-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
window.go
1089 lines (972 loc) · 40.3 KB
/
window.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package sql
import (
"context"
"fmt"
"sort"
"unsafe"
"github.com/cockroachdb/cockroach/pkg/sql/pgwire/pgerror"
"github.com/cockroachdb/cockroach/pkg/sql/sem/builtins"
"github.com/cockroachdb/cockroach/pkg/sql/sem/transform"
"github.com/cockroachdb/cockroach/pkg/sql/sem/tree"
"github.com/cockroachdb/cockroach/pkg/sql/sem/types"
"github.com/cockroachdb/cockroach/pkg/sql/sqlbase"
"github.com/cockroachdb/cockroach/pkg/util/encoding"
"github.com/cockroachdb/cockroach/pkg/util/mon"
)
// A windowNode implements the planNode interface and handles windowing logic.
// It "wraps" a planNode which is used to retrieve the un-windowed results.
type windowNode struct {
// The "wrapped" node (which returns un-windowed results).
plan planNode
sourceCols int
// A sparse array holding renders specific to this windowNode. This will contain
// nil entries for renders that do not contain window functions, and which therefore
// can be propagated directly from the "wrapped" node.
windowRender []tree.TypedExpr
// The window functions handled by this windowNode. computeWindows will populate
// an entire column in windowValues for each windowFuncHolder, in order.
funcs []*windowFuncHolder
// colContainer and aggContainer are IndexedVarContainers that provide indirection
// to migrate IndexedVars and aggregate functions below the windowing level.
colContainer windowNodeColContainer
aggContainer windowNodeAggContainer
ivarHelper *tree.IndexedVarHelper
run windowRun
}
// window constructs a windowNode according to window function applications. This may
// adjust the render targets in the renderNode as necessary. The use of window functions
// will run with a space complexity of O(NW) (N = number of rows, W = number of windows)
// and a time complexity of O(NW) (no ordering), O(W*NlogN) (with ordering), and
// O(W*N^2) (with constant or variable sized window-frames, which are not yet supported).
//
// This code uses the following terminology throughout:
// - window:
// the optionally-ordered subset of data over which calculations are made, defined by
// the window definition for a given window function application.
// - built-in window functions:
// a set of built-in functions that can only be used in the context of a window
// through a window function application, using window function syntax.
// Ex. row_number(), rank(), dense_rank()
// - window function application:
// the act of applying a built-in window function or built-in aggregation function
// over a specific window. The application performs a calculation across a set of
// table rows that are somehow related to the current row. Unlike regular aggregate
// functions, window function application does not cause rows to become grouped into
// a single output row — the rows retain their separate identities.
// - window definition:
// the defined window to apply a window function over, which is stated in a window
// function application's OVER clause.
// Ex. SELECT avg(x) OVER (w PARTITION BY z) FROM y
// ^^^^^^^^^^^^^^^^^^
// - named window specification:
// a named window provided at the end of a SELECT clause in the WINDOW clause that
// can be referenced by the window definition of one or more window function
// applications. This window can be used directly as a window definition, or can be
// overridden in a window definition.
// Ex. used directly: SELECT avg(x) OVER w FROM y WINDOW w AS (ORDER BY z)
// ^^^^^^^^^^^^^^^^^
// Ex. overridden: SELECT avg(x) OVER (w PARTITION BY z) FROM y WINDOW w AS (ORDER BY z)
// ^^^^^^^^^^^^^^^^^
func (p *planner) window(
ctx context.Context, n *tree.SelectClause, s *renderNode,
) (*windowNode, error) {
// Determine if a window function is being applied. We use the renderNode's
// renders to determine this because window functions may be added to the
// renderNode by an ORDER BY clause.
// For instance: SELECT x FROM y ORDER BY avg(x) OVER ().
if !s.renderProps.SeenWindowApplication {
return nil, nil
}
window := &windowNode{
windowRender: make([]tree.TypedExpr, len(s.render)),
run: windowRun{
values: valuesNode{columns: s.columns},
},
}
if err := window.extractWindowFunctions(s); err != nil {
return nil, err
}
window.sourceCols = len(s.columns)
if err := p.constructWindowDefinitions(ctx, window, n, s); err != nil {
return nil, err
}
window.replaceIndexVarsAndAggFuncs(s)
acc := p.EvalContext().Mon.MakeBoundAccount()
window.run.wrappedRenderVals = sqlbase.NewRowContainer(
acc, sqlbase.ColTypeInfoFromResCols(s.columns), 0,
)
return window, nil
}
// windowRun contains the run-time state of windowNode during local execution.
type windowRun struct {
// The values returned by the wrapped nodes are logically split into three
// groups of columns, although they may overlap if renders were merged:
// - sourceVals: these values are either passed directly as rendered values of the
// windowNode if their corresponding expressions were not wrapped in window functions,
// or used as arguments to window functions to eventually create rendered values for
// the windowNode if their corresponding expressions were wrapped in window functions.
