-
Notifications
You must be signed in to change notification settings - Fork 1
/
Dictionary Learning.lyx
4099 lines (2831 loc) · 70.4 KB
/
Dictionary Learning.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.2 created this file. For more info see http://www.lyx.org/
\lyxformat 508
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass amsart
\begin_preamble
\allowdisplaybreaks
\DeclareMathOperator{\E}{E}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\Cov}{Cov}
\DeclareMathOperator{\dif}{d}
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator*{\argmax}{arg\,max}
\DeclareMathOperator{\tr}{tr}
\usepackage{algpseudocode}
\usepackage{url}
\end_preamble
\use_default_options true
\begin_modules
theorems-ams
eqs-within-sections
figs-within-sections
knitr
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1.5in
\topmargin 1.5in
\rightmargin 1.5in
\bottommargin 1.5in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Online Detection of Unusual Events in Audio via Dynamic Sparse Coding
\end_layout
\begin_layout Author
Courtney Grazzini
\begin_inset Newline newline
\end_inset
Meredith Miller
\begin_inset Newline newline
\end_inset
Sean Wilson
\end_layout
\begin_layout Abstract
Sparse representation of a natural signal in terms of a dictionary learned
from the signal itself has been shown to be highly effective.
Online methods for dictionary learning mitigate scalability issues with
traditional batch learning methods, and offer the ability to learn dictionaries
for streaming signals.
We review the key concepts of sparse dictionary learning and important
results related to the online extension of such methods.
We show that online dictionary learning can be used to detect unusual events
in audio signals, such as a change in meter or the introduction of a new
instrument, and that such methods are robust to concept drift in the target
signal.
\end_layout
\begin_layout Section
Introduction
\end_layout
\begin_layout Subsection
Dictionary learning
\end_layout
\begin_layout Standard
We can represent a signal as a linear combination of basis elements.
We refer to the basis elements as
\emph on
atoms
\emph default
, and to the collection of these elements as a
\emph on
dictionary
\emph default
.
We do not require that the atoms be linearly independent, and we allow
the dictionary to be
\emph on
overcomplete
\emph default
, i.e., it may contain more basis elements than the dimension of the signal
it is used to represent.
\end_layout
\begin_layout Standard
Predefined dictionaries are often used to represent signals.
Let
\begin_inset Formula $\mathcal{D}=\left\{ \mathbf{u},\mathbf{v}\right\} $
\end_inset
for some linearly independent
\begin_inset Formula $\mathbf{u},\mathbf{v}\in\mathbb{R}^{2}$
\end_inset
.
Then, we can represent any signal
\begin_inset Formula $\mathbf{x}\in\mathbb{R}^{2}$
\end_inset
in terms of the atoms
\begin_inset Formula $\mathbf{u}$
\end_inset
and
\begin_inset Formula $\mathbf{v}$
\end_inset
of the dictionary
\begin_inset Formula $\mathcal{D}$
\end_inset
.
We might similarly consider the two-dimensional Haar wavelet basis on the
space of real,
\begin_inset Formula $2\times2$
\end_inset
matrices, whose elements can be used to encode images.
In place of a predefined dictionary, we may also choose to learn a dictionary
directly from the signal of interest, a procedure that has been shown,
e.g.
by
\begin_inset CommandInset citation
LatexCommand cite
key "Elad2006"
\end_inset
, to perform as well as or better than the predefined approach.
\end_layout
\begin_layout Standard
A signal
\begin_inset Formula $\mathbf{x}\in\mathbb{R}^{m}$
\end_inset
is said to have a
\begin_inset Formula $k$
\end_inset
\emph on
-sparse representation
\emph default
in a dictionary
\begin_inset Formula $\mathcal{D}=\left\{ \mathbf{v}_{i}\right\} _{i\in\mathcal{I}}\subset\mathbb{R}^{m}$
\end_inset
if there is a system of coefficients
\begin_inset Formula $\left\{ c_{i}\right\} _{i\in\mathcal{I}}$
\end_inset
such that
\begin_inset Formula $\mathbf{x}=\sum_{i\in\mathcal{I}}c_{i}\mathbf{v}_{i}$
\end_inset
and
\begin_inset Formula $c_{i}\neq0$
\end_inset
for at most
\begin_inset Formula $k$
\end_inset
many indices
\begin_inset Formula $i\in\mathcal{I}$
\end_inset
.
