-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
mvcc.go
8634 lines (8038 loc) · 319 KB
/
mvcc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 The Cockroach Authors.
//
// Use of this software is governed by the CockroachDB Software License
// included in the /LICENSE file.
package storage
import (
"bytes"
"context"
"fmt"
"hash/fnv"
"io"
"math"
"runtime"
"sort"
"sync"
"time"
"github.com/cockroachdb/cockroach/pkg/build"
"github.com/cockroachdb/cockroach/pkg/col/coldata"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/kv/kvnemesis/kvnemesisutil"
"github.com/cockroachdb/cockroach/pkg/kv/kvpb"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/concurrency/lock"
"github.com/cockroachdb/cockroach/pkg/kv/kvserver/uncertainty"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/settings"
"github.com/cockroachdb/cockroach/pkg/settings/cluster"
"github.com/cockroachdb/cockroach/pkg/storage/enginepb"
"github.com/cockroachdb/cockroach/pkg/storage/fs"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/admission"
"github.com/cockroachdb/cockroach/pkg/util/bufalloc"
"github.com/cockroachdb/cockroach/pkg/util/buildutil"
"github.com/cockroachdb/cockroach/pkg/util/envutil"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/iterutil"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/mon"
"github.com/cockroachdb/cockroach/pkg/util/protoutil"
"github.com/cockroachdb/cockroach/pkg/util/timeutil"
"github.com/cockroachdb/cockroach/pkg/util/tracing"
"github.com/cockroachdb/cockroach/pkg/util/uuid"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/pebble"
)
const (
// MVCCVersionTimestampSize is the size of the timestamp portion of MVCC
// version keys (used to update stats).
MVCCVersionTimestampSize int64 = 12
// RecommendedMaxOpenFiles is the recommended value for RocksDB's
// max_open_files option.
RecommendedMaxOpenFiles = 10000
// MinimumMaxOpenFiles is the minimum value that RocksDB's max_open_files
// option can be set to. While this should be set as high as possible, the
// minimum total for a single store node must be under 2048 for Windows
// compatibility.
MinimumMaxOpenFiles = 1700
// MaxConflictsPerLockConflictErrorDefault is the default value for maximum
// number of locks reported by ExportToSST and Scan operations in
// LockConflictError is set to half of the maximum lock table size. This value
// is subject to tuning in real environment as we have more data available.
MaxConflictsPerLockConflictErrorDefault = 5000
// TargetBytesPerLockConflictErrorDefault is the default value for maximum
// size of locks reported by ExportToSST and Scan operations in
// LockConflictError. This value
// is subject to tuning in real environment as we have more data available.
TargetBytesPerLockConflictErrorDefault = 8388608
)
var minWALSyncInterval = settings.RegisterDurationSetting(
settings.ApplicationLevel,
"rocksdb.min_wal_sync_interval",
"minimum duration between syncs of the RocksDB WAL",
0*time.Millisecond,
settings.NonNegativeDurationWithMaximum(1*time.Second),
)
// MaxConflictsPerLockConflictError sets maximum number of locks returned in
// LockConflictError in operations that return multiple locks per error.
var MaxConflictsPerLockConflictError = settings.RegisterIntSetting(
settings.ApplicationLevel,
"storage.mvcc.max_intents_per_error",
"maximum number of locks returned in errors during evaluation",
MaxConflictsPerLockConflictErrorDefault,
settings.WithName("storage.mvcc.max_conflicts_per_lock_conflict_error"),
)
// TargetBytesPerLockConflictError sets target bytes for collected intents with
// LockConflictError. This setting will stop collecting intents when total intent
// size exceeding the target threshold.
var TargetBytesPerLockConflictError = settings.RegisterIntSetting(
settings.ApplicationLevel,
"storage.mvcc.target_intent_bytes_per_error",
"maximum total lock size returned in errors during evaluation",
TargetBytesPerLockConflictErrorDefault,
settings.WithName("storage.mvcc.target_bytes_per_lock_conflict_error"),
)
// getMaxConcurrentCompactions wraps the maxConcurrentCompactions env var in a
// func that may be installed on Options.MaxConcurrentCompactions. It also
// imposes a floor on the max, so that an engine is always created with at least
// 1 slot for a compactions.
//
// NB: This function inspects the environment every time it's called. This is
// okay, because Engine construction in NewPebble will invoke it and store the
// value on the Engine itself.
func getMaxConcurrentCompactions() int {
n := envutil.EnvOrDefaultInt(
"COCKROACH_CONCURRENT_COMPACTIONS", func() int {
// The old COCKROACH_ROCKSDB_CONCURRENCY environment variable was never
// documented, but customers were told about it and use today in
// production. We don't want to break them, so if the new env var
// is unset but COCKROACH_ROCKSDB_CONCURRENCY is set, use the old env
// var's value. This old env var has a wart in that it's expressed as a
// number of concurrency slots to make available to both flushes and
// compactions (a vestige of the corresponding RocksDB option's
// mechanics). We need to adjust it to be in terms of just compaction
// concurrency by subtracting the flushing routine's dedicated slot.
