From d518171af6d6ba22f85756238739204549bb2c53 Mon Sep 17 00:00:00 2001 From: Giuseppe Scrivano Date: Tue, 11 Jun 2019 22:40:01 +0200 Subject: [PATCH] copy: add --dest-compress-format and --dest-compress-level add the possibility to specify the format and the level to use when compressing blobs. Signed-off-by: Giuseppe Scrivano --- cmd/skopeo/utils.go | 14 + docs/skopeo-copy.1.md | 4 + vendor.conf | 5 +- vendor/github.com/DataDog/zstd/LICENSE | 27 + vendor/github.com/DataDog/zstd/README.md | 120 + vendor/github.com/DataDog/zstd/ZSTD_LICENSE | 30 + vendor/github.com/DataDog/zstd/bitstream.h | 455 ++ vendor/github.com/DataDog/zstd/compiler.h | 140 + vendor/github.com/DataDog/zstd/cover.c | 1126 ++++ vendor/github.com/DataDog/zstd/cover.h | 112 + vendor/github.com/DataDog/zstd/cpu.h | 215 + vendor/github.com/DataDog/zstd/debug.c | 44 + vendor/github.com/DataDog/zstd/debug.h | 134 + vendor/github.com/DataDog/zstd/divsufsort.c | 1913 +++++++ vendor/github.com/DataDog/zstd/divsufsort.h | 67 + .../github.com/DataDog/zstd/entropy_common.c | 236 + .../github.com/DataDog/zstd/error_private.c | 54 + .../github.com/DataDog/zstd/error_private.h | 76 + vendor/github.com/DataDog/zstd/errors.go | 35 + vendor/github.com/DataDog/zstd/fastcover.c | 740 +++ vendor/github.com/DataDog/zstd/fse.h | 708 +++ vendor/github.com/DataDog/zstd/fse_compress.c | 721 +++ .../github.com/DataDog/zstd/fse_decompress.c | 309 ++ vendor/github.com/DataDog/zstd/hist.c | 203 + vendor/github.com/DataDog/zstd/hist.h | 95 + vendor/github.com/DataDog/zstd/huf.h | 358 ++ vendor/github.com/DataDog/zstd/huf_compress.c | 798 +++ .../github.com/DataDog/zstd/huf_decompress.c | 1232 +++++ vendor/github.com/DataDog/zstd/mem.h | 380 ++ vendor/github.com/DataDog/zstd/pool.c | 340 ++ vendor/github.com/DataDog/zstd/pool.h | 84 + vendor/github.com/DataDog/zstd/threading.c | 75 + vendor/github.com/DataDog/zstd/threading.h | 123 + vendor/github.com/DataDog/zstd/xxhash.c | 876 ++++ vendor/github.com/DataDog/zstd/xxhash.h | 305 ++ vendor/github.com/DataDog/zstd/zbuff.h | 213 + vendor/github.com/DataDog/zstd/zbuff_common.c | 26 + .../github.com/DataDog/zstd/zbuff_compress.c | 147 + .../DataDog/zstd/zbuff_decompress.c | 75 + vendor/github.com/DataDog/zstd/zdict.c | 1111 ++++ vendor/github.com/DataDog/zstd/zdict.h | 277 + vendor/github.com/DataDog/zstd/zstd.go | 147 + vendor/github.com/DataDog/zstd/zstd.h | 1913 +++++++ vendor/github.com/DataDog/zstd/zstd_common.c | 83 + .../github.com/DataDog/zstd/zstd_compress.c | 4417 ++++++++++++++++ .../DataDog/zstd/zstd_compress_internal.h | 863 ++++ vendor/github.com/DataDog/zstd/zstd_ddict.c | 240 + vendor/github.com/DataDog/zstd/zstd_ddict.h | 44 + .../github.com/DataDog/zstd/zstd_decompress.c | 1765 +++++++ .../DataDog/zstd/zstd_decompress_block.c | 1311 +++++ .../DataDog/zstd/zstd_decompress_block.h | 59 + .../DataDog/zstd/zstd_decompress_internal.h | 175 + .../DataDog/zstd/zstd_double_fast.c | 499 ++ .../DataDog/zstd/zstd_double_fast.h | 38 + vendor/github.com/DataDog/zstd/zstd_errors.h | 93 + vendor/github.com/DataDog/zstd/zstd_fast.c | 470 ++ vendor/github.com/DataDog/zstd/zstd_fast.h | 37 + .../github.com/DataDog/zstd/zstd_internal.h | 319 ++ vendor/github.com/DataDog/zstd/zstd_lazy.c | 1106 ++++ vendor/github.com/DataDog/zstd/zstd_lazy.h | 67 + vendor/github.com/DataDog/zstd/zstd_ldm.c | 597 +++ vendor/github.com/DataDog/zstd/zstd_ldm.h | 105 + vendor/github.com/DataDog/zstd/zstd_legacy.h | 411 ++ vendor/github.com/DataDog/zstd/zstd_opt.c | 1233 +++++ vendor/github.com/DataDog/zstd/zstd_opt.h | 56 + vendor/github.com/DataDog/zstd/zstd_stream.go | 294 ++ vendor/github.com/DataDog/zstd/zstd_v01.c | 2158 ++++++++ vendor/github.com/DataDog/zstd/zstd_v01.h | 94 + vendor/github.com/DataDog/zstd/zstd_v02.c | 3508 +++++++++++++ vendor/github.com/DataDog/zstd/zstd_v02.h | 93 + vendor/github.com/DataDog/zstd/zstd_v03.c | 3150 ++++++++++++ vendor/github.com/DataDog/zstd/zstd_v03.h | 93 + vendor/github.com/DataDog/zstd/zstd_v04.c | 3634 +++++++++++++ vendor/github.com/DataDog/zstd/zstd_v04.h | 142 + vendor/github.com/DataDog/zstd/zstd_v05.c | 4039 +++++++++++++++ vendor/github.com/DataDog/zstd/zstd_v05.h | 162 + vendor/github.com/DataDog/zstd/zstd_v06.c | 4152 +++++++++++++++ vendor/github.com/DataDog/zstd/zstd_v06.h | 172 + vendor/github.com/DataDog/zstd/zstd_v07.c | 4535 +++++++++++++++++ vendor/github.com/DataDog/zstd/zstd_v07.h | 187 + .../github.com/DataDog/zstd/zstdmt_compress.c | 2099 ++++++++ .../github.com/DataDog/zstd/zstdmt_compress.h | 191 + .../github.com/containers/image/copy/copy.go | 65 +- .../image/docker/docker_image_src.go | 17 +- .../image/docker/reference/README.md | 2 +- .../image/docker/reference/normalize.go | 29 + .../image/docker/reference/reference.go | 4 +- .../image/docker/reference/regexp.go | 10 +- .../docs/containers-registries.conf.5.md | 27 +- .../image/pkg/compression/compression.go | 62 +- .../image/pkg/compression/compression_cgo.go | 23 + .../pkg/compression/compression_nocgo.go | 18 + .../sysregistriesv2/system_registries_v2.go | 224 +- .../containers/image/registries.conf | 7 +- .../containers/image/types/types.go | 5 + .../github.com/containers/image/vendor.conf | 1 + .../containers/storage/drivers/chown.go | 3 + .../containers/storage/drivers/driver.go | 1 + .../storage/drivers/overlay/overlay.go | 77 +- .../containers/storage/drivers/vfs/driver.go | 7 +- .../github.com/containers/storage/layers.go | 5 +- .../containers/storage/layers_ffjson.go | 2 +- .../containers/storage/pkg/archive/archive.go | 9 + .../storage/pkg/archive/archive_cgo.go | 18 + .../storage/pkg/archive/archive_nocgo.go | 17 + vendor/github.com/containers/storage/store.go | 24 +- .../github.com/containers/storage/vendor.conf | 1 + 107 files changed, 59254 insertions(+), 158 deletions(-) create mode 100644 vendor/github.com/DataDog/zstd/LICENSE create mode 100644 vendor/github.com/DataDog/zstd/README.md create mode 100644 vendor/github.com/DataDog/zstd/ZSTD_LICENSE create mode 100644 vendor/github.com/DataDog/zstd/bitstream.h create mode 100644 vendor/github.com/DataDog/zstd/compiler.h create mode 100644 vendor/github.com/DataDog/zstd/cover.c create mode 100644 vendor/github.com/DataDog/zstd/cover.h create mode 100644 vendor/github.com/DataDog/zstd/cpu.h create mode 100644 vendor/github.com/DataDog/zstd/debug.c create mode 100644 vendor/github.com/DataDog/zstd/debug.h create mode 100644 vendor/github.com/DataDog/zstd/divsufsort.c create mode 100644 vendor/github.com/DataDog/zstd/divsufsort.h create mode 100644 vendor/github.com/DataDog/zstd/entropy_common.c create mode 100644 vendor/github.com/DataDog/zstd/error_private.c create mode 100644 vendor/github.com/DataDog/zstd/error_private.h create mode 100644 vendor/github.com/DataDog/zstd/errors.go create mode 100644 vendor/github.com/DataDog/zstd/fastcover.c create mode 100644 vendor/github.com/DataDog/zstd/fse.h create mode 100644 vendor/github.com/DataDog/zstd/fse_compress.c create mode 100644 vendor/github.com/DataDog/zstd/fse_decompress.c create mode 100644 vendor/github.com/DataDog/zstd/hist.c create mode 100644 vendor/github.com/DataDog/zstd/hist.h create mode 100644 vendor/github.com/DataDog/zstd/huf.h create mode 100644 vendor/github.com/DataDog/zstd/huf_compress.c create mode 100644 vendor/github.com/DataDog/zstd/huf_decompress.c create mode 100644 vendor/github.com/DataDog/zstd/mem.h create mode 100644 vendor/github.com/DataDog/zstd/pool.c create mode 100644 vendor/github.com/DataDog/zstd/pool.h create mode 100644 vendor/github.com/DataDog/zstd/threading.c create mode 100644 vendor/github.com/DataDog/zstd/threading.h create mode 100644 vendor/github.com/DataDog/zstd/xxhash.c create mode 100644 vendor/github.com/DataDog/zstd/xxhash.h create mode 100644 vendor/github.com/DataDog/zstd/zbuff.h create mode 100644 vendor/github.com/DataDog/zstd/zbuff_common.c create mode 100644 vendor/github.com/DataDog/zstd/zbuff_compress.c create mode 100644 vendor/github.com/DataDog/zstd/zbuff_decompress.c create mode 100644 vendor/github.com/DataDog/zstd/zdict.c create mode 100644 vendor/github.com/DataDog/zstd/zdict.h create mode 100644 vendor/github.com/DataDog/zstd/zstd.go create mode 100644 vendor/github.com/DataDog/zstd/zstd.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_common.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_compress.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_compress_internal.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_ddict.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_ddict.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_decompress.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_decompress_block.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_decompress_block.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_decompress_internal.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_double_fast.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_double_fast.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_errors.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_fast.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_fast.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_internal.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_lazy.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_lazy.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_ldm.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_ldm.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_legacy.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_opt.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_opt.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_stream.go create mode 100644 vendor/github.com/DataDog/zstd/zstd_v01.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_v01.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_v02.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_v02.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_v03.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_v03.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_v04.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_v04.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_v05.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_v05.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_v06.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_v06.h create mode 100644 vendor/github.com/DataDog/zstd/zstd_v07.c create mode 100644 vendor/github.com/DataDog/zstd/zstd_v07.h create mode 100644 vendor/github.com/DataDog/zstd/zstdmt_compress.c create mode 100644 vendor/github.com/DataDog/zstd/zstdmt_compress.h create mode 100644 vendor/github.com/containers/image/pkg/compression/compression_cgo.go create mode 100644 vendor/github.com/containers/image/pkg/compression/compression_nocgo.go create mode 100644 vendor/github.com/containers/storage/pkg/archive/archive_cgo.go create mode 100644 vendor/github.com/containers/storage/pkg/archive/archive_nocgo.go diff --git a/cmd/skopeo/utils.go b/cmd/skopeo/utils.go index 320aec8389..8afed94ffe 100644 --- a/cmd/skopeo/utils.go +++ b/cmd/skopeo/utils.go @@ -155,6 +155,8 @@ type imageDestOptions struct { *imageOptions osTreeTmpDir string // A directory to use for OSTree temporary files dirForceCompression bool // Compress layers when saving to the dir: transport + compressionFormat string // Format to use for the compression + compressionLevel int // Level to use for the compression } // imageDestFlags prepares a collection of CLI flags writing into imageDestOptions, and the managed imageDestOptions structure. @@ -173,6 +175,16 @@ func imageDestFlags(global *globalOptions, shared *sharedImageOptions, flagPrefi Usage: "Compress tarball image layers when saving to directory using the 'dir' transport. (default is same compression type as source)", Destination: &opts.dirForceCompression, }, + cli.StringFlag{ + Name: flagPrefix + "compress-format", + Usage: "`FORMAT` to use for the compression", + Destination: &opts.compressionFormat, + }, + cli.IntFlag{ + Name: flagPrefix + "compress-level", + Usage: "`LEVEL` to use for the compression", + Destination: &opts.compressionLevel, + }, }...), &opts } @@ -186,6 +198,8 @@ func (opts *imageDestOptions) newSystemContext() (*types.SystemContext, error) { ctx.OSTreeTmpDirPath = opts.osTreeTmpDir ctx.DirForceCompress = opts.dirForceCompression + ctx.CompressionFormat = opts.compressionFormat + ctx.CompressionLevel = opts.compressionLevel return ctx, err } diff --git a/docs/skopeo-copy.1.md b/docs/skopeo-copy.1.md index 33eade9a89..1d0c760710 100644 --- a/docs/skopeo-copy.1.md +++ b/docs/skopeo-copy.1.md @@ -56,6 +56,10 @@ If the authorization state is not found there, $HOME/.docker/config.json is chec Existing signatures, if any, are preserved as well. +**--dest-compress-format** _format_ Specifies the compression format to use. + +**--dest-compress-level** _format_ Specifies the compression level to use. + ## EXAMPLES To copy the layers of the docker.io busybox image to a local directory: diff --git a/vendor.conf b/vendor.conf index e8b2cd3a45..210abc5bcb 100644 --- a/vendor.conf +++ b/vendor.conf @@ -2,14 +2,14 @@ github.com/urfave/cli v1.20.0 github.com/kr/pretty v0.1.0 github.com/kr/text v0.1.0 -github.com/containers/image 2c0349c99af7d90694b3faa0e9bde404d407b145 +github.com/containers/image zstd https://github.com/giuseppe/image github.com/containers/buildah 810efa340ab43753034e2ed08ec290e4abab7e72 github.com/vbauerster/mpb v3.3.4 github.com/mattn/go-isatty v0.0.4 github.com/VividCortex/ewma v1.1.1 golang.org/x/sync 42b317875d0fa942474b76e1b46a6060d720ae6e github.com/opencontainers/go-digest c9281466c8b2f606084ac71339773efd177436e7 -github.com/containers/storage v1.12.3 +github.com/containers/storage zstd https://github.com/giuseppe/storage github.com/sirupsen/logrus v1.0.0 github.com/go-check/check v1 github.com/stretchr/testify v1.1.3 @@ -65,3 +65,4 @@ github.com/syndtr/gocapability d98352740cb2c55f81556b63d4a1ec64c5a319c2 github.com/klauspost/pgzip v1.2.1 github.com/klauspost/compress v1.4.1 github.com/klauspost/cpuid v1.2.0 +github.com/DataDog/zstd 1.x diff --git a/vendor/github.com/DataDog/zstd/LICENSE b/vendor/github.com/DataDog/zstd/LICENSE new file mode 100644 index 0000000000..345c1eb932 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/LICENSE @@ -0,0 +1,27 @@ +Simplified BSD License + +Copyright (c) 2016, Datadog +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of the copyright holder nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vendor/github.com/DataDog/zstd/README.md b/vendor/github.com/DataDog/zstd/README.md new file mode 100644 index 0000000000..a444e0b2c5 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/README.md @@ -0,0 +1,120 @@ +# Zstd Go Wrapper + +[C Zstd Homepage](https://github.com/Cyan4973/zstd) + +The current headers and C files are from *v1.4.0* (Commit +[83b51e9](https://github.com/facebook/zstd/releases/tag/v1.4.0)). + +## Usage + +There are two main APIs: + +* simple Compress/Decompress +* streaming API (io.Reader/io.Writer) + +The compress/decompress APIs mirror that of lz4, while the streaming API was +designed to be a drop-in replacement for zlib. + +### Simple `Compress/Decompress` + + +```go +// Compress compresses the byte array given in src and writes it to dst. +// If you already have a buffer allocated, you can pass it to prevent allocation +// If not, you can pass nil as dst. +// If the buffer is too small, it will be reallocated, resized, and returned bu the function +// If dst is nil, this will allocate the worst case size (CompressBound(src)) +Compress(dst, src []byte) ([]byte, error) +``` + +```go +// CompressLevel is the same as Compress but you can pass another compression level +CompressLevel(dst, src []byte, level int) ([]byte, error) +``` + +```go +// Decompress will decompress your payload into dst. +// If you already have a buffer allocated, you can pass it to prevent allocation +// If not, you can pass nil as dst (allocates a 4*src size as default). +// If the buffer is too small, it will retry 3 times by doubling the dst size +// After max retries, it will switch to the slower stream API to be sure to be able +// to decompress. Currently switches if compression ratio > 4*2**3=32. +Decompress(dst, src []byte) ([]byte, error) +``` + +### Stream API + +```go +// NewWriter creates a new object that can optionally be initialized with +// a precomputed dictionary. If dict is nil, compress without a dictionary. +// The dictionary array should not be changed during the use of this object. +// You MUST CALL Close() to write the last bytes of a zstd stream and free C objects. +NewWriter(w io.Writer) *Writer +NewWriterLevel(w io.Writer, level int) *Writer +NewWriterLevelDict(w io.Writer, level int, dict []byte) *Writer + +// Write compresses the input data and write it to the underlying writer +(w *Writer) Write(p []byte) (int, error) + +// Close flushes the buffer and frees C zstd objects +(w *Writer) Close() error +``` + +```go +// NewReader returns a new io.ReadCloser that will decompress data from the +// underlying reader. If a dictionary is provided to NewReaderDict, it must +// not be modified until Close is called. It is the caller's responsibility +// to call Close, which frees up C objects. +NewReader(r io.Reader) io.ReadCloser +NewReaderDict(r io.Reader, dict []byte) io.ReadCloser +``` + +### Benchmarks (benchmarked with v0.5.0) + +The author of Zstd also wrote lz4. Zstd is intended to occupy a speed/ratio +level similar to what zlib currently provides. In our tests, the can always +be made to be better than zlib by chosing an appropriate level while still +keeping compression and decompression time faster than zlib. + +You can run the benchmarks against your own payloads by using the Go benchmarks tool. +Just export your payload filepath as the `PAYLOAD` environment variable and run the benchmarks: + +```go +go test -bench . +``` + +Compression of a 7Mb pdf zstd (this wrapper) vs [czlib](https://github.com/DataDog/czlib): +``` +BenchmarkCompression 5 221056624 ns/op 67.34 MB/s +BenchmarkDecompression 100 18370416 ns/op 810.32 MB/s + +BenchmarkFzlibCompress 2 610156603 ns/op 24.40 MB/s +BenchmarkFzlibDecompress 20 81195246 ns/op 183.33 MB/s +``` + +Ratio is also better by a margin of ~20%. +Compression speed is always better than zlib on all the payloads we tested; +However, [czlib](https://github.com/DataDog/czlib) has optimisations that make it +faster at decompressiong small payloads: + +``` +Testing with size: 11... czlib: 8.97 MB/s, zstd: 3.26 MB/s +Testing with size: 27... czlib: 23.3 MB/s, zstd: 8.22 MB/s +Testing with size: 62... czlib: 31.6 MB/s, zstd: 19.49 MB/s +Testing with size: 141... czlib: 74.54 MB/s, zstd: 42.55 MB/s +Testing with size: 323... czlib: 155.14 MB/s, zstd: 99.39 MB/s +Testing with size: 739... czlib: 235.9 MB/s, zstd: 216.45 MB/s +Testing with size: 1689... czlib: 116.45 MB/s, zstd: 345.64 MB/s +Testing with size: 3858... czlib: 176.39 MB/s, zstd: 617.56 MB/s +Testing with size: 8811... czlib: 254.11 MB/s, zstd: 824.34 MB/s +Testing with size: 20121... czlib: 197.43 MB/s, zstd: 1339.11 MB/s +Testing with size: 45951... czlib: 201.62 MB/s, zstd: 1951.57 MB/s +``` + +zstd starts to shine with payloads > 1KB + +### Stability - Current state: STABLE + +The C library seems to be pretty stable and according to the author has been tested and fuzzed. + +For the Go wrapper, the test cover most usual cases and we have succesfully tested it on all staging and prod data. diff --git a/vendor/github.com/DataDog/zstd/ZSTD_LICENSE b/vendor/github.com/DataDog/zstd/ZSTD_LICENSE new file mode 100644 index 0000000000..a793a80289 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/ZSTD_LICENSE @@ -0,0 +1,30 @@ +BSD License + +For Zstandard software + +Copyright (c) 2016-present, Facebook, Inc. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the name Facebook nor the names of its contributors may be used to + endorse or promote products derived from this software without specific + prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vendor/github.com/DataDog/zstd/bitstream.h b/vendor/github.com/DataDog/zstd/bitstream.h new file mode 100644 index 0000000000..d955bd677b --- /dev/null +++ b/vendor/github.com/DataDog/zstd/bitstream.h @@ -0,0 +1,455 @@ +/* ****************************************************************** + bitstream + Part of FSE library + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy +****************************************************************** */ +#ifndef BITSTREAM_H_MODULE +#define BITSTREAM_H_MODULE + +#if defined (__cplusplus) +extern "C" { +#endif + +/* +* This API consists of small unitary functions, which must be inlined for best performance. +* Since link-time-optimization is not available for all compilers, +* these functions are defined into a .h to be included. +*/ + +/*-**************************************** +* Dependencies +******************************************/ +#include "mem.h" /* unaligned access routines */ +#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */ +#include "error_private.h" /* error codes and messages */ + + +/*========================================= +* Target specific +=========================================*/ +#if defined(__BMI__) && defined(__GNUC__) +# include /* support for bextr (experimental) */ +#endif + +#define STREAM_ACCUMULATOR_MIN_32 25 +#define STREAM_ACCUMULATOR_MIN_64 57 +#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64)) + + +/*-****************************************** +* bitStream encoding API (write forward) +********************************************/ +/* bitStream can mix input from multiple sources. + * A critical property of these streams is that they encode and decode in **reverse** direction. + * So the first bit sequence you add will be the last to be read, like a LIFO stack. + */ +typedef struct { + size_t bitContainer; + unsigned bitPos; + char* startPtr; + char* ptr; + char* endPtr; +} BIT_CStream_t; + +MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity); +MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits); +MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC); +MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC); + +/* Start with initCStream, providing the size of buffer to write into. +* bitStream will never write outside of this buffer. +* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code. +* +* bits are first added to a local register. +* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems. +* Writing data into memory is an explicit operation, performed by the flushBits function. +* Hence keep track how many bits are potentially stored into local register to avoid register overflow. +* After a flushBits, a maximum of 7 bits might still be stored into local register. +* +* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers. +* +* Last operation is to close the bitStream. +* The function returns the final size of CStream in bytes. +* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable) +*/ + + +/*-******************************************** +* bitStream decoding API (read backward) +**********************************************/ +typedef struct { + size_t bitContainer; + unsigned bitsConsumed; + const char* ptr; + const char* start; + const char* limitPtr; +} BIT_DStream_t; + +typedef enum { BIT_DStream_unfinished = 0, + BIT_DStream_endOfBuffer = 1, + BIT_DStream_completed = 2, + BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ + /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ + +MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); +MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); +MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); +MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); + + +/* Start by invoking BIT_initDStream(). +* A chunk of the bitStream is then stored into a local register. +* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). +* You can then retrieve bitFields stored into the local register, **in reverse order**. +* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method. +* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished. +* Otherwise, it can be less than that, so proceed accordingly. +* Checking if DStream has reached its end can be performed with BIT_endOfDStream(). +*/ + + +/*-**************************************** +* unsafe API +******************************************/ +MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits); +/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */ + +MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC); +/* unsafe version; does not check buffer overflow */ + +MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); +/* faster, but works only if nbBits >= 1 */ + + + +/*-************************************************************** +* Internal functions +****************************************************************/ +MEM_STATIC unsigned BIT_highbit32 (U32 val) +{ + assert(val != 0); + { +# if defined(_MSC_VER) /* Visual */ + unsigned long r=0; + _BitScanReverse ( &r, val ); + return (unsigned) r; +# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ + return 31 - __builtin_clz (val); +# else /* Software version */ + static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, + 11, 14, 16, 18, 22, 25, 3, 30, + 8, 12, 20, 28, 15, 17, 24, 7, + 19, 27, 23, 6, 26, 5, 4, 31 }; + U32 v = val; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; +# endif + } +} + +/*===== Local Constants =====*/ +static const unsigned BIT_mask[] = { + 0, 1, 3, 7, 0xF, 0x1F, + 0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF, + 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF, + 0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF, + 0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF, + 0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */ +#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0])) + +/*-************************************************************** +* bitStream encoding +****************************************************************/ +/*! BIT_initCStream() : + * `dstCapacity` must be > sizeof(size_t) + * @return : 0 if success, + * otherwise an error code (can be tested using ERR_isError()) */ +MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, + void* startPtr, size_t dstCapacity) +{ + bitC->bitContainer = 0; + bitC->bitPos = 0; + bitC->startPtr = (char*)startPtr; + bitC->ptr = bitC->startPtr; + bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer); + if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall); + return 0; +} + +/*! BIT_addBits() : + * can add up to 31 bits into `bitC`. + * Note : does not check for register overflow ! */ +MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, + size_t value, unsigned nbBits) +{ + MEM_STATIC_ASSERT(BIT_MASK_SIZE == 32); + assert(nbBits < BIT_MASK_SIZE); + assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8); + bitC->bitContainer |= (value & BIT_mask[nbBits]) << bitC->bitPos; + bitC->bitPos += nbBits; +} + +/*! BIT_addBitsFast() : + * works only if `value` is _clean_, + * meaning all high bits above nbBits are 0 */ +MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, + size_t value, unsigned nbBits) +{ + assert((value>>nbBits) == 0); + assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8); + bitC->bitContainer |= value << bitC->bitPos; + bitC->bitPos += nbBits; +} + +/*! BIT_flushBitsFast() : + * assumption : bitContainer has not overflowed + * unsafe version; does not check buffer overflow */ +MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC) +{ + size_t const nbBytes = bitC->bitPos >> 3; + assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8); + MEM_writeLEST(bitC->ptr, bitC->bitContainer); + bitC->ptr += nbBytes; + assert(bitC->ptr <= bitC->endPtr); + bitC->bitPos &= 7; + bitC->bitContainer >>= nbBytes*8; +} + +/*! BIT_flushBits() : + * assumption : bitContainer has not overflowed + * safe version; check for buffer overflow, and prevents it. + * note : does not signal buffer overflow. + * overflow will be revealed later on using BIT_closeCStream() */ +MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC) +{ + size_t const nbBytes = bitC->bitPos >> 3; + assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8); + MEM_writeLEST(bitC->ptr, bitC->bitContainer); + bitC->ptr += nbBytes; + if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr; + bitC->bitPos &= 7; + bitC->bitContainer >>= nbBytes*8; +} + +/*! BIT_closeCStream() : + * @return : size of CStream, in bytes, + * or 0 if it could not fit into dstBuffer */ +MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC) +{ + BIT_addBitsFast(bitC, 1, 1); /* endMark */ + BIT_flushBits(bitC); + if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */ + return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0); +} + + +/*-******************************************************** +* bitStream decoding +**********************************************************/ +/*! BIT_initDStream() : + * Initialize a BIT_DStream_t. + * `bitD` : a pointer to an already allocated BIT_DStream_t structure. + * `srcSize` must be the *exact* size of the bitStream, in bytes. + * @return : size of stream (== srcSize), or an errorCode if a problem is detected + */ +MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) +{ + if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } + + bitD->start = (const char*)srcBuffer; + bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer); + + if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */ + bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer); + bitD->bitContainer = MEM_readLEST(bitD->ptr); + { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; + bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */ + if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ } + } else { + bitD->ptr = bitD->start; + bitD->bitContainer = *(const BYTE*)(bitD->start); + switch(srcSize) + { + case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16); + /* fall-through */ + + case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24); + /* fall-through */ + + case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32); + /* fall-through */ + + case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; + /* fall-through */ + + case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; + /* fall-through */ + + case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; + /* fall-through */ + + default: break; + } + { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; + bitD->bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0; + if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */ + } + bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8; + } + + return srcSize; +} + +MEM_STATIC size_t BIT_getUpperBits(size_t bitContainer, U32 const start) +{ + return bitContainer >> start; +} + +MEM_STATIC size_t BIT_getMiddleBits(size_t bitContainer, U32 const start, U32 const nbBits) +{ + U32 const regMask = sizeof(bitContainer)*8 - 1; + /* if start > regMask, bitstream is corrupted, and result is undefined */ + assert(nbBits < BIT_MASK_SIZE); + return (bitContainer >> (start & regMask)) & BIT_mask[nbBits]; +} + +MEM_STATIC size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits) +{ + assert(nbBits < BIT_MASK_SIZE); + return bitContainer & BIT_mask[nbBits]; +} + +/*! BIT_lookBits() : + * Provides next n bits from local register. + * local register is not modified. + * On 32-bits, maxNbBits==24. + * On 64-bits, maxNbBits==56. + * @return : value extracted */ +MEM_STATIC size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits) +{ + /* arbitrate between double-shift and shift+mask */ +#if 1 + /* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8, + * bitstream is likely corrupted, and result is undefined */ + return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits); +#else + /* this code path is slower on my os-x laptop */ + U32 const regMask = sizeof(bitD->bitContainer)*8 - 1; + return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask); +#endif +} + +/*! BIT_lookBitsFast() : + * unsafe version; only works if nbBits >= 1 */ +MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits) +{ + U32 const regMask = sizeof(bitD->bitContainer)*8 - 1; + assert(nbBits >= 1); + return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask); +} + +MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) +{ + bitD->bitsConsumed += nbBits; +} + +/*! BIT_readBits() : + * Read (consume) next n bits from local register and update. + * Pay attention to not read more than nbBits contained into local register. + * @return : extracted value. */ +MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits) +{ + size_t const value = BIT_lookBits(bitD, nbBits); + BIT_skipBits(bitD, nbBits); + return value; +} + +/*! BIT_readBitsFast() : + * unsafe version; only works only if nbBits >= 1 */ +MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits) +{ + size_t const value = BIT_lookBitsFast(bitD, nbBits); + assert(nbBits >= 1); + BIT_skipBits(bitD, nbBits); + return value; +} + +/*! BIT_reloadDStream() : + * Refill `bitD` from buffer previously set in BIT_initDStream() . + * This function is safe, it guarantees it will not read beyond src buffer. + * @return : status of `BIT_DStream_t` internal register. + * when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */ +MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) +{ + if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* overflow detected, like end of stream */ + return BIT_DStream_overflow; + + if (bitD->ptr >= bitD->limitPtr) { + bitD->ptr -= bitD->bitsConsumed >> 3; + bitD->bitsConsumed &= 7; + bitD->bitContainer = MEM_readLEST(bitD->ptr); + return BIT_DStream_unfinished; + } + if (bitD->ptr == bitD->start) { + if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; + return BIT_DStream_completed; + } + /* start < ptr < limitPtr */ + { U32 nbBytes = bitD->bitsConsumed >> 3; + BIT_DStream_status result = BIT_DStream_unfinished; + if (bitD->ptr - nbBytes < bitD->start) { + nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ + result = BIT_DStream_endOfBuffer; + } + bitD->ptr -= nbBytes; + bitD->bitsConsumed -= nbBytes*8; + bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */ + return result; + } +} + +/*! BIT_endOfDStream() : + * @return : 1 if DStream has _exactly_ reached its end (all bits consumed). + */ +MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) +{ + return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); +} + +#if defined (__cplusplus) +} +#endif + +#endif /* BITSTREAM_H_MODULE */ diff --git a/vendor/github.com/DataDog/zstd/compiler.h b/vendor/github.com/DataDog/zstd/compiler.h new file mode 100644 index 0000000000..0836e3ed27 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/compiler.h @@ -0,0 +1,140 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_COMPILER_H +#define ZSTD_COMPILER_H + +/*-******************************************************* +* Compiler specifics +*********************************************************/ +/* force inlining */ + +#if !defined(ZSTD_NO_INLINE) +#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ +# define INLINE_KEYWORD inline +#else +# define INLINE_KEYWORD +#endif + +#if defined(__GNUC__) +# define FORCE_INLINE_ATTR __attribute__((always_inline)) +#elif defined(_MSC_VER) +# define FORCE_INLINE_ATTR __forceinline +#else +# define FORCE_INLINE_ATTR +#endif + +#else + +#define INLINE_KEYWORD +#define FORCE_INLINE_ATTR + +#endif + +/** + * FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant + * parameters. They must be inlined for the compiler to eliminate the constant + * branches. + */ +#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR +/** + * HINT_INLINE is used to help the compiler generate better code. It is *not* + * used for "templates", so it can be tweaked based on the compilers + * performance. + * + * gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the + * always_inline attribute. + * + * clang up to 5.0.0 (trunk) benefit tremendously from the always_inline + * attribute. + */ +#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5 +# define HINT_INLINE static INLINE_KEYWORD +#else +# define HINT_INLINE static INLINE_KEYWORD FORCE_INLINE_ATTR +#endif + +/* force no inlining */ +#ifdef _MSC_VER +# define FORCE_NOINLINE static __declspec(noinline) +#else +# ifdef __GNUC__ +# define FORCE_NOINLINE static __attribute__((__noinline__)) +# else +# define FORCE_NOINLINE static +# endif +#endif + +/* target attribute */ +#ifndef __has_attribute + #define __has_attribute(x) 0 /* Compatibility with non-clang compilers. */ +#endif +#if defined(__GNUC__) +# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target))) +#else +# define TARGET_ATTRIBUTE(target) +#endif + +/* Enable runtime BMI2 dispatch based on the CPU. + * Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default. + */ +#ifndef DYNAMIC_BMI2 + #if ((defined(__clang__) && __has_attribute(__target__)) \ + || (defined(__GNUC__) \ + && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \ + && (defined(__x86_64__) || defined(_M_X86)) \ + && !defined(__BMI2__) + # define DYNAMIC_BMI2 1 + #else + # define DYNAMIC_BMI2 0 + #endif +#endif + +/* prefetch + * can be disabled, by declaring NO_PREFETCH build macro */ +#if defined(NO_PREFETCH) +# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */ +# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */ +#else +# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ +# include /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ +# define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) +# define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1) +# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) +# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) +# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */) +# else +# define PREFETCH_L1(ptr) (void)(ptr) /* disabled */ +# define PREFETCH_L2(ptr) (void)(ptr) /* disabled */ +# endif +#endif /* NO_PREFETCH */ + +#define CACHELINE_SIZE 64 + +#define PREFETCH_AREA(p, s) { \ + const char* const _ptr = (const char*)(p); \ + size_t const _size = (size_t)(s); \ + size_t _pos; \ + for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \ + PREFETCH_L2(_ptr + _pos); \ + } \ +} + +/* disable warnings */ +#ifdef _MSC_VER /* Visual Studio */ +# include /* For Visual 2005 */ +# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ +# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ +# pragma warning(disable : 4324) /* disable: C4324: padded structure */ +#endif + +#endif /* ZSTD_COMPILER_H */ diff --git a/vendor/github.com/DataDog/zstd/cover.c b/vendor/github.com/DataDog/zstd/cover.c new file mode 100644 index 0000000000..21464ad031 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/cover.c @@ -0,0 +1,1126 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* ***************************************************************************** + * Constructs a dictionary using a heuristic based on the following paper: + * + * Liao, Petri, Moffat, Wirth + * Effective Construction of Relative Lempel-Ziv Dictionaries + * Published in WWW 2016. + * + * Adapted from code originally written by @ot (Giuseppe Ottaviano). + ******************************************************************************/ + +/*-************************************* +* Dependencies +***************************************/ +#include /* fprintf */ +#include /* malloc, free, qsort */ +#include /* memset */ +#include /* clock */ + +#include "mem.h" /* read */ +#include "pool.h" +#include "threading.h" +#include "cover.h" +#include "zstd_internal.h" /* includes zstd.h */ +#ifndef ZDICT_STATIC_LINKING_ONLY +#define ZDICT_STATIC_LINKING_ONLY +#endif +#include "zdict.h" + +/*-************************************* +* Constants +***************************************/ +#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB)) +#define DEFAULT_SPLITPOINT 1.0 + +/*-************************************* +* Console display +***************************************/ +static int g_displayLevel = 2; +#define DISPLAY(...) \ + { \ + fprintf(stderr, __VA_ARGS__); \ + fflush(stderr); \ + } +#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \ + if (displayLevel >= l) { \ + DISPLAY(__VA_ARGS__); \ + } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ +#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__) + +#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \ + if (displayLevel >= l) { \ + if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \ + g_time = clock(); \ + DISPLAY(__VA_ARGS__); \ + } \ + } +#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__) +static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100; +static clock_t g_time = 0; + +/*-************************************* +* Hash table +*************************************** +* A small specialized hash map for storing activeDmers. +* The map does not resize, so if it becomes full it will loop forever. +* Thus, the map must be large enough to store every value. +* The map implements linear probing and keeps its load less than 0.5. +*/ + +#define MAP_EMPTY_VALUE ((U32)-1) +typedef struct COVER_map_pair_t_s { + U32 key; + U32 value; +} COVER_map_pair_t; + +typedef struct COVER_map_s { + COVER_map_pair_t *data; + U32 sizeLog; + U32 size; + U32 sizeMask; +} COVER_map_t; + +/** + * Clear the map. + */ +static void COVER_map_clear(COVER_map_t *map) { + memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t)); +} + +/** + * Initializes a map of the given size. + * Returns 1 on success and 0 on failure. + * The map must be destroyed with COVER_map_destroy(). + * The map is only guaranteed to be large enough to hold size elements. + */ +static int COVER_map_init(COVER_map_t *map, U32 size) { + map->sizeLog = ZSTD_highbit32(size) + 2; + map->size = (U32)1 << map->sizeLog; + map->sizeMask = map->size - 1; + map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t)); + if (!map->data) { + map->sizeLog = 0; + map->size = 0; + return 0; + } + COVER_map_clear(map); + return 1; +} + +/** + * Internal hash function + */ +static const U32 prime4bytes = 2654435761U; +static U32 COVER_map_hash(COVER_map_t *map, U32 key) { + return (key * prime4bytes) >> (32 - map->sizeLog); +} + +/** + * Helper function that returns the index that a key should be placed into. + */ +static U32 COVER_map_index(COVER_map_t *map, U32 key) { + const U32 hash = COVER_map_hash(map, key); + U32 i; + for (i = hash;; i = (i + 1) & map->sizeMask) { + COVER_map_pair_t *pos = &map->data[i]; + if (pos->value == MAP_EMPTY_VALUE) { + return i; + } + if (pos->key == key) { + return i; + } + } +} + +/** + * Returns the pointer to the value for key. + * If key is not in the map, it is inserted and the value is set to 0. + * The map must not be full. + */ +static U32 *COVER_map_at(COVER_map_t *map, U32 key) { + COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)]; + if (pos->value == MAP_EMPTY_VALUE) { + pos->key = key; + pos->value = 0; + } + return &pos->value; +} + +/** + * Deletes key from the map if present. + */ +static void COVER_map_remove(COVER_map_t *map, U32 key) { + U32 i = COVER_map_index(map, key); + COVER_map_pair_t *del = &map->data[i]; + U32 shift = 1; + if (del->value == MAP_EMPTY_VALUE) { + return; + } + for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) { + COVER_map_pair_t *const pos = &map->data[i]; + /* If the position is empty we are done */ + if (pos->value == MAP_EMPTY_VALUE) { + del->value = MAP_EMPTY_VALUE; + return; + } + /* If pos can be moved to del do so */ + if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) { + del->key = pos->key; + del->value = pos->value; + del = pos; + shift = 1; + } else { + ++shift; + } + } +} + +/** + * Destroys a map that is inited with COVER_map_init(). + */ +static void COVER_map_destroy(COVER_map_t *map) { + if (map->data) { + free(map->data); + } + map->data = NULL; + map->size = 0; +} + +/*-************************************* +* Context +***************************************/ + +typedef struct { + const BYTE *samples; + size_t *offsets; + const size_t *samplesSizes; + size_t nbSamples; + size_t nbTrainSamples; + size_t nbTestSamples; + U32 *suffix; + size_t suffixSize; + U32 *freqs; + U32 *dmerAt; + unsigned d; +} COVER_ctx_t; + +/* We need a global context for qsort... */ +static COVER_ctx_t *g_ctx = NULL; + +/*-************************************* +* Helper functions +***************************************/ + +/** + * Returns the sum of the sample sizes. + */ +size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) { + size_t sum = 0; + unsigned i; + for (i = 0; i < nbSamples; ++i) { + sum += samplesSizes[i]; + } + return sum; +} + +/** + * Returns -1 if the dmer at lp is less than the dmer at rp. + * Return 0 if the dmers at lp and rp are equal. + * Returns 1 if the dmer at lp is greater than the dmer at rp. + */ +static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) { + U32 const lhs = *(U32 const *)lp; + U32 const rhs = *(U32 const *)rp; + return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d); +} +/** + * Faster version for d <= 8. + */ +static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) { + U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1); + U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask; + U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask; + if (lhs < rhs) { + return -1; + } + return (lhs > rhs); +} + +/** + * Same as COVER_cmp() except ties are broken by pointer value + * NOTE: g_ctx must be set to call this function. A global is required because + * qsort doesn't take an opaque pointer. + */ +static int COVER_strict_cmp(const void *lp, const void *rp) { + int result = COVER_cmp(g_ctx, lp, rp); + if (result == 0) { + result = lp < rp ? -1 : 1; + } + return result; +} +/** + * Faster version for d <= 8. + */ +static int COVER_strict_cmp8(const void *lp, const void *rp) { + int result = COVER_cmp8(g_ctx, lp, rp); + if (result == 0) { + result = lp < rp ? -1 : 1; + } + return result; +} + +/** + * Returns the first pointer in [first, last) whose element does not compare + * less than value. If no such element exists it returns last. + */ +static const size_t *COVER_lower_bound(const size_t *first, const size_t *last, + size_t value) { + size_t count = last - first; + while (count != 0) { + size_t step = count / 2; + const size_t *ptr = first; + ptr += step; + if (*ptr < value) { + first = ++ptr; + count -= step + 1; + } else { + count = step; + } + } + return first; +} + +/** + * Generic groupBy function. + * Groups an array sorted by cmp into groups with equivalent values. + * Calls grp for each group. + */ +static void +COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx, + int (*cmp)(COVER_ctx_t *, const void *, const void *), + void (*grp)(COVER_ctx_t *, const void *, const void *)) { + const BYTE *ptr = (const BYTE *)data; + size_t num = 0; + while (num < count) { + const BYTE *grpEnd = ptr + size; + ++num; + while (num < count && cmp(ctx, ptr, grpEnd) == 0) { + grpEnd += size; + ++num; + } + grp(ctx, ptr, grpEnd); + ptr = grpEnd; + } +} + +/*-************************************* +* Cover functions +***************************************/ + +/** + * Called on each group of positions with the same dmer. + * Counts the frequency of each dmer and saves it in the suffix array. + * Fills `ctx->dmerAt`. + */ +static void COVER_group(COVER_ctx_t *ctx, const void *group, + const void *groupEnd) { + /* The group consists of all the positions with the same first d bytes. */ + const U32 *grpPtr = (const U32 *)group; + const U32 *grpEnd = (const U32 *)groupEnd; + /* The dmerId is how we will reference this dmer. + * This allows us to map the whole dmer space to a much smaller space, the + * size of the suffix array. + */ + const U32 dmerId = (U32)(grpPtr - ctx->suffix); + /* Count the number of samples this dmer shows up in */ + U32 freq = 0; + /* Details */ + const size_t *curOffsetPtr = ctx->offsets; + const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples; + /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a + * different sample than the last. + */ + size_t curSampleEnd = ctx->offsets[0]; + for (; grpPtr != grpEnd; ++grpPtr) { + /* Save the dmerId for this position so we can get back to it. */ + ctx->dmerAt[*grpPtr] = dmerId; + /* Dictionaries only help for the first reference to the dmer. + * After that zstd can reference the match from the previous reference. + * So only count each dmer once for each sample it is in. + */ + if (*grpPtr < curSampleEnd) { + continue; + } + freq += 1; + /* Binary search to find the end of the sample *grpPtr is in. + * In the common case that grpPtr + 1 == grpEnd we can skip the binary + * search because the loop is over. + */ + if (grpPtr + 1 != grpEnd) { + const size_t *sampleEndPtr = + COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr); + curSampleEnd = *sampleEndPtr; + curOffsetPtr = sampleEndPtr + 1; + } + } + /* At this point we are never going to look at this segment of the suffix + * array again. We take advantage of this fact to save memory. + * We store the frequency of the dmer in the first position of the group, + * which is dmerId. + */ + ctx->suffix[dmerId] = freq; +} + + +/** + * Selects the best segment in an epoch. + * Segments of are scored according to the function: + * + * Let F(d) be the frequency of dmer d. + * Let S_i be the dmer at position i of segment S which has length k. + * + * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1}) + * + * Once the dmer d is in the dictionary we set F(d) = 0. + */ +static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs, + COVER_map_t *activeDmers, U32 begin, + U32 end, + ZDICT_cover_params_t parameters) { + /* Constants */ + const U32 k = parameters.k; + const U32 d = parameters.d; + const U32 dmersInK = k - d + 1; + /* Try each segment (activeSegment) and save the best (bestSegment) */ + COVER_segment_t bestSegment = {0, 0, 0}; + COVER_segment_t activeSegment; + /* Reset the activeDmers in the segment */ + COVER_map_clear(activeDmers); + /* The activeSegment starts at the beginning of the epoch. */ + activeSegment.begin = begin; + activeSegment.end = begin; + activeSegment.score = 0; + /* Slide the activeSegment through the whole epoch. + * Save the best segment in bestSegment. + */ + while (activeSegment.end < end) { + /* The dmerId for the dmer at the next position */ + U32 newDmer = ctx->dmerAt[activeSegment.end]; + /* The entry in activeDmers for this dmerId */ + U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer); + /* If the dmer isn't already present in the segment add its score. */ + if (*newDmerOcc == 0) { + /* The paper suggest using the L-0.5 norm, but experiments show that it + * doesn't help. + */ + activeSegment.score += freqs[newDmer]; + } + /* Add the dmer to the segment */ + activeSegment.end += 1; + *newDmerOcc += 1; + + /* If the window is now too large, drop the first position */ + if (activeSegment.end - activeSegment.begin == dmersInK + 1) { + U32 delDmer = ctx->dmerAt[activeSegment.begin]; + U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer); + activeSegment.begin += 1; + *delDmerOcc -= 1; + /* If this is the last occurrence of the dmer, subtract its score */ + if (*delDmerOcc == 0) { + COVER_map_remove(activeDmers, delDmer); + activeSegment.score -= freqs[delDmer]; + } + } + + /* If this segment is the best so far save it */ + if (activeSegment.score > bestSegment.score) { + bestSegment = activeSegment; + } + } + { + /* Trim off the zero frequency head and tail from the segment. */ + U32 newBegin = bestSegment.end; + U32 newEnd = bestSegment.begin; + U32 pos; + for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { + U32 freq = freqs[ctx->dmerAt[pos]]; + if (freq != 0) { + newBegin = MIN(newBegin, pos); + newEnd = pos + 1; + } + } + bestSegment.begin = newBegin; + bestSegment.end = newEnd; + } + { + /* Zero out the frequency of each dmer covered by the chosen segment. */ + U32 pos; + for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { + freqs[ctx->dmerAt[pos]] = 0; + } + } + return bestSegment; +} + +/** + * Check the validity of the parameters. + * Returns non-zero if the parameters are valid and 0 otherwise. + */ +static int COVER_checkParameters(ZDICT_cover_params_t parameters, + size_t maxDictSize) { + /* k and d are required parameters */ + if (parameters.d == 0 || parameters.k == 0) { + return 0; + } + /* k <= maxDictSize */ + if (parameters.k > maxDictSize) { + return 0; + } + /* d <= k */ + if (parameters.d > parameters.k) { + return 0; + } + /* 0 < splitPoint <= 1 */ + if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){ + return 0; + } + return 1; +} + +/** + * Clean up a context initialized with `COVER_ctx_init()`. + */ +static void COVER_ctx_destroy(COVER_ctx_t *ctx) { + if (!ctx) { + return; + } + if (ctx->suffix) { + free(ctx->suffix); + ctx->suffix = NULL; + } + if (ctx->freqs) { + free(ctx->freqs); + ctx->freqs = NULL; + } + if (ctx->dmerAt) { + free(ctx->dmerAt); + ctx->dmerAt = NULL; + } + if (ctx->offsets) { + free(ctx->offsets); + ctx->offsets = NULL; + } +} + +/** + * Prepare a context for dictionary building. + * The context is only dependent on the parameter `d` and can used multiple + * times. + * Returns 1 on success or zero on error. + * The context must be destroyed with `COVER_ctx_destroy()`. + */ +static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer, + const size_t *samplesSizes, unsigned nbSamples, + unsigned d, double splitPoint) { + const BYTE *const samples = (const BYTE *)samplesBuffer; + const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples); + /* Split samples into testing and training sets */ + const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples; + const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples; + const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize; + const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize; + /* Checks */ + if (totalSamplesSize < MAX(d, sizeof(U64)) || + totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) { + DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n", + (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20)); + return 0; + } + /* Check if there are at least 5 training samples */ + if (nbTrainSamples < 5) { + DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples); + return 0; + } + /* Check if there's testing sample */ + if (nbTestSamples < 1) { + DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples); + return 0; + } + /* Zero the context */ + memset(ctx, 0, sizeof(*ctx)); + DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples, + (unsigned)trainingSamplesSize); + DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples, + (unsigned)testSamplesSize); + ctx->samples = samples; + ctx->samplesSizes = samplesSizes; + ctx->nbSamples = nbSamples; + ctx->nbTrainSamples = nbTrainSamples; + ctx->nbTestSamples = nbTestSamples; + /* Partial suffix array */ + ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1; + ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); + /* Maps index to the dmerID */ + ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); + /* The offsets of each file */ + ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t)); + if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) { + DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n"); + COVER_ctx_destroy(ctx); + return 0; + } + ctx->freqs = NULL; + ctx->d = d; + + /* Fill offsets from the samplesSizes */ + { + U32 i; + ctx->offsets[0] = 0; + for (i = 1; i <= nbSamples; ++i) { + ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1]; + } + } + DISPLAYLEVEL(2, "Constructing partial suffix array\n"); + { + /* suffix is a partial suffix array. + * It only sorts suffixes by their first parameters.d bytes. + * The sort is stable, so each dmer group is sorted by position in input. + */ + U32 i; + for (i = 0; i < ctx->suffixSize; ++i) { + ctx->suffix[i] = i; + } + /* qsort doesn't take an opaque pointer, so pass as a global. + * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is. + */ + g_ctx = ctx; +#if defined(__OpenBSD__) + mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32), + (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp)); +#else + qsort(ctx->suffix, ctx->suffixSize, sizeof(U32), + (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp)); +#endif + } + DISPLAYLEVEL(2, "Computing frequencies\n"); + /* For each dmer group (group of positions with the same first d bytes): + * 1. For each position we set dmerAt[position] = dmerID. The dmerID is + * (groupBeginPtr - suffix). This allows us to go from position to + * dmerID so we can look up values in freq. + * 2. We calculate how many samples the dmer occurs in and save it in + * freqs[dmerId]. + */ + COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx, + (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group); + ctx->freqs = ctx->suffix; + ctx->suffix = NULL; + return 1; +} + +void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel) +{ + const double ratio = (double)nbDmers / maxDictSize; + if (ratio >= 10) { + return; + } + LOCALDISPLAYLEVEL(displayLevel, 1, + "WARNING: The maximum dictionary size %u is too large " + "compared to the source size %u! " + "size(source)/size(dictionary) = %f, but it should be >= " + "10! This may lead to a subpar dictionary! We recommend " + "training on sources at least 10x, and up to 100x the " + "size of the dictionary!\n", (U32)maxDictSize, + (U32)nbDmers, ratio); +} + +COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, + U32 nbDmers, U32 k, U32 passes) +{ + const U32 minEpochSize = k * 10; + COVER_epoch_info_t epochs; + epochs.num = MAX(1, maxDictSize / k / passes); + epochs.size = nbDmers / epochs.num; + if (epochs.size >= minEpochSize) { + assert(epochs.size * epochs.num <= nbDmers); + return epochs; + } + epochs.size = MIN(minEpochSize, nbDmers); + epochs.num = nbDmers / epochs.size; + assert(epochs.size * epochs.num <= nbDmers); + return epochs; +} + +/** + * Given the prepared context build the dictionary. + */ +static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs, + COVER_map_t *activeDmers, void *dictBuffer, + size_t dictBufferCapacity, + ZDICT_cover_params_t parameters) { + BYTE *const dict = (BYTE *)dictBuffer; + size_t tail = dictBufferCapacity; + /* Divide the data into epochs. We will select one segment from each epoch. */ + const COVER_epoch_info_t epochs = COVER_computeEpochs( + (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4); + const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3)); + size_t zeroScoreRun = 0; + size_t epoch; + DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", + (U32)epochs.num, (U32)epochs.size); + /* Loop through the epochs until there are no more segments or the dictionary + * is full. + */ + for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) { + const U32 epochBegin = (U32)(epoch * epochs.size); + const U32 epochEnd = epochBegin + epochs.size; + size_t segmentSize; + /* Select a segment */ + COVER_segment_t segment = COVER_selectSegment( + ctx, freqs, activeDmers, epochBegin, epochEnd, parameters); + /* If the segment covers no dmers, then we are out of content. + * There may be new content in other epochs, for continue for some time. + */ + if (segment.score == 0) { + if (++zeroScoreRun >= maxZeroScoreRun) { + break; + } + continue; + } + zeroScoreRun = 0; + /* Trim the segment if necessary and if it is too small then we are done */ + segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail); + if (segmentSize < parameters.d) { + break; + } + /* We fill the dictionary from the back to allow the best segments to be + * referenced with the smallest offsets. + */ + tail -= segmentSize; + memcpy(dict + tail, ctx->samples + segment.begin, segmentSize); + DISPLAYUPDATE( + 2, "\r%u%% ", + (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity)); + } + DISPLAYLEVEL(2, "\r%79s\r", ""); + return tail; +} + +ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover( + void *dictBuffer, size_t dictBufferCapacity, + const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, + ZDICT_cover_params_t parameters) +{ + BYTE* const dict = (BYTE*)dictBuffer; + COVER_ctx_t ctx; + COVER_map_t activeDmers; + parameters.splitPoint = 1.0; + /* Initialize global data */ + g_displayLevel = parameters.zParams.notificationLevel; + /* Checks */ + if (!COVER_checkParameters(parameters, dictBufferCapacity)) { + DISPLAYLEVEL(1, "Cover parameters incorrect\n"); + return ERROR(GENERIC); + } + if (nbSamples == 0) { + DISPLAYLEVEL(1, "Cover must have at least one input file\n"); + return ERROR(GENERIC); + } + if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { + DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", + ZDICT_DICTSIZE_MIN); + return ERROR(dstSize_tooSmall); + } + /* Initialize context and activeDmers */ + if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, + parameters.d, parameters.splitPoint)) { + return ERROR(GENERIC); + } + COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel); + if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) { + DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n"); + COVER_ctx_destroy(&ctx); + return ERROR(GENERIC); + } + + DISPLAYLEVEL(2, "Building dictionary\n"); + { + const size_t tail = + COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer, + dictBufferCapacity, parameters); + const size_t dictionarySize = ZDICT_finalizeDictionary( + dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, + samplesBuffer, samplesSizes, nbSamples, parameters.zParams); + if (!ZSTD_isError(dictionarySize)) { + DISPLAYLEVEL(2, "Constructed dictionary of size %u\n", + (unsigned)dictionarySize); + } + COVER_ctx_destroy(&ctx); + COVER_map_destroy(&activeDmers); + return dictionarySize; + } +} + + + +size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters, + const size_t *samplesSizes, const BYTE *samples, + size_t *offsets, + size_t nbTrainSamples, size_t nbSamples, + BYTE *const dict, size_t dictBufferCapacity) { + size_t totalCompressedSize = ERROR(GENERIC); + /* Pointers */ + ZSTD_CCtx *cctx; + ZSTD_CDict *cdict; + void *dst; + /* Local variables */ + size_t dstCapacity; + size_t i; + /* Allocate dst with enough space to compress the maximum sized sample */ + { + size_t maxSampleSize = 0; + i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0; + for (; i < nbSamples; ++i) { + maxSampleSize = MAX(samplesSizes[i], maxSampleSize); + } + dstCapacity = ZSTD_compressBound(maxSampleSize); + dst = malloc(dstCapacity); + } + /* Create the cctx and cdict */ + cctx = ZSTD_createCCtx(); + cdict = ZSTD_createCDict(dict, dictBufferCapacity, + parameters.zParams.compressionLevel); + if (!dst || !cctx || !cdict) { + goto _compressCleanup; + } + /* Compress each sample and sum their sizes (or error) */ + totalCompressedSize = dictBufferCapacity; + i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0; + for (; i < nbSamples; ++i) { + const size_t size = ZSTD_compress_usingCDict( + cctx, dst, dstCapacity, samples + offsets[i], + samplesSizes[i], cdict); + if (ZSTD_isError(size)) { + totalCompressedSize = ERROR(GENERIC); + goto _compressCleanup; + } + totalCompressedSize += size; + } +_compressCleanup: + ZSTD_freeCCtx(cctx); + ZSTD_freeCDict(cdict); + if (dst) { + free(dst); + } + return totalCompressedSize; +} + + +/** + * Initialize the `COVER_best_t`. + */ +void COVER_best_init(COVER_best_t *best) { + if (best==NULL) return; /* compatible with init on NULL */ + (void)ZSTD_pthread_mutex_init(&best->mutex, NULL); + (void)ZSTD_pthread_cond_init(&best->cond, NULL); + best->liveJobs = 0; + best->dict = NULL; + best->dictSize = 0; + best->compressedSize = (size_t)-1; + memset(&best->parameters, 0, sizeof(best->parameters)); +} + +/** + * Wait until liveJobs == 0. + */ +void COVER_best_wait(COVER_best_t *best) { + if (!best) { + return; + } + ZSTD_pthread_mutex_lock(&best->mutex); + while (best->liveJobs != 0) { + ZSTD_pthread_cond_wait(&best->cond, &best->mutex); + } + ZSTD_pthread_mutex_unlock(&best->mutex); +} + +/** + * Call COVER_best_wait() and then destroy the COVER_best_t. + */ +void COVER_best_destroy(COVER_best_t *best) { + if (!best) { + return; + } + COVER_best_wait(best); + if (best->dict) { + free(best->dict); + } + ZSTD_pthread_mutex_destroy(&best->mutex); + ZSTD_pthread_cond_destroy(&best->cond); +} + +/** + * Called when a thread is about to be launched. + * Increments liveJobs. + */ +void COVER_best_start(COVER_best_t *best) { + if (!best) { + return; + } + ZSTD_pthread_mutex_lock(&best->mutex); + ++best->liveJobs; + ZSTD_pthread_mutex_unlock(&best->mutex); +} + +/** + * Called when a thread finishes executing, both on error or success. + * Decrements liveJobs and signals any waiting threads if liveJobs == 0. + * If this dictionary is the best so far save it and its parameters. + */ +void COVER_best_finish(COVER_best_t *best, size_t compressedSize, + ZDICT_cover_params_t parameters, void *dict, + size_t dictSize) { + if (!best) { + return; + } + { + size_t liveJobs; + ZSTD_pthread_mutex_lock(&best->mutex); + --best->liveJobs; + liveJobs = best->liveJobs; + /* If the new dictionary is better */ + if (compressedSize < best->compressedSize) { + /* Allocate space if necessary */ + if (!best->dict || best->dictSize < dictSize) { + if (best->dict) { + free(best->dict); + } + best->dict = malloc(dictSize); + if (!best->dict) { + best->compressedSize = ERROR(GENERIC); + best->dictSize = 0; + ZSTD_pthread_cond_signal(&best->cond); + ZSTD_pthread_mutex_unlock(&best->mutex); + return; + } + } + /* Save the dictionary, parameters, and size */ + memcpy(best->dict, dict, dictSize); + best->dictSize = dictSize; + best->parameters = parameters; + best->compressedSize = compressedSize; + } + if (liveJobs == 0) { + ZSTD_pthread_cond_broadcast(&best->cond); + } + ZSTD_pthread_mutex_unlock(&best->mutex); + } +} + +/** + * Parameters for COVER_tryParameters(). + */ +typedef struct COVER_tryParameters_data_s { + const COVER_ctx_t *ctx; + COVER_best_t *best; + size_t dictBufferCapacity; + ZDICT_cover_params_t parameters; +} COVER_tryParameters_data_t; + +/** + * Tries a set of parameters and updates the COVER_best_t with the results. + * This function is thread safe if zstd is compiled with multithreaded support. + * It takes its parameters as an *OWNING* opaque pointer to support threading. + */ +static void COVER_tryParameters(void *opaque) { + /* Save parameters as local variables */ + COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque; + const COVER_ctx_t *const ctx = data->ctx; + const ZDICT_cover_params_t parameters = data->parameters; + size_t dictBufferCapacity = data->dictBufferCapacity; + size_t totalCompressedSize = ERROR(GENERIC); + /* Allocate space for hash table, dict, and freqs */ + COVER_map_t activeDmers; + BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity); + U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); + if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) { + DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n"); + goto _cleanup; + } + if (!dict || !freqs) { + DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n"); + goto _cleanup; + } + /* Copy the frequencies because we need to modify them */ + memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32)); + /* Build the dictionary */ + { + const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict, + dictBufferCapacity, parameters); + dictBufferCapacity = ZDICT_finalizeDictionary( + dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, + ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, + parameters.zParams); + if (ZDICT_isError(dictBufferCapacity)) { + DISPLAYLEVEL(1, "Failed to finalize dictionary\n"); + goto _cleanup; + } + } + /* Check total compressed size */ + totalCompressedSize = COVER_checkTotalCompressedSize(parameters, ctx->samplesSizes, + ctx->samples, ctx->offsets, + ctx->nbTrainSamples, ctx->nbSamples, + dict, dictBufferCapacity); + +_cleanup: + COVER_best_finish(data->best, totalCompressedSize, parameters, dict, + dictBufferCapacity); + free(data); + COVER_map_destroy(&activeDmers); + if (dict) { + free(dict); + } + if (freqs) { + free(freqs); + } +} + +ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover( + void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer, + const size_t *samplesSizes, unsigned nbSamples, + ZDICT_cover_params_t *parameters) { + /* constants */ + const unsigned nbThreads = parameters->nbThreads; + const double splitPoint = + parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint; + const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d; + const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d; + const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k; + const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k; + const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps; + const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1); + const unsigned kIterations = + (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize); + /* Local variables */ + const int displayLevel = parameters->zParams.notificationLevel; + unsigned iteration = 1; + unsigned d; + unsigned k; + COVER_best_t best; + POOL_ctx *pool = NULL; + int warned = 0; + + /* Checks */ + if (splitPoint <= 0 || splitPoint > 1) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n"); + return ERROR(GENERIC); + } + if (kMinK < kMaxD || kMaxK < kMinK) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n"); + return ERROR(GENERIC); + } + if (nbSamples == 0) { + DISPLAYLEVEL(1, "Cover must have at least one input file\n"); + return ERROR(GENERIC); + } + if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { + DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", + ZDICT_DICTSIZE_MIN); + return ERROR(dstSize_tooSmall); + } + if (nbThreads > 1) { + pool = POOL_create(nbThreads, 1); + if (!pool) { + return ERROR(memory_allocation); + } + } + /* Initialization */ + COVER_best_init(&best); + /* Turn down global display level to clean up display at level 2 and below */ + g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1; + /* Loop through d first because each new value needs a new context */ + LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n", + kIterations); + for (d = kMinD; d <= kMaxD; d += 2) { + /* Initialize the context for this value of d */ + COVER_ctx_t ctx; + LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d); + if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint)) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n"); + COVER_best_destroy(&best); + POOL_free(pool); + return ERROR(GENERIC); + } + if (!warned) { + COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel); + warned = 1; + } + /* Loop through k reusing the same context */ + for (k = kMinK; k <= kMaxK; k += kStepSize) { + /* Prepare the arguments */ + COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc( + sizeof(COVER_tryParameters_data_t)); + LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k); + if (!data) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n"); + COVER_best_destroy(&best); + COVER_ctx_destroy(&ctx); + POOL_free(pool); + return ERROR(GENERIC); + } + data->ctx = &ctx; + data->best = &best; + data->dictBufferCapacity = dictBufferCapacity; + data->parameters = *parameters; + data->parameters.k = k; + data->parameters.d = d; + data->parameters.splitPoint = splitPoint; + data->parameters.steps = kSteps; + data->parameters.zParams.notificationLevel = g_displayLevel; + /* Check the parameters */ + if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) { + DISPLAYLEVEL(1, "Cover parameters incorrect\n"); + free(data); + continue; + } + /* Call the function and pass ownership of data to it */ + COVER_best_start(&best); + if (pool) { + POOL_add(pool, &COVER_tryParameters, data); + } else { + COVER_tryParameters(data); + } + /* Print status */ + LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ", + (unsigned)((iteration * 100) / kIterations)); + ++iteration; + } + COVER_best_wait(&best); + COVER_ctx_destroy(&ctx); + } + LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", ""); + /* Fill the output buffer and parameters with output of the best parameters */ + { + const size_t dictSize = best.dictSize; + if (ZSTD_isError(best.compressedSize)) { + const size_t compressedSize = best.compressedSize; + COVER_best_destroy(&best); + POOL_free(pool); + return compressedSize; + } + *parameters = best.parameters; + memcpy(dictBuffer, best.dict, dictSize); + COVER_best_destroy(&best); + POOL_free(pool); + return dictSize; + } +} diff --git a/vendor/github.com/DataDog/zstd/cover.h b/vendor/github.com/DataDog/zstd/cover.h new file mode 100644 index 0000000000..efb46807c7 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/cover.h @@ -0,0 +1,112 @@ +#include /* fprintf */ +#include /* malloc, free, qsort */ +#include /* memset */ +#include /* clock */ +#include "mem.h" /* read */ +#include "pool.h" +#include "threading.h" +#include "zstd_internal.h" /* includes zstd.h */ +#ifndef ZDICT_STATIC_LINKING_ONLY +#define ZDICT_STATIC_LINKING_ONLY +#endif +#include "zdict.h" + +/** + * COVER_best_t is used for two purposes: + * 1. Synchronizing threads. + * 2. Saving the best parameters and dictionary. + * + * All of the methods except COVER_best_init() are thread safe if zstd is + * compiled with multithreaded support. + */ +typedef struct COVER_best_s { + ZSTD_pthread_mutex_t mutex; + ZSTD_pthread_cond_t cond; + size_t liveJobs; + void *dict; + size_t dictSize; + ZDICT_cover_params_t parameters; + size_t compressedSize; +} COVER_best_t; + +/** + * A segment is a range in the source as well as the score of the segment. + */ +typedef struct { + U32 begin; + U32 end; + U32 score; +} COVER_segment_t; + +/** + *Number of epochs and size of each epoch. + */ +typedef struct { + U32 num; + U32 size; +} COVER_epoch_info_t; + +/** + * Computes the number of epochs and the size of each epoch. + * We will make sure that each epoch gets at least 10 * k bytes. + * + * The COVER algorithms divide the data up into epochs of equal size and + * select one segment from each epoch. + * + * @param maxDictSize The maximum allowed dictionary size. + * @param nbDmers The number of dmers we are training on. + * @param k The parameter k (segment size). + * @param passes The target number of passes over the dmer corpus. + * More passes means a better dictionary. + */ +COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, U32 nbDmers, + U32 k, U32 passes); + +/** + * Warns the user when their corpus is too small. + */ +void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel); + +/** + * Checks total compressed size of a dictionary + */ +size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters, + const size_t *samplesSizes, const BYTE *samples, + size_t *offsets, + size_t nbTrainSamples, size_t nbSamples, + BYTE *const dict, size_t dictBufferCapacity); + +/** + * Returns the sum of the sample sizes. + */ +size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) ; + +/** + * Initialize the `COVER_best_t`. + */ +void COVER_best_init(COVER_best_t *best); + +/** + * Wait until liveJobs == 0. + */ +void COVER_best_wait(COVER_best_t *best); + +/** + * Call COVER_best_wait() and then destroy the COVER_best_t. + */ +void COVER_best_destroy(COVER_best_t *best); + +/** + * Called when a thread is about to be launched. + * Increments liveJobs. + */ +void COVER_best_start(COVER_best_t *best); + +/** + * Called when a thread finishes executing, both on error or success. + * Decrements liveJobs and signals any waiting threads if liveJobs == 0. + * If this dictionary is the best so far save it and its parameters. + */ +void COVER_best_finish(COVER_best_t *best, size_t compressedSize, + ZDICT_cover_params_t parameters, void *dict, + size_t dictSize); diff --git a/vendor/github.com/DataDog/zstd/cpu.h b/vendor/github.com/DataDog/zstd/cpu.h new file mode 100644 index 0000000000..5f0923fc92 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/cpu.h @@ -0,0 +1,215 @@ +/* + * Copyright (c) 2018-present, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_COMMON_CPU_H +#define ZSTD_COMMON_CPU_H + +/** + * Implementation taken from folly/CpuId.h + * https://github.com/facebook/folly/blob/master/folly/CpuId.h + */ + +#include + +#include "mem.h" + +#ifdef _MSC_VER +#include +#endif + +typedef struct { + U32 f1c; + U32 f1d; + U32 f7b; + U32 f7c; +} ZSTD_cpuid_t; + +MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) { + U32 f1c = 0; + U32 f1d = 0; + U32 f7b = 0; + U32 f7c = 0; +#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86)) + int reg[4]; + __cpuid((int*)reg, 0); + { + int const n = reg[0]; + if (n >= 1) { + __cpuid((int*)reg, 1); + f1c = (U32)reg[2]; + f1d = (U32)reg[3]; + } + if (n >= 7) { + __cpuidex((int*)reg, 7, 0); + f7b = (U32)reg[1]; + f7c = (U32)reg[2]; + } + } +#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__) + /* The following block like the normal cpuid branch below, but gcc + * reserves ebx for use of its pic register so we must specially + * handle the save and restore to avoid clobbering the register + */ + U32 n; + __asm__( + "pushl %%ebx\n\t" + "cpuid\n\t" + "popl %%ebx\n\t" + : "=a"(n) + : "a"(0) + : "ecx", "edx"); + if (n >= 1) { + U32 f1a; + __asm__( + "pushl %%ebx\n\t" + "cpuid\n\t" + "popl %%ebx\n\t" + : "=a"(f1a), "=c"(f1c), "=d"(f1d) + : "a"(1)); + } + if (n >= 7) { + __asm__( + "pushl %%ebx\n\t" + "cpuid\n\t" + "movl %%ebx, %%eax\n\t" + "popl %%ebx" + : "=a"(f7b), "=c"(f7c) + : "a"(7), "c"(0) + : "edx"); + } +#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__) + U32 n; + __asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx"); + if (n >= 1) { + U32 f1a; + __asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx"); + } + if (n >= 7) { + U32 f7a; + __asm__("cpuid" + : "=a"(f7a), "=b"(f7b), "=c"(f7c) + : "a"(7), "c"(0) + : "edx"); + } +#endif + { + ZSTD_cpuid_t cpuid; + cpuid.f1c = f1c; + cpuid.f1d = f1d; + cpuid.f7b = f7b; + cpuid.f7c = f7c; + return cpuid; + } +} + +#define X(name, r, bit) \ + MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \ + return ((cpuid.r) & (1U << bit)) != 0; \ + } + +/* cpuid(1): Processor Info and Feature Bits. */ +#define C(name, bit) X(name, f1c, bit) + C(sse3, 0) + C(pclmuldq, 1) + C(dtes64, 2) + C(monitor, 3) + C(dscpl, 4) + C(vmx, 5) + C(smx, 6) + C(eist, 7) + C(tm2, 8) + C(ssse3, 9) + C(cnxtid, 10) + C(fma, 12) + C(cx16, 13) + C(xtpr, 14) + C(pdcm, 15) + C(pcid, 17) + C(dca, 18) + C(sse41, 19) + C(sse42, 20) + C(x2apic, 21) + C(movbe, 22) + C(popcnt, 23) + C(tscdeadline, 24) + C(aes, 25) + C(xsave, 26) + C(osxsave, 27) + C(avx, 28) + C(f16c, 29) + C(rdrand, 30) +#undef C +#define D(name, bit) X(name, f1d, bit) + D(fpu, 0) + D(vme, 1) + D(de, 2) + D(pse, 3) + D(tsc, 4) + D(msr, 5) + D(pae, 6) + D(mce, 7) + D(cx8, 8) + D(apic, 9) + D(sep, 11) + D(mtrr, 12) + D(pge, 13) + D(mca, 14) + D(cmov, 15) + D(pat, 16) + D(pse36, 17) + D(psn, 18) + D(clfsh, 19) + D(ds, 21) + D(acpi, 22) + D(mmx, 23) + D(fxsr, 24) + D(sse, 25) + D(sse2, 26) + D(ss, 27) + D(htt, 28) + D(tm, 29) + D(pbe, 31) +#undef D + +/* cpuid(7): Extended Features. */ +#define B(name, bit) X(name, f7b, bit) + B(bmi1, 3) + B(hle, 4) + B(avx2, 5) + B(smep, 7) + B(bmi2, 8) + B(erms, 9) + B(invpcid, 10) + B(rtm, 11) + B(mpx, 14) + B(avx512f, 16) + B(avx512dq, 17) + B(rdseed, 18) + B(adx, 19) + B(smap, 20) + B(avx512ifma, 21) + B(pcommit, 22) + B(clflushopt, 23) + B(clwb, 24) + B(avx512pf, 26) + B(avx512er, 27) + B(avx512cd, 28) + B(sha, 29) + B(avx512bw, 30) + B(avx512vl, 31) +#undef B +#define C(name, bit) X(name, f7c, bit) + C(prefetchwt1, 0) + C(avx512vbmi, 1) +#undef C + +#undef X + +#endif /* ZSTD_COMMON_CPU_H */ diff --git a/vendor/github.com/DataDog/zstd/debug.c b/vendor/github.com/DataDog/zstd/debug.c new file mode 100644 index 0000000000..3ebdd1cb15 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/debug.c @@ -0,0 +1,44 @@ +/* ****************************************************************** + debug + Part of FSE library + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy +****************************************************************** */ + + +/* + * This module only hosts one global variable + * which can be used to dynamically influence the verbosity of traces, + * such as DEBUGLOG and RAWLOG + */ + +#include "debug.h" + +int g_debuglevel = DEBUGLEVEL; diff --git a/vendor/github.com/DataDog/zstd/debug.h b/vendor/github.com/DataDog/zstd/debug.h new file mode 100644 index 0000000000..b4fc89d497 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/debug.h @@ -0,0 +1,134 @@ +/* ****************************************************************** + debug + Part of FSE library + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy +****************************************************************** */ + + +/* + * The purpose of this header is to enable debug functions. + * They regroup assert(), DEBUGLOG() and RAWLOG() for run-time, + * and DEBUG_STATIC_ASSERT() for compile-time. + * + * By default, DEBUGLEVEL==0, which means run-time debug is disabled. + * + * Level 1 enables assert() only. + * Starting level 2, traces can be generated and pushed to stderr. + * The higher the level, the more verbose the traces. + * + * It's possible to dynamically adjust level using variable g_debug_level, + * which is only declared if DEBUGLEVEL>=2, + * and is a global variable, not multi-thread protected (use with care) + */ + +#ifndef DEBUG_H_12987983217 +#define DEBUG_H_12987983217 + +#if defined (__cplusplus) +extern "C" { +#endif + + +/* static assert is triggered at compile time, leaving no runtime artefact. + * static assert only works with compile-time constants. + * Also, this variant can only be used inside a function. */ +#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1]) + + +/* DEBUGLEVEL is expected to be defined externally, + * typically through compiler command line. + * Value must be a number. */ +#ifndef DEBUGLEVEL +# define DEBUGLEVEL 0 +#endif + + +/* DEBUGFILE can be defined externally, + * typically through compiler command line. + * note : currently useless. + * Value must be stderr or stdout */ +#ifndef DEBUGFILE +# define DEBUGFILE stderr +#endif + + +/* recommended values for DEBUGLEVEL : + * 0 : release mode, no debug, all run-time checks disabled + * 1 : enables assert() only, no display + * 2 : reserved, for currently active debug path + * 3 : events once per object lifetime (CCtx, CDict, etc.) + * 4 : events once per frame + * 5 : events once per block + * 6 : events once per sequence (verbose) + * 7+: events at every position (*very* verbose) + * + * It's generally inconvenient to output traces > 5. + * In which case, it's possible to selectively trigger high verbosity levels + * by modifying g_debug_level. + */ + +#if (DEBUGLEVEL>=1) +# include +#else +# ifndef assert /* assert may be already defined, due to prior #include */ +# define assert(condition) ((void)0) /* disable assert (default) */ +# endif +#endif + +#if (DEBUGLEVEL>=2) +# include +extern int g_debuglevel; /* the variable is only declared, + it actually lives in debug.c, + and is shared by the whole process. + It's not thread-safe. + It's useful when enabling very verbose levels + on selective conditions (such as position in src) */ + +# define RAWLOG(l, ...) { \ + if (l<=g_debuglevel) { \ + fprintf(stderr, __VA_ARGS__); \ + } } +# define DEBUGLOG(l, ...) { \ + if (l<=g_debuglevel) { \ + fprintf(stderr, __FILE__ ": " __VA_ARGS__); \ + fprintf(stderr, " \n"); \ + } } +#else +# define RAWLOG(l, ...) {} /* disabled */ +# define DEBUGLOG(l, ...) {} /* disabled */ +#endif + + +#if defined (__cplusplus) +} +#endif + +#endif /* DEBUG_H_12987983217 */ diff --git a/vendor/github.com/DataDog/zstd/divsufsort.c b/vendor/github.com/DataDog/zstd/divsufsort.c new file mode 100644 index 0000000000..ead9220442 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/divsufsort.c @@ -0,0 +1,1913 @@ +/* + * divsufsort.c for libdivsufsort-lite + * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person + * obtaining a copy of this software and associated documentation + * files (the "Software"), to deal in the Software without + * restriction, including without limitation the rights to use, + * copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following + * conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + */ + +/*- Compiler specifics -*/ +#ifdef __clang__ +#pragma clang diagnostic ignored "-Wshorten-64-to-32" +#endif + +#if defined(_MSC_VER) +# pragma warning(disable : 4244) +# pragma warning(disable : 4127) /* C4127 : Condition expression is constant */ +#endif + + +/*- Dependencies -*/ +#include +#include +#include + +#include "divsufsort.h" + +/*- Constants -*/ +#if defined(INLINE) +# undef INLINE +#endif +#if !defined(INLINE) +# define INLINE __inline +#endif +#if defined(ALPHABET_SIZE) && (ALPHABET_SIZE < 1) +# undef ALPHABET_SIZE +#endif +#if !defined(ALPHABET_SIZE) +# define ALPHABET_SIZE (256) +#endif +#define BUCKET_A_SIZE (ALPHABET_SIZE) +#define BUCKET_B_SIZE (ALPHABET_SIZE * ALPHABET_SIZE) +#if defined(SS_INSERTIONSORT_THRESHOLD) +# if SS_INSERTIONSORT_THRESHOLD < 1 +# undef SS_INSERTIONSORT_THRESHOLD +# define SS_INSERTIONSORT_THRESHOLD (1) +# endif +#else +# define SS_INSERTIONSORT_THRESHOLD (8) +#endif +#if defined(SS_BLOCKSIZE) +# if SS_BLOCKSIZE < 0 +# undef SS_BLOCKSIZE +# define SS_BLOCKSIZE (0) +# elif 32768 <= SS_BLOCKSIZE +# undef SS_BLOCKSIZE +# define SS_BLOCKSIZE (32767) +# endif +#else +# define SS_BLOCKSIZE (1024) +#endif +/* minstacksize = log(SS_BLOCKSIZE) / log(3) * 2 */ +#if SS_BLOCKSIZE == 0 +# define SS_MISORT_STACKSIZE (96) +#elif SS_BLOCKSIZE <= 4096 +# define SS_MISORT_STACKSIZE (16) +#else +# define SS_MISORT_STACKSIZE (24) +#endif +#define SS_SMERGE_STACKSIZE (32) +#define TR_INSERTIONSORT_THRESHOLD (8) +#define TR_STACKSIZE (64) + + +/*- Macros -*/ +#ifndef SWAP +# define SWAP(_a, _b) do { t = (_a); (_a) = (_b); (_b) = t; } while(0) +#endif /* SWAP */ +#ifndef MIN +# define MIN(_a, _b) (((_a) < (_b)) ? (_a) : (_b)) +#endif /* MIN */ +#ifndef MAX +# define MAX(_a, _b) (((_a) > (_b)) ? (_a) : (_b)) +#endif /* MAX */ +#define STACK_PUSH(_a, _b, _c, _d)\ + do {\ + assert(ssize < STACK_SIZE);\ + stack[ssize].a = (_a), stack[ssize].b = (_b),\ + stack[ssize].c = (_c), stack[ssize++].d = (_d);\ + } while(0) +#define STACK_PUSH5(_a, _b, _c, _d, _e)\ + do {\ + assert(ssize < STACK_SIZE);\ + stack[ssize].a = (_a), stack[ssize].b = (_b),\ + stack[ssize].c = (_c), stack[ssize].d = (_d), stack[ssize++].e = (_e);\ + } while(0) +#define STACK_POP(_a, _b, _c, _d)\ + do {\ + assert(0 <= ssize);\ + if(ssize == 0) { return; }\ + (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\ + (_c) = stack[ssize].c, (_d) = stack[ssize].d;\ + } while(0) +#define STACK_POP5(_a, _b, _c, _d, _e)\ + do {\ + assert(0 <= ssize);\ + if(ssize == 0) { return; }\ + (_a) = stack[--ssize].a, (_b) = stack[ssize].b,\ + (_c) = stack[ssize].c, (_d) = stack[ssize].d, (_e) = stack[ssize].e;\ + } while(0) +#define BUCKET_A(_c0) bucket_A[(_c0)] +#if ALPHABET_SIZE == 256 +#define BUCKET_B(_c0, _c1) (bucket_B[((_c1) << 8) | (_c0)]) +#define BUCKET_BSTAR(_c0, _c1) (bucket_B[((_c0) << 8) | (_c1)]) +#else +#define BUCKET_B(_c0, _c1) (bucket_B[(_c1) * ALPHABET_SIZE + (_c0)]) +#define BUCKET_BSTAR(_c0, _c1) (bucket_B[(_c0) * ALPHABET_SIZE + (_c1)]) +#endif + + +/*- Private Functions -*/ + +static const int lg_table[256]= { + -1,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, + 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, + 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, + 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, + 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, + 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, + 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, + 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 +}; + +#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) + +static INLINE +int +ss_ilg(int n) { +#if SS_BLOCKSIZE == 0 + return (n & 0xffff0000) ? + ((n & 0xff000000) ? + 24 + lg_table[(n >> 24) & 0xff] : + 16 + lg_table[(n >> 16) & 0xff]) : + ((n & 0x0000ff00) ? + 8 + lg_table[(n >> 8) & 0xff] : + 0 + lg_table[(n >> 0) & 0xff]); +#elif SS_BLOCKSIZE < 256 + return lg_table[n]; +#else + return (n & 0xff00) ? + 8 + lg_table[(n >> 8) & 0xff] : + 0 + lg_table[(n >> 0) & 0xff]; +#endif +} + +#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */ + +#if SS_BLOCKSIZE != 0 + +static const int sqq_table[256] = { + 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53, 55, 57, 59, 61, + 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, + 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108, 109, +110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, +128, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, +143, 144, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, +156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168, +169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 178, 179, 180, +181, 181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, +192, 192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, +202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211, +212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221, +221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, +230, 231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, +239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, +247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255 +}; + +static INLINE +int +ss_isqrt(int x) { + int y, e; + + if(x >= (SS_BLOCKSIZE * SS_BLOCKSIZE)) { return SS_BLOCKSIZE; } + e = (x & 0xffff0000) ? + ((x & 0xff000000) ? + 24 + lg_table[(x >> 24) & 0xff] : + 16 + lg_table[(x >> 16) & 0xff]) : + ((x & 0x0000ff00) ? + 8 + lg_table[(x >> 8) & 0xff] : + 0 + lg_table[(x >> 0) & 0xff]); + + if(e >= 16) { + y = sqq_table[x >> ((e - 6) - (e & 1))] << ((e >> 1) - 7); + if(e >= 24) { y = (y + 1 + x / y) >> 1; } + y = (y + 1 + x / y) >> 1; + } else if(e >= 8) { + y = (sqq_table[x >> ((e - 6) - (e & 1))] >> (7 - (e >> 1))) + 1; + } else { + return sqq_table[x] >> 4; + } + + return (x < (y * y)) ? y - 1 : y; +} + +#endif /* SS_BLOCKSIZE != 0 */ + + +/*---------------------------------------------------------------------------*/ + +/* Compares two suffixes. */ +static INLINE +int +ss_compare(const unsigned char *T, + const int *p1, const int *p2, + int depth) { + const unsigned char *U1, *U2, *U1n, *U2n; + + for(U1 = T + depth + *p1, + U2 = T + depth + *p2, + U1n = T + *(p1 + 1) + 2, + U2n = T + *(p2 + 1) + 2; + (U1 < U1n) && (U2 < U2n) && (*U1 == *U2); + ++U1, ++U2) { + } + + return U1 < U1n ? + (U2 < U2n ? *U1 - *U2 : 1) : + (U2 < U2n ? -1 : 0); +} + + +/*---------------------------------------------------------------------------*/ + +#if (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1) + +/* Insertionsort for small size groups */ +static +void +ss_insertionsort(const unsigned char *T, const int *PA, + int *first, int *last, int depth) { + int *i, *j; + int t; + int r; + + for(i = last - 2; first <= i; --i) { + for(t = *i, j = i + 1; 0 < (r = ss_compare(T, PA + t, PA + *j, depth));) { + do { *(j - 1) = *j; } while((++j < last) && (*j < 0)); + if(last <= j) { break; } + } + if(r == 0) { *j = ~*j; } + *(j - 1) = t; + } +} + +#endif /* (SS_BLOCKSIZE != 1) && (SS_INSERTIONSORT_THRESHOLD != 1) */ + + +/*---------------------------------------------------------------------------*/ + +#if (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) + +static INLINE +void +ss_fixdown(const unsigned char *Td, const int *PA, + int *SA, int i, int size) { + int j, k; + int v; + int c, d, e; + + for(v = SA[i], c = Td[PA[v]]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) { + d = Td[PA[SA[k = j++]]]; + if(d < (e = Td[PA[SA[j]]])) { k = j; d = e; } + if(d <= c) { break; } + } + SA[i] = v; +} + +/* Simple top-down heapsort. */ +static +void +ss_heapsort(const unsigned char *Td, const int *PA, int *SA, int size) { + int i, m; + int t; + + m = size; + if((size % 2) == 0) { + m--; + if(Td[PA[SA[m / 2]]] < Td[PA[SA[m]]]) { SWAP(SA[m], SA[m / 2]); } + } + + for(i = m / 2 - 1; 0 <= i; --i) { ss_fixdown(Td, PA, SA, i, m); } + if((size % 2) == 0) { SWAP(SA[0], SA[m]); ss_fixdown(Td, PA, SA, 0, m); } + for(i = m - 1; 0 < i; --i) { + t = SA[0], SA[0] = SA[i]; + ss_fixdown(Td, PA, SA, 0, i); + SA[i] = t; + } +} + + +/*---------------------------------------------------------------------------*/ + +/* Returns the median of three elements. */ +static INLINE +int * +ss_median3(const unsigned char *Td, const int *PA, + int *v1, int *v2, int *v3) { + int *t; + if(Td[PA[*v1]] > Td[PA[*v2]]) { SWAP(v1, v2); } + if(Td[PA[*v2]] > Td[PA[*v3]]) { + if(Td[PA[*v1]] > Td[PA[*v3]]) { return v1; } + else { return v3; } + } + return v2; +} + +/* Returns the median of five elements. */ +static INLINE +int * +ss_median5(const unsigned char *Td, const int *PA, + int *v1, int *v2, int *v3, int *v4, int *v5) { + int *t; + if(Td[PA[*v2]] > Td[PA[*v3]]) { SWAP(v2, v3); } + if(Td[PA[*v4]] > Td[PA[*v5]]) { SWAP(v4, v5); } + if(Td[PA[*v2]] > Td[PA[*v4]]) { SWAP(v2, v4); SWAP(v3, v5); } + if(Td[PA[*v1]] > Td[PA[*v3]]) { SWAP(v1, v3); } + if(Td[PA[*v1]] > Td[PA[*v4]]) { SWAP(v1, v4); SWAP(v3, v5); } + if(Td[PA[*v3]] > Td[PA[*v4]]) { return v4; } + return v3; +} + +/* Returns the pivot element. */ +static INLINE +int * +ss_pivot(const unsigned char *Td, const int *PA, int *first, int *last) { + int *middle; + int t; + + t = last - first; + middle = first + t / 2; + + if(t <= 512) { + if(t <= 32) { + return ss_median3(Td, PA, first, middle, last - 1); + } else { + t >>= 2; + return ss_median5(Td, PA, first, first + t, middle, last - 1 - t, last - 1); + } + } + t >>= 3; + first = ss_median3(Td, PA, first, first + t, first + (t << 1)); + middle = ss_median3(Td, PA, middle - t, middle, middle + t); + last = ss_median3(Td, PA, last - 1 - (t << 1), last - 1 - t, last - 1); + return ss_median3(Td, PA, first, middle, last); +} + + +/*---------------------------------------------------------------------------*/ + +/* Binary partition for substrings. */ +static INLINE +int * +ss_partition(const int *PA, + int *first, int *last, int depth) { + int *a, *b; + int t; + for(a = first - 1, b = last;;) { + for(; (++a < b) && ((PA[*a] + depth) >= (PA[*a + 1] + 1));) { *a = ~*a; } + for(; (a < --b) && ((PA[*b] + depth) < (PA[*b + 1] + 1));) { } + if(b <= a) { break; } + t = ~*b; + *b = *a; + *a = t; + } + if(first < a) { *first = ~*first; } + return a; +} + +/* Multikey introsort for medium size groups. */ +static +void +ss_mintrosort(const unsigned char *T, const int *PA, + int *first, int *last, + int depth) { +#define STACK_SIZE SS_MISORT_STACKSIZE + struct { int *a, *b, c; int d; } stack[STACK_SIZE]; + const unsigned char *Td; + int *a, *b, *c, *d, *e, *f; + int s, t; + int ssize; + int limit; + int v, x = 0; + + for(ssize = 0, limit = ss_ilg(last - first);;) { + + if((last - first) <= SS_INSERTIONSORT_THRESHOLD) { +#if 1 < SS_INSERTIONSORT_THRESHOLD + if(1 < (last - first)) { ss_insertionsort(T, PA, first, last, depth); } +#endif + STACK_POP(first, last, depth, limit); + continue; + } + + Td = T + depth; + if(limit-- == 0) { ss_heapsort(Td, PA, first, last - first); } + if(limit < 0) { + for(a = first + 1, v = Td[PA[*first]]; a < last; ++a) { + if((x = Td[PA[*a]]) != v) { + if(1 < (a - first)) { break; } + v = x; + first = a; + } + } + if(Td[PA[*first] - 1] < v) { + first = ss_partition(PA, first, a, depth); + } + if((a - first) <= (last - a)) { + if(1 < (a - first)) { + STACK_PUSH(a, last, depth, -1); + last = a, depth += 1, limit = ss_ilg(a - first); + } else { + first = a, limit = -1; + } + } else { + if(1 < (last - a)) { + STACK_PUSH(first, a, depth + 1, ss_ilg(a - first)); + first = a, limit = -1; + } else { + last = a, depth += 1, limit = ss_ilg(a - first); + } + } + continue; + } + + /* choose pivot */ + a = ss_pivot(Td, PA, first, last); + v = Td[PA[*a]]; + SWAP(*first, *a); + + /* partition */ + for(b = first; (++b < last) && ((x = Td[PA[*b]]) == v);) { } + if(((a = b) < last) && (x < v)) { + for(; (++b < last) && ((x = Td[PA[*b]]) <= v);) { + if(x == v) { SWAP(*b, *a); ++a; } + } + } + for(c = last; (b < --c) && ((x = Td[PA[*c]]) == v);) { } + if((b < (d = c)) && (x > v)) { + for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) { + if(x == v) { SWAP(*c, *d); --d; } + } + } + for(; b < c;) { + SWAP(*b, *c); + for(; (++b < c) && ((x = Td[PA[*b]]) <= v);) { + if(x == v) { SWAP(*b, *a); ++a; } + } + for(; (b < --c) && ((x = Td[PA[*c]]) >= v);) { + if(x == v) { SWAP(*c, *d); --d; } + } + } + + if(a <= d) { + c = b - 1; + + if((s = a - first) > (t = b - a)) { s = t; } + for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } + if((s = d - c) > (t = last - d - 1)) { s = t; } + for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } + + a = first + (b - a), c = last - (d - c); + b = (v <= Td[PA[*a] - 1]) ? a : ss_partition(PA, a, c, depth); + + if((a - first) <= (last - c)) { + if((last - c) <= (c - b)) { + STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); + STACK_PUSH(c, last, depth, limit); + last = a; + } else if((a - first) <= (c - b)) { + STACK_PUSH(c, last, depth, limit); + STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); + last = a; + } else { + STACK_PUSH(c, last, depth, limit); + STACK_PUSH(first, a, depth, limit); + first = b, last = c, depth += 1, limit = ss_ilg(c - b); + } + } else { + if((a - first) <= (c - b)) { + STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); + STACK_PUSH(first, a, depth, limit); + first = c; + } else if((last - c) <= (c - b)) { + STACK_PUSH(first, a, depth, limit); + STACK_PUSH(b, c, depth + 1, ss_ilg(c - b)); + first = c; + } else { + STACK_PUSH(first, a, depth, limit); + STACK_PUSH(c, last, depth, limit); + first = b, last = c, depth += 1, limit = ss_ilg(c - b); + } + } + } else { + limit += 1; + if(Td[PA[*first] - 1] < v) { + first = ss_partition(PA, first, last, depth); + limit = ss_ilg(last - first); + } + depth += 1; + } + } +#undef STACK_SIZE +} + +#endif /* (SS_BLOCKSIZE == 0) || (SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE) */ + + +/*---------------------------------------------------------------------------*/ + +#if SS_BLOCKSIZE != 0 + +static INLINE +void +ss_blockswap(int *a, int *b, int n) { + int t; + for(; 0 < n; --n, ++a, ++b) { + t = *a, *a = *b, *b = t; + } +} + +static INLINE +void +ss_rotate(int *first, int *middle, int *last) { + int *a, *b, t; + int l, r; + l = middle - first, r = last - middle; + for(; (0 < l) && (0 < r);) { + if(l == r) { ss_blockswap(first, middle, l); break; } + if(l < r) { + a = last - 1, b = middle - 1; + t = *a; + do { + *a-- = *b, *b-- = *a; + if(b < first) { + *a = t; + last = a; + if((r -= l + 1) <= l) { break; } + a -= 1, b = middle - 1; + t = *a; + } + } while(1); + } else { + a = first, b = middle; + t = *a; + do { + *a++ = *b, *b++ = *a; + if(last <= b) { + *a = t; + first = a + 1; + if((l -= r + 1) <= r) { break; } + a += 1, b = middle; + t = *a; + } + } while(1); + } + } +} + + +/*---------------------------------------------------------------------------*/ + +static +void +ss_inplacemerge(const unsigned char *T, const int *PA, + int *first, int *middle, int *last, + int depth) { + const int *p; + int *a, *b; + int len, half; + int q, r; + int x; + + for(;;) { + if(*(last - 1) < 0) { x = 1; p = PA + ~*(last - 1); } + else { x = 0; p = PA + *(last - 1); } + for(a = first, len = middle - first, half = len >> 1, r = -1; + 0 < len; + len = half, half >>= 1) { + b = a + half; + q = ss_compare(T, PA + ((0 <= *b) ? *b : ~*b), p, depth); + if(q < 0) { + a = b + 1; + half -= (len & 1) ^ 1; + } else { + r = q; + } + } + if(a < middle) { + if(r == 0) { *a = ~*a; } + ss_rotate(a, middle, last); + last -= middle - a; + middle = a; + if(first == middle) { break; } + } + --last; + if(x != 0) { while(*--last < 0) { } } + if(middle == last) { break; } + } +} + + +/*---------------------------------------------------------------------------*/ + +/* Merge-forward with internal buffer. */ +static +void +ss_mergeforward(const unsigned char *T, const int *PA, + int *first, int *middle, int *last, + int *buf, int depth) { + int *a, *b, *c, *bufend; + int t; + int r; + + bufend = buf + (middle - first) - 1; + ss_blockswap(buf, first, middle - first); + + for(t = *(a = first), b = buf, c = middle;;) { + r = ss_compare(T, PA + *b, PA + *c, depth); + if(r < 0) { + do { + *a++ = *b; + if(bufend <= b) { *bufend = t; return; } + *b++ = *a; + } while(*b < 0); + } else if(r > 0) { + do { + *a++ = *c, *c++ = *a; + if(last <= c) { + while(b < bufend) { *a++ = *b, *b++ = *a; } + *a = *b, *b = t; + return; + } + } while(*c < 0); + } else { + *c = ~*c; + do { + *a++ = *b; + if(bufend <= b) { *bufend = t; return; } + *b++ = *a; + } while(*b < 0); + + do { + *a++ = *c, *c++ = *a; + if(last <= c) { + while(b < bufend) { *a++ = *b, *b++ = *a; } + *a = *b, *b = t; + return; + } + } while(*c < 0); + } + } +} + +/* Merge-backward with internal buffer. */ +static +void +ss_mergebackward(const unsigned char *T, const int *PA, + int *first, int *middle, int *last, + int *buf, int depth) { + const int *p1, *p2; + int *a, *b, *c, *bufend; + int t; + int r; + int x; + + bufend = buf + (last - middle) - 1; + ss_blockswap(buf, middle, last - middle); + + x = 0; + if(*bufend < 0) { p1 = PA + ~*bufend; x |= 1; } + else { p1 = PA + *bufend; } + if(*(middle - 1) < 0) { p2 = PA + ~*(middle - 1); x |= 2; } + else { p2 = PA + *(middle - 1); } + for(t = *(a = last - 1), b = bufend, c = middle - 1;;) { + r = ss_compare(T, p1, p2, depth); + if(0 < r) { + if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; } + *a-- = *b; + if(b <= buf) { *buf = t; break; } + *b-- = *a; + if(*b < 0) { p1 = PA + ~*b; x |= 1; } + else { p1 = PA + *b; } + } else if(r < 0) { + if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; } + *a-- = *c, *c-- = *a; + if(c < first) { + while(buf < b) { *a-- = *b, *b-- = *a; } + *a = *b, *b = t; + break; + } + if(*c < 0) { p2 = PA + ~*c; x |= 2; } + else { p2 = PA + *c; } + } else { + if(x & 1) { do { *a-- = *b, *b-- = *a; } while(*b < 0); x ^= 1; } + *a-- = ~*b; + if(b <= buf) { *buf = t; break; } + *b-- = *a; + if(x & 2) { do { *a-- = *c, *c-- = *a; } while(*c < 0); x ^= 2; } + *a-- = *c, *c-- = *a; + if(c < first) { + while(buf < b) { *a-- = *b, *b-- = *a; } + *a = *b, *b = t; + break; + } + if(*b < 0) { p1 = PA + ~*b; x |= 1; } + else { p1 = PA + *b; } + if(*c < 0) { p2 = PA + ~*c; x |= 2; } + else { p2 = PA + *c; } + } + } +} + +/* D&C based merge. */ +static +void +ss_swapmerge(const unsigned char *T, const int *PA, + int *first, int *middle, int *last, + int *buf, int bufsize, int depth) { +#define STACK_SIZE SS_SMERGE_STACKSIZE +#define GETIDX(a) ((0 <= (a)) ? (a) : (~(a))) +#define MERGE_CHECK(a, b, c)\ + do {\ + if(((c) & 1) ||\ + (((c) & 2) && (ss_compare(T, PA + GETIDX(*((a) - 1)), PA + *(a), depth) == 0))) {\ + *(a) = ~*(a);\ + }\ + if(((c) & 4) && ((ss_compare(T, PA + GETIDX(*((b) - 1)), PA + *(b), depth) == 0))) {\ + *(b) = ~*(b);\ + }\ + } while(0) + struct { int *a, *b, *c; int d; } stack[STACK_SIZE]; + int *l, *r, *lm, *rm; + int m, len, half; + int ssize; + int check, next; + + for(check = 0, ssize = 0;;) { + if((last - middle) <= bufsize) { + if((first < middle) && (middle < last)) { + ss_mergebackward(T, PA, first, middle, last, buf, depth); + } + MERGE_CHECK(first, last, check); + STACK_POP(first, middle, last, check); + continue; + } + + if((middle - first) <= bufsize) { + if(first < middle) { + ss_mergeforward(T, PA, first, middle, last, buf, depth); + } + MERGE_CHECK(first, last, check); + STACK_POP(first, middle, last, check); + continue; + } + + for(m = 0, len = MIN(middle - first, last - middle), half = len >> 1; + 0 < len; + len = half, half >>= 1) { + if(ss_compare(T, PA + GETIDX(*(middle + m + half)), + PA + GETIDX(*(middle - m - half - 1)), depth) < 0) { + m += half + 1; + half -= (len & 1) ^ 1; + } + } + + if(0 < m) { + lm = middle - m, rm = middle + m; + ss_blockswap(lm, middle, m); + l = r = middle, next = 0; + if(rm < last) { + if(*rm < 0) { + *rm = ~*rm; + if(first < lm) { for(; *--l < 0;) { } next |= 4; } + next |= 1; + } else if(first < lm) { + for(; *r < 0; ++r) { } + next |= 2; + } + } + + if((l - first) <= (last - r)) { + STACK_PUSH(r, rm, last, (next & 3) | (check & 4)); + middle = lm, last = l, check = (check & 3) | (next & 4); + } else { + if((next & 2) && (r == middle)) { next ^= 6; } + STACK_PUSH(first, lm, l, (check & 3) | (next & 4)); + first = r, middle = rm, check = (next & 3) | (check & 4); + } + } else { + if(ss_compare(T, PA + GETIDX(*(middle - 1)), PA + *middle, depth) == 0) { + *middle = ~*middle; + } + MERGE_CHECK(first, last, check); + STACK_POP(first, middle, last, check); + } + } +#undef STACK_SIZE +} + +#endif /* SS_BLOCKSIZE != 0 */ + + +/*---------------------------------------------------------------------------*/ + +/* Substring sort */ +static +void +sssort(const unsigned char *T, const int *PA, + int *first, int *last, + int *buf, int bufsize, + int depth, int n, int lastsuffix) { + int *a; +#if SS_BLOCKSIZE != 0 + int *b, *middle, *curbuf; + int j, k, curbufsize, limit; +#endif + int i; + + if(lastsuffix != 0) { ++first; } + +#if SS_BLOCKSIZE == 0 + ss_mintrosort(T, PA, first, last, depth); +#else + if((bufsize < SS_BLOCKSIZE) && + (bufsize < (last - first)) && + (bufsize < (limit = ss_isqrt(last - first)))) { + if(SS_BLOCKSIZE < limit) { limit = SS_BLOCKSIZE; } + buf = middle = last - limit, bufsize = limit; + } else { + middle = last, limit = 0; + } + for(a = first, i = 0; SS_BLOCKSIZE < (middle - a); a += SS_BLOCKSIZE, ++i) { +#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE + ss_mintrosort(T, PA, a, a + SS_BLOCKSIZE, depth); +#elif 1 < SS_BLOCKSIZE + ss_insertionsort(T, PA, a, a + SS_BLOCKSIZE, depth); +#endif + curbufsize = last - (a + SS_BLOCKSIZE); + curbuf = a + SS_BLOCKSIZE; + if(curbufsize <= bufsize) { curbufsize = bufsize, curbuf = buf; } + for(b = a, k = SS_BLOCKSIZE, j = i; j & 1; b -= k, k <<= 1, j >>= 1) { + ss_swapmerge(T, PA, b - k, b, b + k, curbuf, curbufsize, depth); + } + } +#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE + ss_mintrosort(T, PA, a, middle, depth); +#elif 1 < SS_BLOCKSIZE + ss_insertionsort(T, PA, a, middle, depth); +#endif + for(k = SS_BLOCKSIZE; i != 0; k <<= 1, i >>= 1) { + if(i & 1) { + ss_swapmerge(T, PA, a - k, a, middle, buf, bufsize, depth); + a -= k; + } + } + if(limit != 0) { +#if SS_INSERTIONSORT_THRESHOLD < SS_BLOCKSIZE + ss_mintrosort(T, PA, middle, last, depth); +#elif 1 < SS_BLOCKSIZE + ss_insertionsort(T, PA, middle, last, depth); +#endif + ss_inplacemerge(T, PA, first, middle, last, depth); + } +#endif + + if(lastsuffix != 0) { + /* Insert last type B* suffix. */ + int PAi[2]; PAi[0] = PA[*(first - 1)], PAi[1] = n - 2; + for(a = first, i = *(first - 1); + (a < last) && ((*a < 0) || (0 < ss_compare(T, &(PAi[0]), PA + *a, depth))); + ++a) { + *(a - 1) = *a; + } + *(a - 1) = i; + } +} + + +/*---------------------------------------------------------------------------*/ + +static INLINE +int +tr_ilg(int n) { + return (n & 0xffff0000) ? + ((n & 0xff000000) ? + 24 + lg_table[(n >> 24) & 0xff] : + 16 + lg_table[(n >> 16) & 0xff]) : + ((n & 0x0000ff00) ? + 8 + lg_table[(n >> 8) & 0xff] : + 0 + lg_table[(n >> 0) & 0xff]); +} + + +/*---------------------------------------------------------------------------*/ + +/* Simple insertionsort for small size groups. */ +static +void +tr_insertionsort(const int *ISAd, int *first, int *last) { + int *a, *b; + int t, r; + + for(a = first + 1; a < last; ++a) { + for(t = *a, b = a - 1; 0 > (r = ISAd[t] - ISAd[*b]);) { + do { *(b + 1) = *b; } while((first <= --b) && (*b < 0)); + if(b < first) { break; } + } + if(r == 0) { *b = ~*b; } + *(b + 1) = t; + } +} + + +/*---------------------------------------------------------------------------*/ + +static INLINE +void +tr_fixdown(const int *ISAd, int *SA, int i, int size) { + int j, k; + int v; + int c, d, e; + + for(v = SA[i], c = ISAd[v]; (j = 2 * i + 1) < size; SA[i] = SA[k], i = k) { + d = ISAd[SA[k = j++]]; + if(d < (e = ISAd[SA[j]])) { k = j; d = e; } + if(d <= c) { break; } + } + SA[i] = v; +} + +/* Simple top-down heapsort. */ +static +void +tr_heapsort(const int *ISAd, int *SA, int size) { + int i, m; + int t; + + m = size; + if((size % 2) == 0) { + m--; + if(ISAd[SA[m / 2]] < ISAd[SA[m]]) { SWAP(SA[m], SA[m / 2]); } + } + + for(i = m / 2 - 1; 0 <= i; --i) { tr_fixdown(ISAd, SA, i, m); } + if((size % 2) == 0) { SWAP(SA[0], SA[m]); tr_fixdown(ISAd, SA, 0, m); } + for(i = m - 1; 0 < i; --i) { + t = SA[0], SA[0] = SA[i]; + tr_fixdown(ISAd, SA, 0, i); + SA[i] = t; + } +} + + +/*---------------------------------------------------------------------------*/ + +/* Returns the median of three elements. */ +static INLINE +int * +tr_median3(const int *ISAd, int *v1, int *v2, int *v3) { + int *t; + if(ISAd[*v1] > ISAd[*v2]) { SWAP(v1, v2); } + if(ISAd[*v2] > ISAd[*v3]) { + if(ISAd[*v1] > ISAd[*v3]) { return v1; } + else { return v3; } + } + return v2; +} + +/* Returns the median of five elements. */ +static INLINE +int * +tr_median5(const int *ISAd, + int *v1, int *v2, int *v3, int *v4, int *v5) { + int *t; + if(ISAd[*v2] > ISAd[*v3]) { SWAP(v2, v3); } + if(ISAd[*v4] > ISAd[*v5]) { SWAP(v4, v5); } + if(ISAd[*v2] > ISAd[*v4]) { SWAP(v2, v4); SWAP(v3, v5); } + if(ISAd[*v1] > ISAd[*v3]) { SWAP(v1, v3); } + if(ISAd[*v1] > ISAd[*v4]) { SWAP(v1, v4); SWAP(v3, v5); } + if(ISAd[*v3] > ISAd[*v4]) { return v4; } + return v3; +} + +/* Returns the pivot element. */ +static INLINE +int * +tr_pivot(const int *ISAd, int *first, int *last) { + int *middle; + int t; + + t = last - first; + middle = first + t / 2; + + if(t <= 512) { + if(t <= 32) { + return tr_median3(ISAd, first, middle, last - 1); + } else { + t >>= 2; + return tr_median5(ISAd, first, first + t, middle, last - 1 - t, last - 1); + } + } + t >>= 3; + first = tr_median3(ISAd, first, first + t, first + (t << 1)); + middle = tr_median3(ISAd, middle - t, middle, middle + t); + last = tr_median3(ISAd, last - 1 - (t << 1), last - 1 - t, last - 1); + return tr_median3(ISAd, first, middle, last); +} + + +/*---------------------------------------------------------------------------*/ + +typedef struct _trbudget_t trbudget_t; +struct _trbudget_t { + int chance; + int remain; + int incval; + int count; +}; + +static INLINE +void +trbudget_init(trbudget_t *budget, int chance, int incval) { + budget->chance = chance; + budget->remain = budget->incval = incval; +} + +static INLINE +int +trbudget_check(trbudget_t *budget, int size) { + if(size <= budget->remain) { budget->remain -= size; return 1; } + if(budget->chance == 0) { budget->count += size; return 0; } + budget->remain += budget->incval - size; + budget->chance -= 1; + return 1; +} + + +/*---------------------------------------------------------------------------*/ + +static INLINE +void +tr_partition(const int *ISAd, + int *first, int *middle, int *last, + int **pa, int **pb, int v) { + int *a, *b, *c, *d, *e, *f; + int t, s; + int x = 0; + + for(b = middle - 1; (++b < last) && ((x = ISAd[*b]) == v);) { } + if(((a = b) < last) && (x < v)) { + for(; (++b < last) && ((x = ISAd[*b]) <= v);) { + if(x == v) { SWAP(*b, *a); ++a; } + } + } + for(c = last; (b < --c) && ((x = ISAd[*c]) == v);) { } + if((b < (d = c)) && (x > v)) { + for(; (b < --c) && ((x = ISAd[*c]) >= v);) { + if(x == v) { SWAP(*c, *d); --d; } + } + } + for(; b < c;) { + SWAP(*b, *c); + for(; (++b < c) && ((x = ISAd[*b]) <= v);) { + if(x == v) { SWAP(*b, *a); ++a; } + } + for(; (b < --c) && ((x = ISAd[*c]) >= v);) { + if(x == v) { SWAP(*c, *d); --d; } + } + } + + if(a <= d) { + c = b - 1; + if((s = a - first) > (t = b - a)) { s = t; } + for(e = first, f = b - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } + if((s = d - c) > (t = last - d - 1)) { s = t; } + for(e = b, f = last - s; 0 < s; --s, ++e, ++f) { SWAP(*e, *f); } + first += (b - a), last -= (d - c); + } + *pa = first, *pb = last; +} + +static +void +tr_copy(int *ISA, const int *SA, + int *first, int *a, int *b, int *last, + int depth) { + /* sort suffixes of middle partition + by using sorted order of suffixes of left and right partition. */ + int *c, *d, *e; + int s, v; + + v = b - SA - 1; + for(c = first, d = a - 1; c <= d; ++c) { + if((0 <= (s = *c - depth)) && (ISA[s] == v)) { + *++d = s; + ISA[s] = d - SA; + } + } + for(c = last - 1, e = d + 1, d = b; e < d; --c) { + if((0 <= (s = *c - depth)) && (ISA[s] == v)) { + *--d = s; + ISA[s] = d - SA; + } + } +} + +static +void +tr_partialcopy(int *ISA, const int *SA, + int *first, int *a, int *b, int *last, + int depth) { + int *c, *d, *e; + int s, v; + int rank, lastrank, newrank = -1; + + v = b - SA - 1; + lastrank = -1; + for(c = first, d = a - 1; c <= d; ++c) { + if((0 <= (s = *c - depth)) && (ISA[s] == v)) { + *++d = s; + rank = ISA[s + depth]; + if(lastrank != rank) { lastrank = rank; newrank = d - SA; } + ISA[s] = newrank; + } + } + + lastrank = -1; + for(e = d; first <= e; --e) { + rank = ISA[*e]; + if(lastrank != rank) { lastrank = rank; newrank = e - SA; } + if(newrank != rank) { ISA[*e] = newrank; } + } + + lastrank = -1; + for(c = last - 1, e = d + 1, d = b; e < d; --c) { + if((0 <= (s = *c - depth)) && (ISA[s] == v)) { + *--d = s; + rank = ISA[s + depth]; + if(lastrank != rank) { lastrank = rank; newrank = d - SA; } + ISA[s] = newrank; + } + } +} + +static +void +tr_introsort(int *ISA, const int *ISAd, + int *SA, int *first, int *last, + trbudget_t *budget) { +#define STACK_SIZE TR_STACKSIZE + struct { const int *a; int *b, *c; int d, e; }stack[STACK_SIZE]; + int *a, *b, *c; + int t; + int v, x = 0; + int incr = ISAd - ISA; + int limit, next; + int ssize, trlink = -1; + + for(ssize = 0, limit = tr_ilg(last - first);;) { + + if(limit < 0) { + if(limit == -1) { + /* tandem repeat partition */ + tr_partition(ISAd - incr, first, first, last, &a, &b, last - SA - 1); + + /* update ranks */ + if(a < last) { + for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; } + } + if(b < last) { + for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; } + } + + /* push */ + if(1 < (b - a)) { + STACK_PUSH5(NULL, a, b, 0, 0); + STACK_PUSH5(ISAd - incr, first, last, -2, trlink); + trlink = ssize - 2; + } + if((a - first) <= (last - b)) { + if(1 < (a - first)) { + STACK_PUSH5(ISAd, b, last, tr_ilg(last - b), trlink); + last = a, limit = tr_ilg(a - first); + } else if(1 < (last - b)) { + first = b, limit = tr_ilg(last - b); + } else { + STACK_POP5(ISAd, first, last, limit, trlink); + } + } else { + if(1 < (last - b)) { + STACK_PUSH5(ISAd, first, a, tr_ilg(a - first), trlink); + first = b, limit = tr_ilg(last - b); + } else if(1 < (a - first)) { + last = a, limit = tr_ilg(a - first); + } else { + STACK_POP5(ISAd, first, last, limit, trlink); + } + } + } else if(limit == -2) { + /* tandem repeat copy */ + a = stack[--ssize].b, b = stack[ssize].c; + if(stack[ssize].d == 0) { + tr_copy(ISA, SA, first, a, b, last, ISAd - ISA); + } else { + if(0 <= trlink) { stack[trlink].d = -1; } + tr_partialcopy(ISA, SA, first, a, b, last, ISAd - ISA); + } + STACK_POP5(ISAd, first, last, limit, trlink); + } else { + /* sorted partition */ + if(0 <= *first) { + a = first; + do { ISA[*a] = a - SA; } while((++a < last) && (0 <= *a)); + first = a; + } + if(first < last) { + a = first; do { *a = ~*a; } while(*++a < 0); + next = (ISA[*a] != ISAd[*a]) ? tr_ilg(a - first + 1) : -1; + if(++a < last) { for(b = first, v = a - SA - 1; b < a; ++b) { ISA[*b] = v; } } + + /* push */ + if(trbudget_check(budget, a - first)) { + if((a - first) <= (last - a)) { + STACK_PUSH5(ISAd, a, last, -3, trlink); + ISAd += incr, last = a, limit = next; + } else { + if(1 < (last - a)) { + STACK_PUSH5(ISAd + incr, first, a, next, trlink); + first = a, limit = -3; + } else { + ISAd += incr, last = a, limit = next; + } + } + } else { + if(0 <= trlink) { stack[trlink].d = -1; } + if(1 < (last - a)) { + first = a, limit = -3; + } else { + STACK_POP5(ISAd, first, last, limit, trlink); + } + } + } else { + STACK_POP5(ISAd, first, last, limit, trlink); + } + } + continue; + } + + if((last - first) <= TR_INSERTIONSORT_THRESHOLD) { + tr_insertionsort(ISAd, first, last); + limit = -3; + continue; + } + + if(limit-- == 0) { + tr_heapsort(ISAd, first, last - first); + for(a = last - 1; first < a; a = b) { + for(x = ISAd[*a], b = a - 1; (first <= b) && (ISAd[*b] == x); --b) { *b = ~*b; } + } + limit = -3; + continue; + } + + /* choose pivot */ + a = tr_pivot(ISAd, first, last); + SWAP(*first, *a); + v = ISAd[*first]; + + /* partition */ + tr_partition(ISAd, first, first + 1, last, &a, &b, v); + if((last - first) != (b - a)) { + next = (ISA[*a] != v) ? tr_ilg(b - a) : -1; + + /* update ranks */ + for(c = first, v = a - SA - 1; c < a; ++c) { ISA[*c] = v; } + if(b < last) { for(c = a, v = b - SA - 1; c < b; ++c) { ISA[*c] = v; } } + + /* push */ + if((1 < (b - a)) && (trbudget_check(budget, b - a))) { + if((a - first) <= (last - b)) { + if((last - b) <= (b - a)) { + if(1 < (a - first)) { + STACK_PUSH5(ISAd + incr, a, b, next, trlink); + STACK_PUSH5(ISAd, b, last, limit, trlink); + last = a; + } else if(1 < (last - b)) { + STACK_PUSH5(ISAd + incr, a, b, next, trlink); + first = b; + } else { + ISAd += incr, first = a, last = b, limit = next; + } + } else if((a - first) <= (b - a)) { + if(1 < (a - first)) { + STACK_PUSH5(ISAd, b, last, limit, trlink); + STACK_PUSH5(ISAd + incr, a, b, next, trlink); + last = a; + } else { + STACK_PUSH5(ISAd, b, last, limit, trlink); + ISAd += incr, first = a, last = b, limit = next; + } + } else { + STACK_PUSH5(ISAd, b, last, limit, trlink); + STACK_PUSH5(ISAd, first, a, limit, trlink); + ISAd += incr, first = a, last = b, limit = next; + } + } else { + if((a - first) <= (b - a)) { + if(1 < (last - b)) { + STACK_PUSH5(ISAd + incr, a, b, next, trlink); + STACK_PUSH5(ISAd, first, a, limit, trlink); + first = b; + } else if(1 < (a - first)) { + STACK_PUSH5(ISAd + incr, a, b, next, trlink); + last = a; + } else { + ISAd += incr, first = a, last = b, limit = next; + } + } else if((last - b) <= (b - a)) { + if(1 < (last - b)) { + STACK_PUSH5(ISAd, first, a, limit, trlink); + STACK_PUSH5(ISAd + incr, a, b, next, trlink); + first = b; + } else { + STACK_PUSH5(ISAd, first, a, limit, trlink); + ISAd += incr, first = a, last = b, limit = next; + } + } else { + STACK_PUSH5(ISAd, first, a, limit, trlink); + STACK_PUSH5(ISAd, b, last, limit, trlink); + ISAd += incr, first = a, last = b, limit = next; + } + } + } else { + if((1 < (b - a)) && (0 <= trlink)) { stack[trlink].d = -1; } + if((a - first) <= (last - b)) { + if(1 < (a - first)) { + STACK_PUSH5(ISAd, b, last, limit, trlink); + last = a; + } else if(1 < (last - b)) { + first = b; + } else { + STACK_POP5(ISAd, first, last, limit, trlink); + } + } else { + if(1 < (last - b)) { + STACK_PUSH5(ISAd, first, a, limit, trlink); + first = b; + } else if(1 < (a - first)) { + last = a; + } else { + STACK_POP5(ISAd, first, last, limit, trlink); + } + } + } + } else { + if(trbudget_check(budget, last - first)) { + limit = tr_ilg(last - first), ISAd += incr; + } else { + if(0 <= trlink) { stack[trlink].d = -1; } + STACK_POP5(ISAd, first, last, limit, trlink); + } + } + } +#undef STACK_SIZE +} + + + +/*---------------------------------------------------------------------------*/ + +/* Tandem repeat sort */ +static +void +trsort(int *ISA, int *SA, int n, int depth) { + int *ISAd; + int *first, *last; + trbudget_t budget; + int t, skip, unsorted; + + trbudget_init(&budget, tr_ilg(n) * 2 / 3, n); +/* trbudget_init(&budget, tr_ilg(n) * 3 / 4, n); */ + for(ISAd = ISA + depth; -n < *SA; ISAd += ISAd - ISA) { + first = SA; + skip = 0; + unsorted = 0; + do { + if((t = *first) < 0) { first -= t; skip += t; } + else { + if(skip != 0) { *(first + skip) = skip; skip = 0; } + last = SA + ISA[t] + 1; + if(1 < (last - first)) { + budget.count = 0; + tr_introsort(ISA, ISAd, SA, first, last, &budget); + if(budget.count != 0) { unsorted += budget.count; } + else { skip = first - last; } + } else if((last - first) == 1) { + skip = -1; + } + first = last; + } + } while(first < (SA + n)); + if(skip != 0) { *(first + skip) = skip; } + if(unsorted == 0) { break; } + } +} + + +/*---------------------------------------------------------------------------*/ + +/* Sorts suffixes of type B*. */ +static +int +sort_typeBstar(const unsigned char *T, int *SA, + int *bucket_A, int *bucket_B, + int n, int openMP) { + int *PAb, *ISAb, *buf; +#ifdef LIBBSC_OPENMP + int *curbuf; + int l; +#endif + int i, j, k, t, m, bufsize; + int c0, c1; +#ifdef LIBBSC_OPENMP + int d0, d1; +#endif + (void)openMP; + + /* Initialize bucket arrays. */ + for(i = 0; i < BUCKET_A_SIZE; ++i) { bucket_A[i] = 0; } + for(i = 0; i < BUCKET_B_SIZE; ++i) { bucket_B[i] = 0; } + + /* Count the number of occurrences of the first one or two characters of each + type A, B and B* suffix. Moreover, store the beginning position of all + type B* suffixes into the array SA. */ + for(i = n - 1, m = n, c0 = T[n - 1]; 0 <= i;) { + /* type A suffix. */ + do { ++BUCKET_A(c1 = c0); } while((0 <= --i) && ((c0 = T[i]) >= c1)); + if(0 <= i) { + /* type B* suffix. */ + ++BUCKET_BSTAR(c0, c1); + SA[--m] = i; + /* type B suffix. */ + for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) { + ++BUCKET_B(c0, c1); + } + } + } + m = n - m; +/* +note: + A type B* suffix is lexicographically smaller than a type B suffix that + begins with the same first two characters. +*/ + + /* Calculate the index of start/end point of each bucket. */ + for(c0 = 0, i = 0, j = 0; c0 < ALPHABET_SIZE; ++c0) { + t = i + BUCKET_A(c0); + BUCKET_A(c0) = i + j; /* start point */ + i = t + BUCKET_B(c0, c0); + for(c1 = c0 + 1; c1 < ALPHABET_SIZE; ++c1) { + j += BUCKET_BSTAR(c0, c1); + BUCKET_BSTAR(c0, c1) = j; /* end point */ + i += BUCKET_B(c0, c1); + } + } + + if(0 < m) { + /* Sort the type B* suffixes by their first two characters. */ + PAb = SA + n - m; ISAb = SA + m; + for(i = m - 2; 0 <= i; --i) { + t = PAb[i], c0 = T[t], c1 = T[t + 1]; + SA[--BUCKET_BSTAR(c0, c1)] = i; + } + t = PAb[m - 1], c0 = T[t], c1 = T[t + 1]; + SA[--BUCKET_BSTAR(c0, c1)] = m - 1; + + /* Sort the type B* substrings using sssort. */ +#ifdef LIBBSC_OPENMP + if (openMP) + { + buf = SA + m; + c0 = ALPHABET_SIZE - 2, c1 = ALPHABET_SIZE - 1, j = m; +#pragma omp parallel default(shared) private(bufsize, curbuf, k, l, d0, d1) + { + bufsize = (n - (2 * m)) / omp_get_num_threads(); + curbuf = buf + omp_get_thread_num() * bufsize; + k = 0; + for(;;) { + #pragma omp critical(sssort_lock) + { + if(0 < (l = j)) { + d0 = c0, d1 = c1; + do { + k = BUCKET_BSTAR(d0, d1); + if(--d1 <= d0) { + d1 = ALPHABET_SIZE - 1; + if(--d0 < 0) { break; } + } + } while(((l - k) <= 1) && (0 < (l = k))); + c0 = d0, c1 = d1, j = k; + } + } + if(l == 0) { break; } + sssort(T, PAb, SA + k, SA + l, + curbuf, bufsize, 2, n, *(SA + k) == (m - 1)); + } + } + } + else + { + buf = SA + m, bufsize = n - (2 * m); + for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) { + for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) { + i = BUCKET_BSTAR(c0, c1); + if(1 < (j - i)) { + sssort(T, PAb, SA + i, SA + j, + buf, bufsize, 2, n, *(SA + i) == (m - 1)); + } + } + } + } +#else + buf = SA + m, bufsize = n - (2 * m); + for(c0 = ALPHABET_SIZE - 2, j = m; 0 < j; --c0) { + for(c1 = ALPHABET_SIZE - 1; c0 < c1; j = i, --c1) { + i = BUCKET_BSTAR(c0, c1); + if(1 < (j - i)) { + sssort(T, PAb, SA + i, SA + j, + buf, bufsize, 2, n, *(SA + i) == (m - 1)); + } + } + } +#endif + + /* Compute ranks of type B* substrings. */ + for(i = m - 1; 0 <= i; --i) { + if(0 <= SA[i]) { + j = i; + do { ISAb[SA[i]] = i; } while((0 <= --i) && (0 <= SA[i])); + SA[i + 1] = i - j; + if(i <= 0) { break; } + } + j = i; + do { ISAb[SA[i] = ~SA[i]] = j; } while(SA[--i] < 0); + ISAb[SA[i]] = j; + } + + /* Construct the inverse suffix array of type B* suffixes using trsort. */ + trsort(ISAb, SA, m, 1); + + /* Set the sorted order of tyoe B* suffixes. */ + for(i = n - 1, j = m, c0 = T[n - 1]; 0 <= i;) { + for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) >= c1); --i, c1 = c0) { } + if(0 <= i) { + t = i; + for(--i, c1 = c0; (0 <= i) && ((c0 = T[i]) <= c1); --i, c1 = c0) { } + SA[ISAb[--j]] = ((t == 0) || (1 < (t - i))) ? t : ~t; + } + } + + /* Calculate the index of start/end point of each bucket. */ + BUCKET_B(ALPHABET_SIZE - 1, ALPHABET_SIZE - 1) = n; /* end point */ + for(c0 = ALPHABET_SIZE - 2, k = m - 1; 0 <= c0; --c0) { + i = BUCKET_A(c0 + 1) - 1; + for(c1 = ALPHABET_SIZE - 1; c0 < c1; --c1) { + t = i - BUCKET_B(c0, c1); + BUCKET_B(c0, c1) = i; /* end point */ + + /* Move all type B* suffixes to the correct position. */ + for(i = t, j = BUCKET_BSTAR(c0, c1); + j <= k; + --i, --k) { SA[i] = SA[k]; } + } + BUCKET_BSTAR(c0, c0 + 1) = i - BUCKET_B(c0, c0) + 1; /* start point */ + BUCKET_B(c0, c0) = i; /* end point */ + } + } + + return m; +} + +/* Constructs the suffix array by using the sorted order of type B* suffixes. */ +static +void +construct_SA(const unsigned char *T, int *SA, + int *bucket_A, int *bucket_B, + int n, int m) { + int *i, *j, *k; + int s; + int c0, c1, c2; + + if(0 < m) { + /* Construct the sorted order of type B suffixes by using + the sorted order of type B* suffixes. */ + for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) { + /* Scan the suffix array from right to left. */ + for(i = SA + BUCKET_BSTAR(c1, c1 + 1), + j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1; + i <= j; + --j) { + if(0 < (s = *j)) { + assert(T[s] == c1); + assert(((s + 1) < n) && (T[s] <= T[s + 1])); + assert(T[s - 1] <= T[s]); + *j = ~s; + c0 = T[--s]; + if((0 < s) && (T[s - 1] > c0)) { s = ~s; } + if(c0 != c2) { + if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; } + k = SA + BUCKET_B(c2 = c0, c1); + } + assert(k < j); assert(k != NULL); + *k-- = s; + } else { + assert(((s == 0) && (T[s] == c1)) || (s < 0)); + *j = ~s; + } + } + } + } + + /* Construct the suffix array by using + the sorted order of type B suffixes. */ + k = SA + BUCKET_A(c2 = T[n - 1]); + *k++ = (T[n - 2] < c2) ? ~(n - 1) : (n - 1); + /* Scan the suffix array from left to right. */ + for(i = SA, j = SA + n; i < j; ++i) { + if(0 < (s = *i)) { + assert(T[s - 1] >= T[s]); + c0 = T[--s]; + if((s == 0) || (T[s - 1] < c0)) { s = ~s; } + if(c0 != c2) { + BUCKET_A(c2) = k - SA; + k = SA + BUCKET_A(c2 = c0); + } + assert(i < k); + *k++ = s; + } else { + assert(s < 0); + *i = ~s; + } + } +} + +/* Constructs the burrows-wheeler transformed string directly + by using the sorted order of type B* suffixes. */ +static +int +construct_BWT(const unsigned char *T, int *SA, + int *bucket_A, int *bucket_B, + int n, int m) { + int *i, *j, *k, *orig; + int s; + int c0, c1, c2; + + if(0 < m) { + /* Construct the sorted order of type B suffixes by using + the sorted order of type B* suffixes. */ + for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) { + /* Scan the suffix array from right to left. */ + for(i = SA + BUCKET_BSTAR(c1, c1 + 1), + j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1; + i <= j; + --j) { + if(0 < (s = *j)) { + assert(T[s] == c1); + assert(((s + 1) < n) && (T[s] <= T[s + 1])); + assert(T[s - 1] <= T[s]); + c0 = T[--s]; + *j = ~((int)c0); + if((0 < s) && (T[s - 1] > c0)) { s = ~s; } + if(c0 != c2) { + if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; } + k = SA + BUCKET_B(c2 = c0, c1); + } + assert(k < j); assert(k != NULL); + *k-- = s; + } else if(s != 0) { + *j = ~s; +#ifndef NDEBUG + } else { + assert(T[s] == c1); +#endif + } + } + } + } + + /* Construct the BWTed string by using + the sorted order of type B suffixes. */ + k = SA + BUCKET_A(c2 = T[n - 1]); + *k++ = (T[n - 2] < c2) ? ~((int)T[n - 2]) : (n - 1); + /* Scan the suffix array from left to right. */ + for(i = SA, j = SA + n, orig = SA; i < j; ++i) { + if(0 < (s = *i)) { + assert(T[s - 1] >= T[s]); + c0 = T[--s]; + *i = c0; + if((0 < s) && (T[s - 1] < c0)) { s = ~((int)T[s - 1]); } + if(c0 != c2) { + BUCKET_A(c2) = k - SA; + k = SA + BUCKET_A(c2 = c0); + } + assert(i < k); + *k++ = s; + } else if(s != 0) { + *i = ~s; + } else { + orig = i; + } + } + + return orig - SA; +} + +/* Constructs the burrows-wheeler transformed string directly + by using the sorted order of type B* suffixes. */ +static +int +construct_BWT_indexes(const unsigned char *T, int *SA, + int *bucket_A, int *bucket_B, + int n, int m, + unsigned char * num_indexes, int * indexes) { + int *i, *j, *k, *orig; + int s; + int c0, c1, c2; + + int mod = n / 8; + { + mod |= mod >> 1; mod |= mod >> 2; + mod |= mod >> 4; mod |= mod >> 8; + mod |= mod >> 16; mod >>= 1; + + *num_indexes = (unsigned char)((n - 1) / (mod + 1)); + } + + if(0 < m) { + /* Construct the sorted order of type B suffixes by using + the sorted order of type B* suffixes. */ + for(c1 = ALPHABET_SIZE - 2; 0 <= c1; --c1) { + /* Scan the suffix array from right to left. */ + for(i = SA + BUCKET_BSTAR(c1, c1 + 1), + j = SA + BUCKET_A(c1 + 1) - 1, k = NULL, c2 = -1; + i <= j; + --j) { + if(0 < (s = *j)) { + assert(T[s] == c1); + assert(((s + 1) < n) && (T[s] <= T[s + 1])); + assert(T[s - 1] <= T[s]); + + if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = j - SA; + + c0 = T[--s]; + *j = ~((int)c0); + if((0 < s) && (T[s - 1] > c0)) { s = ~s; } + if(c0 != c2) { + if(0 <= c2) { BUCKET_B(c2, c1) = k - SA; } + k = SA + BUCKET_B(c2 = c0, c1); + } + assert(k < j); assert(k != NULL); + *k-- = s; + } else if(s != 0) { + *j = ~s; +#ifndef NDEBUG + } else { + assert(T[s] == c1); +#endif + } + } + } + } + + /* Construct the BWTed string by using + the sorted order of type B suffixes. */ + k = SA + BUCKET_A(c2 = T[n - 1]); + if (T[n - 2] < c2) { + if (((n - 1) & mod) == 0) indexes[(n - 1) / (mod + 1) - 1] = k - SA; + *k++ = ~((int)T[n - 2]); + } + else { + *k++ = n - 1; + } + + /* Scan the suffix array from left to right. */ + for(i = SA, j = SA + n, orig = SA; i < j; ++i) { + if(0 < (s = *i)) { + assert(T[s - 1] >= T[s]); + + if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = i - SA; + + c0 = T[--s]; + *i = c0; + if(c0 != c2) { + BUCKET_A(c2) = k - SA; + k = SA + BUCKET_A(c2 = c0); + } + assert(i < k); + if((0 < s) && (T[s - 1] < c0)) { + if ((s & mod) == 0) indexes[s / (mod + 1) - 1] = k - SA; + *k++ = ~((int)T[s - 1]); + } else + *k++ = s; + } else if(s != 0) { + *i = ~s; + } else { + orig = i; + } + } + + return orig - SA; +} + + +/*---------------------------------------------------------------------------*/ + +/*- Function -*/ + +int +divsufsort(const unsigned char *T, int *SA, int n, int openMP) { + int *bucket_A, *bucket_B; + int m; + int err = 0; + + /* Check arguments. */ + if((T == NULL) || (SA == NULL) || (n < 0)) { return -1; } + else if(n == 0) { return 0; } + else if(n == 1) { SA[0] = 0; return 0; } + else if(n == 2) { m = (T[0] < T[1]); SA[m ^ 1] = 0, SA[m] = 1; return 0; } + + bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int)); + bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int)); + + /* Suffixsort. */ + if((bucket_A != NULL) && (bucket_B != NULL)) { + m = sort_typeBstar(T, SA, bucket_A, bucket_B, n, openMP); + construct_SA(T, SA, bucket_A, bucket_B, n, m); + } else { + err = -2; + } + + free(bucket_B); + free(bucket_A); + + return err; +} + +int +divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP) { + int *B; + int *bucket_A, *bucket_B; + int m, pidx, i; + + /* Check arguments. */ + if((T == NULL) || (U == NULL) || (n < 0)) { return -1; } + else if(n <= 1) { if(n == 1) { U[0] = T[0]; } return n; } + + if((B = A) == NULL) { B = (int *)malloc((size_t)(n + 1) * sizeof(int)); } + bucket_A = (int *)malloc(BUCKET_A_SIZE * sizeof(int)); + bucket_B = (int *)malloc(BUCKET_B_SIZE * sizeof(int)); + + /* Burrows-Wheeler Transform. */ + if((B != NULL) && (bucket_A != NULL) && (bucket_B != NULL)) { + m = sort_typeBstar(T, B, bucket_A, bucket_B, n, openMP); + + if (num_indexes == NULL || indexes == NULL) { + pidx = construct_BWT(T, B, bucket_A, bucket_B, n, m); + } else { + pidx = construct_BWT_indexes(T, B, bucket_A, bucket_B, n, m, num_indexes, indexes); + } + + /* Copy to output string. */ + U[0] = T[n - 1]; + for(i = 0; i < pidx; ++i) { U[i + 1] = (unsigned char)B[i]; } + for(i += 1; i < n; ++i) { U[i] = (unsigned char)B[i]; } + pidx += 1; + } else { + pidx = -2; + } + + free(bucket_B); + free(bucket_A); + if(A == NULL) { free(B); } + + return pidx; +} diff --git a/vendor/github.com/DataDog/zstd/divsufsort.h b/vendor/github.com/DataDog/zstd/divsufsort.h new file mode 100644 index 0000000000..5440994af1 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/divsufsort.h @@ -0,0 +1,67 @@ +/* + * divsufsort.h for libdivsufsort-lite + * Copyright (c) 2003-2008 Yuta Mori All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person + * obtaining a copy of this software and associated documentation + * files (the "Software"), to deal in the Software without + * restriction, including without limitation the rights to use, + * copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following + * conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES + * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. + */ + +#ifndef _DIVSUFSORT_H +#define _DIVSUFSORT_H 1 + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + + +/*- Prototypes -*/ + +/** + * Constructs the suffix array of a given string. + * @param T [0..n-1] The input string. + * @param SA [0..n-1] The output array of suffixes. + * @param n The length of the given string. + * @param openMP enables OpenMP optimization. + * @return 0 if no error occurred, -1 or -2 otherwise. + */ +int +divsufsort(const unsigned char *T, int *SA, int n, int openMP); + +/** + * Constructs the burrows-wheeler transformed string of a given string. + * @param T [0..n-1] The input string. + * @param U [0..n-1] The output string. (can be T) + * @param A [0..n-1] The temporary array. (can be NULL) + * @param n The length of the given string. + * @param num_indexes The length of secondary indexes array. (can be NULL) + * @param indexes The secondary indexes array. (can be NULL) + * @param openMP enables OpenMP optimization. + * @return The primary index if no error occurred, -1 or -2 otherwise. + */ +int +divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP); + + +#ifdef __cplusplus +} /* extern "C" */ +#endif /* __cplusplus */ + +#endif /* _DIVSUFSORT_H */ diff --git a/vendor/github.com/DataDog/zstd/entropy_common.c b/vendor/github.com/DataDog/zstd/entropy_common.c new file mode 100644 index 0000000000..b12944e1de --- /dev/null +++ b/vendor/github.com/DataDog/zstd/entropy_common.c @@ -0,0 +1,236 @@ +/* + Common functions of New Generation Entropy library + Copyright (C) 2016, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +*************************************************************************** */ + +/* ************************************* +* Dependencies +***************************************/ +#include "mem.h" +#include "error_private.h" /* ERR_*, ERROR */ +#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */ +#include "fse.h" +#define HUF_STATIC_LINKING_ONLY /* HUF_TABLELOG_ABSOLUTEMAX */ +#include "huf.h" + + +/*=== Version ===*/ +unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; } + + +/*=== Error Management ===*/ +unsigned FSE_isError(size_t code) { return ERR_isError(code); } +const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); } + +unsigned HUF_isError(size_t code) { return ERR_isError(code); } +const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); } + + +/*-************************************************************** +* FSE NCount encoding-decoding +****************************************************************/ +size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, + const void* headerBuffer, size_t hbSize) +{ + const BYTE* const istart = (const BYTE*) headerBuffer; + const BYTE* const iend = istart + hbSize; + const BYTE* ip = istart; + int nbBits; + int remaining; + int threshold; + U32 bitStream; + int bitCount; + unsigned charnum = 0; + int previous0 = 0; + + if (hbSize < 4) { + /* This function only works when hbSize >= 4 */ + char buffer[4]; + memset(buffer, 0, sizeof(buffer)); + memcpy(buffer, headerBuffer, hbSize); + { size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr, + buffer, sizeof(buffer)); + if (FSE_isError(countSize)) return countSize; + if (countSize > hbSize) return ERROR(corruption_detected); + return countSize; + } } + assert(hbSize >= 4); + + /* init */ + memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */ + bitStream = MEM_readLE32(ip); + nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */ + if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); + bitStream >>= 4; + bitCount = 4; + *tableLogPtr = nbBits; + remaining = (1<1) & (charnum<=*maxSVPtr)) { + if (previous0) { + unsigned n0 = charnum; + while ((bitStream & 0xFFFF) == 0xFFFF) { + n0 += 24; + if (ip < iend-5) { + ip += 2; + bitStream = MEM_readLE32(ip) >> bitCount; + } else { + bitStream >>= 16; + bitCount += 16; + } } + while ((bitStream & 3) == 3) { + n0 += 3; + bitStream >>= 2; + bitCount += 2; + } + n0 += bitStream & 3; + bitCount += 2; + if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); + while (charnum < n0) normalizedCounter[charnum++] = 0; + if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { + assert((bitCount >> 3) <= 3); /* For first condition to work */ + ip += bitCount>>3; + bitCount &= 7; + bitStream = MEM_readLE32(ip) >> bitCount; + } else { + bitStream >>= 2; + } } + { int const max = (2*threshold-1) - remaining; + int count; + + if ((bitStream & (threshold-1)) < (U32)max) { + count = bitStream & (threshold-1); + bitCount += nbBits-1; + } else { + count = bitStream & (2*threshold-1); + if (count >= threshold) count -= max; + bitCount += nbBits; + } + + count--; /* extra accuracy */ + remaining -= count < 0 ? -count : count; /* -1 means +1 */ + normalizedCounter[charnum++] = (short)count; + previous0 = !count; + while (remaining < threshold) { + nbBits--; + threshold >>= 1; + } + + if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { + ip += bitCount>>3; + bitCount &= 7; + } else { + bitCount -= (int)(8 * (iend - 4 - ip)); + ip = iend - 4; + } + bitStream = MEM_readLE32(ip) >> (bitCount & 31); + } } /* while ((remaining>1) & (charnum<=*maxSVPtr)) */ + if (remaining != 1) return ERROR(corruption_detected); + if (bitCount > 32) return ERROR(corruption_detected); + *maxSVPtr = charnum-1; + + ip += (bitCount+7)>>3; + return ip-istart; +} + + +/*! HUF_readStats() : + Read compact Huffman tree, saved by HUF_writeCTable(). + `huffWeight` is destination buffer. + `rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32. + @return : size read from `src` , or an error Code . + Note : Needed by HUF_readCTable() and HUF_readDTableX?