From e1bc0b467a90ba415de6b65897003ab54ce66e5e Mon Sep 17 00:00:00 2001 From: tomeras91 <57313761+tomeras91@users.noreply.github.com> Date: Fri, 18 Oct 2024 13:27:48 +0300 Subject: [PATCH] [Frontend][Feature] Add jamba tool parser (#9154) Signed-off-by: Alvant --- .../serving/openai_compatible_server.md | 20 +- tests/tool_use/test_jamba_tool_parser.py | 275 ++++++++++++++++ .../openai/tool_parsers/__init__.py | 4 +- .../openai/tool_parsers/hermes_tool_parser.py | 3 +- .../openai/tool_parsers/jamba_tool_parser.py | 300 ++++++++++++++++++ .../tool_parsers/mistral_tool_parser.py | 2 +- 6 files changed, 595 insertions(+), 9 deletions(-) create mode 100644 tests/tool_use/test_jamba_tool_parser.py create mode 100644 vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py diff --git a/docs/source/serving/openai_compatible_server.md b/docs/source/serving/openai_compatible_server.md index 9132e12a36ba5..cc8e539a8a6d3 100644 --- a/docs/source/serving/openai_compatible_server.md +++ b/docs/source/serving/openai_compatible_server.md @@ -157,7 +157,7 @@ vLLM will use guided decoding to ensure the response matches the tool parameter To enable this feature, you should set the following flags: * `--enable-auto-tool-choice` -- **mandatory** Auto tool choice. tells vLLM that you want to enable the model to generate its own tool calls when it deems appropriate. -* `--tool-call-parser` -- select the tool parser to use - currently either `hermes` or `mistral` or `llama3_json` or `internlm`. Additional tool parsers +* `--tool-call-parser` -- select the tool parser to use (listed below). Additional tool parsers will continue to be added in the future, and also can register your own tool parsers in the `--tool-parser-plugin`. * `--tool-parser-plugin` -- **optional** tool parser plugin used to register user defined tool parsers into vllm, the registered tool parser name can be specified in `--tool-call-parser`. * `--chat-template` -- **optional** for auto tool choice. the path to the chat template which handles `tool`-role messages and `assistant`-role messages @@ -168,7 +168,7 @@ from HuggingFace; and you can find an example of this in a `tokenizer_config.jso If your favorite tool-calling model is not supported, please feel free to contribute a parser & tool use chat template! -#### Hermes Models +#### Hermes Models (`hermes`) All Nous Research Hermes-series models newer than Hermes 2 Pro should be supported. * `NousResearch/Hermes-2-Pro-*` * `NousResearch/Hermes-2-Theta-*` @@ -180,7 +180,7 @@ step in their creation_. Flags: `--tool-call-parser hermes` -#### Mistral Models +#### Mistral Models (`mistral`) Supported models: * `mistralai/Mistral-7B-Instruct-v0.3` (confirmed) * Additional mistral function-calling models are compatible as well. @@ -199,7 +199,7 @@ when tools are provided, that results in much better reliability when working wi Recommended flags: `--tool-call-parser mistral --chat-template examples/tool_chat_template_mistral_parallel.jinja` -#### Llama Models +#### Llama Models (`llama3_json`) Supported models: * `meta-llama/Meta-Llama-3.1-8B-Instruct` * `meta-llama/Meta-Llama-3.1-70B-Instruct` @@ -219,16 +219,24 @@ it works better with vLLM. Recommended flags: `--tool-call-parser llama3_json --chat-template examples/tool_chat_template_llama3_json.jinja` -#### Internlm Models +#### InternLM Models (`internlm`) Supported models: * `internlm/internlm2_5-7b-chat` (confirmed) * Additional internlm2.5 function-calling models are compatible as well Known issues: -* Although this implementation also supports Internlm2, the tool call results are not stable when testing with the `internlm/internlm2-chat-7b` model. +* Although this implementation also supports InternLM2, the tool call results are not stable when testing with the `internlm/internlm2-chat-7b` model. Recommended flags: `--tool-call-parser internlm --chat-template examples/tool_chat_template_internlm2_tool.jinja` +#### Jamba Models (`jamba`) +AI21's Jamba-1.5 models are supported. +* `ai21labs/AI21-Jamba-1.5-Mini` +* `ai21labs/AI21-Jamba-1.5-Large` + + +Flags: `--tool-call-parser jamba` + ### How to write a tool parser plugin diff --git a/tests/tool_use/test_jamba_tool_parser.py b/tests/tool_use/test_jamba_tool_parser.py new file mode 100644 index 0000000000000..3095ef4516796 --- /dev/null +++ b/tests/tool_use/test_jamba_tool_parser.py @@ -0,0 +1,275 @@ +import json +from typing import Generator, List, Optional + +import partial_json_parser +import pytest +from partial_json_parser.core.options import Allow + +from vllm.entrypoints.openai.protocol import (DeltaMessage, FunctionCall, + ToolCall) +from vllm.entrypoints.openai.tool_parsers import JambaToolParser +from vllm.transformers_utils.detokenizer import detokenize_incrementally +from vllm.transformers_utils.tokenizer import AnyTokenizer, get_tokenizer + +MODEL = "ai21labs/Jamba-tiny-dev" + + +@pytest.fixture(scope="module") +def jamba_tokenizer(): + return get_tokenizer(tokenizer_name=MODEL) + + +@pytest.fixture +def jamba_tool_parser(jamba_tokenizer): + return JambaToolParser(jamba_tokenizer) + + +def assert_tool_calls(actual_tool_calls: List[ToolCall], + expected_tool_calls: List[ToolCall]): + assert len(actual_tool_calls) == len(expected_tool_calls) + + for actual_tool_call, expected_tool_call in zip(actual_tool_calls, + expected_tool_calls): + assert isinstance(actual_tool_call.id, str) + assert len(actual_tool_call.id) > 16 + + assert actual_tool_call.type == "function" + assert actual_tool_call.function == expected_tool_call.function + + +def stream_delta_message_generator( + jamba_tool_parser: JambaToolParser, jamba_tokenizer: AnyTokenizer, + model_output: str) -> Generator[DeltaMessage, None, None]: + all_token_ids = jamba_tokenizer.encode(model_output, + add_special_tokens=False) + + previous_text = "" + previous_tokens = None + prefix_offset = 0 + read_offset = 0 + for i, delta_token in enumerate(all_token_ids): + delta_token_ids = [delta_token] + previous_token_ids = all_token_ids[:i] + current_token_ids = all_token_ids[:i + 1] + + (new_tokens, delta_text, new_prefix_offset, + new_read_offset) = detokenize_incrementally( + tokenizer=jamba_tokenizer, + all_input_ids=current_token_ids, + prev_tokens=previous_tokens, + prefix_offset=prefix_offset, + read_offset=read_offset, + skip_special_tokens=False, + spaces_between_special_tokens=True, + ) + + current_text = previous_text + delta_text + + delta_message = jamba_tool_parser.extract_tool_calls_streaming( + previous_text, + current_text, + delta_text, + previous_token_ids, + current_token_ids, + delta_token_ids, + request=None, # type: ignore[arg-type] + ) + if delta_message: + yield delta_message + + previous_text = current_text + previous_tokens = previous_tokens + new_tokens if previous_tokens\ + else new_tokens + prefix_offset = new_prefix_offset + read_offset = new_read_offset + + +def test_extract_tool_calls_no_tools(jamba_tool_parser): + model_output = "This is a test" + extracted_tool_calls = jamba_tool_parser.extract_tool_calls( + model_output, request=None) # type: ignore[arg-type] + assert not extracted_tool_calls.tools_called + assert extracted_tool_calls.tool_calls == [] + assert extracted_tool_calls.content == model_output + + +@pytest.mark.parametrize( + ids=[ + "single_tool", + "single_tool_with_content", + "parallel_tools", + ], + argnames=["model_output", "expected_tool_calls", "expected_content"], + argvalues=[ + ( + ''' [\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]''', # noqa: E501 + [ + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Dallas", + "state": "TX", + "unit": "fahrenheit" + }))) + ], + None), + ( + ''' Sure! let me call the tool for you.