-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathEverything.agda
342 lines (231 loc) · 8.76 KB
/
Everything.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
module Everything where
-- Categories
import Categories.Category
-- 2-categories
-- XXX need to finish the last 3 laws
import Categories.2-Category
-- The strict 2-category of categories
-- XXX laws not proven yet
-- import Categories.2-Category.Categories
-- Adjunctions between functors
import Categories.Adjunction
-- The Agda Set category
import Categories.Agda
-- The fact that one version of it is cocomplete
import Categories.Agda.ISetoids.Cocomplete
-- The arrow category construction on any category
import Categories.Arrow
-- Bifunctors (functors from a product category)
import Categories.Bifunctor
-- Natural transformations between bifunctors
import Categories.Bifunctor.NaturalTransformation
-- The category of (small) categories
import Categories.Categories
-- Cat has products
import Categories.Categories.Products
-- Closed categories
import Categories.Closed
-- Cocones
import Categories.Cocone
-- The category of cocones under a diagram (functor)
import Categories.Cocones
-- Coends
import Categories.Coend
-- Coequalizers
import Categories.Coequalizer
-- Colimits
import Categories.Colimit
-- Comma categories
import Categories.Comma
-- Comonads, defined directly (not as monads on the opposite category)
import Categories.Comonad
-- The cofree construction that gives a comonad for any functor
import Categories.Comonad.Cofree
-- Cones
import Categories.Cone
-- The category of cones over a diagram (functor)
import Categories.Cones
-- A coherent equivalence relation over the objects of a category
import Categories.Congruence
-- Discrete categories (they only have objects and identity morphisms)
import Categories.Discrete
-- Ends
import Categories.End
-- Enriched categories
import Categories.Enriched
-- Equalizers
import Categories.Equalizer
-- Strong equivalence
import Categories.Equivalence.Strong
-- Fibrations
import Categories.Fibration
-- Free category on a graph
import Categories.Free
-- The free category construction is a functor from Gph to Cat
import Categories.Free.Functor
-- Functors
import Categories.Functor
-- F-algebra (TODO: maybe the module should be renamed)
import Categories.Functor.Algebra
-- The category of F-algebras of a functor
import Categories.Functor.Algebras
-- An F-coalgebra
import Categories.Functor.Coalgebra
-- Constant functor
import Categories.Functor.Constant
-- The category of F-coalgebras of a functor
import Categories.Functor.Coalgebras
-- The diagonal functor (C → C × C, or same thing with an arbitrary indexed product)
import Categories.Functor.Diagonal
-- Strong functor equivalence
-- XXX doesn't seem to work because of the double negative in Full?
-- import Categories.Functor.Equivalence.Strong
-- The hom functor, mapping pairs of objects to the morphisms between them
import Categories.Functor.Hom
-- Monoidal functors (similar to Haskell's Applicative class)
import Categories.Functor.Monoidal
-- Products as functors
import Categories.Functor.Product
-- Properties of general functors
import Categories.Functor.Properties
-- Representable functors
import Categories.Functor.Representable
-- Functor categories (of functors between two categories and natural transformations between them)
import Categories.FunctorCategory
-- The category of graphs and graph homomorphisms (Gph)
import Categories.Graphs
-- The underlying graph of a category (forgetful functor Cat ⇒ Gph)
import Categories.Graphs.Underlying
-- The Grothendieck construction on categories (taking a Sets-valued functor and building a category containing all values)
import Categories.Grothendieck
-- The globe category, used for defining globular sets (with a presheaf on it)
import Categories.Globe
-- Globular sets
import Categories.GlobularSet
-- Left Kan extensions
import Categories.Lan
-- Small categories exist as large categories too
import Categories.Lift
-- Limits
import Categories.Limit
-- Monads, defined as simple triples of a functor and two natural transformations
import Categories.Monad
-- A monad algebra
import Categories.Monad.Algebra
-- The category of all algebras of a monad
import Categories.Monad.Algebras
-- The Eilenberg-Moore category for any monad
import Categories.Monad.EilenbergMoore
-- The Kleisli category for any monad
import Categories.Monad.Kleisli
-- Strong monads
import Categories.Monad.Strong
-- Monoidal categories, with an associative bi(endo)functor and an identity object
import Categories.Monoidal
-- A braided monoidal category (one that gives you a swap operation, but isn't quite commutative)
import Categories.Monoidal.Braided
-- A cartesian monoidal category (monoidal category whose monoid is the product with a terminal object)
import Categories.Monoidal.Cartesian
-- Closed monoidal categories, which are simply monoidal categories that are
-- also closed, such that the laws "fit"
import Categories.Monoidal.Closed
-- Both of the above. Separated into its own module because we can do many
-- interesting things with them.
