-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
128 lines (102 loc) · 3.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import nltk
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
import tflearn
import json
import random
import pickle
# nltk.download('punkt')
stemmer = LancasterStemmer()
# Load in the json file
with open('intents.json') as file:
data = json.load(file)
# print(data["intents"][0])
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
print(docs_x)
words = [stemmer.stem(w.lower()) for w in words]
# words = sorted(list(set(words)))
words = list(set(words))
print(words)
labels = sorted(labels)
# print(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc if w != "?"]
# print(wrds)
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
# print(bag)
# Copy the array
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = np.array(training)
output = np.array(output)
# saving the variables to "data.pickle" so anytime we run, we don't have to go through the preprocessing.
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
network = tflearn.input_data(shape=[None, len(training[0])])
network = tflearn.fully_connected(network, 8)
network = tflearn.fully_connected(network, 8)
network = tflearn.fully_connected(network, len(output[0]), activation = "softmax")
network = tflearn.regression(network)
model = tflearn.DNN(network)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch = 1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
# Function to convert user input to a bag of words so that we can make a prediction on
def convert_input(s):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for string in s_words:
for i, w in enumerate(words):
if w == string:
bag[i] = 1
break
return np.array(bag)
# design chat console for bot to interact with users.
def chat():
print("Hi there! What can I help you with today? (type \"quit\" to exit)")
while(True):
inp = input("You: ")
if inp.lower() == "quit":
break
prediction = model.predict([convert_input(inp)])
index = np.argmax(prediction)
tag = labels[index]
if prediction[0][index] > 0.5:
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
break
print(random.choice(responses))
else:
print("I didn't get that. Please ask a different question")
chat()