-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
parallel_unordered_synchronizer.go
531 lines (498 loc) · 19.7 KB
/
parallel_unordered_synchronizer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// Copyright 2019 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package colexec
import (
"context"
"fmt"
"sync"
"sync/atomic"
"github.com/cockroachdb/cockroach/pkg/col/coldata"
"github.com/cockroachdb/cockroach/pkg/sql/colexec/colexecargs"
"github.com/cockroachdb/cockroach/pkg/sql/colexec/colexecutils"
"github.com/cockroachdb/cockroach/pkg/sql/colexecerror"
"github.com/cockroachdb/cockroach/pkg/sql/colexecop"
"github.com/cockroachdb/cockroach/pkg/sql/execinfra"
"github.com/cockroachdb/cockroach/pkg/sql/execinfra/execopnode"
"github.com/cockroachdb/cockroach/pkg/sql/execinfrapb"
"github.com/cockroachdb/cockroach/pkg/util/mon"
"github.com/cockroachdb/cockroach/pkg/util/tracing"
"github.com/cockroachdb/errors"
)
// unorderedSynchronizerMsg is a light wrapper over a coldata.Batch or metadata
// sent over a channel so that the main goroutine can know which input this
// message originated from.
// Note that either a batch or metadata must be sent, but not both.
type unorderedSynchronizerMsg struct {
b coldata.Batch
meta []execinfrapb.ProducerMetadata
inputIdx int
}
var _ colexecop.Operator = &ParallelUnorderedSynchronizer{}
var _ execopnode.OpNode = &ParallelUnorderedSynchronizer{}
type parallelUnorderedSynchronizerState int
const (
// parallelUnorderedSynchronizerStateUninitialized is the state the
// ParallelUnorderedSynchronizer is in when not yet initialized.
parallelUnorderedSynchronizerStateUninitialized = iota
// parallelUnorderedSynchronizerStateRunning is the state the
// ParallelUnorderedSynchronizer is in when all input goroutines have been
// spawned and are returning batches.
parallelUnorderedSynchronizerStateRunning
// parallelUnorderedSynchronizerStateDraining is the state the
// ParallelUnorderedSynchronizer is in when a drain has been requested through
// DrainMeta. All input goroutines will call DrainMeta on its input and exit.
parallelUnorderedSynchronizerStateDraining
// parallelUnorderedSyncrhonizerStateDone is the state the
// ParallelUnorderedSynchronizer is in when draining has completed.
parallelUnorderedSynchronizerStateDone
)
// ParallelUnorderedSynchronizer is an Operator that combines multiple Operator streams
// into one.
type ParallelUnorderedSynchronizer struct {
colexecop.InitHelper
flowCtx *execinfra.FlowCtx
processorID int32
streamingMemAcc *mon.BoundAccount
// metadataAccountedFor tracks how much memory has been reserved in the
// streamingMemAcc for the metadata.
metadataAccountedFor int64
inputs []colexecargs.OpWithMetaInfo
// cancelLocalInput stores context cancellation functions for each of the
// inputs. The functions are populated only if localPlan is true.
cancelLocalInput []context.CancelFunc
tracingSpans []*tracing.Span
// readNextBatch is a slice of channels, where each channel corresponds to the
// input at the same index in inputs. It is used as a barrier for input
// goroutines to wait on until the Next goroutine signals that it is safe to
// retrieve the next batch. This is done so that inputs that are running
// asynchronously do not overwrite batches returned previously, given that
// batches must be safe for reuse until the next call to Next.
readNextBatch []chan struct{}
// numFinishedInputs is incremented atomically whenever one of the provided
// inputs exits from a goroutine (gracefully or otherwise).
numFinishedInputs uint32
// lastReadInputIdx is the index of the input whose batch we last returned.
