-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
processorsbase.go
953 lines (873 loc) · 33.4 KB
/
processorsbase.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
// Copyright 2017 The Cockroach Authors.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
package execinfra
import (
"context"
"math"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/sql/execinfrapb"
"github.com/cockroachdb/cockroach/pkg/sql/rowenc"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/types"
"github.com/cockroachdb/cockroach/pkg/util"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/log/logcrash"
"github.com/cockroachdb/cockroach/pkg/util/mon"
"github.com/cockroachdb/cockroach/pkg/util/optional"
"github.com/cockroachdb/cockroach/pkg/util/tracing"
"github.com/cockroachdb/errors"
)
// Processor is a common interface implemented by all processors, used by the
// higher-level flow orchestration code.
type Processor interface {
// OutputTypes returns the column types of the results (that are to be fed
// through an output router).
OutputTypes() []*types.T
// Run is the main loop of the processor.
Run(context.Context)
}
// DoesNotUseTxn is an interface implemented by some processors to mark that
// they do not use a txn. The DistSQLPlanner forbids multiple processors in a
// local flow from running in parallel if this is unknown since concurrent use
// of the RootTxn is forbidden (in a distributed flow these are leaf txns, so
// it doesn't matter).
// Implementing this interface lets the DistSQLPlanner know that it is ok to
// run this processor in an additional goroutine.
type DoesNotUseTxn interface {
DoesNotUseTxn() bool
}
// ProcOutputHelper is a helper type that performs filtering and projection on
// the output of a processor.
type ProcOutputHelper struct {
numInternalCols int
// output can be optionally passed in for use with EmitRow and
// rowexec.emitHelper.
// If output is nil, one can invoke ProcessRow to obtain the
// post-processed row directly.
output RowReceiver
RowAlloc rowenc.EncDatumRowAlloc
// renderExprs has length > 0 if we have a rendering. Only one of renderExprs
// and outputCols can be set.
renderExprs []execinfrapb.ExprHelper
// outputCols is non-nil if we have a projection. Only one of renderExprs and
// outputCols can be set. Note that 0-length projections are possible, in
// which case outputCols will be 0-length but non-nil.
outputCols []uint32
outputRow rowenc.EncDatumRow
// OutputTypes is the schema of the rows produced by the processor after
// post-processing (i.e. the rows that are pushed through a router).
//
// If renderExprs is set, these types correspond to the types of those
// expressions.
// If outputCols is set, these types correspond to the types of
// those columns.
// If neither is set, this is the internal schema of the processor.
OutputTypes []*types.T
// offset is the number of rows that are suppressed.
offset uint64
// maxRowIdx is the number of rows after which we can stop (offset + limit),
// or MaxUint64 if there is no limit.
maxRowIdx uint64
rowIdx uint64
}
// Reset resets this ProcOutputHelper, retaining allocated memory in its slices.
func (h *ProcOutputHelper) Reset() {
*h = ProcOutputHelper{
renderExprs: h.renderExprs[:0],
OutputTypes: h.OutputTypes[:0],
}
}
// Init sets up a ProcOutputHelper. The types describe the internal schema of
// the processor (as described for each processor core spec); they can be
// omitted if there is no filtering expression.
// Note that the types slice may be stored directly; the caller should not
// modify it.
func (h *ProcOutputHelper) Init(
post *execinfrapb.PostProcessSpec,
coreOutputTypes []*types.T,
semaCtx *tree.SemaContext,
evalCtx *tree.EvalContext,
output RowReceiver,
) error {
if !post.Projection && len(post.OutputColumns) > 0 {
return errors.Errorf("post-processing has projection unset but output columns set: %s", post)
}
if post.Projection && len(post.RenderExprs) > 0 {
return errors.Errorf("post-processing has both projection and rendering: %s", post)
}
h.output = output
h.numInternalCols = len(coreOutputTypes)
if post.Projection {
for _, col := range post.OutputColumns {
if int(col) >= h.numInternalCols {
return errors.Errorf("invalid output column %d (only %d available)", col, h.numInternalCols)
}
}
h.outputCols = post.OutputColumns
if h.outputCols == nil {
// nil indicates no projection; use an empty slice.
