-
Notifications
You must be signed in to change notification settings - Fork 466
/
reader.go
2712 lines (2473 loc) · 83.4 KB
/
reader.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
// of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
package sstable
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"os"
"sort"
"sync"
"unsafe"
"github.com/cespare/xxhash/v2"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/pebble/internal/base"
"github.com/cockroachdb/pebble/internal/cache"
"github.com/cockroachdb/pebble/internal/crc"
"github.com/cockroachdb/pebble/internal/invariants"
"github.com/cockroachdb/pebble/internal/private"
"github.com/cockroachdb/pebble/internal/rangedel"
"github.com/cockroachdb/pebble/vfs"
)
var errCorruptIndexEntry = base.CorruptionErrorf("pebble/table: corrupt index entry")
var errReaderClosed = errors.New("pebble/table: reader is closed")
const (
// Constants for dynamic readahead of data blocks. Note that the size values
// make sense as some multiple of the default block size; and they should
// both be larger than the default block size.
minFileReadsForReadahead = 2
// TODO(bilal): Have the initial size value be a factor of the block size,
// as opposed to a hardcoded value.
initialReadaheadSize = 64 << 10 /* 64KB */
maxReadaheadSize = 256 << 10 /* 256KB */
)
// decodeBlockHandle returns the block handle encoded at the start of src, as
// well as the number of bytes it occupies. It returns zero if given invalid
// input.
func decodeBlockHandle(src []byte) (BlockHandle, int) {
offset, n := binary.Uvarint(src)
length, m := binary.Uvarint(src[n:])
if n == 0 || m == 0 {
return BlockHandle{}, 0
}
return BlockHandle{offset, length}, n + m
}
func encodeBlockHandle(dst []byte, b BlockHandle) int {
n := binary.PutUvarint(dst, b.Offset)
m := binary.PutUvarint(dst[n:], b.Length)
return n + m
}
// block is a []byte that holds a sequence of key/value pairs plus an index
// over those pairs.
type block []byte
// Iterator iterates over an entire table of data.
type Iterator interface {
base.InternalIterator
SetCloseHook(fn func(i Iterator) error)
}
// singleLevelIterator iterates over an entire table of data. To seek for a given
// key, it first looks in the index for the block that contains that key, and then
// looks inside that block.
type singleLevelIterator struct {
cmp Compare
// Global lower/upper bound for the iterator.
lower []byte
upper []byte
// Per-block lower/upper bound. Nil if the bound does not apply to the block
// because we determined the block lies completely within the bound.
blockLower []byte
blockUpper []byte
reader *Reader
index blockIter
data blockIter
dataRS readaheadState
dataBH BlockHandle
err error
closeHook func(i Iterator) error
// boundsCmp and positionedUsingLatestBounds are for optimizing iteration
// that uses multiple adjacent bounds. The seek after setting a new bound
// can use the fact that the iterator is either within the previous bounds
// or exactly one key before or after the bounds. If the new bounds is
// after/before the previous bounds, and we are already positioned at a
// block that is relevant for the new bounds, we can try to first position
// using Next/Prev (repeatedly) instead of doing a more expensive seek.
//
// When there are wide files at higher levels that match the bounds
// but don't have any data for the bound, we will already be
// positioned at the key beyond the bounds and won't need to do much
// work -- given that most data is in L6, such files are likely to
// dominate the performance of the mergingIter, and may be the main
// benefit of this performance optimization (of course it also helps
// when the file that has the data has successive seeks that stay in
// the same block).
//
// Specifically, boundsCmp captures the relationship between the previous
// and current bounds, if the iterator had been positioned after setting
// the previous bounds. If it was not positioned, i.e., Seek/First/Last
// were not called, we don't know where it is positioned and cannot
// optimize.
//
// Example: Bounds moving forward, and iterator exhausted in forward direction.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) can use next (the optimization also requires that j
// is within the block, but that is not for correctness, but to limit the
// optimization to when it will actually be an optimization).
//
// Example: Bounds moving forward.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) can use next.
