-
Notifications
You must be signed in to change notification settings - Fork 466
/
reader_iter_single_lvl.go
1594 lines (1504 loc) · 57.9 KB
/
reader_iter_single_lvl.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
// of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
package sstable
import (
"bytes"
"context"
"fmt"
"sync"
"unsafe"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/pebble/internal/base"
"github.com/cockroachdb/pebble/internal/invariants"
"github.com/cockroachdb/pebble/internal/treeprinter"
"github.com/cockroachdb/pebble/objstorage"
"github.com/cockroachdb/pebble/objstorage/objstorageprovider"
"github.com/cockroachdb/pebble/sstable/block"
"github.com/cockroachdb/pebble/sstable/valblk"
)
// singleLevelIterator iterates over an entire table of data. To seek for a given
// key, it first looks in the index for the block that contains that key, and then
// looks inside that block.
//
// singleLevelIterator is parameterized by the type of the data block iterator
// and index block iterator. The type parameters are designed to allow the
// singleLevelIterator to embed the data block and index block iterator structs
// within itself, avoiding an extra allocation and pointer indirection. The
// complication comes from the fact that we want to implement the interfaces on
// pointer receivers but embed the non-pointer types within the struct. The D
// and I type parameters are the non-pointer data and index block iterator
// types, and the PD and PI type parameters are the *D and *I types that
// actually implement the DataBlockIterator and IndexBlockIterator constraints.
//
// Unfortunately, uses of the [data] and [index] fields must explicitly cast
// &data/&index to the PD/PI type in order to access its interface methods. This
// pattern is taken from the Go generics proposal:
// https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md#pointer-method-example
type singleLevelIterator[I any, PI indexBlockIterator[I], D any, PD dataBlockIterator[D]] struct {
ctx context.Context
cmp Compare
// Global lower/upper bound for the iterator.
lower []byte
upper []byte
bpfs *BlockPropertiesFilterer
// Per-block lower/upper bound. Nil if the bound does not apply to the block
// because we determined the block lies completely within the bound.
blockLower []byte
blockUpper []byte
reader *Reader
// vState will be set iff the iterator is constructed for virtual sstable
// iteration.
vState *virtualState
// endKeyInclusive is set to force the iterator to treat the upper field as
// inclusive while iterating instead of exclusive.
endKeyInclusive bool
indexFilterRH objstorage.ReadHandle
indexFilterRHPrealloc objstorageprovider.PreallocatedReadHandle
dataRH objstorage.ReadHandle
dataRHPrealloc objstorageprovider.PreallocatedReadHandle
// dataBH refers to the last data block that the iterator considered
// loading. It may not actually have loaded the block, due to an error or
// because it was considered irrelevant.
dataBH block.Handle
vbReader valblk.Reader
// vbRH is the read handle for value blocks, which are in a different
// part of the sstable than data blocks.
vbRH objstorage.ReadHandle
vbRHPrealloc objstorageprovider.PreallocatedReadHandle
err error
closeHook func(i Iterator) error
iterStats iterStatsAccumulator
readBlockEnv readBlockEnv
// boundsCmp and positionedUsingLatestBounds are for optimizing iteration
// that uses multiple adjacent bounds. The seek after setting a new bound
// can use the fact that the iterator is either within the previous bounds
// or exactly one key before or after the bounds. If the new bounds is
// after/before the previous bounds, and we are already positioned at a
// block that is relevant for the new bounds, we can try to first position
// using Next/Prev (repeatedly) instead of doing a more expensive seek.
//
// When there are wide files at higher levels that match the bounds
// but don't have any data for the bound, we will already be
// positioned at the key beyond the bounds and won't need to do much
// work -- given that most data is in L6, such files are likely to
// dominate the performance of the mergingIter, and may be the main
// benefit of this performance optimization (of course it also helps
// when the file that has the data has successive seeks that stay in
// the same block).
//
// Specifically, boundsCmp captures the relationship between the previous
// and current bounds, if the iterator had been positioned after setting
// the previous bounds. If it was not positioned, i.e., Seek/First/Last
// were not called, we don't know where it is positioned and cannot
// optimize.
//
// Example: Bounds moving forward, and iterator exhausted in forward direction.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) can use next (the optimization also requires that j
// is within the block, but that is not for correctness, but to limit the
// optimization to when it will actually be an optimization).
//
// Example: Bounds moving forward.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) can use next.
//
// Example: Bounds moving forward, but iterator not positioned using previous
// bounds.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [i, j). Iterator is at j since it was never positioned using
// [f, h). So positionedUsingLatestBounds=false, and boundsCmp is set to 0.
// SeekGE(i) will not use next.
//
// Example: Bounds moving forward and sparse file
// bounds = [f, h), ^ shows block iterator position
// file contents [ a z ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) notices that the iterator is already past j and does
// not need to do anything.
//
// Similar examples can be constructed for backward iteration.