() . +*/ +size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, + U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize) +{ + U32 weightTotal; + const BYTE* ip = (const BYTE*) src; + size_t iSize; + size_t oSize; + + if (!srcSize) return ERROR(srcSize_wrong); + iSize = ip[0]; + /* memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */ + + if (iSize >= 128) { /* special header */ + oSize = iSize - 127; + iSize = ((oSize+1)/2); + if (iSize+1 > srcSize) return ERROR(srcSize_wrong); + if (oSize >= hwSize) return ERROR(corruption_detected); + ip += 1; + { U32 n; + for (n=0; n> 4; + huffWeight[n+1] = ip[n/2] & 15; + } } } + else { /* header compressed with FSE (normal case) */ + FSE_DTable fseWorkspace[FSE_DTABLE_SIZE_U32(6)]; /* 6 is max possible tableLog for HUF header (maybe even 5, to be tested) */ + if (iSize+1 > srcSize) return ERROR(srcSize_wrong); + oSize = FSE_decompress_wksp(huffWeight, hwSize-1, ip+1, iSize, fseWorkspace, 6); /* max (hwSize-1) values decoded, as last one is implied */ + if (FSE_isError(oSize)) return oSize; + } + + /* collect weight stats */ + memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32)); + weightTotal = 0; + { U32 n; for (n=0; n= HUF_TABLELOG_MAX) return ERROR(corruption_detected); + rankStats[huffWeight[n]]++; + weightTotal += (1 << huffWeight[n]) >> 1; + } } + if (weightTotal == 0) return ERROR(corruption_detected); + + /* get last non-null symbol weight (implied, total must be 2^n) */ + { U32 const tableLog = BIT_highbit32(weightTotal) + 1; + if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected); + *tableLogPtr = tableLog; + /* determine last weight */ + { U32 const total = 1 << tableLog; + U32 const rest = total - weightTotal; + U32 const verif = 1 << BIT_highbit32(rest); + U32 const lastWeight = BIT_highbit32(rest) + 1; + if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ + huffWeight[oSize] = (BYTE)lastWeight; + rankStats[lastWeight]++; + } } + + /* check tree construction validity */ + if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ + + /* results */ + *nbSymbolsPtr = (U32)(oSize+1); + return iSize+1; +} diff --git a/vendor/github.com/DataDog/zstd/error_private.c b/vendor/github.com/DataDog/zstd/error_private.c new file mode 100644 index 0000000000..7c1bb67a23 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/error_private.c @@ -0,0 +1,54 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* The purpose of this file is to have a single list of error strings embedded in binary */ + +#include "error_private.h" + +const char* ERR_getErrorString(ERR_enum code) +{ +#ifdef ZSTD_STRIP_ERROR_STRINGS + (void)code; + return "Error strings stripped"; +#else + static const char* const notErrorCode = "Unspecified error code"; + switch( code ) + { + case PREFIX(no_error): return "No error detected"; + case PREFIX(GENERIC): return "Error (generic)"; + case PREFIX(prefix_unknown): return "Unknown frame descriptor"; + case PREFIX(version_unsupported): return "Version not supported"; + case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter"; + case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding"; + case PREFIX(corruption_detected): return "Corrupted block detected"; + case PREFIX(checksum_wrong): return "Restored data doesn't match checksum"; + case PREFIX(parameter_unsupported): return "Unsupported parameter"; + case PREFIX(parameter_outOfBound): return "Parameter is out of bound"; + case PREFIX(init_missing): return "Context should be init first"; + case PREFIX(memory_allocation): return "Allocation error : not enough memory"; + case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough"; + case PREFIX(stage_wrong): return "Operation not authorized at current processing stage"; + case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported"; + case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large"; + case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small"; + case PREFIX(dictionary_corrupted): return "Dictionary is corrupted"; + case PREFIX(dictionary_wrong): return "Dictionary mismatch"; + case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples"; + case PREFIX(dstSize_tooSmall): return "Destination buffer is too small"; + case PREFIX(srcSize_wrong): return "Src size is incorrect"; + case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer"; + /* following error codes are not stable and may be removed or changed in a future version */ + case PREFIX(frameIndex_tooLarge): return "Frame index is too large"; + case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking"; + case PREFIX(maxCode): + default: return notErrorCode; + } +#endif +} diff --git a/vendor/github.com/DataDog/zstd/error_private.h b/vendor/github.com/DataDog/zstd/error_private.h new file mode 100644 index 0000000000..0d2fa7e34b --- /dev/null +++ b/vendor/github.com/DataDog/zstd/error_private.h @@ -0,0 +1,76 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* Note : this module is expected to remain private, do not expose it */ + +#ifndef ERROR_H_MODULE +#define ERROR_H_MODULE + +#if defined (__cplusplus) +extern "C" { +#endif + + +/* **************************************** +* Dependencies +******************************************/ +#include /* size_t */ +#include "zstd_errors.h" /* enum list */ + + +/* **************************************** +* Compiler-specific +******************************************/ +#if defined(__GNUC__) +# define ERR_STATIC static __attribute__((unused)) +#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define ERR_STATIC static inline +#elif defined(_MSC_VER) +# define ERR_STATIC static __inline +#else +# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ +#endif + + +/*-**************************************** +* Customization (error_public.h) +******************************************/ +typedef ZSTD_ErrorCode ERR_enum; +#define PREFIX(name) ZSTD_error_##name + + +/*-**************************************** +* Error codes handling +******************************************/ +#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */ +#define ERROR(name) ZSTD_ERROR(name) +#define ZSTD_ERROR(name) ((size_t)-PREFIX(name)) + +ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } + +ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); } + + +/*-**************************************** +* Error Strings +******************************************/ + +const char* ERR_getErrorString(ERR_enum code); /* error_private.c */ + +ERR_STATIC const char* ERR_getErrorName(size_t code) +{ + return ERR_getErrorString(ERR_getErrorCode(code)); +} + +#if defined (__cplusplus) +} +#endif + +#endif /* ERROR_H_MODULE */ diff --git a/vendor/github.com/DataDog/zstd/errors.go b/vendor/github.com/DataDog/zstd/errors.go new file mode 100644 index 0000000000..38db0d51cc --- /dev/null +++ b/vendor/github.com/DataDog/zstd/errors.go @@ -0,0 +1,35 @@ +package zstd + +/* +#define ZSTD_STATIC_LINKING_ONLY +#include "zstd.h" +*/ +import "C" + +// ErrorCode is an error returned by the zstd library. +type ErrorCode int + +// Error returns the error string given by zstd +func (e ErrorCode) Error() string { + return C.GoString(C.ZSTD_getErrorName(C.size_t(e))) +} + +func cIsError(code int) bool { + return int(C.ZSTD_isError(C.size_t(code))) != 0 +} + +// getError returns an error for the return code, or nil if it's not an error +func getError(code int) error { + if code < 0 && cIsError(code) { + return ErrorCode(code) + } + return nil +} + +// IsDstSizeTooSmallError returns whether the error correspond to zstd standard sDstSizeTooSmall error +func IsDstSizeTooSmallError(e error) bool { + if e != nil && e.Error() == "Destination buffer is too small" { + return true + } + return false +} diff --git a/vendor/github.com/DataDog/zstd/fastcover.c b/vendor/github.com/DataDog/zstd/fastcover.c new file mode 100644 index 0000000000..5b6b941a90 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/fastcover.c @@ -0,0 +1,740 @@ +/*-************************************* +* Dependencies +***************************************/ +#include /* fprintf */ +#include /* malloc, free, qsort */ +#include /* memset */ +#include /* clock */ + +#include "mem.h" /* read */ +#include "pool.h" +#include "threading.h" +#include "cover.h" +#include "zstd_internal.h" /* includes zstd.h */ +#ifndef ZDICT_STATIC_LINKING_ONLY +#define ZDICT_STATIC_LINKING_ONLY +#endif +#include "zdict.h" + + +/*-************************************* +* Constants +***************************************/ +#define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB)) +#define FASTCOVER_MAX_F 31 +#define FASTCOVER_MAX_ACCEL 10 +#define DEFAULT_SPLITPOINT 0.75 +#define DEFAULT_F 20 +#define DEFAULT_ACCEL 1 + + +/*-************************************* +* Console display +***************************************/ +static int g_displayLevel = 2; +#define DISPLAY(...) \ + { \ + fprintf(stderr, __VA_ARGS__); \ + fflush(stderr); \ + } +#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \ + if (displayLevel >= l) { \ + DISPLAY(__VA_ARGS__); \ + } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ +#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__) + +#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \ + if (displayLevel >= l) { \ + if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \ + g_time = clock(); \ + DISPLAY(__VA_ARGS__); \ + } \ + } +#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__) +static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100; +static clock_t g_time = 0; + + +/*-************************************* +* Hash Functions +***************************************/ +static const U64 prime6bytes = 227718039650203ULL; +static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; } +static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); } + +static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL; +static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; } +static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); } + + +/** + * Hash the d-byte value pointed to by p and mod 2^f + */ +static size_t FASTCOVER_hashPtrToIndex(const void* p, U32 h, unsigned d) { + if (d == 6) { + return ZSTD_hash6Ptr(p, h) & ((1 << h) - 1); + } + return ZSTD_hash8Ptr(p, h) & ((1 << h) - 1); +} + + +/*-************************************* +* Acceleration +***************************************/ +typedef struct { + unsigned finalize; /* Percentage of training samples used for ZDICT_finalizeDictionary */ + unsigned skip; /* Number of dmer skipped between each dmer counted in computeFrequency */ +} FASTCOVER_accel_t; + + +static const FASTCOVER_accel_t FASTCOVER_defaultAccelParameters[FASTCOVER_MAX_ACCEL+1] = { + { 100, 0 }, /* accel = 0, should not happen because accel = 0 defaults to accel = 1 */ + { 100, 0 }, /* accel = 1 */ + { 50, 1 }, /* accel = 2 */ + { 34, 2 }, /* accel = 3 */ + { 25, 3 }, /* accel = 4 */ + { 20, 4 }, /* accel = 5 */ + { 17, 5 }, /* accel = 6 */ + { 14, 6 }, /* accel = 7 */ + { 13, 7 }, /* accel = 8 */ + { 11, 8 }, /* accel = 9 */ + { 10, 9 }, /* accel = 10 */ +}; + + +/*-************************************* +* Context +***************************************/ +typedef struct { + const BYTE *samples; + size_t *offsets; + const size_t *samplesSizes; + size_t nbSamples; + size_t nbTrainSamples; + size_t nbTestSamples; + size_t nbDmers; + U32 *freqs; + unsigned d; + unsigned f; + FASTCOVER_accel_t accelParams; +} FASTCOVER_ctx_t; + + +/*-************************************* +* Helper functions +***************************************/ +/** + * Selects the best segment in an epoch. + * Segments of are scored according to the function: + * + * Let F(d) be the frequency of all dmers with hash value d. + * Let S_i be hash value of the dmer at position i of segment S which has length k. + * + * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1}) + * + * Once the dmer with hash value d is in the dictionary we set F(d) = 0. + */ +static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx, + U32 *freqs, U32 begin, U32 end, + ZDICT_cover_params_t parameters, + U16* segmentFreqs) { + /* Constants */ + const U32 k = parameters.k; + const U32 d = parameters.d; + const U32 f = ctx->f; + const U32 dmersInK = k - d + 1; + + /* Try each segment (activeSegment) and save the best (bestSegment) */ + COVER_segment_t bestSegment = {0, 0, 0}; + COVER_segment_t activeSegment; + + /* Reset the activeDmers in the segment */ + /* The activeSegment starts at the beginning of the epoch. */ + activeSegment.begin = begin; + activeSegment.end = begin; + activeSegment.score = 0; + + /* Slide the activeSegment through the whole epoch. + * Save the best segment in bestSegment. + */ + while (activeSegment.end < end) { + /* Get hash value of current dmer */ + const size_t idx = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, f, d); + + /* Add frequency of this index to score if this is the first occurrence of index in active segment */ + if (segmentFreqs[idx] == 0) { + activeSegment.score += freqs[idx]; + } + /* Increment end of segment and segmentFreqs*/ + activeSegment.end += 1; + segmentFreqs[idx] += 1; + /* If the window is now too large, drop the first position */ + if (activeSegment.end - activeSegment.begin == dmersInK + 1) { + /* Get hash value of the dmer to be eliminated from active segment */ + const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d); + segmentFreqs[delIndex] -= 1; + /* Subtract frequency of this index from score if this is the last occurrence of this index in active segment */ + if (segmentFreqs[delIndex] == 0) { + activeSegment.score -= freqs[delIndex]; + } + /* Increment start of segment */ + activeSegment.begin += 1; + } + + /* If this segment is the best so far save it */ + if (activeSegment.score > bestSegment.score) { + bestSegment = activeSegment; + } + } + + /* Zero out rest of segmentFreqs array */ + while (activeSegment.begin < end) { + const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d); + segmentFreqs[delIndex] -= 1; + activeSegment.begin += 1; + } + + { + /* Zero the frequency of hash value of each dmer covered by the chosen segment. */ + U32 pos; + for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { + const size_t i = FASTCOVER_hashPtrToIndex(ctx->samples + pos, f, d); + freqs[i] = 0; + } + } + + return bestSegment; +} + + +static int FASTCOVER_checkParameters(ZDICT_cover_params_t parameters, + size_t maxDictSize, unsigned f, + unsigned accel) { + /* k, d, and f are required parameters */ + if (parameters.d == 0 || parameters.k == 0) { + return 0; + } + /* d has to be 6 or 8 */ + if (parameters.d != 6 && parameters.d != 8) { + return 0; + } + /* k <= maxDictSize */ + if (parameters.k > maxDictSize) { + return 0; + } + /* d <= k */ + if (parameters.d > parameters.k) { + return 0; + } + /* 0 < f <= FASTCOVER_MAX_F*/ + if (f > FASTCOVER_MAX_F || f == 0) { + return 0; + } + /* 0 < splitPoint <= 1 */ + if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) { + return 0; + } + /* 0 < accel <= 10 */ + if (accel > 10 || accel == 0) { + return 0; + } + return 1; +} + + +/** + * Clean up a context initialized with `FASTCOVER_ctx_init()`. + */ +static void +FASTCOVER_ctx_destroy(FASTCOVER_ctx_t* ctx) +{ + if (!ctx) return; + + free(ctx->freqs); + ctx->freqs = NULL; + + free(ctx->offsets); + ctx->offsets = NULL; +} + + +/** + * Calculate for frequency of hash value of each dmer in ctx->samples + */ +static void +FASTCOVER_computeFrequency(U32* freqs, const FASTCOVER_ctx_t* ctx) +{ + const unsigned f = ctx->f; + const unsigned d = ctx->d; + const unsigned skip = ctx->accelParams.skip; + const unsigned readLength = MAX(d, 8); + size_t i; + assert(ctx->nbTrainSamples >= 5); + assert(ctx->nbTrainSamples <= ctx->nbSamples); + for (i = 0; i < ctx->nbTrainSamples; i++) { + size_t start = ctx->offsets[i]; /* start of current dmer */ + size_t const currSampleEnd = ctx->offsets[i+1]; + while (start + readLength <= currSampleEnd) { + const size_t dmerIndex = FASTCOVER_hashPtrToIndex(ctx->samples + start, f, d); + freqs[dmerIndex]++; + start = start + skip + 1; + } + } +} + + +/** + * Prepare a context for dictionary building. + * The context is only dependent on the parameter `d` and can used multiple + * times. + * Returns 1 on success or zero on error. + * The context must be destroyed with `FASTCOVER_ctx_destroy()`. + */ +static int +FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx, + const void* samplesBuffer, + const size_t* samplesSizes, unsigned nbSamples, + unsigned d, double splitPoint, unsigned f, + FASTCOVER_accel_t accelParams) +{ + const BYTE* const samples = (const BYTE*)samplesBuffer; + const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples); + /* Split samples into testing and training sets */ + const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples; + const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples; + const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize; + const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize; + + /* Checks */ + if (totalSamplesSize < MAX(d, sizeof(U64)) || + totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) { + DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n", + (unsigned)(totalSamplesSize >> 20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20)); + return 0; + } + + /* Check if there are at least 5 training samples */ + if (nbTrainSamples < 5) { + DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid\n", nbTrainSamples); + return 0; + } + + /* Check if there's testing sample */ + if (nbTestSamples < 1) { + DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.\n", nbTestSamples); + return 0; + } + + /* Zero the context */ + memset(ctx, 0, sizeof(*ctx)); + DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples, + (unsigned)trainingSamplesSize); + DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples, + (unsigned)testSamplesSize); + + ctx->samples = samples; + ctx->samplesSizes = samplesSizes; + ctx->nbSamples = nbSamples; + ctx->nbTrainSamples = nbTrainSamples; + ctx->nbTestSamples = nbTestSamples; + ctx->nbDmers = trainingSamplesSize - MAX(d, sizeof(U64)) + 1; + ctx->d = d; + ctx->f = f; + ctx->accelParams = accelParams; + + /* The offsets of each file */ + ctx->offsets = (size_t*)calloc((nbSamples + 1), sizeof(size_t)); + if (ctx->offsets == NULL) { + DISPLAYLEVEL(1, "Failed to allocate scratch buffers \n"); + FASTCOVER_ctx_destroy(ctx); + return 0; + } + + /* Fill offsets from the samplesSizes */ + { U32 i; + ctx->offsets[0] = 0; + assert(nbSamples >= 5); + for (i = 1; i <= nbSamples; ++i) { + ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1]; + } + } + + /* Initialize frequency array of size 2^f */ + ctx->freqs = (U32*)calloc(((U64)1 << f), sizeof(U32)); + if (ctx->freqs == NULL) { + DISPLAYLEVEL(1, "Failed to allocate frequency table \n"); + FASTCOVER_ctx_destroy(ctx); + return 0; + } + + DISPLAYLEVEL(2, "Computing frequencies\n"); + FASTCOVER_computeFrequency(ctx->freqs, ctx); + + return 1; +} + + +/** + * Given the prepared context build the dictionary. + */ +static size_t +FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx, + U32* freqs, + void* dictBuffer, size_t dictBufferCapacity, + ZDICT_cover_params_t parameters, + U16* segmentFreqs) +{ + BYTE *const dict = (BYTE *)dictBuffer; + size_t tail = dictBufferCapacity; + /* Divide the data into epochs. We will select one segment from each epoch. */ + const COVER_epoch_info_t epochs = COVER_computeEpochs( + (U32)dictBufferCapacity, (U32)ctx->nbDmers, parameters.k, 1); + const size_t maxZeroScoreRun = 10; + size_t zeroScoreRun = 0; + size_t epoch; + DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", + (U32)epochs.num, (U32)epochs.size); + /* Loop through the epochs until there are no more segments or the dictionary + * is full. + */ + for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) { + const U32 epochBegin = (U32)(epoch * epochs.size); + const U32 epochEnd = epochBegin + epochs.size; + size_t segmentSize; + /* Select a segment */ + COVER_segment_t segment = FASTCOVER_selectSegment( + ctx, freqs, epochBegin, epochEnd, parameters, segmentFreqs); + + /* If the segment covers no dmers, then we are out of content. + * There may be new content in other epochs, for continue for some time. + */ + if (segment.score == 0) { + if (++zeroScoreRun >= maxZeroScoreRun) { + break; + } + continue; + } + zeroScoreRun = 0; + + /* Trim the segment if necessary and if it is too small then we are done */ + segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail); + if (segmentSize < parameters.d) { + break; + } + + /* We fill the dictionary from the back to allow the best segments to be + * referenced with the smallest offsets. + */ + tail -= segmentSize; + memcpy(dict + tail, ctx->samples + segment.begin, segmentSize); + DISPLAYUPDATE( + 2, "\r%u%% ", + (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity)); + } + DISPLAYLEVEL(2, "\r%79s\r", ""); + return tail; +} + + +/** + * Parameters for FASTCOVER_tryParameters(). + */ +typedef struct FASTCOVER_tryParameters_data_s { + const FASTCOVER_ctx_t* ctx; + COVER_best_t* best; + size_t dictBufferCapacity; + ZDICT_cover_params_t parameters; +} FASTCOVER_tryParameters_data_t; + + +/** + * Tries a set of parameters and updates the COVER_best_t with the results. + * This function is thread safe if zstd is compiled with multithreaded support. + * It takes its parameters as an *OWNING* opaque pointer to support threading. + */ +static void FASTCOVER_tryParameters(void *opaque) +{ + /* Save parameters as local variables */ + FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t *)opaque; + const FASTCOVER_ctx_t *const ctx = data->ctx; + const ZDICT_cover_params_t parameters = data->parameters; + size_t dictBufferCapacity = data->dictBufferCapacity; + size_t totalCompressedSize = ERROR(GENERIC); + /* Initialize array to keep track of frequency of dmer within activeSegment */ + U16* segmentFreqs = (U16 *)calloc(((U64)1 << ctx->f), sizeof(U16)); + /* Allocate space for hash table, dict, and freqs */ + BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity); + U32 *freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32)); + if (!segmentFreqs || !dict || !freqs) { + DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n"); + goto _cleanup; + } + /* Copy the frequencies because we need to modify them */ + memcpy(freqs, ctx->freqs, ((U64)1 << ctx->f) * sizeof(U32)); + /* Build the dictionary */ + { const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict, dictBufferCapacity, + parameters, segmentFreqs); + const unsigned nbFinalizeSamples = (unsigned)(ctx->nbTrainSamples * ctx->accelParams.finalize / 100); + dictBufferCapacity = ZDICT_finalizeDictionary( + dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, + ctx->samples, ctx->samplesSizes, nbFinalizeSamples, parameters.zParams); + if (ZDICT_isError(dictBufferCapacity)) { + DISPLAYLEVEL(1, "Failed to finalize dictionary\n"); + goto _cleanup; + } + } + /* Check total compressed size */ + totalCompressedSize = COVER_checkTotalCompressedSize(parameters, ctx->samplesSizes, + ctx->samples, ctx->offsets, + ctx->nbTrainSamples, ctx->nbSamples, + dict, dictBufferCapacity); +_cleanup: + COVER_best_finish(data->best, totalCompressedSize, parameters, dict, + dictBufferCapacity); + free(data); + free(segmentFreqs); + free(dict); + free(freqs); +} + + +static void +FASTCOVER_convertToCoverParams(ZDICT_fastCover_params_t fastCoverParams, + ZDICT_cover_params_t* coverParams) +{ + coverParams->k = fastCoverParams.k; + coverParams->d = fastCoverParams.d; + coverParams->steps = fastCoverParams.steps; + coverParams->nbThreads = fastCoverParams.nbThreads; + coverParams->splitPoint = fastCoverParams.splitPoint; + coverParams->zParams = fastCoverParams.zParams; +} + + +static void +FASTCOVER_convertToFastCoverParams(ZDICT_cover_params_t coverParams, + ZDICT_fastCover_params_t* fastCoverParams, + unsigned f, unsigned accel) +{ + fastCoverParams->k = coverParams.k; + fastCoverParams->d = coverParams.d; + fastCoverParams->steps = coverParams.steps; + fastCoverParams->nbThreads = coverParams.nbThreads; + fastCoverParams->splitPoint = coverParams.splitPoint; + fastCoverParams->f = f; + fastCoverParams->accel = accel; + fastCoverParams->zParams = coverParams.zParams; +} + + +ZDICTLIB_API size_t +ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, + const size_t* samplesSizes, unsigned nbSamples, + ZDICT_fastCover_params_t parameters) +{ + BYTE* const dict = (BYTE*)dictBuffer; + FASTCOVER_ctx_t ctx; + ZDICT_cover_params_t coverParams; + FASTCOVER_accel_t accelParams; + /* Initialize global data */ + g_displayLevel = parameters.zParams.notificationLevel; + /* Assign splitPoint and f if not provided */ + parameters.splitPoint = 1.0; + parameters.f = parameters.f == 0 ? DEFAULT_F : parameters.f; + parameters.accel = parameters.accel == 0 ? DEFAULT_ACCEL : parameters.accel; + /* Convert to cover parameter */ + memset(&coverParams, 0 , sizeof(coverParams)); + FASTCOVER_convertToCoverParams(parameters, &coverParams); + /* Checks */ + if (!FASTCOVER_checkParameters(coverParams, dictBufferCapacity, parameters.f, + parameters.accel)) { + DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n"); + return ERROR(GENERIC); + } + if (nbSamples == 0) { + DISPLAYLEVEL(1, "FASTCOVER must have at least one input file\n"); + return ERROR(GENERIC); + } + if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { + DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", + ZDICT_DICTSIZE_MIN); + return ERROR(dstSize_tooSmall); + } + /* Assign corresponding FASTCOVER_accel_t to accelParams*/ + accelParams = FASTCOVER_defaultAccelParameters[parameters.accel]; + /* Initialize context */ + if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, + coverParams.d, parameters.splitPoint, parameters.f, + accelParams)) { + DISPLAYLEVEL(1, "Failed to initialize context\n"); + return ERROR(GENERIC); + } + COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, g_displayLevel); + /* Build the dictionary */ + DISPLAYLEVEL(2, "Building dictionary\n"); + { + /* Initialize array to keep track of frequency of dmer within activeSegment */ + U16* segmentFreqs = (U16 *)calloc(((U64)1 << parameters.f), sizeof(U16)); + const size_t tail = FASTCOVER_buildDictionary(&ctx, ctx.freqs, dictBuffer, + dictBufferCapacity, coverParams, segmentFreqs); + const unsigned nbFinalizeSamples = (unsigned)(ctx.nbTrainSamples * ctx.accelParams.finalize / 100); + const size_t dictionarySize = ZDICT_finalizeDictionary( + dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, + samplesBuffer, samplesSizes, nbFinalizeSamples, coverParams.zParams); + if (!ZSTD_isError(dictionarySize)) { + DISPLAYLEVEL(2, "Constructed dictionary of size %u\n", + (unsigned)dictionarySize); + } + FASTCOVER_ctx_destroy(&ctx); + free(segmentFreqs); + return dictionarySize; + } +} + + +ZDICTLIB_API size_t +ZDICT_optimizeTrainFromBuffer_fastCover( + void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, + const size_t* samplesSizes, unsigned nbSamples, + ZDICT_fastCover_params_t* parameters) +{ + ZDICT_cover_params_t coverParams; + FASTCOVER_accel_t accelParams; + /* constants */ + const unsigned nbThreads = parameters->nbThreads; + const double splitPoint = + parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint; + const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d; + const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d; + const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k; + const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k; + const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps; + const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1); + const unsigned kIterations = + (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize); + const unsigned f = parameters->f == 0 ? DEFAULT_F : parameters->f; + const unsigned accel = parameters->accel == 0 ? DEFAULT_ACCEL : parameters->accel; + /* Local variables */ + const int displayLevel = parameters->zParams.notificationLevel; + unsigned iteration = 1; + unsigned d; + unsigned k; + COVER_best_t best; + POOL_ctx *pool = NULL; + int warned = 0; + /* Checks */ + if (splitPoint <= 0 || splitPoint > 1) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect splitPoint\n"); + return ERROR(GENERIC); + } + if (accel == 0 || accel > FASTCOVER_MAX_ACCEL) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect accel\n"); + return ERROR(GENERIC); + } + if (kMinK < kMaxD || kMaxK < kMinK) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect k\n"); + return ERROR(GENERIC); + } + if (nbSamples == 0) { + LOCALDISPLAYLEVEL(displayLevel, 1, "FASTCOVER must have at least one input file\n"); + return ERROR(GENERIC); + } + if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { + LOCALDISPLAYLEVEL(displayLevel, 1, "dictBufferCapacity must be at least %u\n", + ZDICT_DICTSIZE_MIN); + return ERROR(dstSize_tooSmall); + } + if (nbThreads > 1) { + pool = POOL_create(nbThreads, 1); + if (!pool) { + return ERROR(memory_allocation); + } + } + /* Initialization */ + COVER_best_init(&best); + memset(&coverParams, 0 , sizeof(coverParams)); + FASTCOVER_convertToCoverParams(*parameters, &coverParams); + accelParams = FASTCOVER_defaultAccelParameters[accel]; + /* Turn down global display level to clean up display at level 2 and below */ + g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1; + /* Loop through d first because each new value needs a new context */ + LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n", + kIterations); + for (d = kMinD; d <= kMaxD; d += 2) { + /* Initialize the context for this value of d */ + FASTCOVER_ctx_t ctx; + LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d); + if (!FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams)) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n"); + COVER_best_destroy(&best); + POOL_free(pool); + return ERROR(GENERIC); + } + if (!warned) { + COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, displayLevel); + warned = 1; + } + /* Loop through k reusing the same context */ + for (k = kMinK; k <= kMaxK; k += kStepSize) { + /* Prepare the arguments */ + FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc( + sizeof(FASTCOVER_tryParameters_data_t)); + LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k); + if (!data) { + LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n"); + COVER_best_destroy(&best); + FASTCOVER_ctx_destroy(&ctx); + POOL_free(pool); + return ERROR(GENERIC); + } + data->ctx = &ctx; + data->best = &best; + data->dictBufferCapacity = dictBufferCapacity; + data->parameters = coverParams; + data->parameters.k = k; + data->parameters.d = d; + data->parameters.splitPoint = splitPoint; + data->parameters.steps = kSteps; + data->parameters.zParams.notificationLevel = g_displayLevel; + /* Check the parameters */ + if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity, + data->ctx->f, accel)) { + DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n"); + free(data); + continue; + } + /* Call the function and pass ownership of data to it */ + COVER_best_start(&best); + if (pool) { + POOL_add(pool, &FASTCOVER_tryParameters, data); + } else { + FASTCOVER_tryParameters(data); + } + /* Print status */ + LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ", + (unsigned)((iteration * 100) / kIterations)); + ++iteration; + } + COVER_best_wait(&best); + FASTCOVER_ctx_destroy(&ctx); + } + LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", ""); + /* Fill the output buffer and parameters with output of the best parameters */ + { + const size_t dictSize = best.dictSize; + if (ZSTD_isError(best.compressedSize)) { + const size_t compressedSize = best.compressedSize; + COVER_best_destroy(&best); + POOL_free(pool); + return compressedSize; + } + FASTCOVER_convertToFastCoverParams(best.parameters, parameters, f, accel); + memcpy(dictBuffer, best.dict, dictSize); + COVER_best_destroy(&best); + POOL_free(pool); + return dictSize; + } + +} diff --git a/vendor/github.com/DataDog/zstd/fse.h b/vendor/github.com/DataDog/zstd/fse.h new file mode 100644 index 0000000000..811c670bdd --- /dev/null +++ b/vendor/github.com/DataDog/zstd/fse.h @@ -0,0 +1,708 @@ +/* ****************************************************************** + FSE : Finite State Entropy codec + Public Prototypes declaration + Copyright (C) 2013-2016, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy +****************************************************************** */ + +#if defined (__cplusplus) +extern "C" { +#endif + +#ifndef FSE_H +#define FSE_H + + +/*-***************************************** +* Dependencies +******************************************/ +#include /* size_t, ptrdiff_t */ + + +/*-***************************************** +* FSE_PUBLIC_API : control library symbols visibility +******************************************/ +#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) +# define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) +#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ +# define FSE_PUBLIC_API __declspec(dllexport) +#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) +# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define FSE_PUBLIC_API +#endif + +/*------ Version ------*/ +#define FSE_VERSION_MAJOR 0 +#define FSE_VERSION_MINOR 9 +#define FSE_VERSION_RELEASE 0 + +#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE +#define FSE_QUOTE(str) #str +#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) +#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) + +#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) +FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */ + + +/*-**************************************** +* FSE simple functions +******************************************/ +/*! FSE_compress() : + Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'. + 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize). + @return : size of compressed data (<= dstCapacity). + Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! + if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead. + if FSE_isError(return), compression failed (more details using FSE_getErrorName()) +*/ +FSE_PUBLIC_API size_t FSE_compress(void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + +/*! FSE_decompress(): + Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', + into already allocated destination buffer 'dst', of size 'dstCapacity'. + @return : size of regenerated data (<= maxDstSize), + or an error code, which can be tested using FSE_isError() . + + ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!! + Why ? : making this distinction requires a header. + Header management is intentionally delegated to the user layer, which can better manage special cases. +*/ +FSE_PUBLIC_API size_t FSE_decompress(void* dst, size_t dstCapacity, + const void* cSrc, size_t cSrcSize); + + +/*-***************************************** +* Tool functions +******************************************/ +FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ + +/* Error Management */ +FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ +FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ + + +/*-***************************************** +* FSE advanced functions +******************************************/ +/*! FSE_compress2() : + Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog' + Both parameters can be defined as '0' to mean : use default value + @return : size of compressed data + Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!! + if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression. + if FSE_isError(return), it's an error code. +*/ +FSE_PUBLIC_API size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); + + +/*-***************************************** +* FSE detailed API +******************************************/ +/*! +FSE_compress() does the following: +1. count symbol occurrence from source[] into table count[] (see hist.h) +2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) +3. save normalized counters to memory buffer using writeNCount() +4. build encoding table 'CTable' from normalized counters +5. encode the data stream using encoding table 'CTable' + +FSE_decompress() does the following: +1. read normalized counters with readNCount() +2. build decoding table 'DTable' from normalized counters +3. decode the data stream using decoding table 'DTable' + +The following API allows targeting specific sub-functions for advanced tasks. +For example, it's possible to compress several blocks using the same 'CTable', +or to save and provide normalized distribution using external method. +*/ + +/* *** COMPRESSION *** */ + +/*! FSE_optimalTableLog(): + dynamically downsize 'tableLog' when conditions are met. + It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. + @return : recommended tableLog (necessarily <= 'maxTableLog') */ +FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); + +/*! FSE_normalizeCount(): + normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) + 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). + @return : tableLog, + or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, + const unsigned* count, size_t srcSize, unsigned maxSymbolValue); + +/*! FSE_NCountWriteBound(): + Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. + Typically useful for allocation purpose. */ +FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); + +/*! FSE_writeNCount(): + Compactly save 'normalizedCounter' into 'buffer'. + @return : size of the compressed table, + or an errorCode, which can be tested using FSE_isError(). */ +FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, + const short* normalizedCounter, + unsigned maxSymbolValue, unsigned tableLog); + +/*! Constructor and Destructor of FSE_CTable. + Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ +typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ +FSE_PUBLIC_API FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog); +FSE_PUBLIC_API void FSE_freeCTable (FSE_CTable* ct); + +/*! FSE_buildCTable(): + Builds `ct`, which must be already allocated, using FSE_createCTable(). + @return : 0, or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); + +/*! FSE_compress_usingCTable(): + Compress `src` using `ct` into `dst` which must be already allocated. + @return : size of compressed data (<= `dstCapacity`), + or 0 if compressed data could not fit into `dst`, + or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); + +/*! +Tutorial : +---------- +The first step is to count all symbols. FSE_count() does this job very fast. +Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. +'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] +maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) +FSE_count() will return the number of occurrence of the most frequent symbol. +This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. +If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). + +The next step is to normalize the frequencies. +FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. +It also guarantees a minimum of 1 to any Symbol with frequency >= 1. +You can use 'tableLog'==0 to mean "use default tableLog value". +If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), +which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). + +The result of FSE_normalizeCount() will be saved into a table, +called 'normalizedCounter', which is a table of signed short. +'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. +The return value is tableLog if everything proceeded as expected. +It is 0 if there is a single symbol within distribution. +If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). + +'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). +'buffer' must be already allocated. +For guaranteed success, buffer size must be at least FSE_headerBound(). +The result of the function is the number of bytes written into 'buffer'. +If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). + +'normalizedCounter' can then be used to create the compression table 'CTable'. +The space required by 'CTable' must be already allocated, using FSE_createCTable(). +You can then use FSE_buildCTable() to fill 'CTable'. +If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). + +'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). +Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' +The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. +If it returns '0', compressed data could not fit into 'dst'. +If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). +*/ + + +/* *** DECOMPRESSION *** */ + +/*! FSE_readNCount(): + Read compactly saved 'normalizedCounter' from 'rBuffer'. + @return : size read from 'rBuffer', + or an errorCode, which can be tested using FSE_isError(). + maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ +FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, + unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, + const void* rBuffer, size_t rBuffSize); + +/*! Constructor and Destructor of FSE_DTable. + Note that its size depends on 'tableLog' */ +typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ +FSE_PUBLIC_API FSE_DTable* FSE_createDTable(unsigned tableLog); +FSE_PUBLIC_API void FSE_freeDTable(FSE_DTable* dt); + +/*! FSE_buildDTable(): + Builds 'dt', which must be already allocated, using FSE_createDTable(). + return : 0, or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); + +/*! FSE_decompress_usingDTable(): + Decompress compressed source `cSrc` of size `cSrcSize` using `dt` + into `dst` which must be already allocated. + @return : size of regenerated data (necessarily <= `dstCapacity`), + or an errorCode, which can be tested using FSE_isError() */ +FSE_PUBLIC_API size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt); + +/*! +Tutorial : +---------- +(Note : these functions only decompress FSE-compressed blocks. + If block is uncompressed, use memcpy() instead + If block is a single repeated byte, use memset() instead ) + +The first step is to obtain the normalized frequencies of symbols. +This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). +'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. +In practice, that means it's necessary to know 'maxSymbolValue' beforehand, +or size the table to handle worst case situations (typically 256). +FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. +The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. +Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. +If there is an error, the function will return an error code, which can be tested using FSE_isError(). + +The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. +This is performed by the function FSE_buildDTable(). +The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). +If there is an error, the function will return an error code, which can be tested using FSE_isError(). + +`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). +`cSrcSize` must be strictly correct, otherwise decompression will fail. +FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). +If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) +*/ + +#endif /* FSE_H */ + +#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY) +#define FSE_H_FSE_STATIC_LINKING_ONLY + +/* *** Dependency *** */ +#include "bitstream.h" + + +/* ***************************************** +* Static allocation +*******************************************/ +/* FSE buffer bounds */ +#define FSE_NCOUNTBOUND 512 +#define FSE_BLOCKBOUND(size) (size + (size>>7)) +#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ + +/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ +#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) +#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1< 12) ? (1 << (maxTableLog - 2)) : 1024) ) +size_t FSE_compress_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); + +size_t FSE_buildCTable_raw (FSE_CTable* ct, unsigned nbBits); +/**< build a fake FSE_CTable, designed for a flat distribution, where each symbol uses nbBits */ + +size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); +/**< build a fake FSE_CTable, designed to compress always the same symbolValue */ + +/* FSE_buildCTable_wksp() : + * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). + * `wkspSize` must be >= `(1<= BIT_DStream_completed + +When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. +Checking if DStream has reached its end is performed by : + BIT_endOfDStream(&DStream); +Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. + FSE_endOfDState(&DState); +*/ + + +/* ***************************************** +* FSE unsafe API +*******************************************/ +static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); +/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ + + +/* ***************************************** +* Implementation of inlined functions +*******************************************/ +typedef struct { + int deltaFindState; + U32 deltaNbBits; +} FSE_symbolCompressionTransform; /* total 8 bytes */ + +MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) +{ + const void* ptr = ct; + const U16* u16ptr = (const U16*) ptr; + const U32 tableLog = MEM_read16(ptr); + statePtr->value = (ptrdiff_t)1<stateTable = u16ptr+2; + statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); + statePtr->stateLog = tableLog; +} + + +/*! FSE_initCState2() : +* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) +* uses the smallest state value possible, saving the cost of this symbol */ +MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) +{ + FSE_initCState(statePtr, ct); + { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; + const U16* stateTable = (const U16*)(statePtr->stateTable); + U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); + statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; + statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; + } +} + +MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) +{ + FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; + const U16* const stateTable = (const U16*)(statePtr->stateTable); + U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); + BIT_addBits(bitC, statePtr->value, nbBitsOut); + statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; +} + +MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) +{ + BIT_addBits(bitC, statePtr->value, statePtr->stateLog); + BIT_flushBits(bitC); +} + + +/* FSE_getMaxNbBits() : + * Approximate maximum cost of a symbol, in bits. + * Fractional get rounded up (i.e : a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) + * note 1 : assume symbolValue is valid (<= maxSymbolValue) + * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ +MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) +{ + const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; + return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; +} + +/* FSE_bitCost() : + * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) + * note 1 : assume symbolValue is valid (<= maxSymbolValue) + * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ +MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) +{ + const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; + U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; + U32 const threshold = (minNbBits+1) << 16; + assert(tableLog < 16); + assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ + { U32 const tableSize = 1 << tableLog; + U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); + U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ + U32 const bitMultiplier = 1 << accuracyLog; + assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); + assert(normalizedDeltaFromThreshold <= bitMultiplier); + return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; + } +} + + +/* ====== Decompression ====== */ + +typedef struct { + U16 tableLog; + U16 fastMode; +} FSE_DTableHeader; /* sizeof U32 */ + +typedef struct +{ + unsigned short newState; + unsigned char symbol; + unsigned char nbBits; +} FSE_decode_t; /* size == U32 */ + +MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) +{ + const void* ptr = dt; + const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; + DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); + BIT_reloadDStream(bitD); + DStatePtr->table = dt + 1; +} + +MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + return DInfo.symbol; +} + +MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + U32 const nbBits = DInfo.nbBits; + size_t const lowBits = BIT_readBits(bitD, nbBits); + DStatePtr->state = DInfo.newState + lowBits; +} + +MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + U32 const nbBits = DInfo.nbBits; + BYTE const symbol = DInfo.symbol; + size_t const lowBits = BIT_readBits(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +/*! FSE_decodeSymbolFast() : + unsafe, only works if no symbol has a probability > 50% */ +MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + U32 const nbBits = DInfo.nbBits; + BYTE const symbol = DInfo.symbol; + size_t const lowBits = BIT_readBitsFast(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) +{ + return DStatePtr->state == 0; +} + + + +#ifndef FSE_COMMONDEFS_ONLY + +/* ************************************************************** +* Tuning parameters +****************************************************************/ +/*!MEMORY_USAGE : +* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) +* Increasing memory usage improves compression ratio +* Reduced memory usage can improve speed, due to cache effect +* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ +#ifndef FSE_MAX_MEMORY_USAGE +# define FSE_MAX_MEMORY_USAGE 14 +#endif +#ifndef FSE_DEFAULT_MEMORY_USAGE +# define FSE_DEFAULT_MEMORY_USAGE 13 +#endif + +/*!FSE_MAX_SYMBOL_VALUE : +* Maximum symbol value authorized. +* Required for proper stack allocation */ +#ifndef FSE_MAX_SYMBOL_VALUE +# define FSE_MAX_SYMBOL_VALUE 255 +#endif + +/* ************************************************************** +* template functions type & suffix +****************************************************************/ +#define FSE_FUNCTION_TYPE BYTE +#define FSE_FUNCTION_EXTENSION +#define FSE_DECODE_TYPE FSE_decode_t + + +#endif /* !FSE_COMMONDEFS_ONLY */ + + +/* *************************************************************** +* Constants +*****************************************************************/ +#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) +#define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX +# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" +#endif + +#define FSE_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3) + + +#endif /* FSE_STATIC_LINKING_ONLY */ + + +#if defined (__cplusplus) +} +#endif diff --git a/vendor/github.com/DataDog/zstd/fse_compress.c b/vendor/github.com/DataDog/zstd/fse_compress.c new file mode 100644 index 0000000000..68b47e1093 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/fse_compress.c @@ -0,0 +1,721 @@ +/* ****************************************************************** + FSE : Finite State Entropy encoder + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + +/* ************************************************************** +* Includes +****************************************************************/ +#include /* malloc, free, qsort */ +#include /* memcpy, memset */ +#include "compiler.h" +#include "mem.h" /* U32, U16, etc. */ +#include "debug.h" /* assert, DEBUGLOG */ +#include "hist.h" /* HIST_count_wksp */ +#include "bitstream.h" +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#include "error_private.h" + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define FSE_isError ERR_isError + + +/* ************************************************************** +* Templates +****************************************************************/ +/* + designed to be included + for type-specific functions (template emulation in C) + Objective is to write these functions only once, for improved maintenance +*/ + +/* safety checks */ +#ifndef FSE_FUNCTION_EXTENSION +# error "FSE_FUNCTION_EXTENSION must be defined" +#endif +#ifndef FSE_FUNCTION_TYPE +# error "FSE_FUNCTION_TYPE must be defined" +#endif + +/* Function names */ +#define FSE_CAT(X,Y) X##Y +#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) +#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) + + +/* Function templates */ + +/* FSE_buildCTable_wksp() : + * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). + * wkspSize should be sized to handle worst case situation, which is `1<>1 : 1) ; + FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT); + U32 const step = FSE_TABLESTEP(tableSize); + U32 cumul[FSE_MAX_SYMBOL_VALUE+2]; + + FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)workSpace; + U32 highThreshold = tableSize-1; + + /* CTable header */ + if (((size_t)1 << tableLog) * sizeof(FSE_FUNCTION_TYPE) > wkspSize) return ERROR(tableLog_tooLarge); + tableU16[-2] = (U16) tableLog; + tableU16[-1] = (U16) maxSymbolValue; + assert(tableLog < 16); /* required for threshold strategy to work */ + + /* For explanations on how to distribute symbol values over the table : + * http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */ + + #ifdef __clang_analyzer__ + memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */ + #endif + + /* symbol start positions */ + { U32 u; + cumul[0] = 0; + for (u=1; u <= maxSymbolValue+1; u++) { + if (normalizedCounter[u-1]==-1) { /* Low proba symbol */ + cumul[u] = cumul[u-1] + 1; + tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1); + } else { + cumul[u] = cumul[u-1] + normalizedCounter[u-1]; + } } + cumul[maxSymbolValue+1] = tableSize+1; + } + + /* Spread symbols */ + { U32 position = 0; + U32 symbol; + for (symbol=0; symbol<=maxSymbolValue; symbol++) { + int nbOccurrences; + int const freq = normalizedCounter[symbol]; + for (nbOccurrences=0; nbOccurrences highThreshold) + position = (position + step) & tableMask; /* Low proba area */ + } } + + assert(position==0); /* Must have initialized all positions */ + } + + /* Build table */ + { U32 u; for (u=0; u> 3) + 3; + return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */ +} + +static size_t +FSE_writeNCount_generic (void* header, size_t headerBufferSize, + const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, + unsigned writeIsSafe) +{ + BYTE* const ostart = (BYTE*) header; + BYTE* out = ostart; + BYTE* const oend = ostart + headerBufferSize; + int nbBits; + const int tableSize = 1 << tableLog; + int remaining; + int threshold; + U32 bitStream = 0; + int bitCount = 0; + unsigned symbol = 0; + unsigned const alphabetSize = maxSymbolValue + 1; + int previousIs0 = 0; + + /* Table Size */ + bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount; + bitCount += 4; + + /* Init */ + remaining = tableSize+1; /* +1 for extra accuracy */ + threshold = tableSize; + nbBits = tableLog+1; + + while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */ + if (previousIs0) { + unsigned start = symbol; + while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++; + if (symbol == alphabetSize) break; /* incorrect distribution */ + while (symbol >= start+24) { + start+=24; + bitStream += 0xFFFFU << bitCount; + if ((!writeIsSafe) && (out > oend-2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE) bitStream; + out[1] = (BYTE)(bitStream>>8); + out+=2; + bitStream>>=16; + } + while (symbol >= start+3) { + start+=3; + bitStream += 3 << bitCount; + bitCount += 2; + } + bitStream += (symbol-start) << bitCount; + bitCount += 2; + if (bitCount>16) { + if ((!writeIsSafe) && (out > oend - 2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE)bitStream; + out[1] = (BYTE)(bitStream>>8); + out += 2; + bitStream >>= 16; + bitCount -= 16; + } } + { int count = normalizedCounter[symbol++]; + int const max = (2*threshold-1) - remaining; + remaining -= count < 0 ? -count : count; + count++; /* +1 for extra accuracy */ + if (count>=threshold) + count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */ + bitStream += count << bitCount; + bitCount += nbBits; + bitCount -= (count>=1; } + } + if (bitCount>16) { + if ((!writeIsSafe) && (out > oend - 2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE)bitStream; + out[1] = (BYTE)(bitStream>>8); + out += 2; + bitStream >>= 16; + bitCount -= 16; + } } + + if (remaining != 1) + return ERROR(GENERIC); /* incorrect normalized distribution */ + assert(symbol <= alphabetSize); + + /* flush remaining bitStream */ + if ((!writeIsSafe) && (out > oend - 2)) + return ERROR(dstSize_tooSmall); /* Buffer overflow */ + out[0] = (BYTE)bitStream; + out[1] = (BYTE)(bitStream>>8); + out+= (bitCount+7) /8; + + return (out-ostart); +} + + +size_t FSE_writeNCount (void* buffer, size_t bufferSize, + const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) +{ + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */ + if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */ + + if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog)) + return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0); + + return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */); +} + + +/*-************************************************************** +* FSE Compression Code +****************************************************************/ + +FSE_CTable* FSE_createCTable (unsigned maxSymbolValue, unsigned tableLog) +{ + size_t size; + if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX; + size = FSE_CTABLE_SIZE_U32 (tableLog, maxSymbolValue) * sizeof(U32); + return (FSE_CTable*)malloc(size); +} + +void FSE_freeCTable (FSE_CTable* ct) { free(ct); } + +/* provides the minimum logSize to safely represent a distribution */ +static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue) +{ + U32 minBitsSrc = BIT_highbit32((U32)(srcSize)) + 1; + U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2; + U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols; + assert(srcSize > 1); /* Not supported, RLE should be used instead */ + return minBits; +} + +unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus) +{ + U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus; + U32 tableLog = maxTableLog; + U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue); + assert(srcSize > 1); /* Not supported, RLE should be used instead */ + if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG; + if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */ + if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */ + if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG; + if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG; + return tableLog; +} + +unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) +{ + return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2); +} + + +/* Secondary normalization method. + To be used when primary method fails. */ + +static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue) +{ + short const NOT_YET_ASSIGNED = -2; + U32 s; + U32 distributed = 0; + U32 ToDistribute; + + /* Init */ + U32 const lowThreshold = (U32)(total >> tableLog); + U32 lowOne = (U32)((total * 3) >> (tableLog + 1)); + + for (s=0; s<=maxSymbolValue; s++) { + if (count[s] == 0) { + norm[s]=0; + continue; + } + if (count[s] <= lowThreshold) { + norm[s] = -1; + distributed++; + total -= count[s]; + continue; + } + if (count[s] <= lowOne) { + norm[s] = 1; + distributed++; + total -= count[s]; + continue; + } + + norm[s]=NOT_YET_ASSIGNED; + } + ToDistribute = (1 << tableLog) - distributed; + + if (ToDistribute == 0) + return 0; + + if ((total / ToDistribute) > lowOne) { + /* risk of rounding to zero */ + lowOne = (U32)((total * 3) / (ToDistribute * 2)); + for (s=0; s<=maxSymbolValue; s++) { + if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) { + norm[s] = 1; + distributed++; + total -= count[s]; + continue; + } } + ToDistribute = (1 << tableLog) - distributed; + } + + if (distributed == maxSymbolValue+1) { + /* all values are pretty poor; + probably incompressible data (should have already been detected); + find max, then give all remaining points to max */ + U32 maxV = 0, maxC = 0; + for (s=0; s<=maxSymbolValue; s++) + if (count[s] > maxC) { maxV=s; maxC=count[s]; } + norm[maxV] += (short)ToDistribute; + return 0; + } + + if (total == 0) { + /* all of the symbols were low enough for the lowOne or lowThreshold */ + for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1)) + if (norm[s] > 0) { ToDistribute--; norm[s]++; } + return 0; + } + + { U64 const vStepLog = 62 - tableLog; + U64 const mid = (1ULL << (vStepLog-1)) - 1; + U64 const rStep = ((((U64)1<> vStepLog); + U32 const sEnd = (U32)(end >> vStepLog); + U32 const weight = sEnd - sStart; + if (weight < 1) + return ERROR(GENERIC); + norm[s] = (short)weight; + tmpTotal = end; + } } } + + return 0; +} + + +size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog, + const unsigned* count, size_t total, + unsigned maxSymbolValue) +{ + /* Sanity checks */ + if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG; + if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */ + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */ + if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */ + + { static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 }; + U64 const scale = 62 - tableLog; + U64 const step = ((U64)1<<62) / total; /* <== here, one division ! */ + U64 const vStep = 1ULL<<(scale-20); + int stillToDistribute = 1<> tableLog); + + for (s=0; s<=maxSymbolValue; s++) { + if (count[s] == total) return 0; /* rle special case */ + if (count[s] == 0) { normalizedCounter[s]=0; continue; } + if (count[s] <= lowThreshold) { + normalizedCounter[s] = -1; + stillToDistribute--; + } else { + short proba = (short)((count[s]*step) >> scale); + if (proba<8) { + U64 restToBeat = vStep * rtbTable[proba]; + proba += (count[s]*step) - ((U64)proba< restToBeat; + } + if (proba > largestP) { largestP=proba; largest=s; } + normalizedCounter[s] = proba; + stillToDistribute -= proba; + } } + if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) { + /* corner case, need another normalization method */ + size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue); + if (FSE_isError(errorCode)) return errorCode; + } + else normalizedCounter[largest] += (short)stillToDistribute; + } + +#if 0 + { /* Print Table (debug) */ + U32 s; + U32 nTotal = 0; + for (s=0; s<=maxSymbolValue; s++) + RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]); + for (s=0; s<=maxSymbolValue; s++) + nTotal += abs(normalizedCounter[s]); + if (nTotal != (1U<>1); /* assumption : tableLog >= 1 */ + FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT); + unsigned s; + + /* Sanity checks */ + if (nbBits < 1) return ERROR(GENERIC); /* min size */ + + /* header */ + tableU16[-2] = (U16) nbBits; + tableU16[-1] = (U16) maxSymbolValue; + + /* Build table */ + for (s=0; s FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */ + FSE_encodeSymbol(&bitC, &CState2, *--ip); + FSE_encodeSymbol(&bitC, &CState1, *--ip); + FSE_FLUSHBITS(&bitC); + } + + /* 2 or 4 encoding per loop */ + while ( ip>istart ) { + + FSE_encodeSymbol(&bitC, &CState2, *--ip); + + if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */ + FSE_FLUSHBITS(&bitC); + + FSE_encodeSymbol(&bitC, &CState1, *--ip); + + if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */ + FSE_encodeSymbol(&bitC, &CState2, *--ip); + FSE_encodeSymbol(&bitC, &CState1, *--ip); + } + + FSE_FLUSHBITS(&bitC); + } + + FSE_flushCState(&bitC, &CState2); + FSE_flushCState(&bitC, &CState1); + return BIT_closeCStream(&bitC); +} + +size_t FSE_compress_usingCTable (void* dst, size_t dstSize, + const void* src, size_t srcSize, + const FSE_CTable* ct) +{ + unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize)); + + if (fast) + return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1); + else + return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0); +} + + +size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); } + +#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e +#define CHECK_F(f) { CHECK_V_F(_var_err__, f); } + +/* FSE_compress_wksp() : + * Same as FSE_compress2(), but using an externally allocated scratch buffer (`workSpace`). + * `wkspSize` size must be `(1< not compressible */ + if (maxCount < (srcSize >> 7)) return 0; /* Heuristic : not compressible enough */ + } + + tableLog = FSE_optimalTableLog(tableLog, srcSize, maxSymbolValue); + CHECK_F( FSE_normalizeCount(norm, tableLog, count, srcSize, maxSymbolValue) ); + + /* Write table description header */ + { CHECK_V_F(nc_err, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) ); + op += nc_err; + } + + /* Compress */ + CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, scratchBufferSize) ); + { CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, src, srcSize, CTable) ); + if (cSize == 0) return 0; /* not enough space for compressed data */ + op += cSize; + } + + /* check compressibility */ + if ( (size_t)(op-ostart) >= srcSize-1 ) return 0; + + return op-ostart; +} + +typedef struct { + FSE_CTable CTable_max[FSE_CTABLE_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)]; + BYTE scratchBuffer[1 << FSE_MAX_TABLELOG]; +} fseWkspMax_t; + +size_t FSE_compress2 (void* dst, size_t dstCapacity, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog) +{ + fseWkspMax_t scratchBuffer; + DEBUG_STATIC_ASSERT(sizeof(scratchBuffer) >= FSE_WKSP_SIZE_U32(FSE_MAX_TABLELOG, FSE_MAX_SYMBOL_VALUE)); /* compilation failures here means scratchBuffer is not large enough */ + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); + return FSE_compress_wksp(dst, dstCapacity, src, srcSize, maxSymbolValue, tableLog, &scratchBuffer, sizeof(scratchBuffer)); +} + +size_t FSE_compress (void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + return FSE_compress2(dst, dstCapacity, src, srcSize, FSE_MAX_SYMBOL_VALUE, FSE_DEFAULT_TABLELOG); +} + + +#endif /* FSE_COMMONDEFS_ONLY */ diff --git a/vendor/github.com/DataDog/zstd/fse_decompress.c b/vendor/github.com/DataDog/zstd/fse_decompress.c new file mode 100644 index 0000000000..72bbead5be --- /dev/null +++ b/vendor/github.com/DataDog/zstd/fse_decompress.c @@ -0,0 +1,309 @@ +/* ****************************************************************** + FSE : Finite State Entropy decoder + Copyright (C) 2013-2015, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + + +/* ************************************************************** +* Includes +****************************************************************/ +#include /* malloc, free, qsort */ +#include /* memcpy, memset */ +#include "bitstream.h" +#include "compiler.h" +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#include "error_private.h" + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define FSE_isError ERR_isError +#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ + +/* check and forward error code */ +#define CHECK_F(f) { size_t const e = f; if (FSE_isError(e)) return e; } + + +/* ************************************************************** +* Templates +****************************************************************/ +/* + designed to be included + for type-specific functions (template emulation in C) + Objective is to write these functions only once, for improved maintenance +*/ + +/* safety checks */ +#ifndef FSE_FUNCTION_EXTENSION +# error "FSE_FUNCTION_EXTENSION must be defined" +#endif +#ifndef FSE_FUNCTION_TYPE +# error "FSE_FUNCTION_TYPE must be defined" +#endif + +/* Function names */ +#define FSE_CAT(X,Y) X##Y +#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) +#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) + + +/* Function templates */ +FSE_DTable* FSE_createDTable (unsigned tableLog) +{ + if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX; + return (FSE_DTable*)malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) ); +} + +void FSE_freeDTable (FSE_DTable* dt) +{ + free(dt); +} + +size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) +{ + void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */ + FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr); + U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; + + U32 const maxSV1 = maxSymbolValue + 1; + U32 const tableSize = 1 << tableLog; + U32 highThreshold = tableSize-1; + + /* Sanity Checks */ + if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); + + /* Init, lay down lowprob symbols */ + { FSE_DTableHeader DTableH; + DTableH.tableLog = (U16)tableLog; + DTableH.fastMode = 1; + { S16 const largeLimit= (S16)(1 << (tableLog-1)); + U32 s; + for (s=0; s= largeLimit) DTableH.fastMode=0; + symbolNext[s] = normalizedCounter[s]; + } } } + memcpy(dt, &DTableH, sizeof(DTableH)); + } + + /* Spread symbols */ + { U32 const tableMask = tableSize-1; + U32 const step = FSE_TABLESTEP(tableSize); + U32 s, position = 0; + for (s=0; s highThreshold) position = (position + step) & tableMask; /* lowprob area */ + } } + if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ + } + + /* Build Decoding table */ + { U32 u; + for (u=0; utableLog = 0; + DTableH->fastMode = 0; + + cell->newState = 0; + cell->symbol = symbolValue; + cell->nbBits = 0; + + return 0; +} + + +size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) +{ + void* ptr = dt; + FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; + void* dPtr = dt + 1; + FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr; + const unsigned tableSize = 1 << nbBits; + const unsigned tableMask = tableSize - 1; + const unsigned maxSV1 = tableMask+1; + unsigned s; + + /* Sanity checks */ + if (nbBits < 1) return ERROR(GENERIC); /* min size */ + + /* Build Decoding Table */ + DTableH->tableLog = (U16)nbBits; + DTableH->fastMode = 1; + for (s=0; s sizeof(bitD.bitContainer)*8) /* This test must be static */ + BIT_reloadDStream(&bitD); + + op[1] = FSE_GETSYMBOL(&state2); + + if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } + + op[2] = FSE_GETSYMBOL(&state1); + + if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + BIT_reloadDStream(&bitD); + + op[3] = FSE_GETSYMBOL(&state2); + } + + /* tail */ + /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ + while (1) { + if (op>(omax-2)) return ERROR(dstSize_tooSmall); + *op++ = FSE_GETSYMBOL(&state1); + if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) { + *op++ = FSE_GETSYMBOL(&state2); + break; + } + + if (op>(omax-2)) return ERROR(dstSize_tooSmall); + *op++ = FSE_GETSYMBOL(&state2); + if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) { + *op++ = FSE_GETSYMBOL(&state1); + break; + } } + + return op-ostart; +} + + +size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, + const void* cSrc, size_t cSrcSize, + const FSE_DTable* dt) +{ + const void* ptr = dt; + const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr; + const U32 fastMode = DTableH->fastMode; + + /* select fast mode (static) */ + if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); + return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); +} + + +size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, FSE_DTable* workSpace, unsigned maxLog) +{ + const BYTE* const istart = (const BYTE*)cSrc; + const BYTE* ip = istart; + short counting[FSE_MAX_SYMBOL_VALUE+1]; + unsigned tableLog; + unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; + + /* normal FSE decoding mode */ + size_t const NCountLength = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); + if (FSE_isError(NCountLength)) return NCountLength; + //if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size; supposed to be already checked in NCountLength, only remaining case : NCountLength==cSrcSize */ + if (tableLog > maxLog) return ERROR(tableLog_tooLarge); + ip += NCountLength; + cSrcSize -= NCountLength; + + CHECK_F( FSE_buildDTable (workSpace, counting, maxSymbolValue, tableLog) ); + + return FSE_decompress_usingDTable (dst, dstCapacity, ip, cSrcSize, workSpace); /* always return, even if it is an error code */ +} + + +typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; + +size_t FSE_decompress(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize) +{ + DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ + return FSE_decompress_wksp(dst, dstCapacity, cSrc, cSrcSize, dt, FSE_MAX_TABLELOG); +} + + + +#endif /* FSE_COMMONDEFS_ONLY */ diff --git a/vendor/github.com/DataDog/zstd/hist.c b/vendor/github.com/DataDog/zstd/hist.c new file mode 100644 index 0000000000..45b7babc1e --- /dev/null +++ b/vendor/github.com/DataDog/zstd/hist.c @@ -0,0 +1,203 @@ +/* ****************************************************************** + hist : Histogram functions + part of Finite State Entropy project + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + +/* --- dependencies --- */ +#include "mem.h" /* U32, BYTE, etc. */ +#include "debug.h" /* assert, DEBUGLOG */ +#include "error_private.h" /* ERROR */ +#include "hist.h" + + +/* --- Error management --- */ +unsigned HIST_isError(size_t code) { return ERR_isError(code); } + +/*-************************************************************** + * Histogram functions + ****************************************************************/ +unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize) +{ + const BYTE* ip = (const BYTE*)src; + const BYTE* const end = ip + srcSize; + unsigned maxSymbolValue = *maxSymbolValuePtr; + unsigned largestCount=0; + + memset(count, 0, (maxSymbolValue+1) * sizeof(*count)); + if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; } + + while (ip largestCount) largestCount = count[s]; + } + + return largestCount; +} + +typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e; + +/* HIST_count_parallel_wksp() : + * store histogram into 4 intermediate tables, recombined at the end. + * this design makes better use of OoO cpus, + * and is noticeably faster when some values are heavily repeated. + * But it needs some additional workspace for intermediate tables. + * `workSpace` size must be a table of size >= HIST_WKSP_SIZE_U32. + * @return : largest histogram frequency, + * or an error code (notably when histogram would be larger than *maxSymbolValuePtr). */ +static size_t HIST_count_parallel_wksp( + unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize, + HIST_checkInput_e check, + U32* const workSpace) +{ + const BYTE* ip = (const BYTE*)source; + const BYTE* const iend = ip+sourceSize; + unsigned maxSymbolValue = *maxSymbolValuePtr; + unsigned max=0; + U32* const Counting1 = workSpace; + U32* const Counting2 = Counting1 + 256; + U32* const Counting3 = Counting2 + 256; + U32* const Counting4 = Counting3 + 256; + + memset(workSpace, 0, 4*256*sizeof(unsigned)); + + /* safety checks */ + if (!sourceSize) { + memset(count, 0, maxSymbolValue + 1); + *maxSymbolValuePtr = 0; + return 0; + } + if (!maxSymbolValue) maxSymbolValue = 255; /* 0 == default */ + + /* by stripes of 16 bytes */ + { U32 cached = MEM_read32(ip); ip += 4; + while (ip < iend-15) { + U32 c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + c = cached; cached = MEM_read32(ip); ip += 4; + Counting1[(BYTE) c ]++; + Counting2[(BYTE)(c>>8) ]++; + Counting3[(BYTE)(c>>16)]++; + Counting4[ c>>24 ]++; + } + ip-=4; + } + + /* finish last symbols */ + while (ipmaxSymbolValue; s--) { + Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s]; + if (Counting1[s]) return ERROR(maxSymbolValue_tooSmall); + } } + + { U32 s; + if (maxSymbolValue > 255) maxSymbolValue = 255; + for (s=0; s<=maxSymbolValue; s++) { + count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s]; + if (count[s] > max) max = count[s]; + } } + + while (!count[maxSymbolValue]) maxSymbolValue--; + *maxSymbolValuePtr = maxSymbolValue; + return (size_t)max; +} + +/* HIST_countFast_wksp() : + * Same as HIST_countFast(), but using an externally provided scratch buffer. + * `workSpace` is a writable buffer which must be 4-bytes aligned, + * `workSpaceSize` must be >= HIST_WKSP_SIZE + */ +size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize, + void* workSpace, size_t workSpaceSize) +{ + if (sourceSize < 1500) /* heuristic threshold */ + return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize); + if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ + if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall); + return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace); +} + +/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */ +size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize) +{ + unsigned tmpCounters[HIST_WKSP_SIZE_U32]; + return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters, sizeof(tmpCounters)); +} + +/* HIST_count_wksp() : + * Same as HIST_count(), but using an externally provided scratch buffer. + * `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */ +size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* source, size_t sourceSize, + void* workSpace, size_t workSpaceSize) +{ + if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ + if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall); + if (*maxSymbolValuePtr < 255) + return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace); + *maxSymbolValuePtr = 255; + return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize); +} + +size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize) +{ + unsigned tmpCounters[HIST_WKSP_SIZE_U32]; + return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters, sizeof(tmpCounters)); +} diff --git a/vendor/github.com/DataDog/zstd/hist.h b/vendor/github.com/DataDog/zstd/hist.h new file mode 100644 index 0000000000..8b389358dc --- /dev/null +++ b/vendor/github.com/DataDog/zstd/hist.h @@ -0,0 +1,95 @@ +/* ****************************************************************** + hist : Histogram functions + part of Finite State Entropy project + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + +/* --- dependencies --- */ +#include /* size_t */ + + +/* --- simple histogram functions --- */ + +/*! HIST_count(): + * Provides the precise count of each byte within a table 'count'. + * 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1). + * Updates *maxSymbolValuePtr with actual largest symbol value detected. + * @return : count of the most frequent symbol (which isn't identified). + * or an error code, which can be tested using HIST_isError(). + * note : if return == srcSize, there is only one symbol. + */ +size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize); + +unsigned HIST_isError(size_t code); /**< tells if a return value is an error code */ + + +/* --- advanced histogram functions --- */ + +#define HIST_WKSP_SIZE_U32 1024 +#define HIST_WKSP_SIZE (HIST_WKSP_SIZE_U32 * sizeof(unsigned)) +/** HIST_count_wksp() : + * Same as HIST_count(), but using an externally provided scratch buffer. + * Benefit is this function will use very little stack space. + * `workSpace` is a writable buffer which must be 4-bytes aligned, + * `workSpaceSize` must be >= HIST_WKSP_SIZE + */ +size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize, + void* workSpace, size_t workSpaceSize); + +/** HIST_countFast() : + * same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr. + * This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr` + */ +size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize); + +/** HIST_countFast_wksp() : + * Same as HIST_countFast(), but using an externally provided scratch buffer. + * `workSpace` is a writable buffer which must be 4-bytes aligned, + * `workSpaceSize` must be >= HIST_WKSP_SIZE + */ +size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize, + void* workSpace, size_t workSpaceSize); + +/*! HIST_count_simple() : + * Same as HIST_countFast(), this function is unsafe, + * and will segfault if any value within `src` is `> *maxSymbolValuePtr`. + * It is also a bit slower for large inputs. + * However, it does not need any additional memory (not even on stack). + * @return : count of the most frequent symbol. + * Note this function doesn't produce any error (i.e. it must succeed). + */ +unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr, + const void* src, size_t srcSize); diff --git a/vendor/github.com/DataDog/zstd/huf.h b/vendor/github.com/DataDog/zstd/huf.h new file mode 100644 index 0000000000..6b572c448d --- /dev/null +++ b/vendor/github.com/DataDog/zstd/huf.h @@ -0,0 +1,358 @@ +/* ****************************************************************** + huff0 huffman codec, + part of Finite State Entropy library + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy +****************************************************************** */ + +#if defined (__cplusplus) +extern "C" { +#endif + +#ifndef HUF_H_298734234 +#define HUF_H_298734234 + +/* *** Dependencies *** */ +#include /* size_t */ + + +/* *** library symbols visibility *** */ +/* Note : when linking with -fvisibility=hidden on gcc, or by default on Visual, + * HUF symbols remain "private" (internal symbols for library only). + * Set macro FSE_DLL_EXPORT to 1 if you want HUF symbols visible on DLL interface */ +#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) +# define HUF_PUBLIC_API __attribute__ ((visibility ("default"))) +#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ +# define HUF_PUBLIC_API __declspec(dllexport) +#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) +# define HUF_PUBLIC_API __declspec(dllimport) /* not required, just to generate faster code (saves a function pointer load from IAT and an indirect jump) */ +#else +# define HUF_PUBLIC_API +#endif + + +/* ========================== */ +/* *** simple functions *** */ +/* ========================== */ + +/** HUF_compress() : + * Compress content from buffer 'src', of size 'srcSize', into buffer 'dst'. + * 'dst' buffer must be already allocated. + * Compression runs faster if `dstCapacity` >= HUF_compressBound(srcSize). + * `srcSize` must be <= `HUF_BLOCKSIZE_MAX` == 128 KB. + * @return : size of compressed data (<= `dstCapacity`). + * Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! + * if HUF_isError(return), compression failed (more details using HUF_getErrorName()) + */ +HUF_PUBLIC_API size_t HUF_compress(void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + +/** HUF_decompress() : + * Decompress HUF data from buffer 'cSrc', of size 'cSrcSize', + * into already allocated buffer 'dst', of minimum size 'dstSize'. + * `originalSize` : **must** be the ***exact*** size of original (uncompressed) data. + * Note : in contrast with FSE, HUF_decompress can regenerate + * RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, + * because it knows size to regenerate (originalSize). + * @return : size of regenerated data (== originalSize), + * or an error code, which can be tested using HUF_isError() + */ +HUF_PUBLIC_API size_t HUF_decompress(void* dst, size_t originalSize, + const void* cSrc, size_t cSrcSize); + + +/* *** Tool functions *** */ +#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */ +HUF_PUBLIC_API size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */ + +/* Error Management */ +HUF_PUBLIC_API unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */ +HUF_PUBLIC_API const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */ + + +/* *** Advanced function *** */ + +/** HUF_compress2() : + * Same as HUF_compress(), but offers control over `maxSymbolValue` and `tableLog`. + * `maxSymbolValue` must be <= HUF_SYMBOLVALUE_MAX . + * `tableLog` must be `<= HUF_TABLELOG_MAX` . */ +HUF_PUBLIC_API size_t HUF_compress2 (void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned tableLog); + +/** HUF_compress4X_wksp() : + * Same as HUF_compress2(), but uses externally allocated `workSpace`. + * `workspace` must have minimum alignment of 4, and be at least as large as HUF_WORKSPACE_SIZE */ +#define HUF_WORKSPACE_SIZE (6 << 10) +#define HUF_WORKSPACE_SIZE_U32 (HUF_WORKSPACE_SIZE / sizeof(U32)) +HUF_PUBLIC_API size_t HUF_compress4X_wksp (void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned tableLog, + void* workSpace, size_t wkspSize); + +#endif /* HUF_H_298734234 */ + +/* ****************************************************************** + * WARNING !! + * The following section contains advanced and experimental definitions + * which shall never be used in the context of a dynamic library, + * because they are not guaranteed to remain stable in the future. + * Only consider them in association with static linking. + * *****************************************************************/ +#if defined(HUF_STATIC_LINKING_ONLY) && !defined(HUF_H_HUF_STATIC_LINKING_ONLY) +#define HUF_H_HUF_STATIC_LINKING_ONLY + +/* *** Dependencies *** */ +#include "mem.h" /* U32 */ + + +/* *** Constants *** */ +#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ +#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */ +#define HUF_SYMBOLVALUE_MAX 255 + +#define HUF_TABLELOG_ABSOLUTEMAX 15 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ +#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX) +# error "HUF_TABLELOG_MAX is too large !" +#endif + + +/* **************************************** +* Static allocation +******************************************/ +/* HUF buffer bounds */ +#define HUF_CTABLEBOUND 129 +#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */ +#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ + +/* static allocation of HUF's Compression Table */ +#define HUF_CTABLE_SIZE_U32(maxSymbolValue) ((maxSymbolValue)+1) /* Use tables of U32, for proper alignment */ +#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_U32(maxSymbolValue) * sizeof(U32)) +#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \ + U32 name##hb[HUF_CTABLE_SIZE_U32(maxSymbolValue)]; \ + void* name##hv = &(name##hb); \ + HUF_CElt* name = (HUF_CElt*)(name##hv) /* no final ; */ + +/* static allocation of HUF's DTable */ +typedef U32 HUF_DTable; +#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog))) +#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \ + HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) } +#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \ + HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) } + + +/* **************************************** +* Advanced decompression functions +******************************************/ +size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ +#endif + +size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */ +size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */ +size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< considers RLE and uncompressed as errors */ +size_t HUF_decompress4X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ +size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */ +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ +size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */ +#endif + + +/* **************************************** + * HUF detailed API + * ****************************************/ + +/*! HUF_compress() does the following: + * 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h") + * 2. (optional) refine tableLog using HUF_optimalTableLog() + * 3. build Huffman table from count using HUF_buildCTable() + * 4. save Huffman table to memory buffer using HUF_writeCTable() + * 5. encode the data stream using HUF_compress4X_usingCTable() + * + * The following API allows targeting specific sub-functions for advanced tasks. + * For example, it's possible to compress several blocks using the same 'CTable', + * or to save and regenerate 'CTable' using external methods. + */ +unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); +typedef struct HUF_CElt_s HUF_CElt; /* incomplete type */ +size_t HUF_buildCTable (HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits); /* @return : maxNbBits; CTable and count can overlap. In which case, CTable will overwrite count content */ +size_t HUF_writeCTable (void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog); +size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable); + +typedef enum { + HUF_repeat_none, /**< Cannot use the previous table */ + HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */ + HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */ + } HUF_repeat; +/** HUF_compress4X_repeat() : + * Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. + * If it uses hufTable it does not modify hufTable or repeat. + * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. + * If preferRepeat then the old table will always be used if valid. */ +size_t HUF_compress4X_repeat(void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned tableLog, + void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ + HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2); + +/** HUF_buildCTable_wksp() : + * Same as HUF_buildCTable(), but using externally allocated scratch buffer. + * `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE. + */ +#define HUF_CTABLE_WORKSPACE_SIZE_U32 (2*HUF_SYMBOLVALUE_MAX +1 +1) +#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned)) +size_t HUF_buildCTable_wksp (HUF_CElt* tree, + const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, + void* workSpace, size_t wkspSize); + +/*! HUF_readStats() : + * Read compact Huffman tree, saved by HUF_writeCTable(). + * `huffWeight` is destination buffer. + * @return : size read from `src` , or an error Code . + * Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */ +size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, + U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize); + +/** HUF_readCTable() : + * Loading a CTable saved with HUF_writeCTable() */ +size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize); + +/** HUF_getNbBits() : + * Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX + * Note 1 : is not inlined, as HUF_CElt definition is private + * Note 2 : const void* used, so that it can provide a statically allocated table as argument (which uses type U32) */ +U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue); + +/* + * HUF_decompress() does the following: + * 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics + * 2. build Huffman table from save, using HUF_readDTableX?() + * 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable() + */ + +/** HUF_selectDecoder() : + * Tells which decoder is likely to decode faster, + * based on a set of pre-computed metrics. + * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . + * Assumption : 0 < dstSize <= 128 KB */ +U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize); + +/** + * The minimum workspace size for the `workSpace` used in + * HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp(). + * + * The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when + * HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15. + * Buffer overflow errors may potentially occur if code modifications result in + * a required workspace size greater than that specified in the following + * macro. + */ +#define HUF_DECOMPRESS_WORKSPACE_SIZE (2 << 10) +#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32)) + +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_readDTableX1 (HUF_DTable* DTable, const void* src, size_t srcSize); +size_t HUF_readDTableX1_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize); +#endif +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_readDTableX2 (HUF_DTable* DTable, const void* src, size_t srcSize); +size_t HUF_readDTableX2_wksp (HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize); +#endif + +size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_decompress4X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); +#endif +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); +#endif + + +/* ====================== */ +/* single stream variants */ +/* ====================== */ + +size_t HUF_compress1X (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); +size_t HUF_compress1X_wksp (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); /**< `workSpace` must be a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */ +size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable); +/** HUF_compress1X_repeat() : + * Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none. + * If it uses hufTable it does not modify hufTable or repeat. + * If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used. + * If preferRepeat then the old table will always be used if valid. */ +size_t HUF_compress1X_repeat(void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned tableLog, + void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */ + HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2); + +size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */ +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */ +#endif + +size_t HUF_decompress1X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); +size_t HUF_decompress1X_DCtx_wksp (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_decompress1X1_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ +size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< single-symbol decoder */ +#endif +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_decompress1X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ +size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize); /**< double-symbols decoder */ +#endif + +size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); /**< automatic selection of sing or double symbol decoder, based on DTable */ +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_decompress1X1_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); +#endif +#ifndef HUF_FORCE_DECOMPRESS_X1 +size_t HUF_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable); +#endif + +/* BMI2 variants. + * If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0. + */ +size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2); +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2); +#endif +size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2); +size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2); + +#endif /* HUF_STATIC_LINKING_ONLY */ + +#if defined (__cplusplus) +} +#endif diff --git a/vendor/github.com/DataDog/zstd/huf_compress.c b/vendor/github.com/DataDog/zstd/huf_compress.c new file mode 100644 index 0000000000..f074f1e0a9 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/huf_compress.c @@ -0,0 +1,798 @@ +/* ****************************************************************** + Huffman encoder, part of New Generation Entropy library + Copyright (C) 2013-2016, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + +/* ************************************************************** +* Compiler specifics +****************************************************************/ +#ifdef _MSC_VER /* Visual Studio */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +#endif + + +/* ************************************************************** +* Includes +****************************************************************/ +#include /* memcpy, memset */ +#include /* printf (debug) */ +#include "compiler.h" +#include "bitstream.h" +#include "hist.h" +#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */ +#include "fse.h" /* header compression */ +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" +#include "error_private.h" + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define HUF_isError ERR_isError +#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ +#define CHECK_V_F(e, f) size_t const e = f; if (ERR_isError(e)) return e +#define CHECK_F(f) { CHECK_V_F(_var_err__, f); } + + +/* ************************************************************** +* Utils +****************************************************************/ +unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) +{ + return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); +} + + +/* ******************************************************* +* HUF : Huffman block compression +*********************************************************/ +/* HUF_compressWeights() : + * Same as FSE_compress(), but dedicated to huff0's weights compression. + * The use case needs much less stack memory. + * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. + */ +#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6 +static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize) +{ + BYTE* const ostart = (BYTE*) dst; + BYTE* op = ostart; + BYTE* const oend = ostart + dstSize; + + unsigned maxSymbolValue = HUF_TABLELOG_MAX; + U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; + + FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)]; + BYTE scratchBuffer[1< not compressible */ + } + + tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); + CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue) ); + + /* Write table description header */ + { CHECK_V_F(hSize, FSE_writeNCount(op, oend-op, norm, maxSymbolValue, tableLog) ); + op += hSize; + } + + /* Compress */ + CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) ); + { CHECK_V_F(cSize, FSE_compress_usingCTable(op, oend - op, weightTable, wtSize, CTable) ); + if (cSize == 0) return 0; /* not enough space for compressed data */ + op += cSize; + } + + return op-ostart; +} + + +struct HUF_CElt_s { + U16 val; + BYTE nbBits; +}; /* typedef'd to HUF_CElt within "huf.h" */ + +/*! HUF_writeCTable() : + `CTable` : Huffman tree to save, using huf representation. + @return : size of saved CTable */ +size_t HUF_writeCTable (void* dst, size_t maxDstSize, + const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog) +{ + BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */ + BYTE huffWeight[HUF_SYMBOLVALUE_MAX]; + BYTE* op = (BYTE*)dst; + U32 n; + + /* check conditions */ + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); + + /* convert to weight */ + bitsToWeight[0] = 0; + for (n=1; n1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */ + op[0] = (BYTE)hSize; + return hSize+1; + } } + + /* write raw values as 4-bits (max : 15) */ + if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */ + if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */ + op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1)); + huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */ + for (n=0; n HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall); + + /* Prepare base value per rank */ + { U32 n, nextRankStart = 0; + for (n=1; n<=tableLog; n++) { + U32 current = nextRankStart; + nextRankStart += (rankVal[n] << (n-1)); + rankVal[n] = current; + } } + + /* fill nbBits */ + { U32 n; for (n=0; nn=tableLog+1 */ + U16 valPerRank[HUF_TABLELOG_MAX+2] = {0}; + { U32 n; for (n=0; n0; n--) { /* start at n=tablelog <-> w=1 */ + valPerRank[n] = min; /* get starting value within each rank */ + min += nbPerRank[n]; + min >>= 1; + } } + /* assign value within rank, symbol order */ + { U32 n; for (n=0; n maxNbBits */ + + /* there are several too large elements (at least >= 2) */ + { int totalCost = 0; + const U32 baseCost = 1 << (largestBits - maxNbBits); + U32 n = lastNonNull; + + while (huffNode[n].nbBits > maxNbBits) { + totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); + huffNode[n].nbBits = (BYTE)maxNbBits; + n --; + } /* n stops at huffNode[n].nbBits <= maxNbBits */ + while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using < maxNbBits */ + + /* renorm totalCost */ + totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */ + + /* repay normalized cost */ + { U32 const noSymbol = 0xF0F0F0F0; + U32 rankLast[HUF_TABLELOG_MAX+2]; + int pos; + + /* Get pos of last (smallest) symbol per rank */ + memset(rankLast, 0xF0, sizeof(rankLast)); + { U32 currentNbBits = maxNbBits; + for (pos=n ; pos >= 0; pos--) { + if (huffNode[pos].nbBits >= currentNbBits) continue; + currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */ + rankLast[maxNbBits-currentNbBits] = pos; + } } + + while (totalCost > 0) { + U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1; + for ( ; nBitsToDecrease > 1; nBitsToDecrease--) { + U32 highPos = rankLast[nBitsToDecrease]; + U32 lowPos = rankLast[nBitsToDecrease-1]; + if (highPos == noSymbol) continue; + if (lowPos == noSymbol) break; + { U32 const highTotal = huffNode[highPos].count; + U32 const lowTotal = 2 * huffNode[lowPos].count; + if (highTotal <= lowTotal) break; + } } + /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ + /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ + while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) + nBitsToDecrease ++; + totalCost -= 1 << (nBitsToDecrease-1); + if (rankLast[nBitsToDecrease-1] == noSymbol) + rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */ + huffNode[rankLast[nBitsToDecrease]].nbBits ++; + if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */ + rankLast[nBitsToDecrease] = noSymbol; + else { + rankLast[nBitsToDecrease]--; + if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease) + rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */ + } } /* while (totalCost > 0) */ + + while (totalCost < 0) { /* Sometimes, cost correction overshoot */ + if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */ + while (huffNode[n].nbBits == maxNbBits) n--; + huffNode[n+1].nbBits--; + rankLast[1] = n+1; + totalCost++; + continue; + } + huffNode[ rankLast[1] + 1 ].nbBits--; + rankLast[1]++; + totalCost ++; + } } } /* there are several too large elements (at least >= 2) */ + + return maxNbBits; +} + + +typedef struct { + U32 base; + U32 current; +} rankPos; + +static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue) +{ + rankPos rank[32]; + U32 n; + + memset(rank, 0, sizeof(rank)); + for (n=0; n<=maxSymbolValue; n++) { + U32 r = BIT_highbit32(count[n] + 1); + rank[r].base ++; + } + for (n=30; n>0; n--) rank[n-1].base += rank[n].base; + for (n=0; n<32; n++) rank[n].current = rank[n].base; + for (n=0; n<=maxSymbolValue; n++) { + U32 const c = count[n]; + U32 const r = BIT_highbit32(c+1) + 1; + U32 pos = rank[r].current++; + while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) { + huffNode[pos] = huffNode[pos-1]; + pos--; + } + huffNode[pos].count = c; + huffNode[pos].byte = (BYTE)n; + } +} + + +/** HUF_buildCTable_wksp() : + * Same as HUF_buildCTable(), but using externally allocated scratch buffer. + * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as a table of HUF_CTABLE_WORKSPACE_SIZE_U32 unsigned. + */ +#define STARTNODE (HUF_SYMBOLVALUE_MAX+1) +typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32]; +size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize) +{ + nodeElt* const huffNode0 = (nodeElt*)workSpace; + nodeElt* const huffNode = huffNode0+1; + U32 n, nonNullRank; + int lowS, lowN; + U16 nodeNb = STARTNODE; + U32 nodeRoot; + + /* safety checks */ + if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ + if (wkspSize < sizeof(huffNodeTable)) return ERROR(workSpace_tooSmall); + if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT; + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); + memset(huffNode0, 0, sizeof(huffNodeTable)); + + /* sort, decreasing order */ + HUF_sort(huffNode, count, maxSymbolValue); + + /* init for parents */ + nonNullRank = maxSymbolValue; + while(huffNode[nonNullRank].count == 0) nonNullRank--; + lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb; + huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count; + huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb; + nodeNb++; lowS-=2; + for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30); + huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */ + + /* create parents */ + while (nodeNb <= nodeRoot) { + U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; + U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; + huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; + huffNode[n1].parent = huffNode[n2].parent = nodeNb; + nodeNb++; + } + + /* distribute weights (unlimited tree height) */ + huffNode[nodeRoot].nbBits = 0; + for (n=nodeRoot-1; n>=STARTNODE; n--) + huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; + for (n=0; n<=nonNullRank; n++) + huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; + + /* enforce maxTableLog */ + maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits); + + /* fill result into tree (val, nbBits) */ + { U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0}; + U16 valPerRank[HUF_TABLELOG_MAX+1] = {0}; + if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */ + for (n=0; n<=nonNullRank; n++) + nbPerRank[huffNode[n].nbBits]++; + /* determine stating value per rank */ + { U16 min = 0; + for (n=maxNbBits; n>0; n--) { + valPerRank[n] = min; /* get starting value within each rank */ + min += nbPerRank[n]; + min >>= 1; + } } + for (n=0; n<=maxSymbolValue; n++) + tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */ + for (n=0; n<=maxSymbolValue; n++) + tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */ + } + + return maxNbBits; +} + +/** HUF_buildCTable() : + * @return : maxNbBits + * Note : count is used before tree is written, so they can safely overlap + */ +size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits) +{ + huffNodeTable nodeTable; + return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, nodeTable, sizeof(nodeTable)); +} + +static size_t HUF_estimateCompressedSize(HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) +{ + size_t nbBits = 0; + int s; + for (s = 0; s <= (int)maxSymbolValue; ++s) { + nbBits += CTable[s].nbBits * count[s]; + } + return nbBits >> 3; +} + +static int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { + int bad = 0; + int s; + for (s = 0; s <= (int)maxSymbolValue; ++s) { + bad |= (count[s] != 0) & (CTable[s].nbBits == 0); + } + return !bad; +} + +size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } + +FORCE_INLINE_TEMPLATE void +HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable) +{ + BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits); +} + +#define HUF_FLUSHBITS(s) BIT_flushBits(s) + +#define HUF_FLUSHBITS_1(stream) \ + if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream) + +#define HUF_FLUSHBITS_2(stream) \ + if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream) + +FORCE_INLINE_TEMPLATE size_t +HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + const BYTE* ip = (const BYTE*) src; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + size_t n; + BIT_CStream_t bitC; + + /* init */ + if (dstSize < 8) return 0; /* not enough space to compress */ + { size_t const initErr = BIT_initCStream(&bitC, op, oend-op); + if (HUF_isError(initErr)) return 0; } + + n = srcSize & ~3; /* join to mod 4 */ + switch (srcSize & 3) + { + case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable); + HUF_FLUSHBITS_2(&bitC); + /* fall-through */ + case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable); + HUF_FLUSHBITS_1(&bitC); + /* fall-through */ + case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable); + HUF_FLUSHBITS(&bitC); + /* fall-through */ + case 0 : /* fall-through */ + default: break; + } + + for (; n>0; n-=4) { /* note : n&3==0 at this stage */ + HUF_encodeSymbol(&bitC, ip[n- 1], CTable); + HUF_FLUSHBITS_1(&bitC); + HUF_encodeSymbol(&bitC, ip[n- 2], CTable); + HUF_FLUSHBITS_2(&bitC); + HUF_encodeSymbol(&bitC, ip[n- 3], CTable); + HUF_FLUSHBITS_1(&bitC); + HUF_encodeSymbol(&bitC, ip[n- 4], CTable); + HUF_FLUSHBITS(&bitC); + } + + return BIT_closeCStream(&bitC); +} + +#if DYNAMIC_BMI2 + +static TARGET_ATTRIBUTE("bmi2") size_t +HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +static size_t +HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +static size_t +HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, const int bmi2) +{ + if (bmi2) { + return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable); + } + return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable); +} + +#else + +static size_t +HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, const int bmi2) +{ + (void)bmi2; + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +#endif + +size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); +} + + +static size_t +HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, int bmi2) +{ + size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */ + const BYTE* ip = (const BYTE*) src; + const BYTE* const iend = ip + srcSize; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + + if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */ + if (srcSize < 12) return 0; /* no saving possible : too small input */ + op += 6; /* jumpTable */ + + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) ); + if (cSize==0) return 0; + assert(cSize <= 65535); + MEM_writeLE16(ostart, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) ); + if (cSize==0) return 0; + assert(cSize <= 65535); + MEM_writeLE16(ostart+2, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, segmentSize, CTable, bmi2) ); + if (cSize==0) return 0; + assert(cSize <= 65535); + MEM_writeLE16(ostart+4, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, oend-op, ip, iend-ip, CTable, bmi2) ); + if (cSize==0) return 0; + op += cSize; + } + + return op-ostart; +} + +size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) +{ + return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); +} + +typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e; + +static size_t HUF_compressCTable_internal( + BYTE* const ostart, BYTE* op, BYTE* const oend, + const void* src, size_t srcSize, + HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2) +{ + size_t const cSize = (nbStreams==HUF_singleStream) ? + HUF_compress1X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2) : + HUF_compress4X_usingCTable_internal(op, oend - op, src, srcSize, CTable, bmi2); + if (HUF_isError(cSize)) { return cSize; } + if (cSize==0) { return 0; } /* uncompressible */ + op += cSize; + /* check compressibility */ + if ((size_t)(op-ostart) >= srcSize-1) { return 0; } + return op-ostart; +} + +typedef struct { + unsigned count[HUF_SYMBOLVALUE_MAX + 1]; + HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1]; + huffNodeTable nodeTable; +} HUF_compress_tables_t; + +/* HUF_compress_internal() : + * `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */ +static size_t +HUF_compress_internal (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + HUF_nbStreams_e nbStreams, + void* workSpace, size_t wkspSize, + HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat, + const int bmi2) +{ + HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + + /* checks & inits */ + if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ + if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall); + if (!srcSize) return 0; /* Uncompressed */ + if (!dstSize) return 0; /* cannot fit anything within dst budget */ + if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */ + if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); + if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX; + if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT; + + /* Heuristic : If old table is valid, use it for small inputs */ + if (preferRepeat && repeat && *repeat == HUF_repeat_valid) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, bmi2); + } + + /* Scan input and build symbol stats */ + { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace, wkspSize) ); + if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */ + if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */ + } + + /* Check validity of previous table */ + if ( repeat + && *repeat == HUF_repeat_check + && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) { + *repeat = HUF_repeat_none; + } + /* Heuristic : use existing table for small inputs */ + if (preferRepeat && repeat && *repeat != HUF_repeat_none) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, bmi2); + } + + /* Build Huffman Tree */ + huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); + { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count, + maxSymbolValue, huffLog, + table->nodeTable, sizeof(table->nodeTable)); + CHECK_F(maxBits); + huffLog = (U32)maxBits; + /* Zero unused symbols in CTable, so we can check it for validity */ + memset(table->CTable + (maxSymbolValue + 1), 0, + sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt))); + } + + /* Write table description header */ + { CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) ); + /* Check if using previous huffman table is beneficial */ + if (repeat && *repeat != HUF_repeat_none) { + size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue); + size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue); + if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, bmi2); + } } + + /* Use the new huffman table */ + if (hSize + 12ul >= srcSize) { return 0; } + op += hSize; + if (repeat) { *repeat = HUF_repeat_none; } + if (oldHufTable) + memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */ + } + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, table->CTable, bmi2); +} + + +size_t HUF_compress1X_wksp (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_singleStream, + workSpace, wkspSize, + NULL, NULL, 0, 0 /*bmi2*/); +} + +size_t HUF_compress1X_repeat (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize, + HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_singleStream, + workSpace, wkspSize, hufTable, + repeat, preferRepeat, bmi2); +} + +size_t HUF_compress1X (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog) +{ + unsigned workSpace[HUF_WORKSPACE_SIZE_U32]; + return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); +} + +/* HUF_compress4X_repeat(): + * compress input using 4 streams. + * provide workspace to generate compression tables */ +size_t HUF_compress4X_wksp (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_fourStreams, + workSpace, wkspSize, + NULL, NULL, 0, 0 /*bmi2*/); +} + +/* HUF_compress4X_repeat(): + * compress input using 4 streams. + * re-use an existing huffman compression table */ +size_t HUF_compress4X_repeat (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize, + HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_fourStreams, + workSpace, wkspSize, + hufTable, repeat, preferRepeat, bmi2); +} + +size_t HUF_compress2 (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog) +{ + unsigned workSpace[HUF_WORKSPACE_SIZE_U32]; + return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace)); +} + +size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize) +{ + return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT); +} diff --git a/vendor/github.com/DataDog/zstd/huf_decompress.c b/vendor/github.com/DataDog/zstd/huf_decompress.c new file mode 100644 index 0000000000..3f8bd29732 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/huf_decompress.c @@ -0,0 +1,1232 @@ +/* ****************************************************************** + huff0 huffman decoder, + part of Finite State Entropy library + Copyright (C) 2013-present, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy +****************************************************************** */ + +/* ************************************************************** +* Dependencies +****************************************************************/ +#include /* memcpy, memset */ +#include "compiler.h" +#include "bitstream.h" /* BIT_* */ +#include "fse.h" /* to compress headers */ +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" +#include "error_private.h" + +/* ************************************************************** +* Macros +****************************************************************/ + +/* These two optional macros force the use one way or another of the two + * Huffman decompression implementations. You can't force in both directions + * at the same time. + */ +#if defined(HUF_FORCE_DECOMPRESS_X1) && \ + defined(HUF_FORCE_DECOMPRESS_X2) +#error "Cannot force the use of the X1 and X2 decoders at the same time!" +#endif + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define HUF_isError ERR_isError +#define CHECK_F(f) { size_t const err_ = (f); if (HUF_isError(err_)) return err_; } + + +/* ************************************************************** +* Byte alignment for workSpace management +****************************************************************/ +#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) +#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) + + +/* ************************************************************** +* BMI2 Variant Wrappers +****************************************************************/ +#if DYNAMIC_BMI2 + +#define HUF_DGEN(fn) \ + \ + static size_t fn##_default( \ + void* dst, size_t dstSize, \ + const void* cSrc, size_t cSrcSize, \ + const HUF_DTable* DTable) \ + { \ + return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ + } \ + \ + static TARGET_ATTRIBUTE("bmi2") size_t fn##_bmi2( \ + void* dst, size_t dstSize, \ + const void* cSrc, size_t cSrcSize, \ + const HUF_DTable* DTable) \ + { \ + return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ + } \ + \ + static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ + size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ + { \ + if (bmi2) { \ + return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ + } \ + return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ + } + +#else + +#define HUF_DGEN(fn) \ + static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ + size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \ + { \ + (void)bmi2; \ + return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ + } + +#endif + + +/*-***************************/ +/* generic DTableDesc */ +/*-***************************/ +typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; + +static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) +{ + DTableDesc dtd; + memcpy(&dtd, table, sizeof(dtd)); + return dtd; +} + + +#ifndef HUF_FORCE_DECOMPRESS_X2 + +/*-***************************/ +/* single-symbol decoding */ +/*-***************************/ +typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX1; /* single-symbol decoding */ + +size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize) +{ + U32 tableLog = 0; + U32 nbSymbols = 0; + size_t iSize; + void* const dtPtr = DTable + 1; + HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; + + U32* rankVal; + BYTE* huffWeight; + size_t spaceUsed32 = 0; + + rankVal = (U32 *)workSpace + spaceUsed32; + spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1; + huffWeight = (BYTE *)((U32 *)workSpace + spaceUsed32); + spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2; + + if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge); + + DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); + /* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ + + iSize = HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); + if (HUF_isError(iSize)) return iSize; + + /* Table header */ + { DTableDesc dtd = HUF_getDTableDesc(DTable); + if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ + dtd.tableType = 0; + dtd.tableLog = (BYTE)tableLog; + memcpy(DTable, &dtd, sizeof(dtd)); + } + + /* Calculate starting value for each rank */ + { U32 n, nextRankStart = 0; + for (n=1; n> 1; + U32 u; + HUF_DEltX1 D; + D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); + for (u = rankVal[w]; u < rankVal[w] + length; u++) + dt[u] = D; + rankVal[w] += length; + } } + + return iSize; +} + +size_t HUF_readDTableX1(HUF_DTable* DTable, const void* src, size_t srcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_readDTableX1_wksp(DTable, src, srcSize, + workSpace, sizeof(workSpace)); +} + +FORCE_INLINE_TEMPLATE BYTE +HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) +{ + size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ + BYTE const c = dt[val].byte; + BIT_skipBits(Dstream, dt[val].nbBits); + return c; +} + +#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ + *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) + +#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ + if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ + HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) + +#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ + if (MEM_64bits()) \ + HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) + +HINT_INLINE size_t +HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) +{ + BYTE* const pStart = p; + + /* up to 4 symbols at a time */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { + HUF_DECODE_SYMBOLX1_2(p, bitDPtr); + HUF_DECODE_SYMBOLX1_1(p, bitDPtr); + HUF_DECODE_SYMBOLX1_2(p, bitDPtr); + HUF_DECODE_SYMBOLX1_0(p, bitDPtr); + } + + /* [0-3] symbols remaining */ + if (MEM_32bits()) + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) + HUF_DECODE_SYMBOLX1_0(p, bitDPtr); + + /* no more data to retrieve from bitstream, no need to reload */ + while (p < pEnd) + HUF_DECODE_SYMBOLX1_0(p, bitDPtr); + + return pEnd-pStart; +} + +FORCE_INLINE_TEMPLATE size_t +HUF_decompress1X1_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + BYTE* op = (BYTE*)dst; + BYTE* const oend = op + dstSize; + const void* dtPtr = DTable + 1; + const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; + BIT_DStream_t bitD; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + U32 const dtLog = dtd.tableLog; + + CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); + + HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); + + if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); + + return dstSize; +} + +FORCE_INLINE_TEMPLATE size_t +HUF_decompress4X1_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + /* Check */ + if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ + + { const BYTE* const istart = (const BYTE*) cSrc; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + const void* const dtPtr = DTable + 1; + const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; + + /* Init */ + BIT_DStream_t bitD1; + BIT_DStream_t bitD2; + BIT_DStream_t bitD3; + BIT_DStream_t bitD4; + size_t const length1 = MEM_readLE16(istart); + size_t const length2 = MEM_readLE16(istart+2); + size_t const length3 = MEM_readLE16(istart+4); + size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); + const BYTE* const istart1 = istart + 6; /* jumpTable */ + const BYTE* const istart2 = istart1 + length1; + const BYTE* const istart3 = istart2 + length2; + const BYTE* const istart4 = istart3 + length3; + const size_t segmentSize = (dstSize+3) / 4; + BYTE* const opStart2 = ostart + segmentSize; + BYTE* const opStart3 = opStart2 + segmentSize; + BYTE* const opStart4 = opStart3 + segmentSize; + BYTE* op1 = ostart; + BYTE* op2 = opStart2; + BYTE* op3 = opStart3; + BYTE* op4 = opStart4; + U32 endSignal = BIT_DStream_unfinished; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + U32 const dtLog = dtd.tableLog; + + if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ + CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); + CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); + CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); + CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); + + /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ + endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); + while ( (endSignal==BIT_DStream_unfinished) && (op4<(oend-3)) ) { + HUF_DECODE_SYMBOLX1_2(op1, &bitD1); + HUF_DECODE_SYMBOLX1_2(op2, &bitD2); + HUF_DECODE_SYMBOLX1_2(op3, &bitD3); + HUF_DECODE_SYMBOLX1_2(op4, &bitD4); + HUF_DECODE_SYMBOLX1_1(op1, &bitD1); + HUF_DECODE_SYMBOLX1_1(op2, &bitD2); + HUF_DECODE_SYMBOLX1_1(op3, &bitD3); + HUF_DECODE_SYMBOLX1_1(op4, &bitD4); + HUF_DECODE_SYMBOLX1_2(op1, &bitD1); + HUF_DECODE_SYMBOLX1_2(op2, &bitD2); + HUF_DECODE_SYMBOLX1_2(op3, &bitD3); + HUF_DECODE_SYMBOLX1_2(op4, &bitD4); + HUF_DECODE_SYMBOLX1_0(op1, &bitD1); + HUF_DECODE_SYMBOLX1_0(op2, &bitD2); + HUF_DECODE_SYMBOLX1_0(op3, &bitD3); + HUF_DECODE_SYMBOLX1_0(op4, &bitD4); + BIT_reloadDStream(&bitD1); + BIT_reloadDStream(&bitD2); + BIT_reloadDStream(&bitD3); + BIT_reloadDStream(&bitD4); + } + + /* check corruption */ + /* note : should not be necessary : op# advance in lock step, and we control op4. + * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ + if (op1 > opStart2) return ERROR(corruption_detected); + if (op2 > opStart3) return ERROR(corruption_detected); + if (op3 > opStart4) return ERROR(corruption_detected); + /* note : op4 supposed already verified within main loop */ + + /* finish bitStreams one by one */ + HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); + HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); + HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); + HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); + + /* check */ + { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); + if (!endCheck) return ERROR(corruption_detected); } + + /* decoded size */ + return dstSize; + } +} + + +typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize, + const void *cSrc, + size_t cSrcSize, + const HUF_DTable *DTable); + +HUF_DGEN(HUF_decompress1X1_usingDTable_internal) +HUF_DGEN(HUF_decompress4X1_usingDTable_internal) + + + +size_t HUF_decompress1X1_usingDTable( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + DTableDesc dtd = HUF_getDTableDesc(DTable); + if (dtd.tableType != 0) return ERROR(GENERIC); + return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +} + +size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); +} + + +size_t HUF_decompress1X1_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_decompress1X1_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize, + workSpace, sizeof(workSpace)); +} + +size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX); + return HUF_decompress1X1_DCtx (DTable, dst, dstSize, cSrc, cSrcSize); +} + +size_t HUF_decompress4X1_usingDTable( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + DTableDesc dtd = HUF_getDTableDesc(DTable); + if (dtd.tableType != 0) return ERROR(GENERIC); + return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +} + +static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize, int bmi2) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t const hSize = HUF_readDTableX1_wksp (dctx, cSrc, cSrcSize, + workSpace, wkspSize); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); +} + +size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize) +{ + return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0); +} + + +size_t HUF_decompress4X1_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, + workSpace, sizeof(workSpace)); +} +size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX); + return HUF_decompress4X1_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); +} + +#endif /* HUF_FORCE_DECOMPRESS_X2 */ + + +#ifndef HUF_FORCE_DECOMPRESS_X1 + +/* *************************/ +/* double-symbols decoding */ +/* *************************/ + +typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ +typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; +typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; +typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; + + +/* HUF_fillDTableX2Level2() : + * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ +static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 sizeLog, const U32 consumed, + const U32* rankValOrigin, const int minWeight, + const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, + U32 nbBitsBaseline, U16 baseSeq) +{ + HUF_DEltX2 DElt; + U32 rankVal[HUF_TABLELOG_MAX + 1]; + + /* get pre-calculated rankVal */ + memcpy(rankVal, rankValOrigin, sizeof(rankVal)); + + /* fill skipped values */ + if (minWeight>1) { + U32 i, skipSize = rankVal[minWeight]; + MEM_writeLE16(&(DElt.sequence), baseSeq); + DElt.nbBits = (BYTE)(consumed); + DElt.length = 1; + for (i = 0; i < skipSize; i++) + DTable[i] = DElt; + } + + /* fill DTable */ + { U32 s; for (s=0; s= 1 */ + + rankVal[weight] += length; + } } +} + + +static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, + const sortedSymbol_t* sortedList, const U32 sortedListSize, + const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, + const U32 nbBitsBaseline) +{ + U32 rankVal[HUF_TABLELOG_MAX + 1]; + const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ + const U32 minBits = nbBitsBaseline - maxWeight; + U32 s; + + memcpy(rankVal, rankValOrigin, sizeof(rankVal)); + + /* fill DTable */ + for (s=0; s= minBits) { /* enough room for a second symbol */ + U32 sortedRank; + int minWeight = nbBits + scaleLog; + if (minWeight < 1) minWeight = 1; + sortedRank = rankStart[minWeight]; + HUF_fillDTableX2Level2(DTable+start, targetLog-nbBits, nbBits, + rankValOrigin[nbBits], minWeight, + sortedList+sortedRank, sortedListSize-sortedRank, + nbBitsBaseline, symbol); + } else { + HUF_DEltX2 DElt; + MEM_writeLE16(&(DElt.sequence), symbol); + DElt.nbBits = (BYTE)(nbBits); + DElt.length = 1; + { U32 const end = start + length; + U32 u; + for (u = start; u < end; u++) DTable[u] = DElt; + } } + rankVal[weight] += length; + } +} + +size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, + const void* src, size_t srcSize, + void* workSpace, size_t wkspSize) +{ + U32 tableLog, maxW, sizeOfSort, nbSymbols; + DTableDesc dtd = HUF_getDTableDesc(DTable); + U32 const maxTableLog = dtd.maxTableLog; + size_t iSize; + void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ + HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; + U32 *rankStart; + + rankValCol_t* rankVal; + U32* rankStats; + U32* rankStart0; + sortedSymbol_t* sortedSymbol; + BYTE* weightList; + size_t spaceUsed32 = 0; + + rankVal = (rankValCol_t *)((U32 *)workSpace + spaceUsed32); + spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2; + rankStats = (U32 *)workSpace + spaceUsed32; + spaceUsed32 += HUF_TABLELOG_MAX + 1; + rankStart0 = (U32 *)workSpace + spaceUsed32; + spaceUsed32 += HUF_TABLELOG_MAX + 2; + sortedSymbol = (sortedSymbol_t *)workSpace + (spaceUsed32 * sizeof(U32)) / sizeof(sortedSymbol_t); + spaceUsed32 += HUF_ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2; + weightList = (BYTE *)((U32 *)workSpace + spaceUsed32); + spaceUsed32 += HUF_ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2; + + if ((spaceUsed32 << 2) > wkspSize) return ERROR(tableLog_tooLarge); + + rankStart = rankStart0 + 1; + memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1)); + + DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ + if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + /* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ + + iSize = HUF_readStats(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); + if (HUF_isError(iSize)) return iSize; + + /* check result */ + if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ + + /* find maxWeight */ + for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ + + /* Get start index of each weight */ + { U32 w, nextRankStart = 0; + for (w=1; w> consumed; + } } } } + + HUF_fillDTableX2(dt, maxTableLog, + sortedSymbol, sizeOfSort, + rankStart0, rankVal, maxW, + tableLog+1); + + dtd.tableLog = (BYTE)maxTableLog; + dtd.tableType = 1; + memcpy(DTable, &dtd, sizeof(dtd)); + return iSize; +} + +size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_readDTableX2_wksp(DTable, src, srcSize, + workSpace, sizeof(workSpace)); +} + + +FORCE_INLINE_TEMPLATE U32 +HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) +{ + size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ + memcpy(op, dt+val, 2); + BIT_skipBits(DStream, dt[val].nbBits); + return dt[val].length; +} + +FORCE_INLINE_TEMPLATE U32 +HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) +{ + size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ + memcpy(op, dt+val, 1); + if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); + else { + if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { + BIT_skipBits(DStream, dt[val].nbBits); + if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) + /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ + DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); + } } + return 1; +} + +#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ + ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) + +#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ + if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ + ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) + +#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ + if (MEM_64bits()) \ + ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) + +HINT_INLINE size_t +HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, + const HUF_DEltX2* const dt, const U32 dtLog) +{ + BYTE* const pStart = p; + + /* up to 8 symbols at a time */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { + HUF_DECODE_SYMBOLX2_2(p, bitDPtr); + HUF_DECODE_SYMBOLX2_1(p, bitDPtr); + HUF_DECODE_SYMBOLX2_2(p, bitDPtr); + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + } + + /* closer to end : up to 2 symbols at a time */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + + while (p <= pEnd-2) + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ + + if (p < pEnd) + p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); + + return p-pStart; +} + +FORCE_INLINE_TEMPLATE size_t +HUF_decompress1X2_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + BIT_DStream_t bitD; + + /* Init */ + CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); + + /* decode */ + { BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ + const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); + } + + /* check */ + if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); + + /* decoded size */ + return dstSize; +} + + +FORCE_INLINE_TEMPLATE size_t +HUF_decompress4X2_usingDTable_internal_body( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ + + { const BYTE* const istart = (const BYTE*) cSrc; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + const void* const dtPtr = DTable+1; + const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; + + /* Init */ + BIT_DStream_t bitD1; + BIT_DStream_t bitD2; + BIT_DStream_t bitD3; + BIT_DStream_t bitD4; + size_t const length1 = MEM_readLE16(istart); + size_t const length2 = MEM_readLE16(istart+2); + size_t const length3 = MEM_readLE16(istart+4); + size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); + const BYTE* const istart1 = istart + 6; /* jumpTable */ + const BYTE* const istart2 = istart1 + length1; + const BYTE* const istart3 = istart2 + length2; + const BYTE* const istart4 = istart3 + length3; + size_t const segmentSize = (dstSize+3) / 4; + BYTE* const opStart2 = ostart + segmentSize; + BYTE* const opStart3 = opStart2 + segmentSize; + BYTE* const opStart4 = opStart3 + segmentSize; + BYTE* op1 = ostart; + BYTE* op2 = opStart2; + BYTE* op3 = opStart3; + BYTE* op4 = opStart4; + U32 endSignal; + DTableDesc const dtd = HUF_getDTableDesc(DTable); + U32 const dtLog = dtd.tableLog; + + if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ + CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); + CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); + CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); + CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); + + /* 16-32 symbols per loop (4-8 symbols per stream) */ + endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); + for ( ; (endSignal==BIT_DStream_unfinished) & (op4<(oend-(sizeof(bitD4.bitContainer)-1))) ; ) { + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_1(op1, &bitD1); + HUF_DECODE_SYMBOLX2_1(op2, &bitD2); + HUF_DECODE_SYMBOLX2_1(op3, &bitD3); + HUF_DECODE_SYMBOLX2_1(op4, &bitD4); + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_0(op1, &bitD1); + HUF_DECODE_SYMBOLX2_0(op2, &bitD2); + HUF_DECODE_SYMBOLX2_0(op3, &bitD3); + HUF_DECODE_SYMBOLX2_0(op4, &bitD4); + + endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); + } + + /* check corruption */ + if (op1 > opStart2) return ERROR(corruption_detected); + if (op2 > opStart3) return ERROR(corruption_detected); + if (op3 > opStart4) return ERROR(corruption_detected); + /* note : op4 already verified within main loop */ + + /* finish bitStreams one by one */ + HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); + HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); + HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); + HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); + + /* check */ + { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); + if (!endCheck) return ERROR(corruption_detected); } + + /* decoded size */ + return dstSize; + } +} + +HUF_DGEN(HUF_decompress1X2_usingDTable_internal) +HUF_DGEN(HUF_decompress4X2_usingDTable_internal) + +size_t HUF_decompress1X2_usingDTable( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + DTableDesc dtd = HUF_getDTableDesc(DTable); + if (dtd.tableType != 1) return ERROR(GENERIC); + return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +} + +size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, + workSpace, wkspSize); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0); +} + + +size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize, + workSpace, sizeof(workSpace)); +} + +size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX); + return HUF_decompress1X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); +} + +size_t HUF_decompress4X2_usingDTable( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + DTableDesc dtd = HUF_getDTableDesc(DTable); + if (dtd.tableType != 1) return ERROR(GENERIC); + return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +} + +static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize, int bmi2) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, + workSpace, wkspSize); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); +} + +size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize) +{ + return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0); +} + + +size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, + workSpace, sizeof(workSpace)); +} + +size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX); + return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); +} + +#endif /* HUF_FORCE_DECOMPRESS_X1 */ + + +/* ***********************************/ +/* Universal decompression selectors */ +/* ***********************************/ + +size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + DTableDesc const dtd = HUF_getDTableDesc(DTable); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dtd; + assert(dtd.tableType == 0); + return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dtd; + assert(dtd.tableType == 1); + return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +#else + return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : + HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +#endif +} + +size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, + const void* cSrc, size_t cSrcSize, + const HUF_DTable* DTable) +{ + DTableDesc const dtd = HUF_getDTableDesc(DTable); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dtd; + assert(dtd.tableType == 0); + return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dtd; + assert(dtd.tableType == 1); + return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +#else + return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) : + HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0); +#endif +} + + +#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) +typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; +static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = +{ + /* single, double, quad */ + {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */ + {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */ + {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */ + {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */ + {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */ + {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */ + {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */ + {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */ + {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */ + {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */ + {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */ + {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */ + {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */ + {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */ + {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */ + {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */ +}; +#endif + +/** HUF_selectDecoder() : + * Tells which decoder is likely to decode faster, + * based on a set of pre-computed metrics. + * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . + * Assumption : 0 < dstSize <= 128 KB */ +U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) +{ + assert(dstSize > 0); + assert(dstSize <= 128*1024); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dstSize; + (void)cSrcSize; + return 0; +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dstSize; + (void)cSrcSize; + return 1; +#else + /* decoder timing evaluation */ + { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ + U32 const D256 = (U32)(dstSize >> 8); + U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); + U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); + DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, to reduce cache eviction */ + return DTime1 < DTime0; + } +#endif +} + + +typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); + +size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ +#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) + static const decompressionAlgo decompress[2] = { HUF_decompress4X1, HUF_decompress4X2 }; +#endif + + /* validation checks */ + if (dstSize == 0) return ERROR(dstSize_tooSmall); + if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ + if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ + if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ + + { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)algoNb; + assert(algoNb == 0); + return HUF_decompress4X1(dst, dstSize, cSrc, cSrcSize); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)algoNb; + assert(algoNb == 1); + return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); +#else + return decompress[algoNb](dst, dstSize, cSrc, cSrcSize); +#endif + } +} + +size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + /* validation checks */ + if (dstSize == 0) return ERROR(dstSize_tooSmall); + if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ + if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ + if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ + + { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)algoNb; + assert(algoNb == 0); + return HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)algoNb; + assert(algoNb == 1); + return HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize); +#else + return algoNb ? HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) : + HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ; +#endif + } +} + +size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize, + workSpace, sizeof(workSpace)); +} + + +size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, + size_t dstSize, const void* cSrc, + size_t cSrcSize, void* workSpace, + size_t wkspSize) +{ + /* validation checks */ + if (dstSize == 0) return ERROR(dstSize_tooSmall); + if (cSrcSize == 0) return ERROR(corruption_detected); + + { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)algoNb; + assert(algoNb == 0); + return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)algoNb; + assert(algoNb == 1); + return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); +#else + return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize): + HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize); +#endif + } +} + +size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + void* workSpace, size_t wkspSize) +{ + /* validation checks */ + if (dstSize == 0) return ERROR(dstSize_tooSmall); + if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ + if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ + if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ + + { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)algoNb; + assert(algoNb == 0); + return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)algoNb; + assert(algoNb == 1); + return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize); +#else + return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize): + HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, + cSrcSize, workSpace, wkspSize); +#endif + } +} + +size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize) +{ + U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; + return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, + workSpace, sizeof(workSpace)); +} + + +size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) +{ + DTableDesc const dtd = HUF_getDTableDesc(DTable); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dtd; + assert(dtd.tableType == 0); + return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dtd; + assert(dtd.tableType == 1); + return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); +#else + return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : + HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); +#endif +} + +#ifndef HUF_FORCE_DECOMPRESS_X2 +size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) +{ + const BYTE* ip = (const BYTE*) cSrc; + + size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; cSrcSize -= hSize; + + return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2); +} +#endif + +size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2) +{ + DTableDesc const dtd = HUF_getDTableDesc(DTable); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)dtd; + assert(dtd.tableType == 0); + return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)dtd; + assert(dtd.tableType == 1); + return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); +#else + return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) : + HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2); +#endif +} + +size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2) +{ + /* validation checks */ + if (dstSize == 0) return ERROR(dstSize_tooSmall); + if (cSrcSize == 0) return ERROR(corruption_detected); + + { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); +#if defined(HUF_FORCE_DECOMPRESS_X1) + (void)algoNb; + assert(algoNb == 0); + return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); +#elif defined(HUF_FORCE_DECOMPRESS_X2) + (void)algoNb; + assert(algoNb == 1); + return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); +#else + return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) : + HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2); +#endif + } +} diff --git a/vendor/github.com/DataDog/zstd/mem.h b/vendor/github.com/DataDog/zstd/mem.h new file mode 100644 index 0000000000..5da248756f --- /dev/null +++ b/vendor/github.com/DataDog/zstd/mem.h @@ -0,0 +1,380 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef MEM_H_MODULE +#define MEM_H_MODULE + +#if defined (__cplusplus) +extern "C" { +#endif + +/*-**************************************** +* Dependencies +******************************************/ +#include /* size_t, ptrdiff_t */ +#include /* memcpy */ + + +/*-**************************************** +* Compiler specifics +******************************************/ +#if defined(_MSC_VER) /* Visual Studio */ +# include /* _byteswap_ulong */ +# include /* _byteswap_* */ +#endif +#if defined(__GNUC__) +# define MEM_STATIC static __inline __attribute__((unused)) +#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define MEM_STATIC static inline +#elif defined(_MSC_VER) +# define MEM_STATIC static __inline +#else +# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ +#endif + +#ifndef __has_builtin +# define __has_builtin(x) 0 /* compat. with non-clang compilers */ +#endif + +/* code only tested on 32 and 64 bits systems */ +#define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; } +MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); } + + +/*-************************************************************** +* Basic Types +*****************************************************************/ +#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) +# include + typedef uint8_t BYTE; + typedef uint16_t U16; + typedef int16_t S16; + typedef uint32_t U32; + typedef int32_t S32; + typedef uint64_t U64; + typedef int64_t S64; +#else +# include +#if CHAR_BIT != 8 +# error "this implementation requires char to be exactly 8-bit type" +#endif + typedef unsigned char BYTE; +#if USHRT_MAX != 65535 +# error "this implementation requires short to be exactly 16-bit type" +#endif + typedef unsigned short U16; + typedef signed short S16; +#if UINT_MAX != 4294967295 +# error "this implementation requires int to be exactly 32-bit type" +#endif + typedef unsigned int U32; + typedef signed int S32; +/* note : there are no limits defined for long long type in C90. + * limits exist in C99, however, in such case, is preferred */ + typedef unsigned long long U64; + typedef signed long long S64; +#endif + + +/*-************************************************************** +* Memory I/O +*****************************************************************/ +/* MEM_FORCE_MEMORY_ACCESS : + * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. + * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. + * The below switch allow to select different access method for improved performance. + * Method 0 (default) : use `memcpy()`. Safe and portable. + * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable). + * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. + * Method 2 : direct access. This method is portable but violate C standard. + * It can generate buggy code on targets depending on alignment. + * In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6) + * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. + * Prefer these methods in priority order (0 > 1 > 2) + */ +#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ +# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) +# define MEM_FORCE_MEMORY_ACCESS 2 +# elif defined(__INTEL_COMPILER) || defined(__GNUC__) +# define MEM_FORCE_MEMORY_ACCESS 1 +# endif +#endif + +MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; } +MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; } + +MEM_STATIC unsigned MEM_isLittleEndian(void) +{ + const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ + return one.c[0]; +} + +#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) + +/* violates C standard, by lying on structure alignment. +Only use if no other choice to achieve best performance on target platform */ +MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } +MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } +MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } +MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; } + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } +MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; } +MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; } + +#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) + +/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ +/* currently only defined for gcc and icc */ +#if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32)) + __pragma( pack(push, 1) ) + typedef struct { U16 v; } unalign16; + typedef struct { U32 v; } unalign32; + typedef struct { U64 v; } unalign64; + typedef struct { size_t v; } unalignArch; + __pragma( pack(pop) ) +#else + typedef struct { U16 v; } __attribute__((packed)) unalign16; + typedef struct { U32 v; } __attribute__((packed)) unalign32; + typedef struct { U64 v; } __attribute__((packed)) unalign64; + typedef struct { size_t v; } __attribute__((packed)) unalignArch; +#endif + +MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; } +MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; } +MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; } +MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; } + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; } +MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; } +MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; } + +#else + +/* default method, safe and standard. + can sometimes prove slower */ + +MEM_STATIC U16 MEM_read16(const void* memPtr) +{ + U16 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC U32 MEM_read32(const void* memPtr) +{ + U32 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC U64 MEM_read64(const void* memPtr) +{ + U64 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC size_t MEM_readST(const void* memPtr) +{ + size_t val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) +{ + memcpy(memPtr, &value, sizeof(value)); +} + +MEM_STATIC void MEM_write32(void* memPtr, U32 value) +{ + memcpy(memPtr, &value, sizeof(value)); +} + +MEM_STATIC void MEM_write64(void* memPtr, U64 value) +{ + memcpy(memPtr, &value, sizeof(value)); +} + +#endif /* MEM_FORCE_MEMORY_ACCESS */ + +MEM_STATIC U32 MEM_swap32(U32 in) +{ +#if defined(_MSC_VER) /* Visual Studio */ + return _byteswap_ulong(in); +#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \ + || (defined(__clang__) && __has_builtin(__builtin_bswap32)) + return __builtin_bswap32(in); +#else + return ((in << 24) & 0xff000000 ) | + ((in << 8) & 0x00ff0000 ) | + ((in >> 8) & 0x0000ff00 ) | + ((in >> 24) & 0x000000ff ); +#endif +} + +MEM_STATIC U64 MEM_swap64(U64 in) +{ +#if defined(_MSC_VER) /* Visual Studio */ + return _byteswap_uint64(in); +#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \ + || (defined(__clang__) && __has_builtin(__builtin_bswap64)) + return __builtin_bswap64(in); +#else + return ((in << 56) & 0xff00000000000000ULL) | + ((in << 40) & 0x00ff000000000000ULL) | + ((in << 24) & 0x0000ff0000000000ULL) | + ((in << 8) & 0x000000ff00000000ULL) | + ((in >> 8) & 0x00000000ff000000ULL) | + ((in >> 24) & 0x0000000000ff0000ULL) | + ((in >> 40) & 0x000000000000ff00ULL) | + ((in >> 56) & 0x00000000000000ffULL); +#endif +} + +MEM_STATIC size_t MEM_swapST(size_t in) +{ + if (MEM_32bits()) + return (size_t)MEM_swap32((U32)in); + else + return (size_t)MEM_swap64((U64)in); +} + +/*=== Little endian r/w ===*/ + +MEM_STATIC U16 MEM_readLE16(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read16(memPtr); + else { + const BYTE* p = (const BYTE*)memPtr; + return (U16)(p[0] + (p[1]<<8)); + } +} + +MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) +{ + if (MEM_isLittleEndian()) { + MEM_write16(memPtr, val); + } else { + BYTE* p = (BYTE*)memPtr; + p[0] = (BYTE)val; + p[1] = (BYTE)(val>>8); + } +} + +MEM_STATIC U32 MEM_readLE24(const void* memPtr) +{ + return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16); +} + +MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val) +{ + MEM_writeLE16(memPtr, (U16)val); + ((BYTE*)memPtr)[2] = (BYTE)(val>>16); +} + +MEM_STATIC U32 MEM_readLE32(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read32(memPtr); + else + return MEM_swap32(MEM_read32(memPtr)); +} + +MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32) +{ + if (MEM_isLittleEndian()) + MEM_write32(memPtr, val32); + else + MEM_write32(memPtr, MEM_swap32(val32)); +} + +MEM_STATIC U64 MEM_readLE64(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read64(memPtr); + else + return MEM_swap64(MEM_read64(memPtr)); +} + +MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64) +{ + if (MEM_isLittleEndian()) + MEM_write64(memPtr, val64); + else + MEM_write64(memPtr, MEM_swap64(val64)); +} + +MEM_STATIC size_t MEM_readLEST(const void* memPtr) +{ + if (MEM_32bits()) + return (size_t)MEM_readLE32(memPtr); + else + return (size_t)MEM_readLE64(memPtr); +} + +MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val) +{ + if (MEM_32bits()) + MEM_writeLE32(memPtr, (U32)val); + else + MEM_writeLE64(memPtr, (U64)val); +} + +/*=== Big endian r/w ===*/ + +MEM_STATIC U32 MEM_readBE32(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_swap32(MEM_read32(memPtr)); + else + return MEM_read32(memPtr); +} + +MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32) +{ + if (MEM_isLittleEndian()) + MEM_write32(memPtr, MEM_swap32(val32)); + else + MEM_write32(memPtr, val32); +} + +MEM_STATIC U64 MEM_readBE64(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_swap64(MEM_read64(memPtr)); + else + return MEM_read64(memPtr); +} + +MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64) +{ + if (MEM_isLittleEndian()) + MEM_write64(memPtr, MEM_swap64(val64)); + else + MEM_write64(memPtr, val64); +} + +MEM_STATIC size_t MEM_readBEST(const void* memPtr) +{ + if (MEM_32bits()) + return (size_t)MEM_readBE32(memPtr); + else + return (size_t)MEM_readBE64(memPtr); +} + +MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val) +{ + if (MEM_32bits()) + MEM_writeBE32(memPtr, (U32)val); + else + MEM_writeBE64(memPtr, (U64)val); +} + + +#if defined (__cplusplus) +} +#endif + +#endif /* MEM_H_MODULE */ diff --git a/vendor/github.com/DataDog/zstd/pool.c b/vendor/github.com/DataDog/zstd/pool.c new file mode 100644 index 0000000000..7a82945432 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/pool.c @@ -0,0 +1,340 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/* ====== Dependencies ======= */ +#include /* size_t */ +#include "debug.h" /* assert */ +#include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */ +#include "pool.h" + +/* ====== Compiler specifics ====== */ +#if defined(_MSC_VER) +# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ +#endif + + +#ifdef ZSTD_MULTITHREAD + +#include "threading.h" /* pthread adaptation */ + +/* A job is a function and an opaque argument */ +typedef struct POOL_job_s { + POOL_function function; + void *opaque; +} POOL_job; + +struct POOL_ctx_s { + ZSTD_customMem customMem; + /* Keep track of the threads */ + ZSTD_pthread_t* threads; + size_t threadCapacity; + size_t threadLimit; + + /* The queue is a circular buffer */ + POOL_job *queue; + size_t queueHead; + size_t queueTail; + size_t queueSize; + + /* The number of threads working on jobs */ + size_t numThreadsBusy; + /* Indicates if the queue is empty */ + int queueEmpty; + + /* The mutex protects the queue */ + ZSTD_pthread_mutex_t queueMutex; + /* Condition variable for pushers to wait on when the queue is full */ + ZSTD_pthread_cond_t queuePushCond; + /* Condition variables for poppers to wait on when the queue is empty */ + ZSTD_pthread_cond_t queuePopCond; + /* Indicates if the queue is shutting down */ + int shutdown; +}; + +/* POOL_thread() : + * Work thread for the thread pool. + * Waits for jobs and executes them. + * @returns : NULL on failure else non-null. + */ +static void* POOL_thread(void* opaque) { + POOL_ctx* const ctx = (POOL_ctx*)opaque; + if (!ctx) { return NULL; } + for (;;) { + /* Lock the mutex and wait for a non-empty queue or until shutdown */ + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + + while ( ctx->queueEmpty + || (ctx->numThreadsBusy >= ctx->threadLimit) ) { + if (ctx->shutdown) { + /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit), + * a few threads will be shutdown while !queueEmpty, + * but enough threads will remain active to finish the queue */ + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return opaque; + } + ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex); + } + /* Pop a job off the queue */ + { POOL_job const job = ctx->queue[ctx->queueHead]; + ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize; + ctx->numThreadsBusy++; + ctx->queueEmpty = ctx->queueHead == ctx->queueTail; + /* Unlock the mutex, signal a pusher, and run the job */ + ZSTD_pthread_cond_signal(&ctx->queuePushCond); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + + job.function(job.opaque); + + /* If the intended queue size was 0, signal after finishing job */ + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + ctx->numThreadsBusy--; + if (ctx->queueSize == 1) { + ZSTD_pthread_cond_signal(&ctx->queuePushCond); + } + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + } + } /* for (;;) */ + assert(0); /* Unreachable */ +} + +POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { + return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); +} + +POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, + ZSTD_customMem customMem) { + POOL_ctx* ctx; + /* Check parameters */ + if (!numThreads) { return NULL; } + /* Allocate the context and zero initialize */ + ctx = (POOL_ctx*)ZSTD_calloc(sizeof(POOL_ctx), customMem); + if (!ctx) { return NULL; } + /* Initialize the job queue. + * It needs one extra space since one space is wasted to differentiate + * empty and full queues. + */ + ctx->queueSize = queueSize + 1; + ctx->queue = (POOL_job*)ZSTD_malloc(ctx->queueSize * sizeof(POOL_job), customMem); + ctx->queueHead = 0; + ctx->queueTail = 0; + ctx->numThreadsBusy = 0; + ctx->queueEmpty = 1; + (void)ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL); + (void)ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL); + (void)ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL); + ctx->shutdown = 0; + /* Allocate space for the thread handles */ + ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem); + ctx->threadCapacity = 0; + ctx->customMem = customMem; + /* Check for errors */ + if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; } + /* Initialize the threads */ + { size_t i; + for (i = 0; i < numThreads; ++i) { + if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) { + ctx->threadCapacity = i; + POOL_free(ctx); + return NULL; + } } + ctx->threadCapacity = numThreads; + ctx->threadLimit = numThreads; + } + return ctx; +} + +/*! POOL_join() : + Shutdown the queue, wake any sleeping threads, and join all of the threads. +*/ +static void POOL_join(POOL_ctx* ctx) { + /* Shut down the queue */ + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + ctx->shutdown = 1; + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + /* Wake up sleeping threads */ + ZSTD_pthread_cond_broadcast(&ctx->queuePushCond); + ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); + /* Join all of the threads */ + { size_t i; + for (i = 0; i < ctx->threadCapacity; ++i) { + ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */ + } } +} + +void POOL_free(POOL_ctx *ctx) { + if (!ctx) { return; } + POOL_join(ctx); + ZSTD_pthread_mutex_destroy(&ctx->queueMutex); + ZSTD_pthread_cond_destroy(&ctx->queuePushCond); + ZSTD_pthread_cond_destroy(&ctx->queuePopCond); + ZSTD_free(ctx->queue, ctx->customMem); + ZSTD_free(ctx->threads, ctx->customMem); + ZSTD_free(ctx, ctx->customMem); +} + + + +size_t POOL_sizeof(POOL_ctx *ctx) { + if (ctx==NULL) return 0; /* supports sizeof NULL */ + return sizeof(*ctx) + + ctx->queueSize * sizeof(POOL_job) + + ctx->threadCapacity * sizeof(ZSTD_pthread_t); +} + + +/* @return : 0 on success, 1 on error */ +static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads) +{ + if (numThreads <= ctx->threadCapacity) { + if (!numThreads) return 1; + ctx->threadLimit = numThreads; + return 0; + } + /* numThreads > threadCapacity */ + { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem); + if (!threadPool) return 1; + /* replace existing thread pool */ + memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool)); + ZSTD_free(ctx->threads, ctx->customMem); + ctx->threads = threadPool; + /* Initialize additional threads */ + { size_t threadId; + for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) { + if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) { + ctx->threadCapacity = threadId; + return 1; + } } + } } + /* successfully expanded */ + ctx->threadCapacity = numThreads; + ctx->threadLimit = numThreads; + return 0; +} + +/* @return : 0 on success, 1 on error */ +int POOL_resize(POOL_ctx* ctx, size_t numThreads) +{ + int result; + if (ctx==NULL) return 1; + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + result = POOL_resize_internal(ctx, numThreads); + ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return result; +} + +/** + * Returns 1 if the queue is full and 0 otherwise. + * + * When queueSize is 1 (pool was created with an intended queueSize of 0), + * then a queue is empty if there is a thread free _and_ no job is waiting. + */ +static int isQueueFull(POOL_ctx const* ctx) { + if (ctx->queueSize > 1) { + return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize); + } else { + return (ctx->numThreadsBusy == ctx->threadLimit) || + !ctx->queueEmpty; + } +} + + +static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque) +{ + POOL_job const job = {function, opaque}; + assert(ctx != NULL); + if (ctx->shutdown) return; + + ctx->queueEmpty = 0; + ctx->queue[ctx->queueTail] = job; + ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize; + ZSTD_pthread_cond_signal(&ctx->queuePopCond); +} + +void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) +{ + assert(ctx != NULL); + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + /* Wait until there is space in the queue for the new job */ + while (isQueueFull(ctx) && (!ctx->shutdown)) { + ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex); + } + POOL_add_internal(ctx, function, opaque); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); +} + + +int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) +{ + assert(ctx != NULL); + ZSTD_pthread_mutex_lock(&ctx->queueMutex); + if (isQueueFull(ctx)) { + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return 0; + } + POOL_add_internal(ctx, function, opaque); + ZSTD_pthread_mutex_unlock(&ctx->queueMutex); + return 1; +} + + +#else /* ZSTD_MULTITHREAD not defined */ + +/* ========================== */ +/* No multi-threading support */ +/* ========================== */ + + +/* We don't need any data, but if it is empty, malloc() might return NULL. */ +struct POOL_ctx_s { + int dummy; +}; +static POOL_ctx g_ctx; + +POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { + return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); +} + +POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) { + (void)numThreads; + (void)queueSize; + (void)customMem; + return &g_ctx; +} + +void POOL_free(POOL_ctx* ctx) { + assert(!ctx || ctx == &g_ctx); + (void)ctx; +} + +int POOL_resize(POOL_ctx* ctx, size_t numThreads) { + (void)ctx; (void)numThreads; + return 0; +} + +void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) { + (void)ctx; + function(opaque); +} + +int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) { + (void)ctx; + function(opaque); + return 1; +} + +size_t POOL_sizeof(POOL_ctx* ctx) { + if (ctx==NULL) return 0; /* supports sizeof NULL */ + assert(ctx == &g_ctx); + return sizeof(*ctx); +} + +#endif /* ZSTD_MULTITHREAD */ diff --git a/vendor/github.com/DataDog/zstd/pool.h b/vendor/github.com/DataDog/zstd/pool.h new file mode 100644 index 0000000000..458d37f13c --- /dev/null +++ b/vendor/github.com/DataDog/zstd/pool.h @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef POOL_H +#define POOL_H + +#if defined (__cplusplus) +extern "C" { +#endif + + +#include /* size_t */ +#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */ +#include "zstd.h" + +typedef struct POOL_ctx_s POOL_ctx; + +/*! POOL_create() : + * Create a thread pool with at most `numThreads` threads. + * `numThreads` must be at least 1. + * The maximum number of queued jobs before blocking is `queueSize`. + * @return : POOL_ctx pointer on success, else NULL. +*/ +POOL_ctx* POOL_create(size_t numThreads, size_t queueSize); + +POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, + ZSTD_customMem customMem); + +/*! POOL_free() : + * Free a thread pool returned by POOL_create(). + */ +void POOL_free(POOL_ctx* ctx); + +/*! POOL_resize() : + * Expands or shrinks pool's number of threads. + * This is more efficient than releasing + creating a new context, + * since it tries to preserve and re-use existing threads. + * `numThreads` must be at least 1. + * @return : 0 when resize was successful, + * !0 (typically 1) if there is an error. + * note : only numThreads can be resized, queueSize remains unchanged. + */ +int POOL_resize(POOL_ctx* ctx, size_t numThreads); + +/*! POOL_sizeof() : + * @return threadpool memory usage + * note : compatible with NULL (returns 0 in this case) + */ +size_t POOL_sizeof(POOL_ctx* ctx); + +/*! POOL_function : + * The function type that can be added to a thread pool. + */ +typedef void (*POOL_function)(void*); + +/*! POOL_add() : + * Add the job `function(opaque)` to the thread pool. `ctx` must be valid. + * Possibly blocks until there is room in the queue. + * Note : The function may be executed asynchronously, + * therefore, `opaque` must live until function has been completed. + */ +void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque); + + +/*! POOL_tryAdd() : + * Add the job `function(opaque)` to thread pool _if_ a worker is available. + * Returns immediately even if not (does not block). + * @return : 1 if successful, 0 if not. + */ +int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque); + + +#if defined (__cplusplus) +} +#endif + +#endif diff --git a/vendor/github.com/DataDog/zstd/threading.c b/vendor/github.com/DataDog/zstd/threading.c new file mode 100644 index 0000000000..f3d4fa8418 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/threading.c @@ -0,0 +1,75 @@ +/** + * Copyright (c) 2016 Tino Reichardt + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * + * You can contact the author at: + * - zstdmt source repository: https://github.com/mcmilk/zstdmt + */ + +/** + * This file will hold wrapper for systems, which do not support pthreads + */ + +/* create fake symbol to avoid empty translation unit warning */ +int g_ZSTD_threading_useless_symbol; + +#if defined(ZSTD_MULTITHREAD) && defined(_WIN32) + +/** + * Windows minimalist Pthread Wrapper, based on : + * http://www.cse.wustl.edu/~schmidt/win32-cv-1.html + */ + + +/* === Dependencies === */ +#include +#include +#include "threading.h" + + +/* === Implementation === */ + +static unsigned __stdcall worker(void *arg) +{ + ZSTD_pthread_t* const thread = (ZSTD_pthread_t*) arg; + thread->arg = thread->start_routine(thread->arg); + return 0; +} + +int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused, + void* (*start_routine) (void*), void* arg) +{ + (void)unused; + thread->arg = arg; + thread->start_routine = start_routine; + thread->handle = (HANDLE) _beginthreadex(NULL, 0, worker, thread, 0, NULL); + + if (!thread->handle) + return errno; + else + return 0; +} + +int ZSTD_pthread_join(ZSTD_pthread_t thread, void **value_ptr) +{ + DWORD result; + + if (!thread.handle) return 0; + + result = WaitForSingleObject(thread.handle, INFINITE); + switch (result) { + case WAIT_OBJECT_0: + if (value_ptr) *value_ptr = thread.arg; + return 0; + case WAIT_ABANDONED: + return EINVAL; + default: + return GetLastError(); + } +} + +#endif /* ZSTD_MULTITHREAD */ diff --git a/vendor/github.com/DataDog/zstd/threading.h b/vendor/github.com/DataDog/zstd/threading.h new file mode 100644 index 0000000000..d806c89d01 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/threading.h @@ -0,0 +1,123 @@ +/** + * Copyright (c) 2016 Tino Reichardt + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * + * You can contact the author at: + * - zstdmt source repository: https://github.com/mcmilk/zstdmt + */ + +#ifndef THREADING_H_938743 +#define THREADING_H_938743 + +#if defined (__cplusplus) +extern "C" { +#endif + +#if defined(ZSTD_MULTITHREAD) && defined(_WIN32) + +/** + * Windows minimalist Pthread Wrapper, based on : + * http://www.cse.wustl.edu/~schmidt/win32-cv-1.html + */ +#ifdef WINVER +# undef WINVER +#endif +#define WINVER 0x0600 + +#ifdef _WIN32_WINNT +# undef _WIN32_WINNT +#endif +#define _WIN32_WINNT 0x0600 + +#ifndef WIN32_LEAN_AND_MEAN +# define WIN32_LEAN_AND_MEAN +#endif + +#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */ +#include +#undef ERROR +#define ERROR(name) ZSTD_ERROR(name) + + +/* mutex */ +#define ZSTD_pthread_mutex_t CRITICAL_SECTION +#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0) +#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a)) +#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a)) +#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a)) + +/* condition variable */ +#define ZSTD_pthread_cond_t CONDITION_VARIABLE +#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0) +#define ZSTD_pthread_cond_destroy(a) ((void)(a)) +#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE) +#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a)) +#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a)) + +/* ZSTD_pthread_create() and ZSTD_pthread_join() */ +typedef struct { + HANDLE handle; + void* (*start_routine)(void*); + void* arg; +} ZSTD_pthread_t; + +int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused, + void* (*start_routine) (void*), void* arg); + +int ZSTD_pthread_join(ZSTD_pthread_t thread, void** value_ptr); + +/** + * add here more wrappers as required + */ + + +#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */ +/* === POSIX Systems === */ +# include + +#define ZSTD_pthread_mutex_t pthread_mutex_t +#define ZSTD_pthread_mutex_init(a, b) pthread_mutex_init((a), (b)) +#define ZSTD_pthread_mutex_destroy(a) pthread_mutex_destroy((a)) +#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock((a)) +#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock((a)) + +#define ZSTD_pthread_cond_t pthread_cond_t +#define ZSTD_pthread_cond_init(a, b) pthread_cond_init((a), (b)) +#define ZSTD_pthread_cond_destroy(a) pthread_cond_destroy((a)) +#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait((a), (b)) +#define ZSTD_pthread_cond_signal(a) pthread_cond_signal((a)) +#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast((a)) + +#define ZSTD_pthread_t pthread_t +#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d)) +#define ZSTD_pthread_join(a, b) pthread_join((a),(b)) + +#else /* ZSTD_MULTITHREAD not defined */ +/* No multithreading support */ + +typedef int ZSTD_pthread_mutex_t; +#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0) +#define ZSTD_pthread_mutex_destroy(a) ((void)(a)) +#define ZSTD_pthread_mutex_lock(a) ((void)(a)) +#define ZSTD_pthread_mutex_unlock(a) ((void)(a)) + +typedef int ZSTD_pthread_cond_t; +#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0) +#define ZSTD_pthread_cond_destroy(a) ((void)(a)) +#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b)) +#define ZSTD_pthread_cond_signal(a) ((void)(a)) +#define ZSTD_pthread_cond_broadcast(a) ((void)(a)) + +/* do not use ZSTD_pthread_t */ + +#endif /* ZSTD_MULTITHREAD */ + +#if defined (__cplusplus) +} +#endif + +#endif /* THREADING_H_938743 */ diff --git a/vendor/github.com/DataDog/zstd/xxhash.c b/vendor/github.com/DataDog/zstd/xxhash.c new file mode 100644 index 0000000000..30599aaae4 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/xxhash.c @@ -0,0 +1,876 @@ +/* +* xxHash - Fast Hash algorithm +* Copyright (C) 2012-2016, Yann Collet +* +* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) +* +* Redistribution and use in source and binary forms, with or without +* modification, are permitted provided that the following conditions are +* met: +* +* * Redistributions of source code must retain the above copyright +* notice, this list of conditions and the following disclaimer. +* * Redistributions in binary form must reproduce the above +* copyright notice, this list of conditions and the following disclaimer +* in the documentation and/or other materials provided with the +* distribution. +* +* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +* +* You can contact the author at : +* - xxHash homepage: http://www.xxhash.com +* - xxHash source repository : https://github.com/Cyan4973/xxHash +*/ + + +/* ************************************* +* Tuning parameters +***************************************/ +/*!XXH_FORCE_MEMORY_ACCESS : + * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. + * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. + * The below switch allow to select different access method for improved performance. + * Method 0 (default) : use `memcpy()`. Safe and portable. + * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). + * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. + * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. + * It can generate buggy code on targets which do not support unaligned memory accesses. + * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) + * See http://stackoverflow.com/a/32095106/646947 for details. + * Prefer these methods in priority order (0 > 1 > 2) + */ +#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ +# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) +# define XXH_FORCE_MEMORY_ACCESS 2 +# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ + (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) +# define XXH_FORCE_MEMORY_ACCESS 1 +# endif +#endif + +/*!XXH_ACCEPT_NULL_INPUT_POINTER : + * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. + * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. + * By default, this option is disabled. To enable it, uncomment below define : + */ +/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ + +/*!XXH_FORCE_NATIVE_FORMAT : + * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. + * Results are therefore identical for little-endian and big-endian CPU. + * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. + * Should endian-independence be of no importance for your application, you may set the #define below to 1, + * to improve speed for Big-endian CPU. + * This option has no impact on Little_Endian CPU. + */ +#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ +# define XXH_FORCE_NATIVE_FORMAT 0 +#endif + +/*!XXH_FORCE_ALIGN_CHECK : + * This is a minor performance trick, only useful with lots of very small keys. + * It means : check for aligned/unaligned input. + * The check costs one initial branch per hash; set to 0 when the input data + * is guaranteed to be aligned. + */ +#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ +# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) +# define XXH_FORCE_ALIGN_CHECK 0 +# else +# define XXH_FORCE_ALIGN_CHECK 1 +# endif +#endif + + +/* ************************************* +* Includes & Memory related functions +***************************************/ +/* Modify the local functions below should you wish to use some other memory routines */ +/* for malloc(), free() */ +#include +#include /* size_t */ +static void* XXH_malloc(size_t s) { return malloc(s); } +static void XXH_free (void* p) { free(p); } +/* for memcpy() */ +#include +static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } + +#ifndef XXH_STATIC_LINKING_ONLY +# define XXH_STATIC_LINKING_ONLY +#endif +#include "xxhash.h" + + +/* ************************************* +* Compiler Specific Options +***************************************/ +#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ +# define INLINE_KEYWORD inline +#else +# define INLINE_KEYWORD +#endif + +#if defined(__GNUC__) +# define FORCE_INLINE_ATTR __attribute__((always_inline)) +#elif defined(_MSC_VER) +# define FORCE_INLINE_ATTR __forceinline +#else +# define FORCE_INLINE_ATTR +#endif + +#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR + + +#ifdef _MSC_VER +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +#endif + + +/* ************************************* +* Basic Types +***************************************/ +#ifndef MEM_MODULE +# define MEM_MODULE +# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) +# include + typedef uint8_t BYTE; + typedef uint16_t U16; + typedef uint32_t U32; + typedef int32_t S32; + typedef uint64_t U64; +# else + typedef unsigned char BYTE; + typedef unsigned short U16; + typedef unsigned int U32; + typedef signed int S32; + typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */ +# endif +#endif + + +#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) + +/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ +static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } +static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } + +#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) + +/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ +/* currently only defined for gcc and icc */ +typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign; + +static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } +static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } + +#else + +/* portable and safe solution. Generally efficient. + * see : http://stackoverflow.com/a/32095106/646947 + */ + +static U32 XXH_read32(const void* memPtr) +{ + U32 val; + memcpy(&val, memPtr, sizeof(val)); + return val; +} + +static U64 XXH_read64(const void* memPtr) +{ + U64 val; + memcpy(&val, memPtr, sizeof(val)); + return val; +} + +#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ + + +/* **************************************** +* Compiler-specific Functions and Macros +******************************************/ +#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) + +/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ +#if defined(_MSC_VER) +# define XXH_rotl32(x,r) _rotl(x,r) +# define XXH_rotl64(x,r) _rotl64(x,r) +#else +# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) +# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) +#endif + +#if defined(_MSC_VER) /* Visual Studio */ +# define XXH_swap32 _byteswap_ulong +# define XXH_swap64 _byteswap_uint64 +#elif GCC_VERSION >= 403 +# define XXH_swap32 __builtin_bswap32 +# define XXH_swap64 __builtin_bswap64 +#else +static U32 XXH_swap32 (U32 x) +{ + return ((x << 24) & 0xff000000 ) | + ((x << 8) & 0x00ff0000 ) | + ((x >> 8) & 0x0000ff00 ) | + ((x >> 24) & 0x000000ff ); +} +static U64 XXH_swap64 (U64 x) +{ + return ((x << 56) & 0xff00000000000000ULL) | + ((x << 40) & 0x00ff000000000000ULL) | + ((x << 24) & 0x0000ff0000000000ULL) | + ((x << 8) & 0x000000ff00000000ULL) | + ((x >> 8) & 0x00000000ff000000ULL) | + ((x >> 24) & 0x0000000000ff0000ULL) | + ((x >> 40) & 0x000000000000ff00ULL) | + ((x >> 56) & 0x00000000000000ffULL); +} +#endif + + +/* ************************************* +* Architecture Macros +***************************************/ +typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; + +/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ +#ifndef XXH_CPU_LITTLE_ENDIAN + static const int g_one = 1; +# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) +#endif + + +/* *************************** +* Memory reads +*****************************/ +typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; + +FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) +{ + if (align==XXH_unaligned) + return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); + else + return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); +} + +FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) +{ + return XXH_readLE32_align(ptr, endian, XXH_unaligned); +} + +static U32 XXH_readBE32(const void* ptr) +{ + return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); +} + +FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) +{ + if (align==XXH_unaligned) + return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); + else + return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); +} + +FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) +{ + return XXH_readLE64_align(ptr, endian, XXH_unaligned); +} + +static U64 XXH_readBE64(const void* ptr) +{ + return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); +} + + +/* ************************************* +* Macros +***************************************/ +#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ + + +/* ************************************* +* Constants +***************************************/ +static const U32 PRIME32_1 = 2654435761U; +static const U32 PRIME32_2 = 2246822519U; +static const U32 PRIME32_3 = 3266489917U; +static const U32 PRIME32_4 = 668265263U; +static const U32 PRIME32_5 = 374761393U; + +static const U64 PRIME64_1 = 11400714785074694791ULL; +static const U64 PRIME64_2 = 14029467366897019727ULL; +static const U64 PRIME64_3 = 1609587929392839161ULL; +static const U64 PRIME64_4 = 9650029242287828579ULL; +static const U64 PRIME64_5 = 2870177450012600261ULL; + +XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } + + +/* ************************** +* Utils +****************************/ +XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState) +{ + memcpy(dstState, srcState, sizeof(*dstState)); +} + +XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState) +{ + memcpy(dstState, srcState, sizeof(*dstState)); +} + + +/* *************************** +* Simple Hash Functions +*****************************/ + +static U32 XXH32_round(U32 seed, U32 input) +{ + seed += input * PRIME32_2; + seed = XXH_rotl32(seed, 13); + seed *= PRIME32_1; + return seed; +} + +FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) +{ + const BYTE* p = (const BYTE*)input; + const BYTE* bEnd = p + len; + U32 h32; +#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) + +#ifdef XXH_ACCEPT_NULL_INPUT_POINTER + if (p==NULL) { + len=0; + bEnd=p=(const BYTE*)(size_t)16; + } +#endif + + if (len>=16) { + const BYTE* const limit = bEnd - 16; + U32 v1 = seed + PRIME32_1 + PRIME32_2; + U32 v2 = seed + PRIME32_2; + U32 v3 = seed + 0; + U32 v4 = seed - PRIME32_1; + + do { + v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; + v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; + v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; + v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; + } while (p<=limit); + + h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); + } else { + h32 = seed + PRIME32_5; + } + + h32 += (U32) len; + + while (p+4<=bEnd) { + h32 += XXH_get32bits(p) * PRIME32_3; + h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; + p+=4; + } + + while (p> 15; + h32 *= PRIME32_2; + h32 ^= h32 >> 13; + h32 *= PRIME32_3; + h32 ^= h32 >> 16; + + return h32; +} + + +XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) +{ +#if 0 + /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ + XXH32_CREATESTATE_STATIC(state); + XXH32_reset(state, seed); + XXH32_update(state, input, len); + return XXH32_digest(state); +#else + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if (XXH_FORCE_ALIGN_CHECK) { + if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); + else + return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); + } } + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); + else + return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); +#endif +} + + +static U64 XXH64_round(U64 acc, U64 input) +{ + acc += input * PRIME64_2; + acc = XXH_rotl64(acc, 31); + acc *= PRIME64_1; + return acc; +} + +static U64 XXH64_mergeRound(U64 acc, U64 val) +{ + val = XXH64_round(0, val); + acc ^= val; + acc = acc * PRIME64_1 + PRIME64_4; + return acc; +} + +FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) +{ + const BYTE* p = (const BYTE*)input; + const BYTE* const bEnd = p + len; + U64 h64; +#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) + +#ifdef XXH_ACCEPT_NULL_INPUT_POINTER + if (p==NULL) { + len=0; + bEnd=p=(const BYTE*)(size_t)32; + } +#endif + + if (len>=32) { + const BYTE* const limit = bEnd - 32; + U64 v1 = seed + PRIME64_1 + PRIME64_2; + U64 v2 = seed + PRIME64_2; + U64 v3 = seed + 0; + U64 v4 = seed - PRIME64_1; + + do { + v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; + v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; + v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; + v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; + } while (p<=limit); + + h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); + h64 = XXH64_mergeRound(h64, v1); + h64 = XXH64_mergeRound(h64, v2); + h64 = XXH64_mergeRound(h64, v3); + h64 = XXH64_mergeRound(h64, v4); + + } else { + h64 = seed + PRIME64_5; + } + + h64 += (U64) len; + + while (p+8<=bEnd) { + U64 const k1 = XXH64_round(0, XXH_get64bits(p)); + h64 ^= k1; + h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; + p+=8; + } + + if (p+4<=bEnd) { + h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; + h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; + p+=4; + } + + while (p> 33; + h64 *= PRIME64_2; + h64 ^= h64 >> 29; + h64 *= PRIME64_3; + h64 ^= h64 >> 32; + + return h64; +} + + +XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) +{ +#if 0 + /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ + XXH64_CREATESTATE_STATIC(state); + XXH64_reset(state, seed); + XXH64_update(state, input, len); + return XXH64_digest(state); +#else + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if (XXH_FORCE_ALIGN_CHECK) { + if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); + else + return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); + } } + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); + else + return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); +#endif +} + + +/* ************************************************** +* Advanced Hash Functions +****************************************************/ + +XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) +{ + return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); +} +XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) +{ + XXH_free(statePtr); + return XXH_OK; +} + +XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) +{ + return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); +} +XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) +{ + XXH_free(statePtr); + return XXH_OK; +} + + +/*** Hash feed ***/ + +XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) +{ + XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ + memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ + state.v1 = seed + PRIME32_1 + PRIME32_2; + state.v2 = seed + PRIME32_2; + state.v3 = seed + 0; + state.v4 = seed - PRIME32_1; + memcpy(statePtr, &state, sizeof(state)); + return XXH_OK; +} + + +XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) +{ + XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ + memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ + state.v1 = seed + PRIME64_1 + PRIME64_2; + state.v2 = seed + PRIME64_2; + state.v3 = seed + 0; + state.v4 = seed - PRIME64_1; + memcpy(statePtr, &state, sizeof(state)); + return XXH_OK; +} + + +FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) +{ + const BYTE* p = (const BYTE*)input; + const BYTE* const bEnd = p + len; + +#ifdef XXH_ACCEPT_NULL_INPUT_POINTER + if (input==NULL) return XXH_ERROR; +#endif + + state->total_len_32 += (unsigned)len; + state->large_len |= (len>=16) | (state->total_len_32>=16); + + if (state->memsize + len < 16) { /* fill in tmp buffer */ + XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); + state->memsize += (unsigned)len; + return XXH_OK; + } + + if (state->memsize) { /* some data left from previous update */ + XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); + { const U32* p32 = state->mem32; + state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; + state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; + state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; + state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; + } + p += 16-state->memsize; + state->memsize = 0; + } + + if (p <= bEnd-16) { + const BYTE* const limit = bEnd - 16; + U32 v1 = state->v1; + U32 v2 = state->v2; + U32 v3 = state->v3; + U32 v4 = state->v4; + + do { + v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; + v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; + v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; + v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; + } while (p<=limit); + + state->v1 = v1; + state->v2 = v2; + state->v3 = v3; + state->v4 = v4; + } + + if (p < bEnd) { + XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); + state->memsize = (unsigned)(bEnd-p); + } + + return XXH_OK; +} + +XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) +{ + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_update_endian(state_in, input, len, XXH_littleEndian); + else + return XXH32_update_endian(state_in, input, len, XXH_bigEndian); +} + + + +FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) +{ + const BYTE * p = (const BYTE*)state->mem32; + const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; + U32 h32; + + if (state->large_len) { + h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); + } else { + h32 = state->v3 /* == seed */ + PRIME32_5; + } + + h32 += state->total_len_32; + + while (p+4<=bEnd) { + h32 += XXH_readLE32(p, endian) * PRIME32_3; + h32 = XXH_rotl32(h32, 17) * PRIME32_4; + p+=4; + } + + while (p> 15; + h32 *= PRIME32_2; + h32 ^= h32 >> 13; + h32 *= PRIME32_3; + h32 ^= h32 >> 16; + + return h32; +} + + +XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) +{ + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH32_digest_endian(state_in, XXH_littleEndian); + else + return XXH32_digest_endian(state_in, XXH_bigEndian); +} + + + +/* **** XXH64 **** */ + +FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) +{ + const BYTE* p = (const BYTE*)input; + const BYTE* const bEnd = p + len; + +#ifdef XXH_ACCEPT_NULL_INPUT_POINTER + if (input==NULL) return XXH_ERROR; +#endif + + state->total_len += len; + + if (state->memsize + len < 32) { /* fill in tmp buffer */ + XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); + state->memsize += (U32)len; + return XXH_OK; + } + + if (state->memsize) { /* tmp buffer is full */ + XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); + state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); + state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); + state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); + state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); + p += 32-state->memsize; + state->memsize = 0; + } + + if (p+32 <= bEnd) { + const BYTE* const limit = bEnd - 32; + U64 v1 = state->v1; + U64 v2 = state->v2; + U64 v3 = state->v3; + U64 v4 = state->v4; + + do { + v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; + v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; + v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; + v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; + } while (p<=limit); + + state->v1 = v1; + state->v2 = v2; + state->v3 = v3; + state->v4 = v4; + } + + if (p < bEnd) { + XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); + state->memsize = (unsigned)(bEnd-p); + } + + return XXH_OK; +} + +XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) +{ + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_update_endian(state_in, input, len, XXH_littleEndian); + else + return XXH64_update_endian(state_in, input, len, XXH_bigEndian); +} + + + +FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) +{ + const BYTE * p = (const BYTE*)state->mem64; + const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; + U64 h64; + + if (state->total_len >= 32) { + U64 const v1 = state->v1; + U64 const v2 = state->v2; + U64 const v3 = state->v3; + U64 const v4 = state->v4; + + h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); + h64 = XXH64_mergeRound(h64, v1); + h64 = XXH64_mergeRound(h64, v2); + h64 = XXH64_mergeRound(h64, v3); + h64 = XXH64_mergeRound(h64, v4); + } else { + h64 = state->v3 + PRIME64_5; + } + + h64 += (U64) state->total_len; + + while (p+8<=bEnd) { + U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); + h64 ^= k1; + h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; + p+=8; + } + + if (p+4<=bEnd) { + h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; + h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; + p+=4; + } + + while (p> 33; + h64 *= PRIME64_2; + h64 ^= h64 >> 29; + h64 *= PRIME64_3; + h64 ^= h64 >> 32; + + return h64; +} + + +XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) +{ + XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; + + if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) + return XXH64_digest_endian(state_in, XXH_littleEndian); + else + return XXH64_digest_endian(state_in, XXH_bigEndian); +} + + +/* ************************** +* Canonical representation +****************************/ + +/*! Default XXH result types are basic unsigned 32 and 64 bits. +* The canonical representation follows human-readable write convention, aka big-endian (large digits first). +* These functions allow transformation of hash result into and from its canonical format. +* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. +*/ + +XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) +{ + XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); + memcpy(dst, &hash, sizeof(*dst)); +} + +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) +{ + XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); + if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); + memcpy(dst, &hash, sizeof(*dst)); +} + +XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) +{ + return XXH_readBE32(src); +} + +XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) +{ + return XXH_readBE64(src); +} diff --git a/vendor/github.com/DataDog/zstd/xxhash.h b/vendor/github.com/DataDog/zstd/xxhash.h new file mode 100644 index 0000000000..9bad1f59f6 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/xxhash.h @@ -0,0 +1,305 @@ +/* + xxHash - Extremely Fast Hash algorithm + Header File + Copyright (C) 2012-2016, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - xxHash source repository : https://github.com/Cyan4973/xxHash +*/ + +/* Notice extracted from xxHash homepage : + +xxHash is an extremely fast Hash algorithm, running at RAM speed limits. +It also successfully passes all tests from the SMHasher suite. + +Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz) + +Name Speed Q.Score Author +xxHash 5.4 GB/s 10 +CrapWow 3.2 GB/s 2 Andrew +MumurHash 3a 2.7 GB/s 10 Austin Appleby +SpookyHash 2.0 GB/s 10 Bob Jenkins +SBox 1.4 GB/s 9 Bret Mulvey +Lookup3 1.2 GB/s 9 Bob Jenkins +SuperFastHash 1.2 GB/s 1 Paul Hsieh +CityHash64 1.05 GB/s 10 Pike & Alakuijala +FNV 0.55 GB/s 5 Fowler, Noll, Vo +CRC32 0.43 GB/s 9 +MD5-32 0.33 GB/s 10 Ronald L. Rivest +SHA1-32 0.28 GB/s 10 + +Q.Score is a measure of quality of the hash function. +It depends on successfully passing SMHasher test set. +10 is a perfect score. + +A 64-bits version, named XXH64, is available since r35. +It offers much better speed, but for 64-bits applications only. +Name Speed on 64 bits Speed on 32 bits +XXH64 13.8 GB/s 1.9 GB/s +XXH32 6.8 GB/s 6.0 GB/s +*/ + +#if defined (__cplusplus) +extern "C" { +#endif + +#ifndef XXHASH_H_5627135585666179 +#define XXHASH_H_5627135585666179 1 + + +/* **************************** +* Definitions +******************************/ +#include /* size_t */ +typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode; + + +/* **************************** +* API modifier +******************************/ +/** XXH_PRIVATE_API +* This is useful if you want to include xxhash functions in `static` mode +* in order to inline them, and remove their symbol from the public list. +* Methodology : +* #define XXH_PRIVATE_API +* #include "xxhash.h" +* `xxhash.c` is automatically included. +* It's not useful to compile and link it as a separate module anymore. +*/ +#ifdef XXH_PRIVATE_API +# ifndef XXH_STATIC_LINKING_ONLY +# define XXH_STATIC_LINKING_ONLY +# endif +# if defined(__GNUC__) +# define XXH_PUBLIC_API static __inline __attribute__((unused)) +# elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define XXH_PUBLIC_API static inline +# elif defined(_MSC_VER) +# define XXH_PUBLIC_API static __inline +# else +# define XXH_PUBLIC_API static /* this version may generate warnings for unused static functions; disable the relevant warning */ +# endif +#else +# define XXH_PUBLIC_API /* do nothing */ +#endif /* XXH_PRIVATE_API */ + +/*!XXH_NAMESPACE, aka Namespace Emulation : + +If you want to include _and expose_ xxHash functions from within your own library, +but also want to avoid symbol collisions with another library which also includes xxHash, + +you can use XXH_NAMESPACE, to automatically prefix any public symbol from xxhash library +with the value of XXH_NAMESPACE (so avoid to keep it NULL and avoid numeric values). + +Note that no change is required within the calling program as long as it includes `xxhash.h` : +regular symbol name will be automatically translated by this header. +*/ +#ifdef XXH_NAMESPACE +# define XXH_CAT(A,B) A##B +# define XXH_NAME2(A,B) XXH_CAT(A,B) +# define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32) +# define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64) +# define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber) +# define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState) +# define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState) +# define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState) +# define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState) +# define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset) +# define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset) +# define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update) +# define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update) +# define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest) +# define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest) +# define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState) +# define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState) +# define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash) +# define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash) +# define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical) +# define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical) +#endif + + +/* ************************************* +* Version +***************************************/ +#define XXH_VERSION_MAJOR 0 +#define XXH_VERSION_MINOR 6 +#define XXH_VERSION_RELEASE 2 +#define XXH_VERSION_NUMBER (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE) +XXH_PUBLIC_API unsigned XXH_versionNumber (void); + + +/* **************************** +* Simple Hash Functions +******************************/ +typedef unsigned int XXH32_hash_t; +typedef unsigned long long XXH64_hash_t; + +XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, unsigned int seed); +XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t length, unsigned long long seed); + +/*! +XXH32() : + Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input". + The memory between input & input+length must be valid (allocated and read-accessible). + "seed" can be used to alter the result predictably. + Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s +XXH64() : + Calculate the 64-bits hash of sequence of length "len" stored at memory address "input". + "seed" can be used to alter the result predictably. + This function runs 2x faster on 64-bits systems, but slower on 32-bits systems (see benchmark). +*/ + + +/* **************************** +* Streaming Hash Functions +******************************/ +typedef struct XXH32_state_s XXH32_state_t; /* incomplete type */ +typedef struct XXH64_state_s XXH64_state_t; /* incomplete type */ + +/*! State allocation, compatible with dynamic libraries */ + +XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void); +XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr); + +XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void); +XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr); + + +/* hash streaming */ + +XXH_PUBLIC_API XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned int seed); +XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length); +XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* statePtr); + +XXH_PUBLIC_API XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, unsigned long long seed); +XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length); +XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* statePtr); + +/* +These functions generate the xxHash of an input provided in multiple segments. +Note that, for small input, they are slower than single-call functions, due to state management. +For small input, prefer `XXH32()` and `XXH64()` . + +XXH state must first be allocated, using XXH*_createState() . + +Start a new hash by initializing state with a seed, using XXH*_reset(). + +Then, feed the hash state by calling XXH*_update() as many times as necessary. +Obviously, input must be allocated and read accessible. +The function returns an error code, with 0 meaning OK, and any other value meaning there is an error. + +Finally, a hash value can be produced anytime, by using XXH*_digest(). +This function returns the nn-bits hash as an int or long long. + +It's still possible to continue inserting input into the hash state after a digest, +and generate some new hashes later on, by calling again XXH*_digest(). + +When done, free XXH state space if it was allocated dynamically. +*/ + + +/* ************************** +* Utils +****************************/ +#if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) /* ! C99 */ +# define restrict /* disable restrict */ +#endif + +XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dst_state, const XXH32_state_t* restrict src_state); +XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dst_state, const XXH64_state_t* restrict src_state); + + +/* ************************** +* Canonical representation +****************************/ +/* Default result type for XXH functions are primitive unsigned 32 and 64 bits. +* The canonical representation uses human-readable write convention, aka big-endian (large digits first). +* These functions allow transformation of hash result into and from its canonical format. +* This way, hash values can be written into a file / memory, and remain comparable on different systems and programs. +*/ +typedef struct { unsigned char digest[4]; } XXH32_canonical_t; +typedef struct { unsigned char digest[8]; } XXH64_canonical_t; + +XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash); +XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash); + +XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src); +XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src); + +#endif /* XXHASH_H_5627135585666179 */ + + + +/* ================================================================================================ + This section contains definitions which are not guaranteed to remain stable. + They may change in future versions, becoming incompatible with a different version of the library. + They shall only be used with static linking. + Never use these definitions in association with dynamic linking ! +=================================================================================================== */ +#if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXH_STATIC_H_3543687687345) +#define XXH_STATIC_H_3543687687345 + +/* These definitions are only meant to allow allocation of XXH state + statically, on stack, or in a struct for example. + Do not use members directly. */ + + struct XXH32_state_s { + unsigned total_len_32; + unsigned large_len; + unsigned v1; + unsigned v2; + unsigned v3; + unsigned v4; + unsigned mem32[4]; /* buffer defined as U32 for alignment */ + unsigned memsize; + unsigned reserved; /* never read nor write, will be removed in a future version */ + }; /* typedef'd to XXH32_state_t */ + + struct XXH64_state_s { + unsigned long long total_len; + unsigned long long v1; + unsigned long long v2; + unsigned long long v3; + unsigned long long v4; + unsigned long long mem64[4]; /* buffer defined as U64 for alignment */ + unsigned memsize; + unsigned reserved[2]; /* never read nor write, will be removed in a future version */ + }; /* typedef'd to XXH64_state_t */ + + +# ifdef XXH_PRIVATE_API +# include "xxhash.c" /* include xxhash functions as `static`, for inlining */ +# endif + +#endif /* XXH_STATIC_LINKING_ONLY && XXH_STATIC_H_3543687687345 */ + + +#if defined (__cplusplus) +} +#endif diff --git a/vendor/github.com/DataDog/zstd/zbuff.h b/vendor/github.com/DataDog/zstd/zbuff.h new file mode 100644 index 0000000000..a93115da4a --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zbuff.h @@ -0,0 +1,213 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* *************************************************************** +* NOTES/WARNINGS +******************************************************************/ +/* The streaming API defined here is deprecated. + * Consider migrating towards ZSTD_compressStream() API in `zstd.h` + * See 'lib/README.md'. + *****************************************************************/ + + +#if defined (__cplusplus) +extern "C" { +#endif + +#ifndef ZSTD_BUFFERED_H_23987 +#define ZSTD_BUFFERED_H_23987 + +/* ************************************* +* Dependencies +***************************************/ +#include /* size_t */ +#include "zstd.h" /* ZSTD_CStream, ZSTD_DStream, ZSTDLIB_API */ + + +/* *************************************************************** +* Compiler specifics +*****************************************************************/ +/* Deprecation warnings */ +/* Should these warnings be a problem, + it is generally possible to disable them, + typically with -Wno-deprecated-declarations for gcc + or _CRT_SECURE_NO_WARNINGS in Visual. + Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS */ +#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS +# define ZBUFF_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */ +#else +# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */ +# define ZBUFF_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API +# elif (defined(__GNUC__) && (__GNUC__ >= 5)) || defined(__clang__) +# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message))) +# elif defined(__GNUC__) && (__GNUC__ >= 3) +# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated)) +# elif defined(_MSC_VER) +# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __declspec(deprecated(message)) +# else +# pragma message("WARNING: You need to implement ZBUFF_DEPRECATED for this compiler") +# define ZBUFF_DEPRECATED(message) ZSTDLIB_API +# endif +#endif /* ZBUFF_DISABLE_DEPRECATE_WARNINGS */ + + +/* ************************************* +* Streaming functions +***************************************/ +/* This is the easier "buffered" streaming API, +* using an internal buffer to lift all restrictions on user-provided buffers +* which can be any size, any place, for both input and output. +* ZBUFF and ZSTD are 100% interoperable, +* frames created by one can be decoded by the other one */ + +typedef ZSTD_CStream ZBUFF_CCtx; +ZBUFF_DEPRECATED("use ZSTD_createCStream") ZBUFF_CCtx* ZBUFF_createCCtx(void); +ZBUFF_DEPRECATED("use ZSTD_freeCStream") size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx); + +ZBUFF_DEPRECATED("use ZSTD_initCStream") size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel); +ZBUFF_DEPRECATED("use ZSTD_initCStream_usingDict") size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel); + +ZBUFF_DEPRECATED("use ZSTD_compressStream") size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr); +ZBUFF_DEPRECATED("use ZSTD_flushStream") size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr); +ZBUFF_DEPRECATED("use ZSTD_endStream") size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr); + +/*-************************************************* +* Streaming compression - howto +* +* A ZBUFF_CCtx object is required to track streaming operation. +* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources. +* ZBUFF_CCtx objects can be reused multiple times. +* +* Start by initializing ZBUF_CCtx. +* Use ZBUFF_compressInit() to start a new compression operation. +* Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary. +* +* Use ZBUFF_compressContinue() repetitively to consume input stream. +* *srcSizePtr and *dstCapacityPtr can be any size. +* The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr. +* Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data. +* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst . +* @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency) +* or an error code, which can be tested using ZBUFF_isError(). +* +* At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush(). +* The nb of bytes written into `dst` will be reported into *dstCapacityPtr. +* Note that the function cannot output more than *dstCapacityPtr, +* therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small. +* @return : nb of bytes still present into internal buffer (0 if it's empty) +* or an error code, which can be tested using ZBUFF_isError(). +* +* ZBUFF_compressEnd() instructs to finish a frame. +* It will perform a flush and write frame epilogue. +* The epilogue is required for decoders to consider a frame completed. +* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small. +* In which case, call again ZBUFF_compressFlush() to complete the flush. +* @return : nb of bytes still present into internal buffer (0 if it's empty) +* or an error code, which can be tested using ZBUFF_isError(). +* +* Hint : _recommended buffer_ sizes (not compulsory) : ZBUFF_recommendedCInSize() / ZBUFF_recommendedCOutSize() +* input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, use this value to reduce intermediate stages (better latency) +* output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering. +* By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering. +* **************************************************/ + + +typedef ZSTD_DStream ZBUFF_DCtx; +ZBUFF_DEPRECATED("use ZSTD_createDStream") ZBUFF_DCtx* ZBUFF_createDCtx(void); +ZBUFF_DEPRECATED("use ZSTD_freeDStream") size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx); + +ZBUFF_DEPRECATED("use ZSTD_initDStream") size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx); +ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize); + +ZBUFF_DEPRECATED("use ZSTD_decompressStream") size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx, + void* dst, size_t* dstCapacityPtr, + const void* src, size_t* srcSizePtr); + +/*-*************************************************************************** +* Streaming decompression howto +* +* A ZBUFF_DCtx object is required to track streaming operations. +* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources. +* Use ZBUFF_decompressInit() to start a new decompression operation, +* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary. +* Note that ZBUFF_DCtx objects can be re-init multiple times. +* +* Use ZBUFF_decompressContinue() repetitively to consume your input. +* *srcSizePtr and *dstCapacityPtr can be any size. +* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr. +* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again. +* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`. +* @return : 0 when a frame is completely decoded and fully flushed, +* 1 when there is still some data left within internal buffer to flush, +* >1 when more data is expected, with value being a suggested next input size (it's just a hint, which helps latency), +* or an error code, which can be tested using ZBUFF_isError(). +* +* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize() +* output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded. +* input : ZBUFF_recommendedDInSize == 128KB + 3; +* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 . +* *******************************************************************************/ + + +/* ************************************* +* Tool functions +***************************************/ +ZBUFF_DEPRECATED("use ZSTD_isError") unsigned ZBUFF_isError(size_t errorCode); +ZBUFF_DEPRECATED("use ZSTD_getErrorName") const char* ZBUFF_getErrorName(size_t errorCode); + +/** Functions below provide recommended buffer sizes for Compression or Decompression operations. +* These sizes are just hints, they tend to offer better latency */ +ZBUFF_DEPRECATED("use ZSTD_CStreamInSize") size_t ZBUFF_recommendedCInSize(void); +ZBUFF_DEPRECATED("use ZSTD_CStreamOutSize") size_t ZBUFF_recommendedCOutSize(void); +ZBUFF_DEPRECATED("use ZSTD_DStreamInSize") size_t ZBUFF_recommendedDInSize(void); +ZBUFF_DEPRECATED("use ZSTD_DStreamOutSize") size_t ZBUFF_recommendedDOutSize(void); + +#endif /* ZSTD_BUFFERED_H_23987 */ + + +#ifdef ZBUFF_STATIC_LINKING_ONLY +#ifndef ZBUFF_STATIC_H_30298098432 +#define ZBUFF_STATIC_H_30298098432 + +/* ==================================================================================== + * The definitions in this section are considered experimental. + * They should never be used in association with a dynamic library, as they may change in the future. + * They are provided for advanced usages. + * Use them only in association with static linking. + * ==================================================================================== */ + +/*--- Dependency ---*/ +#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_customMem */ +#include "zstd.h" + + +/*--- Custom memory allocator ---*/ +/*! ZBUFF_createCCtx_advanced() : + * Create a ZBUFF compression context using external alloc and free functions */ +ZBUFF_DEPRECATED("use ZSTD_createCStream_advanced") ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem); + +/*! ZBUFF_createDCtx_advanced() : + * Create a ZBUFF decompression context using external alloc and free functions */ +ZBUFF_DEPRECATED("use ZSTD_createDStream_advanced") ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem); + + +/*--- Advanced Streaming Initialization ---*/ +ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc, + const void* dict, size_t dictSize, + ZSTD_parameters params, unsigned long long pledgedSrcSize); + + +#endif /* ZBUFF_STATIC_H_30298098432 */ +#endif /* ZBUFF_STATIC_LINKING_ONLY */ + + +#if defined (__cplusplus) +} +#endif diff --git a/vendor/github.com/DataDog/zstd/zbuff_common.c b/vendor/github.com/DataDog/zstd/zbuff_common.c new file mode 100644 index 0000000000..661b9b0e18 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zbuff_common.c @@ -0,0 +1,26 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/*-************************************* +* Dependencies +***************************************/ +#include "error_private.h" +#include "zbuff.h" + +/*-**************************************** +* ZBUFF Error Management (deprecated) +******************************************/ + +/*! ZBUFF_isError() : +* tells if a return value is an error code */ +unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); } +/*! ZBUFF_getErrorName() : +* provides error code string from function result (useful for debugging) */ +const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } diff --git a/vendor/github.com/DataDog/zstd/zbuff_compress.c b/vendor/github.com/DataDog/zstd/zbuff_compress.c new file mode 100644 index 0000000000..f39c60d89f --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zbuff_compress.c @@ -0,0 +1,147 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + + +/* ************************************* +* Dependencies +***************************************/ +#define ZBUFF_STATIC_LINKING_ONLY +#include "zbuff.h" + + +/*-*********************************************************** +* Streaming compression +* +* A ZBUFF_CCtx object is required to track streaming operation. +* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources. +* Use ZBUFF_compressInit() to start a new compression operation. +* ZBUFF_CCtx objects can be reused multiple times. +* +* Use ZBUFF_compressContinue() repetitively to consume your input. +* *srcSizePtr and *dstCapacityPtr can be any size. +* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr. +* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input. +* The content of dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change dst . +* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency) +* or an error code, which can be tested using ZBUFF_isError(). +* +* ZBUFF_compressFlush() can be used to instruct ZBUFF to compress and output whatever remains within its buffer. +* Note that it will not output more than *dstCapacityPtr. +* Therefore, some content might still be left into its internal buffer if dst buffer is too small. +* @return : nb of bytes still present into internal buffer (0 if it's empty) +* or an error code, which can be tested using ZBUFF_isError(). +* +* ZBUFF_compressEnd() instructs to finish a frame. +* It will perform a flush and write frame epilogue. +* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small. +* @return : nb of bytes still present into internal buffer (0 if it's empty) +* or an error code, which can be tested using ZBUFF_isError(). +* +* Hint : recommended buffer sizes (not compulsory) +* input : ZSTD_BLOCKSIZE_MAX (128 KB), internal unit size, it improves latency to use this value. +* output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed. +* ***********************************************************/ + +ZBUFF_CCtx* ZBUFF_createCCtx(void) +{ + return ZSTD_createCStream(); +} + +ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem) +{ + return ZSTD_createCStream_advanced(customMem); +} + +size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc) +{ + return ZSTD_freeCStream(zbc); +} + + +/* ====== Initialization ====== */ + +size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc, + const void* dict, size_t dictSize, + ZSTD_parameters params, unsigned long long pledgedSrcSize) +{ + if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* preserve "0 == unknown" behavior */ + return ZSTD_initCStream_advanced(zbc, dict, dictSize, params, pledgedSrcSize); +} + + +size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel) +{ + return ZSTD_initCStream_usingDict(zbc, dict, dictSize, compressionLevel); +} + +size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel) +{ + return ZSTD_initCStream(zbc, compressionLevel); +} + +/* ====== Compression ====== */ + + +size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc, + void* dst, size_t* dstCapacityPtr, + const void* src, size_t* srcSizePtr) +{ + size_t result; + ZSTD_outBuffer outBuff; + ZSTD_inBuffer inBuff; + outBuff.dst = dst; + outBuff.pos = 0; + outBuff.size = *dstCapacityPtr; + inBuff.src = src; + inBuff.pos = 0; + inBuff.size = *srcSizePtr; + result = ZSTD_compressStream(zbc, &outBuff, &inBuff); + *dstCapacityPtr = outBuff.pos; + *srcSizePtr = inBuff.pos; + return result; +} + + + +/* ====== Finalize ====== */ + +size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr) +{ + size_t result; + ZSTD_outBuffer outBuff; + outBuff.dst = dst; + outBuff.pos = 0; + outBuff.size = *dstCapacityPtr; + result = ZSTD_flushStream(zbc, &outBuff); + *dstCapacityPtr = outBuff.pos; + return result; +} + + +size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr) +{ + size_t result; + ZSTD_outBuffer outBuff; + outBuff.dst = dst; + outBuff.pos = 0; + outBuff.size = *dstCapacityPtr; + result = ZSTD_endStream(zbc, &outBuff); + *dstCapacityPtr = outBuff.pos; + return result; +} + + + +/* ************************************* +* Tool functions +***************************************/ +size_t ZBUFF_recommendedCInSize(void) { return ZSTD_CStreamInSize(); } +size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_CStreamOutSize(); } diff --git a/vendor/github.com/DataDog/zstd/zbuff_decompress.c b/vendor/github.com/DataDog/zstd/zbuff_decompress.c new file mode 100644 index 0000000000..923c22b73c --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zbuff_decompress.c @@ -0,0 +1,75 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + + +/* ************************************* +* Dependencies +***************************************/ +#define ZBUFF_STATIC_LINKING_ONLY +#include "zbuff.h" + + +ZBUFF_DCtx* ZBUFF_createDCtx(void) +{ + return ZSTD_createDStream(); +} + +ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem) +{ + return ZSTD_createDStream_advanced(customMem); +} + +size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd) +{ + return ZSTD_freeDStream(zbd); +} + + +/* *** Initialization *** */ + +size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize) +{ + return ZSTD_initDStream_usingDict(zbd, dict, dictSize); +} + +size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd) +{ + return ZSTD_initDStream(zbd); +} + + +/* *** Decompression *** */ + +size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd, + void* dst, size_t* dstCapacityPtr, + const void* src, size_t* srcSizePtr) +{ + ZSTD_outBuffer outBuff; + ZSTD_inBuffer inBuff; + size_t result; + outBuff.dst = dst; + outBuff.pos = 0; + outBuff.size = *dstCapacityPtr; + inBuff.src = src; + inBuff.pos = 0; + inBuff.size = *srcSizePtr; + result = ZSTD_decompressStream(zbd, &outBuff, &inBuff); + *dstCapacityPtr = outBuff.pos; + *srcSizePtr = inBuff.pos; + return result; +} + + +/* ************************************* +* Tool functions +***************************************/ +size_t ZBUFF_recommendedDInSize(void) { return ZSTD_DStreamInSize(); } +size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_DStreamOutSize(); } diff --git a/vendor/github.com/DataDog/zstd/zdict.c b/vendor/github.com/DataDog/zstd/zdict.c new file mode 100644 index 0000000000..c753da0dbb --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zdict.c @@ -0,0 +1,1111 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/*-************************************** +* Tuning parameters +****************************************/ +#define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */ +#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20) +#define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO) + + +/*-************************************** +* Compiler Options +****************************************/ +/* Unix Large Files support (>4GB) */ +#define _FILE_OFFSET_BITS 64 +#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */ +# define _LARGEFILE_SOURCE +#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */ +# define _LARGEFILE64_SOURCE +#endif + + +/*-************************************* +* Dependencies +***************************************/ +#include /* malloc, free */ +#include /* memset */ +#include /* fprintf, fopen, ftello64 */ +#include /* clock */ + +#include "mem.h" /* read */ +#include "fse.h" /* FSE_normalizeCount, FSE_writeNCount */ +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" /* HUF_buildCTable, HUF_writeCTable */ +#include "zstd_internal.h" /* includes zstd.h */ +#include "xxhash.h" /* XXH64 */ +#include "divsufsort.h" +#ifndef ZDICT_STATIC_LINKING_ONLY +# define ZDICT_STATIC_LINKING_ONLY +#endif +#include "zdict.h" + + +/*-************************************* +* Constants +***************************************/ +#define KB *(1 <<10) +#define MB *(1 <<20) +#define GB *(1U<<30) + +#define DICTLISTSIZE_DEFAULT 10000 + +#define NOISELENGTH 32 + +static const int g_compressionLevel_default = 3; +static const U32 g_selectivity_default = 9; + + +/*-************************************* +* Console display +***************************************/ +#define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); } +#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ + +static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; } + +static void ZDICT_printHex(const void* ptr, size_t length) +{ + const BYTE* const b = (const BYTE*)ptr; + size_t u; + for (u=0; u126) c = '.'; /* non-printable char */ + DISPLAY("%c", c); + } +} + + +/*-******************************************************** +* Helper functions +**********************************************************/ +unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); } + +const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } + +unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize) +{ + if (dictSize < 8) return 0; + if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0; + return MEM_readLE32((const char*)dictBuffer + 4); +} + + +/*-******************************************************** +* Dictionary training functions +**********************************************************/ +static unsigned ZDICT_NbCommonBytes (size_t val) +{ + if (MEM_isLittleEndian()) { + if (MEM_64bits()) { +# if defined(_MSC_VER) && defined(_WIN64) + unsigned long r = 0; + _BitScanForward64( &r, (U64)val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 3) + return (__builtin_ctzll((U64)val) >> 3); +# else + static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 }; + return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; +# endif + } else { /* 32 bits */ +# if defined(_MSC_VER) + unsigned long r=0; + _BitScanForward( &r, (U32)val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 3) + return (__builtin_ctz((U32)val) >> 3); +# else + static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 }; + return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; +# endif + } + } else { /* Big Endian CPU */ + if (MEM_64bits()) { +# if defined(_MSC_VER) && defined(_WIN64) + unsigned long r = 0; + _BitScanReverse64( &r, val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 3) + return (__builtin_clzll(val) >> 3); +# else + unsigned r; + const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ + if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } + if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } + r += (!val); + return r; +# endif + } else { /* 32 bits */ +# if defined(_MSC_VER) + unsigned long r = 0; + _BitScanReverse( &r, (unsigned long)val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 3) + return (__builtin_clz((U32)val) >> 3); +# else + unsigned r; + if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } + r += (!val); + return r; +# endif + } } +} + + +/*! ZDICT_count() : + Count the nb of common bytes between 2 pointers. + Note : this function presumes end of buffer followed by noisy guard band. +*/ +static size_t ZDICT_count(const void* pIn, const void* pMatch) +{ + const char* const pStart = (const char*)pIn; + for (;;) { + size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); + if (!diff) { + pIn = (const char*)pIn+sizeof(size_t); + pMatch = (const char*)pMatch+sizeof(size_t); + continue; + } + pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff); + return (size_t)((const char*)pIn - pStart); + } +} + + +typedef struct { + U32 pos; + U32 length; + U32 savings; +} dictItem; + +static void ZDICT_initDictItem(dictItem* d) +{ + d->pos = 1; + d->length = 0; + d->savings = (U32)(-1); +} + + +#define LLIMIT 64 /* heuristic determined experimentally */ +#define MINMATCHLENGTH 7 /* heuristic determined experimentally */ +static dictItem ZDICT_analyzePos( + BYTE* doneMarks, + const int* suffix, U32 start, + const void* buffer, U32 minRatio, U32 notificationLevel) +{ + U32 lengthList[LLIMIT] = {0}; + U32 cumulLength[LLIMIT] = {0}; + U32 savings[LLIMIT] = {0}; + const BYTE* b = (const BYTE*)buffer; + size_t maxLength = LLIMIT; + size_t pos = suffix[start]; + U32 end = start; + dictItem solution; + + /* init */ + memset(&solution, 0, sizeof(solution)); + doneMarks[pos] = 1; + + /* trivial repetition cases */ + if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2)) + ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3)) + ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) { + /* skip and mark segment */ + U16 const pattern16 = MEM_read16(b+pos+4); + U32 u, patternEnd = 6; + while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ; + if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++; + for (u=1; u= MINMATCHLENGTH); + } + + /* look backward */ + { size_t length; + do { + length = ZDICT_count(b + pos, b + *(suffix+start-1)); + if (length >=MINMATCHLENGTH) start--; + } while(length >= MINMATCHLENGTH); + } + + /* exit if not found a minimum nb of repetitions */ + if (end-start < minRatio) { + U32 idx; + for(idx=start; idx= %i at pos %7u ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos); + DISPLAYLEVEL(4, "\n"); + + for (mml = MINMATCHLENGTH ; ; mml++) { + BYTE currentChar = 0; + U32 currentCount = 0; + U32 currentID = refinedStart; + U32 id; + U32 selectedCount = 0; + U32 selectedID = currentID; + for (id =refinedStart; id < refinedEnd; id++) { + if (b[suffix[id] + mml] != currentChar) { + if (currentCount > selectedCount) { + selectedCount = currentCount; + selectedID = currentID; + } + currentID = id; + currentChar = b[ suffix[id] + mml]; + currentCount = 0; + } + currentCount ++; + } + if (currentCount > selectedCount) { /* for last */ + selectedCount = currentCount; + selectedID = currentID; + } + + if (selectedCount < minRatio) + break; + refinedStart = selectedID; + refinedEnd = refinedStart + selectedCount; + } + + /* evaluate gain based on new dict */ + start = refinedStart; + pos = suffix[refinedStart]; + end = start; + memset(lengthList, 0, sizeof(lengthList)); + + /* look forward */ + { size_t length; + do { + end++; + length = ZDICT_count(b + pos, b + suffix[end]); + if (length >= LLIMIT) length = LLIMIT-1; + lengthList[length]++; + } while (length >=MINMATCHLENGTH); + } + + /* look backward */ + { size_t length = MINMATCHLENGTH; + while ((length >= MINMATCHLENGTH) & (start > 0)) { + length = ZDICT_count(b + pos, b + suffix[start - 1]); + if (length >= LLIMIT) length = LLIMIT - 1; + lengthList[length]++; + if (length >= MINMATCHLENGTH) start--; + } + } + + /* largest useful length */ + memset(cumulLength, 0, sizeof(cumulLength)); + cumulLength[maxLength-1] = lengthList[maxLength-1]; + for (i=(int)(maxLength-2); i>=0; i--) + cumulLength[i] = cumulLength[i+1] + lengthList[i]; + + for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break; + maxLength = i; + + /* reduce maxLength in case of final into repetitive data */ + { U32 l = (U32)maxLength; + BYTE const c = b[pos + maxLength-1]; + while (b[pos+l-2]==c) l--; + maxLength = l; + } + if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */ + + /* calculate savings */ + savings[5] = 0; + for (i=MINMATCHLENGTH; i<=(int)maxLength; i++) + savings[i] = savings[i-1] + (lengthList[i] * (i-3)); + + DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f) \n", + (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / maxLength); + + solution.pos = (U32)pos; + solution.length = (U32)maxLength; + solution.savings = savings[maxLength]; + + /* mark positions done */ + { U32 id; + for (id=start; id solution.length) length = solution.length; + } + pEnd = (U32)(testedPos + length); + for (p=testedPos; ppos; + const U32 eltEnd = elt.pos + elt.length; + const char* const buf = (const char*) buffer; + + /* tail overlap */ + U32 u; for (u=1; u elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */ + /* append */ + U32 const addedLength = table[u].pos - elt.pos; + table[u].length += addedLength; + table[u].pos = elt.pos; + table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ + table[u].savings += elt.length / 8; /* rough approx bonus */ + elt = table[u]; + /* sort : improve rank */ + while ((u>1) && (table[u-1].savings < elt.savings)) + table[u] = table[u-1], u--; + table[u] = elt; + return u; + } } + + /* front overlap */ + for (u=1; u= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */ + /* append */ + int const addedLength = (int)eltEnd - (table[u].pos + table[u].length); + table[u].savings += elt.length / 8; /* rough approx bonus */ + if (addedLength > 0) { /* otherwise, elt fully included into existing */ + table[u].length += addedLength; + table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ + } + /* sort : improve rank */ + elt = table[u]; + while ((u>1) && (table[u-1].savings < elt.savings)) + table[u] = table[u-1], u--; + table[u] = elt; + return u; + } + + if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) { + if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) { + size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 ); + table[u].pos = elt.pos; + table[u].savings += (U32)(elt.savings * addedLength / elt.length); + table[u].length = MIN(elt.length, table[u].length + 1); + return u; + } + } + } + + return 0; +} + + +static void ZDICT_removeDictItem(dictItem* table, U32 id) +{ + /* convention : table[0].pos stores nb of elts */ + U32 const max = table[0].pos; + U32 u; + if (!id) return; /* protection, should never happen */ + for (u=id; upos--; +} + + +static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer) +{ + /* merge if possible */ + U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer); + if (mergeId) { + U32 newMerge = 1; + while (newMerge) { + newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer); + if (newMerge) ZDICT_removeDictItem(table, mergeId); + mergeId = newMerge; + } + return; + } + + /* insert */ + { U32 current; + U32 nextElt = table->pos; + if (nextElt >= maxSize) nextElt = maxSize-1; + current = nextElt-1; + while (table[current].savings < elt.savings) { + table[current+1] = table[current]; + current--; + } + table[current+1] = elt; + table->pos = nextElt+1; + } +} + + +static U32 ZDICT_dictSize(const dictItem* dictList) +{ + U32 u, dictSize = 0; + for (u=1; u=l) { \ + if (ZDICT_clockSpan(displayClock) > refreshRate) \ + { displayClock = clock(); DISPLAY(__VA_ARGS__); \ + if (notificationLevel>=4) fflush(stderr); } } + + /* init */ + DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ + if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) { + result = ERROR(memory_allocation); + goto _cleanup; + } + if (minRatio < MINRATIO) minRatio = MINRATIO; + memset(doneMarks, 0, bufferSize+16); + + /* limit sample set size (divsufsort limitation)*/ + if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20)); + while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles]; + + /* sort */ + DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20)); + { int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0); + if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; } + } + suffix[bufferSize] = (int)bufferSize; /* leads into noise */ + suffix0[0] = (int)bufferSize; /* leads into noise */ + /* build reverse suffix sort */ + { size_t pos; + for (pos=0; pos < bufferSize; pos++) + reverseSuffix[suffix[pos]] = (U32)pos; + /* note filePos tracks borders between samples. + It's not used at this stage, but planned to become useful in a later update */ + filePos[0] = 0; + for (pos=1; pos> 21); + } +} + + +typedef struct +{ + ZSTD_CDict* dict; /* dictionary */ + ZSTD_CCtx* zc; /* working context */ + void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */ +} EStats_ress_t; + +#define MAXREPOFFSET 1024 + +static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params, + unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets, + const void* src, size_t srcSize, + U32 notificationLevel) +{ + size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params.cParams.windowLog); + size_t cSize; + + if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */ + { size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict); + if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; } + + } + cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize); + if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; } + + if (cSize) { /* if == 0; block is not compressible */ + const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc); + + /* literals stats */ + { const BYTE* bytePtr; + for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++) + countLit[*bytePtr]++; + } + + /* seqStats */ + { U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + ZSTD_seqToCodes(seqStorePtr); + + { const BYTE* codePtr = seqStorePtr->ofCode; + U32 u; + for (u=0; umlCode; + U32 u; + for (u=0; ullCode; + U32 u; + for (u=0; u= 2) { /* rep offsets */ + const seqDef* const seq = seqStorePtr->sequencesStart; + U32 offset1 = seq[0].offset - 3; + U32 offset2 = seq[1].offset - 3; + if (offset1 >= MAXREPOFFSET) offset1 = 0; + if (offset2 >= MAXREPOFFSET) offset2 = 0; + repOffsets[offset1] += 3; + repOffsets[offset2] += 1; + } } } +} + +static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles) +{ + size_t total=0; + unsigned u; + for (u=0; u0; u--) { + offsetCount_t tmp; + if (table[u-1].count >= table[u].count) break; + tmp = table[u-1]; + table[u-1] = table[u]; + table[u] = tmp; + } +} + +/* ZDICT_flatLit() : + * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals. + * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode. + */ +static void ZDICT_flatLit(unsigned* countLit) +{ + int u; + for (u=1; u<256; u++) countLit[u] = 2; + countLit[0] = 4; + countLit[253] = 1; + countLit[254] = 1; +} + +#define OFFCODE_MAX 30 /* only applicable to first block */ +static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize, + unsigned compressionLevel, + const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles, + const void* dictBuffer, size_t dictBufferSize, + unsigned notificationLevel) +{ + unsigned countLit[256]; + HUF_CREATE_STATIC_CTABLE(hufTable, 255); + unsigned offcodeCount[OFFCODE_MAX+1]; + short offcodeNCount[OFFCODE_MAX+1]; + U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB)); + unsigned matchLengthCount[MaxML+1]; + short matchLengthNCount[MaxML+1]; + unsigned litLengthCount[MaxLL+1]; + short litLengthNCount[MaxLL+1]; + U32 repOffset[MAXREPOFFSET]; + offsetCount_t bestRepOffset[ZSTD_REP_NUM+1]; + EStats_ress_t esr = { NULL, NULL, NULL }; + ZSTD_parameters params; + U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total; + size_t pos = 0, errorCode; + size_t eSize = 0; + size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles); + size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles); + BYTE* dstPtr = (BYTE*)dstBuffer; + + /* init */ + DEBUGLOG(4, "ZDICT_analyzeEntropy"); + if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */ + for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */ + for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1; + for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1; + for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1; + memset(repOffset, 0, sizeof(repOffset)); + repOffset[1] = repOffset[4] = repOffset[8] = 1; + memset(bestRepOffset, 0, sizeof(bestRepOffset)); + if (compressionLevel==0) compressionLevel = g_compressionLevel_default; + params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize); + + esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem); + esr.zc = ZSTD_createCCtx(); + esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX); + if (!esr.dict || !esr.zc || !esr.workPlace) { + eSize = ERROR(memory_allocation); + DISPLAYLEVEL(1, "Not enough memory \n"); + goto _cleanup; + } + + /* collect stats on all samples */ + for (u=0; u dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize; + { size_t const dictSize = hSize + dictContentSize; + char* dictEnd = (char*)dictBuffer + dictSize; + memmove(dictEnd - dictContentSize, customDictContent, dictContentSize); + memcpy(dictBuffer, header, hSize); + return dictSize; + } +} + + +static size_t ZDICT_addEntropyTablesFromBuffer_advanced( + void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_params_t params) +{ + int const compressionLevel = (params.compressionLevel == 0) ? g_compressionLevel_default : params.compressionLevel; + U32 const notificationLevel = params.notificationLevel; + size_t hSize = 8; + + /* calculate entropy tables */ + DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ + DISPLAYLEVEL(2, "statistics ... \n"); + { size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize, + compressionLevel, + samplesBuffer, samplesSizes, nbSamples, + (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, + notificationLevel); + if (ZDICT_isError(eSize)) return eSize; + hSize += eSize; + } + + /* add dictionary header (after entropy tables) */ + MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY); + { U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0); + U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; + U32 const dictID = params.dictID ? params.dictID : compliantID; + MEM_writeLE32((char*)dictBuffer+4, dictID); + } + + if (hSize + dictContentSize < dictBufferCapacity) + memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize); + return MIN(dictBufferCapacity, hSize+dictContentSize); +} + +/* Hidden declaration for dbio.c */ +size_t ZDICT_trainFromBuffer_unsafe_legacy( + void* dictBuffer, size_t maxDictSize, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_legacy_params_t params); +/*! ZDICT_trainFromBuffer_unsafe_legacy() : +* Warning : `samplesBuffer` must be followed by noisy guard band. +* @return : size of dictionary, or an error code which can be tested with ZDICT_isError() +*/ +size_t ZDICT_trainFromBuffer_unsafe_legacy( + void* dictBuffer, size_t maxDictSize, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_legacy_params_t params) +{ + U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16)); + dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList)); + unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel; + unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity; + size_t const targetDictSize = maxDictSize; + size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); + size_t dictSize = 0; + U32 const notificationLevel = params.zParams.notificationLevel; + + /* checks */ + if (!dictList) return ERROR(memory_allocation); + if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */ + if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */ + + /* init */ + ZDICT_initDictItem(dictList); + + /* build dictionary */ + ZDICT_trainBuffer_legacy(dictList, dictListSize, + samplesBuffer, samplesBuffSize, + samplesSizes, nbSamples, + minRep, notificationLevel); + + /* display best matches */ + if (params.zParams.notificationLevel>= 3) { + unsigned const nb = MIN(25, dictList[0].pos); + unsigned const dictContentSize = ZDICT_dictSize(dictList); + unsigned u; + DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize); + DISPLAYLEVEL(3, "list %u best segments \n", nb-1); + for (u=1; u samplesBuffSize) || ((pos + length) > samplesBuffSize)) { + free(dictList); + return ERROR(GENERIC); /* should never happen */ + } + DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |", + u, length, pos, (unsigned)dictList[u].savings); + ZDICT_printHex((const char*)samplesBuffer+pos, printedLength); + DISPLAYLEVEL(3, "| \n"); + } } + + + /* create dictionary */ + { unsigned dictContentSize = ZDICT_dictSize(dictList); + if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */ + if (dictContentSize < targetDictSize/4) { + DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize); + if (samplesBuffSize < 10 * targetDictSize) + DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20)); + if (minRep > MINRATIO) { + DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1); + DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n"); + } + } + + if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) { + unsigned proposedSelectivity = selectivity-1; + while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; } + DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize); + DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity); + DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n"); + } + + /* limit dictionary size */ + { U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */ + U32 currentSize = 0; + U32 n; for (n=1; n targetDictSize) { currentSize -= dictList[n].length; break; } + } + dictList->pos = n; + dictContentSize = currentSize; + } + + /* build dict content */ + { U32 u; + BYTE* ptr = (BYTE*)dictBuffer + maxDictSize; + for (u=1; upos; u++) { + U32 l = dictList[u].length; + ptr -= l; + if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */ + memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l); + } } + + dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize, + samplesBuffer, samplesSizes, nbSamples, + params.zParams); + } + + /* clean up */ + free(dictList); + return dictSize; +} + + +/* ZDICT_trainFromBuffer_legacy() : + * issue : samplesBuffer need to be followed by a noisy guard band. + * work around : duplicate the buffer, and add the noise */ +size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_legacy_params_t params) +{ + size_t result; + void* newBuff; + size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); + if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */ + + newBuff = malloc(sBuffSize + NOISELENGTH); + if (!newBuff) return ERROR(memory_allocation); + + memcpy(newBuff, samplesBuffer, sBuffSize); + ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */ + + result = + ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff, + samplesSizes, nbSamples, params); + free(newBuff); + return result; +} + + +size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) +{ + ZDICT_fastCover_params_t params; + DEBUGLOG(3, "ZDICT_trainFromBuffer"); + memset(¶ms, 0, sizeof(params)); + params.d = 8; + params.steps = 4; + /* Default to level 6 since no compression level information is available */ + params.zParams.compressionLevel = 3; +#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1) + params.zParams.notificationLevel = DEBUGLEVEL; +#endif + return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity, + samplesBuffer, samplesSizes, nbSamples, + ¶ms); +} + +size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) +{ + ZDICT_params_t params; + memset(¶ms, 0, sizeof(params)); + return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity, + samplesBuffer, samplesSizes, nbSamples, + params); +} diff --git a/vendor/github.com/DataDog/zstd/zdict.h b/vendor/github.com/DataDog/zstd/zdict.h new file mode 100644 index 0000000000..e22973173c --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zdict.h @@ -0,0 +1,277 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef DICTBUILDER_H_001 +#define DICTBUILDER_H_001 + +#if defined (__cplusplus) +extern "C" { +#endif + + +/*====== Dependencies ======*/ +#include /* size_t */ + + +/* ===== ZDICTLIB_API : control library symbols visibility ===== */ +#ifndef ZDICTLIB_VISIBILITY +# if defined(__GNUC__) && (__GNUC__ >= 4) +# define ZDICTLIB_VISIBILITY __attribute__ ((visibility ("default"))) +# else +# define ZDICTLIB_VISIBILITY +# endif +#endif +#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZDICTLIB_API __declspec(dllexport) ZDICTLIB_VISIBILITY +#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZDICTLIB_API __declspec(dllimport) ZDICTLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define ZDICTLIB_API ZDICTLIB_VISIBILITY +#endif + + +/*! ZDICT_trainFromBuffer(): + * Train a dictionary from an array of samples. + * Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4, + * f=20, and accel=1. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * The resulting dictionary will be saved into `dictBuffer`. + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * Note: Dictionary training will fail if there are not enough samples to construct a + * dictionary, or if most of the samples are too small (< 8 bytes being the lower limit). + * If dictionary training fails, you should use zstd without a dictionary, as the dictionary + * would've been ineffective anyways. If you believe your samples would benefit from a dictionary + * please open an issue with details, and we can look into it. + * Note: ZDICT_trainFromBuffer()'s memory usage is about 6 MB. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + */ +ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, + const size_t* samplesSizes, unsigned nbSamples); + + +/*====== Helper functions ======*/ +ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize); /**< extracts dictID; @return zero if error (not a valid dictionary) */ +ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode); +ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode); + + + +#ifdef ZDICT_STATIC_LINKING_ONLY + +/* ==================================================================================== + * The definitions in this section are considered experimental. + * They should never be used with a dynamic library, as they may change in the future. + * They are provided for advanced usages. + * Use them only in association with static linking. + * ==================================================================================== */ + +typedef struct { + int compressionLevel; /* optimize for a specific zstd compression level; 0 means default */ + unsigned notificationLevel; /* Write log to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */ + unsigned dictID; /* force dictID value; 0 means auto mode (32-bits random value) */ +} ZDICT_params_t; + +/*! ZDICT_cover_params_t: + * k and d are the only required parameters. + * For others, value 0 means default. + */ +typedef struct { + unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */ + unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */ + unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */ + unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */ + double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (1.0), 1.0 when all samples are used for both training and testing */ + ZDICT_params_t zParams; +} ZDICT_cover_params_t; + +typedef struct { + unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */ + unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */ + unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)*/ + unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */ + unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */ + double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */ + unsigned accel; /* Acceleration level: constraint: 0 < accel <= 10, higher means faster and less accurate, 0 means default(1) */ + ZDICT_params_t zParams; +} ZDICT_fastCover_params_t; + +/*! ZDICT_trainFromBuffer_cover(): + * Train a dictionary from an array of samples using the COVER algorithm. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * The resulting dictionary will be saved into `dictBuffer`. + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + */ +ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover( + void *dictBuffer, size_t dictBufferCapacity, + const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, + ZDICT_cover_params_t parameters); + +/*! ZDICT_optimizeTrainFromBuffer_cover(): + * The same requirements as above hold for all the parameters except `parameters`. + * This function tries many parameter combinations and picks the best parameters. + * `*parameters` is filled with the best parameters found, + * dictionary constructed with those parameters is stored in `dictBuffer`. + * + * All of the parameters d, k, steps are optional. + * If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}. + * if steps is zero it defaults to its default value. + * If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000]. + * + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * On success `*parameters` contains the parameters selected. + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread. + */ +ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover( + void* dictBuffer, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_cover_params_t* parameters); + +/*! ZDICT_trainFromBuffer_fastCover(): + * Train a dictionary from an array of samples using a modified version of COVER algorithm. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * d and k are required. + * All other parameters are optional, will use default values if not provided + * The resulting dictionary will be saved into `dictBuffer`. + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + */ +ZDICTLIB_API size_t ZDICT_trainFromBuffer_fastCover(void *dictBuffer, + size_t dictBufferCapacity, const void *samplesBuffer, + const size_t *samplesSizes, unsigned nbSamples, + ZDICT_fastCover_params_t parameters); + +/*! ZDICT_optimizeTrainFromBuffer_fastCover(): + * The same requirements as above hold for all the parameters except `parameters`. + * This function tries many parameter combinations (specifically, k and d combinations) + * and picks the best parameters. `*parameters` is filled with the best parameters found, + * dictionary constructed with those parameters is stored in `dictBuffer`. + * All of the parameters d, k, steps, f, and accel are optional. + * If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}. + * if steps is zero it defaults to its default value. + * If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000]. + * If f is zero, default value of 20 is used. + * If accel is zero, default value of 1 is used. + * + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * On success `*parameters` contains the parameters selected. + * See ZDICT_trainFromBuffer() for details on failure modes. + * Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 6 * 2^f bytes of memory for each thread. + */ +ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer, + size_t dictBufferCapacity, const void* samplesBuffer, + const size_t* samplesSizes, unsigned nbSamples, + ZDICT_fastCover_params_t* parameters); + +/*! ZDICT_finalizeDictionary(): + * Given a custom content as a basis for dictionary, and a set of samples, + * finalize dictionary by adding headers and statistics. + * + * Samples must be stored concatenated in a flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample in order. + * + * dictContentSize must be >= ZDICT_CONTENTSIZE_MIN bytes. + * maxDictSize must be >= dictContentSize, and must be >= ZDICT_DICTSIZE_MIN bytes. + * + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`), + * or an error code, which can be tested by ZDICT_isError(). + * Note: ZDICT_finalizeDictionary() will push notifications into stderr if instructed to, using notificationLevel>0. + * Note 2: dictBuffer and dictContent can overlap + */ +#define ZDICT_CONTENTSIZE_MIN 128 +#define ZDICT_DICTSIZE_MIN 256 +ZDICTLIB_API size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity, + const void* dictContent, size_t dictContentSize, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, + ZDICT_params_t parameters); + +typedef struct { + unsigned selectivityLevel; /* 0 means default; larger => select more => larger dictionary */ + ZDICT_params_t zParams; +} ZDICT_legacy_params_t; + +/*! ZDICT_trainFromBuffer_legacy(): + * Train a dictionary from an array of samples. + * Samples must be stored concatenated in a single flat buffer `samplesBuffer`, + * supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order. + * The resulting dictionary will be saved into `dictBuffer`. + * `parameters` is optional and can be provided with values set to 0 to mean "default". + * @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`) + * or an error code, which can be tested with ZDICT_isError(). + * See ZDICT_trainFromBuffer() for details on failure modes. + * Tips: In general, a reasonable dictionary has a size of ~ 100 KB. + * It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`. + * In general, it's recommended to provide a few thousands samples, though this can vary a lot. + * It's recommended that total size of all samples be about ~x100 times the target size of dictionary. + * Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0. + */ +ZDICTLIB_API size_t ZDICT_trainFromBuffer_legacy( + void *dictBuffer, size_t dictBufferCapacity, + const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, + ZDICT_legacy_params_t parameters); + +/* Deprecation warnings */ +/* It is generally possible to disable deprecation warnings from compiler, + for example with -Wno-deprecated-declarations for gcc + or _CRT_SECURE_NO_WARNINGS in Visual. + Otherwise, it's also possible to manually define ZDICT_DISABLE_DEPRECATE_WARNINGS */ +#ifdef ZDICT_DISABLE_DEPRECATE_WARNINGS +# define ZDICT_DEPRECATED(message) ZDICTLIB_API /* disable deprecation warnings */ +#else +# define ZDICT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) +# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */ +# define ZDICT_DEPRECATED(message) [[deprecated(message)]] ZDICTLIB_API +# elif (ZDICT_GCC_VERSION >= 405) || defined(__clang__) +# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated(message))) +# elif (ZDICT_GCC_VERSION >= 301) +# define ZDICT_DEPRECATED(message) ZDICTLIB_API __attribute__((deprecated)) +# elif defined(_MSC_VER) +# define ZDICT_DEPRECATED(message) ZDICTLIB_API __declspec(deprecated(message)) +# else +# pragma message("WARNING: You need to implement ZDICT_DEPRECATED for this compiler") +# define ZDICT_DEPRECATED(message) ZDICTLIB_API +# endif +#endif /* ZDICT_DISABLE_DEPRECATE_WARNINGS */ + +ZDICT_DEPRECATED("use ZDICT_finalizeDictionary() instead") +size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, + const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples); + + +#endif /* ZDICT_STATIC_LINKING_ONLY */ + +#if defined (__cplusplus) +} +#endif + +#endif /* DICTBUILDER_H_001 */ diff --git a/vendor/github.com/DataDog/zstd/zstd.go b/vendor/github.com/DataDog/zstd/zstd.go new file mode 100644 index 0000000000..b6af4eb19d --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd.go @@ -0,0 +1,147 @@ +package zstd + +/* +#define ZSTD_STATIC_LINKING_ONLY +#include "zstd.h" +#include "stdint.h" // for uintptr_t + +// The following *_wrapper function are used for removing superflouos +// memory allocations when calling the wrapped functions from Go code. +// See https://github.com/golang/go/issues/24450 for details. + +static size_t ZSTD_compress_wrapper(uintptr_t dst, size_t maxDstSize, const uintptr_t src, size_t srcSize, int compressionLevel) { + return ZSTD_compress((void*)dst, maxDstSize, (const void*)src, srcSize, compressionLevel); +} + +static size_t ZSTD_decompress_wrapper(uintptr_t dst, size_t maxDstSize, uintptr_t src, size_t srcSize) { + return ZSTD_decompress((void*)dst, maxDstSize, (const void *)src, srcSize); +} + +*/ +import "C" +import ( + "bytes" + "errors" + "io/ioutil" + "runtime" + "unsafe" +) + +// Defines best and standard values for zstd cli +const ( + BestSpeed = 1 + BestCompression = 20 + DefaultCompression = 5 +) + +var ( + // ErrEmptySlice is returned when there is nothing to compress + ErrEmptySlice = errors.New("Bytes slice is empty") +) + +// CompressBound returns the worst case size needed for a destination buffer, +// which can be used to preallocate a destination buffer or select a previously +// allocated buffer from a pool. +// See zstd.h to mirror implementation of ZSTD_COMPRESSBOUND +func CompressBound(srcSize int) int { + lowLimit := 128 << 10 // 128 kB + var margin int + if srcSize < lowLimit { + margin = (lowLimit - srcSize) >> 11 + } + return srcSize + (srcSize >> 8) + margin +} + +// cCompressBound is a cgo call to check the go implementation above against the c code. +func cCompressBound(srcSize int) int { + return int(C.ZSTD_compressBound(C.size_t(srcSize))) +} + +// Compress src into dst. If you have a buffer to use, you can pass it to +// prevent allocation. If it is too small, or if nil is passed, a new buffer +// will be allocated and returned. +func Compress(dst, src []byte) ([]byte, error) { + return CompressLevel(dst, src, DefaultCompression) +} + +// CompressLevel is the same as Compress but you can pass a compression level +func CompressLevel(dst, src []byte, level int) ([]byte, error) { + bound := CompressBound(len(src)) + if cap(dst) >= bound { + dst = dst[0:bound] // Reuse dst buffer + } else { + dst = make([]byte, bound) + } + + srcPtr := C.uintptr_t(uintptr(0)) // Do not point anywhere, if src is empty + if len(src) > 0 { + srcPtr = C.uintptr_t(uintptr(unsafe.Pointer(&src[0]))) + } + + cWritten := C.ZSTD_compress_wrapper( + C.uintptr_t(uintptr(unsafe.Pointer(&dst[0]))), + C.size_t(len(dst)), + srcPtr, + C.size_t(len(src)), + C.int(level)) + + runtime.KeepAlive(src) + written := int(cWritten) + // Check if the return is an Error code + if err := getError(written); err != nil { + return nil, err + } + return dst[:written], nil +} + +// Decompress src into dst. If you have a buffer to use, you can pass it to +// prevent allocation. If it is too small, or if nil is passed, a new buffer +// will be allocated and returned. +func Decompress(dst, src []byte) ([]byte, error) { + if len(src) == 0 { + return []byte{}, ErrEmptySlice + } + decompress := func(dst, src []byte) ([]byte, error) { + + cWritten := C.ZSTD_decompress_wrapper( + C.uintptr_t(uintptr(unsafe.Pointer(&dst[0]))), + C.size_t(len(dst)), + C.uintptr_t(uintptr(unsafe.Pointer(&src[0]))), + C.size_t(len(src))) + + runtime.KeepAlive(src) + written := int(cWritten) + // Check error + if err := getError(written); err != nil { + return nil, err + } + return dst[:written], nil + } + + if len(dst) == 0 { + // Attempt to use zStd to determine decompressed size (may result in error or 0) + size := int(C.size_t(C.ZSTD_getDecompressedSize(unsafe.Pointer(&src[0]), C.size_t(len(src))))) + + if err := getError(size); err != nil { + return nil, err + } + + if size > 0 { + dst = make([]byte, size) + } else { + dst = make([]byte, len(src)*3) // starting guess + } + } + for i := 0; i < 3; i++ { // 3 tries to allocate a bigger buffer + result, err := decompress(dst, src) + if !IsDstSizeTooSmallError(err) { + return result, err + } + dst = make([]byte, len(dst)*2) // Grow buffer by 2 + } + + // We failed getting a dst buffer of correct size, use stream API + r := NewReader(bytes.NewReader(src)) + defer r.Close() + return ioutil.ReadAll(r) +} diff --git a/vendor/github.com/DataDog/zstd/zstd.h b/vendor/github.com/DataDog/zstd/zstd.h new file mode 100644 index 0000000000..53470c18f3 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd.h @@ -0,0 +1,1913 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ +#if defined (__cplusplus) +extern "C" { +#endif + +#ifndef ZSTD_H_235446 +#define ZSTD_H_235446 + +/* ====== Dependency ======*/ +#include /* size_t */ + + +/* ===== ZSTDLIB_API : control library symbols visibility ===== */ +#ifndef ZSTDLIB_VISIBILITY +# if defined(__GNUC__) && (__GNUC__ >= 4) +# define ZSTDLIB_VISIBILITY __attribute__ ((visibility ("default"))) +# else +# define ZSTDLIB_VISIBILITY +# endif +#endif +#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZSTDLIB_API __declspec(dllexport) ZSTDLIB_VISIBILITY +#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZSTDLIB_API __declspec(dllimport) ZSTDLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define ZSTDLIB_API ZSTDLIB_VISIBILITY +#endif + + +/******************************************************************************* + Introduction + + zstd, short for Zstandard, is a fast lossless compression algorithm, targeting + real-time compression scenarios at zlib-level and better compression ratios. + The zstd compression library provides in-memory compression and decompression + functions. + + The library supports regular compression levels from 1 up to ZSTD_maxCLevel(), + which is currently 22. Levels >= 20, labeled `--ultra`, should be used with + caution, as they require more memory. The library also offers negative + compression levels, which extend the range of speed vs. ratio preferences. + The lower the level, the faster the speed (at the cost of compression). + + Compression can be done in: + - a single step (described as Simple API) + - a single step, reusing a context (described as Explicit context) + - unbounded multiple steps (described as Streaming compression) + + The compression ratio achievable on small data can be highly improved using + a dictionary. Dictionary compression can be performed in: + - a single step (described as Simple dictionary API) + - a single step, reusing a dictionary (described as Bulk-processing + dictionary API) + + Advanced experimental functions can be accessed using + `#define ZSTD_STATIC_LINKING_ONLY` before including zstd.h. + + Advanced experimental APIs should never be used with a dynamically-linked + library. They are not "stable"; their definitions or signatures may change in + the future. Only static linking is allowed. +*******************************************************************************/ + +/*------ Version ------*/ +#define ZSTD_VERSION_MAJOR 1 +#define ZSTD_VERSION_MINOR 4 +#define ZSTD_VERSION_RELEASE 0 + +#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) +ZSTDLIB_API unsigned ZSTD_versionNumber(void); /**< to check runtime library version */ + +#define ZSTD_LIB_VERSION ZSTD_VERSION_MAJOR.ZSTD_VERSION_MINOR.ZSTD_VERSION_RELEASE +#define ZSTD_QUOTE(str) #str +#define ZSTD_EXPAND_AND_QUOTE(str) ZSTD_QUOTE(str) +#define ZSTD_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LIB_VERSION) +ZSTDLIB_API const char* ZSTD_versionString(void); /* requires v1.3.0+ */ + +/*************************************** +* Default constant +***************************************/ +#ifndef ZSTD_CLEVEL_DEFAULT +# define ZSTD_CLEVEL_DEFAULT 3 +#endif + +/*************************************** +* Constants +***************************************/ + +/* All magic numbers are supposed read/written to/from files/memory using little-endian convention */ +#define ZSTD_MAGICNUMBER 0xFD2FB528 /* valid since v0.8.0 */ +#define ZSTD_MAGIC_DICTIONARY 0xEC30A437 /* valid since v0.7.0 */ +#define ZSTD_MAGIC_SKIPPABLE_START 0x184D2A50 /* all 16 values, from 0x184D2A50 to 0x184D2A5F, signal the beginning of a skippable frame */ +#define ZSTD_MAGIC_SKIPPABLE_MASK 0xFFFFFFF0 + +#define ZSTD_BLOCKSIZELOG_MAX 17 +#define ZSTD_BLOCKSIZE_MAX (1<= `ZSTD_compressBound(srcSize)`. + * @return : compressed size written into `dst` (<= `dstCapacity), + * or an error code if it fails (which can be tested using ZSTD_isError()). */ +ZSTDLIB_API size_t ZSTD_compress( void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel); + +/*! ZSTD_decompress() : + * `compressedSize` : must be the _exact_ size of some number of compressed and/or skippable frames. + * `dstCapacity` is an upper bound of originalSize to regenerate. + * If user cannot imply a maximum upper bound, it's better to use streaming mode to decompress data. + * @return : the number of bytes decompressed into `dst` (<= `dstCapacity`), + * or an errorCode if it fails (which can be tested using ZSTD_isError()). */ +ZSTDLIB_API size_t ZSTD_decompress( void* dst, size_t dstCapacity, + const void* src, size_t compressedSize); + +/*! ZSTD_getFrameContentSize() : requires v1.3.0+ + * `src` should point to the start of a ZSTD encoded frame. + * `srcSize` must be at least as large as the frame header. + * hint : any size >= `ZSTD_frameHeaderSize_max` is large enough. + * @return : - decompressed size of `src` frame content, if known + * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined + * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) + * note 1 : a 0 return value means the frame is valid but "empty". + * note 2 : decompressed size is an optional field, it may not be present, typically in streaming mode. + * When `return==ZSTD_CONTENTSIZE_UNKNOWN`, data to decompress could be any size. + * In which case, it's necessary to use streaming mode to decompress data. + * Optionally, application can rely on some implicit limit, + * as ZSTD_decompress() only needs an upper bound of decompressed size. + * (For example, data could be necessarily cut into blocks <= 16 KB). + * note 3 : decompressed size is always present when compression is completed using single-pass functions, + * such as ZSTD_compress(), ZSTD_compressCCtx() ZSTD_compress_usingDict() or ZSTD_compress_usingCDict(). + * note 4 : decompressed size can be very large (64-bits value), + * potentially larger than what local system can handle as a single memory segment. + * In which case, it's necessary to use streaming mode to decompress data. + * note 5 : If source is untrusted, decompressed size could be wrong or intentionally modified. + * Always ensure return value fits within application's authorized limits. + * Each application can set its own limits. + * note 6 : This function replaces ZSTD_getDecompressedSize() */ +#define ZSTD_CONTENTSIZE_UNKNOWN (0ULL - 1) +#define ZSTD_CONTENTSIZE_ERROR (0ULL - 2) +ZSTDLIB_API unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize); + +/*! ZSTD_getDecompressedSize() : + * NOTE: This function is now obsolete, in favor of ZSTD_getFrameContentSize(). + * Both functions work the same way, but ZSTD_getDecompressedSize() blends + * "empty", "unknown" and "error" results to the same return value (0), + * while ZSTD_getFrameContentSize() gives them separate return values. + * @return : decompressed size of `src` frame content _if known and not empty_, 0 otherwise. */ +ZSTDLIB_API unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize); + +/*! ZSTD_findFrameCompressedSize() : + * `src` should point to the start of a ZSTD frame or skippable frame. + * `srcSize` must be >= first frame size + * @return : the compressed size of the first frame starting at `src`, + * suitable to pass as `srcSize` to `ZSTD_decompress` or similar, + * or an error code if input is invalid */ +ZSTDLIB_API size_t ZSTD_findFrameCompressedSize(const void* src, size_t srcSize); + + +/*====== Helper functions ======*/ +#define ZSTD_COMPRESSBOUND(srcSize) ((srcSize) + ((srcSize)>>8) + (((srcSize) < (128<<10)) ? (((128<<10) - (srcSize)) >> 11) /* margin, from 64 to 0 */ : 0)) /* this formula ensures that bound(A) + bound(B) <= bound(A+B) as long as A and B >= 128 KB */ +ZSTDLIB_API size_t ZSTD_compressBound(size_t srcSize); /*!< maximum compressed size in worst case single-pass scenario */ +ZSTDLIB_API unsigned ZSTD_isError(size_t code); /*!< tells if a `size_t` function result is an error code */ +ZSTDLIB_API const char* ZSTD_getErrorName(size_t code); /*!< provides readable string from an error code */ +ZSTDLIB_API int ZSTD_minCLevel(void); /*!< minimum negative compression level allowed */ +ZSTDLIB_API int ZSTD_maxCLevel(void); /*!< maximum compression level available */ + + +/*************************************** +* Explicit context +***************************************/ +/*= Compression context + * When compressing many times, + * it is recommended to allocate a context just once, and re-use it for each successive compression operation. + * This will make workload friendlier for system's memory. + * Use one context per thread for parallel execution in multi-threaded environments. */ +typedef struct ZSTD_CCtx_s ZSTD_CCtx; +ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx(void); +ZSTDLIB_API size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx); + +/*! ZSTD_compressCCtx() : + * Same as ZSTD_compress(), using an explicit ZSTD_CCtx + * The function will compress at requested compression level, + * ignoring any other parameter */ +ZSTDLIB_API size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel); + +/*= Decompression context + * When decompressing many times, + * it is recommended to allocate a context only once, + * and re-use it for each successive compression operation. + * This will make workload friendlier for system's memory. + * Use one context per thread for parallel execution. */ +typedef struct ZSTD_DCtx_s ZSTD_DCtx; +ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx(void); +ZSTDLIB_API size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx); + +/*! ZSTD_decompressDCtx() : + * Same as ZSTD_decompress(), + * requires an allocated ZSTD_DCtx. + * Compatible with sticky parameters. + */ +ZSTDLIB_API size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + + +/*************************************** +* Advanced compression API +***************************************/ + +/* API design : + * Parameters are pushed one by one into an existing context, + * using ZSTD_CCtx_set*() functions. + * Pushed parameters are sticky : they are valid for next compressed frame, and any subsequent frame. + * "sticky" parameters are applicable to `ZSTD_compress2()` and `ZSTD_compressStream*()` ! + * They do not apply to "simple" one-shot variants such as ZSTD_compressCCtx() + * + * It's possible to reset all parameters to "default" using ZSTD_CCtx_reset(). + * + * This API supercedes all other "advanced" API entry points in the experimental section. + * In the future, we expect to remove from experimental API entry points which are redundant with this API. + */ + + +/* Compression strategies, listed from fastest to strongest */ +typedef enum { ZSTD_fast=1, + ZSTD_dfast=2, + ZSTD_greedy=3, + ZSTD_lazy=4, + ZSTD_lazy2=5, + ZSTD_btlazy2=6, + ZSTD_btopt=7, + ZSTD_btultra=8, + ZSTD_btultra2=9 + /* note : new strategies _might_ be added in the future. + Only the order (from fast to strong) is guaranteed */ +} ZSTD_strategy; + + +typedef enum { + + /* compression parameters + * Note: When compressing with a ZSTD_CDict these parameters are superseded + * by the parameters used to construct the ZSTD_CDict. See ZSTD_CCtx_refCDict() + * for more info (superseded-by-cdict). */ + ZSTD_c_compressionLevel=100, /* Update all compression parameters according to pre-defined cLevel table + * Default level is ZSTD_CLEVEL_DEFAULT==3. + * Special: value 0 means default, which is controlled by ZSTD_CLEVEL_DEFAULT. + * Note 1 : it's possible to pass a negative compression level. + * Note 2 : setting a level sets all default values of other compression parameters */ + ZSTD_c_windowLog=101, /* Maximum allowed back-reference distance, expressed as power of 2. + * Must be clamped between ZSTD_WINDOWLOG_MIN and ZSTD_WINDOWLOG_MAX. + * Special: value 0 means "use default windowLog". + * Note: Using a windowLog greater than ZSTD_WINDOWLOG_LIMIT_DEFAULT + * requires explicitly allowing such window size at decompression stage if using streaming. */ + ZSTD_c_hashLog=102, /* Size of the initial probe table, as a power of 2. + * Resulting memory usage is (1 << (hashLog+2)). + * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX. + * Larger tables improve compression ratio of strategies <= dFast, + * and improve speed of strategies > dFast. + * Special: value 0 means "use default hashLog". */ + ZSTD_c_chainLog=103, /* Size of the multi-probe search table, as a power of 2. + * Resulting memory usage is (1 << (chainLog+2)). + * Must be clamped between ZSTD_CHAINLOG_MIN and ZSTD_CHAINLOG_MAX. + * Larger tables result in better and slower compression. + * This parameter is useless when using "fast" strategy. + * It's still useful when using "dfast" strategy, + * in which case it defines a secondary probe table. + * Special: value 0 means "use default chainLog". */ + ZSTD_c_searchLog=104, /* Number of search attempts, as a power of 2. + * More attempts result in better and slower compression. + * This parameter is useless when using "fast" and "dFast" strategies. + * Special: value 0 means "use default searchLog". */ + ZSTD_c_minMatch=105, /* Minimum size of searched matches. + * Note that Zstandard can still find matches of smaller size, + * it just tweaks its search algorithm to look for this size and larger. + * Larger values increase compression and decompression speed, but decrease ratio. + * Must be clamped between ZSTD_MINMATCH_MIN and ZSTD_MINMATCH_MAX. + * Note that currently, for all strategies < btopt, effective minimum is 4. + * , for all strategies > fast, effective maximum is 6. + * Special: value 0 means "use default minMatchLength". */ + ZSTD_c_targetLength=106, /* Impact of this field depends on strategy. + * For strategies btopt, btultra & btultra2: + * Length of Match considered "good enough" to stop search. + * Larger values make compression stronger, and slower. + * For strategy fast: + * Distance between match sampling. + * Larger values make compression faster, and weaker. + * Special: value 0 means "use default targetLength". */ + ZSTD_c_strategy=107, /* See ZSTD_strategy enum definition. + * The higher the value of selected strategy, the more complex it is, + * resulting in stronger and slower compression. + * Special: value 0 means "use default strategy". */ + + /* LDM mode parameters */ + ZSTD_c_enableLongDistanceMatching=160, /* Enable long distance matching. + * This parameter is designed to improve compression ratio + * for large inputs, by finding large matches at long distance. + * It increases memory usage and window size. + * Note: enabling this parameter increases default ZSTD_c_windowLog to 128 MB + * except when expressly set to a different value. */ + ZSTD_c_ldmHashLog=161, /* Size of the table for long distance matching, as a power of 2. + * Larger values increase memory usage and compression ratio, + * but decrease compression speed. + * Must be clamped between ZSTD_HASHLOG_MIN and ZSTD_HASHLOG_MAX + * default: windowlog - 7. + * Special: value 0 means "automatically determine hashlog". */ + ZSTD_c_ldmMinMatch=162, /* Minimum match size for long distance matcher. + * Larger/too small values usually decrease compression ratio. + * Must be clamped between ZSTD_LDM_MINMATCH_MIN and ZSTD_LDM_MINMATCH_MAX. + * Special: value 0 means "use default value" (default: 64). */ + ZSTD_c_ldmBucketSizeLog=163, /* Log size of each bucket in the LDM hash table for collision resolution. + * Larger values improve collision resolution but decrease compression speed. + * The maximum value is ZSTD_LDM_BUCKETSIZELOG_MAX. + * Special: value 0 means "use default value" (default: 3). */ + ZSTD_c_ldmHashRateLog=164, /* Frequency of inserting/looking up entries into the LDM hash table. + * Must be clamped between 0 and (ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN). + * Default is MAX(0, (windowLog - ldmHashLog)), optimizing hash table usage. + * Larger values improve compression speed. + * Deviating far from default value will likely result in a compression ratio decrease. + * Special: value 0 means "automatically determine hashRateLog". */ + + /* frame parameters */ + ZSTD_c_contentSizeFlag=200, /* Content size will be written into frame header _whenever known_ (default:1) + * Content size must be known at the beginning of compression. + * This is automatically the case when using ZSTD_compress2(), + * For streaming variants, content size must be provided with ZSTD_CCtx_setPledgedSrcSize() */ + ZSTD_c_checksumFlag=201, /* A 32-bits checksum of content is written at end of frame (default:0) */ + ZSTD_c_dictIDFlag=202, /* When applicable, dictionary's ID is written into frame header (default:1) */ + + /* multi-threading parameters */ + /* These parameters are only useful if multi-threading is enabled (compiled with build macro ZSTD_MULTITHREAD). + * They return an error otherwise. */ + ZSTD_c_nbWorkers=400, /* Select how many threads will be spawned to compress in parallel. + * When nbWorkers >= 1, triggers asynchronous mode when used with ZSTD_compressStream*() : + * ZSTD_compressStream*() consumes input and flush output if possible, but immediately gives back control to caller, + * while compression work is performed in parallel, within worker threads. + * (note : a strong exception to this rule is when first invocation of ZSTD_compressStream2() sets ZSTD_e_end : + * in which case, ZSTD_compressStream2() delegates to ZSTD_compress2(), which is always a blocking call). + * More workers improve speed, but also increase memory usage. + * Default value is `0`, aka "single-threaded mode" : no worker is spawned, compression is performed inside Caller's thread, all invocations are blocking */ + ZSTD_c_jobSize=401, /* Size of a compression job. This value is enforced only when nbWorkers >= 1. + * Each compression job is completed in parallel, so this value can indirectly impact the nb of active threads. + * 0 means default, which is dynamically determined based on compression parameters. + * Job size must be a minimum of overlap size, or 1 MB, whichever is largest. + * The minimum size is automatically and transparently enforced */ + ZSTD_c_overlapLog=402, /* Control the overlap size, as a fraction of window size. + * The overlap size is an amount of data reloaded from previous job at the beginning of a new job. + * It helps preserve compression ratio, while each job is compressed in parallel. + * This value is enforced only when nbWorkers >= 1. + * Larger values increase compression ratio, but decrease speed. + * Possible values range from 0 to 9 : + * - 0 means "default" : value will be determined by the library, depending on strategy + * - 1 means "no overlap" + * - 9 means "full overlap", using a full window size. + * Each intermediate rank increases/decreases load size by a factor 2 : + * 9: full window; 8: w/2; 7: w/4; 6: w/8; 5:w/16; 4: w/32; 3:w/64; 2:w/128; 1:no overlap; 0:default + * default value varies between 6 and 9, depending on strategy */ + + /* note : additional experimental parameters are also available + * within the experimental section of the API. + * At the time of this writing, they include : + * ZSTD_c_rsyncable + * ZSTD_c_format + * ZSTD_c_forceMaxWindow + * ZSTD_c_forceAttachDict + * ZSTD_c_literalCompressionMode + * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them. + * note : never ever use experimentalParam? names directly; + * also, the enums values themselves are unstable and can still change. + */ + ZSTD_c_experimentalParam1=500, + ZSTD_c_experimentalParam2=10, + ZSTD_c_experimentalParam3=1000, + ZSTD_c_experimentalParam4=1001, + ZSTD_c_experimentalParam5=1002, +} ZSTD_cParameter; + +typedef struct { + size_t error; + int lowerBound; + int upperBound; +} ZSTD_bounds; + +/*! ZSTD_cParam_getBounds() : + * All parameters must belong to an interval with lower and upper bounds, + * otherwise they will either trigger an error or be automatically clamped. + * @return : a structure, ZSTD_bounds, which contains + * - an error status field, which must be tested using ZSTD_isError() + * - lower and upper bounds, both inclusive + */ +ZSTDLIB_API ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter cParam); + +/*! ZSTD_CCtx_setParameter() : + * Set one compression parameter, selected by enum ZSTD_cParameter. + * All parameters have valid bounds. Bounds can be queried using ZSTD_cParam_getBounds(). + * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). + * Setting a parameter is generally only possible during frame initialization (before starting compression). + * Exception : when using multi-threading mode (nbWorkers >= 1), + * the following parameters can be updated _during_ compression (within same frame): + * => compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy. + * new parameters will be active for next job only (after a flush()). + * @return : an error code (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value); + +/*! ZSTD_CCtx_setPledgedSrcSize() : + * Total input data size to be compressed as a single frame. + * Value will be written in frame header, unless if explicitly forbidden using ZSTD_c_contentSizeFlag. + * This value will also be controlled at end of frame, and trigger an error if not respected. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Note 1 : pledgedSrcSize==0 actually means zero, aka an empty frame. + * In order to mean "unknown content size", pass constant ZSTD_CONTENTSIZE_UNKNOWN. + * ZSTD_CONTENTSIZE_UNKNOWN is default value for any new frame. + * Note 2 : pledgedSrcSize is only valid once, for the next frame. + * It's discarded at the end of the frame, and replaced by ZSTD_CONTENTSIZE_UNKNOWN. + * Note 3 : Whenever all input data is provided and consumed in a single round, + * for example with ZSTD_compress2(), + * or invoking immediately ZSTD_compressStream2(,,,ZSTD_e_end), + * this value is automatically overridden by srcSize instead. + */ +ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize); + +typedef enum { + ZSTD_reset_session_only = 1, + ZSTD_reset_parameters = 2, + ZSTD_reset_session_and_parameters = 3 +} ZSTD_ResetDirective; + +/*! ZSTD_CCtx_reset() : + * There are 2 different things that can be reset, independently or jointly : + * - The session : will stop compressing current frame, and make CCtx ready to start a new one. + * Useful after an error, or to interrupt any ongoing compression. + * Any internal data not yet flushed is cancelled. + * Compression parameters and dictionary remain unchanged. + * They will be used to compress next frame. + * Resetting session never fails. + * - The parameters : changes all parameters back to "default". + * This removes any reference to any dictionary too. + * Parameters can only be changed between 2 sessions (i.e. no compression is currently ongoing) + * otherwise the reset fails, and function returns an error value (which can be tested using ZSTD_isError()) + * - Both : similar to resetting the session, followed by resetting parameters. + */ +ZSTDLIB_API size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset); + +/*! ZSTD_compress2() : + * Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API. + * ZSTD_compress2() always starts a new frame. + * Should cctx hold data from a previously unfinished frame, everything about it is forgotten. + * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*() + * - The function is always blocking, returns when compression is completed. + * Hint : compression runs faster if `dstCapacity` >= `ZSTD_compressBound(srcSize)`. + * @return : compressed size written into `dst` (<= `dstCapacity), + * or an error code if it fails (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_compress2( ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize); + + +/*************************************** +* Advanced decompression API +***************************************/ + +/* The advanced API pushes parameters one by one into an existing DCtx context. + * Parameters are sticky, and remain valid for all following frames + * using the same DCtx context. + * It's possible to reset parameters to default values using ZSTD_DCtx_reset(). + * Note : This API is compatible with existing ZSTD_decompressDCtx() and ZSTD_decompressStream(). + * Therefore, no new decompression function is necessary. + */ + +typedef enum { + + ZSTD_d_windowLogMax=100, /* Select a size limit (in power of 2) beyond which + * the streaming API will refuse to allocate memory buffer + * in order to protect the host from unreasonable memory requirements. + * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode. + * By default, a decompression context accepts window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT). + * Special: value 0 means "use default maximum windowLog". */ + + /* note : additional experimental parameters are also available + * within the experimental section of the API. + * At the time of this writing, they include : + * ZSTD_c_format + * Because they are not stable, it's necessary to define ZSTD_STATIC_LINKING_ONLY to access them. + * note : never ever use experimentalParam? names directly + */ + ZSTD_d_experimentalParam1=1000 + +} ZSTD_dParameter; + +/*! ZSTD_dParam_getBounds() : + * All parameters must belong to an interval with lower and upper bounds, + * otherwise they will either trigger an error or be automatically clamped. + * @return : a structure, ZSTD_bounds, which contains + * - an error status field, which must be tested using ZSTD_isError() + * - both lower and upper bounds, inclusive + */ +ZSTDLIB_API ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam); + +/*! ZSTD_DCtx_setParameter() : + * Set one compression parameter, selected by enum ZSTD_dParameter. + * All parameters have valid bounds. Bounds can be queried using ZSTD_dParam_getBounds(). + * Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). + * Setting a parameter is only possible during frame initialization (before starting decompression). + * @return : 0, or an error code (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int value); + +/*! ZSTD_DCtx_reset() : + * Return a DCtx to clean state. + * Session and parameters can be reset jointly or separately. + * Parameters can only be reset when no active frame is being decompressed. + * @return : 0, or an error code, which can be tested with ZSTD_isError() + */ +ZSTDLIB_API size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset); + + +/**************************** +* Streaming +****************************/ + +typedef struct ZSTD_inBuffer_s { + const void* src; /**< start of input buffer */ + size_t size; /**< size of input buffer */ + size_t pos; /**< position where reading stopped. Will be updated. Necessarily 0 <= pos <= size */ +} ZSTD_inBuffer; + +typedef struct ZSTD_outBuffer_s { + void* dst; /**< start of output buffer */ + size_t size; /**< size of output buffer */ + size_t pos; /**< position where writing stopped. Will be updated. Necessarily 0 <= pos <= size */ +} ZSTD_outBuffer; + + + +/*-*********************************************************************** +* Streaming compression - HowTo +* +* A ZSTD_CStream object is required to track streaming operation. +* Use ZSTD_createCStream() and ZSTD_freeCStream() to create/release resources. +* ZSTD_CStream objects can be reused multiple times on consecutive compression operations. +* It is recommended to re-use ZSTD_CStream since it will play nicer with system's memory, by re-using already allocated memory. +* +* For parallel execution, use one separate ZSTD_CStream per thread. +* +* note : since v1.3.0, ZSTD_CStream and ZSTD_CCtx are the same thing. +* +* Parameters are sticky : when starting a new compression on the same context, +* it will re-use the same sticky parameters as previous compression session. +* When in doubt, it's recommended to fully initialize the context before usage. +* Use ZSTD_CCtx_reset() to reset the context and ZSTD_CCtx_setParameter(), +* ZSTD_CCtx_setPledgedSrcSize(), or ZSTD_CCtx_loadDictionary() and friends to +* set more specific parameters, the pledged source size, or load a dictionary. +* +* Use ZSTD_compressStream2() with ZSTD_e_continue as many times as necessary to +* consume input stream. The function will automatically update both `pos` +* fields within `input` and `output`. +* Note that the function may not consume the entire input, for example, because +* the output buffer is already full, in which case `input.pos < input.size`. +* The caller must check if input has been entirely consumed. +* If not, the caller must make some room to receive more compressed data, +* and then present again remaining input data. +* note: ZSTD_e_continue is guaranteed to make some forward progress when called, +* but doesn't guarantee maximal forward progress. This is especially relevant +* when compressing with multiple threads. The call won't block if it can +* consume some input, but if it can't it will wait for some, but not all, +* output to be flushed. +* @return : provides a minimum amount of data remaining to be flushed from internal buffers +* or an error code, which can be tested using ZSTD_isError(). +* +* At any moment, it's possible to flush whatever data might remain stuck within internal buffer, +* using ZSTD_compressStream2() with ZSTD_e_flush. `output->pos` will be updated. +* Note that, if `output->size` is too small, a single invocation with ZSTD_e_flush might not be enough (return code > 0). +* In which case, make some room to receive more compressed data, and call again ZSTD_compressStream2() with ZSTD_e_flush. +* You must continue calling ZSTD_compressStream2() with ZSTD_e_flush until it returns 0, at which point you can change the +* operation. +* note: ZSTD_e_flush will flush as much output as possible, meaning when compressing with multiple threads, it will +* block until the flush is complete or the output buffer is full. +* @return : 0 if internal buffers are entirely flushed, +* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size), +* or an error code, which can be tested using ZSTD_isError(). +* +* Calling ZSTD_compressStream2() with ZSTD_e_end instructs to finish a frame. +* It will perform a flush and write frame epilogue. +* The epilogue is required for decoders to consider a frame completed. +* flush operation is the same, and follows same rules as calling ZSTD_compressStream2() with ZSTD_e_flush. +* You must continue calling ZSTD_compressStream2() with ZSTD_e_end until it returns 0, at which point you are free to +* start a new frame. +* note: ZSTD_e_end will flush as much output as possible, meaning when compressing with multiple threads, it will +* block until the flush is complete or the output buffer is full. +* @return : 0 if frame fully completed and fully flushed, +* >0 if some data still present within internal buffer (the value is minimal estimation of remaining size), +* or an error code, which can be tested using ZSTD_isError(). +* +* *******************************************************************/ + +typedef ZSTD_CCtx ZSTD_CStream; /**< CCtx and CStream are now effectively same object (>= v1.3.0) */ + /* Continue to distinguish them for compatibility with older versions <= v1.2.0 */ +/*===== ZSTD_CStream management functions =====*/ +ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream(void); +ZSTDLIB_API size_t ZSTD_freeCStream(ZSTD_CStream* zcs); + +/*===== Streaming compression functions =====*/ +typedef enum { + ZSTD_e_continue=0, /* collect more data, encoder decides when to output compressed result, for optimal compression ratio */ + ZSTD_e_flush=1, /* flush any data provided so far, + * it creates (at least) one new block, that can be decoded immediately on reception; + * frame will continue: any future data can still reference previously compressed data, improving compression. + * note : multithreaded compression will block to flush as much output as possible. */ + ZSTD_e_end=2 /* flush any remaining data _and_ close current frame. + * note that frame is only closed after compressed data is fully flushed (return value == 0). + * After that point, any additional data starts a new frame. + * note : each frame is independent (does not reference any content from previous frame). + : note : multithreaded compression will block to flush as much output as possible. */ +} ZSTD_EndDirective; + +/*! ZSTD_compressStream2() : + * Behaves about the same as ZSTD_compressStream, with additional control on end directive. + * - Compression parameters are pushed into CCtx before starting compression, using ZSTD_CCtx_set*() + * - Compression parameters cannot be changed once compression is started (save a list of exceptions in multi-threading mode) + * - output->pos must be <= dstCapacity, input->pos must be <= srcSize + * - output->pos and input->pos will be updated. They are guaranteed to remain below their respective limit. + * - When nbWorkers==0 (default), function is blocking : it completes its job before returning to caller. + * - When nbWorkers>=1, function is non-blocking : it just acquires a copy of input, and distributes jobs to internal worker threads, flush whatever is available, + * and then immediately returns, just indicating that there is some data remaining to be flushed. + * The function nonetheless guarantees forward progress : it will return only after it reads or write at least 1+ byte. + * - Exception : if the first call requests a ZSTD_e_end directive and provides enough dstCapacity, the function delegates to ZSTD_compress2() which is always blocking. + * - @return provides a minimum amount of data remaining to be flushed from internal buffers + * or an error code, which can be tested using ZSTD_isError(). + * if @return != 0, flush is not fully completed, there is still some data left within internal buffers. + * This is useful for ZSTD_e_flush, since in this case more flushes are necessary to empty all buffers. + * For ZSTD_e_end, @return == 0 when internal buffers are fully flushed and frame is completed. + * - after a ZSTD_e_end directive, if internal buffer is not fully flushed (@return != 0), + * only ZSTD_e_end or ZSTD_e_flush operations are allowed. + * Before starting a new compression job, or changing compression parameters, + * it is required to fully flush internal buffers. + */ +ZSTDLIB_API size_t ZSTD_compressStream2( ZSTD_CCtx* cctx, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective endOp); + +ZSTDLIB_API size_t ZSTD_CStreamInSize(void); /**< recommended size for input buffer */ +ZSTDLIB_API size_t ZSTD_CStreamOutSize(void); /**< recommended size for output buffer. Guarantee to successfully flush at least one complete compressed block in all circumstances. */ + +/******************************************************************************* + * This is a legacy streaming API, and can be replaced by ZSTD_CCtx_reset() and + * ZSTD_compressStream2(). It is redundant, but is still fully supported. + * Advanced parameters and dictionary compression can only be used through the + * new API. + ******************************************************************************/ + +/** + * Equivalent to: + * + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any) + * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); + */ +ZSTDLIB_API size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel); +/** + * Alternative for ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue). + * NOTE: The return value is different. ZSTD_compressStream() returns a hint for + * the next read size (if non-zero and not an error). ZSTD_compressStream2() + * returns the number of bytes left to flush (if non-zero and not an error). + */ +ZSTDLIB_API size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input); +/** Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_flush). */ +ZSTDLIB_API size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output); +/** Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_end). */ +ZSTDLIB_API size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output); + + +/*-*************************************************************************** +* Streaming decompression - HowTo +* +* A ZSTD_DStream object is required to track streaming operations. +* Use ZSTD_createDStream() and ZSTD_freeDStream() to create/release resources. +* ZSTD_DStream objects can be re-used multiple times. +* +* Use ZSTD_initDStream() to start a new decompression operation. +* @return : recommended first input size +* Alternatively, use advanced API to set specific properties. +* +* Use ZSTD_decompressStream() repetitively to consume your input. +* The function will update both `pos` fields. +* If `input.pos < input.size`, some input has not been consumed. +* It's up to the caller to present again remaining data. +* The function tries to flush all data decoded immediately, respecting output buffer size. +* If `output.pos < output.size`, decoder has flushed everything it could. +* But if `output.pos == output.size`, there might be some data left within internal buffers., +* In which case, call ZSTD_decompressStream() again to flush whatever remains in the buffer. +* Note : with no additional input provided, amount of data flushed is necessarily <= ZSTD_BLOCKSIZE_MAX. +* @return : 0 when a frame is completely decoded and fully flushed, +* or an error code, which can be tested using ZSTD_isError(), +* or any other value > 0, which means there is still some decoding or flushing to do to complete current frame : +* the return value is a suggested next input size (just a hint for better latency) +* that will never request more than the remaining frame size. +* *******************************************************************************/ + +typedef ZSTD_DCtx ZSTD_DStream; /**< DCtx and DStream are now effectively same object (>= v1.3.0) */ + /* For compatibility with versions <= v1.2.0, prefer differentiating them. */ +/*===== ZSTD_DStream management functions =====*/ +ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream(void); +ZSTDLIB_API size_t ZSTD_freeDStream(ZSTD_DStream* zds); + +/*===== Streaming decompression functions =====*/ + +/* This function is redundant with the advanced API and equivalent to: + * + * ZSTD_DCtx_reset(zds); + * ZSTD_DCtx_refDDict(zds, NULL); + */ +ZSTDLIB_API size_t ZSTD_initDStream(ZSTD_DStream* zds); + +ZSTDLIB_API size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input); + +ZSTDLIB_API size_t ZSTD_DStreamInSize(void); /*!< recommended size for input buffer */ +ZSTDLIB_API size_t ZSTD_DStreamOutSize(void); /*!< recommended size for output buffer. Guarantee to successfully flush at least one complete block in all circumstances. */ + + +/************************** +* Simple dictionary API +***************************/ +/*! ZSTD_compress_usingDict() : + * Compression at an explicit compression level using a Dictionary. + * A dictionary can be any arbitrary data segment (also called a prefix), + * or a buffer with specified information (see dictBuilder/zdict.h). + * Note : This function loads the dictionary, resulting in significant startup delay. + * It's intended for a dictionary used only once. + * Note 2 : When `dict == NULL || dictSize < 8` no dictionary is used. */ +ZSTDLIB_API size_t ZSTD_compress_usingDict(ZSTD_CCtx* ctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + int compressionLevel); + +/*! ZSTD_decompress_usingDict() : + * Decompression using a known Dictionary. + * Dictionary must be identical to the one used during compression. + * Note : This function loads the dictionary, resulting in significant startup delay. + * It's intended for a dictionary used only once. + * Note : When `dict == NULL || dictSize < 8` no dictionary is used. */ +ZSTDLIB_API size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize); + + +/*********************************** + * Bulk processing dictionary API + **********************************/ +typedef struct ZSTD_CDict_s ZSTD_CDict; + +/*! ZSTD_createCDict() : + * When compressing multiple messages / blocks using the same dictionary, it's recommended to load it only once. + * ZSTD_createCDict() will create a digested dictionary, ready to start future compression operations without startup cost. + * ZSTD_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. + * `dictBuffer` can be released after ZSTD_CDict creation, because its content is copied within CDict. + * Consider experimental function `ZSTD_createCDict_byReference()` if you prefer to not duplicate `dictBuffer` content. + * Note : A ZSTD_CDict can be created from an empty dictBuffer, but it is inefficient when used to compress small data. */ +ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict(const void* dictBuffer, size_t dictSize, + int compressionLevel); + +/*! ZSTD_freeCDict() : + * Function frees memory allocated by ZSTD_createCDict(). */ +ZSTDLIB_API size_t ZSTD_freeCDict(ZSTD_CDict* CDict); + +/*! ZSTD_compress_usingCDict() : + * Compression using a digested Dictionary. + * Recommended when same dictionary is used multiple times. + * Note : compression level is _decided at dictionary creation time_, + * and frame parameters are hardcoded (dictID=yes, contentSize=yes, checksum=no) */ +ZSTDLIB_API size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict); + + +typedef struct ZSTD_DDict_s ZSTD_DDict; + +/*! ZSTD_createDDict() : + * Create a digested dictionary, ready to start decompression operation without startup delay. + * dictBuffer can be released after DDict creation, as its content is copied inside DDict. */ +ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict(const void* dictBuffer, size_t dictSize); + +/*! ZSTD_freeDDict() : + * Function frees memory allocated with ZSTD_createDDict() */ +ZSTDLIB_API size_t ZSTD_freeDDict(ZSTD_DDict* ddict); + +/*! ZSTD_decompress_usingDDict() : + * Decompression using a digested Dictionary. + * Recommended when same dictionary is used multiple times. */ +ZSTDLIB_API size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_DDict* ddict); + + +/******************************** + * Dictionary helper functions + *******************************/ + +/*! ZSTD_getDictID_fromDict() : + * Provides the dictID stored within dictionary. + * if @return == 0, the dictionary is not conformant with Zstandard specification. + * It can still be loaded, but as a content-only dictionary. */ +ZSTDLIB_API unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize); + +/*! ZSTD_getDictID_fromDDict() : + * Provides the dictID of the dictionary loaded into `ddict`. + * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. + * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ +ZSTDLIB_API unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict); + +/*! ZSTD_getDictID_fromFrame() : + * Provides the dictID required to decompressed the frame stored within `src`. + * If @return == 0, the dictID could not be decoded. + * This could for one of the following reasons : + * - The frame does not require a dictionary to be decoded (most common case). + * - The frame was built with dictID intentionally removed. Whatever dictionary is necessary is a hidden information. + * Note : this use case also happens when using a non-conformant dictionary. + * - `srcSize` is too small, and as a result, the frame header could not be decoded (only possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`). + * - This is not a Zstandard frame. + * When identifying the exact failure cause, it's possible to use ZSTD_getFrameHeader(), which will provide a more precise error code. */ +ZSTDLIB_API unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize); + + +/******************************************************************************* + * Advanced dictionary and prefix API + * + * This API allows dictionaries to be used with ZSTD_compress2(), + * ZSTD_compressStream2(), and ZSTD_decompress(). Dictionaries are sticky, and + * only reset with the context is reset with ZSTD_reset_parameters or + * ZSTD_reset_session_and_parameters. Prefixes are single-use. + ******************************************************************************/ + + +/*! ZSTD_CCtx_loadDictionary() : + * Create an internal CDict from `dict` buffer. + * Decompression will have to use same dictionary. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special: Loading a NULL (or 0-size) dictionary invalidates previous dictionary, + * meaning "return to no-dictionary mode". + * Note 1 : Dictionary is sticky, it will be used for all future compressed frames. + * To return to "no-dictionary" situation, load a NULL dictionary (or reset parameters). + * Note 2 : Loading a dictionary involves building tables. + * It's also a CPU consuming operation, with non-negligible impact on latency. + * Tables are dependent on compression parameters, and for this reason, + * compression parameters can no longer be changed after loading a dictionary. + * Note 3 :`dict` content will be copied internally. + * Use experimental ZSTD_CCtx_loadDictionary_byReference() to reference content instead. + * In such a case, dictionary buffer must outlive its users. + * Note 4 : Use ZSTD_CCtx_loadDictionary_advanced() + * to precisely select how dictionary content must be interpreted. */ +ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize); + +/*! ZSTD_CCtx_refCDict() : + * Reference a prepared dictionary, to be used for all next compressed frames. + * Note that compression parameters are enforced from within CDict, + * and supersede any compression parameter previously set within CCtx. + * The parameters ignored are labled as "superseded-by-cdict" in the ZSTD_cParameter enum docs. + * The ignored parameters will be used again if the CCtx is returned to no-dictionary mode. + * The dictionary will remain valid for future compressed frames using same CCtx. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special : Referencing a NULL CDict means "return to no-dictionary mode". + * Note 1 : Currently, only one dictionary can be managed. + * Referencing a new dictionary effectively "discards" any previous one. + * Note 2 : CDict is just referenced, its lifetime must outlive its usage within CCtx. */ +ZSTDLIB_API size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); + +/*! ZSTD_CCtx_refPrefix() : + * Reference a prefix (single-usage dictionary) for next compressed frame. + * A prefix is **only used once**. Tables are discarded at end of frame (ZSTD_e_end). + * Decompression will need same prefix to properly regenerate data. + * Compressing with a prefix is similar in outcome as performing a diff and compressing it, + * but performs much faster, especially during decompression (compression speed is tunable with compression level). + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary + * Note 1 : Prefix buffer is referenced. It **must** outlive compression. + * Its content must remain unmodified during compression. + * Note 2 : If the intention is to diff some large src data blob with some prior version of itself, + * ensure that the window size is large enough to contain the entire source. + * See ZSTD_c_windowLog. + * Note 3 : Referencing a prefix involves building tables, which are dependent on compression parameters. + * It's a CPU consuming operation, with non-negligible impact on latency. + * If there is a need to use the same prefix multiple times, consider loadDictionary instead. + * Note 4 : By default, the prefix is interpreted as raw content (ZSTD_dm_rawContent). + * Use experimental ZSTD_CCtx_refPrefix_advanced() to alter dictionary interpretation. */ +ZSTDLIB_API size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, + const void* prefix, size_t prefixSize); + +/*! ZSTD_DCtx_loadDictionary() : + * Create an internal DDict from dict buffer, + * to be used to decompress next frames. + * The dictionary remains valid for all future frames, until explicitly invalidated. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary, + * meaning "return to no-dictionary mode". + * Note 1 : Loading a dictionary involves building tables, + * which has a non-negligible impact on CPU usage and latency. + * It's recommended to "load once, use many times", to amortize the cost + * Note 2 :`dict` content will be copied internally, so `dict` can be released after loading. + * Use ZSTD_DCtx_loadDictionary_byReference() to reference dictionary content instead. + * Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to take control of + * how dictionary content is loaded and interpreted. + */ +ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); + +/*! ZSTD_DCtx_refDDict() : + * Reference a prepared dictionary, to be used to decompress next frames. + * The dictionary remains active for decompression of future frames using same DCtx. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Note 1 : Currently, only one dictionary can be managed. + * Referencing a new dictionary effectively "discards" any previous one. + * Special: referencing a NULL DDict means "return to no-dictionary mode". + * Note 2 : DDict is just referenced, its lifetime must outlive its usage from DCtx. + */ +ZSTDLIB_API size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); + +/*! ZSTD_DCtx_refPrefix() : + * Reference a prefix (single-usage dictionary) to decompress next frame. + * This is the reverse operation of ZSTD_CCtx_refPrefix(), + * and must use the same prefix as the one used during compression. + * Prefix is **only used once**. Reference is discarded at end of frame. + * End of frame is reached when ZSTD_decompressStream() returns 0. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + * Note 1 : Adding any prefix (including NULL) invalidates any previously set prefix or dictionary + * Note 2 : Prefix buffer is referenced. It **must** outlive decompression. + * Prefix buffer must remain unmodified up to the end of frame, + * reached when ZSTD_decompressStream() returns 0. + * Note 3 : By default, the prefix is treated as raw content (ZSTD_dm_rawContent). + * Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode (Experimental section) + * Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost. + * A full dictionary is more costly, as it requires building tables. + */ +ZSTDLIB_API size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, + const void* prefix, size_t prefixSize); + +/* === Memory management === */ + +/*! ZSTD_sizeof_*() : + * These functions give the _current_ memory usage of selected object. + * Note that object memory usage can evolve (increase or decrease) over time. */ +ZSTDLIB_API size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx); +ZSTDLIB_API size_t ZSTD_sizeof_DCtx(const ZSTD_DCtx* dctx); +ZSTDLIB_API size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs); +ZSTDLIB_API size_t ZSTD_sizeof_DStream(const ZSTD_DStream* zds); +ZSTDLIB_API size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict); +ZSTDLIB_API size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict); + +#endif /* ZSTD_H_235446 */ + + +/**************************************************************************************** + * ADVANCED AND EXPERIMENTAL FUNCTIONS + **************************************************************************************** + * The definitions in the following section are considered experimental. + * They are provided for advanced scenarios. + * They should never be used with a dynamic library, as prototypes may change in the future. + * Use them only in association with static linking. + * ***************************************************************************************/ + +#if defined(ZSTD_STATIC_LINKING_ONLY) && !defined(ZSTD_H_ZSTD_STATIC_LINKING_ONLY) +#define ZSTD_H_ZSTD_STATIC_LINKING_ONLY + +/**************************************************************************************** + * experimental API (static linking only) + **************************************************************************************** + * The following symbols and constants + * are not planned to join "stable API" status in the near future. + * They can still change in future versions. + * Some of them are planned to remain in the static_only section indefinitely. + * Some of them might be removed in the future (especially when redundant with existing stable functions) + * ***************************************************************************************/ + +#define ZSTD_FRAMEHEADERSIZE_PREFIX 5 /* minimum input size required to query frame header size */ +#define ZSTD_FRAMEHEADERSIZE_MIN 6 +#define ZSTD_FRAMEHEADERSIZE_MAX 18 /* can be useful for static allocation */ +#define ZSTD_SKIPPABLEHEADERSIZE 8 + +/* compression parameter bounds */ +#define ZSTD_WINDOWLOG_MAX_32 30 +#define ZSTD_WINDOWLOG_MAX_64 31 +#define ZSTD_WINDOWLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_WINDOWLOG_MAX_32 : ZSTD_WINDOWLOG_MAX_64)) +#define ZSTD_WINDOWLOG_MIN 10 +#define ZSTD_HASHLOG_MAX ((ZSTD_WINDOWLOG_MAX < 30) ? ZSTD_WINDOWLOG_MAX : 30) +#define ZSTD_HASHLOG_MIN 6 +#define ZSTD_CHAINLOG_MAX_32 29 +#define ZSTD_CHAINLOG_MAX_64 30 +#define ZSTD_CHAINLOG_MAX ((int)(sizeof(size_t) == 4 ? ZSTD_CHAINLOG_MAX_32 : ZSTD_CHAINLOG_MAX_64)) +#define ZSTD_CHAINLOG_MIN ZSTD_HASHLOG_MIN +#define ZSTD_SEARCHLOG_MAX (ZSTD_WINDOWLOG_MAX-1) +#define ZSTD_SEARCHLOG_MIN 1 +#define ZSTD_MINMATCH_MAX 7 /* only for ZSTD_fast, other strategies are limited to 6 */ +#define ZSTD_MINMATCH_MIN 3 /* only for ZSTD_btopt+, faster strategies are limited to 4 */ +#define ZSTD_TARGETLENGTH_MAX ZSTD_BLOCKSIZE_MAX +#define ZSTD_TARGETLENGTH_MIN 0 /* note : comparing this constant to an unsigned results in a tautological test */ +#define ZSTD_STRATEGY_MIN ZSTD_fast +#define ZSTD_STRATEGY_MAX ZSTD_btultra2 + + +#define ZSTD_OVERLAPLOG_MIN 0 +#define ZSTD_OVERLAPLOG_MAX 9 + +#define ZSTD_WINDOWLOG_LIMIT_DEFAULT 27 /* by default, the streaming decoder will refuse any frame + * requiring larger than (1<= ZSTD_FRAMEHEADERSIZE_PREFIX. + * @return : size of the Frame Header, + * or an error code (if srcSize is too small) */ +ZSTDLIB_API size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize); + + +/*************************************** +* Memory management +***************************************/ + +/*! ZSTD_estimate*() : + * These functions make it possible to estimate memory usage + * of a future {D,C}Ctx, before its creation. + * ZSTD_estimateCCtxSize() will provide a budget large enough for any compression level up to selected one. + * It will also consider src size to be arbitrarily "large", which is worst case. + * If srcSize is known to always be small, ZSTD_estimateCCtxSize_usingCParams() can provide a tighter estimation. + * ZSTD_estimateCCtxSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel. + * ZSTD_estimateCCtxSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1. + * Note : CCtx size estimation is only correct for single-threaded compression. */ +ZSTDLIB_API size_t ZSTD_estimateCCtxSize(int compressionLevel); +ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams); +ZSTDLIB_API size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params); +ZSTDLIB_API size_t ZSTD_estimateDCtxSize(void); + +/*! ZSTD_estimateCStreamSize() : + * ZSTD_estimateCStreamSize() will provide a budget large enough for any compression level up to selected one. + * It will also consider src size to be arbitrarily "large", which is worst case. + * If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation. + * ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel. + * ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1. + * Note : CStream size estimation is only correct for single-threaded compression. + * ZSTD_DStream memory budget depends on window Size. + * This information can be passed manually, using ZSTD_estimateDStreamSize, + * or deducted from a valid frame Header, using ZSTD_estimateDStreamSize_fromFrame(); + * Note : if streaming is init with function ZSTD_init?Stream_usingDict(), + * an internal ?Dict will be created, which additional size is not estimated here. + * In this case, get total size by adding ZSTD_estimate?DictSize */ +ZSTDLIB_API size_t ZSTD_estimateCStreamSize(int compressionLevel); +ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams); +ZSTDLIB_API size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params); +ZSTDLIB_API size_t ZSTD_estimateDStreamSize(size_t windowSize); +ZSTDLIB_API size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize); + +/*! ZSTD_estimate?DictSize() : + * ZSTD_estimateCDictSize() will bet that src size is relatively "small", and content is copied, like ZSTD_createCDict(). + * ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced(). + * Note : dictionaries created by reference (`ZSTD_dlm_byRef`) are logically smaller. + */ +ZSTDLIB_API size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel); +ZSTDLIB_API size_t ZSTD_estimateCDictSize_advanced(size_t dictSize, ZSTD_compressionParameters cParams, ZSTD_dictLoadMethod_e dictLoadMethod); +ZSTDLIB_API size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod); + +/*! ZSTD_initStatic*() : + * Initialize an object using a pre-allocated fixed-size buffer. + * workspace: The memory area to emplace the object into. + * Provided pointer *must be 8-bytes aligned*. + * Buffer must outlive object. + * workspaceSize: Use ZSTD_estimate*Size() to determine + * how large workspace must be to support target scenario. + * @return : pointer to object (same address as workspace, just different type), + * or NULL if error (size too small, incorrect alignment, etc.) + * Note : zstd will never resize nor malloc() when using a static buffer. + * If the object requires more memory than available, + * zstd will just error out (typically ZSTD_error_memory_allocation). + * Note 2 : there is no corresponding "free" function. + * Since workspace is allocated externally, it must be freed externally too. + * Note 3 : cParams : use ZSTD_getCParams() to convert a compression level + * into its associated cParams. + * Limitation 1 : currently not compatible with internal dictionary creation, triggered by + * ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict(). + * Limitation 2 : static cctx currently not compatible with multi-threading. + * Limitation 3 : static dctx is incompatible with legacy support. + */ +ZSTDLIB_API ZSTD_CCtx* ZSTD_initStaticCCtx(void* workspace, size_t workspaceSize); +ZSTDLIB_API ZSTD_CStream* ZSTD_initStaticCStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticCCtx() */ + +ZSTDLIB_API ZSTD_DCtx* ZSTD_initStaticDCtx(void* workspace, size_t workspaceSize); +ZSTDLIB_API ZSTD_DStream* ZSTD_initStaticDStream(void* workspace, size_t workspaceSize); /**< same as ZSTD_initStaticDCtx() */ + +ZSTDLIB_API const ZSTD_CDict* ZSTD_initStaticCDict( + void* workspace, size_t workspaceSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams); + +ZSTDLIB_API const ZSTD_DDict* ZSTD_initStaticDDict( + void* workspace, size_t workspaceSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType); + + +/*! Custom memory allocation : + * These prototypes make it possible to pass your own allocation/free functions. + * ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below. + * All allocation/free operations will be completed using these custom variants instead of regular ones. + */ +typedef void* (*ZSTD_allocFunction) (void* opaque, size_t size); +typedef void (*ZSTD_freeFunction) (void* opaque, void* address); +typedef struct { ZSTD_allocFunction customAlloc; ZSTD_freeFunction customFree; void* opaque; } ZSTD_customMem; +static ZSTD_customMem const ZSTD_defaultCMem = { NULL, NULL, NULL }; /**< this constant defers to stdlib's functions */ + +ZSTDLIB_API ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem); +ZSTDLIB_API ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem); +ZSTDLIB_API ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem); +ZSTDLIB_API ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem); + +ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_advanced(const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams, + ZSTD_customMem customMem); + +ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_customMem customMem); + + + +/*************************************** +* Advanced compression functions +***************************************/ + +/*! ZSTD_createCDict_byReference() : + * Create a digested dictionary for compression + * Dictionary content is just referenced, not duplicated. + * As a consequence, `dictBuffer` **must** outlive CDict, + * and its content must remain unmodified throughout the lifetime of CDict. */ +ZSTDLIB_API ZSTD_CDict* ZSTD_createCDict_byReference(const void* dictBuffer, size_t dictSize, int compressionLevel); + +/*! ZSTD_getCParams() : + * @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize. + * `estimatedSrcSize` value is optional, select 0 if not known */ +ZSTDLIB_API ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); + +/*! ZSTD_getParams() : + * same as ZSTD_getCParams(), but @return a full `ZSTD_parameters` object instead of sub-component `ZSTD_compressionParameters`. + * All fields of `ZSTD_frameParameters` are set to default : contentSize=1, checksum=0, noDictID=0 */ +ZSTDLIB_API ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long estimatedSrcSize, size_t dictSize); + +/*! ZSTD_checkCParams() : + * Ensure param values remain within authorized range. + * @return 0 on success, or an error code (can be checked with ZSTD_isError()) */ +ZSTDLIB_API size_t ZSTD_checkCParams(ZSTD_compressionParameters params); + +/*! ZSTD_adjustCParams() : + * optimize params for a given `srcSize` and `dictSize`. + * `srcSize` can be unknown, in which case use ZSTD_CONTENTSIZE_UNKNOWN. + * `dictSize` must be `0` when there is no dictionary. + * cPar can be invalid : all parameters will be clamped within valid range in the @return struct. + * This function never fails (wide contract) */ +ZSTDLIB_API ZSTD_compressionParameters ZSTD_adjustCParams(ZSTD_compressionParameters cPar, unsigned long long srcSize, size_t dictSize); + +/*! ZSTD_compress_advanced() : + * Same as ZSTD_compress_usingDict(), with fine-tune control over compression parameters (by structure) */ +ZSTDLIB_API size_t ZSTD_compress_advanced(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + ZSTD_parameters params); + +/*! ZSTD_compress_usingCDict_advanced() : + * Same as ZSTD_compress_usingCDict(), with fine-tune control over frame parameters */ +ZSTDLIB_API size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict, + ZSTD_frameParameters fParams); + + +/*! ZSTD_CCtx_loadDictionary_byReference() : + * Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx. + * It saves some memory, but also requires that `dict` outlives its usage within `cctx` */ +ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference(ZSTD_CCtx* cctx, const void* dict, size_t dictSize); + +/*! ZSTD_CCtx_loadDictionary_advanced() : + * Same as ZSTD_CCtx_loadDictionary(), but gives finer control over + * how to load the dictionary (by copy ? by reference ?) + * and how to interpret it (automatic ? force raw mode ? full mode only ?) */ +ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); + +/*! ZSTD_CCtx_refPrefix_advanced() : + * Same as ZSTD_CCtx_refPrefix(), but gives finer control over + * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ +ZSTDLIB_API size_t ZSTD_CCtx_refPrefix_advanced(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); + +/* === experimental parameters === */ +/* these parameters can be used with ZSTD_setParameter() + * they are not guaranteed to remain supported in the future */ + + /* Enables rsyncable mode, + * which makes compressed files more rsync friendly + * by adding periodic synchronization points to the compressed data. + * The target average block size is ZSTD_c_jobSize / 2. + * It's possible to modify the job size to increase or decrease + * the granularity of the synchronization point. + * Once the jobSize is smaller than the window size, + * it will result in compression ratio degradation. + * NOTE 1: rsyncable mode only works when multithreading is enabled. + * NOTE 2: rsyncable performs poorly in combination with long range mode, + * since it will decrease the effectiveness of synchronization points, + * though mileage may vary. + * NOTE 3: Rsyncable mode limits maximum compression speed to ~400 MB/s. + * If the selected compression level is already running significantly slower, + * the overall speed won't be significantly impacted. + */ + #define ZSTD_c_rsyncable ZSTD_c_experimentalParam1 + +/* Select a compression format. + * The value must be of type ZSTD_format_e. + * See ZSTD_format_e enum definition for details */ +#define ZSTD_c_format ZSTD_c_experimentalParam2 + +/* Force back-reference distances to remain < windowSize, + * even when referencing into Dictionary content (default:0) */ +#define ZSTD_c_forceMaxWindow ZSTD_c_experimentalParam3 + +/* Controls whether the contents of a CDict + * are used in place, or copied into the working context. + * Accepts values from the ZSTD_dictAttachPref_e enum. + * See the comments on that enum for an explanation of the feature. */ +#define ZSTD_c_forceAttachDict ZSTD_c_experimentalParam4 + +/* Controls how the literals are compressed (default is auto). + * The value must be of type ZSTD_literalCompressionMode_e. + * See ZSTD_literalCompressionMode_t enum definition for details. + */ +#define ZSTD_c_literalCompressionMode ZSTD_c_experimentalParam5 + +/*! ZSTD_CCtx_getParameter() : + * Get the requested compression parameter value, selected by enum ZSTD_cParameter, + * and store it into int* value. + * @return : 0, or an error code (which can be tested with ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value); + + +/*! ZSTD_CCtx_params : + * Quick howto : + * - ZSTD_createCCtxParams() : Create a ZSTD_CCtx_params structure + * - ZSTD_CCtxParams_setParameter() : Push parameters one by one into + * an existing ZSTD_CCtx_params structure. + * This is similar to + * ZSTD_CCtx_setParameter(). + * - ZSTD_CCtx_setParametersUsingCCtxParams() : Apply parameters to + * an existing CCtx. + * These parameters will be applied to + * all subsequent frames. + * - ZSTD_compressStream2() : Do compression using the CCtx. + * - ZSTD_freeCCtxParams() : Free the memory. + * + * This can be used with ZSTD_estimateCCtxSize_advanced_usingCCtxParams() + * for static allocation of CCtx for single-threaded compression. + */ +ZSTDLIB_API ZSTD_CCtx_params* ZSTD_createCCtxParams(void); +ZSTDLIB_API size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params); + +/*! ZSTD_CCtxParams_reset() : + * Reset params to default values. + */ +ZSTDLIB_API size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params); + +/*! ZSTD_CCtxParams_init() : + * Initializes the compression parameters of cctxParams according to + * compression level. All other parameters are reset to their default values. + */ +ZSTDLIB_API size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel); + +/*! ZSTD_CCtxParams_init_advanced() : + * Initializes the compression and frame parameters of cctxParams according to + * params. All other parameters are reset to their default values. + */ +ZSTDLIB_API size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params); + +/*! ZSTD_CCtxParams_setParameter() : + * Similar to ZSTD_CCtx_setParameter. + * Set one compression parameter, selected by enum ZSTD_cParameter. + * Parameters must be applied to a ZSTD_CCtx using ZSTD_CCtx_setParametersUsingCCtxParams(). + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int value); + +/*! ZSTD_CCtxParams_getParameter() : + * Similar to ZSTD_CCtx_getParameter. + * Get the requested value of one compression parameter, selected by enum ZSTD_cParameter. + * @result : 0, or an error code (which can be tested with ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_CCtxParams_getParameter(ZSTD_CCtx_params* params, ZSTD_cParameter param, int* value); + +/*! ZSTD_CCtx_setParametersUsingCCtxParams() : + * Apply a set of ZSTD_CCtx_params to the compression context. + * This can be done even after compression is started, + * if nbWorkers==0, this will have no impact until a new compression is started. + * if nbWorkers>=1, new parameters will be picked up at next job, + * with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated). + */ +ZSTDLIB_API size_t ZSTD_CCtx_setParametersUsingCCtxParams( + ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params); + +/*! ZSTD_compressStream2_simpleArgs() : + * Same as ZSTD_compressStream2(), + * but using only integral types as arguments. + * This variant might be helpful for binders from dynamic languages + * which have troubles handling structures containing memory pointers. + */ +ZSTDLIB_API size_t ZSTD_compressStream2_simpleArgs ( + ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos, + ZSTD_EndDirective endOp); + + +/*************************************** +* Advanced decompression functions +***************************************/ + +/*! ZSTD_isFrame() : + * Tells if the content of `buffer` starts with a valid Frame Identifier. + * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. + * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. + * Note 3 : Skippable Frame Identifiers are considered valid. */ +ZSTDLIB_API unsigned ZSTD_isFrame(const void* buffer, size_t size); + +/*! ZSTD_createDDict_byReference() : + * Create a digested dictionary, ready to start decompression operation without startup delay. + * Dictionary content is referenced, and therefore stays in dictBuffer. + * It is important that dictBuffer outlives DDict, + * it must remain read accessible throughout the lifetime of DDict */ +ZSTDLIB_API ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize); + +/*! ZSTD_DCtx_loadDictionary_byReference() : + * Same as ZSTD_DCtx_loadDictionary(), + * but references `dict` content instead of copying it into `dctx`. + * This saves memory if `dict` remains around., + * However, it's imperative that `dict` remains accessible (and unmodified) while being used, so it must outlive decompression. */ +ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); + +/*! ZSTD_DCtx_loadDictionary_advanced() : + * Same as ZSTD_DCtx_loadDictionary(), + * but gives direct control over + * how to load the dictionary (by copy ? by reference ?) + * and how to interpret it (automatic ? force raw mode ? full mode only ?). */ +ZSTDLIB_API size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, const void* dict, size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType); + +/*! ZSTD_DCtx_refPrefix_advanced() : + * Same as ZSTD_DCtx_refPrefix(), but gives finer control over + * how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?) */ +ZSTDLIB_API size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType); + +/*! ZSTD_DCtx_setMaxWindowSize() : + * Refuses allocating internal buffers for frames requiring a window size larger than provided limit. + * This protects a decoder context from reserving too much memory for itself (potential attack scenario). + * This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode. + * By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + * @return : 0, or an error code (which can be tested using ZSTD_isError()). + */ +ZSTDLIB_API size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize); + +/* ZSTD_d_format + * experimental parameter, + * allowing selection between ZSTD_format_e input compression formats + */ +#define ZSTD_d_format ZSTD_d_experimentalParam1 + +/*! ZSTD_DCtx_setFormat() : + * Instruct the decoder context about what kind of data to decode next. + * This instruction is mandatory to decode data without a fully-formed header, + * such ZSTD_f_zstd1_magicless for example. + * @return : 0, or an error code (which can be tested using ZSTD_isError()). */ +ZSTDLIB_API size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format); + +/*! ZSTD_decompressStream_simpleArgs() : + * Same as ZSTD_decompressStream(), + * but using only integral types as arguments. + * This can be helpful for binders from dynamic languages + * which have troubles handling structures containing memory pointers. + */ +ZSTDLIB_API size_t ZSTD_decompressStream_simpleArgs ( + ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos); + + +/******************************************************************** +* Advanced streaming functions +* Warning : most of these functions are now redundant with the Advanced API. +* Once Advanced API reaches "stable" status, +* redundant functions will be deprecated, and then at some point removed. +********************************************************************/ + +/*===== Advanced Streaming compression functions =====*/ +/**! ZSTD_initCStream_srcSize() : + * This function is deprecated, and equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any) + * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * + * pledgedSrcSize must be correct. If it is not known at init time, use + * ZSTD_CONTENTSIZE_UNKNOWN. Note that, for compatibility with older programs, + * "0" also disables frame content size field. It may be enabled in the future. + */ +ZSTDLIB_API size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pledgedSrcSize); +/**! ZSTD_initCStream_usingDict() : + * This function is deprecated, and is equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); + * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize); + * + * Creates of an internal CDict (incompatible with static CCtx), except if + * dict == NULL or dictSize < 8, in which case no dict is used. + * Note: dict is loaded with ZSTD_dm_auto (treated as a full zstd dictionary if + * it begins with ZSTD_MAGIC_DICTIONARY, else as raw content) and ZSTD_dlm_byCopy. + */ +ZSTDLIB_API size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel); +/**! ZSTD_initCStream_advanced() : + * This function is deprecated, and is approximately equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setZstdParams(zcs, params); // Set the zstd params and leave the rest as-is + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * ZSTD_CCtx_loadDictionary(zcs, dict, dictSize); + * + * pledgedSrcSize must be correct. If srcSize is not known at init time, use + * value ZSTD_CONTENTSIZE_UNKNOWN. dict is loaded with ZSTD_dm_auto and ZSTD_dlm_byCopy. + */ +ZSTDLIB_API size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, const void* dict, size_t dictSize, + ZSTD_parameters params, unsigned long long pledgedSrcSize); +/**! ZSTD_initCStream_usingCDict() : + * This function is deprecated, and equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_refCDict(zcs, cdict); + * + * note : cdict will just be referenced, and must outlive compression session + */ +ZSTDLIB_API size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict); +/**! ZSTD_initCStream_usingCDict_advanced() : + * This function is deprecated, and is approximately equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setZstdFrameParams(zcs, fParams); // Set the zstd frame params and leave the rest as-is + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * ZSTD_CCtx_refCDict(zcs, cdict); + * + * same as ZSTD_initCStream_usingCDict(), with control over frame parameters. + * pledgedSrcSize must be correct. If srcSize is not known at init time, use + * value ZSTD_CONTENTSIZE_UNKNOWN. + */ +ZSTDLIB_API size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, const ZSTD_CDict* cdict, ZSTD_frameParameters fParams, unsigned long long pledgedSrcSize); + +/*! ZSTD_resetCStream() : + * This function is deprecated, and is equivalent to: + * ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + * ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); + * + * start a new frame, using same parameters from previous frame. + * This is typically useful to skip dictionary loading stage, since it will re-use it in-place. + * Note that zcs must be init at least once before using ZSTD_resetCStream(). + * If pledgedSrcSize is not known at reset time, use macro ZSTD_CONTENTSIZE_UNKNOWN. + * If pledgedSrcSize > 0, its value must be correct, as it will be written in header, and controlled at the end. + * For the time being, pledgedSrcSize==0 is interpreted as "srcSize unknown" for compatibility with older programs, + * but it will change to mean "empty" in future version, so use macro ZSTD_CONTENTSIZE_UNKNOWN instead. + * @return : 0, or an error code (which can be tested using ZSTD_isError()) + */ +ZSTDLIB_API size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pledgedSrcSize); + + +typedef struct { + unsigned long long ingested; /* nb input bytes read and buffered */ + unsigned long long consumed; /* nb input bytes actually compressed */ + unsigned long long produced; /* nb of compressed bytes generated and buffered */ + unsigned long long flushed; /* nb of compressed bytes flushed : not provided; can be tracked from caller side */ + unsigned currentJobID; /* MT only : latest started job nb */ + unsigned nbActiveWorkers; /* MT only : nb of workers actively compressing at probe time */ +} ZSTD_frameProgression; + +/* ZSTD_getFrameProgression() : + * tells how much data has been ingested (read from input) + * consumed (input actually compressed) and produced (output) for current frame. + * Note : (ingested - consumed) is amount of input data buffered internally, not yet compressed. + * Aggregates progression inside active worker threads. + */ +ZSTDLIB_API ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx); + +/*! ZSTD_toFlushNow() : + * Tell how many bytes are ready to be flushed immediately. + * Useful for multithreading scenarios (nbWorkers >= 1). + * Probe the oldest active job, defined as oldest job not yet entirely flushed, + * and check its output buffer. + * @return : amount of data stored in oldest job and ready to be flushed immediately. + * if @return == 0, it means either : + * + there is no active job (could be checked with ZSTD_frameProgression()), or + * + oldest job is still actively compressing data, + * but everything it has produced has also been flushed so far, + * therefore flush speed is limited by production speed of oldest job + * irrespective of the speed of concurrent (and newer) jobs. + */ +ZSTDLIB_API size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx); + + +/*===== Advanced Streaming decompression functions =====*/ +/** + * This function is deprecated, and is equivalent to: + * + * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); + * ZSTD_DCtx_loadDictionary(zds, dict, dictSize); + * + * note: no dictionary will be used if dict == NULL or dictSize < 8 + */ +ZSTDLIB_API size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize); +/** + * This function is deprecated, and is equivalent to: + * + * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); + * ZSTD_DCtx_refDDict(zds, ddict); + * + * note : ddict is referenced, it must outlive decompression session + */ +ZSTDLIB_API size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* zds, const ZSTD_DDict* ddict); +/** + * This function is deprecated, and is equivalent to: + * + * ZSTD_DCtx_reset(zds, ZSTD_reset_session_only); + * + * re-use decompression parameters from previous init; saves dictionary loading + */ +ZSTDLIB_API size_t ZSTD_resetDStream(ZSTD_DStream* zds); + + +/********************************************************************* +* Buffer-less and synchronous inner streaming functions +* +* This is an advanced API, giving full control over buffer management, for users which need direct control over memory. +* But it's also a complex one, with several restrictions, documented below. +* Prefer normal streaming API for an easier experience. +********************************************************************* */ + +/** + Buffer-less streaming compression (synchronous mode) + + A ZSTD_CCtx object is required to track streaming operations. + Use ZSTD_createCCtx() / ZSTD_freeCCtx() to manage resource. + ZSTD_CCtx object can be re-used multiple times within successive compression operations. + + Start by initializing a context. + Use ZSTD_compressBegin(), or ZSTD_compressBegin_usingDict() for dictionary compression, + or ZSTD_compressBegin_advanced(), for finer parameter control. + It's also possible to duplicate a reference context which has already been initialized, using ZSTD_copyCCtx() + + Then, consume your input using ZSTD_compressContinue(). + There are some important considerations to keep in mind when using this advanced function : + - ZSTD_compressContinue() has no internal buffer. It uses externally provided buffers only. + - Interface is synchronous : input is consumed entirely and produces 1+ compressed blocks. + - Caller must ensure there is enough space in `dst` to store compressed data under worst case scenario. + Worst case evaluation is provided by ZSTD_compressBound(). + ZSTD_compressContinue() doesn't guarantee recover after a failed compression. + - ZSTD_compressContinue() presumes prior input ***is still accessible and unmodified*** (up to maximum distance size, see WindowLog). + It remembers all previous contiguous blocks, plus one separated memory segment (which can itself consists of multiple contiguous blocks) + - ZSTD_compressContinue() detects that prior input has been overwritten when `src` buffer overlaps. + In which case, it will "discard" the relevant memory section from its history. + + Finish a frame with ZSTD_compressEnd(), which will write the last block(s) and optional checksum. + It's possible to use srcSize==0, in which case, it will write a final empty block to end the frame. + Without last block mark, frames are considered unfinished (hence corrupted) by compliant decoders. + + `ZSTD_CCtx` object can be re-used (ZSTD_compressBegin()) to compress again. +*/ + +/*===== Buffer-less streaming compression functions =====*/ +ZSTDLIB_API size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel); +ZSTDLIB_API size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel); +ZSTDLIB_API size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, ZSTD_parameters params, unsigned long long pledgedSrcSize); /**< pledgedSrcSize : If srcSize is not known at init time, use ZSTD_CONTENTSIZE_UNKNOWN */ +ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict); /**< note: fails if cdict==NULL */ +ZSTDLIB_API size_t ZSTD_compressBegin_usingCDict_advanced(ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize); /* compression parameters are already set within cdict. pledgedSrcSize must be correct. If srcSize is not known, use macro ZSTD_CONTENTSIZE_UNKNOWN */ +ZSTDLIB_API size_t ZSTD_copyCCtx(ZSTD_CCtx* cctx, const ZSTD_CCtx* preparedCCtx, unsigned long long pledgedSrcSize); /**< note: if pledgedSrcSize is not known, use ZSTD_CONTENTSIZE_UNKNOWN */ + +ZSTDLIB_API size_t ZSTD_compressContinue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); +ZSTDLIB_API size_t ZSTD_compressEnd(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); + + +/*- + Buffer-less streaming decompression (synchronous mode) + + A ZSTD_DCtx object is required to track streaming operations. + Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it. + A ZSTD_DCtx object can be re-used multiple times. + + First typical operation is to retrieve frame parameters, using ZSTD_getFrameHeader(). + Frame header is extracted from the beginning of compressed frame, so providing only the frame's beginning is enough. + Data fragment must be large enough to ensure successful decoding. + `ZSTD_frameHeaderSize_max` bytes is guaranteed to always be large enough. + @result : 0 : successful decoding, the `ZSTD_frameHeader` structure is correctly filled. + >0 : `srcSize` is too small, please provide at least @result bytes on next attempt. + errorCode, which can be tested using ZSTD_isError(). + + It fills a ZSTD_frameHeader structure with important information to correctly decode the frame, + such as the dictionary ID, content size, or maximum back-reference distance (`windowSize`). + Note that these values could be wrong, either because of data corruption, or because a 3rd party deliberately spoofs false information. + As a consequence, check that values remain within valid application range. + For example, do not allocate memory blindly, check that `windowSize` is within expectation. + Each application can set its own limits, depending on local restrictions. + For extended interoperability, it is recommended to support `windowSize` of at least 8 MB. + + ZSTD_decompressContinue() needs previous data blocks during decompression, up to `windowSize` bytes. + ZSTD_decompressContinue() is very sensitive to contiguity, + if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place, + or that previous contiguous segment is large enough to properly handle maximum back-reference distance. + There are multiple ways to guarantee this condition. + + The most memory efficient way is to use a round buffer of sufficient size. + Sufficient size is determined by invoking ZSTD_decodingBufferSize_min(), + which can @return an error code if required value is too large for current system (in 32-bits mode). + In a round buffer methodology, ZSTD_decompressContinue() decompresses each block next to previous one, + up to the moment there is not enough room left in the buffer to guarantee decoding another full block, + which maximum size is provided in `ZSTD_frameHeader` structure, field `blockSizeMax`. + At which point, decoding can resume from the beginning of the buffer. + Note that already decoded data stored in the buffer should be flushed before being overwritten. + + There are alternatives possible, for example using two or more buffers of size `windowSize` each, though they consume more memory. + + Finally, if you control the compression process, you can also ignore all buffer size rules, + as long as the encoder and decoder progress in "lock-step", + aka use exactly the same buffer sizes, break contiguity at the same place, etc. + + Once buffers are setup, start decompression, with ZSTD_decompressBegin(). + If decompression requires a dictionary, use ZSTD_decompressBegin_usingDict() or ZSTD_decompressBegin_usingDDict(). + + Then use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively. + ZSTD_nextSrcSizeToDecompress() tells how many bytes to provide as 'srcSize' to ZSTD_decompressContinue(). + ZSTD_decompressContinue() requires this _exact_ amount of bytes, or it will fail. + + @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity). + It can be zero : it just means ZSTD_decompressContinue() has decoded some metadata item. + It can also be an error code, which can be tested with ZSTD_isError(). + + A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero. + Context can then be reset to start a new decompression. + + Note : it's possible to know if next input to present is a header or a block, using ZSTD_nextInputType(). + This information is not required to properly decode a frame. + + == Special case : skippable frames == + + Skippable frames allow integration of user-defined data into a flow of concatenated frames. + Skippable frames will be ignored (skipped) by decompressor. + The format of skippable frames is as follows : + a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F + b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits + c) Frame Content - any content (User Data) of length equal to Frame Size + For skippable frames ZSTD_getFrameHeader() returns zfhPtr->frameType==ZSTD_skippableFrame. + For skippable frames ZSTD_decompressContinue() always returns 0 : it only skips the content. +*/ + +/*===== Buffer-less streaming decompression functions =====*/ +typedef enum { ZSTD_frame, ZSTD_skippableFrame } ZSTD_frameType_e; +typedef struct { + unsigned long long frameContentSize; /* if == ZSTD_CONTENTSIZE_UNKNOWN, it means this field is not available. 0 means "empty" */ + unsigned long long windowSize; /* can be very large, up to <= frameContentSize */ + unsigned blockSizeMax; + ZSTD_frameType_e frameType; /* if == ZSTD_skippableFrame, frameContentSize is the size of skippable content */ + unsigned headerSize; + unsigned dictID; + unsigned checksumFlag; +} ZSTD_frameHeader; + +/** ZSTD_getFrameHeader() : + * decode Frame Header, or requires larger `srcSize`. + * @return : 0, `zfhPtr` is correctly filled, + * >0, `srcSize` is too small, value is wanted `srcSize` amount, + * or an error code, which can be tested using ZSTD_isError() */ +ZSTDLIB_API size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize); /**< doesn't consume input */ +/*! ZSTD_getFrameHeader_advanced() : + * same as ZSTD_getFrameHeader(), + * with added capability to select a format (like ZSTD_f_zstd1_magicless) */ +ZSTDLIB_API size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format); +ZSTDLIB_API size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize); /**< when frame content size is not known, pass in frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN */ + +ZSTDLIB_API size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx); +ZSTDLIB_API size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize); +ZSTDLIB_API size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); + +ZSTDLIB_API size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx); +ZSTDLIB_API size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); + +/* misc */ +ZSTDLIB_API void ZSTD_copyDCtx(ZSTD_DCtx* dctx, const ZSTD_DCtx* preparedDCtx); +typedef enum { ZSTDnit_frameHeader, ZSTDnit_blockHeader, ZSTDnit_block, ZSTDnit_lastBlock, ZSTDnit_checksum, ZSTDnit_skippableFrame } ZSTD_nextInputType_e; +ZSTDLIB_API ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx); + + + + +/* ============================ */ +/** Block level API */ +/* ============================ */ + +/*! + Block functions produce and decode raw zstd blocks, without frame metadata. + Frame metadata cost is typically ~18 bytes, which can be non-negligible for very small blocks (< 100 bytes). + User will have to take in charge required information to regenerate data, such as compressed and content sizes. + + A few rules to respect : + - Compressing and decompressing require a context structure + + Use ZSTD_createCCtx() and ZSTD_createDCtx() + - It is necessary to init context before starting + + compression : any ZSTD_compressBegin*() variant, including with dictionary + + decompression : any ZSTD_decompressBegin*() variant, including with dictionary + + copyCCtx() and copyDCtx() can be used too + - Block size is limited, it must be <= ZSTD_getBlockSize() <= ZSTD_BLOCKSIZE_MAX == 128 KB + + If input is larger than a block size, it's necessary to split input data into multiple blocks + + For inputs larger than a single block, really consider using regular ZSTD_compress() instead. + Frame metadata is not that costly, and quickly becomes negligible as source size grows larger. + - When a block is considered not compressible enough, ZSTD_compressBlock() result will be zero. + In which case, nothing is produced into `dst` ! + + User must test for such outcome and deal directly with uncompressed data + + ZSTD_decompressBlock() doesn't accept uncompressed data as input !!! + + In case of multiple successive blocks, should some of them be uncompressed, + decoder must be informed of their existence in order to follow proper history. + Use ZSTD_insertBlock() for such a case. +*/ + +/*===== Raw zstd block functions =====*/ +ZSTDLIB_API size_t ZSTD_getBlockSize (const ZSTD_CCtx* cctx); +ZSTDLIB_API size_t ZSTD_compressBlock (ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); +ZSTDLIB_API size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); +ZSTDLIB_API size_t ZSTD_insertBlock (ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert uncompressed block into `dctx` history. Useful for multi-blocks decompression. */ + + +#endif /* ZSTD_H_ZSTD_STATIC_LINKING_ONLY */ + +#if defined (__cplusplus) +} +#endif diff --git a/vendor/github.com/DataDog/zstd/zstd_common.c b/vendor/github.com/DataDog/zstd/zstd_common.c new file mode 100644 index 0000000000..667f4a27fc --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_common.c @@ -0,0 +1,83 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + + +/*-************************************* +* Dependencies +***************************************/ +#include /* malloc, calloc, free */ +#include /* memset */ +#include "error_private.h" +#include "zstd_internal.h" + + +/*-**************************************** +* Version +******************************************/ +unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; } + +const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; } + + +/*-**************************************** +* ZSTD Error Management +******************************************/ +#undef ZSTD_isError /* defined within zstd_internal.h */ +/*! ZSTD_isError() : + * tells if a return value is an error code + * symbol is required for external callers */ +unsigned ZSTD_isError(size_t code) { return ERR_isError(code); } + +/*! ZSTD_getErrorName() : + * provides error code string from function result (useful for debugging) */ +const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); } + +/*! ZSTD_getError() : + * convert a `size_t` function result into a proper ZSTD_errorCode enum */ +ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); } + +/*! ZSTD_getErrorString() : + * provides error code string from enum */ +const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); } + + + +/*=************************************************************** +* Custom allocator +****************************************************************/ +void* ZSTD_malloc(size_t size, ZSTD_customMem customMem) +{ + if (customMem.customAlloc) + return customMem.customAlloc(customMem.opaque, size); + return malloc(size); +} + +void* ZSTD_calloc(size_t size, ZSTD_customMem customMem) +{ + if (customMem.customAlloc) { + /* calloc implemented as malloc+memset; + * not as efficient as calloc, but next best guess for custom malloc */ + void* const ptr = customMem.customAlloc(customMem.opaque, size); + memset(ptr, 0, size); + return ptr; + } + return calloc(1, size); +} + +void ZSTD_free(void* ptr, ZSTD_customMem customMem) +{ + if (ptr!=NULL) { + if (customMem.customFree) + customMem.customFree(customMem.opaque, ptr); + else + free(ptr); + } +} diff --git a/vendor/github.com/DataDog/zstd/zstd_compress.c b/vendor/github.com/DataDog/zstd/zstd_compress.c new file mode 100644 index 0000000000..2e163c8bf3 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_compress.c @@ -0,0 +1,4417 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/*-************************************* +* Dependencies +***************************************/ +#include /* INT_MAX */ +#include /* memset */ +#include "cpu.h" +#include "mem.h" +#include "hist.h" /* HIST_countFast_wksp */ +#define FSE_STATIC_LINKING_ONLY /* FSE_encodeSymbol */ +#include "fse.h" +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" +#include "zstd_compress_internal.h" +#include "zstd_fast.h" +#include "zstd_double_fast.h" +#include "zstd_lazy.h" +#include "zstd_opt.h" +#include "zstd_ldm.h" + + +/*-************************************* +* Helper functions +***************************************/ +size_t ZSTD_compressBound(size_t srcSize) { + return ZSTD_COMPRESSBOUND(srcSize); +} + + +/*-************************************* +* Context memory management +***************************************/ +struct ZSTD_CDict_s { + void* dictBuffer; + const void* dictContent; + size_t dictContentSize; + void* workspace; + size_t workspaceSize; + ZSTD_matchState_t matchState; + ZSTD_compressedBlockState_t cBlockState; + ZSTD_customMem customMem; + U32 dictID; +}; /* typedef'd to ZSTD_CDict within "zstd.h" */ + +ZSTD_CCtx* ZSTD_createCCtx(void) +{ + return ZSTD_createCCtx_advanced(ZSTD_defaultCMem); +} + +static void ZSTD_initCCtx(ZSTD_CCtx* cctx, ZSTD_customMem memManager) +{ + assert(cctx != NULL); + memset(cctx, 0, sizeof(*cctx)); + cctx->customMem = memManager; + cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); + { size_t const err = ZSTD_CCtx_reset(cctx, ZSTD_reset_parameters); + assert(!ZSTD_isError(err)); + (void)err; + } +} + +ZSTD_CCtx* ZSTD_createCCtx_advanced(ZSTD_customMem customMem) +{ + ZSTD_STATIC_ASSERT(zcss_init==0); + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN==(0ULL - 1)); + if (!customMem.customAlloc ^ !customMem.customFree) return NULL; + { ZSTD_CCtx* const cctx = (ZSTD_CCtx*)ZSTD_malloc(sizeof(ZSTD_CCtx), customMem); + if (!cctx) return NULL; + ZSTD_initCCtx(cctx, customMem); + return cctx; + } +} + +ZSTD_CCtx* ZSTD_initStaticCCtx(void *workspace, size_t workspaceSize) +{ + ZSTD_CCtx* const cctx = (ZSTD_CCtx*) workspace; + if (workspaceSize <= sizeof(ZSTD_CCtx)) return NULL; /* minimum size */ + if ((size_t)workspace & 7) return NULL; /* must be 8-aligned */ + memset(workspace, 0, workspaceSize); /* may be a bit generous, could memset be smaller ? */ + cctx->staticSize = workspaceSize; + cctx->workSpace = (void*)(cctx+1); + cctx->workSpaceSize = workspaceSize - sizeof(ZSTD_CCtx); + + /* statically sized space. entropyWorkspace never moves (but prev/next block swap places) */ + if (cctx->workSpaceSize < HUF_WORKSPACE_SIZE + 2 * sizeof(ZSTD_compressedBlockState_t)) return NULL; + assert(((size_t)cctx->workSpace & (sizeof(void*)-1)) == 0); /* ensure correct alignment */ + cctx->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)cctx->workSpace; + cctx->blockState.nextCBlock = cctx->blockState.prevCBlock + 1; + { + void* const ptr = cctx->blockState.nextCBlock + 1; + cctx->entropyWorkspace = (U32*)ptr; + } + cctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); + return cctx; +} + +/** + * Clears and frees all of the dictionaries in the CCtx. + */ +static void ZSTD_clearAllDicts(ZSTD_CCtx* cctx) +{ + ZSTD_free(cctx->localDict.dictBuffer, cctx->customMem); + ZSTD_freeCDict(cctx->localDict.cdict); + memset(&cctx->localDict, 0, sizeof(cctx->localDict)); + memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); + cctx->cdict = NULL; +} + +static size_t ZSTD_sizeof_localDict(ZSTD_localDict dict) +{ + size_t const bufferSize = dict.dictBuffer != NULL ? dict.dictSize : 0; + size_t const cdictSize = ZSTD_sizeof_CDict(dict.cdict); + return bufferSize + cdictSize; +} + +static void ZSTD_freeCCtxContent(ZSTD_CCtx* cctx) +{ + assert(cctx != NULL); + assert(cctx->staticSize == 0); + ZSTD_free(cctx->workSpace, cctx->customMem); cctx->workSpace = NULL; + ZSTD_clearAllDicts(cctx); +#ifdef ZSTD_MULTITHREAD + ZSTDMT_freeCCtx(cctx->mtctx); cctx->mtctx = NULL; +#endif +} + +size_t ZSTD_freeCCtx(ZSTD_CCtx* cctx) +{ + if (cctx==NULL) return 0; /* support free on NULL */ + RETURN_ERROR_IF(cctx->staticSize, memory_allocation, + "not compatible with static CCtx"); + ZSTD_freeCCtxContent(cctx); + ZSTD_free(cctx, cctx->customMem); + return 0; +} + + +static size_t ZSTD_sizeof_mtctx(const ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + return ZSTDMT_sizeof_CCtx(cctx->mtctx); +#else + (void)cctx; + return 0; +#endif +} + + +size_t ZSTD_sizeof_CCtx(const ZSTD_CCtx* cctx) +{ + if (cctx==NULL) return 0; /* support sizeof on NULL */ + return sizeof(*cctx) + cctx->workSpaceSize + + ZSTD_sizeof_localDict(cctx->localDict) + + ZSTD_sizeof_mtctx(cctx); +} + +size_t ZSTD_sizeof_CStream(const ZSTD_CStream* zcs) +{ + return ZSTD_sizeof_CCtx(zcs); /* same object */ +} + +/* private API call, for dictBuilder only */ +const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx) { return &(ctx->seqStore); } + +static ZSTD_CCtx_params ZSTD_makeCCtxParamsFromCParams( + ZSTD_compressionParameters cParams) +{ + ZSTD_CCtx_params cctxParams; + memset(&cctxParams, 0, sizeof(cctxParams)); + cctxParams.cParams = cParams; + cctxParams.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */ + assert(!ZSTD_checkCParams(cParams)); + cctxParams.fParams.contentSizeFlag = 1; + return cctxParams; +} + +static ZSTD_CCtx_params* ZSTD_createCCtxParams_advanced( + ZSTD_customMem customMem) +{ + ZSTD_CCtx_params* params; + if (!customMem.customAlloc ^ !customMem.customFree) return NULL; + params = (ZSTD_CCtx_params*)ZSTD_calloc( + sizeof(ZSTD_CCtx_params), customMem); + if (!params) { return NULL; } + params->customMem = customMem; + params->compressionLevel = ZSTD_CLEVEL_DEFAULT; + params->fParams.contentSizeFlag = 1; + return params; +} + +ZSTD_CCtx_params* ZSTD_createCCtxParams(void) +{ + return ZSTD_createCCtxParams_advanced(ZSTD_defaultCMem); +} + +size_t ZSTD_freeCCtxParams(ZSTD_CCtx_params* params) +{ + if (params == NULL) { return 0; } + ZSTD_free(params, params->customMem); + return 0; +} + +size_t ZSTD_CCtxParams_reset(ZSTD_CCtx_params* params) +{ + return ZSTD_CCtxParams_init(params, ZSTD_CLEVEL_DEFAULT); +} + +size_t ZSTD_CCtxParams_init(ZSTD_CCtx_params* cctxParams, int compressionLevel) { + RETURN_ERROR_IF(!cctxParams, GENERIC); + memset(cctxParams, 0, sizeof(*cctxParams)); + cctxParams->compressionLevel = compressionLevel; + cctxParams->fParams.contentSizeFlag = 1; + return 0; +} + +size_t ZSTD_CCtxParams_init_advanced(ZSTD_CCtx_params* cctxParams, ZSTD_parameters params) +{ + RETURN_ERROR_IF(!cctxParams, GENERIC); + FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) ); + memset(cctxParams, 0, sizeof(*cctxParams)); + cctxParams->cParams = params.cParams; + cctxParams->fParams = params.fParams; + cctxParams->compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */ + assert(!ZSTD_checkCParams(params.cParams)); + return 0; +} + +/* ZSTD_assignParamsToCCtxParams() : + * params is presumed valid at this stage */ +static ZSTD_CCtx_params ZSTD_assignParamsToCCtxParams( + ZSTD_CCtx_params cctxParams, ZSTD_parameters params) +{ + ZSTD_CCtx_params ret = cctxParams; + ret.cParams = params.cParams; + ret.fParams = params.fParams; + ret.compressionLevel = ZSTD_CLEVEL_DEFAULT; /* should not matter, as all cParams are presumed properly defined */ + assert(!ZSTD_checkCParams(params.cParams)); + return ret; +} + +ZSTD_bounds ZSTD_cParam_getBounds(ZSTD_cParameter param) +{ + ZSTD_bounds bounds = { 0, 0, 0 }; + + switch(param) + { + case ZSTD_c_compressionLevel: + bounds.lowerBound = ZSTD_minCLevel(); + bounds.upperBound = ZSTD_maxCLevel(); + return bounds; + + case ZSTD_c_windowLog: + bounds.lowerBound = ZSTD_WINDOWLOG_MIN; + bounds.upperBound = ZSTD_WINDOWLOG_MAX; + return bounds; + + case ZSTD_c_hashLog: + bounds.lowerBound = ZSTD_HASHLOG_MIN; + bounds.upperBound = ZSTD_HASHLOG_MAX; + return bounds; + + case ZSTD_c_chainLog: + bounds.lowerBound = ZSTD_CHAINLOG_MIN; + bounds.upperBound = ZSTD_CHAINLOG_MAX; + return bounds; + + case ZSTD_c_searchLog: + bounds.lowerBound = ZSTD_SEARCHLOG_MIN; + bounds.upperBound = ZSTD_SEARCHLOG_MAX; + return bounds; + + case ZSTD_c_minMatch: + bounds.lowerBound = ZSTD_MINMATCH_MIN; + bounds.upperBound = ZSTD_MINMATCH_MAX; + return bounds; + + case ZSTD_c_targetLength: + bounds.lowerBound = ZSTD_TARGETLENGTH_MIN; + bounds.upperBound = ZSTD_TARGETLENGTH_MAX; + return bounds; + + case ZSTD_c_strategy: + bounds.lowerBound = ZSTD_STRATEGY_MIN; + bounds.upperBound = ZSTD_STRATEGY_MAX; + return bounds; + + case ZSTD_c_contentSizeFlag: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_checksumFlag: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_dictIDFlag: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_nbWorkers: + bounds.lowerBound = 0; +#ifdef ZSTD_MULTITHREAD + bounds.upperBound = ZSTDMT_NBWORKERS_MAX; +#else + bounds.upperBound = 0; +#endif + return bounds; + + case ZSTD_c_jobSize: + bounds.lowerBound = 0; +#ifdef ZSTD_MULTITHREAD + bounds.upperBound = ZSTDMT_JOBSIZE_MAX; +#else + bounds.upperBound = 0; +#endif + return bounds; + + case ZSTD_c_overlapLog: + bounds.lowerBound = ZSTD_OVERLAPLOG_MIN; + bounds.upperBound = ZSTD_OVERLAPLOG_MAX; + return bounds; + + case ZSTD_c_enableLongDistanceMatching: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_ldmHashLog: + bounds.lowerBound = ZSTD_LDM_HASHLOG_MIN; + bounds.upperBound = ZSTD_LDM_HASHLOG_MAX; + return bounds; + + case ZSTD_c_ldmMinMatch: + bounds.lowerBound = ZSTD_LDM_MINMATCH_MIN; + bounds.upperBound = ZSTD_LDM_MINMATCH_MAX; + return bounds; + + case ZSTD_c_ldmBucketSizeLog: + bounds.lowerBound = ZSTD_LDM_BUCKETSIZELOG_MIN; + bounds.upperBound = ZSTD_LDM_BUCKETSIZELOG_MAX; + return bounds; + + case ZSTD_c_ldmHashRateLog: + bounds.lowerBound = ZSTD_LDM_HASHRATELOG_MIN; + bounds.upperBound = ZSTD_LDM_HASHRATELOG_MAX; + return bounds; + + /* experimental parameters */ + case ZSTD_c_rsyncable: + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_forceMaxWindow : + bounds.lowerBound = 0; + bounds.upperBound = 1; + return bounds; + + case ZSTD_c_format: + ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); + bounds.lowerBound = ZSTD_f_zstd1; + bounds.upperBound = ZSTD_f_zstd1_magicless; /* note : how to ensure at compile time that this is the highest value enum ? */ + return bounds; + + case ZSTD_c_forceAttachDict: + ZSTD_STATIC_ASSERT(ZSTD_dictDefaultAttach < ZSTD_dictForceCopy); + bounds.lowerBound = ZSTD_dictDefaultAttach; + bounds.upperBound = ZSTD_dictForceCopy; /* note : how to ensure at compile time that this is the highest value enum ? */ + return bounds; + + case ZSTD_c_literalCompressionMode: + ZSTD_STATIC_ASSERT(ZSTD_lcm_auto < ZSTD_lcm_huffman && ZSTD_lcm_huffman < ZSTD_lcm_uncompressed); + bounds.lowerBound = ZSTD_lcm_auto; + bounds.upperBound = ZSTD_lcm_uncompressed; + return bounds; + + default: + { ZSTD_bounds const boundError = { ERROR(parameter_unsupported), 0, 0 }; + return boundError; + } + } +} + +/* ZSTD_cParam_withinBounds: + * @return 1 if value is within cParam bounds, + * 0 otherwise */ +static int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value) +{ + ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); + if (ZSTD_isError(bounds.error)) return 0; + if (value < bounds.lowerBound) return 0; + if (value > bounds.upperBound) return 0; + return 1; +} + +/* ZSTD_cParam_clampBounds: + * Clamps the value into the bounded range. + */ +static size_t ZSTD_cParam_clampBounds(ZSTD_cParameter cParam, int* value) +{ + ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); + if (ZSTD_isError(bounds.error)) return bounds.error; + if (*value < bounds.lowerBound) *value = bounds.lowerBound; + if (*value > bounds.upperBound) *value = bounds.upperBound; + return 0; +} + +#define BOUNDCHECK(cParam, val) { \ + RETURN_ERROR_IF(!ZSTD_cParam_withinBounds(cParam,val), \ + parameter_outOfBound); \ +} + + +static int ZSTD_isUpdateAuthorized(ZSTD_cParameter param) +{ + switch(param) + { + case ZSTD_c_compressionLevel: + case ZSTD_c_hashLog: + case ZSTD_c_chainLog: + case ZSTD_c_searchLog: + case ZSTD_c_minMatch: + case ZSTD_c_targetLength: + case ZSTD_c_strategy: + return 1; + + case ZSTD_c_format: + case ZSTD_c_windowLog: + case ZSTD_c_contentSizeFlag: + case ZSTD_c_checksumFlag: + case ZSTD_c_dictIDFlag: + case ZSTD_c_forceMaxWindow : + case ZSTD_c_nbWorkers: + case ZSTD_c_jobSize: + case ZSTD_c_overlapLog: + case ZSTD_c_rsyncable: + case ZSTD_c_enableLongDistanceMatching: + case ZSTD_c_ldmHashLog: + case ZSTD_c_ldmMinMatch: + case ZSTD_c_ldmBucketSizeLog: + case ZSTD_c_ldmHashRateLog: + case ZSTD_c_forceAttachDict: + case ZSTD_c_literalCompressionMode: + default: + return 0; + } +} + +size_t ZSTD_CCtx_setParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int value) +{ + DEBUGLOG(4, "ZSTD_CCtx_setParameter (%i, %i)", (int)param, value); + if (cctx->streamStage != zcss_init) { + if (ZSTD_isUpdateAuthorized(param)) { + cctx->cParamsChanged = 1; + } else { + RETURN_ERROR(stage_wrong); + } } + + switch(param) + { + case ZSTD_c_nbWorkers: + RETURN_ERROR_IF((value!=0) && cctx->staticSize, parameter_unsupported, + "MT not compatible with static alloc"); + break; + + case ZSTD_c_compressionLevel: + case ZSTD_c_windowLog: + case ZSTD_c_hashLog: + case ZSTD_c_chainLog: + case ZSTD_c_searchLog: + case ZSTD_c_minMatch: + case ZSTD_c_targetLength: + case ZSTD_c_strategy: + case ZSTD_c_ldmHashRateLog: + case ZSTD_c_format: + case ZSTD_c_contentSizeFlag: + case ZSTD_c_checksumFlag: + case ZSTD_c_dictIDFlag: + case ZSTD_c_forceMaxWindow: + case ZSTD_c_forceAttachDict: + case ZSTD_c_literalCompressionMode: + case ZSTD_c_jobSize: + case ZSTD_c_overlapLog: + case ZSTD_c_rsyncable: + case ZSTD_c_enableLongDistanceMatching: + case ZSTD_c_ldmHashLog: + case ZSTD_c_ldmMinMatch: + case ZSTD_c_ldmBucketSizeLog: + break; + + default: RETURN_ERROR(parameter_unsupported); + } + return ZSTD_CCtxParams_setParameter(&cctx->requestedParams, param, value); +} + +size_t ZSTD_CCtxParams_setParameter(ZSTD_CCtx_params* CCtxParams, + ZSTD_cParameter param, int value) +{ + DEBUGLOG(4, "ZSTD_CCtxParams_setParameter (%i, %i)", (int)param, value); + switch(param) + { + case ZSTD_c_format : + BOUNDCHECK(ZSTD_c_format, value); + CCtxParams->format = (ZSTD_format_e)value; + return (size_t)CCtxParams->format; + + case ZSTD_c_compressionLevel : { + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value)); + if (value) { /* 0 : does not change current level */ + CCtxParams->compressionLevel = value; + } + if (CCtxParams->compressionLevel >= 0) return CCtxParams->compressionLevel; + return 0; /* return type (size_t) cannot represent negative values */ + } + + case ZSTD_c_windowLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_windowLog, value); + CCtxParams->cParams.windowLog = value; + return CCtxParams->cParams.windowLog; + + case ZSTD_c_hashLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_hashLog, value); + CCtxParams->cParams.hashLog = value; + return CCtxParams->cParams.hashLog; + + case ZSTD_c_chainLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_chainLog, value); + CCtxParams->cParams.chainLog = value; + return CCtxParams->cParams.chainLog; + + case ZSTD_c_searchLog : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_searchLog, value); + CCtxParams->cParams.searchLog = value; + return value; + + case ZSTD_c_minMatch : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_minMatch, value); + CCtxParams->cParams.minMatch = value; + return CCtxParams->cParams.minMatch; + + case ZSTD_c_targetLength : + BOUNDCHECK(ZSTD_c_targetLength, value); + CCtxParams->cParams.targetLength = value; + return CCtxParams->cParams.targetLength; + + case ZSTD_c_strategy : + if (value!=0) /* 0 => use default */ + BOUNDCHECK(ZSTD_c_strategy, value); + CCtxParams->cParams.strategy = (ZSTD_strategy)value; + return (size_t)CCtxParams->cParams.strategy; + + case ZSTD_c_contentSizeFlag : + /* Content size written in frame header _when known_ (default:1) */ + DEBUGLOG(4, "set content size flag = %u", (value!=0)); + CCtxParams->fParams.contentSizeFlag = value != 0; + return CCtxParams->fParams.contentSizeFlag; + + case ZSTD_c_checksumFlag : + /* A 32-bits content checksum will be calculated and written at end of frame (default:0) */ + CCtxParams->fParams.checksumFlag = value != 0; + return CCtxParams->fParams.checksumFlag; + + case ZSTD_c_dictIDFlag : /* When applicable, dictionary's dictID is provided in frame header (default:1) */ + DEBUGLOG(4, "set dictIDFlag = %u", (value!=0)); + CCtxParams->fParams.noDictIDFlag = !value; + return !CCtxParams->fParams.noDictIDFlag; + + case ZSTD_c_forceMaxWindow : + CCtxParams->forceWindow = (value != 0); + return CCtxParams->forceWindow; + + case ZSTD_c_forceAttachDict : { + const ZSTD_dictAttachPref_e pref = (ZSTD_dictAttachPref_e)value; + BOUNDCHECK(ZSTD_c_forceAttachDict, pref); + CCtxParams->attachDictPref = pref; + return CCtxParams->attachDictPref; + } + + case ZSTD_c_literalCompressionMode : { + const ZSTD_literalCompressionMode_e lcm = (ZSTD_literalCompressionMode_e)value; + BOUNDCHECK(ZSTD_c_literalCompressionMode, lcm); + CCtxParams->literalCompressionMode = lcm; + return CCtxParams->literalCompressionMode; + } + + case ZSTD_c_nbWorkers : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value)); + CCtxParams->nbWorkers = value; + return CCtxParams->nbWorkers; +#endif + + case ZSTD_c_jobSize : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + /* Adjust to the minimum non-default value. */ + if (value != 0 && value < ZSTDMT_JOBSIZE_MIN) + value = ZSTDMT_JOBSIZE_MIN; + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(param, &value)); + assert(value >= 0); + CCtxParams->jobSize = value; + return CCtxParams->jobSize; +#endif + + case ZSTD_c_overlapLog : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value)); + CCtxParams->overlapLog = value; + return CCtxParams->overlapLog; +#endif + + case ZSTD_c_rsyncable : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR_IF(value!=0, parameter_unsupported, "not compiled with multithreading"); + return 0; +#else + FORWARD_IF_ERROR(ZSTD_cParam_clampBounds(ZSTD_c_overlapLog, &value)); + CCtxParams->rsyncable = value; + return CCtxParams->rsyncable; +#endif + + case ZSTD_c_enableLongDistanceMatching : + CCtxParams->ldmParams.enableLdm = (value!=0); + return CCtxParams->ldmParams.enableLdm; + + case ZSTD_c_ldmHashLog : + if (value!=0) /* 0 ==> auto */ + BOUNDCHECK(ZSTD_c_ldmHashLog, value); + CCtxParams->ldmParams.hashLog = value; + return CCtxParams->ldmParams.hashLog; + + case ZSTD_c_ldmMinMatch : + if (value!=0) /* 0 ==> default */ + BOUNDCHECK(ZSTD_c_ldmMinMatch, value); + CCtxParams->ldmParams.minMatchLength = value; + return CCtxParams->ldmParams.minMatchLength; + + case ZSTD_c_ldmBucketSizeLog : + if (value!=0) /* 0 ==> default */ + BOUNDCHECK(ZSTD_c_ldmBucketSizeLog, value); + CCtxParams->ldmParams.bucketSizeLog = value; + return CCtxParams->ldmParams.bucketSizeLog; + + case ZSTD_c_ldmHashRateLog : + RETURN_ERROR_IF(value > ZSTD_WINDOWLOG_MAX - ZSTD_HASHLOG_MIN, + parameter_outOfBound); + CCtxParams->ldmParams.hashRateLog = value; + return CCtxParams->ldmParams.hashRateLog; + + default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); + } +} + +size_t ZSTD_CCtx_getParameter(ZSTD_CCtx* cctx, ZSTD_cParameter param, int* value) +{ + return ZSTD_CCtxParams_getParameter(&cctx->requestedParams, param, value); +} + +size_t ZSTD_CCtxParams_getParameter( + ZSTD_CCtx_params* CCtxParams, ZSTD_cParameter param, int* value) +{ + switch(param) + { + case ZSTD_c_format : + *value = CCtxParams->format; + break; + case ZSTD_c_compressionLevel : + *value = CCtxParams->compressionLevel; + break; + case ZSTD_c_windowLog : + *value = CCtxParams->cParams.windowLog; + break; + case ZSTD_c_hashLog : + *value = CCtxParams->cParams.hashLog; + break; + case ZSTD_c_chainLog : + *value = CCtxParams->cParams.chainLog; + break; + case ZSTD_c_searchLog : + *value = CCtxParams->cParams.searchLog; + break; + case ZSTD_c_minMatch : + *value = CCtxParams->cParams.minMatch; + break; + case ZSTD_c_targetLength : + *value = CCtxParams->cParams.targetLength; + break; + case ZSTD_c_strategy : + *value = (unsigned)CCtxParams->cParams.strategy; + break; + case ZSTD_c_contentSizeFlag : + *value = CCtxParams->fParams.contentSizeFlag; + break; + case ZSTD_c_checksumFlag : + *value = CCtxParams->fParams.checksumFlag; + break; + case ZSTD_c_dictIDFlag : + *value = !CCtxParams->fParams.noDictIDFlag; + break; + case ZSTD_c_forceMaxWindow : + *value = CCtxParams->forceWindow; + break; + case ZSTD_c_forceAttachDict : + *value = CCtxParams->attachDictPref; + break; + case ZSTD_c_literalCompressionMode : + *value = CCtxParams->literalCompressionMode; + break; + case ZSTD_c_nbWorkers : +#ifndef ZSTD_MULTITHREAD + assert(CCtxParams->nbWorkers == 0); +#endif + *value = CCtxParams->nbWorkers; + break; + case ZSTD_c_jobSize : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); +#else + assert(CCtxParams->jobSize <= INT_MAX); + *value = (int)CCtxParams->jobSize; + break; +#endif + case ZSTD_c_overlapLog : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); +#else + *value = CCtxParams->overlapLog; + break; +#endif + case ZSTD_c_rsyncable : +#ifndef ZSTD_MULTITHREAD + RETURN_ERROR(parameter_unsupported, "not compiled with multithreading"); +#else + *value = CCtxParams->rsyncable; + break; +#endif + case ZSTD_c_enableLongDistanceMatching : + *value = CCtxParams->ldmParams.enableLdm; + break; + case ZSTD_c_ldmHashLog : + *value = CCtxParams->ldmParams.hashLog; + break; + case ZSTD_c_ldmMinMatch : + *value = CCtxParams->ldmParams.minMatchLength; + break; + case ZSTD_c_ldmBucketSizeLog : + *value = CCtxParams->ldmParams.bucketSizeLog; + break; + case ZSTD_c_ldmHashRateLog : + *value = CCtxParams->ldmParams.hashRateLog; + break; + default: RETURN_ERROR(parameter_unsupported, "unknown parameter"); + } + return 0; +} + +/** ZSTD_CCtx_setParametersUsingCCtxParams() : + * just applies `params` into `cctx` + * no action is performed, parameters are merely stored. + * If ZSTDMT is enabled, parameters are pushed to cctx->mtctx. + * This is possible even if a compression is ongoing. + * In which case, new parameters will be applied on the fly, starting with next compression job. + */ +size_t ZSTD_CCtx_setParametersUsingCCtxParams( + ZSTD_CCtx* cctx, const ZSTD_CCtx_params* params) +{ + DEBUGLOG(4, "ZSTD_CCtx_setParametersUsingCCtxParams"); + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); + RETURN_ERROR_IF(cctx->cdict, stage_wrong); + + cctx->requestedParams = *params; + return 0; +} + +ZSTDLIB_API size_t ZSTD_CCtx_setPledgedSrcSize(ZSTD_CCtx* cctx, unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_CCtx_setPledgedSrcSize to %u bytes", (U32)pledgedSrcSize); + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); + cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; + return 0; +} + +/** + * Initializes the local dict using the requested parameters. + * NOTE: This does not use the pledged src size, because it may be used for more + * than one compression. + */ +static size_t ZSTD_initLocalDict(ZSTD_CCtx* cctx) +{ + ZSTD_localDict* const dl = &cctx->localDict; + ZSTD_compressionParameters const cParams = ZSTD_getCParamsFromCCtxParams( + &cctx->requestedParams, 0, dl->dictSize); + if (dl->dict == NULL) { + /* No local dictionary. */ + assert(dl->dictBuffer == NULL); + assert(dl->cdict == NULL); + assert(dl->dictSize == 0); + return 0; + } + if (dl->cdict != NULL) { + assert(cctx->cdict == dl->cdict); + /* Local dictionary already initialized. */ + return 0; + } + assert(dl->dictSize > 0); + assert(cctx->cdict == NULL); + assert(cctx->prefixDict.dict == NULL); + + dl->cdict = ZSTD_createCDict_advanced( + dl->dict, + dl->dictSize, + ZSTD_dlm_byRef, + dl->dictContentType, + cParams, + cctx->customMem); + RETURN_ERROR_IF(!dl->cdict, memory_allocation); + cctx->cdict = dl->cdict; + return 0; +} + +size_t ZSTD_CCtx_loadDictionary_advanced( + ZSTD_CCtx* cctx, const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, ZSTD_dictContentType_e dictContentType) +{ + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); + RETURN_ERROR_IF(cctx->staticSize, memory_allocation, + "no malloc for static CCtx"); + DEBUGLOG(4, "ZSTD_CCtx_loadDictionary_advanced (size: %u)", (U32)dictSize); + ZSTD_clearAllDicts(cctx); /* in case one already exists */ + if (dict == NULL || dictSize == 0) /* no dictionary mode */ + return 0; + if (dictLoadMethod == ZSTD_dlm_byRef) { + cctx->localDict.dict = dict; + } else { + void* dictBuffer = ZSTD_malloc(dictSize, cctx->customMem); + RETURN_ERROR_IF(!dictBuffer, memory_allocation); + memcpy(dictBuffer, dict, dictSize); + cctx->localDict.dictBuffer = dictBuffer; + cctx->localDict.dict = dictBuffer; + } + cctx->localDict.dictSize = dictSize; + cctx->localDict.dictContentType = dictContentType; + return 0; +} + +ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary_byReference( + ZSTD_CCtx* cctx, const void* dict, size_t dictSize) +{ + return ZSTD_CCtx_loadDictionary_advanced( + cctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); +} + +ZSTDLIB_API size_t ZSTD_CCtx_loadDictionary(ZSTD_CCtx* cctx, const void* dict, size_t dictSize) +{ + return ZSTD_CCtx_loadDictionary_advanced( + cctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); +} + + +size_t ZSTD_CCtx_refCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) +{ + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); + /* Free the existing local cdict (if any) to save memory. */ + ZSTD_clearAllDicts(cctx); + cctx->cdict = cdict; + return 0; +} + +size_t ZSTD_CCtx_refPrefix(ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize) +{ + return ZSTD_CCtx_refPrefix_advanced(cctx, prefix, prefixSize, ZSTD_dct_rawContent); +} + +size_t ZSTD_CCtx_refPrefix_advanced( + ZSTD_CCtx* cctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) +{ + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); + ZSTD_clearAllDicts(cctx); + cctx->prefixDict.dict = prefix; + cctx->prefixDict.dictSize = prefixSize; + cctx->prefixDict.dictContentType = dictContentType; + return 0; +} + +/*! ZSTD_CCtx_reset() : + * Also dumps dictionary */ +size_t ZSTD_CCtx_reset(ZSTD_CCtx* cctx, ZSTD_ResetDirective reset) +{ + if ( (reset == ZSTD_reset_session_only) + || (reset == ZSTD_reset_session_and_parameters) ) { + cctx->streamStage = zcss_init; + cctx->pledgedSrcSizePlusOne = 0; + } + if ( (reset == ZSTD_reset_parameters) + || (reset == ZSTD_reset_session_and_parameters) ) { + RETURN_ERROR_IF(cctx->streamStage != zcss_init, stage_wrong); + ZSTD_clearAllDicts(cctx); + return ZSTD_CCtxParams_reset(&cctx->requestedParams); + } + return 0; +} + + +/** ZSTD_checkCParams() : + control CParam values remain within authorized range. + @return : 0, or an error code if one value is beyond authorized range */ +size_t ZSTD_checkCParams(ZSTD_compressionParameters cParams) +{ + BOUNDCHECK(ZSTD_c_windowLog, cParams.windowLog); + BOUNDCHECK(ZSTD_c_chainLog, cParams.chainLog); + BOUNDCHECK(ZSTD_c_hashLog, cParams.hashLog); + BOUNDCHECK(ZSTD_c_searchLog, cParams.searchLog); + BOUNDCHECK(ZSTD_c_minMatch, cParams.minMatch); + BOUNDCHECK(ZSTD_c_targetLength,cParams.targetLength); + BOUNDCHECK(ZSTD_c_strategy, cParams.strategy); + return 0; +} + +/** ZSTD_clampCParams() : + * make CParam values within valid range. + * @return : valid CParams */ +static ZSTD_compressionParameters +ZSTD_clampCParams(ZSTD_compressionParameters cParams) +{ +# define CLAMP_TYPE(cParam, val, type) { \ + ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam); \ + if ((int)valbounds.upperBound) val=(type)bounds.upperBound; \ + } +# define CLAMP(cParam, val) CLAMP_TYPE(cParam, val, int) + CLAMP(ZSTD_c_windowLog, cParams.windowLog); + CLAMP(ZSTD_c_chainLog, cParams.chainLog); + CLAMP(ZSTD_c_hashLog, cParams.hashLog); + CLAMP(ZSTD_c_searchLog, cParams.searchLog); + CLAMP(ZSTD_c_minMatch, cParams.minMatch); + CLAMP(ZSTD_c_targetLength,cParams.targetLength); + CLAMP_TYPE(ZSTD_c_strategy,cParams.strategy, ZSTD_strategy); + return cParams; +} + +/** ZSTD_cycleLog() : + * condition for correct operation : hashLog > 1 */ +static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat) +{ + U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2); + return hashLog - btScale; +} + +/** ZSTD_adjustCParams_internal() : + * optimize `cPar` for a specified input (`srcSize` and `dictSize`). + * mostly downsize to reduce memory consumption and initialization latency. + * `srcSize` can be ZSTD_CONTENTSIZE_UNKNOWN when not known. + * note : for the time being, `srcSize==0` means "unknown" too, for compatibility with older convention. + * condition : cPar is presumed validated (can be checked using ZSTD_checkCParams()). */ +static ZSTD_compressionParameters +ZSTD_adjustCParams_internal(ZSTD_compressionParameters cPar, + unsigned long long srcSize, + size_t dictSize) +{ + static const U64 minSrcSize = 513; /* (1<<9) + 1 */ + static const U64 maxWindowResize = 1ULL << (ZSTD_WINDOWLOG_MAX-1); + assert(ZSTD_checkCParams(cPar)==0); + + if (dictSize && (srcSize+1<2) /* ZSTD_CONTENTSIZE_UNKNOWN and 0 mean "unknown" */ ) + srcSize = minSrcSize; /* presumed small when there is a dictionary */ + else if (srcSize == 0) + srcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* 0 == unknown : presumed large */ + + /* resize windowLog if input is small enough, to use less memory */ + if ( (srcSize < maxWindowResize) + && (dictSize < maxWindowResize) ) { + U32 const tSize = (U32)(srcSize + dictSize); + static U32 const hashSizeMin = 1 << ZSTD_HASHLOG_MIN; + U32 const srcLog = (tSize < hashSizeMin) ? ZSTD_HASHLOG_MIN : + ZSTD_highbit32(tSize-1) + 1; + if (cPar.windowLog > srcLog) cPar.windowLog = srcLog; + } + if (cPar.hashLog > cPar.windowLog+1) cPar.hashLog = cPar.windowLog+1; + { U32 const cycleLog = ZSTD_cycleLog(cPar.chainLog, cPar.strategy); + if (cycleLog > cPar.windowLog) + cPar.chainLog -= (cycleLog - cPar.windowLog); + } + + if (cPar.windowLog < ZSTD_WINDOWLOG_ABSOLUTEMIN) + cPar.windowLog = ZSTD_WINDOWLOG_ABSOLUTEMIN; /* minimum wlog required for valid frame header */ + + return cPar; +} + +ZSTD_compressionParameters +ZSTD_adjustCParams(ZSTD_compressionParameters cPar, + unsigned long long srcSize, + size_t dictSize) +{ + cPar = ZSTD_clampCParams(cPar); /* resulting cPar is necessarily valid (all parameters within range) */ + return ZSTD_adjustCParams_internal(cPar, srcSize, dictSize); +} + +ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( + const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize) +{ + ZSTD_compressionParameters cParams = ZSTD_getCParams(CCtxParams->compressionLevel, srcSizeHint, dictSize); + if (CCtxParams->ldmParams.enableLdm) cParams.windowLog = ZSTD_LDM_DEFAULT_WINDOW_LOG; + if (CCtxParams->cParams.windowLog) cParams.windowLog = CCtxParams->cParams.windowLog; + if (CCtxParams->cParams.hashLog) cParams.hashLog = CCtxParams->cParams.hashLog; + if (CCtxParams->cParams.chainLog) cParams.chainLog = CCtxParams->cParams.chainLog; + if (CCtxParams->cParams.searchLog) cParams.searchLog = CCtxParams->cParams.searchLog; + if (CCtxParams->cParams.minMatch) cParams.minMatch = CCtxParams->cParams.minMatch; + if (CCtxParams->cParams.targetLength) cParams.targetLength = CCtxParams->cParams.targetLength; + if (CCtxParams->cParams.strategy) cParams.strategy = CCtxParams->cParams.strategy; + assert(!ZSTD_checkCParams(cParams)); + return ZSTD_adjustCParams_internal(cParams, srcSizeHint, dictSize); +} + +static size_t +ZSTD_sizeof_matchState(const ZSTD_compressionParameters* const cParams, + const U32 forCCtx) +{ + size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog); + size_t const hSize = ((size_t)1) << cParams->hashLog; + U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; + size_t const h3Size = ((size_t)1) << hashLog3; + size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); + size_t const optPotentialSpace = ((MaxML+1) + (MaxLL+1) + (MaxOff+1) + (1<strategy >= ZSTD_btopt)) + ? optPotentialSpace + : 0; + DEBUGLOG(4, "chainSize: %u - hSize: %u - h3Size: %u", + (U32)chainSize, (U32)hSize, (U32)h3Size); + return tableSpace + optSpace; +} + +size_t ZSTD_estimateCCtxSize_usingCCtxParams(const ZSTD_CCtx_params* params) +{ + RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); + { ZSTD_compressionParameters const cParams = + ZSTD_getCParamsFromCCtxParams(params, 0, 0); + size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog); + U32 const divider = (cParams.minMatch==3) ? 