jFZBp7xmi1zXgmSU9Lk3xHR9GkSoFny9/fn4YcfZv369aSmprJu3Truvvtu9u7dy6RJk2jZsiVDhw7VulshhNCM1f4zDZc34cr+M9BmBm3Fpe0UK3oAJrYcTEe36rf5dMhotfzGp8m7SSi0LQHM8mxRy4xVW7Sw2IcmiQKiOdA8QLPk4uLCmDFjWLlyJZcuXWL37t0888wzJCVpUxtHCCFqw8XkZPVxq8AWmrZ9+tx59XFka9sCtMSiNDamHQJMWZvTgm6qUTutnP14oDSrU68YWJ603aZxWX5fcRoFaFYzaBKgiWagVgM0SzqdjgEDBvDOO+8QGxtbV90KIUS1XUq+MoPUqkWgpm2fOmsK0NxdXWjV0rbZuRWXtqPHdGLL/S2G4OXgWuO2JgfdiKe96f5N6b/ZVHbDcmZQq0QBy1p0KRkZ6kk1QjRVNd5Y8fjjj1f7Hp1Ox3/+85+adimEELVOr9dzufQ8YW8PDzV7UAs5uXkkpZjabtcmzKYMzqtnz+5rMdimsbnbu3BP4ACWJ21HrxhYe/knZoeNrVFbLfx9cXd1Ia+g0Krmm60C/fzIyctDr9eTkZ2Nv8VB6kI0NTUO0JYuXVrlay1/CUmAJoRoyC6npamzM8EttF3ePBV3ZXmzfZtwm9pac3mXZrNnZve2GMTHl3+kSNHzVeo+pgWPwNuh+ico6HQ62oSHcOTEGS5eTqWgsAhXF2ebx9fS35+z503v4eXUNAnQRJNW4wBt165dVbouISGB119/nTNnzshZnEKIBu9ibS5vWgZokWE1bidbn8+3aYcBcLVz4r4Wg2weG4C/oydjA/rwv5RfKDAW80XKLzwSXLN9bW3CW3HkxBkAzp2/SOf2bWweX5BFwkZSaipd2rW1uU0hGqoaB2jXOnMzIyOD+fPn85///IfCwkL69+/P22+/XdPuhBCiTlyyTBCo1Rm0mgdo36Tup9BYDMAY/+vxctBuGXZSy2F8lbIPIwr/S9nLw0E34qizr3Y7lmeMxiVoE6AF+vlip9NhVBSrQsJCNEWaJwkUFhayYMEC2rZty/vvv09ERATffPMNe/fuZeDAgVp3J4QQmjEYDGqJDQ83N00PSAc4FZcAmJYA27YOrVEbesXA5yl71a+1mj0zC3X2Z4hPVwBSSrL5KfNojdqxPPLpjEb70BwcHPD3NZXbyMjKpqi4WJN2hWiINKu+qCgKK1eu5LXXXuPChQu0atWKd955h8mTJ2Nnp10cmJ+fz4oVK9i1axc5OTmEh4czceJEhg8ffs17MzIyWLJkCfv27aOwsJB27doxdepUevXqVebaw4cPs3LlSk6fPo2Liwv9+/fnsccew9fX1+o6vV7P2rVr2bx5M2lpaQQHBzNu3DjGjx9vdV1cXBzr1q3j1KlTnDlzhsLCQhYvXkx0dLRtb4gQQjMp6RnoDabzKINbBGq6LcNgMHIm3hSohAa3wM3VpUbt/Jh5hEvFpvMoB3l1JsJF21k+gLsDB7Ar8wgAX6b8wgjfHtVuwzJAOxuvXaJAUECAWmbjcloa4cHBmrUtREOiSeS0fv16unbtyvTp08nNzWX+/PmcPn2aqVOnahqcAcydO5ctW7bw0EMP8c4779CpUydee+01fvih8urXxcXFzJw5k19//ZWnnnqK+fPn4+vry+zZs4mJibG6NiYmhjlz5uDr68v8+fN56qmn+PXXX5k5cybFV31iW7hwIZ988gnjxo3jvffeY9CgQXzwwQesXbvW6rrY2Fh2796Np6cnPXv21OS9EEJo60LyZfWx1sub5y9dpqjI9PvDluXNz5L3qI/va2lb5mZF+nm2J8zZH4D9OSeJr0Hh2paBfmpiwNn4RM3G1jLAX318OTVNs3aFaGhsmkHbs2cPzz//PPv378fJyYlnnnmGl19+ucwsk1b27dvH4cOHmTdvHiNGjACgZ8+eJCUlsWTJEm688Ubs7cvfK/H9998TFxfHhx9+SLdu3QCIjo5m8uTJLFmyhGXLlqnXfvjhh4SFhfH666/jUHrES3BwME888QSbNm3ijjvuAEyzYt9//z3Tpk3j3nvvVdvMzs7m448/ZuzYsXh5eQFw8803c+uttwLw448/8ssvv2j/BgkhbHL+0pUi2qFBQZq2fepsgvq4phmccYWXOZxr2ngf4dyC/p4dNBnb1ex0dkwI6M+iC98B8FXqPp4NHVO9NuzsaBcRyl+xpkzO3Lx8PNxt3ytnmShwOVX2oYmmq8bTW2PGjGHIkCEcPHiQSZMmcerUKd57771aC84Adu/ejaura5mjokaNGkVqairHjh2r9N7w8HA1OAPTfoaRI0dy/PhxUlJMnxBTUlKIjY1l5MiRanAG0L17d8LCwvj555+t2lQURQ28zG699VaKioo4cOCA+pzWM4lCCG2VlJSo+8+8PDzw9vDQtH0tEgS+TtmvPp4Q2L9WM+PHBvRRkwM2pB6k2KivdhuWgejpc9rMonm6u6szc5fT0tSD54Voamo8g/bdd9+h0+kIDw8nKSmJRx555Jr36HQ6vv/++5p2SVxcHK1bt7YKnMB0WLv59e7du5d779mzZ7nuuuvKPG95b2BgIHFxcVbPX33tX3/9ZTUeHx8f/P39y1xnfl0I0ThcTE5R65+FaTx7BraX2Cg26tlYWlrDUWfPbf5l985qydfBg5t8r2NT+m9kGfLZnXWM4dXci2b5fZ6KO09UV9tn/HQ6HUEBAcQlXqCouJjM7Bx8vb1sbleIhsamJU5FUYiLi6tyIGLrp72srCxatWpV5nlPT08AsrOzK7w3Oztbva6ye7OysgDUpcmrr7XsIysrq9zrXF1dcXR0VNuyVWpqKmlpV/ZaxMfHa9KuEOKK80mX1MehwdoHaCfPmP7euru5Etyi+kc87cj8i0xDHgAjfHrg66DtDF95bve/nk3pvwGwMf1w9QM0ixk0cwarFlr6mwI0gEupKRKgiSapxgFafc0O2RLkVXbv1a9VdG11+tdq+eHbb79l9erVmrQlhCjf+STT/jOdTkdoy5aatp2anklyminzsnO7iBr9bvg6dZ/6eHxgf83GVpm+nu0JdPQipSSb3VnHydDnViswbBdxpZSI+QxSLQRbFBC+lJxMl3JWPIRo7GocoLVu3VrLcVSJt7d3ubNSOTk5QPmzXmZeXl7lzrCZ7zXPpHl7ewNU2I/lLJy3tzenT58uc11BQQElJSWVjqc6xowZw4ABA9Sv4+PjefPNNzVpWwgBufn5ZGSZfj+08PPD2clJ0/aPnbrygbZLh+oXbD1flMqhHNPvmnDnQHp71E1AYq+zY5RfT9Zc/hG9YmBregz3tKh6PUt3N1dCggK5kJTC6XPnMRqNmuzHbeHnh729PQaDwerkByGakka1cz0yMpL4+Hj0euvNqmfPngWgTZuKf/FFRkZy5syZMs+bn4uMjLRqw9zm1f1Y9hEZGUlmZqbV8mNVx1MdAQEBdOzYUf1TH8GxEE1ZYtKV7M2wWljePHbySoBWk4r635Yeig5wR0CfOj0273b/3upj8x646mgfaVrmLCwqJvFS8jWurhp7e3uCSstt5OTlkZOXp0m7QjQkNZpBmzx5co060+l0rFy5skb3AgwaNIiNGzfy008/WRWm3bJlCwEBAXTp0qXCewcPHszChQs5duyYep1er+eHH36gS5cuBJSmbgcGBtK5c2e2bdvGPffco5btOHr0KAkJCdx1111qmwMHDmTFihVs2bKFiRMnqs9v3rwZZ2dn+vbtW+PvVQhRdxIuWew/q4UEgeM2zKAZFaMaGNmh4za/2k0OuFp711Z0dA3hRMEFjuQncK4wuVrFcdtHhPHjL78CpkSB8BBt3t/gwBZcuGwK+C4mJ9NRow/EQjQUNQrQKtoPpdPpyk15Nj9va4DWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dqwZTCxYsYOvWrXz22WcElf6yHTVqFOvWrWPevHlMnz4dX19f1q1bR0JCAosWLbLq59FHH2XWrFnMmzePcePGkZGRwbJly2jTpo1VSY02bdowevRoVq1ahZ2dHZ07d+bQoUNs3LiRqVOnWi1xFhYWsn+/KUX+6FHT0SkxMTFkZWXh4uJCv379avy+CCFqzmA0knDRFKA5OTrSMqD6G/groyiKOoPm4+VZ7QSBQzln1JMD+nt1pKWTj6bjq4rb/XtzonRT/ndph3kyZFSV7706k3P4wOs1GVMrq31oKRKgiSanRgHa1QkCRqORp59+mv379/P0008zaNAgWrZsyeXLl/n555/54IMP6N+/f5lAqCbefPNNli9fzsqVK9Wjnl555RWrGTWj0YjBYLAKFp2cnFi0aBFLlixh8eLFFBYW0r59e959912ioqKs+oiOjuadd97ho48+4oUXXlCPenr88cdxumpvyqxZswgICOCbb74hPT2doKAgZsyYUeaop4yMDObNm2f13KpVqwAICgrif//7n83vjRCi+pJSUiguKQGgdatW2Gtcs/BSciqZ2aa9rp3bVz9BwHJ5c6x/H03HVlW3+kWzKHEjBox8l/4rj7e6BTtd1d6nWsvkDAjAzs4Oo9HIxRRtlk6FaEh0igZV/hYsWMCiRYuIiYkhuJxz0S5cuEB0dDSzZ8/mueees7W7Zu/EiRNMmzaN5cuX07Fjx/oejhCN2p5ff+PPEycAuOmG/rSPiNC0/e27D/LiP/4DwJR7x/LoA3dW+d5cQyHD/3iFQqUET3tXdvR4FWc7R03HV1VPnPove7JjAVjR4XGu92xXpfuMRiPD7nqM/IJCglsE8O3q9zUb0zfbflCLCz807g7cXF01a1uI+qbJR8WVK1dy9913lxucAYSEhHD33XezfPlyLboTQghNKIrCuQumpTs7nY6wcuos2sqW/Wc/ZPxBoWKa3bvVL7regjOA2/yvLE1WJ1nAfOQTmGYTs3O029BvWW7jYopkc4qmRZMALTExERcXl0qvcXFxITFRuwNzhRDCVhnZ2WTn5gIQ3KIFLhqX1wDrDM4u1czgtFzeHOOvzd6tmhrm0xUPO9Pv+R8y/qDAWFzley0zV4+fPqfZmEIsDrS/eFmWOUXTokmAFhoayrp16ygsLCz39fz8fNatW0doaGi5rwshRH04V7rxHSAiJETz9o1GoxqQtPD3JcDPp8r3JhSm8FuuqWRPpEtLurnV7IB1rbjYOXGTr+m4vHxjEbsy/7rGHVd0bh+hPj52smwJo5oKCgzErnRP33mLUilCNAWaBGhTp07l7NmzDBgwgA0bNqh1wdLS0li/fj0DBw7k3LlzTJs2TYvuhBBCE3EXLAK0UO0DtHOJl8jLLwCqv7y5Mf3KMuIY/+vrtPZZRSxron2f9muV7+vSPlJ9bFm011aWWbdZOTnqbKgQTYFNZ3GazZkzh5MnT7Jq1SruvNO0AdacXQOmfR4PP/wwc+bM0aI7IYSwWU5eHpdLN5j7eXvj7aH92ZYxR06qj3t0aV/l+66ufTa6jmufVSTaow1Bjj4klWSyL/skaSU5+DuWPeP4aq1Dg3B3dSGvoNBqyVcLYcFBXCrdf5aYlESXdlVLXhCiodNkBs3Ozo6VK1eya9cuJk2aRHR0NBEREURHR/PQQw+xa9cuVq5c2SA+AQohBMCZhCslH9qF187y4e9HT6iPo7tWPePasvbZDV4daeHkrfnYasJOZ8etfj0BMGBkW0ZM1e6zs6NT6TJncmo6qemZmo0pzKKwsCxziqZEkxk0syFDhjBkyBAtmxRCiFpxKt4iQGtdOwGaeQbN2dmJjm2rfkSbdXJA/dQ+q8ho/56surwTgE3pv3Fvi0FVuq9z+zb8+qepTMexU3EM7hutyXgC/fxwdnSkqKSExKTLmp33KUR9k59iIUSzk5WTQ0p6OgCBvr74WJz6oZWk5DSSUkz7cbt3bIujY9U+D+cZCtme+ScAnvauDPXpqvnYbNHetRXtXU0llf7Mi+d8UWqV7rPMYD2u4T40Ozs7Qkpn0YqKi0nJyNCsbSHqkwRoQohm53RCHcyeHb2y/yyqW4cq3/dDxp8UlpawqO/aZxUZVbrMCaZZtKro0sEiUaAW9qGZnb8ky5yiaZAATQjR7JyKj1cft62l/WcxFvvPorpUPUD7Nu2g+ri+a59V5FbLAC3tt3LPYL5aq5YBeHuZEjGOnYyr0j1VZbkPLTHpUiVXCtF4SIAmhGhWUjMySM/MAkznOXrVQvYmwO+lM2j2dnZ071y1zMLzRan82oBqn1Uk2MmXXh6mGbFzRckcz792EXKdTqcWrM3MzuFSctWWRqvCy8MDb09TNumllFQKi6teRFeIhkoCNCFEs3L8zJVCqR0iqr5xvzqycnI5G2+qsdahbWvcXCs/acXM8gilhlL7rCKjLEp/fF/VZU6LfWhHYs9oOp6IENMxXYqikHDxoqZtC1EfJEATQjQbeoOBk+fOAWBvb6/5wehmVvvPulat/pmp9pkpe7Mh1T6ryEjf63DU2QOwNeN3DIrxmvf0sJhJtHyPtBARcuWkGssTIoRorCRAE0I0G3Hnz1NUuvzVNiysVs7eBDj4+1H1cc9unap0z+HcM1xsgLXPKuLl4MZA784ApJRkcyjn9DXvua5Le3VWMObYKU3HExwYgHPp/8+ES5cwGAyati9EXZMATQjRbByzWN7s3LZtrfWz/1fTOZX29vb0jupSpXu+TW24tc8qMtpqmfPaRz95uLvRvk0YAKfjzpOTm6fZWOzs7GjdyrTMWVxSwsXS0wWEaKwkQBNCNAtZOTlcuHwZAG9PT1q1CKyVfhIvJZNw0dRPj05t8XBzveY9eYZCfmjAtc8qMti7Cx52pv11OzL+pMB47c350d1MJyooisKfx68961YdlgfeyzKnaOwkQBNCNAtHTl1ZUuvSNrLWNuDv/+0v9XG/Xt2rdE9jqH1WHmc7R0b49gAgz1jErsy/rnGHaZnT7PcjJyq5svrCgoPUUwTOXbigaSkPIeqaBGhCiCavqLiYY6dNWYP29vZ0ioy8xh01t//XI+rj/lUM0Cxrn41tJMubZrf791Yff2uRhVoR8wwawB8a70NzdnKiVYsWAOTk5amnRQjRGEmAJoRo8o6fOUOJXg9AxzYRuLpUrexFden1eg7/cQwAX2/PKp2/GV+YYlX7rKtbWK2Mrbb09IgkxMkPgAPZJ7lcnFnp9QF+PoQGm4KooyfOqkkbWmkbfuX9szwxQojGRgI0IUSTZjAa+fPElZIO13WsWlZlTfx5/DR5BYUA9InuVqVDu79J3a8+vsO/T4OufVYeO52dOotmRKlSskBUV9PJCiV6vebHPkWGhmFX+h6ejk+QZU7RaEmAJoRo0s4mJJCbnw9A61at8PXW/mB0s32/XtmD1b9Xt2teX2LU821p7TMHnT231+LRTka9EaPh2rXKasJy3BvTDl8zKDIHaKB9PTRXF2dCS49+ys3PJylVuxMLhKhLDvU9ACGEqC1Go5Ffjx5Tv47qXHuzZ4qisOsX0+yRTqejb/S1A7Sfso6Srs8F4Eafbvg5anPslEFvJDEmhfMxKVw8mkZeRiGGYiPowM3XGa8WboRFBRLZPxjPQDeb+wt19qenRyS/5Z7lbOFljuQn0N294uXdXj2u/H848PsRHv7b7TaPwVK71q1JuGQ6k/N0fDzBgbWTsStEbZIATQjRZJ1OSCA9q/TcTX9/dQN5bThzLpH4RFNQENWlPQF+Pte852uL5c07A/rZPAaD3sipnxKJ2XCG3NTCshcokJ9eRH56EUmxGRz6/CRh0YH0va8TPiG2BYdj/K/nt9K9dN+k7q80QAsNbklIUCAXklL449gp8gsKq3wcVlVEhoXy00E7DEYjpxPOM6BnzyotNwvRkMhPrBCiSTIYjRz688qSY9/retTq/q4de68Umh0+6NqZmBeK0tmXbVreC3Hyo69n1Y6EqkhqXBbrXtzLnpVHrYIzOwcdvmEetOzgS0CkN67e1qcnnP89ha+f38P+tcfRF9e8+v7NvlG42TkDsDn9d/IM5QSIFswlSPR6A4f/PF7jfsvj5OhI69KzOQsKC7mQnKxp+0LUBZlBE0I0SSfOxpGVa1o+DGnZQt2XVFt27DYFaDqdjhsH9L7G1fBlyi8omPZqjQvoi52uZp+XFaPCHxvP8utXp1AMV/Z+hV4XSOcRYbTq6o+ji/Wv+uzL+Zzdd4lj2+PJTy9CMSoc2XyOS8fSuPHpaLyD3Ks9Djd7Z0b59eSr1H0UGIvZkv474wP7V3h9/57d+fr7nYDp5IXBfaOr3Wdl2rduzdnziYApizeslv//C6E1mUETQjQ5JSUlHPrryuxZnx49arW/M/GJxJ2/CJgKsQb6+1Z6fYGxWM3edNDZ13h5U19sYOe/Yjj8xUk1OPOP8GLMa/245fnetO7VskxwBuDV0o2oO9py9/tD6DWhPfZOpn8K0uJzWP/yXhL/rNkxSeMtvg/L5dvy9L6uM/b2psPWLZMrtBIREoKLs2lG7+z5RAqLijTvQ4jaJAGaEKLJOXzkKHkFBYApc7O2N4mbZ88Ahg+8dibm5vTfyDKYMktv8Y3G39Gz2n0WZhez6a2DxB1IAkCng6g72jLm9f60aF95gGjm4GxP9J3tGPvGDXi3Ms2alRQY2Pbur5zZd6naY+riHkYnV9NxS0fzzxObX/FxS+5uruqpAomXkkm8dLna/VXG3t6ejm0iAFOyyIm4c5q2L0RtkwBNCNGkpGdl8UdsLAD2dnYM7NWzVvtTFIVtPx9Qvx52jeVNRVH4NHm3+vW9LQZWu8+C7CK+f+sgyacyAVOgddPsXvS+uwP2DtX/te4X5skdb95A6+tbAmA0KOz6dwyxu85Xu63xgVdm0b5M+aXSa/v1vJLpus/iBAatdG7bVn18/MwZqYkmGhUJ0IQQTYaiKOw+fBhj6T/E0V264O1Z/dmp6og5elLN3ozu1pGWAX6VXv9r7hlOFZiuv849gm7u4dXqLz+riE1vHiTjfA4Abj7O3P5KP8KjbctQdXRxYPjT0XQcFmp6QoE9K45wek/1Dh0f5ddLTRb4Lv1XsvX5FV57Q+8rS8/7fv2z+oO+Bj9vb4ICAwBT4H45LU3zPoSoLRKgCSGajKOnTnPhsiljz8vdnZ5dOtd6n99s3qU+Hnfr0Gtev+byj+rj6s6eFeeXsGXBITISTckP7n4ujJ7XF/8IbYrv2tnpGDi1G91GRZieUOCnpX9x7lBSldvwsHdhTGnh2kJjMesszhm9Wvs2Yfj7egNw8Pej5BdUnvlZE10sZtGOnNT27E8hapMEaEKIJiE9K4u9v/+ufj34+t44ONRuonpmdi4795gOCPf2dL9m9ubJ/Iv8nGUqnBvk6MMIn6onLxj0RrYv+p30eNPMmbu/C6P/3qdGGZeV0el09J3Yic4jTDN7ilFh17//4PLJjCq3YRl4fp68B4NS/gkGdnZ2DL2hFwBFxSXsORhT84FXoG14OM5OptIipxMSyMuveEZPiIZEAjQhRKNnMBjY/ss+DAZTHa9u7dsT3qpVrff7/fY9FJeUADB6+EA1EKjIR0k71MeTgobhaFe1AFIxKvy87C8uHjUt0Tl7OHLri9fj1VLb4MxMp9Nxw0NdaDfQ9B4aSoz88P6vZF+uWnAT4dKCAV6m0wIuFqerQWl5Rgy8UjNuu0WyhVYcHRzo2q4dYEoW+POktkdLCVFbJEATQjRqiqLw8+HDpGaYZnh8vby4ITqqTvpdt+VH9etrLW8mFKawNSMGAF8HD8YF9K1yX4e+OMGZvaYyHvaOdoyc3QufVtocC1URnZ2OwY90p1VXfwAKc0rY+u5hinJLqnT/fS0GqY//7/JPFV4X3a0jfj6mJdpfDv9RK8uc3Tt2UE8SOHbqNCUlVfsehKhPEqAJIRq1P0+c4PgZ0xFD9nZ2jLihf60vbQL8fOB3NTmgZ/dORIRVPmO36vJOjKWFae9vMRhXu8pn28yObj3HnxvjAFMpjRufiqJlh6qV0bCVncP/t3fe4VFV28N+z6RMJr2S0JIAoRMJEDqhd7GhV0SKdGwXrngFK2C5XssVfnIVRKpwAflQUFACiKC0SA1FEAwkoYWSRhJSp5zvjyEnM5mZJMAEZuJ+nyfPzNln7b3XOnt2Zs0ua6voM7WNEoIjJy2fnz9NRK+r/ND1Lr5NiVQbNy4cunmOYzdTrcq5uKjoZTbNecw+ypvgpdHQJNJ49FSxVssfySl2r0MgsDfCQRMIBE5LyqVL7Es8qlz36tSRkMCKd1HaA1mWWbL6e+X66UcHVCh/viid7zOM03feKg+eDOlapXpSDlwlYUXZMUhdxrYkIjb0DjS+c9Tebgx4JRYPX6NDmXYyk71LT1YaskIlqRgb1lu5XmIyvVuePibTnD/vsb2p4G5o3azsgPajf/yhTIcLBI6KcNAEAoFTcv5yGlv37FUchXYtW9IkMvKe1L334DH+OJsKQJOG4XTvVPExRZ+lxaPHOOo0KrQHvq6aSuu4ejqLXz4/xq1BN2IebaQs3L/X+IZ60m9aW1zcjF8Zf/5yieObkivN92BgW8Lc/AH4NeckfxakWZVrE92UAD9jOJS9h45zs6DQPoqbEOTvr6xLvFlQwKlz5+xeh0BgT4SDJhAInI7zl9OI370bg8Ho9DSOiKDDA9H3pG5ZlllsMno24elHKjyE/WT+RbbdWnsW6OrNqNAeldaRffkmP31yBL32ln3d69Lub3d3mPrdEtokgO7Plu06Pbj2z0rDb7ipXBkd1lO5XmpjFM3VxUUZRSsuLmHLzooD3N4ppp+Rw7+fRKvTVUs9AoE9EA6aQCBwKn7/M4nNu3Ypzlmj8HD6dO5UoZNkT3b9lsjJP42jR40b1KdHJ9snFciyzKeXf1CuJ9Xuh5eLR4Xl52cXsfXDgxTnGxey13sgmLgJre6ZfRXRqHNt2j1xy1GU4Zf5x8lIzakwz9DgTgS4Gtewbck+ytlC607dowPLHNf18b9US9T/WoGBNKxvDMRbUFQk4qIJHBrhoAkEAqdAp9ez6+Ahdh06pHx5NwoPp1+XzsoOveqmsKiY/3zxP+V6wtOPVlj3zzdOsD/P6ATUcw/iieDOFZZfUqBl64eHuJlh3MkYFOlL76ltUN3B8U3VRcxjjWjUpTYAumI92/5zmPxs2zsvNSp3ngntBYCMzH8v/2hVrmmjCFo2aQhAUvIFTp6pfAr1TugQXTYKeOTUKXGIusBhcZxeLxAIBDbIyM7mmy1b+T2pbMQjpnmze+qcAXy5agNX042xyDrEtFR2H1ojX1/Ehxc3KNf/qDekwrhnSiDaC8ZAtN4hGgZMj8VdU/07Um8HSZKImxRNrcb+ABRkFfPTfw6jK7a96H54rW7UcjOeGPBLzkmO3LTufA0d3Et5b3pCgz0J9PdT1ioWl5Sw/5j9j5gSCOyBcNAEAoHDUqLVsi8xkW+2biMrxziVplKp6NWxA13atLmnztmZc+dZs2ErAO5ubrz64jMVTjvOT9vCda1R526+zSo8NUA2yOz64rhZINqBM2Lx9Ffb0QL74eruQt9pbfEONm52yEjJ5ZcFx5AN1qclPVTuPFenbKfrp5d+tDqF2b97R7y9PAHYtms/eTfzq0F76BTTWgnFcvLsWXFGp8AhEQ6aQCBwOEq0Wo7+cZpVmzZx9I/TynqzIH9//jZwAM1Nzle8F9wsKOSNDxegv6XH2GEPUb+O7XAXv+dfYPX13QCoJVdeC3+8QmfuwJoznNtnjKl2rwLR3i2efmr6v9ION40LAKkHrnH4G9truh4Oak9DD+MzO5qfwrZsy3hnHh5qBvfuAhg3C3zz445q0By8PT3pEN1Kud518JDyGRMIHAXhoAkEAochKyeHfYmJrPx+I/sSEyksMq4PclGpaNeyJU8M6E+Qv/891clgMPD2J18qQWmjIusx+m+Dbcrn64t4NWWlEpR2Uu3+1FMH2ZT/PT6FEz+aBKKdcu8C0d4tgfV96P1iDKW+59HvzpG0+7JVWVfJhal1hyjXH1/6jpt6y7Vrwx7uh0plLHDVhi3VcrIAQHTTpgT6Gadd07OyOHbmTLXUIxDcKcJBEwgE9w2DwUBGdjaHfj/Jui1b+frHzRz94zTFJSWKTKPw+gwf8iAdWz+Ai4vLPddxyZrv+SXhCAA+3p58/NYU3N3cbMq/f2E9F4uNU2bRXuE8E9bLpuy5hCv8tvK0ct11XEsi2t3bQLR3S/02teg4srlyvXtR2Zmh5enh14Iefi0BSNfm8tnlzRYy4XXDGNDDuJkiJ/cm636wHeD2bnBRqejevuxw+/3HjivHhQkEjoBw0AQCwT1BlmVuFhRwIS2NA8dPsHHHTpZ+u57/F7+FA8ePk56VpciqVCqaNmjAUw8OZkC3bvh635/pviVrvufLVd8BxsXx777yLPVq23agvss4wA9ZhwDwUqn5oMEo3CTrTuXFo+n8uqBsmq/N0Cia9bk/gWjvlpYDI2jWpz4ABp3MT58cJj3ZMvyGJEm8Wv8xPG4dc7U2fS+/51+wkBs3/GFlFO1/38ZX2yhanVq1iGluPGHAYDDw0959IjaawGFwrO1BAoHAqZBlGa1OZ/zTainWaiksKqKwqJjCoiIKiorIy88nJy+P3Js30VVyvE5wgD9NGzSgSWQDNB73b4G8wWDgi5XrWbZ2k5I2ZfwwurZvbTPPwbyzvHthnXL9ZsQTNqc2Lx5N56c5hzHojNOgTXrWo+3jUXbS/t4jSRJdxrSgILuYC0euoy3Ss/XDgzw4sxMBdc2d6zrqQJ6t3Z//u/wDBmReT1nF182n4elS1t6R9WrTr3sntv6SwI3cPNZ8t5Xxwx+pFt07PvAAl65eIyM7m+zcXHYdPEjvTvcurp5AYAtJro5ogIJq5cyZM0ycOJFFixbRtGlTu5RpMBjQ6/Wlp8ogy7Lx/a2Ph/GlLM3s9Za82Wu5vDIyyEoJynvTj59pXtmYyaROyzJKdSqvb1myXFa3aRlm8uXqkGXLOs3sq1in8mnmOpbpZLMOWZEufXwmz6W8/eWeg2zy7MqXYaqLWR0yBoOMwWDAIBss3996lQ0G9Cb3dTodJTodurscbfDUaAgLDqZOrVpE1q1z30bKTMm6kcus/yzktyO/K2lTxg9j1OO2150lF15j9Jl55OmNRxQNC+nK6+GPW5U9f/gaP3+aqDhnDTqG0evF1qhcnH9CQ1eiZ8sHB7l62jhVqPFzZ/CbHS2cNK2sZ/TpTzlVcAmAR4I68E7kU2YyqRfTGPbc6xgMMmp3N75e8D71ateqFr2zc3JZt2WL8gOiU0xr2rZoUS11CQRVRThoTkh1OGiply+z+ddddilLICiPSqXCz9sbPx8f/Ly9qRUURFhIMN6eng4zUqHXG9i8Yy+fL19HZrZxek6SJKZNepqnHulvM19y4TUmJS0gXZsLQJxvc/4vahyuVqY2T++8yN7FvyuOc01yzkopKdCy+V8HyEgxPg+NnzuD3+hAQD0fM7nzRekM++MTCg3G9YYfNBjJoEDzUxnmfrma1d8ZQ5t0ahfNvHderrbPy7kLF9i6Z69yPSCuG43q16+WugSCqiCmOAUCQaWoJAmVSoVKpUKSJNxcXXFzc8Xd1e3WezclTaP2wFPjgcbDA0+1B95ennhpNPc0ZtntUKLV8vOeg6z8Np6k5LL1UIEBfrz7ymQ6xLS0mfdMwWUmJy0kW3cTgKaaunzUcLSFcyYbZI6sP0vi+rNKWqMutenx3AM1yjkDcPd0Y9BrHdj8/gEyU3MpzCnhh3f2M+CVdtRqXLY7NcIjhDfCH+fN1DUAzE5dS111EA94RSgyk0cNZfueg1zPyOK3wyf4add++vfoVC16NwoPp8MDuRw4fgKAn/buwyWuG5F161ZLfQJBZYgRNCekOkbQrmVkGCNqSwASEpT9UpWM19xKk27J3LqlyCtykpKivFfklB+/krEspSjzvFbrKFeGZBQ2f7Umb1qHmbxSobm9VvKW3iuf17pdtuowsatcGVJZgnleqdyzVfS0fA5K+5SzqzSv6ciDYo8k4XLL6Sp1wFTl3ku3/moSRUXFHD5xmt0HjrJjz0Gyc/LM7vfo1JbX/j6GoAA/m2X8nH2cmalfc9NgXMDeTFOXBY0nE+hmPp1XUqDll/nHuXDkupLWalAkHUc0Q1LVrOdqSvFNLfEfHCTj1mYBF3cVfaa0Ibxt2TSlLMvMPP81GzMPAhDg6s3/mk01W7v3y77DvPLePMC4i/ar/5tdYQy6u0GWZX5O+I0/U1MB48jvQOGkCe4TwkFzQqrDQRMIaholWi1Z2blkZt8gIzuHi2nXSL14hdNnUzmbclEJOmtKs6gIpo4fTmzr5lZKNFJs0PJ5WjxfXftFSWvtFclnURPxddWYyV5PyuaX+cfJvVYAGH88dHi6GdEPNrCPkQ5OSYGW7XMTy8JuSBD7tya0fqSh4vSXGHQ8l7SQQzfPARCuDmFxk+cIdfdXynn1/c/4eY/RiYuKrMfSOTOrbROJwWBge0ICZ88bR1NVkkRcbCwtGzvvJg6BcyIcNCekOhy0Eq2W3DzjsSqyLNtYsF+6uL78AnaTzQCy+cJ05PIL1cuusVqWST2VlmWSp9yGBdnkujSf6WJ7o9rlrsvZXnZtZSG/zbLMN0xYbGSwuinA/PmB9VezDQClz9oir7Wyyp6f6bVlWRU9g8rKMmlDG2XJJm1R9uwq/zzo9Qb0Br3xVa9Hd+u1NF2n01NcUnJr52gxRUUl5OUXcDO/gKrg5upKzy7teOLB3rRp1bTC0cLfcv/kXxe+5UJxupI2MKANsyKeNNuFqCvRc/S7cxz7/pxij9rLjV5/b029B0KqpFdNQa/V8+sXJ0hOuKKkRbQPJW5iKzy8jeE2cnUFjD4zj5Qi4yhjHfdAFjV5ThlJu1lQyNiX3ib1orGMPt3a868Zz+NSTdPD5Z00gOgmTejSJua+xOIT/DURDpoTUh0O2p4DR3lp9ly7lCUQODKSJNEwvC7RzRvRJfYBOrZphafGo8I8R24ms+jKT+zLLYs274qKafUf5umQOMWpk2WZC0eu89vKP8i7XqjIhkT50euFGHxDPavHKAdHNsgc/f6c8SioW984ngFquj/7APWigwFIK85iUtICJchviJsvcxqNVdakpV5MY8w/3ib/Vky0AT06Mfufk3CtJofJYDCQcPQox06XtXlwQAB9u3RWTiAQCKoT4aA5IcJBEwgskSQJD7U7Gg81Xp4aAv19CQrwI9Dfj8AAX+qGhhBRL4zI+nXw8tRUWl6mNo+t2UfZmHmQP26FgyglxiuSNyOeoLGmDmB0zC7/nsmRb5O4/ueNMp1cJNoOjaL1ww1r3GaAO+FC4nV++fwYJQVl4VmiutWhw/CmeAZ4cL0kh8lJX5BcdA0wHg/1Sr1HGBbSFUmS2HPgKK+8Nw+dzhgOo1eXWN755yQ8qjFm3qlz58zO6nRRqWjTogVtWjTHzVXssxNUH8JBc0Kqw0H7IymFpV9vNF5IksmCdpOF5yYLy5WF7aXyJgvWJZNF9eUXqFuWZb4A37j+XbJaluVr6QL5qpRVqnfZNabX5TcZ3HoGpuWWX2QvlSvbfKF+ZWUpJZldS5jUUyprpU7Ta4tNE+WfgfLMyrWpSdmlbVimp6U95mWVa9MKPw8m9lb6eSivB7i4uODiojK+qozvXU3SVCoVHu5uqNXud7yZQZZlMnR5nMy/wPH88/yW+ycnCy5ayNVxD2Ry7f48HBSLSlJRUqDl3L4r/PHzBbLOm280qN0ikC5jWliEl/irk59ZyK4vT3D5RNlxUG4eLkQPaUDLAZHkuxczLXkZiTdTlPudfZvyev2hhHuEsHv/UWb8679KxP+GEXV5/9XnaRRRr9p0Ts/KYntCAtk5uUqal0ZDbKtWNG3YoNpG8QR/bZzOQSsoKGDx4sXs3LmTvLw8wsPDGTFiBH369Kk0b3Z2NgsWLCAhIYGioiKioqKYMGEC7dq1s5A9dOgQS5Ys4ezZs3h4eNC5c2eee+45AgICzOR0Oh0rV64kPj6ezMxMateuzWOPPcbjj1sGqUxLS+Pzzz8nMTERvV5Py5YtmTx58m07WWKTgEBgiSzL6DFQYtChlXVoZf2t93pKZB15+kJydQXk6ArI0ReQrs3lUnEml4ozuFicqcTjskYLz3oMrxXHoMC2aG9ouXwik9SDV7l0PAO91nyzgX9db9o9EUVkh7Aat/vVXsgGmdM7LnJo7Z8U52uVdHdPV5r3DSeqdx2WFO9g5fVfy+5JrjxVqxujQ3ty9vh5pr83j6JiY5up1e6M+dsQRgwdWG2bB3Q6HQdOnOD46TMYTL42NR4etGrcmGYNG+Dj5VUtdQv+mjidgzZt2jROnz7N5MmTqV+/Ptu3b+eHH37grbfeol+/fjbzlZSUMHHiRG7evMnkyZMJCAhgw4YNJCQkMHfuXGJiYhTZo0eP8tJLL9G5c2cee+wxsrOzWbhwId7e3ixatAh3d3dF9qOPPmLbtm2MHz+eZs2aceDAAVavXs2ECRMYNWqUInfjxg3GjRuHj48P48aNw93dnVWrVnH27Fm+/PJLwsOrfgZfdThov+df4MsrPwEmUfGh7J3ponFr903SzdJsfLysypqWayVfpfXK5tIV62hal/U6Kq1XtrTBvF7LfGaL723UYTW/DR2tv6s4n219q66jVX0ryWezXqs6Wi/LdBOEaR6drKdE1lvV605pqqlDR48mdMyNwueiB1nnc8lIzSUnLd+qfEiUH9GDG9CgQ1iNDp9hT4pySzi07k/O7LyEbDBpOwnqRQeT1bWA5b6/cE2Xo9xyl1wZHNiWDkUN+N+8jZxNLZt+DgnyZ8Rjg3iwbzf8favnVIobubnsSzxK6uXLFvfq1KpFg3r1lFMxhIMuuBucykFLSEhgxowZzJw5k759+yrp06ZNIzU1lXXr1tncYbNhwwbmzp3L/PnzadWqFWD8RTRu3Dg0Gg0LFy5UZCdNmkRRURFLly7F9dYagxMnTvDCCy8wbdo0Hn30UQBSUlIYM2YMEydOZOTIkUr+jz/+mG3btvHtt9/i6+sLwIIFC1i3bh2rV68mLCwMgPz8fJ566inatm3L22+/XeXnUB0O2q6cU/z97GK7lCUQOBMusopgvQ/BxT6E5foTdtWP4BQfXK6Atqjis0M1fu5Edgijaa96