//
// This notion of exactly one key before or after the bounds is not quite
// true when block properties are used to ignore blocks. In that case we
// can't stop precisely at the first block that is past the bounds since
// we are using the index entries to enforce the bounds.
//
// e.g. 3 blocks with keys [b, c] [f, g], [i, j, k] with index entries d,
// h, l. And let the lower bound be k, and we are reverse iterating. If
// the block [i, j, k] is ignored due to the block interval annotations we
// do need to move the index to block [f, g] since the index entry for the
// [i, j, k] block is l which is not less than the lower bound of k. So we
// have passed the entries i, j.
//
// This behavior is harmless since the block property filters are fixed
// for the lifetime of the iterator so i, j are irrelevant. In addition,
// the current code will not load the [f, g] block, so the seek
// optimization that attempts to use Next/Prev do not apply anyway.
boundsCmp int
positionedUsingLatestBounds bool
// exhaustedBounds represents whether the iterator is exhausted for
// iteration by reaching the upper or lower bound. +1 when exhausted
// the upper bound, -1 when exhausted the lower bound, and 0 when
// neither. exhaustedBounds is also used for the TrySeekUsingNext
// optimization in twoLevelIterator and singleLevelIterator. Care should be
// taken in setting this in twoLevelIterator before calling into
// singleLevelIterator, given that these two iterators share this field.
exhaustedBounds int8
// useFilterBlock controls whether the bloom filter block in this sstable, if
// present, should be used for prefix seeks or not. In some cases it is
// beneficial to skip a filter block even if it exists (eg. if probability of
// a match is high).
useFilterBlock bool
lastBloomFilterMatched bool
transforms IterTransforms
// All fields above this field are cleared when resetting the iterator for reuse.
clearForResetBoundary struct{}
index I
data D
// inPool is set to true before putting the iterator in the reusable pool;
// used to detect double-close.
inPool bool
// pool is the pool from which the iterator was allocated and to which the
// iterator should be returned on Close. Because the iterator is
// parameterized by the type of the data block iterator, pools must be
// specific to the type of the data block iterator.
//
// If the iterator is embedded within a twoLevelIterator, pool is nil and
// the twoLevelIterator.pool field may be non-nil.
pool *sync.Pool
// NOTE: any new fields should be added above the clearForResetBoundary field,
// unless they need to be retained when resetting the iterator.
}
// singleLevelIterator implements the base.InternalIterator interface.
var _ base.InternalIterator = (*singleLevelIteratorRowBlocks)(nil)
// newColumnBlockSingleLevelIterator reads the index block and creates and
// initializes a singleLevelIterator over an sstable with column-oriented data
// blocks.
//
// Note that lower, upper are iterator bounds and are separate from virtual
// sstable bounds. If the virtualState passed in is not nil, then virtual
// sstable bounds will be enforced.
func newColumnBlockSingleLevelIterator(
ctx context.Context,
r *Reader,
v *virtualState,
transforms IterTransforms,
lower, upper []byte,
filterer *BlockPropertiesFilterer,
filterBlockSizeLimit FilterBlockSizeLimit,
stats *base.InternalIteratorStats,
statsAccum IterStatsAccumulator,
rp valblk.ReaderProvider,
bufferPool *block.BufferPool,
) (*singleLevelIteratorColumnBlocks, error) {
if r.err != nil {
return nil, r.err
}
if !r.tableFormat.BlockColumnar() {
panic(errors.AssertionFailedf("table format %d should not use columnar block format", r.tableFormat))
}
i := singleLevelIterColumnBlockPool.Get().(*singleLevelIteratorColumnBlocks)
useFilterBlock := shouldUseFilterBlock(r, filterBlockSizeLimit)
i.init(
ctx, r, v, transforms, lower, upper, filterer, useFilterBlock,
stats, statsAccum, bufferPool,
)
var getLazyValuer block.GetLazyValueForPrefixAndValueHandler
if r.Properties.NumValueBlocks > 0 {
i.vbReader = valblk.MakeReader(i, rp, r.valueBIH, stats)
getLazyValuer = &i.vbReader
i.vbRH = objstorageprovider.UsePreallocatedReadHandle(r.readable, objstorage.NoReadBefore, &i.vbRHPrealloc)
}
i.data.InitOnce(r.keySchema, r.Comparer, getLazyValuer)
indexH, err := r.readTopLevelIndexBlock(ctx, i.readBlockEnv, i.indexFilterRH)
if err == nil {
err = i.index.InitHandle(r.Comparer, indexH, transforms)
}
if err != nil {
_ = i.Close()
return nil, err
}
return i, nil
}
// newRowBlockSingleLevelIterator reads the index block and creates and
// initializes a singleLevelIterator over an sstable with row-oriented data
// blocks.