// These will always be located in wrappedRenderVals[:sourceCols].
// (see extractWindowFunctions)
// - windowDefVals: these values are used to partition and order window function
// applications, and were added to the wrapped node from window definitions.
// (see constructWindowDefinitions)
// - indexedVarVals: these values are used to buffer the IndexedVar values
// for each row. Unlike the renderNode, which can stream values for each IndexedVar,
// we need to buffer all values here while we compute window function results. We
// then index into these values in colContainer.IndexedVarEval and
// aggContainer.IndexedVarEval. (see replaceIndexVarsAndAggFuncs)
wrappedRenderVals *sqlbase.RowContainer
// The populated values for this windowNode.
values valuesNode
populated bool
windowValues [][]tree.Datum
curRowIdx int
windowFrame *tree.WindowFrame
windowsAcc mon.BoundAccount
}
func (n *windowNode) startExec(params runParams) error {
n.run.windowsAcc = params.EvalContext().Mon.MakeBoundAccount()
// OffsetExpr's must be integer expressions not containing any variables, aggregate functions, or window functions,
// so we need to make sure these expressions are evaluated before using offsets.
frame := n.run.windowFrame
if frame != nil {
bounds := frame.Bounds
if bounds.StartBound.OffsetExpr != nil {
typedStartOffset := bounds.StartBound.OffsetExpr.(tree.TypedExpr)
dStartOffset, err := typedStartOffset.Eval(params.EvalContext())
if err != nil {
return err
}
startOffset := int(tree.MustBeDInt(dStartOffset))
if startOffset < 0 {
return pgerror.NewErrorf(pgerror.CodeInvalidParameterValueError, "frame starting offset must not be negative")
}
bounds.StartBound.Offset = startOffset
}
if bounds.EndBound != nil && bounds.EndBound.OffsetExpr != nil {
typedEndOffset := bounds.EndBound.OffsetExpr.(tree.TypedExpr)
dEndOffset, err := typedEndOffset.Eval(params.EvalContext())
if err != nil {
return err
}
endOffset := int(tree.MustBeDInt(dEndOffset))
if endOffset < 0 {
return pgerror.NewErrorf(pgerror.CodeInvalidParameterValueError, "frame ending offset must not be negative")
}
bounds.EndBound.Offset = endOffset
}
}
return nil
}
func (n *windowNode) Next(params runParams) (bool, error) {
for !n.run.populated {
if err := params.p.cancelChecker.Check(); err != nil {
return false, err
}
next, err := n.plan.Next(params)
if err != nil {
return false, err
}
if !next {
n.run.populated = true
if err := n.computeWindows(params.ctx, params.EvalContext()); err != nil {
return false, err
}
n.run.values.rows = sqlbase.NewRowContainer(
params.EvalContext().Mon.MakeBoundAccount(),
sqlbase.ColTypeInfoFromResCols(n.run.values.columns),
n.run.wrappedRenderVals.Len(),
)
if err := n.populateValues(params.ctx, params.EvalContext()); err != nil {
return false, err
}
break
}
values := n.plan.Values()
if _, err := n.run.wrappedRenderVals.AddRow(params.ctx, values); err != nil {
return false, err
}
}
return n.run.values.Next(params)
}
func (n *windowNode) Values() tree.Datums {
return n.run.values.Values()
}
func (n *windowNode) Close(ctx context.Context) {
n.plan.Close(ctx)
if n.run.wrappedRenderVals != nil {
n.run.wrappedRenderVals.Close(ctx)
n.run.wrappedRenderVals = nil
}
if n.run.windowValues != nil {
n.run.windowValues = nil
n.run.windowsAcc.Close(ctx)
}
n.run.values.Close(ctx)
}
// extractWindowFunctions loops over the render expressions and extracts any window functions.