h.outputCols = make([]uint32, 0)
}
nOutputCols := len(h.outputCols)
if cap(h.OutputTypes) >= nOutputCols {
h.OutputTypes = h.OutputTypes[:nOutputCols]
} else {
h.OutputTypes = make([]*types.T, nOutputCols)
}
for i, c := range h.outputCols {
h.OutputTypes[i] = coreOutputTypes[c]
}
} else if nRenders := len(post.RenderExprs); nRenders > 0 {
if cap(h.renderExprs) >= nRenders {
h.renderExprs = h.renderExprs[:nRenders]
} else {
h.renderExprs = make([]execinfrapb.ExprHelper, nRenders)
}
if cap(h.OutputTypes) >= nRenders {
h.OutputTypes = h.OutputTypes[:nRenders]
} else {
h.OutputTypes = make([]*types.T, nRenders)
}
for i, expr := range post.RenderExprs {
h.renderExprs[i] = execinfrapb.ExprHelper{}
if err := h.renderExprs[i].Init(expr, coreOutputTypes, semaCtx, evalCtx); err != nil {
return err
}
h.OutputTypes[i] = h.renderExprs[i].Expr.ResolvedType()
}
} else {
// No rendering or projection.
if cap(h.OutputTypes) >= len(coreOutputTypes) {
h.OutputTypes = h.OutputTypes[:len(coreOutputTypes)]
} else {
h.OutputTypes = make([]*types.T, len(coreOutputTypes))
}
copy(h.OutputTypes, coreOutputTypes)
}
if h.outputCols != nil || len(h.renderExprs) > 0 {
// We're rendering or projecting, so allocate an output row.
h.outputRow = h.RowAlloc.AllocRow(len(h.OutputTypes))
}
h.offset = post.Offset
if post.Limit == 0 || post.Limit >= math.MaxUint64-h.offset {
h.maxRowIdx = math.MaxUint64
} else {
h.maxRowIdx = h.offset + post.Limit
}
return nil
}
// NeededColumns calculates the set of internal processor columns that are
// actually used by the post-processing stage.
func (h *ProcOutputHelper) NeededColumns() (colIdxs util.FastIntSet) {
if h.outputCols == nil && len(h.renderExprs) == 0 {
// No projection or rendering; all columns are needed.
colIdxs.AddRange(0, h.numInternalCols-1)
return colIdxs
}
// Add all explicit output columns.
for _, c := range h.outputCols {
colIdxs.Add(int(c))
}
for i := 0; i < h.numInternalCols; i++ {
// See if render expressions require this column.
for j := range h.renderExprs {
if h.renderExprs[j].Vars.IndexedVarUsed(i) {
colIdxs.Add(i)
break
}
}
}
return colIdxs
}
// EmitRow sends a row through the post-processing stage. The same row can be
// reused.
//
// It returns the consumer's status that was observed when pushing this row. If
// an error is returned, it's coming from the ProcOutputHelper's filtering or
// rendering processing; the output has not been closed and it's the caller's
// responsibility to push the error to the output.
//
// Note: check out rowexec.emitHelper() for a useful wrapper.
func (h *ProcOutputHelper) EmitRow(
ctx context.Context, row rowenc.EncDatumRow,
) (ConsumerStatus, error) {
if h.output == nil {
panic("output RowReceiver not initialized for emitting rows")
}
outRow, ok, err := h.ProcessRow(ctx, row)
if err != nil {
// The status doesn't matter.
return NeedMoreRows, err
}
if outRow == nil {
if ok {
return NeedMoreRows, nil
}
return DrainRequested, nil
}
if log.V(3) {
log.InfofDepth(ctx, 1, "pushing row %s", outRow.String(h.OutputTypes))
}
if r := h.output.Push(outRow, nil); r != NeedMoreRows {
log.VEventf(ctx, 1, "no more rows required. drain requested: %t",
r == DrainRequested)
return r, nil
}
if h.rowIdx == h.maxRowIdx {
log.VEventf(ctx, 1, "hit row limit; asking producer to drain")
return DrainRequested, nil
}
status := NeedMoreRows
if !ok {
status = DrainRequested
}
return status, nil
}
// ProcessRow sends the invoked row through the post-processing stage and returns
// the post-processed row. Results from ProcessRow aren't safe past the next call
// to ProcessRow.