// Used so that on the next call to Next, we can resume the input.
lastReadInputIdx int
// batches are the last batches read from the corresponding input.
batches []coldata.Batch
// nextBatch is a slice of functions each of which obtains a next batch from
// the corresponding to it input.
nextBatch []func()
state int32
// externalWaitGroup refers to the WaitGroup passed in externally. Since the
// ParallelUnorderedSynchronizer spawns goroutines, this allows callers to
// wait for the completion of these goroutines.
externalWaitGroup *sync.WaitGroup
// internalWaitGroup refers to the WaitGroup internally managed by the
// ParallelUnorderedSynchronizer. This will only ever be incremented by the
// ParallelUnorderedSynchronizer and decremented by the input goroutines. This
// allows the ParallelUnorderedSynchronizer to wait only on internal
// goroutines.
internalWaitGroup *sync.WaitGroup
batchCh chan *unorderedSynchronizerMsg
errCh chan error
// bufferedMeta is the metadata buffered during a
// ParallelUnorderedSynchronizer run.
bufferedMeta []execinfrapb.ProducerMetadata
}
var _ colexecop.DrainableClosableOperator = &ParallelUnorderedSynchronizer{}
// ChildCount implements the execopnode.OpNode interface.
func (s *ParallelUnorderedSynchronizer) ChildCount(verbose bool) int {
return len(s.inputs)
}
// Child implements the execopnode.OpNode interface.
func (s *ParallelUnorderedSynchronizer) Child(nth int, verbose bool) execopnode.OpNode {
return s.inputs[nth].Root
}
// NewParallelUnorderedSynchronizer creates a new ParallelUnorderedSynchronizer.
// On the first call to Next, len(inputs) goroutines are spawned to read each
// input asynchronously (to not be limited by a slow input). These will
// increment the passed-in WaitGroup and decrement when done. It is also
// guaranteed that these spawned goroutines will have completed on any error or
// zero-length batch received from Next.
func NewParallelUnorderedSynchronizer(
flowCtx *execinfra.FlowCtx,
processorID int32,
streamingMemAcc *mon.BoundAccount,
inputs []colexecargs.OpWithMetaInfo,
wg *sync.WaitGroup,
) *ParallelUnorderedSynchronizer {
readNextBatch := make([]chan struct{}, len(inputs))
for i := range readNextBatch {
// Buffer readNextBatch chans to allow for non-blocking writes. There will
// only be one message on the channel at a time.
readNextBatch[i] = make(chan struct{}, 1)
}
return &ParallelUnorderedSynchronizer{
flowCtx: flowCtx,
processorID: processorID,
streamingMemAcc: streamingMemAcc,
inputs: inputs,
cancelLocalInput: make([]context.CancelFunc, len(inputs)),
tracingSpans: make([]*tracing.Span, len(inputs)),
readNextBatch: readNextBatch,
batches: make([]coldata.Batch, len(inputs)),
nextBatch: make([]func(), len(inputs)),
externalWaitGroup: wg,
internalWaitGroup: &sync.WaitGroup{},
// batchCh is a buffered channel in order to offer non-blocking writes to
// input goroutines. During normal operation, this channel will have at most
// len(inputs) messages. However, during DrainMeta, inputs might need to
// push an extra metadata message without blocking, hence the need to double
// the size of this channel.
batchCh: make(chan *unorderedSynchronizerMsg, len(inputs)*2),
// errCh is buffered so that writers do not block. If errCh is full, the
// input goroutines will not push an error and exit immediately, given that
// the Next goroutine will read an error and panic anyway.
errCh: make(chan error, 1),
}
}
// Init is part of the colexecop.Operator interface.
func (s *ParallelUnorderedSynchronizer) Init(ctx context.Context) {
if !s.InitHelper.Init(ctx) {
return
}
for i, input := range s.inputs {
var inputCtx context.Context
inputCtx, s.tracingSpans[i] = execinfra.ProcessorSpan(
s.Ctx, s.flowCtx, fmt.Sprintf("parallel unordered sync input %d", i), s.processorID,
)
if s.flowCtx.Local {
// If the plan is local, there are no colrpc.Inboxes in this input
// tree, and the synchronizer can cancel the current work eagerly
// when transitioning into draining.