//
// Note that lower, upper are iterator bounds and are separate from virtual
// sstable bounds. If the virtualState passed in is not nil, then virtual
// sstable bounds will be enforced.
func newRowBlockSingleLevelIterator(
ctx context.Context,
r *Reader,
v *virtualState,
transforms IterTransforms,
lower, upper []byte,
filterer *BlockPropertiesFilterer,
filterBlockSizeLimit FilterBlockSizeLimit,
stats *base.InternalIteratorStats,
statsAccum IterStatsAccumulator,
rp valblk.ReaderProvider,
bufferPool *block.BufferPool,
) (*singleLevelIteratorRowBlocks, error) {
if r.err != nil {
return nil, r.err
}
if r.tableFormat.BlockColumnar() {
panic(errors.AssertionFailedf("table format %s uses block columnar format", r.tableFormat))
}
i := singleLevelIterRowBlockPool.Get().(*singleLevelIteratorRowBlocks)
useFilterBlock := shouldUseFilterBlock(r, filterBlockSizeLimit)
i.init(
ctx, r, v, transforms, lower, upper, filterer, useFilterBlock,
stats, statsAccum, bufferPool,
)
if r.tableFormat >= TableFormatPebblev3 {
if r.Properties.NumValueBlocks > 0 {
i.vbReader = valblk.MakeReader(i, rp, r.valueBIH, stats)
(&i.data).SetGetLazyValuer(&i.vbReader)
i.vbRH = objstorageprovider.UsePreallocatedReadHandle(r.readable, objstorage.NoReadBefore, &i.vbRHPrealloc)
}
i.data.SetHasValuePrefix(true)
}
indexH, err := r.readTopLevelIndexBlock(ctx, i.readBlockEnv, i.indexFilterRH)
if err == nil {
err = i.index.InitHandle(r.Comparer, indexH, transforms)
}
if err != nil {
_ = i.Close()
return nil, err
}
return i, nil
}
// init initializes the singleLevelIterator struct. It does not read the index.
func (i *singleLevelIterator[I, PI, D, PD]) init(
ctx context.Context,
r *Reader,
v *virtualState,
transforms IterTransforms,
lower, upper []byte,
filterer *BlockPropertiesFilterer,
useFilterBlock bool,
stats *base.InternalIteratorStats,
statsAccum IterStatsAccumulator,
bufferPool *block.BufferPool,
) {
i.inPool = false
i.ctx = ctx
i.lower = lower
i.upper = upper
i.bpfs = filterer
i.useFilterBlock = useFilterBlock
i.reader = r
i.cmp = r.Compare
i.transforms = transforms
if v != nil {
i.vState = v
i.endKeyInclusive, i.lower, i.upper = v.constrainBounds(lower, upper, false /* endInclusive */)
}
i.iterStats.init(statsAccum)
i.readBlockEnv = readBlockEnv{
Stats: stats,
IterStats: &i.iterStats,
BufferPool: bufferPool,
}
i.indexFilterRH = objstorageprovider.UsePreallocatedReadHandle(
r.readable, objstorage.ReadBeforeForIndexAndFilter, &i.indexFilterRHPrealloc)
i.dataRH = objstorageprovider.UsePreallocatedReadHandle(
r.readable, objstorage.NoReadBefore, &i.dataRHPrealloc)
}
// Helper function to check if keys returned from iterator are within virtual bounds.
func (i *singleLevelIterator[I, PI, D, PD]) maybeVerifyKey(kv *base.InternalKV) *base.InternalKV {
if invariants.Enabled && kv != nil && i.vState != nil {
key := kv.K.UserKey
v := i.vState
lc := i.cmp(key, v.lower.UserKey)
uc := i.cmp(key, v.upper.UserKey)
if lc < 0 || uc > 0 || (uc == 0 && v.upper.IsExclusiveSentinel()) {
panic(fmt.Sprintf("key %q out of singleLeveliterator virtual bounds %s %s", key, v.lower.UserKey, v.upper.UserKey))
}
}
return kv
}
// SetupForCompaction sets up the singleLevelIterator for use with compactionIter.
// Currently, it skips readahead ramp-up. It should be called after init is called.
func (i *singleLevelIterator[I, PI, D, PD]) SetupForCompaction() {
i.dataRH.SetupForCompaction()
if i.vbRH != nil {
i.vbRH.SetupForCompaction()
}
}
const clearLen = unsafe.Offsetof(singleLevelIteratorRowBlocks{}.clearForResetBoundary)
// Assert that clearLen is consistent betwen the row and columnar implementations.
const clearLenColBlocks = unsafe.Offsetof(singleLevelIteratorColumnBlocks{}.clearForResetBoundary)
const _ uintptr = clearLen - clearLenColBlocks
const _ uintptr = clearLenColBlocks - clearLen
func (i *singleLevelIterator[I, PI, D, PD]) resetForReuse() {
*(*[clearLen]byte)(unsafe.Pointer(i)) = [clearLen]byte{}
i.inPool = true
}
func (i *singleLevelIterator[I, PI, D, PD]) initBounds() {
// Trim the iteration bounds for the current block. We don't have to check
// the bounds on each iteration if the block is entirely contained within the
// iteration bounds.