3 : 4; + size_t const maxNbSeq = blockSize / divider; + size_t const tokenSpace = WILDCOPY_OVERLENGTH + blockSize + 11*maxNbSeq; + size_t const entropySpace = HUF_WORKSPACE_SIZE; + size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t); + size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 1); + + size_t const ldmSpace = ZSTD_ldm_getTableSize(params->ldmParams); + size_t const ldmSeqSpace = ZSTD_ldm_getMaxNbSeq(params->ldmParams, blockSize) * sizeof(rawSeq); + + size_t const neededSpace = entropySpace + blockStateSpace + tokenSpace + + matchStateSize + ldmSpace + ldmSeqSpace; + + DEBUGLOG(5, "sizeof(ZSTD_CCtx) : %u", (U32)sizeof(ZSTD_CCtx)); + DEBUGLOG(5, "estimate workSpace : %u", (U32)neededSpace); + return sizeof(ZSTD_CCtx) + neededSpace; + } +} + +size_t ZSTD_estimateCCtxSize_usingCParams(ZSTD_compressionParameters cParams) +{ + ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams); + return ZSTD_estimateCCtxSize_usingCCtxParams(¶ms); +} + +static size_t ZSTD_estimateCCtxSize_internal(int compressionLevel) +{ + ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0); + return ZSTD_estimateCCtxSize_usingCParams(cParams); +} + +size_t ZSTD_estimateCCtxSize(int compressionLevel) +{ + int level; + size_t memBudget = 0; + for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { + size_t const newMB = ZSTD_estimateCCtxSize_internal(level); + if (newMB > memBudget) memBudget = newMB; + } + return memBudget; +} + +size_t ZSTD_estimateCStreamSize_usingCCtxParams(const ZSTD_CCtx_params* params) +{ + RETURN_ERROR_IF(params->nbWorkers > 0, GENERIC, "Estimate CCtx size is supported for single-threaded compression only."); + { ZSTD_compressionParameters const cParams = + ZSTD_getCParamsFromCCtxParams(params, 0, 0); + size_t const CCtxSize = ZSTD_estimateCCtxSize_usingCCtxParams(params); + size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, (size_t)1 << cParams.windowLog); + size_t const inBuffSize = ((size_t)1 << cParams.windowLog) + blockSize; + size_t const outBuffSize = ZSTD_compressBound(blockSize) + 1; + size_t const streamingSize = inBuffSize + outBuffSize; + + return CCtxSize + streamingSize; + } +} + +size_t ZSTD_estimateCStreamSize_usingCParams(ZSTD_compressionParameters cParams) +{ + ZSTD_CCtx_params const params = ZSTD_makeCCtxParamsFromCParams(cParams); + return ZSTD_estimateCStreamSize_usingCCtxParams(¶ms); +} + +static size_t ZSTD_estimateCStreamSize_internal(int compressionLevel) +{ + ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, 0); + return ZSTD_estimateCStreamSize_usingCParams(cParams); +} + +size_t ZSTD_estimateCStreamSize(int compressionLevel) +{ + int level; + size_t memBudget = 0; + for (level=MIN(compressionLevel, 1); level<=compressionLevel; level++) { + size_t const newMB = ZSTD_estimateCStreamSize_internal(level); + if (newMB > memBudget) memBudget = newMB; + } + return memBudget; +} + +/* ZSTD_getFrameProgression(): + * tells how much data has been consumed (input) and produced (output) for current frame. + * able to count progression inside worker threads (non-blocking mode). + */ +ZSTD_frameProgression ZSTD_getFrameProgression(const ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers > 0) { + return ZSTDMT_getFrameProgression(cctx->mtctx); + } +#endif + { ZSTD_frameProgression fp; + size_t const buffered = (cctx->inBuff == NULL) ? 0 : + cctx->inBuffPos - cctx->inToCompress; + if (buffered) assert(cctx->inBuffPos >= cctx->inToCompress); + assert(buffered <= ZSTD_BLOCKSIZE_MAX); + fp.ingested = cctx->consumedSrcSize + buffered; + fp.consumed = cctx->consumedSrcSize; + fp.produced = cctx->producedCSize; + fp.flushed = cctx->producedCSize; /* simplified; some data might still be left within streaming output buffer */ + fp.currentJobID = 0; + fp.nbActiveWorkers = 0; + return fp; +} } + +/*! ZSTD_toFlushNow() + * Only useful for multithreading scenarios currently (nbWorkers >= 1). + */ +size_t ZSTD_toFlushNow(ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers > 0) { + return ZSTDMT_toFlushNow(cctx->mtctx); + } +#endif + (void)cctx; + return 0; /* over-simplification; could also check if context is currently running in streaming mode, and in which case, report how many bytes are left to be flushed within output buffer */ +} + + + +static U32 ZSTD_equivalentCParams(ZSTD_compressionParameters cParams1, + ZSTD_compressionParameters cParams2) +{ + return (cParams1.hashLog == cParams2.hashLog) + & (cParams1.chainLog == cParams2.chainLog) + & (cParams1.strategy == cParams2.strategy) /* opt parser space */ + & ((cParams1.minMatch==3) == (cParams2.minMatch==3)); /* hashlog3 space */ +} + +static void ZSTD_assertEqualCParams(ZSTD_compressionParameters cParams1, + ZSTD_compressionParameters cParams2) +{ + (void)cParams1; + (void)cParams2; + assert(cParams1.windowLog == cParams2.windowLog); + assert(cParams1.chainLog == cParams2.chainLog); + assert(cParams1.hashLog == cParams2.hashLog); + assert(cParams1.searchLog == cParams2.searchLog); + assert(cParams1.minMatch == cParams2.minMatch); + assert(cParams1.targetLength == cParams2.targetLength); + assert(cParams1.strategy == cParams2.strategy); +} + +/** The parameters are equivalent if ldm is not enabled in both sets or + * all the parameters are equivalent. */ +static U32 ZSTD_equivalentLdmParams(ldmParams_t ldmParams1, + ldmParams_t ldmParams2) +{ + return (!ldmParams1.enableLdm && !ldmParams2.enableLdm) || + (ldmParams1.enableLdm == ldmParams2.enableLdm && + ldmParams1.hashLog == ldmParams2.hashLog && + ldmParams1.bucketSizeLog == ldmParams2.bucketSizeLog && + ldmParams1.minMatchLength == ldmParams2.minMatchLength && + ldmParams1.hashRateLog == ldmParams2.hashRateLog); +} + +typedef enum { ZSTDb_not_buffered, ZSTDb_buffered } ZSTD_buffered_policy_e; + +/* ZSTD_sufficientBuff() : + * check internal buffers exist for streaming if buffPol == ZSTDb_buffered . + * Note : they are assumed to be correctly sized if ZSTD_equivalentCParams()==1 */ +static U32 ZSTD_sufficientBuff(size_t bufferSize1, size_t maxNbSeq1, + size_t maxNbLit1, + ZSTD_buffered_policy_e buffPol2, + ZSTD_compressionParameters cParams2, + U64 pledgedSrcSize) +{ + size_t const windowSize2 = MAX(1, (size_t)MIN(((U64)1 << cParams2.windowLog), pledgedSrcSize)); + size_t const blockSize2 = MIN(ZSTD_BLOCKSIZE_MAX, windowSize2); + size_t const maxNbSeq2 = blockSize2 / ((cParams2.minMatch == 3) ? 3 : 4); + size_t const maxNbLit2 = blockSize2; + size_t const neededBufferSize2 = (buffPol2==ZSTDb_buffered) ? windowSize2 + blockSize2 : 0; + DEBUGLOG(4, "ZSTD_sufficientBuff: is neededBufferSize2=%u <= bufferSize1=%u", + (U32)neededBufferSize2, (U32)bufferSize1); + DEBUGLOG(4, "ZSTD_sufficientBuff: is maxNbSeq2=%u <= maxNbSeq1=%u", + (U32)maxNbSeq2, (U32)maxNbSeq1); + DEBUGLOG(4, "ZSTD_sufficientBuff: is maxNbLit2=%u <= maxNbLit1=%u", + (U32)maxNbLit2, (U32)maxNbLit1); + return (maxNbLit2 <= maxNbLit1) + & (maxNbSeq2 <= maxNbSeq1) + & (neededBufferSize2 <= bufferSize1); +} + +/** Equivalence for resetCCtx purposes */ +static U32 ZSTD_equivalentParams(ZSTD_CCtx_params params1, + ZSTD_CCtx_params params2, + size_t buffSize1, + size_t maxNbSeq1, size_t maxNbLit1, + ZSTD_buffered_policy_e buffPol2, + U64 pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_equivalentParams: pledgedSrcSize=%u", (U32)pledgedSrcSize); + if (!ZSTD_equivalentCParams(params1.cParams, params2.cParams)) { + DEBUGLOG(4, "ZSTD_equivalentCParams() == 0"); + return 0; + } + if (!ZSTD_equivalentLdmParams(params1.ldmParams, params2.ldmParams)) { + DEBUGLOG(4, "ZSTD_equivalentLdmParams() == 0"); + return 0; + } + if (!ZSTD_sufficientBuff(buffSize1, maxNbSeq1, maxNbLit1, buffPol2, + params2.cParams, pledgedSrcSize)) { + DEBUGLOG(4, "ZSTD_sufficientBuff() == 0"); + return 0; + } + return 1; +} + +static void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs) +{ + int i; + for (i = 0; i < ZSTD_REP_NUM; ++i) + bs->rep[i] = repStartValue[i]; + bs->entropy.huf.repeatMode = HUF_repeat_none; + bs->entropy.fse.offcode_repeatMode = FSE_repeat_none; + bs->entropy.fse.matchlength_repeatMode = FSE_repeat_none; + bs->entropy.fse.litlength_repeatMode = FSE_repeat_none; +} + +/*! ZSTD_invalidateMatchState() + * Invalidate all the matches in the match finder tables. + * Requires nextSrc and base to be set (can be NULL). + */ +static void ZSTD_invalidateMatchState(ZSTD_matchState_t* ms) +{ + ZSTD_window_clear(&ms->window); + + ms->nextToUpdate = ms->window.dictLimit; + ms->nextToUpdate3 = ms->window.dictLimit; + ms->loadedDictEnd = 0; + ms->opt.litLengthSum = 0; /* force reset of btopt stats */ + ms->dictMatchState = NULL; +} + +/*! ZSTD_continueCCtx() : + * reuse CCtx without reset (note : requires no dictionary) */ +static size_t ZSTD_continueCCtx(ZSTD_CCtx* cctx, ZSTD_CCtx_params params, U64 pledgedSrcSize) +{ + size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize)); + size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize); + DEBUGLOG(4, "ZSTD_continueCCtx: re-use context in place"); + + cctx->blockSize = blockSize; /* previous block size could be different even for same windowLog, due to pledgedSrcSize */ + cctx->appliedParams = params; + cctx->blockState.matchState.cParams = params.cParams; + cctx->pledgedSrcSizePlusOne = pledgedSrcSize+1; + cctx->consumedSrcSize = 0; + cctx->producedCSize = 0; + if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) + cctx->appliedParams.fParams.contentSizeFlag = 0; + DEBUGLOG(4, "pledged content size : %u ; flag : %u", + (U32)pledgedSrcSize, cctx->appliedParams.fParams.contentSizeFlag); + cctx->stage = ZSTDcs_init; + cctx->dictID = 0; + if (params.ldmParams.enableLdm) + ZSTD_window_clear(&cctx->ldmState.window); + ZSTD_referenceExternalSequences(cctx, NULL, 0); + ZSTD_invalidateMatchState(&cctx->blockState.matchState); + ZSTD_reset_compressedBlockState(cctx->blockState.prevCBlock); + XXH64_reset(&cctx->xxhState, 0); + return 0; +} + +typedef enum { ZSTDcrp_continue, ZSTDcrp_noMemset } ZSTD_compResetPolicy_e; + +static void* +ZSTD_reset_matchState(ZSTD_matchState_t* ms, + void* ptr, + const ZSTD_compressionParameters* cParams, + ZSTD_compResetPolicy_e const crp, U32 const forCCtx) +{ + size_t const chainSize = (cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cParams->chainLog); + size_t const hSize = ((size_t)1) << cParams->hashLog; + U32 const hashLog3 = (forCCtx && cParams->minMatch==3) ? MIN(ZSTD_HASHLOG3_MAX, cParams->windowLog) : 0; + size_t const h3Size = ((size_t)1) << hashLog3; + size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); + + assert(((size_t)ptr & 3) == 0); + + ms->hashLog3 = hashLog3; + memset(&ms->window, 0, sizeof(ms->window)); + ms->window.dictLimit = 1; /* start from 1, so that 1st position is valid */ + ms->window.lowLimit = 1; /* it ensures first and later CCtx usages compress the same */ + ms->window.nextSrc = ms->window.base + 1; /* see issue #1241 */ + ZSTD_invalidateMatchState(ms); + + /* opt parser space */ + if (forCCtx && (cParams->strategy >= ZSTD_btopt)) { + DEBUGLOG(4, "reserving optimal parser space"); + ms->opt.litFreq = (unsigned*)ptr; + ms->opt.litLengthFreq = ms->opt.litFreq + (1<opt.matchLengthFreq = ms->opt.litLengthFreq + (MaxLL+1); + ms->opt.offCodeFreq = ms->opt.matchLengthFreq + (MaxML+1); + ptr = ms->opt.offCodeFreq + (MaxOff+1); + ms->opt.matchTable = (ZSTD_match_t*)ptr; + ptr = ms->opt.matchTable + ZSTD_OPT_NUM+1; + ms->opt.priceTable = (ZSTD_optimal_t*)ptr; + ptr = ms->opt.priceTable + ZSTD_OPT_NUM+1; + } + + /* table Space */ + DEBUGLOG(4, "reset table : %u", crp!=ZSTDcrp_noMemset); + assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ + if (crp!=ZSTDcrp_noMemset) memset(ptr, 0, tableSpace); /* reset tables only */ + ms->hashTable = (U32*)(ptr); + ms->chainTable = ms->hashTable + hSize; + ms->hashTable3 = ms->chainTable + chainSize; + ptr = ms->hashTable3 + h3Size; + + ms->cParams = *cParams; + + assert(((size_t)ptr & 3) == 0); + return ptr; +} + +#define ZSTD_WORKSPACETOOLARGE_FACTOR 3 /* define "workspace is too large" as this number of times larger than needed */ +#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128 /* when workspace is continuously too large + * during at least this number of times, + * context's memory usage is considered wasteful, + * because it's sized to handle a worst case scenario which rarely happens. + * In which case, resize it down to free some memory */ + +/*! ZSTD_resetCCtx_internal() : + note : `params` are assumed fully validated at this stage */ +static size_t ZSTD_resetCCtx_internal(ZSTD_CCtx* zc, + ZSTD_CCtx_params params, + U64 pledgedSrcSize, + ZSTD_compResetPolicy_e const crp, + ZSTD_buffered_policy_e const zbuff) +{ + DEBUGLOG(4, "ZSTD_resetCCtx_internal: pledgedSrcSize=%u, wlog=%u", + (U32)pledgedSrcSize, params.cParams.windowLog); + assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); + + if (crp == ZSTDcrp_continue) { + if (ZSTD_equivalentParams(zc->appliedParams, params, + zc->inBuffSize, + zc->seqStore.maxNbSeq, zc->seqStore.maxNbLit, + zbuff, pledgedSrcSize)) { + DEBUGLOG(4, "ZSTD_equivalentParams()==1 -> continue mode (wLog1=%u, blockSize1=%zu)", + zc->appliedParams.cParams.windowLog, zc->blockSize); + zc->workSpaceOversizedDuration += (zc->workSpaceOversizedDuration > 0); /* if it was too large, it still is */ + if (zc->workSpaceOversizedDuration <= ZSTD_WORKSPACETOOLARGE_MAXDURATION) + return ZSTD_continueCCtx(zc, params, pledgedSrcSize); + } } + DEBUGLOG(4, "ZSTD_equivalentParams()==0 -> reset CCtx"); + + if (params.ldmParams.enableLdm) { + /* Adjust long distance matching parameters */ + ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); + assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); + assert(params.ldmParams.hashRateLog < 32); + zc->ldmState.hashPower = ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength); + } + + { size_t const windowSize = MAX(1, (size_t)MIN(((U64)1 << params.cParams.windowLog), pledgedSrcSize)); + size_t const blockSize = MIN(ZSTD_BLOCKSIZE_MAX, windowSize); + U32 const divider = (params.cParams.minMatch==3) ? 3 : 4; + size_t const maxNbSeq = blockSize / divider; + size_t const tokenSpace = WILDCOPY_OVERLENGTH + blockSize + 11*maxNbSeq; + size_t const buffOutSize = (zbuff==ZSTDb_buffered) ? ZSTD_compressBound(blockSize)+1 : 0; + size_t const buffInSize = (zbuff==ZSTDb_buffered) ? windowSize + blockSize : 0; + size_t const matchStateSize = ZSTD_sizeof_matchState(¶ms.cParams, /* forCCtx */ 1); + size_t const maxNbLdmSeq = ZSTD_ldm_getMaxNbSeq(params.ldmParams, blockSize); + void* ptr; /* used to partition workSpace */ + + /* Check if workSpace is large enough, alloc a new one if needed */ + { size_t const entropySpace = HUF_WORKSPACE_SIZE; + size_t const blockStateSpace = 2 * sizeof(ZSTD_compressedBlockState_t); + size_t const bufferSpace = buffInSize + buffOutSize; + size_t const ldmSpace = ZSTD_ldm_getTableSize(params.ldmParams); + size_t const ldmSeqSpace = maxNbLdmSeq * sizeof(rawSeq); + + size_t const neededSpace = entropySpace + blockStateSpace + ldmSpace + + ldmSeqSpace + matchStateSize + tokenSpace + + bufferSpace; + + int const workSpaceTooSmall = zc->workSpaceSize < neededSpace; + int const workSpaceTooLarge = zc->workSpaceSize > ZSTD_WORKSPACETOOLARGE_FACTOR * neededSpace; + int const workSpaceWasteful = workSpaceTooLarge && (zc->workSpaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION); + zc->workSpaceOversizedDuration = workSpaceTooLarge ? zc->workSpaceOversizedDuration+1 : 0; + + DEBUGLOG(4, "Need %zuKB workspace, including %zuKB for match state, and %zuKB for buffers", + neededSpace>>10, matchStateSize>>10, bufferSpace>>10); + DEBUGLOG(4, "windowSize: %zu - blockSize: %zu", windowSize, blockSize); + + if (workSpaceTooSmall || workSpaceWasteful) { + DEBUGLOG(4, "Need to resize workSpaceSize from %zuKB to %zuKB", + zc->workSpaceSize >> 10, + neededSpace >> 10); + + RETURN_ERROR_IF(zc->staticSize, memory_allocation, "static cctx : no resize"); + + zc->workSpaceSize = 0; + ZSTD_free(zc->workSpace, zc->customMem); + zc->workSpace = ZSTD_malloc(neededSpace, zc->customMem); + RETURN_ERROR_IF(zc->workSpace == NULL, memory_allocation); + zc->workSpaceSize = neededSpace; + zc->workSpaceOversizedDuration = 0; + + /* Statically sized space. + * entropyWorkspace never moves, + * though prev/next block swap places */ + assert(((size_t)zc->workSpace & 3) == 0); /* ensure correct alignment */ + assert(zc->workSpaceSize >= 2 * sizeof(ZSTD_compressedBlockState_t)); + zc->blockState.prevCBlock = (ZSTD_compressedBlockState_t*)zc->workSpace; + zc->blockState.nextCBlock = zc->blockState.prevCBlock + 1; + ptr = zc->blockState.nextCBlock + 1; + zc->entropyWorkspace = (U32*)ptr; + } } + + /* init params */ + zc->appliedParams = params; + zc->blockState.matchState.cParams = params.cParams; + zc->pledgedSrcSizePlusOne = pledgedSrcSize+1; + zc->consumedSrcSize = 0; + zc->producedCSize = 0; + if (pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN) + zc->appliedParams.fParams.contentSizeFlag = 0; + DEBUGLOG(4, "pledged content size : %u ; flag : %u", + (unsigned)pledgedSrcSize, zc->appliedParams.fParams.contentSizeFlag); + zc->blockSize = blockSize; + + XXH64_reset(&zc->xxhState, 0); + zc->stage = ZSTDcs_init; + zc->dictID = 0; + + ZSTD_reset_compressedBlockState(zc->blockState.prevCBlock); + + ptr = zc->entropyWorkspace + HUF_WORKSPACE_SIZE_U32; + + /* ldm hash table */ + /* initialize bucketOffsets table later for pointer alignment */ + if (params.ldmParams.enableLdm) { + size_t const ldmHSize = ((size_t)1) << params.ldmParams.hashLog; + memset(ptr, 0, ldmHSize * sizeof(ldmEntry_t)); + assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ + zc->ldmState.hashTable = (ldmEntry_t*)ptr; + ptr = zc->ldmState.hashTable + ldmHSize; + zc->ldmSequences = (rawSeq*)ptr; + ptr = zc->ldmSequences + maxNbLdmSeq; + zc->maxNbLdmSequences = maxNbLdmSeq; + + memset(&zc->ldmState.window, 0, sizeof(zc->ldmState.window)); + } + assert(((size_t)ptr & 3) == 0); /* ensure ptr is properly aligned */ + + ptr = ZSTD_reset_matchState(&zc->blockState.matchState, ptr, ¶ms.cParams, crp, /* forCCtx */ 1); + + /* sequences storage */ + zc->seqStore.maxNbSeq = maxNbSeq; + zc->seqStore.sequencesStart = (seqDef*)ptr; + ptr = zc->seqStore.sequencesStart + maxNbSeq; + zc->seqStore.llCode = (BYTE*) ptr; + zc->seqStore.mlCode = zc->seqStore.llCode + maxNbSeq; + zc->seqStore.ofCode = zc->seqStore.mlCode + maxNbSeq; + zc->seqStore.litStart = zc->seqStore.ofCode + maxNbSeq; + /* ZSTD_wildcopy() is used to copy into the literals buffer, + * so we have to oversize the buffer by WILDCOPY_OVERLENGTH bytes. + */ + zc->seqStore.maxNbLit = blockSize; + ptr = zc->seqStore.litStart + blockSize + WILDCOPY_OVERLENGTH; + + /* ldm bucketOffsets table */ + if (params.ldmParams.enableLdm) { + size_t const ldmBucketSize = + ((size_t)1) << (params.ldmParams.hashLog - + params.ldmParams.bucketSizeLog); + memset(ptr, 0, ldmBucketSize); + zc->ldmState.bucketOffsets = (BYTE*)ptr; + ptr = zc->ldmState.bucketOffsets + ldmBucketSize; + ZSTD_window_clear(&zc->ldmState.window); + } + ZSTD_referenceExternalSequences(zc, NULL, 0); + + /* buffers */ + zc->inBuffSize = buffInSize; + zc->inBuff = (char*)ptr; + zc->outBuffSize = buffOutSize; + zc->outBuff = zc->inBuff + buffInSize; + + return 0; + } +} + +/* ZSTD_invalidateRepCodes() : + * ensures next compression will not use repcodes from previous block. + * Note : only works with regular variant; + * do not use with extDict variant ! */ +void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx) { + int i; + for (i=0; iblockState.prevCBlock->rep[i] = 0; + assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); +} + +/* These are the approximate sizes for each strategy past which copying the + * dictionary tables into the working context is faster than using them + * in-place. + */ +static const size_t attachDictSizeCutoffs[ZSTD_STRATEGY_MAX+1] = { + 8 KB, /* unused */ + 8 KB, /* ZSTD_fast */ + 16 KB, /* ZSTD_dfast */ + 32 KB, /* ZSTD_greedy */ + 32 KB, /* ZSTD_lazy */ + 32 KB, /* ZSTD_lazy2 */ + 32 KB, /* ZSTD_btlazy2 */ + 32 KB, /* ZSTD_btopt */ + 8 KB, /* ZSTD_btultra */ + 8 KB /* ZSTD_btultra2 */ +}; + +static int ZSTD_shouldAttachDict(const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + U64 pledgedSrcSize) +{ + size_t cutoff = attachDictSizeCutoffs[cdict->matchState.cParams.strategy]; + return ( pledgedSrcSize <= cutoff + || pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN + || params.attachDictPref == ZSTD_dictForceAttach ) + && params.attachDictPref != ZSTD_dictForceCopy + && !params.forceWindow; /* dictMatchState isn't correctly + * handled in _enforceMaxDist */ +} + +static size_t ZSTD_resetCCtx_byAttachingCDict( + ZSTD_CCtx* cctx, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + { + const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams; + unsigned const windowLog = params.cParams.windowLog; + assert(windowLog != 0); + /* Resize working context table params for input only, since the dict + * has its own tables. */ + params.cParams = ZSTD_adjustCParams_internal(*cdict_cParams, pledgedSrcSize, 0); + params.cParams.windowLog = windowLog; + ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, + ZSTDcrp_continue, zbuff); + assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy); + } + + { + const U32 cdictEnd = (U32)( cdict->matchState.window.nextSrc + - cdict->matchState.window.base); + const U32 cdictLen = cdictEnd - cdict->matchState.window.dictLimit; + if (cdictLen == 0) { + /* don't even attach dictionaries with no contents */ + DEBUGLOG(4, "skipping attaching empty dictionary"); + } else { + DEBUGLOG(4, "attaching dictionary into context"); + cctx->blockState.matchState.dictMatchState = &cdict->matchState; + + /* prep working match state so dict matches never have negative indices + * when they are translated to the working context's index space. */ + if (cctx->blockState.matchState.window.dictLimit < cdictEnd) { + cctx->blockState.matchState.window.nextSrc = + cctx->blockState.matchState.window.base + cdictEnd; + ZSTD_window_clear(&cctx->blockState.matchState.window); + } + cctx->blockState.matchState.loadedDictEnd = cctx->blockState.matchState.window.dictLimit; + } + } + + cctx->dictID = cdict->dictID; + + /* copy block state */ + memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); + + return 0; +} + +static size_t ZSTD_resetCCtx_byCopyingCDict(ZSTD_CCtx* cctx, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + const ZSTD_compressionParameters *cdict_cParams = &cdict->matchState.cParams; + + DEBUGLOG(4, "copying dictionary into context"); + + { unsigned const windowLog = params.cParams.windowLog; + assert(windowLog != 0); + /* Copy only compression parameters related to tables. */ + params.cParams = *cdict_cParams; + params.cParams.windowLog = windowLog; + ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, + ZSTDcrp_noMemset, zbuff); + assert(cctx->appliedParams.cParams.strategy == cdict_cParams->strategy); + assert(cctx->appliedParams.cParams.hashLog == cdict_cParams->hashLog); + assert(cctx->appliedParams.cParams.chainLog == cdict_cParams->chainLog); + } + + /* copy tables */ + { size_t const chainSize = (cdict_cParams->strategy == ZSTD_fast) ? 0 : ((size_t)1 << cdict_cParams->chainLog); + size_t const hSize = (size_t)1 << cdict_cParams->hashLog; + size_t const tableSpace = (chainSize + hSize) * sizeof(U32); + assert((U32*)cctx->blockState.matchState.chainTable == (U32*)cctx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */ + assert((U32*)cctx->blockState.matchState.hashTable3 == (U32*)cctx->blockState.matchState.chainTable + chainSize); + assert((U32*)cdict->matchState.chainTable == (U32*)cdict->matchState.hashTable + hSize); /* chainTable must follow hashTable */ + assert((U32*)cdict->matchState.hashTable3 == (U32*)cdict->matchState.chainTable + chainSize); + memcpy(cctx->blockState.matchState.hashTable, cdict->matchState.hashTable, tableSpace); /* presumes all tables follow each other */ + } + + /* Zero the hashTable3, since the cdict never fills it */ + { size_t const h3Size = (size_t)1 << cctx->blockState.matchState.hashLog3; + assert(cdict->matchState.hashLog3 == 0); + memset(cctx->blockState.matchState.hashTable3, 0, h3Size * sizeof(U32)); + } + + /* copy dictionary offsets */ + { ZSTD_matchState_t const* srcMatchState = &cdict->matchState; + ZSTD_matchState_t* dstMatchState = &cctx->blockState.matchState; + dstMatchState->window = srcMatchState->window; + dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; + dstMatchState->nextToUpdate3= srcMatchState->nextToUpdate3; + dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; + } + + cctx->dictID = cdict->dictID; + + /* copy block state */ + memcpy(cctx->blockState.prevCBlock, &cdict->cBlockState, sizeof(cdict->cBlockState)); + + return 0; +} + +/* We have a choice between copying the dictionary context into the working + * context, or referencing the dictionary context from the working context + * in-place. We decide here which strategy to use. */ +static size_t ZSTD_resetCCtx_usingCDict(ZSTD_CCtx* cctx, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + + DEBUGLOG(4, "ZSTD_resetCCtx_usingCDict (pledgedSrcSize=%u)", + (unsigned)pledgedSrcSize); + + if (ZSTD_shouldAttachDict(cdict, params, pledgedSrcSize)) { + return ZSTD_resetCCtx_byAttachingCDict( + cctx, cdict, params, pledgedSrcSize, zbuff); + } else { + return ZSTD_resetCCtx_byCopyingCDict( + cctx, cdict, params, pledgedSrcSize, zbuff); + } +} + +/*! ZSTD_copyCCtx_internal() : + * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. + * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). + * The "context", in this case, refers to the hash and chain tables, + * entropy tables, and dictionary references. + * `windowLog` value is enforced if != 0, otherwise value is copied from srcCCtx. + * @return : 0, or an error code */ +static size_t ZSTD_copyCCtx_internal(ZSTD_CCtx* dstCCtx, + const ZSTD_CCtx* srcCCtx, + ZSTD_frameParameters fParams, + U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + DEBUGLOG(5, "ZSTD_copyCCtx_internal"); + RETURN_ERROR_IF(srcCCtx->stage!=ZSTDcs_init, stage_wrong); + + memcpy(&dstCCtx->customMem, &srcCCtx->customMem, sizeof(ZSTD_customMem)); + { ZSTD_CCtx_params params = dstCCtx->requestedParams; + /* Copy only compression parameters related to tables. */ + params.cParams = srcCCtx->appliedParams.cParams; + params.fParams = fParams; + ZSTD_resetCCtx_internal(dstCCtx, params, pledgedSrcSize, + ZSTDcrp_noMemset, zbuff); + assert(dstCCtx->appliedParams.cParams.windowLog == srcCCtx->appliedParams.cParams.windowLog); + assert(dstCCtx->appliedParams.cParams.strategy == srcCCtx->appliedParams.cParams.strategy); + assert(dstCCtx->appliedParams.cParams.hashLog == srcCCtx->appliedParams.cParams.hashLog); + assert(dstCCtx->appliedParams.cParams.chainLog == srcCCtx->appliedParams.cParams.chainLog); + assert(dstCCtx->blockState.matchState.hashLog3 == srcCCtx->blockState.matchState.hashLog3); + } + + /* copy tables */ + { size_t const chainSize = (srcCCtx->appliedParams.cParams.strategy == ZSTD_fast) ? 0 : ((size_t)1 << srcCCtx->appliedParams.cParams.chainLog); + size_t const hSize = (size_t)1 << srcCCtx->appliedParams.cParams.hashLog; + size_t const h3Size = (size_t)1 << srcCCtx->blockState.matchState.hashLog3; + size_t const tableSpace = (chainSize + hSize + h3Size) * sizeof(U32); + assert((U32*)dstCCtx->blockState.matchState.chainTable == (U32*)dstCCtx->blockState.matchState.hashTable + hSize); /* chainTable must follow hashTable */ + assert((U32*)dstCCtx->blockState.matchState.hashTable3 == (U32*)dstCCtx->blockState.matchState.chainTable + chainSize); + memcpy(dstCCtx->blockState.matchState.hashTable, srcCCtx->blockState.matchState.hashTable, tableSpace); /* presumes all tables follow each other */ + } + + /* copy dictionary offsets */ + { + const ZSTD_matchState_t* srcMatchState = &srcCCtx->blockState.matchState; + ZSTD_matchState_t* dstMatchState = &dstCCtx->blockState.matchState; + dstMatchState->window = srcMatchState->window; + dstMatchState->nextToUpdate = srcMatchState->nextToUpdate; + dstMatchState->nextToUpdate3= srcMatchState->nextToUpdate3; + dstMatchState->loadedDictEnd= srcMatchState->loadedDictEnd; + } + dstCCtx->dictID = srcCCtx->dictID; + + /* copy block state */ + memcpy(dstCCtx->blockState.prevCBlock, srcCCtx->blockState.prevCBlock, sizeof(*srcCCtx->blockState.prevCBlock)); + + return 0; +} + +/*! ZSTD_copyCCtx() : + * Duplicate an existing context `srcCCtx` into another one `dstCCtx`. + * Only works during stage ZSTDcs_init (i.e. after creation, but before first call to ZSTD_compressContinue()). + * pledgedSrcSize==0 means "unknown". +* @return : 0, or an error code */ +size_t ZSTD_copyCCtx(ZSTD_CCtx* dstCCtx, const ZSTD_CCtx* srcCCtx, unsigned long long pledgedSrcSize) +{ + ZSTD_frameParameters fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; + ZSTD_buffered_policy_e const zbuff = (ZSTD_buffered_policy_e)(srcCCtx->inBuffSize>0); + ZSTD_STATIC_ASSERT((U32)ZSTDb_buffered==1); + if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; + fParams.contentSizeFlag = (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN); + + return ZSTD_copyCCtx_internal(dstCCtx, srcCCtx, + fParams, pledgedSrcSize, + zbuff); +} + + +#define ZSTD_ROWSIZE 16 +/*! ZSTD_reduceTable() : + * reduce table indexes by `reducerValue`, or squash to zero. + * PreserveMark preserves "unsorted mark" for btlazy2 strategy. + * It must be set to a clear 0/1 value, to remove branch during inlining. + * Presume table size is a multiple of ZSTD_ROWSIZE + * to help auto-vectorization */ +FORCE_INLINE_TEMPLATE void +ZSTD_reduceTable_internal (U32* const table, U32 const size, U32 const reducerValue, int const preserveMark) +{ + int const nbRows = (int)size / ZSTD_ROWSIZE; + int cellNb = 0; + int rowNb; + assert((size & (ZSTD_ROWSIZE-1)) == 0); /* multiple of ZSTD_ROWSIZE */ + assert(size < (1U<<31)); /* can be casted to int */ + for (rowNb=0 ; rowNb < nbRows ; rowNb++) { + int column; + for (column=0; columnblockState.matchState; + { U32 const hSize = (U32)1 << zc->appliedParams.cParams.hashLog; + ZSTD_reduceTable(ms->hashTable, hSize, reducerValue); + } + + if (zc->appliedParams.cParams.strategy != ZSTD_fast) { + U32 const chainSize = (U32)1 << zc->appliedParams.cParams.chainLog; + if (zc->appliedParams.cParams.strategy == ZSTD_btlazy2) + ZSTD_reduceTable_btlazy2(ms->chainTable, chainSize, reducerValue); + else + ZSTD_reduceTable(ms->chainTable, chainSize, reducerValue); + } + + if (ms->hashLog3) { + U32 const h3Size = (U32)1 << ms->hashLog3; + ZSTD_reduceTable(ms->hashTable3, h3Size, reducerValue); + } +} + + +/*-******************************************************* +* Block entropic compression +*********************************************************/ + +/* See doc/zstd_compression_format.md for detailed format description */ + +static size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock) +{ + U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3); + RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity, + dstSize_tooSmall); + MEM_writeLE24(dst, cBlockHeader24); + memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize); + return ZSTD_blockHeaderSize + srcSize; +} + +static size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + BYTE* const ostart = (BYTE* const)dst; + U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); + + RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall); + + switch(flSize) + { + case 1: /* 2 - 1 - 5 */ + ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3)); + break; + case 2: /* 2 - 2 - 12 */ + MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4))); + break; + case 3: /* 2 - 2 - 20 */ + MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4))); + break; + default: /* not necessary : flSize is {1,2,3} */ + assert(0); + } + + memcpy(ostart + flSize, src, srcSize); + return srcSize + flSize; +} + +static size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + BYTE* const ostart = (BYTE* const)dst; + U32 const flSize = 1 + (srcSize>31) + (srcSize>4095); + + (void)dstCapacity; /* dstCapacity already guaranteed to be >=4, hence large enough */ + + switch(flSize) + { + case 1: /* 2 - 1 - 5 */ + ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3)); + break; + case 2: /* 2 - 2 - 12 */ + MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4))); + break; + case 3: /* 2 - 2 - 20 */ + MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4))); + break; + default: /* not necessary : flSize is {1,2,3} */ + assert(0); + } + + ostart[flSize] = *(const BYTE*)src; + return flSize+1; +} + + +/* ZSTD_minGain() : + * minimum compression required + * to generate a compress block or a compressed literals section. + * note : use same formula for both situations */ +static size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat) +{ + U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6; + ZSTD_STATIC_ASSERT(ZSTD_btultra == 8); + assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat)); + return (srcSize >> minlog) + 2; +} + +static size_t ZSTD_compressLiterals (ZSTD_hufCTables_t const* prevHuf, + ZSTD_hufCTables_t* nextHuf, + ZSTD_strategy strategy, int disableLiteralCompression, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + void* workspace, size_t wkspSize, + const int bmi2) +{ + size_t const minGain = ZSTD_minGain(srcSize, strategy); + size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB); + BYTE* const ostart = (BYTE*)dst; + U32 singleStream = srcSize < 256; + symbolEncodingType_e hType = set_compressed; + size_t cLitSize; + + DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i)", + disableLiteralCompression); + + /* Prepare nextEntropy assuming reusing the existing table */ + memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + + if (disableLiteralCompression) + return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); + + /* small ? don't even attempt compression (speed opt) */ +# define COMPRESS_LITERALS_SIZE_MIN 63 + { size_t const minLitSize = (prevHuf->repeatMode == HUF_repeat_valid) ? 6 : COMPRESS_LITERALS_SIZE_MIN; + if (srcSize <= minLitSize) return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); + } + + RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression"); + { HUF_repeat repeat = prevHuf->repeatMode; + int const preferRepeat = strategy < ZSTD_lazy ? srcSize <= 1024 : 0; + if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1; + cLitSize = singleStream ? HUF_compress1X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, + workspace, wkspSize, (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2) + : HUF_compress4X_repeat(ostart+lhSize, dstCapacity-lhSize, src, srcSize, 255, 11, + workspace, wkspSize, (HUF_CElt*)nextHuf->CTable, &repeat, preferRepeat, bmi2); + if (repeat != HUF_repeat_none) { + /* reused the existing table */ + hType = set_repeat; + } + } + + if ((cLitSize==0) | (cLitSize >= srcSize - minGain) | ERR_isError(cLitSize)) { + memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize); + } + if (cLitSize==1) { + memcpy(nextHuf, prevHuf, sizeof(*prevHuf)); + return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize); + } + + if (hType == set_compressed) { + /* using a newly constructed table */ + nextHuf->repeatMode = HUF_repeat_check; + } + + /* Build header */ + switch(lhSize) + { + case 3: /* 2 - 2 - 10 - 10 */ + { U32 const lhc = hType + ((!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14); + MEM_writeLE24(ostart, lhc); + break; + } + case 4: /* 2 - 2 - 14 - 14 */ + { U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18); + MEM_writeLE32(ostart, lhc); + break; + } + case 5: /* 2 - 2 - 18 - 18 */ + { U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22); + MEM_writeLE32(ostart, lhc); + ostart[4] = (BYTE)(cLitSize >> 10); + break; + } + default: /* not possible : lhSize is {3,4,5} */ + assert(0); + } + return lhSize+cLitSize; +} + + +void ZSTD_seqToCodes(const seqStore_t* seqStorePtr) +{ + const seqDef* const sequences = seqStorePtr->sequencesStart; + BYTE* const llCodeTable = seqStorePtr->llCode; + BYTE* const ofCodeTable = seqStorePtr->ofCode; + BYTE* const mlCodeTable = seqStorePtr->mlCode; + U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + U32 u; + assert(nbSeq <= seqStorePtr->maxNbSeq); + for (u=0; ulongLengthID==1) + llCodeTable[seqStorePtr->longLengthPos] = MaxLL; + if (seqStorePtr->longLengthID==2) + mlCodeTable[seqStorePtr->longLengthPos] = MaxML; +} + + +/** + * -log2(x / 256) lookup table for x in [0, 256). + * If x == 0: Return 0 + * Else: Return floor(-log2(x / 256) * 256) + */ +static unsigned const kInverseProbabilityLog256[256] = { + 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162, + 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889, + 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734, + 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626, + 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542, + 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473, + 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415, + 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366, + 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322, + 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282, + 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247, + 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215, + 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185, + 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157, + 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132, + 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108, + 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85, + 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64, + 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44, + 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25, + 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7, + 5, 4, 2, 1, +}; + + +/** + * Returns the cost in bits of encoding the distribution described by count + * using the entropy bound. + */ +static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total) +{ + unsigned cost = 0; + unsigned s; + for (s = 0; s <= max; ++s) { + unsigned norm = (unsigned)((256 * count[s]) / total); + if (count[s] != 0 && norm == 0) + norm = 1; + assert(count[s] < total); + cost += count[s] * kInverseProbabilityLog256[norm]; + } + return cost >> 8; +} + + +/** + * Returns the cost in bits of encoding the distribution in count using the + * table described by norm. The max symbol support by norm is assumed >= max. + * norm must be valid for every symbol with non-zero probability in count. + */ +static size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog, + unsigned const* count, unsigned const max) +{ + unsigned const shift = 8 - accuracyLog; + size_t cost = 0; + unsigned s; + assert(accuracyLog <= 8); + for (s = 0; s <= max; ++s) { + unsigned const normAcc = norm[s] != -1 ? norm[s] : 1; + unsigned const norm256 = normAcc << shift; + assert(norm256 > 0); + assert(norm256 < 256); + cost += count[s] * kInverseProbabilityLog256[norm256]; + } + return cost >> 8; +} + + +static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) { + void const* ptr = ctable; + U16 const* u16ptr = (U16 const*)ptr; + U32 const maxSymbolValue = MEM_read16(u16ptr + 1); + return maxSymbolValue; +} + + +/** + * Returns the cost in bits of encoding the distribution in count using ctable. + * Returns an error if ctable cannot represent all the symbols in count. + */ +static size_t ZSTD_fseBitCost( + FSE_CTable const* ctable, + unsigned const* count, + unsigned const max) +{ + unsigned const kAccuracyLog = 8; + size_t cost = 0; + unsigned s; + FSE_CState_t cstate; + FSE_initCState(&cstate, ctable); + RETURN_ERROR_IF(ZSTD_getFSEMaxSymbolValue(ctable) < max, GENERIC, + "Repeat FSE_CTable has maxSymbolValue %u < %u", + ZSTD_getFSEMaxSymbolValue(ctable), max); + for (s = 0; s <= max; ++s) { + unsigned const tableLog = cstate.stateLog; + unsigned const badCost = (tableLog + 1) << kAccuracyLog; + unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog); + if (count[s] == 0) + continue; + RETURN_ERROR_IF(bitCost >= badCost, GENERIC, + "Repeat FSE_CTable has Prob[%u] == 0", s); + cost += count[s] * bitCost; + } + return cost >> kAccuracyLog; +} + +/** + * Returns the cost in bytes of encoding the normalized count header. + * Returns an error if any of the helper functions return an error. + */ +static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max, + size_t const nbSeq, unsigned const FSELog) +{ + BYTE wksp[FSE_NCOUNTBOUND]; + S16 norm[MaxSeq + 1]; + const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); + FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max)); + return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog); +} + + +typedef enum { + ZSTD_defaultDisallowed = 0, + ZSTD_defaultAllowed = 1 +} ZSTD_defaultPolicy_e; + +MEM_STATIC symbolEncodingType_e +ZSTD_selectEncodingType( + FSE_repeat* repeatMode, unsigned const* count, unsigned const max, + size_t const mostFrequent, size_t nbSeq, unsigned const FSELog, + FSE_CTable const* prevCTable, + short const* defaultNorm, U32 defaultNormLog, + ZSTD_defaultPolicy_e const isDefaultAllowed, + ZSTD_strategy const strategy) +{ + ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0); + if (mostFrequent == nbSeq) { + *repeatMode = FSE_repeat_none; + if (isDefaultAllowed && nbSeq <= 2) { + /* Prefer set_basic over set_rle when there are 2 or less symbols, + * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol. + * If basic encoding isn't possible, always choose RLE. + */ + DEBUGLOG(5, "Selected set_basic"); + return set_basic; + } + DEBUGLOG(5, "Selected set_rle"); + return set_rle; + } + if (strategy < ZSTD_lazy) { + if (isDefaultAllowed) { + size_t const staticFse_nbSeq_max = 1000; + size_t const mult = 10 - strategy; + size_t const baseLog = 3; + size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */ + assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */ + assert(mult <= 9 && mult >= 7); + if ( (*repeatMode == FSE_repeat_valid) + && (nbSeq < staticFse_nbSeq_max) ) { + DEBUGLOG(5, "Selected set_repeat"); + return set_repeat; + } + if ( (nbSeq < dynamicFse_nbSeq_min) + || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) { + DEBUGLOG(5, "Selected set_basic"); + /* The format allows default tables to be repeated, but it isn't useful. + * When using simple heuristics to select encoding type, we don't want + * to confuse these tables with dictionaries. When running more careful + * analysis, we don't need to waste time checking both repeating tables + * and default tables. + */ + *repeatMode = FSE_repeat_none; + return set_basic; + } + } + } else { + size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC); + size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC); + size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog); + size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq); + + if (isDefaultAllowed) { + assert(!ZSTD_isError(basicCost)); + assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost))); + } + assert(!ZSTD_isError(NCountCost)); + assert(compressedCost < ERROR(maxCode)); + DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u", + (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost); + if (basicCost <= repeatCost && basicCost <= compressedCost) { + DEBUGLOG(5, "Selected set_basic"); + assert(isDefaultAllowed); + *repeatMode = FSE_repeat_none; + return set_basic; + } + if (repeatCost <= compressedCost) { + DEBUGLOG(5, "Selected set_repeat"); + assert(!ZSTD_isError(repeatCost)); + return set_repeat; + } + assert(compressedCost < basicCost && compressedCost < repeatCost); + } + DEBUGLOG(5, "Selected set_compressed"); + *repeatMode = FSE_repeat_check; + return set_compressed; +} + +MEM_STATIC size_t +ZSTD_buildCTable(void* dst, size_t dstCapacity, + FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type, + unsigned* count, U32 max, + const BYTE* codeTable, size_t nbSeq, + const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax, + const FSE_CTable* prevCTable, size_t prevCTableSize, + void* workspace, size_t workspaceSize) +{ + BYTE* op = (BYTE*)dst; + const BYTE* const oend = op + dstCapacity; + DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity); + + switch (type) { + case set_rle: + FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max)); + RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall); + *op = codeTable[0]; + return 1; + case set_repeat: + memcpy(nextCTable, prevCTable, prevCTableSize); + return 0; + case set_basic: + FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */ + return 0; + case set_compressed: { + S16 norm[MaxSeq + 1]; + size_t nbSeq_1 = nbSeq; + const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); + if (count[codeTable[nbSeq-1]] > 1) { + count[codeTable[nbSeq-1]]--; + nbSeq_1--; + } + assert(nbSeq_1 > 1); + FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max)); + { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */ + FORWARD_IF_ERROR(NCountSize); + FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, workspace, workspaceSize)); + return NCountSize; + } + } + default: assert(0); RETURN_ERROR(GENERIC); + } +} + +FORCE_INLINE_TEMPLATE size_t +ZSTD_encodeSequences_body( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + seqDef const* sequences, size_t nbSeq, int longOffsets) +{ + BIT_CStream_t blockStream; + FSE_CState_t stateMatchLength; + FSE_CState_t stateOffsetBits; + FSE_CState_t stateLitLength; + + RETURN_ERROR_IF( + ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)), + dstSize_tooSmall, "not enough space remaining"); + DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)", + (int)(blockStream.endPtr - blockStream.startPtr), + (unsigned)dstCapacity); + + /* first symbols */ + FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); + FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); + FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); + BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); + if (MEM_32bits()) BIT_flushBits(&blockStream); + BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]); + if (MEM_32bits()) BIT_flushBits(&blockStream); + if (longOffsets) { + U32 const ofBits = ofCodeTable[nbSeq-1]; + int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); + if (extraBits) { + BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits); + BIT_flushBits(&blockStream); + } + BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits, + ofBits - extraBits); + } else { + BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]); + } + BIT_flushBits(&blockStream); + + { size_t n; + for (n=nbSeq-2 ; n= 64-7-(LLFSELog+MLFSELog+OffFSELog))) + BIT_flushBits(&blockStream); /* (7)*/ + BIT_addBits(&blockStream, sequences[n].litLength, llBits); + if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); + BIT_addBits(&blockStream, sequences[n].matchLength, mlBits); + if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream); + if (longOffsets) { + int const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); + if (extraBits) { + BIT_addBits(&blockStream, sequences[n].offset, extraBits); + BIT_flushBits(&blockStream); /* (7)*/ + } + BIT_addBits(&blockStream, sequences[n].offset >> extraBits, + ofBits - extraBits); /* 31 */ + } else { + BIT_addBits(&blockStream, sequences[n].offset, ofBits); /* 31 */ + } + BIT_flushBits(&blockStream); /* (7)*/ + DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr)); + } } + + DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog); + FSE_flushCState(&blockStream, &stateMatchLength); + DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog); + FSE_flushCState(&blockStream, &stateOffsetBits); + DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog); + FSE_flushCState(&blockStream, &stateLitLength); + + { size_t const streamSize = BIT_closeCStream(&blockStream); + RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space"); + return streamSize; + } +} + +static size_t +ZSTD_encodeSequences_default( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + seqDef const* sequences, size_t nbSeq, int longOffsets) +{ + return ZSTD_encodeSequences_body(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); +} + + +#if DYNAMIC_BMI2 + +static TARGET_ATTRIBUTE("bmi2") size_t +ZSTD_encodeSequences_bmi2( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + seqDef const* sequences, size_t nbSeq, int longOffsets) +{ + return ZSTD_encodeSequences_body(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); +} + +#endif + +static size_t ZSTD_encodeSequences( + void* dst, size_t dstCapacity, + FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, + FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, + FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, + seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2) +{ + DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity); +#if DYNAMIC_BMI2 + if (bmi2) { + return ZSTD_encodeSequences_bmi2(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); + } +#endif + (void)bmi2; + return ZSTD_encodeSequences_default(dst, dstCapacity, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, longOffsets); +} + +static int ZSTD_disableLiteralsCompression(const ZSTD_CCtx_params* cctxParams) +{ + switch (cctxParams->literalCompressionMode) { + case ZSTD_lcm_huffman: + return 0; + case ZSTD_lcm_uncompressed: + return 1; + default: + assert(0 /* impossible: pre-validated */); + /* fall-through */ + case ZSTD_lcm_auto: + return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0); + } +} + +/* ZSTD_compressSequences_internal(): + * actually compresses both literals and sequences */ +MEM_STATIC size_t +ZSTD_compressSequences_internal(seqStore_t* seqStorePtr, + const ZSTD_entropyCTables_t* prevEntropy, + ZSTD_entropyCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + void* dst, size_t dstCapacity, + void* workspace, size_t wkspSize, + const int bmi2) +{ + const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN; + ZSTD_strategy const strategy = cctxParams->cParams.strategy; + unsigned count[MaxSeq+1]; + FSE_CTable* CTable_LitLength = nextEntropy->fse.litlengthCTable; + FSE_CTable* CTable_OffsetBits = nextEntropy->fse.offcodeCTable; + FSE_CTable* CTable_MatchLength = nextEntropy->fse.matchlengthCTable; + U32 LLtype, Offtype, MLtype; /* compressed, raw or rle */ + const seqDef* const sequences = seqStorePtr->sequencesStart; + const BYTE* const ofCodeTable = seqStorePtr->ofCode; + const BYTE* const llCodeTable = seqStorePtr->llCode; + const BYTE* const mlCodeTable = seqStorePtr->mlCode; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstCapacity; + BYTE* op = ostart; + size_t const nbSeq = seqStorePtr->sequences - seqStorePtr->sequencesStart; + BYTE* seqHead; + BYTE* lastNCount = NULL; + + ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1<litStart; + size_t const litSize = seqStorePtr->lit - literals; + size_t const cSize = ZSTD_compressLiterals( + &prevEntropy->huf, &nextEntropy->huf, + cctxParams->cParams.strategy, + ZSTD_disableLiteralsCompression(cctxParams), + op, dstCapacity, + literals, litSize, + workspace, wkspSize, + bmi2); + FORWARD_IF_ERROR(cSize); + assert(cSize <= dstCapacity); + op += cSize; + } + + /* Sequences Header */ + RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/, + dstSize_tooSmall); + if (nbSeq < 0x7F) + *op++ = (BYTE)nbSeq; + else if (nbSeq < LONGNBSEQ) + op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2; + else + op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3; + if (nbSeq==0) { + /* Copy the old tables over as if we repeated them */ + memcpy(&nextEntropy->fse, &prevEntropy->fse, sizeof(prevEntropy->fse)); + return op - ostart; + } + + /* seqHead : flags for FSE encoding type */ + seqHead = op++; + + /* convert length/distances into codes */ + ZSTD_seqToCodes(seqStorePtr); + /* build CTable for Literal Lengths */ + { unsigned max = MaxLL; + size_t const mostFrequent = HIST_countFast_wksp(count, &max, llCodeTable, nbSeq, workspace, wkspSize); /* can't fail */ + DEBUGLOG(5, "Building LL table"); + nextEntropy->fse.litlength_repeatMode = prevEntropy->fse.litlength_repeatMode; + LLtype = ZSTD_selectEncodingType(&nextEntropy->fse.litlength_repeatMode, + count, max, mostFrequent, nbSeq, + LLFSELog, prevEntropy->fse.litlengthCTable, + LL_defaultNorm, LL_defaultNormLog, + ZSTD_defaultAllowed, strategy); + assert(set_basic < set_compressed && set_rle < set_compressed); + assert(!(LLtype < set_compressed && nextEntropy->fse.litlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ + { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_LitLength, LLFSELog, (symbolEncodingType_e)LLtype, + count, max, llCodeTable, nbSeq, LL_defaultNorm, LL_defaultNormLog, MaxLL, + prevEntropy->fse.litlengthCTable, sizeof(prevEntropy->fse.litlengthCTable), + workspace, wkspSize); + FORWARD_IF_ERROR(countSize); + if (LLtype == set_compressed) + lastNCount = op; + op += countSize; + } } + /* build CTable for Offsets */ + { unsigned max = MaxOff; + size_t const mostFrequent = HIST_countFast_wksp(count, &max, ofCodeTable, nbSeq, workspace, wkspSize); /* can't fail */ + /* We can only use the basic table if max <= DefaultMaxOff, otherwise the offsets are too large */ + ZSTD_defaultPolicy_e const defaultPolicy = (max <= DefaultMaxOff) ? ZSTD_defaultAllowed : ZSTD_defaultDisallowed; + DEBUGLOG(5, "Building OF table"); + nextEntropy->fse.offcode_repeatMode = prevEntropy->fse.offcode_repeatMode; + Offtype = ZSTD_selectEncodingType(&nextEntropy->fse.offcode_repeatMode, + count, max, mostFrequent, nbSeq, + OffFSELog, prevEntropy->fse.offcodeCTable, + OF_defaultNorm, OF_defaultNormLog, + defaultPolicy, strategy); + assert(!(Offtype < set_compressed && nextEntropy->fse.offcode_repeatMode != FSE_repeat_none)); /* We don't copy tables */ + { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_OffsetBits, OffFSELog, (symbolEncodingType_e)Offtype, + count, max, ofCodeTable, nbSeq, OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff, + prevEntropy->fse.offcodeCTable, sizeof(prevEntropy->fse.offcodeCTable), + workspace, wkspSize); + FORWARD_IF_ERROR(countSize); + if (Offtype == set_compressed) + lastNCount = op; + op += countSize; + } } + /* build CTable for MatchLengths */ + { unsigned max = MaxML; + size_t const mostFrequent = HIST_countFast_wksp(count, &max, mlCodeTable, nbSeq, workspace, wkspSize); /* can't fail */ + DEBUGLOG(5, "Building ML table (remaining space : %i)", (int)(oend-op)); + nextEntropy->fse.matchlength_repeatMode = prevEntropy->fse.matchlength_repeatMode; + MLtype = ZSTD_selectEncodingType(&nextEntropy->fse.matchlength_repeatMode, + count, max, mostFrequent, nbSeq, + MLFSELog, prevEntropy->fse.matchlengthCTable, + ML_defaultNorm, ML_defaultNormLog, + ZSTD_defaultAllowed, strategy); + assert(!(MLtype < set_compressed && nextEntropy->fse.matchlength_repeatMode != FSE_repeat_none)); /* We don't copy tables */ + { size_t const countSize = ZSTD_buildCTable(op, oend - op, CTable_MatchLength, MLFSELog, (symbolEncodingType_e)MLtype, + count, max, mlCodeTable, nbSeq, ML_defaultNorm, ML_defaultNormLog, MaxML, + prevEntropy->fse.matchlengthCTable, sizeof(prevEntropy->fse.matchlengthCTable), + workspace, wkspSize); + FORWARD_IF_ERROR(countSize); + if (MLtype == set_compressed) + lastNCount = op; + op += countSize; + } } + + *seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2)); + + { size_t const bitstreamSize = ZSTD_encodeSequences( + op, oend - op, + CTable_MatchLength, mlCodeTable, + CTable_OffsetBits, ofCodeTable, + CTable_LitLength, llCodeTable, + sequences, nbSeq, + longOffsets, bmi2); + FORWARD_IF_ERROR(bitstreamSize); + op += bitstreamSize; + /* zstd versions <= 1.3.4 mistakenly report corruption when + * FSE_readNCount() receives a buffer < 4 bytes. + * Fixed by https://github.com/facebook/zstd/pull/1146. + * This can happen when the last set_compressed table present is 2 + * bytes and the bitstream is only one byte. + * In this exceedingly rare case, we will simply emit an uncompressed + * block, since it isn't worth optimizing. + */ + if (lastNCount && (op - lastNCount) < 4) { + /* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */ + assert(op - lastNCount == 3); + DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by " + "emitting an uncompressed block."); + return 0; + } + } + + DEBUGLOG(5, "compressed block size : %u", (unsigned)(op - ostart)); + return op - ostart; +} + +MEM_STATIC size_t +ZSTD_compressSequences(seqStore_t* seqStorePtr, + const ZSTD_entropyCTables_t* prevEntropy, + ZSTD_entropyCTables_t* nextEntropy, + const ZSTD_CCtx_params* cctxParams, + void* dst, size_t dstCapacity, + size_t srcSize, + void* workspace, size_t wkspSize, + int bmi2) +{ + size_t const cSize = ZSTD_compressSequences_internal( + seqStorePtr, prevEntropy, nextEntropy, cctxParams, + dst, dstCapacity, + workspace, wkspSize, bmi2); + if (cSize == 0) return 0; + /* When srcSize <= dstCapacity, there is enough space to write a raw uncompressed block. + * Since we ran out of space, block must be not compressible, so fall back to raw uncompressed block. + */ + if ((cSize == ERROR(dstSize_tooSmall)) & (srcSize <= dstCapacity)) + return 0; /* block not compressed */ + FORWARD_IF_ERROR(cSize); + + /* Check compressibility */ + { size_t const maxCSize = srcSize - ZSTD_minGain(srcSize, cctxParams->cParams.strategy); + if (cSize >= maxCSize) return 0; /* block not compressed */ + } + + return cSize; +} + +/* ZSTD_selectBlockCompressor() : + * Not static, but internal use only (used by long distance matcher) + * assumption : strat is a valid strategy */ +ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_dictMode_e dictMode) +{ + static const ZSTD_blockCompressor blockCompressor[3][ZSTD_STRATEGY_MAX+1] = { + { ZSTD_compressBlock_fast /* default for 0 */, + ZSTD_compressBlock_fast, + ZSTD_compressBlock_doubleFast, + ZSTD_compressBlock_greedy, + ZSTD_compressBlock_lazy, + ZSTD_compressBlock_lazy2, + ZSTD_compressBlock_btlazy2, + ZSTD_compressBlock_btopt, + ZSTD_compressBlock_btultra, + ZSTD_compressBlock_btultra2 }, + { ZSTD_compressBlock_fast_extDict /* default for 0 */, + ZSTD_compressBlock_fast_extDict, + ZSTD_compressBlock_doubleFast_extDict, + ZSTD_compressBlock_greedy_extDict, + ZSTD_compressBlock_lazy_extDict, + ZSTD_compressBlock_lazy2_extDict, + ZSTD_compressBlock_btlazy2_extDict, + ZSTD_compressBlock_btopt_extDict, + ZSTD_compressBlock_btultra_extDict, + ZSTD_compressBlock_btultra_extDict }, + { ZSTD_compressBlock_fast_dictMatchState /* default for 0 */, + ZSTD_compressBlock_fast_dictMatchState, + ZSTD_compressBlock_doubleFast_dictMatchState, + ZSTD_compressBlock_greedy_dictMatchState, + ZSTD_compressBlock_lazy_dictMatchState, + ZSTD_compressBlock_lazy2_dictMatchState, + ZSTD_compressBlock_btlazy2_dictMatchState, + ZSTD_compressBlock_btopt_dictMatchState, + ZSTD_compressBlock_btultra_dictMatchState, + ZSTD_compressBlock_btultra_dictMatchState } + }; + ZSTD_blockCompressor selectedCompressor; + ZSTD_STATIC_ASSERT((unsigned)ZSTD_fast == 1); + + assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat)); + selectedCompressor = blockCompressor[(int)dictMode][(int)strat]; + assert(selectedCompressor != NULL); + return selectedCompressor; +} + +static void ZSTD_storeLastLiterals(seqStore_t* seqStorePtr, + const BYTE* anchor, size_t lastLLSize) +{ + memcpy(seqStorePtr->lit, anchor, lastLLSize); + seqStorePtr->lit += lastLLSize; +} + +void ZSTD_resetSeqStore(seqStore_t* ssPtr) +{ + ssPtr->lit = ssPtr->litStart; + ssPtr->sequences = ssPtr->sequencesStart; + ssPtr->longLengthID = 0; +} + +static size_t ZSTD_compressBlock_internal(ZSTD_CCtx* zc, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + ZSTD_matchState_t* const ms = &zc->blockState.matchState; + size_t cSize; + DEBUGLOG(5, "ZSTD_compressBlock_internal (dstCapacity=%u, dictLimit=%u, nextToUpdate=%u)", + (unsigned)dstCapacity, (unsigned)ms->window.dictLimit, (unsigned)ms->nextToUpdate); + assert(srcSize <= ZSTD_BLOCKSIZE_MAX); + + /* Assert that we have correctly flushed the ctx params into the ms's copy */ + ZSTD_assertEqualCParams(zc->appliedParams.cParams, ms->cParams); + + if (srcSize < MIN_CBLOCK_SIZE+ZSTD_blockHeaderSize+1) { + ZSTD_ldm_skipSequences(&zc->externSeqStore, srcSize, zc->appliedParams.cParams.minMatch); + cSize = 0; + goto out; /* don't even attempt compression below a certain srcSize */ + } + ZSTD_resetSeqStore(&(zc->seqStore)); + /* required for optimal parser to read stats from dictionary */ + ms->opt.symbolCosts = &zc->blockState.prevCBlock->entropy; + /* tell the optimal parser how we expect to compress literals */ + ms->opt.literalCompressionMode = zc->appliedParams.literalCompressionMode; + + /* a gap between an attached dict and the current window is not safe, + * they must remain adjacent, + * and when that stops being the case, the dict must be unset */ + assert(ms->dictMatchState == NULL || ms->loadedDictEnd == ms->window.dictLimit); + + /* limited update after a very long match */ + { const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const U32 current = (U32)(istart-base); + if (sizeof(ptrdiff_t)==8) assert(istart - base < (ptrdiff_t)(U32)(-1)); /* ensure no overflow */ + if (current > ms->nextToUpdate + 384) + ms->nextToUpdate = current - MIN(192, (U32)(current - ms->nextToUpdate - 384)); + } + + /* select and store sequences */ + { ZSTD_dictMode_e const dictMode = ZSTD_matchState_dictMode(ms); + size_t lastLLSize; + { int i; + for (i = 0; i < ZSTD_REP_NUM; ++i) + zc->blockState.nextCBlock->rep[i] = zc->blockState.prevCBlock->rep[i]; + } + if (zc->externSeqStore.pos < zc->externSeqStore.size) { + assert(!zc->appliedParams.ldmParams.enableLdm); + /* Updates ldmSeqStore.pos */ + lastLLSize = + ZSTD_ldm_blockCompress(&zc->externSeqStore, + ms, &zc->seqStore, + zc->blockState.nextCBlock->rep, + src, srcSize); + assert(zc->externSeqStore.pos <= zc->externSeqStore.size); + } else if (zc->appliedParams.ldmParams.enableLdm) { + rawSeqStore_t ldmSeqStore = {NULL, 0, 0, 0}; + + ldmSeqStore.seq = zc->ldmSequences; + ldmSeqStore.capacity = zc->maxNbLdmSequences; + /* Updates ldmSeqStore.size */ + FORWARD_IF_ERROR(ZSTD_ldm_generateSequences(&zc->ldmState, &ldmSeqStore, + &zc->appliedParams.ldmParams, + src, srcSize)); + /* Updates ldmSeqStore.pos */ + lastLLSize = + ZSTD_ldm_blockCompress(&ldmSeqStore, + ms, &zc->seqStore, + zc->blockState.nextCBlock->rep, + src, srcSize); + assert(ldmSeqStore.pos == ldmSeqStore.size); + } else { /* not long range mode */ + ZSTD_blockCompressor const blockCompressor = ZSTD_selectBlockCompressor(zc->appliedParams.cParams.strategy, dictMode); + lastLLSize = blockCompressor(ms, &zc->seqStore, zc->blockState.nextCBlock->rep, src, srcSize); + } + { const BYTE* const lastLiterals = (const BYTE*)src + srcSize - lastLLSize; + ZSTD_storeLastLiterals(&zc->seqStore, lastLiterals, lastLLSize); + } } + + /* encode sequences and literals */ + cSize = ZSTD_compressSequences(&zc->seqStore, + &zc->blockState.prevCBlock->entropy, &zc->blockState.nextCBlock->entropy, + &zc->appliedParams, + dst, dstCapacity, + srcSize, + zc->entropyWorkspace, HUF_WORKSPACE_SIZE /* statically allocated in resetCCtx */, + zc->bmi2); + +out: + if (!ZSTD_isError(cSize) && cSize != 0) { + /* confirm repcodes and entropy tables when emitting a compressed block */ + ZSTD_compressedBlockState_t* const tmp = zc->blockState.prevCBlock; + zc->blockState.prevCBlock = zc->blockState.nextCBlock; + zc->blockState.nextCBlock = tmp; + } + /* We check that dictionaries have offset codes available for the first + * block. After the first block, the offcode table might not have large + * enough codes to represent the offsets in the data. + */ + if (zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode == FSE_repeat_valid) + zc->blockState.prevCBlock->entropy.fse.offcode_repeatMode = FSE_repeat_check; + + return cSize; +} + + +/*! ZSTD_compress_frameChunk() : +* Compress a chunk of data into one or multiple blocks. +* All blocks will be terminated, all input will be consumed. +* Function will issue an error if there is not enough `dstCapacity` to hold the compressed content. +* Frame is supposed already started (header already produced) +* @return : compressed size, or an error code +*/ +static size_t ZSTD_compress_frameChunk (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + U32 lastFrameChunk) +{ + size_t blockSize = cctx->blockSize; + size_t remaining = srcSize; + const BYTE* ip = (const BYTE*)src; + BYTE* const ostart = (BYTE*)dst; + BYTE* op = ostart; + U32 const maxDist = (U32)1 << cctx->appliedParams.cParams.windowLog; + assert(cctx->appliedParams.cParams.windowLog <= 31); + + DEBUGLOG(5, "ZSTD_compress_frameChunk (blockSize=%u)", (unsigned)blockSize); + if (cctx->appliedParams.fParams.checksumFlag && srcSize) + XXH64_update(&cctx->xxhState, src, srcSize); + + while (remaining) { + ZSTD_matchState_t* const ms = &cctx->blockState.matchState; + U32 const lastBlock = lastFrameChunk & (blockSize >= remaining); + + RETURN_ERROR_IF(dstCapacity < ZSTD_blockHeaderSize + MIN_CBLOCK_SIZE, + dstSize_tooSmall, + "not enough space to store compressed block"); + if (remaining < blockSize) blockSize = remaining; + + if (ZSTD_window_needOverflowCorrection(ms->window, ip + blockSize)) { + U32 const cycleLog = ZSTD_cycleLog(cctx->appliedParams.cParams.chainLog, cctx->appliedParams.cParams.strategy); + U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, maxDist, ip); + ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30); + ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30); + ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); + ZSTD_reduceIndex(cctx, correction); + if (ms->nextToUpdate < correction) ms->nextToUpdate = 0; + else ms->nextToUpdate -= correction; + ms->loadedDictEnd = 0; + ms->dictMatchState = NULL; + } + ZSTD_window_enforceMaxDist(&ms->window, ip + blockSize, maxDist, &ms->loadedDictEnd, &ms->dictMatchState); + if (ms->nextToUpdate < ms->window.lowLimit) ms->nextToUpdate = ms->window.lowLimit; + + { size_t cSize = ZSTD_compressBlock_internal(cctx, + op+ZSTD_blockHeaderSize, dstCapacity-ZSTD_blockHeaderSize, + ip, blockSize); + FORWARD_IF_ERROR(cSize); + + if (cSize == 0) { /* block is not compressible */ + cSize = ZSTD_noCompressBlock(op, dstCapacity, ip, blockSize, lastBlock); + FORWARD_IF_ERROR(cSize); + } else { + U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3); + MEM_writeLE24(op, cBlockHeader24); + cSize += ZSTD_blockHeaderSize; + } + + ip += blockSize; + assert(remaining >= blockSize); + remaining -= blockSize; + op += cSize; + assert(dstCapacity >= cSize); + dstCapacity -= cSize; + DEBUGLOG(5, "ZSTD_compress_frameChunk: adding a block of size %u", + (unsigned)cSize); + } } + + if (lastFrameChunk && (op>ostart)) cctx->stage = ZSTDcs_ending; + return op-ostart; +} + + +static size_t ZSTD_writeFrameHeader(void* dst, size_t dstCapacity, + ZSTD_CCtx_params params, U64 pledgedSrcSize, U32 dictID) +{ BYTE* const op = (BYTE*)dst; + U32 const dictIDSizeCodeLength = (dictID>0) + (dictID>=256) + (dictID>=65536); /* 0-3 */ + U32 const dictIDSizeCode = params.fParams.noDictIDFlag ? 0 : dictIDSizeCodeLength; /* 0-3 */ + U32 const checksumFlag = params.fParams.checksumFlag>0; + U32 const windowSize = (U32)1 << params.cParams.windowLog; + U32 const singleSegment = params.fParams.contentSizeFlag && (windowSize >= pledgedSrcSize); + BYTE const windowLogByte = (BYTE)((params.cParams.windowLog - ZSTD_WINDOWLOG_ABSOLUTEMIN) << 3); + U32 const fcsCode = params.fParams.contentSizeFlag ? + (pledgedSrcSize>=256) + (pledgedSrcSize>=65536+256) + (pledgedSrcSize>=0xFFFFFFFFU) : 0; /* 0-3 */ + BYTE const frameHeaderDescriptionByte = (BYTE)(dictIDSizeCode + (checksumFlag<<2) + (singleSegment<<5) + (fcsCode<<6) ); + size_t pos=0; + + assert(!(params.fParams.contentSizeFlag && pledgedSrcSize == ZSTD_CONTENTSIZE_UNKNOWN)); + RETURN_ERROR_IF(dstCapacity < ZSTD_FRAMEHEADERSIZE_MAX, dstSize_tooSmall); + DEBUGLOG(4, "ZSTD_writeFrameHeader : dictIDFlag : %u ; dictID : %u ; dictIDSizeCode : %u", + !params.fParams.noDictIDFlag, (unsigned)dictID, (unsigned)dictIDSizeCode); + + if (params.format == ZSTD_f_zstd1) { + MEM_writeLE32(dst, ZSTD_MAGICNUMBER); + pos = 4; + } + op[pos++] = frameHeaderDescriptionByte; + if (!singleSegment) op[pos++] = windowLogByte; + switch(dictIDSizeCode) + { + default: assert(0); /* impossible */ + case 0 : break; + case 1 : op[pos] = (BYTE)(dictID); pos++; break; + case 2 : MEM_writeLE16(op+pos, (U16)dictID); pos+=2; break; + case 3 : MEM_writeLE32(op+pos, dictID); pos+=4; break; + } + switch(fcsCode) + { + default: assert(0); /* impossible */ + case 0 : if (singleSegment) op[pos++] = (BYTE)(pledgedSrcSize); break; + case 1 : MEM_writeLE16(op+pos, (U16)(pledgedSrcSize-256)); pos+=2; break; + case 2 : MEM_writeLE32(op+pos, (U32)(pledgedSrcSize)); pos+=4; break; + case 3 : MEM_writeLE64(op+pos, (U64)(pledgedSrcSize)); pos+=8; break; + } + return pos; +} + +/* ZSTD_writeLastEmptyBlock() : + * output an empty Block with end-of-frame mark to complete a frame + * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) + * or an error code if `dstCapacity` is too small (stage != ZSTDcs_init, stage_wrong); + RETURN_ERROR_IF(cctx->appliedParams.ldmParams.enableLdm, + parameter_unsupported); + cctx->externSeqStore.seq = seq; + cctx->externSeqStore.size = nbSeq; + cctx->externSeqStore.capacity = nbSeq; + cctx->externSeqStore.pos = 0; + return 0; +} + + +static size_t ZSTD_compressContinue_internal (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + U32 frame, U32 lastFrameChunk) +{ + ZSTD_matchState_t* const ms = &cctx->blockState.matchState; + size_t fhSize = 0; + + DEBUGLOG(5, "ZSTD_compressContinue_internal, stage: %u, srcSize: %u", + cctx->stage, (unsigned)srcSize); + RETURN_ERROR_IF(cctx->stage==ZSTDcs_created, stage_wrong, + "missing init (ZSTD_compressBegin)"); + + if (frame && (cctx->stage==ZSTDcs_init)) { + fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, + cctx->pledgedSrcSizePlusOne-1, cctx->dictID); + FORWARD_IF_ERROR(fhSize); + dstCapacity -= fhSize; + dst = (char*)dst + fhSize; + cctx->stage = ZSTDcs_ongoing; + } + + if (!srcSize) return fhSize; /* do not generate an empty block if no input */ + + if (!ZSTD_window_update(&ms->window, src, srcSize)) { + ms->nextToUpdate = ms->window.dictLimit; + } + if (cctx->appliedParams.ldmParams.enableLdm) { + ZSTD_window_update(&cctx->ldmState.window, src, srcSize); + } + + if (!frame) { + /* overflow check and correction for block mode */ + if (ZSTD_window_needOverflowCorrection(ms->window, (const char*)src + srcSize)) { + U32 const cycleLog = ZSTD_cycleLog(cctx->appliedParams.cParams.chainLog, cctx->appliedParams.cParams.strategy); + U32 const correction = ZSTD_window_correctOverflow(&ms->window, cycleLog, 1 << cctx->appliedParams.cParams.windowLog, src); + ZSTD_STATIC_ASSERT(ZSTD_CHAINLOG_MAX <= 30); + ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX_32 <= 30); + ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31); + ZSTD_reduceIndex(cctx, correction); + if (ms->nextToUpdate < correction) ms->nextToUpdate = 0; + else ms->nextToUpdate -= correction; + ms->loadedDictEnd = 0; + ms->dictMatchState = NULL; + } + } + + DEBUGLOG(5, "ZSTD_compressContinue_internal (blockSize=%u)", (unsigned)cctx->blockSize); + { size_t const cSize = frame ? + ZSTD_compress_frameChunk (cctx, dst, dstCapacity, src, srcSize, lastFrameChunk) : + ZSTD_compressBlock_internal (cctx, dst, dstCapacity, src, srcSize); + FORWARD_IF_ERROR(cSize); + cctx->consumedSrcSize += srcSize; + cctx->producedCSize += (cSize + fhSize); + assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); + if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); + RETURN_ERROR_IF( + cctx->consumedSrcSize+1 > cctx->pledgedSrcSizePlusOne, + srcSize_wrong, + "error : pledgedSrcSize = %u, while realSrcSize >= %u", + (unsigned)cctx->pledgedSrcSizePlusOne-1, + (unsigned)cctx->consumedSrcSize); + } + return cSize + fhSize; + } +} + +size_t ZSTD_compressContinue (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_compressContinue (srcSize=%u)", (unsigned)srcSize); + return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 1 /* frame mode */, 0 /* last chunk */); +} + + +size_t ZSTD_getBlockSize(const ZSTD_CCtx* cctx) +{ + ZSTD_compressionParameters const cParams = cctx->appliedParams.cParams; + assert(!ZSTD_checkCParams(cParams)); + return MIN (ZSTD_BLOCKSIZE_MAX, (U32)1 << cParams.windowLog); +} + +size_t ZSTD_compressBlock(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + size_t const blockSizeMax = ZSTD_getBlockSize(cctx); + RETURN_ERROR_IF(srcSize > blockSizeMax, srcSize_wrong); + + return ZSTD_compressContinue_internal(cctx, dst, dstCapacity, src, srcSize, 0 /* frame mode */, 0 /* last chunk */); +} + +/*! ZSTD_loadDictionaryContent() : + * @return : 0, or an error code + */ +static size_t ZSTD_loadDictionaryContent(ZSTD_matchState_t* ms, + ZSTD_CCtx_params const* params, + const void* src, size_t srcSize, + ZSTD_dictTableLoadMethod_e dtlm) +{ + const BYTE* const ip = (const BYTE*) src; + const BYTE* const iend = ip + srcSize; + + ZSTD_window_update(&ms->window, src, srcSize); + ms->loadedDictEnd = params->forceWindow ? 0 : (U32)(iend - ms->window.base); + + /* Assert that we the ms params match the params we're being given */ + ZSTD_assertEqualCParams(params->cParams, ms->cParams); + + if (srcSize <= HASH_READ_SIZE) return 0; + + switch(params->cParams.strategy) + { + case ZSTD_fast: + ZSTD_fillHashTable(ms, iend, dtlm); + break; + case ZSTD_dfast: + ZSTD_fillDoubleHashTable(ms, iend, dtlm); + break; + + case ZSTD_greedy: + case ZSTD_lazy: + case ZSTD_lazy2: + if (srcSize >= HASH_READ_SIZE) + ZSTD_insertAndFindFirstIndex(ms, iend-HASH_READ_SIZE); + break; + + case ZSTD_btlazy2: /* we want the dictionary table fully sorted */ + case ZSTD_btopt: + case ZSTD_btultra: + case ZSTD_btultra2: + if (srcSize >= HASH_READ_SIZE) + ZSTD_updateTree(ms, iend-HASH_READ_SIZE, iend); + break; + + default: + assert(0); /* not possible : not a valid strategy id */ + } + + ms->nextToUpdate = (U32)(iend - ms->window.base); + return 0; +} + + +/* Dictionaries that assign zero probability to symbols that show up causes problems + when FSE encoding. Refuse dictionaries that assign zero probability to symbols + that we may encounter during compression. + NOTE: This behavior is not standard and could be improved in the future. */ +static size_t ZSTD_checkDictNCount(short* normalizedCounter, unsigned dictMaxSymbolValue, unsigned maxSymbolValue) { + U32 s; + RETURN_ERROR_IF(dictMaxSymbolValue < maxSymbolValue, dictionary_corrupted); + for (s = 0; s <= maxSymbolValue; ++s) { + RETURN_ERROR_IF(normalizedCounter[s] == 0, dictionary_corrupted); + } + return 0; +} + + +/* Dictionary format : + * See : + * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#dictionary-format + */ +/*! ZSTD_loadZstdDictionary() : + * @return : dictID, or an error code + * assumptions : magic number supposed already checked + * dictSize supposed > 8 + */ +static size_t ZSTD_loadZstdDictionary(ZSTD_compressedBlockState_t* bs, + ZSTD_matchState_t* ms, + ZSTD_CCtx_params const* params, + const void* dict, size_t dictSize, + ZSTD_dictTableLoadMethod_e dtlm, + void* workspace) +{ + const BYTE* dictPtr = (const BYTE*)dict; + const BYTE* const dictEnd = dictPtr + dictSize; + short offcodeNCount[MaxOff+1]; + unsigned offcodeMaxValue = MaxOff; + size_t dictID; + + ZSTD_STATIC_ASSERT(HUF_WORKSPACE_SIZE >= (1< 8); + assert(MEM_readLE32(dictPtr) == ZSTD_MAGIC_DICTIONARY); + + dictPtr += 4; /* skip magic number */ + dictID = params->fParams.noDictIDFlag ? 0 : MEM_readLE32(dictPtr); + dictPtr += 4; + + { unsigned maxSymbolValue = 255; + size_t const hufHeaderSize = HUF_readCTable((HUF_CElt*)bs->entropy.huf.CTable, &maxSymbolValue, dictPtr, dictEnd-dictPtr); + RETURN_ERROR_IF(HUF_isError(hufHeaderSize), dictionary_corrupted); + RETURN_ERROR_IF(maxSymbolValue < 255, dictionary_corrupted); + dictPtr += hufHeaderSize; + } + + { unsigned offcodeLog; + size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); + RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted); + RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted); + /* Defer checking offcodeMaxValue because we need to know the size of the dictionary content */ + /* fill all offset symbols to avoid garbage at end of table */ + RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( + bs->entropy.fse.offcodeCTable, + offcodeNCount, MaxOff, offcodeLog, + workspace, HUF_WORKSPACE_SIZE)), + dictionary_corrupted); + dictPtr += offcodeHeaderSize; + } + + { short matchlengthNCount[MaxML+1]; + unsigned matchlengthMaxValue = MaxML, matchlengthLog; + size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); + RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted); + RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted); + /* Every match length code must have non-zero probability */ + FORWARD_IF_ERROR( ZSTD_checkDictNCount(matchlengthNCount, matchlengthMaxValue, MaxML)); + RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( + bs->entropy.fse.matchlengthCTable, + matchlengthNCount, matchlengthMaxValue, matchlengthLog, + workspace, HUF_WORKSPACE_SIZE)), + dictionary_corrupted); + dictPtr += matchlengthHeaderSize; + } + + { short litlengthNCount[MaxLL+1]; + unsigned litlengthMaxValue = MaxLL, litlengthLog; + size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); + RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted); + RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted); + /* Every literal length code must have non-zero probability */ + FORWARD_IF_ERROR( ZSTD_checkDictNCount(litlengthNCount, litlengthMaxValue, MaxLL)); + RETURN_ERROR_IF(FSE_isError(FSE_buildCTable_wksp( + bs->entropy.fse.litlengthCTable, + litlengthNCount, litlengthMaxValue, litlengthLog, + workspace, HUF_WORKSPACE_SIZE)), + dictionary_corrupted); + dictPtr += litlengthHeaderSize; + } + + RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted); + bs->rep[0] = MEM_readLE32(dictPtr+0); + bs->rep[1] = MEM_readLE32(dictPtr+4); + bs->rep[2] = MEM_readLE32(dictPtr+8); + dictPtr += 12; + + { size_t const dictContentSize = (size_t)(dictEnd - dictPtr); + U32 offcodeMax = MaxOff; + if (dictContentSize <= ((U32)-1) - 128 KB) { + U32 const maxOffset = (U32)dictContentSize + 128 KB; /* The maximum offset that must be supported */ + offcodeMax = ZSTD_highbit32(maxOffset); /* Calculate minimum offset code required to represent maxOffset */ + } + /* All offset values <= dictContentSize + 128 KB must be representable */ + FORWARD_IF_ERROR(ZSTD_checkDictNCount(offcodeNCount, offcodeMaxValue, MIN(offcodeMax, MaxOff))); + /* All repCodes must be <= dictContentSize and != 0*/ + { U32 u; + for (u=0; u<3; u++) { + RETURN_ERROR_IF(bs->rep[u] == 0, dictionary_corrupted); + RETURN_ERROR_IF(bs->rep[u] > dictContentSize, dictionary_corrupted); + } } + + bs->entropy.huf.repeatMode = HUF_repeat_valid; + bs->entropy.fse.offcode_repeatMode = FSE_repeat_valid; + bs->entropy.fse.matchlength_repeatMode = FSE_repeat_valid; + bs->entropy.fse.litlength_repeatMode = FSE_repeat_valid; + FORWARD_IF_ERROR(ZSTD_loadDictionaryContent(ms, params, dictPtr, dictContentSize, dtlm)); + return dictID; + } +} + +/** ZSTD_compress_insertDictionary() : +* @return : dictID, or an error code */ +static size_t +ZSTD_compress_insertDictionary(ZSTD_compressedBlockState_t* bs, + ZSTD_matchState_t* ms, + const ZSTD_CCtx_params* params, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + void* workspace) +{ + DEBUGLOG(4, "ZSTD_compress_insertDictionary (dictSize=%u)", (U32)dictSize); + if ((dict==NULL) || (dictSize<=8)) return 0; + + ZSTD_reset_compressedBlockState(bs); + + /* dict restricted modes */ + if (dictContentType == ZSTD_dct_rawContent) + return ZSTD_loadDictionaryContent(ms, params, dict, dictSize, dtlm); + + if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) { + if (dictContentType == ZSTD_dct_auto) { + DEBUGLOG(4, "raw content dictionary detected"); + return ZSTD_loadDictionaryContent(ms, params, dict, dictSize, dtlm); + } + RETURN_ERROR_IF(dictContentType == ZSTD_dct_fullDict, dictionary_wrong); + assert(0); /* impossible */ + } + + /* dict as full zstd dictionary */ + return ZSTD_loadZstdDictionary(bs, ms, params, dict, dictSize, dtlm, workspace); +} + +/*! ZSTD_compressBegin_internal() : + * @return : 0, or an error code */ +static size_t ZSTD_compressBegin_internal(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, U64 pledgedSrcSize, + ZSTD_buffered_policy_e zbuff) +{ + DEBUGLOG(4, "ZSTD_compressBegin_internal: wlog=%u", params.cParams.windowLog); + /* params are supposed to be fully validated at this point */ + assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); + assert(!((dict) && (cdict))); /* either dict or cdict, not both */ + + if (cdict && cdict->dictContentSize>0) { + return ZSTD_resetCCtx_usingCDict(cctx, cdict, params, pledgedSrcSize, zbuff); + } + + FORWARD_IF_ERROR( ZSTD_resetCCtx_internal(cctx, params, pledgedSrcSize, + ZSTDcrp_continue, zbuff) ); + { + size_t const dictID = ZSTD_compress_insertDictionary( + cctx->blockState.prevCBlock, &cctx->blockState.matchState, + ¶ms, dict, dictSize, dictContentType, dtlm, cctx->entropyWorkspace); + FORWARD_IF_ERROR(dictID); + assert(dictID <= (size_t)(U32)-1); + cctx->dictID = (U32)dictID; + } + return 0; +} + +size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_compressBegin_advanced_internal: wlog=%u", params.cParams.windowLog); + /* compression parameters verification and optimization */ + FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) ); + return ZSTD_compressBegin_internal(cctx, + dict, dictSize, dictContentType, dtlm, + cdict, + params, pledgedSrcSize, + ZSTDb_not_buffered); +} + +/*! ZSTD_compressBegin_advanced() : +* @return : 0, or an error code */ +size_t ZSTD_compressBegin_advanced(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_parameters params, unsigned long long pledgedSrcSize) +{ + ZSTD_CCtx_params const cctxParams = + ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); + return ZSTD_compressBegin_advanced_internal(cctx, + dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, + NULL /*cdict*/, + cctxParams, pledgedSrcSize); +} + +size_t ZSTD_compressBegin_usingDict(ZSTD_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel) +{ + ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, dictSize); + ZSTD_CCtx_params const cctxParams = + ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); + DEBUGLOG(4, "ZSTD_compressBegin_usingDict (dictSize=%u)", (unsigned)dictSize); + return ZSTD_compressBegin_internal(cctx, dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, + cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, ZSTDb_not_buffered); +} + +size_t ZSTD_compressBegin(ZSTD_CCtx* cctx, int compressionLevel) +{ + return ZSTD_compressBegin_usingDict(cctx, NULL, 0, compressionLevel); +} + + +/*! ZSTD_writeEpilogue() : +* Ends a frame. +* @return : nb of bytes written into dst (or an error code) */ +static size_t ZSTD_writeEpilogue(ZSTD_CCtx* cctx, void* dst, size_t dstCapacity) +{ + BYTE* const ostart = (BYTE*)dst; + BYTE* op = ostart; + size_t fhSize = 0; + + DEBUGLOG(4, "ZSTD_writeEpilogue"); + RETURN_ERROR_IF(cctx->stage == ZSTDcs_created, stage_wrong, "init missing"); + + /* special case : empty frame */ + if (cctx->stage == ZSTDcs_init) { + fhSize = ZSTD_writeFrameHeader(dst, dstCapacity, cctx->appliedParams, 0, 0); + FORWARD_IF_ERROR(fhSize); + dstCapacity -= fhSize; + op += fhSize; + cctx->stage = ZSTDcs_ongoing; + } + + if (cctx->stage != ZSTDcs_ending) { + /* write one last empty block, make it the "last" block */ + U32 const cBlockHeader24 = 1 /* last block */ + (((U32)bt_raw)<<1) + 0; + RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall); + MEM_writeLE32(op, cBlockHeader24); + op += ZSTD_blockHeaderSize; + dstCapacity -= ZSTD_blockHeaderSize; + } + + if (cctx->appliedParams.fParams.checksumFlag) { + U32 const checksum = (U32) XXH64_digest(&cctx->xxhState); + RETURN_ERROR_IF(dstCapacity<4, dstSize_tooSmall); + DEBUGLOG(4, "ZSTD_writeEpilogue: write checksum : %08X", (unsigned)checksum); + MEM_writeLE32(op, checksum); + op += 4; + } + + cctx->stage = ZSTDcs_created; /* return to "created but no init" status */ + return op-ostart; +} + +size_t ZSTD_compressEnd (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + size_t endResult; + size_t const cSize = ZSTD_compressContinue_internal(cctx, + dst, dstCapacity, src, srcSize, + 1 /* frame mode */, 1 /* last chunk */); + FORWARD_IF_ERROR(cSize); + endResult = ZSTD_writeEpilogue(cctx, (char*)dst + cSize, dstCapacity-cSize); + FORWARD_IF_ERROR(endResult); + assert(!(cctx->appliedParams.fParams.contentSizeFlag && cctx->pledgedSrcSizePlusOne == 0)); + if (cctx->pledgedSrcSizePlusOne != 0) { /* control src size */ + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_UNKNOWN == (unsigned long long)-1); + DEBUGLOG(4, "end of frame : controlling src size"); + RETURN_ERROR_IF( + cctx->pledgedSrcSizePlusOne != cctx->consumedSrcSize+1, + srcSize_wrong, + "error : pledgedSrcSize = %u, while realSrcSize = %u", + (unsigned)cctx->pledgedSrcSizePlusOne-1, + (unsigned)cctx->consumedSrcSize); + } + return cSize + endResult; +} + + +static size_t ZSTD_compress_internal (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + ZSTD_parameters params) +{ + ZSTD_CCtx_params const cctxParams = + ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); + DEBUGLOG(4, "ZSTD_compress_internal"); + return ZSTD_compress_advanced_internal(cctx, + dst, dstCapacity, + src, srcSize, + dict, dictSize, + cctxParams); +} + +size_t ZSTD_compress_advanced (ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + ZSTD_parameters params) +{ + DEBUGLOG(4, "ZSTD_compress_advanced"); + FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams)); + return ZSTD_compress_internal(cctx, + dst, dstCapacity, + src, srcSize, + dict, dictSize, + params); +} + +/* Internal */ +size_t ZSTD_compress_advanced_internal( + ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + ZSTD_CCtx_params params) +{ + DEBUGLOG(4, "ZSTD_compress_advanced_internal (srcSize:%u)", (unsigned)srcSize); + FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, + dict, dictSize, ZSTD_dct_auto, ZSTD_dtlm_fast, NULL, + params, srcSize, ZSTDb_not_buffered) ); + return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); +} + +size_t ZSTD_compress_usingDict(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict, size_t dictSize, + int compressionLevel) +{ + ZSTD_parameters const params = ZSTD_getParams(compressionLevel, srcSize + (!srcSize), dict ? dictSize : 0); + ZSTD_CCtx_params cctxParams = ZSTD_assignParamsToCCtxParams(cctx->requestedParams, params); + assert(params.fParams.contentSizeFlag == 1); + return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, dict, dictSize, cctxParams); +} + +size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel) +{ + DEBUGLOG(4, "ZSTD_compressCCtx (srcSize=%u)", (unsigned)srcSize); + assert(cctx != NULL); + return ZSTD_compress_usingDict(cctx, dst, dstCapacity, src, srcSize, NULL, 0, compressionLevel); +} + +size_t ZSTD_compress(void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + int compressionLevel) +{ + size_t result; + ZSTD_CCtx ctxBody; + ZSTD_initCCtx(&ctxBody, ZSTD_defaultCMem); + result = ZSTD_compressCCtx(&ctxBody, dst, dstCapacity, src, srcSize, compressionLevel); + ZSTD_freeCCtxContent(&ctxBody); /* can't free ctxBody itself, as it's on stack; free only heap content */ + return result; +} + + +/* ===== Dictionary API ===== */ + +/*! ZSTD_estimateCDictSize_advanced() : + * Estimate amount of memory that will be needed to create a dictionary with following arguments */ +size_t ZSTD_estimateCDictSize_advanced( + size_t dictSize, ZSTD_compressionParameters cParams, + ZSTD_dictLoadMethod_e dictLoadMethod) +{ + DEBUGLOG(5, "sizeof(ZSTD_CDict) : %u", (unsigned)sizeof(ZSTD_CDict)); + return sizeof(ZSTD_CDict) + HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0) + + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); +} + +size_t ZSTD_estimateCDictSize(size_t dictSize, int compressionLevel) +{ + ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); + return ZSTD_estimateCDictSize_advanced(dictSize, cParams, ZSTD_dlm_byCopy); +} + +size_t ZSTD_sizeof_CDict(const ZSTD_CDict* cdict) +{ + if (cdict==NULL) return 0; /* support sizeof on NULL */ + DEBUGLOG(5, "sizeof(*cdict) : %u", (unsigned)sizeof(*cdict)); + return cdict->workspaceSize + (cdict->dictBuffer ? cdict->dictContentSize : 0) + sizeof(*cdict); +} + +static size_t ZSTD_initCDict_internal( + ZSTD_CDict* cdict, + const void* dictBuffer, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams) +{ + DEBUGLOG(3, "ZSTD_initCDict_internal (dictContentType:%u)", (unsigned)dictContentType); + assert(!ZSTD_checkCParams(cParams)); + cdict->matchState.cParams = cParams; + if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dictBuffer) || (!dictSize)) { + cdict->dictBuffer = NULL; + cdict->dictContent = dictBuffer; + } else { + void* const internalBuffer = ZSTD_malloc(dictSize, cdict->customMem); + cdict->dictBuffer = internalBuffer; + cdict->dictContent = internalBuffer; + RETURN_ERROR_IF(!internalBuffer, memory_allocation); + memcpy(internalBuffer, dictBuffer, dictSize); + } + cdict->dictContentSize = dictSize; + + /* Reset the state to no dictionary */ + ZSTD_reset_compressedBlockState(&cdict->cBlockState); + { void* const end = ZSTD_reset_matchState( + &cdict->matchState, + (U32*)cdict->workspace + HUF_WORKSPACE_SIZE_U32, + &cParams, ZSTDcrp_continue, /* forCCtx */ 0); + assert(end == (char*)cdict->workspace + cdict->workspaceSize); + (void)end; + } + /* (Maybe) load the dictionary + * Skips loading the dictionary if it is <= 8 bytes. + */ + { ZSTD_CCtx_params params; + memset(¶ms, 0, sizeof(params)); + params.compressionLevel = ZSTD_CLEVEL_DEFAULT; + params.fParams.contentSizeFlag = 1; + params.cParams = cParams; + { size_t const dictID = ZSTD_compress_insertDictionary( + &cdict->cBlockState, &cdict->matchState, ¶ms, + cdict->dictContent, cdict->dictContentSize, + dictContentType, ZSTD_dtlm_full, cdict->workspace); + FORWARD_IF_ERROR(dictID); + assert(dictID <= (size_t)(U32)-1); + cdict->dictID = (U32)dictID; + } + } + + return 0; +} + +ZSTD_CDict* ZSTD_createCDict_advanced(const void* dictBuffer, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams, ZSTD_customMem customMem) +{ + DEBUGLOG(3, "ZSTD_createCDict_advanced, mode %u", (unsigned)dictContentType); + if (!customMem.customAlloc ^ !customMem.customFree) return NULL; + + { ZSTD_CDict* const cdict = (ZSTD_CDict*)ZSTD_malloc(sizeof(ZSTD_CDict), customMem); + size_t const workspaceSize = HUF_WORKSPACE_SIZE + ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0); + void* const workspace = ZSTD_malloc(workspaceSize, customMem); + + if (!cdict || !workspace) { + ZSTD_free(cdict, customMem); + ZSTD_free(workspace, customMem); + return NULL; + } + cdict->customMem = customMem; + cdict->workspace = workspace; + cdict->workspaceSize = workspaceSize; + if (ZSTD_isError( ZSTD_initCDict_internal(cdict, + dictBuffer, dictSize, + dictLoadMethod, dictContentType, + cParams) )) { + ZSTD_freeCDict(cdict); + return NULL; + } + + return cdict; + } +} + +ZSTD_CDict* ZSTD_createCDict(const void* dict, size_t dictSize, int compressionLevel) +{ + ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); + return ZSTD_createCDict_advanced(dict, dictSize, + ZSTD_dlm_byCopy, ZSTD_dct_auto, + cParams, ZSTD_defaultCMem); +} + +ZSTD_CDict* ZSTD_createCDict_byReference(const void* dict, size_t dictSize, int compressionLevel) +{ + ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, 0, dictSize); + return ZSTD_createCDict_advanced(dict, dictSize, + ZSTD_dlm_byRef, ZSTD_dct_auto, + cParams, ZSTD_defaultCMem); +} + +size_t ZSTD_freeCDict(ZSTD_CDict* cdict) +{ + if (cdict==NULL) return 0; /* support free on NULL */ + { ZSTD_customMem const cMem = cdict->customMem; + ZSTD_free(cdict->workspace, cMem); + ZSTD_free(cdict->dictBuffer, cMem); + ZSTD_free(cdict, cMem); + return 0; + } +} + +/*! ZSTD_initStaticCDict_advanced() : + * Generate a digested dictionary in provided memory area. + * workspace: The memory area to emplace the dictionary into. + * Provided pointer must 8-bytes aligned. + * It must outlive dictionary usage. + * workspaceSize: Use ZSTD_estimateCDictSize() + * to determine how large workspace must be. + * cParams : use ZSTD_getCParams() to transform a compression level + * into its relevants cParams. + * @return : pointer to ZSTD_CDict*, or NULL if error (size too small) + * Note : there is no corresponding "free" function. + * Since workspace was allocated externally, it must be freed externally. + */ +const ZSTD_CDict* ZSTD_initStaticCDict( + void* workspace, size_t workspaceSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_compressionParameters cParams) +{ + size_t const matchStateSize = ZSTD_sizeof_matchState(&cParams, /* forCCtx */ 0); + size_t const neededSize = sizeof(ZSTD_CDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize) + + HUF_WORKSPACE_SIZE + matchStateSize; + ZSTD_CDict* const cdict = (ZSTD_CDict*) workspace; + void* ptr; + if ((size_t)workspace & 7) return NULL; /* 8-aligned */ + DEBUGLOG(4, "(workspaceSize < neededSize) : (%u < %u) => %u", + (unsigned)workspaceSize, (unsigned)neededSize, (unsigned)(workspaceSize < neededSize)); + if (workspaceSize < neededSize) return NULL; + + if (dictLoadMethod == ZSTD_dlm_byCopy) { + memcpy(cdict+1, dict, dictSize); + dict = cdict+1; + ptr = (char*)workspace + sizeof(ZSTD_CDict) + dictSize; + } else { + ptr = cdict+1; + } + cdict->workspace = ptr; + cdict->workspaceSize = HUF_WORKSPACE_SIZE + matchStateSize; + + if (ZSTD_isError( ZSTD_initCDict_internal(cdict, + dict, dictSize, + ZSTD_dlm_byRef, dictContentType, + cParams) )) + return NULL; + + return cdict; +} + +ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict) +{ + assert(cdict != NULL); + return cdict->matchState.cParams; +} + +/* ZSTD_compressBegin_usingCDict_advanced() : + * cdict must be != NULL */ +size_t ZSTD_compressBegin_usingCDict_advanced( + ZSTD_CCtx* const cctx, const ZSTD_CDict* const cdict, + ZSTD_frameParameters const fParams, unsigned long long const pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_compressBegin_usingCDict_advanced"); + RETURN_ERROR_IF(cdict==NULL, dictionary_wrong); + { ZSTD_CCtx_params params = cctx->requestedParams; + params.cParams = ZSTD_getCParamsFromCDict(cdict); + /* Increase window log to fit the entire dictionary and source if the + * source size is known. Limit the increase to 19, which is the + * window log for compression level 1 with the largest source size. + */ + if (pledgedSrcSize != ZSTD_CONTENTSIZE_UNKNOWN) { + U32 const limitedSrcSize = (U32)MIN(pledgedSrcSize, 1U << 19); + U32 const limitedSrcLog = limitedSrcSize > 1 ? ZSTD_highbit32(limitedSrcSize - 1) + 1 : 1; + params.cParams.windowLog = MAX(params.cParams.windowLog, limitedSrcLog); + } + params.fParams = fParams; + return ZSTD_compressBegin_internal(cctx, + NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, + cdict, + params, pledgedSrcSize, + ZSTDb_not_buffered); + } +} + +/* ZSTD_compressBegin_usingCDict() : + * pledgedSrcSize=0 means "unknown" + * if pledgedSrcSize>0, it will enable contentSizeFlag */ +size_t ZSTD_compressBegin_usingCDict(ZSTD_CCtx* cctx, const ZSTD_CDict* cdict) +{ + ZSTD_frameParameters const fParams = { 0 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; + DEBUGLOG(4, "ZSTD_compressBegin_usingCDict : dictIDFlag == %u", !fParams.noDictIDFlag); + return ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, ZSTD_CONTENTSIZE_UNKNOWN); +} + +size_t ZSTD_compress_usingCDict_advanced(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict, ZSTD_frameParameters fParams) +{ + FORWARD_IF_ERROR(ZSTD_compressBegin_usingCDict_advanced(cctx, cdict, fParams, srcSize)); /* will check if cdict != NULL */ + return ZSTD_compressEnd(cctx, dst, dstCapacity, src, srcSize); +} + +/*! ZSTD_compress_usingCDict() : + * Compression using a digested Dictionary. + * Faster startup than ZSTD_compress_usingDict(), recommended when same dictionary is used multiple times. + * Note that compression parameters are decided at CDict creation time + * while frame parameters are hardcoded */ +size_t ZSTD_compress_usingCDict(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_CDict* cdict) +{ + ZSTD_frameParameters const fParams = { 1 /*content*/, 0 /*checksum*/, 0 /*noDictID*/ }; + return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, fParams); +} + + + +/* ****************************************************************** +* Streaming +********************************************************************/ + +ZSTD_CStream* ZSTD_createCStream(void) +{ + DEBUGLOG(3, "ZSTD_createCStream"); + return ZSTD_createCStream_advanced(ZSTD_defaultCMem); +} + +ZSTD_CStream* ZSTD_initStaticCStream(void *workspace, size_t workspaceSize) +{ + return ZSTD_initStaticCCtx(workspace, workspaceSize); +} + +ZSTD_CStream* ZSTD_createCStream_advanced(ZSTD_customMem customMem) +{ /* CStream and CCtx are now same object */ + return ZSTD_createCCtx_advanced(customMem); +} + +size_t ZSTD_freeCStream(ZSTD_CStream* zcs) +{ + return ZSTD_freeCCtx(zcs); /* same object */ +} + + + +/*====== Initialization ======*/ + +size_t ZSTD_CStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX; } + +size_t ZSTD_CStreamOutSize(void) +{ + return ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + 4 /* 32-bits hash */ ; +} + +static size_t ZSTD_resetCStream_internal(ZSTD_CStream* cctx, + const void* const dict, size_t const dictSize, ZSTD_dictContentType_e const dictContentType, + const ZSTD_CDict* const cdict, + ZSTD_CCtx_params params, unsigned long long const pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_resetCStream_internal"); + /* Finalize the compression parameters */ + params.cParams = ZSTD_getCParamsFromCCtxParams(¶ms, pledgedSrcSize, dictSize); + /* params are supposed to be fully validated at this point */ + assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); + assert(!((dict) && (cdict))); /* either dict or cdict, not both */ + + FORWARD_IF_ERROR( ZSTD_compressBegin_internal(cctx, + dict, dictSize, dictContentType, ZSTD_dtlm_fast, + cdict, + params, pledgedSrcSize, + ZSTDb_buffered) ); + + cctx->inToCompress = 0; + cctx->inBuffPos = 0; + cctx->inBuffTarget = cctx->blockSize + + (cctx->blockSize == pledgedSrcSize); /* for small input: avoid automatic flush on reaching end of block, since it would require to add a 3-bytes null block to end frame */ + cctx->outBuffContentSize = cctx->outBuffFlushedSize = 0; + cctx->streamStage = zcss_load; + cctx->frameEnded = 0; + return 0; /* ready to go */ +} + +/* ZSTD_resetCStream(): + * pledgedSrcSize == 0 means "unknown" */ +size_t ZSTD_resetCStream(ZSTD_CStream* zcs, unsigned long long pss) +{ + /* temporary : 0 interpreted as "unknown" during transition period. + * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. + * 0 will be interpreted as "empty" in the future. + */ + U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; + DEBUGLOG(4, "ZSTD_resetCStream: pledgedSrcSize = %u", (unsigned)pledgedSrcSize); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); + return 0; +} + +/*! ZSTD_initCStream_internal() : + * Note : for lib/compress only. Used by zstdmt_compress.c. + * Assumption 1 : params are valid + * Assumption 2 : either dict, or cdict, is defined, not both */ +size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_initCStream_internal"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); + assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); + zcs->requestedParams = params; + assert(!((dict) && (cdict))); /* either dict or cdict, not both */ + if (dict) { + FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) ); + } else { + /* Dictionary is cleared if !cdict */ + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) ); + } + return 0; +} + +/* ZSTD_initCStream_usingCDict_advanced() : + * same as ZSTD_initCStream_usingCDict(), with control over frame parameters */ +size_t ZSTD_initCStream_usingCDict_advanced(ZSTD_CStream* zcs, + const ZSTD_CDict* cdict, + ZSTD_frameParameters fParams, + unsigned long long pledgedSrcSize) +{ + DEBUGLOG(4, "ZSTD_initCStream_usingCDict_advanced"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); + zcs->requestedParams.fParams = fParams; + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) ); + return 0; +} + +/* note : cdict must outlive compression session */ +size_t ZSTD_initCStream_usingCDict(ZSTD_CStream* zcs, const ZSTD_CDict* cdict) +{ + DEBUGLOG(4, "ZSTD_initCStream_usingCDict"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, cdict) ); + return 0; +} + + +/* ZSTD_initCStream_advanced() : + * pledgedSrcSize must be exact. + * if srcSize is not known at init time, use value ZSTD_CONTENTSIZE_UNKNOWN. + * dict is loaded with default parameters ZSTD_dm_auto and ZSTD_dlm_byCopy. */ +size_t ZSTD_initCStream_advanced(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, + ZSTD_parameters params, unsigned long long pss) +{ + /* for compatibility with older programs relying on this behavior. + * Users should now specify ZSTD_CONTENTSIZE_UNKNOWN. + * This line will be removed in the future. + */ + U64 const pledgedSrcSize = (pss==0 && params.fParams.contentSizeFlag==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; + DEBUGLOG(4, "ZSTD_initCStream_advanced"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); + FORWARD_IF_ERROR( ZSTD_checkCParams(params.cParams) ); + zcs->requestedParams = ZSTD_assignParamsToCCtxParams(zcs->requestedParams, params); + FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) ); + return 0; +} + +size_t ZSTD_initCStream_usingDict(ZSTD_CStream* zcs, const void* dict, size_t dictSize, int compressionLevel) +{ + DEBUGLOG(4, "ZSTD_initCStream_usingDict"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) ); + FORWARD_IF_ERROR( ZSTD_CCtx_loadDictionary(zcs, dict, dictSize) ); + return 0; +} + +size_t ZSTD_initCStream_srcSize(ZSTD_CStream* zcs, int compressionLevel, unsigned long long pss) +{ + /* temporary : 0 interpreted as "unknown" during transition period. + * Users willing to specify "unknown" **must** use ZSTD_CONTENTSIZE_UNKNOWN. + * 0 will be interpreted as "empty" in the future. + */ + U64 const pledgedSrcSize = (pss==0) ? ZSTD_CONTENTSIZE_UNKNOWN : pss; + DEBUGLOG(4, "ZSTD_initCStream_srcSize"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize) ); + return 0; +} + +size_t ZSTD_initCStream(ZSTD_CStream* zcs, int compressionLevel) +{ + DEBUGLOG(4, "ZSTD_initCStream"); + FORWARD_IF_ERROR( ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_CCtx_refCDict(zcs, NULL) ); + FORWARD_IF_ERROR( ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel) ); + return 0; +} + +/*====== Compression ======*/ + +static size_t ZSTD_nextInputSizeHint(const ZSTD_CCtx* cctx) +{ + size_t hintInSize = cctx->inBuffTarget - cctx->inBuffPos; + if (hintInSize==0) hintInSize = cctx->blockSize; + return hintInSize; +} + +static size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + size_t const length = MIN(dstCapacity, srcSize); + if (length) memcpy(dst, src, length); + return length; +} + +/** ZSTD_compressStream_generic(): + * internal function for all *compressStream*() variants + * non-static, because can be called from zstdmt_compress.c + * @return : hint size for next input */ +static size_t ZSTD_compressStream_generic(ZSTD_CStream* zcs, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective const flushMode) +{ + const char* const istart = (const char*)input->src; + const char* const iend = istart + input->size; + const char* ip = istart + input->pos; + char* const ostart = (char*)output->dst; + char* const oend = ostart + output->size; + char* op = ostart + output->pos; + U32 someMoreWork = 1; + + /* check expectations */ + DEBUGLOG(5, "ZSTD_compressStream_generic, flush=%u", (unsigned)flushMode); + assert(zcs->inBuff != NULL); + assert(zcs->inBuffSize > 0); + assert(zcs->outBuff != NULL); + assert(zcs->outBuffSize > 0); + assert(output->pos <= output->size); + assert(input->pos <= input->size); + + while (someMoreWork) { + switch(zcs->streamStage) + { + case zcss_init: + RETURN_ERROR(init_missing, "call ZSTD_initCStream() first!"); + + case zcss_load: + if ( (flushMode == ZSTD_e_end) + && ((size_t)(oend-op) >= ZSTD_compressBound(iend-ip)) /* enough dstCapacity */ + && (zcs->inBuffPos == 0) ) { + /* shortcut to compression pass directly into output buffer */ + size_t const cSize = ZSTD_compressEnd(zcs, + op, oend-op, ip, iend-ip); + DEBUGLOG(4, "ZSTD_compressEnd : cSize=%u", (unsigned)cSize); + FORWARD_IF_ERROR(cSize); + ip = iend; + op += cSize; + zcs->frameEnded = 1; + ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + someMoreWork = 0; break; + } + /* complete loading into inBuffer */ + { size_t const toLoad = zcs->inBuffTarget - zcs->inBuffPos; + size_t const loaded = ZSTD_limitCopy( + zcs->inBuff + zcs->inBuffPos, toLoad, + ip, iend-ip); + zcs->inBuffPos += loaded; + ip += loaded; + if ( (flushMode == ZSTD_e_continue) + && (zcs->inBuffPos < zcs->inBuffTarget) ) { + /* not enough input to fill full block : stop here */ + someMoreWork = 0; break; + } + if ( (flushMode == ZSTD_e_flush) + && (zcs->inBuffPos == zcs->inToCompress) ) { + /* empty */ + someMoreWork = 0; break; + } + } + /* compress current block (note : this stage cannot be stopped in the middle) */ + DEBUGLOG(5, "stream compression stage (flushMode==%u)", flushMode); + { void* cDst; + size_t cSize; + size_t const iSize = zcs->inBuffPos - zcs->inToCompress; + size_t oSize = oend-op; + unsigned const lastBlock = (flushMode == ZSTD_e_end) && (ip==iend); + if (oSize >= ZSTD_compressBound(iSize)) + cDst = op; /* compress into output buffer, to skip flush stage */ + else + cDst = zcs->outBuff, oSize = zcs->outBuffSize; + cSize = lastBlock ? + ZSTD_compressEnd(zcs, cDst, oSize, + zcs->inBuff + zcs->inToCompress, iSize) : + ZSTD_compressContinue(zcs, cDst, oSize, + zcs->inBuff + zcs->inToCompress, iSize); + FORWARD_IF_ERROR(cSize); + zcs->frameEnded = lastBlock; + /* prepare next block */ + zcs->inBuffTarget = zcs->inBuffPos + zcs->blockSize; + if (zcs->inBuffTarget > zcs->inBuffSize) + zcs->inBuffPos = 0, zcs->inBuffTarget = zcs->blockSize; + DEBUGLOG(5, "inBuffTarget:%u / inBuffSize:%u", + (unsigned)zcs->inBuffTarget, (unsigned)zcs->inBuffSize); + if (!lastBlock) + assert(zcs->inBuffTarget <= zcs->inBuffSize); + zcs->inToCompress = zcs->inBuffPos; + if (cDst == op) { /* no need to flush */ + op += cSize; + if (zcs->frameEnded) { + DEBUGLOG(5, "Frame completed directly in outBuffer"); + someMoreWork = 0; + ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + } + break; + } + zcs->outBuffContentSize = cSize; + zcs->outBuffFlushedSize = 0; + zcs->streamStage = zcss_flush; /* pass-through to flush stage */ + } + /* fall-through */ + case zcss_flush: + DEBUGLOG(5, "flush stage"); + { size_t const toFlush = zcs->outBuffContentSize - zcs->outBuffFlushedSize; + size_t const flushed = ZSTD_limitCopy(op, oend-op, + zcs->outBuff + zcs->outBuffFlushedSize, toFlush); + DEBUGLOG(5, "toFlush: %u into %u ==> flushed: %u", + (unsigned)toFlush, (unsigned)(oend-op), (unsigned)flushed); + op += flushed; + zcs->outBuffFlushedSize += flushed; + if (toFlush!=flushed) { + /* flush not fully completed, presumably because dst is too small */ + assert(op==oend); + someMoreWork = 0; + break; + } + zcs->outBuffContentSize = zcs->outBuffFlushedSize = 0; + if (zcs->frameEnded) { + DEBUGLOG(5, "Frame completed on flush"); + someMoreWork = 0; + ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); + break; + } + zcs->streamStage = zcss_load; + break; + } + + default: /* impossible */ + assert(0); + } + } + + input->pos = ip - istart; + output->pos = op - ostart; + if (zcs->frameEnded) return 0; + return ZSTD_nextInputSizeHint(zcs); +} + +static size_t ZSTD_nextInputSizeHint_MTorST(const ZSTD_CCtx* cctx) +{ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers >= 1) { + assert(cctx->mtctx != NULL); + return ZSTDMT_nextInputSizeHint(cctx->mtctx); + } +#endif + return ZSTD_nextInputSizeHint(cctx); + +} + +size_t ZSTD_compressStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) +{ + FORWARD_IF_ERROR( ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue) ); + return ZSTD_nextInputSizeHint_MTorST(zcs); +} + + +size_t ZSTD_compressStream2( ZSTD_CCtx* cctx, + ZSTD_outBuffer* output, + ZSTD_inBuffer* input, + ZSTD_EndDirective endOp) +{ + DEBUGLOG(5, "ZSTD_compressStream2, endOp=%u ", (unsigned)endOp); + /* check conditions */ + RETURN_ERROR_IF(output->pos > output->size, GENERIC); + RETURN_ERROR_IF(input->pos > input->size, GENERIC); + assert(cctx!=NULL); + + /* transparent initialization stage */ + if (cctx->streamStage == zcss_init) { + ZSTD_CCtx_params params = cctx->requestedParams; + ZSTD_prefixDict const prefixDict = cctx->prefixDict; + FORWARD_IF_ERROR( ZSTD_initLocalDict(cctx) ); /* Init the local dict if present. */ + memset(&cctx->prefixDict, 0, sizeof(cctx->prefixDict)); /* single usage */ + assert(prefixDict.dict==NULL || cctx->cdict==NULL); /* only one can be set */ + DEBUGLOG(4, "ZSTD_compressStream2 : transparent init stage"); + if (endOp == ZSTD_e_end) cctx->pledgedSrcSizePlusOne = input->size + 1; /* auto-fix pledgedSrcSize */ + params.cParams = ZSTD_getCParamsFromCCtxParams( + &cctx->requestedParams, cctx->pledgedSrcSizePlusOne-1, 0 /*dictSize*/); + + +#ifdef ZSTD_MULTITHREAD + if ((cctx->pledgedSrcSizePlusOne-1) <= ZSTDMT_JOBSIZE_MIN) { + params.nbWorkers = 0; /* do not invoke multi-threading when src size is too small */ + } + if (params.nbWorkers > 0) { + /* mt context creation */ + if (cctx->mtctx == NULL) { + DEBUGLOG(4, "ZSTD_compressStream2: creating new mtctx for nbWorkers=%u", + params.nbWorkers); + cctx->mtctx = ZSTDMT_createCCtx_advanced(params.nbWorkers, cctx->customMem); + RETURN_ERROR_IF(cctx->mtctx == NULL, memory_allocation); + } + /* mt compression */ + DEBUGLOG(4, "call ZSTDMT_initCStream_internal as nbWorkers=%u", params.nbWorkers); + FORWARD_IF_ERROR( ZSTDMT_initCStream_internal( + cctx->mtctx, + prefixDict.dict, prefixDict.dictSize, ZSTD_dct_rawContent, + cctx->cdict, params, cctx->pledgedSrcSizePlusOne-1) ); + cctx->streamStage = zcss_load; + cctx->appliedParams.nbWorkers = params.nbWorkers; + } else +#endif + { FORWARD_IF_ERROR( ZSTD_resetCStream_internal(cctx, + prefixDict.dict, prefixDict.dictSize, prefixDict.dictContentType, + cctx->cdict, + params, cctx->pledgedSrcSizePlusOne-1) ); + assert(cctx->streamStage == zcss_load); + assert(cctx->appliedParams.nbWorkers == 0); + } } + /* end of transparent initialization stage */ + + /* compression stage */ +#ifdef ZSTD_MULTITHREAD + if (cctx->appliedParams.nbWorkers > 0) { + int const forceMaxProgress = (endOp == ZSTD_e_flush || endOp == ZSTD_e_end); + size_t flushMin; + assert(forceMaxProgress || endOp == ZSTD_e_continue /* Protection for a new flush type */); + if (cctx->cParamsChanged) { + ZSTDMT_updateCParams_whileCompressing(cctx->mtctx, &cctx->requestedParams); + cctx->cParamsChanged = 0; + } + do { + flushMin = ZSTDMT_compressStream_generic(cctx->mtctx, output, input, endOp); + if ( ZSTD_isError(flushMin) + || (endOp == ZSTD_e_end && flushMin == 0) ) { /* compression completed */ + ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); + } + FORWARD_IF_ERROR(flushMin); + } while (forceMaxProgress && flushMin != 0 && output->pos < output->size); + DEBUGLOG(5, "completed ZSTD_compressStream2 delegating to ZSTDMT_compressStream_generic"); + /* Either we don't require maximum forward progress, we've finished the + * flush, or we are out of output space. + */ + assert(!forceMaxProgress || flushMin == 0 || output->pos == output->size); + return flushMin; + } +#endif + FORWARD_IF_ERROR( ZSTD_compressStream_generic(cctx, output, input, endOp) ); + DEBUGLOG(5, "completed ZSTD_compressStream2"); + return cctx->outBuffContentSize - cctx->outBuffFlushedSize; /* remaining to flush */ +} + +size_t ZSTD_compressStream2_simpleArgs ( + ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos, + ZSTD_EndDirective endOp) +{ + ZSTD_outBuffer output = { dst, dstCapacity, *dstPos }; + ZSTD_inBuffer input = { src, srcSize, *srcPos }; + /* ZSTD_compressStream2() will check validity of dstPos and srcPos */ + size_t const cErr = ZSTD_compressStream2(cctx, &output, &input, endOp); + *dstPos = output.pos; + *srcPos = input.pos; + return cErr; +} + +size_t ZSTD_compress2(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + ZSTD_CCtx_reset(cctx, ZSTD_reset_session_only); + { size_t oPos = 0; + size_t iPos = 0; + size_t const result = ZSTD_compressStream2_simpleArgs(cctx, + dst, dstCapacity, &oPos, + src, srcSize, &iPos, + ZSTD_e_end); + FORWARD_IF_ERROR(result); + if (result != 0) { /* compression not completed, due to lack of output space */ + assert(oPos == dstCapacity); + RETURN_ERROR(dstSize_tooSmall); + } + assert(iPos == srcSize); /* all input is expected consumed */ + return oPos; + } +} + +/*====== Finalize ======*/ + +/*! ZSTD_flushStream() : + * @return : amount of data remaining to flush */ +size_t ZSTD_flushStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) +{ + ZSTD_inBuffer input = { NULL, 0, 0 }; + return ZSTD_compressStream2(zcs, output, &input, ZSTD_e_flush); +} + + +size_t ZSTD_endStream(ZSTD_CStream* zcs, ZSTD_outBuffer* output) +{ + ZSTD_inBuffer input = { NULL, 0, 0 }; + size_t const remainingToFlush = ZSTD_compressStream2(zcs, output, &input, ZSTD_e_end); + FORWARD_IF_ERROR( remainingToFlush ); + if (zcs->appliedParams.nbWorkers > 0) return remainingToFlush; /* minimal estimation */ + /* single thread mode : attempt to calculate remaining to flush more precisely */ + { size_t const lastBlockSize = zcs->frameEnded ? 0 : ZSTD_BLOCKHEADERSIZE; + size_t const checksumSize = zcs->frameEnded ? 0 : zcs->appliedParams.fParams.checksumFlag * 4; + size_t const toFlush = remainingToFlush + lastBlockSize + checksumSize; + DEBUGLOG(4, "ZSTD_endStream : remaining to flush : %u", (unsigned)toFlush); + return toFlush; + } +} + + +/*-===== Pre-defined compression levels =====-*/ + +#define ZSTD_MAX_CLEVEL 22 +int ZSTD_maxCLevel(void) { return ZSTD_MAX_CLEVEL; } +int ZSTD_minCLevel(void) { return (int)-ZSTD_TARGETLENGTH_MAX; } + +static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = { +{ /* "default" - for any srcSize > 256 KB */ + /* W, C, H, S, L, TL, strat */ + { 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */ + { 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */ + { 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */ + { 21, 16, 17, 1, 5, 1, ZSTD_dfast }, /* level 3 */ + { 21, 18, 18, 1, 5, 1, ZSTD_dfast }, /* level 4 */ + { 21, 18, 19, 2, 5, 2, ZSTD_greedy }, /* level 5 */ + { 21, 19, 19, 3, 5, 4, ZSTD_greedy }, /* level 6 */ + { 21, 19, 19, 3, 5, 8, ZSTD_lazy }, /* level 7 */ + { 21, 19, 19, 3, 5, 16, ZSTD_lazy2 }, /* level 8 */ + { 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */ + { 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 10 */ + { 22, 21, 22, 4, 5, 16, ZSTD_lazy2 }, /* level 11 */ + { 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 12 */ + { 22, 21, 22, 5, 5, 32, ZSTD_btlazy2 }, /* level 13 */ + { 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */ + { 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */ + { 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */ + { 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */ + { 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */ + { 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */ + { 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */ + { 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */ + { 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */ +}, +{ /* for srcSize <= 256 KB */ + /* W, C, H, S, L, T, strat */ + { 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ + { 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */ + { 18, 14, 14, 1, 5, 1, ZSTD_dfast }, /* level 2 */ + { 18, 16, 16, 1, 4, 1, ZSTD_dfast }, /* level 3 */ + { 18, 16, 17, 2, 5, 2, ZSTD_greedy }, /* level 4.*/ + { 18, 18, 18, 3, 5, 2, ZSTD_greedy }, /* level 5.*/ + { 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/ + { 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */ + { 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ + { 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ + { 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ + { 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/ + { 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/ + { 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */ + { 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/ + { 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/ + { 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/ + { 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/ + { 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/ + { 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/ + { 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/ + { 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/ + { 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/ +}, +{ /* for srcSize <= 128 KB */ + /* W, C, H, S, L, T, strat */ + { 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ + { 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */ + { 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */ + { 17, 15, 16, 2, 5, 1, ZSTD_dfast }, /* level 3 */ + { 17, 17, 17, 2, 4, 1, ZSTD_dfast }, /* level 4 */ + { 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */ + { 17, 17, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */ + { 17, 17, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */ + { 17, 17, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */ + { 17, 17, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */ + { 17, 17, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */ + { 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */ + { 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */ + { 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/ + { 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/ + { 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/ + { 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/ + { 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/ + { 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/ + { 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/ + { 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/ + { 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/ + { 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/ +}, +{ /* for srcSize <= 16 KB */ + /* W, C, H, S, L, T, strat */ + { 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */ + { 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */ + { 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */ + { 14, 14, 15, 2, 4, 1, ZSTD_dfast }, /* level 3 */ + { 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */ + { 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/ + { 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */ + { 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */ + { 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/ + { 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/ + { 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/ + { 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/ + { 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/ + { 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/ + { 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/ + { 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/ + { 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/ + { 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/ + { 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/ + { 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/ + { 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/ + { 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/ + { 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/ +}, +}; + +/*! ZSTD_getCParams() : + * @return ZSTD_compressionParameters structure for a selected compression level, srcSize and dictSize. + * Size values are optional, provide 0 if not known or unused */ +ZSTD_compressionParameters ZSTD_getCParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) +{ + size_t const addedSize = srcSizeHint ? 