[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]''', # noqa: E501 + [ + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Dallas", + "state": "TX", + "unit": "fahrenheit" + }))) + ], + " Sure! let me call the tool for you."), + ( + ''' [\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}},\n {"name": "get_current_weather", "arguments": {"city": "Orlando", "state": "FL", "unit": "fahrenheit"}}\n]''', # noqa: E501 + [ + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Dallas", + "state": "TX", + "unit": "fahrenheit" + }))), + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Orlando", + "state": "FL", + "unit": "fahrenheit" + }))) + ], + None) + ], +) +def test_extract_tool_calls(jamba_tool_parser, model_output, + expected_tool_calls, expected_content): + extracted_tool_calls = jamba_tool_parser.extract_tool_calls( + model_output, request=None) # type: ignore[arg-type] + assert extracted_tool_calls.tools_called + + assert_tool_calls(extracted_tool_calls.tool_calls, expected_tool_calls) + + assert extracted_tool_calls.content == expected_content + + +@pytest.mark.parametrize( + ids=[ + "no_tools", + "single_tool", + "single_tool_with_content", + "parallel_tools", + ], + argnames=["model_output", "expected_tool_calls", "expected_content"], + argvalues=[ + ('''This is a test''', [], '''This is a test'''), + ( + ''' [\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]''', # noqa: E501 + [ + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Dallas", + "state": "TX", + "unit": "fahrenheit" + }))) + ], + " "), + ( + ''' Sure! let me call the tool for you.[\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}}\n]''', # noqa: E501 + [ + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Dallas", + "state": "TX", + "unit": "fahrenheit" + }))) + ], + " Sure! let me call the tool for you."), + ( + ''' [\n {"name": "get_current_weather", "arguments": {"city": "Dallas", "state": "TX", "unit": "fahrenheit"}},\n {"name": "get_current_weather", "arguments": {"city": "Orlando", "state": "FL", "unit": "fahrenheit"}}\n]''', # noqa: E501 + [ + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Dallas", + "state": "TX", + "unit": "fahrenheit" + }))), + ToolCall(function=FunctionCall(name="get_current_weather", + arguments=json.dumps( + { + "city": "Orlando", + "state": "FL", + "unit": "fahrenheit" + }))) + ], + " ") + ], +) +def test_extract_tool_calls_streaming(jamba_tool_parser, jamba_tokenizer, + model_output, expected_tool_calls, + expected_content): + other_content: str = '' + function_names: List[str] = [] + function_args_strs: List[str] = [] + tool_call_idx: int = -1 + tool_call_ids: List[Optional[str]] = [] + + for delta_message in stream_delta_message_generator( + jamba_tool_parser, jamba_tokenizer, model_output): + # role should never be streamed from tool parser + assert not delta_message.role + + if delta_message.content: + other_content += delta_message.content + + streamed_tool_calls = delta_message.tool_calls + + if streamed_tool_calls and len(streamed_tool_calls) > 0: + # make sure only one diff is present - correct even for parallel + assert len(streamed_tool_calls) == 1 + tool_call = streamed_tool_calls[0] + + # if a new tool is being called, set up empty arguments + if tool_call.index != tool_call_idx: + tool_call_idx = tool_call.index + function_args_strs.append("") + tool_call_ids.append(None) + + # if a tool call ID is streamed, make sure one hasn't been already + if tool_call.id and not tool_call_ids[tool_call.index]: + tool_call_ids[tool_call.index] = tool_call.id + + # if parts of the function start being streamed + if tool_call.function: + # if the function name is defined, set it. it should be streamed + # IN ENTIRETY, exactly one time. + if tool_call.function.name: + assert isinstance(tool_call.function.name, str) + function_names.append(tool_call.function.name) + + if tool_call.function.arguments: + # make sure they're a string and then add them to the list + assert isinstance(tool_call.function.arguments, str) + + function_args_strs[ + tool_call.index] += tool_call.function.arguments + + assert other_content == expected_content + + actual_tool_calls = [ + ToolCall(id=tool_call_id, + function=FunctionCall( + name=function_name, + arguments=partial_json_parser.ensure_json( + function_args_str, Allow.OBJ | Allow.STR))) + for tool_call_id, function_name, function_args_str in zip( + tool_call_ids, function_names, function_args_strs) + ] + assert_tool_calls(actual_tool_calls, expected_tool_calls) diff --git