//
// If the plan is distributed, there might be an inbox in the
// input tree, and the synchronizer cannot cancel the work eagerly
// because canceling the context would break the gRPC stream and
// make it impossible to fetch the remote metadata. Furthermore, it
// will result in the remote flow cancellation.
inputCtx, s.cancelLocalInput[i] = context.WithCancel(inputCtx)
}
input.Root.Init(inputCtx)
s.nextBatch[i] = func(inputOp colexecop.Operator, inputIdx int) func() {
return func() {
s.batches[inputIdx] = inputOp.Next()
}
}(input.Root, i)
}
}
func (s *ParallelUnorderedSynchronizer) getState() parallelUnorderedSynchronizerState {
return parallelUnorderedSynchronizerState(atomic.LoadInt32(&s.state))
}
func (s *ParallelUnorderedSynchronizer) setState(state parallelUnorderedSynchronizerState) {
atomic.SwapInt32(&s.state, int32(state))
}
// init starts one goroutine per input to read from each input asynchronously
// and push to batchCh. Canceling the context (passed in Init() above) results
// in all goroutines terminating, otherwise they keep on pushing batches until a
// zero-length batch is encountered. Once all inputs terminate, s.batchCh is
// closed. If an error occurs, the goroutines will make a non-blocking best
// effort to push that error on s.errCh, resulting in the first error pushed to
// be observed by the Next goroutine. Inputs are asynchronous so that the
// synchronizer is minimally affected by slow inputs.
func (s *ParallelUnorderedSynchronizer) init() {
for i, input := range s.inputs {
s.externalWaitGroup.Add(1)
s.internalWaitGroup.Add(1)
// TODO(asubiotto): Most inputs are Inboxes, and these have handler
// goroutines just sitting around waiting for cancellation. I wonder if we
// could reuse those goroutines to push batches to batchCh directly.
go func(input colexecargs.OpWithMetaInfo, inputIdx int) {
span := s.tracingSpans[inputIdx]
defer func() {
if int(atomic.AddUint32(&s.numFinishedInputs, 1)) == len(s.inputs) {
close(s.batchCh)
}
if span != nil {
span.Finish()
}
s.internalWaitGroup.Done()
s.externalWaitGroup.Done()
}()
sendErr := func(err error) {
select {
// Non-blocking write to errCh, if an error is present the main
// goroutine will use that and cancel all inputs.
case s.errCh <- err:
default:
}
}
if s.nextBatch[inputIdx] == nil {
// The initialization of this input wasn't successful, so it is
// invalid to call Next or DrainMeta on it. Exit early.
return
}
msg := &unorderedSynchronizerMsg{
inputIdx: inputIdx,
}
for {
state := s.getState()
switch state {
case parallelUnorderedSynchronizerStateRunning:
if err := colexecerror.CatchVectorizedRuntimeError(s.nextBatch[inputIdx]); err != nil {
sendErr(err)
// After we encounter an error, we proceed to draining.
// If this is a context cancellation, we'll realize that
// in the select below, so the drained meta will be
// ignored, for all other errors the drained meta will
// be sent to the coordinator goroutine.
s.setState(parallelUnorderedSynchronizerStateDraining)
continue
}
msg.b = s.batches[inputIdx]
if s.batches[inputIdx].Length() != 0 {
// Send the batch.
break
}
// In case of a zero-length batch, proceed to drain the input.
fallthrough
case parallelUnorderedSynchronizerStateDraining:
// Create a new message for metadata. The previous message cannot be
// overwritten since it might still be in the channel.
msg = &unorderedSynchronizerMsg{
inputIdx: inputIdx,
}
if span != nil {
for _, s := range input.StatsCollectors {
span.RecordStructured(s.GetStats())
}
if meta := execinfra.GetTraceDataAsMetadata(s.flowCtx, span); meta != nil {
msg.meta = append(msg.meta, *meta)
}
}
if input.MetadataSources != nil {
msg.meta = append(msg.meta, input.MetadataSources.DrainMeta()...)