A sparse representation of
\begin_inset Formula $\mathbf{x}$
\end_inset
may be preferable to a
\begin_inset Quotes eld
\end_inset
dense
\begin_inset Quotes erd
\end_inset
representation (assuming that both representations have similar reconstruction
performance) for two primary reasons.
The first is the principle of parsimony (or model interpretability): if
we can represent the signal with relatively few atoms (the coefficients
of the remaining atoms being zero), our understanding of the signal is
easier to characterize than if we had to interpret the effects of a larger
number of atoms.
That is, we have identified redundancy in the atoms relative to the signal.
The second is computational efficiency: fewer nonzero coefficients means
that we can represent and manipulate the signal using fewer resources.
\begin_inset CommandInset citation
LatexCommand cite
key "Elad2006"
\end_inset
and others have shown sparse representions of natural signals to be very
effective.
Thus, our task in
\emph on
dictionary learning
\emph default
given some signal
\begin_inset Formula $\mathbf{x}$
\end_inset
is to learn a dictionary
\begin_inset Formula $\mathcal{D}$
\end_inset
such that
\begin_inset Formula $\mathbf{x}$
\end_inset
has a sparse representation in terms of the atoms of
\begin_inset Formula $\mathcal{D}$
\end_inset
.
\end_layout
\begin_layout Subsection
Online learning
\end_layout
\begin_layout Standard
A dictionary is typically learned from a training set (possibly the signal
to be reconstructed) using a constrained optimization procedure.
We can implement this optimization as a
\emph on
batch
\emph default
procedure, wherein the entire training set is used at each iteration.
While such methods have been shown to be effective, they do not scale well
to very large training sets, or to training sets that vary over time, e.g.,
streaming audio or video signals.
\begin_inset CommandInset citation
LatexCommand cite
key "Mairal2009"
\end_inset
propose an
\emph on
online
\emph default
approach to overcome these limitations, wherein the elements of the training
set are accessed one at a time or in small batches.
\end_layout
\begin_layout Standard
When learning a dictionary for a streaming signal, our approach must also
account for the phenomenon of
\emph on
concept drift
\emph default
, wherein the statistical properties of the signal change unpredictably
over time.
If our learning method does not allow the dictionary to adapt to these
changes, then reconstruction performance will degrade as we attempt to
represent portions of the signal that the dictionary has not previously
\begin_inset Quotes eld
\end_inset
seen.
\begin_inset Quotes erd
\end_inset
For example, if we wish to respresent the video feed of a traffic camera,
we are likely to learn a dictionary well suited to representing various
motor vehicles.
If the same street is closed for a parade, our dictionary is not likely
to perform acceptably when reconstructing a marching band.
\begin_inset CommandInset citation
LatexCommand cite
key "Zhao2011"
\end_inset
have shown that online algorithms are robust to concept drift precisely
because they permit the dictionary to adapt to new phenomena.
\end_layout
\begin_layout Section
Methodology
\end_layout
\begin_layout Standard
Suppose that we wish to learn a dictionary for a signal
\begin_inset Formula $\mathbf{x}\in\mathbb{R}^{m}$
\end_inset
.
Let
\begin_inset Formula $\mathbf{D}\in\mathbf{M}_{m,k}\left(\mathbb{R}\right)$
\end_inset
be the matrix whose columns are the atoms (basis vectors) of the dictionary,
and consider the loss function
\begin_inset Formula
\[
l\left(\mathbf{x,}\mathbf{D}\right)\coloneqq\min_{\boldsymbol{\alpha}\in\mathbb{R}^{k}}\frac{1}{2}\left\Vert \mathbf{x}-\mathbf{D}\boldsymbol{\alpha}\right\Vert _{2}^{2}+\lambda\left\Vert \boldsymbol{\alpha}\right\Vert _{1},
\]
\end_inset
which is known as the Least Absolute Shrinkage and Selection Operator (LASSO),
and where
\begin_inset Formula $\lambda$
\end_inset
is a regularization parameter.