//
// Example: Bounds moving forward, but iterator not positioned using previous
// bounds.
// bounds = [f, h), ^ shows block iterator position
// file contents [ a b c d e f g h i j k ]
// ^
// new bounds = [i, j). Iterator is at j since it was never positioned using
// [f, h). So positionedUsingLatestBounds=false, and boundsCmp is set to 0.
// SeekGE(i) will not use next.
//
// Example: Bounds moving forward and sparse file
// bounds = [f, h), ^ shows block iterator position
// file contents [ a z ]
// ^
// new bounds = [j, k). Since positionedUsingLatestBounds=true, boundsCmp is
// set to +1. SeekGE(j) notices that the iterator is already past j and does
// not need to do anything.
//
// Similar examples can be constructed for backward iteration.
boundsCmp int
positionedUsingLatestBounds bool
// exhaustedBounds represents whether the iterator is exhausted for
// iteration by reaching the upper or lower bound. +1 when exhausted
// the upper bound, -1 when exhausted the lower bound, and 0 when
// neither. It is used for invariant checking.
exhaustedBounds int8
lastBloomFilterMatched bool
}
// singleLevelIterator implements the base.InternalIterator interface.
var _ base.InternalIterator = (*singleLevelIterator)(nil)
var singleLevelIterPool = sync.Pool{
New: func() interface{} {
i := &singleLevelIterator{}
// Note: this is a no-op if invariants are disabled or race is enabled.
invariants.SetFinalizer(i, checkSingleLevelIterator)
return i
},
}
var twoLevelIterPool = sync.Pool{
New: func() interface{} {
i := &twoLevelIterator{}
// Note: this is a no-op if invariants are disabled or race is enabled.
invariants.SetFinalizer(i, checkTwoLevelIterator)
return i
},
}
func checkSingleLevelIterator(obj interface{}) {
i := obj.(*singleLevelIterator)
if p := i.data.cacheHandle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.data.cacheHandle is not nil: %p\n", p)
os.Exit(1)
}
if p := i.index.cacheHandle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.index.cacheHandle is not nil: %p\n", p)
os.Exit(1)
}
}
func checkTwoLevelIterator(obj interface{}) {
i := obj.(*twoLevelIterator)
if p := i.data.cacheHandle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.data.cacheHandle is not nil: %p\n", p)
os.Exit(1)
}
if p := i.index.cacheHandle.Get(); p != nil {
fmt.Fprintf(os.Stderr, "singleLevelIterator.index.cacheHandle is not nil: %p\n", p)
os.Exit(1)
}
}
// init initializes a singleLevelIterator for reading from the table. It is
// synonmous with Reader.NewIter, but allows for reusing of the iterator
// between different Readers.
func (i *singleLevelIterator) init(r *Reader, lower, upper []byte) error {
if r.err != nil {
return r.err
}
indexH, err := r.readIndex()
if err != nil {
return err
}
i.lower = lower
i.upper = upper
i.reader = r
i.cmp = r.Compare
err = i.index.initHandle(i.cmp, indexH, r.Properties.GlobalSeqNum)
if err != nil {
// blockIter.Close releases indexH and always returns a nil error
_ = i.index.Close()
return err
}
i.dataRS.size = initialReadaheadSize
return nil
}
// setupForCompaction sets up the singleLevelIterator for use with compactionIter.
// Currently, it skips readahead ramp-up. It should be called after init is called.
func (i *singleLevelIterator) setupForCompaction() {
if i.reader.fs != nil {
f, err := i.reader.fs.Open(i.reader.filename, vfs.SequentialReadsOption)
if err == nil {
// Given that this iterator is for a compaction, we can assume that it
// will be read sequentially and we can skip the readahead ramp-up.
i.dataRS.sequentialFile = f
}
}
}
func (i *singleLevelIterator) resetForReuse() singleLevelIterator {
return singleLevelIterator{
index: i.index.resetForReuse(),
data: i.data.resetForReuse(),
}
}
func (i *singleLevelIterator) initBounds() {
// Trim the iteration bounds for the current block. We don't have to check
// the bounds on each iteration if the block is entirely contained within the
// iteration bounds.