// While looping over the renders, each window function will be replaced by a separate render
// for each of its (possibly 0) arguments in the renderNode.
func (n *windowNode) extractWindowFunctions(s *renderNode) error {
visitor := extractWindowFuncsVisitor{
n: n,
aggregatesSeen: make(map[*tree.FuncExpr]struct{}),
}
oldRenders := s.render
oldColumns := s.columns
newRenders := make([]tree.TypedExpr, 0, len(oldRenders))
newColumns := make([]sqlbase.ResultColumn, 0, len(oldColumns))
for i := range oldRenders {
// Add all window function applications found in oldRenders[i] to window.funcs.
typedExpr, numFuncsAdded, err := visitor.extract(oldRenders[i])
if err != nil {
return err
}
if numFuncsAdded == 0 {
// No window functions in render.
newRenders = append(newRenders, oldRenders[i])
newColumns = append(newColumns, oldColumns[i])
} else {
// One or more window functions in render. Create a new render in
// renderNode for each window function argument.
n.windowRender[i] = typedExpr
prevWindowCount := len(n.funcs) - numFuncsAdded
for i, funcHolder := range n.funcs[prevWindowCount:] {
funcHolder.funcIdx = prevWindowCount + i
funcHolder.argIdxStart = len(newRenders)
for _, argExpr := range funcHolder.args {
arg := argExpr.(tree.TypedExpr)
newRenders = append(newRenders, arg)
newColumns = append(newColumns, sqlbase.ResultColumn{
Name: arg.String(),
Typ: arg.ResolvedType(),
})
}
}
}
}
s.resetRenderColumns(newRenders, newColumns)
return nil
}
// constructWindowDefinitions creates window definitions for each window
// function application by combining specific window definition from a
// given window function application with referenced window specifications
// on the SelectClause.
func (p *planner) constructWindowDefinitions(
ctx context.Context, n *windowNode, sc *tree.SelectClause, s *renderNode,
) error {
// Process each named window specification on the select clause.
namedWindowSpecs := make(map[string]*tree.WindowDef, len(sc.Window))
for _, windowDef := range sc.Window {
name := string(windowDef.Name)
if _, ok := namedWindowSpecs[name]; ok {
return pgerror.NewErrorf(pgerror.CodeWindowingError, "window %q is already defined", name)
}
namedWindowSpecs[name] = windowDef
}
// Construct window definitions for each window function application.
for _, windowFn := range n.funcs {
windowDef, err := constructWindowDef(*windowFn.expr.WindowDef, namedWindowSpecs)
if err != nil {
return err
}
// Validate PARTITION BY clause.
for _, partition := range windowDef.Partitions {
cols, exprs, _, err := p.computeRenderAllowingStars(ctx,
tree.SelectExpr{Expr: partition}, types.Any, s.sourceInfo, s.ivarHelper,
autoGenerateRenderOutputName)
if err != nil {
return err
}
colIdxs := s.addOrReuseRenders(cols, exprs, true)
windowFn.partitionIdxs = append(windowFn.partitionIdxs, colIdxs...)
}
// Validate ORDER BY clause.
for _, orderBy := range windowDef.OrderBy {
cols, exprs, _, err := p.computeRenderAllowingStars(ctx,
tree.SelectExpr{Expr: orderBy.Expr}, types.Any, s.sourceInfo, s.ivarHelper,
autoGenerateRenderOutputName)
if err != nil {
return err
}
direction := encoding.Ascending
if orderBy.Direction == tree.Descending {
direction = encoding.Descending
}
colIdxs := s.addOrReuseRenders(cols, exprs, true)
for _, idx := range colIdxs {
ordering := sqlbase.ColumnOrderInfo{
ColIdx: idx,
Direction: direction,
}
windowFn.columnOrdering = append(windowFn.columnOrdering, ordering)
}
}
n.run.windowFrame = windowDef.Frame
// Validate window frame bounds if present
frame := n.run.windowFrame
if frame != nil {
bounds := frame.Bounds
if bounds.StartBound.OffsetExpr != nil {
typedStartOffset, err := tree.TypeCheckAndRequire(bounds.StartBound.OffsetExpr, &p.semaCtx, types.Int, "window frame start")
if err != nil {
return err
}
bounds.StartBound.OffsetExpr = typedStartOffset
}
if bounds.EndBound != nil && bounds.EndBound.OffsetExpr != nil {
typedEndOffset, err := tree.TypeCheckAndRequire(bounds.EndBound.OffsetExpr, &p.semaCtx, types.Int, "window frame end")
if err != nil {
return err
}
bounds.EndBound.OffsetExpr = typedEndOffset
}
}
}
return nil
}
// constructWindowDef constructs a WindowDef using the provided WindowDef value and the
// set of named window specifications on the current SELECT clause. If the provided
// WindowDef does not reference a named window spec, then it will simply be returned without
// modification. If the provided WindowDef does reference a named window spec, then the
// referenced spec will be overridden with any extra clauses from the WindowDef and returned.
func constructWindowDef(
def tree.WindowDef, namedWindowSpecs map[string]*tree.WindowDef,
) (tree.WindowDef, error) {
modifyRef := false
var refName string
switch {
case def.RefName != "":
// SELECT rank() OVER (w) FROM t WINDOW w as (...)