//
// TODO(jackson): Should envutil expose its `getEnv` internal func for
// cases like this where we actually want to know whether it's present
// or not; not just fallback to a default?
if oldV := envutil.EnvOrDefaultInt("COCKROACH_ROCKSDB_CONCURRENCY", 0); oldV > 0 {
return oldV - 1
}
// By default use up to min(numCPU-1, 3) threads for background
// compactions per store (reserving the final process for flushes).
const max = 3
if n := runtime.GOMAXPROCS(0); n-1 < max {
return n - 1
}
return max
}())
if n < 1 {
return 1
}
return n
}
// l0SubLevelCompactionConcurrency is the sub-level threshold at which to
// allow an increase in compaction concurrency. The maximum is still
// controlled by pebble.Options.MaxConcurrentCompactions. The default of 2
// allows an additional compaction (so total 1 + 1 = 2 compactions) when the
// sub-level count is 2, and increments concurrency by 1 whenever sub-level
// count increases by 2 (so 1 + 2 = 3 compactions) when sub-level count is 4,
// and so on, i.e., floor(1 + l/2), where l is the number of sub-levels. See
// the logic in
// https://github.com/cockroachdb/pebble/blob/86593692e09f904f4ea739e065074f44f40ec9ba/compaction_picker.go#L1204-L1220.
//
// We abbreviate l0SubLevelCompactionConcurrency to lslcc below. And all the
// discussion below is in units of compaction concurrency. Let l represent the
// current sub-level count. MaxConcurrentCompactions is a constant and not a
// function of l. The upper bound on concurrent compactions, that we computed
// above, is represented as upper-bound-cc(lslcc, l), since it is a function
// of both lslcc and l. The formula is:
//
// upper-bound-cc(lslcc, l) = floor(1 + l/lslcc)
//
// where in the example above lslcc=2.
//
// A visual representation (where lslcc is fixed) is shown below, where the x
// axis is the current number of sub-levels and the y axis is in units of
// compaction concurrency (cc).
//
// ^ + upper-bound-cc
// | +
// cc |---------+------------- MaxConcurrentCompactions
// | +
// | +
// |+
// |
// ------------------------->
// l
//
// Where the permitted concurrent compactions is the minimum across the two
// curves shown above.
//
// ^
// |
// cc | ********** permitted concurrent compactions
// | *
// | *
// |*
// |
// ------------------------->
// l
//
// Next we discuss the interaction with admission control, which is where care
// is needed. Admission control (see admission.ioLoadListener) gives out
// tokens that shape the incoming traffic. The tokens are a function of l and
// the measured compaction bandwidth out of L0. But the measured compaction
// bandwidth is itself a function of the tokens and upper-bound-cc(lslcc,l)
// and MaxConcurrentCompactions. To tease apart this interaction, we note that
// when l increases and AC starts shaping incoming traffic, it initially gives
// out tokens that are higher than the measured compaction bandwidth. That is,
// it over-admits. So if Pebble has the ability to increase compaction
// bandwidth to handle this over-admission, it has the opportunity to do so,
// and the increased compaction bandwidth will feed back into even more
// tokens, and this will repeat until Pebble has no ability to further
// increase the compaction bandwidth. This simple analysis suffices when
// upper-bound-cc(lslcc,l) is always infinity since Pebble can increase up to
// MaxConcurrentCompactions as soon as it starts falling behind. This is
// represented in the following diagram.
//
// ^----
// | -- - AC tokens
// | -- + actual concurrent compactions
// cc |****+*+*+*+**** * permitted concurrent compactions
// | + --
// | + --------
// |+
// |
// ------------------------->
// l
//
// Observe that in this diagram, the permitted concurrent compactions is
// always equal to MaxConcurrentCompactions, and the actual concurrent
// compactions ramps up very quickly to that permitted level as l increases.
// The AC tokens start of at close to infinity and start declining as l
// increases, but are still higher than the permitted concurrent compactions.
// And the AC tokens fall below the permitted concurrent compactions *after*
// the actual concurrent compactions have reached that permitted level. This
// "fall below" happens to try to reduce the number of sub-levels (since AC
// has an objective of what sub-level count it wants to be stable at).
//
// For the remainder of this discussion we will ignore the actual concurrent
// compactions and just use permitted concurrent compactions to serve both the
// roles of actual and permitted. In this simplified world, the objective we
// have is that AC tokens exceed the permitted concurrent compactions until
// permitted concurrent compactions have reached their max value. When this
// objective is not satisfied, we will unnecessarily throttle traffic even
// though there is the possibility to allow higher traffic since we have not
// yet used up to the permitted concurrent compactions.
//
// Note, we are depicting AC tokens in terms of overall compaction concurrency
// in this analysis, while real AC tokens are based on compactions out of L0,
// and some of the compactions are happening between other levels. This is
// fine if we reinterpret what we discuss here as AC tokens as not the real AC
// tokens but the effect of the real AC tokens on the overall compaction
// bandwidth needed in the LSM. To illustrate this idea, say 25% of the
// compaction concurrency is spent on L0=>Lbase compactions and 75% on other
// compactions. Say current permitted compaction concurrency is 4 (so
// L0=>Lbase compaction concurrency is 1) and MaxConcurrentCompactions is 8.