}
if msg.meta == nil {
// Initialize msg.meta to be non-nil, which is a signal that
// metadata has been drained.
msg.meta = make([]execinfrapb.ProducerMetadata, 0)
}
default:
sendErr(errors.AssertionFailedf("unhandled state in ParallelUnorderedSynchronizer input goroutine: %d", state))
return
}
// Check msg.meta before sending over the channel since the channel is
// the synchronization primitive of meta.
sentMeta := false
if msg.meta != nil {
sentMeta = true
}
select {
case <-s.Ctx.Done():
sendErr(s.Ctx.Err())
return
case s.batchCh <- msg:
}
if sentMeta {
// The input has been drained and this input has pushed the metadata
// over the channel, exit.
return
}
// Wait until Next goroutine tells us we are good to go.
select {
case <-s.readNextBatch[inputIdx]:
case <-s.Ctx.Done():
sendErr(s.Ctx.Err())
return
}
}
}(input, i)
}
}
// Next is part of the colexecop.Operator interface.
func (s *ParallelUnorderedSynchronizer) Next() coldata.Batch {
for {
state := s.getState()
switch state {
case parallelUnorderedSynchronizerStateDone:
return coldata.ZeroBatch
case parallelUnorderedSynchronizerStateUninitialized:
s.setState(parallelUnorderedSynchronizerStateRunning)
s.init()
case parallelUnorderedSynchronizerStateRunning:
// Signal the input whose batch we returned in the last call to Next that it
// is safe to retrieve the next batch. Since Next has been called, we can
// reuse memory instead of making safe copies of batches returned.
s.notifyInputToReadNextBatch(s.lastReadInputIdx)
case parallelUnorderedSynchronizerStateDraining:
// One of the inputs has just encountered an error. We do nothing
// here and will read that error from the errCh below.
default:
colexecerror.InternalError(errors.AssertionFailedf("unhandled state in ParallelUnorderedSynchronizer Next goroutine: %d", state))
}
select {
case err := <-s.errCh:
if err != nil {
// If we got an error from one of our inputs, propagate this error
// through a panic. The caller should then proceed to call DrainMeta,
// which will take care of closing any inputs.
colexecerror.InternalError(err)
}
case msg := <-s.batchCh:
if msg == nil {
// All inputs have exited, double check that this is indeed the case.
s.internalWaitGroup.Wait()
// Check if this was a graceful termination or not.
select {
case err := <-s.errCh:
if err != nil {
colexecerror.InternalError(err)
}
default:
}
s.setState(parallelUnorderedSynchronizerStateDone)
return coldata.ZeroBatch
}
s.lastReadInputIdx = msg.inputIdx
if msg.meta != nil {
s.metadataAccountedFor += colexecutils.AccountForMetadata(s.Ctx, s.streamingMemAcc, msg.meta)
s.bufferedMeta = append(s.bufferedMeta, msg.meta...)
continue
}
return msg.b
}
}
}
// notifyInputToReadNextBatch is a non-blocking send to notify the given input
// that it may proceed to read the next batch from the input. Refer to the
// comment of the readNextBatch field in ParallelUnorderedSynchronizer for more
// information.
func (s *ParallelUnorderedSynchronizer) notifyInputToReadNextBatch(inputIdx int) {
select {
// This write is non-blocking because if the channel is full, it must be the
// case that there is a pending message for the input to proceed.
case s.readNextBatch[inputIdx] <- struct{}{}:
default:
}
}
// DrainMeta is part of the colexecop.MetadataSource interface.
func (s *ParallelUnorderedSynchronizer) DrainMeta() []execinfrapb.ProducerMetadata {
prevState := s.getState()
s.setState(parallelUnorderedSynchronizerStateDraining)
if prevState == parallelUnorderedSynchronizerStateUninitialized {
s.init()
}
// Cancel all inputs if we have a local plan.