i.blockLower = i.lower
if i.blockLower != nil {
key, _ := i.data.First()
if key != nil && i.cmp(i.blockLower, key.UserKey) < 0 {
// The lower-bound is less than the first key in the block. No need
// to check the lower-bound again for this block.
i.blockLower = nil
}
}
i.blockUpper = i.upper
if i.blockUpper != nil && i.cmp(i.blockUpper, i.index.Key().UserKey) > 0 {
// The upper-bound is greater than the index key which itself is greater
// than or equal to every key in the block. No need to check the
// upper-bound again for this block.
i.blockUpper = nil
}
}
// loadBlock loads the block at the current index position and leaves i.data
// unpositioned. If unsuccessful, it sets i.err to any error encountered, which
// may be nil if we have simply exhausted the entire table.
func (i *singleLevelIterator) loadBlock() bool {
// Ensure the data block iterator is invalidated even if loading of the block
// fails.
i.data.invalidate()
if !i.index.Valid() {
return false
}
// Load the next block.
v := i.index.Value()
var n int
i.dataBH, n = decodeBlockHandle(v)
if n == 0 || n != len(v) {
i.err = errCorruptIndexEntry
return false
}
block, err := i.reader.readBlock(i.dataBH, i.reader.transformMaybeSwapSuffix, &i.dataRS)
if err != nil {
i.err = err
return false
}
i.err = i.data.initHandle(i.cmp, block, i.reader.Properties.GlobalSeqNum)
if i.err != nil {
// The block is partially loaded, and we don't want it to appear valid.
i.data.invalidate()
return false
}
i.initBounds()
return true
}
func (i *singleLevelIterator) initBoundsForAlreadyLoadedBlock() {
if i.data.firstKey.UserKey == nil {
panic("initBoundsForAlreadyLoadedBlock must not be called on empty or corrupted block")
}
i.blockLower = i.lower
if i.blockLower != nil {
if i.data.firstKey.UserKey != nil && i.cmp(i.blockLower, i.data.firstKey.UserKey) < 0 {
// The lower-bound is less than the first key in the block. No need
// to check the lower-bound again for this block.
i.blockLower = nil
}
}
i.blockUpper = i.upper
if i.blockUpper != nil && i.cmp(i.blockUpper, i.index.Key().UserKey) > 0 {
// The upper-bound is greater than the index key which itself is greater
// than or equal to every key in the block. No need to check the
// upper-bound again for this block.
i.blockUpper = nil
}
}
// The number of times to call Next/Prev in a block before giving up and seeking.
// The value of 4 is arbitrary.
// TODO(sumeer): experiment with dynamic adjustment based on the history of
// seeks for a particular iterator.
const numStepsBeforeSeek = 4
func (i *singleLevelIterator) trySeekGEUsingNextWithinBlock(
key []byte,
) (k *InternalKey, v []byte, done bool) {
k, v = i.data.Key(), i.data.Value()
for j := 0; j < numStepsBeforeSeek; j++ {
curKeyCmp := i.cmp(k.UserKey, key)
if curKeyCmp >= 0 {
if i.blockUpper != nil && i.cmp(k.UserKey, i.blockUpper) >= 0 {
i.exhaustedBounds = +1
return nil, nil, true
}
return k, v, true
}
k, v = i.data.Next()
if k == nil {
break
}
}
return k, v, false
}
func (i *singleLevelIterator) trySeekLTUsingPrevWithinBlock(
key []byte,
) (k *InternalKey, v []byte, done bool) {
k, v = i.data.Key(), i.data.Value()
for j := 0; j < numStepsBeforeSeek; j++ {
curKeyCmp := i.cmp(k.UserKey, key)
if curKeyCmp < 0 {
if i.blockLower != nil && i.cmp(k.UserKey, i.blockLower) < 0 {
i.exhaustedBounds = -1
return nil, nil, true
}
return k, v, true
}
k, v = i.data.Prev()
if k == nil {
break
}
}
return k, v, false
}
func (i *singleLevelIterator) recordOffset() uint64 {
offset := i.dataBH.Offset
if i.data.Valid() {
// - i.dataBH.Length/len(i.data.data) is the compression ratio. If
// uncompressed, this is 1.