i.blockLower = i.lower
if i.blockLower != nil {
kv := PD(&i.data).First()
// TODO(radu): this should be <= 0
if kv != nil && i.cmp(i.blockLower, kv.K.UserKey) < 0 {
// The lower-bound is less than the first key in the block. No need
// to check the lower-bound again for this block.
i.blockLower = nil
}
}
i.blockUpper = i.upper
// TODO(radu): this should be >= 0 if blockUpper is inclusive.
if i.blockUpper != nil && PI(&i.index).SeparatorLT(i.blockUpper) {
// The upper-bound is greater than the index key which itself is greater
// than or equal to every key in the block. No need to check the
// upper-bound again for this block. Even if blockUpper is inclusive
// because of upper being inclusive, we can still safely set blockUpper
// to nil here.
i.blockUpper = nil
}
}
func (i *singleLevelIterator[I, PI, D, PD]) initBoundsForAlreadyLoadedBlock() {
// TODO(radu): determine automatically if we need to call First or not and
// unify this function with initBounds().
i.blockLower = i.lower
if i.blockLower != nil && PD(&i.data).IsLowerBound(i.blockLower) {
// The lower-bound is less than the first key in the block. No need
// to check the lower-bound again for this block.
i.blockLower = nil
}
i.blockUpper = i.upper
// TODO(radu): this should be >= 0 if blockUpper is inclusive.
if i.blockUpper != nil && PI(&i.index).SeparatorLT(i.blockUpper) {
// The upper-bound is greater than the index key which itself is greater
// than or equal to every key in the block. No need to check the
// upper-bound again for this block.
i.blockUpper = nil
}
}
// Deterministic disabling (in testing mode) of the bounds-based optimization
// that avoids seeking. Uses the iterator pointer, since we want diversity in
// iterator behavior for the same SetBounds call. Used for tests.
func testingDisableBoundsOpt(bound []byte, ptr uintptr) bool {
if !invariants.Enabled || ensureBoundsOptDeterminism {
return false
}
// Fibonacci hash https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
simpleHash := (11400714819323198485 * uint64(ptr)) >> 63
return bound[len(bound)-1]&byte(1) == 0 && simpleHash == 0
}
// ensureBoundsOptDeterminism provides a facility for disabling of the bounds
// optimizations performed by disableBoundsOpt for tests that require
// deterministic iterator behavior. Some unit tests examine internal iterator
// state and require this behavior to be deterministic.
var ensureBoundsOptDeterminism bool
// SetBoundsWithSyntheticPrefix indicates whether this iterator requires keys
// passed to its SetBounds() method by a prefix rewriting wrapper to be *not*
// rewritten to be in terms of this iterator's content, but instead be passed
// as-is, i.e. with the synthetic prefix still on them.
//
// This allows an optimization when this iterator is passing these bounds on to
// a vState to additionally constrain them. In said vState, passed bounds are
// combined with the vState bounds which are in terms of the rewritten prefix.
// If the caller rewrote bounds to be in terms of content prefix and SetBounds
// passed those to vState, the vState would need to *un*rewrite them back to the
// synthetic prefix in order to combine them with the vState bounds. Thus, if
// this iterator knows bounds will be passed to vState, it can signal that it
// they should be passed without being rewritten to skip converting to and fro.
func (i singleLevelIterator[I, PI, P, PD]) SetBoundsWithSyntheticPrefix() bool {
return i.vState != nil
}
// SetBounds implements internalIterator.SetBounds, as documented in the pebble
// package. Note that the upper field is exclusive.
func (i *singleLevelIterator[I, PI, P, PD]) SetBounds(lower, upper []byte) {
i.boundsCmp = 0
if i.vState != nil {
// If the reader is constructed for a virtual sstable, then we must
// constrain the bounds of the reader. For physical sstables, the bounds
// can be wider than the actual sstable's bounds because we won't
// accidentally expose additional keys as there are no additional keys.
i.endKeyInclusive, lower, upper = i.vState.constrainBounds(
lower, upper, false,
)
} else {
// TODO(bananabrick): Figure out the logic here to enable the boundsCmp
// optimization for virtual sstables.
if i.positionedUsingLatestBounds {
if i.upper != nil && lower != nil && i.cmp(i.upper, lower) <= 0 {
i.boundsCmp = +1
if testingDisableBoundsOpt(lower, uintptr(unsafe.Pointer(i))) {
i.boundsCmp = 0
}
} else if i.lower != nil && upper != nil && i.cmp(upper, i.lower) <= 0 {
i.boundsCmp = -1
if testingDisableBoundsOpt(upper, uintptr(unsafe.Pointer(i))) {
i.boundsCmp = 0
}
}
}
}
i.positionedUsingLatestBounds = false
i.lower = lower
i.upper = upper
i.blockLower = nil
i.blockUpper = nil
}
func (i *singleLevelIterator[I, PI, P, PD]) SetContext(ctx context.Context) {
i.ctx = ctx
}
// loadDataBlock loads the block at the current index position and leaves i.data
// unpositioned. If unsuccessful, it sets i.err to any error encountered, which
// may be nil if we have simply exhausted the entire table.