// We copy the referenced window specification, and modify it if necessary.
refName = string(def.RefName)
modifyRef = true
case def.Name != "":
// SELECT rank() OVER w FROM t WINDOW w as (...)
// We use the referenced window specification directly, without modification.
refName = string(def.Name)
}
if refName == "" {
return def, nil
}
referencedSpec, ok := namedWindowSpecs[refName]
if !ok {
return def, pgerror.NewErrorf(pgerror.CodeUndefinedObjectError, "window %q does not exist", refName)
}
if !modifyRef {
return *referencedSpec, nil
}
// referencedSpec.Partitions is always used.
if len(def.Partitions) > 0 {
return def, pgerror.NewErrorf(pgerror.CodeWindowingError, "cannot override PARTITION BY clause of window %q", refName)
}
def.Partitions = referencedSpec.Partitions
// referencedSpec.OrderBy is used if set.
if len(referencedSpec.OrderBy) > 0 {
if len(def.OrderBy) > 0 {
return def, pgerror.NewErrorf(pgerror.CodeWindowingError, "cannot override ORDER BY clause of window %q", refName)
}
def.OrderBy = referencedSpec.OrderBy
}
if referencedSpec.Frame != nil {
return def, pgerror.NewErrorf(pgerror.CodeWindowingError, "cannot copy window %q because it has a frame clause", refName)
}
// TODO(yuzefovich): check the logic above, maybe we need to do or to check something else.
return def, nil
}
// Once the extractWindowFunctions has been run over each render, the remaining
// render expressions will either be nil or contain an expression. If one is nil,
// that means the render will not be touched by windowNode, and will be passed on
// without modification. If the render is not nil, that means that it contained
// at least one window function, and now has windowFuncHolders standing in as
// terminal expressions for each of these window function applications. These
// expressions will be evaluated after each of the window functions are run, so
// we refer to them as happening above the "windowing level". In other words, we
// let the source plan execute to completion below the windowing level, we then
// compute the results of each window function for each row, and finally we continue
// evaluating the windowRenders with each window function's respective result for
// that row above the windowing level.
//
// There is one complication here; expression types that also vary for each row
// need to be treated with special care if above this windowing level. These expression
// types are:
// - IndexedVars: window function evaluation requires completion of any wrapped
// plan nodes, so if we did nothing here, all existing IndexedVars from source plans
// would be pointing to their values in the last row of the underlying renderNode.
// Clearly, we cannot use the renderNode as the IndexedVarContainer for IndexedVars
// above the windowing level.
// Example:
// SELECT x + row_number() OVER () FROM t
// is replaced by
// SELECT @1 + row_number() OVER () FROM (SELECT x, ... FROM t)
//
// - Aggregate Functions: aggregate functions are handled by the groupNode, which
// requires the functions to be present in its renders for proper evaluation.
// If an aggregate function is found above the windowing level and we do not
// migrate it below the windowing level, the aggregation will never be performed.
// Example:
// SELECT max(x) + row_number() OVER () FROM t
// is replaced by
// SELECT @1 + row_number() OVER () FROM (SELECT max(x), ... FROM t)
//
// To work around both of these cases, we perform four steps:
// 1. We add renders to the source plan for each column referenced by any existing
// IndexedVar or any aggregate function found above the windowing level. In both
// cases, we perform deduplication to only add a single render per unique
// IndexedVar or aggregate function.
// 2. We replace each IndexedVar or aggregation function with a new IndexedVar that
// uses the windowNode as an IndexedVarContainer (see windowNodeVarContainer and
// windowNodeAggContainer).
// 3. The results are computed by the source node for the newly added renders. The
// window node then buffers these results in the wrappedIndexedVarVals RowContainer
// while computing window function results.
// 4. When evaluating windowRenders for each row that contain these new IndexedVars,
// the windowNode provides the buffered column value for that row through its
// IndexedVarContainer interface.
