diff --git a/refinements/binrat.v b/refinements/binrat.v index c6883de..9028280 100644 --- a/refinements/binrat.v +++ b/refinements/binrat.v @@ -34,6 +34,9 @@ Proof. rewrite -!binnat.to_natE; apply Pos2Nat.inj. Qed. Lemma nat_of_pos_gt0 p : (0 < nat_of_pos p)%N. Proof. by elim: p =>//= p IHp; rewrite NatTrec.doubleE double_gt0. Qed. +Lemma nat_of_pos_gtr0 p : (0 < Posz (nat_of_pos p))%R. +Proof. by rewrite -[0%R]/(Posz 0) ltz_nat nat_of_pos_gt0. Qed. + Lemma Posz_nat_of_pos_neq0 p : Posz (nat_of_pos p) == 0%R = false. Proof. rewrite -binnat.to_natE. @@ -227,6 +230,11 @@ case: n => //= p; first by rewrite binnat.to_natE. by rewrite abszN absz_nat binnat.to_natE. Qed. +Lemma Z2int_Z_of_nat n : Z2int (Z.of_nat n) = n. +Proof. +by case: n => //= n; rewrite Pos.of_nat_succ -binnat.to_natE Nat2Pos.id. +Qed. + (** *** Various lemmas about gcd *) Lemma dvdnP m n : reflect (Z.divide (Z.of_nat m) (Z.of_nat n)) (m %| n). @@ -301,16 +309,7 @@ Arguments refines A%type B%type R%rel _ _. (* Fix a scope issue with refines *) (** *** Conversion from [bigQ] to [rat] *) Program Definition bigQ2rat (bq : bigQ) := let q := Qred [bq]%bigQ in - @Rat (Z2int (Qnum q), Z2int (Z.pos (Qden q))) _. -Next Obligation. -rewrite ltz_nat nat_of_pos_gt0 /=. -set q := [bq]%bigQ. -have /Qcanon.Qred_iff HQ := Qcanon.Qred_involutive q. -set n := Qnum (Qred q) in HQ *. -set d := Qden (Qred q) in HQ *. -rewrite ZgcdE in HQ. -by rewrite /div.coprime; apply/eqP/Nat2Z.inj; rewrite HQ. -Qed. + ((Z2int (Qnum q))%:Q / (Z2int (Z.pos (Qden q)))%:Q)%R. (** *** Conversion from [rat] to [bigQ] *) Definition rat2bigQ (q : rat) : bigQ := @@ -349,90 +348,51 @@ Proof. rewrite refinesE /r_ratBigQ /bigQ2rat; red; exact: val_inj. Qed. Global Instance refine_ratBigQ_opp : refines (r_ratBigQ ==> r_ratBigQ) -%R -%C. Proof. -apply refines_abstr=> a b. -rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rab. -rewrite /GRing.opp /= /oppq /opp_op /opp_bigQ /BigQ.opp. -move: rab; case b. -{ move=> n <-; rewrite /GRing.opp /=; apply val_inj=>/=. - rewrite !Z_ggcd_1_r /= gcdn1 !divn1 BigZ.spec_opp Z2int_opp. - by rewrite expN1r mulz_sign_abs. } -rewrite -oppq_frac. -move=> n d <-; apply val_inj=>/=. -set n' := Qnum _. -set d' := Qden _. -set n'' := Qnum _. -set d'' := Qden _. -set g := gcdn _ _. -have Hg: g = 1%N; [|rewrite Hg divn1]. -{ apply Nat2Z.inj; rewrite /g -ZgcdE /=. - apply Qcanon.Qred_iff, Qcanon.Qred_involutive. } -rewrite !Posz_nat_of_pos_neq0 divn1 expN1r mulz_sign_abs abszN -/g Hg !divn1. -rewrite !absz_nat. -have ->: (Posz (nat_of_pos d'') < 0)%R = false by []. -rewrite /= -(abszN (Z2int n'')) mulz_sign_abs; f_equal. -{ rewrite -Z2int_opp; f_equal. - rewrite /n' /n''; case (_ =? _)%bigN=>//. - rewrite BigZ.spec_opp /= Z.ggcd_opp /=. - by case (Z.ggcd _)=> ? p; case p. } -rewrite /d' /d''; case (_ =? _)%bigN=>//=. -rewrite BigZ.spec_opp /= Z.ggcd_opp /=. -by case (Z.ggcd _)=> ? p; case p. +rewrite refinesE => _ a <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=. +rewrite