a/vllm/entrypoints/openai/tool_parsers/__init__.py b/vllm/entrypoints/openai/tool_parsers/__init__.py index 309d9bede489b..0e88bb21ca75f 100644 --- a/vllm/entrypoints/openai/tool_parsers/__init__.py +++ b/vllm/entrypoints/openai/tool_parsers/__init__.py @@ -1,10 +1,12 @@ from .abstract_tool_parser import ToolParser, ToolParserManager from .hermes_tool_parser import Hermes2ProToolParser from .internlm2_tool_parser import Internlm2ToolParser +from .jamba_tool_parser import JambaToolParser from .llama_tool_parser import Llama3JsonToolParser from .mistral_tool_parser import MistralToolParser __all__ = [ "ToolParser", "ToolParserManager", "Hermes2ProToolParser", - "MistralToolParser", "Internlm2ToolParser", "Llama3JsonToolParser" + "MistralToolParser", "Internlm2ToolParser", "Llama3JsonToolParser", + "JambaToolParser" ] diff --git a/vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py b/vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py index e7ea82ebd5411..faa6f653b835c 100644 --- a/vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py +++ b/vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py @@ -53,7 +53,8 @@ def __init__(self, tokenizer: AnyTokenizer): self.tool_call_start_token_id = self.vocab.get( self.tool_call_start_token) self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token) - if not self.tool_call_start_token_id or not self.tool_call_end_token_id: + if (self.tool_call_start_token_id is None + or self.tool_call_end_token_id is None): raise RuntimeError( "Hermes 2 Pro Tool parser could not locate tool call start/end " "tokens in the tokenizer!") diff --git a/vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py b/vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py new file mode 100644 index 0000000000000..cfd024853f887 --- /dev/null +++ b/vllm/entrypoints/openai/tool_parsers/jamba_tool_parser.py @@ -0,0 +1,300 @@ +import json +import re +from typing import Dict, List, Sequence, Union + +import partial_json_parser +from partial_json_parser.core.options import Allow + +from vllm.entrypoints.openai.protocol import (ChatCompletionRequest, + DeltaFunctionCall, DeltaMessage, + DeltaToolCall, + ExtractedToolCallInformation, + FunctionCall, ToolCall) +from vllm.entrypoints.openai.tool_parsers import ToolParser, ToolParserManager +from vllm.entrypoints.openai.tool_parsers.utils import ( + extract_intermediate_diff) +from vllm.logger import init_logger +from vllm.transformers_utils.tokenizer import AnyTokenizer +from vllm.transformers_utils.tokenizers import MistralTokenizer +from vllm.utils import random_uuid + +logger = init_logger(__name__) + + +@ToolParserManager.register_module("jamba") +class JambaToolParser(ToolParser): + + def __init__(self, tokenizer: AnyTokenizer): + super().__init__(tokenizer) + + if isinstance(self.model_tokenizer, MistralTokenizer): + raise ValueError( + "Detected a MistralTokenizer tokenizer when using a Jamba model" + ) + + self.current_tool_name_sent: bool = False + self.prev_tool_call_arr: List[Dict] = [] + self.current_tool_id: int = -1 + self.streamed_args_for_tool: List[str] = [ + ] # map what has been streamed for each tool so far to a list + + self.tool_calls_start_token: str = "" + self.tool_calls_end_token: str = "" + + self.tool_calls_regex = re.compile( + rf"{self.tool_calls_start_token}(.*?){self.tool_calls_end_token}", + re.DOTALL) + + if not self.model_tokenizer: + raise ValueError( + "The model tokenizer must be passed to the ToolParser " + "constructor during construction.") + self.tool_calls_start_token_id = self.vocab.get( + self.tool_calls_start_token) + self.tool_calls_end_token_id = self.vocab.get( + self.tool_calls_end_token) + if (self.tool_calls_start_token_id is None + or self.tool_calls_end_token_id is None): + raise RuntimeError( + "Jamba Tool parser could not locate tool calls start/end " + "tokens in the tokenizer!") + + def adjust_request( + self, request: ChatCompletionRequest) -> ChatCompletionRequest: + if request.tools and request.tool_choice != 'none': + # do not skip special tokens because jamba