//
// The moreRowsOK retval is true if more rows can be processed, false if the
// limit has been reached (if there's a limit). Upon seeing a false value, the
// caller is expected to start draining. Note that both a row and
// moreRowsOK=false can be returned at the same time: the row that satisfies the
// limit is returned at the same time as a DrainRequested status. In that case,
// the caller is supposed to both deal with the row and start draining.
func (h *ProcOutputHelper) ProcessRow(
ctx context.Context, row rowenc.EncDatumRow,
) (_ rowenc.EncDatumRow, moreRowsOK bool, _ error) {
if h.rowIdx >= h.maxRowIdx {
return nil, false, nil
}
h.rowIdx++
if h.rowIdx <= h.offset {
// Suppress row.
return nil, true, nil
}
if len(h.renderExprs) > 0 {
// Rendering.
for i := range h.renderExprs {
datum, err := h.renderExprs[i].Eval(row)
if err != nil {
return nil, false, err
}
h.outputRow[i] = rowenc.DatumToEncDatum(h.OutputTypes[i], datum)
}
} else if h.outputCols != nil {
// Projection.
for i, col := range h.outputCols {
h.outputRow[i] = row[col]
}
} else {
// No rendering or projection.
return row, h.rowIdx < h.maxRowIdx, nil
}
// If this row satisfies the limit, the caller is told to drain.
return h.outputRow, h.rowIdx < h.maxRowIdx, nil
}
// Output returns the output of the ProcOutputHelper.
func (h *ProcOutputHelper) Output() RowReceiver {
return h.output
}
// Close signals to the output that there will be no more rows.
func (h *ProcOutputHelper) Close() {
h.output.ProducerDone()
}
// consumerClosed stops output of additional rows from ProcessRow.
func (h *ProcOutputHelper) consumerClosed() {
h.rowIdx = h.maxRowIdx
}
// Stats returns output statistics.
func (h *ProcOutputHelper) Stats() execinfrapb.OutputStats {
return execinfrapb.OutputStats{
NumTuples: optional.MakeUint(h.rowIdx),
}
}
// ProcessorConstructor is a function that creates a Processor. It is
// abstracted away so that we could create mixed flows (i.e. a vectorized flow
// with wrapped processors) without bringing a dependency on sql/rowexec
// package into sql/colexec package.
type ProcessorConstructor func(
ctx context.Context,
flowCtx *FlowCtx,
processorID int32,
core *execinfrapb.ProcessorCoreUnion,
post *execinfrapb.PostProcessSpec,
inputs []RowSource,
outputs []RowReceiver,
localProcessors []LocalProcessor,
) (Processor, error)
// ProcessorBase is supposed to be embedded by Processors. It provides
// facilities for dealing with filtering and projection (through a
// ProcOutputHelper) and for implementing the RowSource interface (draining,
// trailing metadata).
//
// If a Processor implements the RowSource interface, it's implementation is
// expected to look something like this:
//
// // concatProcessor concatenates rows from two sources (first returns rows
// // from the left, then from the right).
// type concatProcessor struct {
// ProcessorBase
// l, r RowSource
//
// // leftConsumed is set once we've exhausted the left input; once set, we start
// // consuming the right input.
// leftConsumed bool
// }
//
// func newConcatProcessor(
// FlowCtx *FlowCtx, l RowSource, r RowSource, post *PostProcessSpec, output RowReceiver,
// ) (*concatProcessor, error) {
// p := &concatProcessor{l: l, r: r}
// if err := p.Init(
// post, l.OutputTypes(), FlowCtx, output,
// // We pass the inputs to the helper, to be consumed by DrainHelper() later.
// ProcStateOpts{
// InputsToDrain: []RowSource{l, r},
// // If the proc needed to return any metadata at the end other than the
// // tracing info, or if it needed to cleanup any resources other than those
// // handled by InternalClose() (say, close some memory account), it'd pass
// // a TrailingMetaCallback here.
// },
// ); err != nil {
// return nil, err
// }
// return p, nil
// }
//
// // Start is part of the RowSource interface.
// func (p *concatProcessor) Start(ctx context.Context) context.Context {
// p.l.Start(ctx)
// p.r.Start(ctx)
// return p.StartInternal(ctx, concatProcName)
// }
//
// // Next is part of the RowSource interface.