func (i *singleLevelIterator[I, PI, P, PD]) loadDataBlock(dir int8) loadBlockResult {
if !PI(&i.index).Valid() {
// Ensure the data block iterator is invalidated even if loading of the block
// fails.
PD(&i.data).Invalidate()
return loadBlockFailed
}
// Load the next block.
bhp, err := PI(&i.index).BlockHandleWithProperties()
if i.dataBH == bhp.Handle && PD(&i.data).Valid() {
// We're already at the data block we want to load. Reset bounds in case
// they changed since the last seek, but don't reload the block from cache
// or disk.
//
// It's safe to leave i.data in its original state here, as all callers to
// loadDataBlock make an absolute positioning call (i.e. a seek, first, or last)
// to `i.data` right after loadDataBlock returns loadBlockOK.
i.initBounds()
return loadBlockOK
}
// Ensure the data block iterator is invalidated even if loading of the block
// fails.
PD(&i.data).Invalidate()
i.dataBH = bhp.Handle
if err != nil {
i.err = errCorruptIndexEntry(err)
return loadBlockFailed
}
if i.bpfs != nil {
intersects, err := i.bpfs.intersects(bhp.Props)
if err != nil {
i.err = errCorruptIndexEntry(err)
return loadBlockFailed
}
if intersects == blockMaybeExcluded {
intersects = i.resolveMaybeExcluded(dir)
}
if intersects == blockExcluded {
return loadBlockIrrelevant
}
// blockIntersects
}
block, err := i.reader.readDataBlock(i.ctx, i.readBlockEnv, i.dataRH, i.dataBH)
if err != nil {
i.err = err
return loadBlockFailed
}
i.err = PD(&i.data).InitHandle(i.reader.Comparer, block, i.transforms)
if i.err != nil {
// The block is partially loaded, and we don't want it to appear valid.
PD(&i.data).Invalidate()
return loadBlockFailed
}
i.initBounds()
return loadBlockOK
}
// ReadValueBlock implements the valblk.BlockProviderWhenOpen interface for use
// by the valblk.Reader.
func (i *singleLevelIterator[I, PI, D, PD]) ReadValueBlock(
bh block.Handle, stats *base.InternalIteratorStats,
) (block.BufferHandle, error) {
env := i.readBlockEnv
env.Stats = stats
return i.reader.readValueBlock(i.ctx, env, i.vbRH, bh)
}
// resolveMaybeExcluded is invoked when the block-property filterer has found
// that a block is excluded according to its properties but only if its bounds
// fall within the filter's current bounds. This function consults the
// apprioriate bound, depending on the iteration direction, and returns either
// `blockIntersects` or `blockExcluded`.
func (i *singleLevelIterator[I, PI, D, PD]) resolveMaybeExcluded(dir int8) intersectsResult {
// TODO(jackson): We could first try comparing to top-level index block's
// key, and if within bounds avoid per-data block key comparisons.
// This iterator is configured with a bound-limited block property
// filter. The bpf determined this block could be excluded from
// iteration based on the property encoded in the block handle.
// However, we still need to determine if the block is wholly
// contained within the filter's key bounds.
//
// External guarantees ensure all the block's keys are ≥ the
// filter's lower bound during forward iteration, and that all the
// block's keys are < the filter's upper bound during backward
// iteration. We only need to determine if the opposite bound is
// also met.
//
// The index separator in index.Key() provides an inclusive
// upper-bound for the data block's keys, guaranteeing that all its
// keys are ≤ index.Key(). For forward iteration, this is all we
// need.
if dir > 0 {
// Forward iteration.
if i.bpfs.boundLimitedFilter.KeyIsWithinUpperBound(PI(&i.index).Separator()) {
return blockExcluded
}
return blockIntersects
}
// Reverse iteration.
//
// Because we're iterating in the reverse direction, we don't yet have
// enough context available to determine if the block is wholly contained
// within its bounds. This case arises only during backward iteration,
// because of the way the index is structured.
//
// Consider a bound-limited bpf limited to the bounds [b,d), loading the
// block with separator `c`. During reverse iteration, the guarantee that
// all the block's keys are < `d` is externally provided, but no guarantee
// is made on the bpf's lower bound. The separator `c` only provides an
// inclusive upper bound on the block's keys, indicating that the
// corresponding block handle points to a block containing only keys ≤ `c`.
