diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py index 7cf87947ae2..88c2b6bb409 100644 --- a/comfy/ldm/flux/math.py +++ b/comfy/ldm/flux/math.py @@ -2,6 +2,7 @@ from einops import rearrange from torch import Tensor from comfy.ldm.modules.attention import optimized_attention +import comfy.model_management def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: q, k = apply_rope(q, k, pe) @@ -13,12 +14,17 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 - scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=pos.device) + if comfy.model_management.is_device_mps(pos.device): + device = torch.device("cpu") + else: + device = pos.device + + scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device) omega = 1.0 / (theta**scale) - out = torch.einsum("...n,d->...nd", pos.float(), omega) + out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega) out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) - return out.float() + return out.to(dtype=torch.float32, device=pos.device) def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):