// func (p *concatProcessor) Next() (rowenc.EncDatumRow, *execinfrapb.ProducerMetadata) {
// // Loop while we haven't produced a row or a metadata record. We loop around
// // in several cases, including when the filtering rejected a row coming.
// for p.State == StateRunning {
// var row rowenc.EncDatumRow
// var meta *ProducerMetadata
// if !p.leftConsumed {
// row, meta = p.l.Next()
// } else {
// row, meta = p.r.Next()
// }
//
// if meta != nil {
// // If we got an error, we need to forward it along and remember that we're
// // draining.
// if meta.Err != nil {
// p.MoveToDraining(nil /* err */)
// }
// return nil, meta
// }
// if row == nil {
// if !p.leftConsumed {
// p.leftConsumed = true
// } else {
// // In this case we know that both inputs are consumed, so we could
// // transition directly to StateTrailingMeta, but implementations are
// // encouraged to just use MoveToDraining() for uniformity; DrainHelper()
// // will transition to StateTrailingMeta() quickly.
// p.MoveToDraining(nil /* err */)
// break
// }
// continue
// }
//
// if outRow := p.ProcessRowHelper(row); outRow != nil {
// return outRow, nil
// }
// }
// return nil, p.DrainHelper()
// }
//
// // ConsumerDone is part of the RowSource interface.
// func (p *concatProcessor) ConsumerDone() {
// p.MoveToDraining(nil /* err */)
// }
//
// // ConsumerClosed is part of the RowSource interface.
// func (p *concatProcessor) ConsumerClosed() {
// // The consumer is done, Next() will not be called again.
// p.InternalClose()
// }
//
type ProcessorBase struct {
self RowSource
processorID int32
Out ProcOutputHelper
FlowCtx *FlowCtx
// EvalCtx is used for expression evaluation. It overrides the one in flowCtx.
EvalCtx *tree.EvalContext
// SemaCtx is used to avoid allocating a new SemaCtx during processor setup.
SemaCtx tree.SemaContext
// MemMonitor is the processor's memory monitor.
MemMonitor *mon.BytesMonitor
// Closed is set by InternalClose(). Once set, the processor's tracing span
// has been closed.
Closed bool
// Ctx and span contain the tracing state while the processor is active
// (i.e. hasn't been closed). Initialized using flowCtx.Ctx (which should not be otherwise
// used).
Ctx context.Context
span *tracing.Span
// origCtx is the context from which ctx was derived. InternalClose() resets
// ctx to this.
origCtx context.Context
State procState
// ExecStatsForTrace, if set, will be called before getting the trace data from
// the span and adding the recording to the trailing metadata. The returned
// ComponentStats are associated with the processor's span. The Component
// field of the returned stats will be set by the calling code.
//
// Can return nil.
ExecStatsForTrace func() *execinfrapb.ComponentStats
// trailingMetaCallback, if set, will be called by moveToTrailingMeta(). The
// callback is expected to close all inputs, do other cleanup on the processor
// (including calling InternalClose()) and generate the trailing meta that
// needs to be returned to the consumer. As a special case,
// moveToTrailingMeta() handles getting the tracing information into
// trailingMeta, so the callback doesn't need to worry about that.
//
// If no callback is specified, InternalClose() will be called automatically.
// So, if no trailing metadata other than the trace needs to be returned (and
// other than what has otherwise been manually put in trailingMeta) and no
// closing other than InternalClose is needed, then no callback needs to be
// specified.
trailingMetaCallback func(context.Context) []execinfrapb.ProducerMetadata
// trailingMeta is scratch space where metadata is stored to be returned
// later.
trailingMeta []execinfrapb.ProducerMetadata
// inputsToDrain, if not empty, contains inputs to be drained by
// DrainHelper(). MoveToDraining() calls ConsumerDone() on them,
// InternalClose() calls ConsumerClosed() on then.
//
// ConsumerDone() is called on all inputs at once and then inputs are drained
// one by one (in StateDraining, inputsToDrain[curInputToDrain] is the one
// currently being drained).
inputsToDrain []RowSource
// curInputToDrain is the index into inputsToDrain that needs to be drained
// next.
curInputToDrain int
}
// Reset resets this ProcessorBase, retaining allocated memory in slices.
func (pb *ProcessorBase) Reset() {
pb.Out.Reset()
*pb = ProcessorBase{
Out: pb.Out,
trailingMeta: pb.trailingMeta[:0],
inputsToDrain: pb.inputsToDrain[:0],
}
}
// procState represents the standard states that a processor can be in. These
// states are relevant when the processor is using the draining utilities in
// ProcessorBase.
type procState int
//go:generate stringer -type=procState
const (
// StateRunning is the common state of a processor: it's producing rows for
// its consumer and forwarding metadata from its input. Different processors
// might have sub-states internally.