//
// Example:
// SELECT a, max(b), c + max(d) + first_value(e) OVER (PARTITION BY f) FROM t
// (for clarity, we ignore grouping rules)
//
// After extractWindowFunctions is run:
// source plan's renders: [a, max(b), e]
// window plan's renders: [nil, nil, c + max(d) + first_value(@3) OVER (PARTITION BY f)]
//
// After constructWindowDefinitions is run:
// source plan's renders: [a, max(b), e, f]
// window plan's renders: [nil, nil, c + max(d) + first_value(@3) OVER (PARTITION BY @4)]
//
// After replaceIndexVarsAndAggFuncs is run:
// source plan's renders: [a, max(b), e, f, c, max(d)]
// window plan's renders: [nil, nil, @5 + @6 + first_value(@3) OVER (PARTITION BY @4)]
//
func (n *windowNode) replaceIndexVarsAndAggFuncs(s *renderNode) {
n.colContainer = windowNodeColContainer{
windowNodeIvarContainer: makeWindowNodeIvarContainer(&n.run),
sourceInfo: s.sourceInfo[0],
}
ivarHelper := tree.MakeIndexedVarHelper(&n.colContainer, s.ivarHelper.NumVars())
n.ivarHelper = &ivarHelper
n.aggContainer = windowNodeAggContainer{
windowNodeIvarContainer: makeWindowNodeIvarContainer(&n.run),
aggFuncs: make(map[int]*tree.FuncExpr),
}
// The number of aggregation functions that need to be replaced with IndexedVars
// is unknown, so we collect them here and bind them to an IndexedVarHelper later.
// We use a map indexed by render index to leverage addOrReuseRender's deduplication
// of identical aggregate functions.
aggIVars := make(map[int]*tree.IndexedVar)
for i, render := range n.windowRender {
if render == nil {
continue
}
replaceExprsAboveWindowing := func(expr tree.Expr) (error, bool, tree.Expr) {
switch t := expr.(type) {
case *tree.IndexedVar:
// We add a new render to the source renderNode for each new IndexedVar we
// see. We also register this mapping in the idxMap.
col := sqlbase.ResultColumn{
Name: t.String(),
Typ: t.ResolvedType(),
}
colIdx := s.addOrReuseRender(col, t, true)
n.colContainer.idxMap[t.Idx] = colIdx
return nil, false, ivarHelper.IndexedVar(t.Idx)
case *tree.FuncExpr:
// All window function applications will have been replaced by
// windowFuncHolders at this point, so if we see an aggregate
// function in the window renders, it is above a window function.
if t.GetAggregateConstructor() != nil {
// We add a new render to the source renderNode for each new aggregate
// function we see.
col := sqlbase.ResultColumn{Name: t.String(), Typ: t.ResolvedType()}
colIdx := s.addOrReuseRender(col, t, true)
if iVar, ok := aggIVars[colIdx]; ok {
// If we have already created an IndexedVar for this aggregate
// function, return it.
return nil, false, iVar
}
// Create a new IndexedVar with the next available index.
idx := len(n.aggContainer.idxMap)
aggIVar := tree.NewIndexedVar(idx)
aggIVars[colIdx] = aggIVar
n.aggContainer.idxMap[idx] = colIdx
n.aggContainer.aggFuncs[idx] = t
return nil, false, aggIVar
}
return nil, true, expr
default:
return nil, true, expr
}
}
expr, err := tree.SimpleVisit(render, replaceExprsAboveWindowing)
if err != nil {
panic(err)
}
n.windowRender[i] = expr.(tree.TypedExpr)
}
if len(aggIVars) > 0 {
// Now that we know how many aggregate functions there were, we can create
// an IndexedVarHelper and bind each of the corresponding IndexedVars to
// the helper.
aggHelper := tree.MakeIndexedVarHelper(&n.aggContainer, len(aggIVars))
for _, ivar := range aggIVars {
// The ivars above have been created with a nil container, and
// therefore they are guaranteed to be modified in-place by
// BindIfUnbound().
if newIvar, err := aggHelper.BindIfUnbound(ivar); err != nil {
panic(err)
} else if newIvar != ivar {
panic(fmt.Sprintf("unexpected binding: %v, expected: %v", newIvar, ivar))
}
}
}
}
type partitionSorter struct {
evalCtx *tree.EvalContext
rows []tree.IndexedRow
windowDefVals *sqlbase.RowContainer
ordering sqlbase.ColumnOrdering
}
// partitionSorter implements the sort.Interface interface.
func (n *partitionSorter) Len() int { return len(n.rows) }
func (n *partitionSorter) Swap(i, j int) { n.rows[i], n.rows[j] = n.rows[j], n.rows[i] }
func (n *partitionSorter) Less(i, j int) bool { return n.Compare(i, j) < 0 }
// partitionSorter implements the peerGroupChecker interface.
func (n *partitionSorter) InSameGroup(i, j int) bool { return n.Compare(i, j) == 0 }
func (n *partitionSorter) Compare(i, j int) int {
ra, rb := n.rows[i], n.rows[j]
defa, defb := n.windowDefVals.At(ra.Idx), n.windowDefVals.At(rb.Idx)
for _, o := range n.ordering {
da := defa[o.ColIdx]
db := defb[o.ColIdx]
if c := da.Compare(n.evalCtx, db); c != 0 {
if o.Direction != encoding.Ascending {
return -c
}
return c
}
}
return 0
}
type allPeers struct{}
// allPeers implements the peerGroupChecker interface.
func (allPeers) InSameGroup(i, j int) bool { return true }
type noPeers struct{}
// noPeers implements the peerGroupChecker interface.
func (noPeers) InSameGroup(i, j int) bool { return false }
// peerGroupChecker can check if a pair of row indexes within a partition are
// in the same peer group.
type peerGroupChecker interface {
InSameGroup(i, j int) bool
}
// computeWindows populates n.run.windowValues, adding a column of values to the
// 2D-slice for each window function in n.funcs. This needs to be performed
// all at once because in order to compute the result of a window function
// for any single row, we need to have access to all rows at the same time.