0 : 500; + U64 const rSize = srcSizeHint+dictSize ? srcSizeHint+dictSize+addedSize : ZSTD_CONTENTSIZE_UNKNOWN; /* intentional overflow for srcSizeHint == ZSTD_CONTENTSIZE_UNKNOWN */ + U32 const tableID = (rSize <= 256 KB) + (rSize <= 128 KB) + (rSize <= 16 KB); + int row = compressionLevel; + DEBUGLOG(5, "ZSTD_getCParams (cLevel=%i)", compressionLevel); + if (compressionLevel == 0) row = ZSTD_CLEVEL_DEFAULT; /* 0 == default */ + if (compressionLevel < 0) row = 0; /* entry 0 is baseline for fast mode */ + if (compressionLevel > ZSTD_MAX_CLEVEL) row = ZSTD_MAX_CLEVEL; + { ZSTD_compressionParameters cp = ZSTD_defaultCParameters[tableID][row]; + if (compressionLevel < 0) cp.targetLength = (unsigned)(-compressionLevel); /* acceleration factor */ + return ZSTD_adjustCParams_internal(cp, srcSizeHint, dictSize); /* refine parameters based on srcSize & dictSize */ + } +} + +/*! ZSTD_getParams() : + * same idea as ZSTD_getCParams() + * @return a `ZSTD_parameters` structure (instead of `ZSTD_compressionParameters`). + * Fields of `ZSTD_frameParameters` are set to default values */ +ZSTD_parameters ZSTD_getParams(int compressionLevel, unsigned long long srcSizeHint, size_t dictSize) { + ZSTD_parameters params; + ZSTD_compressionParameters const cParams = ZSTD_getCParams(compressionLevel, srcSizeHint, dictSize); + DEBUGLOG(5, "ZSTD_getParams (cLevel=%i)", compressionLevel); + memset(¶ms, 0, sizeof(params)); + params.cParams = cParams; + params.fParams.contentSizeFlag = 1; + return params; +} diff --git a/vendor/github.com/DataDog/zstd/zstd_compress_internal.h b/vendor/github.com/DataDog/zstd/zstd_compress_internal.h new file mode 100644 index 0000000000..cc3cbb9da9 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_compress_internal.h @@ -0,0 +1,863 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* This header contains definitions + * that shall **only** be used by modules within lib/compress. + */ + +#ifndef ZSTD_COMPRESS_H +#define ZSTD_COMPRESS_H + +/*-************************************* +* Dependencies +***************************************/ +#include "zstd_internal.h" +#ifdef ZSTD_MULTITHREAD +# include "zstdmt_compress.h" +#endif + +#if defined (__cplusplus) +extern "C" { +#endif + + +/*-************************************* +* Constants +***************************************/ +#define kSearchStrength 8 +#define HASH_READ_SIZE 8 +#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index 1 now means "unsorted". + It could be confused for a real successor at index "1", if sorted as larger than its predecessor. + It's not a big deal though : candidate will just be sorted again. + Additionally, candidate position 1 will be lost. + But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss. + The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy + Constant required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */ + + +/*-************************************* +* Context memory management +***************************************/ +typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e; +typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage; + +typedef struct ZSTD_prefixDict_s { + const void* dict; + size_t dictSize; + ZSTD_dictContentType_e dictContentType; +} ZSTD_prefixDict; + +typedef struct { + void* dictBuffer; + void const* dict; + size_t dictSize; + ZSTD_dictContentType_e dictContentType; + ZSTD_CDict* cdict; +} ZSTD_localDict; + +typedef struct { + U32 CTable[HUF_CTABLE_SIZE_U32(255)]; + HUF_repeat repeatMode; +} ZSTD_hufCTables_t; + +typedef struct { + FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)]; + FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)]; + FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)]; + FSE_repeat offcode_repeatMode; + FSE_repeat matchlength_repeatMode; + FSE_repeat litlength_repeatMode; +} ZSTD_fseCTables_t; + +typedef struct { + ZSTD_hufCTables_t huf; + ZSTD_fseCTables_t fse; +} ZSTD_entropyCTables_t; + +typedef struct { + U32 off; + U32 len; +} ZSTD_match_t; + +typedef struct { + int price; + U32 off; + U32 mlen; + U32 litlen; + U32 rep[ZSTD_REP_NUM]; +} ZSTD_optimal_t; + +typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e; + +typedef struct { + /* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */ + unsigned* litFreq; /* table of literals statistics, of size 256 */ + unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */ + unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */ + unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */ + ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */ + ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */ + + U32 litSum; /* nb of literals */ + U32 litLengthSum; /* nb of litLength codes */ + U32 matchLengthSum; /* nb of matchLength codes */ + U32 offCodeSum; /* nb of offset codes */ + U32 litSumBasePrice; /* to compare to log2(litfreq) */ + U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */ + U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */ + U32 offCodeSumBasePrice; /* to compare to log2(offreq) */ + ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */ + const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */ + ZSTD_literalCompressionMode_e literalCompressionMode; +} optState_t; + +typedef struct { + ZSTD_entropyCTables_t entropy; + U32 rep[ZSTD_REP_NUM]; +} ZSTD_compressedBlockState_t; + +typedef struct { + BYTE const* nextSrc; /* next block here to continue on current prefix */ + BYTE const* base; /* All regular indexes relative to this position */ + BYTE const* dictBase; /* extDict indexes relative to this position */ + U32 dictLimit; /* below that point, need extDict */ + U32 lowLimit; /* below that point, no more data */ +} ZSTD_window_t; + +typedef struct ZSTD_matchState_t ZSTD_matchState_t; +struct ZSTD_matchState_t { + ZSTD_window_t window; /* State for window round buffer management */ + U32 loadedDictEnd; /* index of end of dictionary */ + U32 nextToUpdate; /* index from which to continue table update */ + U32 nextToUpdate3; /* index from which to continue table update */ + U32 hashLog3; /* dispatch table : larger == faster, more memory */ + U32* hashTable; + U32* hashTable3; + U32* chainTable; + optState_t opt; /* optimal parser state */ + const ZSTD_matchState_t * dictMatchState; + ZSTD_compressionParameters cParams; +}; + +typedef struct { + ZSTD_compressedBlockState_t* prevCBlock; + ZSTD_compressedBlockState_t* nextCBlock; + ZSTD_matchState_t matchState; +} ZSTD_blockState_t; + +typedef struct { + U32 offset; + U32 checksum; +} ldmEntry_t; + +typedef struct { + ZSTD_window_t window; /* State for the window round buffer management */ + ldmEntry_t* hashTable; + BYTE* bucketOffsets; /* Next position in bucket to insert entry */ + U64 hashPower; /* Used to compute the rolling hash. + * Depends on ldmParams.minMatchLength */ +} ldmState_t; + +typedef struct { + U32 enableLdm; /* 1 if enable long distance matching */ + U32 hashLog; /* Log size of hashTable */ + U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */ + U32 minMatchLength; /* Minimum match length */ + U32 hashRateLog; /* Log number of entries to skip */ + U32 windowLog; /* Window log for the LDM */ +} ldmParams_t; + +typedef struct { + U32 offset; + U32 litLength; + U32 matchLength; +} rawSeq; + +typedef struct { + rawSeq* seq; /* The start of the sequences */ + size_t pos; /* The position where reading stopped. <= size. */ + size_t size; /* The number of sequences. <= capacity. */ + size_t capacity; /* The capacity starting from `seq` pointer */ +} rawSeqStore_t; + +struct ZSTD_CCtx_params_s { + ZSTD_format_e format; + ZSTD_compressionParameters cParams; + ZSTD_frameParameters fParams; + + int compressionLevel; + int forceWindow; /* force back-references to respect limit of + * 1< 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength]; +} + +/* ZSTD_MLcode() : + * note : mlBase = matchLength - MINMATCH; + * because it's the format it's stored in seqStore->sequences */ +MEM_STATIC U32 ZSTD_MLcode(U32 mlBase) +{ + static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, + 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39, + 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, + 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, + 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, + 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 }; + static const U32 ML_deltaCode = 36; + return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase]; +} + +/*! ZSTD_storeSeq() : + * Store a sequence (literal length, literals, offset code and match length code) into seqStore_t. + * `offsetCode` : distance to match + 3 (values 1-3 are repCodes). + * `mlBase` : matchLength - MINMATCH +*/ +MEM_STATIC void ZSTD_storeSeq(seqStore_t* seqStorePtr, size_t litLength, const void* literals, U32 offsetCode, size_t mlBase) +{ +#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6) + static const BYTE* g_start = NULL; + if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */ + { U32 const pos = (U32)((const BYTE*)literals - g_start); + DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u", + pos, (U32)litLength, (U32)mlBase+MINMATCH, (U32)offsetCode); + } +#endif + assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq); + /* copy Literals */ + assert(seqStorePtr->maxNbLit <= 128 KB); + assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit); + ZSTD_wildcopy(seqStorePtr->lit, literals, litLength); + seqStorePtr->lit += litLength; + + /* literal Length */ + if (litLength>0xFFFF) { + assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */ + seqStorePtr->longLengthID = 1; + seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + } + seqStorePtr->sequences[0].litLength = (U16)litLength; + + /* match offset */ + seqStorePtr->sequences[0].offset = offsetCode + 1; + + /* match Length */ + if (mlBase>0xFFFF) { + assert(seqStorePtr->longLengthID == 0); /* there can only be a single long length */ + seqStorePtr->longLengthID = 2; + seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); + } + seqStorePtr->sequences[0].matchLength = (U16)mlBase; + + seqStorePtr->sequences++; +} + + +/*-************************************* +* Match length counter +***************************************/ +static unsigned ZSTD_NbCommonBytes (size_t val) +{ + if (MEM_isLittleEndian()) { + if (MEM_64bits()) { +# if defined(_MSC_VER) && defined(_WIN64) + unsigned long r = 0; + _BitScanForward64( &r, (U64)val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 4) + return (__builtin_ctzll((U64)val) >> 3); +# else + static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, + 0, 3, 1, 3, 1, 4, 2, 7, + 0, 2, 3, 6, 1, 5, 3, 5, + 1, 3, 4, 4, 2, 5, 6, 7, + 7, 0, 1, 2, 3, 3, 4, 6, + 2, 6, 5, 5, 3, 4, 5, 6, + 7, 1, 2, 4, 6, 4, 4, 5, + 7, 2, 6, 5, 7, 6, 7, 7 }; + return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; +# endif + } else { /* 32 bits */ +# if defined(_MSC_VER) + unsigned long r=0; + _BitScanForward( &r, (U32)val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 3) + return (__builtin_ctz((U32)val) >> 3); +# else + static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, + 3, 2, 2, 1, 3, 2, 0, 1, + 3, 3, 1, 2, 2, 2, 2, 0, + 3, 1, 2, 0, 1, 0, 1, 1 }; + return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; +# endif + } + } else { /* Big Endian CPU */ + if (MEM_64bits()) { +# if defined(_MSC_VER) && defined(_WIN64) + unsigned long r = 0; + _BitScanReverse64( &r, val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 4) + return (__builtin_clzll(val) >> 3); +# else + unsigned r; + const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ + if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } + if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } + r += (!val); + return r; +# endif + } else { /* 32 bits */ +# if defined(_MSC_VER) + unsigned long r = 0; + _BitScanReverse( &r, (unsigned long)val ); + return (unsigned)(r>>3); +# elif defined(__GNUC__) && (__GNUC__ >= 3) + return (__builtin_clz((U32)val) >> 3); +# else + unsigned r; + if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } + r += (!val); + return r; +# endif + } } +} + + +MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit) +{ + const BYTE* const pStart = pIn; + const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1); + + if (pIn < pInLoopLimit) { + { size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); + if (diff) return ZSTD_NbCommonBytes(diff); } + pIn+=sizeof(size_t); pMatch+=sizeof(size_t); + while (pIn < pInLoopLimit) { + size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); + if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; } + pIn += ZSTD_NbCommonBytes(diff); + return (size_t)(pIn - pStart); + } } + if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; } + if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; } + if ((pIn> (32-h) ; } +MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */ + +static const U32 prime4bytes = 2654435761U; +static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; } +static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); } + +static const U64 prime5bytes = 889523592379ULL; +static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; } +static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); } + +static const U64 prime6bytes = 227718039650203ULL; +static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; } +static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); } + +static const U64 prime7bytes = 58295818150454627ULL; +static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; } +static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); } + +static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL; +static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; } +static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); } + +MEM_STATIC size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls) +{ + switch(mls) + { + default: + case 4: return ZSTD_hash4Ptr(p, hBits); + case 5: return ZSTD_hash5Ptr(p, hBits); + case 6: return ZSTD_hash6Ptr(p, hBits); + case 7: return ZSTD_hash7Ptr(p, hBits); + case 8: return ZSTD_hash8Ptr(p, hBits); + } +} + +/** ZSTD_ipow() : + * Return base^exponent. + */ +static U64 ZSTD_ipow(U64 base, U64 exponent) +{ + U64 power = 1; + while (exponent) { + if (exponent & 1) power *= base; + exponent >>= 1; + base *= base; + } + return power; +} + +#define ZSTD_ROLL_HASH_CHAR_OFFSET 10 + +/** ZSTD_rollingHash_append() : + * Add the buffer to the hash value. + */ +static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size) +{ + BYTE const* istart = (BYTE const*)buf; + size_t pos; + for (pos = 0; pos < size; ++pos) { + hash *= prime8bytes; + hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET; + } + return hash; +} + +/** ZSTD_rollingHash_compute() : + * Compute the rolling hash value of the buffer. + */ +MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size) +{ + return ZSTD_rollingHash_append(0, buf, size); +} + +/** ZSTD_rollingHash_primePower() : + * Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash + * over a window of length bytes. + */ +MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length) +{ + return ZSTD_ipow(prime8bytes, length - 1); +} + +/** ZSTD_rollingHash_rotate() : + * Rotate the rolling hash by one byte. + */ +MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower) +{ + hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower; + hash *= prime8bytes; + hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET; + return hash; +} + +/*-************************************* +* Round buffer management +***************************************/ +/* Max current allowed */ +#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX)) +/* Maximum chunk size before overflow correction needs to be called again */ +#define ZSTD_CHUNKSIZE_MAX \ + ( ((U32)-1) /* Maximum ending current index */ \ + - ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */ + +/** + * ZSTD_window_clear(): + * Clears the window containing the history by simply setting it to empty. + */ +MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window) +{ + size_t const endT = (size_t)(window->nextSrc - window->base); + U32 const end = (U32)endT; + + window->lowLimit = end; + window->dictLimit = end; +} + +/** + * ZSTD_window_hasExtDict(): + * Returns non-zero if the window has a non-empty extDict. + */ +MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window) +{ + return window.lowLimit < window.dictLimit; +} + +/** + * ZSTD_matchState_dictMode(): + * Inspects the provided matchState and figures out what dictMode should be + * passed to the compressor. + */ +MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms) +{ + return ZSTD_window_hasExtDict(ms->window) ? + ZSTD_extDict : + ms->dictMatchState != NULL ? + ZSTD_dictMatchState : + ZSTD_noDict; +} + +/** + * ZSTD_window_needOverflowCorrection(): + * Returns non-zero if the indices are getting too large and need overflow + * protection. + */ +MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window, + void const* srcEnd) +{ + U32 const current = (U32)((BYTE const*)srcEnd - window.base); + return current > ZSTD_CURRENT_MAX; +} + +/** + * ZSTD_window_correctOverflow(): + * Reduces the indices to protect from index overflow. + * Returns the correction made to the indices, which must be applied to every + * stored index. + * + * The least significant cycleLog bits of the indices must remain the same, + * which may be 0. Every index up to maxDist in the past must be valid. + * NOTE: (maxDist & cycleMask) must be zero. + */ +MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog, + U32 maxDist, void const* src) +{ + /* preemptive overflow correction: + * 1. correction is large enough: + * lowLimit > (3<<29) ==> current > 3<<29 + 1< (3<<29 + 1< (3<<29) - (1< (3<<29) - (1<<30) (NOTE: chainLog <= 30) + * > 1<<29 + * + * 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow: + * After correction, current is less than (1<base < 1<<32. + * 3. (cctx->lowLimit + 1< 3<<29 + 1<base); + U32 const newCurrent = (current & cycleMask) + maxDist; + U32 const correction = current - newCurrent; + assert((maxDist & cycleMask) == 0); + assert(current > newCurrent); + /* Loose bound, should be around 1<<29 (see above) */ + assert(correction > 1<<28); + + window->base += correction; + window->dictBase += correction; + window->lowLimit -= correction; + window->dictLimit -= correction; + + DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction, + window->lowLimit); + return correction; +} + +/** + * ZSTD_window_enforceMaxDist(): + * Updates lowLimit so that: + * (srcEnd - base) - lowLimit == maxDist + loadedDictEnd + * + * This allows a simple check that index >= lowLimit to see if index is valid. + * This must be called before a block compression call, with srcEnd as the block + * source end. + * + * If loadedDictEndPtr is not NULL, we set it to zero once we update lowLimit. + * This is because dictionaries are allowed to be referenced as long as the last + * byte of the dictionary is in the window, but once they are out of range, + * they cannot be referenced. If loadedDictEndPtr is NULL, we use + * loadedDictEnd == 0. + * + * In normal dict mode, the dict is between lowLimit and dictLimit. In + * dictMatchState mode, lowLimit and dictLimit are the same, and the dictionary + * is below them. forceWindow and dictMatchState are therefore incompatible. + */ +MEM_STATIC void +ZSTD_window_enforceMaxDist(ZSTD_window_t* window, + void const* srcEnd, + U32 maxDist, + U32* loadedDictEndPtr, + const ZSTD_matchState_t** dictMatchStatePtr) +{ + U32 const blockEndIdx = (U32)((BYTE const*)srcEnd - window->base); + U32 loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0; + DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u", + (unsigned)blockEndIdx, (unsigned)maxDist); + if (blockEndIdx > maxDist + loadedDictEnd) { + U32 const newLowLimit = blockEndIdx - maxDist; + if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit; + if (window->dictLimit < window->lowLimit) { + DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u", + (unsigned)window->dictLimit, (unsigned)window->lowLimit); + window->dictLimit = window->lowLimit; + } + if (loadedDictEndPtr) + *loadedDictEndPtr = 0; + if (dictMatchStatePtr) + *dictMatchStatePtr = NULL; + } +} + +/** + * ZSTD_window_update(): + * Updates the window by appending [src, src + srcSize) to the window. + * If it is not contiguous, the current prefix becomes the extDict, and we + * forget about the extDict. Handles overlap of the prefix and extDict. + * Returns non-zero if the segment is contiguous. + */ +MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window, + void const* src, size_t srcSize) +{ + BYTE const* const ip = (BYTE const*)src; + U32 contiguous = 1; + DEBUGLOG(5, "ZSTD_window_update"); + /* Check if blocks follow each other */ + if (src != window->nextSrc) { + /* not contiguous */ + size_t const distanceFromBase = (size_t)(window->nextSrc - window->base); + DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit); + window->lowLimit = window->dictLimit; + assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */ + window->dictLimit = (U32)distanceFromBase; + window->dictBase = window->base; + window->base = ip - distanceFromBase; + // ms->nextToUpdate = window->dictLimit; + if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */ + contiguous = 0; + } + window->nextSrc = ip + srcSize; + /* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */ + if ( (ip+srcSize > window->dictBase + window->lowLimit) + & (ip < window->dictBase + window->dictLimit)) { + ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase; + U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx; + window->lowLimit = lowLimitMax; + DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit); + } + return contiguous; +} + + +/* debug functions */ +#if (DEBUGLEVEL>=2) + +MEM_STATIC double ZSTD_fWeight(U32 rawStat) +{ + U32 const fp_accuracy = 8; + U32 const fp_multiplier = (1 << fp_accuracy); + U32 const newStat = rawStat + 1; + U32 const hb = ZSTD_highbit32(newStat); + U32 const BWeight = hb * fp_multiplier; + U32 const FWeight = (newStat << fp_accuracy) >> hb; + U32 const weight = BWeight + FWeight; + assert(hb + fp_accuracy < 31); + return (double)weight / fp_multiplier; +} + +/* display a table content, + * listing each element, its frequency, and its predicted bit cost */ +MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max) +{ + unsigned u, sum; + for (u=0, sum=0; u<=max; u++) sum += table[u]; + DEBUGLOG(2, "total nb elts: %u", sum); + for (u=0; u<=max; u++) { + DEBUGLOG(2, "%2u: %5u (%.2f)", + u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) ); + } +} + +#endif + + +#if defined (__cplusplus) +} +#endif + + +/* ============================================================== + * Private declarations + * These prototypes shall only be called from within lib/compress + * ============================================================== */ + +/* ZSTD_getCParamsFromCCtxParams() : + * cParams are built depending on compressionLevel, src size hints, + * LDM and manually set compression parameters. + */ +ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams( + const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize); + +/*! ZSTD_initCStream_internal() : + * Private use only. Init streaming operation. + * expects params to be valid. + * must receive dict, or cdict, or none, but not both. + * @return : 0, or an error code */ +size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs, + const void* dict, size_t dictSize, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, unsigned long long pledgedSrcSize); + +void ZSTD_resetSeqStore(seqStore_t* ssPtr); + +/*! ZSTD_getCParamsFromCDict() : + * as the name implies */ +ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict); + +/* ZSTD_compressBegin_advanced_internal() : + * Private use only. To be called from zstdmt_compress.c. */ +size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx, + const void* dict, size_t dictSize, + ZSTD_dictContentType_e dictContentType, + ZSTD_dictTableLoadMethod_e dtlm, + const ZSTD_CDict* cdict, + ZSTD_CCtx_params params, + unsigned long long pledgedSrcSize); + +/* ZSTD_compress_advanced_internal() : + * Private use only. To be called from zstdmt_compress.c. */ +size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict,size_t dictSize, + ZSTD_CCtx_params params); + + +/* ZSTD_writeLastEmptyBlock() : + * output an empty Block with end-of-frame mark to complete a frame + * @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h)) + * or an error code if `dstCapacity` is too small ( /* memcpy, memmove, memset */ +#include "cpu.h" /* bmi2 */ +#include "mem.h" /* low level memory routines */ +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" +#include "zstd_decompress_internal.h" +#include "zstd_ddict.h" + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) +# include "zstd_legacy.h" +#endif + + + +/*-******************************************************* +* Types +*********************************************************/ +struct ZSTD_DDict_s { + void* dictBuffer; + const void* dictContent; + size_t dictSize; + ZSTD_entropyDTables_t entropy; + U32 dictID; + U32 entropyPresent; + ZSTD_customMem cMem; +}; /* typedef'd to ZSTD_DDict within "zstd.h" */ + +const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict) +{ + assert(ddict != NULL); + return ddict->dictContent; +} + +size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict) +{ + assert(ddict != NULL); + return ddict->dictSize; +} + +void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) +{ + DEBUGLOG(4, "ZSTD_copyDDictParameters"); + assert(dctx != NULL); + assert(ddict != NULL); + dctx->dictID = ddict->dictID; + dctx->prefixStart = ddict->dictContent; + dctx->virtualStart = ddict->dictContent; + dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize; + dctx->previousDstEnd = dctx->dictEnd; + if (ddict->entropyPresent) { + dctx->litEntropy = 1; + dctx->fseEntropy = 1; + dctx->LLTptr = ddict->entropy.LLTable; + dctx->MLTptr = ddict->entropy.MLTable; + dctx->OFTptr = ddict->entropy.OFTable; + dctx->HUFptr = ddict->entropy.hufTable; + dctx->entropy.rep[0] = ddict->entropy.rep[0]; + dctx->entropy.rep[1] = ddict->entropy.rep[1]; + dctx->entropy.rep[2] = ddict->entropy.rep[2]; + } else { + dctx->litEntropy = 0; + dctx->fseEntropy = 0; + } +} + + +static size_t +ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict, + ZSTD_dictContentType_e dictContentType) +{ + ddict->dictID = 0; + ddict->entropyPresent = 0; + if (dictContentType == ZSTD_dct_rawContent) return 0; + + if (ddict->dictSize < 8) { + if (dictContentType == ZSTD_dct_fullDict) + return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ + return 0; /* pure content mode */ + } + { U32 const magic = MEM_readLE32(ddict->dictContent); + if (magic != ZSTD_MAGIC_DICTIONARY) { + if (dictContentType == ZSTD_dct_fullDict) + return ERROR(dictionary_corrupted); /* only accept specified dictionaries */ + return 0; /* pure content mode */ + } + } + ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE); + + /* load entropy tables */ + RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy( + &ddict->entropy, ddict->dictContent, ddict->dictSize)), + dictionary_corrupted); + ddict->entropyPresent = 1; + return 0; +} + + +static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType) +{ + if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) { + ddict->dictBuffer = NULL; + ddict->dictContent = dict; + if (!dict) dictSize = 0; + } else { + void* const internalBuffer = ZSTD_malloc(dictSize, ddict->cMem); + ddict->dictBuffer = internalBuffer; + ddict->dictContent = internalBuffer; + if (!internalBuffer) return ERROR(memory_allocation); + memcpy(internalBuffer, dict, dictSize); + } + ddict->dictSize = dictSize; + ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */ + + /* parse dictionary content */ + FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) ); + + return 0; +} + +ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType, + ZSTD_customMem customMem) +{ + if (!customMem.customAlloc ^ !customMem.customFree) return NULL; + + { ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_malloc(sizeof(ZSTD_DDict), customMem); + if (ddict == NULL) return NULL; + ddict->cMem = customMem; + { size_t const initResult = ZSTD_initDDict_internal(ddict, + dict, dictSize, + dictLoadMethod, dictContentType); + if (ZSTD_isError(initResult)) { + ZSTD_freeDDict(ddict); + return NULL; + } } + return ddict; + } +} + +/*! ZSTD_createDDict() : +* Create a digested dictionary, to start decompression without startup delay. +* `dict` content is copied inside DDict. +* Consequently, `dict` can be released after `ZSTD_DDict` creation */ +ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize) +{ + ZSTD_customMem const allocator = { NULL, NULL, NULL }; + return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator); +} + +/*! ZSTD_createDDict_byReference() : + * Create a digested dictionary, to start decompression without startup delay. + * Dictionary content is simply referenced, it will be accessed during decompression. + * Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */ +ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize) +{ + ZSTD_customMem const allocator = { NULL, NULL, NULL }; + return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator); +} + + +const ZSTD_DDict* ZSTD_initStaticDDict( + void* sBuffer, size_t sBufferSize, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType) +{ + size_t const neededSpace = sizeof(ZSTD_DDict) + + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); + ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer; + assert(sBuffer != NULL); + assert(dict != NULL); + if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */ + if (sBufferSize < neededSpace) return NULL; + if (dictLoadMethod == ZSTD_dlm_byCopy) { + memcpy(ddict+1, dict, dictSize); /* local copy */ + dict = ddict+1; + } + if (ZSTD_isError( ZSTD_initDDict_internal(ddict, + dict, dictSize, + ZSTD_dlm_byRef, dictContentType) )) + return NULL; + return ddict; +} + + +size_t ZSTD_freeDDict(ZSTD_DDict* ddict) +{ + if (ddict==NULL) return 0; /* support free on NULL */ + { ZSTD_customMem const cMem = ddict->cMem; + ZSTD_free(ddict->dictBuffer, cMem); + ZSTD_free(ddict, cMem); + return 0; + } +} + +/*! ZSTD_estimateDDictSize() : + * Estimate amount of memory that will be needed to create a dictionary for decompression. + * Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */ +size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod) +{ + return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize); +} + +size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict) +{ + if (ddict==NULL) return 0; /* support sizeof on NULL */ + return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ; +} + +/*! ZSTD_getDictID_fromDDict() : + * Provides the dictID of the dictionary loaded into `ddict`. + * If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. + * Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */ +unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict) +{ + if (ddict==NULL) return 0; + return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize); +} diff --git a/vendor/github.com/DataDog/zstd/zstd_ddict.h b/vendor/github.com/DataDog/zstd/zstd_ddict.h new file mode 100644 index 0000000000..0479d11bb0 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_ddict.h @@ -0,0 +1,44 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +#ifndef ZSTD_DDICT_H +#define ZSTD_DDICT_H + +/*-******************************************************* + * Dependencies + *********************************************************/ +#include /* size_t */ +#include "zstd.h" /* ZSTD_DDict, and several public functions */ + + +/*-******************************************************* + * Interface + *********************************************************/ + +/* note: several prototypes are already published in `zstd.h` : + * ZSTD_createDDict() + * ZSTD_createDDict_byReference() + * ZSTD_createDDict_advanced() + * ZSTD_freeDDict() + * ZSTD_initStaticDDict() + * ZSTD_sizeof_DDict() + * ZSTD_estimateDDictSize() + * ZSTD_getDictID_fromDict() + */ + +const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict); +size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict); + +void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict); + + + +#endif /* ZSTD_DDICT_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress.c b/vendor/github.com/DataDog/zstd/zstd_decompress.c new file mode 100644 index 0000000000..675596f5aa --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_decompress.c @@ -0,0 +1,1765 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/* *************************************************************** +* Tuning parameters +*****************************************************************/ +/*! + * HEAPMODE : + * Select how default decompression function ZSTD_decompress() allocates its context, + * on stack (0), or into heap (1, default; requires malloc()). + * Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected. + */ +#ifndef ZSTD_HEAPMODE +# define ZSTD_HEAPMODE 1 +#endif + +/*! +* LEGACY_SUPPORT : +* if set to 1+, ZSTD_decompress() can decode older formats (v0.1+) +*/ +#ifndef ZSTD_LEGACY_SUPPORT +# define ZSTD_LEGACY_SUPPORT 0 +#endif + +/*! + * MAXWINDOWSIZE_DEFAULT : + * maximum window size accepted by DStream __by default__. + * Frames requiring more memory will be rejected. + * It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize(). + */ +#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT +# define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1) +#endif + +/*! + * NO_FORWARD_PROGRESS_MAX : + * maximum allowed nb of calls to ZSTD_decompressStream() + * without any forward progress + * (defined as: no byte read from input, and no byte flushed to output) + * before triggering an error. + */ +#ifndef ZSTD_NO_FORWARD_PROGRESS_MAX +# define ZSTD_NO_FORWARD_PROGRESS_MAX 16 +#endif + + +/*-******************************************************* +* Dependencies +*********************************************************/ +#include /* memcpy, memmove, memset */ +#include "cpu.h" /* bmi2 */ +#include "mem.h" /* low level memory routines */ +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" +#include "zstd_internal.h" /* blockProperties_t */ +#include "zstd_decompress_internal.h" /* ZSTD_DCtx */ +#include "zstd_ddict.h" /* ZSTD_DDictDictContent */ +#include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */ + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) +# include "zstd_legacy.h" +#endif + + +/*-************************************************************* +* Context management +***************************************************************/ +size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx) +{ + if (dctx==NULL) return 0; /* support sizeof NULL */ + return sizeof(*dctx) + + ZSTD_sizeof_DDict(dctx->ddictLocal) + + dctx->inBuffSize + dctx->outBuffSize; +} + +size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); } + + +static size_t ZSTD_startingInputLength(ZSTD_format_e format) +{ + size_t const startingInputLength = (format==ZSTD_f_zstd1_magicless) ? + ZSTD_FRAMEHEADERSIZE_PREFIX - ZSTD_FRAMEIDSIZE : + ZSTD_FRAMEHEADERSIZE_PREFIX; + ZSTD_STATIC_ASSERT(ZSTD_FRAMEHEADERSIZE_PREFIX >= ZSTD_FRAMEIDSIZE); + /* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */ + assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) ); + return startingInputLength; +} + +static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx) +{ + dctx->format = ZSTD_f_zstd1; /* ZSTD_decompressBegin() invokes ZSTD_startingInputLength() with argument dctx->format */ + dctx->staticSize = 0; + dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT; + dctx->ddict = NULL; + dctx->ddictLocal = NULL; + dctx->dictEnd = NULL; + dctx->ddictIsCold = 0; + dctx->dictUses = ZSTD_dont_use; + dctx->inBuff = NULL; + dctx->inBuffSize = 0; + dctx->outBuffSize = 0; + dctx->streamStage = zdss_init; + dctx->legacyContext = NULL; + dctx->previousLegacyVersion = 0; + dctx->noForwardProgress = 0; + dctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid()); +} + +ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize) +{ + ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace; + + if ((size_t)workspace & 7) return NULL; /* 8-aligned */ + if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */ + + ZSTD_initDCtx_internal(dctx); + dctx->staticSize = workspaceSize; + dctx->inBuff = (char*)(dctx+1); + return dctx; +} + +ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem) +{ + if (!customMem.customAlloc ^ !customMem.customFree) return NULL; + + { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_malloc(sizeof(*dctx), customMem); + if (!dctx) return NULL; + dctx->customMem = customMem; + ZSTD_initDCtx_internal(dctx); + return dctx; + } +} + +ZSTD_DCtx* ZSTD_createDCtx(void) +{ + DEBUGLOG(3, "ZSTD_createDCtx"); + return ZSTD_createDCtx_advanced(ZSTD_defaultCMem); +} + +static void ZSTD_clearDict(ZSTD_DCtx* dctx) +{ + ZSTD_freeDDict(dctx->ddictLocal); + dctx->ddictLocal = NULL; + dctx->ddict = NULL; + dctx->dictUses = ZSTD_dont_use; +} + +size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) +{ + if (dctx==NULL) return 0; /* support free on NULL */ + RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx"); + { ZSTD_customMem const cMem = dctx->customMem; + ZSTD_clearDict(dctx); + ZSTD_free(dctx->inBuff, cMem); + dctx->inBuff = NULL; +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (dctx->legacyContext) + ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion); +#endif + ZSTD_free(dctx, cMem); + return 0; + } +} + +/* no longer useful */ +void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx) +{ + size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx); + memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */ +} + + +/*-************************************************************* + * Frame header decoding + ***************************************************************/ + +/*! ZSTD_isFrame() : + * Tells if the content of `buffer` starts with a valid Frame Identifier. + * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. + * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. + * Note 3 : Skippable Frame Identifiers are considered valid. */ +unsigned ZSTD_isFrame(const void* buffer, size_t size) +{ + if (size < ZSTD_FRAMEIDSIZE) return 0; + { U32 const magic = MEM_readLE32(buffer); + if (magic == ZSTD_MAGICNUMBER) return 1; + if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; + } +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (ZSTD_isLegacy(buffer, size)) return 1; +#endif + return 0; +} + +/** ZSTD_frameHeaderSize_internal() : + * srcSize must be large enough to reach header size fields. + * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless. + * @return : size of the Frame Header + * or an error code, which can be tested with ZSTD_isError() */ +static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format) +{ + size_t const minInputSize = ZSTD_startingInputLength(format); + RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong); + + { BYTE const fhd = ((const BYTE*)src)[minInputSize-1]; + U32 const dictID= fhd & 3; + U32 const singleSegment = (fhd >> 5) & 1; + U32 const fcsId = fhd >> 6; + return minInputSize + !singleSegment + + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId] + + (singleSegment && !fcsId); + } +} + +/** ZSTD_frameHeaderSize() : + * srcSize must be >= ZSTD_frameHeaderSize_prefix. + * @return : size of the Frame Header, + * or an error code (if srcSize is too small) */ +size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize) +{ + return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1); +} + + +/** ZSTD_getFrameHeader_advanced() : + * decode Frame Header, or require larger `srcSize`. + * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless + * @return : 0, `zfhPtr` is correctly filled, + * >0, `srcSize` is too small, value is wanted `srcSize` amount, + * or an error code, which can be tested using ZSTD_isError() */ +size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format) +{ + const BYTE* ip = (const BYTE*)src; + size_t const minInputSize = ZSTD_startingInputLength(format); + + memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */ + if (srcSize < minInputSize) return minInputSize; + RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter"); + + if ( (format != ZSTD_f_zstd1_magicless) + && (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) { + if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + /* skippable frame */ + if (srcSize < ZSTD_SKIPPABLEHEADERSIZE) + return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */ + memset(zfhPtr, 0, sizeof(*zfhPtr)); + zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE); + zfhPtr->frameType = ZSTD_skippableFrame; + return 0; + } + RETURN_ERROR(prefix_unknown); + } + + /* ensure there is enough `srcSize` to fully read/decode frame header */ + { size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format); + if (srcSize < fhsize) return fhsize; + zfhPtr->headerSize = (U32)fhsize; + } + + { BYTE const fhdByte = ip[minInputSize-1]; + size_t pos = minInputSize; + U32 const dictIDSizeCode = fhdByte&3; + U32 const checksumFlag = (fhdByte>>2)&1; + U32 const singleSegment = (fhdByte>>5)&1; + U32 const fcsID = fhdByte>>6; + U64 windowSize = 0; + U32 dictID = 0; + U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN; + RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported, + "reserved bits, must be zero"); + + if (!singleSegment) { + BYTE const wlByte = ip[pos++]; + U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN; + RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge); + windowSize = (1ULL << windowLog); + windowSize += (windowSize >> 3) * (wlByte&7); + } + switch(dictIDSizeCode) + { + default: assert(0); /* impossible */ + case 0 : break; + case 1 : dictID = ip[pos]; pos++; break; + case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; + case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break; + } + switch(fcsID) + { + default: assert(0); /* impossible */ + case 0 : if (singleSegment) frameContentSize = ip[pos]; break; + case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; + case 2 : frameContentSize = MEM_readLE32(ip+pos); break; + case 3 : frameContentSize = MEM_readLE64(ip+pos); break; + } + if (singleSegment) windowSize = frameContentSize; + + zfhPtr->frameType = ZSTD_frame; + zfhPtr->frameContentSize = frameContentSize; + zfhPtr->windowSize = windowSize; + zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); + zfhPtr->dictID = dictID; + zfhPtr->checksumFlag = checksumFlag; + } + return 0; +} + +/** ZSTD_getFrameHeader() : + * decode Frame Header, or require larger `srcSize`. + * note : this function does not consume input, it only reads it. + * @return : 0, `zfhPtr` is correctly filled, + * >0, `srcSize` is too small, value is wanted `srcSize` amount, + * or an error code, which can be tested using ZSTD_isError() */ +size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize) +{ + return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1); +} + + +/** ZSTD_getFrameContentSize() : + * compatible with legacy mode + * @return : decompressed size of the single frame pointed to be `src` if known, otherwise + * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined + * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */ +unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize) +{ +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (ZSTD_isLegacy(src, srcSize)) { + unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize); + return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret; + } +#endif + { ZSTD_frameHeader zfh; + if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0) + return ZSTD_CONTENTSIZE_ERROR; + if (zfh.frameType == ZSTD_skippableFrame) { + return 0; + } else { + return zfh.frameContentSize; + } } +} + +static size_t readSkippableFrameSize(void const* src, size_t srcSize) +{ + size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE; + U32 sizeU32; + + RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong); + + sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE); + RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32, + frameParameter_unsupported); + + return skippableHeaderSize + sizeU32; +} + +/** ZSTD_findDecompressedSize() : + * compatible with legacy mode + * `srcSize` must be the exact length of some number of ZSTD compressed and/or + * skippable frames + * @return : decompressed size of the frames contained */ +unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize) +{ + unsigned long long totalDstSize = 0; + + while (srcSize >= ZSTD_FRAMEHEADERSIZE_PREFIX) { + U32 const magicNumber = MEM_readLE32(src); + + if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + size_t const skippableSize = readSkippableFrameSize(src, srcSize); + if (ZSTD_isError(skippableSize)) + return skippableSize; + if (srcSize < skippableSize) { + return ZSTD_CONTENTSIZE_ERROR; + } + + src = (const BYTE *)src + skippableSize; + srcSize -= skippableSize; + continue; + } + + { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); + if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret; + + /* check for overflow */ + if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR; + totalDstSize += ret; + } + { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize); + if (ZSTD_isError(frameSrcSize)) { + return ZSTD_CONTENTSIZE_ERROR; + } + + src = (const BYTE *)src + frameSrcSize; + srcSize -= frameSrcSize; + } + } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ + + if (srcSize) return ZSTD_CONTENTSIZE_ERROR; + + return totalDstSize; +} + +/** ZSTD_getDecompressedSize() : + * compatible with legacy mode + * @return : decompressed size if known, 0 otherwise + note : 0 can mean any of the following : + - frame content is empty + - decompressed size field is not present in frame header + - frame header unknown / not supported + - frame header not complete (`srcSize` too small) */ +unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize) +{ + unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); + ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN); + return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret; +} + + +/** ZSTD_decodeFrameHeader() : + * `headerSize` must be the size provided by ZSTD_frameHeaderSize(). + * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */ +static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize) +{ + size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format); + if (ZSTD_isError(result)) return result; /* invalid header */ + RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small"); +#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION + /* Skip the dictID check in fuzzing mode, because it makes the search + * harder. + */ + RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID), + dictionary_wrong); +#endif + if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0); + return 0; +} + +static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret) +{ + ZSTD_frameSizeInfo frameSizeInfo; + frameSizeInfo.compressedSize = ret; + frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; + return frameSizeInfo; +} + +static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize) +{ + ZSTD_frameSizeInfo frameSizeInfo; + memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo)); + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (ZSTD_isLegacy(src, srcSize)) + return ZSTD_findFrameSizeInfoLegacy(src, srcSize); +#endif + + if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE) + && (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize); + return frameSizeInfo; + } else { + const BYTE* ip = (const BYTE*)src; + const BYTE* const ipstart = ip; + size_t remainingSize = srcSize; + size_t nbBlocks = 0; + ZSTD_frameHeader zfh; + + /* Extract Frame Header */ + { size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize); + if (ZSTD_isError(ret)) + return ZSTD_errorFrameSizeInfo(ret); + if (ret > 0) + return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); + } + + ip += zfh.headerSize; + remainingSize -= zfh.headerSize; + + /* Iterate over each block */ + while (1) { + blockProperties_t blockProperties; + size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); + if (ZSTD_isError(cBlockSize)) + return ZSTD_errorFrameSizeInfo(cBlockSize); + + if (ZSTD_blockHeaderSize + cBlockSize > remainingSize) + return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); + + ip += ZSTD_blockHeaderSize + cBlockSize; + remainingSize -= ZSTD_blockHeaderSize + cBlockSize; + nbBlocks++; + + if (blockProperties.lastBlock) break; + } + + /* Final frame content checksum */ + if (zfh.checksumFlag) { + if (remainingSize < 4) + return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); + ip += 4; + } + + frameSizeInfo.compressedSize = ip - ipstart; + frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) + ? zfh.frameContentSize + : nbBlocks * zfh.blockSizeMax; + return frameSizeInfo; + } +} + +/** ZSTD_findFrameCompressedSize() : + * compatible with legacy mode + * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame + * `srcSize` must be at least as large as the frame contained + * @return : the compressed size of the frame starting at `src` */ +size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize) +{ + ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); + return frameSizeInfo.compressedSize; +} + + +/** ZSTD_decompressBound() : + * compatible with legacy mode + * `src` must point to the start of a ZSTD frame or a skippeable frame + * `srcSize` must be at least as large as the frame contained + * @return : the maximum decompressed size of the compressed source + */ +unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize) +{ + unsigned long long bound = 0; + /* Iterate over each frame */ + while (srcSize > 0) { + ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); + size_t const compressedSize = frameSizeInfo.compressedSize; + unsigned long long const decompressedBound = frameSizeInfo.decompressedBound; + if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR) + return ZSTD_CONTENTSIZE_ERROR; + src = (const BYTE*)src + compressedSize; + srcSize -= compressedSize; + bound += decompressedBound; + } + return bound; +} + + +/*-************************************************************* + * Frame decoding + ***************************************************************/ + + +void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst) +{ + if (dst != dctx->previousDstEnd) { /* not contiguous */ + dctx->dictEnd = dctx->previousDstEnd; + dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); + dctx->prefixStart = dst; + dctx->previousDstEnd = dst; + } +} + +/** ZSTD_insertBlock() : + insert `src` block into `dctx` history. Useful to track uncompressed blocks. */ +size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize) +{ + ZSTD_checkContinuity(dctx, blockStart); + dctx->previousDstEnd = (const char*)blockStart + blockSize; + return blockSize; +} + + +static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_copyRawBlock"); + if (dst == NULL) { + if (srcSize == 0) return 0; + RETURN_ERROR(dstBuffer_null); + } + RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall); + memcpy(dst, src, srcSize); + return srcSize; +} + +static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, + BYTE b, + size_t regenSize) +{ + if (dst == NULL) { + if (regenSize == 0) return 0; + RETURN_ERROR(dstBuffer_null); + } + RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall); + memset(dst, b, regenSize); + return regenSize; +} + + +/*! ZSTD_decompressFrame() : + * @dctx must be properly initialized + * will update *srcPtr and *srcSizePtr, + * to make *srcPtr progress by one frame. */ +static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void** srcPtr, size_t *srcSizePtr) +{ + const BYTE* ip = (const BYTE*)(*srcPtr); + BYTE* const ostart = (BYTE* const)dst; + BYTE* const oend = ostart + dstCapacity; + BYTE* op = ostart; + size_t remainingSrcSize = *srcSizePtr; + + DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr); + + /* check */ + RETURN_ERROR_IF( + remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN+ZSTD_blockHeaderSize, + srcSize_wrong); + + /* Frame Header */ + { size_t const frameHeaderSize = ZSTD_frameHeaderSize(ip, ZSTD_FRAMEHEADERSIZE_PREFIX); + if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; + RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize, + srcSize_wrong); + FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) ); + ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize; + } + + /* Loop on each block */ + while (1) { + size_t decodedSize; + blockProperties_t blockProperties; + size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties); + if (ZSTD_isError(cBlockSize)) return cBlockSize; + + ip += ZSTD_blockHeaderSize; + remainingSrcSize -= ZSTD_blockHeaderSize; + RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong); + + switch(blockProperties.blockType) + { + case bt_compressed: + decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize, /* frame */ 1); + break; + case bt_raw : + decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize); + break; + case bt_rle : + decodedSize = ZSTD_setRleBlock(op, oend-op, *ip, blockProperties.origSize); + break; + case bt_reserved : + default: + RETURN_ERROR(corruption_detected); + } + + if (ZSTD_isError(decodedSize)) return decodedSize; + if (dctx->fParams.checksumFlag) + XXH64_update(&dctx->xxhState, op, decodedSize); + op += decodedSize; + ip += cBlockSize; + remainingSrcSize -= cBlockSize; + if (blockProperties.lastBlock) break; + } + + if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) { + RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize, + corruption_detected); + } + if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */ + U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState); + U32 checkRead; + RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong); + checkRead = MEM_readLE32(ip); + RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong); + ip += 4; + remainingSrcSize -= 4; + } + + /* Allow caller to get size read */ + *srcPtr = ip; + *srcSizePtr = remainingSrcSize; + return op-ostart; +} + +static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict, size_t dictSize, + const ZSTD_DDict* ddict) +{ + void* const dststart = dst; + int moreThan1Frame = 0; + + DEBUGLOG(5, "ZSTD_decompressMultiFrame"); + assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */ + + if (ddict) { + dict = ZSTD_DDict_dictContent(ddict); + dictSize = ZSTD_DDict_dictSize(ddict); + } + + while (srcSize >= ZSTD_FRAMEHEADERSIZE_PREFIX) { + +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1) + if (ZSTD_isLegacy(src, srcSize)) { + size_t decodedSize; + size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize); + if (ZSTD_isError(frameSize)) return frameSize; + RETURN_ERROR_IF(dctx->staticSize, memory_allocation, + "legacy support is not compatible with static dctx"); + + decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize); + if (ZSTD_isError(decodedSize)) return decodedSize; + + assert(decodedSize <=- dstCapacity); + dst = (BYTE*)dst + decodedSize; + dstCapacity -= decodedSize; + + src = (const BYTE*)src + frameSize; + srcSize -= frameSize; + + continue; + } +#endif + + { U32 const magicNumber = MEM_readLE32(src); + DEBUGLOG(4, "reading magic number %08X (expecting %08X)", + (unsigned)magicNumber, ZSTD_MAGICNUMBER); + if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { + size_t const skippableSize = readSkippableFrameSize(src, srcSize); + if (ZSTD_isError(skippableSize)) + return skippableSize; + RETURN_ERROR_IF(srcSize < skippableSize, srcSize_wrong); + + src = (const BYTE *)src + skippableSize; + srcSize -= skippableSize; + continue; + } } + + if (ddict) { + /* we were called from ZSTD_decompress_usingDDict */ + FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict)); + } else { + /* this will initialize correctly with no dict if dict == NULL, so + * use this in all cases but ddict */ + FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize)); + } + ZSTD_checkContinuity(dctx, dst); + + { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity, + &src, &srcSize); + RETURN_ERROR_IF( + (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown) + && (moreThan1Frame==1), + srcSize_wrong, + "at least one frame successfully completed, but following " + "bytes are garbage: it's more likely to be a srcSize error, " + "specifying more bytes than compressed size of frame(s). This " + "error message replaces ERROR(prefix_unknown), which would be " + "confusing, as the first header is actually correct. Note that " + "one could be unlucky, it might be a corruption error instead, " + "happening right at the place where we expect zstd magic " + "bytes. But this is _much_ less likely than a srcSize field " + "error."); + if (ZSTD_isError(res)) return res; + assert(res <= dstCapacity); + dst = (BYTE*)dst + res; + dstCapacity -= res; + } + moreThan1Frame = 1; + } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ + + RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed"); + + return (BYTE*)dst - (BYTE*)dststart; +} + +size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const void* dict, size_t dictSize) +{ + return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL); +} + + +static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx) +{ + switch (dctx->dictUses) { + default: + assert(0 /* Impossible */); + /* fall-through */ + case ZSTD_dont_use: + ZSTD_clearDict(dctx); + return NULL; + case ZSTD_use_indefinitely: + return dctx->ddict; + case ZSTD_use_once: + dctx->dictUses = ZSTD_dont_use; + return dctx->ddict; + } +} + +size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx)); +} + + +size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ +#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1) + size_t regenSize; + ZSTD_DCtx* const dctx = ZSTD_createDCtx(); + RETURN_ERROR_IF(dctx==NULL, memory_allocation); + regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); + ZSTD_freeDCtx(dctx); + return regenSize; +#else /* stack mode */ + ZSTD_DCtx dctx; + ZSTD_initDCtx_internal(&dctx); + return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); +#endif +} + + +/*-************************************** +* Advanced Streaming Decompression API +* Bufferless and synchronous +****************************************/ +size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } + +ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) { + switch(dctx->stage) + { + default: /* should not happen */ + assert(0); + case ZSTDds_getFrameHeaderSize: + case ZSTDds_decodeFrameHeader: + return ZSTDnit_frameHeader; + case ZSTDds_decodeBlockHeader: + return ZSTDnit_blockHeader; + case ZSTDds_decompressBlock: + return ZSTDnit_block; + case ZSTDds_decompressLastBlock: + return ZSTDnit_lastBlock; + case ZSTDds_checkChecksum: + return ZSTDnit_checksum; + case ZSTDds_decodeSkippableHeader: + case ZSTDds_skipFrame: + return ZSTDnit_skippableFrame; + } +} + +static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; } + +/** ZSTD_decompressContinue() : + * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress()) + * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity) + * or an error code, which can be tested using ZSTD_isError() */ +size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize); + /* Sanity check */ + RETURN_ERROR_IF(srcSize != dctx->expected, srcSize_wrong, "not allowed"); + if (dstCapacity) ZSTD_checkContinuity(dctx, dst); + + switch (dctx->stage) + { + case ZSTDds_getFrameHeaderSize : + assert(src != NULL); + if (dctx->format == ZSTD_f_zstd1) { /* allows header */ + assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */ + if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ + memcpy(dctx->headerBuffer, src, srcSize); + dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */ + dctx->stage = ZSTDds_decodeSkippableHeader; + return 0; + } } + dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format); + if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize; + memcpy(dctx->headerBuffer, src, srcSize); + dctx->expected = dctx->headerSize - srcSize; + dctx->stage = ZSTDds_decodeFrameHeader; + return 0; + + case ZSTDds_decodeFrameHeader: + assert(src != NULL); + memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize); + FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize)); + dctx->expected = ZSTD_blockHeaderSize; + dctx->stage = ZSTDds_decodeBlockHeader; + return 0; + + case ZSTDds_decodeBlockHeader: + { blockProperties_t bp; + size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); + if (ZSTD_isError(cBlockSize)) return cBlockSize; + dctx->expected = cBlockSize; + dctx->bType = bp.blockType; + dctx->rleSize = bp.origSize; + if (cBlockSize) { + dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock; + return 0; + } + /* empty block */ + if (bp.lastBlock) { + if (dctx->fParams.checksumFlag) { + dctx->expected = 4; + dctx->stage = ZSTDds_checkChecksum; + } else { + dctx->expected = 0; /* end of frame */ + dctx->stage = ZSTDds_getFrameHeaderSize; + } + } else { + dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */ + dctx->stage = ZSTDds_decodeBlockHeader; + } + return 0; + } + + case ZSTDds_decompressLastBlock: + case ZSTDds_decompressBlock: + DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock"); + { size_t rSize; + switch(dctx->bType) + { + case bt_compressed: + DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed"); + rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1); + break; + case bt_raw : + rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize); + break; + case bt_rle : + rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize); + break; + case bt_reserved : /* should never happen */ + default: + RETURN_ERROR(corruption_detected); + } + if (ZSTD_isError(rSize)) return rSize; + DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize); + dctx->decodedSize += rSize; + if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize); + + if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */ + DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize); + RETURN_ERROR_IF( + dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN + && dctx->decodedSize != dctx->fParams.frameContentSize, + corruption_detected); + if (dctx->fParams.checksumFlag) { /* another round for frame checksum */ + dctx->expected = 4; + dctx->stage = ZSTDds_checkChecksum; + } else { + dctx->expected = 0; /* ends here */ + dctx->stage = ZSTDds_getFrameHeaderSize; + } + } else { + dctx->stage = ZSTDds_decodeBlockHeader; + dctx->expected = ZSTD_blockHeaderSize; + dctx->previousDstEnd = (char*)dst + rSize; + } + return rSize; + } + + case ZSTDds_checkChecksum: + assert(srcSize == 4); /* guaranteed by dctx->expected */ + { U32 const h32 = (U32)XXH64_digest(&dctx->xxhState); + U32 const check32 = MEM_readLE32(src); + DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32); + RETURN_ERROR_IF(check32 != h32, checksum_wrong); + dctx->expected = 0; + dctx->stage = ZSTDds_getFrameHeaderSize; + return 0; + } + + case ZSTDds_decodeSkippableHeader: + assert(src != NULL); + assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE); + memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */ + dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */ + dctx->stage = ZSTDds_skipFrame; + return 0; + + case ZSTDds_skipFrame: + dctx->expected = 0; + dctx->stage = ZSTDds_getFrameHeaderSize; + return 0; + + default: + assert(0); /* impossible */ + RETURN_ERROR(GENERIC); /* some compiler require default to do something */ + } +} + + +static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + dctx->dictEnd = dctx->previousDstEnd; + dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); + dctx->prefixStart = dict; + dctx->previousDstEnd = (const char*)dict + dictSize; + return 0; +} + +/*! ZSTD_loadDEntropy() : + * dict : must point at beginning of a valid zstd dictionary. + * @return : size of entropy tables read */ +size_t +ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, + const void* const dict, size_t const dictSize) +{ + const BYTE* dictPtr = (const BYTE*)dict; + const BYTE* const dictEnd = dictPtr + dictSize; + + RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted); + assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */ + dictPtr += 8; /* skip header = magic + dictID */ + + ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable)); + ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable)); + ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE); + { void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */ + size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable); +#ifdef HUF_FORCE_DECOMPRESS_X1 + /* in minimal huffman, we always use X1 variants */ + size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable, + dictPtr, dictEnd - dictPtr, + workspace, workspaceSize); +#else + size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable, + dictPtr, dictEnd - dictPtr, + workspace, workspaceSize); +#endif + RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted); + dictPtr += hSize; + } + + { short offcodeNCount[MaxOff+1]; + unsigned offcodeMaxValue = MaxOff, offcodeLog; + size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); + RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted); + RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted); + RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted); + ZSTD_buildFSETable( entropy->OFTable, + offcodeNCount, offcodeMaxValue, + OF_base, OF_bits, + offcodeLog); + dictPtr += offcodeHeaderSize; + } + + { short matchlengthNCount[MaxML+1]; + unsigned matchlengthMaxValue = MaxML, matchlengthLog; + size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); + RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted); + RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted); + RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted); + ZSTD_buildFSETable( entropy->MLTable, + matchlengthNCount, matchlengthMaxValue, + ML_base, ML_bits, + matchlengthLog); + dictPtr += matchlengthHeaderSize; + } + + { short litlengthNCount[MaxLL+1]; + unsigned litlengthMaxValue = MaxLL, litlengthLog; + size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); + RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted); + RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted); + RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted); + ZSTD_buildFSETable( entropy->LLTable, + litlengthNCount, litlengthMaxValue, + LL_base, LL_bits, + litlengthLog); + dictPtr += litlengthHeaderSize; + } + + RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted); + { int i; + size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12)); + for (i=0; i<3; i++) { + U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4; + RETURN_ERROR_IF(rep==0 || rep >= dictContentSize, + dictionary_corrupted); + entropy->rep[i] = rep; + } } + + return dictPtr - (const BYTE*)dict; +} + +static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize); + { U32 const magic = MEM_readLE32(dict); + if (magic != ZSTD_MAGIC_DICTIONARY) { + return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */ + } } + dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); + + /* load entropy tables */ + { size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize); + RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted); + dict = (const char*)dict + eSize; + dictSize -= eSize; + } + dctx->litEntropy = dctx->fseEntropy = 1; + + /* reference dictionary content */ + return ZSTD_refDictContent(dctx, dict, dictSize); +} + +size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx) +{ + assert(dctx != NULL); + dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */ + dctx->stage = ZSTDds_getFrameHeaderSize; + dctx->decodedSize = 0; + dctx->previousDstEnd = NULL; + dctx->prefixStart = NULL; + dctx->virtualStart = NULL; + dctx->dictEnd = NULL; + dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */ + dctx->litEntropy = dctx->fseEntropy = 0; + dctx->dictID = 0; + ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue)); + memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */ + dctx->LLTptr = dctx->entropy.LLTable; + dctx->MLTptr = dctx->entropy.MLTable; + dctx->OFTptr = dctx->entropy.OFTable; + dctx->HUFptr = dctx->entropy.hufTable; + return 0; +} + +size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) ); + if (dict && dictSize) + RETURN_ERROR_IF( + ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)), + dictionary_corrupted); + return 0; +} + + +/* ====== ZSTD_DDict ====== */ + +size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) +{ + DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict"); + assert(dctx != NULL); + if (ddict) { + const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict); + size_t const dictSize = ZSTD_DDict_dictSize(ddict); + const void* const dictEnd = dictStart + dictSize; + dctx->ddictIsCold = (dctx->dictEnd != dictEnd); + DEBUGLOG(4, "DDict is %s", + dctx->ddictIsCold ? "~cold~" : "hot!"); + } + FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) ); + if (ddict) { /* NULL ddict is equivalent to no dictionary */ + ZSTD_copyDDictParameters(dctx, ddict); + } + return 0; +} + +/*! ZSTD_getDictID_fromDict() : + * Provides the dictID stored within dictionary. + * if @return == 0, the dictionary is not conformant with Zstandard specification. + * It can still be loaded, but as a content-only dictionary. */ +unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize) +{ + if (dictSize < 8) return 0; + if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0; + return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); +} + +/*! ZSTD_getDictID_fromFrame() : + * Provides the dictID required to decompress frame stored within `src`. + * If @return == 0, the dictID could not be decoded. + * This could for one of the following reasons : + * - The frame does not require a dictionary (most common case). + * - The frame was built with dictID intentionally removed. + * Needed dictionary is a hidden information. + * Note : this use case also happens when using a non-conformant dictionary. + * - `srcSize` is too small, and as a result, frame header could not be decoded. + * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`. + * - This is not a Zstandard frame. + * When identifying the exact failure cause, it's possible to use + * ZSTD_getFrameHeader(), which will provide a more precise error code. */ +unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize) +{ + ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 }; + size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize); + if (ZSTD_isError(hError)) return 0; + return zfp.dictID; +} + + +/*! ZSTD_decompress_usingDDict() : +* Decompression using a pre-digested Dictionary +* Use dictionary without significant overhead. */ +size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, + const ZSTD_DDict* ddict) +{ + /* pass content and size in case legacy frames are encountered */ + return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, + NULL, 0, + ddict); +} + + +/*===================================== +* Streaming decompression +*====================================*/ + +ZSTD_DStream* ZSTD_createDStream(void) +{ + DEBUGLOG(3, "ZSTD_createDStream"); + return ZSTD_createDStream_advanced(ZSTD_defaultCMem); +} + +ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize) +{ + return ZSTD_initStaticDCtx(workspace, workspaceSize); +} + +ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem) +{ + return ZSTD_createDCtx_advanced(customMem); +} + +size_t ZSTD_freeDStream(ZSTD_DStream* zds) +{ + return ZSTD_freeDCtx(zds); +} + + +/* *** Initialization *** */ + +size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; } +size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; } + +size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, + const void* dict, size_t dictSize, + ZSTD_dictLoadMethod_e dictLoadMethod, + ZSTD_dictContentType_e dictContentType) +{ + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong); + ZSTD_clearDict(dctx); + if (dict && dictSize >= 8) { + dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem); + RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation); + dctx->ddict = dctx->ddictLocal; + dctx->dictUses = ZSTD_use_indefinitely; + } + return 0; +} + +size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); +} + +size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) +{ + return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); +} + +size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) +{ + FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType)); + dctx->dictUses = ZSTD_use_once; + return 0; +} + +size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize) +{ + return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent); +} + + +/* ZSTD_initDStream_usingDict() : + * return : expected size, aka ZSTD_FRAMEHEADERSIZE_PREFIX. + * this function cannot fail */ +size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize) +{ + DEBUGLOG(4, "ZSTD_initDStream_usingDict"); + FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) ); + return ZSTD_FRAMEHEADERSIZE_PREFIX; +} + +/* note : this variant can't fail */ +size_t ZSTD_initDStream(ZSTD_DStream* zds) +{ + DEBUGLOG(4, "ZSTD_initDStream"); + return ZSTD_initDStream_usingDDict(zds, NULL); +} + +/* ZSTD_initDStream_usingDDict() : + * ddict will just be referenced, and must outlive decompression session + * this function cannot fail */ +size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict) +{ + FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) ); + FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) ); + return ZSTD_FRAMEHEADERSIZE_PREFIX; +} + +/* ZSTD_resetDStream() : + * return : expected size, aka ZSTD_FRAMEHEADERSIZE_PREFIX. + * this function cannot fail */ +size_t ZSTD_resetDStream(ZSTD_DStream* dctx) +{ + FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only)); + return ZSTD_FRAMEHEADERSIZE_PREFIX; +} + + +size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) +{ + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong); + ZSTD_clearDict(dctx); + if (ddict) { + dctx->ddict = ddict; + dctx->dictUses = ZSTD_use_indefinitely; + } + return 0; +} + +/* ZSTD_DCtx_setMaxWindowSize() : + * note : no direct equivalence in ZSTD_DCtx_setParameter, + * since this version sets windowSize, and the other sets windowLog */ +size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize) +{ + ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax); + size_t const min = (size_t)1 << bounds.lowerBound; + size_t const max = (size_t)1 << bounds.upperBound; + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong); + RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound); + RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound); + dctx->maxWindowSize = maxWindowSize; + return 0; +} + +size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format) +{ + return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, format); +} + +ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam) +{ + ZSTD_bounds bounds = { 0, 0, 0 }; + switch(dParam) { + case ZSTD_d_windowLogMax: + bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN; + bounds.upperBound = ZSTD_WINDOWLOG_MAX; + return bounds; + case ZSTD_d_format: + bounds.lowerBound = (int)ZSTD_f_zstd1; + bounds.upperBound = (int)ZSTD_f_zstd1_magicless; + ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); + return bounds; + default:; + } + bounds.error = ERROR(parameter_unsupported); + return bounds; +} + +/* ZSTD_dParam_withinBounds: + * @return 1 if value is within dParam bounds, + * 0 otherwise */ +static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value) +{ + ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam); + if (ZSTD_isError(bounds.error)) return 0; + if (value < bounds.lowerBound) return 0; + if (value > bounds.upperBound) return 0; + return 1; +} + +#define CHECK_DBOUNDS(p,v) { \ + RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound); \ +} + +size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value) +{ + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong); + switch(dParam) { + case ZSTD_d_windowLogMax: + if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT; + CHECK_DBOUNDS(ZSTD_d_windowLogMax, value); + dctx->maxWindowSize = ((size_t)1) << value; + return 0; + case ZSTD_d_format: + CHECK_DBOUNDS(ZSTD_d_format, value); + dctx->format = (ZSTD_format_e)value; + return 0; + default:; + } + RETURN_ERROR(parameter_unsupported); +} + +size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset) +{ + if ( (reset == ZSTD_reset_session_only) + || (reset == ZSTD_reset_session_and_parameters) ) { + dctx->streamStage = zdss_init; + dctx->noForwardProgress = 0; + } + if ( (reset == ZSTD_reset_parameters) + || (reset == ZSTD_reset_session_and_parameters) ) { + RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong); + ZSTD_clearDict(dctx); + dctx->format = ZSTD_f_zstd1; + dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT; + } + return 0; +} + + +size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx) +{ + return ZSTD_sizeof_DCtx(dctx); +} + +size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize) +{ + size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); + unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2); + unsigned long long const neededSize = MIN(frameContentSize, neededRBSize); + size_t const minRBSize = (size_t) neededSize; + RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize, + frameParameter_windowTooLarge); + return minRBSize; +} + +size_t ZSTD_estimateDStreamSize(size_t windowSize) +{ + size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX); + size_t const inBuffSize = blockSize; /* no block can be larger */ + size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN); + return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize; +} + +size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize) +{ + U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */ + ZSTD_frameHeader zfh; + size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize); + if (ZSTD_isError(err)) return err; + RETURN_ERROR_IF(err>0, srcSize_wrong); + RETURN_ERROR_IF(zfh.windowSize > windowSizeMax, + frameParameter_windowTooLarge); + return ZSTD_estimateDStreamSize((size_t)zfh.windowSize); +} + + +/* ***** Decompression ***** */ + +MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) +{ + size_t const length = MIN(dstCapacity, srcSize); + memcpy(dst, src, length); + return length; +} + + +size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input) +{ + const char* const istart = (const char*)(input->src) + input->pos; + const char* const iend = (const char*)(input->src) + input->size; + const char* ip = istart; + char* const ostart = (char*)(output->dst) + output->pos; + char* const oend = (char*)(output->dst) + output->size; + char* op = ostart; + U32 someMoreWork = 1; + + DEBUGLOG(5, "ZSTD_decompressStream"); + RETURN_ERROR_IF( + input->pos > input->size, + srcSize_wrong, + "forbidden. in: pos: %u vs size: %u", + (U32)input->pos, (U32)input->size); + RETURN_ERROR_IF( + output->pos > output->size, + dstSize_tooSmall, + "forbidden. out: pos: %u vs size: %u", + (U32)output->pos, (U32)output->size); + DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos)); + + while (someMoreWork) { + switch(zds->streamStage) + { + case zdss_init : + DEBUGLOG(5, "stage zdss_init => transparent reset "); + zds->streamStage = zdss_loadHeader; + zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; + zds->legacyVersion = 0; + zds->hostageByte = 0; + /* fall-through */ + + case zdss_loadHeader : + DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip)); +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) + if (zds->legacyVersion) { + RETURN_ERROR_IF(zds->staticSize, memory_allocation, + "legacy support is incompatible with static dctx"); + { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input); + if (hint==0) zds->streamStage = zdss_init; + return hint; + } } +#endif + { size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format); + DEBUGLOG(5, "header size : %u", (U32)hSize); + if (ZSTD_isError(hSize)) { +#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1) + U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart); + if (legacyVersion) { + ZSTD_DDict const* const ddict = ZSTD_getDDict(zds); + const void* const dict = ddict ? ZSTD_DDict_dictContent(ddict) : NULL; + size_t const dictSize = ddict ? ZSTD_DDict_dictSize(ddict) : 0; + DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion); + RETURN_ERROR_IF(zds->staticSize, memory_allocation, + "legacy support is incompatible with static dctx"); + FORWARD_IF_ERROR(ZSTD_initLegacyStream(&zds->legacyContext, + zds->previousLegacyVersion, legacyVersion, + dict, dictSize)); + zds->legacyVersion = zds->previousLegacyVersion = legacyVersion; + { size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, legacyVersion, output, input); + if (hint==0) zds->streamStage = zdss_init; /* or stay in stage zdss_loadHeader */ + return hint; + } } +#endif + return hSize; /* error */ + } + if (hSize != 0) { /* need more input */ + size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */ + size_t const remainingInput = (size_t)(iend-ip); + assert(iend >= ip); + if (toLoad > remainingInput) { /* not enough input to load full header */ + if (remainingInput > 0) { + memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput); + zds->lhSize += remainingInput; + } + input->pos = input->size; + return (MAX(ZSTD_FRAMEHEADERSIZE_MIN, hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */ + } + assert(ip != NULL); + memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad; + break; + } } + + /* check for single-pass mode opportunity */ + if (zds->fParams.frameContentSize && zds->fParams.windowSize /* skippable frame if == 0 */ + && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) { + size_t const cSize = ZSTD_findFrameCompressedSize(istart, iend-istart); + if (cSize <= (size_t)(iend-istart)) { + /* shortcut : using single-pass mode */ + size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, oend-op, istart, cSize, ZSTD_getDDict(zds)); + if (ZSTD_isError(decompressedSize)) return decompressedSize; + DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()") + ip = istart + cSize; + op += decompressedSize; + zds->expected = 0; + zds->streamStage = zdss_init; + someMoreWork = 0; + break; + } } + + /* Consume header (see ZSTDds_decodeFrameHeader) */ + DEBUGLOG(4, "Consume header"); + FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds))); + + if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ + zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE); + zds->stage = ZSTDds_skipFrame; + } else { + FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize)); + zds->expected = ZSTD_blockHeaderSize; + zds->stage = ZSTDds_decodeBlockHeader; + } + + /* control buffer memory usage */ + DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)", + (U32)(zds->fParams.windowSize >>10), + (U32)(zds->maxWindowSize >> 10) ); + zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN); + RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize, + frameParameter_windowTooLarge); + + /* Adapt buffer sizes to frame header instructions */ + { size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */); + size_t const neededOutBuffSize = ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize); + if ((zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize)) { + size_t const bufferSize = neededInBuffSize + neededOutBuffSize; + DEBUGLOG(4, "inBuff : from %u to %u", + (U32)zds->inBuffSize, (U32)neededInBuffSize); + DEBUGLOG(4, "outBuff : from %u to %u", + (U32)zds->outBuffSize, (U32)neededOutBuffSize); + if (zds->staticSize) { /* static DCtx */ + DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize); + assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */ + RETURN_ERROR_IF( + bufferSize > zds->staticSize - sizeof(ZSTD_DCtx), + memory_allocation); + } else { + ZSTD_free(zds->inBuff, zds->customMem); + zds->inBuffSize = 0; + zds->outBuffSize = 0; + zds->inBuff = (char*)ZSTD_malloc(bufferSize, zds->customMem); + RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation); + } + zds->inBuffSize = neededInBuffSize; + zds->outBuff = zds->inBuff + zds->inBuffSize; + zds->outBuffSize = neededOutBuffSize; + } } + zds->streamStage = zdss_read; + /* fall-through */ + + case zdss_read: + DEBUGLOG(5, "stage zdss_read"); + { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); + DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize); + if (neededInSize==0) { /* end of frame */ + zds->streamStage = zdss_init; + someMoreWork = 0; + break; + } + if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */ + int const isSkipFrame = ZSTD_isSkipFrame(zds); + size_t const decodedSize = ZSTD_decompressContinue(zds, + zds->outBuff + zds->outStart, (isSkipFrame ? 0 : zds->outBuffSize - zds->outStart), + ip, neededInSize); + if (ZSTD_isError(decodedSize)) return decodedSize; + ip += neededInSize; + if (!decodedSize && !isSkipFrame) break; /* this was just a header */ + zds->outEnd = zds->outStart + decodedSize; + zds->streamStage = zdss_flush; + break; + } } + if (ip==iend) { someMoreWork = 0; break; } /* no more input */ + zds->streamStage = zdss_load; + /* fall-through */ + + case zdss_load: + { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); + size_t const toLoad = neededInSize - zds->inPos; + int const isSkipFrame = ZSTD_isSkipFrame(zds); + size_t loadedSize; + if (isSkipFrame) { + loadedSize = MIN(toLoad, (size_t)(iend-ip)); + } else { + RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos, + corruption_detected, + "should never happen"); + loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend-ip); + } + ip += loadedSize; + zds->inPos += loadedSize; + if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */ + + /* decode loaded input */ + { size_t const decodedSize = ZSTD_decompressContinue(zds, + zds->outBuff + zds->outStart, zds->outBuffSize - zds->outStart, + zds->inBuff, neededInSize); + if (ZSTD_isError(decodedSize)) return decodedSize; + zds->inPos = 0; /* input is consumed */ + if (!decodedSize && !isSkipFrame) { zds->streamStage = zdss_read; break; } /* this was just a header */ + zds->outEnd = zds->outStart + decodedSize; + } } + zds->streamStage = zdss_flush; + /* fall-through */ + + case zdss_flush: + { size_t const toFlushSize = zds->outEnd - zds->outStart; + size_t const flushedSize = ZSTD_limitCopy(op, oend-op, zds->outBuff + zds->outStart, toFlushSize); + op += flushedSize; + zds->outStart += flushedSize; + if (flushedSize == toFlushSize) { /* flush completed */ + zds->streamStage = zdss_read; + if ( (zds->outBuffSize < zds->fParams.frameContentSize) + && (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) { + DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)", + (int)(zds->outBuffSize - zds->outStart), + (U32)zds->fParams.blockSizeMax); + zds->outStart = zds->outEnd = 0; + } + break; + } } + /* cannot complete flush */ + someMoreWork = 0; + break; + + default: + assert(0); /* impossible */ + RETURN_ERROR(GENERIC); /* some compiler require default to do something */ + } } + + /* result */ + input->pos = (size_t)(ip - (const char*)(input->src)); + output->pos = (size_t)(op - (char*)(output->dst)); + if ((ip==istart) && (op==ostart)) { /* no forward progress */ + zds->noForwardProgress ++; + if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) { + RETURN_ERROR_IF(op==oend, dstSize_tooSmall); + RETURN_ERROR_IF(ip==iend, srcSize_wrong); + assert(0); + } + } else { + zds->noForwardProgress = 0; + } + { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds); + if (!nextSrcSizeHint) { /* frame fully decoded */ + if (zds->outEnd == zds->outStart) { /* output fully flushed */ + if (zds->hostageByte) { + if (input->pos >= input->size) { + /* can't release hostage (not present) */ + zds->streamStage = zdss_read; + return 1; + } + input->pos++; /* release hostage */ + } /* zds->hostageByte */ + return 0; + } /* zds->outEnd == zds->outStart */ + if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */ + input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */ + zds->hostageByte=1; + } + return 1; + } /* nextSrcSizeHint==0 */ + nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */ + assert(zds->inPos <= nextSrcSizeHint); + nextSrcSizeHint -= zds->inPos; /* part already loaded*/ + return nextSrcSizeHint; + } +} + +size_t ZSTD_decompressStream_simpleArgs ( + ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, size_t* dstPos, + const void* src, size_t srcSize, size_t* srcPos) +{ + ZSTD_outBuffer output = { dst, dstCapacity, *dstPos }; + ZSTD_inBuffer input = { src, srcSize, *srcPos }; + /* ZSTD_compress_generic() will check validity of dstPos and srcPos */ + size_t const cErr = ZSTD_decompressStream(dctx, &output, &input); + *dstPos = output.pos; + *srcPos = input.pos; + return cErr; +} diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress_block.c b/vendor/github.com/DataDog/zstd/zstd_decompress_block.c new file mode 100644 index 0000000000..a2a7eedcf2 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_decompress_block.c @@ -0,0 +1,1311 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +/* zstd_decompress_block : + * this module takes care of decompressing _compressed_ block */ + +/*-******************************************************* +* Dependencies +*********************************************************/ +#include /* memcpy, memmove, memset */ +#include "compiler.h" /* prefetch */ +#include "cpu.h" /* bmi2 */ +#include "mem.h" /* low level memory routines */ +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" +#include "zstd_internal.h" +#include "zstd_decompress_internal.h" /* ZSTD_DCtx */ +#include "zstd_ddict.h" /* ZSTD_DDictDictContent */ +#include "zstd_decompress_block.h" + +/*_******************************************************* +* Macros +**********************************************************/ + +/* These two optional macros force the use one way or another of the two + * ZSTD_decompressSequences implementations. You can't force in both directions + * at the same time. + */ +#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) +#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!" +#endif + + +/*_******************************************************* +* Memory operations +**********************************************************/ +static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); } + + +/*-************************************************************* + * Block decoding + ***************************************************************/ + +/*! ZSTD_getcBlockSize() : + * Provides the size of compressed block from block header `src` */ +size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, + blockProperties_t* bpPtr) +{ + RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong); + + { U32 const cBlockHeader = MEM_readLE24(src); + U32 const cSize = cBlockHeader >> 3; + bpPtr->lastBlock = cBlockHeader & 1; + bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3); + bpPtr->origSize = cSize; /* only useful for RLE */ + if (bpPtr->blockType == bt_rle) return 1; + RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected); + return cSize; + } +} + + +/* Hidden declaration for fullbench */ +size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, + const void* src, size_t srcSize); +/*! ZSTD_decodeLiteralsBlock() : + * @return : nb of bytes read from src (< srcSize ) + * note : symbol not declared but exposed for fullbench */ +size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx, + const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */ +{ + RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected); + + { const BYTE* const istart = (const BYTE*) src; + symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3); + + switch(litEncType) + { + case set_repeat: + RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted); + /* fall-through */ + + case set_compressed: + RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3"); + { size_t lhSize, litSize, litCSize; + U32 singleStream=0; + U32 const lhlCode = (istart[0] >> 2) & 3; + U32 const lhc = MEM_readLE32(istart); + size_t hufSuccess; + switch(lhlCode) + { + case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */ + /* 2 - 2 - 10 - 10 */ + singleStream = !lhlCode; + lhSize = 3; + litSize = (lhc >> 4) & 0x3FF; + litCSize = (lhc >> 14) & 0x3FF; + break; + case 2: + /* 2 - 2 - 14 - 14 */ + lhSize = 4; + litSize = (lhc >> 4) & 0x3FFF; + litCSize = lhc >> 18; + break; + case 3: + /* 2 - 2 - 18 - 18 */ + lhSize = 5; + litSize = (lhc >> 4) & 0x3FFFF; + litCSize = (lhc >> 22) + (istart[4] << 10); + break; + } + RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected); + RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected); + + /* prefetch huffman table if cold */ + if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) { + PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable)); + } + + if (litEncType==set_repeat) { + if (singleStream) { + hufSuccess = HUF_decompress1X_usingDTable_bmi2( + dctx->litBuffer, litSize, istart+lhSize, litCSize, + dctx->HUFptr, dctx->bmi2); + } else { + hufSuccess = HUF_decompress4X_usingDTable_bmi2( + dctx->litBuffer, litSize, istart+lhSize, litCSize, + dctx->HUFptr, dctx->bmi2); + } + } else { + if (singleStream) { +#if defined(HUF_FORCE_DECOMPRESS_X2) + hufSuccess = HUF_decompress1X_DCtx_wksp( + dctx->entropy.hufTable, dctx->litBuffer, litSize, + istart+lhSize, litCSize, dctx->workspace, + sizeof(dctx->workspace)); +#else + hufSuccess = HUF_decompress1X1_DCtx_wksp_bmi2( + dctx->entropy.hufTable, dctx->litBuffer, litSize, + istart+lhSize, litCSize, dctx->workspace, + sizeof(dctx->workspace), dctx->bmi2); +#endif + } else { + hufSuccess = HUF_decompress4X_hufOnly_wksp_bmi2( + dctx->entropy.hufTable, dctx->litBuffer, litSize, + istart+lhSize, litCSize, dctx->workspace, + sizeof(dctx->workspace), dctx->bmi2); + } + } + + RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected); + + dctx->litPtr = dctx->litBuffer; + dctx->litSize = litSize; + dctx->litEntropy = 1; + if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable; + memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); + return litCSize + lhSize; + } + + case set_basic: + { size_t litSize, lhSize; + U32 const lhlCode = ((istart[0]) >> 2) & 3; + switch(lhlCode) + { + case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ + lhSize = 1; + litSize = istart[0] >> 3; + break; + case 1: + lhSize = 2; + litSize = MEM_readLE16(istart) >> 4; + break; + case 3: + lhSize = 3; + litSize = MEM_readLE24(istart) >> 4; + break; + } + + if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */ + RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected); + memcpy(dctx->litBuffer, istart+lhSize, litSize); + dctx->litPtr = dctx->litBuffer; + dctx->litSize = litSize; + memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); + return lhSize+litSize; + } + /* direct reference into compressed stream */ + dctx->litPtr = istart+lhSize; + dctx->litSize = litSize; + return lhSize+litSize; + } + + case set_rle: + { U32 const lhlCode = ((istart[0]) >> 2) & 3; + size_t litSize, lhSize; + switch(lhlCode) + { + case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */ + lhSize = 1; + litSize = istart[0] >> 3; + break; + case 1: + lhSize = 2; + litSize = MEM_readLE16(istart) >> 4; + break; + case 3: + lhSize = 3; + litSize = MEM_readLE24(istart) >> 4; + RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4"); + break; + } + RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected); + memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH); + dctx->litPtr = dctx->litBuffer; + dctx->litSize = litSize; + return lhSize+1; + } + default: + RETURN_ERROR(corruption_detected, "impossible"); + } + } +} + +/* Default FSE distribution tables. + * These are pre-calculated FSE decoding tables using default distributions as defined in specification : + * https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#default-distributions + * They were generated programmatically with following method : + * - start from default distributions, present in /lib/common/zstd_internal.h + * - generate tables normally, using ZSTD_buildFSETable() + * - printout the content of tables + * - pretify output, report below, test with fuzzer to ensure it's correct */ + +/* Default FSE distribution table for Literal Lengths */ +static const ZSTD_seqSymbol LL_defaultDTable[(1<tableLog = 0; + DTableH->fastMode = 0; + + cell->nbBits = 0; + cell->nextState = 0; + assert(nbAddBits < 255); + cell->nbAdditionalBits = (BYTE)nbAddBits; + cell->baseValue = baseValue; +} + + +/* ZSTD_buildFSETable() : + * generate FSE decoding table for one symbol (ll, ml or off) + * cannot fail if input is valid => + * all inputs are presumed validated at this stage */ +void +ZSTD_buildFSETable(ZSTD_seqSymbol* dt, + const short* normalizedCounter, unsigned maxSymbolValue, + const U32* baseValue, const U32* nbAdditionalBits, + unsigned tableLog) +{ + ZSTD_seqSymbol* const tableDecode = dt+1; + U16 symbolNext[MaxSeq+1]; + + U32 const maxSV1 = maxSymbolValue + 1; + U32 const tableSize = 1 << tableLog; + U32 highThreshold = tableSize-1; + + /* Sanity Checks */ + assert(maxSymbolValue <= MaxSeq); + assert(tableLog <= MaxFSELog); + + /* Init, lay down lowprob symbols */ + { ZSTD_seqSymbol_header DTableH; + DTableH.tableLog = tableLog; + DTableH.fastMode = 1; + { S16 const largeLimit= (S16)(1 << (tableLog-1)); + U32 s; + for (s=0; s= largeLimit) DTableH.fastMode=0; + symbolNext[s] = normalizedCounter[s]; + } } } + memcpy(dt, &DTableH, sizeof(DTableH)); + } + + /* Spread symbols */ + { U32 const tableMask = tableSize-1; + U32 const step = FSE_TABLESTEP(tableSize); + U32 s, position = 0; + for (s=0; s highThreshold) position = (position + step) & tableMask; /* lowprob area */ + } } + assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ + } + + /* Build Decoding table */ + { U32 u; + for (u=0; u max, corruption_detected); + { U32 const symbol = *(const BYTE*)src; + U32 const baseline = baseValue[symbol]; + U32 const nbBits = nbAdditionalBits[symbol]; + ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits); + } + *DTablePtr = DTableSpace; + return 1; + case set_basic : + *DTablePtr = defaultTable; + return 0; + case set_repeat: + RETURN_ERROR_IF(!flagRepeatTable, corruption_detected); + /* prefetch FSE table if used */ + if (ddictIsCold && (nbSeq > 24 /* heuristic */)) { + const void* const pStart = *DTablePtr; + size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog)); + PREFETCH_AREA(pStart, pSize); + } + return 0; + case set_compressed : + { unsigned tableLog; + S16 norm[MaxSeq+1]; + size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize); + RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected); + RETURN_ERROR_IF(tableLog > maxLog, corruption_detected); + ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog); + *DTablePtr = DTableSpace; + return headerSize; + } + default : + assert(0); + RETURN_ERROR(GENERIC, "impossible"); + } +} + +size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, + const void* src, size_t srcSize) +{ + const BYTE* const istart = (const BYTE* const)src; + const BYTE* const iend = istart + srcSize; + const BYTE* ip = istart; + int nbSeq; + DEBUGLOG(5, "ZSTD_decodeSeqHeaders"); + + /* check */ + RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong); + + /* SeqHead */ + nbSeq = *ip++; + if (!nbSeq) { + *nbSeqPtr=0; + RETURN_ERROR_IF(srcSize != 1, srcSize_wrong); + return 1; + } + if (nbSeq > 0x7F) { + if (nbSeq == 0xFF) { + RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong); + nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2; + } else { + RETURN_ERROR_IF(ip >= iend, srcSize_wrong); + nbSeq = ((nbSeq-0x80)<<8) + *ip++; + } + } + *nbSeqPtr = nbSeq; + + /* FSE table descriptors */ + RETURN_ERROR_IF(ip+4 > iend, srcSize_wrong); /* minimum possible size */ + { symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6); + symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3); + symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3); + ip++; + + /* Build DTables */ + { size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr, + LLtype, MaxLL, LLFSELog, + ip, iend-ip, + LL_base, LL_bits, + LL_defaultDTable, dctx->fseEntropy, + dctx->ddictIsCold, nbSeq); + RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected); + ip += llhSize; + } + + { size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr, + OFtype, MaxOff, OffFSELog, + ip, iend-ip, + OF_base, OF_bits, + OF_defaultDTable, dctx->fseEntropy, + dctx->ddictIsCold, nbSeq); + RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected); + ip += ofhSize; + } + + { size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr, + MLtype, MaxML, MLFSELog, + ip, iend-ip, + ML_base, ML_bits, + ML_defaultDTable, dctx->fseEntropy, + dctx->ddictIsCold, nbSeq); + RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected); + ip += mlhSize; + } + } + + return ip-istart; +} + + +typedef struct { + size_t litLength; + size_t matchLength; + size_t offset; + const BYTE* match; +} seq_t; + +typedef struct { + size_t state; + const ZSTD_seqSymbol* table; +} ZSTD_fseState; + +typedef struct { + BIT_DStream_t DStream; + ZSTD_fseState stateLL; + ZSTD_fseState stateOffb; + ZSTD_fseState stateML; + size_t prevOffset[ZSTD_REP_NUM]; + const BYTE* prefixStart; + const BYTE* dictEnd; + size_t pos; +} seqState_t; + + +/* ZSTD_execSequenceLast7(): + * exceptional case : decompress a match starting within last 7 bytes of output buffer. + * requires more careful checks, to ensure there is no overflow. + * performance does not matter though. + * note : this case is supposed to be never generated "naturally" by reference encoder, + * since in most cases it needs at least 8 bytes to look for a match. + * but it's allowed by the specification. */ +FORCE_NOINLINE +size_t ZSTD_execSequenceLast7(BYTE* op, + BYTE* const oend, seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd) +{ + BYTE* const oLitEnd = op + sequence.litLength; + size_t const sequenceLength = sequence.litLength + sequence.matchLength; + BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ + const BYTE* const iLitEnd = *litPtr + sequence.litLength; + const BYTE* match = oLitEnd - sequence.offset; + + /* check */ + RETURN_ERROR_IF(oMatchEnd>oend, dstSize_tooSmall, "last match must fit within dstBuffer"); + RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "try to read beyond literal buffer"); + + /* copy literals */ + while (op < oLitEnd) *op++ = *(*litPtr)++; + + /* copy Match */ + if (sequence.offset > (size_t)(oLitEnd - base)) { + /* offset beyond prefix */ + RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - vBase),corruption_detected); + match = dictEnd - (base-match); + if (match + sequence.matchLength <= dictEnd) { + memmove(oLitEnd, match, sequence.matchLength); + return sequenceLength; + } + /* span extDict & currentPrefixSegment */ + { size_t const length1 = dictEnd - match; + memmove(oLitEnd, match, length1); + op = oLitEnd + length1; + sequence.matchLength -= length1; + match = base; + } } + while (op < oMatchEnd) *op++ = *match++; + return sequenceLength; +} + + +HINT_INLINE +size_t ZSTD_execSequence(BYTE* op, + BYTE* const oend, seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd) +{ + BYTE* const oLitEnd = op + sequence.litLength; + size_t const sequenceLength = sequence.litLength + sequence.matchLength; + BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ + BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; + const BYTE* const iLitEnd = *litPtr + sequence.litLength; + const BYTE* match = oLitEnd - sequence.offset; + + /* check */ + RETURN_ERROR_IF(oMatchEnd>oend, dstSize_tooSmall, "last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend"); + RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "over-read beyond lit buffer"); + if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd); + + /* copy Literals */ + ZSTD_copy8(op, *litPtr); + if (sequence.litLength > 8) + ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */ + op = oLitEnd; + *litPtr = iLitEnd; /* update for next sequence */ + + /* copy Match */ + if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { + /* offset beyond prefix -> go into extDict */ + RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected); + match = dictEnd + (match - prefixStart); + if (match + sequence.matchLength <= dictEnd) { + memmove(oLitEnd, match, sequence.matchLength); + return sequenceLength; + } + /* span extDict & currentPrefixSegment */ + { size_t const length1 = dictEnd - match; + memmove(oLitEnd, match, length1); + op = oLitEnd + length1; + sequence.matchLength -= length1; + match = prefixStart; + if (op > oend_w || sequence.matchLength < MINMATCH) { + U32 i; + for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i]; + return sequenceLength; + } + } } + /* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */ + + /* match within prefix */ + if (sequence.offset < 8) { + /* close range match, overlap */ + static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ + static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ + int const sub2 = dec64table[sequence.offset]; + op[0] = match[0]; + op[1] = match[1]; + op[2] = match[2]; + op[3] = match[3]; + match += dec32table[sequence.offset]; + ZSTD_copy4(op+4, match); + match -= sub2; + } else { + ZSTD_copy8(op, match); + } + op += 8; match += 8; + + if (oMatchEnd > oend-(16-MINMATCH)) { + if (op < oend_w) { + ZSTD_wildcopy(op, match, oend_w - op); + match += oend_w - op; + op = oend_w; + } + while (op < oMatchEnd) *op++ = *match++; + } else { + ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */ + } + return sequenceLength; +} + + +HINT_INLINE +size_t ZSTD_execSequenceLong(BYTE* op, + BYTE* const oend, seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + const BYTE* const prefixStart, const BYTE* const dictStart, const BYTE* const dictEnd) +{ + BYTE* const oLitEnd = op + sequence.litLength; + size_t const sequenceLength = sequence.litLength + sequence.matchLength; + BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ + BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; + const BYTE* const iLitEnd = *litPtr + sequence.litLength; + const BYTE* match = sequence.match; + + /* check */ + RETURN_ERROR_IF(oMatchEnd > oend, dstSize_tooSmall, "last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend"); + RETURN_ERROR_IF(iLitEnd > litLimit, corruption_detected, "over-read beyond lit buffer"); + if (oLitEnd > oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, dictStart, dictEnd); + + /* copy Literals */ + ZSTD_copy8(op, *litPtr); /* note : op <= oLitEnd <= oend_w == oend - 8 */ + if (sequence.litLength > 8) + ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */ + op = oLitEnd; + *litPtr = iLitEnd; /* update for next sequence */ + + /* copy Match */ + if (sequence.offset > (size_t)(oLitEnd - prefixStart)) { + /* offset beyond prefix */ + RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - dictStart), corruption_detected); + if (match + sequence.matchLength <= dictEnd) { + memmove(oLitEnd, match, sequence.matchLength); + return sequenceLength; + } + /* span extDict & currentPrefixSegment */ + { size_t const length1 = dictEnd - match; + memmove(oLitEnd, match, length1); + op = oLitEnd + length1; + sequence.matchLength -= length1; + match = prefixStart; + if (op > oend_w || sequence.matchLength < MINMATCH) { + U32 i; + for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i]; + return sequenceLength; + } + } } + assert(op <= oend_w); + assert(sequence.matchLength >= MINMATCH); + + /* match within prefix */ + if (sequence.offset < 8) { + /* close range match, overlap */ + static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ + static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */ + int const sub2 = dec64table[sequence.offset]; + op[0] = match[0]; + op[1] = match[1]; + op[2] = match[2]; + op[3] = match[3]; + match += dec32table[sequence.offset]; + ZSTD_copy4(op+4, match); + match -= sub2; + } else { + ZSTD_copy8(op, match); + } + op += 8; match += 8; + + if (oMatchEnd > oend-(16-MINMATCH)) { + if (op < oend_w) { + ZSTD_wildcopy(op, match, oend_w - op); + match += oend_w - op; + op = oend_w; + } + while (op < oMatchEnd) *op++ = *match++; + } else { + ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */ + } + return sequenceLength; +} + +static void +ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt) +{ + const void* ptr = dt; + const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr; + DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); + DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits", + (U32)DStatePtr->state, DTableH->tableLog); + BIT_reloadDStream(bitD); + DStatePtr->table = dt + 1; +} + +FORCE_INLINE_TEMPLATE void +ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD) +{ + ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state]; + U32 const nbBits = DInfo.nbBits; + size_t const lowBits = BIT_readBits(bitD, nbBits); + DStatePtr->state = DInfo.nextState + lowBits; +} + +/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum + * offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1) + * bits before reloading. This value is the maximum number of bytes we read + * after reloading when we are decoding long offsets. + */ +#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \ + (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \ + ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \ + : 0) + +typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e; + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG +FORCE_INLINE_TEMPLATE seq_t +ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets) +{ + seq_t seq; + U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits; + U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits; + U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits; + U32 const totalBits = llBits+mlBits+ofBits; + U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue; + U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue; + U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue; + + /* sequence */ + { size_t offset; + if (!ofBits) + offset = 0; + else { + ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1); + ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5); + assert(ofBits <= MaxOff); + if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) { + U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed); + offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits); + BIT_reloadDStream(&seqState->DStream); + if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits); + assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */ + } else { + offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */ + if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); + } + } + + if (ofBits <= 1) { + offset += (llBase==0); + if (offset) { + size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset]; + temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */ + if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; + seqState->prevOffset[1] = seqState->prevOffset[0]; + seqState->prevOffset[0] = offset = temp; + } else { /* offset == 0 */ + offset = seqState->prevOffset[0]; + } + } else { + seqState->prevOffset[2] = seqState->prevOffset[1]; + seqState->prevOffset[1] = seqState->prevOffset[0]; + seqState->prevOffset[0] = offset; + } + seq.offset = offset; + } + + seq.matchLength = mlBase + + ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/) : 0); /* <= 16 bits */ + if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32)) + BIT_reloadDStream(&seqState->DStream); + if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog))) + BIT_reloadDStream(&seqState->DStream); + /* Ensure there are enough bits to read the rest of data in 64-bit mode. */ + ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64); + + seq.litLength = llBase + + ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits/*>0*/) : 0); /* <= 16 bits */ + if (MEM_32bits()) + BIT_reloadDStream(&seqState->DStream); + + DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u", + (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset); + + /* ANS state update */ + ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */ + ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */ + if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ + ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */ + + return seq; +} + +FORCE_INLINE_TEMPLATE size_t +ZSTD_decompressSequences_body( ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + const BYTE* ip = (const BYTE*)seqStart; + const BYTE* const iend = ip + seqSize; + BYTE* const ostart = (BYTE* const)dst; + BYTE* const oend = ostart + maxDstSize; + BYTE* op = ostart; + const BYTE* litPtr = dctx->litPtr; + const BYTE* const litEnd = litPtr + dctx->litSize; + const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); + const BYTE* const vBase = (const BYTE*) (dctx->virtualStart); + const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); + DEBUGLOG(5, "ZSTD_decompressSequences_body"); + + /* Regen sequences */ + if (nbSeq) { + seqState_t seqState; + dctx->fseEntropy = 1; + { U32 i; for (i=0; ientropy.rep[i]; } + RETURN_ERROR_IF( + ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), + corruption_detected); + ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); + ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); + ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); + + for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) { + nbSeq--; + { seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset); + size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd); + DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize); + if (ZSTD_isError(oneSeqSize)) return oneSeqSize; + op += oneSeqSize; + } } + + /* check if reached exact end */ + DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq); + RETURN_ERROR_IF(nbSeq, corruption_detected); + /* save reps for next block */ + { U32 i; for (i=0; ientropy.rep[i] = (U32)(seqState.prevOffset[i]); } + } + + /* last literal segment */ + { size_t const lastLLSize = litEnd - litPtr; + RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall); + memcpy(op, litPtr, lastLLSize); + op += lastLLSize; + } + + return op-ostart; +} + +static size_t +ZSTD_decompressSequences_default(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ + + + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT +FORCE_INLINE_TEMPLATE seq_t +ZSTD_decodeSequenceLong(seqState_t* seqState, ZSTD_longOffset_e const longOffsets) +{ + seq_t seq; + U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits; + U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits; + U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits; + U32 const totalBits = llBits+mlBits+ofBits; + U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue; + U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue; + U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue; + + /* sequence */ + { size_t offset; + if (!ofBits) + offset = 0; + else { + ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1); + ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5); + assert(ofBits <= MaxOff); + if (MEM_32bits() && longOffsets) { + U32 const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN_32-1); + offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits); + if (MEM_32bits() || extraBits) BIT_reloadDStream(&seqState->DStream); + if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits); + } else { + offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */ + if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); + } + } + + if (ofBits <= 1) { + offset += (llBase==0); + if (offset) { + size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset]; + temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */ + if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; + seqState->prevOffset[1] = seqState->prevOffset[0]; + seqState->prevOffset[0] = offset = temp; + } else { + offset = seqState->prevOffset[0]; + } + } else { + seqState->prevOffset[2] = seqState->prevOffset[1]; + seqState->prevOffset[1] = seqState->prevOffset[0]; + seqState->prevOffset[0] = offset; + } + seq.offset = offset; + } + + seq.matchLength = mlBase + ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */ + if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32)) + BIT_reloadDStream(&seqState->DStream); + if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog))) + BIT_reloadDStream(&seqState->DStream); + /* Verify that there is enough bits to read the rest of the data in 64-bit mode. */ + ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64); + + seq.litLength = llBase + ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */ + if (MEM_32bits()) + BIT_reloadDStream(&seqState->DStream); + + { size_t const pos = seqState->pos + seq.litLength; + const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart; + seq.match = matchBase + pos - seq.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted. + * No consequence though : no memory access will occur, overly large offset will be detected in ZSTD_execSequenceLong() */ + seqState->pos = pos + seq.matchLength; + } + + /* ANS state update */ + ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */ + ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */ + if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */ + ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */ + + return seq; +} + +FORCE_INLINE_TEMPLATE size_t +ZSTD_decompressSequencesLong_body( + ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + const BYTE* ip = (const BYTE*)seqStart; + const BYTE* const iend = ip + seqSize; + BYTE* const ostart = (BYTE* const)dst; + BYTE* const oend = ostart + maxDstSize; + BYTE* op = ostart; + const BYTE* litPtr = dctx->litPtr; + const BYTE* const litEnd = litPtr + dctx->litSize; + const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart); + const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart); + const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); + + /* Regen sequences */ + if (nbSeq) { +#define STORED_SEQS 4 +#define STORED_SEQS_MASK (STORED_SEQS-1) +#define ADVANCED_SEQS 4 + seq_t sequences[STORED_SEQS]; + int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS); + seqState_t seqState; + int seqNb; + dctx->fseEntropy = 1; + { int i; for (i=0; ientropy.rep[i]; } + seqState.prefixStart = prefixStart; + seqState.pos = (size_t)(op-prefixStart); + seqState.dictEnd = dictEnd; + assert(iend >= ip); + RETURN_ERROR_IF( + ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)), + corruption_detected); + ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr); + ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr); + ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr); + + /* prepare in advance */ + for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNbentropy.rep[i] = (U32)(seqState.prevOffset[i]); } + } + + /* last literal segment */ + { size_t const lastLLSize = litEnd - litPtr; + RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall); + memcpy(op, litPtr, lastLLSize); + op += lastLLSize; + } + + return op-ostart; +} + +static size_t +ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ + + + +#if DYNAMIC_BMI2 + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG +static TARGET_ATTRIBUTE("bmi2") size_t +ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT +static TARGET_ATTRIBUTE("bmi2") size_t +ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ + +#endif /* DYNAMIC_BMI2 */ + +typedef size_t (*ZSTD_decompressSequences_t)( + ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset); + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG +static size_t +ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + DEBUGLOG(5, "ZSTD_decompressSequences"); +#if DYNAMIC_BMI2 + if (dctx->bmi2) { + return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); + } +#endif + return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */ + + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT +/* ZSTD_decompressSequencesLong() : + * decompression function triggered when a minimum share of offsets is considered "long", + * aka out of cache. + * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance". + * This function will try to mitigate main memory latency through the use of prefetching */ +static size_t +ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx, + void* dst, size_t maxDstSize, + const void* seqStart, size_t seqSize, int nbSeq, + const ZSTD_longOffset_e isLongOffset) +{ + DEBUGLOG(5, "ZSTD_decompressSequencesLong"); +#if DYNAMIC_BMI2 + if (dctx->bmi2) { + return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); + } +#endif + return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset); +} +#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */ + + + +#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) +/* ZSTD_getLongOffsetsShare() : + * condition : offTable must be valid + * @return : "share" of long offsets (arbitrarily defined as > (1<<23)) + * compared to maximum possible of (1< 22) total += 1; + } + + assert(tableLog <= OffFSELog); + total <<= (OffFSELog - tableLog); /* scale to OffFSELog */ + + return total; +} +#endif + + +size_t +ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, const int frame) +{ /* blockType == blockCompressed */ + const BYTE* ip = (const BYTE*)src; + /* isLongOffset must be true if there are long offsets. + * Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN. + * We don't expect that to be the case in 64-bit mode. + * In block mode, window size is not known, so we have to be conservative. + * (note: but it could be evaluated from current-lowLimit) + */ + ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || (dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN)))); + DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize); + + RETURN_ERROR_IF(srcSize >= ZSTD_BLOCKSIZE_MAX, srcSize_wrong); + + /* Decode literals section */ + { size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize); + DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize); + if (ZSTD_isError(litCSize)) return litCSize; + ip += litCSize; + srcSize -= litCSize; + } + + /* Build Decoding Tables */ + { + /* These macros control at build-time which decompressor implementation + * we use. If neither is defined, we do some inspection and dispatch at + * runtime. + */ +#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) + int usePrefetchDecoder = dctx->ddictIsCold; +#endif + int nbSeq; + size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize); + if (ZSTD_isError(seqHSize)) return seqHSize; + ip += seqHSize; + srcSize -= seqHSize; + +#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) + if ( !usePrefetchDecoder + && (!frame || (dctx->fParams.windowSize > (1<<24))) + && (nbSeq>ADVANCED_SEQS) ) { /* could probably use a larger nbSeq limit */ + U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr); + U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */ + usePrefetchDecoder = (shareLongOffsets >= minShare); + } +#endif + + dctx->ddictIsCold = 0; + +#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \ + !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG) + if (usePrefetchDecoder) +#endif +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT + return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset); +#endif + +#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG + /* else */ + return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset); +#endif + } +} + + +size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize) +{ + size_t dSize; + ZSTD_checkContinuity(dctx, dst); + dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0); + dctx->previousDstEnd = (char*)dst + dSize; + return dSize; +} diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress_block.h b/vendor/github.com/DataDog/zstd/zstd_decompress_block.h new file mode 100644 index 0000000000..7e92960410 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_decompress_block.h @@ -0,0 +1,59 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +#ifndef ZSTD_DEC_BLOCK_H +#define ZSTD_DEC_BLOCK_H + +/*-******************************************************* + * Dependencies + *********************************************************/ +#include /* size_t */ +#include "zstd.h" /* DCtx, and some public functions */ +#include "zstd_internal.h" /* blockProperties_t, and some public functions */ +#include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */ + + +/* === Prototypes === */ + +/* note: prototypes already published within `zstd.h` : + * ZSTD_decompressBlock() + */ + +/* note: prototypes already published within `zstd_internal.h` : + * ZSTD_getcBlockSize() + * ZSTD_decodeSeqHeaders() + */ + + +/* ZSTD_decompressBlock_internal() : + * decompress block, starting at `src`, + * into destination buffer `dst`. + * @return : decompressed block size, + * or an error code (which can be tested using ZSTD_isError()) + */ +size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx, + void* dst, size_t dstCapacity, + const void* src, size_t srcSize, const int frame); + +/* ZSTD_buildFSETable() : + * generate FSE decoding table for one symbol (ll, ml or off) + * this function must be called with valid parameters only + * (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.) + * in which case it cannot fail. + * Internal use only. + */ +void ZSTD_buildFSETable(ZSTD_seqSymbol* dt, + const short* normalizedCounter, unsigned maxSymbolValue, + const U32* baseValue, const U32* nbAdditionalBits, + unsigned tableLog); + + +#endif /* ZSTD_DEC_BLOCK_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_decompress_internal.h b/vendor/github.com/DataDog/zstd/zstd_decompress_internal.h new file mode 100644 index 0000000000..ccbdfa090f --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_decompress_internal.h @@ -0,0 +1,175 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/* zstd_decompress_internal: + * objects and definitions shared within lib/decompress modules */ + + #ifndef ZSTD_DECOMPRESS_INTERNAL_H + #define ZSTD_DECOMPRESS_INTERNAL_H + + +/*-******************************************************* + * Dependencies + *********************************************************/ +#include "mem.h" /* BYTE, U16, U32 */ +#include "zstd_internal.h" /* ZSTD_seqSymbol */ + + + +/*-******************************************************* + * Constants + *********************************************************/ +static const U32 LL_base[MaxLL+1] = { + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 18, 20, 22, 24, 28, 32, 40, + 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, + 0x2000, 0x4000, 0x8000, 0x10000 }; + +static const U32 OF_base[MaxOff+1] = { + 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, + 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, + 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, + 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD }; + +static const U32 OF_bits[MaxOff+1] = { + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31 }; + +static const U32 ML_base[MaxML+1] = { + 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, + 19, 20, 21, 22, 23, 24, 25, 26, + 27, 28, 29, 30, 31, 32, 33, 34, + 35, 37, 39, 41, 43, 47, 51, 59, + 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, + 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 }; + + +/*-******************************************************* + * Decompression types + *********************************************************/ + typedef struct { + U32 fastMode; + U32 tableLog; + } ZSTD_seqSymbol_header; + + typedef struct { + U16 nextState; + BYTE nbAdditionalBits; + BYTE nbBits; + U32 baseValue; + } ZSTD_seqSymbol; + + #define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log))) + +typedef struct { + ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */ + ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */ + ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */ + HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */ + U32 rep[ZSTD_REP_NUM]; +} ZSTD_entropyDTables_t; + +typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, + ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock, + ZSTDds_decompressLastBlock, ZSTDds_checkChecksum, + ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage; + +typedef enum { zdss_init=0, zdss_loadHeader, + zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage; + +typedef enum { + ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */ + ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */ + ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */ +} ZSTD_dictUses_e; + +struct ZSTD_DCtx_s +{ + const ZSTD_seqSymbol* LLTptr; + const ZSTD_seqSymbol* MLTptr; + const ZSTD_seqSymbol* OFTptr; + const HUF_DTable* HUFptr; + ZSTD_entropyDTables_t entropy; + U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */ + const void* previousDstEnd; /* detect continuity */ + const void* prefixStart; /* start of current segment */ + const void* virtualStart; /* virtual start of previous segment if it was just before current one */ + const void* dictEnd; /* end of previous segment */ + size_t expected; + ZSTD_frameHeader fParams; + U64 decodedSize; + blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */ + ZSTD_dStage stage; + U32 litEntropy; + U32 fseEntropy; + XXH64_state_t xxhState; + size_t headerSize; + ZSTD_format_e format; + const BYTE* litPtr; + ZSTD_customMem customMem; + size_t litSize; + size_t rleSize; + size_t staticSize; + int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */ + + /* dictionary */ + ZSTD_DDict* ddictLocal; + const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */ + U32 dictID; + int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */ + ZSTD_dictUses_e dictUses; + + /* streaming */ + ZSTD_dStreamStage streamStage; + char* inBuff; + size_t inBuffSize; + size_t inPos; + size_t maxWindowSize; + char* outBuff; + size_t outBuffSize; + size_t outStart; + size_t outEnd; + size_t lhSize; + void* legacyContext; + U32 previousLegacyVersion; + U32 legacyVersion; + U32 hostageByte; + int noForwardProgress; + + /* workspace */ + BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH]; + BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; +}; /* typedef'd to ZSTD_DCtx within "zstd.h" */ + + +/*-******************************************************* + * Shared internal functions + *********************************************************/ + +/*! ZSTD_loadDEntropy() : + * dict : must point at beginning of a valid zstd dictionary. + * @return : size of entropy tables read */ +size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, + const void* const dict, size_t const dictSize); + +/*! ZSTD_checkContinuity() : + * check if next `dst` follows previous position, where decompression ended. + * If yes, do nothing (continue on current segment). + * If not, classify previous segment as "external dictionary", and start a new segment. + * This function cannot fail. */ +void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst); + + +#endif /* ZSTD_DECOMPRESS_INTERNAL_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_double_fast.c b/vendor/github.com/DataDog/zstd/zstd_double_fast.c new file mode 100644 index 0000000000..47faf6d641 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_double_fast.c @@ -0,0 +1,499 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" +#include "zstd_double_fast.h" + + +void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashLarge = ms->hashTable; + U32 const hBitsL = cParams->hashLog; + U32 const mls = cParams->minMatch; + U32* const hashSmall = ms->chainTable; + U32 const hBitsS = cParams->chainLog; + const BYTE* const base = ms->window.base; + const BYTE* ip = base + ms->nextToUpdate; + const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; + const U32 fastHashFillStep = 3; + + /* Always insert every fastHashFillStep position into the hash tables. + * Insert the other positions into the large hash table if their entry + * is empty. + */ + for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) { + U32 const current = (U32)(ip - base); + U32 i; + for (i = 0; i < fastHashFillStep; ++i) { + size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls); + size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8); + if (i == 0) + hashSmall[smHash] = current + i; + if (i == 0 || hashLarge[lgHash] == 0) + hashLarge[lgHash] = current + i; + /* Only load extra positions for ZSTD_dtlm_full */ + if (dtlm == ZSTD_dtlm_fast) + break; + } + } +} + + +FORCE_INLINE_TEMPLATE +size_t ZSTD_compressBlock_doubleFast_generic( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, + U32 const mls /* template */, ZSTD_dictMode_e const dictMode) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32* const hashLong = ms->hashTable; + const U32 hBitsL = cParams->hashLog; + U32* const hashSmall = ms->chainTable; + const U32 hBitsS = cParams->chainLog; + const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const U32 prefixLowestIndex = ms->window.dictLimit; + const BYTE* const prefixLowest = base + prefixLowestIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - HASH_READ_SIZE; + U32 offset_1=rep[0], offset_2=rep[1]; + U32 offsetSaved = 0; + + const ZSTD_matchState_t* const dms = ms->dictMatchState; + const ZSTD_compressionParameters* const dictCParams = + dictMode == ZSTD_dictMatchState ? + &dms->cParams : NULL; + const U32* const dictHashLong = dictMode == ZSTD_dictMatchState ? + dms->hashTable : NULL; + const U32* const dictHashSmall = dictMode == ZSTD_dictMatchState ? + dms->chainTable : NULL; + const U32 dictStartIndex = dictMode == ZSTD_dictMatchState ? + dms->window.dictLimit : 0; + const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ? + dms->window.base : NULL; + const BYTE* const dictStart = dictMode == ZSTD_dictMatchState ? + dictBase + dictStartIndex : NULL; + const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ? + dms->window.nextSrc : NULL; + const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ? + prefixLowestIndex - (U32)(dictEnd - dictBase) : + 0; + const U32 dictHBitsL = dictMode == ZSTD_dictMatchState ? + dictCParams->hashLog : hBitsL; + const U32 dictHBitsS = dictMode == ZSTD_dictMatchState ? + dictCParams->chainLog : hBitsS; + const U32 dictAndPrefixLength = (U32)(ip - prefixLowest + dictEnd - dictStart); + + assert(dictMode == ZSTD_noDict || dictMode == ZSTD_dictMatchState); + + /* init */ + ip += (dictAndPrefixLength == 0); + if (dictMode == ZSTD_noDict) { + U32 const maxRep = (U32)(ip - prefixLowest); + if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0; + if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0; + } + if (dictMode == ZSTD_dictMatchState) { + /* dictMatchState repCode checks don't currently handle repCode == 0 + * disabling. */ + assert(offset_1 <= dictAndPrefixLength); + assert(offset_2 <= dictAndPrefixLength); + } + + /* Main Search Loop */ + while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */ + size_t mLength; + U32 offset; + size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8); + size_t const h = ZSTD_hashPtr(ip, hBitsS, mls); + size_t const dictHL = ZSTD_hashPtr(ip, dictHBitsL, 8); + size_t const dictHS = ZSTD_hashPtr(ip, dictHBitsS, mls); + U32 const current = (U32)(ip-base); + U32 const matchIndexL = hashLong[h2]; + U32 matchIndexS = hashSmall[h]; + const BYTE* matchLong = base + matchIndexL; + const BYTE* match = base + matchIndexS; + const U32 repIndex = current + 1 - offset_1; + const BYTE* repMatch = (dictMode == ZSTD_dictMatchState + && repIndex < prefixLowestIndex) ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + hashLong[h2] = hashSmall[h] = current; /* update hash tables */ + + /* check dictMatchState repcode */ + if (dictMode == ZSTD_dictMatchState + && ((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + ip++; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH); + goto _match_stored; + } + + /* check noDict repcode */ + if ( dictMode == ZSTD_noDict + && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) { + mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; + ip++; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH); + goto _match_stored; + } + + if (matchIndexL > prefixLowestIndex) { + /* check prefix long match */ + if (MEM_read64(matchLong) == MEM_read64(ip)) { + mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8; + offset = (U32)(ip-matchLong); + while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ + goto _match_found; + } + } else if (dictMode == ZSTD_dictMatchState) { + /* check dictMatchState long match */ + U32 const dictMatchIndexL = dictHashLong[dictHL]; + const BYTE* dictMatchL = dictBase + dictMatchIndexL; + assert(dictMatchL < dictEnd); + + if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) { + mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8; + offset = (U32)(current - dictMatchIndexL - dictIndexDelta); + while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */ + goto _match_found; + } + } + + if (matchIndexS > prefixLowestIndex) { + /* check prefix short match */ + if (MEM_read32(match) == MEM_read32(ip)) { + goto _search_next_long; + } + } else if (dictMode == ZSTD_dictMatchState) { + /* check dictMatchState short match */ + U32 const dictMatchIndexS = dictHashSmall[dictHS]; + match = dictBase + dictMatchIndexS; + matchIndexS = dictMatchIndexS + dictIndexDelta; + + if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) { + goto _search_next_long; + } + } + + ip += ((ip-anchor) >> kSearchStrength) + 1; + continue; + +_search_next_long: + + { + size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8); + size_t const dictHLNext = ZSTD_hashPtr(ip+1, dictHBitsL, 8); + U32 const matchIndexL3 = hashLong[hl3]; + const BYTE* matchL3 = base + matchIndexL3; + hashLong[hl3] = current + 1; + + /* check prefix long +1 match */ + if (matchIndexL3 > prefixLowestIndex) { + if (MEM_read64(matchL3) == MEM_read64(ip+1)) { + mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8; + ip++; + offset = (U32)(ip-matchL3); + while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */ + goto _match_found; + } + } else if (dictMode == ZSTD_dictMatchState) { + /* check dict long +1 match */ + U32 const dictMatchIndexL3 = dictHashLong[dictHLNext]; + const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3; + assert(dictMatchL3 < dictEnd); + if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) { + mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8; + ip++; + offset = (U32)(current + 1 - dictMatchIndexL3 - dictIndexDelta); + while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */ + goto _match_found; + } + } + } + + /* if no long +1 match, explore the short match we found */ + if (dictMode == ZSTD_dictMatchState && matchIndexS < prefixLowestIndex) { + mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4; + offset = (U32)(current - matchIndexS); + while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + } else { + mLength = ZSTD_count(ip+4, match+4, iend) + 4; + offset = (U32)(ip - match); + while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + } + + /* fall-through */ + +_match_found: + offset_2 = offset_1; + offset_1 = offset; + + ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); + +_match_stored: + /* match found */ + ip += mLength; + anchor = ip; + + if (ip <= ilimit) { + /* Fill Table */ + hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] = + hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2; /* here because current+2 could be > iend-8 */ + hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = + hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base); + + /* check immediate repcode */ + if (dictMode == ZSTD_dictMatchState) { + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex2 = current2 - offset_2; + const BYTE* repMatch2 = dictMode == ZSTD_dictMatchState + && repIndex2 < prefixLowestIndex ? + dictBase - dictIndexDelta + repIndex2 : + base + repIndex2; + if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */) + && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4; + U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH); + hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2; + hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2; + ip += repLength2; + anchor = ip; + continue; + } + break; + } + } + + if (dictMode == ZSTD_noDict) { + while ( (ip <= ilimit) + && ( (offset_2>0) + & (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) { + /* store sequence */ + size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; + U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */ + hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base); + hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base); + ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH); + ip += rLength; + anchor = ip; + continue; /* faster when present ... (?) */ + } } } } + + /* save reps for next block */ + rep[0] = offset_1 ? offset_1 : offsetSaved; + rep[1] = offset_2 ? offset_2 : offsetSaved; + + /* Return the last literals size */ + return iend - anchor; +} + + +size_t ZSTD_compressBlock_doubleFast( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + const U32 mls = ms->cParams.minMatch; + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_noDict); + case 5 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_noDict); + case 6 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_noDict); + case 7 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_noDict); + } +} + + +size_t ZSTD_compressBlock_doubleFast_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + const U32 mls = ms->cParams.minMatch; + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 4, ZSTD_dictMatchState); + case 5 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 5, ZSTD_dictMatchState); + case 6 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 6, ZSTD_dictMatchState); + case 7 : + return ZSTD_compressBlock_doubleFast_generic(ms, seqStore, rep, src, srcSize, 7, ZSTD_dictMatchState); + } +} + + +static size_t ZSTD_compressBlock_doubleFast_extDict_generic( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, + U32 const mls /* template */) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32* const hashLong = ms->hashTable; + U32 const hBitsL = cParams->hashLog; + U32* const hashSmall = ms->chainTable; + U32 const hBitsS = cParams->chainLog; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + const U32 prefixStartIndex = ms->window.dictLimit; + const BYTE* const base = ms->window.base; + const BYTE* const prefixStart = base + prefixStartIndex; + const U32 dictStartIndex = ms->window.lowLimit; + const BYTE* const dictBase = ms->window.dictBase; + const BYTE* const dictStart = dictBase + dictStartIndex; + const BYTE* const dictEnd = dictBase + prefixStartIndex; + U32 offset_1=rep[0], offset_2=rep[1]; + + DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize); + + /* Search Loop */ + while (ip < ilimit) { /* < instead of <=, because (ip+1) */ + const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls); + const U32 matchIndex = hashSmall[hSmall]; + const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base; + const BYTE* match = matchBase + matchIndex; + + const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8); + const U32 matchLongIndex = hashLong[hLong]; + const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base; + const BYTE* matchLong = matchLongBase + matchLongIndex; + + const U32 current = (U32)(ip-base); + const U32 repIndex = current + 1 - offset_1; /* offset_1 expected <= current +1 */ + const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base; + const BYTE* const repMatch = repBase + repIndex; + size_t mLength; + hashSmall[hSmall] = hashLong[hLong] = current; /* update hash table */ + + if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */ + & (repIndex > dictStartIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; + mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4; + ip++; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH); + } else { + if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) { + const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend; + const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart; + U32 offset; + mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8; + offset = current - matchLongIndex; + while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */ + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); + + } else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) { + size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8); + U32 const matchIndex3 = hashLong[h3]; + const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base; + const BYTE* match3 = match3Base + matchIndex3; + U32 offset; + hashLong[h3] = current + 1; + if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) { + const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend; + const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart; + mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8; + ip++; + offset = current+1 - matchIndex3; + while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */ + } else { + const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend; + const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart; + mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4; + offset = current - matchIndex; + while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + } + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); + + } else { + ip += ((ip-anchor) >> kSearchStrength) + 1; + continue; + } } + + /* found a match : store it */ + ip += mLength; + anchor = ip; + + if (ip <= ilimit) { + /* Fill Table */ + hashSmall[ZSTD_hashPtr(base+current+2, hBitsS, mls)] = current+2; + hashLong[ZSTD_hashPtr(base+current+2, hBitsL, 8)] = current+2; + hashSmall[ZSTD_hashPtr(ip-2, hBitsS, mls)] = (U32)(ip-2-base); + hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base); + /* check immediate repcode */ + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex2 = current2 - offset_2; + const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; + if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */ + & (repIndex2 > dictStartIndex)) + && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; + U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH); + hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2; + hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2; + ip += repLength2; + anchor = ip; + continue; + } + break; + } } } + + /* save reps for next block */ + rep[0] = offset_1; + rep[1] = offset_2; + + /* Return the last literals size */ + return iend - anchor; +} + + +size_t ZSTD_compressBlock_doubleFast_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + U32 const mls = ms->cParams.minMatch; + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 4); + case 5 : + return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 5); + case 6 : + return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 6); + case 7 : + return ZSTD_compressBlock_doubleFast_extDict_generic(ms, seqStore, rep, src, srcSize, 7); + } +} diff --git a/vendor/github.com/DataDog/zstd/zstd_double_fast.h b/vendor/github.com/DataDog/zstd/zstd_double_fast.h new file mode 100644 index 0000000000..4fa31acfc0 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_double_fast.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_DOUBLE_FAST_H +#define ZSTD_DOUBLE_FAST_H + +#if defined (__cplusplus) +extern "C" { +#endif + +#include "mem.h" /* U32 */ +#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */ + +void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm); +size_t ZSTD_compressBlock_doubleFast( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_doubleFast_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_doubleFast_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_DOUBLE_FAST_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_errors.h b/vendor/github.com/DataDog/zstd/zstd_errors.h new file mode 100644 index 0000000000..92a3433896 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_errors.h @@ -0,0 +1,93 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_ERRORS_H_398273423 +#define ZSTD_ERRORS_H_398273423 + +#if defined (__cplusplus) +extern "C" { +#endif + +/*===== dependency =====*/ +#include /* size_t */ + + +/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */ +#ifndef ZSTDERRORLIB_VISIBILITY +# if defined(__GNUC__) && (__GNUC__ >= 4) +# define ZSTDERRORLIB_VISIBILITY __attribute__ ((visibility ("default"))) +# else +# define ZSTDERRORLIB_VISIBILITY +# endif +#endif +#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1) +# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBILITY +#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1) +# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBILITY /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ +#else +# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBILITY +#endif + +/*-********************************************* + * Error codes list + *-********************************************* + * Error codes _values_ are pinned down since v1.3.1 only. + * Therefore, don't rely on values if you may link to any version < v1.3.1. + * + * Only values < 100 are considered stable. + * + * note 1 : this API shall be used with static linking only. + * dynamic linking is not yet officially supported. + * note 2 : Prefer relying on the enum than on its value whenever possible + * This is the only supported way to use the error list < v1.3.1 + * note 3 : ZSTD_isError() is always correct, whatever the library version. + **********************************************/ +typedef enum { + ZSTD_error_no_error = 0, + ZSTD_error_GENERIC = 1, + ZSTD_error_prefix_unknown = 10, + ZSTD_error_version_unsupported = 12, + ZSTD_error_frameParameter_unsupported = 14, + ZSTD_error_frameParameter_windowTooLarge = 16, + ZSTD_error_corruption_detected = 20, + ZSTD_error_checksum_wrong = 22, + ZSTD_error_dictionary_corrupted = 30, + ZSTD_error_dictionary_wrong = 32, + ZSTD_error_dictionaryCreation_failed = 34, + ZSTD_error_parameter_unsupported = 40, + ZSTD_error_parameter_outOfBound = 42, + ZSTD_error_tableLog_tooLarge = 44, + ZSTD_error_maxSymbolValue_tooLarge = 46, + ZSTD_error_maxSymbolValue_tooSmall = 48, + ZSTD_error_stage_wrong = 60, + ZSTD_error_init_missing = 62, + ZSTD_error_memory_allocation = 64, + ZSTD_error_workSpace_tooSmall= 66, + ZSTD_error_dstSize_tooSmall = 70, + ZSTD_error_srcSize_wrong = 72, + ZSTD_error_dstBuffer_null = 74, + /* following error codes are __NOT STABLE__, they can be removed or changed in future versions */ + ZSTD_error_frameIndex_tooLarge = 100, + ZSTD_error_seekableIO = 102, + ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */ +} ZSTD_ErrorCode; + +/*! ZSTD_getErrorCode() : + convert a `size_t` function result into a `ZSTD_ErrorCode` enum type, + which can be used to compare with enum list published above */ +ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult); +ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */ + + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_ERRORS_H_398273423 */ diff --git a/vendor/github.com/DataDog/zstd/zstd_fast.c b/vendor/github.com/DataDog/zstd/zstd_fast.c new file mode 100644 index 0000000000..ed997b441c --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_fast.c @@ -0,0 +1,470 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" +#include "zstd_fast.h" + + +void ZSTD_fillHashTable(ZSTD_matchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hBits = cParams->hashLog; + U32 const mls = cParams->minMatch; + const BYTE* const base = ms->window.base; + const BYTE* ip = base + ms->nextToUpdate; + const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE; + const U32 fastHashFillStep = 3; + + /* Always insert every fastHashFillStep position into the hash table. + * Insert the other positions if their hash entry is empty. + */ + for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) { + U32 const current = (U32)(ip - base); + size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls); + hashTable[hash0] = current; + if (dtlm == ZSTD_dtlm_fast) continue; + /* Only load extra positions for ZSTD_dtlm_full */ + { U32 p; + for (p = 1; p < fastHashFillStep; ++p) { + size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls); + if (hashTable[hash] == 0) { /* not yet filled */ + hashTable[hash] = current + p; + } } } } +} + +FORCE_INLINE_TEMPLATE +size_t ZSTD_compressBlock_fast_generic( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, + U32 const mls) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hlog = cParams->hashLog; + /* support stepSize of 0 */ + size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1; + const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + /* We check ip0 (ip + 0) and ip1 (ip + 1) each loop */ + const BYTE* ip0 = istart; + const BYTE* ip1; + const BYTE* anchor = istart; + const U32 prefixStartIndex = ms->window.dictLimit; + const BYTE* const prefixStart = base + prefixStartIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - HASH_READ_SIZE; + U32 offset_1=rep[0], offset_2=rep[1]; + U32 offsetSaved = 0; + + /* init */ + ip0 += (ip0 == prefixStart); + ip1 = ip0 + 1; + { + U32 const maxRep = (U32)(ip0 - prefixStart); + if (offset_2 > maxRep) offsetSaved = offset_2, offset_2 = 0; + if (offset_1 > maxRep) offsetSaved = offset_1, offset_1 = 0; + } + + /* Main Search Loop */ + while (ip1 < ilimit) { /* < instead of <=, because check at ip0+2 */ + size_t mLength; + BYTE const* ip2 = ip0 + 2; + size_t const h0 = ZSTD_hashPtr(ip0, hlog, mls); + U32 const val0 = MEM_read32(ip0); + size_t const h1 = ZSTD_hashPtr(ip1, hlog, mls); + U32 const val1 = MEM_read32(ip1); + U32 const current0 = (U32)(ip0-base); + U32 const current1 = (U32)(ip1-base); + U32 const matchIndex0 = hashTable[h0]; + U32 const matchIndex1 = hashTable[h1]; + BYTE const* repMatch = ip2-offset_1; + const BYTE* match0 = base + matchIndex0; + const BYTE* match1 = base + matchIndex1; + U32 offcode; + hashTable[h0] = current0; /* update hash table */ + hashTable[h1] = current1; /* update hash table */ + + assert(ip0 + 1 == ip1); + + if ((offset_1 > 0) & (MEM_read32(repMatch) == MEM_read32(ip2))) { + mLength = ip2[-1] == repMatch[-1] ? 1 : 0; + ip0 = ip2 - mLength; + match0 = repMatch - mLength; + offcode = 0; + goto _match; + } + if ((matchIndex0 > prefixStartIndex) && MEM_read32(match0) == val0) { + /* found a regular match */ + goto _offset; + } + if ((matchIndex1 > prefixStartIndex) && MEM_read32(match1) == val1) { + /* found a regular match after one literal */ + ip0 = ip1; + match0 = match1; + goto _offset; + } + { + size_t const step = ((ip0-anchor) >> (kSearchStrength - 1)) + stepSize; + assert(step >= 2); + ip0 += step; + ip1 += step; + continue; + } +_offset: /* Requires: ip0, match0 */ + /* Compute the offset code */ + offset_2 = offset_1; + offset_1 = (U32)(ip0-match0); + offcode = offset_1 + ZSTD_REP_MOVE; + mLength = 0; + /* Count the backwards match length */ + while (((ip0>anchor) & (match0>prefixStart)) + && (ip0[-1] == match0[-1])) { ip0--; match0--; mLength++; } /* catch up */ + +_match: /* Requires: ip0, match0, offcode */ + /* Count the forward length */ + mLength += ZSTD_count(ip0+mLength+4, match0+mLength+4, iend) + 4; + ZSTD_storeSeq(seqStore, ip0-anchor, anchor, offcode, mLength-MINMATCH); + /* match found */ + ip0 += mLength; + anchor = ip0; + ip1 = ip0 + 1; + + if (ip0 <= ilimit) { + /* Fill Table */ + assert(base+current0+2 > istart); /* check base overflow */ + hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */ + hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base); + + while ( (ip0 <= ilimit) + && ( (offset_2>0) + & (MEM_read32(ip0) == MEM_read32(ip0 - offset_2)) )) { + /* store sequence */ + size_t const rLength = ZSTD_count(ip0+4, ip0+4-offset_2, iend) + 4; + U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */ + hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base); + ip0 += rLength; + ip1 = ip0 + 1; + ZSTD_storeSeq(seqStore, 0, anchor, 0, rLength-MINMATCH); + anchor = ip0; + continue; /* faster when present (confirmed on gcc-8) ... (?) */ + } + } + } + + /* save reps for next block */ + rep[0] = offset_1 ? offset_1 : offsetSaved; + rep[1] = offset_2 ? offset_2 : offsetSaved; + + /* Return the last literals size */ + return iend - anchor; +} + + +size_t ZSTD_compressBlock_fast( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32 const mls = cParams->minMatch; + assert(ms->dictMatchState == NULL); + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 4); + case 5 : + return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 5); + case 6 : + return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 6); + case 7 : + return ZSTD_compressBlock_fast_generic(ms, seqStore, rep, src, srcSize, 7); + } +} + +FORCE_INLINE_TEMPLATE +size_t ZSTD_compressBlock_fast_dictMatchState_generic( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, U32 const mls) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hlog = cParams->hashLog; + /* support stepSize of 0 */ + U32 const stepSize = cParams->targetLength + !(cParams->targetLength); + const BYTE* const base = ms->window.base; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const U32 prefixStartIndex = ms->window.dictLimit; + const BYTE* const prefixStart = base + prefixStartIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - HASH_READ_SIZE; + U32 offset_1=rep[0], offset_2=rep[1]; + U32 offsetSaved = 0; + + const ZSTD_matchState_t* const dms = ms->dictMatchState; + const ZSTD_compressionParameters* const dictCParams = &dms->cParams ; + const U32* const dictHashTable = dms->hashTable; + const U32 dictStartIndex = dms->window.dictLimit; + const BYTE* const dictBase = dms->window.base; + const BYTE* const dictStart = dictBase + dictStartIndex; + const BYTE* const dictEnd = dms->window.nextSrc; + const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase); + const U32 dictAndPrefixLength = (U32)(ip - prefixStart + dictEnd - dictStart); + const U32 dictHLog = dictCParams->hashLog; + + /* otherwise, we would get index underflow when translating a dict index + * into a local index */ + assert(prefixStartIndex >= (U32)(dictEnd - dictBase)); + + /* init */ + ip += (dictAndPrefixLength == 0); + /* dictMatchState repCode checks don't currently handle repCode == 0 + * disabling. */ + assert(offset_1 <= dictAndPrefixLength); + assert(offset_2 <= dictAndPrefixLength); + + /* Main Search Loop */ + while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */ + size_t mLength; + size_t const h = ZSTD_hashPtr(ip, hlog, mls); + U32 const current = (U32)(ip-base); + U32 const matchIndex = hashTable[h]; + const BYTE* match = base + matchIndex; + const U32 repIndex = current + 1 - offset_1; + const BYTE* repMatch = (repIndex < prefixStartIndex) ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + hashTable[h] = current; /* update hash table */ + + if ( ((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */ + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; + mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4; + ip++; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH); + } else if ( (matchIndex <= prefixStartIndex) ) { + size_t const dictHash = ZSTD_hashPtr(ip, dictHLog, mls); + U32 const dictMatchIndex = dictHashTable[dictHash]; + const BYTE* dictMatch = dictBase + dictMatchIndex; + if (dictMatchIndex <= dictStartIndex || + MEM_read32(dictMatch) != MEM_read32(ip)) { + assert(stepSize >= 1); + ip += ((ip-anchor) >> kSearchStrength) + stepSize; + continue; + } else { + /* found a dict match */ + U32 const offset = (U32)(current-dictMatchIndex-dictIndexDelta); + mLength = ZSTD_count_2segments(ip+4, dictMatch+4, iend, dictEnd, prefixStart) + 4; + while (((ip>anchor) & (dictMatch>dictStart)) + && (ip[-1] == dictMatch[-1])) { + ip--; dictMatch--; mLength++; + } /* catch up */ + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); + } + } else if (MEM_read32(match) != MEM_read32(ip)) { + /* it's not a match, and we're not going to check the dictionary */ + assert(stepSize >= 1); + ip += ((ip-anchor) >> kSearchStrength) + stepSize; + continue; + } else { + /* found a regular match */ + U32 const offset = (U32)(ip-match); + mLength = ZSTD_count(ip+4, match+4, iend) + 4; + while (((ip>anchor) & (match>prefixStart)) + && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); + } + + /* match found */ + ip += mLength; + anchor = ip; + + if (ip <= ilimit) { + /* Fill Table */ + assert(base+current+2 > istart); /* check base overflow */ + hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2; /* here because current+2 could be > iend-8 */ + hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base); + + /* check immediate repcode */ + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex2 = current2 - offset_2; + const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? + dictBase - dictIndexDelta + repIndex2 : + base + repIndex2; + if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */) + && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; + U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH); + hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2; + ip += repLength2; + anchor = ip; + continue; + } + break; + } + } + } + + /* save reps for next block */ + rep[0] = offset_1 ? offset_1 : offsetSaved; + rep[1] = offset_2 ? offset_2 : offsetSaved; + + /* Return the last literals size */ + return iend - anchor; +} + +size_t ZSTD_compressBlock_fast_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32 const mls = cParams->minMatch; + assert(ms->dictMatchState != NULL); + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 4); + case 5 : + return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 5); + case 6 : + return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 6); + case 7 : + return ZSTD_compressBlock_fast_dictMatchState_generic(ms, seqStore, rep, src, srcSize, 7); + } +} + + +static size_t ZSTD_compressBlock_fast_extDict_generic( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize, U32 const mls) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hlog = cParams->hashLog; + /* support stepSize of 0 */ + U32 const stepSize = cParams->targetLength + !(cParams->targetLength); + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const U32 dictStartIndex = ms->window.lowLimit; + const BYTE* const dictStart = dictBase + dictStartIndex; + const U32 prefixStartIndex = ms->window.dictLimit; + const BYTE* const prefixStart = base + prefixStartIndex; + const BYTE* const dictEnd = dictBase + prefixStartIndex; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + U32 offset_1=rep[0], offset_2=rep[1]; + + /* Search Loop */ + while (ip < ilimit) { /* < instead of <=, because (ip+1) */ + const size_t h = ZSTD_hashPtr(ip, hlog, mls); + const U32 matchIndex = hashTable[h]; + const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base; + const BYTE* match = matchBase + matchIndex; + const U32 current = (U32)(ip-base); + const U32 repIndex = current + 1 - offset_1; + const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base; + const BYTE* const repMatch = repBase + repIndex; + size_t mLength; + hashTable[h] = current; /* update hash table */ + assert(offset_1 <= current +1); /* check repIndex */ + + if ( (((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow */ & (repIndex > dictStartIndex)) + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend; + mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4; + ip++; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, 0, mLength-MINMATCH); + } else { + if ( (matchIndex < dictStartIndex) || + (MEM_read32(match) != MEM_read32(ip)) ) { + assert(stepSize >= 1); + ip += ((ip-anchor) >> kSearchStrength) + stepSize; + continue; + } + { const BYTE* matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend; + const BYTE* lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart; + U32 offset; + mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4; + while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */ + offset = current - matchIndex; + offset_2 = offset_1; + offset_1 = offset; + ZSTD_storeSeq(seqStore, ip-anchor, anchor, offset + ZSTD_REP_MOVE, mLength-MINMATCH); + } } + + /* found a match : store it */ + ip += mLength; + anchor = ip; + + if (ip <= ilimit) { + /* Fill Table */ + hashTable[ZSTD_hashPtr(base+current+2, hlog, mls)] = current+2; + hashTable[ZSTD_hashPtr(ip-2, hlog, mls)] = (U32)(ip-2-base); + /* check immediate repcode */ + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex2 = current2 - offset_2; + const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2; + if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (repIndex2 > dictStartIndex)) /* intentional overflow */ + && (MEM_read32(repMatch2) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend; + size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4; + U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, 0, repLength2-MINMATCH); + hashTable[ZSTD_hashPtr(ip, hlog, mls)] = current2; + ip += repLength2; + anchor = ip; + continue; + } + break; + } } } + + /* save reps for next block */ + rep[0] = offset_1; + rep[1] = offset_2; + + /* Return the last literals size */ + return iend - anchor; +} + + +size_t ZSTD_compressBlock_fast_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + ZSTD_compressionParameters const* cParams = &ms->cParams; + U32 const mls = cParams->minMatch; + switch(mls) + { + default: /* includes case 3 */ + case 4 : + return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 4); + case 5 : + return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 5); + case 6 : + return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 6); + case 7 : + return ZSTD_compressBlock_fast_extDict_generic(ms, seqStore, rep, src, srcSize, 7); + } +} diff --git a/vendor/github.com/DataDog/zstd/zstd_fast.h b/vendor/github.com/DataDog/zstd/zstd_fast.h new file mode 100644 index 0000000000..b74a88c57c --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_fast.h @@ -0,0 +1,37 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_FAST_H +#define ZSTD_FAST_H + +#if defined (__cplusplus) +extern "C" { +#endif + +#include "mem.h" /* U32 */ +#include "zstd_compress_internal.h" + +void ZSTD_fillHashTable(ZSTD_matchState_t* ms, + void const* end, ZSTD_dictTableLoadMethod_e dtlm); +size_t ZSTD_compressBlock_fast( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_fast_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_fast_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_FAST_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_internal.h b/vendor/github.com/DataDog/zstd/zstd_internal.h new file mode 100644 index 0000000000..31f756ab58 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_internal.h @@ -0,0 +1,319 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_CCOMMON_H_MODULE +#define ZSTD_CCOMMON_H_MODULE + +/* this module contains definitions which must be identical + * across compression, decompression and dictBuilder. + * It also contains a few functions useful to at least 2 of them + * and which benefit from being inlined */ + +/*-************************************* +* Dependencies +***************************************/ +#include "compiler.h" +#include "mem.h" +#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */ +#include "error_private.h" +#define ZSTD_STATIC_LINKING_ONLY +#include "zstd.h" +#define FSE_STATIC_LINKING_ONLY +#include "fse.h" +#define HUF_STATIC_LINKING_ONLY +#include "huf.h" +#ifndef XXH_STATIC_LINKING_ONLY +# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */ +#endif +#include "xxhash.h" /* XXH_reset, update, digest */ + + +#if defined (__cplusplus) +extern "C" { +#endif + +/* ---- static assert (debug) --- */ +#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) +#define ZSTD_isError ERR_isError /* for inlining */ +#define FSE_isError ERR_isError +#define HUF_isError ERR_isError + + +/*-************************************* +* shared macros +***************************************/ +#undef MIN +#undef MAX +#define MIN(a,b) ((a)<(b) ? (a) : (b)) +#define MAX(a,b) ((a)>(b) ? (a) : (b)) + +/** + * Return the specified error if the condition evaluates to true. + * + * In debug modes, prints additional information. In order to do that + * (particularly, printing the conditional that failed), this can't just wrap + * RETURN_ERROR(). + */ +#define RETURN_ERROR_IF(cond, err, ...) \ + if (cond) { \ + RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", __FILE__, __LINE__, ZSTD_QUOTE(cond), ZSTD_QUOTE(ERROR(err))); \ + RAWLOG(3, ": " __VA_ARGS__); \ + RAWLOG(3, "\n"); \ + return ERROR(err); \ + } + +/** + * Unconditionally return the specified error. + * + * In debug modes, prints additional information. + */ +#define RETURN_ERROR(err, ...) \ + do { \ + RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", __FILE__, __LINE__, ZSTD_QUOTE(ERROR(err))); \ + RAWLOG(3, ": " __VA_ARGS__); \ + RAWLOG(3, "\n"); \ + return ERROR(err); \ + } while(0); + +/** + * If the provided expression evaluates to an error code, returns that error code. + * + * In debug modes, prints additional information. + */ +#define FORWARD_IF_ERROR(err, ...) \ + do { \ + size_t const err_code = (err); \ + if (ERR_isError(err_code)) { \ + RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", __FILE__, __LINE__, ZSTD_QUOTE(err), ERR_getErrorName(err_code)); \ + RAWLOG(3, ": " __VA_ARGS__); \ + RAWLOG(3, "\n"); \ + return err_code; \ + } \ + } while(0); + + +/*-************************************* +* Common constants +***************************************/ +#define ZSTD_OPT_NUM (1<<12) + +#define ZSTD_REP_NUM 3 /* number of repcodes */ +#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1) +static const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 }; + +#define KB *(1 <<10) +#define MB *(1 <<20) +#define GB *(1U<<30) + +#define BIT7 128 +#define BIT6 64 +#define BIT5 32 +#define BIT4 16 +#define BIT1 2 +#define BIT0 1 + +#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10 +static const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 }; +static const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 }; + +#define ZSTD_FRAMEIDSIZE 4 /* magic number size */ + +#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */ +static const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE; +typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e; + +#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */ +#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */ + +#define HufLog 12 +typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e; + +#define LONGNBSEQ 0x7F00 + +#define MINMATCH 3 + +#define Litbits 8 +#define MaxLit ((1<= 3) /* GCC Intrinsic */ + return 31 - __builtin_clz(val); +# else /* Software version */ + static const U32 DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; + U32 v = val; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + return DeBruijnClz[(v * 0x07C4ACDDU) >> 27]; +# endif + } +} + + +/* ZSTD_invalidateRepCodes() : + * ensures next compression will not use repcodes from previous block. + * Note : only works with regular variant; + * do not use with extDict variant ! */ +void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */ + + +typedef struct { + blockType_e blockType; + U32 lastBlock; + U32 origSize; +} blockProperties_t; /* declared here for decompress and fullbench */ + +/*! ZSTD_getcBlockSize() : + * Provides the size of compressed block from block header `src` */ +/* Used by: decompress, fullbench (does not get its definition from here) */ +size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, + blockProperties_t* bpPtr); + +/*! ZSTD_decodeSeqHeaders() : + * decode sequence header from src */ +/* Used by: decompress, fullbench (does not get its definition from here) */ +size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr, + const void* src, size_t srcSize); + + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_CCOMMON_H_MODULE */ diff --git a/vendor/github.com/DataDog/zstd/zstd_lazy.c b/vendor/github.com/DataDog/zstd/zstd_lazy.c new file mode 100644 index 0000000000..53f998a437 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_lazy.c @@ -0,0 +1,1106 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" +#include "zstd_lazy.h" + + +/*-************************************* +* Binary Tree search +***************************************/ + +static void +ZSTD_updateDUBT(ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* iend, + U32 mls) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hashLog = cParams->hashLog; + + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + + const BYTE* const base = ms->window.base; + U32 const target = (U32)(ip - base); + U32 idx = ms->nextToUpdate; + + if (idx != target) + DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)", + idx, target, ms->window.dictLimit); + assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */ + (void)iend; + + assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */ + for ( ; idx < target ; idx++) { + size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */ + U32 const matchIndex = hashTable[h]; + + U32* const nextCandidatePtr = bt + 2*(idx&btMask); + U32* const sortMarkPtr = nextCandidatePtr + 1; + + DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx); + hashTable[h] = idx; /* Update Hash Table */ + *nextCandidatePtr = matchIndex; /* update BT like a chain */ + *sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK; + } + ms->nextToUpdate = target; +} + + +/** ZSTD_insertDUBT1() : + * sort one already inserted but unsorted position + * assumption : current >= btlow == (current - btmask) + * doesn't fail */ +static void +ZSTD_insertDUBT1(ZSTD_matchState_t* ms, + U32 current, const BYTE* inputEnd, + U32 nbCompares, U32 btLow, + const ZSTD_dictMode_e dictMode) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + size_t commonLengthSmaller=0, commonLengthLarger=0; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const ip = (current>=dictLimit) ? base + current : dictBase + current; + const BYTE* const iend = (current>=dictLimit) ? inputEnd : dictBase + dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* match; + U32* smallerPtr = bt + 2*(current&btMask); + U32* largerPtr = smallerPtr + 1; + U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */ + U32 dummy32; /* to be nullified at the end */ + U32 const windowLow = ms->window.lowLimit; + + DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)", + current, dictLimit, windowLow); + assert(current >= btLow); + assert(ip < iend); /* condition for ZSTD_count */ + + while (nbCompares-- && (matchIndex > windowLow)) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + assert(matchIndex < current); + /* note : all candidates are now supposed sorted, + * but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK + * when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */ + + if ( (dictMode != ZSTD_extDict) + || (matchIndex+matchLength >= dictLimit) /* both in current segment*/ + || (current < dictLimit) /* both in extDict */) { + const BYTE* const mBase = ( (dictMode != ZSTD_extDict) + || (matchIndex+matchLength >= dictLimit)) ? + base : dictBase; + assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */ + || (current < dictLimit) ); + match = mBase + matchIndex; + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); + } else { + match = dictBase + matchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* preparation for next read of match[matchLength] */ + } + + DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ", + current, matchIndex, (U32)matchLength); + + if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ + break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ + } + + if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ + /* match is smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u", + matchIndex, btLow, nextPtr[1]); + smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ + matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ + } else { + /* match is larger than current */ + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u", + matchIndex, btLow, nextPtr[0]); + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; +} + + +static size_t +ZSTD_DUBT_findBetterDictMatch ( + ZSTD_matchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + size_t* offsetPtr, + size_t bestLength, + U32 nbCompares, + U32 const mls, + const ZSTD_dictMode_e dictMode) +{ + const ZSTD_matchState_t * const dms = ms->dictMatchState; + const ZSTD_compressionParameters* const dmsCParams = &dms->cParams; + const U32 * const dictHashTable = dms->hashTable; + U32 const hashLog = dmsCParams->hashLog; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32 dictMatchIndex = dictHashTable[h]; + + const BYTE* const base = ms->window.base; + const BYTE* const prefixStart = base + ms->window.dictLimit; + U32 const current = (U32)(ip-base); + const BYTE* const dictBase = dms->window.base; + const BYTE* const dictEnd = dms->window.nextSrc; + U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base); + U32 const dictLowLimit = dms->window.lowLimit; + U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit; + + U32* const dictBt = dms->chainTable; + U32 const btLog = dmsCParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask; + + size_t commonLengthSmaller=0, commonLengthLarger=0; + + (void)dictMode; + assert(dictMode == ZSTD_dictMatchState); + + while (nbCompares-- && (dictMatchIndex > dictLowLimit)) { + U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + const BYTE* match = dictBase + dictMatchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (dictMatchIndex+matchLength >= dictHighLimit) + match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */ + + if (matchLength > bestLength) { + U32 matchIndex = dictMatchIndex + dictIndexDelta; + if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) { + DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)", + current, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, ZSTD_REP_MOVE + current - matchIndex, dictMatchIndex, matchIndex); + bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex; + } + if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */ + break; /* drop, to guarantee consistency (miss a little bit of compression) */ + } + } + + if (match[matchLength] < ip[matchLength]) { + if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + } else { + /* match is larger than current */ + if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */ + commonLengthLarger = matchLength; + dictMatchIndex = nextPtr[0]; + } + } + + if (bestLength >= MINMATCH) { + U32 const mIndex = current - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex; + DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)", + current, (U32)bestLength, (U32)*offsetPtr, mIndex); + } + return bestLength; + +} + + +static size_t +ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + size_t* offsetPtr, + U32 const mls, + const ZSTD_dictMode_e dictMode) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hashLog = cParams->hashLog; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32 matchIndex = hashTable[h]; + + const BYTE* const base = ms->window.base; + U32 const current = (U32)(ip-base); + U32 const windowLow = ms->window.lowLimit; + + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + U32 const btLow = (btMask >= current) ? 0 : current - btMask; + U32 const unsortLimit = MAX(btLow, windowLow); + + U32* nextCandidate = bt + 2*(matchIndex&btMask); + U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1; + U32 nbCompares = 1U << cParams->searchLog; + U32 nbCandidates = nbCompares; + U32 previousCandidate = 0; + + DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", current); + assert(ip <= iend-8); /* required for h calculation */ + + /* reach end of unsorted candidates list */ + while ( (matchIndex > unsortLimit) + && (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK) + && (nbCandidates > 1) ) { + DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted", + matchIndex); + *unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */ + previousCandidate = matchIndex; + matchIndex = *nextCandidate; + nextCandidate = bt + 2*(matchIndex&btMask); + unsortedMark = bt + 2*(matchIndex&btMask) + 1; + nbCandidates --; + } + + /* nullify last candidate if it's still unsorted + * simplification, detrimental to compression ratio, beneficial for speed */ + if ( (matchIndex > unsortLimit) + && (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) { + DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u", + matchIndex); + *nextCandidate = *unsortedMark = 0; + } + + /* batch sort stacked candidates */ + matchIndex = previousCandidate; + while (matchIndex) { /* will end on matchIndex == 0 */ + U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1; + U32 const nextCandidateIdx = *nextCandidateIdxPtr; + ZSTD_insertDUBT1(ms, matchIndex, iend, + nbCandidates, unsortLimit, dictMode); + matchIndex = nextCandidateIdx; + nbCandidates++; + } + + /* find longest match */ + { size_t commonLengthSmaller = 0, commonLengthLarger = 0; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + U32* smallerPtr = bt + 2*(current&btMask); + U32* largerPtr = bt + 2*(current&btMask) + 1; + U32 matchEndIdx = current + 8 + 1; + U32 dummy32; /* to be nullified at the end */ + size_t bestLength = 0; + + matchIndex = hashTable[h]; + hashTable[h] = current; /* Update Hash Table */ + + while (nbCompares-- && (matchIndex > windowLow)) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + const BYTE* match; + + if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) { + match = base + matchIndex; + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); + } else { + match = dictBase + matchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ + } + + if (matchLength > bestLength) { + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(current-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) + bestLength = matchLength, *offsetPtr = ZSTD_REP_MOVE + current - matchIndex; + if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ + if (dictMode == ZSTD_dictMatchState) { + nbCompares = 0; /* in addition to avoiding checking any + * further in this loop, make sure we + * skip checking in the dictionary. */ + } + break; /* drop, to guarantee consistency (miss a little bit of compression) */ + } + } + + if (match[matchLength] < ip[matchLength]) { + /* match is smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ + matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + } else { + /* match is larger than current */ + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; + + if (dictMode == ZSTD_dictMatchState && nbCompares) { + bestLength = ZSTD_DUBT_findBetterDictMatch( + ms, ip, iend, + offsetPtr, bestLength, nbCompares, + mls, dictMode); + } + + assert(matchEndIdx > current+8); /* ensure nextToUpdate is increased */ + ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ + if (bestLength >= MINMATCH) { + U32 const mIndex = current - ((U32)*offsetPtr - ZSTD_REP_MOVE); (void)mIndex; + DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)", + current, (U32)bestLength, (U32)*offsetPtr, mIndex); + } + return bestLength; + } +} + + +/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */ +FORCE_INLINE_TEMPLATE size_t +ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms, + const BYTE* const ip, const BYTE* const iLimit, + size_t* offsetPtr, + const U32 mls /* template */, + const ZSTD_dictMode_e dictMode) +{ + DEBUGLOG(7, "ZSTD_BtFindBestMatch"); + if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ + ZSTD_updateDUBT(ms, ip, iLimit, mls); + return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offsetPtr, mls, dictMode); +} + + +static size_t +ZSTD_BtFindBestMatch_selectMLS ( ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* const iLimit, + size_t* offsetPtr) +{ + switch(ms->cParams.minMatch) + { + default : /* includes case 3 */ + case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict); + case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict); + case 7 : + case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict); + } +} + + +static size_t ZSTD_BtFindBestMatch_dictMatchState_selectMLS ( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* const iLimit, + size_t* offsetPtr) +{ + switch(ms->cParams.minMatch) + { + default : /* includes case 3 */ + case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState); + case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState); + case 7 : + case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState); + } +} + + +static size_t ZSTD_BtFindBestMatch_extDict_selectMLS ( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* const iLimit, + size_t* offsetPtr) +{ + switch(ms->cParams.minMatch) + { + default : /* includes case 3 */ + case 4 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict); + case 5 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict); + case 7 : + case 6 : return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict); + } +} + + + +/* ********************************* +* Hash Chain +***********************************/ +#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)] + +/* Update chains up to ip (excluded) + Assumption : always within prefix (i.e. not within extDict) */ +static U32 ZSTD_insertAndFindFirstIndex_internal( + ZSTD_matchState_t* ms, + const ZSTD_compressionParameters* const cParams, + const BYTE* ip, U32 const mls) +{ + U32* const hashTable = ms->hashTable; + const U32 hashLog = cParams->hashLog; + U32* const chainTable = ms->chainTable; + const U32 chainMask = (1 << cParams->chainLog) - 1; + const BYTE* const base = ms->window.base; + const U32 target = (U32)(ip - base); + U32 idx = ms->nextToUpdate; + + while(idx < target) { /* catch up */ + size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls); + NEXT_IN_CHAIN(idx, chainMask) = hashTable[h]; + hashTable[h] = idx; + idx++; + } + + ms->nextToUpdate = target; + return hashTable[ZSTD_hashPtr(ip, hashLog, mls)]; +} + +U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) { + const ZSTD_compressionParameters* const cParams = &ms->cParams; + return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch); +} + + +/* inlining is important to hardwire a hot branch (template emulation) */ +FORCE_INLINE_TEMPLATE +size_t ZSTD_HcFindBestMatch_generic ( + ZSTD_matchState_t* ms, + const BYTE* const ip, const BYTE* const iLimit, + size_t* offsetPtr, + const U32 mls, const ZSTD_dictMode_e dictMode) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const chainTable = ms->chainTable; + const U32 chainSize = (1 << cParams->chainLog); + const U32 chainMask = chainSize-1; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const U32 lowLimit = ms->window.lowLimit; + const U32 current = (U32)(ip-base); + const U32 minChain = current > chainSize ? current - chainSize : 0; + U32 nbAttempts = 1U << cParams->searchLog; + size_t ml=4-1; + + /* HC4 match finder */ + U32 matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls); + + for ( ; (matchIndex>lowLimit) & (nbAttempts>0) ; nbAttempts--) { + size_t currentMl=0; + if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) { + const BYTE* const match = base + matchIndex; + assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */ + if (match[ml] == ip[ml]) /* potentially better */ + currentMl = ZSTD_count(ip, match, iLimit); + } else { + const BYTE* const match = dictBase + matchIndex; + assert(match+4 <= dictEnd); + if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4; + } + + /* save best solution */ + if (currentMl > ml) { + ml = currentMl; + *offsetPtr = current - matchIndex + ZSTD_REP_MOVE; + if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ + } + + if (matchIndex <= minChain) break; + matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask); + } + + if (dictMode == ZSTD_dictMatchState) { + const ZSTD_matchState_t* const dms = ms->dictMatchState; + const U32* const dmsChainTable = dms->chainTable; + const U32 dmsChainSize = (1 << dms->cParams.chainLog); + const U32 dmsChainMask = dmsChainSize - 1; + const U32 dmsLowestIndex = dms->window.dictLimit; + const BYTE* const dmsBase = dms->window.base; + const BYTE* const dmsEnd = dms->window.nextSrc; + const U32 dmsSize = (U32)(dmsEnd - dmsBase); + const U32 dmsIndexDelta = dictLimit - dmsSize; + const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0; + + matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)]; + + for ( ; (matchIndex>dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) { + size_t currentMl=0; + const BYTE* const match = dmsBase + matchIndex; + assert(match+4 <= dmsEnd); + if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */ + currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4; + + /* save best solution */ + if (currentMl > ml) { + ml = currentMl; + *offsetPtr = current - (matchIndex + dmsIndexDelta) + ZSTD_REP_MOVE; + if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */ + } + + if (matchIndex <= dmsMinChain) break; + matchIndex = dmsChainTable[matchIndex & dmsChainMask]; + } + } + + return ml; +} + + +FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_selectMLS ( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* const iLimit, + size_t* offsetPtr) +{ + switch(ms->cParams.minMatch) + { + default : /* includes case 3 */ + case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_noDict); + case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_noDict); + case 7 : + case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_noDict); + } +} + + +static size_t ZSTD_HcFindBestMatch_dictMatchState_selectMLS ( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* const iLimit, + size_t* offsetPtr) +{ + switch(ms->cParams.minMatch) + { + default : /* includes case 3 */ + case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_dictMatchState); + case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_dictMatchState); + case 7 : + case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_dictMatchState); + } +} + + +FORCE_INLINE_TEMPLATE size_t ZSTD_HcFindBestMatch_extDict_selectMLS ( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* const iLimit, + size_t* offsetPtr) +{ + switch(ms->cParams.minMatch) + { + default : /* includes case 3 */ + case 4 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 4, ZSTD_extDict); + case 5 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 5, ZSTD_extDict); + case 7 : + case 6 : return ZSTD_HcFindBestMatch_generic(ms, ip, iLimit, offsetPtr, 6, ZSTD_extDict); + } +} + + +/* ******************************* +* Common parser - lazy strategy +*********************************/ +FORCE_INLINE_TEMPLATE +size_t ZSTD_compressBlock_lazy_generic( + ZSTD_matchState_t* ms, seqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, + const U32 searchMethod, const U32 depth, + ZSTD_dictMode_e const dictMode) +{ + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + const BYTE* const base = ms->window.base; + const U32 prefixLowestIndex = ms->window.dictLimit; + const BYTE* const prefixLowest = base + prefixLowestIndex; + + typedef size_t (*searchMax_f)( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr); + searchMax_f const searchMax = dictMode == ZSTD_dictMatchState ? + (searchMethod ? ZSTD_BtFindBestMatch_dictMatchState_selectMLS : ZSTD_HcFindBestMatch_dictMatchState_selectMLS) : + (searchMethod ? ZSTD_BtFindBestMatch_selectMLS : ZSTD_HcFindBestMatch_selectMLS); + U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0; + + const ZSTD_matchState_t* const dms = ms->dictMatchState; + const U32 dictLowestIndex = dictMode == ZSTD_dictMatchState ? + dms->window.dictLimit : 0; + const BYTE* const dictBase = dictMode == ZSTD_dictMatchState ? + dms->window.base : NULL; + const BYTE* const dictLowest = dictMode == ZSTD_dictMatchState ? + dictBase + dictLowestIndex : NULL; + const BYTE* const dictEnd = dictMode == ZSTD_dictMatchState ? + dms->window.nextSrc : NULL; + const U32 dictIndexDelta = dictMode == ZSTD_dictMatchState ? + prefixLowestIndex - (U32)(dictEnd - dictBase) : + 0; + const U32 dictAndPrefixLength = (U32)(ip - prefixLowest + dictEnd - dictLowest); + + /* init */ + ip += (dictAndPrefixLength == 0); + ms->nextToUpdate3 = ms->nextToUpdate; + if (dictMode == ZSTD_noDict) { + U32 const maxRep = (U32)(ip - prefixLowest); + if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0; + if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0; + } + if (dictMode == ZSTD_dictMatchState) { + /* dictMatchState repCode checks don't currently handle repCode == 0 + * disabling. */ + assert(offset_1 <= dictAndPrefixLength); + assert(offset_2 <= dictAndPrefixLength); + } + + /* Match Loop */ + while (ip < ilimit) { + size_t matchLength=0; + size_t offset=0; + const BYTE* start=ip+1; + + /* check repCode */ + if (dictMode == ZSTD_dictMatchState) { + const U32 repIndex = (U32)(ip - base) + 1 - offset_1; + const BYTE* repMatch = (dictMode == ZSTD_dictMatchState + && repIndex < prefixLowestIndex) ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) + && (MEM_read32(repMatch) == MEM_read32(ip+1)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + if (depth==0) goto _storeSequence; + } + } + if ( dictMode == ZSTD_noDict + && ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) { + matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4; + if (depth==0) goto _storeSequence; + } + + /* first search (depth 0) */ + { size_t offsetFound = 999999999; + size_t const ml2 = searchMax(ms, ip, iend, &offsetFound); + if (ml2 > matchLength) + matchLength = ml2, start = ip, offset=offsetFound; + } + + if (matchLength < 4) { + ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */ + continue; + } + + /* let's try to find a better solution */ + if (depth>=1) + while (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { + size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; + int const gain2 = (int)(mlRep * 3); + int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offset = 0, start = ip; + } + if (dictMode == ZSTD_dictMatchState) { + const U32 repIndex = (U32)(ip - base) - offset_1; + const BYTE* repMatch = repIndex < prefixLowestIndex ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) + && (MEM_read32(repMatch) == MEM_read32(ip)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + int const gain2 = (int)(mlRep * 3); + int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offset = 0, start = ip; + } + } + { size_t offset2=999999999; + size_t const ml2 = searchMax(ms, ip, iend, &offset2); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offset = offset2, start = ip; + continue; /* search a better one */ + } } + + /* let's find an even better one */ + if ((depth==2) && (ip0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) { + size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4; + int const gain2 = (int)(mlRep * 4); + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offset = 0, start = ip; + } + if (dictMode == ZSTD_dictMatchState) { + const U32 repIndex = (U32)(ip - base) - offset_1; + const BYTE* repMatch = repIndex < prefixLowestIndex ? + dictBase + (repIndex - dictIndexDelta) : + base + repIndex; + if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */) + && (MEM_read32(repMatch) == MEM_read32(ip)) ) { + const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend; + size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4; + int const gain2 = (int)(mlRep * 4); + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1); + if ((mlRep >= 4) && (gain2 > gain1)) + matchLength = mlRep, offset = 0, start = ip; + } + } + { size_t offset2=999999999; + size_t const ml2 = searchMax(ms, ip, iend, &offset2); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offset = offset2, start = ip; + continue; + } } } + break; /* nothing found : store previous solution */ + } + + /* NOTE: + * start[-offset+ZSTD_REP_MOVE-1] is undefined behavior. + * (-offset+ZSTD_REP_MOVE-1) is unsigned, and is added to start, which + * overflows the pointer, which is undefined behavior. + */ + /* catch up */ + if (offset) { + if (dictMode == ZSTD_noDict) { + while ( ((start > anchor) & (start - (offset-ZSTD_REP_MOVE) > prefixLowest)) + && (start[-1] == (start-(offset-ZSTD_REP_MOVE))[-1]) ) /* only search for offset within prefix */ + { start--; matchLength++; } + } + if (dictMode == ZSTD_dictMatchState) { + U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE)); + const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex; + const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest; + while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ + } + offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE); + } + /* store sequence */ +_storeSequence: + { size_t const litLength = start - anchor; + ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH); + anchor = ip = start + matchLength; + } + + /* check immediate repcode */ + if (dictMode == ZSTD_dictMatchState) { + while (ip <= ilimit) { + U32 const current2 = (U32)(ip-base); + U32 const repIndex = current2 - offset_2; + const BYTE* repMatch = dictMode == ZSTD_dictMatchState + && repIndex < prefixLowestIndex ? + dictBase - dictIndexDelta + repIndex : + base + repIndex; + if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */) + && (MEM_read32(repMatch) == MEM_read32(ip)) ) { + const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4; + offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset_2 <=> offset_1 */ + ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH); + ip += matchLength; + anchor = ip; + continue; + } + break; + } + } + + if (dictMode == ZSTD_noDict) { + while ( ((ip <= ilimit) & (offset_2>0)) + && (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) { + /* store sequence */ + matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4; + offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap repcodes */ + ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH); + ip += matchLength; + anchor = ip; + continue; /* faster when present ... (?) */ + } } } + + /* Save reps for next block */ + rep[0] = offset_1 ? offset_1 : savedOffset; + rep[1] = offset_2 ? offset_2 : savedOffset; + + /* Return the last literals size */ + return iend - anchor; +} + + +size_t ZSTD_compressBlock_btlazy2( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 1, 2, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_lazy2( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 2, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_lazy( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 1, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_greedy( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 0, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_btlazy2_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 1, 2, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_lazy2_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 2, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_lazy_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 1, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_greedy_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, 0, 0, ZSTD_dictMatchState); +} + + +FORCE_INLINE_TEMPLATE +size_t ZSTD_compressBlock_lazy_extDict_generic( + ZSTD_matchState_t* ms, seqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, + const U32 searchMethod, const U32 depth) +{ + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + const BYTE* const base = ms->window.base; + const U32 dictLimit = ms->window.dictLimit; + const U32 lowestIndex = ms->window.lowLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* const dictBase = ms->window.dictBase; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const dictStart = dictBase + lowestIndex; + + typedef size_t (*searchMax_f)( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr); + searchMax_f searchMax = searchMethod ? ZSTD_BtFindBestMatch_extDict_selectMLS : ZSTD_HcFindBestMatch_extDict_selectMLS; + + U32 offset_1 = rep[0], offset_2 = rep[1]; + + /* init */ + ms->nextToUpdate3 = ms->nextToUpdate; + ip += (ip == prefixStart); + + /* Match Loop */ + while (ip < ilimit) { + size_t matchLength=0; + size_t offset=0; + const BYTE* start=ip+1; + U32 current = (U32)(ip-base); + + /* check repCode */ + { const U32 repIndex = (U32)(current+1 - offset_1); + const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; + const BYTE* const repMatch = repBase + repIndex; + if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */ + if (MEM_read32(ip+1) == MEM_read32(repMatch)) { + /* repcode detected we should take it */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4; + if (depth==0) goto _storeSequence; + } } + + /* first search (depth 0) */ + { size_t offsetFound = 999999999; + size_t const ml2 = searchMax(ms, ip, iend, &offsetFound); + if (ml2 > matchLength) + matchLength = ml2, start = ip, offset=offsetFound; + } + + if (matchLength < 4) { + ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */ + continue; + } + + /* let's try to find a better solution */ + if (depth>=1) + while (ip= 3) & (repIndex > lowestIndex)) /* intentional overflow */ + if (MEM_read32(ip) == MEM_read32(repMatch)) { + /* repcode detected */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; + int const gain2 = (int)(repLength * 3); + int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offset+1) + 1); + if ((repLength >= 4) && (gain2 > gain1)) + matchLength = repLength, offset = 0, start = ip; + } } + + /* search match, depth 1 */ + { size_t offset2=999999999; + size_t const ml2 = searchMax(ms, ip, iend, &offset2); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 4); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offset = offset2, start = ip; + continue; /* search a better one */ + } } + + /* let's find an even better one */ + if ((depth==2) && (ip= 3) & (repIndex > lowestIndex)) /* intentional overflow */ + if (MEM_read32(ip) == MEM_read32(repMatch)) { + /* repcode detected */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; + int const gain2 = (int)(repLength * 4); + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 1); + if ((repLength >= 4) && (gain2 > gain1)) + matchLength = repLength, offset = 0, start = ip; + } } + + /* search match, depth 2 */ + { size_t offset2=999999999; + size_t const ml2 = searchMax(ms, ip, iend, &offset2); + int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)offset2+1)); /* raw approx */ + int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offset+1) + 7); + if ((ml2 >= 4) && (gain2 > gain1)) { + matchLength = ml2, offset = offset2, start = ip; + continue; + } } } + break; /* nothing found : store previous solution */ + } + + /* catch up */ + if (offset) { + U32 const matchIndex = (U32)((start-base) - (offset - ZSTD_REP_MOVE)); + const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex; + const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart; + while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */ + offset_2 = offset_1; offset_1 = (U32)(offset - ZSTD_REP_MOVE); + } + + /* store sequence */ +_storeSequence: + { size_t const litLength = start - anchor; + ZSTD_storeSeq(seqStore, litLength, anchor, (U32)offset, matchLength-MINMATCH); + anchor = ip = start + matchLength; + } + + /* check immediate repcode */ + while (ip <= ilimit) { + const U32 repIndex = (U32)((ip-base) - offset_2); + const BYTE* const repBase = repIndex < dictLimit ? dictBase : base; + const BYTE* const repMatch = repBase + repIndex; + if (((U32)((dictLimit-1) - repIndex) >= 3) & (repIndex > lowestIndex)) /* intentional overflow */ + if (MEM_read32(ip) == MEM_read32(repMatch)) { + /* repcode detected we should take it */ + const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend; + matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4; + offset = offset_2; offset_2 = offset_1; offset_1 = (U32)offset; /* swap offset history */ + ZSTD_storeSeq(seqStore, 0, anchor, 0, matchLength-MINMATCH); + ip += matchLength; + anchor = ip; + continue; /* faster when present ... (?) */ + } + break; + } } + + /* Save reps for next block */ + rep[0] = offset_1; + rep[1] = offset_2; + + /* Return the last literals size */ + return iend - anchor; +} + + +size_t ZSTD_compressBlock_greedy_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 0); +} + +size_t ZSTD_compressBlock_lazy_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) + +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 1); +} + +size_t ZSTD_compressBlock_lazy2_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) + +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 0, 2); +} + +size_t ZSTD_compressBlock_btlazy2_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) + +{ + return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, 1, 2); +} diff --git a/vendor/github.com/DataDog/zstd/zstd_lazy.h b/vendor/github.com/DataDog/zstd/zstd_lazy.h new file mode 100644 index 0000000000..bb1763069f --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_lazy.h @@ -0,0 +1,67 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_LAZY_H +#define ZSTD_LAZY_H + +#if defined (__cplusplus) +extern "C" { +#endif + +#include "zstd_compress_internal.h" + +U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip); + +void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */ + +size_t ZSTD_compressBlock_btlazy2( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +size_t ZSTD_compressBlock_btlazy2_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_greedy_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +size_t ZSTD_compressBlock_greedy_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_lazy2_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btlazy2_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_LAZY_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_ldm.c b/vendor/github.com/DataDog/zstd/zstd_ldm.c new file mode 100644 index 0000000000..784d20f3ab --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_ldm.c @@ -0,0 +1,597 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + */ + +#include "zstd_ldm.h" + +#include "debug.h" +#include "zstd_fast.h" /* ZSTD_fillHashTable() */ +#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */ + +#define LDM_BUCKET_SIZE_LOG 3 +#define LDM_MIN_MATCH_LENGTH 64 +#define LDM_HASH_RLOG 7 +#define LDM_HASH_CHAR_OFFSET 10 + +void ZSTD_ldm_adjustParameters(ldmParams_t* params, + ZSTD_compressionParameters const* cParams) +{ + params->windowLog = cParams->windowLog; + ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX); + DEBUGLOG(4, "ZSTD_ldm_adjustParameters"); + if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG; + if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH; + if (cParams->strategy >= ZSTD_btopt) { + /* Get out of the way of the optimal parser */ + U32 const minMatch = MAX(cParams->targetLength, params->minMatchLength); + assert(minMatch >= ZSTD_LDM_MINMATCH_MIN); + assert(minMatch <= ZSTD_LDM_MINMATCH_MAX); + params->minMatchLength = minMatch; + } + if (params->hashLog == 0) { + params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG); + assert(params->hashLog <= ZSTD_HASHLOG_MAX); + } + if (params->hashRateLog == 0) { + params->hashRateLog = params->windowLog < params->hashLog + ? 0 + : params->windowLog - params->hashLog; + } + params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog); +} + +size_t ZSTD_ldm_getTableSize(ldmParams_t params) +{ + size_t const ldmHSize = ((size_t)1) << params.hashLog; + size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog); + size_t const ldmBucketSize = + ((size_t)1) << (params.hashLog - ldmBucketSizeLog); + size_t const totalSize = ldmBucketSize + ldmHSize * sizeof(ldmEntry_t); + return params.enableLdm ? totalSize : 0; +} + +size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize) +{ + return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0; +} + +/** ZSTD_ldm_getSmallHash() : + * numBits should be <= 32 + * If numBits==0, returns 0. + * @return : the most significant numBits of value. */ +static U32 ZSTD_ldm_getSmallHash(U64 value, U32 numBits) +{ + assert(numBits <= 32); + return numBits == 0 ? 0 : (U32)(value >> (64 - numBits)); +} + +/** ZSTD_ldm_getChecksum() : + * numBitsToDiscard should be <= 32 + * @return : the next most significant 32 bits after numBitsToDiscard */ +static U32 ZSTD_ldm_getChecksum(U64 hash, U32 numBitsToDiscard) +{ + assert(numBitsToDiscard <= 32); + return (hash >> (64 - 32 - numBitsToDiscard)) & 0xFFFFFFFF; +} + +/** ZSTD_ldm_getTag() ; + * Given the hash, returns the most significant numTagBits bits + * after (32 + hbits) bits. + * + * If there are not enough bits remaining, return the last + * numTagBits bits. */ +static U32 ZSTD_ldm_getTag(U64 hash, U32 hbits, U32 numTagBits) +{ + assert(numTagBits < 32 && hbits <= 32); + if (32 - hbits < numTagBits) { + return hash & (((U32)1 << numTagBits) - 1); + } else { + return (hash >> (32 - hbits - numTagBits)) & (((U32)1 << numTagBits) - 1); + } +} + +/** ZSTD_ldm_getBucket() : + * Returns a pointer to the start of the bucket associated with hash. */ +static ldmEntry_t* ZSTD_ldm_getBucket( + ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams) +{ + return ldmState->hashTable + (hash << ldmParams.bucketSizeLog); +} + +/** ZSTD_ldm_insertEntry() : + * Insert the entry with corresponding hash into the hash table */ +static void ZSTD_ldm_insertEntry(ldmState_t* ldmState, + size_t const hash, const ldmEntry_t entry, + ldmParams_t const ldmParams) +{ + BYTE* const bucketOffsets = ldmState->bucketOffsets; + *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + bucketOffsets[hash]) = entry; + bucketOffsets[hash]++; + bucketOffsets[hash] &= ((U32)1 << ldmParams.bucketSizeLog) - 1; +} + +/** ZSTD_ldm_makeEntryAndInsertByTag() : + * + * Gets the small hash, checksum, and tag from the rollingHash. + * + * If the tag matches (1 << ldmParams.hashRateLog)-1, then + * creates an ldmEntry from the offset, and inserts it into the hash table. + * + * hBits is the length of the small hash, which is the most significant hBits + * of rollingHash. The checksum is the next 32 most significant bits, followed + * by ldmParams.hashRateLog bits that make up the tag. */ +static void ZSTD_ldm_makeEntryAndInsertByTag(ldmState_t* ldmState, + U64 const rollingHash, + U32 const hBits, + U32 const offset, + ldmParams_t const ldmParams) +{ + U32 const tag = ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashRateLog); + U32 const tagMask = ((U32)1 << ldmParams.hashRateLog) - 1; + if (tag == tagMask) { + U32 const hash = ZSTD_ldm_getSmallHash(rollingHash, hBits); + U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits); + ldmEntry_t entry; + entry.offset = offset; + entry.checksum = checksum; + ZSTD_ldm_insertEntry(ldmState, hash, entry, ldmParams); + } +} + +/** ZSTD_ldm_countBackwardsMatch() : + * Returns the number of bytes that match backwards before pIn and pMatch. + * + * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */ +static size_t ZSTD_ldm_countBackwardsMatch( + const BYTE* pIn, const BYTE* pAnchor, + const BYTE* pMatch, const BYTE* pBase) +{ + size_t matchLength = 0; + while (pIn > pAnchor && pMatch > pBase && pIn[-1] == pMatch[-1]) { + pIn--; + pMatch--; + matchLength++; + } + return matchLength; +} + +/** ZSTD_ldm_fillFastTables() : + * + * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies. + * This is similar to ZSTD_loadDictionaryContent. + * + * The tables for the other strategies are filled within their + * block compressors. */ +static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms, + void const* end) +{ + const BYTE* const iend = (const BYTE*)end; + + switch(ms->cParams.strategy) + { + case ZSTD_fast: + ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast); + break; + + case ZSTD_dfast: + ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast); + break; + + case ZSTD_greedy: + case ZSTD_lazy: + case ZSTD_lazy2: + case ZSTD_btlazy2: + case ZSTD_btopt: + case ZSTD_btultra: + case ZSTD_btultra2: + break; + default: + assert(0); /* not possible : not a valid strategy id */ + } + + return 0; +} + +/** ZSTD_ldm_fillLdmHashTable() : + * + * Fills hashTable from (lastHashed + 1) to iend (non-inclusive). + * lastHash is the rolling hash that corresponds to lastHashed. + * + * Returns the rolling hash corresponding to position iend-1. */ +static U64 ZSTD_ldm_fillLdmHashTable(ldmState_t* state, + U64 lastHash, const BYTE* lastHashed, + const BYTE* iend, const BYTE* base, + U32 hBits, ldmParams_t const ldmParams) +{ + U64 rollingHash = lastHash; + const BYTE* cur = lastHashed + 1; + + while (cur < iend) { + rollingHash = ZSTD_rollingHash_rotate(rollingHash, cur[-1], + cur[ldmParams.minMatchLength-1], + state->hashPower); + ZSTD_ldm_makeEntryAndInsertByTag(state, + rollingHash, hBits, + (U32)(cur - base), ldmParams); + ++cur; + } + return rollingHash; +} + + +/** ZSTD_ldm_limitTableUpdate() : + * + * Sets cctx->nextToUpdate to a position corresponding closer to anchor + * if it is far way + * (after a long match, only update tables a limited amount). */ +static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor) +{ + U32 const current = (U32)(anchor - ms->window.base); + if (current > ms->nextToUpdate + 1024) { + ms->nextToUpdate = + current - MIN(512, current - ms->nextToUpdate - 1024); + } +} + +static size_t ZSTD_ldm_generateSequences_internal( + ldmState_t* ldmState, rawSeqStore_t* rawSeqStore, + ldmParams_t const* params, void const* src, size_t srcSize) +{ + /* LDM parameters */ + int const extDict = ZSTD_window_hasExtDict(ldmState->window); + U32 const minMatchLength = params->minMatchLength; + U64 const hashPower = ldmState->hashPower; + U32 const hBits = params->hashLog - params->bucketSizeLog; + U32 const ldmBucketSize = 1U << params->bucketSizeLog; + U32 const hashRateLog = params->hashRateLog; + U32 const ldmTagMask = (1U << params->hashRateLog) - 1; + /* Prefix and extDict parameters */ + U32 const dictLimit = ldmState->window.dictLimit; + U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit; + BYTE const* const base = ldmState->window.base; + BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL; + BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL; + BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL; + BYTE const* const lowPrefixPtr = base + dictLimit; + /* Input bounds */ + BYTE const* const istart = (BYTE const*)src; + BYTE const* const iend = istart + srcSize; + BYTE const* const ilimit = iend - MAX(minMatchLength, HASH_READ_SIZE); + /* Input positions */ + BYTE const* anchor = istart; + BYTE const* ip = istart; + /* Rolling hash */ + BYTE const* lastHashed = NULL; + U64 rollingHash = 0; + + while (ip <= ilimit) { + size_t mLength; + U32 const current = (U32)(ip - base); + size_t forwardMatchLength = 0, backwardMatchLength = 0; + ldmEntry_t* bestEntry = NULL; + if (ip != istart) { + rollingHash = ZSTD_rollingHash_rotate(rollingHash, lastHashed[0], + lastHashed[minMatchLength], + hashPower); + } else { + rollingHash = ZSTD_rollingHash_compute(ip, minMatchLength); + } + lastHashed = ip; + + /* Do not insert and do not look for a match */ + if (ZSTD_ldm_getTag(rollingHash, hBits, hashRateLog) != ldmTagMask) { + ip++; + continue; + } + + /* Get the best entry and compute the match lengths */ + { + ldmEntry_t* const bucket = + ZSTD_ldm_getBucket(ldmState, + ZSTD_ldm_getSmallHash(rollingHash, hBits), + *params); + ldmEntry_t* cur; + size_t bestMatchLength = 0; + U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits); + + for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) { + size_t curForwardMatchLength, curBackwardMatchLength, + curTotalMatchLength; + if (cur->checksum != checksum || cur->offset <= lowestIndex) { + continue; + } + if (extDict) { + BYTE const* const curMatchBase = + cur->offset < dictLimit ? dictBase : base; + BYTE const* const pMatch = curMatchBase + cur->offset; + BYTE const* const matchEnd = + cur->offset < dictLimit ? dictEnd : iend; + BYTE const* const lowMatchPtr = + cur->offset < dictLimit ? dictStart : lowPrefixPtr; + + curForwardMatchLength = ZSTD_count_2segments( + ip, pMatch, iend, + matchEnd, lowPrefixPtr); + if (curForwardMatchLength < minMatchLength) { + continue; + } + curBackwardMatchLength = + ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch, + lowMatchPtr); + curTotalMatchLength = curForwardMatchLength + + curBackwardMatchLength; + } else { /* !extDict */ + BYTE const* const pMatch = base + cur->offset; + curForwardMatchLength = ZSTD_count(ip, pMatch, iend); + if (curForwardMatchLength < minMatchLength) { + continue; + } + curBackwardMatchLength = + ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch, + lowPrefixPtr); + curTotalMatchLength = curForwardMatchLength + + curBackwardMatchLength; + } + + if (curTotalMatchLength > bestMatchLength) { + bestMatchLength = curTotalMatchLength; + forwardMatchLength = curForwardMatchLength; + backwardMatchLength = curBackwardMatchLength; + bestEntry = cur; + } + } + } + + /* No match found -- continue searching */ + if (bestEntry == NULL) { + ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, + hBits, current, + *params); + ip++; + continue; + } + + /* Match found */ + mLength = forwardMatchLength + backwardMatchLength; + ip -= backwardMatchLength; + + { + /* Store the sequence: + * ip = current - backwardMatchLength + * The match is at (bestEntry->offset - backwardMatchLength) + */ + U32 const matchIndex = bestEntry->offset; + U32 const offset = current - matchIndex; + rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size; + + /* Out of sequence storage */ + if (rawSeqStore->size == rawSeqStore->capacity) + return ERROR(dstSize_tooSmall); + seq->litLength = (U32)(ip - anchor); + seq->matchLength = (U32)mLength; + seq->offset = offset; + rawSeqStore->size++; + } + + /* Insert the current entry into the hash table */ + ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits, + (U32)(lastHashed - base), + *params); + + assert(ip + backwardMatchLength == lastHashed); + + /* Fill the hash table from lastHashed+1 to ip+mLength*/ + /* Heuristic: don't need to fill the entire table at end of block */ + if (ip + mLength <= ilimit) { + rollingHash = ZSTD_ldm_fillLdmHashTable( + ldmState, rollingHash, lastHashed, + ip + mLength, base, hBits, *params); + lastHashed = ip + mLength - 1; + } + ip += mLength; + anchor = ip; + } + return iend - anchor; +} + +/*! ZSTD_ldm_reduceTable() : + * reduce table indexes by `reducerValue` */ +static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size, + U32 const reducerValue) +{ + U32 u; + for (u = 0; u < size; u++) { + if (table[u].offset < reducerValue) table[u].offset = 0; + else table[u].offset -= reducerValue; + } +} + +size_t ZSTD_ldm_generateSequences( + ldmState_t* ldmState, rawSeqStore_t* sequences, + ldmParams_t const* params, void const* src, size_t srcSize) +{ + U32 const maxDist = 1U << params->windowLog; + BYTE const* const istart = (BYTE const*)src; + BYTE const* const iend = istart + srcSize; + size_t const kMaxChunkSize = 1 << 20; + size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0); + size_t chunk; + size_t leftoverSize = 0; + + assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize); + /* Check that ZSTD_window_update() has been called for this chunk prior + * to passing it to this function. + */ + assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize); + /* The input could be very large (in zstdmt), so it must be broken up into + * chunks to enforce the maximum distance and handle overflow correction. + */ + assert(sequences->pos <= sequences->size); + assert(sequences->size <= sequences->capacity); + for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) { + BYTE const* const chunkStart = istart + chunk * kMaxChunkSize; + size_t const remaining = (size_t)(iend - chunkStart); + BYTE const *const chunkEnd = + (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize; + size_t const chunkSize = chunkEnd - chunkStart; + size_t newLeftoverSize; + size_t const prevSize = sequences->size; + + assert(chunkStart < iend); + /* 1. Perform overflow correction if necessary. */ + if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) { + U32 const ldmHSize = 1U << params->hashLog; + U32 const correction = ZSTD_window_correctOverflow( + &ldmState->window, /* cycleLog */ 0, maxDist, src); + ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction); + } + /* 2. We enforce the maximum offset allowed. + * + * kMaxChunkSize should be small enough that we don't lose too much of + * the window through early invalidation. + * TODO: * Test the chunk size. + * * Try invalidation after the sequence generation and test the + * the offset against maxDist directly. + */ + ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, NULL, NULL); + /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */ + newLeftoverSize = ZSTD_ldm_generateSequences_internal( + ldmState, sequences, params, chunkStart, chunkSize); + if (ZSTD_isError(newLeftoverSize)) + return newLeftoverSize; + /* 4. We add the leftover literals from previous iterations to the first + * newly generated sequence, or add the `newLeftoverSize` if none are + * generated. + */ + /* Prepend the leftover literals from the last call */ + if (prevSize < sequences->size) { + sequences->seq[prevSize].litLength += (U32)leftoverSize; + leftoverSize = newLeftoverSize; + } else { + assert(newLeftoverSize == chunkSize); + leftoverSize += chunkSize; + } + } + return 0; +} + +void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) { + while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) { + rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos; + if (srcSize <= seq->litLength) { + /* Skip past srcSize literals */ + seq->litLength -= (U32)srcSize; + return; + } + srcSize -= seq->litLength; + seq->litLength = 0; + if (srcSize < seq->matchLength) { + /* Skip past the first srcSize of the match */ + seq->matchLength -= (U32)srcSize; + if (seq->matchLength < minMatch) { + /* The match is too short, omit it */ + if (rawSeqStore->pos + 1 < rawSeqStore->size) { + seq[1].litLength += seq[0].matchLength; + } + rawSeqStore->pos++; + } + return; + } + srcSize -= seq->matchLength; + seq->matchLength = 0; + rawSeqStore->pos++; + } +} + +/** + * If the sequence length is longer than remaining then the sequence is split + * between this block and the next. + * + * Returns the current sequence to handle, or if the rest of the block should + * be literals, it returns a sequence with offset == 0. + */ +static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore, + U32 const remaining, U32 const minMatch) +{ + rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos]; + assert(sequence.offset > 0); + /* Likely: No partial sequence */ + if (remaining >= sequence.litLength + sequence.matchLength) { + rawSeqStore->pos++; + return sequence; + } + /* Cut the sequence short (offset == 0 ==> rest is literals). */ + if (remaining <= sequence.litLength) { + sequence.offset = 0; + } else if (remaining < sequence.litLength + sequence.matchLength) { + sequence.matchLength = remaining - sequence.litLength; + if (sequence.matchLength < minMatch) { + sequence.offset = 0; + } + } + /* Skip past `remaining` bytes for the future sequences. */ + ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch); + return sequence; +} + +size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore, + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + unsigned const minMatch = cParams->minMatch; + ZSTD_blockCompressor const blockCompressor = + ZSTD_selectBlockCompressor(cParams->strategy, ZSTD_matchState_dictMode(ms)); + /* Input bounds */ + BYTE const* const istart = (BYTE const*)src; + BYTE const* const iend = istart + srcSize; + /* Input positions */ + BYTE const* ip = istart; + + DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize); + assert(rawSeqStore->pos <= rawSeqStore->size); + assert(rawSeqStore->size <= rawSeqStore->capacity); + /* Loop through each sequence and apply the block compressor to the lits */ + while (rawSeqStore->pos < rawSeqStore->size && ip < iend) { + /* maybeSplitSequence updates rawSeqStore->pos */ + rawSeq const sequence = maybeSplitSequence(rawSeqStore, + (U32)(iend - ip), minMatch); + int i; + /* End signal */ + if (sequence.offset == 0) + break; + + assert(sequence.offset <= (1U << cParams->windowLog)); + assert(ip + sequence.litLength + sequence.matchLength <= iend); + + /* Fill tables for block compressor */ + ZSTD_ldm_limitTableUpdate(ms, ip); + ZSTD_ldm_fillFastTables(ms, ip); + /* Run the block compressor */ + DEBUGLOG(5, "calling block compressor on segment of size %u", sequence.litLength); + { + size_t const newLitLength = + blockCompressor(ms, seqStore, rep, ip, sequence.litLength); + ip += sequence.litLength; + /* Update the repcodes */ + for (i = ZSTD_REP_NUM - 1; i > 0; i--) + rep[i] = rep[i-1]; + rep[0] = sequence.offset; + /* Store the sequence */ + ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, + sequence.offset + ZSTD_REP_MOVE, + sequence.matchLength - MINMATCH); + ip += sequence.matchLength; + } + } + /* Fill the tables for the block compressor */ + ZSTD_ldm_limitTableUpdate(ms, ip); + ZSTD_ldm_fillFastTables(ms, ip); + /* Compress the last literals */ + return blockCompressor(ms, seqStore, rep, ip, iend - ip); +} diff --git a/vendor/github.com/DataDog/zstd/zstd_ldm.h b/vendor/github.com/DataDog/zstd/zstd_ldm.h new file mode 100644 index 0000000000..a47846128b --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_ldm.h @@ -0,0 +1,105 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + */ + +#ifndef ZSTD_LDM_H +#define ZSTD_LDM_H + +#if defined (__cplusplus) +extern "C" { +#endif + +#include "zstd_compress_internal.h" /* ldmParams_t, U32 */ +#include "zstd.h" /* ZSTD_CCtx, size_t */ + +/*-************************************* +* Long distance matching +***************************************/ + +#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_LIMIT_DEFAULT + +/** + * ZSTD_ldm_generateSequences(): + * + * Generates the sequences using the long distance match finder. + * Generates long range matching sequences in `sequences`, which parse a prefix + * of the source. `sequences` must be large enough to store every sequence, + * which can be checked with `ZSTD_ldm_getMaxNbSeq()`. + * @returns 0 or an error code. + * + * NOTE: The user must have called ZSTD_window_update() for all of the input + * they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks. + * NOTE: This function returns an error if it runs out of space to store + * sequences. + */ +size_t ZSTD_ldm_generateSequences( + ldmState_t* ldms, rawSeqStore_t* sequences, + ldmParams_t const* params, void const* src, size_t srcSize); + +/** + * ZSTD_ldm_blockCompress(): + * + * Compresses a block using the predefined sequences, along with a secondary + * block compressor. The literals section of every sequence is passed to the + * secondary block compressor, and those sequences are interspersed with the + * predefined sequences. Returns the length of the last literals. + * Updates `rawSeqStore.pos` to indicate how many sequences have been consumed. + * `rawSeqStore.seq` may also be updated to split the last sequence between two + * blocks. + * @return The length of the last literals. + * + * NOTE: The source must be at most the maximum block size, but the predefined + * sequences can be any size, and may be longer than the block. In the case that + * they are longer than the block, the last sequences may need to be split into + * two. We handle that case correctly, and update `rawSeqStore` appropriately. + * NOTE: This function does not return any errors. + */ +size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore, + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +/** + * ZSTD_ldm_skipSequences(): + * + * Skip past `srcSize` bytes worth of sequences in `rawSeqStore`. + * Avoids emitting matches less than `minMatch` bytes. + * Must be called for data with is not passed to ZSTD_ldm_blockCompress(). + */ +void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, + U32 const minMatch); + + +/** ZSTD_ldm_getTableSize() : + * Estimate the space needed for long distance matching tables or 0 if LDM is + * disabled. + */ +size_t ZSTD_ldm_getTableSize(ldmParams_t params); + +/** ZSTD_ldm_getSeqSpace() : + * Return an upper bound on the number of sequences that can be produced by + * the long distance matcher, or 0 if LDM is disabled. + */ +size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize); + +/** ZSTD_ldm_adjustParameters() : + * If the params->hashRateLog is not set, set it to its default value based on + * windowLog and params->hashLog. + * + * Ensures that params->bucketSizeLog is <= params->hashLog (setting it to + * params->hashLog if it is not). + * + * Ensures that the minMatchLength >= targetLength during optimal parsing. + */ +void ZSTD_ldm_adjustParameters(ldmParams_t* params, + ZSTD_compressionParameters const* cParams); + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_FAST_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_legacy.h b/vendor/github.com/DataDog/zstd/zstd_legacy.h new file mode 100644 index 0000000000..e5b383ee4c --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_legacy.h @@ -0,0 +1,411 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_LEGACY_H +#define ZSTD_LEGACY_H + +#if defined (__cplusplus) +extern "C" { +#endif + +/* ************************************* +* Includes +***************************************/ +#include "mem.h" /* MEM_STATIC */ +#include "error_private.h" /* ERROR */ +#include "zstd_internal.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTD_frameSizeInfo */ + +#if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0) +# undef ZSTD_LEGACY_SUPPORT +# define ZSTD_LEGACY_SUPPORT 8 +#endif + +#if (ZSTD_LEGACY_SUPPORT <= 1) +# include "zstd_v01.h" +#endif +#if (ZSTD_LEGACY_SUPPORT <= 2) +# include "zstd_v02.h" +#endif +#if (ZSTD_LEGACY_SUPPORT <= 3) +# include "zstd_v03.h" +#endif +#if (ZSTD_LEGACY_SUPPORT <= 4) +# include "zstd_v04.h" +#endif +#if (ZSTD_LEGACY_SUPPORT <= 5) +# include "zstd_v05.h" +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) +# include "zstd_v06.h" +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) +# include "zstd_v07.h" +#endif + +/** ZSTD_isLegacy() : + @return : > 0 if supported by legacy decoder. 0 otherwise. + return value is the version. +*/ +MEM_STATIC unsigned ZSTD_isLegacy(const void* src, size_t srcSize) +{ + U32 magicNumberLE; + if (srcSize<4) return 0; + magicNumberLE = MEM_readLE32(src); + switch(magicNumberLE) + { +#if (ZSTD_LEGACY_SUPPORT <= 1) + case ZSTDv01_magicNumberLE:return 1; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 2) + case ZSTDv02_magicNumber : return 2; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 3) + case ZSTDv03_magicNumber : return 3; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 4) + case ZSTDv04_magicNumber : return 4; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 5) + case ZSTDv05_MAGICNUMBER : return 5; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) + case ZSTDv06_MAGICNUMBER : return 6; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) + case ZSTDv07_MAGICNUMBER : return 7; +#endif + default : return 0; + } +} + + +MEM_STATIC unsigned long long ZSTD_getDecompressedSize_legacy(const void* src, size_t srcSize) +{ + U32 const version = ZSTD_isLegacy(src, srcSize); + if (version < 5) return 0; /* no decompressed size in frame header, or not a legacy format */ +#if (ZSTD_LEGACY_SUPPORT <= 5) + if (version==5) { + ZSTDv05_parameters fParams; + size_t const frResult = ZSTDv05_getFrameParams(&fParams, src, srcSize); + if (frResult != 0) return 0; + return fParams.srcSize; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) + if (version==6) { + ZSTDv06_frameParams fParams; + size_t const frResult = ZSTDv06_getFrameParams(&fParams, src, srcSize); + if (frResult != 0) return 0; + return fParams.frameContentSize; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) + if (version==7) { + ZSTDv07_frameParams fParams; + size_t const frResult = ZSTDv07_getFrameParams(&fParams, src, srcSize); + if (frResult != 0) return 0; + return fParams.frameContentSize; + } +#endif + return 0; /* should not be possible */ +} + + +MEM_STATIC size_t ZSTD_decompressLegacy( + void* dst, size_t dstCapacity, + const void* src, size_t compressedSize, + const void* dict,size_t dictSize) +{ + U32 const version = ZSTD_isLegacy(src, compressedSize); + (void)dst; (void)dstCapacity; (void)dict; (void)dictSize; /* unused when ZSTD_LEGACY_SUPPORT >= 8 */ + switch(version) + { +#if (ZSTD_LEGACY_SUPPORT <= 1) + case 1 : + return ZSTDv01_decompress(dst, dstCapacity, src, compressedSize); +#endif +#if (ZSTD_LEGACY_SUPPORT <= 2) + case 2 : + return ZSTDv02_decompress(dst, dstCapacity, src, compressedSize); +#endif +#if (ZSTD_LEGACY_SUPPORT <= 3) + case 3 : + return ZSTDv03_decompress(dst, dstCapacity, src, compressedSize); +#endif +#if (ZSTD_LEGACY_SUPPORT <= 4) + case 4 : + return ZSTDv04_decompress(dst, dstCapacity, src, compressedSize); +#endif +#if (ZSTD_LEGACY_SUPPORT <= 5) + case 5 : + { size_t result; + ZSTDv05_DCtx* const zd = ZSTDv05_createDCtx(); + if (zd==NULL) return ERROR(memory_allocation); + result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); + ZSTDv05_freeDCtx(zd); + return result; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) + case 6 : + { size_t result; + ZSTDv06_DCtx* const zd = ZSTDv06_createDCtx(); + if (zd==NULL) return ERROR(memory_allocation); + result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); + ZSTDv06_freeDCtx(zd); + return result; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) + case 7 : + { size_t result; + ZSTDv07_DCtx* const zd = ZSTDv07_createDCtx(); + if (zd==NULL) return ERROR(memory_allocation); + result = ZSTDv07_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize); + ZSTDv07_freeDCtx(zd); + return result; + } +#endif + default : + return ERROR(prefix_unknown); + } +} + +MEM_STATIC ZSTD_frameSizeInfo ZSTD_findFrameSizeInfoLegacy(const void *src, size_t srcSize) +{ + ZSTD_frameSizeInfo frameSizeInfo; + U32 const version = ZSTD_isLegacy(src, srcSize); + switch(version) + { +#if (ZSTD_LEGACY_SUPPORT <= 1) + case 1 : + ZSTDv01_findFrameSizeInfoLegacy(src, srcSize, + &frameSizeInfo.compressedSize, + &frameSizeInfo.decompressedBound); + break; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 2) + case 2 : + ZSTDv02_findFrameSizeInfoLegacy(src, srcSize, + &frameSizeInfo.compressedSize, + &frameSizeInfo.decompressedBound); + break; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 3) + case 3 : + ZSTDv03_findFrameSizeInfoLegacy(src, srcSize, + &frameSizeInfo.compressedSize, + &frameSizeInfo.decompressedBound); + break; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 4) + case 4 : + ZSTDv04_findFrameSizeInfoLegacy(src, srcSize, + &frameSizeInfo.compressedSize, + &frameSizeInfo.decompressedBound); + break; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 5) + case 5 : + ZSTDv05_findFrameSizeInfoLegacy(src, srcSize, + &frameSizeInfo.compressedSize, + &frameSizeInfo.decompressedBound); + break; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) + case 6 : + ZSTDv06_findFrameSizeInfoLegacy(src, srcSize, + &frameSizeInfo.compressedSize, + &frameSizeInfo.decompressedBound); + break; +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) + case 7 : + ZSTDv07_findFrameSizeInfoLegacy(src, srcSize, + &frameSizeInfo.compressedSize, + &frameSizeInfo.decompressedBound); + break; +#endif + default : + frameSizeInfo.compressedSize = ERROR(prefix_unknown); + frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; + break; + } + return frameSizeInfo; +} + +MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src, size_t srcSize) +{ + ZSTD_frameSizeInfo frameSizeInfo = ZSTD_findFrameSizeInfoLegacy(src, srcSize); + return frameSizeInfo.compressedSize; +} + +MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version) +{ + switch(version) + { + default : + case 1 : + case 2 : + case 3 : + (void)legacyContext; + return ERROR(version_unsupported); +#if (ZSTD_LEGACY_SUPPORT <= 4) + case 4 : return ZBUFFv04_freeDCtx((ZBUFFv04_DCtx*)legacyContext); +#endif +#if (ZSTD_LEGACY_SUPPORT <= 5) + case 5 : return ZBUFFv05_freeDCtx((ZBUFFv05_DCtx*)legacyContext); +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) + case 6 : return ZBUFFv06_freeDCtx((ZBUFFv06_DCtx*)legacyContext); +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) + case 7 : return ZBUFFv07_freeDCtx((ZBUFFv07_DCtx*)legacyContext); +#endif + } +} + + +MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion, + const void* dict, size_t dictSize) +{ + DEBUGLOG(5, "ZSTD_initLegacyStream for v0.%u", newVersion); + if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion); + switch(newVersion) + { + default : + case 1 : + case 2 : + case 3 : + (void)dict; (void)dictSize; + return 0; +#if (ZSTD_LEGACY_SUPPORT <= 4) + case 4 : + { + ZBUFFv04_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv04_createDCtx() : (ZBUFFv04_DCtx*)*legacyContext; + if (dctx==NULL) return ERROR(memory_allocation); + ZBUFFv04_decompressInit(dctx); + ZBUFFv04_decompressWithDictionary(dctx, dict, dictSize); + *legacyContext = dctx; + return 0; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 5) + case 5 : + { + ZBUFFv05_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv05_createDCtx() : (ZBUFFv05_DCtx*)*legacyContext; + if (dctx==NULL) return ERROR(memory_allocation); + ZBUFFv05_decompressInitDictionary(dctx, dict, dictSize); + *legacyContext = dctx; + return 0; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) + case 6 : + { + ZBUFFv06_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv06_createDCtx() : (ZBUFFv06_DCtx*)*legacyContext; + if (dctx==NULL) return ERROR(memory_allocation); + ZBUFFv06_decompressInitDictionary(dctx, dict, dictSize); + *legacyContext = dctx; + return 0; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) + case 7 : + { + ZBUFFv07_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv07_createDCtx() : (ZBUFFv07_DCtx*)*legacyContext; + if (dctx==NULL) return ERROR(memory_allocation); + ZBUFFv07_decompressInitDictionary(dctx, dict, dictSize); + *legacyContext = dctx; + return 0; + } +#endif + } +} + + + +MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version, + ZSTD_outBuffer* output, ZSTD_inBuffer* input) +{ + DEBUGLOG(5, "ZSTD_decompressLegacyStream for v0.%u", version); + switch(version) + { + default : + case 1 : + case 2 : + case 3 : + (void)legacyContext; (void)output; (void)input; + return ERROR(version_unsupported); +#if (ZSTD_LEGACY_SUPPORT <= 4) + case 4 : + { + ZBUFFv04_DCtx* dctx = (ZBUFFv04_DCtx*) legacyContext; + const void* src = (const char*)input->src + input->pos; + size_t readSize = input->size - input->pos; + void* dst = (char*)output->dst + output->pos; + size_t decodedSize = output->size - output->pos; + size_t const hintSize = ZBUFFv04_decompressContinue(dctx, dst, &decodedSize, src, &readSize); + output->pos += decodedSize; + input->pos += readSize; + return hintSize; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 5) + case 5 : + { + ZBUFFv05_DCtx* dctx = (ZBUFFv05_DCtx*) legacyContext; + const void* src = (const char*)input->src + input->pos; + size_t readSize = input->size - input->pos; + void* dst = (char*)output->dst + output->pos; + size_t decodedSize = output->size - output->pos; + size_t const hintSize = ZBUFFv05_decompressContinue(dctx, dst, &decodedSize, src, &readSize); + output->pos += decodedSize; + input->pos += readSize; + return hintSize; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 6) + case 6 : + { + ZBUFFv06_DCtx* dctx = (ZBUFFv06_DCtx*) legacyContext; + const void* src = (const char*)input->src + input->pos; + size_t readSize = input->size - input->pos; + void* dst = (char*)output->dst + output->pos; + size_t decodedSize = output->size - output->pos; + size_t const hintSize = ZBUFFv06_decompressContinue(dctx, dst, &decodedSize, src, &readSize); + output->pos += decodedSize; + input->pos += readSize; + return hintSize; + } +#endif +#if (ZSTD_LEGACY_SUPPORT <= 7) + case 7 : + { + ZBUFFv07_DCtx* dctx = (ZBUFFv07_DCtx*) legacyContext; + const void* src = (const char*)input->src + input->pos; + size_t readSize = input->size - input->pos; + void* dst = (char*)output->dst + output->pos; + size_t decodedSize = output->size - output->pos; + size_t const hintSize = ZBUFFv07_decompressContinue(dctx, dst, &decodedSize, src, &readSize); + output->pos += decodedSize; + input->pos += readSize; + return hintSize; + } +#endif + } +} + + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_LEGACY_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_opt.c b/vendor/github.com/DataDog/zstd/zstd_opt.c new file mode 100644 index 0000000000..efb69d3267 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_opt.c @@ -0,0 +1,1233 @@ +/* + * Copyright (c) 2016-present, Przemyslaw Skibinski, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#include "zstd_compress_internal.h" +#include "hist.h" +#include "zstd_opt.h" + + +#define ZSTD_LITFREQ_ADD 2 /* scaling factor for litFreq, so that frequencies adapt faster to new stats */ +#define ZSTD_FREQ_DIV 4 /* log factor when using previous stats to init next stats */ +#define ZSTD_MAX_PRICE (1<<30) + +#define ZSTD_PREDEF_THRESHOLD 1024 /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */ + + +/*-************************************* +* Price functions for optimal parser +***************************************/ + +#if 0 /* approximation at bit level */ +# define BITCOST_ACCURACY 0 +# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) +# define WEIGHT(stat) ((void)opt, ZSTD_bitWeight(stat)) +#elif 0 /* fractional bit accuracy */ +# define BITCOST_ACCURACY 8 +# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) +# define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat)) +#else /* opt==approx, ultra==accurate */ +# define BITCOST_ACCURACY 8 +# define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY) +# define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat)) +#endif + +MEM_STATIC U32 ZSTD_bitWeight(U32 stat) +{ + return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER); +} + +MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat) +{ + U32 const stat = rawStat + 1; + U32 const hb = ZSTD_highbit32(stat); + U32 const BWeight = hb * BITCOST_MULTIPLIER; + U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb; + U32 const weight = BWeight + FWeight; + assert(hb + BITCOST_ACCURACY < 31); + return weight; +} + +#if (DEBUGLEVEL>=2) +/* debugging function, + * @return price in bytes as fractional value + * for debug messages only */ +MEM_STATIC double ZSTD_fCost(U32 price) +{ + return (double)price / (BITCOST_MULTIPLIER*8); +} +#endif + +static int ZSTD_compressedLiterals(optState_t const* const optPtr) +{ + return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed; +} + +static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel) +{ + if (ZSTD_compressedLiterals(optPtr)) + optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel); + optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel); + optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel); + optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel); +} + + +/* ZSTD_downscaleStat() : + * reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus) + * return the resulting sum of elements */ +static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus) +{ + U32 s, sum=0; + DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1); + assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31); + for (s=0; s> (ZSTD_FREQ_DIV+malus)); + sum += table[s]; + } + return sum; +} + +/* ZSTD_rescaleFreqs() : + * if first block (detected by optPtr->litLengthSum == 0) : init statistics + * take hints from dictionary if there is one + * or init from zero, using src for literals stats, or flat 1 for match symbols + * otherwise downscale existing stats, to be used as seed for next block. + */ +static void +ZSTD_rescaleFreqs(optState_t* const optPtr, + const BYTE* const src, size_t const srcSize, + int const optLevel) +{ + int const compressedLiterals = ZSTD_compressedLiterals(optPtr); + DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize); + optPtr->priceType = zop_dynamic; + + if (optPtr->litLengthSum == 0) { /* first block : init */ + if (srcSize <= ZSTD_PREDEF_THRESHOLD) { /* heuristic */ + DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef"); + optPtr->priceType = zop_predef; + } + + assert(optPtr->symbolCosts != NULL); + if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) { + /* huffman table presumed generated by dictionary */ + optPtr->priceType = zop_dynamic; + + if (compressedLiterals) { + unsigned lit; + assert(optPtr->litFreq != NULL); + optPtr->litSum = 0; + for (lit=0; lit<=MaxLit; lit++) { + U32 const scaleLog = 11; /* scale to 2K */ + U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit); + assert(bitCost <= scaleLog); + optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->litSum += optPtr->litFreq[lit]; + } } + + { unsigned ll; + FSE_CState_t llstate; + FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable); + optPtr->litLengthSum = 0; + for (ll=0; ll<=MaxLL; ll++) { + U32 const scaleLog = 10; /* scale to 1K */ + U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll); + assert(bitCost < scaleLog); + optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->litLengthSum += optPtr->litLengthFreq[ll]; + } } + + { unsigned ml; + FSE_CState_t mlstate; + FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable); + optPtr->matchLengthSum = 0; + for (ml=0; ml<=MaxML; ml++) { + U32 const scaleLog = 10; + U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml); + assert(bitCost < scaleLog); + optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->matchLengthSum += optPtr->matchLengthFreq[ml]; + } } + + { unsigned of; + FSE_CState_t ofstate; + FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable); + optPtr->offCodeSum = 0; + for (of=0; of<=MaxOff; of++) { + U32 const scaleLog = 10; + U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of); + assert(bitCost < scaleLog); + optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/; + optPtr->offCodeSum += optPtr->offCodeFreq[of]; + } } + + } else { /* not a dictionary */ + + assert(optPtr->litFreq != NULL); + if (compressedLiterals) { + unsigned lit = MaxLit; + HIST_count_simple(optPtr->litFreq, &lit, src, srcSize); /* use raw first block to init statistics */ + optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1); + } + + { unsigned ll; + for (ll=0; ll<=MaxLL; ll++) + optPtr->litLengthFreq[ll] = 1; + } + optPtr->litLengthSum = MaxLL+1; + + { unsigned ml; + for (ml=0; ml<=MaxML; ml++) + optPtr->matchLengthFreq[ml] = 1; + } + optPtr->matchLengthSum = MaxML+1; + + { unsigned of; + for (of=0; of<=MaxOff; of++) + optPtr->offCodeFreq[of] = 1; + } + optPtr->offCodeSum = MaxOff+1; + + } + + } else { /* new block : re-use previous statistics, scaled down */ + + if (compressedLiterals) + optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1); + optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0); + optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0); + optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0); + } + + ZSTD_setBasePrices(optPtr, optLevel); +} + +/* ZSTD_rawLiteralsCost() : + * price of literals (only) in specified segment (which length can be 0). + * does not include price of literalLength symbol */ +static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength, + const optState_t* const optPtr, + int optLevel) +{ + if (litLength == 0) return 0; + + if (!ZSTD_compressedLiterals(optPtr)) + return (litLength << 3) * BITCOST_MULTIPLIER; /* Uncompressed - 8 bytes per literal. */ + + if (optPtr->priceType == zop_predef) + return (litLength*6) * BITCOST_MULTIPLIER; /* 6 bit per literal - no statistic used */ + + /* dynamic statistics */ + { U32 price = litLength * optPtr->litSumBasePrice; + U32 u; + for (u=0; u < litLength; u++) { + assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice); /* literal cost should never be negative */ + price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel); + } + return price; + } +} + +/* ZSTD_litLengthPrice() : + * cost of literalLength symbol */ +static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel) +{ + if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel); + + /* dynamic statistics */ + { U32 const llCode = ZSTD_LLcode(litLength); + return (LL_bits[llCode] * BITCOST_MULTIPLIER) + + optPtr->litLengthSumBasePrice + - WEIGHT(optPtr->litLengthFreq[llCode], optLevel); + } +} + +/* ZSTD_litLengthContribution() : + * @return ( cost(litlength) - cost(0) ) + * this value can then be added to rawLiteralsCost() + * to provide a cost which is directly comparable to a match ending at same position */ +static int ZSTD_litLengthContribution(U32 const litLength, const optState_t* const optPtr, int optLevel) +{ + if (optPtr->priceType >= zop_predef) return WEIGHT(litLength, optLevel); + + /* dynamic statistics */ + { U32 const llCode = ZSTD_LLcode(litLength); + int const contribution = (LL_bits[llCode] * BITCOST_MULTIPLIER) + + WEIGHT(optPtr->litLengthFreq[0], optLevel) /* note: log2litLengthSum cancel out */ + - WEIGHT(optPtr->litLengthFreq[llCode], optLevel); +#if 1 + return contribution; +#else + return MAX(0, contribution); /* sometimes better, sometimes not ... */ +#endif + } +} + +/* ZSTD_literalsContribution() : + * creates a fake cost for the literals part of a sequence + * which can be compared to the ending cost of a match + * should a new match start at this position */ +static int ZSTD_literalsContribution(const BYTE* const literals, U32 const litLength, + const optState_t* const optPtr, + int optLevel) +{ + int const contribution = ZSTD_rawLiteralsCost(literals, litLength, optPtr, optLevel) + + ZSTD_litLengthContribution(litLength, optPtr, optLevel); + return contribution; +} + +/* ZSTD_getMatchPrice() : + * Provides the cost of the match part (offset + matchLength) of a sequence + * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence. + * optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */ +FORCE_INLINE_TEMPLATE U32 +ZSTD_getMatchPrice(U32 const offset, + U32 const matchLength, + const optState_t* const optPtr, + int const optLevel) +{ + U32 price; + U32 const offCode = ZSTD_highbit32(offset+1); + U32 const mlBase = matchLength - MINMATCH; + assert(matchLength >= MINMATCH); + + if (optPtr->priceType == zop_predef) /* fixed scheme, do not use statistics */ + return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER); + + /* dynamic statistics */ + price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel)); + if ((optLevel<2) /*static*/ && offCode >= 20) + price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */ + + /* match Length */ + { U32 const mlCode = ZSTD_MLcode(mlBase); + price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel)); + } + + price += BITCOST_MULTIPLIER / 5; /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */ + + DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price); + return price; +} + +/* ZSTD_updateStats() : + * assumption : literals + litLengtn <= iend */ +static void ZSTD_updateStats(optState_t* const optPtr, + U32 litLength, const BYTE* literals, + U32 offsetCode, U32 matchLength) +{ + /* literals */ + if (ZSTD_compressedLiterals(optPtr)) { + U32 u; + for (u=0; u < litLength; u++) + optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD; + optPtr->litSum += litLength*ZSTD_LITFREQ_ADD; + } + + /* literal Length */ + { U32 const llCode = ZSTD_LLcode(litLength); + optPtr->litLengthFreq[llCode]++; + optPtr->litLengthSum++; + } + + /* match offset code (0-2=>repCode; 3+=>offset+2) */ + { U32 const offCode = ZSTD_highbit32(offsetCode+1); + assert(offCode <= MaxOff); + optPtr->offCodeFreq[offCode]++; + optPtr->offCodeSum++; + } + + /* match Length */ + { U32 const mlBase = matchLength - MINMATCH; + U32 const mlCode = ZSTD_MLcode(mlBase); + optPtr->matchLengthFreq[mlCode]++; + optPtr->matchLengthSum++; + } +} + + +/* ZSTD_readMINMATCH() : + * function safe only for comparisons + * assumption : memPtr must be at least 4 bytes before end of buffer */ +MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length) +{ + switch (length) + { + default : + case 4 : return MEM_read32(memPtr); + case 3 : if (MEM_isLittleEndian()) + return MEM_read32(memPtr)<<8; + else + return MEM_read32(memPtr)>>8; + } +} + + +/* Update hashTable3 up to ip (excluded) + Assumption : always within prefix (i.e. not within extDict) */ +static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms, const BYTE* const ip) +{ + U32* const hashTable3 = ms->hashTable3; + U32 const hashLog3 = ms->hashLog3; + const BYTE* const base = ms->window.base; + U32 idx = ms->nextToUpdate3; + U32 const target = ms->nextToUpdate3 = (U32)(ip - base); + size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3); + assert(hashLog3 > 0); + + while(idx < target) { + hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx; + idx++; + } + + return hashTable3[hash3]; +} + + +/*-************************************* +* Binary Tree search +***************************************/ +/** ZSTD_insertBt1() : add one or multiple positions to tree. + * ip : assumed <= iend-8 . + * @return : nb of positions added */ +static U32 ZSTD_insertBt1( + ZSTD_matchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + U32 const mls, const int extDict) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32* const hashTable = ms->hashTable; + U32 const hashLog = cParams->hashLog; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask = (1 << btLog) - 1; + U32 matchIndex = hashTable[h]; + size_t commonLengthSmaller=0, commonLengthLarger=0; + const BYTE* const base = ms->window.base; + const BYTE* const dictBase = ms->window.dictBase; + const U32 dictLimit = ms->window.dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + const BYTE* match; + const U32 current = (U32)(ip-base); + const U32 btLow = btMask >= current ? 0 : current - btMask; + U32* smallerPtr = bt + 2*(current&btMask); + U32* largerPtr = smallerPtr + 1; + U32 dummy32; /* to be nullified at the end */ + U32 const windowLow = ms->window.lowLimit; + U32 matchEndIdx = current+8+1; + size_t bestLength = 8; + U32 nbCompares = 1U << cParams->searchLog; +#ifdef ZSTD_C_PREDICT + U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0); + U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1); + predictedSmall += (predictedSmall>0); + predictedLarge += (predictedLarge>0); +#endif /* ZSTD_C_PREDICT */ + + DEBUGLOG(8, "ZSTD_insertBt1 (%u)", current); + + assert(ip <= iend-8); /* required for h calculation */ + hashTable[h] = current; /* Update Hash Table */ + + assert(windowLow > 0); + while (nbCompares-- && (matchIndex >= windowLow)) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + assert(matchIndex < current); + +#ifdef ZSTD_C_PREDICT /* note : can create issues when hlog small <= 11 */ + const U32* predictPtr = bt + 2*((matchIndex-1) & btMask); /* written this way, as bt is a roll buffer */ + if (matchIndex == predictedSmall) { + /* no need to check length, result known */ + *smallerPtr = matchIndex; + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + smallerPtr = nextPtr+1; /* new "smaller" => larger of match */ + matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + predictedSmall = predictPtr[1] + (predictPtr[1]>0); + continue; + } + if (matchIndex == predictedLarge) { + *largerPtr = matchIndex; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + predictedLarge = predictPtr[0] + (predictPtr[0]>0); + continue; + } +#endif + + if (!extDict || (matchIndex+matchLength >= dictLimit)) { + assert(matchIndex+matchLength >= dictLimit); /* might be wrong if actually extDict */ + match = base + matchIndex; + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend); + } else { + match = dictBase + matchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* to prepare for next usage of match[matchLength] */ + } + + if (matchLength > bestLength) { + bestLength = matchLength; + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + } + + if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */ + break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */ + } + + if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */ + /* match is smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */ + matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */ + } else { + /* match is larger than current */ + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; + if (bestLength > 384) return MIN(192, (U32)(bestLength - 384)); /* speed optimization */ + assert(matchEndIdx > current + 8); + return matchEndIdx - (current + 8); +} + +FORCE_INLINE_TEMPLATE +void ZSTD_updateTree_internal( + ZSTD_matchState_t* ms, + const BYTE* const ip, const BYTE* const iend, + const U32 mls, const ZSTD_dictMode_e dictMode) +{ + const BYTE* const base = ms->window.base; + U32 const target = (U32)(ip - base); + U32 idx = ms->nextToUpdate; + DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u (dictMode:%u)", + idx, target, dictMode); + + while(idx < target) + idx += ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict); + ms->nextToUpdate = target; +} + +void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) { + ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict); +} + +FORCE_INLINE_TEMPLATE +U32 ZSTD_insertBtAndGetAllMatches ( + ZSTD_matchState_t* ms, + const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode, + U32 rep[ZSTD_REP_NUM], + U32 const ll0, /* tells if associated literal length is 0 or not. This value must be 0 or 1 */ + ZSTD_match_t* matches, + const U32 lengthToBeat, + U32 const mls /* template */) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1); + const BYTE* const base = ms->window.base; + U32 const current = (U32)(ip-base); + U32 const hashLog = cParams->hashLog; + U32 const minMatch = (mls==3) ? 3 : 4; + U32* const hashTable = ms->hashTable; + size_t const h = ZSTD_hashPtr(ip, hashLog, mls); + U32 matchIndex = hashTable[h]; + U32* const bt = ms->chainTable; + U32 const btLog = cParams->chainLog - 1; + U32 const btMask= (1U << btLog) - 1; + size_t commonLengthSmaller=0, commonLengthLarger=0; + const BYTE* const dictBase = ms->window.dictBase; + U32 const dictLimit = ms->window.dictLimit; + const BYTE* const dictEnd = dictBase + dictLimit; + const BYTE* const prefixStart = base + dictLimit; + U32 const btLow = btMask >= current ? 