-
Notifications
You must be signed in to change notification settings - Fork 1
/
1_convert_xml_txt.py
48 lines (43 loc) · 1.53 KB
/
1_convert_xml_txt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
xmlLabel_Dir = '/home/liusj/deepLearning/ssd_play/testLabelImgs/Annotations'
classes = ["toast"]
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
if not os.path.exists('labels/'): #生成的label放在label目录下
os.makedirs('labels/')
for rootDir,dirs,files in os.walk(xmlLabel_Dir):
for file in files:
file_name = file.split('.')[0]
out_file = open('labels/%s.txt'%(file_name),'w')
in_file = open("%s/%s"%(rootDir,file))
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
out_file.close()