//
// The state shared between rows while computing all window functions for a
// single row is not easily extracted for two reasons:
// 1. window functions can define different partitioning attributes
// 2. window functions can define different column orderings within partitions
//
// The general structure is:
// for each window function
// compute partitions
// for each partition
// sort partition
// evaluate window frame over partition per cell, keeping track of peer groups
func (n *windowNode) computeWindows(ctx context.Context, evalCtx *tree.EvalContext) error {
rowCount := n.run.wrappedRenderVals.Len()
if rowCount == 0 {
return nil
}
windowCount := len(n.funcs)
winValSz := uintptr(rowCount) * unsafe.Sizeof([]tree.Datum{})
winAllocSz := uintptr(rowCount*windowCount) * unsafe.Sizeof(tree.Datum(nil))
if err := n.run.windowsAcc.Grow(ctx, int64(winValSz+winAllocSz)); err != nil {
return err
}
n.run.windowValues = make([][]tree.Datum, rowCount)
windowAlloc := make([]tree.Datum, rowCount*windowCount)
for i := range n.run.windowValues {
n.run.windowValues[i] = windowAlloc[i*windowCount : (i+1)*windowCount]
}
var scratchBytes []byte
var scratchDatum []tree.Datum
for windowIdx, windowFn := range n.funcs {
partitions := make(map[string][]tree.IndexedRow)
if len(windowFn.partitionIdxs) == 0 {
// If no partition indexes are included for the window function, all
// rows are added to the same partition, which need to be pre-allocated.
sz := int64(uintptr(rowCount) * unsafe.Sizeof(tree.IndexedRow{}))
if err := n.run.windowsAcc.Grow(ctx, sz); err != nil {
return err
}
partitions[""] = make([]tree.IndexedRow, rowCount)
}
if num := len(windowFn.partitionIdxs); num > cap(scratchDatum) {
sz := int64(uintptr(num) * unsafe.Sizeof(tree.Datum(nil)))
if err := n.run.windowsAcc.Grow(ctx, sz); err != nil {
return err
}
scratchDatum = make([]tree.Datum, num)
} else {
scratchDatum = scratchDatum[:num]
}
// Partition rows into separate partitions based on hash values of the
// window function's PARTITION BY attribute.
//
// TODO(nvanbenschoten): Window functions with the same window definition
// can share partition and sorting work.
// See Cao et al. [http://vldb.org/pvldb/vol5/p1244_yucao_vldb2012.pdf]
for rowI := 0; rowI < rowCount; rowI++ {
row := n.run.wrappedRenderVals.At(rowI)
sourceVals := row[:n.sourceCols]
entry := tree.IndexedRow{Idx: rowI, Row: sourceVals}
if len(windowFn.partitionIdxs) == 0 {
// If no partition indexes are included for the window function, all
// rows are added to the same partition.
partitions[""][rowI] = entry
} else {
// If the window function has partition indexes, we hash the values of each
// of these indexes for each row, and partition based on this hashed value.
for i, idx := range windowFn.partitionIdxs {
scratchDatum[i] = row[idx]
}
encoded, err := sqlbase.EncodeDatums(scratchBytes, scratchDatum)
if err != nil {
return err
}
sz := int64(uintptr(len(encoded)) + unsafe.Sizeof(entry))
if err := n.run.windowsAcc.Grow(ctx, sz); err != nil {
return err
}
partitions[string(encoded)] = append(partitions[string(encoded)], entry)
scratchBytes = encoded[:0]
}
}
// For each partition, perform necessary sorting based on the window function's
// ORDER BY attribute. After this, perform the window function computation for
// each tuple and save the result in n.run.windowValues.
