-
Notifications
You must be signed in to change notification settings - Fork 1
/
book.bib
130 lines (130 loc) · 4.49 KB
/
book.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
@book{casella2002statistical,
title={Statistical Inference},
author={Casella, G. and Berger, R.L.},
isbn={9780534243128},
lccn={2001025794},
series={Duxbury advanced series in statistics and decision sciences},
url={https://books.google.com/books?id=0x\_vAAAAMAAJ},
year={2002},
publisher={Thomson Learning}
}
@techreport{page1999,
number = {1999-66},
month = {November},
author = {Lawrence Page and Sergey Brin and Rajeev Motwani and Terry Winograd},
note = {Previous number = SIDL-WP-1999-0120},
title = {The PageRank Citation Ranking: Bringing Order to the Web.},
type = {Technical Report},
publisher = {Stanford InfoLab},
year = {1999},
institution = {Stanford InfoLab},
url = {http://ilpubs.stanford.edu:8090/422/},
abstract = {The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively about the relative importance of Web pages. This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them. We compare PageRank to an idealized random Web surfer. We show how to efficiently compute PageRank for large numbers of pages. And, we show how to apply PageRank to search and to user navigation.}
}
@book{lay2005analysis,
title={Analysis: with an introduction to proof},
author={Lay, S.R.},
isbn={9780131481015},
lccn={2004060078},
url={https://books.google.com/books?id=k4k\_AQAAIAAJ},
year={2005},
publisher={Pearson Prentice Hall}
}
@book{weiss2006course,
title={A Course in Probability},
author={Weiss, N.A. and Holmes, P.T. and Hardy, M.},
isbn={9780201774719},
lccn={2004051068},
url={https://books.google.com/books?id=Be9fJwAACAAJ},
year={2006},
publisher={Pearson Addison Wesley}
}
@Book{xie2015,
title = {Dynamic Documents with {R} and knitr},
author = {Yihui Xie},
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
year = {2015},
edition = {2nd},
note = {ISBN 978-1498716963},
url = {http://yihui.name/knitr/},
}
@article{Griffiths2004,
author = {Griffiths, Thomas L and Steyvers, Mark},
doi = {10.1073/pnas.0307752101},
issn = {0027-8424},
journal = {Proceedings of the National Academy of Sciences},
month = {apr},
number = {Supplement 1},
pages = {5228--5235},
pmid = {14872004},
publisher = {National Academy of Sciences},
title = {{Finding scientific topics}},
url = {http://www.pnas.org/cgi/doi/10.1073/pnas.0307752101},
volume = {101},
year = {2004}
}
@article{Blei2003,
archivePrefix = {arXiv},
arxivId = {1111.6189v1},
author = {Blei, David M. and Ng, Andrew Y. and Jordan, Michael I.},
doi = {10.1162/jmlr.2003.3.4-5.993},
eprint = {1111.6189v1},
isbn = {9781577352815},
issn = {15324435},
journal = {Journal of Machine Learning Research},
pages = {993--1022},
pmid = {21362469},
title = {{Latent Dirichlet Allocation}},
volume = {3},
year = {2003}
}
@article{dempster1977,
author = {Dempster, A.P. and Laird, N.M. and Rubin, Donald B},
journal = {Journal of the Royal Statistical Society Series B Methodological},
number = {1},
pages = {1--38},
title = {{Maximum likelihood from incomplete data via the EM algorithm}},
url = {http://www.jstor.org/stable/10.2307/2984875},
volume = {39},
year = {1977}
}
@book{givens2012,
title={Computational statistics},
author={Givens, Geof H and Hoeting, Jennifer A},
volume={710},
year={2012},
publisher={John Wiley \& Sons},
url = {https://www.stat.colostate.edu/computationalstatistics/}
}
@book{friedman2001,
title={The elements of statistical learning},
author={Friedman, Jerome and Hastie, Trevor and Tibshirani, Robert},
volume={1},
number={12},
year={2009},
publisher={Springer series in statistics New York, NY, USA:}
}
@book{sauer2011,
author = {Sauer, Timothy},
title = {Numerical Analysis},
year = {2011},
isbn = {0321783670, 9780321783677},
edition = {2nd},
publisher = {Addison-Wesley Publishing Company},
address = {USA},
}
@book{fitzmaurice2012applied,
title={Applied longitudinal analysis},
author={Fitzmaurice, Garrett M and Laird, Nan M and Ware, James H},
volume={998},
year={2012},
publisher={John Wiley \& Sons}
}
@misc{dua2017,
author = {Dheeru, Dua and Karra Taniskidou, Efi},
year = {2017},
title = "{UCI} Machine Learning Repository",
url = {http://archive.ics.uci.edu/ml},
institution = "University of California, Irvine, School of Information and Computer Sciences"
}