BEeKheN3Su61fI5+n0zS7svIevOvJK27jt8HXmZ/o3NoVebtUVvyw+9nmdRfUzGYOHjubm5069CauI5t6NS2FcGB/nbX+XpmJol//EHyxUtWf1B6engQGhxMaHAQoUHBBAX442Hy414gqAynWuG4e/duNBoNPXv2NEsfPHgw77zzDqdOnSI6Otpm3vDwcMU5A3B1daV///58+eWXpKenExISQnp6OqdPn2bSpEmKcwYQHR1N/fr12bVrl+Kg7d69G1mWGTRokFldgwYNYtOmTezfv18Z1du1axdt27ZVnDMALy8vunfvzrZt29DpdGb13WsyUnIqF6rpmP6AN/t/K1lJs5EPySLd1m9oSbZyp5KyLMqTrcjaLK80TbJMq7AOy7Jt3S+ro+plgfVna/X52LivMki46FW3/iRUyvuyNPdiVzyK3PAockNd5IamwB2/HA3eeR6oytVlQI9llDTjov/gBr7UbRVM3ehgQpsGoBKjZXeNb6gX3SdFE/u3xpz59RJndlziZoZxF6xbiSttNkbQxDOMo7HnOfHAJbRqo6N2Rc7hSm8g2g/XbfmoThunS0u0WnbsPcSOvYcACA72p2lUBBG1w6gbFkLtWiHUCQsmwM8Xby8N7m5ut61zraAgBnTrRl5+PmdSUjmTkkJOXtk6xIKiIlIuXSLlUtkIn9rNDV8fH3y9vfD18kbjocZD7YGnhxoPDw/Ubm64urri5uqK6631lYK/Lk7loKWkpBAREWHhyDRq1Ei5b8tBS05OpnXr1hbppnlDQkJISUkxSy8ve+LECTN9/P39CQoKspArvQ9QXFxMWloa3bt3t1pmcXExV65cof59PPettSGCCfN7WL9pzWmoxGGwJWuKrS9g61/y1p2VsrKslmDTqbLp0AgEgKvaBa9AD7yCPAgM9yEo3JfACB/863rj4iq+NKsLzwAP2jwaRczDjUg/d4OUA9e4eDSdG5dv4lWgpuuuJnTY14hzja9zukUal+tnY3CRIcQF3QhfSNfjcqgI1dFipIKyzp+RcYOMjBvs5Zj1il0kVGoVkpsKyUVCUknKK6XvTTfHyFB6Oogx0fhfx0ejoW5QICG+fgT6eONe7ruqWKslPSuL9KysKj0PvcGATq9HZzAoMQUNSozIstiI1tKsYW3JitX7NnCiCTe7UDssjL//7Yn7Vr9TOWg5OTnUqVPHIt3Hx7hLKjc31+JeKbm5uYpcRXlzcowjSaVTk+VlTevIycmxKqfRaHBzc1PKysvLQ5Zlq/WX5s/JybHpoGVkZJCZWbbj6exZ43l+58+ftyp/J2Rcz0HlVmh5o5wfU5UlFZXLWBmRKZ9U7tri30K5DNb+bZT+H62w3soSrNhi4dxVKU8lVMVfLGdz1dri9h1Ryyy331539hCqoEslj94ik2Q8rsfF1fjF6+IiIbmpcHGRULmpcFO74ubhcuvPFbW3Gxpfd1w9zP81GrhJRtFNMs7dvg2CO8c/VsI/thZFef5kpuaSe7WAG1eKCU9VE3KsLlrXMNJDc0kPzSUzKJ/swGK0rUDfUo10TYfqvA7pqg7S9UjaCirSg1xSuYNSGfnAVcqC23p7aQjw9yEgwBsvTw1enmo0GrVd16ZJgNhDWj0kn03izJkzlQveAREREXh4VBx/0akcNLizL5yq5C1/z5bs7dRf1TIru7dx40aWL19ukf7ee+9VWReBQCCokaSVvfW49eco6AohPQPSKxcVOCgT4+OrpdyqrCF3KgfNz89PGZUyJe/WvL+10axSfH19rY6wleYtHd3yuxUh2lY9pqNgfn5+ymiWKYWFhWi1WkUfHx8fJEmyWn9pWkW6P/zww3Tt2tVMj/Pnz9OkSROzHaV3y/nz53nvvfd48803iYiIsFu5jkJNtw9qvo013T6o+TYK+5yfmm7jvbCvKuU6lYPWsGFDtm/fbrGgPjk5GYAGDRpUmPfcOcv5idK0hg0bmpWRnJxM586dzWSTk5PN6mjYsCE///wzmZmZZuvQyuujVqupW7eukl6+TLVaTe3atW3qHhwcTHBwsFlabGysTfm7JSIiokbHV6vp9kHNt7Gm2wc130Zhn/NT02283/Y51WrXuLg4CgsL+fXXX83St2zZQnBwMC1atLCZt3v37ly4cIFTp04paTqdjp9++okWLVooDlBISAjNmzdn27Zt6PVlW7pPnjzJhQsX6NGjbCF9t27dkCSJLVu2mNUVHx+PWq2mY8eOZrofOXKEa9euKWkFBQXs2rWLrl273tcdnAKBQCAQCBwLp/IKOnXqRGxsLHPmzKGgoIC6devy888/s3//ft58800lBtoHH3zA1q1bWbNmjRLWYvDgwWzYsIGZM2eaBaq9cOECc+ean0H57LPPMm3aNGbOnGkWqLZBgwZmITUaNGjAgw8+yLJly1CpVDRv3pyDBw+yadMmJkyYYDZtOXz4cLZt28aMGTMYP348bm5urFq1ipKSEsaOHXsPnp5AIBAIBAJnwakcNDAujF+0aBFLlixRjnqaNWuW2VFPBoMBvV5vtiXY3d2duXPnsmDBAj799FOKiopo3LgxH3/8sdkpAgBt2rTho48+YunSpbz66qvKUU/PP/+8xZqvadOmERwczPr168nKyiIsLIwpU6ZYHPXk7+/PZ599xvz583n//feVo54+/fRTh5nDDwoKYsyYMRZhQ2oKNd0+qPk21nT7oObbKOxzfmq6jY5in1OdJCAQCAQCgUDwV8Cp1qAJBAKBQCAQ/BUQDppAIBAIBAKBgyEcNIFAIBAIBAIHw+k2CQggMTGRqVOnWr23YMECWrZsqVyfOXOGL774glOnTuHi4kKbNm144YUXrB6Z9e2337JhwwauXLlCUFAQgwYNYtSoUVUKAaLT6Vi5ciXx8fFkZmZSu3ZtHnvsMYvNEvfLxosXL7Jx40YSExNJS0tDkiQiIiJ48skn6dmzZ6X6XLlyhWHDhlm9V36Tyv2wD7B61ivApEmTGDlyZKU6OXobxsfH8+9//9tmfZXZeb/a8Pjx48THx5OUlERKSgparZa1a9fajH3oKP3Q3vY5Wh+E6mlDR+qH9rbPGfugXq/nm2++4eDBg6SkpJCbm0toaCjdunVjxIgRVo9gdJQ+KBw0J2bSpEm0adPGLM00kO758+eZOnUqUVFRzJ49m5KSEpYuXcqLL77I0qVL8ff3V2RXrFjBkiVLGDFiBO3bt+f06dMsXryYjIwMXnnllUp1mTNnDtu2bWP8+PE0a9aMAwcOMG/ePAoKChg1atR9t/HAgQMkJCQwYMAAmjVrhl6vZ8eOHcycOZNx48YxZsyYKunz+OOP07dvX7O0evXq3Xf7SunZs6fFP8DQ0NAq6eLobdi5c2cWLFhgUf6SJUs4dOiQzS/G8tzrNjx8+DCHDx+mcePGeHl5kZiYaLMsR+yH9rLPUfsg2LcNwfH6ob3sc8Y+WFxczLJly+jTpw9DhgzBz8+PP//8kxUrVrBv3z4WLVqEWq1W8jlUH5QFTseRI0fkuLg4eefOnRXKzZw5Ux4yZIh88+ZNJe3KlStyr1695Pnz5ytpN27ckPv06SN/9NFHZvlXrFghd+/eXU5JSamwnuTkZLl79+7yypUrzdI/+ugjuW/fvnJOTk7VDDPB3jZmZ2fLBoPBIv/06dPlfv36ycXFxRXWk5aWJsfFxcmrV6++PUNsYG/7ZFmW4+Li5Dlz5tyRPs7QhtYoKCiQ+/fvL7/wwguV6nO/2lCv1yvvV69eLcfFxclpaWkWco7WD+1tn6P1QVm2v42y7Fj9sDrsK4+j90GdTiffuHHDIn3nzp1yXFycvHXrViXN0fqgWINWQ9HpdOzbt48ePXrg5eWlpIeFhdGmTRt2796tpO3fv5+SkhIGDx5sVsagQYOQZdlM1hq7d+9GlmWzIL6l+YuLi9m/f78dLLLkdmz09/e3eiB98+bNKSoqsnpO6v3mduy7W5yhDa2xY8cOCgsLefDBB6tFP3ugUlXt36yz9sOq2ueMfbCUqtp4tzh6G1rD0fugi4uLcsa2Kc2bNwfg+vXrSpqj9UHhoDkxc+fOpVevXgwcOJCXX36Z48ePK/fS0tIoLi6mUaNGFvkaNWrE5cuXKS4uBiAlJQUoO4+0lODgYPz8/JT7tkhJScHf398iqF9p3ZXlrwh72WiLxMRE/P39CQgIqJI+q1evpnfv3vTr148XXniBPXv23J5B5bC3fdu3b6dv37706dOHCRMmsHnz5irp4axt+OOPP+Ll5UWvXr2qrM+9bMPbwVH7ob3ss8X97oNgfxsdrR9WZxs6ax88cuQIAJGRkUqao/VBsQbNCfHy8uKJJ56gTZs2+Pr6cvnyZdasWcPUqVP58MMP6dChAzk5OQBmx02V4uvriyzL5OXloVaryc3Nxd3dHY1GY1W2tCxb5OTkWK1Ho9Hg5uZWaf57YaM1fvjhBxITE5kyZYpyTJgt3NzceOihh4iNjSUoKIhr166xfv16Xn/9daZPn86QIUPuu319+/alc+fO1KpVi+zsbH788Uc++OAD0tLSmDBhQoX6OGMbnj9/nt9//52HH34YDw+PSvW5H214OzhaP7S3fda4n30QqsdGR+qH1d2GztoH09PTWbhwIc2aNaNLly5KuqP1QeGgOSFNmjShSZMmynXr1q2Ji4tjzJgxLFiwoMqdztp0w93I2TN/ddv422+/MXfuXHr27Fml3TXBwcEWC0R79erF5MmTWbhwIQMHDrytA++rw76ZM2ea3evZsyevvvoqq1at4oknnrDYUHA7OGIb/vjjjwBV/qfuqG1YVe51P6xu++53H4TqsdGR+mF1t6Ez9sHc3FymT5+OLMvMnj37tqZ373UfFFOcNQQfHx+6dOnCuXPnKC4uVubcra3ryM3NRZIkvL29AeMvg5KSEoqKiqzKWvtFYIqfn5/VegoLC9FqtZXmryp3Y6MpBw4c4M033yQ2Npa33nrrjjudq6srvXv3Jicnh0uXLt1RGabYyz5T+vXrh16v5/Tp0xXKOVsb6nQ6tm7dSlRUFM2aNbtjfaq7DW8HZ+iHd2OfKY7aB8F+NpriSP3QXvY5Yx/My8tj2rRpZGRkMGfOHItQRY7WB4WDVoOQTY5VrVOnDmq1muTkZAu55ORk6tatq0wblc63l5fNzMwkJyfHbDu2NRo2bMiNGzfIzMy0qAeoNP/tcKc2lnLgwAFef/11YmJiePfdd3Fzc7OLPvZaRHy39tmiMv2cqQ0B9u3bR3Z2tl0WJldnG94OztIP79S+Uhy9D5qWaW8cpR/awz5n64N5eXm89NJLXLlyhU8++cTquldH64PCQash5OXlkZCQQOPGjVGr1bi6utKlSxd27dpFQUGBInft2jUSExPN4tV07NgRd3d34uPjzcqMj49HkiTi4uIqrLtbt25IksSWLVss8qvVajp27GgHC+/ORij7YnjggQf417/+hbu7+13po9Pp2LlzJ35+ftStW/euyoK7t88aW7duxdXV1WwawBrO0oal/Pjjj7i7u9O/f/+70qe62/B2cIZ+eDf2geP3Qbh7G63hSP3QXvY5Ux8sdc7S0tL45JNPbLaDo/VBsQbNCXnnnXeoVasWzZo1w8/Pj0uXLrF27VqysrJ47bXXFLlx48YxadIkZsyYwYgRIygpKWHJkiX4+fnx1FNPKXK+vr6MHj2aJUuW4OvrS/v27fnjjz9Yvnw5Q4YMMdvlsmXLFj788ENmzJjBwIEDAeOvggcffJBly5ahUqlo3rw5Bw8eZNOmTUyYMOGOhuXtbePx48d54403CAwMZOTIkZw9e9asvsjISCXMgzUbP/vsM3Q6HdHR0QQGBnL9+nW+/fZbkpKSeO211ypd4Fzd9q1Zs4bU1FTatWtHSEiIsjj54MGDjB071mzdi7O2YSkZGRkcOHCAXr16WY0CbsvG+9WGN27c4OjRo0DZL+n9+/fj7++Pv78/MTExgOP1Q3vb52h9sDpsdLR+aG/7SnGmPlhcXMzLL79MUlISf//739Hr9Zw8eVIpw9/fX3EMHa0PCgfNCWnYsCE7d+5k48aNFBYW4uPjQ3R0NG+88YYS2wUgIiKCefPm8cUXXzBz5kxcXFxo27Ytzz//vMVC1dGjR+Pp6cmGDRv4+uuvCQwM5Omnn2b06NFmcrIso9frLYaQp02bRnBwMOvXrycrK4uwsDCmTJlyx8cE2dvGQ4cOUVxczNWrV/nHP/5hUd+nn36qRKK2ZmODBg3YuHEj27dvJz8/H09PT5o3b85//vOfO1poa2/7wsPD2bt3LwkJCcqux6ioKKvHpzhrG5YSHx+PXq+vcGGyI7VhSkqKxcLxOXPmABATE8O8efOUdEfqh/a2z9H6YHXY6Gj9sDo+o+BcfTArK0tZ+1feDoCBAwfy+uuvK9eO1Aclubom2wUCgUAgEAgEd4RYgyYQCAQCgUDgYAgHTSAQCAQCgcDBEA6aQCAQCAQCgYMhHDSBQCAQCAQCB0M4aAKBQCAQCAQOhnDQBAKBQCAQCBwM4aAJBAKBQCAQOBjCQRMIBAInJzU1FUmSlL+wsDCz+7Nnz0aSJH755Zf7o2A5Ro4caabv8uXL77dKAoHDIRw0gUDgsJR3PKz9lT+G5q9M69atmTVrFv/85z+rva6FCxciSRLPPvtspbLt2rVDkiSOHDkCwNChQ5k1axaPPPJIdaspEDgt4qgngUDg8DRq1IiRI0davVd+tOivTExMDLNnz74ndQ0fPpxp06bx9ddfM3fuXDQajVW548ePc+TIEWJiYmjbti1gdNCGDh3K8uXL+f777++JvgKBsyEcNIFA4PBERUXdM8dDUDV8fX154oknWLFiBevXr2fEiBFW5ZYsWQLA+PHj76V6AoHTI6Y4