//
// TODO(nvanbenschoten)
// - Investigate inter- and intra-partition parallelism
// - Investigate more efficient aggregation techniques
// * Removable Cumulative
// * Segment Tree
// See Leis et al. [http://www.vldb.org/pvldb/vol8/p1058-leis.pdf]
for _, partition := range partitions {
// TODO(nvanbenschoten): Handle framing here. Right now we only handle the default
// framing option of RANGE UNBOUNDED PRECEDING. With ORDER BY, this sets the frame
// to be all rows from the partition start up through the current row's last ORDER BY
// peer. Without ORDER BY, all rows of the partition are included in the window frame,
// since all rows become peers of the current row. Once we add better framing support,
// we should flesh this logic out more.
builtin := windowFn.expr.GetWindowConstructor()(evalCtx)
defer builtin.Close(ctx, evalCtx)
// In order to calculate aggregates over a particular window frame,
// we need a way to 'reset' the aggregate, so this constructor will be used for that.
aggConstructor := windowFn.expr.GetAggregateConstructor()
var peerGrouper peerGroupChecker
if windowFn.columnOrdering != nil {
// If an ORDER BY clause is provided, order the partition and use the
// sorter as our peerGroupChecker.
sorter := &partitionSorter{
evalCtx: evalCtx,
rows: partition,
windowDefVals: n.run.wrappedRenderVals,
ordering: windowFn.columnOrdering,
}
// The sort needs to be deterministic because multiple window functions with
// syntactically equivalent ORDER BY clauses in their window definitions
// need to be guaranteed to be evaluated in the same order, even if the
// ORDER BY *does not* uniquely determine an ordering. In the future, this
// could be guaranteed by only performing a single pass over a sorted partition
// for functions with syntactically equivalent PARTITION BY and ORDER BY clauses.
sort.Sort(sorter)
peerGrouper = sorter
} else if n.run.windowFrame != nil && n.run.windowFrame.Mode == tree.ROWS {
// If ORDER BY clause is not provided and Frame is specified with ROWS mode,
// any row has no peers.
peerGrouper = noPeers{}
} else {
// If ORDER BY clause is not provided and either no Frame is provided or Frame is
// specified with RANGE mode, all rows are peers.
peerGrouper = allPeers{}
}
frameRun := &tree.WindowFrameRun{
Rows: partition,
ArgIdxStart: windowFn.argIdxStart,
ArgCount: windowFn.argCount,
RowIdx: 0,
}
if n.run.windowFrame != nil {
frameRun.Frame = n.run.windowFrame
builtins.AddAggregateConstructorToFramableAggregate(builtin, aggConstructor)
}
for frameRun.RowIdx < len(partition) {
// Compute the size of the current peer group.
frameRun.FirstPeerIdx = frameRun.RowIdx
frameRun.PeerRowCount = 1
for ; frameRun.FirstPeerIdx+frameRun.PeerRowCount < frameRun.PartitionSize(); frameRun.PeerRowCount++ {
cur := frameRun.FirstPeerIdx + frameRun.PeerRowCount
if !peerGrouper.InSameGroup(cur, cur-1) {
break
}
}
// Perform calculations on each row in the current peer group.
for ; frameRun.RowIdx < frameRun.FirstPeerIdx+frameRun.PeerRowCount; frameRun.RowIdx++ {
res, err := builtin.Compute(ctx, evalCtx, frameRun)
if err != nil {
return err
}
// This may overestimate, because WindowFuncs may perform internal caching.
sz := res.Size()
if err := n.run.windowsAcc.Grow(ctx, int64(sz)); err != nil {
return err
}
// Save result into n.run.windowValues, indexed by original row index.
valRowIdx := partition[frameRun.RowIdx].Idx
n.run.windowValues[valRowIdx][windowIdx] = res
}
}
}
}
return nil
}
// populateValues populates n.run.values with final datum values after computing
// window result values in n.run.windowValues.
func (n *windowNode) populateValues(ctx context.Context, evalCtx *tree.EvalContext) error {
rowCount := n.run.wrappedRenderVals.Len()
row := make(tree.Datums, len(n.windowRender))
for i := 0; i < rowCount; i++ {
wrappedRow := n.run.wrappedRenderVals.At(i)
n.run.curRowIdx = i // Point all windowFuncHolders to the correct row values.
curColIdx := 0
curFnIdx := 0
for j := range row {
if curWindowRender := n.windowRender[j]; curWindowRender == nil {
// If the windowRender at this index is nil, propagate the datum
// directly from the wrapped planNode. It wasn't changed by windowNode.
row[j] = wrappedRow[curColIdx]
curColIdx++
} else {
// If the windowRender is not nil, ignore 0 or more columns from the wrapped
// planNode. These were used as arguments to window functions all beneath
// a single windowRender.