// - i.data.nextOffset is the uncompressed position of the current record
// in the block.
// - i.dataBH.Offset is the offset of the block in the sstable before
// decompression.
offset += (uint64(i.data.nextOffset) * i.dataBH.Length) / uint64(len(i.data.data))
} else {
// Last entry in the block must increment bytes iterated by the size of the block trailer
// and restart points.
offset += i.dataBH.Length + blockTrailerLen
}
return offset
}
// SeekGE implements internalIterator.SeekGE, as documented in the pebble
// package. Note that SeekGE only checks the upper bound. It is up to the
// caller to ensure that key is greater than or equal to the lower bound.
func (i *singleLevelIterator) SeekGE(key []byte) (*InternalKey, []byte) {
i.exhaustedBounds = 0
i.err = nil // clear cached iteration error
boundsCmp := i.boundsCmp
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
i.positionedUsingLatestBounds = true
return i.seekGEHelper(key, boundsCmp, false /* trySeekUsingNext */)
}
// seekGEHelper contains the common functionality for SeekGE and SeekPrefixGE.
func (i *singleLevelIterator) seekGEHelper(
key []byte, boundsCmp int, trySeekUsingNext bool,
) (*InternalKey, []byte) {
var dontSeekWithinBlock bool
if !i.data.isDataInvalidated() && !i.index.isDataInvalidated() && i.data.Valid() && i.index.Valid() &&
boundsCmp > 0 && i.cmp(key, i.index.Key().UserKey) <= 0 {
// Fast-path: The bounds have moved forward and this SeekGE is
// respecting the lower bound (guaranteed by Iterator). We know that
// the iterator must already be positioned within or just outside the
// previous bounds. Therefore it cannot be positioned at a block (or
// the position within that block) that is ahead of the seek position.
// However it can be positioned at an earlier block. This fast-path to
// use Next() on the block is only applied when we are already at the
// block that the slow-path (the else-clause) would load -- this is
// the motivation for the i.cmp(key, i.index.Key().UserKey) <= 0
// predicate.
i.initBoundsForAlreadyLoadedBlock()
ikey, val, done := i.trySeekGEUsingNextWithinBlock(key)
if done {
return ikey, val
}
if ikey == nil {
// Done with this block.
dontSeekWithinBlock = true
}
} else {
// Cannot use bounds monotonicity. But may be able to optimize if
// caller claimed externally known invariant represented by
// trySeekUsingNext=true.
if trySeekUsingNext {
// seekPrefixGE has already ensured
// !i.data.isDataInvalidated() && i.exhaustedBounds != +1
currKey := i.data.Key()
value := i.data.Value()
less := i.cmp(currKey.UserKey, key) < 0
// We could be more sophisticated and confirm that the seek
// position is within the current block before applying this
// optimization. But there may be some benefit even if it is in
// the next block, since we can avoid seeking i.index.
for j := 0; less && j < numStepsBeforeSeek; j++ {
currKey, value = i.Next()
if currKey == nil {
return nil, nil
}
less = i.cmp(currKey.UserKey, key) < 0
}
if !less {
return currKey, value
}
}
// Slow-path.
if ikey, _ := i.index.SeekGE(key); ikey == nil {
// The target key is greater than any key in the sstable. Invalidate the
// block iterator so that a subsequent call to Prev() will return the last
// key in the table.
i.data.invalidate()
return nil, nil
}
if !i.loadBlock() {
return nil, nil
}
}
if !dontSeekWithinBlock {
if ikey, val := i.data.SeekGE(key); ikey != nil {
if i.blockUpper != nil && i.cmp(ikey.UserKey, i.blockUpper) >= 0 {
i.exhaustedBounds = +1
return nil, nil
}
return ikey, val
}
}
return i.skipForward()
}
// SeekPrefixGE implements internalIterator.SeekPrefixGE, as documented in the
// pebble package. Note that SeekPrefixGE only checks the upper bound. It is up
// to the caller to ensure that key is greater than or equal to the lower bound.
