Below is the TorchDynamo compiler stack.
At a high level, the TorchDynamo stack consists of a graph capture from Python code using dynamo and a backend compiler. In this example the backend compiler consists of backward graph tracing using AOTAutograd and graph lowering using TorchInductor. There are of course many more compilers available here https://github.com/pytorch/torchdynamo/blob/0b8aaf340dad4777a080ef24bf09623f1aa6f3dd/README.md#existing-backend but for this document we will focus on inductor as a motivating example
Torchdynamo supports training, using AotAutograd to capture backwards:
- the
.forward()
graph andoptimizer.step()
is captured by torchdynamo's python evalframe frontend - for each segment of
.forward()
that torchdynamo captures, it uses AotAutograd to generate a backward graph segment - each pair of forward, backward graph are (optionally) min-cut partitioned to save the minimal state between forward/backward
- the forward, backward pairs are wrapped in autograd.function modules
- usercode calling
.backward()
still triggers eager's autograd engine, which runs each 'compiled backward' graph as if it were one op, also running any non-compiled eager ops' .backward() functions
DDP has been tested and works, support for other distributed training libraries is under discussion.
The main reason why Distributed code is challenging with dynamo is because AOTAutograd unrolls both the forward and backward pass and provides 2 graphs for backends to optimize. This is a problem for distributed code because we'd like to ideally overlap communication operations with computations. Eager pytorch accomplishes this in different ways for DDP/FSDP- using autograd hooks, module hooks, and modifications/mutations of module states. In a naive application of dynamo, hooks that should run directly after an operation during backwards may be delayed until after the entire compiled region of backwards ops, due to how AOTAutograd compiled functions interact with dispatcher hooks.
The basic strategy for optimizing DDP with Dynamo is outlined in https://github.com/pytorch/pytorch/blob/master/torch/_dynamo/optimizations/distributed.py where the main idea will be to graph break on DDP bucket boundaries.
When each node in DDP needs to synchronize its weights with the other nodes it organizes its gradients and parameters into buckets which reduces communication times and allows a node to broadcast a fraction of its gradients to other waiting nodes.
Graph breaks in distributed code means you can expect dynamo and its backends to optimize the compute overhead of a distributed program but not its communication overhead. Graph-breaks may interfere with compilation speedups, if the reduced graph-size robs the compiler of fusion opportunities. However, there are diminishing returns with increasing graph size since most of the current compute optimizations are local fusions. So in practice this approach may be sufficient.
For the vast majority of models you probably don't and you can use torch._dynamo()
optimize as is but there are a few situations where full graphs are necessary and you can can ensure a full graph by simply running torch.dynamo(..., nopython=True)
- Large scale training runs, think $250K+ that require pipeline parallelism and other advanced sharding strategies
- Inference optimizers like https://github.com/pytorch/TensorRT or https://github.com/facebookincubator/AITemplate that rely on fusing much more aggressively than training optimizers
- Mobile training or inference
Future work will include tracing communication operations into graphs, coordinating these operations with compute optimizations, and optimizing the communciation operations.
If your code ran just fine without dynamo and started to crash with it enabled then the most important first step is figuring out which part of the stack your failure occurred in so try running things in the below order and only try the next step if the previous step succeeded.
dynamo.optimize("eager")
which only runs torchdynamo forward graph capture and then runs the captured graph with PyTorch. If this fails then there's an issue with dynamodynamo.optimize("aot_eager")
which runs torchdynamo to capture a forward graph, and then AOTAutograd to trace the backward graph without any additional backend compiler steps. PyTorch eager will then be used to run the forward and backward graphs. If this fails then there's an issue with AOTAutograddynamo.optimize("inductor")
which runs torchdynamo to capture a forward graph, and then AOTAutograd to trace the backward graph with the TorchInductor compiler. If this fails then there's an issue with TorchInductor
If the error that is generated occurs with the "eager"
backend, then torchdynamo is the most likely source of the error.
To debug these issues we recommend setting torch._dynamo.config.verbose=True
to get a full stack trace to both the error in torchdynamo and the user code. In addition to this flag, you can also set the log_level
of torchdynamo through torch._dynamo.config.log_level
. The available levels are the following:
logging.DEBUG
: Print every instruction that is encountered in addition to all below log levelslogging.INFO
: Print each function that is compiled (original and modified bytecode) and the graph that is captured in addition to all below log levelslogging.WARNING
(default): Print graph breaks in addition to all below log levelslogging.ERROR
: Print errors only
If a model is sufficiently large, the logs can become overwhelming. If an error occurs deep within a model's python code, it can be useful to execute only the frame in which the error occurs to enable easier debugging. There are 2 tools available to enable this:
env TORCHDYNAMO_DEBUG_FUNCTION=<desired_function_name>
will only run torchdynamo on functions with that name.env torch._dynamo.config.replay_record_enabled = True
) which dumps an execution record when an error is encountered. This record can then be replayed to run only the frame where an error occurred.
With TorchInductor as the chosen backend, AOTAutograd is used to generate the backward graph from the forward graph captured by torchdynamo. It's important to note that errors can occur during this tracing and also while TorchInductor lowers the forward and backward graphs to GPU code or C++.
A model can often consist of hundreds or thousands of FX nodes, so narrowing the exact nodes where this problem occurred can be very difficult which is why we highly recommend you use our minifier to create tiny reproducible examples of failures you're seeing. We can minify errors that occur either at the AOTAutograd layer or Inductor layer which you should try in the following order.
env TORCHDYNAMO_REPRO_AFTER="aot" python your_model.py
env TORCHDYNAMO_REPRO_AFTER="dynamo" python your_model.py
Minifying your error is the quickest path to getting it fixed
The minifier will actually create a repro.py
for you at the location set by env TORCHDYNAMO_REPRO_DIR
so make you have right access to that directory. You can then run python repro.py
and confirm that you are getting the same error.