// And say that real AC tokens throttles traffic to this current level that
// can be compacted out of L0. Then in the analysis here, we consider AC
// tokens as shaping to a compaction concurrency of 4.
//
// As a reminder,
//
// permitted-concurrent-compactions = min(upper-bound-cc(lslcc,l), MaxConcurrentCompactions)
//
// We analyze AC tokens also expressed in units of compaction concurrency,
// where ac-tokens are a function of l and the current
// permitted-concurrent-compactions (since permitted==actual, in our
// simplification), which we can write as
// ac-tokens(l,permitted-concurrent-compactions). We consider two parts of
// ac-tokens: the first part when upper-bound-cc(lslcc,l) <=
// MaxConcurrentCompactions, and the second part when upper-bound-cc(lslcc,l)
// > MaxConcurrentCompactions. There is a transition from the first part to
// the second part at some point as l increases. In the first part,
// permitted-concurrent-compactions=upper-bound-cc(lslcc,l), and so ac-tokens
// is a function of l and upper-bound-cc. We translate our original objective
// into the following simplified objective for the first part:
//
// ac-tokens should be greater than upper-bound-cc as l increases, and it
// should be equal to or greater than upper-bound-cc when upper-bound-cc
// becomes equal to MaxConcurrentCompactions.
//
// The following diagram shows an example that achieves this objective:
//
// ^
// |-------
// | -- + - ac-tokens
// | -- + + upper-bound-cc
// cc |*********+*--*********** * MaxConcurrentCompactions
// | + --
// | + -----
// |+
// |
// ------------------------->
// l
//
// Note that the objective does not say anything about ac-tokens after
// upper-bound-cc exceeds MaxConcurrentCompactions since what happens at
// higher l values did not prevent us from achieving the maximum compaction
// concurrency.
//
// ac-tokens for regular traffic with lslcc=2:
//
// Admission control (see admission.ioLoadListener) starts shaping regular
// traffic at a sub-level count of 5, with twice the tokens as compaction
// bandwidth (out of L0) at sub-level count 5, and tokens equal to the
// compaction bandwidth at sub-level count of 10. AC wants to operate at a
// stable point of 10 sub-levels under regular traffic overload. Let
// MaxConcurrentCompactions be represented as mcc. At sub-level count 5, the
// upper-bound-cc is floor(1+5/2)=3, so ac-tokens are representative of a
// concurrency of min(3,mcc)*2. At sub-level count of 10, the upper-bound-cc
// is floor(1+10/2)=6, so tokens are also representative of a compaction
// concurrency of min(6,mcc)*1. This regular traffic token shaping behavior is
// hard-wired in ioLoadListener (with code constants), and we don't currently
// have a reason to change it. If MaxConcurrentCompactions is <= 6, the
// objective stated earlier is achieved, since min(3,mcc)*2 and min(6,mcc) are
// >= mcc. But if MaxConcurrentCompactions > 6, AC will throttle to compaction
// concurrency of 6, which fails the objective since we have ignored the
// ability to increase compaction concurrency. Note that this analysis is
// somewhat pessimistic since if we are consistently operating at 5 or more
// sub-levels, other levels in the LSM are also building up compaction debt,
// and there is another mechanism in Pebble that increases compaction
// concurrency in response to compaction debt. Nevertheless, this pessimistic
// analysis shows that we are ok with MaxConcurrentCompactions <= 6. We will
// consider the possibility of reducing lslcc below.
//
// ac-tokens for elastic traffic with lslcc=2:
//
// For elastic traffic, admission control starts shaping traffic at sub-level
// count of 2, with tokens equal to 1.25x the compaction bandwidth, so
// ac-tokens is 1.25*min(mcc,floor(1+2/2))=1.25*min(mcc,2) compaction
// concurrency. And at sub-level count of 4, the tokens are equal to 1x the
// compaction bandwidth, so ac-tokens is 1*min(mcc,floor(1+4/2))=min(mcc,3)
// compaction concurrency. AC wants to operate at a stable point of 4
// sub-levels under elastic traffic overload. For mcc=3 (the default value),
// the above values at l=2 and l=4 are 2.5 and 3 respectively. Even though 2.5
// < 3, we deem the value of ac-tokens as acceptable with mcc=3. But
// deployments which use machines with a large number of CPUs are sometimes
// configured with a larger value of MaxConcurrentCompactions. In those cases
// elastic traffic will be throttled even though there is an opportunity to
// increase compaction concurrency to allow more elastic traffic.
//
// If a deployment administrator knows that the system is provisioned such
// that aggressively increasing up to MaxConcurrentCompactions is harmless to
// foreground traffic, they can set l0SubLevelCompactionConcurrency=1. The
// ac-tokens will be:
//
// - Elastic: sub-level=2, 1.25*min(mcc,3); sub-level=4, 1*min(mcc,5);
// sub-level=6, 0.75*min(mcc,7). With mcc=4, at sub-level=2, we get
// ac-tokens=3.75, which is deemed acceptable. Also, compaction debt will
// increase and allow for utilizing even higher concurrency, eventually,
// and since this is elastic traffic that eventual behavior is acceptable.