for _, cancelFunc := range s.cancelLocalInput {
if cancelFunc != nil {
// Note that if Init was never called, cancelFunc will be nil, in
// which case there is nothing to cancel.
cancelFunc()
}
}
bufferMeta := func(meta []execinfrapb.ProducerMetadata) {
if s.flowCtx.Local {
// Given that the synchronizer is draining, it is safe to ignore all
// errors in the metadata for local plans. This is the case because:
// - if the query should result in an error, then some other error
// was already propagated to the client, and this was the reason for
// why we transitioned into draining;
// - if the query should be successful, yet we have some pending
// errors, then it must be the case that query execution was
// short-circuited (e.g. because of the LIMIT), so we can pretend
// the part of the execution that hit the pending error didn't
// happen since clearly it wasn't necessary to compute the query
// result.
//
// For a more extensive discussion for why this is safe see PR
// #127076.
for _, m := range meta {
if m.Err == nil {
s.bufferedMeta = append(s.bufferedMeta, m)
}
}
} else {
s.bufferedMeta = append(s.bufferedMeta, meta...)
}
}
// Non-blocking drain of batchCh. This is important mostly because of the
// following edge case: all n inputs have pushed batches to the batchCh, so
// there are currently n messages. Next notifies the last read input to
// retrieve the next batch but encounters an error. There are now n+1 messages
// in batchCh. Notifying all these inputs to read the next batch would result
// in 2n+1 messages on batchCh, which would cause a deadlock since this
// goroutine blocks on the wait group, but an input will block on writing to
// batchCh. This is a best effort, but note that for this scenario to occur,
// there *must* be at least one message in batchCh (the message belonging to
// the input that was notified).
for batchChDrained := false; !batchChDrained; {
select {
case msg := <-s.batchCh:
if msg == nil {
batchChDrained = true
} else if msg.meta != nil {
bufferMeta(msg.meta)
}
default:
batchChDrained = true
}
}
// Unblock any goroutines currently waiting to be told to read the next batch.
// This will force all inputs to observe the new draining state.
for _, ch := range s.readNextBatch {
close(ch)
}
// Wait for all inputs to exit.
s.internalWaitGroup.Wait()
// Drain the batchCh, this reads the metadata that was pushed.
for msg := <-s.batchCh; msg != nil; msg = <-s.batchCh {
if msg.meta != nil {
bufferMeta(msg.meta)
}
}
if !s.flowCtx.Local {
// Buffer any errors that may have happened without blocking on the
// channel.
//
// Note that we ignore any errors in the local flows (see the comment in
// bufferMeta above).
for exitLoop := false; !exitLoop; {
select {
case err := <-s.errCh:
s.bufferedMeta = append(s.bufferedMeta, execinfrapb.ProducerMetadata{Err: err})
default:
exitLoop = true
}
}
}
// Done.
s.setState(parallelUnorderedSynchronizerStateDone)
bufferedMeta := s.bufferedMeta
// Eagerly lose the reference to the metadata since it might be of
// non-trivial footprint.
s.bufferedMeta = nil
// The caller takes ownership of the metadata, so we can release all of the
// allocations.
s.streamingMemAcc.Shrink(s.Ctx, s.metadataAccountedFor)
s.metadataAccountedFor = 0
return bufferedMeta
}
// Close is part of the colexecop.ClosableOperator interface.
func (s *ParallelUnorderedSynchronizer) Close(ctx context.Context) error {
if state := s.getState(); state != parallelUnorderedSynchronizerStateUninitialized {
// Input goroutines have been started and will take care of finishing
// the tracing spans.
return nil
}
// If the synchronizer is in "uninitialized" state, it means that the
// goroutines for each input haven't been started, so they won't be able to
// finish their tracing spans. In such a scenario the synchronizer must do
// that on its own.
for i, span := range s.tracingSpans {
if span != nil {
span.Finish()
s.tracingSpans[i] = nil
}
}
return nil
}