//
// To establish a lower bound, we step the index backwards to read the
// previous block's separator, which provides an inclusive lower bound on
// the original block's keys. Afterwards, we step forward to restore our
// index position.
if !PI(&i.index).Prev() {
// The original block points to the first block of this index block. If
// there's a two-level index, it could potentially provide a lower
// bound, but the code refactoring necessary to read it doesn't seem
// worth the payoff. We fall through to loading the block.
} else if i.bpfs.boundLimitedFilter.KeyIsWithinLowerBound(PI(&i.index).Separator()) {
// The lower-bound on the original block falls within the filter's
// bounds, and we can skip the block (after restoring our current index
// position).
_ = PI(&i.index).Next()
return blockExcluded
}
_ = PI(&i.index).Next()
return blockIntersects
}
// The number of times to call Next/Prev in a block before giving up and seeking.
// The value of 4 is arbitrary.
// TODO(sumeer): experiment with dynamic adjustment based on the history of
// seeks for a particular iterator.
const numStepsBeforeSeek = 4
func (i *singleLevelIterator[I, PI, D, PD]) trySeekGEUsingNextWithinBlock(
key []byte,
) (kv *base.InternalKV, done bool) {
kv = PD(&i.data).KV()
for j := 0; j < numStepsBeforeSeek; j++ {
curKeyCmp := i.cmp(kv.K.UserKey, key)
if curKeyCmp >= 0 {
if i.blockUpper != nil {
cmp := i.cmp(kv.K.UserKey, i.blockUpper)
if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
i.exhaustedBounds = +1
return nil, true
}
}
return kv, true
}
kv = PD(&i.data).Next()
if kv == nil {
break
}
}
return kv, false
}
func (i *singleLevelIterator[I, PI, D, PD]) trySeekLTUsingPrevWithinBlock(
key []byte,
) (kv *base.InternalKV, done bool) {
kv = PD(&i.data).KV()
for j := 0; j < numStepsBeforeSeek; j++ {
curKeyCmp := i.cmp(kv.K.UserKey, key)
if curKeyCmp < 0 {
if i.blockLower != nil && i.cmp(kv.K.UserKey, i.blockLower) < 0 {
i.exhaustedBounds = -1
return nil, true
}
return kv, true
}
kv = PD(&i.data).Prev()
if kv == nil {
break
}
}
return kv, false
}
// SeekGE implements internalIterator.SeekGE, as documented in the pebble
// package. Note that SeekGE only checks the upper bound. It is up to the
// caller to ensure that key is greater than or equal to the lower bound.
func (i *singleLevelIterator[I, PI, D, PD]) SeekGE(
key []byte, flags base.SeekGEFlags,
) *base.InternalKV {
if i.vState != nil {
// Callers of SeekGE don't know about virtual sstable bounds, so we may
// have to internally restrict the bounds.
//
// TODO(bananabrick): We can optimize this check away for the level iter
// if necessary.
if i.cmp(key, i.lower) < 0 {
key = i.lower
}
}
if flags.TrySeekUsingNext() {
// The i.exhaustedBounds comparison indicates that the upper bound was
// reached. The i.data.isDataInvalidated() indicates that the sstable was
// exhausted.
if (i.exhaustedBounds == +1 || PD(&i.data).IsDataInvalidated()) && i.err == nil {
// Already exhausted, so return nil.
return nil
}
if i.err != nil {
// The current iterator position cannot be used.
flags = flags.DisableTrySeekUsingNext()
}
// INVARIANT: flags.TrySeekUsingNext() => i.err == nil &&
// !i.exhaustedBounds==+1 && !i.data.isDataInvalidated(). That is,
// data-exhausted and bounds-exhausted, as defined earlier, are both
// false. Ths makes it safe to clear out i.exhaustedBounds and i.err
// before calling into seekGEHelper.
}
i.exhaustedBounds = 0
i.err = nil // clear cached iteration error
boundsCmp := i.boundsCmp
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
i.positionedUsingLatestBounds = true
return i.seekGEHelper(key, boundsCmp, flags)
}
// seekGEHelper contains the common functionality for SeekGE and SeekPrefixGE.
func (i *singleLevelIterator[I, PI, D, PD]) seekGEHelper(
key []byte, boundsCmp int, flags base.SeekGEFlags,
) *base.InternalKV {
// Invariant: trySeekUsingNext => !i.data.isDataInvalidated() && i.exhaustedBounds != +1
// SeekGE performs various step-instead-of-seeking optimizations: eg enabled
// by trySeekUsingNext, or by monotonically increasing bounds (i.boundsCmp).
var dontSeekWithinBlock bool
if !PD(&i.data).IsDataInvalidated() && PD(&i.data).Valid() && PI(&i.index).Valid() &&
boundsCmp > 0 && PI(&i.index).SeparatorGT(key, true /* orEqual */) {
// Fast-path: The bounds have moved forward and this SeekGE is
// respecting the lower bound (guaranteed by Iterator). We know that the
// iterator must already be positioned within or just outside the
// previous bounds. Therefore it cannot be positioned at a block (or the
// position within that block) that is ahead of the seek position.