//
// - Regular: sub-level=5, 2*min(mcc,6); sub-level=10, 1*min(mcc,11). With
// mcc=12, at sub-level=5, we get ac-tokens=12. So we are satisfying the
// objective even if mcc were as high as 12.
var l0SubLevelCompactionConcurrency = envutil.EnvOrDefaultInt(
"COCKROACH_L0_SUB_LEVEL_CONCURRENCY", 2)
// MakeValue returns the inline value.
func MakeValue(meta enginepb.MVCCMetadata) roachpb.Value {
return roachpb.Value{RawBytes: meta.RawBytes}
}
func emptyKeyError() error {
// TODO(nvanbenschoten): this error, along with many in this file, should be
// converted to an errors.AssertionFailed error.
return errors.Errorf("attempted access to empty key")
}
// MVCCKeyValue contains the raw bytes of the value for a key.
type MVCCKeyValue struct {
Key MVCCKey
// if Key.IsValue(), Value is an encoded MVCCValue.
// else, Value is an encoded MVCCMetadata.
Value []byte
}
// MVCCRangeKeyValue contains the raw bytes of the value for a key.
type MVCCRangeKeyValue struct {
RangeKey MVCCRangeKey
Value []byte
}
// Clone returns a copy of the MVCCRangeKeyValue.
func (r MVCCRangeKeyValue) Clone() MVCCRangeKeyValue {
r.RangeKey = r.RangeKey.Clone()
if r.Value != nil {
r.Value = append([]byte{}, r.Value...)
}
return r
}
// optionalValue represents an optional MVCCValue. It is preferred
// over a *roachpb.Value or *MVCCValue to avoid the forced heap allocation.
type optionalValue struct {
MVCCValue
exists bool
}
func makeOptionalValue(v MVCCValue) optionalValue {
return optionalValue{MVCCValue: v, exists: true}
}
func (v *optionalValue) IsPresent() bool {
return v.exists && v.Value.IsPresent()
}
func (v *optionalValue) IsTombstone() bool {
return v.exists && !v.Value.IsPresent()
}
func (v *optionalValue) ToPointer() *roachpb.Value {
if !v.exists {
return nil
}
// Copy to prevent forcing receiver onto heap.
cpy := v.Value
return &cpy
}
func (v *optionalValue) isOriginTimestampWinner(
proposedTS hlc.Timestamp, inclusive bool,
) (bool, hlc.Timestamp) {
if !v.exists {
return true, hlc.Timestamp{}
}
existTS := v.Value.Timestamp
if v.MVCCValueHeader.OriginTimestamp.IsSet() {
existTS = v.MVCCValueHeader.OriginTimestamp
}
return existTS.Less(proposedTS) || (inclusive && existTS.Equal(proposedTS)), existTS
}
// isSysLocal returns whether the key is system-local.
func isSysLocal(key roachpb.Key) bool {
return key.Compare(keys.LocalMax) < 0
}
// isAbortSpanKey returns whether the key is an abort span key.
func isAbortSpanKey(key roachpb.Key) bool {
if !bytes.HasPrefix(key, keys.LocalRangeIDPrefix) {
return false
}
_ /* rangeID */, infix, suffix, _ /* detail */, err := keys.DecodeRangeIDKey(key)
if err != nil {
return false
}
hasAbortSpanSuffix := infix.Equal(keys.LocalRangeIDReplicatedInfix) && suffix.Equal(keys.LocalAbortSpanSuffix)
return hasAbortSpanSuffix
}
// updateStatsForInline updates stat counters for an inline value
// (abort span entries for example). These are simpler as they don't
// involve intents, multiple versions, or MVCC range tombstones.
func updateStatsForInline(
ms *enginepb.MVCCStats,
key roachpb.Key,
origMetaKeySize, origMetaValSize, metaKeySize, metaValSize int64,
) {
sys := isSysLocal(key)
// Remove counts for this key if the original size is non-zero.
if origMetaKeySize != 0 {
if sys {
ms.SysBytes -= (origMetaKeySize + origMetaValSize)
ms.SysCount--
// We only do this check in updateStatsForInline since
// abort span keys are always inlined - we don't associate
// timestamps with them.
if isAbortSpanKey(key) {
ms.AbortSpanBytes -= (origMetaKeySize + origMetaValSize)
}
} else {
ms.LiveBytes -= (origMetaKeySize + origMetaValSize)
ms.LiveCount--
ms.KeyBytes -= origMetaKeySize
ms.ValBytes -= origMetaValSize
ms.KeyCount--
ms.ValCount--
}
}
// Add counts for this key if the new size is non-zero.