//
// If the consumer calls ConsumerDone or if the ProcOutputHelper.maxRowIdx is
// reached, then the processor will transition to StateDraining. If the input
// is exhausted, then the processor can transition to StateTrailingMeta
// directly, although most always go through StateDraining.
StateRunning procState = iota
// StateDraining is the state in which the processor is forwarding metadata
// from its input and otherwise ignoring all rows. Once the input is
// exhausted, the processor will transition to StateTrailingMeta.
//
// In StateDraining, processors are required to swallow
// ReadWithinUncertaintyIntervalErrors received from its sources. We're
// already draining, so we don't care about whatever data generated this
// uncertainty error. Besides generally seeming like a good idea, doing this
// allows us to offer a nice guarantee to SQL clients: a read-only query that
// produces at most one row, run as an implicit txn, never produces retriable
// errors, regardless of the size of the row being returned (in relation to
// the size of the result buffer on the connection). One would naively expect
// that to be true: either the error happens before any rows have been
// delivered to the client, in which case the auto-retries kick in, or, if a
// row has been delivered, then the query is done and so how can there be an
// error? What our naive friend is ignoring is that, if it weren't for this
// code, it'd be possible for a retriable error to sneak in after the query's
// limit has been satisfied but while processors are still draining. Note
// that uncertainty errors are not retried automatically by the leaf
// TxnCoordSenders (i.e. by refresh txn interceptor).
//
// Other categories of errors might be safe to ignore too; however we
// can't ignore all of them. Generally, we need to ensure that all the
// trailing metadata (e.g. LeafTxnFinalState's) make it to the gateway for
// successful flows. If an error is telling us that some metadata might
// have been dropped, we can't ignore that.
StateDraining
// StateTrailingMeta is the state in which the processor is outputting final
// metadata such as the tracing information or the LeafTxnFinalState. Once all the
// trailing metadata has been produced, the processor transitions to
// StateExhausted.
StateTrailingMeta
// StateExhausted is the state of a processor that has no more rows or
// metadata to produce.
StateExhausted
)
// MoveToDraining switches the processor to the StateDraining. Only metadata is
// returned from now on. In this state, the processor is expected to drain its
// inputs (commonly by using DrainHelper()).
//
// If the processor has no input (ProcStateOpts.intputToDrain was not specified
// at init() time), then we move straight to the StateTrailingMeta.
//
// An error can be optionally passed. It will be the first piece of metadata
// returned by DrainHelper().
func (pb *ProcessorBase) MoveToDraining(err error) {
if pb.State != StateRunning {
// Calling MoveToDraining in any state is allowed in order to facilitate the
// ConsumerDone() implementations that just call this unconditionally.
// However, calling it with an error in states other than StateRunning is
// not permitted.
if err != nil {
logcrash.ReportOrPanic(
pb.Ctx,
&pb.FlowCtx.Cfg.Settings.SV,
"MoveToDraining called in state %s with err: %+v",
pb.State, err)
}
return
}
if err != nil {
pb.trailingMeta = append(pb.trailingMeta, execinfrapb.ProducerMetadata{Err: err})
}
if pb.curInputToDrain < len(pb.inputsToDrain) {
// We go to StateDraining here. DrainHelper() will transition to
// StateTrailingMeta when the inputs are drained (including if the inputs
// are already drained).
pb.State = StateDraining
for _, input := range pb.inputsToDrain[pb.curInputToDrain:] {
input.ConsumerDone()
}
} else {
pb.moveToTrailingMeta()
}
}
// DrainHelper is supposed to be used in states draining and trailingMetadata.