Note: for other compilers such as nvfuser, the process is similar but instead you would leverage env TORCHDYNAMO_REPRO_AFTER="dynamo" python your_model.py
TorchDynamo has a builtin stats function for collecting and displaying the time spent in each compilation phase. These stats can be accessed by calling torch._dynamo.utils.compile_times()
after executing torch._dynamo
. By default, this returns a string representation of the compile times spent in each TorchDynamo function by name.
TorchInductor has a builtin stats and trace function for displaying time spent in each compilation phase, output code, output graph visualization and IR dump. env TORCHINDUCTOR_TRACE=1 python repro.py
. This is a debugging tool designed to make it easier to debug/understand the internals of TorchInductor with an output that will look something like this
Each file in that debug trace can be enabled/disabled via torch._inductor.config.trace.*
. The profile and the diagram are both disabled by default since they are expensive to generate. See the example debug directory output for more examples.
When TorchDynamo compiles a function (or part of one), it makes certain assumptions about locals and globals in order to allow compiler optimizations, and expresses these assumptions as guards that check particular values at runtime. If any of these guards fail, Dynamo will recompile that function (or part) up to torch._dynamo.config.cache_size_limit
times. If your program is hitting the cache limit, you will first need to determine which guard is failing and what part of your program is triggering it.
The recompilation profiler automates the process of setting TorchDynamo's cache limit to 1 and running your program under an observation-only 'compiler' that records the causes of any guard failures. You should be sure to run your program for at least as long (as many iterations) as you were running when you ran into trouble, and the profiler will accumulate statistics over this duration.
prof = dynamo.utils.CompilationProfiler()
@dynamo.optimize(prof)
def my_model():
...
my_model()
print(prof.report())
Many of the reasons for graph breaks and excessive recompilation will be fixed with upcoming support for tracing dynamic tensor shapes, more careful choices for guards and better tuned heuristics.
In some cases, you may not want unexpected compiles after a program has warmed up. For example, if you are serving production traffic in a latency critical application. For this, TorchDynamo provides an alternate mode where prior compiled graphs are used, but no new ones are generated:
frozen_toy_example = dynamo.run(toy_example)
frozen_toy_example(torch.randn(10), torch.randn(10))
There are 3 major ways that PyTorch code can be accelerated
- Kernel fusion
- Vertical fusion: fuses sequential operations to avoid excessive read/writes. For example, fuse 2 subsequent cosines means you can can do 1 read 1 write instead 2 reads 2 writes
- Horizontal fusion: the simplest example being batching where a single matrix is multiplied with a batch of examples but the more general scenario is a grouped GEMM where a group of matrix multiplications are scheduled together
- Out of order execution: A general optimization for compilers, by looking ahead at the exact data dependencies within a graph we can decide on the most opportune time to execute a node and which buffers can be reused
- Automatic work placement: Similar of the out of order execution point, but by matching nodes of a graph to resources like physical hardware or memory we can design an appropriate schedule
The above are general principles for accelerating PyTorch code but different backends will each make different tradeoffs on what to optimize. For example Inductor first takes care of fusing whatever it can and only then generates Triton kernels. It can also
Triton in addition offers speedups because of automatic memory coalescing, memory management and scheduling within each Streaming Multiprocessor and has been designed to handle tiled computations.
However, regardless of the backend you use it's best to use a benchmark and see approach so try out the PyTorch profiler, visually inspect the generated kernels and try to see what's going on for yourself.
The main reason you won't see the speedups you'd like to by using dynamo is excessive graph breaks. So what's a graph break?
Given a program like:
@dynamo.optimize(...)
def some_fun(x):
...
some_fun(x)
...
Torchdynamo will attempt to compile all of the torch/tensor operations within some_fun()
into a single FX graph, but it may fail to capture everything into one graph.
Some graph break reasons are insurmountable to TorchDynamo like calling into a C extension other than torch is invisible to torchdynamo, and could do arbitrary things without TorchDynamo being able to introduce necessary guards to ensure that the compiled program would be safe to reuse.
To maximize performance, it's important to have as few graph breaks as possible.
To identify all graph breaks in a program and the associated reasons for the breaks, torch._dynamo.explain
can be used. This tool runs TorchDynamo on the supplied function and aggregates the graph breaks that are encountered. Here is an example usage:
import torch
import torch._dynamo as dynamo
def toy_example(a, b):
x = a / (torch.abs(a) + 1)
print("woo")
if b.sum() < 0:
b = b * -1
return x * b
explanation, out_guards, graphs, ops_per_graph = dynamo.explain(toy_example, torch.randn(10), torch.randn(10))
print(explanation)
"""
Dynamo produced 3 graphs, with 2 graph break and 6 ops.
Break reasons:
1. call_function BuiltinVariable(print) [ConstantVariable(str)] {}
File "t2.py", line 16, in toy_example
print("woo")
2. generic_jump
File "t2.py", line 17, in toy_example
if b.sum() < 0:
"""
To throw an error on the first graph break encountered you can use disable python fallback by using nopython=True
, this should be familiar if you've worked with export based compilers.
@dynamo.optimize(<compiler>, nopython=True)
def toy_example(a, b):
...
TBD: Accuracy minifier
TBD: Memory debugger, fake tensor, reinplacing etc..