0 : current - btMask; + U32 const windowLow = ms->window.lowLimit; + U32 const matchLow = windowLow ? windowLow : 1; + U32* smallerPtr = bt + 2*(current&btMask); + U32* largerPtr = bt + 2*(current&btMask) + 1; + U32 matchEndIdx = current+8+1; /* farthest referenced position of any match => detects repetitive patterns */ + U32 dummy32; /* to be nullified at the end */ + U32 mnum = 0; + U32 nbCompares = 1U << cParams->searchLog; + + const ZSTD_matchState_t* dms = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL; + const ZSTD_compressionParameters* const dmsCParams = + dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL; + const BYTE* const dmsBase = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL; + const BYTE* const dmsEnd = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL; + U32 const dmsHighLimit = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0; + U32 const dmsLowLimit = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0; + U32 const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0; + U32 const dmsHashLog = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog; + U32 const dmsBtLog = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog; + U32 const dmsBtMask = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0; + U32 const dmsBtLow = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit; + + size_t bestLength = lengthToBeat-1; + DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", current); + + /* check repCode */ + assert(ll0 <= 1); /* necessarily 1 or 0 */ + { U32 const lastR = ZSTD_REP_NUM + ll0; + U32 repCode; + for (repCode = ll0; repCode < lastR; repCode++) { + U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; + U32 const repIndex = current - repOffset; + U32 repLen = 0; + assert(current >= dictLimit); + if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < current-dictLimit) { /* equivalent to `current > repIndex >= dictLimit` */ + if (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch)) { + repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch; + } + } else { /* repIndex < dictLimit || repIndex >= current */ + const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ? + dmsBase + repIndex - dmsIndexDelta : + dictBase + repIndex; + assert(current >= windowLow); + if ( dictMode == ZSTD_extDict + && ( ((repOffset-1) /*intentional overflow*/ < current - windowLow) /* equivalent to `current > repIndex >= windowLow` */ + & (((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */) + && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) { + repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch; + } + if (dictMode == ZSTD_dictMatchState + && ( ((repOffset-1) /*intentional overflow*/ < current - (dmsLowLimit + dmsIndexDelta)) /* equivalent to `current > repIndex >= dmsLowLimit` */ + & ((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */ + && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) { + repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch; + } } + /* save longer solution */ + if (repLen > bestLength) { + DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u", + repCode, ll0, repOffset, repLen); + bestLength = repLen; + matches[mnum].off = repCode - ll0; + matches[mnum].len = (U32)repLen; + mnum++; + if ( (repLen > sufficient_len) + | (ip+repLen == iLimit) ) { /* best possible */ + return mnum; + } } } } + + /* HC3 match finder */ + if ((mls == 3) /*static*/ && (bestLength < mls)) { + U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, ip); + if ((matchIndex3 >= matchLow) + & (current - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) { + size_t mlen; + if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) { + const BYTE* const match = base + matchIndex3; + mlen = ZSTD_count(ip, match, iLimit); + } else { + const BYTE* const match = dictBase + matchIndex3; + mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart); + } + + /* save best solution */ + if (mlen >= mls /* == 3 > bestLength */) { + DEBUGLOG(8, "found small match with hlog3, of length %u", + (U32)mlen); + bestLength = mlen; + assert(current > matchIndex3); + assert(mnum==0); /* no prior solution */ + matches[0].off = (current - matchIndex3) + ZSTD_REP_MOVE; + matches[0].len = (U32)mlen; + mnum = 1; + if ( (mlen > sufficient_len) | + (ip+mlen == iLimit) ) { /* best possible length */ + ms->nextToUpdate = current+1; /* skip insertion */ + return 1; + } + } + } + /* no dictMatchState lookup: dicts don't have a populated HC3 table */ + } + + hashTable[h] = current; /* Update Hash Table */ + + while (nbCompares-- && (matchIndex >= matchLow)) { + U32* const nextPtr = bt + 2*(matchIndex & btMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + const BYTE* match; + assert(current > matchIndex); + + if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) { + assert(matchIndex+matchLength >= dictLimit); /* ensure the condition is correct when !extDict */ + match = base + matchIndex; + matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit); + } else { + match = dictBase + matchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart); + if (matchIndex+matchLength >= dictLimit) + match = base + matchIndex; /* prepare for match[matchLength] */ + } + + if (matchLength > bestLength) { + DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)", + (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE); + assert(matchEndIdx > matchIndex); + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + bestLength = matchLength; + matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE; + matches[mnum].len = (U32)matchLength; + mnum++; + if ( (matchLength > ZSTD_OPT_NUM) + | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { + if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */ + break; /* drop, to preserve bt consistency (miss a little bit of compression) */ + } + } + + if (match[matchLength] < ip[matchLength]) { + /* match smaller than current */ + *smallerPtr = matchIndex; /* update smaller idx */ + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + smallerPtr = nextPtr+1; /* new candidate => larger than match, which was smaller than current */ + matchIndex = nextPtr[1]; /* new matchIndex, larger than previous, closer to current */ + } else { + *largerPtr = matchIndex; + commonLengthLarger = matchLength; + if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */ + largerPtr = nextPtr; + matchIndex = nextPtr[0]; + } } + + *smallerPtr = *largerPtr = 0; + + if (dictMode == ZSTD_dictMatchState && nbCompares) { + size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls); + U32 dictMatchIndex = dms->hashTable[dmsH]; + const U32* const dmsBt = dms->chainTable; + commonLengthSmaller = commonLengthLarger = 0; + while (nbCompares-- && (dictMatchIndex > dmsLowLimit)) { + const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask); + size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */ + const BYTE* match = dmsBase + dictMatchIndex; + matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart); + if (dictMatchIndex+matchLength >= dmsHighLimit) + match = base + dictMatchIndex + dmsIndexDelta; /* to prepare for next usage of match[matchLength] */ + + if (matchLength > bestLength) { + matchIndex = dictMatchIndex + dmsIndexDelta; + DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)", + (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE); + if (matchLength > matchEndIdx - matchIndex) + matchEndIdx = matchIndex + (U32)matchLength; + bestLength = matchLength; + matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE; + matches[mnum].len = (U32)matchLength; + mnum++; + if ( (matchLength > ZSTD_OPT_NUM) + | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) { + break; /* drop, to guarantee consistency (miss a little bit of compression) */ + } + } + + if (dictMatchIndex <= dmsBtLow) { break; } /* beyond tree size, stop the search */ + if (match[matchLength] < ip[matchLength]) { + commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */ + dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */ + } else { + /* match is larger than current */ + commonLengthLarger = matchLength; + dictMatchIndex = nextPtr[0]; + } + } + } + + assert(matchEndIdx > current+8); + ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */ + return mnum; +} + + +FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches ( + ZSTD_matchState_t* ms, + const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode, + U32 rep[ZSTD_REP_NUM], U32 const ll0, + ZSTD_match_t* matches, U32 const lengthToBeat) +{ + const ZSTD_compressionParameters* const cParams = &ms->cParams; + U32 const matchLengthSearch = cParams->minMatch; + DEBUGLOG(8, "ZSTD_BtGetAllMatches"); + if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */ + ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode); + switch(matchLengthSearch) + { + case 3 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 3); + default : + case 4 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 4); + case 5 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 5); + case 7 : + case 6 : return ZSTD_insertBtAndGetAllMatches(ms, ip, iHighLimit, dictMode, rep, ll0, matches, lengthToBeat, 6); + } +} + + +/*-******************************* +* Optimal parser +*********************************/ +typedef struct repcodes_s { + U32 rep[3]; +} repcodes_t; + +static repcodes_t ZSTD_updateRep(U32 const rep[3], U32 const offset, U32 const ll0) +{ + repcodes_t newReps; + if (offset >= ZSTD_REP_NUM) { /* full offset */ + newReps.rep[2] = rep[1]; + newReps.rep[1] = rep[0]; + newReps.rep[0] = offset - ZSTD_REP_MOVE; + } else { /* repcode */ + U32 const repCode = offset + ll0; + if (repCode > 0) { /* note : if repCode==0, no change */ + U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; + newReps.rep[2] = (repCode >= 2) ? rep[1] : rep[2]; + newReps.rep[1] = rep[0]; + newReps.rep[0] = currentOffset; + } else { /* repCode == 0 */ + memcpy(&newReps, rep, sizeof(newReps)); + } + } + return newReps; +} + + +static U32 ZSTD_totalLen(ZSTD_optimal_t sol) +{ + return sol.litlen + sol.mlen; +} + +#if 0 /* debug */ + +static void +listStats(const U32* table, int lastEltID) +{ + int const nbElts = lastEltID + 1; + int enb; + for (enb=0; enb < nbElts; enb++) { + (void)table; + //RAWLOG(2, "%3i:%3i, ", enb, table[enb]); + RAWLOG(2, "%4i,", table[enb]); + } + RAWLOG(2, " \n"); +} + +#endif + +FORCE_INLINE_TEMPLATE size_t +ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms, + seqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize, + const int optLevel, + const ZSTD_dictMode_e dictMode) +{ + optState_t* const optStatePtr = &ms->opt; + const BYTE* const istart = (const BYTE*)src; + const BYTE* ip = istart; + const BYTE* anchor = istart; + const BYTE* const iend = istart + srcSize; + const BYTE* const ilimit = iend - 8; + const BYTE* const base = ms->window.base; + const BYTE* const prefixStart = base + ms->window.dictLimit; + const ZSTD_compressionParameters* const cParams = &ms->cParams; + + U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1); + U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4; + + ZSTD_optimal_t* const opt = optStatePtr->priceTable; + ZSTD_match_t* const matches = optStatePtr->matchTable; + ZSTD_optimal_t lastSequence; + + /* init */ + DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u", + (U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate); + assert(optLevel <= 2); + ms->nextToUpdate3 = ms->nextToUpdate; + ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel); + ip += (ip==prefixStart); + + /* Match Loop */ + while (ip < ilimit) { + U32 cur, last_pos = 0; + + /* find first match */ + { U32 const litlen = (U32)(ip - anchor); + U32 const ll0 = !litlen; + U32 const nbMatches = ZSTD_BtGetAllMatches(ms, ip, iend, dictMode, rep, ll0, matches, minMatch); + if (!nbMatches) { ip++; continue; } + + /* initialize opt[0] */ + { U32 i ; for (i=0; i immediate encoding */ + { U32 const maxML = matches[nbMatches-1].len; + U32 const maxOffset = matches[nbMatches-1].off; + DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series", + nbMatches, maxML, maxOffset, (U32)(ip-prefixStart)); + + if (maxML > sufficient_len) { + lastSequence.litlen = litlen; + lastSequence.mlen = maxML; + lastSequence.off = maxOffset; + DEBUGLOG(6, "large match (%u>%u), immediate encoding", + maxML, sufficient_len); + cur = 0; + last_pos = ZSTD_totalLen(lastSequence); + goto _shortestPath; + } } + + /* set prices for first matches starting position == 0 */ + { U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel); + U32 pos; + U32 matchNb; + for (pos = 1; pos < minMatch; pos++) { + opt[pos].price = ZSTD_MAX_PRICE; /* mlen, litlen and price will be fixed during forward scanning */ + } + for (matchNb = 0; matchNb < nbMatches; matchNb++) { + U32 const offset = matches[matchNb].off; + U32 const end = matches[matchNb].len; + repcodes_t const repHistory = ZSTD_updateRep(rep, offset, ll0); + for ( ; pos <= end ; pos++ ) { + U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel); + U32 const sequencePrice = literalsPrice + matchPrice; + DEBUGLOG(7, "rPos:%u => set initial price : %.2f", + pos, ZSTD_fCost(sequencePrice)); + opt[pos].mlen = pos; + opt[pos].off = offset; + opt[pos].litlen = litlen; + opt[pos].price = sequencePrice; + ZSTD_STATIC_ASSERT(sizeof(opt[pos].rep) == sizeof(repHistory)); + memcpy(opt[pos].rep, &repHistory, sizeof(repHistory)); + } } + last_pos = pos-1; + } + } + + /* check further positions */ + for (cur = 1; cur <= last_pos; cur++) { + const BYTE* const inr = ip + cur; + assert(cur < ZSTD_OPT_NUM); + DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur) + + /* Fix current position with one literal if cheaper */ + { U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1; + int const price = opt[cur-1].price + + ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel) + + ZSTD_litLengthPrice(litlen, optStatePtr, optLevel) + - ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel); + assert(price < 1000000000); /* overflow check */ + if (price <= opt[cur].price) { + DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)", + inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen, + opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]); + opt[cur].mlen = 0; + opt[cur].off = 0; + opt[cur].litlen = litlen; + opt[cur].price = price; + memcpy(opt[cur].rep, opt[cur-1].rep, sizeof(opt[cur].rep)); + } else { + DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)", + inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), + opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]); + } + } + + /* last match must start at a minimum distance of 8 from oend */ + if (inr > ilimit) continue; + + if (cur == last_pos) break; + + if ( (optLevel==0) /*static_test*/ + && (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) { + DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1); + continue; /* skip unpromising positions; about ~+6% speed, -0.01 ratio */ + } + + { U32 const ll0 = (opt[cur].mlen != 0); + U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0; + U32 const previousPrice = opt[cur].price; + U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel); + U32 const nbMatches = ZSTD_BtGetAllMatches(ms, inr, iend, dictMode, opt[cur].rep, ll0, matches, minMatch); + U32 matchNb; + if (!nbMatches) { + DEBUGLOG(7, "rPos:%u : no match found", cur); + continue; + } + + { U32 const maxML = matches[nbMatches-1].len; + DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u", + inr-istart, cur, nbMatches, maxML); + + if ( (maxML > sufficient_len) + || (cur + maxML >= ZSTD_OPT_NUM) ) { + lastSequence.mlen = maxML; + lastSequence.off = matches[nbMatches-1].off; + lastSequence.litlen = litlen; + cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0; /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */ + last_pos = cur + ZSTD_totalLen(lastSequence); + if (cur > ZSTD_OPT_NUM) cur = 0; /* underflow => first match */ + goto _shortestPath; + } } + + /* set prices using matches found at position == cur */ + for (matchNb = 0; matchNb < nbMatches; matchNb++) { + U32 const offset = matches[matchNb].off; + repcodes_t const repHistory = ZSTD_updateRep(opt[cur].rep, offset, ll0); + U32 const lastML = matches[matchNb].len; + U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch; + U32 mlen; + + DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u", + matchNb, matches[matchNb].off, lastML, litlen); + + for (mlen = lastML; mlen >= startML; mlen--) { /* scan downward */ + U32 const pos = cur + mlen; + int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel); + + if ((pos > last_pos) || (price < opt[pos].price)) { + DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)", + pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price)); + while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; } /* fill empty positions */ + opt[pos].mlen = mlen; + opt[pos].off = offset; + opt[pos].litlen = litlen; + opt[pos].price = price; + ZSTD_STATIC_ASSERT(sizeof(opt[pos].rep) == sizeof(repHistory)); + memcpy(opt[pos].rep, &repHistory, sizeof(repHistory)); + } else { + DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)", + pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price)); + if (optLevel==0) break; /* early update abort; gets ~+10% speed for about -0.01 ratio loss */ + } + } } } + } /* for (cur = 1; cur <= last_pos; cur++) */ + + lastSequence = opt[last_pos]; + cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0; /* single sequence, and it starts before `ip` */ + assert(cur < ZSTD_OPT_NUM); /* control overflow*/ + +_shortestPath: /* cur, last_pos, best_mlen, best_off have to be set */ + assert(opt[0].mlen == 0); + + { U32 const storeEnd = cur + 1; + U32 storeStart = storeEnd; + U32 seqPos = cur; + + DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)", + last_pos, cur); (void)last_pos; + assert(storeEnd < ZSTD_OPT_NUM); + DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)", + storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off); + opt[storeEnd] = lastSequence; + while (seqPos > 0) { + U32 const backDist = ZSTD_totalLen(opt[seqPos]); + storeStart--; + DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)", + seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off); + opt[storeStart] = opt[seqPos]; + seqPos = (seqPos > backDist) ? seqPos - backDist : 0; + } + + /* save sequences */ + DEBUGLOG(6, "sending selected sequences into seqStore") + { U32 storePos; + for (storePos=storeStart; storePos <= storeEnd; storePos++) { + U32 const llen = opt[storePos].litlen; + U32 const mlen = opt[storePos].mlen; + U32 const offCode = opt[storePos].off; + U32 const advance = llen + mlen; + DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u", + anchor - istart, (unsigned)llen, (unsigned)mlen); + + if (mlen==0) { /* only literals => must be last "sequence", actually starting a new stream of sequences */ + assert(storePos == storeEnd); /* must be last sequence */ + ip = anchor + llen; /* last "sequence" is a bunch of literals => don't progress anchor */ + continue; /* will finish */ + } + + /* repcodes update : like ZSTD_updateRep(), but update in place */ + if (offCode >= ZSTD_REP_NUM) { /* full offset */ + rep[2] = rep[1]; + rep[1] = rep[0]; + rep[0] = offCode - ZSTD_REP_MOVE; + } else { /* repcode */ + U32 const repCode = offCode + (llen==0); + if (repCode) { /* note : if repCode==0, no change */ + U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode]; + if (repCode >= 2) rep[2] = rep[1]; + rep[1] = rep[0]; + rep[0] = currentOffset; + } } + + assert(anchor + llen <= iend); + ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen); + ZSTD_storeSeq(seqStore, llen, anchor, offCode, mlen-MINMATCH); + anchor += advance; + ip = anchor; + } } + ZSTD_setBasePrices(optStatePtr, optLevel); + } + + } /* while (ip < ilimit) */ + + /* Return the last literals size */ + return iend - anchor; +} + + +size_t ZSTD_compressBlock_btopt( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_compressBlock_btopt"); + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict); +} + + +/* used in 2-pass strategy */ +static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus) +{ + U32 s, sum=0; + assert(ZSTD_FREQ_DIV+bonus >= 0); + for (s=0; slitSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0); + optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0); + optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0); + optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0); +} + +/* ZSTD_initStats_ultra(): + * make a first compression pass, just to seed stats with more accurate starting values. + * only works on first block, with no dictionary and no ldm. + * this function cannot error, hence its contract must be respected. + */ +static void +ZSTD_initStats_ultra(ZSTD_matchState_t* ms, + seqStore_t* seqStore, + U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + U32 tmpRep[ZSTD_REP_NUM]; /* updated rep codes will sink here */ + memcpy(tmpRep, rep, sizeof(tmpRep)); + + DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize); + assert(ms->opt.litLengthSum == 0); /* first block */ + assert(seqStore->sequences == seqStore->sequencesStart); /* no ldm */ + assert(ms->window.dictLimit == ms->window.lowLimit); /* no dictionary */ + assert(ms->window.dictLimit - ms->nextToUpdate <= 1); /* no prefix (note: intentional overflow, defined as 2-complement) */ + + ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); /* generate stats into ms->opt*/ + + /* invalidate first scan from history */ + ZSTD_resetSeqStore(seqStore); + ms->window.base -= srcSize; + ms->window.dictLimit += (U32)srcSize; + ms->window.lowLimit = ms->window.dictLimit; + ms->nextToUpdate = ms->window.dictLimit; + ms->nextToUpdate3 = ms->window.dictLimit; + + /* re-inforce weight of collected statistics */ + ZSTD_upscaleStats(&ms->opt); +} + +size_t ZSTD_compressBlock_btultra( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize); + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_btultra2( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + U32 const current = (U32)((const BYTE*)src - ms->window.base); + DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize); + + /* 2-pass strategy: + * this strategy makes a first pass over first block to collect statistics + * and seed next round's statistics with it. + * After 1st pass, function forgets everything, and starts a new block. + * Consequently, this can only work if no data has been previously loaded in tables, + * aka, no dictionary, no prefix, no ldm preprocessing. + * The compression ratio gain is generally small (~0.5% on first block), + * the cost is 2x cpu time on first block. */ + assert(srcSize <= ZSTD_BLOCKSIZE_MAX); + if ( (ms->opt.litLengthSum==0) /* first block */ + && (seqStore->sequences == seqStore->sequencesStart) /* no ldm */ + && (ms->window.dictLimit == ms->window.lowLimit) /* no dictionary */ + && (current == ms->window.dictLimit) /* start of frame, nothing already loaded nor skipped */ + && (srcSize > ZSTD_PREDEF_THRESHOLD) + ) { + ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize); + } + + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict); +} + +size_t ZSTD_compressBlock_btopt_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_btultra_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState); +} + +size_t ZSTD_compressBlock_btopt_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict); +} + +size_t ZSTD_compressBlock_btultra_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + const void* src, size_t srcSize) +{ + return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict); +} + +/* note : no btultra2 variant for extDict nor dictMatchState, + * because btultra2 is not meant to work with dictionaries + * and is only specific for the first block (no prefix) */ diff --git a/vendor/github.com/DataDog/zstd/zstd_opt.h b/vendor/github.com/DataDog/zstd/zstd_opt.h new file mode 100644 index 0000000000..094f747665 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_opt.h @@ -0,0 +1,56 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_OPT_H +#define ZSTD_OPT_H + +#if defined (__cplusplus) +extern "C" { +#endif + +#include "zstd_compress_internal.h" + +/* used in ZSTD_loadDictionaryContent() */ +void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend); + +size_t ZSTD_compressBlock_btopt( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btultra( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btultra2( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + + +size_t ZSTD_compressBlock_btopt_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btultra_dictMatchState( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + +size_t ZSTD_compressBlock_btopt_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); +size_t ZSTD_compressBlock_btultra_extDict( + ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], + void const* src, size_t srcSize); + + /* note : no btultra2 variant for extDict nor dictMatchState, + * because btultra2 is not meant to work with dictionaries + * and is only specific for the first block (no prefix) */ + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_OPT_H */ diff --git a/vendor/github.com/DataDog/zstd/zstd_stream.go b/vendor/github.com/DataDog/zstd/zstd_stream.go new file mode 100644 index 0000000000..233035352a --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_stream.go @@ -0,0 +1,294 @@ +package zstd + +/* +#define ZSTD_STATIC_LINKING_ONLY +#define ZBUFF_DISABLE_DEPRECATE_WARNINGS +#include "zstd.h" +#include "zbuff.h" +*/ +import "C" +import ( + "errors" + "fmt" + "io" + "runtime" + "unsafe" +) + +var errShortRead = errors.New("short read") + +// Writer is an io.WriteCloser that zstd-compresses its input. +type Writer struct { + CompressionLevel int + + ctx *C.ZSTD_CCtx + dict []byte + dstBuffer []byte + firstError error + underlyingWriter io.Writer +} + +func resize(in []byte, newSize int) []byte { + if in == nil { + return make([]byte, newSize) + } + if newSize <= cap(in) { + return in[:newSize] + } + toAdd := newSize - len(in) + return append(in, make([]byte, toAdd)...) +} + +// NewWriter creates a new Writer with default compression options. Writes to +// the writer will be written in compressed form to w. +func NewWriter(w io.Writer) *Writer { + return NewWriterLevelDict(w, DefaultCompression, nil) +} + +// NewWriterLevel is like NewWriter but specifies the compression level instead +// of assuming default compression. +// +// The level can be DefaultCompression or any integer value between BestSpeed +// and BestCompression inclusive. +func NewWriterLevel(w io.Writer, level int) *Writer { + return NewWriterLevelDict(w, level, nil) + +} + +// NewWriterLevelDict is like NewWriterLevel but specifies a dictionary to +// compress with. If the dictionary is empty or nil it is ignored. The dictionary +// should not be modified until the writer is closed. +func NewWriterLevelDict(w io.Writer, level int, dict []byte) *Writer { + var err error + ctx := C.ZSTD_createCCtx() + + if dict == nil { + err = getError(int(C.ZSTD_compressBegin(ctx, + C.int(level)))) + } else { + err = getError(int(C.ZSTD_compressBegin_usingDict( + ctx, + unsafe.Pointer(&dict[0]), + C.size_t(len(dict)), + C.int(level)))) + } + + return &Writer{ + CompressionLevel: level, + ctx: ctx, + dict: dict, + dstBuffer: make([]byte, CompressBound(1024)), + firstError: err, + underlyingWriter: w, + } +} + +// Write writes a compressed form of p to the underlying io.Writer. +func (w *Writer) Write(p []byte) (int, error) { + if w.firstError != nil { + return 0, w.firstError + } + if len(p) == 0 { + return 0, nil + } + // Check if dstBuffer is enough + if len(w.dstBuffer) < CompressBound(len(p)) { + w.dstBuffer = make([]byte, CompressBound(len(p))) + } + + retCode := C.ZSTD_compressContinue( + w.ctx, + unsafe.Pointer(&w.dstBuffer[0]), + C.size_t(len(w.dstBuffer)), + unsafe.Pointer(&p[0]), + C.size_t(len(p))) + + if err := getError(int(retCode)); err != nil { + return 0, err + } + written := int(retCode) + + // Write to underlying buffer + _, err := w.underlyingWriter.Write(w.dstBuffer[:written]) + + // Same behaviour as zlib, we can't know how much data we wrote, only + // if there was an error + if err != nil { + return 0, err + } + return len(p), err +} + +// Close closes the Writer, flushing any unwritten data to the underlying +// io.Writer and freeing objects, but does not close the underlying io.Writer. +func (w *Writer) Close() error { + retCode := C.ZSTD_compressEnd( + w.ctx, + unsafe.Pointer(&w.dstBuffer[0]), + C.size_t(len(w.dstBuffer)), + unsafe.Pointer(nil), + C.size_t(0)) + + if err := getError(int(retCode)); err != nil { + return err + } + written := int(retCode) + retCode = C.ZSTD_freeCCtx(w.ctx) // Safely close buffer before writing the end + + if err := getError(int(retCode)); err != nil { + return err + } + + _, err := w.underlyingWriter.Write(w.dstBuffer[:written]) + if err != nil { + return err + } + return nil +} + +// reader is an io.ReadCloser that decompresses when read from. +type reader struct { + ctx *C.ZBUFF_DCtx + compressionBuffer []byte + compressionLeft int + decompressionBuffer []byte + decompOff int + decompSize int + dict []byte + firstError error + recommendedSrcSize int + underlyingReader io.Reader +} + +// NewReader creates a new io.ReadCloser. Reads from the returned ReadCloser +// read and decompress data from r. It is the caller's responsibility to call +// Close on the ReadCloser when done. If this is not done, underlying objects +// in the zstd library will not be freed. +func NewReader(r io.Reader) io.ReadCloser { + return NewReaderDict(r, nil) +} + +// NewReaderDict is like NewReader but uses a preset dictionary. NewReaderDict +// ignores the dictionary if it is nil. +func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser { + var err error + ctx := C.ZBUFF_createDCtx() + if len(dict) == 0 { + err = getError(int(C.ZBUFF_decompressInit(ctx))) + } else { + err = getError(int(C.ZBUFF_decompressInitDictionary( + ctx, + unsafe.Pointer(&dict[0]), + C.size_t(len(dict))))) + } + cSize := int(C.ZBUFF_recommendedDInSize()) + dSize := int(C.ZBUFF_recommendedDOutSize()) + if cSize <= 0 { + panic(fmt.Errorf("ZBUFF_recommendedDInSize() returned invalid size: %v", cSize)) + } + if dSize <= 0 { + panic(fmt.Errorf("ZBUFF_recommendedDOutSize() returned invalid size: %v", dSize)) + } + + compressionBuffer := make([]byte, cSize) + decompressionBuffer := make([]byte, dSize) + return &reader{ + ctx: ctx, + dict: dict, + compressionBuffer: compressionBuffer, + decompressionBuffer: decompressionBuffer, + firstError: err, + recommendedSrcSize: cSize, + underlyingReader: r, + } +} + +// Close frees the allocated C objects +func (r *reader) Close() error { + return getError(int(C.ZBUFF_freeDCtx(r.ctx))) +} + +func (r *reader) Read(p []byte) (int, error) { + + // If we already have enough bytes, return + if r.decompSize-r.decompOff >= len(p) { + copy(p, r.decompressionBuffer[r.decompOff:]) + r.decompOff += len(p) + return len(p), nil + } + + copy(p, r.decompressionBuffer[r.decompOff:r.decompSize]) + got := r.decompSize - r.decompOff + r.decompSize = 0 + r.decompOff = 0 + + for got < len(p) { + // Populate src + src := r.compressionBuffer + reader := r.underlyingReader + n, err := TryReadFull(reader, src[r.compressionLeft:]) + if err != nil && err != errShortRead { // Handle underlying reader errors first + return 0, fmt.Errorf("failed to read from underlying reader: %s", err) + } else if n == 0 && r.compressionLeft == 0 { + return got, io.EOF + } + src = src[:r.compressionLeft+n] + + // C code + cSrcSize := C.size_t(len(src)) + cDstSize := C.size_t(len(r.decompressionBuffer)) + retCode := int(C.ZBUFF_decompressContinue( + r.ctx, + unsafe.Pointer(&r.decompressionBuffer[0]), + &cDstSize, + unsafe.Pointer(&src[0]), + &cSrcSize)) + + // Keep src here eventhough, we reuse later, the code might be deleted at some point + runtime.KeepAlive(src) + if err = getError(retCode); err != nil { + return 0, fmt.Errorf("failed to decompress: %s", err) + } + + // Put everything in buffer + if int(cSrcSize) < len(src) { + left := src[int(cSrcSize):] + copy(r.compressionBuffer, left) + } + r.compressionLeft = len(src) - int(cSrcSize) + r.decompSize = int(cDstSize) + r.decompOff = copy(p[got:], r.decompressionBuffer[:r.decompSize]) + got += r.decompOff + + // Resize buffers + nsize := retCode // Hint for next src buffer size + if nsize <= 0 { + // Reset to recommended size + nsize = r.recommendedSrcSize + } + if nsize < r.compressionLeft { + nsize = r.compressionLeft + } + r.compressionBuffer = resize(r.compressionBuffer, nsize) + } + return got, nil +} + +// TryReadFull reads buffer just as ReadFull does +// Here we expect that buffer may end and we do not return ErrUnexpectedEOF as ReadAtLeast does. +// We return errShortRead instead to distinguish short reads and failures. +// We cannot use ReadFull/ReadAtLeast because it masks Reader errors, such as network failures +// and causes panic instead of error. +func TryReadFull(r io.Reader, buf []byte) (n int, err error) { + for n < len(buf) && err == nil { + var nn int + nn, err = r.Read(buf[n:]) + n += nn + } + if n == len(buf) && err == io.EOF { + err = nil // EOF at the end is somewhat expected + } else if err == io.EOF { + err = errShortRead + } + return +} diff --git a/vendor/github.com/DataDog/zstd/zstd_v01.c b/vendor/github.com/DataDog/zstd/zstd_v01.c new file mode 100644 index 0000000000..cad2b99b4a --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_v01.c @@ -0,0 +1,2158 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +/****************************************** +* Includes +******************************************/ +#include /* size_t, ptrdiff_t */ +#include "zstd_v01.h" +#include "error_private.h" + + +/****************************************** +* Static allocation +******************************************/ +/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */ +#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) +* Increasing memory usage improves compression ratio +* Reduced memory usage can improve speed, due to cache effect +* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ +#define FSE_MAX_MEMORY_USAGE 14 +#define FSE_DEFAULT_MEMORY_USAGE 13 + +/* FSE_MAX_SYMBOL_VALUE : +* Maximum symbol value authorized. +* Required for proper stack allocation */ +#define FSE_MAX_SYMBOL_VALUE 255 + + +/**************************************************************** +* template functions type & suffix +****************************************************************/ +#define FSE_FUNCTION_TYPE BYTE +#define FSE_FUNCTION_EXTENSION + + +/**************************************************************** +* Byte symbol type +****************************************************************/ +typedef struct +{ + unsigned short newState; + unsigned char symbol; + unsigned char nbBits; +} FSE_decode_t; /* size == U32 */ + + + +/**************************************************************** +* Compiler specifics +****************************************************************/ +#ifdef _MSC_VER /* Visual Studio */ +# define FORCE_INLINE static __forceinline +# include /* For Visual 2005 */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ +#else +# define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) +# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ +# ifdef __GNUC__ +# define FORCE_INLINE static inline __attribute__((always_inline)) +# else +# define FORCE_INLINE static inline +# endif +# else +# define FORCE_INLINE static +# endif /* __STDC_VERSION__ */ +#endif + + +/**************************************************************** +* Includes +****************************************************************/ +#include /* malloc, free, qsort */ +#include /* memcpy, memset */ +#include /* printf (debug) */ + + +#ifndef MEM_ACCESS_MODULE +#define MEM_ACCESS_MODULE +/**************************************************************** +* Basic Types +*****************************************************************/ +#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ +# include +typedef uint8_t BYTE; +typedef uint16_t U16; +typedef int16_t S16; +typedef uint32_t U32; +typedef int32_t S32; +typedef uint64_t U64; +typedef int64_t S64; +#else +typedef unsigned char BYTE; +typedef unsigned short U16; +typedef signed short S16; +typedef unsigned int U32; +typedef signed int S32; +typedef unsigned long long U64; +typedef signed long long S64; +#endif + +#endif /* MEM_ACCESS_MODULE */ + +/**************************************************************** +* Memory I/O +*****************************************************************/ +/* FSE_FORCE_MEMORY_ACCESS + * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. + * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. + * The below switch allow to select different access method for improved performance. + * Method 0 (default) : use `memcpy()`. Safe and portable. + * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). + * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. + * Method 2 : direct access. This method is portable but violate C standard. + * It can generate buggy code on targets generating assembly depending on alignment. + * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) + * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. + * Prefer these methods in priority order (0 > 1 > 2) + */ +#ifndef FSE_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ +# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) +# define FSE_FORCE_MEMORY_ACCESS 2 +# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ + (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) +# define FSE_FORCE_MEMORY_ACCESS 1 +# endif +#endif + + +static unsigned FSE_32bits(void) +{ + return sizeof(void*)==4; +} + +static unsigned FSE_isLittleEndian(void) +{ + const union { U32 i; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ + return one.c[0]; +} + +#if defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==2) + +static U16 FSE_read16(const void* memPtr) { return *(const U16*) memPtr; } +static U32 FSE_read32(const void* memPtr) { return *(const U32*) memPtr; } +static U64 FSE_read64(const void* memPtr) { return *(const U64*) memPtr; } + +#elif defined(FSE_FORCE_MEMORY_ACCESS) && (FSE_FORCE_MEMORY_ACCESS==1) + +/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ +/* currently only defined for gcc and icc */ +typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign; + +static U16 FSE_read16(const void* ptr) { return ((const unalign*)ptr)->u16; } +static U32 FSE_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } +static U64 FSE_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } + +#else + +static U16 FSE_read16(const void* memPtr) +{ + U16 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +static U32 FSE_read32(const void* memPtr) +{ + U32 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +static U64 FSE_read64(const void* memPtr) +{ + U64 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +#endif // FSE_FORCE_MEMORY_ACCESS + +static U16 FSE_readLE16(const void* memPtr) +{ + if (FSE_isLittleEndian()) + return FSE_read16(memPtr); + else + { + const BYTE* p = (const BYTE*)memPtr; + return (U16)(p[0] + (p[1]<<8)); + } +} + +static U32 FSE_readLE32(const void* memPtr) +{ + if (FSE_isLittleEndian()) + return FSE_read32(memPtr); + else + { + const BYTE* p = (const BYTE*)memPtr; + return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24)); + } +} + + +static U64 FSE_readLE64(const void* memPtr) +{ + if (FSE_isLittleEndian()) + return FSE_read64(memPtr); + else + { + const BYTE* p = (const BYTE*)memPtr; + return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24) + + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56)); + } +} + +static size_t FSE_readLEST(const void* memPtr) +{ + if (FSE_32bits()) + return (size_t)FSE_readLE32(memPtr); + else + return (size_t)FSE_readLE64(memPtr); +} + + + +/**************************************************************** +* Constants +*****************************************************************/ +#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) +#define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX +#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" +#endif + + +/**************************************************************** +* Error Management +****************************************************************/ +#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ + + +/**************************************************************** +* Complex types +****************************************************************/ +typedef struct +{ + int deltaFindState; + U32 deltaNbBits; +} FSE_symbolCompressionTransform; /* total 8 bytes */ + +typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; + +/**************************************************************** +* Internal functions +****************************************************************/ +FORCE_INLINE unsigned FSE_highbit32 (U32 val) +{ +# if defined(_MSC_VER) /* Visual */ + unsigned long r; + _BitScanReverse ( &r, val ); + return (unsigned) r; +# elif defined(__GNUC__) && (GCC_VERSION >= 304) /* GCC Intrinsic */ + return 31 - __builtin_clz (val); +# else /* Software version */ + static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; + U32 v = val; + unsigned r; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; + return r; +# endif +} + + +/**************************************************************** +* Templates +****************************************************************/ +/* + designed to be included + for type-specific functions (template emulation in C) + Objective is to write these functions only once, for improved maintenance +*/ + +/* safety checks */ +#ifndef FSE_FUNCTION_EXTENSION +# error "FSE_FUNCTION_EXTENSION must be defined" +#endif +#ifndef FSE_FUNCTION_TYPE +# error "FSE_FUNCTION_TYPE must be defined" +#endif + +/* Function names */ +#define FSE_CAT(X,Y) X##Y +#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) +#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) + + + +static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; } + +#define FSE_DECODE_TYPE FSE_decode_t + + +typedef struct { + U16 tableLog; + U16 fastMode; +} FSE_DTableHeader; /* sizeof U32 */ + +static size_t FSE_buildDTable +(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) +{ + void* ptr = dt; + FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; + FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)(ptr) + 1; /* because dt is unsigned, 32-bits aligned on 32-bits */ + const U32 tableSize = 1 << tableLog; + const U32 tableMask = tableSize-1; + const U32 step = FSE_tableStep(tableSize); + U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; + U32 position = 0; + U32 highThreshold = tableSize-1; + const S16 largeLimit= (S16)(1 << (tableLog-1)); + U32 noLarge = 1; + U32 s; + + /* Sanity Checks */ + if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return (size_t)-FSE_ERROR_maxSymbolValue_tooLarge; + if (tableLog > FSE_MAX_TABLELOG) return (size_t)-FSE_ERROR_tableLog_tooLarge; + + /* Init, lay down lowprob symbols */ + DTableH[0].tableLog = (U16)tableLog; + for (s=0; s<=maxSymbolValue; s++) + { + if (normalizedCounter[s]==-1) + { + tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; + symbolNext[s] = 1; + } + else + { + if (normalizedCounter[s] >= largeLimit) noLarge=0; + symbolNext[s] = normalizedCounter[s]; + } + } + + /* Spread symbols */ + for (s=0; s<=maxSymbolValue; s++) + { + int i; + for (i=0; i highThreshold) position = (position + step) & tableMask; /* lowprob area */ + } + } + + if (position!=0) return (size_t)-FSE_ERROR_GENERIC; /* position must reach all cells once, otherwise normalizedCounter is incorrect */ + + /* Build Decoding table */ + { + U32 i; + for (i=0; ifastMode = (U16)noLarge; + return 0; +} + + +/****************************************** +* FSE byte symbol +******************************************/ +#ifndef FSE_COMMONDEFS_ONLY + +static unsigned FSE_isError(size_t code) { return (code > (size_t)(-FSE_ERROR_maxCode)); } + +static short FSE_abs(short a) +{ + return a<0? -a : a; +} + + +/**************************************************************** +* Header bitstream management +****************************************************************/ +static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, + const void* headerBuffer, size_t hbSize) +{ + const BYTE* const istart = (const BYTE*) headerBuffer; + const BYTE* const iend = istart + hbSize; + const BYTE* ip = istart; + int nbBits; + int remaining; + int threshold; + U32 bitStream; + int bitCount; + unsigned charnum = 0; + int previous0 = 0; + + if (hbSize < 4) return (size_t)-FSE_ERROR_srcSize_wrong; + bitStream = FSE_readLE32(ip); + nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */ + if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return (size_t)-FSE_ERROR_tableLog_tooLarge; + bitStream >>= 4; + bitCount = 4; + *tableLogPtr = nbBits; + remaining = (1<1) && (charnum<=*maxSVPtr)) + { + if (previous0) + { + unsigned n0 = charnum; + while ((bitStream & 0xFFFF) == 0xFFFF) + { + n0+=24; + if (ip < iend-5) + { + ip+=2; + bitStream = FSE_readLE32(ip) >> bitCount; + } + else + { + bitStream >>= 16; + bitCount+=16; + } + } + while ((bitStream & 3) == 3) + { + n0+=3; + bitStream>>=2; + bitCount+=2; + } + n0 += bitStream & 3; + bitCount += 2; + if (n0 > *maxSVPtr) return (size_t)-FSE_ERROR_maxSymbolValue_tooSmall; + while (charnum < n0) normalizedCounter[charnum++] = 0; + if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) + { + ip += bitCount>>3; + bitCount &= 7; + bitStream = FSE_readLE32(ip) >> bitCount; + } + else + bitStream >>= 2; + } + { + const short max = (short)((2*threshold-1)-remaining); + short count; + + if ((bitStream & (threshold-1)) < (U32)max) + { + count = (short)(bitStream & (threshold-1)); + bitCount += nbBits-1; + } + else + { + count = (short)(bitStream & (2*threshold-1)); + if (count >= threshold) count -= max; + bitCount += nbBits; + } + + count--; /* extra accuracy */ + remaining -= FSE_abs(count); + normalizedCounter[charnum++] = count; + previous0 = !count; + while (remaining < threshold) + { + nbBits--; + threshold >>= 1; + } + + { + if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) + { + ip += bitCount>>3; + bitCount &= 7; + } + else + { + bitCount -= (int)(8 * (iend - 4 - ip)); + ip = iend - 4; + } + bitStream = FSE_readLE32(ip) >> (bitCount & 31); + } + } + } + if (remaining != 1) return (size_t)-FSE_ERROR_GENERIC; + *maxSVPtr = charnum-1; + + ip += (bitCount+7)>>3; + if ((size_t)(ip-istart) > hbSize) return (size_t)-FSE_ERROR_srcSize_wrong; + return ip-istart; +} + + +/********************************************************* +* Decompression (Byte symbols) +*********************************************************/ +static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) +{ + void* ptr = dt; + FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; + FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ + + DTableH->tableLog = 0; + DTableH->fastMode = 0; + + cell->newState = 0; + cell->symbol = symbolValue; + cell->nbBits = 0; + + return 0; +} + + +static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) +{ + void* ptr = dt; + FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; + FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ + const unsigned tableSize = 1 << nbBits; + const unsigned tableMask = tableSize - 1; + const unsigned maxSymbolValue = tableMask; + unsigned s; + + /* Sanity checks */ + if (nbBits < 1) return (size_t)-FSE_ERROR_GENERIC; /* min size */ + + /* Build Decoding Table */ + DTableH->tableLog = (U16)nbBits; + DTableH->fastMode = 1; + for (s=0; s<=maxSymbolValue; s++) + { + dinfo[s].newState = 0; + dinfo[s].symbol = (BYTE)s; + dinfo[s].nbBits = (BYTE)nbBits; + } + + return 0; +} + + +/* FSE_initDStream + * Initialize a FSE_DStream_t. + * srcBuffer must point at the beginning of an FSE block. + * The function result is the size of the FSE_block (== srcSize). + * If srcSize is too small, the function will return an errorCode; + */ +static size_t FSE_initDStream(FSE_DStream_t* bitD, const void* srcBuffer, size_t srcSize) +{ + if (srcSize < 1) return (size_t)-FSE_ERROR_srcSize_wrong; + + if (srcSize >= sizeof(size_t)) + { + U32 contain32; + bitD->start = (const char*)srcBuffer; + bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t); + bitD->bitContainer = FSE_readLEST(bitD->ptr); + contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; + if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */ + bitD->bitsConsumed = 8 - FSE_highbit32(contain32); + } + else + { + U32 contain32; + bitD->start = (const char*)srcBuffer; + bitD->ptr = bitD->start; + bitD->bitContainer = *(const BYTE*)(bitD->start); + switch(srcSize) + { + case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16); + /* fallthrough */ + case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24); + /* fallthrough */ + case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32); + /* fallthrough */ + case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; + /* fallthrough */ + case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; + /* fallthrough */ + case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; + /* fallthrough */ + default:; + } + contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; + if (contain32 == 0) return (size_t)-FSE_ERROR_GENERIC; /* stop bit not present */ + bitD->bitsConsumed = 8 - FSE_highbit32(contain32); + bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8; + } + + return srcSize; +} + + +/*!FSE_lookBits + * Provides next n bits from the bitContainer. + * bitContainer is not modified (bits are still present for next read/look) + * On 32-bits, maxNbBits==25 + * On 64-bits, maxNbBits==57 + * return : value extracted. + */ +static size_t FSE_lookBits(FSE_DStream_t* bitD, U32 nbBits) +{ + const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; + return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); +} + +static size_t FSE_lookBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */ +{ + const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; + return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); +} + +static void FSE_skipBits(FSE_DStream_t* bitD, U32 nbBits) +{ + bitD->bitsConsumed += nbBits; +} + + +/*!FSE_readBits + * Read next n bits from the bitContainer. + * On 32-bits, don't read more than maxNbBits==25 + * On 64-bits, don't read more than maxNbBits==57 + * Use the fast variant *only* if n >= 1. + * return : value extracted. + */ +static size_t FSE_readBits(FSE_DStream_t* bitD, U32 nbBits) +{ + size_t value = FSE_lookBits(bitD, nbBits); + FSE_skipBits(bitD, nbBits); + return value; +} + +static size_t FSE_readBitsFast(FSE_DStream_t* bitD, U32 nbBits) /* only if nbBits >= 1 !! */ +{ + size_t value = FSE_lookBitsFast(bitD, nbBits); + FSE_skipBits(bitD, nbBits); + return value; +} + +static unsigned FSE_reloadDStream(FSE_DStream_t* bitD) +{ + if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */ + return FSE_DStream_tooFar; + + if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) + { + bitD->ptr -= bitD->bitsConsumed >> 3; + bitD->bitsConsumed &= 7; + bitD->bitContainer = FSE_readLEST(bitD->ptr); + return FSE_DStream_unfinished; + } + if (bitD->ptr == bitD->start) + { + if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return FSE_DStream_endOfBuffer; + return FSE_DStream_completed; + } + { + U32 nbBytes = bitD->bitsConsumed >> 3; + U32 result = FSE_DStream_unfinished; + if (bitD->ptr - nbBytes < bitD->start) + { + nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ + result = FSE_DStream_endOfBuffer; + } + bitD->ptr -= nbBytes; + bitD->bitsConsumed -= nbBytes*8; + bitD->bitContainer = FSE_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ + return result; + } +} + + +static void FSE_initDState(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD, const FSE_DTable* dt) +{ + const void* ptr = dt; + const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; + DStatePtr->state = FSE_readBits(bitD, DTableH->tableLog); + FSE_reloadDStream(bitD); + DStatePtr->table = dt + 1; +} + +static BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD) +{ + const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + const U32 nbBits = DInfo.nbBits; + BYTE symbol = DInfo.symbol; + size_t lowBits = FSE_readBits(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +static BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, FSE_DStream_t* bitD) +{ + const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + const U32 nbBits = DInfo.nbBits; + BYTE symbol = DInfo.symbol; + size_t lowBits = FSE_readBitsFast(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +/* FSE_endOfDStream + Tells if bitD has reached end of bitStream or not */ + +static unsigned FSE_endOfDStream(const FSE_DStream_t* bitD) +{ + return ((bitD->ptr == bitD->start) && (bitD->bitsConsumed == sizeof(bitD->bitContainer)*8)); +} + +static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) +{ + return DStatePtr->state == 0; +} + + +FORCE_INLINE size_t FSE_decompress_usingDTable_generic( + void* dst, size_t maxDstSize, + const void* cSrc, size_t cSrcSize, + const FSE_DTable* dt, const unsigned fast) +{ + BYTE* const ostart = (BYTE*) dst; + BYTE* op = ostart; + BYTE* const omax = op + maxDstSize; + BYTE* const olimit = omax-3; + + FSE_DStream_t bitD; + FSE_DState_t state1; + FSE_DState_t state2; + size_t errorCode; + + /* Init */ + errorCode = FSE_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ + if (FSE_isError(errorCode)) return errorCode; + + FSE_initDState(&state1, &bitD, dt); + FSE_initDState(&state2, &bitD, dt); + +#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) + + /* 4 symbols per loop */ + for ( ; (FSE_reloadDStream(&bitD)==FSE_DStream_unfinished) && (op sizeof(bitD.bitContainer)*8) /* This test must be static */ + FSE_reloadDStream(&bitD); + + op[1] = FSE_GETSYMBOL(&state2); + + if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + { if (FSE_reloadDStream(&bitD) > FSE_DStream_unfinished) { op+=2; break; } } + + op[2] = FSE_GETSYMBOL(&state1); + + if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + FSE_reloadDStream(&bitD); + + op[3] = FSE_GETSYMBOL(&state2); + } + + /* tail */ + /* note : FSE_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly FSE_DStream_completed */ + while (1) + { + if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) ) + break; + + *op++ = FSE_GETSYMBOL(&state1); + + if ( (FSE_reloadDStream(&bitD)>FSE_DStream_completed) || (op==omax) || (FSE_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) ) + break; + + *op++ = FSE_GETSYMBOL(&state2); + } + + /* end ? */ + if (FSE_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2)) + return op-ostart; + + if (op==omax) return (size_t)-FSE_ERROR_dstSize_tooSmall; /* dst buffer is full, but cSrc unfinished */ + + return (size_t)-FSE_ERROR_corruptionDetected; +} + + +static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, + const void* cSrc, size_t cSrcSize, + const FSE_DTable* dt) +{ + FSE_DTableHeader DTableH; + memcpy(&DTableH, dt, sizeof(DTableH)); /* memcpy() into local variable, to avoid strict aliasing warning */ + + /* select fast mode (static) */ + if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); + return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); +} + + +static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) +{ + const BYTE* const istart = (const BYTE*)cSrc; + const BYTE* ip = istart; + short counting[FSE_MAX_SYMBOL_VALUE+1]; + DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ + unsigned tableLog; + unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; + size_t errorCode; + + if (cSrcSize<2) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */ + + /* normal FSE decoding mode */ + errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); + if (FSE_isError(errorCode)) return errorCode; + if (errorCode >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong; /* too small input size */ + ip += errorCode; + cSrcSize -= errorCode; + + errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog); + if (FSE_isError(errorCode)) return errorCode; + + /* always return, even if it is an error code */ + return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); +} + + + +/* ******************************************************* +* Huff0 : Huffman block compression +*********************************************************/ +#define HUF_MAX_SYMBOL_VALUE 255 +#define HUF_DEFAULT_TABLELOG 12 /* used by default, when not specified */ +#define HUF_MAX_TABLELOG 12 /* max possible tableLog; for allocation purpose; can be modified */ +#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ +#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG) +# error "HUF_MAX_TABLELOG is too large !" +#endif + +typedef struct HUF_CElt_s { + U16 val; + BYTE nbBits; +} HUF_CElt ; + +typedef struct nodeElt_s { + U32 count; + U16 parent; + BYTE byte; + BYTE nbBits; +} nodeElt; + + +/* ******************************************************* +* Huff0 : Huffman block decompression +*********************************************************/ +typedef struct { + BYTE byte; + BYTE nbBits; +} HUF_DElt; + +static size_t HUF_readDTable (U16* DTable, const void* src, size_t srcSize) +{ + BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1]; + U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */ + U32 weightTotal; + U32 maxBits; + const BYTE* ip = (const BYTE*) src; + size_t iSize; + size_t oSize; + U32 n; + U32 nextRankStart; + void* ptr = DTable+1; + HUF_DElt* const dt = (HUF_DElt*)ptr; + + if (!srcSize) return (size_t)-FSE_ERROR_srcSize_wrong; + iSize = ip[0]; + + FSE_STATIC_ASSERT(sizeof(HUF_DElt) == sizeof(U16)); /* if compilation fails here, assertion is false */ + //memset(huffWeight, 0, sizeof(huffWeight)); /* should not be necessary, but some analyzer complain ... */ + if (iSize >= 128) /* special header */ + { + if (iSize >= (242)) /* RLE */ + { + static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; + oSize = l[iSize-242]; + memset(huffWeight, 1, sizeof(huffWeight)); + iSize = 0; + } + else /* Incompressible */ + { + oSize = iSize - 127; + iSize = ((oSize+1)/2); + if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong; + ip += 1; + for (n=0; n> 4; + huffWeight[n+1] = ip[n/2] & 15; + } + } + } + else /* header compressed with FSE (normal case) */ + { + if (iSize+1 > srcSize) return (size_t)-FSE_ERROR_srcSize_wrong; + oSize = FSE_decompress(huffWeight, HUF_MAX_SYMBOL_VALUE, ip+1, iSize); /* max 255 values decoded, last one is implied */ + if (FSE_isError(oSize)) return oSize; + } + + /* collect weight stats */ + memset(rankVal, 0, sizeof(rankVal)); + weightTotal = 0; + for (n=0; n= HUF_ABSOLUTEMAX_TABLELOG) return (size_t)-FSE_ERROR_corruptionDetected; + rankVal[huffWeight[n]]++; + weightTotal += (1 << huffWeight[n]) >> 1; + } + if (weightTotal == 0) return (size_t)-FSE_ERROR_corruptionDetected; + + /* get last non-null symbol weight (implied, total must be 2^n) */ + maxBits = FSE_highbit32(weightTotal) + 1; + if (maxBits > DTable[0]) return (size_t)-FSE_ERROR_tableLog_tooLarge; /* DTable is too small */ + DTable[0] = (U16)maxBits; + { + U32 total = 1 << maxBits; + U32 rest = total - weightTotal; + U32 verif = 1 << FSE_highbit32(rest); + U32 lastWeight = FSE_highbit32(rest) + 1; + if (verif != rest) return (size_t)-FSE_ERROR_corruptionDetected; /* last value must be a clean power of 2 */ + huffWeight[oSize] = (BYTE)lastWeight; + rankVal[lastWeight]++; + } + + /* check tree construction validity */ + if ((rankVal[1] < 2) || (rankVal[1] & 1)) return (size_t)-FSE_ERROR_corruptionDetected; /* by construction : at least 2 elts of rank 1, must be even */ + + /* Prepare ranks */ + nextRankStart = 0; + for (n=1; n<=maxBits; n++) + { + U32 current = nextRankStart; + nextRankStart += (rankVal[n] << (n-1)); + rankVal[n] = current; + } + + /* fill DTable */ + for (n=0; n<=oSize; n++) + { + const U32 w = huffWeight[n]; + const U32 length = (1 << w) >> 1; + U32 i; + HUF_DElt D; + D.byte = (BYTE)n; D.nbBits = (BYTE)(maxBits + 1 - w); + for (i = rankVal[w]; i < rankVal[w] + length; i++) + dt[i] = D; + rankVal[w] += length; + } + + return iSize+1; +} + + +static BYTE HUF_decodeSymbol(FSE_DStream_t* Dstream, const HUF_DElt* dt, const U32 dtLog) +{ + const size_t val = FSE_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ + const BYTE c = dt[val].byte; + FSE_skipBits(Dstream, dt[val].nbBits); + return c; +} + +static size_t HUF_decompress_usingDTable( /* -3% slower when non static */ + void* dst, size_t maxDstSize, + const void* cSrc, size_t cSrcSize, + const U16* DTable) +{ + BYTE* const ostart = (BYTE*) dst; + BYTE* op = ostart; + BYTE* const omax = op + maxDstSize; + BYTE* const olimit = omax-15; + + const void* ptr = DTable; + const HUF_DElt* const dt = (const HUF_DElt*)(ptr)+1; + const U32 dtLog = DTable[0]; + size_t errorCode; + U32 reloadStatus; + + /* Init */ + + const U16* jumpTable = (const U16*)cSrc; + const size_t length1 = FSE_readLE16(jumpTable); + const size_t length2 = FSE_readLE16(jumpTable+1); + const size_t length3 = FSE_readLE16(jumpTable+2); + const size_t length4 = cSrcSize - 6 - length1 - length2 - length3; // check coherency !! + const char* const start1 = (const char*)(cSrc) + 6; + const char* const start2 = start1 + length1; + const char* const start3 = start2 + length2; + const char* const start4 = start3 + length3; + FSE_DStream_t bitD1, bitD2, bitD3, bitD4; + + if (length1+length2+length3+6 >= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong; + + errorCode = FSE_initDStream(&bitD1, start1, length1); + if (FSE_isError(errorCode)) return errorCode; + errorCode = FSE_initDStream(&bitD2, start2, length2); + if (FSE_isError(errorCode)) return errorCode; + errorCode = FSE_initDStream(&bitD3, start3, length3); + if (FSE_isError(errorCode)) return errorCode; + errorCode = FSE_initDStream(&bitD4, start4, length4); + if (FSE_isError(errorCode)) return errorCode; + + reloadStatus=FSE_reloadDStream(&bitD2); + + /* 16 symbols per loop */ + for ( ; (reloadStatus12)) FSE_reloadDStream(&Dstream) + +#define HUF_DECODE_SYMBOL_2(n, Dstream) \ + op[n] = HUF_decodeSymbol(&Dstream, dt, dtLog); \ + if (FSE_32bits()) FSE_reloadDStream(&Dstream) + + HUF_DECODE_SYMBOL_1( 0, bitD1); + HUF_DECODE_SYMBOL_1( 1, bitD2); + HUF_DECODE_SYMBOL_1( 2, bitD3); + HUF_DECODE_SYMBOL_1( 3, bitD4); + HUF_DECODE_SYMBOL_2( 4, bitD1); + HUF_DECODE_SYMBOL_2( 5, bitD2); + HUF_DECODE_SYMBOL_2( 6, bitD3); + HUF_DECODE_SYMBOL_2( 7, bitD4); + HUF_DECODE_SYMBOL_1( 8, bitD1); + HUF_DECODE_SYMBOL_1( 9, bitD2); + HUF_DECODE_SYMBOL_1(10, bitD3); + HUF_DECODE_SYMBOL_1(11, bitD4); + HUF_DECODE_SYMBOL_0(12, bitD1); + HUF_DECODE_SYMBOL_0(13, bitD2); + HUF_DECODE_SYMBOL_0(14, bitD3); + HUF_DECODE_SYMBOL_0(15, bitD4); + } + + if (reloadStatus!=FSE_DStream_completed) /* not complete : some bitStream might be FSE_DStream_unfinished */ + return (size_t)-FSE_ERROR_corruptionDetected; + + /* tail */ + { + // bitTail = bitD1; // *much* slower : -20% !??! + FSE_DStream_t bitTail; + bitTail.ptr = bitD1.ptr; + bitTail.bitsConsumed = bitD1.bitsConsumed; + bitTail.bitContainer = bitD1.bitContainer; // required in case of FSE_DStream_endOfBuffer + bitTail.start = start1; + for ( ; (FSE_reloadDStream(&bitTail) < FSE_DStream_completed) && (op= cSrcSize) return (size_t)-FSE_ERROR_srcSize_wrong; + ip += errorCode; + cSrcSize -= errorCode; + + return HUF_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, DTable); +} + + +#endif /* FSE_COMMONDEFS_ONLY */ + +/* + zstd - standard compression library + Copyright (C) 2014-2015, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - zstd source repository : https://github.com/Cyan4973/zstd + - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c +*/ + +/**************************************************************** +* Tuning parameters +*****************************************************************/ +/* MEMORY_USAGE : +* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) +* Increasing memory usage improves compression ratio +* Reduced memory usage can improve speed, due to cache effect */ +#define ZSTD_MEMORY_USAGE 17 + + +/************************************** + CPU Feature Detection +**************************************/ +/* + * Automated efficient unaligned memory access detection + * Based on known hardware architectures + * This list will be updated thanks to feedbacks + */ +#if defined(CPU_HAS_EFFICIENT_UNALIGNED_MEMORY_ACCESS) \ + || defined(__ARM_FEATURE_UNALIGNED) \ + || defined(__i386__) || defined(__x86_64__) \ + || defined(_M_IX86) || defined(_M_X64) \ + || defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_8__) \ + || (defined(_M_ARM) && (_M_ARM >= 7)) +# define ZSTD_UNALIGNED_ACCESS 1 +#else +# define ZSTD_UNALIGNED_ACCESS 0 +#endif + + +/******************************************************** +* Includes +*********************************************************/ +#include /* calloc */ +#include /* memcpy, memmove */ +#include /* debug : printf */ + + +/******************************************************** +* Compiler specifics +*********************************************************/ +#ifdef __AVX2__ +# include /* AVX2 intrinsics */ +#endif + +#ifdef _MSC_VER /* Visual Studio */ +# include /* For Visual 2005 */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +# pragma warning(disable : 4324) /* disable: C4324: padded structure */ +#endif + + +#ifndef MEM_ACCESS_MODULE +#define MEM_ACCESS_MODULE +/******************************************************** +* Basic Types +*********************************************************/ +#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ +# include +typedef uint8_t BYTE; +typedef uint16_t U16; +typedef int16_t S16; +typedef uint32_t U32; +typedef int32_t S32; +typedef uint64_t U64; +#else +typedef unsigned char BYTE; +typedef unsigned short U16; +typedef signed short S16; +typedef unsigned int U32; +typedef signed int S32; +typedef unsigned long long U64; +#endif + +#endif /* MEM_ACCESS_MODULE */ + + +/******************************************************** +* Constants +*********************************************************/ +static const U32 ZSTD_magicNumber = 0xFD2FB51E; /* 3rd version : seqNb header */ + +#define HASH_LOG (ZSTD_MEMORY_USAGE - 2) +#define HASH_TABLESIZE (1 << HASH_LOG) +#define HASH_MASK (HASH_TABLESIZE - 1) + +#define KNUTH 2654435761 + +#define BIT7 128 +#define BIT6 64 +#define BIT5 32 +#define BIT4 16 + +#define KB *(1 <<10) +#define MB *(1 <<20) +#define GB *(1U<<30) + +#define BLOCKSIZE (128 KB) /* define, for static allocation */ + +#define WORKPLACESIZE (BLOCKSIZE*3) +#define MINMATCH 4 +#define MLbits 7 +#define LLbits 6 +#define Offbits 5 +#define MaxML ((1<>3]; +#else + U32 hashTable[HASH_TABLESIZE]; +#endif + BYTE buffer[WORKPLACESIZE]; +} cctxi_t; + + + + +/************************************** +* Error Management +**************************************/ +/* published entry point */ +unsigned ZSTDv01_isError(size_t code) { return ERR_isError(code); } + + +/************************************** +* Tool functions +**************************************/ +#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */ +#define ZSTD_VERSION_MINOR 1 /* for new (non-breaking) interface capabilities */ +#define ZSTD_VERSION_RELEASE 3 /* for tweaks, bug-fixes, or development */ +#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) + +/************************************************************** +* Decompression code +**************************************************************/ + +static size_t ZSTDv01_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr) +{ + const BYTE* const in = (const BYTE* const)src; + BYTE headerFlags; + U32 cSize; + + if (srcSize < 3) return ERROR(srcSize_wrong); + + headerFlags = *in; + cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16); + + bpPtr->blockType = (blockType_t)(headerFlags >> 6); + bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0; + + if (bpPtr->blockType == bt_end) return 0; + if (bpPtr->blockType == bt_rle) return 1; + return cSize; +} + + +static size_t ZSTD_copyUncompressedBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize) +{ + if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall); + memcpy(dst, src, srcSize); + return srcSize; +} + + +static size_t ZSTD_decompressLiterals(void* ctx, + void* dst, size_t maxDstSize, + const void* src, size_t srcSize) +{ + BYTE* op = (BYTE*)dst; + BYTE* const oend = op + maxDstSize; + const BYTE* ip = (const BYTE*)src; + size_t errorCode; + size_t litSize; + + /* check : minimum 2, for litSize, +1, for content */ + if (srcSize <= 3) return ERROR(corruption_detected); + + litSize = ip[1] + (ip[0]<<8); + litSize += ((ip[-3] >> 3) & 7) << 16; // mmmmh.... + op = oend - litSize; + + (void)ctx; + if (litSize > maxDstSize) return ERROR(dstSize_tooSmall); + errorCode = HUF_decompress(op, litSize, ip+2, srcSize-2); + if (FSE_isError(errorCode)) return ERROR(GENERIC); + return litSize; +} + + +static size_t ZSTDv01_decodeLiteralsBlock(void* ctx, + void* dst, size_t maxDstSize, + const BYTE** litStart, size_t* litSize, + const void* src, size_t srcSize) +{ + const BYTE* const istart = (const BYTE* const)src; + const BYTE* ip = istart; + BYTE* const ostart = (BYTE* const)dst; + BYTE* const oend = ostart + maxDstSize; + blockProperties_t litbp; + + size_t litcSize = ZSTDv01_getcBlockSize(src, srcSize, &litbp); + if (ZSTDv01_isError(litcSize)) return litcSize; + if (litcSize > srcSize - ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); + ip += ZSTD_blockHeaderSize; + + switch(litbp.blockType) + { + case bt_raw: + *litStart = ip; + ip += litcSize; + *litSize = litcSize; + break; + case bt_rle: + { + size_t rleSize = litbp.origSize; + if (rleSize>maxDstSize) return ERROR(dstSize_tooSmall); + if (!srcSize) return ERROR(srcSize_wrong); + memset(oend - rleSize, *ip, rleSize); + *litStart = oend - rleSize; + *litSize = rleSize; + ip++; + break; + } + case bt_compressed: + { + size_t decodedLitSize = ZSTD_decompressLiterals(ctx, dst, maxDstSize, ip, litcSize); + if (ZSTDv01_isError(decodedLitSize)) return decodedLitSize; + *litStart = oend - decodedLitSize; + *litSize = decodedLitSize; + ip += litcSize; + break; + } + case bt_end: + default: + return ERROR(GENERIC); + } + + return ip-istart; +} + + +static size_t ZSTDv01_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr, + FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb, + const void* src, size_t srcSize) +{ + const BYTE* const istart = (const BYTE* const)src; + const BYTE* ip = istart; + const BYTE* const iend = istart + srcSize; + U32 LLtype, Offtype, MLtype; + U32 LLlog, Offlog, MLlog; + size_t dumpsLength; + + /* check */ + if (srcSize < 5) return ERROR(srcSize_wrong); + + /* SeqHead */ + *nbSeq = ZSTD_readLE16(ip); ip+=2; + LLtype = *ip >> 6; + Offtype = (*ip >> 4) & 3; + MLtype = (*ip >> 2) & 3; + if (*ip & 2) + { + dumpsLength = ip[2]; + dumpsLength += ip[1] << 8; + ip += 3; + } + else + { + dumpsLength = ip[1]; + dumpsLength += (ip[0] & 1) << 8; + ip += 2; + } + *dumpsPtr = ip; + ip += dumpsLength; + *dumpsLengthPtr = dumpsLength; + + /* check */ + if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */ + + /* sequences */ + { + S16 norm[MaxML+1]; /* assumption : MaxML >= MaxLL and MaxOff */ + size_t headerSize; + + /* Build DTables */ + switch(LLtype) + { + case bt_rle : + LLlog = 0; + FSE_buildDTable_rle(DTableLL, *ip++); break; + case bt_raw : + LLlog = LLbits; + FSE_buildDTable_raw(DTableLL, LLbits); break; + default : + { U32 max = MaxLL; + headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip); + if (FSE_isError(headerSize)) return ERROR(GENERIC); + if (LLlog > LLFSELog) return ERROR(corruption_detected); + ip += headerSize; + FSE_buildDTable(DTableLL, norm, max, LLlog); + } } + + switch(Offtype) + { + case bt_rle : + Offlog = 0; + if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ + FSE_buildDTable_rle(DTableOffb, *ip++); break; + case bt_raw : + Offlog = Offbits; + FSE_buildDTable_raw(DTableOffb, Offbits); break; + default : + { U32 max = MaxOff; + headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip); + if (FSE_isError(headerSize)) return ERROR(GENERIC); + if (Offlog > OffFSELog) return ERROR(corruption_detected); + ip += headerSize; + FSE_buildDTable(DTableOffb, norm, max, Offlog); + } } + + switch(MLtype) + { + case bt_rle : + MLlog = 0; + if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */ + FSE_buildDTable_rle(DTableML, *ip++); break; + case bt_raw : + MLlog = MLbits; + FSE_buildDTable_raw(DTableML, MLbits); break; + default : + { U32 max = MaxML; + headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip); + if (FSE_isError(headerSize)) return ERROR(GENERIC); + if (MLlog > MLFSELog) return ERROR(corruption_detected); + ip += headerSize; + FSE_buildDTable(DTableML, norm, max, MLlog); + } } } + + return ip-istart; +} + + +typedef struct { + size_t litLength; + size_t offset; + size_t matchLength; +} seq_t; + +typedef struct { + FSE_DStream_t DStream; + FSE_DState_t stateLL; + FSE_DState_t stateOffb; + FSE_DState_t stateML; + size_t prevOffset; + const BYTE* dumps; + const BYTE* dumpsEnd; +} seqState_t; + + +static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState) +{ + size_t litLength; + size_t prevOffset; + size_t offset; + size_t matchLength; + const BYTE* dumps = seqState->dumps; + const BYTE* const de = seqState->dumpsEnd; + + /* Literal length */ + litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream)); + prevOffset = litLength ? seq->offset : seqState->prevOffset; + seqState->prevOffset = seq->offset; + if (litLength == MaxLL) + { + U32 add = dumps 1 byte */ + dumps += 3; + } + } + } + + /* Offset */ + { + U32 offsetCode, nbBits; + offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream)); + if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream)); + nbBits = offsetCode - 1; + if (offsetCode==0) nbBits = 0; /* cmove */ + offset = ((size_t)1 << (nbBits & ((sizeof(offset)*8)-1))) + FSE_readBits(&(seqState->DStream), nbBits); + if (ZSTD_32bits()) FSE_reloadDStream(&(seqState->DStream)); + if (offsetCode==0) offset = prevOffset; + } + + /* MatchLength */ + matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream)); + if (matchLength == MaxML) + { + U32 add = dumps 1 byte */ + dumps += 3; + } + } + } + matchLength += MINMATCH; + + /* save result */ + seq->litLength = litLength; + seq->offset = offset; + seq->matchLength = matchLength; + seqState->dumps = dumps; +} + + +static size_t ZSTD_execSequence(BYTE* op, + seq_t sequence, + const BYTE** litPtr, const BYTE* const litLimit, + BYTE* const base, BYTE* const oend) +{ + static const int dec32table[] = {0, 1, 2, 1, 4, 4, 4, 4}; /* added */ + static const int dec64table[] = {8, 8, 8, 7, 8, 9,10,11}; /* subtracted */ + const BYTE* const ostart = op; + const size_t litLength = sequence.litLength; + BYTE* const endMatch = op + litLength + sequence.matchLength; /* risk : address space overflow (32-bits) */ + const BYTE* const litEnd = *litPtr + litLength; + + /* check */ + if (endMatch > oend) return ERROR(dstSize_tooSmall); /* overwrite beyond dst buffer */ + if (litEnd > litLimit) return ERROR(corruption_detected); + if (sequence.matchLength > (size_t)(*litPtr-op)) return ERROR(dstSize_tooSmall); /* overwrite literal segment */ + + /* copy Literals */ + if (((size_t)(*litPtr - op) < 8) || ((size_t)(oend-litEnd) < 8) || (op+litLength > oend-8)) + memmove(op, *litPtr, litLength); /* overwrite risk */ + else + ZSTD_wildcopy(op, *litPtr, litLength); + op += litLength; + *litPtr = litEnd; /* update for next sequence */ + + /* check : last match must be at a minimum distance of 8 from end of dest buffer */ + if (oend-op < 8) return ERROR(dstSize_tooSmall); + + /* copy Match */ + { + const U32 overlapRisk = (((size_t)(litEnd - endMatch)) < 12); + const BYTE* match = op - sequence.offset; /* possible underflow at op - offset ? */ + size_t qutt = 12; + U64 saved[2]; + + /* check */ + if (match < base) return ERROR(corruption_detected); + if (sequence.offset > (size_t)base) return ERROR(corruption_detected); + + /* save beginning of literal sequence, in case of write overlap */ + if (overlapRisk) + { + if ((endMatch + qutt) > oend) qutt = oend-endMatch; + memcpy(saved, endMatch, qutt); + } + + if (sequence.offset < 8) + { + const int dec64 = dec64table[sequence.offset]; + op[0] = match[0]; + op[1] = match[1]; + op[2] = match[2]; + op[3] = match[3]; + match += dec32table[sequence.offset]; + ZSTD_copy4(op+4, match); + match -= dec64; + } else { ZSTD_copy8(op, match); } + op += 8; match += 8; + + if (endMatch > oend-(16-MINMATCH)) + { + if (op < oend-8) + { + ZSTD_wildcopy(op, match, (oend-8) - op); + match += (oend-8) - op; + op = oend-8; + } + while (opLLTable; + U32* DTableML = dctx->MLTable; + U32* DTableOffb = dctx->OffTable; + BYTE* const base = (BYTE*) (dctx->base); + + /* Build Decoding Tables */ + errorCode = ZSTDv01_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength, + DTableLL, DTableML, DTableOffb, + ip, iend-ip); + if (ZSTDv01_isError(errorCode)) return errorCode; + ip += errorCode; + + /* Regen sequences */ + { + seq_t sequence; + seqState_t seqState; + + memset(&sequence, 0, sizeof(sequence)); + seqState.dumps = dumps; + seqState.dumpsEnd = dumps + dumpsLength; + seqState.prevOffset = 1; + errorCode = FSE_initDStream(&(seqState.DStream), ip, iend-ip); + if (FSE_isError(errorCode)) return ERROR(corruption_detected); + FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL); + FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb); + FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML); + + for ( ; (FSE_reloadDStream(&(seqState.DStream)) <= FSE_DStream_completed) && (nbSeq>0) ; ) + { + size_t oneSeqSize; + nbSeq--; + ZSTD_decodeSequence(&sequence, &seqState); + oneSeqSize = ZSTD_execSequence(op, sequence, &litPtr, litEnd, base, oend); + if (ZSTDv01_isError(oneSeqSize)) return oneSeqSize; + op += oneSeqSize; + } + + /* check if reached exact end */ + if ( !FSE_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected); /* requested too much : data is corrupted */ + if (nbSeq<0) return ERROR(corruption_detected); /* requested too many sequences : data is corrupted */ + + /* last literal segment */ + { + size_t lastLLSize = litEnd - litPtr; + if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall); + if (op != litPtr) memmove(op, litPtr, lastLLSize); + op += lastLLSize; + } + } + + return op-ostart; +} + + +static size_t ZSTD_decompressBlock( + void* ctx, + void* dst, size_t maxDstSize, + const void* src, size_t srcSize) +{ + /* blockType == blockCompressed, srcSize is trusted */ + const BYTE* ip = (const BYTE*)src; + const BYTE* litPtr = NULL; + size_t litSize = 0; + size_t errorCode; + + /* Decode literals sub-block */ + errorCode = ZSTDv01_decodeLiteralsBlock(ctx, dst, maxDstSize, &litPtr, &litSize, src, srcSize); + if (ZSTDv01_isError(errorCode)) return errorCode; + ip += errorCode; + srcSize -= errorCode; + + return ZSTD_decompressSequences(ctx, dst, maxDstSize, ip, srcSize, litPtr, litSize); +} + + +size_t ZSTDv01_decompressDCtx(void* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) +{ + const BYTE* ip = (const BYTE*)src; + const BYTE* iend = ip + srcSize; + BYTE* const ostart = (BYTE* const)dst; + BYTE* op = ostart; + BYTE* const oend = ostart + maxDstSize; + size_t remainingSize = srcSize; + U32 magicNumber; + size_t errorCode=0; + blockProperties_t blockProperties; + + /* Frame Header */ + if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong); + magicNumber = ZSTD_readBE32(src); + if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown); + ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize; + + /* Loop on each block */ + while (1) + { + size_t blockSize = ZSTDv01_getcBlockSize(ip, iend-ip, &blockProperties); + if (ZSTDv01_isError(blockSize)) return blockSize; + + ip += ZSTD_blockHeaderSize; + remainingSize -= ZSTD_blockHeaderSize; + if (blockSize > remainingSize) return ERROR(srcSize_wrong); + + switch(blockProperties.blockType) + { + case bt_compressed: + errorCode = ZSTD_decompressBlock(ctx, op, oend-op, ip, blockSize); + break; + case bt_raw : + errorCode = ZSTD_copyUncompressedBlock(op, oend-op, ip, blockSize); + break; + case bt_rle : + return ERROR(GENERIC); /* not yet supported */ + break; + case bt_end : + /* end of frame */ + if (remainingSize) return ERROR(srcSize_wrong); + break; + default: + return ERROR(GENERIC); + } + if (blockSize == 0) break; /* bt_end */ + + if (ZSTDv01_isError(errorCode)) return errorCode; + op += errorCode; + ip += blockSize; + remainingSize -= blockSize; + } + + return op-ostart; +} + +size_t ZSTDv01_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize) +{ + dctx_t ctx; + ctx.base = dst; + return ZSTDv01_decompressDCtx(&ctx, dst, maxDstSize, src, srcSize); +} + +/* ZSTD_errorFrameSizeInfoLegacy() : + assumes `cSize` and `dBound` are _not_ NULL */ +static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret) +{ + *cSize = ret; + *dBound = ZSTD_CONTENTSIZE_ERROR; +} + +void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound) +{ + const BYTE* ip = (const BYTE*)src; + size_t remainingSize = srcSize; + size_t nbBlocks = 0; + U32 magicNumber; + blockProperties_t blockProperties; + + /* Frame Header */ + if (srcSize < ZSTD_frameHeaderSize+ZSTD_blockHeaderSize) { + ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong)); + return; + } + magicNumber = ZSTD_readBE32(src); + if (magicNumber != ZSTD_magicNumber) { + ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown)); + return; + } + ip += ZSTD_frameHeaderSize; remainingSize -= ZSTD_frameHeaderSize; + + /* Loop on each block */ + while (1) + { + size_t blockSize = ZSTDv01_getcBlockSize(ip, remainingSize, &blockProperties); + if (ZSTDv01_isError(blockSize)) { + ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, blockSize); + return; + } + + ip += ZSTD_blockHeaderSize; + remainingSize -= ZSTD_blockHeaderSize; + if (blockSize > remainingSize) { + ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong)); + return; + } + + if (blockSize == 0) break; /* bt_end */ + + ip += blockSize; + remainingSize -= blockSize; + nbBlocks++; + } + + *cSize = ip - (const BYTE*)src; + *dBound = nbBlocks * BLOCKSIZE; +} + +/******************************* +* Streaming Decompression API +*******************************/ + +size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx) +{ + dctx->expected = ZSTD_frameHeaderSize; + dctx->phase = 0; + dctx->previousDstEnd = NULL; + dctx->base = NULL; + return 0; +} + +ZSTDv01_Dctx* ZSTDv01_createDCtx(void) +{ + ZSTDv01_Dctx* dctx = (ZSTDv01_Dctx*)malloc(sizeof(ZSTDv01_Dctx)); + if (dctx==NULL) return NULL; + ZSTDv01_resetDCtx(dctx); + return dctx; +} + +size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx) +{ + free(dctx); + return 0; +} + +size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx) +{ + return ((dctx_t*)dctx)->expected; +} + +size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize) +{ + dctx_t* ctx = (dctx_t*)dctx; + + /* Sanity check */ + if (srcSize != ctx->expected) return ERROR(srcSize_wrong); + if (dst != ctx->previousDstEnd) /* not contiguous */ + ctx->base = dst; + + /* Decompress : frame header */ + if (ctx->phase == 0) + { + /* Check frame magic header */ + U32 magicNumber = ZSTD_readBE32(src); + if (magicNumber != ZSTD_magicNumber) return ERROR(prefix_unknown); + ctx->phase = 1; + ctx->expected = ZSTD_blockHeaderSize; + return 0; + } + + /* Decompress : block header */ + if (ctx->phase == 1) + { + blockProperties_t bp; + size_t blockSize = ZSTDv01_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); + if (ZSTDv01_isError(blockSize)) return blockSize; + if (bp.blockType == bt_end) + { + ctx->expected = 0; + ctx->phase = 0; + } + else + { + ctx->expected = blockSize; + ctx->bType = bp.blockType; + ctx->phase = 2; + } + + return 0; + } + + /* Decompress : block content */ + { + size_t rSize; + switch(ctx->bType) + { + case bt_compressed: + rSize = ZSTD_decompressBlock(ctx, dst, maxDstSize, src, srcSize); + break; + case bt_raw : + rSize = ZSTD_copyUncompressedBlock(dst, maxDstSize, src, srcSize); + break; + case bt_rle : + return ERROR(GENERIC); /* not yet handled */ + break; + case bt_end : /* should never happen (filtered at phase 1) */ + rSize = 0; + break; + default: + return ERROR(GENERIC); + } + ctx->phase = 1; + ctx->expected = ZSTD_blockHeaderSize; + ctx->previousDstEnd = (void*)( ((char*)dst) + rSize); + return rSize; + } + +} diff --git a/vendor/github.com/DataDog/zstd/zstd_v01.h b/vendor/github.com/DataDog/zstd/zstd_v01.h new file mode 100644 index 0000000000..245f9dd314 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_v01.h @@ -0,0 +1,94 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + +#ifndef ZSTD_V01_H_28739879432 +#define ZSTD_V01_H_28739879432 + +#if defined (__cplusplus) +extern "C" { +#endif + +/* ************************************* +* Includes +***************************************/ +#include /* size_t */ + + +/* ************************************* +* Simple one-step function +***************************************/ +/** +ZSTDv01_decompress() : decompress ZSTD frames compliant with v0.1.x format + compressedSize : is the exact source size + maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated. + It must be equal or larger than originalSize, otherwise decompression will fail. + return : the number of bytes decompressed into destination buffer (originalSize) + or an errorCode if it fails (which can be tested using ZSTDv01_isError()) +*/ +size_t ZSTDv01_decompress( void* dst, size_t maxOriginalSize, + const void* src, size_t compressedSize); + + /** + ZSTDv01_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.1.x format + srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src' + cSize (output parameter) : the number of bytes that would be read to decompress this frame + or an error code if it fails (which can be tested using ZSTDv01_isError()) + dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame + or ZSTD_CONTENTSIZE_ERROR if an error occurs + + note : assumes `cSize` and `dBound` are _not_ NULL. + */ +void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize, + size_t* cSize, unsigned long long* dBound); + +/** +ZSTDv01_isError() : tells if the result of ZSTDv01_decompress() is an error +*/ +unsigned ZSTDv01_isError(size_t code); + + +/* ************************************* +* Advanced functions +***************************************/ +typedef struct ZSTDv01_Dctx_s ZSTDv01_Dctx; +ZSTDv01_Dctx* ZSTDv01_createDCtx(void); +size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx); + +size_t ZSTDv01_decompressDCtx(void* ctx, + void* dst, size_t maxOriginalSize, + const void* src, size_t compressedSize); + +/* ************************************* +* Streaming functions +***************************************/ +size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx); + +size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx); +size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize); +/** + Use above functions alternatively. + ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). + ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. + Result is the number of bytes regenerated within 'dst'. + It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. +*/ + +/* ************************************* +* Prefix - version detection +***************************************/ +#define ZSTDv01_magicNumber 0xFD2FB51E /* Big Endian version */ +#define ZSTDv01_magicNumberLE 0x1EB52FFD /* Little Endian version */ + + +#if defined (__cplusplus) +} +#endif + +#endif /* ZSTD_V01_H_28739879432 */ diff --git a/vendor/github.com/DataDog/zstd/zstd_v02.c b/vendor/github.com/DataDog/zstd/zstd_v02.c new file mode 100644 index 0000000000..561bc412e9 --- /dev/null +++ b/vendor/github.com/DataDog/zstd/zstd_v02.c @@ -0,0 +1,3508 @@ +/* + * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. + * All rights reserved. + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. + */ + + +#include /* size_t, ptrdiff_t */ +#include "zstd_v02.h" +#include "error_private.h" + + +/****************************************** +* Compiler-specific +******************************************/ +#if defined(_MSC_VER) /* Visual Studio */ +# include /* _byteswap_ulong */ +# include /* _byteswap_* */ +#endif + + +/* ****************************************************************** + mem.h + low-level memory access routines + Copyright (C) 2013-2015, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ +#ifndef MEM_H_MODULE +#define MEM_H_MODULE + +#if defined (__cplusplus) +extern "C" { +#endif + +/****************************************** +* Includes +******************************************/ +#include /* size_t, ptrdiff_t */ +#include /* memcpy */ + + +/****************************************** +* Compiler-specific +******************************************/ +#if defined(__GNUC__) +# define MEM_STATIC static __attribute__((unused)) +#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define MEM_STATIC static inline +#elif defined(_MSC_VER) +# define MEM_STATIC static __inline +#else +# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ +#endif + + +/**************************************************************** +* Basic Types +*****************************************************************/ +#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# include + typedef uint8_t BYTE; + typedef uint16_t U16; + typedef int16_t S16; + typedef uint32_t U32; + typedef int32_t S32; + typedef uint64_t U64; + typedef int64_t S64; +#else + typedef unsigned char BYTE; + typedef unsigned short U16; + typedef signed short S16; + typedef unsigned int U32; + typedef signed int S32; + typedef unsigned long long U64; + typedef signed long long S64; +#endif + + +/**************************************************************** +* Memory I/O +*****************************************************************/ +/* MEM_FORCE_MEMORY_ACCESS + * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. + * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. + * The below switch allow to select different access method for improved performance. + * Method 0 (default) : use `memcpy()`. Safe and portable. + * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). + * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. + * Method 2 : direct access. This method is portable but violate C standard. + * It can generate buggy code on targets generating assembly depending on alignment. + * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) + * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. + * Prefer these methods in priority order (0 > 1 > 2) + */ +#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ +# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) +# define MEM_FORCE_MEMORY_ACCESS 2 +# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ + (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) +# define MEM_FORCE_MEMORY_ACCESS 1 +# endif +#endif + +MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; } +MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; } + +MEM_STATIC unsigned MEM_isLittleEndian(void) +{ + const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ + return one.c[0]; +} + +#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) + +/* violates C standard on structure alignment. +Only use if no other choice to achieve best performance on target platform */ +MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } +MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } +MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } + +#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) + +/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ +/* currently only defined for gcc and icc */ +typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign; + +MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; } +MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } +MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; } + +#else + +/* default method, safe and standard. + can sometimes prove slower */ + +MEM_STATIC U16 MEM_read16(const void* memPtr) +{ + U16 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC U32 MEM_read32(const void* memPtr) +{ + U32 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC U64 MEM_read64(const void* memPtr) +{ + U64 val; memcpy(&val, memPtr, sizeof(val)); return val; +} + +MEM_STATIC void MEM_write16(void* memPtr, U16 value) +{ + memcpy(memPtr, &value, sizeof(value)); +} + +#endif // MEM_FORCE_MEMORY_ACCESS + + +MEM_STATIC U16 MEM_readLE16(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read16(memPtr); + else + { + const BYTE* p = (const BYTE*)memPtr; + return (U16)(p[0] + (p[1]<<8)); + } +} + +MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) +{ + if (MEM_isLittleEndian()) + { + MEM_write16(memPtr, val); + } + else + { + BYTE* p = (BYTE*)memPtr; + p[0] = (BYTE)val; + p[1] = (BYTE)(val>>8); + } +} + +MEM_STATIC U32 MEM_readLE32(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read32(memPtr); + else + { + const BYTE* p = (const BYTE*)memPtr; + return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24)); + } +} + + +MEM_STATIC U64 MEM_readLE64(const void* memPtr) +{ + if (MEM_isLittleEndian()) + return MEM_read64(memPtr); + else + { + const BYTE* p = (const BYTE*)memPtr; + return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24) + + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56)); + } +} + + +MEM_STATIC size_t MEM_readLEST(const void* memPtr) +{ + if (MEM_32bits()) + return (size_t)MEM_readLE32(memPtr); + else + return (size_t)MEM_readLE64(memPtr); +} + +#if defined (__cplusplus) +} +#endif + +#endif /* MEM_H_MODULE */ + + +/* ****************************************************************** + bitstream + Part of NewGen Entropy library + header file (to include) + Copyright (C) 2013-2015, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ +#ifndef BITSTREAM_H_MODULE +#define BITSTREAM_H_MODULE + +#if defined (__cplusplus) +extern "C" { +#endif + + +/* +* This API consists of small unitary functions, which highly benefit from being inlined. +* Since link-time-optimization is not available for all compilers, +* these functions are defined into a .h to be included. +*/ + + +/********************************************** +* bitStream decompression API (read backward) +**********************************************/ +typedef struct +{ + size_t bitContainer; + unsigned bitsConsumed; + const char* ptr; + const char* start; +} BIT_DStream_t; + +typedef enum { BIT_DStream_unfinished = 0, + BIT_DStream_endOfBuffer = 1, + BIT_DStream_completed = 2, + BIT_DStream_overflow = 3 } BIT_DStream_status; /* result of BIT_reloadDStream() */ + /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ + +MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize); +MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits); +MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD); +MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD); + + +/****************************************** +* unsafe API +******************************************/ +MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits); +/* faster, but works only if nbBits >= 1 */ + + + +/**************************************************************** +* Helper functions +****************************************************************/ +MEM_STATIC unsigned BIT_highbit32 (U32 val) +{ +# if defined(_MSC_VER) /* Visual */ + unsigned long r=0; + _BitScanReverse ( &r, val ); + return (unsigned) r; +# elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ + return 31 - __builtin_clz (val); +# else /* Software version */ + static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; + U32 v = val; + unsigned r; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; + return r; +# endif +} + + + +/********************************************************** +* bitStream decoding +**********************************************************/ + +/*!BIT_initDStream +* Initialize a BIT_DStream_t. +* @bitD : a pointer to an already allocated BIT_DStream_t structure +* @srcBuffer must point at the beginning of a bitStream +* @srcSize must be the exact size of the bitStream +* @result : size of stream (== srcSize) or an errorCode if a problem is detected +*/ +MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize) +{ + if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } + + if (srcSize >= sizeof(size_t)) /* normal case */ + { + U32 contain32; + bitD->start = (const char*)srcBuffer; + bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(size_t); + bitD->bitContainer = MEM_readLEST(bitD->ptr); + contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; + if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ + bitD->bitsConsumed = 8 - BIT_highbit32(contain32); + } + else + { + U32 contain32; + bitD->start = (const char*)srcBuffer; + bitD->ptr = bitD->start; + bitD->bitContainer = *(const BYTE*)(bitD->start); + switch(srcSize) + { + case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16); + /* fallthrough */ + case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24); + /* fallthrough */ + case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32); + /* fallthrough */ + case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; + /* fallthrough */ + case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; + /* fallthrough */ + case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) << 8; + /* fallthrough */ + default:; + } + contain32 = ((const BYTE*)srcBuffer)[srcSize-1]; + if (contain32 == 0) return ERROR(GENERIC); /* endMark not present */ + bitD->bitsConsumed = 8 - BIT_highbit32(contain32); + bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8; + } + + return srcSize; +} + +MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits) +{ + const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; + return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); +} + +/*! BIT_lookBitsFast : +* unsafe version; only works only if nbBits >= 1 */ +MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits) +{ + const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1; + return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); +} + +MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits) +{ + bitD->bitsConsumed += nbBits; +} + +MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits) +{ + size_t value = BIT_lookBits(bitD, nbBits); + BIT_skipBits(bitD, nbBits); + return value; +} + +/*!BIT_readBitsFast : +* unsafe version; only works only if nbBits >= 1 */ +MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits) +{ + size_t value = BIT_lookBitsFast(bitD, nbBits); + BIT_skipBits(bitD, nbBits); + return value; +} + +MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD) +{ + if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should never happen */ + return BIT_DStream_overflow; + + if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) + { + bitD->ptr -= bitD->bitsConsumed >> 3; + bitD->bitsConsumed &= 7; + bitD->bitContainer = MEM_readLEST(bitD->ptr); + return BIT_DStream_unfinished; + } + if (bitD->ptr == bitD->start) + { + if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer; + return BIT_DStream_completed; + } + { + U32 nbBytes = bitD->bitsConsumed >> 3; + BIT_DStream_status result = BIT_DStream_unfinished; + if (bitD->ptr - nbBytes < bitD->start) + { + nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ + result = BIT_DStream_endOfBuffer; + } + bitD->ptr -= nbBytes; + bitD->bitsConsumed -= nbBytes*8; + bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ + return result; + } +} + +/*! BIT_endOfDStream +* @return Tells if DStream has reached its exact end +*/ +MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream) +{ + return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); +} + +#if defined (__cplusplus) +} +#endif + +#endif /* BITSTREAM_H_MODULE */ +/* ****************************************************************** + Error codes and messages + Copyright (C) 2013-2015, Yann Collet + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ +#ifndef ERROR_H_MODULE +#define ERROR_H_MODULE + +#if defined (__cplusplus) +extern "C" { +#endif + + +/****************************************** +* Compiler-specific +******************************************/ +#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +# define ERR_STATIC static inline +#elif defined(_MSC_VER) +# define ERR_STATIC static __inline +#elif defined(__GNUC__) +# define ERR_STATIC static __attribute__((unused)) +#else +# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ +#endif + + +/****************************************** +* Error Management +******************************************/ +#define PREFIX(name) ZSTD_error_##name + +#define ERROR(name) (size_t)-PREFIX(name) + +#define ERROR_LIST(ITEM) \ + ITEM(PREFIX(No_Error)) ITEM(PREFIX(GENERIC)) \ + ITEM(PREFIX(dstSize_tooSmall)) ITEM(PREFIX(srcSize_wrong)) \ + ITEM(PREFIX(prefix_unknown)) ITEM(PREFIX(corruption_detected)) \ + ITEM(PREFIX(tableLog_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooLarge)) ITEM(PREFIX(maxSymbolValue_tooSmall)) \ + ITEM(PREFIX(maxCode)) + +#define ERROR_GENERATE_ENUM(ENUM) ENUM, +typedef enum { ERROR_LIST(ERROR_GENERATE_ENUM) } ERR_codes; /* enum is exposed, to detect & handle specific errors; compare function result to -enum value */ + +#define ERROR_CONVERTTOSTRING(STRING) #STRING, +#define ERROR_GENERATE_STRING(EXPR) ERROR_CONVERTTOSTRING(EXPR) +static const char* ERR_strings[] = { ERROR_LIST(ERROR_GENERATE_STRING) }; + +ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); } + +ERR_STATIC const char* ERR_getErrorName(size_t code) +{ + static const char* codeError = "Unspecified error code"; + if (ERR_isError(code)) return ERR_strings[-(int)(code)]; + return codeError; +} + + +#if defined (__cplusplus) +} +#endif + +#endif /* ERROR_H_MODULE */ +/* +Constructor and Destructor of type FSE_CTable + Note that its size depends on 'tableLog' and 'maxSymbolValue' */ +typedef unsigned FSE_CTable; /* don't allocate that. It's just a way to be more restrictive than void* */ +typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ + + +/* ****************************************************************** + FSE : Finite State Entropy coder + header file for static linking (only) + Copyright (C) 2013-2015, Yann Collet + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ +#if defined (__cplusplus) +extern "C" { +#endif + + +/****************************************** +* Static allocation +******************************************/ +/* FSE buffer bounds */ +#define FSE_NCOUNTBOUND 512 +#define FSE_BLOCKBOUND(size) (size + (size>>7)) +#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ + +/* You can statically allocate FSE CTable/DTable as a table of unsigned using below macro */ +#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2)) +#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<= 1 (otherwise, result will be corrupted) */ + + +/****************************************** +* Implementation of inline functions +******************************************/ + +/* decompression */ + +typedef struct { + U16 tableLog; + U16 fastMode; +} FSE_DTableHeader; /* sizeof U32 */ + +typedef struct +{ + unsigned short newState; + unsigned char symbol; + unsigned char nbBits; +} FSE_decode_t; /* size == U32 */ + +MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) +{ + FSE_DTableHeader DTableH; + memcpy(&DTableH, dt, sizeof(DTableH)); + DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog); + BIT_reloadDStream(bitD); + DStatePtr->table = dt + 1; +} + +MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + const U32 nbBits = DInfo.nbBits; + BYTE symbol = DInfo.symbol; + size_t lowBits = BIT_readBits(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) +{ + const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; + const U32 nbBits = DInfo.nbBits; + BYTE symbol = DInfo.symbol; + size_t lowBits = BIT_readBitsFast(bitD, nbBits); + + DStatePtr->state = DInfo.newState + lowBits; + return symbol; +} + +MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) +{ + return DStatePtr->state == 0; +} + + +#if defined (__cplusplus) +} +#endif +/* ****************************************************************** + Huff0 : Huffman coder, part of New Generation Entropy library + header file for static linking (only) + Copyright (C) 2013-2015, Yann Collet + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - Source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + +#if defined (__cplusplus) +extern "C" { +#endif + +/****************************************** +* Static allocation macros +******************************************/ +/* Huff0 buffer bounds */ +#define HUF_CTABLEBOUND 129 +#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */ +#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ + +/* static allocation of Huff0's DTable */ +#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1< /* size_t */ + + +/* ************************************* +* Version +***************************************/ +#define ZSTD_VERSION_MAJOR 0 /* for breaking interface changes */ +#define ZSTD_VERSION_MINOR 2 /* for new (non-breaking) interface capabilities */ +#define ZSTD_VERSION_RELEASE 2 /* for tweaks, bug-fixes, or development */ +#define ZSTD_VERSION_NUMBER (ZSTD_VERSION_MAJOR *100*100 + ZSTD_VERSION_MINOR *100 + ZSTD_VERSION_RELEASE) + + +/* ************************************* +* Advanced functions +***************************************/ +typedef struct ZSTD_CCtx_s ZSTD_CCtx; /* incomplete type */ + +#if defined (__cplusplus) +} +#endif +/* + zstd - standard compression library + Header File for static linking only + Copyright (C) 2014-2015, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - zstd source repository : https://github.com/Cyan4973/zstd + - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c +*/ + +/* The objects defined into this file should be considered experimental. + * They are not labelled stable, as their prototype may change in the future. + * You can use them for tests, provide feedback, or if you can endure risk of future changes. + */ + +#if defined (__cplusplus) +extern "C" { +#endif + +/* ************************************* +* Streaming functions +***************************************/ + +typedef struct ZSTD_DCtx_s ZSTD_DCtx; + +/* + Use above functions alternatively. + ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue(). + ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block. + Result is the number of bytes regenerated within 'dst'. + It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header. +*/ + +/* ************************************* +* Prefix - version detection +***************************************/ +#define ZSTD_magicNumber 0xFD2FB522 /* v0.2 (current)*/ + + +#if defined (__cplusplus) +} +#endif +/* ****************************************************************** + FSE : Finite State Entropy coder + Copyright (C) 2013-2015, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + +#ifndef FSE_COMMONDEFS_ONLY + +/**************************************************************** +* Tuning parameters +****************************************************************/ +/* MEMORY_USAGE : +* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) +* Increasing memory usage improves compression ratio +* Reduced memory usage can improve speed, due to cache effect +* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ +#define FSE_MAX_MEMORY_USAGE 14 +#define FSE_DEFAULT_MEMORY_USAGE 13 + +/* FSE_MAX_SYMBOL_VALUE : +* Maximum symbol value authorized. +* Required for proper stack allocation */ +#define FSE_MAX_SYMBOL_VALUE 255 + + +/**************************************************************** +* template functions type & suffix +****************************************************************/ +#define FSE_FUNCTION_TYPE BYTE +#define FSE_FUNCTION_EXTENSION + + +/**************************************************************** +* Byte symbol type +****************************************************************/ +#endif /* !FSE_COMMONDEFS_ONLY */ + + +/**************************************************************** +* Compiler specifics +****************************************************************/ +#ifdef _MSC_VER /* Visual Studio */ +# define FORCE_INLINE static __forceinline +# include /* For Visual 2005 */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ +#else +# if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ +# ifdef __GNUC__ +# define FORCE_INLINE static inline __attribute__((always_inline)) +# else +# define FORCE_INLINE static inline +# endif +# else +# define FORCE_INLINE static +# endif /* __STDC_VERSION__ */ +#endif + + +/**************************************************************** +* Includes +****************************************************************/ +#include /* malloc, free, qsort */ +#include /* memcpy, memset */ +#include /* printf (debug) */ + +/**************************************************************** +* Constants +*****************************************************************/ +#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) +#define FSE_MAX_TABLESIZE (1U< FSE_TABLELOG_ABSOLUTE_MAX +#error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" +#endif + + +/**************************************************************** +* Error Management +****************************************************************/ +#define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ + + +/**************************************************************** +* Complex types +****************************************************************/ +typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)]; + + +/**************************************************************** +* Templates +****************************************************************/ +/* + designed to be included + for type-specific functions (template emulation in C) + Objective is to write these functions only once, for improved maintenance +*/ + +/* safety checks */ +#ifndef FSE_FUNCTION_EXTENSION +# error "FSE_FUNCTION_EXTENSION must be defined" +#endif +#ifndef FSE_FUNCTION_TYPE +# error "FSE_FUNCTION_TYPE must be defined" +#endif + +/* Function names */ +#define FSE_CAT(X,Y) X##Y +#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y) +#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y) + + +/* Function templates */ + +#define FSE_DECODE_TYPE FSE_decode_t + +static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; } + +static size_t FSE_buildDTable +(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) +{ + void* ptr = dt+1; + FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*)ptr; + FSE_DTableHeader DTableH; + const U32 tableSize = 1 << tableLog; + const U32 tableMask = tableSize-1; + const U32 step = FSE_tableStep(tableSize); + U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1]; + U32 position = 0; + U32 highThreshold = tableSize-1; + const S16 largeLimit= (S16)(1 << (tableLog-1)); + U32 noLarge = 1; + U32 s; + + /* Sanity Checks */ + if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); + if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); + + /* Init, lay down lowprob symbols */ + DTableH.tableLog = (U16)tableLog; + for (s=0; s<=maxSymbolValue; s++) + { + if (normalizedCounter[s]==-1) + { + tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s; + symbolNext[s] = 1; + } + else + { + if (normalizedCounter[s] >= largeLimit) noLarge=0; + symbolNext[s] = normalizedCounter[s]; + } + } + + /* Spread symbols */ + for (s=0; s<=maxSymbolValue; s++) + { + int i; + for (i=0; i highThreshold) position = (position + step) & tableMask; /* lowprob area */ + } + } + + if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ + + /* Build Decoding table */ + { + U32 i; + for (i=0; i FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); + bitStream >>= 4; + bitCount = 4; + *tableLogPtr = nbBits; + remaining = (1<1) && (charnum<=*maxSVPtr)) + { + if (previous0) + { + unsigned n0 = charnum; + while ((bitStream & 0xFFFF) == 0xFFFF) + { + n0+=24; + if (ip < iend-5) + { + ip+=2; + bitStream = MEM_readLE32(ip) >> bitCount; + } + else + { + bitStream >>= 16; + bitCount+=16; + } + } + while ((bitStream & 3) == 3) + { + n0+=3; + bitStream>>=2; + bitCount+=2; + } + n0 += bitStream & 3; + bitCount += 2; + if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); + while (charnum < n0) normalizedCounter[charnum++] = 0; + if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) + { + ip += bitCount>>3; + bitCount &= 7; + bitStream = MEM_readLE32(ip) >> bitCount; + } + else + bitStream >>= 2; + } + { + const short max = (short)((2*threshold-1)-remaining); + short count; + + if ((bitStream & (threshold-1)) < (U32)max) + { + count = (short)(bitStream & (threshold-1)); + bitCount += nbBits-1; + } + else + { + count = (short)(bitStream & (2*threshold-1)); + if (count >= threshold) count -= max; + bitCount += nbBits; + } + + count--; /* extra accuracy */ + remaining -= FSE_abs(count); + normalizedCounter[charnum++] = count; + previous0 = !count; + while (remaining < threshold) + { + nbBits--; + threshold >>= 1; + } + + { + if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) + { + ip += bitCount>>3; + bitCount &= 7; + } + else + { + bitCount -= (int)(8 * (iend - 4 - ip)); + ip = iend - 4; + } + bitStream = MEM_readLE32(ip) >> (bitCount & 31); + } + } + } + if (remaining != 1) return ERROR(GENERIC); + *maxSVPtr = charnum-1; + + ip += (bitCount+7)>>3; + if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong); + return ip-istart; +} + + +/********************************************************* +* Decompression (Byte symbols) +*********************************************************/ +static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue) +{ + void* ptr = dt; + FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; + FSE_decode_t* const cell = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ + + DTableH->tableLog = 0; + DTableH->fastMode = 0; + + cell->newState = 0; + cell->symbol = symbolValue; + cell->nbBits = 0; + + return 0; +} + + +static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits) +{ + void* ptr = dt; + FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr; + FSE_decode_t* const dinfo = (FSE_decode_t*)(ptr) + 1; /* because dt is unsigned */ + const unsigned tableSize = 1 << nbBits; + const unsigned tableMask = tableSize - 1; + const unsigned maxSymbolValue = tableMask; + unsigned s; + + /* Sanity checks */ + if (nbBits < 1) return ERROR(GENERIC); /* min size */ + + /* Build Decoding Table */ + DTableH->tableLog = (U16)nbBits; + DTableH->fastMode = 1; + for (s=0; s<=maxSymbolValue; s++) + { + dinfo[s].newState = 0; + dinfo[s].symbol = (BYTE)s; + dinfo[s].nbBits = (BYTE)nbBits; + } + + return 0; +} + +FORCE_INLINE size_t FSE_decompress_usingDTable_generic( + void* dst, size_t maxDstSize, + const void* cSrc, size_t cSrcSize, + const FSE_DTable* dt, const unsigned fast) +{ + BYTE* const ostart = (BYTE*) dst; + BYTE* op = ostart; + BYTE* const omax = op + maxDstSize; + BYTE* const olimit = omax-3; + + BIT_DStream_t bitD; + FSE_DState_t state1; + FSE_DState_t state2; + size_t errorCode; + + /* Init */ + errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ + if (FSE_isError(errorCode)) return errorCode; + + FSE_initDState(&state1, &bitD, dt); + FSE_initDState(&state2, &bitD, dt); + +#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD) + + /* 4 symbols per loop */ + for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op sizeof(bitD.bitContainer)*8) /* This test must be static */ + BIT_reloadDStream(&bitD); + + op[1] = FSE_GETSYMBOL(&state2); + + if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } } + + op[2] = FSE_GETSYMBOL(&state1); + + if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ + BIT_reloadDStream(&bitD); + + op[3] = FSE_GETSYMBOL(&state2); + } + + /* tail */ + /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */ + while (1) + { + if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) ) + break; + + *op++ = FSE_GETSYMBOL(&state1); + + if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) ) + break; + + *op++ = FSE_GETSYMBOL(&state2); + } + + /* end ? */ + if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2)) + return op-ostart; + + if (op==omax) return ERROR(dstSize_tooSmall); /* dst buffer is full, but cSrc unfinished */ + + return ERROR(corruption_detected); +} + + +static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize, + const void* cSrc, size_t cSrcSize, + const FSE_DTable* dt) +{ + FSE_DTableHeader DTableH; + memcpy(&DTableH, dt, sizeof(DTableH)); + + /* select fast mode (static) */ + if (DTableH.fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); + return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); +} + + +static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) +{ + const BYTE* const istart = (const BYTE*)cSrc; + const BYTE* ip = istart; + short counting[FSE_MAX_SYMBOL_VALUE+1]; + DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ + unsigned tableLog; + unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE; + size_t errorCode; + + if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */ + + /* normal FSE decoding mode */ + errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); + if (FSE_isError(errorCode)) return errorCode; + if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */ + ip += errorCode; + cSrcSize -= errorCode; + + errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog); + if (FSE_isError(errorCode)) return errorCode; + + /* always return, even if it is an error code */ + return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); +} + + + +#endif /* FSE_COMMONDEFS_ONLY */ +/* ****************************************************************** + Huff0 : Huffman coder, part of New Generation Entropy library + Copyright (C) 2013-2015, Yann Collet. + + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + You can contact the author at : + - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy + - Public forum : https://groups.google.com/forum/#!forum/lz4c +****************************************************************** */ + +/**************************************************************** +* Compiler specifics +****************************************************************/ +#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) +/* inline is defined */ +#elif defined(_MSC_VER) +# define inline __inline +#else +# define inline /* disable inline */ +#endif + + +#ifdef _MSC_VER /* Visual Studio */ +# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ +#endif + + +/**************************************************************** +* Includes +****************************************************************/ +#include /* malloc, free, qsort */ +#include /* memcpy, memset */ +#include /* printf (debug) */ + +/**************************************************************** +* Error Management +****************************************************************/ +#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ + + +/****************************************** +* Helper functions +******************************************/ +static unsigned HUF_isError(size_t code) { return ERR_isError(code); } + +#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */ +#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */ +#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */ +#define HUF_MAX_SYMBOL_VALUE 255 +#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG) +# error "HUF_MAX_TABLELOG is too large !" +#endif + + + +/********************************************************* +* Huff0 : Huffman block decompression +*********************************************************/ +typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */ + +typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */ + +typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; + +/*! HUF_readStats + Read compact Huffman tree, saved by HUF_writeCTable + @huffWeight : destination buffer + @return : size read from `src` +*/ +static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, + U32* nbSymbolsPtr, U32* tableLogPtr, + const void* src, size_t srcSize) +{ + U32 weightTotal; + U32 tableLog; + const BYTE* ip = (const BYTE*) src; + size_t iSize; + size_t oSize; + U32 n; + + if (!srcSize) return ERROR(srcSize_wrong); + iSize = ip[0]; + //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */ + + if (iSize >= 128) /* special header */ + { + if (iSize >= (242)) /* RLE */ + { + static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; + oSize = l[iSize-242]; + memset(huffWeight, 1, hwSize); + iSize = 0; + } + else /* Incompressible */ + { + oSize = iSize - 127; + iSize = ((oSize+1)/2); + if (iSize+1 > srcSize) return ERROR(srcSize_wrong); + if (oSize >= hwSize) return ERROR(corruption_detected); + ip += 1; + for (n=0; n> 4; + huffWeight[n+1] = ip[n/2] & 15; + } + } + } + else /* header compressed with FSE (normal case) */ + { + if (iSize+1 > srcSize) return ERROR(srcSize_wrong); + oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */ + if (FSE_isError(oSize)) return oSize; + } + + /* collect weight stats */ + memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32)); + weightTotal = 0; + for (n=0; n= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); + rankStats[huffWeight[n]]++; + weightTotal += (1 << huffWeight[n]) >> 1; + } + if (weightTotal == 0) return ERROR(corruption_detected); + + /* get last non-null symbol weight (implied, total must be 2^n) */ + tableLog = BIT_highbit32(weightTotal) + 1; + if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected); + { + U32 total = 1 << tableLog; + U32 rest = total - weightTotal; + U32 verif = 1 << BIT_highbit32(rest); + U32 lastWeight = BIT_highbit32(rest) + 1; + if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ + huffWeight[oSize] = (BYTE)lastWeight; + rankStats[lastWeight]++; + } + + /* check tree construction validity */ + if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ + + /* results */ + *nbSymbolsPtr = (U32)(oSize+1); + *tableLogPtr = tableLog; + return iSize+1; +} + + +/**************************/ +/* single-symbol decoding */ +/**************************/ + +static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize) +{ + BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1]; + U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */ + U32 tableLog = 0; + const BYTE* ip = (const BYTE*) src; + size_t iSize = ip[0]; + U32 nbSymbols = 0; + U32 n; + U32 nextRankStart; + void* ptr = DTable+1; + HUF_DEltX2* const dt = (HUF_DEltX2*)ptr; + + HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */ + //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */ + + iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); + if (HUF_isError(iSize)) return iSize; + + /* check result */ + if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */ + DTable[0] = (U16)tableLog; /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */ + + /* Prepare ranks */ + nextRankStart = 0; + for (n=1; n<=tableLog; n++) + { + U32 current = nextRankStart; + nextRankStart += (rankVal[n] << (n-1)); + rankVal[n] = current; + } + + /* fill DTable */ + for (n=0; n> 1; + U32 i; + HUF_DEltX2 D; + D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); + for (i = rankVal[w]; i < rankVal[w] + length; i++) + dt[i] = D; + rankVal[w] += length; + } + + return iSize; +} + +static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog) +{ + const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ + const BYTE c = dt[val].byte; + BIT_skipBits(Dstream, dt[val].nbBits); + return c; +} + +#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ + *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog) + +#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ + if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ + HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) + +#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ + if (MEM_64bits()) \ + HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) + +static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog) +{ + BYTE* const pStart = p; + + /* up to 4 symbols at a time */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) + { + HUF_DECODE_SYMBOLX2_2(p, bitDPtr); + HUF_DECODE_SYMBOLX2_1(p, bitDPtr); + HUF_DECODE_SYMBOLX2_2(p, bitDPtr); + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + } + + /* closer to the end */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd)) + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + + /* no more data to retrieve from bitstream, hence no need to reload */ + while (p < pEnd) + HUF_DECODE_SYMBOLX2_0(p, bitDPtr); + + return pEnd-pStart; +} + + +static size_t HUF_decompress4X2_usingDTable( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const U16* DTable) +{ + if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ + + { + const BYTE* const istart = (const BYTE*) cSrc; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + + const void* ptr = DTable; + const HUF_DEltX2* const dt = ((const HUF_DEltX2*)ptr) +1; + const U32 dtLog = DTable[0]; + size_t errorCode; + + /* Init */ + BIT_DStream_t bitD1; + BIT_DStream_t bitD2; + BIT_DStream_t bitD3; + BIT_DStream_t bitD4; + const size_t length1 = MEM_readLE16(istart); + const size_t length2 = MEM_readLE16(istart+2); + const size_t length3 = MEM_readLE16(istart+4); + size_t length4; + const BYTE* const istart1 = istart + 6; /* jumpTable */ + const BYTE* const istart2 = istart1 + length1; + const BYTE* const istart3 = istart2 + length2; + const BYTE* const istart4 = istart3 + length3; + const size_t segmentSize = (dstSize+3) / 4; + BYTE* const opStart2 = ostart + segmentSize; + BYTE* const opStart3 = opStart2 + segmentSize; + BYTE* const opStart4 = opStart3 + segmentSize; + BYTE* op1 = ostart; + BYTE* op2 = opStart2; + BYTE* op3 = opStart3; + BYTE* op4 = opStart4; + U32 endSignal; + + length4 = cSrcSize - (length1 + length2 + length3 + 6); + if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ + errorCode = BIT_initDStream(&bitD1, istart1, length1); + if (HUF_isError(errorCode)) return errorCode; + errorCode = BIT_initDStream(&bitD2, istart2, length2); + if (HUF_isError(errorCode)) return errorCode; + errorCode = BIT_initDStream(&bitD3, istart3, length3); + if (HUF_isError(errorCode)) return errorCode; + errorCode = BIT_initDStream(&bitD4, istart4, length4); + if (HUF_isError(errorCode)) return errorCode; + + /* 16-32 symbols per loop (4-8 symbols per stream) */ + endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); + for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) + { + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_1(op1, &bitD1); + HUF_DECODE_SYMBOLX2_1(op2, &bitD2); + HUF_DECODE_SYMBOLX2_1(op3, &bitD3); + HUF_DECODE_SYMBOLX2_1(op4, &bitD4); + HUF_DECODE_SYMBOLX2_2(op1, &bitD1); + HUF_DECODE_SYMBOLX2_2(op2, &bitD2); + HUF_DECODE_SYMBOLX2_2(op3, &bitD3); + HUF_DECODE_SYMBOLX2_2(op4, &bitD4); + HUF_DECODE_SYMBOLX2_0(op1, &bitD1); + HUF_DECODE_SYMBOLX2_0(op2, &bitD2); + HUF_DECODE_SYMBOLX2_0(op3, &bitD3); + HUF_DECODE_SYMBOLX2_0(op4, &bitD4); + + endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); + } + + /* check corruption */ + if (op1 > opStart2) return ERROR(corruption_detected); + if (op2 > opStart3) return ERROR(corruption_detected); + if (op3 > opStart4) return ERROR(corruption_detected); + /* note : op4 supposed already verified within main loop */ + + /* finish bitStreams one by one */ + HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); + HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); + HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); + HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); + + /* check */ + endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); + if (!endSignal) return ERROR(corruption_detected); + + /* decoded size */ + return dstSize; + } +} + + +static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG); + const BYTE* ip = (const BYTE*) cSrc; + size_t errorCode; + + errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize); + if (HUF_isError(errorCode)) return errorCode; + if (errorCode >= cSrcSize) return ERROR(srcSize_wrong); + ip += errorCode; + cSrcSize -= errorCode; + + return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable); +} + + +/***************************/ +/* double-symbols decoding */ +/***************************/ + +static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed, + const U32* rankValOrigin, const int minWeight, + const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, + U32 nbBitsBaseline, U16 baseSeq) +{ + HUF_DEltX4 DElt; + U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; + U32 s; + + /* get pre-calculated rankVal */ + memcpy(rankVal, rankValOrigin, sizeof(rankVal)); + + /* fill skipped values */ + if (minWeight>1) + { + U32 i, skipSize = rankVal[minWeight]; + MEM_writeLE16(&(DElt.sequence), baseSeq); + DElt.nbBits = (BYTE)(consumed); + DElt.length = 1; + for (i = 0; i < skipSize; i++) + DTable[i] = DElt; + } + + /* fill DTable */ + for (s=0; s= 1 */ + + rankVal[weight] += length; + } +} + +typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1]; + +static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog, + const sortedSymbol_t* sortedList, const U32 sortedListSize, + const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, + const U32 nbBitsBaseline) +{ + U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; + const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ + const U32 minBits = nbBitsBaseline - maxWeight; + U32 s; + + memcpy(rankVal, rankValOrigin, sizeof(rankVal)); + + /* fill DTable */ + for (s=0; s= minBits) /* enough room for a second symbol */ + { + U32 sortedRank; + int minWeight = nbBits + scaleLog; + if (minWeight < 1) minWeight = 1; + sortedRank = rankStart[minWeight]; + HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits, + rankValOrigin[nbBits], minWeight, + sortedList+sortedRank, sortedListSize-sortedRank, + nbBitsBaseline, symbol); + } + else + { + U32 i; + const U32 end = start + length; + HUF_DEltX4 DElt; + + MEM_writeLE16(&(DElt.sequence), symbol); + DElt.nbBits = (BYTE)(nbBits); + DElt.length = 1; + for (i = start; i < end; i++) + DTable[i] = DElt; + } + rankVal[weight] += length; + } +} + +static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize) +{ + BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1]; + sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1]; + U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 }; + U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 }; + U32* const rankStart = rankStart0+1; + rankVal_t rankVal; + U32 tableLog, maxW, sizeOfSort, nbSymbols; + const U32 memLog = DTable[0]; + const BYTE* ip = (const BYTE*) src; + size_t iSize = ip[0]; + void* ptr = DTable; + HUF_DEltX4* const dt = ((HUF_DEltX4*)ptr) + 1; + + HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */ + if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge); + //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ + + iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); + if (HUF_isError(iSize)) return iSize; + + /* check result */ + if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ + + /* find maxWeight */ + for (maxW = tableLog; rankStats[maxW]==0; maxW--) + {if (!maxW) return ERROR(GENERIC); } /* necessarily finds a solution before maxW==0 */ + + /* Get start index of each weight */ + { + U32 w, nextRankStart = 0; + for (w=1; w<=maxW; w++) + { + U32 current = nextRankStart; + nextRankStart += rankStats[w]; + rankStart[w] = current; + } + rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ + sizeOfSort = nextRankStart; + } + + /* sort symbols by weight */ + { + U32 s; + for (s=0; s> consumed; + } + } + } + + HUF_fillDTableX4(dt, memLog, + sortedSymbol, sizeOfSort, + rankStart0, rankVal, maxW, + tableLog+1); + + return iSize; +} + + +static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) +{ + const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ + memcpy(op, dt+val, 2); + BIT_skipBits(DStream, dt[val].nbBits); + return dt[val].length; +} + +static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog) +{ + const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ + memcpy(op, dt+val, 1); + if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits); + else + { + if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) + { + BIT_skipBits(DStream, dt[val].nbBits); + if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) + DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ + } + } + return 1; +} + + +#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \ + ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) + +#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ + if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \ + ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) + +#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ + if (MEM_64bits()) \ + ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) + +static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog) +{ + BYTE* const pStart = p; + + /* up to 8 symbols at a time */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) + { + HUF_DECODE_SYMBOLX4_2(p, bitDPtr); + HUF_DECODE_SYMBOLX4_1(p, bitDPtr); + HUF_DECODE_SYMBOLX4_2(p, bitDPtr); + HUF_DECODE_SYMBOLX4_0(p, bitDPtr); + } + + /* closer to the end */ + while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2)) + HUF_DECODE_SYMBOLX4_0(p, bitDPtr); + + while (p <= pEnd-2) + HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ + + if (p < pEnd) + p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); + + return p-pStart; +} + + + +static size_t HUF_decompress4X4_usingDTable( + void* dst, size_t dstSize, + const void* cSrc, size_t cSrcSize, + const U32* DTable) +{ + if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ + + { + const BYTE* const istart = (const BYTE*) cSrc; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + + const void* ptr = DTable; + const HUF_DEltX4* const dt = ((const HUF_DEltX4*)ptr) +1; + const U32 dtLog = DTable[0]; + size_t errorCode; + + /* Init */ + BIT_DStream_t bitD1; + BIT_DStream_t bitD2; + BIT_DStream_t bitD3; + BIT_DStream_t bitD4; + const size_t length1 = MEM_readLE16(istart); + const size_t length2 = MEM_readLE16(istart+2); + const size_t length3 = MEM_readLE16(istart+4); + size_t length4; + const BYTE* const istart1 = istart + 6; /* jumpTable */ + const BYTE* const istart2 = istart1 + length1; + const BYTE* const istart3 = istart2 + length2; + const BYTE* const istart4 = istart3 + length3; + const size_t segmentSize = (dstSize+3) / 4; + BYTE* const opStart2 = ostart + segmentSize; + BYTE* const opStart3 = opStart2 + segmentSize; + BYTE* const opStart4 = opStart3 + segmentSize; + BYTE* op1 = ostart; + BYTE* op2 = opStart2; + BYTE* op3 = opStart3; + BYTE* op4 = opStart4; + U32 endSignal; + + length4 = cSrcSize - (length1 + length2 + length3 + 6); + if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ + errorCode = BIT_initDStream(&bitD1, istart1, length1); + if (HUF_isError(errorCode)) return errorCode; + errorCode = BIT_initDStream(&bitD2, istart2, length2); + if (HUF_isError(errorCode)) return errorCode; + errorCode = BIT_initDStream(&bitD3, istart3, length3); + if (HUF_isError(errorCode)) return errorCode; + errorCode = BIT_initDStream(&bitD4, istart4, length4); + if (HUF_isError(errorCode)) return errorCode; + + /* 16-32 symbols per loop (4-8 symbols per stream) */ + endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); + for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) + { + HUF_DECODE_SYMBOLX4_2(op1, &bitD1); + HUF_DECODE_SYMBOLX4_2(op2, &bitD2); + HUF_DECODE_SYMBOLX4_2(op3, &bitD3); + HUF_DECODE_SYMBOLX4_2(op4, &bitD4); + HUF_DECODE_SYMBOLX4_1(op1, &bitD1); + HUF_DECODE_SYMBOLX4_1(op2, &bitD2); + HUF_DECODE_SYMBOLX4_1(op3, &bitD3); + HUF_DECODE_SYMBOLX4_1(op4, &bitD4); + HUF_DECODE_SYMBOLX4_2(op1, &bitD1); + HUF_DECODE_SYMBOLX4_2(op2, &bitD2); + HUF_DECODE_SYMBOLX4_2(op3, &bitD3); + HUF_DECODE_SYMBOLX4_2(op4, &bitD4); + HUF_DECODE_SYMBOLX4_0(op1, &bitD1); + HUF_DECODE_SYMBOLX4_0(op2, &bitD2); + HUF_DECODE_SYMBOLX4_0(op3, &bitD3); + HUF_DECODE_SYMBOLX4_0(op4, &bitD4); + + endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4); + } + + /* check corruption */ + if (op1 > opStart2) return ERROR(corruption_detected); + if (op2 > opStart3) return ERROR(corruption_detected); + if (op3 > opStart4) return ERROR(corruption_detected); + /* note : op4 supposed already verified within main loop */ + + /* finish bitStreams one by one */ + HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); + HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); + HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); + HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); + + /* check */ + endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); + if (!endSignal) return ERROR(corruption_detected); + + /* decoded size */ + return dstSize; + } +} + + +static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) +{ + HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG); + const BYTE* ip = (const BYTE*) cSrc; + + size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize); + if (HUF_isError(hSize)) return hSize; + if (hSize >= cSrcSize) return ERROR(srcSize_wrong); + ip += hSize; + cSrcSize -= hSize; + + return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable); +} + + +/**********************************/ +/* quad-symbol decoding */ +/**********************************/ +typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6; +typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6; + +/* recursive, up to level 3; may benefit from