// It deals with optionally draining an input and returning trailing meta. It
// also moves from StateDraining to StateTrailingMeta when appropriate.
func (pb *ProcessorBase) DrainHelper() *execinfrapb.ProducerMetadata {
if pb.State == StateRunning {
logcrash.ReportOrPanic(
pb.Ctx,
&pb.FlowCtx.Cfg.Settings.SV,
"drain helper called in StateRunning",
)
}
// trailingMeta always has priority; it seems like a good idea because it
// causes metadata to be sent quickly after it is produced (e.g. the error
// passed to MoveToDraining()).
if len(pb.trailingMeta) > 0 {
return pb.popTrailingMeta()
}
if pb.State != StateDraining {
return nil
}
// Ignore all rows; only return meta.
for {
input := pb.inputsToDrain[pb.curInputToDrain]
row, meta := input.Next()
if row == nil && meta == nil {
pb.curInputToDrain++
if pb.curInputToDrain >= len(pb.inputsToDrain) {
pb.moveToTrailingMeta()
return pb.popTrailingMeta()
}
continue
}
if meta != nil {
// Swallow ReadWithinUncertaintyIntervalErrors. See comments on
// StateDraining.
if err := meta.Err; err != nil {
// We only look for UnhandledRetryableErrors. Local reads (which would
// be transformed by the Root TxnCoordSender into
// TransactionRetryWithProtoRefreshErrors) don't have any uncertainty.
if ure := (*roachpb.UnhandledRetryableError)(nil); errors.As(err, &ure) {
if _, uncertain := ure.PErr.GetDetail().(*roachpb.ReadWithinUncertaintyIntervalError); uncertain {
continue
}
}
}
return meta
}
}
}
// popTrailingMeta peels off one piece of trailing metadata or advances to
// StateExhausted if there's no more trailing metadata.
func (pb *ProcessorBase) popTrailingMeta() *execinfrapb.ProducerMetadata {
if len(pb.trailingMeta) > 0 {
meta := &pb.trailingMeta[0]
pb.trailingMeta = pb.trailingMeta[1:]
return meta
}
pb.State = StateExhausted
return nil
}
// moveToTrailingMeta switches the processor to the "trailing meta" state: only
// trailing metadata is returned from now on. For simplicity, processors are
// encouraged to always use MoveToDraining() instead of this method, even when
// there's nothing to drain. moveToDrain() or DrainHelper() will internally call
// moveToTrailingMeta().
//
// trailingMetaCallback, if any, is called; it is expected to close the
// processor's inputs.
//
// This method is to be called when the processor is done producing rows and
// draining its inputs (if it wants to drain them).
func (pb *ProcessorBase) moveToTrailingMeta() {
if pb.State == StateTrailingMeta || pb.State == StateExhausted {
logcrash.ReportOrPanic(
pb.Ctx,
&pb.FlowCtx.Cfg.Settings.SV,
"moveToTrailingMeta called in state: %s",
pb.State,
)
}
pb.State = StateTrailingMeta
if pb.span != nil {
if pb.ExecStatsForTrace != nil {
if stats := pb.ExecStatsForTrace(); stats != nil {
stats.Component = pb.FlowCtx.ProcessorComponentID(pb.processorID)
pb.span.SetSpanStats(stats)
}
}
if trace := pb.span.GetRecording(); trace != nil {
pb.trailingMeta = append(pb.trailingMeta, execinfrapb.ProducerMetadata{TraceData: trace})
}
}
// trailingMetaCallback is called after reading the tracing data because it
// generally calls InternalClose, indirectly, which switches the context and
// the span.
if pb.trailingMetaCallback != nil {
pb.trailingMeta = append(pb.trailingMeta, pb.trailingMetaCallback(pb.Ctx)...)
} else {
pb.InternalClose()
}
}
// ProcessRowHelper is a wrapper on top of ProcOutputHelper.ProcessRow(). It
// takes care of handling errors and drain requests by moving the processor to
// StateDraining.
//
// It takes a row and returns the row after processing. The return value can be
// nil, in which case the caller shouldn't return anything to its consumer; it
// should continue processing other rows, with the awareness that the processor
// might have been transitioned to the draining phase.
func (pb *ProcessorBase) ProcessRowHelper(row rowenc.EncDatumRow) rowenc.EncDatumRow {
outRow, ok, err := pb.Out.ProcessRow(pb.Ctx, row)
if err != nil {
pb.MoveToDraining(err)
return nil
}
if !ok {
pb.MoveToDraining(nil /* err */)
}
// Note that outRow might be nil here.