func (i *singleLevelIterator) SeekPrefixGE(
prefix, key []byte, trySeekUsingNext bool,
) (*base.InternalKey, []byte) {
k, v := i.seekPrefixGE(prefix, key, trySeekUsingNext, true /* checkFilter */)
return k, v
}
func (i *singleLevelIterator) seekPrefixGE(
prefix, key []byte, trySeekUsingNext bool, checkFilter bool,
) (k *InternalKey, value []byte) {
i.err = nil // clear cached iteration error
if checkFilter && i.reader.tableFilter != nil {
if !i.lastBloomFilterMatched {
// Iterator is not positioned based on last seek.
trySeekUsingNext = false
}
i.lastBloomFilterMatched = false
// Check prefix bloom filter.
var dataH cache.Handle
dataH, i.err = i.reader.readFilter()
if i.err != nil {
i.data.invalidate()
return nil, nil
}
mayContain := i.reader.tableFilter.mayContain(dataH.Get(), prefix)
dataH.Release()
if !mayContain {
// This invalidation may not be necessary for correctness, and may
// be a place to optimize later by reusing the already loaded
// block. It was necessary in earlier versions of the code since
// the caller was allowed to call Next when SeekPrefixGE returned
// nil. This is no longer allowed.
i.data.invalidate()
return nil, nil
}
i.lastBloomFilterMatched = true
}
if trySeekUsingNext && (i.exhaustedBounds == +1 || i.data.isDataInvalidated()) {
// Already exhausted, so return nil.
return nil, nil
}
// Bloom filter matches, or skipped, so this method will position the
// iterator.
i.exhaustedBounds = 0
boundsCmp := i.boundsCmp
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
i.positionedUsingLatestBounds = true
k, value = i.seekGEHelper(key, boundsCmp, trySeekUsingNext)
return k, value
}
// SeekLT implements internalIterator.SeekLT, as documented in the pebble
// package. Note that SeekLT only checks the lower bound. It is up to the
// caller to ensure that key is less than the upper bound.
func (i *singleLevelIterator) SeekLT(key []byte) (*InternalKey, []byte) {
i.exhaustedBounds = 0
i.err = nil // clear cached iteration error
boundsCmp := i.boundsCmp
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
i.positionedUsingLatestBounds = true
var dontSeekWithinBlock bool
if !i.data.isDataInvalidated() && !i.index.isDataInvalidated() && i.data.Valid() && i.index.Valid() &&
boundsCmp < 0 && i.cmp(i.data.firstKey.UserKey, key) < 0 {
// Fast-path: The bounds have moved backward, and this SeekLT is
// respecting the upper bound (guaranteed by Iterator). We know that
// the iterator must already be positioned within or just outside the
// previous bounds. Therefore it cannot be positioned at a block (or
// the position within that block) that is behind the seek position.
// However it can be positioned at a later block. This fast-path to
// use Prev() on the block is only applied when we are already at the
// block that can satisfy this seek -- this is the motivation for the
// the i.cmp(i.data.firstKey.UserKey, key) < 0 predicate.
i.initBoundsForAlreadyLoadedBlock()
ikey, val, done := i.trySeekLTUsingPrevWithinBlock(key)
if done {
return ikey, val
}
if ikey == nil {
// Done with this block.
dontSeekWithinBlock = true
}
} else {
if ikey, _ := i.index.SeekGE(key); ikey == nil {
i.index.Last()
}
if !i.loadBlock() {
return nil, nil
}
}
if !dontSeekWithinBlock {
if ikey, val := i.data.SeekLT(key); ikey != nil {
if i.blockLower != nil && i.cmp(ikey.UserKey, i.blockLower) < 0 {
i.exhaustedBounds = -1
return nil, nil
}
return ikey, val
}
}
// The index contains separator keys which may lie between
// user-keys. Consider the user-keys:
//
// complete
// ---- new block ---
// complexion
//
// If these two keys end one block and start the next, the index key may
// be chosen as "compleu". The SeekGE in the index block will then point
// us to the block containing "complexion". If this happens, we want the
// last key from the previous data block.