BigQ.strong_spec_opp Qred_opp [in LHS]/Qnum /=. +by rewrite Z2int_opp mulrNz mulNr. +Qed. + +Lemma Z2int_Qred n d : + ((Z2int (Qnum (Qred (n # d))))%:Q / (nat_of_pos (Qden (Qred (n # d))))%:Q + = (Z2int n)%:Q / (Z2int (Z.pos d))%:Q)%R. +Proof. +rewrite -(fracqE (Z2int n, Z2int (Z.pos d))) -[RHS]divq_num_den. +rewrite /Qred. +move: (Z.ggcd_gcd n (Z.pos d)) (Z.ggcd_correct_divisors n (Z.pos d)). +move: (Z_ggcd_coprime n (Z.pos d)). +case: Z.ggcd => g [n' d'] /=. +case: g => [|g|g]. +{ by move=> _ _ [_]; rewrite Z.mul_0_l. } +{ move=> coprime_n'_d' => _ [->]. + rewrite (nat_of_pos_Z_to_pos d) => /[dup] posd' ->. + have d'n0 : `|Z2int d'| != 0%R. + { rewrite normr_eq0. + case: d' posd' {coprime_n'_d'} => // d' _. + by rewrite Posz_nat_of_pos_neq0. } + rewrite !Z2int_mul abszM PoszM gez0_abs; [|by rewrite -[0%R]int2ZK Z2int_le]. + rewrite fracqMM ?Posz_nat_of_pos_neq0 // abszE. + move: (@valq_frac (Z2int n', `|Z2int d'|) d'n0). + rewrite scalqE // mul1r => [[neq deq]]. + have -> : nat_of_pos (Z.to_pos d') = `|Z2int d'| :> int. + { rewrite nat_of_pos_Z_to_pos Z2Pos.id ?abszE //. + by case: d' posd' {coprime_n'_d' d'n0 neq deq}. } + rewrite [X in (X%:~R / _)%R]neq [X in (_ / X%:~R)%R]deq. + rewrite (_ : gcdn _ _ = 1%nat) ?mul1r //; exact/eqP/coprime_n'_d'. } +by move: (Z.gcd_nonneg n (Z.pos d)) => + _ => /[swap] <-. Qed. Global Instance refine_ratBigQ_add : refines (r_ratBigQ ==> r_ratBigQ ==> r_ratBigQ) +%R +%C. Proof. -apply refines_abstr2=> a b rab c d rcd. -rewrite /GRing.add /= /addq /add_op /add_bigQ. -case Ea: ((valq a).2 == 0%R). -{ exfalso; move: rab Ea; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=><-/=; - by rewrite Posz_nat_of_pos_neq0. } -case Ec: ((valq c).2 == 0%R). -{ exfalso; move: rcd Ec; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=><-/=; - by rewrite Posz_nat_of_pos_neq0. } -rewrite -addq_frac ?Ea ?Ec // !valqK. -rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel; apply val_inj=>/=. -have ->: Qred [b + d]%bigQ = Qred (Qred [b]%bigQ + Qred [d]%bigQ). -{ by apply Qred_complete; rewrite BigQ.spec_add !Qred_correct. } -move: rab rcd. -rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=><-<-/=. -set nb := Qnum (Qred _). -set db := Qden (Qred _). -set nd := Qnum (Qred _). -set dd := Qden (Qred _). -rewrite /GRing.add /GRing.mul /=. -rewrite -!binnat.to_natE -multE -Pos2Nat.inj_mul !binnat.to_natE. -rewrite Posz_nat_of_pos_neq0. -case E: ((Z.ggcd _ _).2)=>/=; move: E. -rewrite (surjective_pairing (_.2))=>[] [] <- <-. -set nr := (Z.add _ _). -set dr := (BinNums.Zpos _). -move: (Z.ggcd_gcd nr dr) (Z.ggcd_correct_divisors nr dr) (Z_ggcd_coprime nr dr). -case (Z.ggcd _ _)=>g ab /= Hg; case ab=> a' b' [] /= Ha' Hb' CPab'. -rewrite -[intRing.mulz (Z2int nb) _]/(Z2int nb * nat_of_pos db)%R. -rewrite -[intRing.mulz (Z2int nd) _]/(Z2int nd * nat_of_pos dd)%R. -rewrite -[intZmod.addz _ _]/(Z2int nb * nat_of_pos db + Z2int nd * nat_of_pos dd)%R. -rewrite !Z2int_mul_nat_of_pos -Z2int_add -/nr !nat_of_pos_Z_to_pos -/dr. -rewrite Ha' Hb' !Z2int_mul !abszM. -have Pg' : (0 < Z2int g)%R. -{ rewrite Hg; case E: (Z.gcd _ _). - { by exfalso; move: E; rewrite /Z.gcd; case nr. } - { by rewrite /Z2int /Num.Def.ltr /GRing.zero /= nat_of_pos_gt0. } - by exfalso; move: E; rewrite /Z.gcd; case nr. } -have Pg : (0 < `|Z2int g|)%N. -{ rewrite absz_gt0; apply/eqP=>H; move: Pg'; rewrite H. - by rewrite /GRing.zero /Num.Def.ltr /= ltnn. } -rewrite -muln_gcdr !divnMl //. -have ->: gcdn `|Z2int a'| `|Z2int b'| = 1%N; [|rewrite !divn1]. -{ by move: CPab'; rewrite /coprime=>H; apply/eqP/H=>{}H; move: Pg'; rewrite H. } -suff ->: (Z2int g * Z2int a' < 0 = (Z2int a' < 0))%R. -{ rewrite -[_ (_ ^ _)%R _]/((-1) ^ (Z2int a' < 0)%R * Posz `|Z2int a'|%N)%R. - rewrite expN1r mulz_sign_abs /Z.to_pos. - move: Hb'; case b'=>//. - { by rewrite Z.mul_0_r=>[]. } - move=> p; move: Pg'; case g=>// p'. - by rewrite /Z2int=>/= H; exfalso; move: H; rewrite oppr_gt0. } -by apply pmulr_rlt0. +rewrite refinesE => _ a <- _ b <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=. +rewrite (Qred_complete _ _ (BigQ.spec_add _ _)). +case: (BigQ.to_Q a) => na da {a}. +case: (BigQ.to_Q b) => nb db {b}. +rewrite /Qplus !Z2int_Qred. +rewrite Z2int_add !Z2int_mul /= nat_of_mul_pos. +rewrite intrD PoszM !intrM. +by rewrite [RHS]addf_div // intq_eq0 Posz_nat_of_pos_neq0. Qed. Global Instance refine_ratBigQ_sub : @@ -445,91 +405,28 @@ Qed. Global Instance refine_ratBigQ_mul : refines (r_ratBigQ ==> r_ratBigQ ==> r_ratBigQ) *%R *%C. Proof. -apply refines_abstr2=> a b rab c d rcd. -rewrite /GRing.mul /= /mulq -mulq_frac !valqK /mul_op /mul_bigQ. -rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel; apply val_inj=>/=. -have ->: Qred [b * d]%bigQ = Qred (Qred [b]%bigQ * Qred [d]%bigQ). -{ by apply Qred_complete; rewrite BigQ.spec_mul !Qred_correct. } -move: rab rcd. -rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=><-<-/=. -set nb := Qnum (Qred _). -set db := Qden (Qred _). -set nd := Qnum (Qred _). -set dd := Qden (Qred _). -rewrite /GRing.mul /= -!binnat.to_natE -multE -Pos2Nat.inj_mul !binnat.to_natE. -rewrite Posz_nat_of_pos_neq0. -case E: ((Z.ggcd _ _).2)=>/=; move: E. -rewrite (surjective_pairing (_.2))=>[] [] <- <-. -move: (Z_ggcd_coprime (nb * nd) (Z.pos (db * dd))). -move: (Z.ggcd_correct_divisors (nb * nd) (Z.pos (db * dd))). -move: (Z.ggcd_gcd (nb * nd) (Z.pos (db * dd))). -case (Z.ggcd _ _)=>g ab /= Hg; case ab=> a' b' [] /= Ha' Hb' CPab'. -have ->: intRing.mulz (Z2int nb) (Z2int nd) = Z2int (nb * nd). -{ by rewrite Z2int_mul. } -rewrite Ha' !nat_of_pos_Z_to_pos Hb' !Z2int_mul !abszM. -have Pg' : (0 < Z2int g)%R. -{ rewrite Hg; case E: (Z.gcd _ _). - { by exfalso; move: E; rewrite /Z.gcd; case (Z.mul _ _). } - { by rewrite /Z2int /Num.Def.ltr /GRing.zero /= nat_of_pos_gt0. } - by exfalso; move: E; rewrite /Z.gcd; case (Z.mul _ _). } -have Pg : (0 < `|Z2int g|)%N. -{ rewrite absz_gt0; apply/eqP=>H; move: Pg'; rewrite H. - by rewrite /GRing.zero /Num.Def.ltr /= ltnn. } -rewrite -muln_gcdr !divnMl //. -have ->: gcdn `|Z2int a'| `|Z2int b'| = 1%N; [|rewrite !divn1]. -{ by move: CPab'; rewrite /coprime=>H; apply/eqP/H=>{}H; move: Pg'; rewrite H. } -suff ->: (Z2int g * Z2int a' < 0 = (Z2int a' < 0))%R. -{ rewrite -[_ (_ ^ _)%R _]/((-1) ^ (Z2int a' < 0)%R * Posz `|Z2int a'|%N)%R. - rewrite expN1r mulz_sign_abs /Z.to_pos. - move: Hb'; case b'=>//. - { by rewrite Z.mul_0_r=>[]. } - move=> p; move: Pg'; case g=>// p'. - by rewrite /Z2int=>/= H; exfalso; move: H; rewrite oppr_gt0. } -by apply pmulr_rlt0. +rewrite refinesE => _ a <- _ b <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=. +rewrite (Qred_complete _ _ (BigQ.spec_mul _ _)). +case: (BigQ.to_Q a) => na da {a}. +case: (BigQ.to_Q b) => nb db {b}. +rewrite /Qmult !Z2int_Qred /=. +rewrite Z2int_mul nat_of_mul_pos. +rewrite PoszM !intrM. +by rewrite [RHS]mulf_div. Qed. Global Instance refine_ratBigQ_inv : refines (r_ratBigQ ==> r_ratBigQ)%rel GRing.inv inv_op. Proof. -rewrite refinesE => x1 x2. -case: (ratP x1) => n1 d1 Hn1d1 rx {x1}. -apply/val_inj. -rewrite /inv_op /inv_bigQ [LHS]/=. -have ->: Qred [BigQ.inv x2]%bigQ = Qred (/ (Qred [x2]%bigQ)). -{ by apply Qred_complete; rewrite BigQ.spec_inv Qred_correct. } -move: rx. -rewrite /r_ratBigQ /bigQ2rat /fun_hrel => /(f_equal val). -rewrite [LHS]/= GRing.Theory.invf_div. -move: (fracqE (n1, Posz d1.+1)%R); rewrite /fst /snd => <-. -move: (fracqE (Posz d1.+1, n1)%R); rewrite /fst /snd => <-. -rewrite /=. -move: (Hn1d1) => /eqP ->; rewrite !divn1 -intEsign => -[]. -move: (Hn1d1) => /eqP; rewrite gcdnC => ->; rewrite !divn1. -set s := (_ (+) _)%R. -have -> : s = (n1 < 0)%R. -{ by rewrite /s addbC -[0%R]/(- Posz 0)%R ltzN_nat. } -move: (Qcanon.Qred_involutive [x2]%bigQ). -rewrite Qcanon.Qred_iff /Qinv. -case: Qnum => [|n2|n2] Hgcd H1 H2. -{ by move: H1 => /= <-. } -{ have -> : Qred (QDen (Qred [x2]%bigQ) # n2) = QDen (Qred [x2]%bigQ) # n2. - { by rewrite Qcanon.Qred_iff Z.gcd_comm. } - have -> : n1 == 0%R = false. - { by apply/negbTE/eqP; rewrite -H1 -[0%R]/(Z2int 0) => /Z2int_inj. } - apply: f_equal2; [|by rewrite -H1 -nat_of_pos_Z_to_pos]. - rewrite -H2 nat_of_pos_Z_to_pos. - case: ltP => Hn1 /=. - { by exfalso; move: Hn1; apply/negP; rewrite -leNgt -H1. } - by rewrite expr0z GRing.mul1r. } -have -> : Qred (Z.neg (Qden (Qred [x2]%bigQ)) # n2) = Z.neg (Qden (Qred [x2]%bigQ)) # n2. -{ by rewrite Qcanon.Qred_iff Z.gcd_comm. } -have -> : n1 == 0%R = false. -{ by apply/negbTE/eqP; rewrite -H1 -[0%R]/(Z2int 0) => /Z2int_inj. } -apply: f_equal2; [|by rewrite -H1 -abszN -Z2int_opp]. -case: ltP => Hn1. -{ by rewrite expr1z -H2 GRing.mulN1r. } -exfalso; move: Hn1; apply/negP; rewrite -ltNge -H1 -GRing.oppr0 /=. -by rewrite Num.Theory.oppr_lt0 ltz_nat nat_of_pos_gt0. +rewrite refinesE => _ a <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=. +rewrite (Qred_complete _ _ (BigQ.spec_inv _)). +case: (BigQ.to_Q a) => na da {a}. +rewrite /Qinv [Qnum (na # da)]/=. +case: na => [|na|na]. +{ by rewrite /= !mul0r