use the special + # tokens to indicate the start and end of the tool calls + # information. + request.skip_special_tokens = False + return request + + def extract_tool_calls( + self, model_output: str, + request: ChatCompletionRequest) -> ExtractedToolCallInformation: + + # sanity check; avoid unnecessary processing + if self.tool_calls_start_token not in model_output: + return ExtractedToolCallInformation(tools_called=False, + tool_calls=[], + content=model_output) + + else: + + try: + # use a regex to find the tool call between the tags + function_calls = self.tool_calls_regex.findall(model_output)[0] + + # load the JSON, and then use it to build the Function and + # Tool Call + raw_function_calls = json.loads(function_calls) + tool_calls = [ + ToolCall( + type="function", + function=FunctionCall( + name=function_call["name"], + # function call args are JSON but as a string + arguments=json.dumps(function_call["arguments"]))) + for function_call in raw_function_calls + ] + + content = model_output[:model_output. + find(self.tool_calls_start_token)] + return ExtractedToolCallInformation( + tools_called=True, + tool_calls=tool_calls, + content=content if + (len(content) > 0 and content != " ") else None) + + except Exception: + logger.exception( + "Error in extracting tool call from response.") + return ExtractedToolCallInformation(tools_called=False, + tool_calls=[], + content=model_output) + + def extract_tool_calls_streaming( + self, + previous_text: str, + current_text: str, + delta_text: str, + previous_token_ids: Sequence[int], + current_token_ids: Sequence[int], + delta_token_ids: Sequence[int], + request: ChatCompletionRequest, + ) -> Union[DeltaMessage, None]: + + # if the tool call token is not in the tokens generated so far, append + # output to contents since it's not a tool + if self.tool_calls_start_token not in current_text: + return DeltaMessage(content=delta_text) + + # if the tool call token ID IS in the tokens generated so far, that + # means we're parsing as tool calls now + + # handle if we detected the start of tool calls token which means + # the start of tool calling + if (self.tool_calls_start_token_id in delta_token_ids + and len(delta_token_ids) == 1): + # if it's the only token, return None, so we don't send a chat + # completion and don't send a control token + return None + + # bit mask flags for partial JSON parsing. If the name hasn't been + # sent yet, don't allow sending + # an incomplete string since OpenAI only ever (as far as I have + # seen) allows sending the entire tool/ function name at once. + flags = Allow.ALL if self.current_tool_name_sent \ + else Allow.ALL & ~Allow.STR + try: + + # Extract the tool calls between the special tool call tokens + parsable_arr = current_text.split( + self.tool_calls_start_token)[-1].split( + self.tool_calls_end_token)[0] + + # tool calls are generated in an array, so do partial JSON + # parsing on the entire array + try: + tool_call_arr: List[Dict] = partial_json_parser.loads( + parsable_arr, flags) + except partial_json_parser.core.exceptions.MalformedJSON: + logger.debug('not enough tokens to parse into JSON yet') + return None + + # select as the current tool call the one we're on the state at + + current_tool_call: Dict = tool_call_arr[self.current_tool_id] \ + if len(tool_call_arr) > 0 else {} + + # case -- if no tokens have been streamed for the tool, e.g. + # only the array brackets, stream nothing + if len(tool_call_arr) == 0: + return None + + # case: we are starting a new tool in the array + # -> array has > 0 length AND length has moved past cursor + elif (len(tool_call_arr) > 0 + and len(tool_call_arr) > self.current_tool_id + 1): + + # if we're moving on to a new call, first make sure we + # haven't missed anything in the previous one that was + # auto-generated due to JSON completions, but wasn't + # streamed to the client yet. + if self.current_tool_id >= 0: + diff: Union[str, None] = current_tool_call.get("arguments") + + if diff: + diff = json.dumps(diff).replace( + self.streamed_args_for_tool[self.current_tool_id], + "") + delta = DeltaMessage(tool_calls=[ + DeltaToolCall(index=self.current_tool_id, + function=DeltaFunctionCall( + arguments=diff).model_dump( + exclude_none=True)) + ]) + self.streamed_args_for_tool[ + self.current_tool_id] += diff + else: + delta = None + else: + delta = None + # re-set stuff pertaining to progress in the current tool + self.current_tool_id = len(tool_call_arr) - 1 + self.current_tool_name_sent = False + self.streamed_args_for_tool.append("") + logger.debug("starting on new tool %d", self.current_tool_id) + return delta + + # case: update an existing tool - this is handled below + + # if the current tool name hasn't been sent, send if available + # - otherwise send nothing + if not self.current_tool_name_sent: + function_name = current_tool_call.get("name") + if function_name: + + delta = DeltaMessage(tool_calls=[ + DeltaToolCall(index=self.current_tool_id, + type="function", + id=f"chatcmpl-tool-{random_uuid()}", + function=DeltaFunctionCall( + name=function_name).model_dump( + exclude_none=True)) + ]) + self.current_tool_name_sent = True + else: + delta = None + + # now we know we're on the same tool call and we're streaming + # arguments + else: + + prev_arguments = self.prev_tool_call_arr[ + self.current_tool_id].get("arguments") + cur_arguments = current_tool_call.get("arguments") + + new_text = delta_text.replace("\'", "\"") + + if not cur_arguments and not prev_arguments: + + delta = None + elif not cur_arguments and prev_arguments: + logger.error( + "INVARIANT - impossible to have arguments reset " + "mid-arguments") + delta = None + elif cur_arguments and not prev_arguments: + cur_arguments_json = json.dumps(cur_arguments) + logger.debug("finding %s in %s", new_text, + cur_arguments_json) + + arguments_delta = cur_arguments_json[:cur_arguments_json. + index(new_text) + + len(new_text)] + logger.debug("First tokens in arguments received: %s", + arguments_delta) + delta = DeltaMessage(tool_calls=[ + DeltaToolCall(index=self.current_tool_id, + function=DeltaFunctionCall( + arguments=arguments_delta). + model_dump(exclude_none=True)) + ]) + self.streamed_args_for_tool[ + self.current_tool_id] += arguments_delta + + elif cur_arguments and prev_arguments: + cur_args_json = json.dumps(cur_arguments) + prev_args_json = json.dumps(prev_arguments) + logger.debug("Searching for diff between \n%s\n%s", + cur_args_json, prev_args_json) + + argument_diff = extract_intermediate_diff( + cur_args_json, prev_args_json) + logger.debug("got arguments diff: %s", argument_diff) + delta = DeltaMessage(tool_calls=[ + DeltaToolCall(index=self.current_tool_id, + function=DeltaFunctionCall( + arguments=argument_diff).model_dump( + exclude_none=True)) + ]) + self.streamed_args_for_tool[ + self.current_tool_id] += argument_diff + else: + # try parsing it with regular JSON - if it works we're + # at the end, and we need to send the difference between + # tokens streamed so far and the valid JSON + delta = None + + # check to see if the name is defined and has been sent. if so, + # stream the name - otherwise keep waiting + # finish by setting old and returning None as base case + self.prev_tool_call_arr = tool_call_arr + return delta + + except Exception: + logger.exception("Error trying to handle streaming tool call.") + logger.debug( + "Skipping chunk as a result of tool streaming extraction " + "error") + return None diff --git a/vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py b/vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py index ff4e88f29d39e..f5c0d92f3f9bd 100644 --- a/vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py +++ b/vllm/entrypoints/openai/tool_parsers/mistral_tool_parser.py @@ -63,7 +63,7 @@ def __init__(self, tokenizer: AnyTokenizer): self.bot_token = "[TOOL_CALLS]" self.bot_token_id = self.vocab.get(self.bot_token) self.tool_call_regex = re.compile(r"\[{.*?}\]", re.DOTALL) - if not self.bot_token_id: + if self.bot_token_id is None: raise RuntimeError( "Mistral Tool Parser could not locate the tool call token in " "the tokenizer!")