// TODO(yuzefovich): there is a problem with this logging when MetadataTest*
// processors are planned - there is a mismatch between the row and the
// output types (rendering is added to the stage of test processors and the
// actual processors that are inputs to the test ones have an unset post
// processing; I think that we need to set the post processing on the stages
// of processors below the test ones).
//if outRow != nil && log.V(3) && pb.Ctx != nil {
// log.InfofDepth(pb.Ctx, 1, "pushing row %s", outRow.String(pb.Out.OutputTypes))
//}
return outRow
}
// OutputTypes is part of the processor interface.
func (pb *ProcessorBase) OutputTypes() []*types.T {
return pb.Out.OutputTypes
}
// Run is part of the processor interface.
func (pb *ProcessorBase) Run(ctx context.Context) {
if pb.Out.output == nil {
panic("processor output not initialized for emitting rows")
}
ctx = pb.self.Start(ctx)
Run(ctx, pb.self, pb.Out.output)
}
// ProcStateOpts contains fields used by the ProcessorBase's family of functions
// that deal with draining and trailing metadata: the ProcessorBase implements
// generic useful functionality that needs to call back into the Processor.
type ProcStateOpts struct {
// TrailingMetaCallback, if specified, is a callback to be called by
// moveToTrailingMeta(). See ProcessorBase.TrailingMetaCallback.
TrailingMetaCallback func(context.Context) []execinfrapb.ProducerMetadata
// InputsToDrain, if specified, will be drained by DrainHelper().
// MoveToDraining() calls ConsumerDone() on them, InternalClose() calls
// ConsumerClosed() on them.
InputsToDrain []RowSource
}
// Init initializes the ProcessorBase.
// - coreOutputTypes are the type schema of the rows output by the processor
// core (i.e. the "internal schema" of the processor, see
// execinfrapb.ProcessorSpec for more details).
func (pb *ProcessorBase) Init(
self RowSource,
post *execinfrapb.PostProcessSpec,
coreOutputTypes []*types.T,
flowCtx *FlowCtx,
processorID int32,
output RowReceiver,
memMonitor *mon.BytesMonitor,
opts ProcStateOpts,
) error {
return pb.InitWithEvalCtx(
self, post, coreOutputTypes, flowCtx, flowCtx.NewEvalCtx(), processorID, output, memMonitor, opts,
)
}
// InitWithEvalCtx initializes the ProcessorBase with a given EvalContext.
// - coreOutputTypes are the type schema of the rows output by the processor
// core (i.e. the "internal schema" of the processor, see
// execinfrapb.ProcessorSpec for more details).
func (pb *ProcessorBase) InitWithEvalCtx(
self RowSource,
post *execinfrapb.PostProcessSpec,
coreOutputTypes []*types.T,
flowCtx *FlowCtx,
evalCtx *tree.EvalContext,
processorID int32,
output RowReceiver,
memMonitor *mon.BytesMonitor,
opts ProcStateOpts,
) error {
pb.self = self
pb.FlowCtx = flowCtx
pb.EvalCtx = evalCtx
pb.processorID = processorID
pb.MemMonitor = memMonitor
pb.trailingMetaCallback = opts.TrailingMetaCallback
if opts.InputsToDrain != nil {
// Only initialize this if non-nil, because we cache the slice of inputs
// to drain in our object pool, and overwriting the slice in Init would
// be horribly counterproductive.
pb.inputsToDrain = opts.InputsToDrain
}
// Hydrate all types used in the processor.
resolver := flowCtx.TypeResolverFactory.NewTypeResolver(evalCtx.Txn)
if err := resolver.HydrateTypeSlice(evalCtx.Context, coreOutputTypes); err != nil {
return err
}
pb.SemaCtx = tree.MakeSemaContext()
pb.SemaCtx.TypeResolver = resolver
return pb.Out.Init(post, coreOutputTypes, &pb.SemaCtx, pb.EvalCtx, output)
}
// AddInputToDrain adds an input to drain when moving the processor to a
// draining state.
func (pb *ProcessorBase) AddInputToDrain(input RowSource) {
pb.inputsToDrain = append(pb.inputsToDrain, input)
}
// AppendTrailingMeta appends metadata to the trailing metadata without changing
// the state to draining (as opposed to MoveToDraining).