invr0. } +{ by rewrite [Qden (_ # da)]/= !Z2int_Qred invf_div. } +rewrite [Qden (_ #da)]/= !Z2int_Qred invf_div. +by rewrite -!Pos2Z.opp_pos !Z2int_opp !mulrNz mulNr invrN mulrN. Qed. Global Instance refine_ratBigQ_div : @@ -543,20 +440,16 @@ Qed. Global Instance refine_ratBigQ_eq : refines (r_ratBigQ ==> r_ratBigQ ==> eq) eqtype.eq_op eq_op. Proof. -apply refines_abstr2=> a b rab c d rcd. -rewrite /eq_op /eq_bigQ /BigQ.eq_bool. -case E: (_ == _); case E': (_ ?= _)%bigQ=>//; rewrite ?refinesE //; exfalso. -{ move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. - move: E; rewrite -rba -rdc=> /eqP [] /Z2int_inj Hn /nat_of_pos_inj Hd. - move: E'; rewrite BigQ.spec_compare Qred_compare -Qlt_alt /Qlt Hn Hd. - apply Z.lt_irrefl. } -{ move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. - move: E; rewrite -rba -rdc=> /eqP [] /Z2int_inj Hn /nat_of_pos_inj Hd. - move: E'; rewrite BigQ.spec_compare Qred_compare -Qgt_alt /Qlt Hn Hd. - apply Z.lt_irrefl. } -move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. -move: E; rewrite -rba -rdc=> /eqP H; apply H, val_inj=>/={H}. -by move: E'; rewrite BigQ.spec_compare -Qeq_alt=>/Qred_complete ->. +rewrite refinesE => _ a <- _ b <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=. +rewrite /eq_op /eq_bigQ BigQ.spec_eq_bool. +case: (BigQ.to_Q a) => na da {a}. +case: (BigQ.to_Q b) => nb db {b}. +rewrite /Qeq_bool !Z2int_Qred /= /Zeq_bool -Z.eqb_compare. +rewrite divq_eq ?intq_eq0 ?Posz_nat_of_pos_neq0 //. +rewrite !nat_of_pos_Z_to_pos. +rewrite !gez0_abs; [|by rewrite -[0%R]int2ZK Z2int_le..]. +rewrite -!intrM -!Z2int_mul eqr_int. +by case: Z.eqb_spec => [->|eq]; apply/eqP => // eq'; apply/eq/Z2int_inj. Qed. Global Instance refine_ratBigQ_eq' : @@ -570,50 +463,38 @@ Qed. Global Instance refine_ratBigQ_lt : refines (r_ratBigQ ==> r_ratBigQ ==> bool_R) Num.lt lt_op. Proof. -apply refines_abstr2=> a b rab c d rcd. -rewrite /lt_op /lt_bigQ. -case E: (_ < _)%R; case E': (_ ?= _)%bigQ; rewrite refinesE //; exfalso. -{ move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. - move: E; rewrite -rba -rdc. - rewrite /Num.Def.ltr /= /lt_rat /numq /denq /=. - move: E'; rewrite BigQ.spec_compare Qred_compare -Qeq_alt /Qeq. - by rewrite !Z2int_mul_nat_of_pos=>->; rewrite ltxx. } -{ move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. - move: E; rewrite -rba -rdc. - rewrite /Num.Def.ltr /= /lt_rat /numq /denq /=. - move: E'; rewrite BigQ.spec_compare Qred_compare -Qgt_alt /Qlt. - rewrite !Z2int_mul_nat_of_pos=>H; move/Z2int_lt. - by apply Zle_not_lt, Z.lt_le_incl. } -move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. -move: E; rewrite -rba -rdc. -rewrite /Num.Def.ltr /= /lt_rat /numq /denq /=. -move: E'; rewrite BigQ.spec_compare Qred_compare -Qlt_alt /Qlt. -rewrite !Z2int_mul_nat_of_pos=>H. -by move/negP /Z2int_lt=>H'; apply H'. +rewrite refinesE => _ a <- _ b <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=. +rewrite /lt_op /lt_bigQ BigQ.spec_compare. +case: (BigQ.to_Q a) => na da {a}. +case: (BigQ.to_Q b) => nb db {b}. +rewrite !Z2int_Qred /= /Qcompare /= -Z.ltb_compare. +rewrite ltr_pdivr_mulr ?ltr0z ?nat_of_pos_gtr0 //. +rewrite mulrAC ltr_pdivl_mulr ?ltr0z ?nat_of_pos_gtr0 //. +rewrite !nat_of_pos_Z_to_pos. +rewrite !gez0_abs; [|by rewrite -[0%R]int2ZK Z2int_le..]