import Categories.Monoidal.CartesianClosed
-- Simple definitions about morphisms, such as mono, epi, and iso
import Categories.Morphisms
-- Cartesian morphisms (used mostly for fibrations)
import Categories.Morphism.Cartesian
-- Families of morphisms indexed by a set
import Categories.Morphism.Indexed
-- Natural isomorphisms, defined as an isomorphism of natural transformations
import Categories.NaturalIsomorphism
-- Natural transformations
import Categories.NaturalTransformation
import Categories.DinaturalTransformation
-- Properties of the opposite category
import Categories.Opposite
--------------------------------------------------------------------------------
-- Objects
--------------------------------------------------------------------------------
-- The coproduct of two objects
import Categories.Object.Coproduct
-- A category has all binary coproducts
import Categories.Object.BinaryCoproducts
-- A category has all finite coproducts
import Categories.Object.Coproducts
-- An exponential object
import Categories.Object.Exponential
-- A choice of B^A for a given B and any A
import Categories.Object.Exponentiating
-- B^— is adjoint to its opposite
import Categories.Object.Exponentiating.Adjunction
-- B^— as a functor
import Categories.Object.Exponentiating.Functor
-- A family of objects indexed by a set
import Categories.Object.Indexed
-- An initial object
import Categories.Object.Initial
-- The product of two objects
import Categories.Object.Product
-- The usual nice constructions on products, conditionalized on existence
import Categories.Object.Product.Morphisms
-- All binary products
import Categories.Object.BinaryProducts
-- Products of a nonempty list of objects and the ability to reassociate them massively
import Categories.Object.BinaryProducts.N-ary
-- All finite products
import Categories.Object.Products
import Categories.Object.Products.Properties
-- Products of a list of objects and the ability to reassociate them massively
import Categories.Object.Products.N-ary
-- The product of a family of objects
import Categories.Object.IndexedProduct
-- All products of indexed families
import Categories.Object.IndexedProducts
-- Subobject classifiers (for topoi)
import Categories.Object.SubobjectClassifier
-- Terminal object
import Categories.Object.Terminal
-- A^1 and 1^A always exist
import Categories.Object.Terminal.Exponentials
-- A chosen 1^A exists
import Categories.Object.Terminal.Exponentiating
-- A×1 always exists
import Categories.Object.Terminal.Products
-- Zero object (initial and terminal)
import Categories.Object.Zero
-- A category containing n copies of objects/morphisms/equalities of another category
import Categories.Power
-- Demonstrations that Power categories are the same as functors from discrete categories
import Categories.Power.Functorial
-- Natural transformations for functors to/from power categories
import Categories.Power.NaturalTransformation
-- A preorder gives rise to a category
import Categories.Preorder
-- A presheaf (functor from C^op to V)
import Categories.Presheaf
-- The category of presheaves (a specific functor category)
import Categories.Presheaves
-- The product of two categories
import Categories.Product
import Categories.Product.Properties
-- Projection functors from a product category to its factors
import Categories.Product.Projections
-- Profunctors
import Categories.Profunctor
-- Pullbacks in a category
import Categories.Pullback
-- Pushouts in a category
import Categories.Pushout
-- All categories can have a slice category defined on them
import Categories.Slice
-- Utilities for gluing together commutative squares (and triangles)
-- (and other common patterns of equational reasoning)
import Categories.Square
-- The terminal category (a terminal object in the category of small categories)
import Categories.Terminal
-- A topos
import Categories.Topos
-- The Yoneda lemma
import Categories.Yoneda