// However it can be positioned at an earlier block. This fast-path to
// use Next() on the block is only applied when we are already at the
// block that the slow-path (the else-clause) would load -- this is the
// motivation for the IsSeparatorUpperBound(key, true) predicate.
i.initBoundsForAlreadyLoadedBlock()
kv, done := i.trySeekGEUsingNextWithinBlock(key)
if done {
return kv
}
if kv == nil {
// Done with this block.
dontSeekWithinBlock = true
}
} else {
// Cannot use bounds monotonicity. But may be able to optimize if
// caller claimed externally known invariant represented by
// flags.TrySeekUsingNext().
if flags.TrySeekUsingNext() {
// seekPrefixGE or SeekGE has already ensured
// !i.data.isDataInvalidated() && i.exhaustedBounds != +1
curr := PD(&i.data).KV()
less := i.cmp(curr.K.UserKey, key) < 0
// We could be more sophisticated and confirm that the seek
// position is within the current block before applying this
// optimization. But there may be some benefit even if it is in
// the next block, since we can avoid seeking i.index.
for j := 0; less && j < numStepsBeforeSeek; j++ {
curr = i.Next()
if curr == nil {
return nil
}
less = i.cmp(curr.K.UserKey, key) < 0
}
if !less {
if i.blockUpper != nil {
cmp := i.cmp(curr.K.UserKey, i.blockUpper)
if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
i.exhaustedBounds = +1
return nil
}
}
return curr
}
}
// Slow-path.
if !PI(&i.index).SeekGE(key) {
// The target key is greater than any key in the index block.
// Invalidate the block iterator so that a subsequent call to Prev()
// will return the last key in the table.
PD(&i.data).Invalidate()
return nil
}
result := i.loadDataBlock(+1)
if result == loadBlockFailed {
return nil
}
if result == loadBlockIrrelevant {
// Enforce the upper bound here since don't want to bother moving to
// the next block if upper bound is already exceeded. Note that the
// next block may start with keys >= index.Separator() since even
// though this is the block separator, the same user key can span
// multiple blocks. If upper is exclusive we pass orEqual=true
// below, else we require the separator to be strictly greater than
// upper.
if i.upper != nil && PI(&i.index).SeparatorGT(i.upper, !i.endKeyInclusive) {
i.exhaustedBounds = +1
return nil
}
// Want to skip to the next block.
dontSeekWithinBlock = true
}
}
if !dontSeekWithinBlock {
if ikv := PD(&i.data).SeekGE(key, flags.DisableTrySeekUsingNext()); ikv != nil {
if i.blockUpper != nil {
cmp := i.cmp(ikv.K.UserKey, i.blockUpper)
if (!i.endKeyInclusive && cmp >= 0) || cmp > 0 {
i.exhaustedBounds = +1
return nil
}
}
return ikv
}
}
return i.skipForward()
}
// SeekPrefixGE implements internalIterator.SeekPrefixGE, as documented in the
// pebble package. Note that SeekPrefixGE only checks the upper bound. It is up
// to the caller to ensure that key is greater than or equal to the lower bound.
func (i *singleLevelIterator[I, PI, D, PD]) SeekPrefixGE(
prefix, key []byte, flags base.SeekGEFlags,
) *base.InternalKV {
if i.vState != nil {
// Callers of SeekPrefixGE aren't aware of virtual sstable bounds, so
// we may have to internally restrict the bounds.
//
// TODO(bananabrick): We can optimize away this check for the level iter
// if necessary.
if i.cmp(key, i.lower) < 0 {
key = i.lower
}
}
return i.seekPrefixGE(prefix, key, flags)
}
func (i *singleLevelIterator[I, PI, D, PD]) seekPrefixGE(
prefix, key []byte, flags base.SeekGEFlags,
) (kv *base.InternalKV) {
// NOTE: prefix is only used for bloom filter checking and not later work in
// this method. Hence, we can use the existing iterator position if the last
// SeekPrefixGE did not fail bloom filter matching.
err := i.err
i.err = nil // clear cached iteration error
if i.useFilterBlock {
if !i.lastBloomFilterMatched {
// Iterator is not positioned based on last seek.
flags = flags.DisableTrySeekUsingNext()
}
i.lastBloomFilterMatched = false
// Check prefix bloom filter.
var mayContain bool
mayContain, i.err = i.bloomFilterMayContain(prefix)
if i.err != nil || !mayContain {
// In the i.err == nil case, this invalidation may not be necessary for
// correctness, and may be a place to optimize later by reusing the
// already loaded block. It was necessary in earlier versions of the code
// since the caller was allowed to call Next when SeekPrefixGE returned
// nil. This is no longer allowed.