. +rewrite -!intrM -!Z2int_mul ltr_int. +case: ltP. +{ by move=> /(proj1 (Z2int_lt _ _)) /(proj2 (Z.ltb_lt _ _)) => ->. } +by move=> /(proj1 (Z2int_le _ _)) /(proj2 (Z.ltb_ge _ _)) => ->. Qed. Global Instance refine_ratBigQ_le : refines (r_ratBigQ ==> r_ratBigQ ==> bool_R) Num.le leq_op. Proof. -apply refines_abstr2=> a b rab c d rcd. -rewrite /leq_op /le_bigQ. -case E: (_ <= _)%R; case E': (_ ?= _)%bigQ; rewrite refinesE //; exfalso. -{ move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. - move: E; rewrite -rba -rdc. - rewrite /Num.Def.ler /= /le_rat /numq /denq /=. - move: E'; rewrite BigQ.spec_compare Qred_compare -Qlt_alt /Qlt. - by rewrite !Z2int_mul_nat_of_pos=>H; move/Z2int_le; apply Zlt_not_le. } -{ move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. - move: E; rewrite -rba -rdc. - rewrite /Num.Def.ler /= /le_rat /numq /denq /=. - move: E'; rewrite BigQ.spec_compare Qred_compare -Qeq_alt /Qeq. - by rewrite !Z2int_mul_nat_of_pos=>->; rewrite lexx. } -move: rab rcd; rewrite refinesE /r_ratBigQ /bigQ2rat /fun_hrel=> rba rdc. -move: E; rewrite -rba -rdc. -rewrite /Num.Def.ler /= /le_rat /numq /denq /=. -move: E'; rewrite BigQ.spec_compare Qred_compare -Qgt_alt /Qlt. -rewrite !Z2int_mul_nat_of_pos=>H. -by move/negP /Z2int_le=>H'; apply H', Z.lt_le_incl. +rewrite refinesE => _ a <- _ b <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel /=. +rewrite /leq_op /le_bigQ BigQ.spec_compare. +case: (BigQ.to_Q a) => na da {a}. +case: (BigQ.to_Q b) => nb db {b}. +rewrite !Z2int_Qred /= /Qcompare /=. +rewrite ler_pdivr_mulr ?ltr0z ?nat_of_pos_gtr0 //. +rewrite mulrAC ler_pdivl_mulr ?ltr0z ?nat_of_pos_gtr0 //. +rewrite !nat_of_pos_Z_to_pos. +rewrite !gez0_abs; [|by rewrite -[0%R]int2ZK Z2int_le..]. +rewrite -!intrM -!Z2int_mul ler_int. +case: leP. +{ move=> /(proj1 (Z2int_le _ _)) /Zle_compare. + by rewrite Z.compare_antisym; case: Z.compare. } +by move=> /(proj1 (Z2int_lt _ _)) /Zlt_compare; case: Z.compare. Qed. Global Instance refine_ratBigQ_max : @@ -640,17 +521,9 @@ Qed. Global Instance refine_ratBigQ_of_nat : refines (nat_R ==> r_ratBigQ)%rel (fun n => n%:~R%R) cast_op. Proof. -rewrite refinesE => n _ /nat_R_eq <-. -apply/val_inj. -rewrite /= Z_ggcd_1_r /= BigZ.spec_of_Z. -rewrite -ratzE ratz_frac. -rewrite /valq /fracq /= expr0z GRing.mul1r gcdn1 !divn1. -apply: f_equal2 => [|//]. -rewrite -{2}[n]Nat2Z.id. -rewrite /Z2int. -move: (Zle_0_nat n). -case: Z.of_nat => [//|p|//] _. -by rewrite -binnat.to_natE. +rewrite refinesE => n _ /nat_R_eq <-; rewrite /r_ratBigQ /bigQ2rat /fun_hrel. +rewrite /= Z_ggcd_1_r /= BigZ.spec_of_Z mulr1. +by apply/eqP; rewrite eqr_int Z2int_Z_of_nat. Qed. Global Instance refine_ratBigQ_spec :