func (pb *ProcessorBase) AppendTrailingMeta(meta execinfrapb.ProducerMetadata) {
pb.trailingMeta = append(pb.trailingMeta, meta)
}
// ProcessorSpan creates a child span for a processor (if we are doing any
// tracing). The returned span needs to be finished using tracing.FinishSpan.
func ProcessorSpan(ctx context.Context, name string) (context.Context, *tracing.Span) {
return tracing.ChildSpanRemote(ctx, name)
}
// StartInternal prepares the ProcessorBase for execution. It returns the
// annotated context that's also stored in pb.Ctx.
func (pb *ProcessorBase) StartInternal(ctx context.Context, name string) context.Context {
pb.origCtx = ctx
pb.Ctx, pb.span = ProcessorSpan(ctx, name)
if pb.span != nil && pb.span.IsVerbose() {
pb.span.SetTag(execinfrapb.FlowIDTagKey, pb.FlowCtx.ID.String())
pb.span.SetTag(execinfrapb.ProcessorIDTagKey, pb.processorID)
}
pb.EvalCtx.Context = pb.Ctx
return pb.Ctx
}
// InternalClose helps processors implement the RowSource interface, performing
// common close functionality. Returns true iff the processor was not already
// closed.
//
// Notably, it calls ConsumerClosed() on all the inputsToDrain.
//
// if pb.InternalClose() {
// // Perform processor specific close work.
// }
func (pb *ProcessorBase) InternalClose() bool {
closing := !pb.Closed
// Protection around double closing is useful for allowing ConsumerClosed() to
// be called on processors that have already closed themselves by moving to
// StateTrailingMeta.
if closing {
for _, input := range pb.inputsToDrain[pb.curInputToDrain:] {
input.ConsumerClosed()
}
pb.Closed = true
pb.span.Finish()
pb.span = nil
// Reset the context so that any incidental uses after this point do not
// access the finished span.
pb.Ctx = pb.origCtx
// This prevents Next() from returning more rows.
pb.Out.consumerClosed()
}
return closing
}
// ConsumerDone is part of the RowSource interface.
func (pb *ProcessorBase) ConsumerDone() {
pb.MoveToDraining(nil /* err */)
}
// NewMonitor is a utility function used by processors to create a new
// memory monitor with the given name and start it. The returned monitor must
// be closed.
func NewMonitor(ctx context.Context, parent *mon.BytesMonitor, name string) *mon.BytesMonitor {
monitor := mon.NewMonitorInheritWithLimit(name, 0 /* limit */, parent)
monitor.Start(ctx, parent, mon.BoundAccount{})
return monitor
}
// NewLimitedMonitor is a utility function used by processors to create a new
// limited memory monitor with the given name and start it. The returned
// monitor must be closed. The limit is determined by SettingWorkMemBytes but
// overridden to 1 if config.TestingKnobs.ForceDiskSpill is set or
// config.TestingKnobs.MemoryLimitBytes if not.
func NewLimitedMonitor(
ctx context.Context, parent *mon.BytesMonitor, config *ServerConfig, name string,
) *mon.BytesMonitor {
limit := GetWorkMemLimit(config)
if config.TestingKnobs.ForceDiskSpill {
limit = 1
}
limitedMon := mon.NewMonitorInheritWithLimit(name, limit, parent)
limitedMon.Start(ctx, parent, mon.BoundAccount{})
return limitedMon
}
// LocalProcessor is a RowSourcedProcessor that needs to be initialized with
// its post processing spec and output row receiver. Most processors can accept
// these objects at creation time.
type LocalProcessor interface {
RowSourcedProcessor
StreamingProcessor
// InitWithOutput initializes this processor.
InitWithOutput(flowCtx *FlowCtx, post *execinfrapb.PostProcessSpec, output RowReceiver) error
// SetInput initializes this LocalProcessor with an input RowSource. Not all
// LocalProcessors need inputs, but this needs to be called if a
// LocalProcessor expects to get its data from another RowSource.
SetInput(ctx context.Context, input RowSource) error
}
// StreamingProcessor is a marker interface that indicates that the processor is
// of "streaming" nature and is expected to emit the output one tuple at a time
// (in both row-by-row and the vectorized engines).
type StreamingProcessor interface {
mustBeStreaming()
}