return i.skipBackward()
}
// First implements internalIterator.First, as documented in the pebble
// package. Note that First only checks the upper bound. It is up to the caller
// to ensure that key is greater than or equal to the lower bound (e.g. via a
// call to SeekGE(lower)).
func (i *singleLevelIterator) First() (*InternalKey, []byte) {
if i.lower != nil {
panic("singleLevelIterator.First() used despite lower bound")
}
i.positionedUsingLatestBounds = true
return i.firstInternal()
}
// firstInternal is a helper used for absolute positioning in a single-level
// index file, or for positioning in the second-level index in a two-level
// index file. For the latter, one cannot make any claims about absolute
// positioning.
func (i *singleLevelIterator) firstInternal() (*InternalKey, []byte) {
i.exhaustedBounds = 0
i.err = nil // clear cached iteration error
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
if ikey, _ := i.index.First(); ikey == nil {
i.data.invalidate()
return nil, nil
}
if !i.loadBlock() {
return nil, nil
}
if ikey, val := i.data.First(); ikey != nil {
if i.blockUpper != nil && i.cmp(ikey.UserKey, i.blockUpper) >= 0 {
i.exhaustedBounds = +1
return nil, nil
}
return ikey, val
}
return i.skipForward()
}
// Last implements internalIterator.Last, as documented in the pebble
// package. Note that Last only checks the lower bound. It is up to the caller
// to ensure that key is less than the upper bound (e.g. via a call to
// SeekLT(upper))
func (i *singleLevelIterator) Last() (*InternalKey, []byte) {
if i.upper != nil {
panic("singleLevelIterator.Last() used despite upper bound")
}
i.positionedUsingLatestBounds = true
return i.lastInternal()
}
// lastInternal is a helper used for absolute positioning in a single-level
// index file, or for positioning in the second-level index in a two-level
// index file. For the latter, one cannot make any claims about absolute
// positioning.
func (i *singleLevelIterator) lastInternal() (*InternalKey, []byte) {
i.exhaustedBounds = 0
i.err = nil // clear cached iteration error
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
if ikey, _ := i.index.Last(); ikey == nil {
i.data.invalidate()
return nil, nil
}
if !i.loadBlock() {
return nil, nil
}
if ikey, val := i.data.Last(); ikey != nil {
if i.blockLower != nil && i.cmp(ikey.UserKey, i.blockLower) < 0 {
i.exhaustedBounds = -1
return nil, nil
}
return ikey, val
}
return i.skipBackward()
}
// Next implements internalIterator.Next, as documented in the pebble
// package.
// Note: compactionIterator.Next mirrors the implementation of Iterator.Next
// due to performance. Keep the two in sync.
func (i *singleLevelIterator) Next() (*InternalKey, []byte) {
if i.exhaustedBounds == +1 {
panic("Next called even though exhausted upper bound")
}
i.exhaustedBounds = 0
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
if i.err != nil {
return nil, nil
}
if key, val := i.data.Next(); key != nil {
if i.blockUpper != nil && i.cmp(key.UserKey, i.blockUpper) >= 0 {
i.exhaustedBounds = +1
return nil, nil
}
return key, val
}
return i.skipForward()
}
// Prev implements internalIterator.Prev, as documented in the pebble
// package.
func (i *singleLevelIterator) Prev() (*InternalKey, []byte) {
if i.exhaustedBounds == -1 {
panic("Prev called even though exhausted lower bound")
}
i.exhaustedBounds = 0
// Seek optimization only applies until iterator is first positioned after SetBounds.