// SELECT rank() over () from t; -> ignore 0 from wrapped values
// SELECT (rank() over () + avg(b) over ()) from t; -> ignore 1 from wrapped values
// SELECT (avg(a) over () + avg(b) over ()) from t; -> ignore 2 from wrapped values
for ; curFnIdx < len(n.funcs); curFnIdx++ {
windowFn := n.funcs[curFnIdx]
if windowFn.argIdxStart != curColIdx {
break
}
curColIdx += windowFn.argCount
}
// Instead, we evaluate the current window render, which depends on at least
// one window function, at the given row.
evalCtx.PushIVarContainer(&n.colContainer)
res, err := curWindowRender.Eval(evalCtx)
evalCtx.PopIVarContainer()
if err != nil {
return err
}
row[j] = res
}
}
if _, err := n.run.values.rows.AddRow(ctx, row); err != nil {
return err
}
}
// Done using the output of computeWindows, release memory and clear
// accounts.
n.run.wrappedRenderVals.Close(ctx)
n.run.wrappedRenderVals = nil
n.run.windowValues = nil
n.run.windowsAcc.Close(ctx)
return nil
}
type extractWindowFuncsVisitor struct {
n *windowNode
// Avoids allocations.
subWindowVisitor transform.ContainsWindowVisitor
// Persisted visitor state.
aggregatesSeen map[*tree.FuncExpr]struct{}
windowFnCount int
err error
}
var _ tree.Visitor = &extractWindowFuncsVisitor{}
func (v *extractWindowFuncsVisitor) VisitPre(expr tree.Expr) (recurse bool, newExpr tree.Expr) {
if v.err != nil {
return false, expr
}
switch t := expr.(type) {
case *tree.FuncExpr:
switch {
case t.IsWindowFunctionApplication():
// Check if a parent node above this window function is an aggregate.
if len(v.aggregatesSeen) > 0 {
v.err = sqlbase.NewWindowInAggError()
return false, expr
}
// Make sure this window function does not contain another window function.
for _, argExpr := range t.Exprs {
if v.subWindowVisitor.ContainsWindowFunc(argExpr) {
v.err = pgerror.NewErrorf(pgerror.CodeWindowingError, "window function calls cannot be nested")
return false, expr
}
}
f := &windowFuncHolder{
expr: t,
args: t.Exprs,
argCount: len(t.Exprs),
window: v.n,
}
v.windowFnCount++
v.n.funcs = append(v.n.funcs, f)
return false, f
case t.GetAggregateConstructor() != nil:
// If we see an aggregation that is not used in a window function, we save it
// in the visitor's seen aggregate set. The aggregate function will remain in
// this set until the recursion into its children is complete.
v.aggregatesSeen[t] = struct{}{}
}
}
return true, expr
}
func (v *extractWindowFuncsVisitor) VisitPost(expr tree.Expr) tree.Expr {
if fn, ok := expr.(*tree.FuncExpr); ok {
delete(v.aggregatesSeen, fn)
}
return expr
}
// Extract windowFuncHolders from exprs that use window functions and check if they are valid.
// It will return the new expression tree, along with the number of window functions seen and
// added to v.n.funcs.
// A window function is valid if:
// - it is not contained in an aggregate function
// - it does not contain another window function
// - it is either the application of a built-in window function
// or of a built-in aggregate function
//
// For example:
// Invalid: `SELECT AVG(AVG(k) OVER ()) FROM kv`
// - The avg aggregate wraps the window function.
// Valid: `SELECT AVG(k) OVER () FROM kv`
// Also valid: `SELECT AVG(AVG(k)) OVER () FROM kv`
// - Window functions can wrap aggregates.
// Invalid: `SELECT NOW() OVER () FROM kv`
// - NOW() is not an aggregate or a window function.
func (v extractWindowFuncsVisitor) extract(typedExpr tree.TypedExpr) (tree.TypedExpr, int, error) {
expr, _ := tree.WalkExpr(&v, typedExpr)
if v.err != nil {
return nil, 0, v.err
}
return expr.(tree.TypedExpr), v.windowFnCount, nil
}
var _ tree.TypedExpr = &windowFuncHolder{}
var _ tree.VariableExpr = &windowFuncHolder{}
type windowFuncHolder struct {
window *windowNode
expr *tree.FuncExpr
args []tree.Expr
funcIdx int // index of the windowFuncHolder in window.funcs
argIdxStart int // index of the window function's first arguments in window.wrappedValues
argCount int // number of arguments taken by the window function
partitionIdxs []int
columnOrdering sqlbase.ColumnOrdering
}
func (*windowFuncHolder) Variable() {}
func (w *windowFuncHolder) Format(ctx *tree.FmtCtx) {
// Avoid duplicating the type annotation by calling .Format directly.
w.expr.Format(ctx)
}
func (w *windowFuncHolder) String() string { return tree.AsString(w) }