We see that
\begin_inset Formula $l\left(\mathbf{x},\mathbf{D}\right)$
\end_inset
optimizes the sum of the squared error in reconstructing
\begin_inset Formula $\mathbf{x}$
\end_inset
using the dictionary
\begin_inset Formula $\mathbf{D}$
\end_inset
and the 1-norm of the coefficient vector
\begin_inset Formula $\boldsymbol{\alpha}$
\end_inset
.
To avoid arbitrarily small values of
\begin_inset Formula $\boldsymbol{\alpha}$
\end_inset
, we adopt the constraint that the basis vectors
\begin_inset Formula $\left\{ \mathbf{d}_{j}\right\} _{j=1}^{k}$
\end_inset
have 2-norm of at most one.
Let
\begin_inset Formula $\mathcal{C}$
\end_inset
be the set of matrices satisfying this constraint, i.e.,
\begin_inset Formula
\[
\mathcal{C}\coloneqq\left\{ \mathbf{D}\in\mathbf{M}_{m,k}\left(\mathbb{R}\right):\left\Vert \mathbf{d}_{j}\right\Vert _{2}\leq1\ \forall j\in\left\{ 1,2,\ldots,k\right\} \right\} ,
\]
\end_inset
so that the optimization becomes
\begin_inset Formula
\begin{equation}
\min_{\mathbf{D}\in\mathcal{C},\boldsymbol{\alpha}\in\mathbb{R}^{k}}\frac{1}{2}\left\Vert \mathbf{x}-\mathbf{D}\boldsymbol{\alpha}\right\Vert _{2}^{2}+\lambda\left\Vert \boldsymbol{\alpha}\right\Vert _{1}.\label{eq:lasso}
\end{equation}
\end_inset
While this problem is not jointly convex, it is convex with respect to
\begin_inset Formula $\mathbf{D}$
\end_inset
and
\begin_inset Formula $\boldsymbol{\alpha}$
\end_inset
separately, so that a solution may be obtained by alternately optimizing
one variable while the other is held constant, as proposed by
\begin_inset CommandInset citation
LatexCommand cite
key "Lee2007"
\end_inset
.
\end_layout
\begin_layout Standard
Now suppose that we wish to learn a dictionary to represent a set of discrete
\emph on
samples
\emph default
\begin_inset Formula $\left\{ \mathbf{x}_{i}\right\} _{i=1}^{n}$
\end_inset
of some analog signal, where
\begin_inset Formula $n$
\end_inset
is possibly unknown, as in the case of a streaming signal.
Then, the optimization
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lasso"
\end_inset
becomes
\begin_inset Formula
\[
\min_{\mathbf{D}\in\mathcal{C},\boldsymbol{\alpha}\in\mathbf{M}_{k,n}\left(\mathbb{R}\right)}\frac{1}{n}\sum_{i=1}^{n}\left(\frac{1}{2}\left\Vert \mathbf{x}_{i}-\mathbf{D}\boldsymbol{\alpha}_{i}\right\Vert _{2}^{2}+\lambda\left\Vert \boldsymbol{\alpha}_{i}\right\Vert _{1}\right),
\]
\end_inset
which is equation (4) from
\begin_inset CommandInset citation
LatexCommand cite
key "Mairal2009"
\end_inset
.
The same authors propose a
\emph on
mini-batch
\emph default
extension of their algorithm 1 that considers
\begin_inset Formula $\eta>1$
\end_inset
samples at each iteration
\begin_inset Formula $t\in\left\{ 1,2,\ldots T\right\} $
\end_inset
.
We adopt this mini-batch method to process
\begin_inset Formula $\eta$
\end_inset
samples of a streaming signal at a time, alternating between optimizing
\begin_inset Formula $\boldsymbol{\alpha}$
\end_inset
and
\begin_inset Formula $\mathbf{D}$
\end_inset
.
\end_layout
\begin_layout Standard
As in
\begin_inset CommandInset citation
LatexCommand cite
key "Zhao2011"
\end_inset
, we will learn an initial dictionary
\begin_inset Formula $\mathbf{D}_{0}$
\end_inset
using the first
\begin_inset Formula $N$
\end_inset
samples of the signal, then use a
\emph on
sliding window
\emph default
of width
\begin_inset Formula $w$
\end_inset
to obtain the samples
\begin_inset Formula $\left\{ \mathbf{x}_{i}^{\left(t\right)}\right\} _{i=1}^{\eta}$
\end_inset
for each iteration
\begin_inset Formula $t$
\end_inset
.