i.boundsCmp = 0
if i.err != nil {
return nil, nil
}
if key, val := i.data.Prev(); key != nil {
if i.blockLower != nil && i.cmp(key.UserKey, i.blockLower) < 0 {
i.exhaustedBounds = -1
return nil, nil
}
return key, val
}
return i.skipBackward()
}
func (i *singleLevelIterator) skipForward() (*InternalKey, []byte) {
for {
if key, _ := i.index.Next(); key == nil {
i.data.invalidate()
break
}
if !i.loadBlock() {
if i.err != nil {
break
}
continue
}
if key, val := i.data.First(); key != nil {
if i.blockUpper != nil && i.cmp(key.UserKey, i.blockUpper) >= 0 {
i.exhaustedBounds = +1
return nil, nil
}
return key, val
}
}
return nil, nil
}
func (i *singleLevelIterator) skipBackward() (*InternalKey, []byte) {
for {
if key, _ := i.index.Prev(); key == nil {
i.data.invalidate()
break
}
if !i.loadBlock() {
if i.err != nil {
break
}
continue
}
key, val := i.data.Last()
if key == nil {
return nil, nil
}
if i.blockLower != nil && i.cmp(key.UserKey, i.blockLower) < 0 {
i.exhaustedBounds = -1
return nil, nil
}
return key, val
}
return nil, nil
}
// Returns true if the data block iterator points to a valid entry. If a
// positioning operation (e.g. SeekGE, SeekLT, Next, Prev, etc) returns (nil,
// nil) and valid() is true, the iterator has reached either the upper or lower
// bound.
func (i *singleLevelIterator) valid() bool {
return i.data.Valid()
}
// Error implements internalIterator.Error, as documented in the pebble
// package.
func (i *singleLevelIterator) Error() error {
if err := i.data.Error(); err != nil {
return err
}
return i.err
}
// SetCloseHook sets a function that will be called when the iterator is
// closed.
func (i *singleLevelIterator) SetCloseHook(fn func(i Iterator) error) {
i.closeHook = fn
}
func firstError(err0, err1 error) error {
if err0 != nil {
return err0
}
return err1
}
// Close implements internalIterator.Close, as documented in the pebble
// package.
func (i *singleLevelIterator) Close() error {
var err error
if i.closeHook != nil {
err = firstError(err, i.closeHook(i))
}
err = firstError(err, i.data.Close())
err = firstError(err, i.index.Close())
if i.dataRS.sequentialFile != nil {
err = firstError(err, i.dataRS.sequentialFile.Close())
i.dataRS.sequentialFile = nil
}
err = firstError(err, i.err)
*i = i.resetForReuse()
singleLevelIterPool.Put(i)
return err
}
func (i *singleLevelIterator) String() string {
return i.reader.fileNum.String()
}
// Deterministic disabling of the bounds-based optimization that avoids seeking.
// Uses the iterator pointer, since we want diversity in iterator behavior for
// the same SetBounds call. Used for tests.
func disableBoundsOpt(bound []byte, ptr uintptr) bool {
// Fibonacci hash https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
simpleHash := (11400714819323198485 * uint64(ptr)) >> 63
return bound[len(bound)-1]&byte(1) == 0 && simpleHash == 0
}
// SetBounds implements internalIterator.SetBounds, as documented in the pebble
// package.
func (i *singleLevelIterator) SetBounds(lower, upper []byte) {
i.boundsCmp = 0
if i.positionedUsingLatestBounds {
if i.upper != nil && lower != nil && i.cmp(i.upper, lower) <= 0 {
i.boundsCmp = +1
if invariants.Enabled && disableBoundsOpt(lower, uintptr(unsafe.Pointer(i))) {
i.boundsCmp = 0
}
} else if i.lower != nil && upper != nil && i.cmp(upper, i.lower) <= 0 {
i.boundsCmp = -1
if invariants.Enabled && disableBoundsOpt(upper, uintptr(unsafe.Pointer(i))) {
i.boundsCmp = 0
}
}
i.positionedUsingLatestBounds = false
}
i.lower = lower
i.upper = upper
i.blockLower = nil
i.blockUpper = nil
}
// compactionIterator is similar to Iterator but it increments the number of
// bytes that have been iterated through.
type compactionIterator struct {
*singleLevelIterator
bytesIterated *uint64
prevOffset uint64
}
// compactionIterator implements the base.InternalIterator interface.
