diff --git a/recipes/tinyarray/meta.yaml b/recipes/tinyarray/meta.yaml new file mode 100755 index 0000000000000..7df931e513126 --- /dev/null +++ b/recipes/tinyarray/meta.yaml @@ -0,0 +1,53 @@ +{% set name = "tinyarray" %} +{% set version = "1.2.0a1" %} + +package: + name: {{ name|lower }} + version: {{ version }} + +source: + fn: v{{ version }}.tar.gz + url: https://gitlab.kwant-project.org/kwant/tinyarray/repository/archive.tar.gz?ref=v{{ version }} + sha256: e155a1c373c90d81877f953810f108cff72cf22a50c44b9cf86a803035198d04 + +build: + number: 0 + script: python setup.py install --single-version-externally-managed --record record.txt + +requirements: + build: + - python + - setuptools + - toolchain + - nose + run: + - python + +test: + requires: + - numpy +# - nose +# source_files: +# - test_tinyarray.py +# commands: +# - python test_tinyarray.py + imports: + - tinyarray + +about: + home: http://git.kwant-project.org/tinyarray/about/ + license: BSD 2-Clause + license_file: LICENSE.rst + summary: 'Arrays of numbers for Python, optimized for small sizes' + description: | + Tinyarrays are similar to NumPy arrays, but optimized for small sizes. + Common operations on very small arrays are to 3-7 times faster than + with NumPy (with NumPy 1.6 it used to be up to 35 times), and 3 times + less memory is used to store them. Tinyarrays are useful if you need + many small arrays of numbers, and cannot combine them into a few + large ones. + doc_url: https://gitlab.kwant-project.org/kwant/tinyarray + +extra: + recipe-maintainers: + - basnijholt