-
Notifications
You must be signed in to change notification settings - Fork 7
/
README.Rmd
58 lines (45 loc) · 1.76 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
title: "sparseGraph"
output:
md_document:
variant: markdown_github
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
library(knitr)
opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
fig.align = "center",
fig.retina = 2,
out.width = "75%",
dpi = 96
)
knit_hooks$set(pngquant = hook_pngquant)
```
# sparseGraph
It has been shown that L1-norm regularization does not recover sparse solutions in a Laplacian-constrained
Gaussian Markov Random Field setting. **sparseGraph** provides a method to estimate sparse graphs via nonconvex
regularization functions.
## Installation
You can install the development version from GitHub:
```{r, eval = FALSE}
> devtools::install_github("mirca/sparseGraph")
```
#### Microsoft Windows
On MS Windows environments, make sure to install the most recent version of ``Rtools``.
## Usage
## Contributing
We welcome all sorts of contributions. Please feel free to open an issue
to report a bug or discuss a feature request.
## Citation
If you made use of this software please consider citing:
- J. Ying, [J. V. de M. Cardoso](https://mirca.github.io), [D. P. Palomar](https://www.danielppalomar.com) (2020).
Nonconvex Sparse Graph Learning under Laplacian-structured Graphical Model.
Advances in Neural Information Processing Systems (NeurIPS'20).
- J. Ying, J. V. de M. Cardoso, D. P. Palomar (2020). Does the l1-norm learn a
sparse graphical model under Laplacian constraints? [https://arxiv.org/abs/2006.14925](https://arxiv.org/abs/2006.14925).
## Links
[NeurIPS'20 Promotional slides](https://palomar.home.ece.ust.hk/papers/2020/YingCardosoPalomar-NIPS2020-slides.pdf)
[NeurIPS'20 Promotional video](https://www.youtube.com/watch?v=48IZzsMNF74)