if metaKeySize != 0 {
if sys {
ms.SysBytes += metaKeySize + metaValSize
ms.SysCount++
if isAbortSpanKey(key) {
ms.AbortSpanBytes += metaKeySize + metaValSize
}
} else {
ms.LiveBytes += metaKeySize + metaValSize
ms.LiveCount++
ms.KeyBytes += metaKeySize
ms.ValBytes += metaValSize
ms.KeyCount++
ms.ValCount++
}
}
}
// updateStatsOnMerge updates metadata stats while merging inlined
// values. Unfortunately, we're unable to keep accurate stats on merges as the
// actual details of the merge play out asynchronously during compaction. We
// actually undercount by only adding the size of the value.RawBytes byte slice
// (and eliding MVCCVersionTimestampSize, corresponding to the metadata overhead,
// even for the very "first" write). These errors are corrected during splits and
// merges.
func updateStatsOnMerge(key roachpb.Key, valSize, nowNanos int64) enginepb.MVCCStats {
var ms enginepb.MVCCStats
sys := isSysLocal(key)
ms.AgeTo(nowNanos)
ms.ContainsEstimates = 1
if sys {
ms.SysBytes += valSize
} else {
ms.LiveBytes += valSize
ms.ValBytes += valSize
}
return ms
}
// updateStatsOnPut updates stat counters for a newly put value,
// including both the metadata key & value bytes and the mvcc
// versioned value's key & value bytes. If the value is not a
// deletion tombstone, updates the live stat counters as well.
// If this value is an intent, updates the intent counters.
func updateStatsOnPut(
key roachpb.Key,
prevIsValue bool,
prevValSize int64,
origMetaKeySize, origMetaValSize, metaKeySize, metaValSize int64,
orig, meta *enginepb.MVCCMetadata,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
if isSysLocal(key) {
// Handling system-local keys is straightforward because
// we don't track ageable quantities for them (we
// could, but don't). Remove the contributions from the
// original, if any, and add in the new contributions.
if orig != nil {
ms.SysBytes -= origMetaKeySize + origMetaValSize
if orig.Txn != nil {
// If the original value was an intent, we're replacing the
// intent. Note that since it's a system key, it doesn't affect
// IntentByte, IntentCount, and correspondingly, LockAge.
ms.SysBytes -= orig.KeyBytes + orig.ValBytes
}
ms.SysCount--
}
ms.SysBytes += meta.KeyBytes + meta.ValBytes + metaKeySize + metaValSize
ms.SysCount++
return ms
}
// Handle non-sys keys. This follows the same scheme: if there was a previous
// value, perhaps even an intent, subtract its contributions, and then add the
// new contributions. The complexity here is that we need to properly update
// GCBytesAge and LockAge, which don't follow the same semantics. The difference
// between them is that an intent accrues LockAge from its own timestamp on,
// while GCBytesAge is accrued by versions according to the following rules:
// 1. a (non-tombstone) value that is shadowed by a newer write accrues age at
// the point in time at which it is shadowed (i.e. the newer write's timestamp).
// 2. a tombstone value accrues age at its own timestamp (note that this means
// the tombstone's own contribution only -- the actual write that was deleted
// is then shadowed by this tombstone, and will thus also accrue age from
// the tombstone's value on, as per 1).
//
// This seems relatively straightforward, but only because it omits pesky
// details, which have been relegated to the comments below.
// Remove current live counts for this key.
if orig != nil {
ms.KeyCount--
// Move the (so far empty) stats to the timestamp at which the
// previous entry was created, which is where we wish to reclassify
// its contributions.
ms.AgeTo(orig.Timestamp.WallTime)
// If the original metadata for this key was an intent, subtract
// its contribution from stat counters as it's being replaced.
if orig.Txn != nil {
// Subtract counts attributable to intent we're replacing.
ms.ValCount--
ms.IntentBytes -= (orig.KeyBytes + orig.ValBytes)
ms.IntentCount--
ms.LockCount--
}
// If the original intent is a deletion, we're removing the intent. This
// means removing its contribution at the *old* timestamp because it has
// accrued GCBytesAge that we need to offset (rule 2).
//
// Note that there is a corresponding block for the case of a non-deletion
// (rule 1) below, at meta.Timestamp.
if orig.Deleted {
ms.KeyBytes -= origMetaKeySize
ms.ValBytes -= origMetaValSize
if orig.Txn != nil {
ms.KeyBytes -= orig.KeyBytes
ms.ValBytes -= orig.ValBytes
}
}
// Rule 1 implies that sometimes it's not only the old meta and the new meta
// that matter, but also the version below both of them. For example, take
// a version at t=1 and an intent over it at t=2 that is now being replaced
// (t=3). Then orig.Timestamp will be 2, and meta.Timestamp will be 3, but
// rule 1 tells us that for the interval [2,3) we have already accrued
// GCBytesAge for the version at t=1 that is now moot, because the intent
// at t=2 is moving to t=3; we have to emit a GCBytesAge offset to that effect.
//
// The code below achieves this by making the old version live again at
// orig.Timestamp, and then marking it as shadowed at meta.Timestamp below.
// This only happens when that version wasn't a tombstone, in which case it
// contributes from its own timestamp on anyway, and doesn't need adjustment.