PD(&i.data).Invalidate()
return nil
}
i.lastBloomFilterMatched = true
}
if flags.TrySeekUsingNext() {
// The i.exhaustedBounds comparison indicates that the upper bound was
// reached. The i.data.isDataInvalidated() indicates that the sstable was
// exhausted.
if (i.exhaustedBounds == +1 || PD(&i.data).IsDataInvalidated()) && err == nil {
// Already exhausted, so return nil.
return nil
}
if err != nil {
// The current iterator position cannot be used.
flags = flags.DisableTrySeekUsingNext()
}
// INVARIANT: flags.TrySeekUsingNext() => err == nil &&
// !i.exhaustedBounds==+1 && !i.data.isDataInvalidated(). That is,
// data-exhausted and bounds-exhausted, as defined earlier, are both
// false. Ths makes it safe to clear out i.exhaustedBounds and i.err
// before calling into seekGEHelper.
}
// Bloom filter matches, or skipped, so this method will position the
// iterator.
i.exhaustedBounds = 0
boundsCmp := i.boundsCmp
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
i.positionedUsingLatestBounds = true
return i.maybeVerifyKey(i.seekGEHelper(key, boundsCmp, flags))
}
// shouldUseFilterBlock returns whether we should use the filter block, based on
// its length and the size limit.
func shouldUseFilterBlock(reader *Reader, filterBlockSizeLimit FilterBlockSizeLimit) bool {
return reader.tableFilter != nil && reader.filterBH.Length <= uint64(filterBlockSizeLimit)
}
func (i *singleLevelIterator[I, PI, D, PD]) bloomFilterMayContain(prefix []byte) (bool, error) {
// Check prefix bloom filter.
prefixToCheck := prefix
if i.transforms.HasSyntheticPrefix() {
// We have to remove the synthetic prefix.
var ok bool
prefixToCheck, ok = bytes.CutPrefix(prefix, i.transforms.SyntheticPrefix())
if !ok {
// This prefix will not be found inside this table.
return false, nil
}
}
dataH, err := i.reader.readFilterBlock(i.ctx, i.readBlockEnv, i.indexFilterRH, i.reader.filterBH)
if err != nil {
return false, err
}
defer dataH.Release()
return i.reader.tableFilter.mayContain(dataH.BlockData(), prefixToCheck), nil
}
// virtualLast should only be called if i.vReader != nil.
func (i *singleLevelIterator[I, PI, D, PD]) virtualLast() *base.InternalKV {
if i.vState == nil {
panic("pebble: invalid call to virtualLast")
}
if !i.endKeyInclusive {
// Trivial case.
return i.SeekLT(i.upper, base.SeekLTFlagsNone)
}
return i.virtualLastSeekLE()
}
// virtualLastSeekLE is called by virtualLast to do a SeekLE as part of a
// virtualLast. Consider generalizing this into a SeekLE() if there are other
// uses of this method in the future. Does a SeekLE on the upper bound of the
// file/iterator.
func (i *singleLevelIterator[I, PI, D, PD]) virtualLastSeekLE() *base.InternalKV {
// Callers of SeekLE don't know about virtual sstable bounds, so we may
// have to internally restrict the bounds.
//
// TODO(bananabrick): We can optimize this check away for the level iter
// if necessary.
if !i.endKeyInclusive {
panic("unexpected virtualLastSeekLE with exclusive upper bounds")
}
key := i.upper
i.exhaustedBounds = 0
i.err = nil // clear cached iteration error
// Seek optimization only applies until iterator is first positioned with a
// SeekGE or SeekLT after SetBounds.
i.boundsCmp = 0
i.positionedUsingLatestBounds = true
indexOk := PI(&i.index).SeekGE(key)
// We can have multiple internal keys with the same user key as the seek
// key. In that case, we want the last (greatest) internal key.
//
// INVARIANT: One of two cases:
// A. !indexOk. There is no data block with index key >= key. So all keys
// in the last data block are < key.
// B. i.index.Separator() >= key. This data block may have some keys > key.
//
// Subcases of B:
// B1. Separator() == key. This is when loop iteration happens.
// Since Separator() >= largest data key in the block, the largest data
// key in this block is <= key.
// B2. Separator() > key. Loop iteration will not happen.
//
// NB: We can avoid this Next()ing if we just implement a blockIter.SeekLE().
// This might be challenging to do correctly, so impose regular operations
// for now.
// TODO(jackson): Consider implementing SeekLE since it's easier to do in
// colblk.
for indexOk && bytes.Equal(PI(&i.index).Separator(), key) {
indexOk = PI(&i.index).Next()
}
if !indexOk {
// Cases A or B1 where B1 exhausted all blocks. In both cases the last block
// has all keys <= key. skipBackward enforces the lower bound.
return i.skipBackward()
}
// Case B. We are here because we were originally in case B2, or we were in B1