BQJBjUKSJHr27El6ejrjxo2jVq1aaDQaOnXqZHMNVl5eHrNmzaJly5ZoNBr8/f0ZOHAge/bssZDt2bMnkiRRXFzMzJkziYqKws3NzcyBXL9+PbGxsWg0GkJDQ5k4cSLZ2dlERkYSGRmpyD3zzDNIksTBgwet6jV9+nQkSWLDhg1380hscvz4cerUqUNwcDD79+9X0lNSUpgwYQLh4eGo1Wpq167NmDFjOH/+vFn+Uqdr2bJlVssvKSlh1apVqNVqmw6cQCCwjhhBEwgENY4bN27QtWtXfH19GTFiBNevX2ft2rUMGDCAw4cP06pVK0U2KyuL7t27c/LkSeLi4hgwYAA5OTl8//339OrVi3Xr1vHoo49a1DF06FCOHTvGgAEDCAwMpGHDhgAsXbqU8ePH4+/vz+jRo/Hz82Pz5s3069cPrVaLm5ubUsbkyZNZsWIFixYton379mbla7VaVqxYQVhYGA899JDdn9Hu3bt56KGH8PX1ZceOHTRr1gyA/fv3M2DAAPLz83nooYeIiooiNTWVVatWER8fT0JCgmJr9+7dady4MTt27CA1NdXM+QTYuHEjmZmZDB8+nICAALvbIBDUaGSBQCBwUFJSUmRAbtSokTxr1iyrf/Hx8WZ5ABmQn3/+eVmv1yvpixcvlgF58uTJZvJPP/20DMhLly41S7969apcv359OSQkRC4sLFTSe/ToIQNyTEyMnJmZaZYnOztb9vb2ln18fORz584p6VqtVu7bt68MyBEREWZ5WrVqJfv4+Mg3b940S1+/fr0MyDNmzKjyc3rmmWes3p81a5YMyDt37pRlWZa/++472cPDQ27RooV88eJFRa6kpESOjIyUfXx85KNHj5qVsXv3btnFxUUeMmSIWfq///1vGZBnz55tUe+gQYNkQN6+fbtVvZYtWyYD8rJlyyq1USD4qyEcNIFA4LCUOh4V/U2dOtUsDyB7eXnJeXl5ZularVZ2dXWV27Ztq6Slp6fLLi4ucp8+fazWP2/ePBmQN23apKSVOmjff/+9hfzy5ctlQH7ppZcs7iUkJFh10ErrWLJkiVn64MGDZUmS5KSkJKu6mXI7DtrixYtlFxcXuXPnzhYOZqlT+O6771otZ+jQobJKpZJzcnKUtLS0NNnFxUWOjIyUDQaDkn758mWr6aYIB00gsI2Y4hQIBA7PgAED2LJlS5XlGzdujLe3t1maq6sroaGh3LhxQ0k7ePAger2eoqIiq5sQkpKSADh9+jRDhgwxu9ehQwcL+WPHjgHQpUsXi3sdOnTA1dXyX+6oUaOYMWMGixcvZty4cQBcvnyZrVu30qNHD6Kioio29jaYO3cuGzduZPDgwaxbtw5PT0+z+7/99htgtNfa87h69SoGg4E///yT2NhYAGrXrs2gQYP44Ycf2LlzJ7179wZg+fLl6PV6xo4diyRJdrNBIPirIBw0gUBQ4/Dz87Oa7urqil6vV66zsrIA2Lt3L3v37rVZXn5+vkVaaGioRVpubi4AISEhFvdUKhXBwcEW6f7+/jz55JN89dVXnDp1ihYtWrBs2TL0ej0TJ060qdOdsHv3bgAGDhxo4ZxB2fNYtWpVheWUfx7jx4/nhx9+YNmyZWYOmkqlYsyYMXbQXCD46yF2cQoEgr8svr6+ALz88svIxiUfVv9mzZplkdfaqFBpeenp6Rb3DAYDGRkZVvWYPHkyAIsXL0aWZZYtW0ZgYCBDhw69Y9ussWTJEtq2bcvUqVOZP3++xf1S/Tdt2lTh8+jRo4dZviFDhhAaGsq3335Lbm4uu3fvJikpiX79+hEeHm5XGwSCvwrCQRMIBH9Z2rdvjyRJJCQk2KW81q1bA7Bv3z6LewcOHECn01nN17lzZ6Kjo1m5ciXx8fEkJyczcuRIPDw87KJXKQEBAWzfvp22bdvywgsv8Pnnn5vd79ixI8BtPw9XV1dGjx5NYWEhX3/9NUuXLgVE7DOB4G4QDppAIPjLEhYWxpNPPsm+ffv4+OOPkWXZQmb//v0UFBRUqbxHHnkEb29vFi9eTEpKipKu0+l46623Ksw7adIkMjIylGnNCRMm3IYlVafUSYuNjeXFF1/kv//9r5n+4eHhzJkzh127dlnk1Wq1VmPDQZkzNn/+fNatW0dQUJA4ykkguAvEGjSBQODwnD17tsKTBO7mlIH58+dz5swZpk+fzsqVK+ncuTN+fn5cvHiRw4cPk5SUxJUrV6yu2SqPv78/c+bMYdKkSbRt25Zhw4YpcdDUajV16tRBpbL+u7h0s0BaWhodO3YkOjr6jm2qip4//fQT/fv3Z8qUKciyzJQpU1Cr1XzzzTcMGjSIHj160KdPHyVm3IULF9i9ezdBQUGcPn3aosymTZvStWtXZS3fxIkTcXd3rzYbBIKajnDQBAKBw3Pu3Dnefvttm/fvxkELDAxk3759fPbZZ6xdu5ZVq1ZhMBgICwujdevWvPXWW1YX99ti4sSJBAQE8P7777N8+XL8/Px4+OGH+fDDD4mIiKBRo0ZW8/n5+fHII4+wZs0au28OsIapkzZ16lRkWWbq1Km0b9+eY8eO8fHHH7N582b27NmDWq2mbt26PProowwfPtxmmePHj1cctNIdqQKB4M6QZGtj+gKBQCCwK2fPnqVx48Y8+eSTrF271qpMy5YtuXDhAleuXLEIE1IRqampNGjQgGeeeYbly5fbSePqZ/ny5YwdO5Zly5aJ3Z4CQTnEGjSBQCCwI9nZ2RQXF5ulFRYW8tJLLwFYPTYKYPPmzZw6dYpRo0bdlnNmyldffYUkSYSFhd1R/nvFyJEjkSSJsWPH3m9VBAKHRUxxCgQCgR359ddfGT9+PP379yc8PJyMjAzlrMrevXszbNgwM/kFCxZw8eJFFi1ahEajYfr06bddp7+/v1kokDt18O4VQ4cONQvAGxMTc/+UEQgcFDHFKRAIBHYkKSmJt956i3379inx0KKiohg2bBj//Oc/LUJnREZGcunSJZo2bcqHH35ocWKBQCD4ayIcNIFAIBAIBAIHQ6xBEwgEAoFAIHAwhIMmEAgEAoFA4GAIB00gEAgEAoHAwRAOmkAgEAgEAoGDIRw0gUAgEAgEAgdDOGgCgUAgEAgEDoZw0AQCgUAgEAgcDOGgCQQCgUAgEDgYwkETCAQCgUAgcDD+P7SyxYwOWgBNAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -9274,9 +4299,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "Python [conda env:COSI]", "language": "python", - "name": "python3" + "name": "conda-env-COSI-py" }, "language_info": { "codemirror_mode": {