//
// Note that when meta.Timestamp equals orig.Timestamp, the computation is
// moot, which is something our callers may exploit (since retrieving the
// previous version is not for free).
if prevIsValue {
// If the previous value (exists and) was not a deletion tombstone, make it
// live at orig.Timestamp. We don't have to do anything if there is a
// previous value that is a tombstone: according to rule two its age
// contributions are anchored to its own timestamp, so moving some values
// higher up doesn't affect the contributions tied to that key.
ms.LiveBytes += MVCCVersionTimestampSize + prevValSize
}
// Note that there is an interesting special case here: it's possible that
// meta.Timestamp.WallTime < orig.Timestamp.WallTime. This wouldn't happen
// outside of tests (due to our semantics of txn.ReadTimestamp, which never
// decreases) but it sure does happen in randomized testing. An earlier
// version of the code used `Forward` here, which is incorrect as it would be
// a no-op and fail to subtract out the intent bytes/GC age incurred due to
// removing the meta entry at `orig.Timestamp` (when `orig != nil`).
ms.AgeTo(meta.Timestamp.WallTime)
if prevIsValue {
// Make the previous non-deletion value non-live again, as explained in the
// sibling block above.
ms.LiveBytes -= MVCCVersionTimestampSize + prevValSize
}
// If the original version wasn't a deletion, it becomes non-live at meta.Timestamp
// as this is where it is shadowed.
if !orig.Deleted {
ms.LiveBytes -= orig.KeyBytes + orig.ValBytes
ms.LiveBytes -= origMetaKeySize + origMetaValSize
ms.LiveCount--
ms.KeyBytes -= origMetaKeySize
ms.ValBytes -= origMetaValSize
if orig.Txn != nil {
ms.KeyBytes -= orig.KeyBytes
ms.ValBytes -= orig.ValBytes
}
}
} else {
ms.AgeTo(meta.Timestamp.WallTime)
}
// If the new version isn't a deletion tombstone, add it to live counters.
if !meta.Deleted {
ms.LiveBytes += meta.KeyBytes + meta.ValBytes + metaKeySize + metaValSize
ms.LiveCount++
}
ms.KeyBytes += meta.KeyBytes + metaKeySize
ms.ValBytes += meta.ValBytes + metaValSize
ms.KeyCount++
ms.ValCount++
if meta.Txn != nil {
ms.IntentBytes += meta.KeyBytes + meta.ValBytes
ms.IntentCount++
ms.LockCount++
}
return ms
}
// updateStatsOnResolve updates stat counters with the difference
// between the original and new metadata sizes. The size of the
// resolved value (key & bytes) are subtracted from the intents
// counters if commit=true.
func updateStatsOnResolve(
key roachpb.Key,
prevIsValue bool,
prevValSize int64,
origMetaKeySize, origMetaValSize, metaKeySize, metaValSize int64,
orig, meta *enginepb.MVCCMetadata,
commit bool,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
if isSysLocal(key) {
// Straightforward: old contribution goes, new contribution comes, and we're done.
ms.SysBytes -= origMetaKeySize + origMetaValSize + orig.KeyBytes + orig.ValBytes
ms.SysBytes += metaKeySize + metaValSize + meta.KeyBytes + meta.ValBytes
return ms
}
// In the main case, we had an old intent at orig.Timestamp, and a new intent
// or value at meta.Timestamp. We'll walk through the contributions below,
// taking special care for LockAge and GCBytesAge.
//
// Jump into the method below for extensive commentary on their semantics
// and "rules one and two".
_ = updateStatsOnPut
ms.AgeTo(orig.Timestamp.WallTime)
// At orig.Timestamp, the original meta key disappears. Fortunately, the
// GCBytesAge computations are fairly transparent because the intent is either
// not a deletion in which case it is always live (it's the most recent value,
// so it isn't shadowed -- see rule 1), or it *is* a deletion, in which case
// its own timestamp is where it starts accruing GCBytesAge (rule 2).
ms.KeyBytes -= origMetaKeySize + orig.KeyBytes
ms.ValBytes -= origMetaValSize + orig.ValBytes
// Next, we adjust LiveBytes based on meta.Deleted and orig.Deleted.
// Note that LiveBytes here corresponds to ts = orig.Timestamp.WallTime.
// LiveBytes at ts = meta.Timestamp.WallTime is adjusted below.
// If the original value was deleted, there is no need to adjust the
// contribution of the original key and value to LiveBytes. Otherwise, we need
// to subtract the original key and value's contribution from LiveBytes.
if !orig.Deleted {
ms.LiveBytes -= origMetaKeySize + origMetaValSize
ms.LiveBytes -= orig.KeyBytes + orig.ValBytes
ms.LiveCount--
}
// LockAge is always accrued from the intent's own timestamp on.
ms.IntentBytes -= orig.KeyBytes + orig.ValBytes
ms.IntentCount--
ms.LockCount--
// If there was a previous value (before orig.Timestamp), and it was not a
// deletion tombstone, then we have to adjust its GCBytesAge contribution
// which was previously anchored at orig.Timestamp and now has to move to
// meta.Timestamp. Paralleling very similar code in the method below, this
// is achieved by making the previous key live between orig.Timestamp and
// meta.Timestamp. When the two are equal, this will be a zero adjustment,
// and so in that case the caller may simply pass prevValSize=0 and can
// skip computing that quantity in the first place.