var _ base.InternalIterator = (*compactionIterator)(nil)
func (i *compactionIterator) String() string {
return i.reader.fileNum.String()
}
func (i *compactionIterator) SeekGE(key []byte) (*InternalKey, []byte) {
panic("pebble: SeekGE unimplemented")
}
func (i *compactionIterator) SeekPrefixGE(
prefix, key []byte, trySeekUsingNext bool,
) (*base.InternalKey, []byte) {
panic("pebble: SeekPrefixGE unimplemented")
}
func (i *compactionIterator) SeekLT(key []byte) (*InternalKey, []byte) {
panic("pebble: SeekLT unimplemented")
}
func (i *compactionIterator) First() (*InternalKey, []byte) {
i.err = nil // clear cached iteration error
return i.skipForward(i.singleLevelIterator.First())
}
func (i *compactionIterator) Last() (*InternalKey, []byte) {
panic("pebble: Last unimplemented")
}
// Note: compactionIterator.Next mirrors the implementation of Iterator.Next
// due to performance. Keep the two in sync.
func (i *compactionIterator) Next() (*InternalKey, []byte) {
if i.err != nil {
return nil, nil
}
return i.skipForward(i.data.Next())
}
func (i *compactionIterator) Prev() (*InternalKey, []byte) {
panic("pebble: Prev unimplemented")
}
func (i *compactionIterator) skipForward(key *InternalKey, val []byte) (*InternalKey, []byte) {
if key == nil {
for {
if key, _ := i.index.Next(); key == nil {
break
}
if !i.loadBlock() {
if i.err != nil {
break
}
continue
}
if key, val = i.data.First(); key != nil {
break
}
}
}
curOffset := i.recordOffset()
*i.bytesIterated += uint64(curOffset - i.prevOffset)
i.prevOffset = curOffset
return key, val
}
type twoLevelIterator struct {
singleLevelIterator
topLevelIndex blockIter
}
// twoLevelIterator implements the base.InternalIterator interface.
var _ base.InternalIterator = (*twoLevelIterator)(nil)
// loadIndex loads the index block at the current top level index position and
// leaves i.index unpositioned. If unsuccessful, it gets i.err to any error
// encountered, which may be nil if we have simply exhausted the entire table.
// This is used for two level indexes.
func (i *twoLevelIterator) loadIndex() bool {
// Ensure the data block iterator is invalidated even if loading of the
// index fails.
i.data.invalidate()
if !i.topLevelIndex.Valid() {
i.index.offset = 0
i.index.restarts = 0
return false
}
h, n := decodeBlockHandle(i.topLevelIndex.Value())
if n == 0 || n != len(i.topLevelIndex.Value()) {
i.err = base.CorruptionErrorf("pebble/table: corrupt top level index entry")
return false
}
indexBlock, err := i.reader.readBlock(h, i.reader.transformMaybeSwapSuffix, nil /* readaheadState */)
if err != nil {
i.err = err
return false
}
i.err = i.index.initHandle(i.cmp, indexBlock, i.reader.Properties.GlobalSeqNum)
return i.err == nil
}
func (i *twoLevelIterator) init(r *Reader, lower, upper []byte) error {
if r.err != nil {
return r.err
}
topLevelIndexH, err := r.readIndex()
if err != nil {
return err
}
i.lower = lower
i.upper = upper
i.reader = r
i.cmp = r.Compare
err = i.topLevelIndex.initHandle(i.cmp, topLevelIndexH, r.Properties.GlobalSeqNum)
if err != nil {
// blockIter.Close releases topLevelIndexH and always returns a nil error
_ = i.topLevelIndex.Close()
return err
}
return nil
}
func (i *twoLevelIterator) String() string {
return i.reader.fileNum.String()
}
// SeekGE implements internalIterator.SeekGE, as documented in the pebble
// package. Note that SeekGE only checks the upper bound. It is up to the
// caller to ensure that key is greater than or equal to the lower bound.
func (i *twoLevelIterator) SeekGE(key []byte) (*InternalKey, []byte) {