We then compute the reconstruction coefficients
\begin_inset Formula $\boldsymbol{\alpha}_{t}$
\end_inset
using Orthogonal Matching Pursuit (OMP) and use these coefficients to compute
the updated dictionary
\begin_inset Formula $\mathbf{D}_{t}$
\end_inset
using Least Angle Regression (LARS), with
\begin_inset Formula $\mathbf{D}_{t-1}$
\end_inset
as a warm restart.
Algorithm
\begin_inset CommandInset ref
LatexCommand ref
reference "alg:online-dict-learning"
\end_inset
presents our approach.
\end_layout
\begin_layout Standard
\begin_inset Float algorithm
placement h
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{algorithmic}[1]
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
Require
\end_layout
\end_inset
\begin_inset Formula $\left\{ {\bf x}_{i}\right\} _{i=1}^{n}\in\mathbb{R}^{m}$
\end_inset
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\uuline off
\uwave off
\noun off
\color none
(set of signals),
\begin_inset Formula $\lambda\in\mathbb{R}$
\end_inset
(regularization parameter),
\begin_inset Formula $\mathbf{D}_{0}\in\mathbf{M}_{m,k}\left(\mathbb{R}\right)$
\end_inset
(initial dictionary),
\begin_inset Formula $w$
\end_inset
(sliding window width).
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
Ensure
\end_layout
\end_inset
learned dictionary
\begin_inset Formula $\mathbf{D}_{T}$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
State
\end_layout
\end_inset
Calculate the number of iterations
\begin_inset Formula $T$
\end_inset
and the number of samples per iteration
\begin_inset Formula $\eta$
\end_inset
based on the signal dimension
\begin_inset Formula $m$
\end_inset
, the number of signals
\begin_inset Formula $n$
\end_inset
, and the window width
\begin_inset Formula $w$
\end_inset
.
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
For{$t=1$ to $T$}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
State
\end_layout
\end_inset
Sparse coding: compute
\begin_inset Formula $\boldsymbol{\alpha}_{t}$
\end_inset
as in algorithm
\begin_inset CommandInset ref
LatexCommand ref
reference "alg:omp"
\end_inset
for the samples
\begin_inset Formula $\left\{ \mathbf{x}_{i}^{\left(t\right)}\right\} _{i=1}^{\eta}$
\end_inset
.
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
State
\end_layout
\end_inset
Dictionary update: compute
\begin_inset Formula $\mathbf{D}_{t}$
\end_inset
using LARS, with
\begin_inset Formula $\mathbf{D}_{t-1}$
\end_inset
as a warm restart.
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
EndFor
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
Return{$
\backslash
mathbf{D}_{T}$}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
end{algorithmic}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "alg:online-dict-learning"
\end_inset
Online Dictionary Learning
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Algorithm
\begin_inset CommandInset ref
LatexCommand ref
reference "alg:omp"
\end_inset
provides the coefficient update.
\end_layout
\begin_layout Standard
\begin_inset Float algorithm
placement h
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{algorithmic}[1]
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
Require
\end_layout
\end_inset
\begin_inset Formula $\left\{ {\bf x}_{i}\right\} _{i=1}^{\eta}\in\mathbb{R}^{m}$
\end_inset
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\uuline off
\uwave off
\noun off
\color none
(set of samples),
\begin_inset Formula $\lambda\in\mathbb{R}$
\end_inset
(tolerance parameter),
\begin_inset Formula $\mathbf{D}\in\mathbf{M}_{m,k}\left(\mathbb{R}\right)$
\end_inset
(unit-norm dictionary).
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
Ensure
\end_layout
\end_inset
coefficients
\begin_inset Formula $\boldsymbol{\alpha}\in\mathbf{M}_{k,\eta}\left(\mathbb{R}\right)$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
For{$i=1$ to $
\backslash
eta$}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
State
\end_layout
\end_inset
\begin_inset Formula $\mathcal{I}\gets\emptyset$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
State
\end_layout
\end_inset
\begin_inset Formula $\boldsymbol{\alpha}_{i}\gets\mathbf{0}$
\end_inset