_ = updateStatsOnPut
if prevIsValue {
ms.LiveBytes += MVCCVersionTimestampSize + prevValSize
}
ms.AgeTo(meta.Timestamp.WallTime)
if prevIsValue {
// The previous non-deletion value becomes non-live at meta.Timestamp.
// See the sibling code above.
ms.LiveBytes -= MVCCVersionTimestampSize + prevValSize
}
// At meta.Timestamp, the new meta key appears.
ms.KeyBytes += metaKeySize + meta.KeyBytes
ms.ValBytes += metaValSize + meta.ValBytes
// The new meta key appears.
if !meta.Deleted {
ms.LiveBytes += (metaKeySize + metaValSize) + (meta.KeyBytes + meta.ValBytes)
ms.LiveCount++
}
if !commit {
// If not committing, the intent reappears (but at meta.Timestamp).
//
// This is the case in which an intent is pushed (a similar case
// happens when an intent is overwritten, but that's handled in
// updateStatsOnPut, not this method).
ms.IntentBytes += meta.KeyBytes + meta.ValBytes
ms.IntentCount++
ms.LockCount++
}
return ms
}
// updateStatsOnAcquireLock updates MVCCStats for acquiring a replicated shared
// or exclusive lock on a key. If orig is not nil, the lock acquisition is
// replacing an existing lock with a new lock that has the exact same txn ID and
// strength.
func updateStatsOnAcquireLock(
origKeySize, origValSize, keySize, valSize int64, orig, meta *enginepb.MVCCMetadata,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
// Remove current lock counts.
if orig != nil {
// Move the (so far empty) stats to the timestamp at which the previous
// lock was acquired, which is where we wish to reclassify its initial
// contributions.
ms.AgeTo(orig.Timestamp.WallTime)
// Subtract counts attributable to the lock we're replacing.
ms.LockBytes -= origKeySize + origValSize
ms.LockCount--
}
// Now add in the contributions from the new lock at the new acquisition
// timestamp.
ms.AgeTo(meta.Timestamp.WallTime)
ms.LockBytes += keySize + valSize
ms.LockCount++
return ms
}
// updateStatsOnReleaseLock updates MVCCStats for releasing a replicated shared
// or exclusive lock on a key. orig is the lock being released, and must not be
// nil.
func updateStatsOnReleaseLock(
origKeySize, origValSize int64, orig *enginepb.MVCCMetadata,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
ms.AgeTo(orig.Timestamp.WallTime)
ms.LockBytes -= origKeySize + origValSize
ms.LockCount--
return ms
}
// updateStatsOnRangeKeyClear updates MVCCStats for clearing an entire
// range key stack.
func updateStatsOnRangeKeyClear(rangeKeys MVCCRangeKeyStack) enginepb.MVCCStats {
var ms enginepb.MVCCStats
ms.Subtract(updateStatsOnRangeKeyPut(rangeKeys))
return ms
}
// updateStatsOnRangeKeyClearVersion updates MVCCStats for clearing a single
// version in a range key stack. The given range key stack must be before the
// clear.
func updateStatsOnRangeKeyClearVersion(
rangeKeys MVCCRangeKeyStack, version MVCCRangeKeyVersion,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
// If we're removing the newest version, hide it from the slice such that we
// can invert the put contribution.
if version.Timestamp.Equal(rangeKeys.Newest()) {
if rangeKeys.Len() == 1 {
ms.Add(updateStatsOnRangeKeyClear(rangeKeys))
return ms
}
rangeKeys.Versions = rangeKeys.Versions[1:]
}
ms.Subtract(updateStatsOnRangeKeyPutVersion(rangeKeys, version))
return ms
}
// updateStatsOnRangeKeyPut updates MVCCStats for writing a new range key stack.
func updateStatsOnRangeKeyPut(rangeKeys MVCCRangeKeyStack) enginepb.MVCCStats {
var ms enginepb.MVCCStats
ms.AgeTo(rangeKeys.Newest().WallTime)
ms.RangeKeyCount++
ms.RangeKeyBytes += int64(EncodedMVCCKeyPrefixLength(rangeKeys.Bounds.Key)) +
int64(EncodedMVCCKeyPrefixLength(rangeKeys.Bounds.EndKey))
for _, v := range rangeKeys.Versions {
ms.AgeTo(v.Timestamp.WallTime)
ms.RangeKeyBytes += int64(EncodedMVCCTimestampSuffixLength(v.Timestamp))
ms.RangeValCount++
ms.RangeValBytes += int64(len(v.Value))
}
return ms
}
// updateStatsOnRangeKeyPutVersion updates MVCCStats for writing a new range key
// version in an existing range key stack. The given range key stack must be
// before the put.
func updateStatsOnRangeKeyPutVersion(
rangeKeys MVCCRangeKeyStack, version MVCCRangeKeyVersion,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
// We currently assume all range keys are MVCC range tombstones. We therefore
// have to move the GCBytesAge contribution of the key up from the latest
// version to the new version if it's written at the top.
if rangeKeys.Newest().Less(version.Timestamp) {
keyBytes := int64(EncodedMVCCKeyPrefixLength(rangeKeys.Bounds.Key)) +
int64(EncodedMVCCKeyPrefixLength(rangeKeys.Bounds.EndKey))
ms.AgeTo(rangeKeys.Newest().WallTime)
ms.RangeKeyBytes -= keyBytes
ms.AgeTo(version.Timestamp.WallTime)
ms.RangeKeyBytes += keyBytes
}
// Account for the new version.
ms.AgeTo(version.Timestamp.WallTime)
ms.RangeKeyBytes += int64(EncodedMVCCTimestampSuffixLength(version.Timestamp))
ms.RangeValCount++
ms.RangeValBytes += int64(len(version.Value))
return ms
}
// updateStatsOnRangeKeyCover updates MVCCStats for when an MVCC range key
// covers an MVCC point key at the given timestamp. The valueLen and
// isTombstone are attributes of the point key.
func updateStatsOnRangeKeyCover(
ts hlc.Timestamp, key MVCCKey, valueLen int, isTombstone bool,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
ms.AgeTo(ts.WallTime)
if !isTombstone {
ms.LiveCount--
ms.LiveBytes -= int64(key.EncodedSize()) + int64(valueLen)
}
return ms
}
// updateStatsOnRangeKeyCoverStats updates MVCCStats for when an MVCC range
// tombstone covers existing data whose stats are already known.
func updateStatsOnRangeKeyCoverStats(ts hlc.Timestamp, cur enginepb.MVCCStats) enginepb.MVCCStats {
var ms enginepb.MVCCStats
ms.AgeTo(ts.WallTime)
ms.ContainsEstimates += cur.ContainsEstimates
ms.LiveCount -= cur.LiveCount
ms.LiveBytes -= cur.LiveBytes
return ms
}
// updateStatsOnRangeKeyMerge updates MVCCStats for a merge of two MVCC range
// key stacks. Both sides of the merge must have identical versions. The merge
// can happen either to the right or the left, only the merge key (i.e. the key
// where the stacks abut) is needed. versions can't be empty.
func updateStatsOnRangeKeyMerge(
mergeKey roachpb.Key, versions MVCCRangeKeyVersions,
) enginepb.MVCCStats {
// A merge is simply the inverse of a split.
var ms enginepb.MVCCStats
ms.Subtract(UpdateStatsOnRangeKeySplit(mergeKey, versions))
return ms
}
// UpdateStatsOnRangeKeySplit updates MVCCStats for the split/fragmentation of a
// range key stack at a given split key. versions can't be empty.
func UpdateStatsOnRangeKeySplit(
splitKey roachpb.Key, versions MVCCRangeKeyVersions,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
// Account for the creation of one of the range key stacks, and the key
// contribution of the end and start keys of the split stacks.
ms.AgeTo(versions[0].Timestamp.WallTime)
ms.RangeKeyCount++
ms.RangeKeyBytes += 2 * int64(EncodedMVCCKeyPrefixLength(splitKey))
// Account for the creation of all versions in new new stack.
for _, v := range versions {
ms.AgeTo(v.Timestamp.WallTime)
ms.RangeValCount++
ms.RangeKeyBytes += int64(EncodedMVCCTimestampSuffixLength(v.Timestamp))
ms.RangeValBytes += int64(len(v.Value))
}
return ms
}
// updateStatsOnClear updates stat counters by subtracting a
// cleared value's key and value byte sizes. If an earlier version
// was restored, the restored values are added to live bytes and
// count if the restored value isn't a deletion tombstone.
func updateStatsOnClear(
key roachpb.Key,
origMetaKeySize, origMetaValSize, restoredMetaKeySize, restoredMetaValSize int64,
orig, restored *enginepb.MVCCMetadata,
restoredNanos int64,
) enginepb.MVCCStats {
var ms enginepb.MVCCStats
if isSysLocal(key) {
if restored != nil {
ms.SysBytes += restoredMetaKeySize + restoredMetaValSize
ms.SysCount++
}
ms.SysBytes -= (orig.KeyBytes + orig.ValBytes) + (origMetaKeySize + origMetaValSize)
ms.SysCount--
return ms
}
// If we're restoring a previous value (which is thus not an intent), there are
// two main cases:
//
// 1. the previous value is a tombstone, so according to rule 2 it accrues
// GCBytesAge from its own timestamp on (we need to adjust only for the
// implicit meta key that "pops up" at that timestamp), -- or --
// 2. it is not, and it has been shadowed by the key we are clearing,
// in which case we need to offset its GCBytesAge contribution from
// restoredNanos to orig.Timestamp (rule 1).
if restored != nil {
if restored.Txn != nil {
panic("restored version should never be an intent")
}
ms.AgeTo(restoredNanos)
if restored.Deleted {
// The new meta key will be implicit and at restoredNanos. It needs to